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ABSTRACT

In the partial Koziol-Green regression model, the lifetime variable may be censored
by two types of censoring variables. One is called informative because it satisfies the
Koziol-Green assumption on proportionality of hazards, and the other one is general.
[3] proposed a nonparametric estimator for the conditional lifetime distribution and
obtained a Gaussian approximation for the corresponding process. In the present
paper we propose an appropriate resampling scheme and show that this leads to a

valid bootstrap approximation for the process.

1 Introduction

Consider a regression model with independent and non-negative responses Y, ...,Y,
at fixed design points 0 < z; < ... <z, < 1. These responses are subject to random
right censoring in the following way: each Y; can be censored by the minimum of two
independent and non-negative variables C; and D;. The C; are informative censoring
times, satisfying the proportional hazards condition, while the D; are arbitrary non
informative censoring times. The observed random variables at design point x; are
(Z;,6;) where Z; = V,AC;AD; and §; = 1ifY; < C;AD;, §; = 0if C; < Y;AD; and §; =
—1if D; < Y;AC;. For a given design value x €|0, 1[, we write F,, G1, Go,, H, for the
distribution function of respectively, the response Y, at z, the informative censoring

variable C, the non informative censoring variable D, and Z, =Y, A C, A D,. Also



we will write J, for the indicator variable that takes the values 1,0, —1 according as
Zy =Y,,Cy., D,. (Note that for the design values x; we write Y;, C;, D;, Z;, §; instead
of Yy,,Cy,y Duyy Zo,, 0s;). We will assume the usual conditions of independence of the
Y;, the C; and the D;, and also between Y;, C; and D;. The proportional hazards

assumption on the censoring variable C, can be expressed as follows: for ¢ > 0,
1— G (t) = (1 - E,(t)* (1.1)

for some (3, > 0.

We will assume that the distribution functions F, and (G5, are continuous. It then
follows by (1.1) that G, is also continuous. We also assume that the probabilities
pak = P(0: = k) (k = -1,0,1) are strictly between 0 and 1 for all 2. An easy calcula-

tion in [3] shows that 3, = Pao.

DPa1

In that same paper we introduced the estimator Fl(t) for Fy(t) in the following

way:
' 1— Fup(t) = (1 = Lap(t)) e (1.2)

where ‘o
Lop(t) =1 — - i‘i”f“(g’; fin) I(t < Zuw). (1.3)

A=t 1- j;l Wn(j) (3 hn)
and )
wlh

Vah = Doon + Potn” (1.4)

with pen = Enjwm(x;hn)l(éi = k) (k =-1,0,1) and ¢; = I(6; # —1). Here
i=1
Zay < ... < Zy, are the ordered Zi,...,7, and the £(; and wy,)(z; hy,) are the

corresponding &; and wy;(z; h,,) of the ordered Z;.

These estimators involve a sequence of smoothing weights {w,;(z; h,,)}, depending on
a positive bandwidth sequence {h,,}, tending to zero as n — oco. In our present case
of fixed design points it is customary to take the Gasser-Miiller type weights, given
by

Z;

1

1 r—z
(o = - —K =1,...
Ti—1

Ty 1 _
cn(xyhy) = /h—K <$h Z) dz.
0 n n

Here o = 0 and K is a known probability density function (kernel).
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For simplicity we have used the same kernel K for estimation of L,(t) and pygs. The

extension to different kernels is of course straightforward.

2 The bootstrap procedure

The purpose of this paper is to propose a bootstrap method for approximating the
distribution function of (nhy,)Y/2(F,,(t) — Fy(t)). This will provide an alternative for
the normal approximation derived in Theorem 3 of [3]. The normal approximation
suffers from complicated expressions for the asymptotic mean and variance (see (5.1)
and (5.2) below) which cannot be calculated in a real data analysis. In this situa-
tion, the bootstrap approximation allows us to find some bands for the conditional
distribution estimator Fj,(t), as will be shown in Section 7. For the Kaplan Meier
estimator the bootstrap has been introduced by [4] and for the bootstrapped Beran

estimator we refer to [10].

Given the design points x;, the minima Z; and indicators §; (i = 1,...,n), we propose

the following
Resampling procedure

Resample (Z},0f) (i = 1,...,n) with replacement from (Z1,61),...,(Zy,6,), giv-
ing probability wy;(z;;9,) to (Z;,6;), 7 = 1,...,n. The sequence {g,} is a pilot
bandwidth sequence which is different from {h,} in the sense that g, /h, — oo in a

certain way.

It is easily verified that the above procedure is equivalent to two alternative pro-

cedures.
Alternative procedure 1

Define the random variables Y;*, C¥, DI (independently) as follows:

Y. Y are independent; Y~ Fg
N O are independent; Ci ~ Gg,yg
Dy, ...,D; are independent; D7 ~ Goyyg

Here F’xig is an estimator for F}, as defined in (1.2). The distribution élzig is defined
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as 1 — (1 — Fyz)%9 where By = (1 = Va,g)/Verg- Finally Ga,,, is a Beran type
estimator for the distribution Gg,,. It is given by

1(6y=-1)

Ging@) 1 H 1— jl(J)< ) ](t < Z(n)).
Zg)<t L — 3 Wy (43 9n)
k=1

Then define, fori =1,...,n, Z; = Y*NC; ADf and 0; = 1if Y;* < C; AND}, 67 =0
if C <Y ADF, 6F = —1if Df <Y ACE.

