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ABSTRACT

In the partial Koziol-Green regression model, the lifetime variable may be censored

by two types of censoring variables. One is called informative because it satisfies the

Koziol-Green assumption on proportionality of hazards, and the other one is general.

[3] proposed a nonparametric estimator for the conditional lifetime distribution and

obtained a Gaussian approximation for the corresponding process. In the present

paper we propose an appropriate resampling scheme and show that this leads to a

valid bootstrap approximation for the process.

1 Introduction

Consider a regression model with independent and non-negative responses Y1, . . . , Yn

at fixed design points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1. These responses are subject to random

right censoring in the following way: each Yi can be censored by the minimum of two

independent and non-negative variables Ci and Di. The Ci are informative censoring

times, satisfying the proportional hazards condition, while the Di are arbitrary non

informative censoring times. The observed random variables at design point xi are

(Zi, δi) where Zi = Yi∧Ci∧Di and δi = 1 if Yi ≤ Ci∧Di, δi = 0 if Ci ≤ Yi∧Di and δi =

−1 if Di ≤ Yi∧Ci. For a given design value x ∈]0, 1[, we write Fx, G1x, G2x, Hx for the

distribution function of respectively, the response Yx at x, the informative censoring

variable Cx, the non informative censoring variable Dx and Zx = Yx ∧Cx ∧Dx. Also

1



we will write δx for the indicator variable that takes the values 1, 0,−1 according as

Zx = Yx, Cx, Dx. (Note that for the design values xi we write Yi, Ci, Di, Zi, δi instead

of Yxi
, Cxi

, Dxi
, Zxi

, δxi
). We will assume the usual conditions of independence of the

Yi, the Ci and the Di, and also between Yi, Ci and Di. The proportional hazards

assumption on the censoring variable Cx can be expressed as follows: for t ≥ 0,

1 − G1x(t) = (1 − Fx(t))
βx (1.1)

for some βx > 0.

We will assume that the distribution functions Fx and G2x are continuous. It then

follows by (1.1) that G1x is also continuous. We also assume that the probabilities

pxk = P (δx = k) (k = -1,0,1) are strictly between 0 and 1 for all x. An easy calcula-

tion in [3] shows that βx =
px0

px1

.

In that same paper we introduced the estimator F̂xh(t) for Fx(t) in the following

way:

1 − F̂xh(t) = (1 − Lxh(t))
γxh (1.2)

where

Lxh(t) = 1 −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

Z(i)≤t

⎛⎜⎜⎜⎝1 − wn(i)(x; hn)

1 − i−1∑
j=1

wn(j)(x; hn)

⎞⎟⎟⎟⎠
ε(i)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ I(t < Z(n)). (1.3)

and

γxh =
px1h

px0h + px1h

. (1.4)

with pxkh =
n∑

i=1
wni(x; hn)I(δi = k) (k = -1,0,1) and εi = I(δi �= −1). Here

Z(1) ≤ . . . ≤ Z(n) are the ordered Z1, . . . , Zn and the ε(i) and wn(i)(x; hn) are the

corresponding εi and wni(x; hn) of the ordered Zi.

These estimators involve a sequence of smoothing weights {wni(x; hn)}, depending on

a positive bandwidth sequence {hn}, tending to zero as n→∞. In our present case

of fixed design points it is customary to take the Gasser-Müller type weights, given

by

wni(x; hn) =
1

cn(x; hn)

xi∫
xi−1

1

hn

K
(

x − z

hn

)
dz (i = 1, . . . , n)

cn(x; hn) =

xn∫
0

1

hn

K
(

x − z

hn

)
dz.

Here x0 = 0 and K is a known probability density function (kernel).
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For simplicity we have used the same kernel K for estimation of Lxh(t) and pxkh. The

extension to different kernels is of course straightforward.

2 The bootstrap procedure

The purpose of this paper is to propose a bootstrap method for approximating the

distribution function of (nhn)1/2(F̂xh(t)− Fx(t)). This will provide an alternative for

the normal approximation derived in Theorem 3 of [3]. The normal approximation

suffers from complicated expressions for the asymptotic mean and variance (see (5.1)

and (5.2) below) which cannot be calculated in a real data analysis. In this situa-

tion, the bootstrap approximation allows us to find some bands for the conditional

distribution estimator F̂xh(t), as will be shown in Section 7. For the Kaplan Meier

estimator the bootstrap has been introduced by [4] and for the bootstrapped Beran

estimator we refer to [10].

Given the design points xi, the minima Zi and indicators δi (i = 1, . . . , n), we propose

the following

Resampling procedure

Resample (Z∗
i , δ

∗
i ) (i = 1, . . . , n) with replacement from (Z1, δ1), . . . , (Zn, δn), giv-

ing probability wnj(xi; gn) to (Zj, δj), j = 1, . . . , n. The sequence {gn} is a pilot

bandwidth sequence which is different from {hn} in the sense that gn/hn → ∞ in a

certain way.

It is easily verified that the above procedure is equivalent to two alternative pro-

cedures.

Alternative procedure 1

Define the random variables Y ∗
i , C∗

i , D∗
i (independently) as follows:

Y ∗
1 , . . . , Y ∗

n are independent; Y ∗
i ∼ F̂xig

C∗
1 , . . . , C

∗
n are independent; C∗

i ∼ Ĝ1xig

D∗
1, . . . , D

∗
n are independent; D∗

i ∼ G2xig

Here F̂xig is an estimator for Fxi
as defined in (1.2). The distribution Ĝ1xig is defined
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as 1 − (1 − F̂xig)
βxig where βxig = (1 − γxig)/γxig. Finally G2xig is a Beran type

estimator for the distribution G2xi
. It is given by

G2xig(t) = 1 −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏

Z(j)≤t

⎛⎜⎜⎜⎝1 − wn(j)(xi; gn)

1 −
j−1∑
k=1

wn(k)(xi; gn)

⎞⎟⎟⎟⎠
I(δ(j)=−1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ I(t < Z(n)).

Then define, for i = 1, . . . , n, Z∗
i = Y ∗

i ∧C∗
i ∧D∗

i and δ∗i = 1 if Y ∗
i ≤ C∗

i ∧D∗
i , δ∗i = 0

if C∗
i ≤ Y ∗

i ∧ D∗
i , δ∗i = −1 if D∗

i ≤ Y ∗
i ∧ C∗

i .

Alternative procedure 2

Another equivalent resampling procedure can be set up by exploiting the following

characterization of the model: assumption (1.1) holds for some βx > 0 if and only if

Zx and δx are independent, conditionally on the event {δx �= −1}. (see [3]).

