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Samenvatting

In deze thesis bestuderen we Green ringen van eindig dimensionale pointed Hopf

algebras van rang één over een algebräısch gesloten veld kmet karakteristiek 0. Verder

proberen we de verworven eigenschappen van Green ringen van pointed Hopf algebras

van rang één te veralgemenen voor eindig dimensionale Hopf algebras.

In Hoofdstuk 2 en Hoofdstuk 3 werken we met eindig dimensionale pointed Hopf

algebras van rang één (van het nilpotente type en het niet-nilpotente type, respec-

tievelijk). We vertonen de Green ring van een dergelijke Hopf algebra in termen van

voortbrengers en relaties, waaruit we kunnen besluiten dat de Green ring commutatief

en symmetrisch is met een duale basis geassocieerd aan bepaalde bijna split rijen. Het

blijkt dat het Jacobson radicaal van de Green ring een hoofd-ideaal is, voortgebracht

door een speciaal element voorgesteld door een lineaire combinatie van projectieve

modulen, en dat de idempotenten van de Green ring triviaal zijn. Bovendien zijn de

niet-triviale idempotenten van de gecomplexifieerde Green ring van een pointed Hopf

algebra van rang één van het nilpotente type volledig bepaald.

In Hoofdstuk 4 bestuderen we de stabiele Green ring (i.e., de Green ring van de

stabiele categorie) van een eindig dimensionale pointed Hopf algebra van rang één. We

tonen aan dat de stabiele Green ring overeenkomt met het quotient van de Green ring

van H modulo het ideaal voortgebracht door alle projectieve modulen. Daarenboven,

de gecomplexifieerd stabiele Green ring is een groepachtige algebra, en bijgevolg een

bi-Frobenius algebra.

In Hoofdstuk 5 bestuderen we de Green ring van een willekeurige eindig dimension-

ale Hopf algebra H. Ten eerste onderzoeken we kwantum dimensies van indecompos-

abele H-modulen. Hierdoor kunnen we een antwoord geven op de vraag van Cibils.
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Vervolgens bestuderen we enkele ringtheoretische eigenschappen van de Green ring

r(H) van H, waaronder de beschrijvingen van zekere belangrijke eenzijdige idealen, de

nilpotente idealen en de centrale primitieve idempotenten van r(H). Bovendien bewi-

jzen we dat de stabiele Green ring van H een associatieve non-degenerate bi-lineaire

vorm bezit die gëınduceerd wordt door de bi-lineaire vorm op r(H). Ten slotte, indien

H een sferische Hopf algebra is, vormt de quotiënt categorie van H-modulen modulo

alle verwaarloosbare morfismen een addititieve semisimpele sferische monöıdale cat-

egorie. We tonen aan dat de Green ring van de quotiënt categorie isomorf is met de

quotiënt ring van r(H) modulo alle indecomposabele modulen met kwamtum dimen-

sie nul. In het bijzonder, indien H van het eindige representatie type is, dan is de

gecomplexifieerd quotiënt ring een groepachtige algebra, en bijgevolg een bi-Frobenius

algebra.
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Introduction

Let H-mod be the category of finite dimensional representations of a Hopf algebra H

over a field k. In the study of the monoidal structure of H-mod one has to consider

the decompositions of the tensor product of representations in H-mod. In particular,

the decomposition of the tensor product of any two indecomposable representations

in H-mod. However, in general, very little is known about how a tensor product of

two indecomposable representations decomposes into a direct sum of indecomposable

representations. One method of addressing this problem is to consider the tensor

product as the multiplication of the Green ring (or the representation ring) r(H) of

H, and to study the ring-theoretical properties of the Green ring.

A lot of work have been done in this direction. Firstly, Green [39, 40], Benson

and Carlson, etc., considered the semi-simplicity of the representation ring r(kG)

for modular representations of a finite group G. One of the interesting results they

obtained is that kG is of finite representation type if and only if there are no nilpotent

elements in r(kG). In general, it is difficult to determine all nilpotent elements of

r(kG) if kG is of infinite representation type (see [4, 46, 63]). For the Green rings of

Hopf algebras, if H is a finite dimensional semi-simple Hopf algebra, then the Green

ring r(H) is equal to the Grothendieck ring and is semi-simple (see, e.g. [57, 78]).

When H is the enveloping algebra of a complex semi-simple Lie algebra, the Green

ring has been studied by Cartan and Weyl (see [37]). Here we would like to mention

the recent work by Sergeev and Veselov for basic classical Lie superalgebras (see

[68]). Darpö and Herschend have presented a general description of the Green ring

of the polynomial Hopf algebra k[x] in [26] in case the ground field k is perfect. For

Green rings of quantum algebras, we refer to the work by Domokos and Lenagan (see

[27]). In [70], Wakui computed the Green rings of all non-semisimple Hopf algebras

of dimension 8 in terms of generators and relations over an algebraically closed field
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k of characteristic 0. Cibils in [21] determined all the graded Hopf algebras on a cycle

path coalgebra (which are just equal to the generalized Taft algebras (see [62])), and

considered the decomposition of two indecomposable representations (see also [41]).

Moreover, Cibils also computed the Green ring of the Sweedler 4-dimensional Hopf

algebra in terms of generators and relations.

Recently, Chen, Van oystaeyen and Zhang, Li and Zhang, successfully comput-

ed the Green rings of the Taft algebras and the Green rings of the generalized Taft

algebras respectively in [24] and [56]. They have made use of Cibils’ decomposition

formulas of tensor products [21]. The nilpotent elements of those Green rings were

completely determined in terms of the linear combinations of projective indecompos-

able modules. In [47], the Green rings of pointed tensor categories of finite type were

investigated where the quiver techniques were applied to study the comodules over a

graded coquasi-Hopf algebra. For Hopf algebras of infinite type, the Green rings are

usually not finitely generated. In this case, the Green rings are difficult to study. For

example, the Green ring of the Drinfeld double of the Sweedler Hopf algebra [19] and

the Green rings of the rank 2 Taft algebras [53] are not finitely generated although

they can be computable.

Motivated by the aforementioned work, we study the Green rings of a family

of finite dimensional pointed Hopf algebras, called finite dimensional pointed Hopf

algebras of rank one. This family contains the (generalized) Taft algebras, the half

quantum group [41] and the Radford Hopf algebras [62]. The classification of this

family of Hopf algebras over an algebraically closed field k of characteristic 0 has

been given respectively in [20] and [50]. In the case of characteristic p > 0, the

classification was given by Scherotzke in [64]. The authors in [75] constructed this

family of Hopf algebras in the point view of Hopf-Ore extensions.

In this thesis, we compute the Green ring of a pointed Hopf algebra of rank one in

terms of generators and relations. We show that the Green ring of such a Hopf algebra

is commutative and symmetric with a dual basis (to the canonical basis) associated to

certain almost split sequences. We are able to describe the Jacobson radical and the

idempotents of the Green ring. It turns out that the Jacobson radical of the Green

ring is principal generated by a special element, and the idempotents of the Green

ring are trivial. We then study the stable Green ring (i.e., the Green ring of the stable

category) of the aforementioned Hopf algebra. We show that the stable Green ring is

isomorphic to the quotient of the Green ring of the Hopf algebra modulo all projective

modules. Moreover, the complexified stable Green ring admits a group-like algebra
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structure, and hence is a bi-Frobenius algebra. Some properties of the Green ring

can be extended to the Green ring of an arbitrary finite dimensional Hopf algebra.

So in the second part of the thesis, we investigate the ring-theoretical properties of

the Green ring of a finite dimensional Hopf algebra. This includes the descriptions of

some import one-sided ideals, the nilpotent ideals and the idempotents of the Green

ring. In particular, in the case where the Hopf algebra is spherical, the quotient of

the Green ring modulo the objects of quantum dimension zero is semisimple. If, in

addition, H is of finite representation type, then the complexified quotient ring admits

a group-like algebra structure, and hence becomes a bi-Frobenius algebra.

Now let us formulate the main results with more details. Throughout, we work

over a fixed algebraically closed field k of characteristic 0. Let H be a Hopf algebra,

and H0 ⊆ H1 ⊆ H2 ⊆ · · · the coradical filtration of H. Suppose that the coradical H0

is a Hopf subalgebra of H. Then each Hi is a free H0-module. Consider k as the trivial

right H0-module. If H is generated as an algebra by H1 and dimk(k⊗H0
H1) = n+1,

then H is called a Hopf algebra of rank n [50]. Every finite dimensional pointed Hopf

algebra of rank one comes from a group datum D = (G,χ, g, µ), which is either of

nilpotent type or of non-nilpotent type (see Definition 1.4.1). Denote by HD the Hopf

algebra associated to a group datum D. HD is said to be of nilpotent type (resp. non-

nilpotent type) if the associated group datum D is nilpotent (resp. non-nilpotent).

The thesis is organized as follows.

In Chapter 1, we recall the notions of a bi-Frobenius algebra, a group-like algebra,

as well as a Nakayama algebra. As almost split sequences will play the central role in

this thesis, we will recall the basic of the Auslander-Reiten theory. Roughly speaking,

the Green ring (or the representation ring) of a Hopf algebra is the free abelian group

generated by the isomorphism classes [X] of finite dimensional representations X with

the addition induced by the direct sum and the multiplication induced by the tensor

product. Some existing properties of Green rings will be presented in Section 1.3.

One of the fundamental properties of the Green ring of a finite dimensional Hopf

algebra H is that the Green ring can be endowed with an associative non-degenerate

Z-bilinear form. More precisely, denote by δ[Z] the element [X] − [Y ] + [Z] in the

Green ring if 0 → X → Y → Z → 0 is an almost split sequence. If Z is projective,

then δ[Z] = [Z]− [radZ]. For H-modules X and Y , we define

([X], [Y ]) = dimk HomH(X,Y ∗).
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This leads to an associative non-degenerate Z-bilinear form on r(H). Moreover, the

bilinear form is symmetric if the square of the antipode of H is inner. In view of this,

we obtain the following important property of the Green ring of a Hopf algebra H:

Theorem 1. [Theorem 1.3.4] If H is a finite dimensional Hopf algebra of finite

representation type, then the Green ring r(H) of H is Frobenius with the Frobenius

homomorphism φ(x) = (x, 1), for any x ∈ r(H).

In Chapter 2, we study the Green ring of a finite dimensional pointed rank one

Hopf algebra HD of nilpotent type. We refer to [71] for the published version of a

part of work of this chapter. The Hopf algebra HD of nilpotent type is a Nakayama

algebra. We shall determine all finite dimensional indecomposable HD-modules up to

isomorphism (Theorem 2.1.4). The almost split sequence ending at a non-projective

indecomposable HD-module M is obtained by tensoring M over k on the right (or on

the left) with the almost split sequence ending at the trivial module k. This enables

us to deduce the Clebsch-Gordan formulas for the decompositions of tensor products

of indecomposable modules (Proposition 2.2.6). According to the decomposition for-

mulas, we deliver the structure of the Green ring r(HD) of HD in terms of generators

and relations. It turns out that the Green ring r(HD) is isomorphic to a polynomial

ring with one variable over the Green ring r(kG) (i.e., the Grothendieck ring of kG)

modulo a relation given by a Dickson polynomial Fn(a, z) (see Equation (2.7) or (2.8))

multiplied with δ[k], the almost split sequence ending at the trivial module k:

Theorem 2. [Theorem 2.3.4] Let HD be the Hopf algebra associated to a group datum

D = (G,χ, g, µ) of nilpotent type. Let r(kG) be the Green ring of the group algebra

kG and r(kG)[z] the polynomial ring in variable z over r(kG). Then the Green ring

r(HD) is isomorphic to r(kG)[z]/I, where I is the ideal of r(kG)[z] generated by the

element (1+a−z)Fn(a, z) and a represents the isomorphism class of the 1-dimensional

simple module with the character χ−1.

It is well-known that two group algebras which are not gauge equivalent may

possess the same character ring (or the Grothendieck ring). This happens to Hopf

algebras as well. As a consequence of the aforementioned structure theorem, we

characterize the group data, and give a sufficient condition for two pointed rank one

Hopf algebras of nilpotent type which are not gauge equivalent to share the same

Green ring (Proposition 2.3.6). Taft algebras give such examples (Example 2.3.7).

As mentioned above, the Green ring r(HD) possesses an associative non-degenerate
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Z-bilinear form (−,−). This form is symmetric since the square of the antipode of HD

is inner. It follows that r(HD) is symmetric with a dual basis associated to certain

almost split sequences. Let P be the free abelian group generated by the isomorphism

classes of indecomposable projective HD-modules. Then P forms an ideal of r(HD).

Denote by P⊥ the ideal of r(HD) orthogonal to P with respect to the form (−,−). We

show that P⊥ is a principal ideal generated by δ[k] (Proposition 2.4.1). The quotient

ring r(HD)/P⊥ is precisely the Grothendieck ring G0(HD) of HD (Remark 2.5.3).

The following property of the Jacobson radical of the Green ring can be deduced

from the Frobenius property of r(HD):

Theorem 3. [Theorem 2.5.2] The Jacobson radical J(r(HD)) of r(HD) is exactly the

intersection P ∩ P⊥.

As a direct consequence, the square of the Jacobson radical J(r(HD)) of r(HD) is

equal to zero. In order to describe the Jacobson radical J(r(HD)) of r(HD) in terms

of generators, we consider the complexified Green algebra R(HD) := C ⊗Z r(HD)

over the field C. We determine the dimension of the Jacobson radical of R(HD) by

calculating the number of simple modules over R(HD). The rank of the Jacobson

radical of r(HD) is in fact equal to the dimension of the Jacobson radical of R(HD).

It turns out that the Jacobson radical of r(HD) is a principal ideal generated by a

special element represented by a linear combination of projective modules:

Theorem 4. [Theorem 2.5.7] The Jacobson radical of r(HD) is a principal ideal

generated by the element M [0, n]θ.

The element M [0, n] is the isomorphism class of the projective cover of the trivial

module k and θ is a polynomial of the element a, where a is the isomorphism class of

1-dimensional simple HD-module with the character χ−1. This explains the reason

why those nilpotent elements of the Green rings of the generalized Taft algebras are

of a special linear combination form of projective modules [56]. Another result that

can be deduced from the Frobenius property of r(HD) is described as follows.

Theorem 5. [Theorem 2.6.2] The Green ring r(HD) has only trivial idempotents.

In view of this, we turn to study the idempotents of the complexified Green alge-

bra R(HD) = C ⊗Z r(HD). By lifting all primitive idempotents of the commutative
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semisimple algebra R(HD)/J(R(HD)), we are able to determine the idempotents of

the complexified Green algebra R(HD) completely (Theorem 2.6.5). As an applica-

tion, we compute all primitive idempotents of complexified Green algebra R(T3) of

the Taft algebra T3.

In the final part of this chapter, we shall apply the obtained results to compute

the Green ring of the Hopf algebra HD of nilpotent type such that the group G in the

group datum D is a dihedral group. In this case, the Green ring of HD is generated

over Z by four generators with five relations (Theorem 2.8.5).

In Chapter 3, we shall deal with a finite dimensional pointed rank one Hopf algebra

HD of non-nilpotent type. We first show that the quotient HD = HD/HD(1 − e) is

a finite dimensional pointed rank one Hopf algebra of nilpotent type, and HD(1− e)
is a semisimple subalgebra of HD, where the element e is a central idempotent of

HD. Accordingly, we determine all finite dimensional indecomposable HD-modules

up to isomorphism (Theorem 3.1.10). Thanks to the results obtained in Chapter

2, we are able to establish the Clebsch-Gordan formulas for the decompositions of

tensor products of indecomposable HD-modules. It turns out that the decompositions

depend mainly on those decompositions of simple kG-modules (Proposition 3.2.3,

Proposition 3.2.4 and Proposition 3.2.5).

Let r(HD) be the Green ring of pointed rank one Hopf algebra HD of nilpotent

type. Then r(HD) is a subring of r(HD) (deduced from Proposition 3.1.3). Denote

by P the free abelian group generated by the isomorphism classes of indecompos-

able projective HD-modules. Then P is an ideal of r(HD). We form a direct sum

r(HD)
⊕
P as free Z-modules. Then r(HD)

⊕
P is endowed with a commutative ring

structure with multiplication given by

(b1, c1)(b2, c2) = (b1b2, b1c2 + c1b2 + c1c2),

for any b1, b2 ∈ r(HD) and c1, c2 ∈ P. The ring r(HD)
⊕
P can be regarded as a

certain trivial extension of r(HD) with respect to P. Moreover, the Green ring r(HD)

is isomorphic to a quotient ring of this trivial extension:

Theorem 6. [Theorem 3.3.1] Let I be the submodule of the Z-module r(HD)
⊕
P

generated by the elements (−M [i, n],M [i, n]), for certain isomorphism classes of in-

decomposable projective modules M [i, n]. Then I is an ideal of the ring r(HD)
⊕
P

and the quotient ring (r(HD)
⊕
P)/I is isomorphic to r(HD).
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The generators and relations of the Green ring r(HD) of HD of non-nilpotent

type are more complicated than those in the case of nilpotent type (Theorem 3.3.4).

The main reason is that a Hopf algebra HD of non-nilpotent type does not possess

the Chevalley property whereas a Hopf algebra of nilpotent type does have. Hence

the free abelian group generated by all simple HD-modules is no longer a subring of

r(HD). Nevertheless, the Green ring r(HD) of HD of non-nilpotent type has similar

ring-theoretical properties to those in the case of nilpotent type. For example, the

Jacobson radical of r(HD) is also equal to the intersection P ∩ P⊥ (Theorem 3.4.2),

which is a principal ideal (Theorem 3.4.3); the Green ring r(HD) has only trivial

idempotents (Theorem 3.4.4), etc.. Finally, as an example, we present explicitly the

Green ring of a Radford Hopf algebra in terms of generators and relations (Theorem

3.5.2).

In Chapter 4, we study the Green ring of the stable category of a finite dimensional

pointed Hopf algebra of rank one. Let HD be such a Hopf algebra associated to a

group datum D (of nilpotent or non-nilpotent type). Recall that the stable category

HD-mod, the quotient category of HD-mod modulo the morphisms factoring through

projective modules, is triangulated [43] with the monoidal structure derived from that

of HD-mod. The Green ring of the stable category HD-mod is called the stable Green

ring of HD, and denoted rst(HD). The structure of the stable Green ring rst(HD) is

given as follows.

Theorem 7. [Theorem 4.1.1] The stable Green ring rst(HD) is isomorphic to the

quotient ring r(HD)/P, where P is the ideal of r(HD) generated by the isomorphism

classes of indecomposable projective HD-modules.

The stable Green ring rst(HD) is semisimple since the Jacobson radical of r(HD)

is contained in P. One of the most interesting properties of the complexified stable

Green algebra Rst(HD) := C⊗Zrst(HD) is that it possesses a group-like algebra struc-

ture (Proposition 4.1.2). Thus, the stable Green algebra Rst(HD) is a bi-Frobenius

algebra (Remark 1.1.8). As a consequence, many interesting properties of group-like

algebras and bi-Frobenius algebras (see [28, 29, 30, 31]) can be applied to the stable

Green algebra Rst(HD).

In the final part of this chapter, we study the Nakayama functor N and the

syzygy functor Ω of HD-mod. We give a necessary and sufficient condition for the

stable category HD-mod to be Calabi-Yau. It turns out that HD-mod is Calabi-Yau
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if and only if the order of χ(g) is 2, where χ and g are factors in the group datum

D = (G,χ, g, µ) (Proposition 4.3.5). If the stable category HD-mod is not Calabi-Yau,

we use the results of Cibils and Zhang [25] to determine the minimal, consequently

all the d-th Calabi-Yau objects of HD-mod (Theorem 4.3.6). This raises naturally

the following question: what is the role of the Calabi-Yau objects in the stable Green

ring rst(HD)?

After the study of Green rings of finite dimensional pointed Hopf algebras of

rank one, we turn to investigate the Green ring r(H) of a finite dimensional Hopf

algebra H in the general case. The first step we need to do is to describe δ[X] for

any indecomposable H-module X, since they not only form a basis of r(H) (if H is

of finite representation type), but also play a key role in the structure of r(H) (e.g.,

Theorem 2.3.4, Proposition 2.4.1, Theorem 2.5.2, etc.). In the case where H is a finite

dimensional pointed Hopf algebra of rank one, the element δ[X] satisfies the following

relations (Section 2.4):

[X]δ[k] = δ[X] = δ[k][X] if X is not projective, (I)

[X]δ[k] = 0 = δ[k][X] if X is projective. (II)

The relation (II) holds in general since the short exact sequence obtained by tensoring

a projective module with an almost split sequence is split, whereas the relation (I)

does not work in general. However, as we shall see that there are still some techniques

to characterize whether or not an H-module satisfies the relation (I).

In Chapter 5, let H be an arbitrary finite dimensional Hopf algebra over the field k.

We begin with the study of quantum dimensions of H-modules using the techniques

from [42, 80]. We first determine when an H-module is of quantum dimension zero or

non-zero. In particular, we answer the question raised by Cibils in [21, Remark 5.8]:

when does the trivial module k appear as a direct summand of the tensor product

M ⊗N (k |M ⊗N for short) for any two indecomposable modules M and N?

Theorem 8. [Theorem 5.1.7] Let X and Y be two indecomposable H-modules.

(1) k | Y ⊗X∗ if and only if there are isomorphisms f : X → Y and g : Y → X∗∗

such that TrLX(g ◦ f) = idk.

(2) k | X∗ ⊗ Y if and only if there are isomorphisms f : X∗∗ → Y and g : Y → X

such that TrRX(g ◦ f) = idk.
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Here TrLX(g ◦ f) (resp. TrRX(g ◦ f)) is the left (resp. right) quantum dimension of

the map g ◦ f (see Section 5.1).

If H is not semisimple, we have an almost split sequence 0→ τ(k)→ E
σ−→ k→ 0

ending at the trivial module k. By tensoring X with the sequence, we obtain the

following two exact sequences:

0→ τ(k)⊗X → E ⊗X σ⊗idX−−−−→ X → 0,

0→ X ⊗ τ(k)→ X ⊗ E idX⊗σ−−−−→ X → 0.

We show that the map σ⊗ idX (resp. idX⊗σ) is either a right almost split morphism

or a split epimorphism depending on k | X ⊗X∗ (resp. k | X∗ ⊗X) or not. If the

map σ ⊗ idX (resp. idX ⊗ σ) is a split epimorphism, it is obvious that δ[k][X] = 0

(resp. [X]δ[k] = 0). If the map σ⊗ idX (resp. idX ⊗ σ) is right almost split, we show

that δ[k][X] = δ[X] (resp. [X]δ[k] = [X]) (see Proposition 5.2.1 for the general case).

Thus, the relations (I) and (II) can be generalized to more general form as follows.

Theorem 9. [Theorem 5.2.2] Let X be an indecomposable H-module.

(1) If k - X∗ ⊗X, then [X]δ[k] = 0.

(2) If k - X ⊗X∗, then δ[k][X] = 0.

(3) If k | X∗ ⊗X, then [X]δ[k] = δ[X].

(4) If k | X ⊗X∗, then δ[k][X] = δ[X].

Now let P+ (resp. P−) be the free abelian group generated by all indecomposable

H-modules X with k - X ⊗X∗ (resp. k - X∗ ⊗X). Then P+ (resp. P−) is a right

(resp. left) ideal of r(H) (deduced from Corollary 5.1.9). The nilpotent ideals of r(H)

are contained in P+ ∩P− (Proposition 5.2.7). For every central primitive idempotent

E of r(H), it is either E ∈ P+ ∩P− or 1−E ∈ P+ ∩P− (Proposition 5.2.8). Let J+

(resp. J−) denote the free abelian group generated by δ[X] with k | X ⊗ X∗ (resp.

k | X∗ ⊗ X). Then J+ (resp. J−) is a right (resp. left) ideal of r(H) generated

by δ[k] (deduced from Theorem 5.2.2). If H is of finite representation type, then the

relations between these one-sided ideals are described as follows (Proposition 5.2.5):

J+ = P⊥− = (P⊥+ )∗ and J− = P⊥+ = (P⊥− )∗. (III)
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In case H is a finite dimensional pointed Hopf algebra of rank one, we have P+ =

P−, denoted P; and J+ = J−, denoted J . In this case, the relation (III) becomes

J = P⊥ = (P⊥)∗, yielding Proposition 2.4.1, see also Equation (3.13).

Similar to the bilinear form (−,−) defined on the Green ring r(H), we define a

bilinear form (−,−)st on the stable Green ring rst(H) of H. This bilinear form is also

associative and non-degenerate. Moreover, it is symmetric if S2 is inner (Proposition

5.3.5). Thus, rst(H) is Frobenius if H is of finite representation type.

In the last part of this chapter, we devote ourselves to the study of the Green

ring of a spherical Hopf algebra H, where the finite dimensional H-module category

H-mod forms a spherical category [14]. The quantum dimension d(X) of H-module

X defined by the pivotal structure of H-mod satisfies

d(X) = d(X∗) and d(X ⊗ Y ) = d(X)d(Y ).

In this case, P := P+ = P− is a two-sided ideal of r(H) generated by isomorphism

classes of indecomposable modules of quantum dimension zero. Let B = {[Xi] | i ∈ I}
consisting of the isomorphism classes of indecomposable modules [Xi] with d(Xi) 6= 0

and ZB the free abelian group generated by B. Define the map T from ZB to Z by

letting T (x) be the coefficient of [k] in the linear expression of x ∈ ZB. We take a

similar approach to the one in [16] and establish a ring structure on ZB as follows.

Theorem 10. [Theorem 5.4.2] The free abelian group ZB admits a ring structure as

follows:

(1) The multiplication law is given by x · y =
∑
i∈I T (xy[Xi∗ ])[Xi] for x, y ∈ ZB.

(2) The Z-bilinear form [−,−] on ZB given by [x, y] = T (xy) is associative, sym-

metric, non-degenerate and ∗-invariant.

(3) The quantum dimension map d from ZB to k is a ring homomorphism.

(4) ZB is isomorphic to the quotient ring r(H)/P.

Because of the isomorphism ZB ∼= r(H)/P, the ring ZB can be regarded as the

Green ring of certain factor category of H-mod. More precisely, since the H-module
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category H-mod is spherical, there is a bilinear pairing given by

Θ : HomH(X,Y )×HomH(Y,X)→ k, Θ(f, g) = TrLX(θX ◦ g ◦ f).

A morphism f from X to Y is called negligible if Θ(f, g) = 0 for any morphism g from

Y to X. Let J (X,Y ) be the set consisting of all negligible morphisms from X to Y .

Then the negligible morphisms form a monoidal ideal, i.e., composing or tensoring

a negligible morphism with any morphism yields a negligible morphism [60, P.118].

This leads to a factor category H-mod, where the objects are those of H-mod while

the morphism spaces are given by the quotient:

HomH(X,Y ) := HomH(X,Y )/J (X,Y ).

The factor category H-mod is an additive semisimple k-linear spherical category [15]

with the monoidal structure derived from that of H-mod.

Theorem 11. [Theorem 5.4.3] The Green ring of the factor category H-mod is

isomorphic to the quotient ring r(H)/P, where P is the ideal of r(H) generated by

all indecomposable modules of quantum dimension zero.

The set of isomorphism classes of simple objects of the category H-mod is not finite

in general. However, the finiteness property is necessary if one wants to construct

a manifold invariant from this category [15, Theorem 5.1]. It is easy to see that

the category H-mod possesses the finiteness property if and only if the complexified

algebra kB := k⊗ZZB is a finite dimensional algebra. We show that the algebra kB

is finite dimensional if and only if it possesses a non-zero left or right integral with

respect to d (Proposition 5.4.7). Moreover, if the algebra kB is finite dimensional, it

is a group-like algebra (Proposition 5.4.8), and hence a bi-Frobenius algebra.

Let HD be a finite dimensional pointed Hopf algebra of rank one associated to the

group datum D = (G,χ, g, µ). Then HD is spherical if and only if the order of χ(g)

is 2 (Remark 5.4.4). In this case, the factor category HD-mod of HD-mod modulo

all negligible morphisms is equivalent to kG̃-mod and the Green ring ZB of HD-mod

is isomorphic to the Grothendieck ring G0(kG̃), where the group G̃ is equal to G or

a quotient of G depending on whether the group datum D is of nilpotent type or of

non-nilpotent type.
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Notations and conventions

Throughout, k is a fixed algebraically closed field with characteristic 0. All vector

spaces, algebras (associative with identities) and modules are assumed to be over

k unless otherwise stated. The unfinished dim and tensor ⊗ mean dimk and ⊗k
respectively. The letters N, Z and C stand for the sets of natural numbers, integers

and complex numbers respectively. Given a positive integer n, we let Zn be Z/(n).

For a finite set B, we denote by |B| the cardinality of B, and by spB the vector space

spanned over k by the set B.

We define the q-binomial coefficients for 0 ≤ k ≤ n by(
n

k

)
q

=
(n)q!

(k)q!(n− k)q!
,

where (n)q = 1 + q + · · ·+ qn−1 and (n)q! = (1)q(2)q · · · (n)q.

Without specifically stated, a Hopf algebra H means a finite dimensional Hopf

algebra with an antipode S. The group of group-like elements of H is denoted by

G(H). The trivial H-module will be denoted by k. For an element a ∈ H, we use the

Sweedler’s notation 4(a) =
∑
a1 ⊗ a2 for the comultiplication of H.

For a Hopf algebra H and a finite dimensional H-module M , we write M∗, radM ,

socM and P(M) for the dual, the radical, the socle and the projective cover of M

respectively. The dual space M∗ = Hom(M,k) is an H-module with the H-module

structure given by (hf)(v) = f(S(h)v) for h ∈ H, f ∈M∗ and v ∈M. Given any two

H-modules M and N , the notation M | N (resp. M - N) means that M is (resp. is

not) a direct summand of N .
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Chapter 1

Preliminaries

In this chapter, we first recall the definitions of a Frobenius algebra, a bi-Frobenius

algebra and a group-like algebra. After that, we shall collect concepts and results

from the Auslander-Reiten theory. The main theme of this thesis is about Green

rings of Hopf algebras. So we spend a bit more time not only on recalling definitions

but also on working out some basic properties of Green rings which will be used in

other chapters. In the final part, we recall the construction and classification of finite

dimensional pointed Hopf algebras of rank one by means of group data.

1.1 Bi-Frobenius algebras

1.1.1 Frobenius algebras

Frobenius algebras occur in many different fields of mathematics, such as topological

quantum field theory [2], Hopf algebras and quantum Yang-Baxter equations [18, 55].

In the following, the notion of a Frobenius algebra is defined directly over a field k,

although it can also be defined over a commutative ring (e.g., [51, 58]).

Let A be a finite dimensional k-algebra. We denote by the dual A∗ = Homk(A,k).

Then A∗ has a natural A-A-bimodule structure given by

(a ⇀ f ↼ b)(c) = f(bca), for a, b, c ∈ A, f ∈ A∗.

1



CHAPTER 1. PRELIMINARIES

Definition 1.1.1. (cf. [22, 23]) The pair (A, φ) is called a Frobenius algebra provided

that φ ∈ A∗ such that the right A-module morphism θA : A → A∗, a 7→ φ ↼ a is

bijective; or equivalently, the left A-module morphism Aθ : A → A∗, a 7→ a ⇀ φ is

bijective.

The linear form φ is called a Frobenius homomorphism. Moreover, A is a symmet-

ric algebra provided that A is isomorphic to A∗ as A-A-bimodules.

Remark 1.1.2. If (A, φ) is a Frobenius algebra, then 〈a, b〉 := φ(ab) for a, b ∈ A, is

a non-degenerate associative bilinear form over A. Conversely, if A is equipped with

a non-degenerate associative bilinear form 〈−,−〉, then φ := 〈1,−〉 is a Frobenius

homomorphism of A [2, Proposition 1]. Accordingly, one of the equivalent definitions

of a Frobenius algebra is that A is Frobenius if and only if A is equipped with a non-

degenerate bilinear form 〈−,−〉 : A×A→ k satisfying the associative 〈ab, c〉 = 〈a, bc〉,
for any a, b, c ∈ A. Moreover, if the bilinear form is symmetric 〈a, b〉 = 〈b, a〉 for

a, b ∈ A, then A is a symmetric algebra.

We refer to [29, 51, 58] for the following basic properties of Frobenius algebras.

The k-linear map θA given in Definition 1.1.1 induces the k-linear isomorphism

Θ : A⊗A id⊗θA−−−−→ A⊗A∗ ∼= Endk(A).

Hence there exists a unique element
∑n
i=1 ai⊗bi ∈ A⊗A such that Θ(

∑n
i=1 ai⊗bi) =

idA. The pair {ai, bi | 1 ≤ i ≤ n} is called a dual basis of (A, φ) and
∑n
i=1 ai ⊗ bi is

the Casimir element of (A, φ). Moreover, (A, φ) is symmetric if and only if

n∑
i=1

ai ⊗ bi =

n∑
i=1

bi ⊗ ai.

According to the map Θ given above, we have the following:

x =

n∑
i=1

aiφ(bix) =

n∑
i=1

ai〈bi, x〉, for x ∈ A, (1.1)

or equivalently,

x =

n∑
i=1

φ(xai)bi =

n∑
i=1

〈x, ai〉bi, for x ∈ A. (1.2)

2



1.1. BI-FROBENIUS ALGEBRAS

In fact, both of them is equivalent to

〈x, y〉 =

n∑
i=1

〈x, ai〉〈bi, y〉 (1.3)

for any x, y ∈ A (cf. [58]).

The following are basic examples of Frobenius algebras over the field k (cf. [22]).

Example 1.1.3. Let H be a finite dimensional Hopf algebra over the field k. Let

λ ∈ H∗ be a non-zero left integral and Λ ∈ H such that λ(Λ) = 1. Then (H,λ) is

a Frobenius algebra with the dual basis {S(Λ1),Λ2}, where 4(Λ) =
∑

Λ1 ⊗ Λ2. In

a similar fashion, one can see that if γ ∈ H∗ is a non-zero right integral, then there

exists a left integral Γ ∈ H such that γ(Γ) = 1. Then (H, γ) is a Frobenius algebra

with the dual basis {Γ1, S(Γ2)}, where 4(Γ) =
∑

Γ1 ⊗ Γ2. As shown in [57] that H

is symmetric if and only if H is unimodular and the square of antipode is inner.

Let (A, φ) be a Frobenius algebra with the dual basis {ai, bi | 1 ≤ i ≤ n}. Any

algebra morphism ε : A→ k is called an augmentation of A. Suppose that (A, φ) has

an augmentation ε, then one of the elements in the following set∫ l

A

= {t ∈ A | at = ε(a)t, for a ∈ A}

is called a left integral of A. Similarly, one of the elements in the following set∫ r

A

= {t ∈ A | ta = ε(a)t, for a ∈ A}

is called a right integral of A.

For an augmentation ε of A, there is a unique Λε ∈ A such that 〈Λε,−〉 = ε. By

the equations (1.1) and (1.2), one can show that a right integral of A with respect to

ε is Λε =
∑n
i=1 ε(ai)bi and

∫ r
A

= kΛε ∼= k. Similarly, a left integral of A with respect

to ε is εΛ =
∑n
i=1 ε(bi)ai and

∫ l
A

= kεΛ ∼= k.

1.1.2 Bi-Frobenius algebras

Let C be a coalgebra over the field k. Then C has a natural structure of left and

right C∗-module under the left action f ⇀ c =
∑
c1f(c2), and the right action

3
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c ↼ f =
∑
f(c1)c2, for any f ∈ C∗ and c ∈ C with 4(c) =

∑
c1 ⊗ c2. Moreover,

for any c ∈ C, the induced maps c ↼: C∗ → C and ⇀ c : C∗ → C are morphisms of

right and left C∗-modules respectively.

Definition 1.1.4. (cf. [29, 31]) A Frobenius coalgebra is a pair (C, t) where C is a

finite dimensional coalgebra and t ∈ C such that the morphism t ↼: C∗ → C, f 7→
t ↼ f is bijective; or equivalently, the morphism ⇀ t : C∗ → C, f 7→ f ⇀ t is

bijective.

The notion of a Frobenius coalgebra has a nice characterization that is analogue

to the characterizations of a Frobenius algebras [28, 30].

The concept of a bi-Frobenius algebra was introduced by Doi and Takeuchi in [31]

and further investigated in [30, 28] as a natural generalized of finite dimensional Hopf

algebras.

Definition 1.1.5. (cf. [30]) Let H be a finite dimensional algebra and coalgebra over

the field k, φ ∈ H∗, t ∈ H. Define a map S by

S : H → H, S(x) = t ↼ (x ⇀ φ) = φ(t1x)t2.

The quadruple (H,φ, t, S) is called a bi-Frobenius algebra if the following hold:

(BF1) The counit ε of the coalgebra H is an algebra morphism.

(BF2) The unity 1 is a group-like element of H.

(BF3) (H,φ) is a Frobenius algebra.

(BF4) (H, t) is a Frobenius coalgebra.

(BF5) S is an anti-algebra and anti-coalgebra morphism, i.e., S(ab) = S(b)S(a), S(1) =

1 and ∆(S(a)) =
∑
S(a2)⊗ S(a1), ε(S(a)) = ε(a).

The map S given above is necessarily bijective [31], it is called the antipode of the

bi-Frobenius algebra H. It does not mean a convolution inverse of identity. This is

true in the particular situation of Hopf algebras. A dual basis of (H,φ, t, S) is given

by {S−1(t2), t1} [29]. Since H is necessary finite dimensional, the k-linear dual H∗ is

also an algebra and coalgebra. The comultiplication in H∗ is given by

4(f)(a⊗ b) = f(ab),

4



1.1. BI-FROBENIUS ALGEBRAS

for f ∈ H∗ and a, b ∈ H. It is easy to see that (H∗, t, φ, S∗) becomes a bi-Frobenius

algebra. We call it the dual bi-Frobenius algebra of H.

Example 1.1.6. Let H be a finite dimensional Hopf algebra. Choose the right

integral γ ∈ H∗ and the left integral Γ ∈ H such that γ(Γ) = 1. Then (H, γ,Γ, S)

becomes a bi-Frobenius algebra.

It is interesting to construct bi-Frobenius algebras that are not Hopf algebras.

Using known results on the existence of large Hadamard matrices, the author in [44]

constructs a class of bi-Frobenius algebras of arbitrarily large dimension satisfying

the additional condition

S ∗ id = id ∗ S = ε (1.4)

and that are not Hopf algebras. This family of bi-Frobenius algebras satisfying the

condition (1.4) is also studied in [67]. There are many other approaches to construct

bi-Frobenius algebras that are not Hopf algebras, e.g., [76, 77]. As we shall see that

one of main results of this thesis is that the stable Green algebras of certain finite

dimensional Hopf algebras are bi-Frobenius algebras that are not Hopf algebras.

1.1.3 Group-like algebras

The notion of a group-like algebra was introduced by Doi in [28] generalizing the

group algebra of a finite group and a scheme ring (Bose-Mesner algebra) of a non-

commutative association scheme.

Definition 1.1.7. (cf.[28]) Let (A, ε,b, ∗) be a quadruple, where A is a finite dimen-

sional algebra over a field k with unit 1, ε is an algebra morphism from A to k, the

set b = {bi | i ∈ I} is a k-basis of A such that 0 ∈ I and b0 = 1, and ∗ is an involution

of the index set I. Then (A, ε,b, ∗) is called a group-like algebra if the following hold:

(G1) ε(bi) = ε(bi∗) 6= 0 for all i ∈ I.

(G2) pkij = pk
∗

j∗i∗ for all i, j, k ∈ I, where pkij is the structure constant for b defined by

bibj =
∑
k∈I p

k
ijbk.

(G3) p0
ij = δi,j∗ε(bi) for all i, j ∈ I.

