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Nederlandstalige

Samenvatting

De rode draad doorheen dit proefschrift is de notie van Calabi-Yau algebra,

gedefinieerd door een zekere dualiteitseigenschap.

In het inleidende hoofdstuk, geven we een overzicht van hun rol in de algebra en

de meetkunde. In het bijzonder beschrijven de constructie van de Ginzburg DG

algebra van een quiver met potentiaal alsook de hogere preprojectieve algebra

van een eindige dimensionale algebra die telkens een voorbeeld van Calabi-Yau

algebra leveren. Daarnaast leggen we uit hoe de theorie van Calabi-Yau alge-

bras toepassingen heeft in de constructie van cluster categorieën..

Het eerste hoofdstuk beschrijft werk van de auteur met Van den Bergh waarin

twee resultaten opgesteld worden die toepassingen hebben in de verscheidene

constructies vermeld in de inleiding. We geven een stel criteria voor Jacobi

algebras waaruit we kunnen concluderen dat de onderliggende quiver met po-

tentiaal geen lussen of 2-cycles heeft en er geen verwerft na toepassing van

een mutatie. Vermits het muteren van een quiver met potentiaal overeenkomt

met een afgeleide equivalentie van de bijbehorende Jacobi algebras, bekomen

zo een rijke collectie afgeleid equivalente algebras. We tonen aan dat deze

condities voldaan zijn voor de opgerolde algebras van een helix op een Del

Pezzo oppervlak en voor getwiste groep algebras van cyclische groepsacties

in dimensie 3. Het tweede resultaat handelt over de singulariteitencategorie
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SAMENVATTING

van gëısoleerde Gorenstein singulariteiten. In het geval dat deze een niet-

commutatieve crepante resolutie toelaten, kunnen we een relatieve versie van

de singulariteitencategorie definiëren. Een toepassing van de theorie van min-

imale modellen levert een beschrijving van de singulariteitencategorie als clus-

tercategorie. In het dimensie 3 geval alsook in het geval van cyclische quotient

singulariteiten verkrijgen we hier dan expliciete formules

In het tweede hoofdstuk stellen we een deformatietheorie op voor Calabi-Yau

algebras. We geven een homologe interpretatie van de definitie van Calabi-

Yau algebra door behulp van een vectorruimte A, Hochschild-cocykel µ en een

cykel in negatief cyclische homologie η. Deze rëınterpretatie laat ons toe op een

canonieke manier een deformatietheorie te definiëren. Er is een gekend mecha-

nisme dat een deformatietheorie associeert aan een nilpotente DG Lie algebra.

We tonen aan dat er ook in het geval van deformaties van Calabi-Yau algebras

zo’n nilpotente DG Lie algebra D•(A,µ, η) bestaat die de deformaties beschri-

jft. We tonen tevens aan dat de cohomologie van deze dg Lie algebra negatief

cyclische homologie is en dat de gegradeerde haak samenvalt met een gekende

haak die een niet-commutatieve versie van de string topologie haak van Chas

en Sullivan vormt. Met wat meer werk, volgt hieruit dat de raakruimte van

dit deformatieprobleem negatief cyclische homologie groep HCd−2(A) is en dat

er een canoniek gedefinieerde obstructie theorie is, die verdwijnt in het geval

dat d ≤ 3. Ten laatste beschrijven we het meetkundig geval waarin de algebra

gegeven wordt door globale secties van een Calabi-Yau variteit X. In dit geval

passen we een resultaat van Willwacher aan om een concretere beschrijving te

geven van D(A,µ, η) door middel van een L∞-quasi-isomorfisme met een DG

Lie algebra van de vorm T •,poly(X)[[u]].

In het vervolg van deze thesis wordt de aandacht verschoven naar de relatie

tussen Del Pezzo oppervlakken en Calabi-Yau algebras. Het is gekend dat

deze klasse van oppervlakken een volle exceptionele rij heeft en dat de braid

groep transitief op deze collecties werkt door mutatie. Hoofdstuk drie is een

eerste stap naar een rëinterpretatie van dit resultaat in de context van niet-
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commutatieve meetkunde. Door de numerieke Grothendieck groep van het

oppervlak te beschouwen bekomen we de notie van exceptionele basis, waarop

de braid groep werkt. Dit laat ons toe om meer algemeen vrije Abelse groepen

met een unimodulaire bilineaire vorm te beschouwen (zogenaamde ’lattices’).

We stellen voor deze lattices een aantal axioma’s op die voldaan zijn in het

meetkundig geval. Deze axioma’s laten ons toe om klassiek meetkundige con-

cepten zoals de codimensie filtratie, numerieke Picard groep, intersectie vorm,

rang, graad, canonische klasse,. . . te definiëren in deze nieuwe meer algemene

context. Deze nieuwe noties laten ons tevens toe een veralgemening van Del

Pezzo te beschrijven in deze context. We tonen aan dat er exact 4 lattices

bestaan die aan deze condities voldoen op isomorfie na. Een eerste triviaal

type, dan de numerieke Grothendieck groep horende bij het projectief vlak

en het eerste Hirzebruch oppervlak en ten laatste een type dat niet bij een

Del Pezzo oppervlak kan horen. De rest van deze thesis beschrijft een niet-

commutatief meetkundig model voor dit type.