Now define the random variables U∗
i , ε∗i , D∗

i (independently) as follows:

U∗
1 , . . . , U∗

n are independent; U∗
i ∼ Lxig

ε∗1, . . . , ε
∗
n are independent; ε∗i ∼ Bin(1, γxig)

D∗
1, . . . , D

∗
n are independent; D∗

i ∼ G2xig

where Lxig is the estimator of Lxi
, as defined in (1.3). G2xig has the same definition as

in the previous procedure. The ε∗i come from a Bernoulli distribution with parameter

γxig, which is defined as in (1.4) and is an estimator for γxi
. The bootstrap sample

can now be defined, for i = 1, . . . , n, as: Z∗
i = U∗

i ∧ D∗
i and δ∗i = ε∗i if U∗

i ≤ D∗
i and

δ∗i = −1 if U∗
i > D∗

i .

Based on the bootstrap sample (Z∗
1 , δ

∗
1), . . . , (Z

∗
n, δ∗n), we define the bootstrap analogue

of the partial Koziol-Green estimator given in (1.2) as:

1 − F̂ ∗
xhg(t) = (1 − L∗

xhg(t))
γ∗

xhg

where

L∗
xhg(t) = 1−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

Z∗
(i)

≤t

⎛⎜⎜⎜⎝1 − wn(i)(x; hn)

1 − i−1∑
j=1

wn(j)(x; hn)

⎞⎟⎟⎟⎠
ε∗
(i)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ I(t < Z∗
(n)) and γ∗

xhg =
p∗x1hg

p∗x0hg + p∗x1hg

with p∗xkhg =
n∑

i=1
wni(x; hn)I(δ∗i = k) (k = -1,0,1) and ε∗i = I(δ∗i �= −1). Here

Z∗
(1) ≤ . . . ≤ Z∗

(n), and the ε∗(i) and wn(i)(x; hn) correspond to Z∗
(i).
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In the sequel we will use notations P ∗, E∗, Var∗, . . . for probability, expectation,

variance, . . . conditionally on the original observations.

The paper is organized as follows. After some notation and regularity conditions in

Section 3, we obtain results on an almost sure asymptotic representation in Section

4 and on weak convergence of the bootstrapped process in Section 5. A simulated

example will be presented in Section 6 while a real dataset analysis is shown in Section

7. In the appendix we will give the proofs of the theorems and some lemmas which

we need in these proofs.

3 Regularity conditions

We will need the following additional notation. For the design points x1, . . . , xn

we denote Δn = min
1≤i≤n

(xi − xi−1) and Δn = max
1≤i≤n

(xi − xi−1). For the kernel K

we use ‖K‖∞ = sup
u∈IR

K(u) , ‖K‖2
2 =

+∞∫
−∞

K2(u)du, μK
1 =

+∞∫
−∞

uK(u)du and μK
2 =

+∞∫
−∞

u2K(u)du. For any distribution function L̃, we denote by TL̃ = inf{t : L̃(t) = 1}
the right endpoint of its support. Note that TFx = TG1x and THx = TFx ∧ TG2x .

We will use the following assumptions on the design points and on the kernel. (Con-

dition (A2’) below is slightly stronger than condition (A2) in [3]).

(A1) xn → 1 , Δn = O(n−1) , Δn − Δn = o(n−1).

(A2’) K is a twice differentiable probability density function with finite support

[−M,M ] for some M > 0 , μK
1 = 0, K ′′ is continuous and K(−M) = K ′(−M) =

K(M) = K ′(M) = 0.

Note that cn(x; hn) = 1 for n sufficiently large (depending on x) since xn → 1 and K

has finite support. This makes that in all proofs of asymptotic results we may take

cn(x; hn) = 1.

Further we will need typical smoothness conditions on functions like Fx(t), G2x(t) (as

functions of x and t) and βx and pxk (as functions of x).

(A3) The second order partial derivatives F̈x(t) =
∂2

∂x2
Fx(t), G̈2x(t) =

∂2

∂x2
G2x(t),
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F ′′
x (t) =

∂2

∂t2
Fx(t), G

′′
2x(t) =

∂2

∂t2
G2x(t), Ḟ

′
x(t) =

∂2

∂x∂t
Fx(t), Ġ

′
2x(t) =

∂2

∂x∂t
G2x(t)

exist and are continuous for 0 ≤ x ≤ 1 and 0 ≤ t ≤ T with T < TFx ∧ TG2x .

(A4) The second order partial derivatives p̈xk =
∂2

∂x2
pxk (k = −1, 0, 1) exist and are

continuous for 0 ≤ x ≤ 1.

The first order partial derivatives will be denoted by Ḟx(t), F
′
x(t), Ġ2x(t), G

′
2x(t), β̇x, ṗxk.

Further notations are ‖ṗxk‖ = sup
0≤x≤1

|ṗxk| , ‖p̈xk‖ = sup
0≤x≤1

|p̈xk|.

The parameter gn which is used to construct the resampled values is an appropri-

ate pilot bandwidth sequence which is typically asymptotically larger than hn, i.e.

gn/hn →∞ in a certain way. This technique of oversmoothing with the initial band-

width has been successfully used in other resampling schemes in regression (e.g. [1],

[6], [10]). Furthermore we will state our results for the fixed bandwidth sequence hn

of optimal rate, i.e. hn = Cn−1/5 for some constant C > 0.

4 Almost sure asymptotic representation

Parallel to the result of [3] for the conditional estimator F̂xh(t), we now derive in

Theorem 1 an almost sure asymptotic representation for the bootstrap estimator

F̂ ∗
xhg(t). It represents the process F̂ ∗

xhg(t)− F̂xg(t) as a weighted sum plus a remainder

term with a nice almost sure behaviour. This result will be a key tool in the next

section.

Let us introduce the functions Hx(t) = P(Zx ≤ t) and H0,1
x (t) = P(Zx ≤ t, εx = 1) =

P(Zx ≤ t, δx �= −1).

Theorem 1. Assume (A1), (A2’), (A3), (A4) in [0, T ] with T < THx , hn = Cn−1/5

for some C > 0, gn → 0,
ng5

n

log n
→+∞,

ng5
n

log n
· hn

gn

= O(1). Then, for t < THx ,

F̂ ∗
xhg(t) − F̂xg(t) =

n∑
i=1

wni(x; hn)gtx(Z
∗
i , δ

∗
i ) −

n∑
i=1

wni(x; gn)gtx(Zi, δi) + Rn(x, t)

where

gtx(Zi, δi) = γx(1 − Fx(t))

⎧⎨⎩
t∫

0

I(Zi ≤ s) − Hx(s)

(1 − Hx(s))2
dH0,1

x (s)
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+
I(Zi ≤ t, δi �= −1) − H0,1

x (t)

1 − Hx(t)
−

t∫
0

I(Zi ≤ s, δi �= −1) − H0,1
x (s)

(1 − Hx(s))2
dHx(s)

− 1

p2
x1

log(1 − Fx(t))[px0I(δi = 1) − px1I(δi = 0)]

}
(4.1)

and where, for T < THx, sup
0≤t≤T

|Rn(x, t)| = OP ∗((nhn)−3/4(log n)3/4) a.s.