Group-like algebras have some special properties (e.g., [28]). Group-like algebras of

dimension 2 and 3 have been determined in [28]. For group-like algebras of dimension

4, we refer to [29].
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Remark 1.1.8. [28, Remark 3.2] Let (A, ε,b, ∗) be a group-like algebra. Then A

becomes a coalgebra by defining4(bi) = 1
ε(bi)

bi⊗bi. Let φ ∈ A∗ such that φ(bi) = δ0,i

and t =
∑
i∈I bi. Define the k-linear map S from A to itself given by S(bi) = bi∗

for any i ∈ I. Then (A, φ, t, S) becomes a bi-Frobenius algebra with the dual basis

{bi, bi∗
ε(bi)

| i ∈ I}.

If a group-like algebra is also a Hopf algebra, then it needs to be a group algebra

[44, Corollary 2]. Because of this, a bi-Frobenius algebra coming from a group-like

algebra is not a Hopf algebra if the algebra itself is not a group algebra.
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1.2. AUSLANDER-REITEN THEORY

1.2 Auslander-Reiten Theory

The aim of this section is to collect several results about Auslander-Reiten theory

which are needed in this thesis. For these concepts, we refer to books [5, 6].

1.2.1 Auslander-Reiten translate

Let A be a finite dimensional algebra over k and A-mod (resp. mod-A) the finite

dimensional left (resp. right) module category of A. There are several ingredients

that go into the topic of Auslander-Reiten translate of A-mod. One is the functor

D : A-mod → mod-A which is defined as DX = Homk(X,k), for X ∈ A-mod. We

also want to use another functor HomA(−, A) : A-mod → mod-A. If M is a left A-

module, then HomA(M,A) is a right A-module given by (fa)(u) = f(u)a for a ∈ A,

u ∈M and f ∈ HomA(M,A).

Let M be in A-mod and P0
p0−→M → 0 the projective cover of M . We denote by

P1
p1−→ ker p0 the projective cover of ker p0. Then the sequence P1

p1−→ P0
p0−→M → 0

is called a minimal projective presentation of M. One can continue the process forever

and get what is called a minimal projective resolution, but we are only interested in

the P1 and P0 terms.

Applying the functor HomA(−, A) to P1
p1−→ P0, one obtains a right A-module map

p∗1 : HomA(P0, A) → HomA(P1, A). The transpose of M is defined to be Tr(M) :=

coker(p∗1) and the Auslander-Reiten translate of M is DTr(M), the dual of transpose

of left A-module M .

1.2.2 Almost split sequences

In this subsection we give an introduction to almost split sequences, a special type

of short exact sequences of modules which play a central role in the representation

theory of artin algebras.

Let X and Y be two A-modules. The morphism f : M → N is a split monomor-

phism if there exists g : N → M such that g ◦ f = idM , and f : M → N is a split

epimorphism if there exists g : N →M such that f ◦ g = idN .

In the following, we introduce some special morphisms, called left and right almost

7
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split morphisms, which gives rise in a natural way to the notion of an almost split

sequence.

Definition 1.2.1. The map f : M → N is called left almost split if f is not a split

monomorphism and if there is g : M → X with g not a split monomorphism, then

there is h : N → X such that h◦f = g. Dually, f : M → N is called right almost split

if f is not split epimorphism and if there is g : Y → N with g not split epimorphism,

then there is h : Y →M such that f ◦ h = g.

We also need the notion of minimality.

Definition 1.2.2. The map f : M → N is called left minimal if for all h : N → N

with h ◦ f = f , then h is an isomorphism. Dually, f : M → N is called right minimal

if for all h : M →M with f ◦ h = f , then h is an isomorphism.

Finally, we say that f : M → N is left minimal almost split if f is both left

minimal and left almost split. Similarly, we have the notion of right minimal almost

split .

Definition 1.2.3. A short exact sequence 0 → X
f−→ M

g−→ Y → 0 is called almost

split if f is left minimal almost split and g is right minimal almost split.

The following proposition [5, Proposition 1.14, ChV] gives many equivalent con-

ditions for a short exact sequence to be almost split.

Proposition 1.2.4. The following are equivalent for a short exact sequence 0 →
X

f−→M
g−→ Y → 0.

(1) The sequence is an almost split sequence.

(2) The morphism f is left minimal almost split.

(3) The morphism g is right minimal almost split.

(4) X is indecomposable and g is right almost split.

(5) Y is indecomposable and f is left almost split.

(6) X is isomorphic to DTrY and g is right almost split.

(7) Y is isomorphic to TrDX and f is left almost split.

8
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We end with an introduction to the existence and uniqueness of almost split se-

quence.

Theorem 1.2.5. [5, Theorem1.15, ChV] We have the following existence of almost

split sequence:

(1) If Y is an indecomposable non-projective module, then there is an almost split

sequence 0→ X →M → Y → 0.

(2) If X is an indecomposable non-injective module, then there is an almost split

sequence 0→ X →M → Y → 0.

An almost split sequence is determined uniquely by either of its end terms in the

following sense (cf. [5, Theorem1.16, ChV]).

Theorem 1.2.6. The following are equivalent for two almost split sequences 0 →
X

f−→M
g−→ Y → 0 and 0→ X ′

f ′−→M ′
g′−→ Y ′ → 0.

(1) X ∼= X ′.

(2) Y ∼= Y ′.

(3) The two sequences are isomorphic (i.e., there is a commutative diagram of the

following form with the vertical morphisms isomorphisms)

0 // X
f //

��

M
g //

��

Y //

��

0

0 // X ′
f ′ // M ′

g′ // Y ′ // 0.

As we see in the following, it is easy to determine whether a special short exact

sequence is almost split or not.

Proposition 1.2.7. [5, Corollary 2.4, ChV] Let Y be indecomposable with EndA(Y )

a division ring, where EndA(Y ) is the quotient of EndA(Y ) modulo all endomorphisms

of Y which factor through a projective module. Then the following are equivalent for

a short exact sequence δ : 0→ DTr(Y )→M → Y → 0.

(1) δ is almost split.

9
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(2) δ does not split.

(3) M is not isomorphic to Y
⊕

DTr(Y ).

The dual version of Proposition 1.2.7 is given as follows.

Proposition 1.2.8. Let X be indecomposable with EndA(X) a division ring, where

EndA(X) is the quotient of EndA(X) modulo all endomorphisms of X which factor

through an injective module. Then the following are equivalent for a short exact

sequence δ : 0→ X →M → TrD(X)→ 0.

(1) δ is almost split.

(2) δ does not split.

(3) M is not isomorphic to X
⊕

TrD(X).

1.2.3 Nakayama algebras

Nakayama algebras are of considerable interest because next to semisimple algebras

they are the best understood artin algebras. Since Nakayama algebras are defined in

terms of uniserial modules, we start this subsection with a discussion of these modules.

For a finite dimensional A-module M , the sequence

M ⊇ radM ⊇ rad2M ⊇ · · · ⊇ 0

is called the radical series of M . Because M has finite dimension as a k-vector space,

the series has finite composition length, and the least positive integer m such that

radmM = 0 is called the radical length of M and is denoted by rl(M).

The dual notion is that of the socle series of M . Recall that the socle of M is the

sum of all simple submodules of M . Let soc0M = 0. If sociM is already defined, then

soci+1M = π−1(soc(M/sociM)), where π : M → M/sociM denoted the canonical

epimorphism. Thus, one obtains an sequence

0 = soc0M ⊆ socM ⊆ soc2M ⊆ · · · ⊆M.

Because M has finite composition length, there is a least positive integer m such that

socmM = M . The number m is called socle length of M and is denoted by sl(M).

10
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In general, the radical and socle series of M do not coincide. However, we always

have sl(M) = rl(M) (cf. [6, Proposition 1.3]), which is called the Loewy length of M .

The Loewy length of M is not more then l(M), the length of the composition series

of M .

A left A-module M is called uniserial if it has a unique composition series. Obvi-

ously, if M is uniserial, so is a submodule of M and a quotient of M . If M is uniserial,

then it is indecomposable since it has only one simple socle. We have the following

useful characterizations of uniserial modules [5, Proposition 2.1, ChIV].

Proposition 1.2.9. The following are equivalent for a left A-module M .

(1) M is uniserial.

(2) There is only one composition series of M .

(3) The radical series of M is a composition series of M .

(4) The socle series of M is a composition series of M .

(5) The Loewy length of M is exactly the length of M , namely, l(M) = rl(M).

If both indecomposable projective and indecomposable injective A-modules are

uniserial, then A is a Nakayama algebra.

The following description of Auslander-Reiten translate for uniserial modules over

Nakayama algebra is used in this thesis.

Proposition 1.2.10. [5, Proposition 2.6, ChIV] Suppose M is a uniserial non-

projective module of length n over a Nakayama algebra.

(1) TrM and DTrM are uniserial.

(2) l(M) = l(DTrM).

(3) If P →M is a projective cover of M , then DTrM ∼= radP/radn+1P .

11
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1.3 Bilinear forms on Green rings

Let H be an arbitrary finite dimensional Hopf algebra over the field k (see [49, 61]

for standard facts about Hopf algebras) and F (H) the free abelian group generated

by the isomorphism classes of finite dimensional left H-modules. The abelian group

F (H) becomes a ring if we endow F (H) with a multiplication given by the tensor

product [M ][N ] = [M ⊗ N ]. The Green ring (or representation ring) r(H) of the

Hopf algebra H is defined to be the quotient ring of F (H) modulo the relations

[M⊕N ] = [M ]+[N ], for any two H-modules M and N . The identity of the associative

ring r(H) is represented by the trivial H-module [k]. Note that r(H) has a Z-basis

ind(H) consisting of the isomorphism classes of finite dimensional indecomposable

H-modules, see [27, 70, 78].

The Grothendieck ring G0(H) of the Hopf algebra H is the quotient ring of F (H)

modulo exact sequences of H-modules 0 → X → Y → Z → 0, i.e., [Y ] = [X] + [Z].

The Grothendieck ring G0(H) possesses a basis given by the isomorphism classes of

simple H-modules, see [5, P.5]. Both r(H) and G0(H) are augmented Z-algebras

with the dimension augmentation. Moreover, there is a natural ring epimorphism

from r(H) to G0(H) given by [M ] 7→ [M ] for any finite dimensional H-module M . If

H is semisimple, then the ring epimorphism is the identity map.

For any indecomposable H-module Z, if Z is not projective, there is a unique

almost split sequence of H-modules 0 → X → Y → Z → 0 ending at Z, we follow

the notation given in [5, Section 4, ChVI] and denote by δ[Z] the following element in

r(H):

δ[Z] = [X]− [Y ] + [Z].

If Z is indecomposable projective, then we write δ[Z] = [Z]− [radZ].

We define

〈[X], [Y ]〉 = dim HomH(X,Y ),

for any two H-modules X and Y . Then 〈−,−〉 induces a Z-bilinear form on r(H).

The following result can be found from [5, Proposition 4.1, ChVI].

Lemma 1.3.1. For any indecomposable H-module X and x ∈ r(H), the following

hold in r(H):

(1) 〈[X], δ[M ]〉 = 1 if X ∼= M , and 0 otherwise.

12
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(2) x =
∑

[M ]∈ind(H)〈x, δ[M ]〉[M ].

(3) {δ[M ] | [M ] ∈ ind(H)} is linearly independent.

(4) H is of finite representation type if and only if {δ[M ] | [M ] ∈ ind(H)} is a basis

of r(H).

(5) H is of finite representation type if and only if {δ[M ] | [M ] ∈ ind(H) and M not

projective } is a basis of the kernel of the natural ring epimorphism from r(H)

to G0(H).

Let ∗ be a Z-linear map from r(H) to itself given by the dual: [M ]∗ = [M∗]. Then

∗ is an anti-automorphism of r(H). The inverse of ∗ under composition is denoted by

?, namely, ?∗ = ∗? = id. Obviously, if S2 is an inner automorphism of H, then ∗ is

an involution of r(H). The Z-bilinear form 〈−,−〉 defined above is neither associative

nor symmetric. However, we may modify it as follows:

([X], [Y ]) := 〈[X], [Y ]∗〉 = dim HomH(X,Y ∗),

for any two H-modules X and Y . Then (−,−) extends to a Z-bilinear form on r(H).

Lemma 1.3.2. Let X,Y and Z be H-modules. The bilinear form (−,−) satisfies the

following properties:

(1) ([X][Y ], [Z]) = ([X], [Y ][Z]).

(2) ([X], [Y ]) = ([Y ]∗∗, [X]). Thus, ([X], [Y ]) = ([Y ], [X]) if S2 of H is inner.

(3) ([X]∗, [Y ]) = 〈[Y ], [X]〉.

Proof. (1) The associativity follows from the following:

([X][Y ], [Z]) = dim HomH(X ⊗ Y, Z∗)

= dim(Z∗ ⊗ (X ⊗ Y )∗)H

= dim((Y ⊗ Z)∗ ⊗X∗)H

= dim HomH(X, (Y ⊗ Z)∗)

= ([X], [Y ][Z]).

13
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(2) The k-linear isomorphism HomH(X,Y ∗) ∼= HomH(Y ∗∗, X∗) (cf. [57]) implies

that ([X], [Y ]) = ([Y ]∗∗, [X]). If S2 is inner, then the anti-automorphism ∗ of r(H) is

an involution. Hence ([X], [Y ]) = ([Y ], [X]).

(3) Since ? is the inverse of ∗, we have ([X]∗, [Y ]) = ([X]?∗∗, [Y ]). By Part (2),

([X]?∗∗, [Y ]) = ([Y ], [X]?). According to the definition of (−,−), we have ([Y ], [X]?) =

〈[Y ], [X]?∗〉 = 〈[Y ], [X]〉.

Denote by δ∗[M ] (resp. δ?[M ]) the image of δ[M ] under the anti-automorphism ∗
(resp. ?) of r(H) for any indecomposable H-module M .

Lemma 1.3.3. For any indecomposable H-module X and x ∈ r(H), the following

hold in r(H):

(1) (δ∗[M ], [X]) = 1 if X ∼= M , and 0 otherwise.

(2) x =
∑

[M ]∈ind(H)(δ
∗
[M ], x)[M ].

(3) The form (−,−) (resp. 〈−,−〉) is non-degenerate.

Proof. Part (1) and Part (2) follow from Lemma 1.3.1 and Lemma 1.3.2. To check

Part (3), we have that if (x, [M ]) = 0 for any [M ] ∈ ind(H), then (x, δ?[M ]) = 0 for

any [M ] ∈ ind(H). This implies that (δ∗[M ], x) = 0 by Lemma 1.3.2 (2). It follows

from Part (2) that x = 0. If ([M ], x) = 0 for any [M ] ∈ ind(H), then it is also x = 0

by Lemma 1.3.2 (2).

Now we are ready to state main result of this subsection.

Theorem 1.3.4. If H is a finite dimensional Hopf algebra of finite representation

type, then the Green ring r(H) of H is Frobenius with the Frobenius homomorphism

φ(x) = (x, 1), for any x ∈ r(H). The Nakayama automorphism of r(H) is N = ?2.

Moreover, N = id and r(H) is symmetric if S2 is inner.

Proof. It follows from Lemma 1.3.2 (1) and Lemma 1.3.3 that the Green ring r(H) is

endowed with an associative and non-degenerate Z-bilinear form (−,−). Hence the

Green ring r(H) is Frobenius with the Frobenius homomorphism φ(x) = (x, 1), for

x ∈ r(H). For any x, y ∈ r(H), the Nakayama automorphism N of r(H) is defined

by φ(xy) = φ(yN (x)). By Lemma 1.3.2, we have

φ(yx??) = (y, x??) = (x??∗∗, y) = (x, y) = φ(xy).
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This implies that N (x) = x??. Consequently, N = ??. If S2 is inner, then N =

id. In this case, the bilinear form (−,−) is symmetric and r(H) is a symmetric

Z-algebra.

Remark 1.3.5. For any finite dimensional Hopf algebra H of finite representa-

tion type, by Theorem 1.3.4, the Green ring r(H) is Frobenius with the dual basis

{δ∗[M ], [M ] | [M ] ∈ ind(H)} with respect to the bilinear form (−,−). One of properties

of dual basis we will use later is that Lemma 1.3.3 (2) is equivalent to

x =
∑

[M ]∈ind(H)

(x, [M ])δ∗[M ], (1.5)

for this we refer to [58]. Moreover, if H is semisimple, then S2 is inner (cf. [54]) and

δ∗[M ] = ([M ]− [radM ])∗ = [M ]∗ = [M∗].

In this case, r(H) = G0(H), which is symmetric (cf. Theorem 1.3.4) and semisimple

(cf. [81, Lemma 2]) with the dual basis {[M ]∗, [M ] | [M ] ∈ ind(H)}.
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1.4 Classification of pointed Hopf algebras of rank

one

A Hopf algebra is pointed , if all its simple left or right comodules are 1-dimensional.

That is, the coradical of the Hopf algebra is a group algebra [61].

Let H0 be the coradical of Hopf algebra H. We define

Hi = ∆−1(H ⊗Hi−1 +H0 ⊗H),

for i ≥ 1. Then {Hi | i ≥ 0} is called the coradical filtration of Hopf algebra H. If

H is pointed, then its coradical filtration is a Hopf algebra filtration (cf. [61, Lemma

5.2.8]). Coradical filtration is important in the classification of pointed Hopf algebras,

see e.g., [7, 8].

Let {Hi | i ≥ 0} be the coradical filtration of H. Assume that the coradical H0 is

a Hopf subalgebra of H. Then each Hi is a free H0-module. Consider k as the trivial

right H0-module. If H is generated as an algebra by H1 and dim(k⊗H0 H1) = n+ 1,

then H is called a Hopf algebra of rank n (cf. [50, 75]) .

Krop and Radford defined the notion of rank so as to give a measure of complexity

for Hopf algebras. One of the simplest pointed Hopf algebras mentioned here is so-

called finite dimensional pointed Hopf algebras of rank one. The (generalized) Taft

algebras and the half quantum group [41] are typical examples of such Hopf algebras.

Every finite dimensional pointed Hopf algebra of rank one can be obtained from a

group datum stated as follows.

Definition 1.4.1. (cf. [50, 20]) A quadruple D = (G,χ, g, µ) is called a group datum

if G is a finite group, g an element in the center of G, χ a k-linear character of G,

and µ ∈ k subject to χn = 1 or µ(gn − 1) = 0, where n is the order of q := χ(g). If

µ(gn − 1) = 0, then the group datum D is said to be of nilpotent type. Otherwise, it

is of non-nilpotent type .

Given a group datum D = (G,χ, g, µ). Let HD be an associative algebra generated

by y and all h in G such that kG is a subalgebra of HD and

yn = µ(gn − 1), yh = χ(h)hy, (1.6)

for any h ∈ G. Then the algebra HD is finite dimensional with a canonical k-basis
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{yih | h ∈ G, 0 ≤ i ≤ n− 1}. Thus, dimHD = n|G|.

Remark 1.4.2. If the order of χ(g) is n = 1, then HD is nothing but kG. To avoid

this, we always assume that n ≥ 2 throughout this thesis. In this case, χ(g) 6= 1.

This implies that g 6= 1 and χ 6= ε.

The algebra HD is endowed with a Hopf algebra structure. The comultiplication

4, the counit ε, and the antipode S are given respectively by

4(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1,

4(h) = h⊗ h, ε(h) = 1, S(h) = h−1,

for all h ∈ G.

It is easy to see that HD is a pointed Hopf algebra of rank one, the group of

group-like elements of HD is G. If the group datum D is of nilpotent type, then the

Hopf algebra HD is said to be of nilpotent type. Otherwise, it is of non-nilpotent type.

Example 1.4.3. Let G be a cyclic group of order m with a generator g and χ a

k-linear character of G such that the order of χ(g) is m.

• The group datum D = (G,χ, g, µ) is of nilpotent type, and the Hopf algebra

HD associated to D is nothing but a Taft algebra [24].

• Suppose d > 1 is a divisor of m. Then the group datum D = (G,χ, gd, µ) is of

nilpotent type and the Hopf algebra HD associated to D is a generalized Taft

algebra [56].

• Suppose d > 1 is a divisor of m. Then the group datum D = (G,χd, g, µ)

(µ 6= 0) is of non-nilpotent type and the Hopf algebra HD associated to D is a

Radford Hopf algebra [62].

The k-linear character χ induces an automorphism σ of kG as follows:

σ(a) = Σχ(a1)a2, (1.7)

for any a ∈ kG with the comultiplication 4(a) =
∑
a1 ⊗ a2. In view of this, we have

yja = σj(a)yj , for j ≥ 0. (1.8)
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The spaces of left and right integrals of HD are described respectively as follows.

Lemma 1.4.4. Let E = 1
|G|
∑
h∈G h. Then the spaces of left and right integrals of

HD are spanned respectively by Eyn−1 and yn−1E.

Proof. If HD is of nilpotent type, then hEyn−1 = Eyn−1 = ε(h)Eyn−1 for any h ∈ G,

and yEyn−1 = 0 = ε(y)Eyn−1. Thus, Eyn−1 is a non-zero left integral of HD. It is

similar that yn−1E is a non-zero right integral of HD.

If HD is of non-nilpotent type, then hEyn−1 = Eyn−1 = ε(h)Eyn−1 for any h ∈ G.

It follows from χ(gn) = 1 that

yEyn−1 =
1

|G|
∑
h∈G

yhyn−1

=
1

|G|
∑
h∈G

χ(h)hyn

=
1

|G|
∑
h∈G

χ(h)hµ(gn − 1)

=
µ

|G|
∑
h∈G

(χ(hgn)hgn − χ(h)h)

= 0.

Hence yEyn−1 = ε(y)Eyn−1 and Eyn−1 is a left integral of HD. Similarly, yn−1E is

a right integral of HD.

It follows from Lemma 1.4.4 that the space of left integrals is not equal to the

right one, hence HD is neither unimodular nor symmetric (cf. [57]).

The family of finite dimensional pointed Hopf algebras of rank one coincides with

the family of non-semisimple monomial Hopf algebras discussed in [20]. The classifi-

cation of such Hopf algebras over an algebraically closed field of characteristic 0 has

been given respectively in [20, 50]. Following Krop and Radford [50, Theorem 1], we

present the classification of finite dimensional pointed Hopf algebras of rank one as

follows.

Proposition 1.4.5. We have the following classification result:

(1) Every finite dimensional pointed Hopf algebra of rank one over the field k is

isomorphic to HD for some group datum D.
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(2) The Hopf algebra HD associated to any group datum D is a finite dimensional

pointed Hopf algebra of rank one.

(3) Let D = (G,χ, g, µ) and D′ = (G′, χ′, g′, µ′) be two group data. Then HD and

HD′ are isomorphic as Hopf algebras if and only if there is a group isomorphism

f : G → G′ such that f(g) = g′, χ = χ′ ◦ f and βµ′(g′n − 1) = µ(g′n − 1) for

some non-zero β ∈ k, where n is the order of χ(g).

In the case of characteristic p > 0, the classification of finite dimensional pointed

Hopf algebras of rank one was given by Scherotzke in [64]. The classification of infinite

or finite dimensional pointed Hopf algebras of rank one over an arbitrary field k was

obtained in [75].

Remark 1.4.6. If the group datum D = (G,χ, g, µ) is of nilpotent type, namely,

µ(gn−1) = 0, where n is the order of χ(g), then it is either µ = 0 or gn−1 = 0. In both

cases, Proposition 1.4.5 (3) implies that the Hopf algebras associated to (G,χ, g, µ)

and (G,χ, g, 0) respectively are isomorphic. Because of this fact, we always assume

that µ = 0 for any group datum D = (G,χ, g, µ) of nilpotent type. In case the group

datum D = (G,χ, g, µ) is of non-nilpotent type, namely, µ(gn − 1) 6= 0 and χn = 1,

where n is the order of χ(g), without loss of generality we may assume that µ = 1 for

the group datum D = (G,χ, g, µ) of non-nilpotent type (for this, see [50, Corollary

1]).

The Green rings of Taft algebras and the generalized Taft algebras have been s-

tudied respectively in [24] and [56]. In both cases, the Green rings are commutative

and are generated by two elements subject to certain relations defined recursively.

The nilpotent elements of the aforementioned Green rings have been completely de-

termined in [56]. Stimulated by the above works, the main goal of this thesis is to

compute the Green rings of finite dimensional pointed Hopf algebras of rank one, and

attempt to extend those obtained properties of Green rings from the pointed Hopf

algebras of rank one to finite dimensional Hopf algebras in general.
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Chapter 2

Pointed Hopf algebras of rank

one: nilpotent type

In this chapter, H is always a finite dimensional pointed rank one Hopf algebra of

nilpotent type. H is a Nakayama algebra, this enables us to determine all finite

dimensional indecomposable H-modules up to isomorphism. In order to obtain the

decompositions of tensor products of indecomposable H-modules, we study almost

split sequences of H-modules. From the uniqueness of an almost split sequence, we are

able to deduce the Clebsch-Gordan formulas for the decompositions of tensor product

of two indecomposable modules. Using the obtained Clebsch-Gordan formulas, we

present the Green ring r(H) of H in terms of generators and relations. The Jacobson

radical of r(H) is a principal ideal generated by a special element. The idempotents

of both the Green ring r(H) and the complexified Green algebra R(H) are completely

determined.

2.1 Indecomposable representations

Throughout this chapter, H is a finite dimensional pointed Hopf algebra of rank one

associated to the group datum D = (G,χ, g, 0) of nilpotent type. In this case, H is

called a pointed rank one Hopf algebra of nilpotent type.

Note that the Jacobson radical J of H is generated by y and H/J ∼= kG. An H-
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module V is simple if and only if yV = 0 and V restricts to a simple kG-module. Thus

a complete set of non-isomorphic simple kG-modules forms a complete set of non-

isomorphic simple H-modules. In the sequel, we fix such a complete set {Vi | i ∈ Ω0}
of non-isomorphic simple kG-modules. In particular, 0 ∈ Ω0 since we assume that

V0 = k, the trivial kG-module.

Remark 2.1.1. The fact that each simple H-module Vi restricts to a simple kG-

module implies that there exists a primitive idempotent ei of kG such that Vi ∼= kGei.

Since ei is also a primitive idempotent of H and Hei/rad(Hei) ∼= Vi, we see that Hei

is the projective cover of the simple H-module Vi, for i ∈ Ω0.

Now let Vχ and Vχ−1 be two (1-dimensional) simple kG-modules corresponding to

the k-linear characters χ and χ−1 respectively. For any simple kG-module Vi, i ∈ Ω0,

the tensor product Vχ−1 ⊗ Vi ∼= Vi ⊗ Vχ−1 is simple as well. Hence there is a unique

permutation τ of the index set Ω0 such that

Vχ−1 ⊗ Vi ∼= Vi ⊗ Vχ−1
∼= Vτ(i).

The inverse of τ is determined by

Vχ ⊗ Vi ∼= Vi ⊗ Vχ ∼= Vτ−1(i).

Lemma 2.1.2. For any i ∈ Ω0 and t ∈ Z, there is a bijective map σ̃i,t from Vi to

Vτt(i) such that σ̃i,t(av) = σt(a)σ̃i,t(v), for any a ∈ kG and v ∈ Vi.

Proof. For a fixed non-zero element u ∈ Vχ−t , the map

Vi → Vi ⊗ Vχ−t , v 7→ v ⊗ u

composed with the isomorphism Vi⊗Vχ−t
∼= Vτt(i) gives the desired bijective map.

Let x be a variable and V a kG-module. For any k ∈ N, consider xkV as a vector

space defined by xku + xkv = xk(u + v) and λ(xku) = xk(λu), for u, v ∈ V, λ ∈ k.
Then xkV becomes a kG-module defined by

h(xkv) = χ−k(h)xkhv, (2.1)

for any h ∈ G and v ∈ V .
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Lemma 2.1.3. We have kG-module isomorphisms xkVi ∼= Vχ−k ⊗ Vi ∼= Vτk(i), for

any i ∈ Ω0 and k ∈ N,

For any i ∈ Ω0 and 1 ≤ j ≤ n, the direct sum

M(i, j) := Vi ⊕ xVi ⊕ · · · ⊕ xj−1Vi

is a kG-module, where each summand is a simple kG-module defined by (2.1). We

give an action of y on M(i, j) as follows:

y(xkv) =

xk+1v, 0 ≤ k ≤ j − 2,

0, k = j − 1,
(2.2)

for any v ∈ Vi. Then M(i, j) becomes an H-module with dimM(i, j) = j dimVi.

Moreover, it is easy to see that M(i, 1) ∼= Vi and M(i, n) ∼= Hei. Let Bi be a set

consisting of a basis of Vi. Then {xkv | 0 ≤ k ≤ j−1, v ∈ Bi} forms a basis of M(i, j).

In particular, {1, x, · · · , xj−1} forms a basis of M(0, j), where we identify xk1 with

xk, for 1 ∈ k.

Theorem 2.1.4. For any i ∈ Ω0, 1 ≤ j ≤ n, we have the following:

(1) radM(i, 1) = 0 and radM(i, j) ∼= M(τ(i), j − 1), for 2 ≤ j ≤ n.

(2) socM(i, j) ∼= Vτj−1(i), M(i, j)/radM(i, j) ∼= Vi and the projective cover of

M(i, j) is P(M(i, j)) ∼= M(i, n).

(3) M(i, j) is indecomposable and uniserial. H is a Nakayama algebra, and therefore

it is of finite representation type.

(4) M(i, j) ∼= M(k, l) if and only if i = k and j = l. Moreover, the set {M(i, j) |
i ∈ Ω0, 1 ≤ j ≤ n} forms a complete set of finite dimensional indecomposable

H-modules up to isomorphism.

Proof. (1) Since M(i, 1) ∼= Vi is simple, we have radM(i, 1) = 0. For 2 ≤ j ≤ n, note

that J = (y), we have radM(i, j) =
⊕j−1

k=1 x
kVi as a vector space. Define a k-linear

map

radM(i, j)→M(τ(i), j − 1), xkv 7→ xk−1σ̃i,1(v),

for any v ∈ Vi and 1 ≤ k ≤ j− 1. By Lemma 2.1.2, it is straightforward to check that

the map above is an H-module isomorphism.
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(2) It follows from J = (y) that

socM(i, j) = {u ∈M(i, j) | yu = 0} = xj−1Vi ∼= Vτj−1(i)

as H-modules. Since radM(i, j) =
⊕j−1

k=1 x
kVi, we have M(i, j)/radM(i, j) ∼= Vi. The

following isomorphism

P (M(i, j)) ∼= P (M(i, j)/radM(i, j)) ∼= P (Vi) ∼= M(i, n)

follows from Remark 2.1.1.

(3) That M(i, j) is indecomposable follows from the fact that socM(i, j) is simple.

The proof of M(i, j) to be uniserial is similar to the one of [50, Proposition 3]. Denote

by Ni,l the submodule of M(i, j):

Ni,l = xlVi ⊕ · · · ⊕ xj−1Vi, for 0 ≤ l ≤ j − 1.

Suppose that N is a non-zero submodule of M(i, j). Then there exists a largest l

such that N ⊆ Ni,l. Since Ni,l+1 is a maximal submodule of Ni,l, we conclude that

N + Ni,l+1 = Ni,l. However, Ni,l+1 = radNi,l, whence N = Ni,l by Nakayama’s

lemma. Thus M(i, j) is uniserial. Since H is Frobenius (and hence self-injective),

the indecomposable projective modules M(i, n) for i ∈ Ω0, are also injective modules.

Hence they are uniserial. It follows that H is a Nakayama algebra.

(4) If M(i, j) ∼= M(k, l), by Part (2),

Vi ∼= M(i, j)/radM(i, j) ∼= M(k, l)/radM(k, l) ∼= Vk,

for i, k ∈ Ω0. This implies that i = k. Comparing the dimensions of the vector

spaces, we obtain that j = l. Since H is a Nakayama algebra, every indecomposable

H-module M is a quotient of an indecomposable projective module M(i, n) for some

i ∈ Ω0. Thus M is of the form M(i, j), for some 1 ≤ j ≤ n.
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2.2 Almost split sequences and Clebsch-Gordan for-

mulas

Almost split sequences over Nakayama algebras have been much studied, see e.g., [5].

In this section, we first point out that the Auslander-Reiten translate of an H-module

M(i, j) is nothing but M(τ(i), j). We then show that the almost split sequence ending

at a non-projective module M(i, j) can be obtained by tensoring M(i, j) over k on the

right (or on the left) with the almost split sequence ending at the trivial H-module

k. This approach using almost split sequences works also for the H -modules, where

H is a Hopf algebra associated to the quiver A∞∞, see [21]. But it does not work

for more general Hopf algebras, see e.g. [42]. After that we use the uniqueness of

an almost split sequence to determine the decompositions of the tensor products of

indecomposable H-modules. To begin with, we need the following results.

Proposition 2.2.1. For any i ∈ Ω0 and 1 ≤ j ≤ n, we have

Vi ⊗M(0, j) ∼= M(0, j)⊗ Vi ∼= M(i, j).

In particular,

Vχ−1 ⊗M(0, j) ∼= M(0, j)⊗ Vχ−1
∼= M(τ(0), j).

Proof. The map

Vi ⊗M(0, j)→M(i, j), v ⊗ xk 7→ xkv,

for 0 ≤ k ≤ j − 1 and v ∈ Vi is an H-module isomorphism. Similarly, let ωi be the

scalar such that gv = ωiv, for v ∈ Vi. The map

M(0, j)⊗ Vi →M(i, j), xk ⊗ v 7→ ω−ki xkv,

for 0 ≤ k ≤ j − 1 and v ∈ Vi is an H-module isomorphism.

Lemma 2.2.2. For any i ∈ Ω0 and 1 < j < n, we have the following:

(1) There is an injective morphism from radM(i, j) to M(0, 2)⊗M(i, j).

(2) There is an injective morphism from radM(i, j) to M(i, j)⊗M(0, 2).

Proof. We only prove Part (1) and the proof of Part (2) is similar. Let ωi be a scalar

such that gv = ωiv, for any v ∈ Vi. Denote by N the subspace of M(0, 2) ⊗M(i, j)
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spanned by the following elements:

1⊗ xkv − ζkx⊗ xk−1v, for v ∈ Vi, 1 ≤ k ≤ j − 1,

where ζk = ωi

1−q ( 1
qj−1 − 1

qk−1 ) and q = χ(g). Then the action of H on N is stable:

h(1⊗ xkv − ζkx⊗ xk−1v) = χ−k(h)(1⊗ xkhv − ζkx⊗ xk−1hv) ∈ N,

for h ∈ G, 1 ≤ k ≤ j − 1,

y(1⊗ xkv − ζkx⊗ xk−1v) = 1⊗ xk+1v − ζk+1x⊗ xkv ∈ N,

for 1 ≤ k ≤ j − 2 and y(1 ⊗ xj−1v − ζj−1x ⊗ xj−2v) = 0. Now we define a k-linear

map ι from radM(i, j) =
⊕j−1

k=1 x
kVi to N as follows:

ι(xkv) = 1⊗ xkv − ζkx⊗ xk−1v, for 1 ≤ k ≤ j − 1. (2.3)

It is obvious that the map ι is an H-module isomorphism. Hence ι is injective from

radM(i, j) to M(0, 2)⊗M(i, j).

The permutation τ of the index set Ω0 is related to the Auslander-Reiten translate

of H-modules as shown in the following.

Proposition 2.2.3. The Auslander-Reiten translate DTr(M(i, j)) of M(i, j) is iso-

morphic to M(τ(i), j), for any non-projective indecomposable H-module M(i, j).

Proof. By Theorem 2.1.4, M(i, j) is uniserial and consequently the length of M(i, j)

coincides with the radical length of M(i, j), which is exactly the number j, see Propo-

sition 1.2.9 (5). It also follows from Theorem 2.1.4 that the projective cover of M(i, j)

is M(i, n). Thus, by Proposition 1.2.10 (3),

DTr(M(i, j)) ∼= radM(i, n)/radj+1M(i, n) ∼= M(τ(i), j),

as desired.

Recall that M(0, 2) = V0 ⊕ xV0, and the summand xV0 is isomorphic to Vχ−1 as

kG-modules, where the isomorphism is given by ρ : Vχ−1 → xV0, ρ(u) = x, for a fixed

non-zero element u ∈ Vχ−1 and x ∈ xV0.

26



2.2. ALMOST SPLIT SEQUENCES AND CLEBSCH-GORDAN FORMULAS

Lemma 2.2.4. The sequence

0→ Vχ−1
α−→M(0, 2)

β−→ V0 → 0 (2.4)

is an almost split sequence of H-modules, where α =
(

0
ρ

)
and β = (id, 0).

Proof. It is obvious that the maps α and β are both H-module morphisms. The

short sequence (2.4) is exact but not split since M(0, 2) ∼= V0 ⊕ Vχ−1 holds just as

kG-modules but not as H-modules. Note that V0 is a non-projective brick (that is,

End(V0) = k), by Proposition 2.2.3,

DTr(V0) = DTr(M(0, 1)) ∼= M(τ(0), 1) ∼= Vχ−1 .

Hence, the sequence (2.4) is almost split according to Proposition 1.2.7.

For any indecomposable H-module M(i, j), we consider the following two short

exact sequences obtained by tensoring M(i, j) over k with the almost split sequence

(2.4) on the right and on the left respectively:

0→M(τ(i), j)→M(0, 2)⊗M(i, j)→M(i, j)→ 0, (2.5)

0→M(τ(i), j)→M(i, j)⊗M(0, 2)→M(i, j)→ 0. (2.6)

Proposition 2.2.5. If M(i, j) is non-projective, that is, j 6= n, then the short exact

sequences of (2.5) and (2.6) ending at M(i, j) are both almost split.

Proof. We only show that the sequence (2.5) is almost split and the same argument

also works for the sequence (2.6). If j = 1, then the ending term of the sequence (2.5)

is the simple module Vi. In this case, the same argument in the proof of Lemma 2.2.4

shows that the sequence (2.5) is almost split. We assume now that 2 ≤ j ≤ n − 1.

Since M(τ(i), j) ∼= DTrM(i, j), by [5, Proposition 2.2, ChV], we only need to verify

that each non-isomorphism f : M(i, j)→M(i, j) factors through the following map:

(id, 0)⊗ idM(i,j) : M(0, 2)⊗M(i, j)→M(i, j).

Note thatM(i, j) is indecomposable and uniserial, and f is not an isomorphism. Thus,

the image of f is contained in radM(i, j), which is the unique maximal submodule of
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M(i, j). Hence the left triangle in the following diagram is commutative:

M(i, j)
f //

f &&

M(i, j)

radM(i, j)
+ �

88

ι
// M(0, 2)⊗M(i, j).

(id,0)⊗idM(i,j)

gg

By Lemma 2.2.2, there exists an injective map ι from radM(i, j) to M(0, 2)⊗M(i, j)

given by ι(xkv) = 1⊗ xkv − ζkx⊗ xk−1v (see (2.3)), and

((id, 0)⊗ idM(i,j))(1⊗ xkv − ζkx⊗ xk−1v) = 1⊗ xkv = xkv,

for 1 ≤ k ≤ j−1 and v ∈ Vi. This implies that the right triangle in the above diagram

is also commutative. As a consequence, the non-isomorphism f factors through the

map (id, 0)⊗ idM(i,j).

Proposition 2.2.6. For i ∈ Ω0 and 1 ≤ j ≤ n, we have the following:

(1) If 2 ≤ j ≤ n − 1, then M(0, 2) ⊗M(i, j) ∼= M(i, j) ⊗M(0, 2) ∼= M(i, j + 1) ⊕
M(τ(i), j − 1).

(2) If j = n, then M(0, 2)⊗M(i, n) ∼= M(i, n)⊗M(0, 2) ∼= M(i, n)⊕M(τ(i), n).