In hoofdstuk vier beschrijven we een nieuwe klasse algebras die nodig zijn om

een lokale beschrijving van dit niet-commutatieve model te geven. Deze alge-

bras worden geconstrueerd aan de hand van een relatief Frobenius paarS/R

(een veralgemening van de notie van Frobenius algebra over een willekeurige

commutatieve grondring R). In het geval Rn/R, komt deze algebra overeen

met de klassieke preprojectieve algebra over de ster quiver op n vertices. Voor

deze reden noemen we deze algebras veralgemeend preprojectief, en noteren

deze met ΠR(S). We tonen aan dat indien S een vrij R-moduul van rang 4 is,

dat ΠR(S) noethers en eindig over zijn centrum is. We tonen tevens aan dat

deze eindige global dimensie heeft indien R en S regulier zijn.

Het laatste hoofdstuk van deze thesis is gewijd aan een constructie van het

niet-commutatief oppervlak ingeleid aan het einde van hoofdstuk 3. Een

heuristische redenering op basis van de expliciete vorm van de Gram matrix

in type 3 duidt aan dat dit oppervlak twee canoniek gedefinieerde morfismes

moet hebben naar de projectieve lijn P1 zodat de exceptionele rij in kwestie
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gevormd wordt door pullback van de standaard exceptionele rij (OP1 ,OP1(1))

door deze twee morfismes. Dit lijdt ons tot de theorie van niet-commutatieve

P1 bundels over een commutatief schema te bekijken. Deze worden meer pre-

cies geconstrueerd als een symmetrische schoof Z-algebra S(E) vertrekkende

van een lokaal vrij bimoduul E dat in ons geval de rangen (4, 1) heeft voor nu-

merieke redenen. Indien X affien is, kunnen we deze in verband brengen met

de veralgemeende preprojectieve algebra ingevoerd in het vorige hoofdstuk en

dus bewijzen dat de categorie van modulen lokaal noethers is. Dit laat ons toe

het niet-commutatieve schema Z = Proj(S(E) te construeren. In het laatste

stuk passen we gekende resultaten aan in onze context om aan te tonen dat de

collectie inderdaad exceptioneel is met de gewenste Gram matrix. We tonen

tevens ook aan dat Z eindige globale dimensie heeft.
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Overview

This thesis is an investigation of the notion of Calabi-Yau algebras and its role

in various branches of algebra and geometry. The defining property of these

algebras is a certain self-duality:

Definition 1. Let k be a field. A d-Calabi-Yau algebra is an algebra A

together with an isomorphism

η : RHomAe(A,A
e)
'−→ Σ−dA

in D(Ae), the derived category of the enveloping algebra Ae = A⊗k A
op.

This definition has natural variants for general commutative groundrings

and for DG algebras. We shall first give an account of its use in representation

theory and (noncommutative) geometry. It has been known since the work of

Ginzburg [Gin] that there is an intimate relation between these algebras and

quivers with potential. Given a quiver with potential (Q, w), one can construct

a DG algebra Γ(Q, w), which now bears Ginzburg’s name whose cohomology

in degree 0 is the ubiquitous Jacobi algebra Jac(Q, w) (or vacualgebra as it

known to physicists). Combining results of Keller [Kel11] and Ginzburg, it is

known that Γ(Q, w) is always a 3-Calabi-Yau DG algebra and that Jac(Q, w) is

3-Calabi-Yau iff it is quasi-isomorphic to Γ(Q, w). Conversely, in [VdB10], Van

den Bergh showed that if A is 3-Calabi-Yau and complete or graded, then A

is always a Jacobi algebra of a certain quiver with potential. A second class of

examples was described by Keller also in [Kel11]. The classical preprojective
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algebra of an acyclic quiver has a natural generalization to any finite dimen-

sional algebra of global dimension ≤ d − 1 written as Πd(A). This notion

was introduced in [IO09] in the context of higher representation theory. In

[Kel11], a DG version of these higher preprojective algebras, Πd(A), whose

0th cohomology is Πd(A) was introduced. This construction always yields a

d-Calabi-Yau DG algebra. Moreover in the case where d = 3, Keller showed

how to relate both constructions by exhibiting a quiver with potential (Q, w)

such that Γ(Q, w) ∼= Π3(A).

Throughout our exposition, we will focus our attention on two examples. Our

first example uses the above constructions to give a proof that the rolled-up

algebra of a geometric helix on a Del Pezzo surface (as defined in [BS10]) is a

higher preprojective DG algebra of dimension 3 in the above sense of Keller

and hence also a 3-Calabi-Yau Jacobi algebra (more on that below). In the

second example, we let a cyclic group act linearly on a vector space of dimen-

sion 3. it is well known that if the representation is unimodular, the twisted

group ring is Calabi-Yau. Moreover it is easy to write down a quiver with

potential for this algebra.

We will end our introductory chapter by explaining how (DG) Calabi-Yau al-

gebras play a key role in the construction of cluster categories, the categorical

analogue of cluster algebras.