The proof will be given in Section 8.1.

5 Weak convergence

We establish weak convergence to a Gaussian process of the process (nhn)1/2(F̂ ∗
xhg(·)−

F̂xg(·)) in the space l∞[0, T ] of all uniformly bounded real functions on [0, T ], endowed

with the uniform topology. Since the sample paths of this process are in the space

D[0, T ] ⊂ l∞[0, T ] of right continuous functions with left hand limits, we can easily

prove that weak convergence to a Gaussian process in l∞[0, T ] with uniform topology

is equivalent with weak convergence to the same Gaussian process in D[0, T ], endowed

with the Skorokhod topology. The weak convergence is almost surely, conditionally

on the original observations (Z1, δ1), . . . , (Zn, δn).

We introduce the notation W̃x(·) for a Gaussian process with mean function βx(t)

and covariance function σst given by

βx(t) =
1

2
μK

2 γx(1 − Fx(t))

⎧⎨⎩
t∫

0

[
Ḧx(s)dH0,1

x (s)

(1 − Hx(s))2
+

dḦ0,1
x (s)

1 − Hx(s)

]

− 1

p2
x1

log(1 − Fx(t))[px0p̈x1 − px1p̈x0]

}
C5/2 (5.1)

where C > 0 is some constant and

σst = ‖K‖2
2γ

2
x(1 − Fx(t))(1 − Fx(s))

⎧⎨⎩
s∧t∫
0

dH0,1
x (y)

(1 − Hx(y))2

+ log(1 − Fx(s)) log(1 − Fx(t))
px0(px0 + px1)

p3
x1

}
. (5.2)

Theorem 2. Assume (A1), (A2’), (A3), (A4) in [0, T ] with T < THx , hn = Cn−1/5

for some C > 0, gn → 0,
ng5

n

log n
→+∞,

ng5
n

log n
· hn

gn

= O(1). Then, for T < THx , as

n→∞,

(nhn)1/2(F̂ ∗
xhg(·) − F̂xg(·))→ W̃x(·) in l∞[0, T ] almost surely.
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The proof of this theorem is given in Section 8.2.

Since W̃x(·) above is also the limiting Gaussian process of (nhn)1/2(F̂xh(·)−Fx(·)) (see

Theorem 3 in [3]), we conclude that P∗((nhn)1/2(F̂ ∗
xhg(t) − F̂xg(t)) ≤ y) is a strongly

consistent estimator for P((nhn)1/2(F̂xh(t) − Fx(t)) ≤ y).

Theorem 3. Assume (A1), (A2’), (A3), (A4) in [0, T ] with T < THx , hn = Cn−1/5

for some C > 0, gn → 0,
ng5

n

log n
→+∞,

ng5
n

log n
· hn

gn

= O(1). Then, for t ≤ T , as n→∞,

sup
y∈IR

∣∣∣P∗((nhn)1/2(F̂ ∗
xhg(t) − F̂xg(t)) ≤ y) − P((nhn)1/2(F̂xh(t) − Fx(t)) ≤ y)

∣∣∣ = o(1) a.s.

6 Simulated example

The finite sample performance of the normal approximation ([3]) and the boot-

strap approximation of the distribution of (nhn)1/2(F̂xh(t) − Fx(t)) will now be com-

pared through some simulations. Let us take fixed and equidistant design points

xi = i/n (i = 1, . . . , n). We assume that the survival times Yi (i = 1, . . . , n) are

independent random variables and that

Yi ∼ Weibull(a1 + a2xi, b),

i.e. Fxi
(t) = 1 − exp(−(a1 + a2xi)t

b), (t ≥ 0) for some constants a1, a2 and b

such that a1 > 0 ∧ (−a2) and b > 0. Similarly the non informative censoring times

Di (i = 1, . . . , n) are independent and for each i, Di ∼ Weibull(c1 + c2xi, b) for some

c1 > 0 ∧ (−c2). Furthermore we assume that βxi
= exp(a3 + a4xi) (i = 1, . . . , n). By

relation (1.1), this gives informative censoring times Ci (i = 1, . . . , n) with for each

i, Ci ∼ Weibull((a1 + a2xi) exp(a3 + a4xi), b). We also assume that Ci (i = 1, . . . , n)

are independent and that for each i, the survival time Yi, the informative censoring

time Ci and the non informative censoring time Di are independent.

It is now easily verified that the probabilities of uncensored, informatively censored

and non informatively censored observations in the data set are given by the following

expressions

px1 =
a1 + a2x

(a1 + a2x) exp(a3 + a4x) + c1 + c2x
,

px0 =
(a1 + a2x) exp(a3 + a4x)

(a1 + a2x) exp(a3 + a4x) + c1 + c2x
,

px,−1 =
c1 + c2x

(a1 + a2x) exp(a3 + a4x) + c1 + c2x
.
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We study two different combinations of the parameters a1, a2, a3, a4, c1, c2. Figures

1(a) and 2(a) show how the probabilities uncensored, informatively censored and non

informatively censored observations change for the value of the covariate x. On Figure

1, we choose the parameters such that the probability of informative censoring is

always smaller then the probability of uncensoring.

[place Figure 1 about here]

In the Koziol-Green model, it is also important to know how the estimates behave

when the amount of informatively censored observations in the data set is larger than

the amount of uncensored observations. The choices of parameters in Figure 2 is

specially designed to obtain such a situation.

[place Figure 2 about here]

We carried out the simulations for samples of size n = 50, for a biquadratic kernel

function K(x) = (15/16)(1 − x2)2I(|x| ≤ 1) and for x = 0.5 and t = 0.5. The normal

approximation and the true distribution were obtained using 10 000 samples. For the

bootstrap approximation 20 samples were taken and for each sample, 3000 resamples

were drawn.

For the bandwidth hn we take an optimal choice hn,opt = Cn−1/5 with C = 1. We

do not have such an optimal choice for the pilot bandwidth gn. The only assumption

we made, was that the gn is asymptotically larger than hn. In this situation we take

gn = 0.5 since we have only observations in a window of width 0.5 around x = 0.5.

By taking the constant C = 1, we force the bandwidth hn to be smaller than the

bandwidth gn.