Proof. (1) For each non-projective indecomposable module M(i, j), on the one hand,

the sequences (2.5) and (2.6) ending at M(i, j) are almost split. On the other hand,

by the proof of [5, Theorem 2.1, ChVI] that the following sequence is also almost split

(we omit the maps of the sequence):

0→M(τ(i), j)→M(τ(i), j − 1)⊕M(i, j + 1)→M(i, j)→ 0.

Since an almost split sequence is uniquely determined by its beginning and ending

terms, we obtain that

M(0, 2)⊗M(i, j) ∼= M(i, j)⊗M(0, 2) ∼= M(τ(i), j − 1)⊕M(i, j + 1).

Part (2) is obvious as the short exact sequences (2.5) and (2.6) with j = n are

split because M(i, n) is projective.
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It is possible to give the decomposition of the tensor product M(i, k)⊗M(j, l) by

virtue of Proposition 2.2.6. However, we do not continue this process since it is more

tedious. Instead, we leave it to the next section and express it as a multiplication rule

in the Green ring of H.

To end this section, we describe the dual of the indecomposable H-modules, which

will be used later. Let M be a finite dimensional H-module. Recall that the dual

space M∗ is an H-module given by (hf)(v) = f(S(h)v), for h ∈ H, f ∈ M∗ and

v ∈M.

Proposition 2.2.7. For any i ∈ Ω0 and 1 ≤ j ≤ n, we have the following:

(1) M(i, j)∗ ∼= M(τ1−j(i∗), j), where i∗ ∈ Ω0 determined by (Vi)
∗ ∼= Vi∗ .

(2) M(i, j)∗∗ ∼= M(i, j).

Proof. (1) We first study the dual M(0, j)∗ of the indecomposable module M(0, j).

Let {1, x, · · · , xj−1} be the basis of M(0, j) with the dual {1∗, x∗, · · · , (xj−1)∗}. The

actions of h ∈ G and y on the dual basis are confirmed to be

h(xk)∗ = χk(h)(xk)∗, y(xk)∗ = −qk−1(xk−1)∗,

for 0 ≤ k ≤ j − 1. Here we point out that y(1∗) = 0. Thus M(0, j)∗ is isomorphic to

Vχj−1 ⊗M(0, j) with the isomorphism given by

(xk)∗ 7→ (−1)kq
k(k−1)

2 (u⊗ xj−1−k),

for 0 ≤ k ≤ j − 1 and 0 6= u ∈ Vχj−1 . It follows from Proposition 2.2.1 that

M(i, j)∗ ∼= (M(0, j)⊗ Vi)∗ ∼= (Vi)
∗ ⊗M(0, j)∗

∼= (Vi)
∗ ⊗ Vχj−1 ⊗M(0, j) ∼= Vi∗ ⊗ Vχj−1 ⊗M(0, j)

∼= Vτ1−j(i∗) ⊗M(0, j) ∼= M(τ1−j(i∗), j).

(2) Follows from the fact that the square of the antipode of H is inner.
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2.3 Generators and relations of Green rings

In this section, we study the Green ring r(H) of pointed rank one Hopf algebra H of

nilpotent type and present the Green ring r(H) in terms of generators and relations.

We denote by M [i, j] the isomorphism class of indecomposable H-module M(i, j) in

r(H). In particular, we set 1 = [V0] and a = [Vχ−1 ] = [Vτ(0)].

Proposition 2.3.1. The following hold in the Green ring r(H):

(1) M [i, j] = [Vi]M [0, j] = M [0, j][Vi], for i ∈ Ω0 and 1 ≤ j ≤ n.

(2) M [0, 2]M [0, j] = M [0, j]M [0, 2] = M [0, j + 1] + aM [0, j − 1], for 2 ≤ j ≤ n− 1.

(3) M [0, 2]M [0, n] = M [0, n]M [0, 2] = (1 + a)M [0, n].

(4) r(H) is commutative and generated as a ring by [Vi] for i ∈ Ω0 and M [0, 2] over

Z.

Proof. Part (1) follows from Proposition 2.2.1. Part (2) and Part (3) follow from

Proposition 2.2.6. Part (4) is a consequence of Part (1), Part (2) and the fact that

{M [i, j] | i ∈ Ω0, 1 ≤ j ≤ n} forms a Z-basis of r(H).

Now we give the multiplication of M [0, k]M [0, l] in r(H) as follows.

Proposition 2.3.2. For 1 ≤ k, l ≤ n, we have the following in r(H):

(1) If k + l − 1 ≤ n, then

M [0, k]M [0, l] =

min{k,l}−1∑
t=0

M [τ t(0), k + l − 1− 2t].

(2) If k + l − 1 ≥ n, let r = k + l − 1− n. Then

M [0, k]M [0, l] =

r∑
t=0

M [τ t(0), n] +

min{k,l}−1∑
t=r+1

M [τ t(0), k + l − 1− 2t].

In particular,

M [0, k]M [0, n] =

k−1∑
t=0

M [τ t(0), n] = (1 + a+ · · ·+ ak−1)M [0, n].
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Proof. (1) We proceed by induction on k + l − 1 for 1 ≤ k + l − 1 ≤ n. It is obvious

that the identity holds for k + l − 1 = 1. For a fixed 1 < p ≤ n− 1, suppose that the

identity holds for 1 < k+ l−1 ≤ p. We show that it holds for the case k+ l−1 = p+1.

We may now assume that k ≥ 2 without loss of generality. Since k + l − 1 = p + 1

implies that (k − 1) + l − 1 ≤ p and (k − 2) + l − 1 ≤ p, we may apply the induction

hypothesis on (k − 1) + l − 1 ≤ p and (k − 2) + l − 1 ≤ p. We obtain the following

two equalities:

M [0, k − 1]M [0, l] =

min{k−1,l}−1∑
t=0

M [τ t(0), k − 1 + l − 1− 2t],

and

M [0, k − 2]M [0, l] =

min{k−2,l}−1∑
t=0

M [τ t(0), k − 2 + l − 1− 2t].

Now consider the product M [0, 2]M [0, k − 1]M [0, l]. On the one hand, we apply the

induction assumption to get that

M [0, 2](M [0, k − 1]M [0, l])

= M [0, 2]

min{k−1,l}−1∑
t=0

M [τ t(0), k − 1 + l − 1− 2t]

=

min{k−1,l}−1∑
t=0

M [0, 2]M [τ t(0), k − 1 + l − 1− 2t]

=

min{k−1,l}−1∑
t=0

(M [τ t(0), k − 1 + l − 2t] +M [τ t+1(0), k − 1 + l − 2− 2t]).

On the other hand, if we apply Proposition 2.3.1 (2) on the product, we obtain that

(M [0, 2]M [0, k − 1])M [0, l]

= (M [0, k] +M [τ(0), k − 2])M [0, l]

= M [0, k]M [0, l] + aM [0, k − 2]M [0, l]

= M [0, k]M [0, l] +

min{k−2,l}−1∑
t=0

M [τ t+1(0), k − 2 + l − 1− 2t].
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Together with these equations, we obtain that

M [0, k]M [0, l] +

min{k−2,l}−1∑
t=0

M [τ t+1(0), k − 2 + l − 1− 2t]

=

min{k−1,l}−1∑
t=0

(M [τ t(0), k − 1 + l − 2t] +M [τ t+1(0), k − 1 + l − 2− 2t]).

By discussing the cases k − 1 < l, k − 1 = l and k − 1 > l respectively, we always

obtain that

M [0, k]M [0, l] =

min{k,l}−1∑
t=0

M [τ t(0), k + l − 1− 2t].

Thus we have proved Part (1) for the case k + l − 1 = p+ 1.

(2) The proof of Part (2) is similar to the proof of Part (1) by induction on k+l−1

for the case n ≤ k + l − 1 ≤ 2n− 1.

The multiplication of M [i, k] with M [j, l] in r(H) is deduced as follows, which

is correspondence to the decomposition of the tensor product M(i, k) ⊗ M(j, l) of

H-modules.

Corollary 2.3.3. For any i, j ∈ Ω0, let Vi ⊗ Vj ∼=
⊕

s Vs.

(1) If k + l − 1 ≤ n, then

M [i, k]M [j, l] =
∑
s

min{k,l}−1∑
t=0

M [τ t(s), k + l − 1− 2t].

Moreover, aM [j, l] = M [τ(j), l].

(2) If k + l − 1 ≥ n, then

M [i, k]M [j, l] =
∑
s

(

r∑
t=0

M [τ t(s), n] +

min{k,l}−1∑
t=r+1

M [τ t(s), k + l − 1− 2t]),

where r = k + l − 1− n.

Now we are ready to describe the structure of the Green ring r(H) of H. Let k[y, z]

be the polynomial ring with variables y and z over k and Fk(y, z) the polynomials in
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k[y, z] defined recursively as follows:

F1(y, z) = 1, F2(y, z) = z, Fk(y, z) = zFk−1(y, z)− yFk−2(y, z), k ≥ 3. (2.7)

Define the matrix A as follows:

A =

(
z −y
1 0

)
.

Then the recursive relations of (2.7) can be written as

Ak

(
F2(y, z)

F1(y, z)

)
=

(
Fk+2(y, z)

Fk+1(y, z)

)
,

for k ≥ 0. In addition, for any k ≥ 2, the polynomial Fk(y, z) can be expressed

explicitly as follows (cf. [24, Lemma 3.11]):

Fk(y, z) =

b k−1
2 c∑
i=0

(−1)i
(
k − 1− i

i

)
yizk−1−2i, (2.8)

where bk−1
2 c stands for the biggest integer that not more than k−1

2 .

The polynomials Fk(y, z) for k ≥ 1 are called the generalized Fibonacci polynomial

in [24] and [56] since if y = −1 the polynomials Fk(−1, z) ∈ k[z] are the well-known

Fibonacci polynomials [45]. These polynomials are also referred to be the Dickson

polynomials (of the second type), see [59, 48]. As we shall see that the Dickson

polynomials are fundamental factors in the structure of the Green ring r(H).

Theorem 2.3.4. Let r(kG) be the Green ring of the group algebra kG and r(kG)[z]

the polynomial ring with variable z over r(kG). Then the Green ring r(H) is iso-

morphic to r(kG)[z]/I, where I is the ideal of r(kG)[z] generated by the element

(1 + a− z)Fn(a, z).

Proof. According to Proposition 2.3.1, r(H) is generated as a ring by M [0, 2] over

r(kG). Hence there is a unique ring epimorphism Φ from r(kG)[z] to r(H) such that

Φ : r(kG)[z]→ r(H), g(z) 7→ g(M [0, 2]),

for any polynomial g(z) ∈ r(kG)[z]. It is easy to check by induction on j that
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Φ(Fj(a, z)) = M [0, j], for 1 ≤ j ≤ n. Now let I be the ideal of r(kG)[z] generated by

the element (1 + a− z)Fn(a, z). By Proposition 2.3.1, we have

Φ((1 + a− z)Fn(a, z)) = (1 + a−M [0, 2])M [0, n] = 0.

This leads to a natural ring epimorphism Φ from r(kG)[z]/I to r(H) such that

Φ(g(z)) = Φ(g(z)) for any g(z) ∈ r(kG)[z], where g(z) stands for the coset g(z) + I

in r(kG)[z]/I. Observe that as a Z-module, r(kG)[z]/I has a Z-basis {[Vi]zj | i ∈
Ω0, 0 ≤ j ≤ n − 1}. Thus, r(kG)[z]/I and r(H) both have the same rank as free

Z-modules, and therefore the map Φ is an isomorphism.

Remark 2.3.5. (1) If H is a Taft algebra or a generalized Taft algebra, then Theorem

2.3.4 recovers the main results of [24] and [56].

(2) Since kG is semisimple, the Green ring r(kG) of kG is exactly the Grothendieck

ring G0(kG) of kG. Note that the Jacobson radical J = (y) of H is a Hopf ideal and

H/J ∼= kG. The Grothendieck ring G0(H) of H is isomorphic to r(kG), see [57].

(3) Consider Fj(a, z), 1 ≤ j ≤ n the Dickson polynomials in r(kG)[z]. Note that

Φ(Fj(a, z)) = M [0, j], see the proof of Theorem 2.3.4. By Proposition 2.3.2, we have

the following expressions for the multiplication of the Dickson polynomials of the

second type.

• If k + l − 1 ≤ n, then

Fk(a, z)Fl(a, z) ≡
min{k,l}−1∑

t=0

atFk+l−1−2t(a, z) (mod I).

• If k + l − 1 ≥ n, let r = k + l − 1− n. Then

Fk(a, z)Fl(a, z) ≡
r∑
t=0

atFn(a, z) +

min{k,l}−1∑
t=r+1

atFk+l−1−2t(a, z) (mod I),

where I is the ideal given in Theorem 2.3.4.

Two Hopf algebras are said to be gauge equivalent if their representation categories

are tensor equivalent. It is obvious that two gauge equivalent Hopf algebras possess

the same Green ring. However, the converse is not true in general. In fact, the

representation category of a Hopf algebra can not be solely determined by its Green
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ring, see e.g. [70, Remark 1.8]. In the following, we give a sufficient condition for two

non-gauge equivalent Hopf algebras HD to share the same Green ring.

Proposition 2.3.6. Let D = (G,χ, g, 0) and D′ = (G,χ′, g, 0) be two group data of

nilpotent type. Denote by the set Gk = {h ∈ G | h2 = g−k} and the element

ϑ =

n−1∑
k=0

∑
h∈Gk

(−1)kh−kg−
k(1+k)

2

in kG. Suppose that χ(ϑ) 6= χ′(ϑ) and there is an automorphism δ of r(kG) such

that δ(a) = a′, where a = [Vχ−1 ] and a′ = [Vχ′−1 ]. Then the representation categories

of Hopf algebras HD and HD′ are not tensor equivalent, but the Green rings r(HD)

and r(HD′) are isomorphic.

Proof. It is straightforward to check that χ(ϑ) (resp. χ′(ϑ)) is the trace of the antipode

of Hopf algebra HD (resp. HD′). The condition χ(ϑ) 6= χ′(ϑ) implies that the

representation categories of Hopf algebras HD and HD′ are not tensor equivalent

since the trace of antipode of a Hopf algebra is a gauge invariant (i.e., invariant under

tensor equivalence) (see [52]). By Theorem 2.3.4, the Green ring r(HD) (resp. r(HD′))

is isomorphic to r(kG)[z]/I, where I is the ideal of r(kG)[z] generated by the element

(1 + a− z)Fn(a, z) (resp. (1 + a′ − z)Fn(a′, z)). Hence the automorphism δ of r(kG)

such that δ(a) = a′ induces an isomorphism from r(HD) to r(HD′).

Example 2.3.7. Let G be a cyclic group of order n generated by g, χ a linear

character of G such that the order of χ is n and a = [Vχ−1 ]. Given two group data

D = (G,χ, g, 0) and D′ = (G,χi, g, 0) such that gcd(i, n) = 1. The Hopf algebras HD

and HD′ are nothing but two Taft Hopf algebras. It is easy to see that the Green

ring r(kG) is isomorphic to ZCn, where Cn = 〈a〉 is a cyclic group of order n. Let

δ be the endomorphism of ZCn defined by δ(a) = ai. Then δ is an automorphism of

ZCn since gcd(i, n) = 1. By Proposition 2.3.6 (or [65]) the representation categories

of the Taft Hopf algebras HD and HD′ are not gauge equivalent since χ(g) 6= χi(g).

But the Green rings r(HD) and r(HD′) are isomorphic.
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2.4 Frobenius properties of Green rings

In this section, we study the Frobenius property of the Green ring r(H) of H of

nilpotent type. The Green ring r(H) is a symmetric ring (because the square of

antipode is inner) with an associative symmetric and non-degenerate Z-bilinear form

(−,−). We give a dual basis of r(H) explicitly with respect to the form (−,−). We

show that the principal ideals of r(H) generated respectively by the projective cover

of the trivial module and by the almost split sequence ending at the trivial module

are orthogonal with respect to the form (−,−).

Recall that δ[Z] = [X] − [Y ] + [Z] if 0 → X → Y → Z → 0 is an almost split

sequence, and δ[Z] = [Z] − [radZ] if Z is indecomposable projective. Note that the

sequence (2.5) ending at the non-projective indecomposable module M(i, j) is almost

split. In view of this, for i ∈ Ω0 and 1 ≤ j ≤ n− 1, we have that

δM [i,j] = M [τ(i), j]− [M(0, 2)⊗M(i, j)] +M [i, j]

= aM [i, j]−M [0, 2]M [i, j] +M [i, j]

= (1 + a−M [0, 2])M [i, j]

= δ[k]M [i, j].

For i ∈ Ω0, we have that

δM [i,n] = M [i, n]− [radM(i, n)]

= M [i, n]−M [τ(i), n− 1]

= M [i, n]− aM [i, n− 1].

For any i ∈ Ω0, by Proposition 2.3.1 (3), we have that

δ[k]M [i, n] = 0. (2.9)

According to δM [i,j] given above, we obtain an interesting equality as follows:

[Vi] = δM [i,1] + δM [i,2] + · · ·+ δM [i,n]. (2.10)

Note that the Green ring r(H) is commutative. The duality functor of H-module
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category given in Proposition 2.2.7 induces an automorphism ∗ of r(H) as follows:

M [i, j]∗ = M [τ1−j(i∗), j] = a1−j [V ∗i ]M [0, j]. (2.11)

This automorphism of r(H) is an involution, namely, M [i, j]∗∗ = M [i, j], for i ∈ Ω0

and 1 ≤ j ≤ n. We denote by δ∗M [i,j] the image of δM [i,j] under the dual automorphism.

By (2.11), for any i ∈ Ω0 and 1 ≤ j ≤ n− 1, we have

δ∗M [i,j] = (1 + a−M [0, 2])∗M [i, j]∗

= (1 + a−1 − a−1M [0, 2])a1−j [Vi∗ ]M [0, j]

= δ[k]a
−j [Vi∗ ]M [0, j]

= δM [τ−j(i∗),j],

δ∗M [i,n] = (M [i, n]− aM [i, n− 1])∗ = a1−n[V ∗i ](M [0, n]−M [0, n− 1]).

In particular, we have the following result:

δ∗M [i,n]δM [j,n]

= a1−n[Vi]
∗(M [0, n]−M [0, n− 1])(M [j, n]− aM [j, n− 1])

= a1−n[Vi]
∗[Vj ](M [0, n]−M [0, n− 1])(M [0, n]− aM [0, n− 1]) (2.12)

= a1−n[Vi]
∗[Vj ]a

n−1

= [Vi]
∗[Vj ].

It follows from Theorem 1.3.4 that r(H) possesses an associative symmetric and

non-degenerate Z-bilinear form (−,−) with the dual basis {δ∗M [i,j],M [i, j] | i ∈ Ω0, 1 ≤
j ≤ n} with respect to the form (−,−). For any x ∈ r(H), by Lemma 1.3.3, we have

x =
∑
i∈Ω0

n∑
j=1

(x, δ∗M [i,j])M [i, j], (2.13)

or equivalently (see (1.5)),

x =
∑
i∈Ω0

n∑
j=1

(M [i, j], x)δ∗M [i,j]. (2.14)

Note that M [i, j] = [Vi](1 + a+ · · ·+ aj−1) holds in the Grothendieck ring G0(H)
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of H for i ∈ Ω0 and 1 ≤ j ≤ n. The natural ring epimorphism from r(H) to G0(H)

is given by

M [i, j] 7→ [Vi](1 + a+ · · ·+ aj−1), for i ∈ Ω0, 1 ≤ j ≤ n, (2.15)

whose kernel is precisely spanned by δM [i,j] (or δ∗M [i,j]) for i ∈ Ω0 and 1 ≤ j ≤ n− 1.

For any simple kG-module Vi, i ∈ Ω0, the character of Vi is denoted by χi. It is

well known that the free abelian group Irr(kG) :=
∑
i∈Ω0

Zχi with the convolution

product forms a ring, which is called a character ring of kG. The character ring

Irr(kG) is isomorphic to the Green ring r(kG) via the map χi 7→ [Vi] for i ∈ Ω0 since

kG is semisimple. The equality

[Vi][Vj ] = δi,j∗ [V0] +
∑

06=k∈Ω0

γk[Vk] (2.16)

follows from the fact that χiχj = δi,j∗χ0 +
∑

0 6=k∈Ω0
γkχk, for some non-negative

integers γk. The equality (2.16) could also be interpreted by the equation (2.13) if we

consider Vi, i ∈ Ω0 the simple H-modules. In fact,

[Vi][Vj ] =
∑
k∈Ω0

n∑
l=1

([Vi][Vj ], δ
∗
M [k,l])M [k, l]

=
∑
k∈Ω0

([Vi][Vj ], δ
∗
M [k,1])M [k, 1]

= ([Vi][Vj ], δ
∗
M [0,1])M [0, 1] +

∑
0 6=k∈Ω0

([Vi][Vj ], δ
∗
M [k,1])M [k, 1]

= ([Vi], δ
∗
M [j∗,1])M [0, 1] +

∑
06=k∈Ω0

([Vi][Vj ], δ
∗
M [k,1])M [k, 1]

= δi,j∗ [V0] +
∑

06=k∈Ω0

([Vi][Vj ], δ
∗
M [k,1])[Vk].

Let P be the free abelian group generated by the isomorphism classes of indecom-

posable projective H-modules. Then P is an ideal of r(H), which is in fact a principal

ideal generated by M [0, n]. Denote by

P⊥ = {x ∈ r(H) | (x, y) = 0, for y ∈ P}.

Then P⊥ is an ideal of r(H) since P itself is. We denote by J the free abelian group
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generated by all almost split sequences, namely,

J = Z{δM [i,k] | i ∈ Ω0, 1 ≤ k ≤ n− 1}.

It follows from Lemma 1.3.1 (5) that the free abelian group J is exactly the kernel of

the natural ring epimorphism from r(H) to G0(H) given by (2.15). In view of this, J
is an ideal of r(H). Moreover, it is a principal ideal generated by δ[k] since δ[k] ∈ J
and δM [i,k] = δ[k]M [i, k] for i ∈ Ω0 and 1 ≤ k ≤ n− 1.

The relation between the ideals P generated by M [0, n] and J generated by δ[k]

is shown in the following that they are orthogonal with respect to the form (−,−).

Proposition 2.4.1. We have J = P⊥ = (P⊥)∗.

Proof. Note that the bilinear form (−,−) is symmetric and r(H) is commutative. For

any M [j, n] ∈ P, by (2.9), we have

(δM [i,k],M [j, n]) = (δ[k]M [i, k],M [j, n])

= (δ[k]M [j, n],M [i, k])

= (0,M [i, k])

= 0.

This implies that δM [i,k] ∈ P⊥, and therefore J ⊆ P⊥. For any x ∈ P⊥, by (2.14),

x =
∑
i∈Ω0

n∑
j=1

(M [i, j], x)δ∗M [i,j] =
∑
i∈Ω0

n−1∑
j=1

(M [i, j], x)δ∗M [i,j].

Then x∗ =
∑
i∈Ω0

∑n−1
j=1 (M [i, j], x)δM [i,j] and

(x∗,M [k, n]) =
∑
i∈Ω0

n−1∑
j=1

(M [i, j], x)(δM [i,j],M [k, n])

=
∑
i∈Ω0

n−1∑
j=1

(M [i, j], x)(δ[k]M [k, n],M [i, j])

=
∑
i∈Ω0

n−1∑
j=1

(M [i, j], x)(0,M [i, j])

= 0.
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Thus, x∗ ∈ P⊥, and therefore x = x∗∗ ∈ (P⊥)∗. This implies that P⊥ ⊆ (P⊥)∗. For

any x ∈ P⊥, by (2.14) as well,

x =
∑
i∈Ω0

n∑
j=1

(M [i, j], x)δ∗M [i,j] =
∑
i∈Ω0

n−1∑
j=1

(M [i, j], x)δ∗M [i,j].

Then x∗ =
∑
i∈Ω0

∑n−1
j=1 (M [i, j], x)δM [i,j] ∈ J , and hence (P⊥)∗ ⊆ J . We obtain

that J = P⊥ = (P⊥)∗.
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2.5 Jacobson radicals of Green rings

In this section, we study the Jacobson radical of the Green ring r(H) of H of nilpotent

type. We need the following useful lemma, which was done by Zhu for semisimple

Hopf algebras [81, Lemma 1].

Lemma 2.5.1. Let X and Y be any two indecomposable H-modules and x ∈ r(H).

(1) The coefficient of [k] in the linear expression of [Y ][X]∗ is 1 if X ∼= Y and not

projective, and 0 otherwise.

(2) If xx∗ = 0, then x ∈ P.

Proof. (1) If X is projective, then the coefficient of the identity [k] in [Y ][X]∗ is 0

since k is not projective. If X is not projective, by Lemma 1.3.3, the coefficient of the

identity [k] in [Y ][X]∗ is equal to (δ∗[k], [Y ][X]∗) = (δ∗[X], [Y ]), which is 1 if X ∼= Y ,

and 0 otherwise.

(2) Suppose x =
∑
i∈Ω0,1≤j≤n−1 αijM [i, j] + x0, for αij ∈ Z and x0 ∈ P. By

Part (1), the coefficient of [k] in xx∗ is
∑
i∈Ω0,1≤j≤n−1 α

2
ij . Thus, if αij 6= 0 for some

i ∈ Ω0 and 1 ≤ j ≤ n− 1, then xx∗ 6= 0. Otherwise, if xx∗ = 0, then αij = 0 for any

i ∈ Ω0 and 1 ≤ j ≤ n− 1. This implies that x = x0 ∈ P.

Theorem 2.5.2. The Jacobson radical J(r(H)) of r(H) is the intersection P ∩ P⊥.

Proof. For any x ∈ P ∩ P⊥ and y ∈ r(H), we have xy ∈ P ∩ P⊥ and hence (x2, y) =

(x, xy) = 0. It follows that x2 = 0 since the bilinear form (−,−) is non-degenerate.

As a consequence, x ∈ J(r(H)). Conversely, for any x ∈ J(r(H)), we denote by

x =
∑
i∈Ω0

∑
1≤j≤n−1

αijM [i, j] + x0,

for αij ∈ Z and x0 ∈ P. Then

xx∗ =
∑
i,k∈Ω0

∑
1≤j,l≤n−1

αijαklM [i, j]M [k, l]∗ + x1

for some x1 ∈ P since P is an ideal of r(H) satisfying P = P∗. If we denote by

y := xx∗ =
∑
i∈Ω0

∑
1≤j≤n−1

βijM [i, j] + x2,
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for some x2 ∈ P, then the coefficient of [k] in y is β01 :=
∑
i∈Ω0

∑
1≤j≤n−1 α

2
ij by

Lemma 2.5.1 (1). Consider

y2 = yy∗ =
∑
i,k∈Ω0

∑
1≤j,l≤n−1

βijβklM [i, j]M [k, l]∗ + x3,

for some x3 ∈ P. According to Lemma 2.5.1 (1) as well, we have the coefficient of

[k] in y2 is
∑
i∈Ω0

∑
1≤j≤n−1 β

2
ij . If β01 6= 0, then

∑
i∈Ω0

∑
1≤j≤n−1 β

2
ij 6= 0, and

hence y2 6= 0. By repeating this process, we obtain that if β01 6= 0, then y2n 6= 0,

for any n > 0, this contradicts to the fact that y ∈ J(r(H)). Therefore, β01 = 0 and

x = x0 ∈ P.

For any x ∈ J(r(H)), to verify x ∈ P⊥, we may write x as follows:

x =
∑
i∈Ω0

αiδM [i,n] + x0,

for αi ∈ Z and x0 ∈ J since {δM [i,j] | i ∈ Ω0, 1 ≤ j ≤ n− 1} is a basis of J and such

a basis of J together with {δM [i,n] | i ∈ Ω0} forms a basis of r(H). Note that J is

an ideal of r(H) and J = J ∗ (see Proposition 2.4.1). It follows that

x∗x =
∑
i,j∈Ω0

αiαj [Vi]
∗[Vj ] + x1 by (2.12)

=
∑
i∈Ω0

βi[Vi] + x1

=
∑
i∈Ω0

βiδM [i,n] + x2, by (2.10)

where β0 =
∑
i∈Ω0

α2
i and x1, x2 ∈ J . We denote by y := x∗x =

∑
i∈Ω0

βiδM [i,n] +x2.

It follows that

y2 = y∗y

=
∑
i,j∈Ω0

βiβj [Vi]
∗[Vj ] + x3 by (2.12)

=
∑
i∈Ω0

γi[Vi] + x3

=
∑
i∈Ω0

γiδM [i,n] + x4, by (2.10)
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where γ0 =
∑
i∈Ω0

β2
i and x3, x4 ∈ J . If β0 6= 0, then γ0 =

∑
i∈Ω0

β2
i 6= 0, and

therefore y2 6= 0. By repeating this process, we obtain that if β0 6= 0, then the power

of y can not be zero, a contradiction to the fact that y ∈ J(r(H)). Hence β0 = 0 and

x = x0 ∈ J = P⊥. As a result, J(r(H)) = P ∩ P⊥.

Remark 2.5.3. (1) Observe that P∗ = P. It follows from Proposition 2.4.1 that

(P∗)⊥ = (P⊥)∗.

(2) By Proposition 2.4.1, the kernel of the natural ring epimorphism from r(H) to

G0(H) is precisely P⊥. We obtain that r(H)/P⊥ ∼= G0(H).

(3) For any x, y ∈ P ∩ P⊥ and z ∈ r(H), we have (xy, z) = (x, yz) = 0. It follows

that xy = 0 since the form (−,−) is non-degenerate. Hence the square of

J(r(H)) is zero.

We have known that the Jacobson radical of r(H) is the intersection P ∩ P⊥. In

the following, we assume that the pointed rank one Hopf algebra H of nilpotent type

is defined over k = C. We study the Jacobson radical of the Green ring r(H) in terms

of generators.

Suppose that the order of χ in the group datum D = (G,χ, g, 0) is l, so is the

order of a = [Vχ−1 ]. Note that q = χ(g) is a primitive n-th root of unity, and

ql = (χ(g))l = χl(g) = 1. We obtain that l is divisible by n.

Since CG is semisimple, the complexified Green algebra R(CG) := C ⊗Z r(CG)

is a commutative semisimple algebra, see [78, 81]. As a consequence, all the simple

modules over R(CG) is one dimensional and the number of non-isomorphic simple

modules is equal to the rank of r(CG), which is equal to the number of non-isomorphic

simple CG-modules, namely, |Ω0|.

Let {Wj | j ∈ Ω0} be a complete set of non-isomorphic simple R(CG)-modules.

The action of a on Wj is a scalar multiple by ωtj , where ω = cos 2π
l + i sin 2π

l is a

primitive l-th root of unity and 0 ≤ tj ≤ l− 1. We divide the index set Ω0 into three

parts:

Ω1
0 = {j | j ∈ Ω0, tj = 0},

Ω2
0 = {j | j ∈ Ω0, tj 6= 0 and

l

n
- tj},

Ω3
0 = {j | j ∈ Ω0, tj 6= 0 and

l

n
| tj}.
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The cardinalities of the sets Ω1
0, Ω2

0 and Ω3
0 are denoted by d1, d2 and d3 respectively.

Obviously, d1 + d2 + d3 = |Ω0|.

Let α = cos πn + i sin π
n and Nj the number of distinct roots of the equation

(z − ωtj − 1)Fn(ωtj , z) = 0, (2.17)

for any j ∈ Ω0. We need the following lemma:

Lemma 2.5.4. The distinct roots of the equation (2.17) are described as follows:

(1) If j ∈ Ω3
0, then the equation (2.17) has Nj = n− 1 distinct roots:

αj,k =
√
ωtj (αk + α−k), for 1 ≤ k ≤ n− 1.

(2) If j ∈ Ω1
0 ∪ Ω2

0, then the equation (2.17) has Nj = n distinct roots:

αj,k =
√
ωtj (αk + α−k), for 1 ≤ k ≤ n− 1 and αj,n = ωtj + 1.

Proof. Let bj = cos(
tjπ
l + 3π

2 )+i sin(
tjπ
l + 3π

2 ). Then b2j = −ωtj . The relations between

the polynomials Fk(ωtj , z) and the Fibonacci polynomials Fk(−1, z) are established

by induction on k as follows:

Fk(ωtj , z) = bk−1
j Fk(−1, b−1

j z), for k ≥ 1.

In particular, Fn(ωtj , z) = bn−1
j Fn(−1, b−1

j z). Since the distinct roots of Fn(−1, z) =

0 are αk = 2i cos kπn = i(αk + α−k), for 1 ≤ k ≤ n − 1 (here i2 = −1), see [45]. It

follows that the distinct roots of Fn(ωtj , z) = 0 are

αj,k = 2bji cos
kπ

n

= (cos
π

2
+ i sin

π

2
)(cos(

tjπ

l
+

3π

2
) + i sin(

tjπ

l
+

3π

2
))(αk + α−k)

= (cos
tjπ

l
+ i sin

tjπ

l
)(αk + α−k)

=
√
ωtj (αk + α−k),

for 1 ≤ k ≤ n − 1. Here
√
ωtj always means cos

tjπ
l + i sin

tjπ
l . This implies that

the equation (2.17) has roots ωtj + 1 and
√
ωtj (αk + α−k), for 1 ≤ k ≤ n − 1. Now
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ωtj + 1 =
√
ωtj (αk + α−k) if and only if cos

tjπ
l = cos kπn if and only if k = s and

tj = ls
n , for a unique 1 ≤ s ≤ n− 1, as desired.

Proposition 2.5.5. Let R(H) := C⊗Z r(H) be the complexified Green algebra.

(1) R(H) has exactly n|Ω0| − d3 simple modules and each of them is of dimension

one;

(2) The dimension of the Jacobson radical J(R(H)) of R(H) is d3.

Proof. (1) The fact that R(H) is commutative and the ground field is C implies that

each simple R(H)-module is of dimension one. According to Theorem 2.3.4, the Green

ring r(H) is isomorphic to r(CG)[z]/I. This means that each one dimensional R(H)-

module is a lift from a one dimensional R(CG)[z]-module. Since the action of a on

each simple R(CG)-module Wj is a scalar multiple by some ωtj , the R(CG)-module

Wj becomes a simple R(H)-module if and only if the action of z on Wj is a scalar

multiple by a root of the equation (2.17). This equation has Nj distinct roots. We

conclude that the number of non-isomorphic simple R(H)-modules lifted from Wj is

Nj . By Lemma 2.5.4, the number of non-isomorphic simple R(H)-modules is∑
j∈Ω0

Nj = (|Ω0| − d3)n+ d3(n− 1) = |Ω0|n− d3,

as desired.

(2) Note that the dimension of R(H) is |Ω0|n and the dimension of the quotient al-

gebraR(H)/J(R(H)) is equal to the number of non-isomorphic simpleR(H)-modules,

namely, |Ω0|n − d3. Thus, the dimension of the Jacobson radical J(R(H)) of R(H)

is d3.

Now let θ be the following element in r(CG):

θ = (1− a)(1 + an + a2n + · · ·+ a( l
n−1)n),

and (θ) the principal ideal of r(CG) generated by θ. Then C ⊗Z (θ) is an ideal of

R(CG) = C⊗Z r(CG). Multiplying (θ) by the element M [0, n], we get a Z-submodule

M [0, n](θ) of r(H). Since r(H) is freely over Z, the submodule M [0, n](θ) of r(H) is

freely as well.

Lemma 2.5.6. We have the following:
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(1) The rank of (θ) is d3.

(2) The rank of M [0, n](θ) is equal to the rank of (θ).

Proof. (1) Note that the quotient algebra R(CG)/(C⊗Z (θ)) is commutative semisim-

ple. We first determine the dimension of R(CG)/(C⊗Z (θ)) by calculating the num-

ber of non-isomorphic simple R(CG)/(C ⊗Z (θ))-modules. Observe that each simple

R(CG)/(C⊗Z (θ))-module is precisely a simple R(CG)-module Wj such that θWj = 0,

whereas, θWj = 0 if and only if

(1− ωtj )(1 + ωntj + ω2ntj · · ·+ ω( l
n−1)ntj ) = 0,

if and only if j ∈ Ω1
0 ∪ Ω2

0. As a consequence, there exist exactly d1 + d2 distinct

simple R(CG)/(C⊗Z (θ))-modules and hence the dimension of R(CG)/(C⊗Z (θ)) is

d1 + d2. It follows that the dimension of C⊗Z (θ) is |Ω0| − (d1 + d2) = d3. Therefore,

as a free Z-module, the rank of (θ) is d3.

(2) We prove the general case: if I is an ideal of r(CG), then both I and M [0, n]I

have the same rank as free Z-modules. Let θ1, θ2, · · · , θk be a Z-basis of I. It is obvious

that M [0, n]I is generated as a Z-module by M [0, n]θ1,M [0, n]θ2, · · · ,M [0, n]θk. We

claim that the foregoing generators form a Z-basis of M [0, n]I. Indeed, if

α1M [0, n]θ1 + α2M [0, n]θ2 + · · ·+ αkM [0, n]θk = 0,

where each αi ∈ Z, then

M [0, n](α1θ1 + α2θ2 + · · ·+ αkθk) = 0. (2.18)

Denote by K0(H) the Grothendieck group of the category of finite dimensional pro-

jective left H-modules. That is, the abelian group generated by the isomorphism

classes M [i, n] of projective H-modules M(i, n) modulo the relations

[M(i, n)⊕M(j, n)] = M [i, n] +M [j, n].

Then K0(H) is a free abelian group with a basis {M [i, n] | i ∈ Ω0}. It is obvious that

K0(H) admits a right action from G0(H) = r(CG):

M [i, n] · [Vj ] = [M(i, n)⊗ Vj ].
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Thus K0(H) is a right module over G0(H). In fact, K0(H) is freely of rank 1 with

the generator M [0, n] as a right G0(H)-module. Now the equation (2.18) implies that

K0(H)(α1θ1 + α2θ2 + · · ·+ αkθk) = 0.

Hence α1θ1 + α2θ2 + · · ·+ αkθk = 0 since the right G0(H)-module K0(H) is faithful,

see [57]. We obtain that αi = 0, for 1 ≤ i ≤ k. Therefore, the rank of I is equal to

the rank of M [0, n]I.

Theorem 2.5.7. The Jacobson radical of r(H) is a principal ideal generated by the

element M [0, n]θ.

Proof. Note that

(1 + a+ · · ·+ an−1)θ = (1− an)(1 + an + a2n · · ·+ a( l
n−1)n) = 0.

By Proposition 2.3.2, we obtain M [0, n]2 = (1 + a + · · · + an−1)M [0, n]. This yields

that (M [0, n]θ)2 = 0. Hence M [0, n](θ) ⊆ J(r(H)). On the one hand, the rank

of M [0, n](θ) is d3 by Lemma 2.5.6. Consequently, the rank of J(r(H)) is equal or

greater than d3. On the other hand, since C ⊗Z J(r(H)) ⊆ J(R(H)), the dimension

of J(R(H)) is d3 by Proposition 2.5.5. It follows that the rank of J(r(H)) is equal or

less than d3. We conclude that the rank of J(r(H)) is equal to d3. Therefore,

J(r(H)) = M [0, n](θ).

Let (M [0, n]θ) be the principal ideal of r(H) generated by M [0, n]θ. We have the

following inclusions:

J(r(H)) = M [0, n](θ) ⊆ (M [0, n]θ) ⊆ J(r(H)).

It follows that J(r(H)) = (M [0, n]θ), as desired.

Remark 2.5.8. (1) In case H is a generalized Taft algebra, the Jacobson radical of

the Green ring r(H) has been calculated in [56], where each nilpotent element

is represented by a linear combination of certain projective indecomposables.

Now we understand the form from the result of Theorem 2.5.7.