The first chapter is an account of two results by the author and Van den Bergh

concerning the properties associated to the DG algebra Γ(Q, w) described above

(see [dTdVdB10] and [dTdVVdB13]). A major aspect of Ginzburg DG alge-

bras (and hence of the Jacobi Algebra) is the fact that there is a combinatorial

procedure, called mutation, on (Q, w) which lifts to a derived equivalence of

Γ(Q, w) by [KY11]. This procedure has the disadvantage of only behaving well

if the quiver has no loops or 2-cycles (see [IW14], for example for a discussion

when this is not satisfied). Moreover, this property is not in general preserved

under mutation. Our first result is an easily verified set of conditions for a

3-Calabi-Yau Jacobi algebra which allows one to conclude that the underlying

quiver has no loops or 2-cycles and indeed does not acquire any under sub-
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sequent mutations, allowing one to repeat the process indefinitely. We show

that our conditions are satisfied in the 2 motivating examples described in the

above paragraph. Moreover we also mention an example from the theory of

deformed preprojective algebras from [CBH98] that shows that the conditions

cannot be weakened.

Our second result pertains to the relation between Calabi-Yau algebras and

cluster categories hinted at above. It is a well known fact that the singularity

category of a Gorenstein isolated singularity R is Calabi-Yau since the work of

Auslander in [Aus78]. In the event that R admits a noncommutative crepant

resolution in the sense of [VdB02a], we consider a relative version of the sin-

gularity category and use it to obtain an explicit DG algebra whose cluster

category is precisely the singularity category of R. From this one obtains

in particular that the singularity category of a 3-dimensional cyclic quotient

singularity satisfying some numerical conditions is the cluster category of a

quiver with potential, which yields an alternative interpretation of the results

obtained in [AIR]

The second chapter develops the deformation theory of Calabi-Yau algebras.

We reinterpret the definition of Calabi-Yau algebra given above as a vector

space A with a Hochschild 2-cochain µ which represents the associative mul-

tiplication and a negative cyclic chain η which encodes the additional Calabi-

Yau duality. This reinterpretation has the advantage that one can naturally

associate a deformation functor. It is this functor we wish to describe more

explicitly. Following the work of Kontsevich, there is a general mechanism

called Maurer-Cartan formalism which associates a deformation functor of a

specific type to a nilpotent DG Lie algebra. Hence, whenever one is given a

specific deformation problem, it is a natural question as to whether it is given

by one of Maurer-Cartan type. If this is true then we say that the deformation

problem is ’controlled’ by the corresponding DG-Lie algebra. Furthermore in

that case the cohomology of the DG-Lie algebra yields an obstruction theory

in the classical sense of deformation theory. The archetypical example is the

deformation theory of associative algebras which is controlled by the shifted
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Hochschild complex C•(A). It is precisely this example we will extend to the

case of Calabi-Yau algebras.

The homological interplay between C•(A) and the (normalized) negative cyclic

complex CC
−
• (A) has very rich structure which was studied by many au-

thors (see [TT05] for our primary source of reference) and is referred to as

noncommutative calculus. We use this interplay to construct a DG Lie alge-

bra D•(A,µ, η) which as a complex is C•(A) ⊕ CC−• (A)[−d + 1] and whose

bracket is defined in such a way that the Maurer-Cartan elements correspond

to Calabi-Yau algebras. We will show that the deformation functor associated

to D•(A,µ, η) controls the deformation theory of Calabi-Yau algebras.

Furthermore, in [Men09], Menichi defined a bracket on the negative cyclic ho-

mology of algebras HC(A) of degree d− 1, guided by the construction of Chas

and Sullivan’s bracket on the string homology of manifolds ([CS99]). Using

noncommutative calculus once again, we will construct a quasi-isomorphism

Ψ : D•(A,µ, η) −→ Σ−d+1CC
−
• (A) such that the bracket on HC(A) induced by

the bracket on H(D(A,µ, η)) through Ψ coincides with Menichi’s construction.

This allows us first and foremost to describe the tangent space as HC−d−2(A)

and second, with a little more work, we also show that the obstruction theory

of D•(A,µ, η) provided by the Maurer-Cartan formalism lies in the kernel of

the canonical morphism HC−d−3(A) −→ HCperd−3(A). This implies in particular

that the deformation theory of a Calabi-Yau algebra of dimension ≤ 3 is un-

obstructed. Finally, in the case where A = O(X) is the ring of global sections

on a smooth affine Calabi-Yau variety X, we adapt results by Willwacher (see

[Wil08]) to obtain a quasi-isomorphism (T poly,•(A)[[u]],−udiv) −→ D•(A, , µ, η)

which reduces to Kontsevich’s famous formality morphism T poly,•(A) −→
C•(A) when we let u 7→ 0 and forget the additional η.