Figure 1(b)-(d) and Figure 2(c)-(d) show that both the normal and the bootstrap

approximation are very close to the true distribution. In both cases the censoring is

quite heavy. We see in Figure 2(b) that the quality of the normal and the bootstrap

approximation is not good. The true distribution of (nhn)1/2(F̂xh(t) − Fx(t)) makes

a vertical jump at (nhn)1/2(1 − 0.63) ≈ 1.77. The reason is that all these samples

are overestimating the true function F0.5(0.5)(≈ 0.63) by F̂0.5,h(0.5) = 1. Since a

probability can not be larger then 1, this jump in the picture will always be seen

when we are trying to estimate a large probability (like 0.63) of the true distribution

function. In this figure it particularly turned up because Figure 2(b) is an exponential

distribution. In Figure 2(c)-(d) for the Weibull distribution with scale parameter b = 2

9



or 3, we will also see a vertical jump when we let t increase.

7 Real data example

In this section we illustrate the use of the proposed bootstrap procedure in a real

data set: the bone marrow transplantation data of [7]. Bone marrow transplantation

is the traditional treatment for patients with acute leukemia. The 137 patients of this

dataset were followed after their transplantation. The disease free survival time was

recorded for each patient, together with the reason why the patient left the study.

In this example we set the indicator of a patient equal to 1 when the patient has

relapsed, 0 when the patient died without relapsing and -1 when the patient was still

alive at the end of the study. The intuition for this coding, is that we believe that

the survival function of time until death has the same form as the survival function

of disease free survival time up to some power. The covariate x in this example is the

age at transplantation.

[place Figure 3 about here]

In Figure 3, we show 4 situations in which we estimate the conditional distribution

Fx(t) by the partial Koziol-Green estimator F̂xh(t). In column 1 of the pictures,

we take the covariate age equal to 15 years. This age is selected to show us the

behaviour of disease free survival time in adolescents, whose bodies are still growing

and developing. In the second column of Figure 3, we take age equal to 40 years,

representing people who are fully grown and even start to age. The rows in Figure 3

come from two different choices of the bandwidth hn, hn = 20 and hn = 40.

In each of the 4 situations, we take 3000 resamples and calculate the bootstrap dis-

tribution F̂ ∗
xhg(t). The pilot bandwidth gn that we use, is twice the bandwidth hn.

To give some simple illustration, we use the area under the curve (AUC) for selecting

from these bootstrap estimates, 3 special estimates, the 5%, 50% and 95% curve. The

5% curve is the bootstrap estimate for which 5% of the resamples have an AUC which

is less than the AUC of this curve. Similar definitions can be given for the 50% and

95% curves.

For each situation, these curves are drawn in Figure 3. They form each time a band

around the partial Koziol-Green estimate F̂xh(t) and give us some idea about how

good this estimate is. When the 5% and 95% bootstrap curves are close to the
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partial Koziol-Green estimate, we know that our estimate is a rather good estimate

for the true distribution Fx(t). The 50% curve forms the center of the bootstrapped

band. Comparing this curve with the partial Koziol-Green estimate, gives another

way to illustrate the quality of the estimate.

In Figure 3, we see that in each of the four situations the band formed by the 5%

and 95% curve, is rather narrow and almost always contains the partial Koziol-Green

estimate F̂xh(t). At age 40, it is even more narrow than at age 15.

The construction of proper bootstrap confidence bands for Fx(t) will not be further

explored here. It requires a deeper study of the limiting process W̃x(·) in Theorem 2

which will be done in the PhD-thesis of Roel Braekers.

8 Appendix

8.1. Proof of almost sure asymptotic representation

First we give some lemmas which we need in the proof of Theorem 1. Let us introduce

the empirical estimators Hxh(t) and H0,1
xh (t) of Hx(t) and H0,1

x (t):

Hxh(t) =
n∑

i=1

wni(x; hn)I(Zi ≤ t), H0,1
xh (t) =

n∑
i=1

wni(x; hn)I(Zi ≤ t, δi �= −1)

as well as their bootstrap analogues H∗
xhg(t) and H∗0,1

xhg (t):

H∗
xhg(t) =

n∑
i=1

wni(x; hn)I(Z∗
i ≤ t), H∗0,1

xhg (t) =
n∑

i=1

wni(x; hn)I(Z∗
i ≤ t, δ∗i �= −1).

Lemma 1. Assume (A1), (A2’) and (A4), hn = Cn−1/5 for some C > 0, gn → 0,
ng5

n

log n
→+∞. Then as n→+∞,

(a) |bias p∗xkhg − bias pxkh| = o((nhn)−1/2) a.s.

where bias p∗xkhg = E∗ p∗xkhg − pxkg and bias pxkh = E pxkh − pxk.

(b) |p∗xkhg − pxkg| = OP ∗((nhn)−1/2(log n)1/2) a.s.

(c) |γ∗
xhg − γxg| = OP ∗((nhn)−1/2(log n)1/2) a.s.

(d) If (A3) holds instead of (A4), then as n→+∞,

sup
0≤t≤T

|bias H∗
xhg(t) − bias Hxh(t)| = o((nhn)−1/2) a.s.

where bias H∗
xhg(t) = E∗ H∗

xhg(t)−Hxg(t) and bias Hxh(t) = E Hxh(t)−Hx(t).

11



Proof. (a) We have,

bias p∗xkhg =
n∑

i=1

xi∫
xi−1

1

hn

K
(

x − z

hn

)
(pxikg − pzkg)dz +

xn∫
0

1

hn

K
(

x − z

hn

)
(pzkg − pxkg)dz.

To the first term, we apply Lemma 8 of [1]. A second order Taylor series for the

second term, gives that,

bias p∗xkhg =
μK

2 h2
np̈xkg

2
+ o(h2

n) + O

(
1

ng2
n

)

where p̈xkg =
n∑

i=1
ẅni(x; gn)I(δi = k), ẅnj(x; gn) =

1

g3
n

xj∫
xj−1

K ′′
(

x − z

gn

)
dz.

The term bias pxkh can be split up as above and a first order Taylor series on the first

and a second order Taylor series on the second, gives that

bias pxkh =
μK

2 h2
np̈xk

2
+ o(h2

n).

This leads to,

(nhn)1/2|bias p∗xkhg − bias pxkh| =
μK

2 C5/2

2
|p̈xkg − p̈xk| + o(1).