(2) We have already checked that the Jacobson radical J(r(H)) of r(H) is precisely

P ∩ P⊥ (Theorem 2.5.2). To see that M [0, n]θ ∈ P ∩ P⊥, by induction on k
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we have that δ[k](M [0, 1] + · · ·+M [0, k]) = 1 + aM [0, k]−M [0, k + 1] for each

1 ≤ k ≤ n− 1. This implies that

M [0, n] = (1 + a+ · · ·+ an−1)− δ[k]

n−1∑
k=1

(M [0, 1] + · · ·+M [0, k])an−1−k.

Thus,

M [0, n]θ = −δ[k]

n−1∑
k=1

(M [0, 1] + · · ·+M [0, k])an−1−kθ,

which belongs to P as well as P⊥ since P and P⊥ are principal ideals of r(H)

generated by M [0, n] and δ[k] respectively.
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2.6 Idempotents of (complexified) Green rings

In this section, we first prove that the Green ring r(H) of H possesses only trivial

idempotents. However, the complexified Green algebra R(H) has many idempotents.

We shall determine all idempotents of R(H) through construction. To this aim, we

first need to determine the idempotents of the Green ring of a group algebra, which

might be found in other literature. For the sake of completeness, we describe them

as follows.

Proposition 2.6.1. For any finite group G, the Green ring (i.e., Grothendieck ring)

r(kG) of group algebra kG has only trivial idempotents.

Proof. Suppose that {Vi | i ∈ Ω0} is a complete set of all simple kG-modules up to

isomorphism. For any x ∈ r(kG), suppose x =
∑
i∈Ω0

αi[Vi] for each αi ∈ Z. Note

that the multiplicity of the trivial module k as a direct summand of Vi ⊗ V ∗j is 1 if

Vi ∼= Vj , and 0 otherwise (cf. [81, Lemma 1]). In view of this, the coefficient of the

identity [k] in xx∗ is
∑
i∈Ω0

α2
i . Thus x = 0 if and only if xx∗ = 0. If E be a primitive

idempotent of r(kG), so is E∗ since the dual ∗ is an anti-automorphism of r(kG).

Then E = E∗ or EE∗ = 0. If EE∗ = 0, then E = 0. If E = E∗, comparing the

coefficient of the identity [k] in both sides of the equation EE∗ = E, we obtain that

E = 0 or E = 1, as desired.

Theorem 2.6.2. The Green ring r(H) of H has only trivial idempotents.

Proof. Let E be a primitive idempotent of r(H). We first prove that E ∈ P or

1 − E ∈ P. Note that E is primitive, so is E∗ since the dual ∗ is an automorphism

of r(H). Then E = E∗ or EE∗ = 0. If EE∗ = 0, then E ∈ P by Lemma 2.5.1 (2). If

E = E∗, let E =
∑
i∈Ω0,1≤j≤n−1 αijM [i, j]+E0, for αij ∈ Z and E0 ∈ P. Comparing

the coefficient of the identity [k] in both sides of the equation EE∗ = E, we obtain

that
∑
i∈Ω0,1≤j≤n−1 α

2
ij = α01. This implies that α01 = 0 or 1, and αij = 0 for any

other αij . Hence E has the form α01 + E0, and therefore E ∈ P or 1− E ∈ P.

If E ∈ P, we write

E =
∑
i∈Ω0

βiM [i, n] = (
∑
i∈Ω0

βi[Vi])M [0, n].
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The equality E2 = E implies that

(
∑
i∈Ω0

βi[Vi])
2M [0, n]2 = (

∑
i∈Ω0

βi[Vi])M [0, n].

Note that M [0, n]2 = (1 + a+ · · ·+ an−1)M [0, n]. Then

(
∑
i∈Ω0

βi[Vi])
2(1 + a+ · · ·+ an−1)M [0, n] =

∑
i∈Ω0

βi[Vi]M [0, n].

As a result,

(
∑
i∈Ω0

βi[Vi])
2(1 + a+ · · ·+ an−1) =

∑
i∈Ω0

βi[Vi], (2.19)

for this, we refer to the proof of Lemma 2.5.6 (2). The equation (2.19) means that

(
∑
i∈Ω0

βi[Vi])(1+a+ · · ·+an−1) is an idempotent of r(kG). It follows from Proposi-

tion 2.6.1 that (
∑
i∈Ω0

βi[Vi])(1 + a+ · · ·+ an−1) is equal to 0 or 1. However, it could

not be 1 since (1 +a+ · · ·+an−1)θ = 0. Thus, (
∑
i∈Ω0

βi[Vi])(1 +a+ · · ·+an−1) = 0.

By taking it into (2.19), we have that
∑
i∈Ω0

βi[Vi] = 0. It follows that E = 0.

If 1− E ∈ P, it is similar that 1− E = 0, and hence E = 1, as desired.

In the following, we assume that H is defined over the field C. We shall study the

idempotents of R(H) = C⊗Z r(H) by the study of simple modules over R(H).

The Green algebra R(CG) = C ⊗Z r(kG) is commutative semisimple with the

basis {ei | i ∈ Ω0} consisting of all primitive orthogonal idempotents of R(CG) such

that eiWj = δi,jWj , for i, j ∈ Ω0, where {Wi | i ∈ Ω0} is the set of all non-isomorphic

(one dimensional) simple R(CG)-modules. Note that the action of a on Wj is a

scalar multiple by ωtj , where ω = cos 2π
l + i sin 2π

l and 0 ≤ tj ≤ l − 1. We have

a =
∑
j∈Ω0

ωtjej .

Let Wj,k be a simple R(H)-module lifted by Wj . That is, Wj,k is the same as

Wj as an R(kG)-module, while the generator M [0, 2] of R(H) acts on Wj is the

scalar multiple by αj,k determined in Lemma 2.5.4. It follows from Lemma 2.5.4 and

Proposition 2.5.5 that

{Wj,k | j ∈ Ω1
0 ∪ Ω2

0, 1 ≤ k ≤ n} ∪ {Wj,k | j ∈ Ω3
0, 1 ≤ k ≤ n− 1}

forms a complete set of simple R(H)-modules up to isomorphism. Obviously, the

set above is also a complete set of simple R(H)/J(R(H))-modules since every simple
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R(H)-module is annihilated by the Jacobson radical J(R(H)) of R(H). For any

simple R(H)/J(R(H))-module Wj,k, there exists a unique algebra morphism Φj,k

from R(H)/J(R(H)) to C such that

Φj,k(ei) = δi,j , Φj,k(a) = ωtj and Φj,k(M [0, 2]) = αj,k.

Conversely, every algebra morphism from R(H)/J(R(H)) to C is determined in this

way since R(H)/J(R(H)) is commutative semisimple over C. Hence there is a one

to one correspondence between the set of non-isomorphic simple R(H)/J(R(H))-

modules and the set of distinct algebra morphisms from R(H)/J(R(H)) to C.

Lemma 2.6.3. For the algebra morphism Φj,k defined above, we have the following:

(1) If j ∈ Ω1
0 ∪ Ω2

0 ∪ Ω3
0 and 1 ≤ k ≤ n− 1, then

Φj,k(M [0, s]) = (
√
ωtj )s−1α

ks − α−ks

αk − α−k
,

for 1 ≤ s ≤ n. Moreover, Φj,k(M [0, n]) = 0.

(2) If j ∈ Ω1
0 ∪ Ω2

0 and k = n, then

Φj,n(M [0, s]) =

 1−ωstj

1−ωtj
, j ∈ Ω2,

s, j ∈ Ω1,

for 1 ≤ s ≤ n.

Proof. (1) By induction on s. If s = 1, it is trivial since M [0, 1] is the identity of

R(H)/J(R(H)). If s = 2, then Φj,k(M [0, 2]) = αj,k =
√
ωtj (αk + α−k). Suppose it

holds for s ≤ i. To prove s = i+ 1, by induction assumption, we have

Φj,k(M [0, i+ 1])

= Φj,k(M [0, 2])Φj,k(M [0, i])− Φj,k(a)Φj,k(M [0, i− 1])

=
√
ωtj (αk + α−k)(

√
ωtj )i−1((αk)i−1 + (αk)i−3 + · · ·+ (αk)1−i)

− ωtj (
√
ωtj )i−2((αk)i−2 + (αk)i−4 + · · ·+ (αk)2−i)

= (
√
ωtj )i((αk)i + (αk)i−2 + · · ·+ (αk)−i)

= (
√
ωtj )i

αk(i+1) − α−k(i+1)

αk − α−k
.
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Moreover,

Φj,k(M [0, n]) = (
√
ωtj )n−1α

kn − α−kn

αk − α−k
= 0

since α = cos πn + i sin π
n .

(2) If j ∈ Ω1
0 ∪ Ω2

0 and k = n, by Lemma 2.5.4, we have

Φj,n(M [0, 2]) = αj,n = ωtj + 1.

Now the result follows by the induction on s.

Let Ej,k be an element of R(H) such that Ej,k is a primitive idempotent of

R(H)/J(R(H)) and Φi,s(Ej,k) = δi,jδs,k. Then

{Ej,k | j ∈ Ω1
0 ∪ Ω2

0, 1 ≤ k ≤ n} ∪ {Ej,k | j ∈ Ω3
0, 1 ≤ k ≤ n− 1}

forms an orthogonal basis of R(H)/J(R(H)).

Lemma 2.6.4. We have the follows:

(1) The set {ejM [0, k] | j ∈ Ω0, 1 ≤ k ≤ n} forms a basis of R(H).

(2) The set {ejM [0, n] | j ∈ Ω3
0} forms a basis of J(R(H)).

(3) The set {ejM [0, k] | j ∈ Ω1
0∪Ω2

0, 1 ≤ k ≤ n}∪{ejM [0, k] | j ∈ Ω3
0, 1 ≤ k ≤ n−1}

forms a basis of R(H)/J(R(H)).

Proof. (1) Observe from (2.8) that the polynomial Fk(a, z) is of degree k − 1 with

the leading coefficient 1 in the polynomial algebra R(kG)[z]. Let I be the ideal of

R(kG)[z] generated by the element (z − a − 1)Fn(a, z). Then the quotient algebra

R(kG)[z]/I has a C-basis ejFk(a, z), for j ∈ Ω0 and 1 ≤ k ≤ n. By Theorem 2.3.4, the

Green algebra R(H) is isomorphic to R(kG)[z]/I. Moreover, the image of ejFk(a, z)

under the isomorphism is ejM [0, k]. We conclude that ejM [0, k] for j ∈ Ω0 and

1 ≤ k ≤ n, is a basis of the Green algebra R(H).

(2) If j ∈ Ω3
0, then

1 + ωtj + ω2tj + · · ·+ ω(n−1)tj =
1− ωntj
1− ωtj

= 0.
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Together with a =
∑
j∈Ω0

ωtjej , we have that

(ejM [0, n])2 = ejM [0, n]2

= ej(1 + a+ a2 + · · ·+ an−1)M [0, n]

= ej(1 + ωtj + ω2tj + · · ·+ ω(n−1)tj )M [0, n]

= 0.

This implies that ejM [0, n] ∈ J(R(H)) for j ∈ Ω3
0. Moreover, it forms a basis

of J(R(H)) since ejM [0, n] for j ∈ Ω3
0 is linear independent by Part (1), and the

dimension of J(R(H)) is equal to the cardinality of Ω3
0 by Proposition 2.5.5.

(3) This follows immediately from Part (1) and Part (2).

In the following, we shall write the primitive orthogonal idempotents Ej,k as a

linear combination of a basis of R(H)/J(R(H)) given in Lemma 2.6.4 (3).

Let Λ =
∑
i,k βi,kEi,k be an arbitrary element of R(H)/J(R(H)) for βi,k ∈ C.

The equality Φi,k(Ej,s) = δi,jδk,s implies that Φi,k(Λ) = βi,k. It follows that

Λ =
∑
i,k

Φi,k(Λ)Ei,k.

As a consequence,

ejM [0, s] =
∑
i,k

Φi,k(ejM [0, s])Ei,k =
∑
k

Φj,k(M [0, s])Ej,k, (2.20)

where if j ∈ Ω1
0 ∪Ω2

0, then the sum
∑
k runs from 1 to n; if j ∈ Ω3

0, then the sum
∑
k

runs from 1 to n− 1.

For any j ∈ Ω1
0 ∪ Ω2

0 ∪ Ω3
0, we consider the following matrix:

Aj =


Φj,1(M [0, 1]) Φj,2(M [0, 1]) · · · Φj,n−1(M [0, 1])

Φj,1(M [0, 2]) Φj,2(M [0, 2]) · · · Φj,n−1(M [0, 2])
...

...
. . .

...

Φj,1(M [0, n− 1]) Φj,2(M [0, n− 1]) · · · Φj,n−1(M [0, n− 1])

 .
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By Lemma 2.6.3, the (s, k)-entry of the matrix Aj is

Φj,k(M [0, s]) = (
√
ωtj )s−1α

ks − α−ks

αk − α−k
,

where 1 ≤ k ≤ n − 1 and αk − α−k 6= 0. Let B be the matrix with (k, s)-entry

αks − α−ks for 1 ≤ k, s ≤ n− 1. Let Cj and D be two diagonal matrices given by

Cj =



1 √
ωtj

(
√
ωtj )2

. . .

(
√
ωtj )n−2


and

D =


α− α−1

α2 − α−2

. . .

αn−1 − α−(n−1)

 .

It is clear that B is symmetric, and Aj = CjBD−1 with the inverse A−1j = DB−1C−1j

(as we shall see that Aj is invertible). Suppose the (k, s)-entry of the matrix B−1 is

θk,s, for 1 ≤ k, s ≤ n− 1. Then the (k, s)-entry of the matrix A−1j is

β
(j)
k,s = (

√
ωtj )1−s(αk − α−k)θk,s,

for 1 ≤ k, s ≤ n− 1.

If j ∈ Ω3
0, then the linear relations of (2.20) can be written as follows:

ejM [0, 1]

ejM [0, 2]
...

ejM [0, n− 1]

 = Aj


Ej,1

Ej,2
...

Ej,n−1

 . (2.21)

Observe that the matrix Aj given above is invertible since ejM [0, k] (resp. Ej,k) are

linear independent for 1 ≤ k ≤ n − 1. By (2.21), the idempotents Ej,k could be
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expressed as a linear combination as follows:

Ej,k =

n−1∑
s=1

β
(j)
k,sejM [0, s] = (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,sejM [0, s], (2.22)

for j ∈ Ω3 and 1 ≤ k ≤ n− 1.

If j ∈ Ω1
0 ∪ Ω2

0, then the linear relations of (2.20) can be written as follows:
ejM [0, 1]

ejM [0, 2]
...

ejM [0, n]

 =

(
Aj b

0 δ

)
Ej,1

Ej,2
...

Ej,n

 , (2.23)

where

(
Aj b

0 δ

)
is a block matrix with the entries determined by Lemma 2.6.3.

More explicitly, the column vector

b =


1

1 + ωtj

...

1 + ωtj + ω2tj + · · ·+ ω(n−2)tj

 ,

the row vector 0 is a zero vector and the scalar δ = 1+ωtj +ω2tj + · · ·+ω(n−1)tj 6= 0.

Similarly, the matrix

(
Aj b

0 δ

)
is invertible with the inverse given by

(
Aj b

0 δ

)−1
=

(
A−1j −δ−1A−1j b

0 δ−1

)
,

where −δ−1A−1j b is a column vector with the k-th entry

−δ−1
n−1∑
s=1

(1 + ωtj + · · ·+ ω(s−1)tj )β
(j)
k,s,
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for 1 ≤ k ≤ n− 1. Now the idempotents Ej,k could be expressed as follows:

Ej,k =

n−1∑
s=1

β
(j)
k,sejM [0, s]− δ−1

n−1∑
s=1

(1 + ωtj + · · ·+ ω(s−1)tj )β
(j)
k,sejM [0, n]

=

n−1∑
s=1

β
(j)
k,s(ejM [0, s]− 1 + ωtj + · · ·+ ω(s−1)tj

1 + ωtj + · · ·+ ω(n−1)tj
ejM [0, n]) (2.24)

= (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,s(ejM [0, s]− 1 + ωtj + · · ·+ ω(s−1)tj

1 + ωtj + · · ·+ ω(n−1)tj
ejM [0, n])

for j ∈ Ω1
0 ∪ Ω2

0 and 1 ≤ k ≤ n− 1. If j ∈ Ω1
0 ∪ Ω2

0 and k = n, then

Ej,n = δ−1ejM [0, n] =
1

1 + ωtj + · · ·+ ω(n−1)tj
ejM [0, n]. (2.25)

We have obtained the primitive orthogonal idempotents Ej,k as a linear combina-

tion of a basis of R(H)/J(R(H)) as shown in (2.22), (2.24) and (2.25) for each case.

In the following, we delete the upper bar in the equations (2.22), (2.24) and (2.25)

and obtain the elements Ej,k in R(H) as follows:

• Ej,k := (αk − α−k)
∑n−1
s=1 (
√
ωtj )1−sθk,sejM [0, s], for j ∈ Ω3

0 and 1 ≤ k ≤ n− 1

• Ej,k := (αk − α−k)
∑n−1
s=1 (
√
ωtj )1−sθk,sej(M [0, s] − 1+ωtj +···+ω(s−1)tj

1+ωtj +···+ω(n−1)tj
M [0, n]),

for j ∈ Ω1
0 ∪ Ω2

0 and 1 ≤ k ≤ n− 1.

• Ej,k := 1

1+ωtj +···+ω(n−1)tj
ejM [0, n], for j ∈ Ω1

0 ∪ Ω2
0 and k = n.

Now the idempotents of R(H) can be described explicitly as follows.

Theorem 2.6.5. Let ej,k be the idempotent of R(H) such that ej,k = Ej,k.

(1) If j ∈ Ω1
0 ∪ Ω2

0, then ej,k = Ej,k, for 1 ≤ k ≤ n.

(2) If j ∈ Ω3
0, then ej,k = Ej,k + γj,kejM [0, n], for 1 ≤ k ≤ n− 1, where

γj,k = (1− 2δ
k,

ntj
l

)
α

ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l ).

Proof. (1) Note that ej,k is the idempotent of R(H) such that ej,k = Ej,k. It follows

that ej,k − Ej,k ∈ J(R(H)). For any i 6= j, we obtain that eiej,k ∈ eiJ(R(H)) ⊆
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J(R(H)) since ei(ej,k − Ej,k) ∈ eiJ(R(H)) and eiEj,k = 0. It follows that eiej,k = 0

because eiej,k is idempotent. Hence ej,k belongs to ejR(H). By Lemma 2.6.4 (2), we

have that

ej,k − Ej,k ∈ ejR(H) ∩ J(R(H))

= ejJ(R(H)) (2.26)

=

sp{ejM [0, n]}, j ∈ Ω3
0;

0, j ∈ Ω1
0 ∪ Ω2

0.

Therefore, Part (1) is proved.

(2) By (2.26), we denote by ej,k = Ej,k + γj,kejM [0, n] for j ∈ Ω3
0 and γj,k ∈ C.

According to Theorem 2.5.7, (J(R(H)))2 = 0, we have

Ej,k + γj,kejM [0, n] = (Ej,k + γj,kejM [0, n])2 = E2
j,k + 2γj,kejM [0, n]Ej,k.

This implies that

E2
j,k − Ej,k = γj,k(ejM [0, n]− 2ejM [0, n]Ej,k).

Note that a =
∑
j∈Ω0

ωtjej and eja = ωtjej . We have

ejM [0, n]Ej,k

= (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,sejM [0, n]M [0, s]

= (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,sej(1 + a+ · · ·+ as−1)M [0, n] (2.27)

= (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,s(1 + ωtj + · · ·+ ω(s−1)tj )ejM [0, n]

= (αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,s

ωstj − 1

ωtj − 1
ejM [0, n].

Note that j ∈ Ω3
0 implies that l

n | tj . Suppose tj = l
np for some integer p, then

√
ωtj = cos

tjπ

l
+ i sin

tjπ

l
= cos

pπ

n
+ i sin

pπ

n
= αp = α

ntj
l .
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Now (2.27) can be written as

ejM [0, n]Ej,k = (αk − α−k)

n−1∑
s=1

α
(1−s)ntj

l θk,s
α

2sntj
l − 1

α
2ntj

l − 1
ejM [0, n]

=
αk − α−k

α
ntj
l − α−

ntj
l

ejM [0, n]

n−1∑
s=1

θk,s(α
sntj

l − α−
sntj

l )

=
αk − α−k

α
ntj
l − α−

ntj
l

ejM [0, n]δ
k,

ntj
l

= δ
k,

ntj
l

ejM [0, n],

here
∑n−1
s=1 θk,s(α

sntj
l − α−

sntj
l ) = δ

k,
ntj
l

since B−1B = E. Hence,

E2
j,k − Ej,k = γj,k(1− 2δ

k,
ntj
l

)ejM [0, n]. (2.28)

The rest is to determine the coefficient of the term ejM [0, n] in E2
j,k − Ej,k. Note

that Ej,k has no the term ejM [0, n]. It suffices to consider the coefficient of the term

ejM [0, n] in E2
j,k. Note that

E2
j,k = ((αk − α−k)

n−1∑
s=1

(
√
ωtj )1−sθk,sejM [0, s])2

= (αk − α−k)2
n−1∑
s,t=1

(
√
ωtj )2−s−tθk,sθk,tejM [0, s]M [0, t].

By Proposition 2.3.2, we have that the term ejM [0, n] appears in ejM [0, s]M [0, t] if

and only if s + t − 1 ≥ n. In this case, it is straightforward to check that the term

ejM [0, n] in ejM [0, s]M [0, t] is

∑
s+t−1≥n

ej(

s+t−1−n∑
q=0

M [τ q(0), n]) =
∑

s+t−1≥n

ej(

s+t−1−n∑
q=0

aq)M [0, n]

=
∑

s+t−1≥n

(

s+t−1−n∑
q=0

ωqtj )ejM [0, n] =
∑

s+t−1≥n

1− ω(s+t−n)tj

1− ωtj
ejM [0, n]

=
∑

s+t−1≥n

1− ω(s+t)tj

1− ωtj
ejM [0, n].
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We conclude that the coefficient of the term ejM [0, n] in E2
j,k is

(αk − α−k)2
∑

s+t−1≥n

(
√
ωtj )2−s−tθk,sθk,t

1− ω(s+t)tj

1− ωtj

=
α

ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l )

since
√
ωtj = α

ntj
l . Comparing the scalars of the equation (2.28), we conclude that

α
ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l ) = γj,k(1− 2δ
k,

ntj
l

).

Therefore,

γj,k = (1− 2δ
k,

ntj
l

)
α

ntj
l (αk − α−k)2

α
ntj
l − α−

ntj
l

∑
s+t−1≥n

θk,sθk,t(α
(s+t)ntj

l − α−
(s+t)ntj

l ).

We complete the proof.
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2.7 Idempotents of the Green algebra of a Taft al-

gebra

In this section, as an example, we will determine all primitive idempotents of the

Green algebra of Taft algebra T3.

Let α = cos π3 + i sin π
3 and ω = α2. Then ω is a primitive 3-th root of unity. The

Taft algebra T3 is generated over the ground field C by two elements g and y subject

to the relations (cf. [24, 69])

g3 = 1, y3 = 0, yg = ωgy.

T3 is a Hopf algebra with comultiplication 4, counit ε, and the antipode S given

respectively by

4(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1,

4(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

Note that dimT3 = 9 and {giyj | 0 ≤ i, j ≤ 2} forms a C-basis for T3. Let

G be the cyclic group generated by g and χ a C-linear character of G such that

χ(g) = ω. Then T3 is the pointed rank one Hopf algebra associated to the group

datum D = (G,χ, g, 0) of nilpotent type. Thus, by the result of Theorem 2.1.4,

{M(i, j) | i ∈ Ω0, 1 ≤ j ≤ 3} forms a complete set of indecomposable T3-modules up

to isomorphism, where Ω0 = {0, 1, 2}.

The Green ring r(T3) of T3 is commutative with a Z-basis M [i, j] for 0 ≤ i ≤ 2 and

1 ≤ j ≤ 3. Denote by a one of M [i, 1] for i ∈ Ω0 such that the character of M(i, 1)

as a simple CG-module is χ−1. The multiplication formulas of Green ring r(T3) is

stated as follows: M [0, 1] = 1, the identity of r(T3), a3 = 1, M [i, j] = aiM [0, j] and

M [0, 2]M [0, 2] = a+M [0, 3],

M [0, 2]M [0, 3] = (1 + a)M [0, 3],

M [0, 3]M [0, 3] = (1 + a+ a2)M [0, 3].

By Theorem 2.3.4, see also [24, Theorem 3.10], the Green ring r(T3) is isomorphic
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to the quotient ring

Z[a, z]/(a3 − 1, (1 + a− z)F3(a, z)),

which admits only trivial idempotents. Let R(T3) be the complexified Green algebra.

That is, R(T3) is isomorphic to the algebra C[a, z]/(a3 − 1, (1 + a − z)F3(a, z)). In

the following, we follow the notations given in Section 2.6 and determine all primitive

idempotents of R(T3).

Let R(CG) be the complexified Green algebra of the group algebra CG. Then

R(CG) is isomorphic to C[a]/(a3 − 1), which is a subalgebra of R(T3). It is obvious

that the primitive idempotents of C[a]/(a3 − 1) are

ej =
1

3
(1 + ω−ja+ ω−2ja2),

for 0 ≤ j ≤ 2, see e.g., [70, Equation (2.1)]. It follows that a = e0 + ωe1 + ω2e2.

Let Wj for 0 ≤ j ≤ 2 be all (one dimensional) simple modules over R(CG) such

that the generator a acts on Wj is a scalar multiple by ωj (i.e., tj = j in this case).

Then the subsets Ω1
0,Ω

2
0 and Ω3

0 of Ω0 given respectively in section 2.5 are Ω1
0 = {0},

Ω2
0 = ∅ and Ω3

0 = {1, 2}. Let Wi,j be the same as Wj as a simple R(CG)-module

while the generator z acts on it as the scalar multiple by αi(αj + α−j) for 0 ≤ i ≤ 2

and 1 ≤ j ≤ 2. Also, let W0,3 be W0 as an R(CG)-module and z acts on W0,3 as the

scalar multiple by 2. Then {Wi,j | 0 ≤ i ≤ 2, 1 ≤ j ≤ 2} ∪ {W0,3} forms all simple

R(T3)-modules up to isomorphism (Proposition 2.5.5 (1)).

Now the matrices B, Cj for 0 ≤ j ≤ 2 and D given in Section 2.6 can be written

as follows:

B = (α− α−1)

(
1 1

1 −1

)
, Cj =

(
1 0

0 αj

)
, and D =

(
α− α−1 0

0 α2 − α−2

)
.

It follows that

Aj = CjBD−1 =

(
1 1

αj −αj

)
,

Let Ei,j ∈ R(T3) such that Eij is an idempotent of R(T3)/J(R(T3)) determined

by simple module Wi,j . Namely, Ei,j ·Wk,l = δi,kδj,lWk,l. Then the equations (2.21)
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and (2.23) become the following(
ejM [0, 1]

ejM [0, 2]

)
= Aj

(
Ej,1

Ej,2

)
, (2.29)

for 1 ≤ j ≤ 2, and  e0M [0, 1]

e0M [0, 2]

e0M [0, 3]

 =

(
A0 b

0 δ

) E0,1

E0,2

E0,3

 , (2.30)

where b is the column vector
(

1
2

)
and δ = 3. Since Aj and

(
A0 b

0 δ

)
are both

invertible with the inverse matrices given respectively by

A−1j =
1

2

(
1 α−j

1 −α−j

)
,

for 0 ≤ j ≤ 2, and

(
A0 b

0 δ

)−1

=

(
A−10 − 1

3A−10 b

0 1
3

)
=

1

6

3 3 −3

3 −3 1

0 0 2

 .

In view of this, all primitive idempotents of R(T3)/J(R(T3)) are determined by (2.29)

and (2.30) and can be stated explicitly as follows:

• Ej,1 = 1
2ejM [0, 1] + α−j

2 ejM [0, 2] for 1 ≤ j ≤ 2,

• Ej,2 = 1
2ejM [0, 1]− α−j

2 ejM [0, 2] for 1 ≤ j ≤ 2,

• E0,1 = 1
2e0M [0, 1] + 1

2e0M [0, 2]− 1
2e0M [0, 3],

• E0,2 = 1
2e0M [0, 1]− 1

2e0M [0, 2] + 1
6e0M [0, 3],

• E0,3 = 1
3e0M [0, 3].

In the following, we shall lift all the idempotents Ei,j of the quotient algebra

R(T3)/J(R(T3)) to the Green algebra R(T3). We first delete the upper bar in the
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above equations and obtain the element Ej,k in R(H) as follows:

Ej,1 := ej(
1

2
M [0, 1] +

α−j

2
M [0, 2]) for 1 ≤ j ≤ 2,

Ej,2 := ej(
1

2
M [0, 1]− α−j

2
M [0, 2]) for 1 ≤ j ≤ 2,

E0,1 := e0(
1

2
M [0, 1] +

1

2
M [0, 2]− 1

2
M [0, 3]),

E0,2 := e0(
1

2
M [0, 1]− 1

2
M [0, 2] +

1

6
M [0, 3]),

E0,3 :=
1

3
e0M [0, 3].

We need to compute the scalar γj,k described in Theorem 2.6.5. Note that the (k, s)-

entry of the matrix B−1 is θk,s. Then(
θ1,1 θ1,2

θ2,1 θ2,2

)
= B−1 =

1

2(α− α−1)

(
1 1

1 −1

)
.

Now by Theorem 2.6.5, for 1 ≤ j, k ≤ 2, we have

γj,k = (1− 2δk,j)
αj(αk − α−k)2

αj − α−j
∑

s+t−1≥3

θk,sθk,t(α
(s+t)j − α−(s+t)j)

= (1− 2δk,j)
αj(αk − α−k)2

αj − α−j
θk,2θk,2(α4j − α−4j)

= (1− 2δk,j)
αj(αk − α−k)2

αj − α−j
(

1

2(α− α−1)
)2(α4j − α−4j)

=


α
4 , (j, k) = (1, 1)

−α4 , (j, k) = (1, 2)
α2

4 , (j, k) = (2, 1)

−α
2

4 , (j, k) = (2, 2)

= (−1)k−1α
j

4
.

It follows from Theorem 2.6.5 that all primitive idempotents ei,j of R(T3) are

exactly as follows:

• ej,1 = Ej,1+γj,1ejM [0, 3] = ej(
1
2M [0, 1]+ α−j

2 M [0, 2]+ αj

4 M [0, 3]) for 1 ≤ j ≤ 2,
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• ej,2 = Ej,2+γj,2ejM [0, 3] = ej(
1
2M [0, 1]− α−j

2 M [0, 2]− αj

4 M [0, 3]) for 1 ≤ j ≤ 2,

• e0,1 = E0,1 = e0( 1
2M [0, 1] + 1

2M [0, 2]− 1
2M [0, 3]),

• e0,2 = E0,2 = e0( 1
2M [0, 1]− 1

2M [0, 2] + 1
6M [0, 3]),

• e0,3 = E0,3 = 1
3e0M [0, 3].

For instance, to see that e2
j,2 = ej,2, by using the equalities eja = ωjej = α2jej and

1 + α2j + α4j = 0 for 1 ≤ j ≤ 2, we have that

e2
j,2 = e2

j (
1

2
M [0, 1]− α−j

2
M [0, 2]− αj

4
M [0, 3])2

= ej(
1 + α−2ja

4
M [0, 1]− α−j

2
M [0, 2])

+ ej((
α−2j − αj + 1 + a

4
+
α2j(1 + a+ a2)

16
)M [0, 3])

= ej(
1

2
M [0, 1]− α−j

2
M [0, 2])

+ ej((
α−2j − αj + 1 + α2j

4
+
α2j(1 + α2j + α4j)

16
)M [0, 3])

= ej(
1

2
M [0, 1]− α−j

2
M [0, 2]− αj

4
M [0, 3])

= ej,2.
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2.8 An example

In this section, we compute the Green ring of a pointed rank one Hopf algebra H of

nilpotent type such that the group G(H) is a dihedral group.

Assume that s > 0 is a fixed odd integer. The dihedral group of order 2s is defined

as follows:

D2s = 〈b, c | b2 = c2s = (cb)2 = 1〉,

where cs is the unique non-trivial central element of D2s. The simple modules over

the group algebra CD2s are given as follows [66]:

• four simple modules of dimension one :

F (i, j) : c 7→ (−1)i, b 7→ (−1)j , i, j ∈ Z2,

• s− 1 simple modules of dimension 2:

V (l) : c 7→

(
θl 0

0 θ−l

)
, b 7→

(
0 1

1 0

)
, 1 ≤ l ≤ s− 1,

where θ is a 2s-th primitive root of unity.

For the sake of completeness, we include the Grothendieck ring G0(CD2s) of the

dihedral group CD2s described by generators and relations. The result might be

found in other literature. We know that the number of simple CD2s-modules is

4 + s − 1 = s + 3, and so is the rank of G0(CD2s). The following decompositions

of the tensor products of simple modules over CD2s is straightforward and hence we

omit the proof.

Proposition 2.8.1. (1) F (i, j)⊗ F (k, t) ∼= F (i+ k, j + t), i, j, k, t ∈ Z2.

(2) F (0, j)⊗ V (l) ∼= V (l), j ∈ Z2, 1 ≤ l ≤ s− 1.

(3) F (1, j)⊗ V (l) ∼= V (s− l), j ∈ Z2, 1 ≤ l ≤ s− 1.

(4) V (l)⊗ V (h) ∼= V (l − h)⊕ V (l + h), 1 ≤ l, h ≤ s−1
2 and l > h.

(5) V (l)⊗ V (l) ∼= V (2l)⊕ F (0, 0)⊕ F (0, 1), 1 ≤ l ≤ s−1
2 .

We need the following lemma.
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Lemma 2.8.2. For 2 ≤ i ≤ s − 1, [V (i)] = [V (i − 1)][V (1)] − [V (i − 2)] holds in

G0(CD2s), where [V (0)] := [F (0, 0)] + [F (0, 1)].

Proof. By Proposition 2.8.1 (4), we have

[V (i)] = [V (i− 1)][V (1)]− [V (i− 2)], for 3 ≤ i ≤ s+ 1

2
. (2.31)

To show that it also holds for s+3
2 ≤ i ≤ s− 1, we multiply by [F (1, 0)] to both sides

of the equality (2.31) and by Proposition 2.8.1 (3), we have that

[V (s− i)] = [V (s− i+ 1)][V (1)]− [V (s− i+ 2)].

Let j = s− i+ 2. Then s+3
2 ≤ j ≤ s− 1 and the above equality becomes

[V (j)] = [V (j − 1)][V (1)]− [V (j − 2)].

Therefore, [V (i)] = [V (i− 1)][V (1)]− [V (i− 2)] holds for 3 ≤ i ≤ s− 1. For the case

i = 2, the equality follows from Proposition 2.8.1 (5).

Let Z[x1, x2, x3] be the polynomial ring over Z with variables x1, x2 and x3. We

define a sequence of polynomials fi(x2, x3) in the subring Z[x2, x3] of Z[x1, x2, x3]

recursively as follows:

f0(x2, x3) = 1 + x2, f1(x2, x3) = x3,

fi(x2, x3) = x3fi−1(x2, x3)− fi−2(x2, x3), for i ≥ 2.

We have the following.

Lemma 2.8.3. Let (x2x3−x3) be the ideal of Z[x2, x3] generated by x2x3−x3. There

exist some polynomials hi(x3) ∈ Z[x3] with degree i− 2 and pi(x2) ∈ Z[x2] such that

fi(x2, x3) ≡ xi3 + hi(x3) + pi(x2) modulo (x2x3 − x3), for i ≥ 3.

Proof. The proof can be completed by induction on the index i.

Theorem 2.8.4. Let I be the ideal of Z[x1, x2, x3] generated by the polynomials x2
1−

1, x2
2 − 1, x2x3 − x3, f s+1

2
(x2, x3)− x1f s−1

2
(x2, x3). The Grothendieck ring G0(CD2s)

of CD2s is isomorphic to the quotient ring Z[x1, x2, x3]/I.
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Proof. By Proposition 2.8.1 (1) and Lemma 2.8.2, the Grothendieck ring G0(CD2s)

of CD2s is generated as a ring by generators [F (1, 0)], [F (0, 1)] and [V (1)]. Hence,

there is a unique ring epimorphism ϕ from Z[x1, x2, x3] to G0(CD2s) such that

ϕ(x1) = [F (1, 0)], ϕ(x2) = [F (0, 1)] and ϕ(x3) = [V (1)].

Moreover, it is easy to check by induction on i that ϕ(fi(x2, x3)) = [V (i)], for 1 ≤
i ≤ s − 1. According to Proposition 2.8.1, the ideal I of Z[x1, x2, x3] is contained in

the kernel of ϕ, namely,

ϕ(x2
1 − 1) = [F (1, 0)]2 − [F (0, 0)] = 0,

ϕ(x2
2 − 1) = [F (0, 1)]2 − [F (0, 0)] = 0,

ϕ(x2x3 − x3) = [F (0, 1)][V (1)]− [V (1)] = 0,

ϕ(f s+1
2

(x2, x3)− x1f s−1
2

(x2, x3)) = [V (
s+ 1

2
)]− [F (1, 0)][V (

s− 1

2
)] = 0.

Thus, ϕ induces a ring epimorphism ϕ from Z[x1, x2, x3]/I to G0(CD2s) such that

ϕ(f) = ϕ(f) for any f ∈ Z[x1, x2, x3].

If s = 1, then 0 = f s+1
2

(x2, x3) − x1f s−1
2

(x2, x3) = f1(x2, x3) − x1f0(x2, x3) =

x3 − x1(1 + x2) holds in Z[x1, x2, x3]/I. Hence as a Z-module, Z[x1, x2, x3]/I has a

Z-basis {1, x1, x2, x1x2} and the rank of Z[x1, x2, x3]/I is 4, which is equal to the rank

of G0(CD2s). It follows that ϕ is an isomorphism.

If s = 3, then 0 = f s+1
2

(x2, x3) − x1f s−1
2

(x2, x3) = f2(x2, x3) − x1f1(x2, x3) =

x2
3 − x1x3 − x2 − 1 holds in Z[x1, x2, x3]/I. Hence, as a Z-module, Z[x1, x2, x3]/I has

a Z-basis {1, x1, x2, x1x2, x3, x1x3} and the rank of Z[x1, x2, x3]/I is 6, the same as

the rank of G0(CD2s). Therefore, ϕ is an isomorphism.

If s = 5, then we have 0 = f s+1
2

(x2, x3)−x1f s−1
2

(x2, x3) = f3(x2, x3)−x1f2(x2, x3) =

x3
3−x1x

2
3−(2+x2)x3+x1(1+x2) in Z[x1, x2, x3]/I. Thus, as a Z-module, Z[x1, x2, x3]/I

has a Z-basis {1, x1, x2, x1x2, x3, x2
3, x1x3, x1x2

3} and the rank of Z[x1, x2, x3]/I is 8,

the same as the rank of G0(CD2s). So ϕ is an isomorphism.

If s ≥ 7, by Lemma 2.8.3, the following hold in Z[x1, x2, x3]/I,

0 = f s+1
2

(x2, x3)− x1f s−1
2

(x2, x3)

= x
s+1
2

3 − x1x
s−1
2

3 + h s+1
2

(x3)− x1h s−1
2

(x3) + p s+1
2

(x2)− x1p s−1
2

(x2),
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where the degrees of h s+1
2

(x3) and h s−1
2

(x3) are s−3
2 and s−5

2 respectively. Hence, as

a Z-module, Z[x1, x2, x3]/I has a Z-basis

{1, x1, x2, x1x2, xi3, x1xi3 | 1 ≤ i ≤
s− 1

2
}.