In the rest of this thesis, we focus our attention on the relation between Del

Pezzo surfaces and Calabi-Yau algebras. It has been know since the founda-

tional work of the ’Rudakov’ seminar (see [GK04]) for example) that (full)

exceptional sequences in triangulated categories have very rich structure. In
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particular they too are equipped with a mutation operation yielding an action

of the braid group. In [KO95], this operation was studied in the case where the

category in question is the bounded derived category of a Del Pezzo surface

X. It is proven there that any such surface always has a full exceptional se-

quence and that the braid group action is transitive on the set of exceptional

sequences. By applying the Serre functor indefinitely on a full exceptional

sequence, one obtains the closely related notion of a helix H upon which this

time the cylindrical braid group acts by mutation. As mentioned in the first

paragraph, the associated rolled-up algebra B(H) is a 3-Calabi-Yau Jacobi al-

gebra if H is geometric. The interrelation between the mutations of H and

mutation of the underlying quiver with potential of the algebra B(H) is eluci-

dated in [BS10], where it is shown in particular that mutating a quiver with

potential corresponds to performing a series of braid mutations on H. The

rest of this thesis can be viewed as an effort to understand these results in

the philosophy of noncommutative geometry, i.e. we take the viewpoint that

Db(X) satisfies some additional categorical properties making the results of

[KO95] and [BS10] valid. The first step in this program is to interpret the

results ’numerically’

The starting point of chapter three is the fact that by considering the numer-

ical Grothendieck group K(X)num of the Del Pezzo surface X, we obtain the

corresponding statement that K(X)num has an exceptional basis and that the

braid group acts transitively on the set of these bases. Now, the Serre func-

tor S on Db(X) defines a unipotent linear map s for which rk(s − 1) ≤ 2 on

K(X)num (this statement being new to the best of our knowledge). We con-

sider these properties as the foundation for an axiomatic definition of a finitely

generated free abelian group K with a nondegenerate bilinear form (henceforth

known as a lattice) which is ’of smooth projective surface (SPS*) type’. One

can define a canonical 2-step filtration for these lattices which coincides with

the codimension filtration when K = K(X)num and which in turn allows us to

define the notions of rank, degree, numerical Picard group, intersection form,

canonical class, etc . . . all of which indeed extend the well-known geometric
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notions to this new more general setting. In particular, we obtain a definitions

for a lattice ’of Del Pezzo surface (DPS*) type’ as one with an canonical class

of negative self-intersection in our new language (the reason for the opposite

sign will become apparent later on). The main objective of this chapter is a

classification of these these lattices of DPS* type in rank 4. In the subsequent

section, we review the theory of braid mutations of exceptional sequences and

cylindrical mutations of helices. By sending an exceptional sequence in Db(X)

to its exceptional basis given by the classes in K(X)num, we develop a similar

theory of braid mutations on exceptional bases and cylindrical mutations on

helices in the context of lattices. Finally, by assigning to an exceptional basis

its Gram matrix we in turn develop a theory of braid mutations on so-called

exceptional matrices and show how this action extends in two way to cylin-

drical braids. We show how in each of these settings, the orbits under the

braid- or cylindrical action coincide. This will have the technical advantage of

simplifying the computations with the braid group action.

The final part discusses a classification of lattices of DPS* type with an ex-

ceptional basis up to isomorphism. We start by considering the case of rank

3, following the ideas laid out in ([BP94]). The unipotency of the serre auto-

morphism s on K(X) mentioned in the above paragraph in fact translates into

the famed Markov equation. Using Markov’s classification of the solutions to

this equation, it is easy to see that K is isomorphic to the Grothendieck group

of P2. In rank 4, the same unipotency condition takes the form of a system of

diophantine equations.a2 + b2 + c2 + d2 + e2 + f2 − bad− edf − ace− bcf + abdf = 0

af + bd = ce

The techniques of Markov’s cannot simply be generalized to this case, as this

system is notably more complicated. To tackle these equations, we do however

show that one can reduce using the mutation actions described in the preceding

paragraph to one of two simpler settings: either one of the vectors in the

exceptional basis has rank 0 or two successive vectors in the basis satisfy
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〈ei, ei+1〉 = 0. In the former case, this amounts to saying that three successive

vectors of the basis generate again a lattice of SPS type, yielding an extra

constraint in the form of an additional Markov equation. The latter situation

translates the system of equations into a slightly generalized version of the

Markov equation, whose solutions are easily described by adapting Markov’s

techniques. This allows us to write the Gram matrix of a lattice of DPS* type

with an exceptional basis of rank 4 in one of 4 standard forms. We show that

such a lattice is either of a certain trivial type, isomorphic to the Grothendieck

group of P × P1 or F1 or one final so-called exotic type for which the Gram

matrix takes the following form:
1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1

 (1)

The rest of this thesis is dedicated to the construction of a geometric model

for this type.