Alternative procedure 2

Another equivalent resampling procedure can be set up by exploiting the following
characterization of the model: assumption (1.1) holds for some (3, > 0 if and only if
Z, and ¢, are independent, conditionally on the event {d, # —1}. (see [3]).

Now define the random variables U}, €f, D; (independently) as follows:

ur,....U, are independent; U’ ~ Ly,
€1, & are independent; ef ~ Bin(1,v4,9)
Di,...,D; are independent; Di ~ Gayyyg

where L,,, is the estimator of L,,, as defined in (1.3). Ga,,, has the same definition as
in the previous procedure. The €} come from a Bernoulli distribution with parameter
Yasg, Which is defined as in (1.4) and is an estimator for +,,. The bootstrap sample
can now be defined, for ¢ = 1,...,n, as: Z; = U A D} and ¢ = ¢} if U7 < D] and
0f = —1if U > Dy.

Based on the bootstrap sample (Z7,d7), ..., (Z¥,6F), we define the bootstrap analogue

n»-n

of the partial Koziol-Green estimator given in (1.2) as:

1- ::hg(t) = (1 - ;hg(t))’y;hg

where

*
Lzhg

n(i ;hn ;
=1 IT |1- —olsls) It < Z3) and o5y, = Lot
7, <t 1= % W) (@; hn) Diohg T Pring
i=1

with plh, = 3 wei(w ha) (57 = k) (k = -1,0,1) and & = I(57 # —1). Here
i=1
2y < S 24, and the €6 and wy,;)(x; hy) correspond to 2.
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In the sequel we will use notations P*, E* Var®, ... for probability, expectation,

variance, ... conditionally on the original observations.

The paper is organized as follows. After some notation and regularity conditions in
Section 3, we obtain results on an almost sure asymptotic representation in Section
4 and on weak convergence of the bootstrapped process in Section 5. A simulated
example will be presented in Section 6 while a real dataset analysis is shown in Section
7. In the appendix we will give the proofs of the theorems and some lemmas which

we need in these proofs.

3 Regularity conditions

We will need the following additional notation. For the design points x1,...,x,
we denote A, = min (z; — x;_1) and A, = max(z; — x;_1). For the kernel K
1<i<n 1<i<n
“+o0o “+o0o
we use ||K|leo = supK(u) , |K||2 = [ K*(u)du, pff = [ uK(u)du and pif =
uelR —00 —00

+oo ~ ~
[ v?K(u)du. For any distribution function L, we denote by T; = inf{t : L(t) = 1}
the right endpoint of its support. Note that T, =T, and Ty, = Tr, N1q,,-

We will use the following assumptions on the design points and on the kernel. (Con-
dition (A2’) below is slightly stronger than condition (A2) in [3]).

(A1) 2, —1,A,=0(n"Y, A, —A,=0(n1).

(A2") K is a twice differentiable probability density function with finite support
[— M, M] for some M > 0, uf = 0, K" is continuous and K (—M) = K'(—M) =
K(M)=K'(M) =0.

Note that ¢,(x;h,) = 1 for n sufficiently large (depending on z) since z,, — 1 and K
has finite support. This makes that in all proofs of asymptotic results we may take
cn(xshy) = 1.

Further we will need typical smoothness conditions on functions like F,(t), G2, (t) (as

functions of x and t) and [, and p,; (as functions of z).

82

T o2

.o 2 ..
(A3) The second order partial derivatives F,(t) = %Fx(t), Gox(t) Gox(t),



0? 0? : 0? . 0?
F'() = 2= F,(t), Gl (t) = —Gau(t), F'(t) = ——F, (1), Gh (t) = —— Gy (t
1(t) = s Falt), Ghalt) = 5 Gnalt), EL0) = o Fo0), G (1) = 50 Gin()
exist and are continuous for 0 <x <1land 0 <t < T with T <Tp, AN1g,,.
52

(A4) The second order partial derivatives p = o2k (k= —1,0,1) exist and are
x

continuous for 0 < z < 1.

The first order partial derivatives will be denoted by F, (), F..(t), Goz(t), Ghy(t), Ba, Pak-

Further notations are ||p.x|| = sup [per| , [Perll = sup |Pekl-
0<z<1 0<z<1

The parameter g, which is used to construct the resampled values is an appropri-
ate pilot bandwidth sequence which is typically asymptotically larger than h,, i.e.
Gn/hn — 00 in a certain way. This technique of oversmoothing with the initial band-
width has been successfully used in other resampling schemes in regression (e.g. [1],
6], [10]). Furthermore we will state our results for the fixed bandwidth sequence h,,

of optimal rate, i.e. h, = Cn~'/% for some constant C' > 0.

4 Almost sure asymptotic representation

Parallel to the result of [3] for the conditional estimator F(t), we now derive in
Theorem 1 an almost sure asymptotic representation for the bootstrap estimator
ﬁ’*

h (t) — Fiy(t) as a weighted sum plus a remainder

(t). It represents the process ﬁ’;hg
term with a nice almost sure behaviour. This result will be a key tool in the next

section.

Let us introduce the functions H,(t) = P(Z, <t) and H>'(t) =P(Z, < t,e, = 1) =

P(Z, <t d, # —1).