We conclude that the rank of Z[x1, x2, x3]/I is 4 + 2× s−1
2 = s+ 3, which is the same

as the rank of G0(CD2s). Hence ϕ is an isomorphism.

Denote by χ the character of the simple CD2s-module F (1, 0). It is obvious

that the order of χ is 2. The Hopf algebra HD stemming from the group datum

D = (D2s, χ, c
s, 0) is of nilpotent type. Note that q := χ(cs) = (−1)s = −1, which

is of order 2. By Theorem 2.1.4, the set of indecomposable HD-modules consists of

simple modules as well as their projective covers. Let a = [Vχ−1 ] = [Vχ] = [F (1, 0)].

Then a2 = 1. By Theorem 2.3.4, the Green ring r(HD) of HD is isomorphic to

r(CD2s)[z]/I, where I is the ideal generated by (z − a − 1)z. Since the order of χ

in the group datum D = (D2s, χ, c
s, 0) is equal to the order of χ(cs), by Theorem

2.5.7, the Jacobson radical of r(HD) is the principal ideal generated by the element

[P (F (0, 0))](1− a). Thanks to Theorem 2.8.4, we obtain the following.

Theorem 2.8.5. Let I be an ideal of Z[x1, x2, x3, x4] generated by the polynomials

x2
1−1, x2

2−1, x2x3−x3, f s+1
2

(x2, x3)−x1f s−1
2

(x2, x3) and x2
4−x1x4−x4. The Green

ring r(HD) of HD is isomorphic to the quotient ring Z[x1, x2, x3, x4]/I. The Jacobson

radical of r(HD) (under the isomorphism) is a principal ideal of Z[x1, x2, x3, x4]/I

generated by the element x4 − x1x4.
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Chapter 3

Pointed Hopf algebras of rank

one: non-nilpotent type

In this chapter, we continue our study of Green rings of finite dimensional pointed rank

one Hopf algebras, but concentrate ourselves on those Hopf algebras of non-nilpotent

type. If H is finite dimensional pointed rank one Hopf algebra of non-nilpotent type,

then the quotient Hopf algebra H of H modulo a Hopf ideal is isomorphic to a finite

dimensional pointed rank one Hopf algebra of nilpotent type. This leads to the fact

that the Green ring r(H) is a subring of the Green ring r(H). We then determine

all finite dimensional indecomposable H-modules and describe the Clebsch-Gordan

formulas of the tensor products of indecomposable modules. We reconstruct r(H)

from the subring r(H) together with the ideal of r(H) generated by isomorphism

classes of indecomposable projective modules. Moreover, the Jacobson radical of r(H)

turns out to be exactly the Jacobson radical of r(H), a principal ideal generated by a

special element. Finally, as an example, we present the Green ring of a Radford Hopf

algebra explicitly.

3.1 Indecomposable representations

Throughout this chapter, D = (G,χ, g, 1) is a fixed group datum of non-nilpotent

type. That is, gn− 1 6= 0 and χn = 1, where n is the order of q := χ(g). It is obvious
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that n is in fact the order of χ. Denote by H the Hopf algebra HD associated to the

group datum D. Then H is a finite dimensional pointed rank one Hopf algebra of

non-nilpotent type. The relations of (1.6) now become

yn = gn − 1, yh = χ(h)hy, for h ∈ G.

In this section, we construct an idempotent e of H and show that the quotient

algebra H := H/H(1−e) is isomorphic to a pointed rank one Hopf algebra of nilpotent

type. Thus, we obtain all finite dimensional indecomposable H-modules by Theorem

2.1.4. We determine all finite dimensional simple modules over H(1− e) and it turns

out that all of them are projective. Thus, H(1− e) is semisimple. As a consequence,

we obtain all finite dimensional indecomposable H-modules up to isomorphism.

Note that the order of q = χ(g) is n. It follows that the order of g in group G is

nr for some integer r. Denote by

N = {1, gn, g2n, · · · , g(r−1)n}

and

e =
1

r
(1 + gn + g2n + · · ·+ g(r−1)n).

It is not difficult to see that the element e is a central idempotent of H and N is a

normal subgroup of G. Denote by G = G/N and h = π(h), where π is the natural

epimorphism from G to G. Then the character χ of G induces the character χ of G

such that χ ◦ π = χ. Let D = (G,χ, g, 0). Then D is a group datum of nilpotent type

since gn− 1 = 0, where n is the order of χ(g) = χ(g). Let H be the Hopf algebra HD
associated to the group datum D. That is, H is generated as an algebra by z and all

h ∈ G such that kG is a subalgebra of H and

zn = 0, zh = χ(h)hz = χ(h)hz, for h ∈ G.

The comultiplication 4, the counit ε, and antipode S of H are given respectively by

4(z) = z ⊗ g + 1⊗ z, ε(z) = 0, S(z) = −zg−1,

4(h) = h⊗ h, ε(h) = 1, S(h) = h
−1
,

for all h ∈ G. Accordingly, H is a finite dimensional pointed rank one Hopf algebra
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of nilpotent type with a k-basis {hzi | h ∈ G, 0 ≤ i ≤ n− 1}.

Lemma 3.1.1. Let kG(gn− 1) be the ideal of kG generated by gn− 1. We have that

kG/kG(gn − 1) ∼= kG.

Proof. The natural epimorphism π from G to G induces the group algebra epimorphis-

m π : kG→ kG. We claim that kerπ = kG(gn−1). The inclusion kG(gn−1) ⊆ kerπ

is obvious. Conversely, let G = Nh1 ∪ Nh2 ∪ · · · ∪ Nhs be the right coset decom-

position of G respect to the normal subgroup N . For any a ∈ kG, a can be written

as a =
∑s
i=1 ai, where each term ai is a linear combination of the elements from the

set Nhi. More explicitly, ai = (
∑r−1
j=0 λijg

jn)hi, where each constant λij ∈ k. If

π(a) = 0, then

0 =

s∑
i=1

ai =

s∑
i=1

(

r−1∑
j=0

λijgjn)hi =

s∑
i=1

(

r−1∑
j=0

λij)hi. (3.1)

Note that {hi | 1 ≤ i ≤ s} forms a basis of kG. The equality (3.1) implies that∑r−1
j=0 λij = 0 for each i. We obtain that

ai = (

r−1∑
j=0

λijg
jn)hi =

r−1∑
j=1

λij(g
jn − 1)hi ∈ kG(gn − 1),

as desired.

Remark 3.1.2. Observe that 1− e = (1− gn) 1
r

∑r−1
k=0(1 + gn + · · ·+ g(k−1)n) while

1− gn = (1− e)(1− gn), and both of them are central elements of H.

(1) The ideals kG(1− e) and kG(1− gn) coincide, hence kG ∼= kGe.

(2) The ideals H(1− e) and H(1− gn) coincide, hence H(1− e) is a Hopf ideal of

H since H(1− gn) is.

The relation between the Hopf algebra H of non-nilpotent type and H of nilpotent

type is described as follows.

Proposition 3.1.3. For the Hopf algebras H and H as above, we have the following:

(1) H is isomorphic to the quotient Hopf algebra H/H(1− e) of H.

(2) H is isomorphic to the subalgebra He of H.
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Proof. (1) It is easy to check that the algebra epimorphism ρ : H → H given by

ρ(y) = z and ρ(h) = h, for all h ∈ G respects the Hopf algebra structure. The

inclusion H(1− e) ⊆ ker ρ is obvious since ρ(e) = 1. To verify that ker ρ = H(1− e),
we only need to show that the restriction of ρ to the summand He of H is injective.

In fact, if ρ(
∑n−1
i=0 aiy

ie) = 0, for each ai ∈ kG, then
∑n−1
i=0 aiez

i = 0. It follows

that aie = 0. By Lemma 3.1.1, aie = 0 if and only if aie ∈ (gn − 1). It follows that

aie = (gn − 1)bi, for some bi ∈ kG. As a result, aie = aie
2 = e(gn − 1)bi = 0, as

desired.

(2) By Part (1), it is immediate that He ∼= H/H(1− e) ∼= H as algebras.

For the group G in the datum D, let V be a kG-module, k ∈ N and x a variable.

It is similar to Chapter 2 that xkV is a kG-module given by

h(xkv) = χ−k(h)xkhv,

for any h ∈ G and v ∈ V .

Let {Vi | i ∈ Ω} be a complete set of non-isomorphic simple kG-modules. Since g

is a central element of G, the action of gn on each Vi is a scalar multiple by a non-zero

element λi. Let Ω0 = {i ∈ Ω | λi = 1} and Ω1 = {i ∈ Ω | λi 6= 1}. In particular,

0 ∈ Ω0 since we denote by V0 the trivial H-module k. It follows from Lemma 3.1.1

that {Vi | i ∈ Ω0} is a complete set of non-isomorphic simple modules over kG.

For any i ∈ Ω0 and 1 ≤ j ≤ n, let M(i, j) := Vi⊕xVi⊕· · ·⊕xj−1Vi. Then M(i, j)

is an H-module given by

h(xkv) = χ−k(h)xkhv, 0 ≤ k ≤ j − 1,

and

y(xkv) =

xk+1v, 0 ≤ k ≤ j − 2,

0, k = j − 1,

for all h ∈ G and v ∈ Vi. Note that λi = 1 for i ∈ Ω0. For any xkv ∈M(i, j),

e(xkv) =
1

r

r−1∑
s=0

gsn(xkv) = xk(
1

r

r−1∑
s=0

gsnv) = xk(
1

r

r−1∑
s=0

λsiv) = xkv. (3.2)

Thus, the action of the idempotent e on M(i, j) is the identity. It follows from Propo-

sition 3.1.3 (1) that eachM(i, j) is exactly an H-module. Moreover, by Theorem 2.1.4,
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{M(i, j) | i ∈ Ω0, 1 ≤ j ≤ n} is a complete set of non-isomorphic indecomposable

H-modules.

We have already described all indecomposable modules over H ∼= He. In the

following, we shall study the representations of H(1− e).

For any j ∈ Ω1, let Pj := Vj ⊕ xVj ⊕ · · · ⊕ xn−1Vj . Then Pj is an H-module with

the actions given by

h(xkv) = χ−k(h)xkhv, 0 ≤ k ≤ n− 1,

and

y(xkv) =

xk+1v, 0 ≤ k ≤ n− 2,

(gn − 1)v, k = n− 1,

for all h ∈ G and v ∈ Vj . Note that λj 6= 1 and λrj = 1, for j ∈ Ω1. For any xkv ∈ Pj ,

e(xkv) =
1

r

r−1∑
s=0

gsn(xkv) = xk(
1

r

r−1∑
s=0

gsnv) = xk(
1

r

r−1∑
s=0

λsjv) = 0, (3.3)

hence each Pj is exactly an H(1− e)-module.

For any H-module V , the subspace Vy = {v ∈ V | yv = 0} is a submodule of V .

If Vy = V , then V is called y-torsion. If Vy = 0, then V is called y-torsionfree.

Obviously, if V is simple, then V is either y-torsion or y-torsionfree. To investigate

the representations of the subalgebra H(1−e) of H, we begin with the study of simple

y-torsion and y-torsionfree H-modules respectively.

Proposition 3.1.4. Let V be an H-module. Then V is simple y-torsion if and only

if V is simple over kG. Therefore, {Vi | i ∈ Ω0} is a complete set of non-isomorphic

simple y-torsion H-modules.

Proof. Suppose V is simple y-torsion, then V = Vy. That is, for any v ∈ V , yv = 0.

In particular, (gn − 1)v = ynv = 0. Hence V is simple over the quotient algebra

H/(y, gn − 1), where (y, gn − 1) is the ideal of H generated by y and gn − 1. By

Lemma 3.1.1, we have the following isomorphisms:

H/(y, gn − 1) ∼= kG/(gn − 1) ∼= kG.
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Therefore, V is simple over kG. Conversely, if V is simple over kG, by Lemma 3.1.1,

V is simple over kG satisfying (gn − 1)v = 0, for any v ∈ V . Define yv = 0 for any

v ∈ V . Then V becomes a simple y-torsion H-module.

Proposition 3.1.5. Let V be an H-module. Then V is simple y-torsionfree if and

only if V ∼= Pj, for some j ∈ Ω1. Moreover, {Pj | j ∈ Ω1} forms a complete set of

simple y-torsionfree H-modules (not necessary mutually non-isomorphism).

Proof. We assume that V is a simple y-torsionfree H-module. Then V is semisimple

as a kG-module since kG is a semisimple subalgebra of H. Hence there is some j ∈ Ω

such that Vj is a direct summand of V . Since Vj + yVj + · · ·+ yn−1Vj is a submodule

of H-module V , by the simplicity of V , we have that V = Vj +yVj + · · ·+yn−1Vj . We

claim that j ∈ Ω1 (i.e., λj 6= 1) and the sum Vj + yVj + · · ·+ yn−1Vj is a direct sum.

In fact, if λj = 1, then for any v ∈ Vj , ynv = (gn−1)v = (λj−1)v = 0. It follows that

v = 0 since V is y-torsionfree, a contradiction. Note that g is a central element of G,

there is a scalar ωj satisfying gv = ωjv, for any v ∈ Vj . If v0+yv1+· · ·+yn−1vn−1 = 0,

where each vi ∈ Vj , we have

0 = gi(v0 + yv1 + · · ·+ yn−1vn−1)

= giv0 + q−iygiv1 + · · ·+ q−(n−1)iyn−1givn−1

= ωij(v0 + q−iyv1 + · · ·+ q−(n−1)iyn−1vn−1).

This implies that

v0 + q−iyv1 + · · ·+ q−(n−1)iyn−1vn−1 = 0, for 0 ≤ i ≤ n− 1. (3.4)

Therefore, v0 = yv1 = · · · = yn−1vn−1 = 0 since the order of q is n and the coefficient

matrix determined by the equations (3.4) is a Vandermonde matrix which is invertible.

Now we have V = Vj ⊕ yVj ⊕ · · · ⊕ yn−1Vj and j ∈ Ω1. Moreover, V is isomorphic to

Pj as follows:

V → Pj ,

n−1∑
i=0

yivi 7→
n−1∑
i=0

xivi,

for each vi ∈ Vj , as asserted the first part of the proposition.

To prove the rest of the proposition, we first claim that Pj = Vj⊕xVj⊕· · ·⊕xn−1Vj

is y-torsionfree, for j ∈ Ω1. In fact, if y(v0 + xv1 + · · · + xn−1vn−1) = 0, then

(gn − 1)(v0 + xv1 + · · · + xn−1vn−1) = yn(v0 + xv1 + · · · + xn−1vn−1) = 0. That is,
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(λj−1)(v0 +xv1 + · · ·+xn−1vn−1) = 0. We obtain that v0 +xv1 + · · ·+xn−1vn−1 = 0

since λj 6= 1. Pj is simple. To obtain this, suppose V is a non-zero simple submodule

of Pj , then V is also simple y-torsionfree. By the first part of the proposition, V ∼= Pj′

for some j′ ∈ Ω1. Moreover, Vj′ ⊆ Pj′ ∼= V ⊆ Pj . Since Vj′ is a simple kG-

module and Pj is a direct sum with the summands of simple kG-modules, there

exists some k such that Vj′ ∼= xkVj . Hence, dimVj′ = dimxkVj = dimVj , it implies

that dimV = dimPj′ = dimPj . As a result, V = Pj .

In order to determine all non-isomorphic simple y-torsionfree H-modules, we need

to define a permutation on the index set Ω of simple kG-modules.

Let Vχ and Vχ−1 be two 1-dimensional simple kG-modules with respect to the

k-linear character χ and χ−1 respectively. For any simple kG-module Vs, s ∈ Ω, the

tensor product Vχ−1 ⊗ Vs ∼= Vs ⊗ Vχ−1 is also simple, it is similar to Chapter 2 that

there is a unique permutation τ of the index set Ω determined by

Vχ−1 ⊗ Vs ∼= Vs ⊗ Vχ−1
∼= Vτ(s),

for some τ(s) ∈ Ω. Moreover, it is easy to see that s ∈ Ω0 (resp. s ∈ Ω1) if and

only if τ(s) ∈ Ω0 (resp. τ(s) ∈ Ω1). That is, τ permutes the index set Ω0 and Ω1

respectively.

Lemma 3.1.6. For any s ∈ Ω and t ∈ Z, the following hold as kG-modules:

(1) Vs ⊗ Vχ ∼= Vχ ⊗ Vs ∼= Vτ−1(s).

(2) Vs ⊗ Vχ−t
∼= Vτt(s).

(3) There is an bijective σ̃s,t from Vs to Vτt(s) such that σ̃s,t(hv) = χt(h)hσ̃s,t(v),

for any h ∈ G and v ∈ Vs.

(4) xVs ∼= Vτ(s). Moreover, Vi ∼= Vj if and only if xVi ∼= xVj, for i, j ∈ Ω.

(5) The order of the permutation τ is n. Moreover, xtVs ∼= Vs if and only if t is

divisible by n, for any s ∈ Ω.

Proof. Part (1) and Part (2) are obvious. Part (3) is the same as Lemma 2.1.2.

(4) The k-linear map xv 7→ u ⊗ v gives an isomorphism from xVs to Vχ−1 ⊗ Vs,
where 0 6= u ∈ Vχ−1 . Moreover, Vi ∼= Vj if and only if Vτ(i)

∼= Vτ(j) if and only if

xVi ∼= xVj , for i, j ∈ Ω.
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(5) Note that the order of χ is n. So is the order of τ by Part (2). Suppose the

action of g on Vs is a scalar multiple by the element ωs, then the action of g on xtVs

is a scalar multiple by ωsq
−t. If xtVs ∼= Vs, then ωs = ωsq

−t and hence t is divisible

by n since the order of q is n. Conversely, if t is divisible by n, it is obvious that

xtVs ∼= Vs since the order of τ is confirmed to be n.

Let 〈τ〉 be a group generated by the permutation τ . Then 〈τ〉 acts on the index

set Ω1. By Lemma 3.1.6 (5), each 〈τ〉-orbit has exactly n distinct element, hence the

cardinality of Ω1 is divisible by n. Let ∼ be the equivalence relation on Ω1 defined

by i ∼ j if and only if i and j belong to the same 〈τ〉-orbit, for any i, j ∈ Ω1. The

equivalence class of i is denoted by [i]. Denote by Ω1 the set consisting of all distinct

equivalence classes. Let P[i] stand for one of Pj , for j ∈ Ω1 such that j ∼ i. P[i] is

well-defined as shown in the following.

Proposition 3.1.7. The set {P[i] | [i] ∈ Ω1} is a complete set of non-isomorphic

simple y-torsionfree H-modules.

Proof. Suppose Pi ∼= Pj as H-modules, so is it as kG-modules. By Krull-Schmidt

theorem, the direct summand Vi of Pi is isomorphic as kG-modules to a direct sum-

mand xkVj of Pj . By Lemma 3.1.6 (4), we have i = τk(j). Thus, i and j belong to

the same 〈τ〉-orbit. Conversely, if i = τk(j), for some k, then Vi ∼= Vτk(j)
∼= xkVj

as kG-modules. We have dimPi = dimPj since dimVi = dimxkVj = dimVj . Let ς

denote the isomorphism from Vi to xkVj . The k-linear map

Pi → Pj ,

n−1∑
s=0

xsvs 7→
n−1∑
s=0

ysς(vs),

where each vs ∈ Vi and the term ysς(vs) stands for the action of ys on ς(vs), is an

injective H-module morphism. Comparing the dimension, we conclude that Pi ∼= Pj .

By virtue of Proposition 3.1.5, we complete the proof.

Proposition 3.1.8. The set {P[i] | [i] ∈ Ω1} is a complete set of non-isomorphic

simple modules over H(1− e).

Proof. It follows from (3.3) that the simple y-torsionfree H-module Pj is simple over

the quotient algebra H/He ∼= H(1−e). Conversely, if V is a simple H(1−e)-module,

then the natural projective from H to the summand H(1 − e) of H makes V an H-

module, namely, ev = 0, for any v ∈ V . V is simple over H. In fact, if V 0 is a non-zero
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submodule of V , for any 0 6= v0 ∈ V 0, by the simplicity of V as an H(1− e)-module,

we have

V = H(1− e)v0 = {a(1− e)v0 | a ∈ H} = {av0 | a ∈ H} ⊆ V 0.

We conclude that V = V 0. V is y-torsionfree. To prove this, we suppose yv = 0,

for some v ∈ V . Then (gn − 1)v = ynv = 0, and hence gnv = v. It follows that

0 = ev = 1
r

∑r−1
k=0 g

knv = v. We conclude that V is a simple y-torsionfree H-module.

It follows from Proposition 3.1.5 that V ∼= Pj , for some j ∈ Ω1. By (3.3) as well,

each Pj is annihilated by the idempotent e. Then Pi ∼= Pj as H(1− e)-modules if and

only if Pi ∼= Pj as H-modules. According to Proposition 3.1.7, this is precisely i and

j belong to the same 〈τ〉-orbit.

Corollary 3.1.9. We have the following:

(1) For any j ∈ Ω1, Pj is projective both as an H-module and as an H(1−e)-module.

(2) The subalgebra H(1− e) of H is semisimple.

(3) The Jacobson radical of H is a principal ideal of H generated by ye.

Proof. (1) For each j ∈ Ω1, let ej be the primitive idempotent of kG such that

Vj ∼= kGej as kG-modules. Then ej is also an idempotent of H. Let Hej be the left

ideal of H generated by ej . Obviously,

Hej = kGej ⊕ ykGej ⊕ · · · ⊕ yn−1
kGej

with the direct summands of simple kG-modules. Denote by ζj the isomorphism from

Vj to kGej and consider the following k-linear map:

Pj → Hej ,

n−1∑
k=0

xkvk 7→
n−1∑
k=0

ykζj(vk),

where each vk ∈ Vj and ykζj(vk) stands for the multiplication of yk with ζj(vk) in

H. It is easy to see that the map given above is an H-module isomorphism. Hence

for each j ∈ Ω1, Pj is projective over H. To see that each Pj is also projective over

H(1− e), note that each Pj is annihilated by the idempotent e and Pj is isomorphic

to Hej as H-modules, we conclude that eej = 0. Thus, ej is an idempotent of

the subalgebra H(1 − e) and H(1 − e)ej = Hej . Now the H-module isomorphism

77



CHAPTER 3. POINTED HOPF ALGEBRAS OF RANK ONE:
NON-NILPOTENT TYPE

Pj ∼= Hej = H(1 − e)ej is also an H(1 − e)-module isomorphism. Hence Pj is

projective over H(1− e).

(2) It follows from Part (1) and Proposition 3.1.8 that all simple H(1−e)-modules

are projective. As a result, H(1− e) is semisimple.

(3) Observe that the ideal (ye) of H generated by ye is nilpotent and the quotient

algebra H/(ye) ∼= H(1 − e)
⊕
kGe is semisimple. The Jacobson radical of H is a

principal ideal generated by ye.

Recall that a finite dimensional Hopf algebra over k is said to have the Chevalley

property if the tensor product of any two simple modules is semisimple [38, Definition

7.2.1]. One of the equivalent conditions is that the radical of the Hopf algebra is a

Hopf ideal [38, Proposition 7.2.2]. In view of this, we obtain that the pointed rank

one Hopf algebra H of non-nilpotent type has no the Chevalley property since the

Jacobson radical of H is not a Hopf ideal. As we shall see that the tensor product of

any two simple H-modules is not necessary semisimple.

We summarize the main results of this section as follows.

Theorem 3.1.10. Let H and H be two Hopf algebras associated to the group data

D = (G,χ, g, 1) of non-nilpotent type and D = (G,χ, g, 0) of nilpotent type.

(1) H ∼= H/H(1− e) as Hopf algebras and H ∼= He as algebras.

(2) The subalgebra H(1− e) of H is semisimple.

(3) The set {M(i, k), P[j] | i ∈ Ω0, 1 ≤ k ≤ n, [j] ∈ Ω1} forms a complete set of

indecomposable H-modules up to isomorphism.
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3.2 Clebsch-Gordan formulas

In this section, we investigate the decomposition formulaes of tensor product of in-

decomposable H-modules. It turns out that the decomposition of the tensor product

of two indecomposable H-modules depends mainly on the decomposition of the ten-

sor products of simple kG-modules. For the sake of simplicity, we denote by πs the

projection from Vi ⊗ Vj to the summand Vs if not confused.

Lemma 3.2.1. Let Vs be a direct summand of Vi ⊗ Vj as kG-modules.

(1) If i, j ∈ Ω0, then s ∈ Ω0.

(2) If i ∈ Ω0, j ∈ Ω1 or i ∈ Ω1, j ∈ Ω0, then s ∈ Ω1.

(3) If i, j ∈ Ω1, and λiλj = 1, then s ∈ Ω0.

(4) If i, j ∈ Ω1, and λiλj 6= 1, then s ∈ Ω1.

Proof. The projective πs : Vi ⊗ Vj → Vs shows that λiλj = λs, as desired.

For any i ∈ Ω, let Bi be a set consisting of a basis of Vi. Then spBi = Vi.

Obviously, the following set

Γ = {xtu⊗ xsv | 0 ≤ t, s ≤ n− 1, u ∈ Bi, v ∈ Bj}

forms a basis of Pi ⊗ Pj , where i, j ∈ Ω1. Similarly,

Π = {xtu⊗ xsv | 0 ≤ t ≤ k − 1, 0 ≤ s ≤ n− 1, u ∈ Bi, v ∈ Bj}

and

Λ = {xsv ⊗ xtu | 0 ≤ t ≤ k − 1, 0 ≤ s ≤ n− 1, u ∈ Bi, v ∈ Bj}

form bases of M(i, k) ⊗ Pj and Pj ⊗M(i, k) respectively, where i ∈ Ω0, j ∈ Ω1 and

1 ≤ k ≤ n. We need another bases of Pi ⊗ Pj , M(i, k)⊗ Pj and Pj ⊗M(i, k) stated

respectively as follows.

Lemma 3.2.2. We have the following:

(1) For any i, j ∈ Ω1, the set

Γ̂ = {ys(xtu⊗ v) | 0 ≤ s, t ≤ n− 1, u ∈ Bi, v ∈ Bj}
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forms a basis of Pi ⊗ Pj.

(2) For any i ∈ Ω0, 1 ≤ k ≤ n and j ∈ Ω1,

Π̂ = {ys(xtu⊗ v) | 0 ≤ s ≤ n− 1, 0 ≤ t ≤ k − 1, u ∈ Bi, v ∈ Bj},

Λ̂ = {ys(v ⊗ xtu) | 0 ≤ s ≤ n− 1, 0 ≤ t ≤ k − 1, u ∈ Bi, v ∈ Bj}

form bases of M(i, k)⊗ Pj and Pj ⊗M(i, k) respectively.

Proof. (1) Since the cardinality of the set Γ is equal to the cardinality of the set Γ̂, we

only need to verify that xtu⊗ xsv ∈ spΓ̂, for any 0 ≤ s, t ≤ n− 1 and u ∈ Bi, v ∈ Bj .
The proof is proceeded by induction on s, for all 0 ≤ t ≤ n− 1 and u ∈ Bi, v ∈ Bj . It

is obvious that the result holds for s = 0. Suppose for all 0 ≤ t ≤ n−1, u ∈ Bi, v ∈ Bj
and 1 ≤ s ≤ d, where 1 ≤ d ≤ n− 2, we have xtu⊗ xsv ∈ spΓ̂. To consider the case

s = d+ 1, note that

∆(yd+1) =

d+1∑
p=0

(
d+ 1

p

)
q

yd+1−p ⊗ gd+1−pyp,

see e.g., [50, Eq.(1)], we have the following:

yd+1(xtu⊗ v) =

d+1∑
p=0

(
d+ 1

p

)
q

(yd+1−p ⊗ gd+1−pyp)(xtu⊗ v)

=

d∑
p=0

(
d+ 1

p

)
q

(yd+1−p ⊗ gd+1−pyp)(xtu⊗ v) + (1⊗ yd+1)(xtu⊗ v)

=

d∑
p=0

µp(x
npu⊗ xpv) + (xtu⊗ xd+1v),

where np is the remainder resulting from dividing d+ 1− p+ t by n and µp ∈ k. By

induction assumption, we have
∑d
p=0 µp(x

npu⊗ xpv) ∈ spΓ̂. It follows that

xtu⊗ xd+1v = yd+1(xtu⊗ v)−
d∑
p=0

µp(x
npu⊗ xpv) ∈ spΓ̂,

for any 0 ≤ t ≤ n− 1 and u ∈ Bi, v ∈ Bj , as desired.

(2) The proof of Part (2) is similar to Part (1).
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For any 0 ≤ t ≤ n− 1, we write

Γ̂t = {xtu⊗ v, y(xtu⊗ v), · · · , yn−1(xtu⊗ v) | for all u ∈ Bi, v ∈ Bj}.

It is obvious that Γ̂t is a subset of Γ̂ with the cardinality n dimVi dimVj and Γ̂ =
n−1
∪
t=0

Γ̂t, which is a disjoint union. Moreover, the subspace spΓ̂t of Pi⊗Pj is a submodule

of Pi ⊗ Pj .

Proposition 3.2.3. For any i, j ∈ Ω1, we have the following decompositions:

(1) If λiλj = 1, then Vi ⊗ Vj ∼=
⊕

s Vs for some s ∈ Ω0. In this case,

Pi ⊗ Pj ∼=
n−1⊕
t=0

⊕
s

M(τ t(s), n).

(2) If λiλj 6= 1, then Vi ⊗ Vj ∼=
⊕

s Vs for some s ∈ Ω1. In this case,

Pi ⊗ Pj ∼=
n−1⊕
t=0

⊕
s

Pτt(s).

Proof. (1) If λiλj = 1, by Lemma 3.2.1, Vi ⊗ Vj ∼=
⊕

s Vs, for some s ∈ Ω0. For any

0 ≤ t ≤ n− 1, we consider the following k-linear map:

ϕt : spΓ̂t →
⊕
s

M(τ t(s), n), yk(xtu⊗ v) 7→
∑
s

xkσ̃s,tπs(u⊗ v),

for 0 ≤ k ≤ n− 1 and u ∈ Bi, v ∈ Bj . Here the map σ̃s,t is given in Lemma 3.1.6 (3).

We first verify that ϕt respects module structure. In fact, for 0 ≤ k ≤ n− 2,

ϕt(y
k+1(xtu⊗ v)) =

∑
s

xk+1σ̃s,tπs(u⊗ v) = yϕt(y
k(xtu⊗ v)).

For k = n− 1, on the one hand,

ϕt(y
n(xtu⊗ v)) = ϕt((g

n − 1)(xtu⊗ v)) = (λiλj − 1)ϕt(x
tu⊗ v) = 0.

On the other hand, by the observation of H-module structure of M(τ t(s), n), we

obtain that

yϕt(y
n−1(xtu⊗ v)) = y(

∑
s

xn−1σ̃s,tπs(u⊗ v)) = 0.
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By Lemma 3.1.6 (3), we have σ̃s,t(hv) = χt(h)hσ̃s,t(v) for h ∈ G and v ∈ Vs. Then

ϕt(hy
k(xtu⊗ v)) = χ−k(h)ϕt(y

k(hxtu⊗ hv))

= χ−k−t(h)ϕt(y
k(xthu⊗ hv))

= χ−k−t(h)
∑
s

xkσ̃s,tπs(hu⊗ hv)

= χ−k−t(h)
∑
s

xkσ̃s,t(hπs(u⊗ v))

= χ−k−t(h)
∑
s

xkχt(h)hσ̃s,t(πs(u⊗ v))

= h
∑
s

xkσ̃s,tπs(u⊗ v)

= hϕt(y
k(xtu⊗ v)).

Hence, ϕt is an H-module morphism. To prove ϕt is injective, we suppose that

ϕt(

n−1∑
k=0

∑
u∈Bi

∑
v∈Bj

βk,u,vy
k(xtu⊗ v)) = 0,

for βk,u,v ∈ k. Then

0 =
∑
s

n−1∑
k=0

∑
u∈Bi

∑
v∈Bj

βk,u,vx
kσ̃s,tπs(u⊗ v) ∈

⊕
s

M(τ t(s), n).

It follows that
∑
u∈Bi

∑
v∈Bj

βk,u,vπs(u⊗ v) = 0 since
∑
s and

∑n−1
k=0 are direct sums

and the map σ̃s,t is bijective. Note that the map πs is projective. We obtain∑
u∈Bi

∑
v∈Bj

βk,u,v(u⊗ v) = 0.

Therefore, βk,u,v = 0, for each k, u, v since u⊗ v, u ∈ Bi, v ∈ Bj is a basis of Vi⊗Vj .
In view of the dimension,

dim spΓ̂t = n dimVi dimVj = n(
∑
s

dimVs)

= n(
∑
s

dimVτt(s)) = dim(
⊕
s

M(τ t(s), n)).
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We obtain that ϕt is an H-module isomorphism. Now by Lemma 3.2.2 (1), we obtain

the desired result:

Pi ⊗ Pj =

n−1⊕
t=0

spΓ̂t ∼=
n−1⊕
t=0

⊕
s

M(τ t(s), n).

(2) If λiλj 6= 1, by Lemma 3.2.1, Vi ⊗ Vj ∼=
⊕

s Vs, for some s ∈ Ω1. For any

0 ≤ t ≤ n− 1, we define the following k-linear map:

ψt : spΓ̂t →
⊕
s

Pτt(s), y
k(xtu⊗ v) 7→

∑
s

xkσ̃s,tπs(u⊗ v),

for 0 ≤ k ≤ n− 1 and u ∈ Bi, v ∈ Bj . It is analogous to the proof of Part (1) that ψt

is an H-module isomorphism. By Lemma 3.2.2 (1),

Pi ⊗ Pj =

n−1⊕
t=0

spΓ̂t ∼=
n−1⊕
t=0

⊕
s

Pτt(s).

We complete the proof.

For any 0 ≤ t ≤ k − 1, let

Π̂t = {xtu⊗ v, y(xtu⊗ v), · · · , yn−1(xtu⊗ v) | for all u ∈ Bi, v ∈ Bj}.

It is obvious that Π̂ =
k−1
∪
t=0

Π̂t is a disjoint union and each subset Π̂t of Π̂ has exactly

the same cardinality ndimVi dimVj . Moreover, the subspace spΠ̂t of M(i, k)⊗ Pj is

a submodule of M(i, k)⊗ Pj .

Proposition 3.2.4. If i ∈ Ω0 and j ∈ Ω1, then Vi ⊗ Vj ∼=
⊕

s Vs for some s ∈ Ω1.

In this case,

M(i, k)⊗ Pj ∼= Pj ⊗M(i, k) ∼=
k−1⊕
t=0

⊕
s

Pτt(s).

Proof. For i ∈ Ω0, j ∈ Ω1 and 1 ≤ k ≤ n, by Lemma 3.2.1, Vi⊗Vj ∼= Vj⊗Vi ∼=
⊕

s Vs,

for some s ∈ Ω1. Consider the following k-linear map

φt : spΠ̂t →
⊕
s

Pτt(s), y
k(xtu⊗ v) 7→

∑
s

xkσ̃s,tπs(u⊗ v),
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for 0 ≤ k ≤ n− 1 and u ∈ Bi, v ∈ Bj . It is analogous to the proof of Proposition 3.2.3

that φt is an H-module isomorphism. Consequently,

M(i, k)⊗ Pj =

k−1⊕
t=0

spΠ̂t
∼=

k−1⊕
t=0

⊕
s

Pτt(s).

The same argument as above shows that

Pj ⊗M(i, k) ∼=
k−1⊕
t=0

⊕
s

Pτt(s)

since Vj ⊗ Vi ∼= Vi ⊗ Vj and hence Vj ⊗ Vi has the same decomposition
⊕

s Vs.

Note that M(i, k) and M(j, l) are also H-modules. It follows from Proposition

3.1.3 (1) that the left H-module category is a monoidal full subcategory of left H-

module category. Thus the decomposition of the tensor product M(i, k)⊗M(j, l) as

H-modules is the same as the decomposition of M(i, k)⊗M(j, l) as H-modules. We

present the decomposition as follows, which can be deduced from Corollary 2.3.3.

Proposition 3.2.5. For any i, j ∈ Ω0, let Vi ⊗ Vj ∼=
⊕

s Vs.

(1) If k + l − 1 ≤ n, then

M(i, k)⊗M(j, l) ∼=
⊕
s

min{k,l}−1⊕
t=0

M(τ t(s), k + l − 1− 2t).

(2) If k + l − 1 ≥ n, then

M(i, k)⊗M(j, l) ∼=
⊕
s

(

r⊕
t=0

M(τ t(s), n)
⊕min{k,l}−1⊕

t=r+1

M(τ t(s), k + l − 1− 2t)),

where r = k + l − 1− n.

As an immediate consequence of Proposition 3.2.3, Proposition 3.2.4 and Propo-

sition 3.2.5, we have the following corollary.

Corollary 3.2.6. For any two H-modules M and N , we have that M ⊗N ∼= N ⊗M .
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3.3 The structure of Green rings

In this section, we shall describe the structure of the Green ring r(H). Denote by

M [i, k] and by P[j] the isomorphism classes of indecomposable H-modules M(i, k)

and Pj respectively. We write 1 for [k] and a for [Vχ−1 ]. Then an = 1 since the order

of χ is n.

Let r(H) be the Green ring of H. Then r(H) is a subring of r(H) deduced

from Proposition 3.1.3. The generators and relations of r(H) have been described in

Theorem 2.3.4. Let P be the free abelian group generated by all isomorphism classes

of indecomposable projective H-modules. That is,

P = Z{M [i, n], P[j] | i ∈ Ω0, [j] ∈ Ω1}.

Then P is a two-sided ideal of r(H). Let r(H)
⊕
P be the direct sum as free Z-

modules. Then r(H)
⊕
P is a commutative ring with the multiplication given by

(b1, c1)(b2, c2) = (b1b2, b1c2 + c1b2 + c1c2),

for any b1, b2 ∈ r(H) and c1, c2 ∈ P. Obviously, the identity of r(H)
⊕
P is (1, 0).

Theorem 3.3.1. Let I be the submodule of Z-module r(H)
⊕
P generated by the

elements (−M [i, n],M [i, n]) for i ∈ Ω0. Then I is a two-sided ideal of the ring

r(H)
⊕
P and the quotient ring (r(H)

⊕
P)/I is isomorphic to r(H).

Proof. For any b ∈ r(H) and c ∈ P, note that bM [i, n] is a Z-linear combination of

elements of the form M [j, n] for j ∈ Ω0. Then

(b, c)(−M [i, n],M [i, n]) = (−bM [i, n], bM [i, n]) ∈ I.

Thus, I is a two-sided ideal of r(H)
⊕
P since r(H)

⊕
P is commutative. Define the

Z-linear map ϕ from r(H)
⊕
P to r(H) as follows:

ϕ((b, c)) = b+ c

for any b ∈ r(H) and c ∈ P. It is straightforward to check that ϕ is a ring epimorphism

with kerϕ = I. We conclude that (r(H)
⊕
P)/I ∼= r(H).

In the following, we will present the Green ring r(H) in terms of generators and
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relations. The following relations are deduced from the Clebsch-Gordan formulas of

H-modules.

Proposition 3.3.2. For any i, j ∈ Ω1, the following hold in r(H):

(1) If λiλj = 1, then Vi ⊗ Vj ∼=
⊕

s Vs for some s ∈ Ω0. In this case,

P[i]P[j] = (1 + a+ · · ·+ an−1)
∑
s

M [s, n]. (3.5)

(2) If λiλj 6= 1, then Vi ⊗ Vj ∼=
⊕

s Vs for some s ∈ Ω1. In this case,

P[i]P[j] = n
∑
s

P[s]. (3.6)

Proof. (1) It follows from Proposition 3.2.3 (1) that

P[i]P[j] =

n−1∑
t=0

∑
s

M [τ t(s), n]

=

n−1∑
t=0

∑
s

atM [s, n]

= (1 + a+ · · ·+ an−1)
∑
s

M [s, n].