Now

|p̈xkg − p̈xk| ≤ |p̈xkg − E p̈xkg| + |E p̈xkg − p̈xk|.
The first term is o(1), using Bernstein’s theorem (see e.g. [8]). For the second term

we have, for large n,

|E p̈xkg − p̈xk| ≤
∣∣∣∣∣∣

n∑
i=1

ẅni(x; gn)pxik −
1

g3
n

xn∫
0

K ′′
(

x − z

gn

)
pzkdz

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

g3
n

xn∫
0

K ′′
(

x − z

gn

)
pzkdz − p̈xk

∣∣∣∣∣∣
≤ n∑

i=1

1

g3
n

xi∫
xi−1

∣∣∣∣∣K ′′
(

x − z

gn

)∣∣∣∣∣ |pxik − pzk| dz+

∣∣∣∣∣∣∣
M∫

−M

K(u)(p̈x−ugn,k − p̈xk)dz

∣∣∣∣∣∣∣, which is o(1).

(b) Now, |p∗xkhg − pxkg| ≤ |p∗xkhg − E∗ p∗xkhg| + |bias p∗xkhg − bias pxkh| + |bias pxkh|.
The second term is o((nhn)−1/2) a.s. by part (a) of this lemma. The third term is

O(h2
n + n−1) as was shown in the proof of Lemma A.1. in [3]. For the first term we

apply Bernstein’s inequality where we take ε = εn = D(nhn)−1/2(log n)1/2 with D a

constant. By the Borel-Cantelli lemma we obtain the result.

(c) It is easily seen that

|γ∗
xhg − γxg| ≤ 1

(p∗x1hg + p∗x0hg)(px1g + px0g)

{
|p∗x1hg − px1g| + |p∗x0hg − px0g|

}
.
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By part (b) and Lemma A.1. of [3], we have that p∗xkhg
P ∗→ pxk and pxkg

P→ pxk. The

result now follows from part (b) of this lemma.

(d) The proof of this result is along the same lines as the proof of Lemma 4.1. in [10]

(although the resampling scheme is different). An analogous result holds for H∗0,1
xhg (t).

Lemma 2. Assume (A1), (A2’), (A3), (A4), hn = Cn−1/5 for some C > 0, gn → 0

and
ng5

n

log n
· hn

gn

= O(1), T < THx . Then as n→+∞,

(a) |pxkg − pxk| = O((nhn)−1/2(log n)1/2) a.s.

(b) |γxg − γx| = O((nhn)−1/2(log n)1/2) a.s.

(c) sup
0≤t≤T

|Lxg(t) − Lx(t)| = O((nhn)−1/2(log n)1/2) a.s.

(d) sup
0≤t≤T

|F̂xg(t) − Fx(t)| = O((nhn)−1/2(log n)1/2) a.s.

If moreover
ng5

n

log n
→+∞, then as n→+∞,

(e) sup
0≤t≤T

| − log(1 − L∗
xhg(t)) + log(1 − Lxg(t))| = OP ∗((nhn)−1/2(log n)1/2) a.s.

(f) sup
0≤t≤T

|L∗
xhg(t) − Lxg(t)| = OP ∗((nhn)−1/2(log n)1/2) a.s.

Proof. (a), (b), (d). In Lemma 1 (resp. Lemma 2 or Theorem 1) of [3], we put

εn = D(nhn)−1/2(log n)1/2 and apply the Borel-Cantelli lemma.

(c), (e). We prove these results along the same lines as in [10].

(f) By a first order Taylor series, we find,

L∗
xhg(t) − Lxg(t) = (1 − Lxg(t))[−eθn(log(1 − L∗

xhg(t)) − log(1 − Lxg(t))]

where θn lies between 0 and log(1−L∗
xhg(t))− log(1−Lxg(t)). Since eθn ≤ 1

1 − Lxg(t)
,

we now obtain the result by parts (c) and (e).

Proof of Theorem 1. Application of a one term Taylor expansion gives

F̂ ∗
xhg(t) − F̂xg(t) = γxg(1 − Lxg(t))

γxg−1[L∗
xhg(t) − Lxg(t)]

−(1 − F̂xg(t)) log(1 − Lxg(t))[γ
∗
xhg − γxg] + Rn1(x, t) (8.1)

13



where

|Rn1(x, t)| ≤ (1 − L̃xg(t))
−2(L∗

xhg(t) − Lxg(t))
2 + γ̃−2

xg (γ∗
xhg − γxg)

2

+2(1 − L̃xg(t))
−1|L∗

xhg(t) − Lxg(t)||γ∗
xhg − γxg|

with L̃xg(t) between Lxg(t) and L∗
xhg(t) and γ̃xg between γxg and γ∗

xhg.

For the remainder term, we find the following upperbound:

|Rn1(x, t)| ≤
[

1

(1 − Lx(t))2
+

(L̃xg(t) − Lx(t))(2 − L̃xg(t) − Lx(t))

(1 − L̃xg(t))2(1 − Lx(t))2

]
(L∗

xhg(t)−Lxg(t))
2

+

[
2

(1 − Lx(t))2
+

2(L̃xg(t) − Lx(t))(2 − L̃xg(t) − Lx(t))

(1 − L̃xg(t))2(1 − Lx(t))2

]
(L∗

xhg(t)−Lxg(t))(γ
∗
xhg−γxg)

+

[
1

γ2
x

− γ̃2
xg − γ2

x

γ̃2
xgγ

2
x

]
(γ∗

xhg − γxg)
2.

By Lemma 1 and 2, we find that L̃xg(T )
P ∗→ Lx(T ) and sup

0≤t≤T
|L̃xg(t) − Lx(t)| =

OP ∗((nhn)−1/2(log n)1/2) a.s., so this results in sup
0≤t≤T

|Rn1(x, t)| = OP ∗((nhn)−1 log n) a.s.

To obtain the asymptotic representation of L∗
xhg(t) − Lxg(t), we use Theorem 4.1

of [10]:

L∗
xhg(t) − Lxg(t) = (1 − Lxg(t))

⎧⎨⎩
t∫

0

H∗
xhg − Hxg

(1 − Hx)2
dH0,1

x

+
H∗0,1

xhg (t) − H0,1
xg (t)

1 − Hx(t)
−

t∫
0

H∗0,1
xhg − H0,1

xg

(1 − Hx)2
dHx

⎫⎬⎭ + Rn2(x, t)(8.2)

with sup
0≤t≤T

|Rn2(x, t)| = OP ∗((nhn)−3/4(log n)3/4 a.s.

To find an asymptotic representation for γ∗
xhg − γxg we apply a one term Taylor

expansion and obtain

γ∗
xhg − γxg =

p∗x1hg

p∗x1hg + p∗x0hg

− px1g

px1g + px0g

=
px0g

(px1g + px0g)2
[p∗x1hg − px1g] − px1g

(px1g + px0g)2
[p∗x0hg − px0g] + Rn3(x) (8.3)

where

|Rn3(x)| ≤ 2

(p̃x1g + p̃x0g)2

[
(p∗x1hg − px1g)

2 + (p∗x0hg − px0g)
2
]
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with p̃x0g between p∗x0hg and px0g and p̃x1g between p∗x1hg and px1g.