In the fourth chapter, we first give an account of the work done in [dTdVP14],

joint with D. Presotto. We introduce a new class of rings which will be re-

quired to describe the local structure of the noncommutative geometry used

in the promised geometric model. To a map of rings R −→ S which satisfy

a relative version of the Frobenius property, we associate a graded algebra

ΠR(S). This construction coincides with the preprojective algebra of the star

quiver when we choose the morphism to be R −→ Rn. For this reason, we call

this family of algebras generalized preprojective (not to be confused with the

’higher’ preprojective algebras described in the first paragraph). We study the

properties of this class of rings in the case where S is a free R-module of rank

4 (as this is the only setting of future applications). We prove that in each

degree n, the R-module ΠR(S)n is projective and give an explicit formula for

its rank. We also show that this algebra is always noetherian and finite over

its center. Finally we give an upper bound for the global dimension of ΠR(S),
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proving in particular that it has finite global dimension if R and S are regular

rings.

The fifth chapter describes a construction of a noncommutative surface (in

the sense of [AZ94] ) with an exceptional sequence whose numerical Grothendieck

group is of DPS* type and whose Gram matrix is given by (1) (again in joint

work with D. Presotto, see [dTdVP15]). The explicit form of the Gram matrix

for this lattice exhibited above suggests that this model should be equipped

with two maps to P1 such that the exceptional sequence in question is formed

by pulling back the standard one on P1 along those two maps in question. The

theory of noncommutative P1-bundles over P1 yields a construction of a non-

commutative surface which readily comes with such maps. These surfaces were

first constructed by Van den Bergh in [VdB12] as sheaf Z-algebras. Given a

locally free bimodule E , he considers the so-called noncommutative symmetric

sheaf Z-algebra S(E) and the associated noncommutative scheme Proj(S(E)).

In his foundational paper, he argues that this construction yields a natural

noncommutative generalization of a P1-bundle over P1 provided the bimodule

has ranks (2, 2). In order for our exceptional sequence to fit the required data,

we have to adapt this theory to the case where the bimodule has rank (4, 1).

The work of [Mor07] provides a general framework in which one can compute

Euler characteristics of modules over Proj(S(E)) provided one knows a number

of geometric properties beforehand. We adapt the technique of ’point mod-

ules’ used in [VdB12] to show that the bimodule S(E)n,m is locally free in each

degree and subsequently compute its left and right rank. Next, we give a local

description of S(E) and show how it can be covered in the appropriate sense

so that locally the category of graded modules is a direct summand of the

category of graded modules over a generalized preprojective algebra ΠR(S)

as studied in the previous chapter. The properties we proved for this algebra

allow us to prove that Gr(S(E)) is noetherian, this in turn allows us to use

Mori’s technique to finally show that the Grothendieck group of Proj(S(E)) is

of exotic type in this case as promised.
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Chapter 0

All Things Calabi-Yau

The notion of Calabi-Yau traces its origin to the work of Yau on the Calabi

conjecture for complex compact Kähler manifolds X with a trivial canonical

bundle. Since [BK89], it is known that this is condition can be reformulated

in terms of the Serre functor on the bounded derived category of X being

naturally isomorphic to a shift. This purely categorical statement leads to the

notion of a Calabi-Yau triangulated category over a field k:

Definition 0.0.1. Let C be a Hom-finite triangulated category over k with a

Serre functor S. We say that C is d-Calabi-Yau if there is a natural isomor-

phism

S ∼= Σd

in C where Σ denotes the shift functor

One of Kontsevich’s fundamental insights was to propose a definition for

a Calabi-Yau algebra which in particular implies that the derived category of

finite A-modules Db
f (A) is Calabi-Yau in the above sense. This notion will be

of fundamental importance throughout this thesis. We give the definition over

a general commutative groundring R as this generality will be required in the

sequel.

1



SECTION 0.0.1

For an R-algebra A, we put Ae = A⊗RAop and use without further comment

the standard equivalences between the categories of left Ae-modules, right

Ae-modules and A-bimodules which are R-central.

An Ae-module is called perfect if it has a finite resolution by finitely gener-

ated projective Ae-modules. If A is R-flat and A is a perfect Ae-module then

we say that A is homologically smooth over R.1

Definition 0.0.2. [Gin] A Calabi-Yau R-algebra of dimension d is a pair

(A, η) where

1. A is an R-algebra, homologically smooth over R;

2. η : RHomAe(A,A
e)
'−→ Σ−dA is an isomorphism in D(Ae).

Remark 0.0.3. Note that the amount of freedom for the choice of η is quite

limited. If (A, η) and (A, η′) are Calabi-Yau algebras, then there exists a central

element z ∈ Z(A) such that η′ = zη (see [Dav12]).

There is another variant of 0.0.2 of the Calabi-Yau condition that we will

use throughout, namely that of a Calabi-Yau (DG)-algebra 2

Definition 0.0.4. A Calabi-Yau DG algebra over R is a pair (Γ, η) where

• Γ is a DG algebra which is flat over R and perfect as an Γ⊗R Γop DG-

module

• η : RHomΓe(Γ,Γ
e) −→ Σ−dΓ is an isomorphism in D(Γ⊗R Γop).

Remark 0.0.5. It is clear that this definition coincides with 0.0.2 if we con-

sider A to be a DG algebra concentrated in degree 0

1The implicit flatness hypothesis ensures that this is the correct ’derived’ definition
2We note the slight difference in terminology from [Kel11] as Keller considers both con-

ditions separately
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CHAPTER 0. ALL THINGS CALABI-YAU

0.1 the Ginzburg- and Higher Preprojective DG

algebras

The work of Keller and Ginzburg ([Kel11],[Gin]) provides two important con-

structions which yield DG algebras that always satisfy the Calabi-Yau condi-

tion 0.0.4.