Theorem 1. Assume (A1), (A2"), (A3), (A4) in [0,T] with T < Ty, h, = Cn~%/°
5 5

ho,
for some C' > 0, g, — 0, ngn — +00, Wn o _ O(1). Then, for t < Ty,
logn logn g,

ﬁ;hg(t> - ﬁmg@) - Zwm(x, hn)gtx<Zz*7 6:) - Zwm(x, gn)gtm(Zi7 52) + Rn(xv t)

=1 =1

where

0l Z1,6) = %O—Eﬁn{/H



t

1— H,(1) - / (1— Hy(s))? dH,(s)
—ég%a—&@mMu@zn—mM@zw} (11)

and where, for T' < Ty, sup |R,(x,t)| = Op«((nh,)"**(logn)3/*) a.s.
0<t<T

The proof will be given in Section 8.1.

5 Weak convergence

~

We establish weak convergence to a Gaussian process of the process (nhy,)/?(£y, (-)—
Fie(+)) in the space [°°[0, T] of all uniformly bounded real functions on [0, T, endowed
with the uniform topology. Since the sample paths of this process are in the space
DJ[0,T] C I°°[0,T] of right continuous functions with left hand limits, we can easily
prove that weak convergence to a Gaussian process in [*°[0, 7] with uniform topology
is equivalent with weak convergence to the same Gaussian process in D0, 7|, endowed
with the Skorokhod topology. The weak convergence is almost surely, conditionally
on the original observations (Z1,81), ..., (Zn, 0n)-

We introduce the notation W,(-) for a Gaussian process with mean function G, (t)

and covariance function oy given by

Be(t) = %uﬁ%(l — F(t)) {/ [%(i)zljfs)(;) * 1df1%$(«(92)]

xl

_% log(1 — Fy(t)) [paopar — pzlﬁzo]} cor (5.1)

where C' > 0 is some constant and

agZHM%%—E®W—&®%/H§%%W
+1log(1 — Fy(s)) log(1 — Fx(t))W} . (5.2)

Theorem 2. Assume (A1), (A2'), (A3), (A4) in [0,T] with T" < Ty, h, = Cn~%/°
5 5

hn,
for some C > 0, g, — 0, %—H-oo, Bn  [n _ O(1). Then, for T < Ty,, as
logn logn g,

n— 00,

~

(nha)"2(F,

zhg

() — ﬁxg()) —W,(") in [°°[0,7] almost surely.
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The proof of this theorem is given in Section 8.2.

Since W, (+) above is also the limiting Gaussian process of (nh,)Y2(Fuu(-) — Fy(-)) (see
Theorem 3 in [3]), we conclude that P*((nh,)/2(F%,, (t) — Fiy(t)) < y

zhg
consistent estimator for P((nhy,)?(Fyu(t) — Fu(t)) < y).

) is a strongly

Theorem 3. Assume (A1), (A2"), (A3), (A4) in [0, 7] with T < Ty,, h, = Cn~'/"

5 5 h
n — 400, n  In O(1). Then, for t < T, as n — oo,
logn logn g,

for some C' > 0, g, — 0,

~

sup [P (nh) (i (1) = Fay(8)) < 9) = P{(nha) *(Pat) = Fo(2) < )] = o(1) s

6 Simulated example

The finite sample performance of the normal approximation ([3]) and the boot-
strap approximation of the distribution of (nhy,)Y2(Fu(t) — Fy(t)) will now be com-
pared through some simulations. Let us take fixed and equidistant design points
x; =i/n (i = 1,...,n). We assume that the survival times Y; (i = 1,...,n) are

independent random variables and that
Y; ~ Weibull(ay + asx;,b),

ie. F,(t) = 1 — exp(—(a; + agz;)t’), (t > 0) for some constants a;, as and b
such that a; > 0 A (—az) and b > 0. Similarly the non informative censoring times
D; (i=1,...,n) are independent and for each i, D; ~ Weibull(c; + ¢oz;, b) for some
¢1 > 0 A (—c2). Furthermore we assume that (,, = exp(ag + a4z;) (i =1,...,n). By
relation (1.1), this gives informative censoring times C; (i = 1,...,n) with for each
i, C; ~ Weibull((a; + agz;) exp(as + asz;),b). We also assume that C; (i = 1,...,n)
are independent and that for each i, the survival time Y;, the informative censoring

time C; and the non informative censoring time D); are independent.

It is now easily verified that the probabilities of uncensored, informatively censored

and non informatively censored observations in the data set are given by the following

expressions
- ai + asx
P (a1 + asx) exp(as + ayx) + ¢ + oz’
(a1 + asx) exp(az + a4x)
P (a1 + asx) exp(az + asz) + ¢1 + cox’
1+ cx
px,fl

(a1 + asx) exp(as + ayx) + ¢ + oz

8



We study two different combinations of the parameters ay, as, as, a4, c1, co. Figures
1(a) and 2(a) show how the probabilities uncensored, informatively censored and non
informatively censored observations change for the value of the covariate x. On Figure
1, we choose the parameters such that the probability of informative censoring is

always smaller then the probability of uncensoring.
[place Figure 1 about here]

In the Koziol-Green model, it is also important to know how the estimates behave
when the amount of informatively censored observations in the data set is larger than
the amount of uncensored observations. The choices of parameters in Figure 2 is

specially designed to obtain such a situation.
[place Figure 2 about here]

We carried out the simulations for samples of size n = 50, for a biquadratic kernel
function K(x) = (15/16)(1 — 2?)?I(Jz| < 1) and for z = 0.5 and ¢ = 0.5. The normal
approximation and the true distribution were obtained using 10 000 samples. For the
bootstrap approximation 20 samples were taken and for each sample, 3000 resamples

were drawn.