By adding and subtracting the same terms, we find that:

|Rn3(x)| ≤ 2

(px1 + px0)2

[
(p∗x1hg − px1g)

2 + (p∗x0hg − px0g)
2
]

− 2(p̃x1g − px1g + px1g − px1 + p̃x0g − px0g + px0g − px0)(p̃x1g + p̃x0g + px1 + px0)

(p̃x1g + p̃x0g)2(px1 + px0)2
×

[
(p∗x1hg − px1g)

2 + (p∗x0hg − px0g)
2
]

Lemma 1 and 2 imply that |Rn3(x)| = OP ∗((nhn)−1 log n).

Combining the results (8.2) and (8.3) into (8.1) gives

F̂ ∗
xhg(t) − F̂xg(t)

= γxg(1−F̂xg(t))

⎧⎨⎩
⎛⎝ t∫

0

H∗
xhg − Hxg

(1 − Hx)2
dH0,1

x +
H∗0,1

xhg (t) − H0,1
xg (t)

1 − Hx(t)
−

t∫
0

H∗0,1
xhg − H0,1

xg

(1 − Hx)2
dHx

⎞⎠
− 1

p2
x1g

log(1 − F̂xg(t))
[
px0g(p

∗
x1hg − px1g) − px1g(p

∗
x0hg − px0g)

]}
+ Rn(x, t)

=
n∑

i=1
wni(x; hn)gtx(Z

∗
i , δ

∗
i ) −

n∑
i=1

wni(x; gn)gtx(Zi, δi) + Rn(x, t)

where gtx is defined in (4.1) and sup
0≤t≤T

|Rn(x, t)| = OP ∗((nhn)−3/4(log n)3/4) a.s.

In the last equality we replaced γxg, F̂xg, px0g, px1g by γx, Fx, px0, px1 respec-

tively. This is allowed by Lemma 2.

8.2. Proof of weak convergence

We first establish a lemma on the bootstrap bias which will be needed in the proof

of Theorem 2.

Lemma 3. Assume (A1), (A2’), (A3) and (A4), hn = Cn−1/5 for some C > 0,

gn → 0,
ng5

n

log n
→+∞ and T < THx . Then as n→+∞,

(nhn)1/2 sup
0≤t≤T

|b∗n(t|x) − bn(t|x)| = o(1) a.s.
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where

b∗n(t|x) =
n∑

i=1

wni(x, hn)E∗gtx(Z
∗
i , δ

∗
i ) −

n∑
i=1

wni(x, gn)gtx(Zi, δi)

bn(t|x) =
n∑

i=1

wni(x, hn)Egtx(Zi, δi).

Proof. A straightforward calculation gives

b∗n(t|x) − bn(t|x) = γx(1 − Fx(t))

⎧⎨⎩
t∫

0

bias H∗
xhg(s) − bias Hxh(s)

(1 − Hx(s))2
dH0,1

x (s)

+
bias H∗0,1

xhg (t) − bias H0,1
xh (t)

1 − Hx(t)
−

t∫
0

bias H∗0,1
xhg (s) − bias H0,1

xh (s)

(1 − Hx(s))2
dHx(s)

− log(1 − Fx(t))

p2
x1

[
px0(bias p∗x1hg − bias px1h) − px1(bias p∗x0hg − bias px0h)

]}
.

The result now follows from Lemma 1. We also use the inequality (1−Fx(t)) log(1−
Fx(t)) ≤ 1.

Lemma 4. Assume (A1), (A2’), (A3) and (A4) in [0, T ] with T < THx , hn = Cn−1/5

for some C > 0, gn → 0,
ng5

n

log n
→+∞ and

ng5
n

log n
· hn

gn

= O(1). Then, as n→+∞,

(a) (nhn) max
1≤i≤n

sup
0≤t≤T

|Hxig(t)−Hxi
(t)| ·

n∑
j=1

w2
nj(x, hn) = O((nhn)−1/2(log n)1/2) a.s.

The same holds for the subdistribution H0,1
xi

(t).

(b) (nhn) max
1≤i≤n

|pxigk − pxik| ·
n∑

j=1

w2
nj(x, hn) = o(1) a.s. (k = −1, 0, 1)

Proof. We have

P

⎛⎝(nhn) max
1≤i≤n

sup
0≤t≤T

|Hxig(t) − Hxi
(t)| ·

n∑
j=1

w2
nj(x, hn) > ε

⎞⎠
≤ P

(
‖K‖2

2 max
1≤i≤n

sup
0≤t≤T

|Hxig(t) − Hxi
(t)| > ε

)

≤
n∑

i=1

P

(
sup

0≤t≤T
|Hxig(t) − Hxi

(t)| >
ε

‖K‖2
2

)
.

In the same way, we find

P

⎛⎝(nhn) max
1≤i≤n

|pxigk − pxik| ·
n∑

j=1

w2
nj(x, hn) > ε

⎞⎠ ≤
n∑

i=1

P

(
|pxigk − pxik| >

ε

‖K‖2
2

)
.
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By Lemma A3 and A1b in [10] and Lemma A1 in [3], we get the results.

Proof of Theorem 2. By the asymptotic representation of Theorem 1, we can

write

(nhn)1/2(F̂ ∗
xhg(t) − F̂xg(t)) = W ∗

hg(t|x) + (nhn)1/2(b∗n(t|x) − bn(t|x))

+((nhn)1/2bn(t|x) − βx(t)) + βx(t) + Rn(x, t)

where W ∗
hg(t|x) = (nhn)1/2

n∑
i=1

wni(x, hn) [gtx(Z
∗
i , δ

∗
i ) − E∗gtx(Z

∗
i , δ

∗
i )] and βx(t) is de-

fined in (5.2).

In [3], we already found that sup
0≤t≤T

|(nhn)1/2bn(t|x) − βx(t)| = o(1) a.s.. So tak-

ing Lemma 3 into account, we only need to prove that W ∗
hg(·|x) converges weakly

to W̃x(·) in l∞[0, T ], almost surely. This is done in two steps. First we will show

convergence of the finite dimensional distributions and afterwards we will prove tight-

ness. More in detail, this means that first we show that (W ∗
hg(t1|x), . . . ,W ∗

hg(tq|x))
D→ N(0; σtjtk) a.s. for any q = 1, 2, . . . and any 0 ≤ t1 ≤ . . . ≤ tq ≤ T . This is done by

verifying that the following two conditions of [2] hold almost surely for the summands

Wnik = (nhn)1/2wni(x, hn) [gtkx(Z
∗
i , δ

∗
i ) − E∗gtkx(Z

∗
i , δ

∗
i )]:

lim
n→∞

n∑
i=1

E∗(WnijWnik) = σtjtk a.s. (1 ≤ j, k ≤ q) (8.4)

lim
n→∞

n∑
i=1

∫
{|Wni|>ε}

|Wni|2dP ∗ = 0 a.s. (8.5)

for every ε > 0, where |Wni|2 =
q∑

k=1
W 2

nik.