In addition, the expression (3.5) is well-defined. Suppose i1 = τk(i) and j1 = τp(j),

for some integers k and p. Then Vi1
∼= Vi ⊗ Vχ−k and Vj1

∼= Vj ⊗ Vχ−p . This implies

that

λi1λj1 = λiχ
−k(gn)λjχ

−p(gn) = λiλj = 1.

If Vi ⊗ Vj ∼=
⊕

s Vs, for some s ∈ Ω0, by Lemma 3.1.6, we have

Vi1 ⊗ Vj1 ∼= Vi ⊗ Vχ−k ⊗ Vj ⊗ Vχ−p

∼= Vi ⊗ Vj ⊗ Vχ−(k+p)

∼= (
⊕
s

Vs)⊗ Vχ−(k+p)

∼=
⊕
s

Vτk+p(s).
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Note that an = 1. By Proposition 3.2.3 (1), we obtain

P[i1]P[j1] =

n−1∑
t=0

∑
s

M [τ t(τk+p(s)), n]

=

n−1∑
t=0

∑
s

at+k+pM [s, n]

= (1 + a+ · · ·+ an−1)
∑
s

M [s, n]

= P[i]P[j].

(2) Note that P[τt(s)] = P[s] since τ t(s) ∼ s. By Proposition 3.2.3 (2), we obtain

P[i]P[j] =

n−1∑
t=0

∑
s

P[τt(s)] =

n−1∑
t=0

∑
s

P[s] = n
∑
s

P[s].

To show that the expression (3.6) is well-defined, we suppose i1 = τk(i) and j1 =

τp(j), for some integers k and p. Then λi1λj1 6= 1 since λiλj 6= 1. If Vi⊗Vj ∼=
⊕

s Vs,

for some s ∈ Ω1, then Vi1 ⊗ Vj1 ∼=
⊕

s Vτk+p(s) as shown above. By Proposition 3.2.3

(2), we obtain that

P[i1]P[j1] =

n−1∑
t=0

∑
s

P[τt(τk+p(s))] =

n−1∑
t=0

∑
s

P[s] = n
∑
s

P[s] = P[i]P[j],

as desired.

Proposition 3.3.3. If i ∈ Ω0 and j ∈ Ω1, then Vi ⊗ Vj ∼=
⊕

s Vs for some s ∈ Ω1.

In this case,

M [i, k]P[j] = k
∑
s

P[s]. (3.7)

Moreover, [Vi]P[j] =
∑
s P[s] and M [0, 2]P[j] = 2P[j].

Proof. By Proposition 3.2.4, we have

M [i, k]P[j] =

k−1∑
t=0

∑
s

P[τt(s)] =

k−1∑
t=0

∑
s

P[s] = k
∑
s

P[s].

It is similar that the expression (3.7) is well-defined.
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Let X = {X[i] | [i] ∈ Ω1} and r(H)[X] be the polynomial ring over r(H) in the

variables X[i] for [i] ∈ Ω1. Let I be the ideal of r(H)[X] generated by the following

four families of elements:

X[i]X[j] − (1 + a+ · · ·+ an−1)
∑
s

M [s, n], (3.8)

where i, j ∈ Ω1, λiλj = 1 and Vi ⊗ Vj ∼=
⊕

s Vs, for some s ∈ Ω0;

X[i]X[j] − n
∑
s

X[s], (3.9)

where i, j ∈ Ω1, λiλj 6= 1 and Vi ⊗ Vj ∼=
⊕

s Vs, for some s ∈ Ω1;

[Vi]X[j] −
∑
s

X[s], (3.10)

where i ∈ Ω0, j ∈ Ω1 and Vi ⊗ Vj ∼=
⊕

s Vs, for some s ∈ Ω1;

M [0, 2]X[j] − 2X[j], (3.11)

where j ∈ Ω1.

Theorem 3.3.4. The Green ring r(H) of H is isomorphic to the quotient ring

r(H)[X]/I.

Proof. It follows from Corollary 3.2.6 that r(H) is commutative and generated as

a ring by P[j], for [j] ∈ Ω1, over the subring r(H). Hence there is a unique ring

epimorphism Φ from r(H)[X] to r(H) such that the restriction of Φ to r(H) is the

identity and Φ(X[j]) = P[j] for [j] ∈ Ω1. By Proposition 3.3.2 and Proposition 3.3.3,

it is easy to check that the map Φ vanishes the generators of the ideal I given from

(3.8) to (3.11). Hence Φ induces a unique ring epimorphism Φ from r(H)[X]/I to

r(H) such that Φ(z) = Φ(z) for any z ∈ r(H)[X], where z means the image of z

under the natural epimorphism from r(H)[X] to r(H)[X]/I. Observe that as a free

Z-module, r(H)[X]/I has a Z-basis {M [i, k], X[j] | i ∈ Ω0, 1 ≤ k ≤ n, [j] ∈ Ω1}. We

conclude that r(H)[X]/I and r(H) both have the same rank as free Z-modules. As a

result, the map Φ is an isomorphism.
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3.4 Jacobson radicals and idempotents of Green rings

In this section, we use the Frobenius properties of Green rings to show that the

Green ring r(H) of a pointed rank one Hopf algebra H of non-nilpotent type has the

analogous ring-theoretical properties with those of the Green ring of a pointed rank

one Hopf algebra of nilpotent type.

Similar to the notations in Section 2.4, we make use of the following notations:

δM [i,j] = (1 + a−M [0, 2])M [i, j] = δ[k]M [i, j]

for any indecomposable non-projective H-module M(i, j), and

δM [i,n] = M [i, n]− [radM(i, n)] = M [i, n]− aM [i, n− 1]

for any indecomposable projective H-module M(i, n). Note that Pk is simple projec-

tive for k ∈ Ω1. Then

δ[Pk] = [Pk]− [radPk] = P[k].

Now the set

{δM [i,j], P[k] | i ∈ Ω0, 1 ≤ j ≤ n, [k] ∈ Ω1} (3.12)

forms a basis of r(H).

Let

P⊥ = {x ∈ r(H) | (x, y) = 0, for y ∈ P}.

Then P⊥ is an ideal of r(H) since P is. Denote by J the free abelian group generated

by all almost split sequences of H-modules. That is,

J = Z{δM [i,k] | i ∈ Ω0, 1 ≤ k ≤ n− 1}.

Then J is exactly the kernel of the natural ring epimorphism from r(H) to G0(H)

given by

M [i, j] 7→ [Vi](1 + a+ · · ·+ aj−1), P[k] 7→ P[k] for i ∈ Ω0, 1 ≤ j ≤ n, [k] ∈ Ω1.

In view of this, J is an ideal of r(H) generated by δ[k]. We have the following relation

J = P⊥ = (P⊥)∗, (3.13)
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which is similar to Proposition 2.4.1.

In the following, we use (3.13) to describe the Jacobson radical of r(H). We first

introduce the following lemma.

Lemma 3.4.1. If P ∗[k]P[l] is expressed as a linear combination of the basis of (3.12),

then the coefficient of δM [0,n] in P ∗[k]P[l] is n if [k] = [l] and 0 otherwise.

Proof. By the same argument of Proposition 2.2.7, we obtain that the dual P ∗[k]
∼=

Vχ−1 ⊗ P[k∗], hence P ∗[k] = aP[k∗], where k∗ ∈ Ω1 satisfying (Vk)∗ ∼= Vk∗ . Thus, if

λk∗λl 6= 1 (then [k] 6= [l]), by Proposition 3.3.2, P ∗[k]P[l] can be written as a linear

combination of elements of the form P[s] for some [s] ∈ Ω1. In this case, the coefficient

of δM [0,n] in P ∗[k]P[l] is 0.

If λk∗λl = 1, by Proposition 3.3.2, we have that

P ∗[k]P[l] = aP[k∗]P[l]

= a(1 + a+ · · ·+ an−1)[Vk]∗[Vl]M [0, n]

= (1 + a+ · · ·+ an−1)[Vk]∗[Vl]M [0, n].

It follows from Remark 2.5.8 (2) that

M [0, n] = (1 + a+ · · ·+ an−1)−
n−1∑
k=1

(δM [0,1] + · · ·+ δM [0,k])a
n−1−k.

In view of this,

P ∗[k]P[l] = (1 + a+ · · ·+ an−1)2[Vk]∗[Vl]

− (1 + a+ · · ·+ an−1)[Vk]∗[Vl]

n−1∑
k=1

(δM [0,1] + · · ·+ δM [0,k])a
n−1−k

= n(1 + a+ · · ·+ an−1)[Vk]∗[Vl]

− (1 + a+ · · ·+ an−1)[Vk]∗[Vl]

n−1∑
k=1

(δM [0,1] + · · ·+ δM [0,k]).

By (2.10), the coefficient of δM [0,n] in P ∗[k]P[l] is exactly the coefficient of [k] in n(1 +

a+· · ·+an−1)[Vk]∗[Vl], which is n if k and l belong to the same 〈τ〉-orbit (i.e. [k] = [l])

and 0 otherwise.
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Theorem 3.4.2. The Jacobson radical J(r(H)) of r(H) is the intersection P ∩ P⊥.

Proof. We only need to check that J(r(H)) ⊆ P⊥, since the other inclusions are

similar to that of Theorem 2.5.2. For any x ∈ J(r(H)), we suppose

x =
∑
i∈Ω0

αiδM [i,n] +
∑

[k]∈Ω1

β[k]P[k] + x0,

for αi, β[k] ∈ Z and x0 ∈ J . It follows from Proposition 3.3.3 that

x∗x = (
∑
i,j∈Ω0

αiαjδ
∗
M [i,n]δM [j,n]) + (

∑
[k],[l]∈Ω1

β[k]β[l]P
∗
[k]P[l]) +

∑
[k]∈Ω1

ξ[k]P[k] + x1,

for some ξ[k] ∈ Z and x1 ∈ J . Note that δ∗M [i,n]δM [j,n] = [Vi]
∗[Vj ] by (2.12), the

coefficient of δM [0,n] in [Vi]
∗[Vj ] is 1 if i = j and 0 otherwise by (2.10), and the

coefficient of δM [0,n] in P ∗[k]P[l] is n if [k] = [l] and 0 otherwise by Lemma 3.4.1. Thus,

if we write

y := x∗x =
∑
i∈Ω0

µiδM [i,n] +
∑

[k]∈Ω1

ζ[k]P[k] + x2,

for some x2 ∈ J , then µ0 =
∑
i∈Ω0

α2
i + n

∑
[k]∈Ω1

β2
[k]. It is similar that if

y2 = y∗y =
∑
i∈Ω0

γiδM [i,n] +
∑

[k]∈Ω1

η[k]P[k] + x3,

for some x3 ∈ J , then γ0 =
∑
i∈Ω0

µ2
i + n

∑
[k]∈Ω1

ζ2
[k]. If µ0 6= 0, then γ0 6= 0, and

therefore y2 6= 0. By repeating this process, we obtain that the power of y can not

be zero if µ0 6= 0, a contradiction to the fact that y ∈ J(r(H)). Hence µ0 = 0 and

x = x0 ∈ J = P⊥.

In the following, we study the Jacobson radical of the Green ring r(H) in terms

of generators.

Theorem 3.4.3. The Jacobson radical of r(H) is a principal ideal generated by the

element (a− 1)M [0, n].

Proof. Consider the Z-linear map φ from r(H) to r(kG) as follows:

φ([Vi]) = [Vi], φ(M [s, k]) = (1 + a+ · · ·+ ak−1)[Vs],
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and

φ(P[j]) = (1 + a+ · · ·+ an−1)[Vj ],

for any i, s ∈ Ω0, 1 ≤ k ≤ n and [j] ∈ Ω1. The map φ is well-defined. In fact, if

P[j] = P[k], then j = τ l(k), for some integer l. In this case,

(1 + a+ · · ·+ an−1)[Vj ] = (1 + a+ · · ·+ an−1)[Vτ l(k)]

= (1 + a+ · · ·+ an−1)al[Vk]

= (1 + a+ · · ·+ an−1)[Vk].

It is straightforward to verify that the map φ is a ring homomorphism. We claim that

kerφ ⊆ r(H). In fact, if the element

∑
s∈Ω0

n∑
k=1

γs,kM [s, k] +
∑

[j]∈Ω0

γ[j]P[j]

belongs to kerφ, where each γs,k, γ[j] ∈ Z, then the image of this element under φ is

zero. Namely,

∑
s∈Ω0

n∑
k=1

γs,k(1 + a+ · · ·+ ak−1)[Vs] +
∑

[j]∈Ω0

γ[j](1 + a+ · · ·+ an−1)[Vj ] = 0.

Note that the sum
∑
s∈Ω0

∑n
k=1 γs,k(1 + a+ · · ·+ ak−1)[Vs] is a linear combination of

elements of {[Vi] | i ∈ Ω0}, while the sum
∑

[j]∈Ω0
γ[j](1+a+ · · ·+an−1)[Vj ] is a linear

combination of elements of {[Vi] | i ∈ Ω1}. We obtain that both of them are equal

to zero. However,
∑

[j]∈Ω0
γ[j](1 + a + · · · + an−1)[Vj ] = 0 implies that each γ[j] = 0

since the sum [Vj ] + a[Vj ] + · · ·+ an−1[Vj ] is a 〈τ〉-orbit sum (the sum of elements in

the same 〈τ〉-orbit). We conclude that kerφ ⊆ r(H).

Note that the map φ maps nilpotent elements to nilpotent elements and r(kG) is

semisimple [81]. Thus, the Jacobson radical J(r(H)) of r(H) is contained in kerφ. It

follows from kerφ ⊆ r(H) that J(r(H)) ⊆ r(H). Consequently, J(r(H)) ⊆ J(r(H))

since the Jacobson radical of r(H) is the unique maximum nilpotent ideal of r(H).

It is obvious that J(r(H)) ⊆ J(r(H)) since r(H) is a subring of r(H). It follows

that J(r(H)) = J(r(H)). As mentioned in Theorem 2.5.7 that J(r(H)) is a principal

ideal of r(H) generated by M [0, n]θ, where θ = 1− a since the order of a is n. Hence

J(r(H)) is a principal ideal of r(H) generated by (a− 1)M [0, n].
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In the final part of this section, we show that the Green ring r(H) has only trivial

idempotents.

Theorem 3.4.4. The Green ring r(H) of H has only trivial idempotents.

Proof. By the same argument with the proof of Theorem 2.6.2, we conclude that

E ∈ P or 1 − E ∈ P for each idempotent E of r(H). We suppose E ∈ P. Then

E =
∑
i∈Ω0

βiM [i, n] +
∑

[j]∈Ω1
α[j]P[j]. Note that the image of E under the ring

epimorphism φ from r(H) to r(kG) given in the proof of Theorem 3.4.3 is

φ(E) = (
∑
i∈Ω0

βi[Vi] +
∑

[j]∈Ω1

α[j][Vj ])(1 + a+ · · ·+ an−1).

It follows that φ(E) is an idempotent of r(kG). However, r(kG) has only trivial

idempotents (Proposition 2.6.1). Hence φ(E) = 0 or 1. But (1+a+· · ·+an−1)(1−a) =

0, this implies that φ(E) = 0, namely,

(
∑
i∈Ω0

βi[Vi] +
∑

[j]∈Ω1

α[j][Vj ])(1 + a+ · · ·+ an−1) = 0.

Hence, α[j] = 0 for each [j] ∈ Ω1 since the sum [Vj ] + a[Vj ] + · · · + an−1[Vj ] is a

〈τ〉-orbit sum. As a result,

E =
∑
i∈Ω0

βiM [i, n].

Now by the same argument with the proof of Theorem 2.6.2, we obtain that E = 0.

If 1− E ∈ P, it is similar that 1− E = 0, and therefore E = 1.
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3.5 Green rings of Radford Hopf algebras

In this section, we apply the results obtained in previous sections to a family of

Hopf algebras, known as Radford Hopf algebras. This family of Hopf algebras was

introduced by Radford in [62] in order to give an example of a Hopf algebra whose

Jacobson radical is not a Hopf ideal. As a matter of fact, Radford Hopf algebras are

examples of pointed rank one Hopf algebras of non-nilpotent type.

Let G be a cyclic group of order mn with generator g. Suppose Vi is a one

dimensional vector space such that the action of g on Vi is the scalar multiple by ωi,

where ω is a primitive mn-th root of unity. Then {Vi | i ∈ Zmn} forms a complete set

of non-isomorphic simple kG-modules. Let χ be the k-linear character of Vm(n−1).

Namely, χ(g) = ωm(n−1) = ω−m, where ω−m is a primitive n-th root of unity. Then

the order of χ is n and the k-linear character of Vm is χ−1.

Let D = (G,χ, g, 1). Then the group datum D is of non-nilpotent type since

gn − 1 6= 0 and χn = 1. Let H be the Hopf algebra associated to the group datum

D. That is, H is generated as an algebra by g and y subject to the relations

gmn = 1, yg = χ(g)gy = ω−mgy, yn = gn − 1.

The comultiplication 4, counit ε, and antipode S are given respectively by

4(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1,

4(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

H is a finite dimensional pointed Hopf algebra of rank one with a k-basis {giyj | 0 ≤
i ≤ mn − 1, 0 ≤ j ≤ n − 1} and dimH = mn2. It is obvious that H is indeed a

Radford Hopf algebra.

Let N = {1, gn, g2n, · · · , g(m−1)n}, G = G/N and χ the k-linear character of G/N

such that χ(gi) = χ(gi), for 0 ≤ i ≤ mn − 1. The Hopf algebra associated to the

group datum D = (G,χ, g, 0) of nilpotent type is nothing but the Taft algebra Tn. Let

e = 1
m

∑m−1
k=0 gkn. Then e is a central idempotent of H and H has the decomposition

H ∼= He ⊕H(1 − e). By Theorem 3.1.10, the subalgebra He is isomorphic to Tn as

algebras and H(1−e) is semisimple. Moreover, H(1−e) can be decomposed as m−1

copies of matrix algebras Mn(k).
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Let Ω0 be a subset of Zmn consisting of all elements divided by m and Ω1 a

complementary subset of Ω0. Let τ be the permutation of Zmn determined by Vχ−1⊗
Vi ∼= Vτ(i), where Vχ−1 is exactly the simple kG-module Vm with the character χ−1.

It is easy to see that τ(i) = m + i, for any i ∈ Zmn. Denote by 〈τ〉 the subgroup

of the symmetry group Smn generated by the permutation τ . Then 〈τ〉 acts on

the index set Zmn. We obtain m distinct 〈τ〉-orbits [0], [1], [2], · · · , [m − 1], where

[i] = {i,m+ i, 2m+ i, · · · , (n− 1)m+ i}, for 0 ≤ i ≤ m− 1. Moreover, Ω0 = [0] and

Ω1 = [1] ∪ [2] ∪ · · · ∪ [m− 1].

It follows from Theorem 3.1.10 that

{M(i, j), P[k] | i ∈ Ω0, 1 ≤ j ≤ n, 1 ≤ k ≤ m− 1}

is a complete set of non-isomorphic indecomposable H-modules. Observe that Vi ⊗
Vj ∼= Vi+j and (ωiωj)n = 1 if and only if m | i+j for any i, j ∈ Zmn. The Proposition

3.3.2 and Proposition 3.3.3 turn out to be the following.

Proposition 3.5.1. Let i, j ∈ Ω1, s ∈ Ω0 and 1 ≤ k ≤ n.

(1) If m | i + j, then P[i]P[j] = (1 + a + · · · + an−1)M [0, n], where the element

a = [Vχ−1 ] = [Vm].

(2) If m - i+ j, then P[i]P[j] = nP[i+j].

(3) M [s, k]P[j] = kP[j]. Moreover [Vs]P[j] = P[j] and M [0, 2]P[j] = 2P[j].

We denote by Z[Y,Z,X1, X2, · · · , Xm−1] the polynomial ring over Z in the vari-

ables Y, Z,X1, X2, · · · , Xm−1. Denote by Fn(Y, Z) a Dickson polynomial of the sec-

ond type (see (2.8)) and I the ideal of Z[Y,Z,X1, X2, · · · , Xm−1] generated by the

following elements:

Y n − 1, (1 + Y − Z)Fn(Y, Z), Y X1 −X1, ZX1 − 2X1, (3.14)

Xk
1 − nk−1Xk, for 1 ≤ k ≤ m− 1, (3.15)

Xm
1 − nm−2(1 + Y + · · ·+ Y n−1)Fn(Y,Z). (3.16)

Theorem 3.5.2. The Green ring r(H) of Radford Hopf algebra H is isomorphic to

the quotient ring Z[Y,Z,X1, X2, · · · , Xm−1]/I.
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Proof. Let r(Tn) be the Green ring of the Taft algebra Tn. Then r(Tn) is generated as

a ring by the simple module a = [Vm] and the indecomposable module M [0, 2] subject

to the relations an = 1 and (1+a−M [0, 2])Fn(a,M [0, 2]) = 0, see [24, Theorem 3.10]

or Theorem 2.3.4. It follows from Theorem 3.3.4 that r(H) is commutative and

generated as a ring by P[k], for 1 ≤ k ≤ m− 1 over the subring r(Tn). In view of this,

there is a unique ring epimorphism Φ from Z[Y, Z,X1, X2, · · · , Xm−1] to r(H) such

that

Φ(Y ) = a, Φ(Z) = M [0, 2], Φ(Xk) = P[k], for 1 ≤ k ≤ m− 1.

It follows from Proposition 3.5.1 that the map Φ vanishes the generators of the ideal

I given in (3.14), (3.15) and (3.16). Hence Φ induces a unique ring epimorphism

Φ from Z[Y,Z,X1, X2, · · · , Xm−1]/I to r(H) such that Φ(z) = Φ(z) for any z in

Z[Y,Z,X1, X2, · · · , Xm−1], where z means the image of z under the natural mor-

phism from Z[Y,Z,X1, X2, · · · , Xm−1] to Z[Y,Z,X1, X2, · · · , Xm−1]/I. Observe that

Z[Y,Z,X1, X2, · · · , Xm−1]/I as a Z-module has a Z-basis {Y iZj , Xk | 0 ≤ i, j ≤
n − 1, 1 ≤ k ≤ m − 1}. Thus, as free Z-modules, Z[Y,Z,X1, X2, · · · , Xm−1]/I and

r(H) both have the same rank n2 + m − 1. It follows that the map Φ is an isomor-

phism.

Recall that the Grothendieck ring G0(H) of Radford Hopf algebra H is isomorphic

to the quotient of r(H) modulo the principal ideal generated by δ[k] (see Section 3.4).

By Theorem 3.5.2, we have the following description of G0(H) in terms of generators

and relations.

Corollary 3.5.3. The Grothendieck ring G0(H) of Radford Hopf algebra H is i-

somorphic to the quotient ring Z[Y,X1, X2, · · · , Xm−1]/I0, where I0 is the ideal of

Z[Y,X1, X2, · · · , Xm−1] generated by Y n−1, Y X1−X1, X
j
1−nj−1Xj for 1 ≤ j ≤ m−1

and Xm
1 − nm−1(1 + Y + · · ·+ Y n−1).
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Chapter 4

Stable categories of pointed

Hopf algebras of rank one

Let H be an arbitrary finite dimensional pointed Hopf algebra of rank one. In this

chapter, we show that the stable Green ring of H, i.e., the Green ring of the stable

category of H, is isomorphic to the quotient ring of r(H) modulo the ideal generated

by indecomposable projective H-modules. Then we show that the complexified stable

Green algebra possesses a group-like algebra structure, hence is a bi-Frobenius algebra.

Finally, we study Calabi-Yau objects of the stable category of H. In particular, we use

the results of Cibils and Zhang to determine the minimal, consequently all Calabi-Yau

objects in the stable category of H.

4.1 Stable Green rings

Let H be a finite dimensional pointed Hopf algebra of rank one. In this section, we

describe the stable Green ring of H and show that the complexified stable Green

algebra is indeed a group-like algebra, a notation due to Doi [28].

Denote by G the group of group-like elements of H. For the sake of convenience,
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we assume that

G̃ =

G, if H is of nilpotent,

G, if H is of non-nilpotent,

where G = G/N (see Section 3.1). Then {Vi | i ∈ Ω0} forms a complete set of

non-isomorphic simple kG̃-modules.

Recall that the stable category H-mod is the quotient category of H-mod modulo

the morphisms factoring through the projective modules. This category is triangu-

lated [43] with the monoidal structure derived from that of H-mod. The Green ring

of the stable category H-mod, denoted rst(H), is called the stable Green ring of H.

Theorem 4.1.1. The stable Green ring rst(H) is isomorphic to the quotient ring

r(H)/P, where P is the ideal of r(H) generated by the isomorphism classes of pro-

jective H-modules. Precisely, rst(H) is isomorphic to r(kG̃)[z]/(Fn(a, z)).

Proof. The functor F from H-mod to H-mod given by F (M) = M for any H-module

M , and F (φ) = φ for φ ∈ HomH(M,N) with the canonical image φ ∈ Hom(M,N)

is a full, dense tensor functor. Such a functor defines a ring epimorphism f from

r(H) to rst(H) such that f(P) = 0. Hence there is a unique ring epimorphism f

from r(H)/P to rst(H) such that f(x) = f(x), for any x ∈ r(H) with the canonical

image x ∈ r(H)/P. The rank of rst(H) is the same as the rank of r(H)/P since

there is one to one correspondence between the indecomposable objects in H-mod

and the non-projective indecomposable objects in H-mod. We conclude that rst(H)

is isomorphic to r(H)/P. It follows from Theorem 2.3.4 and Theorem 3.3.4 that the

quotient r(H)/P is always isomorphic to r(kG̃)[z]/(Fn(a, z)) no matter whether H

is of nilpotent type or of non-nilpotent type, as desired.

The stable Green ring rst(H) is semisimple since J(r(H)) ⊆ P. The set

{M [i, j] | i ∈ Ω0, 1 ≤ j ≤ n− 1}

forms a Z-basis of rst(H). Note that P∗ = P. The dual ∗ induces an automorphism

of the stable Green ring rst(H). Consider the complexified stable Green algebra

Rst(H) := C⊗Z rst(H), we shall show that this algebra is a group-like algebra.

According to the definition of a group-like algebra given in Definition 1.1.7, we

know that the complexified Green algebra R(kG̃) = C⊗Zr(kG̃) is a group-like algebra,

where the algebra morphism ε from R(kG̃) to C is given by ε([Vi]) = dim(Vi), for
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i ∈ Ω0, b = {dim(Vi)[Vi] | i ∈ Ω0} and the involution ∗ is induced by the dual map

[Vi∗ ] = [Vi]
∗, for i ∈ Ω0.

Let ε be the algebra morphism from R(kG̃)[z] to C such that

ε([Vi]) = dim(Vi), for i ∈ Ω0, ε(z) = 2 cos
π

n
.

It follows from the proof of Lemma 2.5.4 that ε(Fj(a, z)) = Fj(1, 2 cos πn ) 6= 0 for

1 ≤ j ≤ n − 1 and ε(Fn(a, z)) = Fn(1, 2 cos πn ) = 0. Since Rst(H) is isomorphic

to R(kG̃)[z]/(Fn(a, z)) (see Theorem 4.1.1), ε is exactly the algebra morphism from

Rst(H) to C such that

ε(M [i, j]) = dim(Vi)Fj(1, 2 cos
π

n
).

We denote by I = {(i, j) | i ∈ Ω0, 1 ≤ j ≤ n − 1} and b(i,j) = ε(M [i, j])M [i, j], for

(i, j) ∈ I. Then the set b = {b(i,j) | (i, j) ∈ I} forms a basis of Rst(H) with b(0,1) = 1.

Since the automorphism ∗ of r(H) preserves the ideal P, the automorphism ∗ of r(H)

induces an automorphism over the quotient ring r(H)/P ∼= rst(H), namely, for any

(i, j) ∈ I,

(M [i, j])∗ = M [i, j]∗. (4.1)

Moreover, by (2.11), we have that

ε(M [i, j]∗) = ε(M [τ1−j(i∗), j]) = ε(a1−j)ε([Vi∗ ])ε(M [0, j])

= dim(Vi∗)ε(M [0, j]) = dim(Vi)ε(M [0, j]) (4.2)

= ε(M [i, j]).

The automorphism ∗ of r(H) induces an involution on I, namely,

(i, j)∗ = (τ1−j(i∗), j), (4.3)

for any (i, j) ∈ I. With the above notations, we have the following:

Proposition 4.1.2. The quadruple (Rst(H), ε,b, ∗) is a group-like algebra.

Proof. We check the conditions (G1)-(G3) given in Definition 1.1.7. The condition

(G1) follows from (4.2) and (4.3). For the condition (G2), we have

(b(i,j))
∗ = ε(M [i, j])(M [i, j])∗ = ε(M [i, j]∗)M [i, j]∗ = b(i,j)∗ , (4.4)
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for any (i, j) ∈ I, because of (4.2), (4.1) and (4.3). For any (i, k), (j, l) ∈ I, suppose

b(i,k)b(j,l) =
∑

(s,t)∈I

p
(s,t)
(i,k)(j,l)b(s,t), (4.5)

where p
(s,t)
(i,k)(j,l) ∈ C. Applying the dual automorphism ∗ and (4.4) to the equality

(4.5), we obtain that b(j,l)∗b(i,k)∗ =
∑

(s,t)∈I p
(s,t)
(i,k)(j,l)b(s,t)∗ . It follows from (4.5) that

b(j,l)∗b(i,k)∗ =
∑

(r,q)∈I p
(r,q)
(j,l)∗(i,k)∗b(r,q). We conclude that p

(s,t)
(i,k)(j,l) = p

(s,t)∗

(j,l)∗(i,k)∗ for

any (i, k), (j, l), (s, t) ∈ I. Now we verify the condition (G3). For any (i, k), (j, l) ∈ I
such that k 6= l, note that (j, l)∗ = (τ1−l(j∗), l). By Corollary 2.3.3, the multi-

plication b(i,k)b(j,l) does not contain the term b(0,1). In this case, p
(0,1)
(i,k)(j,l) = 0 =

δ(i,k),(j,l)∗ε(b(i,k)) and the condition (G3) holds. If k = l, by Proposition 2.3.2, we

have

b(i,k)b(j,k) = ε(M [i, k])ε(M [j, k])M [i, k]M [j, k]

= ε(M [i, k])ε(M [j, k])[Vi][Vj ]M [0, k]2

= ε(M [i, k])ε(M [j, k])[Vi][Vj ](a
k−1 +

rk∑
s=2

ak−sM [0, 2s− 1]),

where rk = k if 2k− 1 ≤ n, and n− k otherwise. It follows from equation (2.16) that

[Vi][Vj ]ak−1 = [Vi][Vτk−1(j)] = δi,τ1−k(j∗)[V0] +

m∑
t=2

γt[Vt],

for some integers γt. Hence the coefficient p
(0,1)
(i,k)(j,k) of b(0,1) in b(i,k)b(j,k) is

p
(0,1)
(i,k)(j,k) = ε(M [i, k])ε(M [j, k])δi,τ1−k(j∗)

= ε(M [i, k])ε(M [j, k])δ(i,k),(j,k)∗

= ε(M [i, k])ε(M [i, k]∗)δ(i,k),(j,k)∗

= ε(b(i,k))δ(i,k),(j,k)∗ .

Therefore, the condition (G3) is satisfied.
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4.2 Bi-Frobenius algebra structure

The notion of a bi-Frobenius algebra was introduced by Doi and Takeuchi in [31]. It

generalizes the notion of a finite dimensional Hopf algebra. A group-like algebra can

be viewed as a bi-Frobenius algebra in a natural way, see Remark 1.1.8. Following

the similar approach, we define on (Rst(H), ε,b, ∗) a bi-Frobenius algebra structure

as follows.

(Rst(H), φ) is a Frobenius algebra with the Frobenius homomorphism φ given by

φ(b(i,j)) = δ(0,1),(i,j),

for (i, j) ∈ I. The pair {b(i,j),
b(i,j)∗

ε(b(i,j))
| (i, j) ∈ I} forms a dual basis of (Rst(H), φ).

Rst(H) is a coalgebra with the counit ε above, and comultiplication 4 defined by

4(b(i,j)) =
1

ε(b(i,j))
b(i,j) ⊗ b(i,j),

for (i, j) ∈ I. Now let t =
∑

(i,j)∈I b(i,j). Then (Rst(H), t) is a Frobenius coalgebra.

Define a map

S : Rst(H)→ Rst(H), b(i,j) 7→ b(i,j)∗ ,

for (i, j) ∈ I. It is easy to see that the map S is an anti-algebra and anti-coalgebra map,

so is an antipode of Rst(H). The quadruple (Rst(H), φ, t, S) forms a bi-Frobenius al-

gebra, see Definition 1.1.5. As a consequence, various properties of group-like algebras

and bi-Frobenius algebras (see [28, 29, 30, 31]) hold for Rst(H).

We have given Rst(H) a bi-Frobenius structure, where the coalgebra structure

of Rst(H) is defined directly on indecomposable H-modules. Since the stable Green

algebra Rst(H) is isomorphic to R(kG̃)[z]/(Fn(a, z)). In the final, we will identity

Rst(H) with R(kG̃)[z]/(Fn(a, z)) and translate the bi-Frobenius structure of Rst(H)

to the algebra R(kG̃)[z]/(Fn(a, z)) directly.

Recall that the Dickson polynomial Fs(y, z) of the second type is defined re-

cursively by (2.7). It follows from the general form of Fs(y, z) given by (2.8) that

{[Vi]zj | i ∈ Ω0, 0 ≤ j ≤ n− 2} forms a basis of R(kG̃)[z]/(Fn(a, z)).
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Lemma 4.2.1. We have the following reverse version of the Dickson polynomials:

zs =

b s2 c∑
i=0

(
s

i

)
s+ 1− 2i

s+ 1− i
yiFs+1−2i(y, z), for s ≥ 0.

Proof. We only give the proof of the case where s is even, and the same argument

works for the case where s is odd. For the sake of simplicity, we write Fk for Fk(y, z) for

k ≥ 1. It is obvious that the equality holds for s = 0. Suppose that the equality holds

for s = 2m, we show that it also holds for s = 2m + 2. By the recursive relations

of (2.7), we have z2F1 = F3 + yF1 and z2F2m+1−2i = F2m+3−2i + 2yF2m+1−2i +

y2F2m−1−2i. By induction hypothesis, we have

z2m+2 = z2
m∑
i=0

(
2m

i

)
2m+ 1− 2i

2m+ 1− i
yiF2m+1−2i

=

m−1∑
i=0

(
2m

i

)
2m+ 1− 2i

2m+ 1− i
yiz2F2m+1−2i +

(
2m

m

)
1

m+ 1
ymz2F1

=

m−1∑
i=0

(
2m

i

)
2m+ 1− 2i

2m+ 1− i
yi(F2m+3−2i + 2yF2m+1−2i + y2F2m−1−2i)

+

(
2m

m

)
1

m+ 1
ym(F3 + yF1)

=

m−1∑
i=0

(
2m

i

)
2m+ 1− 2i

2m+ 1− i
yiF2m+3−2i + 2

m∑
i=1

(
2m

i− 1

)
2m+ 3− 2i

2m+ 2− i
yiF2m+3−2i

+

m+1∑
i=2

(
2m

i− 2

)
2m+ 5− 2i

2m+ 3− i
yiF2m+3−2i +

(
2m

m

)
1

m+ 1
ym(F3 + yF1)

=

m−1∑
i=2

(

(
2m

i

)
2m+ 1− 2i

2m+ 1− i
+ 2

(
2m

i− 1

)
2m+ 3− 2i

2m+ 2− i
+

(
2m

i− 2

)
2m+ 5− 2i

2m+ 3− i
)

· yiF2m+3−2i + F2m+3 + (2m+ 1)yF2m+1

+

(
2m+ 2

m

)
3

m+ 3
ymF3 +

(
2m+ 2

m+ 1

)
1

m+ 2
ym+1F1

=

m+1∑
i=0

(
2m+ 2

i

)
2m+ 3− 2i

2m+ 3− i
yiF2m+3−2i.

We complete the proof for the case s is even.

If we identify Rst(H) with R(kG̃)[z]/(Fn(a, z)) under the isomorphism given in
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Theorem 4.1.1, then the basis M [i, j] in Rst(H), for i ∈ Ω0 and 1 ≤ j ≤ n − 1

is regarded as [Vi]Fj(a, z) in R(kG̃)[z]/(Fn(a, z)). Conversely, by Lemma 4.2.1, the

basis [Vi]zj in R(kG̃)[z]/(Fn(a, z)) is regarded as an element as follows:

b j2 c∑
k=0

(
j

k

)
j + 1− 2k

j + 1− k
[Vi]akFj+1−2k(a, z).

While

b j2 c∑
k=0

(
j

k

)
j + 1− 2k

j + 1− k
[Vi]akFj+1−2k(a, z) =

b j2 c∑
k=0

(
j

k

)
j + 1− 2k

j + 1− k
M [τk(i), j + 1− 2k].

With this identification, the bi-Frobenius algebra structure of R(kG̃)[z]/(Fn(a, z))

induced from Rst(H) is given as a proposition as follows.

Proposition 4.2.2. The quadruple (R(kG̃)[z]/(Fn(a, z)), φ, t, S) forms a bi-Frobenius

algebra. The Frobenius homomorphism φ is given by

φ([Vi]zj) =


( j

j
2

)
2
j+2 , j is even and [Vi] = a−

j
2 ,

0, otherwise.

The comultiplication 4 of R(kG̃)[z]/(Fn(a, z)) is given by

4([Vi]zj) =

b j2 c∑
k=0

(
j

k

)
j + 1− 2k

j + 1− k
1

dim(Vi)Fj+1−2k(1, 2 cos πn )

·[Vτk(i)]Fj+1−2k(a, z)⊗ [Vτk(i)]Fj+1−2k(a, z).

The element t is given by

t =
∑

(i,j)∈I

b(i,j) =
∑

(i,j)∈I

dim(Vi)Fj(1, 2 cos
π

n
)[Vi]Fj(a, z).

The anti-algebra and anti-coalgebra morphism S is given by

S([Vi]zj) =

b j2 c∑
k=0

(
j

k

)
j + 1− 2k

j + 1− k
[Vi∗ ]ak−jFj+1−2k(a, z).
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From the discussions above, we know that the bi-Frobenius algebra structure of

the quotient algebra R(kG̃)[z]/(Fn(a, z)) defined on the basis [Vj ]zj (polynomials) is

more complicated then that defined on M [i, j] (indecomposable H-modules). From

this point of view, it is an effective way to construct a bi-Frobenius algebra from the

stable Green algebra of a Hopf algebra.
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4.3 Calabi-Yau objects

In this section, we use the results of Cibils and Zhang in [25] to determine the minimal,

consequently all Calabi-Yau objects in stable category of H. Since H is a self-injective

algebra, the Nakayama functor N := H∗ ⊗H −, Heller’s syzygy functor Ω, and the

Auslander-Reiten translate DTr ∼= Ω2 ◦ N ∼= N ◦ Ω2 [5, P.126] are endo-equivalences

of H-mod [5, Ch IV]. Note that H-mod is a Hom-finite Krull-Schmidt triangulated

k-category with the shift functor [1] = Ω−1 [43, P.16], one gets the Serre functor

F := [1] ◦DTr ∼= Ω ◦ N of H-mod [25].