For the bandwidth h, we take an optimal choice hy, . = Cn~'/® with C = 1. We
do not have such an optimal choice for the pilot bandwidth g,,. The only assumption
we made, was that the g, is asymptotically larger than h,. In this situation we take
gn = 0.5 since we have only observations in a window of width 0.5 around x = 0.5.
By taking the constant C' = 1, we force the bandwidth A, to be smaller than the
bandwidth g,.

Figure 1(b)-(d) and Figure 2(c)-(d) show that both the normal and the bootstrap
approximation are very close to the true distribution. In both cases the censoring is
quite heavy. We see in Figure 2(b) that the quality of the normal and the bootstrap
approximation is not good. The true distribution of (nhy,)Y2(F,y(t) — F,(t)) makes
a vertical jump at (nh,)"?(1 — 0.63) ~ 1.77. The reason is that all these samples
are overestimating the true function Fy5(0.5)(= 0.63) by Fy54(0.5) = 1. Since a
probability can not be larger then 1, this jump in the picture will always be seen
when we are trying to estimate a large probability (like 0.63) of the true distribution
function. In this figure it particularly turned up because Figure 2(b) is an exponential
distribution. In Figure 2(c)-(d) for the Weibull distribution with scale parameter b = 2



or 3, we will also see a vertical jump when we let t increase.

7 Real data example

In this section we illustrate the use of the proposed bootstrap procedure in a real
data set: the bone marrow transplantation data of [7]. Bone marrow transplantation
is the traditional treatment for patients with acute leukemia. The 137 patients of this
dataset were followed after their transplantation. The disease free survival time was
recorded for each patient, together with the reason why the patient left the study.
In this example we set the indicator of a patient equal to 1 when the patient has
relapsed, 0 when the patient died without relapsing and -1 when the patient was still
alive at the end of the study. The intuition for this coding, is that we believe that
the survival function of time until death has the same form as the survival function
of disease free survival time up to some power. The covariate x in this example is the

age at transplantation.
[place Figure 3 about here]

In Figure 3, we show 4 situations in which we estimate the conditional distribution
F,(t) by the partial Koziol-Green estimator Flj(¢). In column 1 of the pictures,
we take the covariate age equal to 15 years. This age is selected to show us the
behaviour of disease free survival time in adolescents, whose bodies are still growing
and developing. In the second column of Figure 3, we take age equal to 40 years,
representing people who are fully grown and even start to age. The rows in Figure 3
come from two different choices of the bandwidth h,,, h, = 20 and h,, = 40.

In each of the 4 situations, we take 3000 resamples and calculate the bootstrap dis-
tribution A;hg(t). The pilot bandwidth g,, that we use, is twice the bandwidth h,,.
To give some simple illustration, we use the area under the curve (AUC) for selecting
from these bootstrap estimates, 3 special estimates, the 5%, 50% and 95% curve. The
5% curve is the bootstrap estimate for which 5% of the resamples have an AUC which
is less than the AUC of this curve. Similar definitions can be given for the 50% and

95% curves.

For each situation, these curves are drawn in Figure 3. They form each time a band
around the partial Koziol-Green estimate Fl,(t) and give us some idea about how

good this estimate is. When the 5% and 95% bootstrap curves are close to the
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partial Koziol-Green estimate, we know that our estimate is a rather good estimate
for the true distribution F,(¢). The 50% curve forms the center of the bootstrapped
band. Comparing this curve with the partial Koziol-Green estimate, gives another

way to illustrate the quality of the estimate.

In Figure 3, we see that in each of the four situations the band formed by the 5%
and 95% curve, is rather narrow and almost always contains the partial Koziol-Green

estimate ﬁxh(t). At age 40, it is even more narrow than at age 15.

The construction of proper bootstrap confidence bands for F,(¢) will not be further
explored here. It requires a deeper study of the limiting process Wx() in Theorem 2
which will be done in the PhD-thesis of Roel Braekers.

8 Appendix

8.1. Proof of almost sure asymptotic representation

First we give some lemmas which we need in the proof of Theorem 1. Let us introduce
the empirical estimators H,y,(t) and HY\ (t) of H,(t) and HY'(t):

t)zzwm'(x;hn) (Z; <t) thl Zwmx ho)W(Z; <t,6; # —1)

as well as their bootstrap analogues Hy,, (t) and H;ggl( ):

Hy,, (¢ Zwm wh)(ZF < t), H'Y( Zwm wha)W(ZF < 8,67 # —1).

:phg

Lemma 1. Assume (A1), (A2’) and (A4), h, = Cn~/% for some C > 0, g, — 0,
ng,
logn

— 400. Then as n — 400,

(a) |bias piy, — bias pern| = o((nh,)1/?) a.s.

where bias pyin, = E* Digng — Pakg and bias pugn = E Dukn — Pk
(b) [Pikng — Patgl = Op-((nhy) " (logn)'/?) a.s.
(©) Yong = Yagl = Op+((nhy)"/*(logn)'/?) a.s.

(d) If (A3) holds instead of (A4), then as n — o0,
sup |bias Hz,,(t) — bias Hyp(t)| = o((nhy,)"'?) a.s.

0<t<T
where bias Hy, (t) = E* Hy,,(t) — Hyy(t) and bias Hyp(t) = E Hopn(t) — Ha(2).