For (8.4) we have:

n∑
i=1

E∗(WnijWnik) = nhn

n∑
i=1

w2
ni(x; hn)Cov∗(gtjx(Z

∗
i , δ

∗
i ), gtkx(Z

∗
i , δ

∗
i )) (8.6)

The right hand side of this expression can be calculated as in [3]. We get the same

result, but with Hxi
, H0,1

xi
, pxik replaced by Hxig, H0,1

xig
, pxigk. With this and Lemma

4, we can write (8.6) as:

n∑
i=1

E∗(WnijWnik) = σtjtk + o(1) a.s. (1 ≤ j, k ≤ q).

For (8.5) we first note that the functions gtkx(Z
∗
i , δ

∗
i ) − E∗gtkx(Z

∗
i , δ

∗
i ) are bounded
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uniformly on [0, T ], so that max
1≤i≤n

|Wni| = OP ∗((nhn)−1/2) a.s.,
n∑

i=1
|Wni|2 = OP ∗(1) a.s.

and hence

n∑
i=1

∫
{|Wni|>ε}

|Wni|2dP ∗ ≤
∫

{ max
1≤i≤n

|Wni|>ε}

n∑
i=1

|Wni|2dP ∗

≤ OP ∗(1)P ∗(max
1≤i≤n

|Wni| > ε) = oP ∗(1) a.s.

This proves the convergence of the finite dimensional distributions.

To prove tightness, we will check the conditions of Theorem 2.11.9 in [9] (the bracket-

ing central limit theorem). Let us first denote Wni(t) = (nhn)1/2wni(x, hn)gtx(Z
∗
i , δ

∗
i )

and F = [0, T ]. On F we define the semi-metric ρ(t, t′) as

ρ(t, t′) = max

{
|H0,1

x (t) − H0,1
x (t′)|, |Fx(t) − Fx(t

′)|, sup
xo∈[0,1]

|H0,1
xo (t) − H0,1

xo (t′)|1/2

}
.

Before we can verify the conditions of Theorem 2.11.9, we need to divide F for

every n and ε, conditional on the original observations Z1, . . . , Zn, in a partition of

subintervals {F∗n
εj } such that

n∑
i=1

E∗ sup
t,t′∈F∗n

εj

|Wni(t) − Wni(t
′)|2 ≤ ε2 a.s. (8.7)

The smallest number of subintervals in this partition such that (8.7) holds, is called

the bracketing number N∗
[ ](ε,F , Ln

2 ). Take in F = [0, T ], conditional on the original

observations, a sequence of time points 0 = t0 < t1 < . . . < tm = T such that

{Z1, . . . , Zn} ⊂ {t0, . . . , tm} and ρ(t, t′) ≤ C · ε for every t, t′ ∈ [tj−1, tj], j = 1, . . . ,m

where C is a constant which will be defined below (see (8.10)).

From Lemma 4, we note that, for some constant D > 0,

(nhn) max
1≤i≤n

sup
0≤t≤T

|H0,1
xig

(t) − H0,1
xi

(t)| ·
n∑

j=1

w2
nj(x; hn) ≤ D

(
log n

nhn

)1/2

a.s. (8.8)

Now we define, for all ε > 0, a natural number nε which is the largest root of

(
log n

nhn

)1/2

=

(
log n

Cn4/5

)1/2

=
(1 − Hx(T ))2ε2

12γ2
xD

· (8.9)

For large ε, we note that this equation does not have any roots. In this case we take

nε = 1.
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We define for every ε and n the partition {F∗n
εj }.

If n ≤ nε,

F∗n
εj =

⎧⎨⎩ [tj−1, tj[ if tj−1 �∈ {Z1, . . . , Zn}
]tj−1, tj[ if tj−1 ∈ {Z1, . . . , Zn}

j = 1, . . . ,m − 1

F∗n
εm =

⎧⎨⎩ [tm−1, tm] if tm−1 �∈ {Z1, . . . , Zn}
]tm−1, tm] if tm−1 ∈ {Z1, . . . , Zn}

F∗n
ε,m+i = {Zi}, i = 1, . . . , n.

If n > nε,

F∗n
εj = [tj−1, tj[ j = 1, . . . , m − 1

F∗n
εm = [tm−1, tm].

We first prove that (8.7) holds for this partition. In this way the bracketing number

is given for every ε and n by

N∗
[ ](ε,F , Ln

2 ) =

⎧⎨⎩ O(ε−1) + n if n ≤ nε

O(ε−1) if n > nε

.

Some easy calculation shows that

|Wni(t) − Wni(t
′)| = (nhn)1/2wni(x; hn)|gtx(Z

∗
i , δ

∗
i ) − gt′x(Z

∗
i , δ

∗
i )|

≤ (nhn)1/2wni(x; hn)γx

{ |I(Z∗
i ≤ t, δ∗i �= −1) − I(Z∗

i ≤ t′, δ∗i �= −1)|
1 − Hx(T )

+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)
|Fx(t) − Fx(t

′)| + |H0,1
x (t) − H0,1

x (t′)|
(1 − Hx(T ))2

}

and by the inequality of Cauchy-Schwarz, we get

|Wni(t)−Wni(t
′)|2 ≤ 3(nhn)w2

ni(x; hn)γ2
x

{ |I(Z∗
i ≤ t, δ∗i �= −1) − I(Z∗

i ≤ t′, δ∗i �= −1)|2
(1 − Hx(T ))2

+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2

|Fx(t) − Fx(t
′)|2 +

|H0,1
x (t) − H0,1

x (t′)|2
(1 − Hx(T ))4

⎫⎬⎭ .

Let us note that

|I(Z∗
i ≤ t, δ∗i �= −1) − I(Z∗

i ≤ t′, δ∗i �= −1)|2 =

⎧⎨⎩ 1 t ∧ t′ ≤ Z∗
i ≤ t ∨ t′, δ∗i �= −1

0 otherwise
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and hence

sup
t,t′∈F∗n

εj

|I(Z∗
i ≤ t, δ∗i �= −1)−I(Z∗

i ≤ t′, δ∗i �= −1)|2 =

⎧⎨⎩ 1 Z∗
i ∈ F∗n

εj \ {left endpoint}
0 otherwise

and

E∗ sup
t,t′∈F∗n

εj

|I(Z∗
i ≤ t, δ∗i �= −1) − I(Z∗

i ≤ t′, δ∗i �= −1)|2 =

H0,1
xig

(right endpoint of F∗n
εj ) − H0,1

xig
(left endpoint of F∗n

εj ).