To give an account of the first construction, we briefly recall the notion of a

quiver with potential: let Q denote a finite quiver. Let (kQ)∧
def
=
∏
i kQi

denote the path algebra of Q over the field k, completed with respect to the

ideal kQ≥1. A potential on Q is an element in
∏
i≥2 kQi,cyc, the vector space

spanned by all cycles of length ≥ 2. The data of (Q, w) is a quiver with poten-

tial or QP for short. We say that a potential is reduced if w ∈
∏
i≥3 kQi,cyc

and trivial if w ∈ kQ2. Two potentials are cyclically equivalent if their differ-

ence lies in [kQ∧,kQ∧]. Two quivers with potentials (Q, w) and (Q′, w′) are

right equivalent if there is an isomorphism k̂Q −→ k̂Q′ such that φ|Q0
= Id

and φ(w) is cyclically equivalent to w′. One can always decompose a quiver

with potential in a trivial and reduced part according to the following splitting

theorem:

Theorem 0.1.1 ([DWZ08],4.6). Any quiver with potential (Q, w) is right

equivalent to a direct sum (Qtriv, wtriv) ⊕ (Qred, wred) where (Qtriv, wtriv) is

trivial and (Qred, wred) is reduced. This decomposition is unique up to right

equivalence.

We construct a DG algebra from a quiver with potential (Q, w) as follows:

let Q̃ be the graded quiver on the vertex set Q0 defined as follows:

• each arrow in Q1 defines an arrow of degree 0 in Q̃

• for each arrow α in Q, we add an arrow in the opposite direction α∗ of

degree -1 in Q̃

• add a loop ti in Q̃ of degree -2 to each vertex i ∈ Q0

Page 3



SECTION 0.0.1

We define a differential on kQ̃∧ by requiring that

• dα = 0 for α ∈ Q1

• dα∗ = ∂αw where ∂aw is the cyclic derivative

kQ∧ −→ kQ∧ : w −→
∑

w=uαv

vu

• dti = ei
∑
j [αj , α

∗
j ]ei

Definition 0.1.2. Let (Q, w) be a quiver with potential. The DG algebra

constructed above is called the Ginzburg DG algebra, denoted Γ(Q, w).

The algebra

H0(Γ(Q, w) ∼= (kQ)∧/{∂αw |α ∈ Q1}

is called the Jacobi algebra of (Q, w), denoted Jac(Q, w). If Jac(Q, w) is finite

dimensional, we say that (Q, w) is Jacobi-finite

Theorem 0.1.3. [Kel11] For any quiver with potential (Q, w) the DG algebra

Γ(Q, w) is 3-Calabi-Yau (in the sense of 0.0.4)

It is not true in general that the Jacobi algebra is 3-Calabi-Yau. However

Ginzburg proved the following criterion:

Theorem 0.1.4 ([Gin],5.3.1). The Jacobi algebra of a quiver with potential

(Q, w) is 3-Calabi-Yau if and only if the cohomology of the DG algebra Γ(Q, w)

is concentrated in degree 0, in which case Jac(Q, w) ∼= Γ(Q, w)

Conversely, it is known that not every Calabi-Yau algebra can be written

as a Jacobi algebra, (see for example [Dav12] for an elegant example). There

are two important settings in which this does hold however:

Theorem 0.1.5 ([Boc08],[VdB10]). Let A be a 3-Calabi-Yau algebra. As-

sume that A is either graded or complete. Then there exists a quiver Q with

(homogeneous) potential w such that

A ∼= Jac(Q, w)
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CHAPTER 0. ALL THINGS CALABI-YAU

One of the major features of quivers with potentials is that one can define

an extremely rich operation called mutation on them. This rule is closely

related to the rule of mutations for quivers without loops or 2-cycles, defined

by Fomin and Zelevinsky in [FZ02]:

Definition 0.1.6. Let Q be a quiver without loops or 2-cycles and i ∈ Q0.

Then the mutation of Q at i is the quiver µi(Q) defined as follows:

• For each path of length 2, h
α−→ i

β−→ j add an extra arrow h
[αβ]−→ j

• replace each arrow α incident to i with an arrow α∗ in the opposite

direction

• remove arrows occurring in a maximal set of pairwise disjoint 2-cycles

The mutation of a QP (Q, w) is now described by the following variation

of the above rule

Definition 0.1.7. Let (Q, w) be a quiver with potential and i ∈ Q0. Assume

that Q has no loops or 2-cycles. Then the mutation of (Q, w) at i is given by

µi(Q, w) as the result of the following series of steps:

1. For each path of length 2, h
α−→ i

β−→ j add an extra arrow h
[αβ]−→ j

2. replace each arrow α incident to i with an arrow α∗ in the opposite

direction

3. define w′ = [w] + ∆ where [w] is obtained by substituting [αβ] for each

path h
α−→ i

β−→ j in w and

∆ =
∑

α,β∈Q1

β∗α∗[αβ]