11



Proof. (a) We have,

| x
5w\

z il T —z
) (prlkg - pzkg)dz + / h_K ( h ) (pzkg - pmkg)dz-
0 n n

n

To the first term, we apply Lemma 8 of [1]. A second order Taylor series for the

second term, gives that,

En2p, 1
bias pjin, = & o(h2) + O ( >

2 ng?2
. 1 7 s (T —Z
where pxkg Z wm(x gn) (51 = k): wn]('x>gn) =3 / K dz.
i n dn
Tj—1

The term bias p,i, can be split up as above and a first order Taylor series on the first

and a second order Taylor series on the second, gives that

2
LD | oh2),

bias Pzkh = 5

This leads to,
KCS/Q
2

(nhy)'/?|bias ply,, — bias porn| = |Pakg — Dek| + 0(1).

Now

The first term is o(1), using Bernstein’s theorem (see e.g. [8]). For the second term

) pzkdz

we have, for large n,

Z wnz(x gn pxl 7\/ (
1 —
g /K” ( q Z) pzkdz _pxk

0

<Ll (s

(b) Now, [Pring — Pakgl < [Pikng — B Digngl + [bias pipp, — bias pexn| + [bias pagnl-
The second term is o((nh,)~'/?) a.s. by part (a) of this lemma. The third term is

O(h2 +n~') as was shown in the proof of Lemma A.1. in [3]. For the first term we

M
)‘ |Dask — Dak| dz+ / K () (Pr—ugn .k — Pak)dz|, which is o(1).
M

apply Bernstein’s inequality where we take ¢ = ¢, = D(nh,)""/?(logn)'/? with D a
constant. By the Borel-Cantelli lemma we obtain the result.
(c) It is easily seen that
1
(p;kflhg + p;Ohg)(pxlg + Paog)

h/;hg - 7mg| < {‘p;mg - pmlg| + |p::0hg - pa:09|} .
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By part (b) and Lemma A.1. of [3], we have that p};;,, N Pak aNd Pyig EiN Pok. The
result now follows from part (b) of this lemma.

(d) The proof of this result is along the same lines as the proof of Lemma 4.1. in [10]
(although the resampling scheme is different). An analogous result holds for Hy: 1( t).

Lemma 2. Assume (A1), (A2"), (A3), (A4), h, = Cn~/? for some C > 0, g, —0

hin
9. -— =0(1),T < Ty,. Then as n — o0,

and
logn gy

(a) |Pakg — Par] = O((nhy,) Y2 (logn)/?) a.s.
(b) |’7mg - 7m| - O((nhn)_1/2(log n)l/Z) a.s.

(¢) sup |Lug(t) — L.(t)| = O((nh,)~%(logn)'/?) a.s.

0<t<T

(d) sup |Fypy(t) — Fu(t)| = O((nhy,)~*(logn)'/?) a.s.

0<t<T

5

In__, 400, then as n — +o00,
ogn

If moreover

(e) sup [ —log(l — Ly,(t)) +log(l — Luy(t))] = Op-((nhy)~*/*(logn)'/?) a.s.

0<t<T

(£) sup [L3,,(t) — Lug(t)| = Op-((nhy)~'*(logn)'/?) a.s.

0<t<T

Proof. (a), (b), (d). In Lemma 1 (resp. Lemma 2 or Theorem 1) of [3]|, we put
&, = D(nh,)"*/?(logn)'/? and apply the Borel-Cantelli lemma.
(c), (e). We prove these results along the same lines as in [10].

(f) By a first order Taylor series, we find,

Ling(t) = Lug(t) = (1 = Lag(t))[—e" (log(1 = L34(£)) — log(1 — Lag(1))]

where 6, lies between 0 and log(1— L%, (t)) —log(1 — L.4(t)). Since e’» <

1
= Loy(®)

we now obtain the result by parts (c) and (e).

Proof of Theorem 1. Application of a one term Taylor expansion gives

Elpg(t) = Fag(t) = Yag(L = Lag(t)) ™ [Lipg () = Lg(1)]
~(1 = Fug(t))108(1 = Lug(£)) ang — Vogl + Run(w.2) (8.1)

13



where
[Ro(,8)] < (1= Lag(t) > (Ling(t) = Lag(t))* + Ty (Ving — Vog)”
+2(1 — Lag(t)) 1 Lipg () — Lag () Vang — Vagl

with L,,(t) between L,,(t) and L

ang(t) and 4 between v, and 75, -

For the remainder term, we find the following upperbound:

1 (Lag(t) = La())(2 = Lug(t) = L) ] (0 0 2
e e ) R (7 vt L)
2 2(Lag(t) = Lo(1)(2 = Loy (t) — Lo(t)] . .
e s (0 ) e e LR
1 :)/gg - 7% . 2
+ [7% - ;ygg,yg ] (f}/xhg 719) :
By Lemma 1 and 2, we find that L,,(T) 2 L,(T) and sup |Lag(t) — Lo(t)] =
Op-((nhy)~/?(logn)/?) a.s., so this results in oiltlET |Rpi(x,t) |_:_ Op+((nhy,) tlogn) a.s.