Note that H is Frobenius. There are λ ∈
∫ l
H∗

and Λ ∈
∫ r
H

such that λ(Λ) = 1 and

λ is a Frobenius homomorphism with the dual basis {S(Λ1),Λ2}. Since S(Λ) ∈
∫ l
H

,

there is a group-like element α of H∗ such that S(Λ)b = α(b)S(Λ), for b ∈ H. By

Lemma 1.4.4, we have Eyn−1 ∈
∫ l
H

, and Eyn−1h = χn−1(h)Eyn−1, Eyn−1y = 0. It

follows that

α(h) = χn−1(h), for h ∈ G, and α(y) = 0.

For the non-degenerate associative bilinear 〈b, c〉 := λ(bc), there is a Nakayama auto-

morphism µ : H → H such that 〈b, c〉 = 〈µ(c), b〉, for b, c ∈ H. For any H-module M ,

we denote by M (µ) the H-module with underlying k-space M and action b·u := µ(b)u,

for b ∈ H and u ∈M . Since twisting M by an inner automorphism reproduces M , the

Nakayama automorphisms induce naturally equivalent automorphisms on H-mod.

Lemma 4.3.1. With the notions above, the Nakayama automorphism µ of H is given

by µ(h) = χn−1(h)h, µ(y) = y, for h ∈ G.

Proof. Using the dual basis {S(Λ1),Λ2} with respect to the Frobenius homomorphism

λ, we have µ(b) =
∑
λ(µ(b)S(Λ1))Λ2 =

∑
λ(S(Λ1)b)Λ2. Applying S2 to the equality,

and recalling that λ is a left integral in H∗, we obtain that

S2(µ(b)) =
∑

S2(Λ2)λ(S(Λ1)b)

=
∑

S2(Λ3)S(Λ2)b1λ(S(Λ1)b2)

=
∑

b1λ(S(Λ)b2)

=
∑

b1λ(α(b2)S(Λ))

=
∑

b1α(b2).
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Then µ(b) =
∑
S

2
(b1)α(b2), where b ∈ H and S is the inverse of the antipode S

under composition. Since S
2
(h) = h, S

2
(y) = qy and α(h) = χn−1(h), α(y) = 0, we

have µ(h) = χn−1(h)h, µ(y) = y, as desired.

To describe the Calabi-Yau objects in H-mod, we first need to determine the

Nakayama functor N of H-modules.

Lemma 4.3.2. For any non-projective indecomposable module M(i, j), i ∈ Ω0 and

1 ≤ j ≤ n− 1, we have the following:

(1) N (M(i, j)) ∼= M(τ1−n(i), j).

(2) Ω(M(i, j)) ∼= M(τ j(i), n− j) and Ω−1(M(i, j)) ∼= M(τ j−n(i), n− j).

Proof. (1) Let ψ := µ ⊗ id be the automorphism of the algebra H ⊗Hop. Consider

H(ψ) the same as H as vector space while it is an H⊗Hop-module given by (b⊗c)·x =

µ(b)xc, for b, c, x ∈ H. Then the map

Ψ : H(ψ) → H∗,

given by Ψ(b)(c) = 〈b, c〉 is bijective since the form 〈−,−〉 is non-degenerate. More-

over, the bijective above is an H ⊗Hop-module isomorphism, where H∗ is H ⊗Hop-

modules given by ((b⊗ c) · g)(x) = g(cxb), for b, c, x ∈ H and g ∈ H∗. In fact,

Ψ((b⊗ c) · x)(z) = Ψ(µ(b)xc)(z) = 〈µ(b)xc, z〉

= 〈x, czb〉 = Ψ(x)(czb)

= ((b⊗ c) ·Ψ(x))(z),

for any b, c, x, z ∈ H. As a result,

N (M) ∼= H∗ ⊗H M ∼= H(ψ) ⊗H M ∼= M (µ),

for any H-module M . For any non-projective indecomposable module M(i, j), i ∈ Ω0

and 1 ≤ j ≤ n− 1, by Lemma 4.3.1, the following linear map

M(i, j)(µ) → Vχn−1 ⊗M(i, j), xkv 7→ u⊗ xkv,

for any v ∈ Vi and a fixed 0 6= u ∈ Vχn−1 is an H-module isomorphism. We conclude

that N (M(i, j)) ∼= Vχn−1 ⊗M(i, j) ∼= M(τ1−n(i), j).
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(2) Note that the epimorphism p : M(i, n)→M(i, j) given by

p(

n−1∑
k=0

xkvk) =

j−1∑
k=0

xkvk, for vk ∈ Vi,

induces an isomorphism M(i, n)/radM(i, n) ∼= M(i, j)/radM(i, j). The map p is a

projective cover (cf. [5, Proposition 4.3, ChI]), and therefore Ω(M(i, j)) = ker p. It is

straightforward to check that the map from Ω(M(i, j)) to M(τ j(i), n− j) given by

n−1∑
k=j

xkvk 7→
n−1∑
k=j

xk−j σ̃i,j(vk)

is an H-module isomorphism. We conclude that Ω(M(i, j)) ∼= M(τ j(i), n − j).

The isomorphism Ω−1(M(i, j)) ∼= M(τ j−n(i), n − j) follows from that Ω(M(i, j)) ∼=
M(τ j(i), n− j).

Remark 4.3.3. As mentioned previously, the Auslander-Reiten translate DTr ∼=
Ω2 ◦N ∼= N ◦Ω2, by Lemma 4.3.2, we obtain that DTrM(i, j) ∼= M(τ(i), j), which is

exactly the result of Proposition 2.2.3.

By the observation of Lemma 4.3.2, we have the following corollary:

Corollary 4.3.4. For any non-projective indecomposable module M(i, j) and m ∈ Z,

Ωm(M(i, j)) ∼=

M(τ
mn
2 (i), j), 2 | m,

M(τ j+
(m−1)n

2 (i), n− j), 2 - m.

Recall that H-mod is Calabi-Yau if and only if N ∼= Ω−(d+1) of functors for

some integer d. Denote by ◦([1]) the order of [1]. If ◦([1]) = ∞, then the integer d

above is unique and is called the Calabi-Yau dimension of H. If ◦([1]) is finite, then

the minimal non-negative integer d such that N ∼= Ω−(d+1) is called the Calabi-Yau

dimension of H (see e.g., [34, 25]).

Proposition 4.3.5. The stable category H-mod is Calabi-Yau if and only if n = 2.

In this case, the Calabi-Yau dimension of H is zero.

Proof. We assume that H-mod is Calabi-Yau, there is some integer d such that

N ∼= Ω−(d+1) and this isomorphism can be taken as H-modules (cf. [25]). For
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any non-projective indecomposable module M(i, j), by Lemma 4.3.2 and Corollary

4.3.4, N (M(i, j)) ∼= Ω−(d+1)(M(i, j)) if and only if

M(τ1−n(i), j) ∼=

M(τ−
(d+1)n

2 (i), j), 2 | d+ 1,

M(τ j−
(d+2)n

2 (i), n− j), 2 | d.

In the case 2 | d + 1, the isomorphism M(τ1−n(i), j) ∼= M(τ−
(d+1)n

2 (i), j) implies

that the order of τ divides (d−1)n
2 + 1. However, the order of τ is divisible by n. This

yields that n = 1, a contradiction to Remark 1.4.2.

In the case 2 | d, the isomorphism M(τ1−n(i), j) ∼= M(τ j−
(d+2)n

2 (i), n− j) implies

that n is even, j = n
2 and the order of τ divides (d−1)n

2 + 1. Note that the order of τ

is divisible by n. It follows that n = 2.

Conversely, if n = 2, then H is a Nakayama algebra of Loewy length 2. Hence H-

mod is Calabi-Yau with the Calabi-Yau dimension zero (cf. [34, Proposition 2.1]).

In the following, we shall determine all Calabi-Yau objects of H-mod for the case

n > 2. A d-th Calabi-Yau object M of H-mod is said to be minimal if any proper

direct summand of M is not a d-th Calabi-Yau object. Since every d-th Calabi-Yau

object is a direct sum of finitely many minimal d-th Calabi-Yau objects [25, Theorem

4.2], we only need to describe all minimal Calabi-Yau objects of H-mod. By [25,

Corollary 4.3], every minimal d-th Calabi-Yau object of H-mod is of the form⊕
0≤k≤rij−1

(Ωd+1 ◦ N )k(M(i, j)),

where rij is the relative order of Ωd+1 ◦ N with respect to non-projective inde-

composable module M(i, j). That is, rij is the minimal positive integer such that

(Ωd+1 ◦ N )rij (M(i, j)) ∼= M(i, j). It follows from Corollary 4.3.4 that

(Ωd+1 ◦ N )(M(i, j)) ∼=

M(τ1+
(d−1)n

2 (i), j), 2 | d+ 1,

M(τ j+1+
(d−2)n

2 (i), n− j), 2 | d.

If 2 | d+ 1, then for any m ∈ Z, we have

(Ωd+1 ◦ N )m(M(i, j)) ∼= M(τm+
(d−1)mn

2 (i), j).
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If 2 | d, then

(Ωd+1 ◦ N )m(M(i, j)) ∼=

M(τm+
(d−1)mn

2 (i), j), 2 | m,

M(τ j+m+
(d−1)mn−n

2 (i), n− j), 2 - m.

Consequently, together with Lemma 4.3.2, all minimal d-th Calabi-Yau objects of

H-mod are described completely as follows.

Theorem 4.3.6. Let n > 2 and M be a minimal d-th Calabi-Yau object of H-mod.

(1) If d is odd, then M is isomorphic to one of the following:⊕
0≤m≤mi−1

M(τm+
(d−1)mn

2 (i), j),

where i ∈ Ω0, 1 ≤ j ≤ n − 1 and mi is the least positive integer satisfying

τmi+
(d−1)min

2 (i) = i.

(2) If d is even, then M is isomorphic to one of the following:⊕
0≤m≤mi−1,

2|m

M(τm+
(d−1)mn

2 (i), j)
⊕ ⊕

1≤m≤mi,
2-m

M(τ j+m+
(d−1)mn−n

2 (i), n− j),

where i ∈ Ω0, 1 ≤ j ≤ n − 1 and mi is the least positive integer satisfying

τmi+
(d−1)min

2 (i) = i.

If we restrict to the case that H is of non-nilpotent type, then the order of τ is n.

Note that n is the least positive integer satisfying τn(i) = i for any i ∈ Ω0 (Lemma

3.1.6 (5)). According to Theorem 4.3.6, the minimal d-th Calabi-Yau objects of H-

mod can be described explicitly as follows.

Corollary 4.3.7. Let H be a finite dimensional pointed rank one Hopf algebra of

non-nilpotent type, n > 2 and M a minimal d-th Calabi-Yau object of H-mod. If d is

odd, then M is isomorphic to one of the following:⊕
0≤k≤n−1

M(τk(i), j),

where i ∈ Ω0, 1 ≤ j ≤ n− 1.
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If d is even, then M is isomorphic to one of the following:

(1) ⊕
0≤k≤n

2−1

(M(τ2k(i), j)
⊕

M(τ2k(i), n− j)),

where n is even, i ∈ Ω0, 1 ≤ j ≤ n− 1, j is odd and j 6= n
2 .

(2) ⊕
0≤k≤n

2−1

M(τ2k(i), j),

where n is even, i ∈ Ω0, j = n
2 is odd.

(3) ⊕
0≤k≤n

2−1

(M(τ2k(i), j)
⊕

M(τ2k+1(i), n− j)),

where n is even, i ∈ Ω0, 1 ≤ j ≤ n− 1 and j is even.

(4) ⊕
0≤k≤n−1

(M(τk(i), j)
⊕

M(τk(i), n− j)),

where n is odd, i ∈ Ω0, 1 ≤ j ≤ n− 1.
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Chapter 5

Green rings of finite

dimensional Hopf algebras

In this chapter, we attempt to extend those ring-theoretical properties of the Green

ring of a finite dimensional pointed Hopf algebra of rank one to the Green ring of an

arbitrary finite dimensional Hopf algebra H. We first study the quantum dimensions

of H-modules. We determine when an H-module is of quantum dimension zero or

non-zero. In particular, we answer the question raised by Cibils: when does the

trivial module appear as a direct summand of the tensor product M ⊗N for any two

indecomposable modules M and N?

We then study some properties of the Green ring r(H) of H by means of the

bilinear form (−,−). This involves the descriptions of some one-sided ideals, the

nilpotent ideals and central primitive idempotents of r(H). In addition, we show

that the stable Green ring of H possesses an associative non-degenerate bilinear form

induced by the bilinear form (−,−) on r(H).

If H is a finite dimensional spherical Hopf algebra, then the quotient ring of r(H)

modulo all objects of quantum dimension zero is isomorphic to the Green ring of

the quotient category of H-module category modulo all negligible morphisms. In

particular, if H is of finite representation type, then the complexified quotient ring is

a group-like algebra, and hence a bi-Frobenius algebra.
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5.1 Quantum dimensions

In this section, we shall use the techniques given in [42], [80] and [5, Section 4, ChV]

to characterize when the trivial module appears as a direct summand of the tensor

productM⊗N , a question raised by Cibils. As we shall see, these equivalent assertions

are also principal in the study of the Green ring of a Hopf algebra.

Let H be a finite dimensional Hopf algebra over the field k. For any two finite

dimensional H-modules X and Y , the k-linear space Homk(X,Y ) is an H-module

defined by (hf)(x) =
∑
h1f(S(h2)x), for h ∈ H, x ∈ X and f ∈ Homk(X,Y ). In

the special case where Y = k, the trivial H-module, then X∗ = Homk(X,k) is an

H-module given by (hf)(x) = f(S(h)x), for h ∈ H, x ∈ X and f ∈ X∗.

The evaluation of H-module X is the morphism evX : X∗ ⊗ X → k given by

evX(f ⊗ x) = f(x). The coevaluation of X is the morphism coevX : k → X ⊗ X∗

given by coevX(1) =
∑
i xi ⊗ x∗i , where {xi} is a basis of X and {x∗i } its dual basis

in X∗.

For any H-module X, the left quantum dimension of θ ∈ HomH(X,X∗∗) is defined

by the following composition

TrLX(θ) : k
coevX−−−−→ X ⊗X∗ θ⊗idX∗−−−−−→ X∗∗ ⊗X∗ evX∗−−−→ k. (5.1)

Similarly, the right quantum dimension of θ ∈ HomH(X∗∗, X) is defined by

TrRX(θ) : k
coevX∗−−−−−→ X∗ ⊗X∗∗ idX∗⊗θ−−−−−→ X∗ ⊗X evX−−→ k. (5.2)

Because of EndH(k) ∼= k, TrLX(θ) and TrRX(θ) can be regarded as elements of k.

Remark 5.1.1. Applying the duality functor ∗ to (5.1) and (5.2) respectively, one

obtains that TrLX(θ) = TrRX∗(θ
∗) and TrRX(θ) = TrLX∗(θ

∗). We refer the reader to [36,

Proposition 1.37.1] for the similar results in the categorical setting.

Remark 5.1.2. Let P be a projective H-module. If H is not semisimple, then

TrLP (θ) = 0 for any θ ∈ HomH(P, P ∗∗). Otherwise, the morphism coevP is a split

monomorphism by (5.1), and k is a direct summand of the projective module P ⊗P ∗.
Hence k is projective, implying that H is semisimple. Similarly, if H is not semisimple,

then TrRP (θ) = 0 for any θ ∈ HomH(P ∗∗, P ). If H is involutory, that is, S2 = idH ,

then the map θ : P → P ∗∗ given by θ(x)(f) = f(x) for x ∈ P and f ∈ P ∗ is an
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H-module isomorphism. In particular, TrLP (θ) = TrRP (θ−1) = dimP . This implies

that an involutory Hopf algebra over the field k of characteristic 0 is semisimple (the

converse is always true [54]).

Lemma 5.1.3. For H-modules X, Y and Z, we have the following canonical iso-

morphisms functorial in X, Y and Z:

(1) ΦX,Y,Z : HomH(X ⊗ Y,Z)→ HomH(X,Z ⊗ Y ∗).

(2) ΨX,Y,Z : HomH(X,Y ⊗ Z)→ HomH(Y ∗ ⊗X,Z).

Proof. These isomorphisms come from [13, Lemma 2.1.6]. More explicitly, the i-

somorphism ΦX,Y,Z is given by ΦX,Y,Z(α) = (α ⊗ idY ∗) ◦ (idX ⊗ coevY ) with the

inverse map Φ−1
X,Y,Z(β) = (idZ ⊗ evY ) ◦ (β ⊗ idY ) for α ∈ HomH(X ⊗ Y, Z) and

β ∈ HomH(X,Z ⊗ Y ∗). Similarly, ΨX,Y,Z(γ) = (evY ⊗ idZ) ◦ (idY ∗ ⊗ γ) with the

inverse map Ψ−1
X,Y,Z(δ) = (idY ⊗ δ) ◦ (coevY ⊗ idX) for γ ∈ HomH(X,Y ⊗ Z) and

δ ∈ HomH(Y ∗ ⊗X,Z).

The canonical isomorphisms given in Lemma 5.1.3 have the following properties.

Proposition 5.1.4. Let X be an indecomposable H-module and θ : X → X∗∗ an

H-module isomorphism. For any H-module Y , we have the following:

(1) The canonical isomorphism ΦY,X∗,k : HomH(Y ⊗X∗,k)→ HomH(Y,X∗∗) pre-

serves split epimorphisms.

(2) The canonical isomorphism ΨY,X,k : HomH(Y,X)→ HomH(X∗ ⊗ Y,k) reflects

split epimorphisms.

Proof. (1) If the map α ∈ HomH(Y ⊗ X∗,k) is a split epimorphism, then there

is some β ∈ HomH(k, Y ⊗ X∗) such that α ◦ β = idk. For the map β, there is

γ ∈ HomH(X,Y ) such that β = Φk,X,Y (γ). Note that the composition ΦY,X∗,k(α) ◦
γ ◦ θ−1 ∈ EndH(X∗∗). If ΦY,X∗,k(α) ◦ γ ◦ θ−1 ∈ radEndH(X∗∗), so is (ΦY,X∗,k(α) ◦
γ ◦ θ−1)⊗ idX∗ ∈ radEndH(X∗∗ ⊗X∗). Hence the following endomorphism of k

evX∗ ◦ ((ΦY,X∗,k(α) ◦ γ ◦ θ−1 ◦ θ)⊗ idX∗) ◦ coevX ,
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factoring through (ΦY,X∗,k(α) ◦ γ ◦ θ−1)⊗ idX∗ , is zero. However,

evX∗ ◦ ((ΦY,X∗,k(α) ◦ γ ◦ θ−1 ◦ θ)⊗ idX∗) ◦ coevX
= Φ−1

Y,X∗,k(ΦY,X∗,k(α)) ◦ Φk,X,Y (γ)

= α ◦ β

= idk,

a contradiction. This means that ΦY,X∗,k(α) ◦ γ ◦ θ−1 is an automorphism of X∗∗

since EndH(X∗∗) is local. Thus, the map ΦY,X∗,k(α) is a split epimorphism.

(2) Given α ∈ HomH(Y,X) such that ΨY,X,k(α) is a split epimorphism. There is

some β ∈ HomH(k, X∗ ⊗ Y ) such that ΨY,X,k(α) ◦ β = idk. For the map β, there is

γ ∈ HomH(X∗∗, Y ) such that β = Ψ−1
k,X∗,Y (γ). Note that the composition α ◦ γ ◦ θ ∈

EndH(X). If α ◦ γ ◦ θ ∈ radEndH(X), so is idX∗ ⊗ (α ◦ γ ◦ θ) ∈ radEndH(X∗ ⊗X).

Hence the following endomorphism of k

evX ◦ (idX∗ ⊗ (α ◦ γ ◦ θ ◦ θ−1)) ◦ coevX∗ ,

factoring through idX∗ ⊗ (α ◦ γ ◦ θ), is zero. However,

evX ◦ (idX∗ ⊗ (α ◦ γ ◦ θ ◦ θ−1)) ◦ coevX∗

= ΨY,X,k(α) ◦Ψ−1
k,X∗,Y (γ)

= ΨY,X,k(α) ◦ β

= idk,

a contradiction. This means that α ◦ γ ◦ θ is an automorphism of X since EndH(X)

is local. Thus, the map α is a split epimorphism.

As an immediate consequence of Proposition 5.1.4, we have the following corollary.

Corollary 5.1.5. Let X and Y be indecomposable H-modules and X ∼= X∗∗.

(1) If k | Y ⊗X∗, then Y ∼= X∗∗.

(2) If k | X∗ ⊗ Y , then X ∼= Y .

To pursue Corollary 5.1.5 even further, we need some preparations. For any integer

m > 0, the m-th power of dual ∗ on X is denoted by X∗m. If {xi} is a basis of X,
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we denote by {x∗mi } the basis of X∗m which is dual to the basis {x∗m−1
i } of X∗m−1.

That is, 〈x∗mi , x∗m−1
j 〉 = δi,j . With these notations, we have the following.

Lemma 5.1.6. Let X be an indecomposable H-module.

(1) For any θ ∈ HomH(X,X∗∗), if TrLX(θ) 6= 0, then the map θ is an isomorphism.

(2) For any θ ∈ HomH(X∗∗, X), if TrRX(θ) 6= 0, then the map θ is an isomorphism.

Proof. We only prove Part (1) and the proof of Part (2) is similar. Denote by A the

transformation matrix of θ ∈ HomH(X,X∗∗) with respect to the bases {xi} of X and

{x∗∗i } of X∗∗. The left quantum dimension of θ is TrLX(θ) = tr(A), the usual trace of

the matrix A. Suppose that S2n = idH . Then the map

γ : X∗2n → X,
∑
i

λix
∗2n
i 7→

∑
i

λixi

is an H-module isomorphism. Moreover, the matrix of the map γ with respect to the

basis {x∗2ni } of X∗2n and the basis {xi} of X is the identity matrix. Consider the

following composition:

Θ : X
θ−→ X∗∗

θ∗∗−−→ X∗∗∗∗ → · · · → X∗2n−2 θ∗2n−2

−−−−→ X∗2n
γ−→ X.

The matrix of the map Θ from X to itself under the basis {xi} of X is An. Note that

EndH(X) is local, the map Θ is either nilpotent or isomorphic. If Θ is nilpotent, then

An, and hence A, is nilpotent. This implies that TrLX(θ) = tr(A) = 0, a contradiction.

Thus, Θ is an isomorphism, and therefore the map θ is an isomorphisms.

Cibils in [21, Remark 5.8] mentioned the following question: when is the trivial

module a direct summand of tensor product M ⊗ N for a finite dimensional Hopf

algebra with antipode of order bigger than 2? Now we are ready to answer this

question as follows.

Theorem 5.1.7. Let X and Y be two indecomposable H-modules.

(1) k | Y ⊗X∗ if and only if there are isomorphisms f : X → Y and g : Y → X∗∗

such that TrLX(g ◦ f) = idk.

(2) k | X∗ ⊗ Y if and only if there are isomorphisms f : X∗∗ → Y and g : Y → X

such that TrRX(g ◦ f) = idk.
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Proof. We only prove Part (1), the same argument works for Part (2). If there are

isomorphisms X
f−→ Y

g−→ X∗∗ such that TrLX(g ◦ f) = idk, by (5.1), we have

idk = TrLX(g ◦ f) = evX∗ ◦ (g ⊗ idX∗) ◦ (f ⊗ idX∗) ◦ coevX .

This implies that the map (f ⊗ idX∗)◦ coevX : k→ Y ⊗X∗ is a split monomorphism,

and hence k | Y ⊗X∗. Conversely, if k | Y ⊗X∗, then there is a map α : k→ Y ⊗X∗

and a map β : Y ⊗X∗ → k such that β ◦ α = idk. For the map α, by Lemma 5.1.3,

there is f : X → Y such that

α = Φk,X,Y (f) = (f ⊗ idX∗) ◦ (idk ⊗ coevX).

Similarly, for the map β, there is g : Y → X∗∗ such that

β = Φ−1
Y,X∗,k(g) = (idk ⊗ evX∗) ◦ (g ⊗ idX∗).

This yields that

TrLX(g ◦ f) = evX∗ ◦ (g ⊗ idX∗) ◦ (f ⊗ idX∗) ◦ coevX

= (idk ⊗ evX∗) ◦ (g ⊗ idX∗) ◦ (f ⊗ idX∗) ◦ (idk ⊗ coevX)

= β ◦ α

= idk.

The fact that the composition g ◦ f is an isomorphism follows from Lemma 5.1.6. We

obtain that f and g are both isomorphisms.

For any two indecomposable modules X and Y , one knows little about how to

decompose the tensor product X ⊗ Y into a direct sum of indecomposable modules.

However, there are still some rules that the decomposition should follow as shown in

the following.

Proposition 5.1.8. Let X, Y and M be H-modules with X and M indecomposable.

(1) If M | X ⊗ Y and k |M ⊗M∗, then k | X ⊗X∗ and X |M ⊗ Y ∗.

(2) If M | Y ⊗X and k |M∗ ⊗M , then k | X∗ ⊗X and X | Y ∗ ⊗M .

Proof. (1) We only prove Part (1) and the proof of Part (2) is similar. The conditions

k |M ⊗M∗ and M | X ⊗ Y imply that k | X ⊗ Y ⊗M∗. Suppose Y ⊗M∗ ∼=
⊕

iN
∗
i
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for some indecomposable modules Ni. There is an indecomposable module Ni such

that k | X ⊗ N∗i . By Theorem 5.1.7 (1), we obtain X ∼= Ni ∼= N∗∗i . It follows that

k | X⊗N∗i ∼= X⊗X∗. Note that k |M⊗M∗ implies that M ∼= M∗∗. Then X ∼= N∗∗i
implies that X | (Y ⊗M∗)∗ ∼= M ⊗ Y ∗, as desired.

As an immediate consequence of Proposition 5.1.8, we obtain the following corol-

lary, which will be used in the next section.

Corollary 5.1.9. Let X and M be two indecomposable H-modules.

(1) If k - X ⊗X∗ and M | X ⊗ Y , then k -M ⊗M∗.

(2) If k - X∗ ⊗X and M | Y ⊗X, then k -M∗ ⊗M .

In the following of this section, H is always a non-semisimple Hopf algebra. We

have the almost split sequence

0→ τ(k)→ E
σ−→ k→ 0 (5.3)

ending at the trivial module k. By tensoring (over k) the sequence (5.3) with an

indecomposable module X, we obtain the following two short exact sequences:

0→ τ(k)⊗X → E ⊗X σ⊗idX−−−−→ X → 0 (5.4)

0→ X ⊗ τ(k)→ X ⊗ E idX⊗σ−−−−→ X → 0. (5.5)

Lemma 5.1.10. For any two H-modules X and Y , we have the commutative dia-

grams:

HomH(Y,X ⊗ E)
(idX⊗σ)∗−−−−−−→ HomH(Y,X)

ΨY,X,E

y ΨY,X,k

y
HomH(X∗ ⊗ Y,E)

σ∗−−−−→ HomH(X∗ ⊗ Y,k),

(5.6)

HomH(Y ⊗X,E)
σ∗−−−−→ HomH(Y ⊗X,k)

ΦY,X,E

y ΦY,X,k

y
HomH(Y,E ⊗X∗) (σ⊗idX∗ )∗−−−−−−−→ HomH(Y,X∗).

(5.7)

Proof. The verification of the commutative diagrams follows from Lemma 5.1.3 and

is straightforward.
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In the following, we shall give some equivalent characterizations on whether or not

the trivial module k appears in the tensor product X∗ ⊗X (resp. X ⊗X∗). For the

case where the square of antipode is inner, we refer to [42, 80].

Proposition 5.1.11. Let X be an indecomposable H-module. The following are

equivalent:

(1) k - X∗ ⊗X.

(2) The map HomH(X∗ ⊗X,E)
σ∗−→ HomH(X∗ ⊗X,k) is surjective.

(3) The map HomH(X,X ⊗ E)
(idX⊗σ)∗−−−−−−→ HomH(X,X) is surjective.

(4) The map X ⊗ E idX⊗σ−−−−→ X is a split epimorphism.

(5) The map E ⊗X∗ σ⊗idX∗−−−−−→ X∗ is a split epimorphism.

Proof. (1) ⇔ (2). If k - X∗ ⊗X, then for any α ∈ HomH(X∗ ⊗X,k), the map α is

not a split epimorphism. Since σ is right almost split from E to k, there is a map β

from X∗ ⊗X to E such that σ ◦ β = α. This implies that the map σ∗ is surjective.

Conversely, if the map σ∗ is surjective, then k - X∗ ⊗ X. Otherwise, by Theorem

5.1.7 (2), there is an isomorphism θ : X∗∗ → X such that TrRX(θ) = idk. For the map

evX : X∗⊗X → k, there is some β ∈ HomH(X∗⊗X,E) such that σ ◦β = evX since

the map σ∗ is surjective. It follows that

idk = TrRX(θ) = evX ◦ (idX∗ ⊗ θ) ◦ coevX∗ = σ ◦ β ◦ (idX∗ ⊗ θ) ◦ coevX∗ .

We obtain that the map σ is a split epimorphism, a contradiction to the fact that σ

is right almost split.

(2)⇔ (3). It follows from (5.6) that the following diagram is commutative:

HomH(X,X ⊗ E)
(idX⊗σ)∗−−−−−−→ HomH(X,X)

ΨX,X,E

y ΨX,X,k

y
HomH(X∗ ⊗X,E)

σ∗−−−−→ HomH(X∗ ⊗X,k).

This implies that σ∗ is surjective if and only if (idX ⊗ σ)∗ is surjective.

(3)⇔ (4). If (idX ⊗σ)∗ is surjective, then for the map idX ∈ HomH(X,X), there

is a map α ∈ HomH(X,X ⊗ E) such that (idX ⊗ σ)∗(α) = idX . This means that
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(idX ⊗σ)◦α = idX , and hence idX ⊗σ is a split epimorphism. Conversely, if idX ⊗σ
is a split epimorphism, there is α ∈ HomH(X,X ⊗E) such that (idX ⊗ σ) ◦α = idX .

For any β ∈ HomH(X,X), we have (idX ⊗ σ)∗(α ◦ β) = β. It follows that the map

(idX ⊗ σ)∗ is surjective.

(2)⇔ (5). It follows from (5.7) that the diagram

HomH(X∗ ⊗X,E)
σ∗−−−−→ HomH(X∗ ⊗X,k)

ΦX∗,X,E

y ΦX∗,X,k

y
HomH(X∗, E ⊗X∗) (σ⊗idX∗ )∗−−−−−−−→ HomH(X∗, X∗).

is commutative. We obtain that σ∗ is surjective if and only if (σ⊗idX∗)∗ is surjective.

If (σ⊗idX∗)∗ is surjective, for idX∗ ∈ HomH(X∗, X∗), there is α ∈ HomH(X∗, E⊗X∗)
such that idX∗ = (σ ⊗ idX∗)∗(α) = (σ ⊗ idX∗) ◦ α. This implies that the map

σ⊗idX∗ is a split epimorphism. Conversely, if σ⊗idX∗ is a split epimorphism, there is

α ∈ HomH(X∗, E⊗X∗) such that (σ⊗idX∗)◦α = idX∗ . For any β ∈ HomH(X∗, X∗),

we obtain that (σ ⊗ idX∗)∗(α ◦ β) = β. It follows that the map (σ ⊗ idX∗)∗ is

surjective.

Similarly, there are some equivalent characterizations of the property that k -
X ⊗X∗. However, we only need the following.

Proposition 5.1.12. Let X be an indecomposable H-module. The following are

equivalent:

(1) k - X ⊗X∗.

(2) The map E ⊗X σ⊗idX−−−−→ X is a split epimorphism.

Proof. Let Y be an indecomposable module such that Y ∗ ∼= X (such a Y exists as

the order of S2 is finite). Then k - X ⊗ X∗ if and only if k - (Y ∗ ⊗ Y )∗ if and

only if k - Y ∗ ⊗ Y . By Proposition 5.1.11, this is precisely that σ ⊗ idY ∗ is a split

epimorphism.

Proposition 5.1.13. Let X be an indecomposable H-module. The following are

equivalent:

(1) k | X∗ ⊗X.
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(2) The map X ⊗ E idX⊗σ−−−−→ X is right almost split.

Proof. If idX ⊗ σ is right almost split, then it is not a split epimorphism. By Propo-

sition 5.1.11, we have that k | X∗ ⊗ X. Conversely, if k | X∗ ⊗ X, by Proposition

5.1.11, the map idX ⊗ σ is not a split epimorphism. The condition k | X∗ ⊗ X

also implies that X ∼= X∗∗. Now by Proposition 5.1.4 (2), for any non-split epimor-

phism α ∈ HomH(Y,X), the map ΨY,X,k(α) ∈ HomH(X∗ ⊗ Y,k) is also non-split

epimorphism. For the map ΨY,X,k(α), there is a map β ∈ HomH(X∗ ⊗ Y,E) such

that

σ ◦ β = ΨY,X,k(α)

since σ is right almost split. For the map β, we obtain the map Ψ−1
Y,X,E(β) ∈

HomH(Y,X ⊗ E). We claim that the map Ψ−1
Y,X,E(β) satisfies the relation (idX ⊗

σ) ◦ Ψ−1
Y,X,E(β) = α, and therefore idX ⊗ σ is right almost. Note that the commuta-

tive diagram (5.6) implies that

ΨY,X,k ◦ (idX ⊗ σ)∗ = σ∗ ◦ΨY,X,E .

It follows that

α = Ψ−1
Y,X,k(σ ◦ β)

= (Ψ−1
Y,X,k ◦ σ∗)(β)

= ((idX ⊗ σ)∗ ◦Ψ−1
Y,X,E)(β)

= (idX ⊗ σ) ◦Ψ−1
Y,X,E(β).

This completes the proof.

Proposition 5.1.14. Let X be an indecomposable H-module. The following are

equivalent:

(1) k | X ⊗X∗.

(2) The map E ⊗X σ⊗idX−−−−→ X is right almost split.

Proof. If the map σ⊗ idX is right almost split, then it is not a split epimorphism. By

Proposition 5.1.12, we obtain k | X ⊗X∗. Conversely, to show that σ ⊗ idX is right

almost split, it is equivalent to showing that σ ⊗ idX∗∗ is right almost split because

k | X ⊗X∗ implies that X ∼= X∗∗ (Theorem 5.1.7 (1)). Note that k | X∗∗ ⊗X∗∗∗.
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It follows from Proposition 5.1.12 that the map σ⊗ idX∗∗ is not a split epimorphism.

For any α ∈ HomH(Y,X∗∗) which is not a split epimorphism, by Proposition 5.1.4

(1), Φ−1
Y,X∗,k(α) ∈ HomH(Y ⊗X∗,k) is also not split epimorphism. We obtain a map

β ∈ HomH(Y ⊗X∗, E) such that

σ ◦ β = Φ−1
Y,X∗,k(α)

since the map σ is right almost split. In the following, we will verify that the map

ΦY,X∗,E(β) ∈ HomH(Y,E⊗X∗∗) satisfies (σ⊗ idX∗∗)◦ΦY,X∗,E(β) = α, and therefore

the map σ ⊗ idX∗∗ is right almost split. To this end, by replacing X with X∗ in

commutative diagram (5.7), we obtain that

ΦY,X∗,k ◦ σ∗ = (σ ⊗ idX∗∗)∗ ◦ ΦY,X∗,E .

Then

α = ΦY,X∗,k(σ ◦ β)

= (ΦY,X∗,k ◦ σ∗)(β)

= ((σ ⊗ idX∗∗)∗ ◦ ΦY,X∗,E)(β)

= (σ ⊗ idX∗∗) ◦ ΦY,X∗,E(β).

We complete the proof.

An indecomposable module satisfying one of the equivalent conditions in Propo-

sition 5.1.14 is called a splitting trace module (cf. [3, 32, 42, 80]).
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5.2 Some ring-theoretical properties of Green rings

In this section, we study some ring-theoretical properties of the Green ring r(H) of

a finite dimensional Hopf algebra H. We use the bilinear form (−,−) to investigate

relations of some one-sided ideals of r(H). We describe nilpotent ideals and central

primitive idempotents of r(H).

Recall that δ[Z] = [X] − [Y ] + [Z] if 0 → X → Y → Z → 0 is almost split. The

existence condition of δ[Z] can be simplified as follows.

Proposition 5.2.1. Let 0 → X → Y
α−→ Z → 0 be a short exact sequence of H-

modules ending at an indecomposable non-projective module Z. If the map α is right

almost split, then δ[Z] = [X]− [Y ] + [Z].

Proof. Note that the sequence

0→ X → Y
α−→ Z → 0 (5.8)

is exact and the map α is right almost split. It follows from [5, Theorem 2.2, ChI]

that the middle term Y has a decomposition Y = Y1

⊕
Y2 such that the restriction

of α to the summand Y1, denoted by α|Y1 , is right minimal, and the restriction to

the summand Y2 is zero. We obtain that α|Y1
is both right minimal and right almost

split. According to [5, Proposition 1.12, ChV], the sequence

0→ ker(α|Y1
)
ι−→ Y1

α|Y1−−−→ Z → 0

is almost split, where ι is the inclusion map. Thus, δ[Z] = [ker(α|Y1
)] − [Y1] + [Z].

Meanwhile, it is easy to see that the sequence

0→ ker(α|Y1
)
⊕

Y2

ι
∐
idY2−−−−−→ Y1

⊕
Y2

α−→ Z → 0 (5.9)

is exact. Applying the short five lemma to the sequences (5.8) and (5.9), we obtain

that X ∼= ker(α|Y1
)
⊕
Y2. It follows that

δ[Z] = [ker(α|Y1)]− [Y1] + [Z]

= [ker(α|Y1)
⊕

Y2]− [Y1

⊕
Y2] + [Z]

= [X]− [Y ] + [Z].
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We complete the proof.

For any indecomposable module X, we have the following description of δ[X],

which is fundamental in the structure of r(H).

Theorem 5.2.2. Let X be an indecomposable H-module.

(1) If k - X∗ ⊗X, then [X]δ[k] = 0.

(2) If k - X ⊗X∗, then δ[k][X] = 0.

(3) If k | X∗ ⊗X, then [X]δ[k] = δ[X].

(4) If k | X ⊗X∗, then δ[k][X] = δ[X].

Proof. If H is semisimple, then k | X∗ ⊗X and k | X ⊗X∗. In this case, Part (3)

and Part (4) are trivial because δ[k] = [k] and δ[X] = [X]. In the following, we assume

that H is not semisimple. If X is projective, then k - X ⊗X∗ and k - X∗ ⊗X. Note

that the sequences (5.4) and (5.5) ending at the projective module X are split. Thus,

δ[k][X] = ([τ(k)]− [E] + [k])[X] = [τ(k)⊗X]− [E ⊗X] + [X] = 0

and

[X]δ[k] = [X]([τ(k)]− [E] + [k]) = [X ⊗ τ(k)]− [X ⊗ E] + [X] = 0.

If X is not projective, we only prove Part (1) and Part (3). The proofs of Part (2) and

Part (4) are similar. If k - X∗ ⊗X, by Proposition 5.1.11, the map idX ⊗ σ is a split

epimorphism. It follows that [X ⊗ E] = [X ⊗ τ(k)] + [X], and therefore [X]δ[k] = 0.

If k | X∗ ⊗X, then the map idX ⊗ σ is right almost split by Proposition 5.1.13. It

follows from Proposition 5.2.1 that δ[X] = [X ⊗ τ(k)] − [X ⊗ E] + [X] = [X]δ[k], as

desired.

As an application, we shall determine the multiplicity of the trivial module k in

the decompositions of the tensor product X ⊗X∗ and X∗ ⊗X respectively. For the

case where H is semisimple over the field k of characteristic 0, this was done by Zhu

[81, Lemma 1], see also [79, Proposition 2.1].

Corollary 5.2.3. Let X be an indecomposable H-module.