If n ≤ nε, we see that this is equal to zero by the construction of the partition. And

in this case,
n∑

i=1

E∗ sup
t,t′∈F∗n

εj

|Wni(t) − Wni(t
′)|2 ≤ 3(nhn)

n∑
i=1

w2
ni(x; hn)γ2

x ×⎧⎨⎩ 1

(1 − Hx(T ))4
+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2
⎫⎬⎭C2ε2

≤ 3‖K‖2
2γ

2
x

⎧⎨⎩ 1

(1 − Hx(T ))4
+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2
⎫⎬⎭C2ε2.

If n > nε, we get
n∑

i=1

E∗ sup
t,t′∈F∗n

εj

|Wni(t) − Wni(t
′)|2 ≤ 3(nhn)

n∑
i=1

w2
ni(x; hn)γ2

x ×⎧⎨⎩ 1

(1 − Hx(T ))4
+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2
⎫⎬⎭C2ε2

+
3(nhn)γ2

x

(1 − Hx(T ))2

n∑
i=1

w2
ni(x; hn)

{
H0,1

xig
(right end of F∗n

εj ) − H0,1
xig

(left end of F∗n
εj )

}
.

Adding and subtracting terms inside the last sum, we obtain
n∑

i=1

E∗ sup
t,t′∈F∗n

εj

|Wni(t) − Wni(t
′)|2

≤ 3‖K‖2
2γ

2
x

⎧⎨⎩ 2

(1 − Hx(T ))4
+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2
⎫⎬⎭C2ε2

+
6γ2

x

(1 − Hx(T ))2
(nhn) max

1≤i≤n
sup

0≤t≤T
|H0,1

xig
(t) − H0,1

xi
(t)| ·

n∑
j=1

w2
nj(x; hn).

Taking the constant C as follows

C =

[
6‖K‖2

2γ
2
x

{
2

(1 − Hx(T ))4

+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2
⎫⎬⎭
⎤⎦−1/2

(8.10)

20



and using (8.8) and (8.9), we have that (8.7) holds for every n, ε and {F∗n
εj }.

At this point we can now verify the third condition of the bracketing central limit

theorem, which says that for any sequence δn ↓ 0,

δn∫
0

√
log N∗

[ ](ε,F , Ln
2 )dε → 0 , as n → ∞. (8.11)

We verify this condition in the two possible situations

(i) δn ≤ F (nhn)−1/4(log n)1/4 for n large

(ii) δn > F (nhn)−1/4(log n)1/4 for n large
,where F =

(
12γ2

xD

(1 − Hx(T ))2

)1/2

.

In case (i), the integral in (8.11) is bounded above by

F( log n
nhn

)
1/4∫

0

√
log

(
G

ε
+ n

)
dε (8.12)

and in case (ii), the integral in (8.11) is bounded above by

F( log n
nhn

)
1/4∫

0

√
log

(
G

ε
+ n

)
dε +

δn∫
F( log n

nhn
)
1/4

√
log

(
G

ε

)
dε (8.13)

where G > 0 is some constant. The integral in (8.12) can be rewritten after change

of variable and integration by parts as√
log

[
GF−1

(
nhn

log n

)1/4
+ n

]
(

nhn

log n

)1/4
+

G

2

+∞∫
log

[
GF−1( nhn

log n)
1/4

+n

] 1

(eu − n)
√

u
du.

The first term obviously tends to zero. The same is true for the second integral by

using the bounded convergence theorem (see e.g. [5]). The second integral in (8.13)

can be rewritten as

G

log

[
GF−1( nhn

log n)
1/4

]
∫

log(G/δn)

√
ve−vdv

which clearly tends to zero as n → ∞. Hence (8.11) is satisfied and this proves the

third condition in the bracketing central limit theorem.

The inequalities above also give
n∑

i=1

E∗(Wni(t)−Wni(t
′))2 ≤ 3‖K‖2

2γ
2
x

⎧⎪⎨⎪⎩ |H0,1
x (t) − H0,1

x (t′)|2
(1 − Hx(T ))4

+
max
1≤i≤n

|H0,1
xig

(t) − H0,1
xig

(t′)|
(1 − Hx(T ))2
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+

(
2

(1 − Hx(T ))2
+

| − 1 − log(1 − Fx(T ))|
p2

x1

)2

|Fx(t) − Fx(t
′)|2

⎫⎬⎭
so that sup

ρ(t,t′)<δn

n∑
i=1

E∗(Wni(t) − Wni(t
′))2 → 0 a.s. for every δn ↓ 0. This is the second

condition of the bracketing central limit theorem. Also the first condition is satisfied

since for all η > 0,

sup
0≤t≤T

|Wni(t)| ≤ ‖K‖∞M

(nhn)1/2
< η

for all n sufficiently large. Here M is the uniform upper bound for gtx(Zi, δi).

So by the bracketing central limit theorem, we have that the process W ∗
hg(·|x) is

asymptotically tight. Together with the convergence of the finite dimensional distri-

butions, this concludes our proof.
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.
Figure 1: (a) Proportion of uncensored, informatively censored and non informatively

censored observations for a1 = 1, a2 = 0.5, a3 = −0.5, a4 = 0.5, c1 = 0.6, c2 = 2.

(b)-(d) Normal approximation (small dashed curve) and bootstrap approximation

(dashed curve) of P ((nhn)1/2(F̂xh(t) − Fx(t)) ≤ y) (solid curve) for a1 = 1, a2 =

0.5, a3 = −0.5, a4 = 0.5, c1 = 0.6, c2 = 2, x = 0.5, t = 0.5.
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.
Figure 2: (a) Proportion of uncensored, informatively censored and non informatively

censored observations for a1 = 1, a2 = 2, a3 = 0.5, a4 = 0.5, c1 = 1, c2 = 1.

(b)-(d) Normal approximation (small dashed curve) and bootstrap approximation

(dashed curve) of P ((nhn)1/2(F̂xh(t) − Fx(t)) ≤ y) (solid curve) for a1 = 1, a2 =

2, a3 = 0.5, a4 = 0.5, c1 = 1, c2 = 1, x = 0.5, t = 0.5.
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.
Figure 3: In each of the four pictures, the solid line is the partial Koziol-Green

estimator. The long dashed lines are the 5% and 95% curves and the short dashed

line is the 50% curve.
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