To obtain the asymptotic representation of L}, (t) — Lyy(t), we use Theorem 4.1
of [10]:

t *

Ling(0) — Lig(t) = u—Lmu»{/Y%%%%¥wﬁﬁ

Hyg (1) = HY8) Hypy — HY
- 2 - - 2 dH, no(x,t)(8.2
+ 1= H,(1) 0/ (1 — H,) + Rpa(x,t)(8.2)

with sup |Rpa(z,t)| = Op-((nhy,)/*(logn)®* a.s.
0<t<T

To find an asymptotic representation for 7;,, — 7.y we apply a one term Taylor

expansion and obtain
*
Prihg N Pzig
Piihg T Prong  Palg T Paog
DPzog

* paclg
(p:clg + pa:()g>2 [ thg Ilg] (p:vlg + pa:()g)2

rYZhg = Yxg =
[Prong — Paog] + Rnz(x) (8.3)

where
2

Rys(2)| <
‘ 3( )| (pmlg +meg)2

{(p;Uzg - pxlg)z + (pZOhg - prg)Q}

14



with prog between pjop, and prog and py1, between pry,. and pyig.

By adding and subtracting the same terms, we find that:

2
(P21 + Pao)?
2(Dr1g — Petg + Palg = Pa1 + Pavg — Pa0g + Davg — Pa0) (Pt + Paog + Pa1 + Pao)
- (Pz1g + Dz0g)*(Pa1 + P20)?

| Bps ()| < D51y — Pe1g)” + (hong — Prog)?]

X

[(p;mg — Pa1g)’ + (Prong — pwog)ﬂ
Lemma 1 and 2 imply that |R,3(z)| = Op((nhy,) ‘logn).

Combining the results (8.2) and (8.3) into (8.1) gives

~

Epg(t) = Frg(t)

torrs *0,1 0,1 0,1 0,1
. - Hxhg - HZ’Q 0,1 thg (t) B Hx’g (t> Hmhg - Hz7g

1 n * *
-3 log(1 — Fie(2)) [prg(pxlhg — Pa1g) — pﬂflg(pwo}zg - prg)}} + Ry(,1)
zlg

where g, is defined in (4.1) and sup |R,(x,t)| = Op«((nh,)"**(logn)3/*) a.s.
0<t<T

~

In the last equality we replaced vVuq, Fig, Pzog: Paig DY Va, Fi, P20, Pa1 Tespec-
tively. This is allowed by Lemma 2.

8.2. Proof of weak convergence

We first establish a lemma on the bootstrap bias which will be needed in the proof

of Theorem 2.

Lemma 3. Assume (A1), (A2’), (A3) and (A4), h, = Cn~'/° for some C > 0,
5

n
" logn

gn—0 — +o0 and T' < Ty,. Then as n — +o0,

(nhn)Y? sup |b%(t|z) — ba(t|z)| = 0(1) a.s.

0<t<T

15



where

b;(ﬂl’) = Zwm'<x7hn)E*gtw(Zz*76: Zwm(%gn)gt:p(zi,@)

i=1

bu(tlz) = Z Wi (2, hy)) E g1 (2, 0;).

=1

Proof. A straightforward calculation gives

dH;" (s)

j bias Hy, (s) — bias Hyp(s)

by (tlz) — bu(t]z) = 72(1 — Fyu(1)) { (1 — H,(s))?

0
bias HX»!(t) — bias HY! (t) /blas HYl(s) — bias HY (s)

zhg zhg

1— H,(t) (1 — H.(s))?

_ w [sz(blaS Diing — Dias prin) — pa1(bias pi,, — bias szh)] } :
rl

dH,(s)

The result now follows from Lemma 1. We also use the inequality (1 — F,(t)) log(1 —
F.(t)) <1.

Lemma 4. Assume (Al), (A2 ), (A3) and (A4) in [0, 7] with T' < Ty, h, = Cn=/?

> h
for some C' > 0, g, — 0, — 400 and Wn  On _ O(1). Then, as n — 400,
logn logn g,
(a) (nh,) max sup_ |Hy,g(2) ()] Zwm z, hy) = O((nh,)"Y*(logn)"?) a.s.

1<i<n 0<t<

The same holds for the subdlstrlbutlon H2(t).

(b) (nh,) max |pxlgk Daik| - Zw =o(1) as. (k=-1,0,1)

1<

Proof. We have

) max sup |H, H, (t)|- w2~:z:,hn > ¢
( s, sup(Hy(0) = H (0] 3wl o )

(||K||2 e sup |Hog(t) — Ha (1)) > )

1<i<n 0<t<T

n €
<327 (s, (6~ 01> e
T8

0<t<T

In the same way, we find

n n
’ Z w?zj(xa hn) > 8) < Z P (lpzigk — Puxik
=1 i=1

> i)
I518)
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By Lemma A3 and Alb in [10] and Lemma Al in [3], we get the results.

Proof of Theorem 2. By the asymptotic representation of Theorem 1, we can

write

(nha) P (Fag(t) — Fuglt)) = Wi (tz) + (nhn) /(b (t2) — bu(t]2))
+((nhy)Y?b, (t|2) — Bo (1)) + Bu(t) + Ru(z,t)

where Wy (t[z) = (nhn)l/zzwm(x,hn) (G1:(Z7,07) — E* g1 (Z7,67)] and [(,(t) is de-

i Y i)Y
i=1

fined in (5.2).