(1) If k | X∗ ⊗X, then the multiplicity of k in X∗ ⊗X is 1.

(2) If k | X ⊗X∗, then the multiplicity of k in X ⊗X∗ is 1.
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Proof. (1) By Lemma 1.3.3 (2), the multiplicity of the trivial module k in X∗ ⊗X is

(δ∗[k], [X
∗][X]). By Theorem 5.2.2, we have that (δ∗[k], [X

∗][X]) = (([X]δ[k])
∗, [X]) =

(δ∗[X], [X]) = 1.

(2) Note that k | X⊗X∗ if and only if k | X∗∗⊗X∗. The multiplicity of the trivial

module k in X∗∗⊗X∗ is (δ∗[k], [X
∗∗][X∗]) = (([X∗]δ[k])

∗, [X∗]) = (δ∗[X∗], [X
∗]) = 1, as

desired.

Proposition 5.2.4. Let 0 → X → Y → Z → 0 be an almost split sequence of

H-modules.

(1) k | Z ⊗ Z∗ if and only if k | X ⊗X∗.

(2) k | Z∗ ⊗ Z if and only if k | X∗ ⊗X.

Proof. We only prove Part (1) because Part (2) follows from Part (1). Applying the

duality functor ∗ to the almost split sequence 0 → X → Y → Z → 0, we get the

almost split sequence 0 → Z∗ → Y ∗ → X∗ → 0 (cf. [5, P.144]). This implies that

δ∗[Z] = δ[X∗]. If k | Z ⊗ Z∗, then δ[k][Z] = δ[Z] by Theorem 5.2.2. We claim that

k | X ⊗X∗. Otherwise, k - X∗∗⊗X∗, then [X∗]δ[k] = 0 by Theorem 5.2.2. However,

1 = (δ∗[X∗], [X
∗]) = (δ∗∗[Z], [X

∗]) = ([X∗], δ[Z]) = ([X∗]δ[k], [Z]) = 0,

a contradiction. Conversely, if k | X ⊗ X∗, then k | X∗∗ ⊗ X∗. This yields that

[X∗]δ[k] = δ[X∗]. We claim that k | Z ⊗Z∗. Otherwise, δ[k][Z] = 0 by Theorem 5.2.2.

It follows that

1 = (δ∗[Z], [Z]) = (δ[X∗], [Z]) = ([X∗], δ[k][Z]) = 0,

a contradiction.

Denote by J+ and J− the free abelian groups as follows:

J+ = Z{δ[M ] | [M ] ∈ ind(H) and k |M ⊗M∗},

J− = Z{δ[M ] | [M ] ∈ ind(H) and k |M∗ ⊗M}.

It follows from Theorem 5.2.2 that J+ and J− are right and left ideals of r(H)

generated respectively by δ[k]. Moreover, by Proposition 5.2.4, we have J ∗+ = J− and

J ∗− = J+.
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Let P+ and P− denote the free abelian groups respectively as follows:

P+ = Z{[M ] ∈ ind(H) | k -M ⊗M∗},

P− = Z{[M ] ∈ ind(H) | k -M∗ ⊗M}.

It follows from Corollary 5.1.9 that P+ is a right ideal of r(H) and P− is a left ideal

of r(H). Obviously, P∗+ = P− and P∗− = P+.

Let P⊥+ and P⊥− be the subgroups of r(H) orthogonal to P+ and P− with respect

to the form (−,−) respectively. Namely,

P⊥+ = {x ∈ r(H) | (y, x) = 0 for y ∈ P+},

P⊥− = {x ∈ r(H) | (x, y) = 0 for y ∈ P−}.

Then P⊥+ is a left ideal of r(H) since P+ is a right ideal of r(H). Similarly, P⊥− is a

right ideal of r(H).

The relations between these one-sided ideals of r(H) are described as follows.

Proposition 5.2.5. Suppose H is of finite representation type.

(1) J+ = P⊥− = (P⊥+ )∗.

(2) J− = P⊥+ = (P⊥− )∗.

Proof. It is sufficient to show Part (1) since the proof of Part (2) is similar. For any

two indecomposable H-modules X and Y satisfying k | X ⊗X∗ and k - Y ∗ ⊗ Y , by

Theorem 5.2.2, we have

(δ[X], [Y ]) = (δ[k][X], [Y ]) = ([Y ∗∗]δ[k], [X]) = (0, [X]) = 0.

This implies that J+ ⊆ P⊥− . For any x ∈ P⊥− , then

x =
∑

[M ]∈ind(H)

(x, [M ])δ∗[M ] by (1.5)

=
∑

k|M∗⊗M

(x, [M ])δ∗[M ] (as x ∈ P⊥− ).

If k | M∗ ⊗M and k - Y ⊗ Y ∗ for indecomposable modules M and Y , by Theorem
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5.2.2, we have that

([Y ], δ[M ]) = (δ∗∗[M ], [Y ]) = (δ[M∗∗], [Y ]) = ([M∗∗], δ[k][Y ]) = ([M∗∗], 0) = 0.

This implies that δ[M ] ∈ P⊥+ , and hence x =
∑

k|M∗⊗M (x, [M ])δ∗[M ] ∈ (P⊥+ )∗. We

obtain P⊥− ⊆ (P⊥+ )∗. For any x ∈ P⊥+ , we have

x =
∑

[M ]∈ind(H)

(x, [M ])δ∗[M ] by (1.5)

=
∑

[M ]∈ind(H)

([M∗∗], x)δ∗[M ]

=
∑

k|M⊗M∗
([M∗∗], x)δ∗[M ] (as x ∈ P⊥+ ).

Thus,

x∗ =
∑

k|M⊗M∗
([M∗∗], x)δ∗∗[M ] ∈ J

∗∗
+ = J+,

implying that (P⊥+ )∗ ⊆ J+. We obtain the desired result.

For a finite dimensional semisimple Hopf algebra over the field k of characteristic

0, its Green ring (i.e., Grothendieck ring) is semisimple (cf. [81, Lemma 2] or [79,

Proposition 2.2]). In the following, we give a description of nilpotent ideals and central

primitive idempotents of r(H) for any finite dimensional Hopf algebra H over the field

k of characteristic 0. We first need the following useful lemma.

Lemma 5.2.6. For any x ∈ r(H), we have the following:

(1) If xx∗ = 0, then x ∈ P+.

(2) If x∗x = 0, then x ∈ P−.

Proof. It suffices to prove Part (1) as the same argument works for Part (2). We write

x =
∑

k|M⊗M∗
λ[M ][M ] +

∑
k-M⊗M∗

λ[M ][M ],

where λ[M ] ∈ Z and the sum
∑

k|M⊗M∗ (resp.
∑

k-M⊗M∗) runs over all elements

[M ] ∈ ind(H) such that k | M ⊗M∗ (resp. k - M ⊗M∗). By Theorem 5.1.7 (1)

and Corollary 5.2.3, the coefficient of the identity [k] in the linear expression of xx∗

126



5.2. SOME RING-THEORETICAL PROPERTIES OF GREEN RINGS

(with the basis ind(H)) is
∑

k|M⊗M∗ λ
2
[M ]. Thus, if xx∗ = 0, then λ[M ] = 0, for any

indecomposable module M satisfying k | M ⊗M∗. Hence x =
∑

k-M⊗M∗ λ[M ][M ] ∈
P+.

Recall that a two-sided ideal I of a ring R is call nilpotent if Im=0 for some natural

number m. This means that a1 · · · am = 0 for any a1 · · · , am ∈ I.

Proposition 5.2.7. If I is a nilpotent ideal of r(H), then I ⊆ P+ ∩ P−.

Proof. Let I be a nilpotent ideal of r(H) such that Im = 0. For any x ∈ I, let

x0 = x and xi+1 = xix
∗
i for i ≥ 0. For instance, x1 = xx∗, x2 = xx∗x∗∗x∗, x3 =

xx∗x∗∗x∗x∗∗x∗∗∗x∗∗x∗, etc.. Note that the order of the duality operator ∗ is finite

and Im = 0. There exists some k such that xk = 0. We write

x =
∑

k|M⊗M∗
λ[M ][M ] +

∑
k-M⊗M∗

λ[M ][M ]

and

x1 = xx∗ =
∑

k|M⊗M∗
µ[M ][M ] +

∑
k-M⊗M∗

µ[M ][M ],

for λ[M ] and µ[M ] in Z. As shown in the proof of Lemma 5.2.6, the coefficient of

[k] in x1 = xx∗ is µ[k] =
∑

k|M⊗M∗ λ
2
[M ] and the coefficient of [k] in x2 = x1x

∗
1 is∑

k|M⊗M∗ µ
2
[M ]. If µ[k] 6= 0, then

∑
k|M⊗M∗ µ

2
[M ] 6= 0, and hence x2 6= 0. By repeating

this process, we obtain that xi 6= 0 for any i ≥ 0 if µ[k] 6= 0. This contradicts to the

fact that xk = 0. Thus, µ[k] = 0 and x =
∑

k-M⊗M∗ λ[M ][M ] ∈ P+. Similarly, if

x ∈ I, then x ∈ P−. We obtain that I ⊆ P+ ∩ P−.

If H is of finite representation type, then the Green ring r(H) is Frobenius (and

hence artinian). The Jacobson radical J(r(H)) of r(H) is the largest nilpotent ideal

of r(H). According to Proposition 5.2.7, we have J(r(H)) ⊆ P+ ∩ P−.

Proposition 5.2.8. Let E be a central primitive idempotent of r(H). Then E ∈
P+ ∩ P− or 1− E ∈ P+ ∩ P−.

Proof. If E is a central primitive idempotent of r(H), so is E∗ since the duality

operator ∗ is an anti-automorphism of r(H). It follows that E = E∗ or EE∗ =

E∗E = 0. If EE∗ = E∗E = 0, by Lemma 5.2.6, E ∈ P+ as well as E ∈ P−. If
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E = E∗, denote by

E =
∑

k|M⊗M∗
λ[M ][M ] +

∑
k-M⊗M∗

λ[M ][M ].

Comparing the coefficients of [k] in both sides of the equation EE∗ = E, we obtain

that
∑

k|M⊗M∗ λ
2
[M ] = λ[k]. This implies that λ[k] = 0 or 1, and λ[M ] = 0 for any [M ]

satisfying k |M ⊗M∗ and [M ] 6= [k]. Hence E is reduced to be

E = λ[k][k] +
∑

k-M⊗M∗
λ[M ][M ].

Meanwhile, we denote by

E =
∑

k|M∗⊗M

µ[M ][M ] +
∑

k-M∗⊗M

µ[M ][M ].

Similarly, by comparing the coefficients of [k] in both sides of the equation E∗E = E,

we obtain that

E = µ[k][k] +
∑

k-M∗⊗M

µ[M ][M ].

Thus, µ[k] = λ[k] which is equal to 0 or 1. Therefore, E ∈ P+ ∩P− if µ[k] = λ[k] = 0,

and 1− E ∈ P+ ∩ P− if µ[k] = λ[k] = 1, as desired.
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5.3 Bilinear forms on stable Green rings

In this section, we study the stable Green ring (i.e., Green ring of a stable category)

of a finite dimensional Hopf algebra H. We show that the stable Green ring admits

an associative non-degenerate Z-bilinear form induced by the form (−,−) on r(H).

Let H be a finite dimensional Hopf algebra over the field k. Denote by H-mod the

category of finite dimensional left H-module. Recall that the stable category H-mod

has the same objects as H-mod does, and the space of morphisms from X to Y in

H-mod is the quotient space

HomH(X,Y ) := HomH(X,Y )/P(X,Y )

where P(X,Y ) is the subspace of HomH(X,Y ) consisting of morphisms factoring

through projective modules.

The stable category H-mod is a triangulated [43] monoidal category with the

monoidal structure stemming from that of H-mod. The Green ring rst(H) of the

stable category H-mod is called the stable Green ring of H. The following proposition

is similar to Theorem 4.1.1.

Proposition 5.3.1. The stable Green ring rst(H) of H is isomorphic to the quotient

ring r(H)/P, where P is the ideal of r(H) generated by the isomorphism classes of

indecomposable projective H-modules.

Note that the form (−,−) on r(H) given by ([X], [Y ]) = dim HomH(X,Y ∗) is

associative and non-degenerate. In the following, we show that this form induces a

Z-bilinear form on the stable Green ring rst(H). We first need the following lemmas.

Lemma 5.3.2. For H-modules X, Y and Z, the canonical isomorphisms ΦX,Y,Z and

ΨX,Y,Z given in Lemma 5.1.3 induce respectively the following k-linear isomorphisms:

(1) ΦX,Y,Z : HomH(X ⊗ Y,Z)→ HomH(X,Z ⊗ Y ∗).

(2) ΨX,Y,Z : HomH(X,Y ⊗ Z)→ HomH(Y ∗ ⊗X,Z).

Proof. We only prove Part (1) and the proof of Part (2) is similar. If α ∈ HomH(X⊗
Y,Z) factors through a projective module P , then ΦX,Y,Z(α) factors through the

projective module P⊗Y ∗ by Lemma 5.1.3 (1). Thus, ΦX,Y,Z(P(X⊗Y,Z)) ⊆ P(X,Z⊗
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Y ∗). Conversely, for any β ∈ P(X,Z⊗Y ∗) which factors through a projective module

P , by Lemma 5.1.3 (1), the map Φ−1
X,Y,Z(β) factors through the projective module

P ⊗ Y . We obtain that

ΦX,Y,Z(P(X ⊗ Y, Z)) = P(X,Z ⊗ Y ∗).

This induces a k-linear isomorphism ΦX,Y,Z from the quotient space HomH(X⊗Y, Z)

to HomH(X,Z ⊗ Y ∗), as desired.

Recall that the form 〈−,−〉 on r(H) is defined by 〈[X], [Y ]〉 = dim HomH(X,Y )

for any two H-modules X and Y . Similarly, we define a Z-linear 〈−,−〉st on rst(H)

by

〈[X], [Y ]〉st := dim HomH(X,Y )

for objects X and Y in H-mod.

Lemma 5.3.3. Let 0→ X
α−→ Y

β−→ Z → 0 be an almost split sequence of H-modules

ending at the indecomposable non-projective module Z. For any indecomposable non-

projective H-module M , we have

〈[M ], δ[Z]〉st =


0, M � Z and Ω−1M � Z;

1, M ∼= Z and Ω−1M � Z;

2, M ∼= Z and Ω−1M ∼= Z.

Proof. Note that the functor HomH(M,−) is naturally isomorphic to the functor

Ext1
H(Ω−1M,−). Applying the functor HomH(Ω−1M,−) to the given almost split

sequence, we obtain the following long exact sequence:

0→ HomH(Ω−1M,X)→ HomH(Ω−1M,Y )→ HomH(Ω−1M,Z)

→ HomH(M,X)
α−→ HomH(M,Y )

β−→ HomH(M,Z).

Denote by radH(M,Z) the space of morphisms f from M to Z such that idM − g ◦ f
is isomorphic for any g ∈ HomH(Z,M). Then the image of the map β is radH(M,Z)

since the map β : Y → Z is right almost split. Thus, we obtain the sequence:

0→ HomH(Ω−1M,X)→ HomH(Ω−1M,Y )→ HomH(Ω−1M,Z)

→ HomH(M,X)
α−→ HomH(M,Y )

β−→ radH(M,Z)→ 0.
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This implies that

〈[M ], δ[Z]〉st = 〈[Ω−1M ], δ[Z]〉+ dim HomH(M,Z)/radH(M,Z).

Recall that dim HomH(M,Z)/radH(M,Z) = 1 if M ∼= Z and 0 otherwise; and

〈[Ω−1M ], δ[Z]〉 = 1 if Ω−1M ∼= Z and 0 otherwise. So the statement follows.

Remark 5.3.4. The proof of Lemma 5.3.3 is motivated by the proof of [33, Lemma

1.4]. If M � Z and Ω−1M � Z, then 〈[M ], δ[Z]〉st = 0. This result was proved in [35,

Lemma 3.2].

Define a Z-linear form on rst(H) by

([X], [Y ])st := dim HomH(X,Y ∗).

The form (−,−)st has the following properties.

Proposition 5.3.5. For objects X, Y and Z in H-mod, the following hold:

(1) ([X][Y ], [Z])st = ([X], [Y ][Z])st.

(2) ([X], [Y ])st = ([Y ∗∗], [X])st. If S2 is inner, then ([X], [Y ])st = ([Y ], [X])st.

(3) The form (−,−)st is non-degenerate.

Proof. Part (1) and Part (2) follow from Lemma 5.3.2, Part (3) follows from Lemma

5.3.3.

Corollary 5.3.6. If H is of finite representation type, then the stable Green ring

rst(H) is a Frobenius ring. Moreover, rst(H) is symmetric if S2 is inner.
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5.4 Green rings of spherical Hopf algebras

In this section, we will devote ourselves to the study of the Green ring r(H) of

a spherical Hopf algebra H. In this case, the free abelian group generated by all

indecomposable modules of quantum dimension zero forms an ideal P of r(H). The

quotient ring of r(H) modulo P can be regarded as the Green ring of a factor category

of H-mod. If H is of finite representation type, the complexified quotient ring is a

group-like algebra and a bi-Frobenius algebra.

Let H be a finite dimensional non-semisimple spherical Hopf algebra over the field

k := C. That is, there is a ω ∈ G(H) such that

S2(h) = ωhω−1 for h ∈ H, (5.10)

TrLX(θXϑ) = TrRX(ϑθ−1
X ) for ϑ ∈ EndH(X). (5.11)

Here X is a finite dimensional H-module and the isomorphism θX : X → X∗∗ given

by θX(x)(f) = f(ωx) is a pivotal structure of H-mod. That is, this map is natural in

X and satisfies θX⊗Y ∼= θX ⊗ θY for any two H-modules X and Y .

The condition (5.11) is only required for any simple H-module [1, Proposition 2.1].

Applying ϑ = idX to (5.11), we obtain that d(X) := TrLX(θX) = TrRX(θ−1
X ), which is

the quantum dimension of H-module X. Observe that

d(X) = d(X∗) and d(X ⊗ Y ) = d(X)d(Y ).

The quantum dimensions of H-modules defines a ring homomorphism from r(H) to

k preserving the dual.

By Theorem 5.1.7, k - X ⊗ X∗ if and only if k - X∗ ⊗ X if and only if d(X) =

d(X∗) = 0. Then P := P+ = P−, which is the two-sided ideal of r(H) generated by

indecomposable modules of quantum dimension zero.

Let B = {[Xi] | i ∈ I} denote the set consisting of all [X] ∈ ind(H) with d(X) 6= 0.

Then 0 ∈ I since [X0] := [k] ∈ B. Note that d(X) = d(X∗). Then [Xi] ∈ B if and

only if [X∗i ] ∈ B. Hence the duality functor ∗ of H-mod induces an involution on the

index set I defined by [Xi∗ ] := [X∗i ], for any i ∈ I. Moreover, P∗ = P. Thus, the dual

∗ induces an involution over r(H)/P, namely, ([Xi])
∗ = [Xi∗ ], for any i ∈ I.

Let ZB be the free abelian group generated by the set B and T the Z-linear map
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from ZB to Z given by T (x) = (x, δ∗[k]). Namely, T (x) stands for the coefficient of

[k] in the linear expression of x. The map T is in fact a trace map as shown in the

following.

Lemma 5.4.1. For any x, y ∈ ZB, the map T satisfies the following:

(1) T (x) = T (x∗).

(2) T (xy) = T (yx).

(3) T (xy) =
∑
i∈I T (x[Xi∗ ])T ([Xi]y).

Proof. Part (1) is obvious. Part (2) follows from the fact that δ[k] (and hence δ∗[k]) is

a central element of r(H) (see Theorem 5.2.2) if H is spherical. To verify Part (3), for

any x ∈ ZB, we obtain that the coefficient of [Xi] in x is (x, δ∗[Xi]
) = (x[Xi∗ ], δ

∗
[k]) =

T (x[Xi∗ ]). This implies that

x =
∑
i∈I

T (x[Xi∗ ])[Xi]. (5.12)

Hence
∑
i∈I T (x[Xi∗ ])T ([Xi]y) = T (xy), as desired.

It was mentioned in [16] that if a monoid generated by a finite set admits a fusion

rule, then it gives rise to a fusion ring structure on the monoid. We follow a similar

approach and give ZB a ring structure as follows.

Theorem 5.4.2. The free abelian group ZB admits a ring structure as follows:

(1) The multiplication law is given by x·y =
∑
i∈I T (xy[Xi∗ ])[Xi] for any x, y ∈ ZB.

(2) The Z-bilinear form [−,−] on ZB given by [x, y] = T (xy) is associative sym-

metric non-degenerate and ∗-invariant.

(3) The map d : ZB→ k given by the quantum dimension is a ring homomorphism.

(4) ZB is isomorphic to the quotient ring r(H)/P.

Proof. (1) The sum
∑
i∈I T (xy[Xi∗ ])[Xi] is finite, since∑

i∈I
T (xy[Xi∗ ])[Xi] =

∑
i∈I

(xy[Xi∗ ], δ
∗
[k])[Xi] =

∑
i∈I

(xy, δ∗[Xi]
)[Xi],
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which is a part of the linear expression of xy by (1.5). To verify the associativity of

the law, for any x, y, z ∈ B, one has

(x · y) · z =
∑
j∈I

T (xy[Xj∗ ])[Xj ] · z

=
∑
i,j∈I

T (xy[Xj∗ ])T ([Xj ]z[Xi∗ ])[Xi]

=
∑
i∈I

T (xyz[Xi∗ ])[Xi] by Lemma 5.4.1 (3).

On the other hand,

x · (y · z) = x ·
∑
j∈I

T (yz[Xj∗ ])[Xj ]

=
∑
i,j∈I

T (yz[Xj∗ ])T (x[Xj ][Xi∗ ])[Xi]

=
∑
i,j∈I

T (yz[Xj∗ ])T ([Xj ][Xi∗ ]x)[Xi] by Lemma 5.4.1 (2)

=
∑
i∈I

T (yz[Xi∗ ]x)[Xi] by Lemma 5.4.1 (3)

=
∑
i∈I

T (xyz[Xi∗ ])[Xi].

Thus, the multiplication is associative. One can repeat this process and obtain

x1 · x2 · · ·xm =
∑
i∈I

T (x1x2 · · ·xm[Xi∗ ])[Xi].

The identity of ZB is [k], which follows from (5.12). The dual operator ∗ is an

anti-automorphism of ZB. Indeed, one has

(x · y)∗ =
∑
i∈I

T (xy[Xi∗ ])[Xi∗ ]

=
∑
i∈I

T (xy[Xi])[Xi]

=
∑
i∈I

T ([Xi∗ ]y
∗x∗)[Xi] by Lemma 5.4.1 (1)

=
∑
i∈I

T (y∗x∗[Xi∗ ])[Xi] = y∗ · x∗.
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(2) Note that

T (x · y) =
∑
i∈I

T (xy[Xi∗ ])T ([Xi]) = T (xy).

This yields the associativity of the form. The symmetry stems from T (xy) = T (yx)

and the non-degeneracy of the form follows from the orthogonality: T ([Xi][Xj∗ ]) =

δi,j for i, j ∈ I. Moreover, the form is ∗-invariant: [x∗, y∗] = T (x∗y∗) = T (yx) =

T (xy) = [x, y], for any x, y ∈ ZB.

(3) Note that for any finite dimensional indecomposable H-module X, d([X]) = 0

if [X] is not in B. Now for any x, y ∈ ZB, one has

d(x · y) =
∑
i∈I

T (xy[Xi∗ ])d([Xi])

=
∑
i∈I

(xy[Xi∗ ], δ
∗
[k])d([Xi])

=
∑
i∈I

(xy, δ∗[Xi]
)d([Xi])

=
∑

[X]∈ind(H)

(xy, δ∗[X])d([X])

= d(
∑

[X]∈ind(H)

(xy, δ∗[X])[X])

= d(xy) = d(x)d(y).

(4) The map ϕ from ZB to r(H)/P given by ϕ(x) = x is obviously Z-linear and

bijective. This map also preserves the ring structure:

ϕ(x · y) =
∑
i∈I

T (xy[Xi∗ ])[Xi]

=
∑
i∈I

(xy[Xi∗ ], δ
∗
[k])[Xi]

=
∑
i∈I

(xy, δ∗[Xi]
)[Xi]

=
∑

[X]∈ind(H)

(xy, δ∗[X])[X]

= xy = ϕ(x)ϕ(y),
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for any x, y ∈ ZB, as desired.

In the following, we give an interpretation of ZB from a categorical point of view.

We show that ZB is the Green ring of a factor category of H-mod.

Note that H-mod is a spherical category. For any two H-modules X and Y , there

is a bilinear pairing given by

Θ : HomH(X,Y )×HomH(Y,X)→ k, Θ(f, g) = TrLX(θX ◦ g ◦ f).

A morphism f from X to Y is called negligible if Θ(f, g) = 0 for any morphism g

from Y to X. Let J (X,Y ) be the set consisting of all negligible morphisms from X

to Y . It follows from Theorem 5.1.7 that

J (X,Y ) = HomH(X,Y ) if d(X) = 0 or d(Y ) = 0.

The negligible morphisms form a monoidal ideal, i.e. composing or tensoring a neg-

ligible morphism with any morphism yields a negligible morphism [60, P.118]. This

leads to a factor category H-mod, where the objects are those of H-mod while the

morphism spaces are the quotient:

HomH(X,Y ) := HomH(X,Y )/J (X,Y ).

The factor category H-mod is an additive semisimple k-linear spherical category [15]

with the monoidal structure derived from that of H-mod.

Theorem 5.4.3. The Green ring of the factor category H-mod is isomorphic to the

quotient ring r(H)/P.

Proof. The canonical functor F from H-mod to H-mod given by F (M) = M for

any H-module M , and F (g) = g for g ∈ HomH(M,N) with the canonical image

g ∈ HomH(M,N) is a full and dense tensor functor. Such a functor defines a ring

epimorphism ψ from r(H) to the Green ring of H-mod such that ψ(P) = 0. Hence

there is a unique ring epimorphism ψ from r(H)/P to the Green ring of H-mod such

that ψ(x) = ψ(x), for any x ∈ r(H) with the canonical image x ∈ r(H)/P. The

rank of the Green ring of H-mod is the same as that of r(H)/P since there is one

to one correspondence between the set of simple objects in H-mod and the set of

isomorphism classes of indecomposable finite dimensional H-modules with non-zero

quantum dimension [1, Theorem 2.7]. We conclude that the Green ring of H-mod is
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isomorphic to r(H)/P.

Remark 5.4.4. For any finite dimensional pointed Hopf algebra HD of rank one

associated to the group datum D = (G,χ, g, µ), by (5.11), we obtain that HD is

spherical if and only if the order of χ(g) is n = 2. In this case, all indecomposable

HD-modules are simple kG̃-modules (see Section 4.1 for this notion) together with

some projective modules. Thus, if V is projective, then d([V ]) = 0. If V is simple,

then d([V ]) = χV (g) dim(V ), where χV is the character of V . Obviously, the factor

category HD-mod is equivalent to kG̃-mod and the Green ring ZB is isomorphic to

the Grothendieck ring G0(kG̃).

Recall that the form (−,−) on r(H) is given by ([X], [Y ]) = dim HomH(X,Y ∗). In

the following, we show that the form [−,−] on ZB defined by the map T is essentially

induced by the form (−,−) on r(H). That is, [[X], [Y ]] = dim HomH(X,Y ∗).

Lemma 5.4.5. For H-modules X, Y and Z, the canonical isomorphisms given in

Lemma 5.1.3 induce respectively the following canonical isomorphisms:

(1) ΦX,Y,Z : HomH(X ⊗ Y,Z)→ HomH(X,Z ⊗ Y ∗).

(2) ΨX,Y,Z : HomH(X,Y ⊗ Z)→ HomH(Y ∗ ⊗X,Z).

Proof. We only prove Part (1) and the same argument works for Part (2). Note that

TrLX(θXϑ) = trX(ωϑ), where trX(ωϑ) is the usual trace of the map ωϑ of X.

Claim 1. ΦX,Y,Z(J (X ⊗ Y, Z)) ⊆ J (X,Z ⊗ Y ∗).

Indeed, If f ∈ J (X ⊗ Y, Z), then for any g ∈ HomH(Z ⊗ Y ∗, X), the morphism

(idX ⊗ θ−1
Y ) ◦ ΦZ,Y ∗,X(g) is in HomH(Z,X ⊗ Y ) and hence

trZ(f ◦ (idX ⊗ θ−1
Y ) ◦ ΦZ,Y ∗,X(g)ω) = 0.

In the following, we shall use this to prove that ΦX,Y,Z(f) ∈ J (X,Z ⊗ Y ∗), namely,

trZ⊗Y ∗(ΦX,Y,Z(f) ◦ gω) = 0. For any H-module M , we denote by {mi} the basis of

M , and by {m∗i } the dual basis of M∗. We have∑
i

ωmi ⊗ ωm∗i =
∑
i

mi ⊗m∗i ,
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or equivalently, ∑
i

mi ⊗ ωm∗i =
∑
i

ω−1mi ⊗m∗i .

With these equalities, it is straightforward to check that the image of the basis {zi}
of Z under the morphism ωf ◦ (idX ⊗ θ−1

Y ) ◦ ΦZ,Y ∗,X(g) is

(ωf ◦ (idX ⊗ θ−1
Y ) ◦ ΦZ,Y ∗,X(g))(zi) =

∑
j

f(ωg(zi ⊗ y∗j )⊗ yj).

It follows that

0 = trZ(f ◦ (idX ⊗ θ−1
Y ) ◦ ΦZ,Y ∗,X(g)ω)

= trZ(ωf ◦ (idX ⊗ θ−1
Y ) ◦ ΦZ,Y ∗,X(g)) (5.13)

=
∑
i,j

〈z∗i , f(ωg(zi ⊗ y∗j )⊗ yj)〉.

On the other hand, the image of the basis {zi ⊗ y∗k} of Z ⊗ Y ∗ under the morphism

ωΦX,Y,Z(f) ◦ g is

(ωΦX,Y,Z(f) ◦ g)(zi ⊗ y∗k) =
∑
j

f(ωg(zi ⊗ y∗k)⊗ yj)⊗ y∗j .

Therefore,

trZ⊗Y ∗(ΦX,Y,Z(f) ◦ gω) = trZ⊗Y ∗(ωΦX,Y,Z(f) ◦ g)

=
∑
i,k,j

〈z∗i ⊗ y∗∗k , f(ωg(zi ⊗ y∗k)⊗ yj)⊗ y∗j 〉

=
∑
i,j

〈z∗i , f(ωg(zi ⊗ y∗j )⊗ yj)〉.

= 0. by (5.13)

Claim 2. ΦX,Y,Z(J (X ⊗ Y, Z)) = J (X,Z ⊗ Y ∗).

For any morphism α ∈ J (X,Z ⊗ Y ∗) ⊆ HomH(X,Z ⊗ Y ∗) = ΦX,Y,Z(HomH(X ⊗
Y,Z)), there is some f ∈ HomH(X ⊗ Y, Z) such that α = ΦX,Y,Z(f). Now we check

that f ∈ J (X ⊗ Y,Z). Namely, for any g ∈ HomH(Z,X ⊗ Y ), the trace trZ(f ◦ gω)

needs to be zero. Since the morphism Φ−1
Z,Y ∗,X((idX⊗θY )◦g) is in HomH(Z⊗Y ∗, X),
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we have

trZ⊗Y ∗(α ◦ Φ−1
Z,Y ∗,X((idX ⊗ θY ) ◦ g)ω) = 0.

On the one hand, if we write g(zi) =
∑
j xij ⊗ yj ∈ X ⊗ Y , then the image of the

basis {zi ⊗ y∗k} of Z ⊗ Y ∗ under the morphism ωα ◦Φ−1
Z,Y ∗,X((idX ⊗ θY ) ◦ g) is given

as follows:

(ωα ◦ Φ−1
Z,Y ∗,X((idX ⊗ θY ) ◦ g))(zi ⊗ y∗k) =

∑
j,s

〈y∗k, ωyj〉ωf(xij ⊗ ys)⊗ ωy∗s .

It follows that

0 = trZ⊗Y ∗(α ◦ Φ−1
Z,Y ∗,X((idX ⊗ θY ) ◦ g)ω)

= trZ⊗Y ∗(ωα ◦ Φ−1
Z,Y ∗,X((idX ⊗ θY ) ◦ g))

=
∑
i,k,j,s

〈y∗k, ωyj〉〈z∗i ⊗ y∗∗k , ωf(xij ⊗ ys)⊗ ωy∗s )〉

=
∑
i,k,j,s

〈y∗k, ωyj〉〈z∗i ⊗ y∗∗k , ωf(xij ⊗ ω−1ys)⊗ y∗s )〉

=
∑
i,k,j

〈y∗k, ωyj〉〈z∗i , ωf(xij ⊗ ω−1yk)〉 (5.14)

=
∑
i,k,j

〈ωy∗k, ωyj〉〈z∗i , ωf(xij ⊗ yk)〉

=
∑
i,k,j

〈y∗k, yj〉〈z∗i , ωf(xij ⊗ yk)〉

=
∑
i,j

〈z∗i , ωf(xij ⊗ yj)〉.

Now the image of the basis {zi} of Z under the morphism ωf ◦ g is given by (ωf ◦
g)(zi) =

∑
j ωf(xij ⊗ yj) and by (5.14), we have trZ(f ◦ gω) = trZ(ωf ◦ g) =∑

i,j〈z∗i , ωf(xij ⊗ yj)〉 = 0. We complete the proof.

Proposition 5.4.6. The form [−,−] on the Green ring ZB of the factor category

H-mod can be defined by [[Xi], [Xj ]] = dim HomH(Xi, X
∗
j ), for any i, j ∈ I.

Proof. The associativity of the form follows from Lemma 5.4.5 (1). The symmetry

and non-degeneracy of the form stem from the fact that HomH(Xi, X
∗
j ) is isomorphic

to k if Xi
∼= X∗j , and 0 otherwise.

In general the number of the isomorphism classes of simple objects in the additive
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semisimple spherical category H-mod is not necessary finite. However, the finiteness

is necessary if one wants to construct a manifold invariant from this category [15]. In

the following, we give a characterization of the finiteness of H-mod by means of the

Green ring ZB.

Let kB := k⊗Z ZB be the k-algebra obtained by the scalar extension from Z to

k. The ring homomorphism d from ZB to k can be regarded as an algebra morphism

from kB to k in a natural way. A left integral of kB with respect to d is one of the

following elements: ∫ l

kB

= {t ∈ kB | x · t = d(x)t, for x ∈ kB}.

Similarly, one can define the set of right integrals of kB with respect to d:∫ r

kB

= {t ∈ kB | t · x = d(x)t, for x ∈ kB}.

If the spaces of left integral and right integral coincide, then kB is called unimodular.

Proposition 5.4.7. The algebra kB is finite dimensional if and only if
∫ l
kB

or
∫ r
kB

of kB is not zero.

Proof. If the k-algebra kB is finite dimensional, then it is Frobenius (and also sym-

metric) with the dual basis {[Xi], [Xi∗ ] | i ∈ I}. In this case, the element∑
i∈I

d([Xi])[Xi∗ ]

is a non-zero left (and also right) integral of kB [58]. Conversely, if kB has a non-zero

left integral t, we write t =
∑
i∈I λi[Xi], a linear combination with λi 6= 0 for only

finitely many i ∈ I. By comparing the coefficient of [k] in the equality t∗ · t = d(t∗)t,

we obtain that
∑
i∈I λ

2
i = d(t∗)λ0. This implies that λ0 6= 0. To verify that the set

B = {[Xi] | i ∈ I} is finite, we need to show that any [Xi] with i ∈ I is a non-zero

summand of t. Indeed, the coefficient of [Xi] in t is

λi = [[Xi∗ ], t] = [[k], [Xi∗ ] · t] = d([Xi∗ ])[[k], t] = d([Xi∗ ])λ0 6= 0,

as desired.

In the sequel, we assume that H is of finite representation type. In this case, the
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algebra kB is finite dimensional symmetric and semisimple (see Proposition 5.2.7)

with the dual basis {[Xi], [Xi∗ ] | i ∈ I} with respect to the form [−,−]. Moreover, it

is unimodular with
∫ l
kB

as well as
∫ r
kB

spanned by t =
∑
i∈I d([Xi])[Xi∗ ]. Denote by

xi := d([Xi])[Xi], for any i ∈ I. Then the set b = {xi | i ∈ I} forms a basis of kB.

Proposition 5.4.8. The quadruple (kB,d,b, ∗) is a group-like algebra.

Proof. We verify the conditions (G1)-(G3) given in Definition 1.1.7. The condition

(G1) is obvious. To verify the condition (G2), we have

x∗i = d([Xi])([Xi])
∗ = d([Xi∗ ])[Xi∗ ] = xi∗ , (5.15)

for any i ∈ I. Now for any i, j ∈ I, we suppose that

xi · xj =
∑
k∈I

pkijxk, (5.16)

where pkij ∈ k. On the one hand, applying the dual operator ∗ to the equality (5.16)

and using (5.15), we obtain that xj∗ · xi∗ =
∑
k∈I p

k
ijxk∗ . On the other hand, we have

xj∗ · xi∗ =
∑
l∈I p

l
j∗i∗xl by (5.15). Thus, pkij = pk

∗

j∗i∗ for any i, j, k ∈ I. Now we verify

the condition (G3). Extending the map T from kB to k by linearity, one has for any

i, j ∈ I that

p0
ij = T (xi · xj)

= d([Xi])d([Xj ])T ([Xi] · [Xj ])

= d([Xi])d([Xj ])T ([Xi][Xj ])

= d([Xi])d([Xj ])([Xi][Xj ], δ
∗
[k])

= d([Xi])d([Xj ])([Xi], δ
∗
[Xj∗ ])

= d([Xi])d([Xj ])δi,j∗

= δi,j∗d(xi).

Therefore, the condition (G3) is satisfied.

A group-like algebra can be viewed as a bi-Frobenius algebra in a natural way, see

[29, Example 3.2]. Following this approach, we define on (kB,d,b, ∗) a bi-Frobenius

algebra structure as follows.

(kB, φ) is a Frobenius algebra with the Frobenius homomorphism φ given by

141



CHAPTER 5. GREEN RINGS OF FINITE DIMENSIONAL HOPF ALGEBRAS

φ(xi) = δ0,i, for i ∈ I. Equivalently,

φ([Xi]) =

1, i = 0,

0, i 6= 0.

The set {xi, x∗i
d(xi)

| i ∈ I} forms a dual basis of (kB, φ). This is equivalent to saying

that {[Xi], [Xi∗ ] | i ∈ I} is a dual basis of kB with respect to the Frobenius homomor-

phism φ. From the observation above, we conclude that the Frobenius homomorphism

φ of kB is nothing but the map determined by the form [−,−], namely, φ(x) = [x, 1]

for any x ∈ kB.

kB is a coalgebra with the counit given by d, and the comultiplication 4 defined

by 4(xi) = 1
d(xi)

xi ⊗ xi, or equivalently,

4([Xi]) =
1

d([Xi])
[Xi]⊗ [Xi],

for i ∈ I. Let t =
∑
i∈I xi =

∑
i∈I d([Xi])[Xi] (t is nothing but an integral of kB

associated to the counit d). Then (kB, t) is a Frobenius coalgebra. Define a map

S : kB → kB by S(xi) = xi∗ , that is, S([Xi]) = [Xi∗ ] for i ∈ I. It is easy to see

that the map S is an anti-algebra and anti-coalgebra morphism, so is an antipode of

kB. Then the quadruple (kB, φ, t, S) forms a bi-Frobenius algebra. Thus, various

properties of group-like algebras and bi-Frobenius algebras (see [28, 29, 30, 31]) hold

for kB.
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