4. take the reduced part as in the splitting theorem. 0.1.1

To see how quiver mutation compares to QP mutation, we have the follow-

ing easy observation:
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Lemma 0.1.8. Let (Q, w) be a quiver with potential, i ∈ Q0 and write µi(Q, w) =

(Q′, w′). Then µi(Q) is obtained from Q′ after removing a maximal set of 2-

cycles

In general, a mutation of a quiver with potential can produce a 2-cycle (as

opposed to the quiver case). In particular, mutations cannot be composed in

general. We therefore make the following definition:

Definition 0.1.9. Let Q be a quiver without loops or 2-cycles and w a po-

tential on Q. We say that (Q, w) is nondegenerate if for any composition of

mutations,

(µi1 ◦ . . . ◦ µin)(Q, w)

the underlying quiver has no loops or 2-cycles

One of the major results in the next chapter is a criterion that implies that

certain Jacobi algebras have an underlying quiver which is nondegenerate (we

refer the curious reader to 1.2.14).

The relation between mutations of quiver with potentials and their Ginzburg

DG algebras was elucidated in the following theorem:

Theorem 0.1.10. [KY11] Let (Q, w) be a quiver with potential such that Q
has no loops or 2-cycles and let Γ be the associated Ginzburg DG algebra. Let

i ∈ Q0 and write Γ′ for the Ginzburg DG algebra of µi(Q, w).

• There is a Γ⊗Γ′ DG bimodule T inducing mutually inverse equivalences

(−)
L
⊗Γ′ T : D+(Γ′) −→ D+(Γ) and RHomΓ(−, T ) : D+(Γ′) −→ D+(Γ)

(1)

• If Γ ∼= Jac(Q, w) has cohomology concentrated in degree 0, then so does

Γ′ ∼= Jac(µi(Q, w)) and T is a 2-term tilting complex.

There is a second construction, closely related to the construction Ginzburg

DG algebra which yields a DG algebra which is d-Calabi-Yau for general d.

The idea behind its construction takes the preprojective algebra of an acyclic

quiver as its starting point.
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Definition 0.1.11. Let Q be an acyclic quiver and R a commutative ring.

Let Q be the doubled quiver obtained by adding an arrow α∗ in the opposite

direction for every α ∈ Q1. The preprojective algebra ΠR(Q) is defined as

ΠR(Q)
def
= RQ/

(∑
α∈Q1

[α, α∗]

)
In the case where the groundring is a field R = k, a classical result by

Ringel gives a simple homological description of this algebra. We denote by

D(−) the usual duality Homk(−,k).

Theorem 0.1.12 ([Rin98]). The preprojective algebra of an acyclic quiver is

isomorphic to the algebra TkQΘ where Θ is the kQ-bimodule Ext1
kQ (D(kQ),kQ)

Remark 0.1.13. Note that Θ indeed is a bimodule, the left action being in-

duced from the right action on D(kQ) and the right action coming from the

right action of the second variable kQ .

It is this characterization that is used to generalize the notion of prepro-

jective algebra for algebras of higher global dimension:

Definition 0.1.14. [IO09] Let A be a finite dimensional k-algebra of finite

global dimension ≤ d−1. The d-preprojective algebra is given by the formula:

ΠdA = TA Extd−1
A (D(AA), A)

Higher preprojective algebras were reinterpreted in the DG context by

Keller in [Kel11].3

Definition 0.1.15. ([Kel11, §4] Let A be a finite dimensional k-algebra of

global dimension ≤ (d − 1). Let Θ be a cofibrant replacement of the inverse

dualizing DG-bimodule RHom•A(D(A), A) in D(Ae). We define the derived

preprojective DG algebra as

Πd(A)
def
= TAΘ([d− 1])

3Keller in fact defines this notion in a much more general context of a homologically

smooth DG category, cofibrant over a commutative groundring, but to retain clarity, we

choose to remain in this setting
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Theorem 0.1.16. Let A be finite dimensional with gl.dim ≤ (d−1) . Then the

DG algebra Πd(A) is d-Calabi-Yau. Moreover we have H0(Πd(A)) = Πd(A).

Proof. See [Kel11, theorem 4.8]

We now have described two constructions of a 3-Calabi-Yau DG algebra

using theorems 0.1.3 and 0.1.16. One starting from a quiver with potential

and one starting from a finite dimensional algebra of global dimension ≤ 2.

The relation between both constructions is elucidated once again in [Kel11]:

Theorem 0.1.17 ([Kel11], thm. 6.10). Let A = kQ /I be a finite dimensional

algebra of global dimension ≤ 2. Then there exists an extension Q′ of the quiver

Q and a graded potential w′ in degree 1 such that

Π3(A) ∼= Γ(Q′, w′).

0.2 Two Examples

0.2.1 Exceptional Sequences, Helices and Their Algebras

We shall first describe these constructions in the setting of the bounded derived

category of coherent sheaves on Del Pezzo surfaces. We briefly recall the

required notions:

Definition 0.2.1. Let T be a Hom-finite triangulated category. An object E

is exceptional if Hom•T (E,E) ∼= k as graded modules.