In [3], we already found that sup |(nh,)Y?b,(t|z) — B.(t)] = o(1) a.s.. So tak-
0<t<T

ing Lemma 3 into account, we only need to prove that Wj (-[z) converges weakly
to W,(-) in 1°°[0,T], almost surely. This is done in two steps. First we will show
convergence of the finite dimensional distributions and afterwards we will prove tight-
ness. More in detail, this means that first we show that (W (t:[z),..., Wy (t.|z))
EA N(0;04;,) a.s. forany ¢ =1,2,... and any 0 <t; < ... <t, <T. This is done by
verifying that the following two conditions of [2] hold almost surely for the summands
Wik = (nhn)l/zwm-(x, hn) [gtkm(ka ;) — E*gtkm(Z?'F 67)]:

7971 71771

nh_,mOOZE*(WmJ'Wm’f) = 041, Q.5. (1<7,k<q) (8.4)
=1

TJim > / Wi 2dP* = 0 a.s. (8.5)
EHIWail>2)

q

for every € > 0, where |W,,;|*> = > W2,.
k=1

For (8.4) we have:

> B (Wi W) = nho S w2 1) Cov* (00,0 (27, 67), 900 Z1,67)) (8.6)

i=1 i=1
The right hand side of this expression can be calculated as in [3]. We get the same
result, but with H,,, H)', pex replaced by Hy,g, HY!, pygr. With this and Lemma
4, we can write (8.6) as:

n

> E*(WyiiWair) = 01,0, + 0(1) a.s. (1<j,k<q).

i=1

For (8.5) we first note that the functions g, .(Z},0;) — E*g,.(Z;,6}) are bounded

197 171
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uniformly on [0, 7], so that max (Wil = Op-((nh,)"'?) a.s., i |Woil? = Op«(1) a.s.
<i<n =1
and hence

3 / Wo2dP* < / SO [Wil2dP*
=1 =1
(Wail>} {max Wasl>e)

< Op*(1)]3"‘(1121?25z |(Whil > ¢) =op<(1) a.s.

This proves the convergence of the finite dimensional distributions.

To prove tightness, we will check the conditions of Theorem 2.11.9 in [9] (the bracket-
ing central limit theorem). Let us first denote W;(t) = (nhy,)Y?wpi(z, hy)gee(Z5, 67)
and F = [0,T]. On F we define the semi-metric p(¢,t') as

plt ) = ma {[H22(0) = HHO |F0) = FO), s |HEG) — IR,
z°€[0,1]
Before we can verify the conditions of Theorem 2.11.9, we need to divide F for
every n and ¢, conditional on the original observations 7, ..., Z,, in a partition of
subintervals {F.]'} such that
STE* sup [Wy(t) — Wa(t)] <& as. (8.7)
i=1 tJ’E]’?}I
The smallest number of subintervals in this partition such that (8.7) holds, is called
the bracketing number N|(e, F, Ly). Take in F = [0, 7], conditional on the original
observations, a sequence of time points 0 = t5 < t; < ... < t,, = T such that
{Z1,...,2,} C{to,... .t} and p(t,t') < C € for every t,t' € [t;_1,4],7=1,....,m
where C'is a constant which will be defined below (see (8.10)).

From Lemma 4, we note that, for some constant D > 0,

0,1 0.1 logn v
(nhy) max sup [H,(t) — H, Zw ) <D a.s. (8.8)

I<iSnggcr 7Y nhy,

Now we define, for all € > 0, a natural number n. which is the largest root of

<logn>1/2 _ < log n )1/2 _ (1= Hy(T))%* (8.9)

nhy, CnA/5 122D

For large €, we note that this equation does not have any roots. In this case we take
n. = 1.
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We define for every ¢ and n the partition {F.7}.
Ifn<n,,

o {[tj_l,tj[ it oy @{ .., T}
€j

lti1, ;] if tja€{Z,...,Z,}

e — [tm—b tm] if tm—l ¢ {Zl, RN Zn}
- ]tmfly tm] if tm,1 S {Zl, RN Zn}

Fo = {ZZ},Z:]_,,’H,

e,m—+1
Ifn>n,.,

Fio= -l j=1...,m—1
-7:::1 = [tmflatm]-

We first prove that (8.7) holds for this partition. In this way the bracketing number

is given for every ¢ and n by

Oe™H+n if n<n,

N (e, F, LD) = .
Nt 2) { O(e™) if n>n,

Some easy calculation shows that

[Wailt) = W) = (nho) w03 ) 910 (ZE,67) = guea( 27, 67)

1971 )

I(Z; <t,67 #—1) = I(ZF <t',6; # 1)
< 1/2 ) . | 7 (et} 7 Ve

2 |~ 1~ log(1 — F(T) () - H )]
*«u—maw+ o) )m*)FW”+ A }

and by the inequality of Cauchy-Schwarz, we get

I(ZF < 4,60 # —1) = 1(ZF < 1,8 # ~1)]?

mw@—wmwvssmmw@mmMﬁ{

(1 — H,(T))?
2 | —1—log(1— E.(T)])* o L [HONE) — HOY(#)?
+QLJMHV+ 7z )‘@@‘@W'+ (0~ A1) }'

Let us note that

1 tAY < ZF <tV 6 #—1

0 otherwise

I(ZF <t,67 4+ —1)—[(Z: <t,6" # -1 = {
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and hence

1 ZF € Fr \ {left endpoint}

0 otherwise

sup |I(Z] <t,07 # —1)—I(Z7 <t 07 # -1)|* = {

Lt EFLT
and
B sup |I(ZF <t,67 # 1)~ 1(Z; < U5} # 1) =
L EFIT

0,1/..: . *1 0,1 7Y
H,,(right endpoint of F7}') — H, (left endpoint of F}").

If n < n., we see that this is equal to zero by the construction of the partition. And

in this case,

n

Z E* sup |Wy(t) — Woi(t)* < 3(nhy,) Zwii(x; hn)%% X

1 2 |—1—log(1—F(T))| ’ 2.2
{u—m@w+<a—mww 7 )}C
) s 1 2 | = 1—log(1 = Fu(T))[\"| 2.0
< 311Kz {(1 CHT) ((1 “H1)? 7 ) }C -

If n > n., we get

n

ZE* sup  [Wy(t) — Wm’(t,)|2 < 3(nhy) Zwiz‘(xJ hn)’)’g X

i=1 t,t’efe*]” i=1
1 2 |—1—10g(1—F$(T))|>2 2.2
+ + C%e
{ (1= H(T))* <(1 — H,(T))? P
3 S w?,(2: ) {H2\ (right end of F77') — H2\ (left end of ') }.
(1 — Hm(T))2 = neAts zig ej xig cj

Adding and subtracting terms inside the last sum, we obtain

ZE* sup  [Wi(t) — Wi(t))?

i=1 t,t/Ef;;”

2 2 |—1—ba1—Fuw02 2 2
< 3||K |57, + C*e
"”ﬁ/{u—faaw4 (a—ffaw2 7z
+6—7§(nh ) max sup |Hy(t) — Hy'(t Zw
(1 — HI(T))Q 1<i<n 0<t<T *ig
Taking the constant C' as follows
¢ = [6IKIE2Y
B T\ T L)
2 |—1—log(1 — E )\ ]~
— 1 —10g - L'y
+ 4 8.10
(a=mmp ) )}] (810
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and using (8.8) and (8.9), we have that (8.7) holds for every n, e and {F}'}.

At this point we can now verify the third condition of the bracketing central limit

theorem, which says that for any sequence 9,, | 0,

/\/log N[*](&?,]-', Ly)de — 0 ,as n — 0. (8.11)
0

We verify this condition in the two possible situations

(1) 6, < F(nhy)"Y*(logn)'/* for n large here F 1292D 12
,where ' = | ———*—
(ii) 6, > F(nhy,)"Y*(logn)'/* for n large (1 —H,(T))?

In case (i), the integral in (8.11) is bounded above by

1/4
/ q/log —|— n de (8.12)

and in case (ii), the integral in (8.11) is bounded above by

1/4
/ Ulog ~|— n de + / \/log (8.13)
1/4

log n
nhn

where G > 0 is some constant. The integral in (8.12) can be rewritten after change

of variable and integration by parts as

\/Iog [GF—1 (%)1/4 + n} +o0 ]
! (e =)V

( nha )1/4
logn log [GF*1 ( nhp )1/44—711

du.

[ Q

logn

The first term obviously tends to zero. The same is true for the second integral by
using the bounded convergence theorem (see e.g. [5]). The second integral in (8.13)

can be rewritten as

1og[GF 1(logn)1/4}
G / Ve Udv
1og(G/6)
which clearly tends to zero as n — oo. Hence (8.11) is satisfied and this proves the

third condition in the bracketing central limit theorem.

The inequalities above also give
HOL ) — O | 19 ) — ()

1<i<n

Z:E*(Wm(t)—w ()% < 3| K22 (1~ H,(T)) (1— H,(T))?
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H,(T))? P

so that sup i E*(Wpi(t) — Woi(t'))? — 0 a.s. for every 8, | 0. This is the second
p(t,t!) <6y i=1
condition of the bracketing central limit theorem. Also the first condition is satisfied

+<(1_ 2 +]—1—log(1—Fx(T))’> |Fx(t)_Fx(t,)|2}

since for all n > 0,

1K oo M
sup |Wyi(t)| < 7——=775
Sup [Wail®)] (hiz <

for all n sufficiently large. Here M is the uniform upper bound for ¢;,(Z;, ;).

So by the bracketing central limit theorem, we have that the process Wy (-|z) is
asymptotically tight. Together with the convergence of the finite dimensional distri-

butions, this concludes our proof.
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Figure 1: (a) Proportion of uncensored, informatively censored and non informatively
censored observations for a; = 1, as = 0.5, ag = —0.5, a4 = 0.5, ¢; = 0.6, ¢ = 2.
(b)-(d) Normal approximation (small dashed curve) and bootstrap approximation
(dashed curve) of P((nhy)2(E,u(t) — Fy(t)) < y) (solid curve) for a; = 1, ay =
0.5, a3 = —0.5, as =0.5, ¢, =0.6, co =2, x =0.5, t =0.5.
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Figure 2: (a) Proportion of uncensored, informatively censored and non informatively
censored observations for a; =1, as =2, a3 =0.5, a;, =0.5, ¢c; =1, ¢ = 1.

(b)-(d) Normal approximation (small dashed curve) and bootstrap approximation
(dashed curve) of P((nhy)2(E,,(t) — Fy(t)) < y) (solid curve) for a; = 1, ay =
2, a3=0.5, a4=05,¢c1=1, co=1, x =0.5, t =0.5.
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Figure 3: In each of the four pictures, the solid line is the partial Koziol-Green
estimator. The long dashed lines are the 5% and 95% curves and the short dashed

line is the 50% curve.
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