A sequence of exceptional objects E def
= (Ei)i is called exceptional if it satisfies

the additional condition Hom•T (Ei, Ej) = 0 for i > j.

An exceptional sequence is full if it generates the whole category (i.e. the

smallest triangulated category containing E is C)4 and strong if Homα(Ei, Ej) =

0 for α > 0. The first example of a full, strong exceptional sequence was fa-

mously constructed on Db(Pn) by Beilinson

4note that this category is necessarily thick
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Example 0.2.2 ([Bei90]). Let X = Pn. The sequence (OX , . . .OX(n)) is a

full, strong exceptional sequence on Db(X)

Using this example, combined with the fact that full exceptional sequences

can be lifted under blowups by adding precisely one object, Kuleshov-Orlov

proved their famous theorem:

Theorem 0.2.3 ([KO95]). Let X be a Del Pezzo surface. Then Db(X) has a

full, strong exceptional sequence .

A notion closely related to that of exceptional sequences is that of helix,

which is constructed from a full exceptional collection by applying the Serre

functor and its inverse indefinitely to it in both direction5

Definition 0.2.4. Let T be a Hom-finite triangulated category with Serre

functor S. A helix of length n and period d is a Z-indexed collection of objects

H def
= (Ei)i∈Z in T such that

• any thread (Ei+1, . . . Ei+n) is a full exceptional sequence for each i ∈ Z

• SEi = Ei−n[d]

A helix is geometric if Homα(Ei, Ej) = 0 for α 6= 0 and i ≤ j

we say that H is of type (n, d)

Remark 0.2.5. After a choice of d any exceptional sequence E of length n

defines a helix H(E) of type (n, d) though the rule

Ei−kn = SEi+(k−1)n[−d]

Conversely, to any helix, one can associate the initial thread E(H)
def
= (E1, . . . En)

which is an exceptional sequence by the definition, yielding inverse bijections

E and H between helices and exceptional sequences

5Note that any category with a full exceptional sequence is saturated and hence has a

Serre functor by [BVdB03])

Page 9



SECTION 0.0.2

Now, let E = (E1, . . . En) be an exceptional sequence. Following [BS10],

we put E =
⊕

iEi and define the endomorphism algebra of E to be

A(E) = EndT (E,E) (2)

If the helix H is geometric, we define the rolled up algebra of H to be

B(H) = ⊕i HomT (E, S−iE[d]) (3)

with obvious multiplication. As mentioned above, rolled up algebras form an

important example in this work of a 3-Calabi-Yau algebra 6.

Lemma 0.2.6. (see [dTdVVdB13, app. A]) Let X be a Del Pezzo surface

with a full exceptional sequence E and associated period 2 helix H = H(E).

Assume that H is geometric. Let A = A(E) and B = B(H) as above

1. then B(H) is the derived tensor algebra of the A-bimodule B1

2. B1
∼= RHomAe(A,A

e)[2]

3. gl.dim(A(E)) ≤ 2

Proof. Let E =
⊕

i Ei.
To show the first point, since the Serre functor is given by S(−) = (−)⊗ωX [2]

by Serre duality, for k < 0 we have

Hom(E, ω−kX ⊗E) = Ext2(E, ωk+1
X ⊗E)∗ = 0

Moreover, for k ≥ 0 by exceptionality, we have

Hom(E, ω−kX ⊗E) = RHom(E, ω−kX ⊗E)

hence the claim reduces to showing that for k, l ≥ 0 the canonical map

RHom(E, ω−kX ⊗E)
L
⊗A(E) RHom(E, ω−lX ⊗E) −→ RHom(E, ω−k−lX ⊗E)

6Part of this result can be equally be obtained from [BS10, thm.3.6], although their

definition of Calabi-Yau is our 0.0.1
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CHAPTER 0. ALL THINGS CALABI-YAU

is an isomorphism, which in turn is equivalent to the map

RHom(E, ω−kX
L
⊗ E)

L
⊗A(E) RHom(ωlX ⊗E,E) −→ RHom(ωlX ⊗E, ω−kX ⊗E)

being an isomorphism.

By the fullness of the exceptional sequence E is a classical generator for

Db(OX) and we can replace ω−kX ⊗E and ωlX⊗E by E in the above composition.

The statement becomes obvious in this this case. Since it is clear that B0 = A,

by the definition of the rolled-up algebra (3), we obtain the first statement.

The second statement requires us to compute the complex

RHomEnd(E)e(End(E),End(E)⊗ End(E))

Let � denote the external tensor product π∗1(−) ⊗X×X π∗2(−) where π1, π2 :

X × X −→ X are the canonical projections of X × X. Then we have an

isomorphism

End(E)e ∼= End(E�E∗)

(see [Cra, 3]). E being a classical generator, implies that E∗ must be so too,

and hence E�E∗ is in turn a classical generator for Db(X ×X) by [BVdB03,

3.4.1]. Moreover, since exceptional objects are quasi-isomorphic to shifted

locally free sheaves by [KO95], E�E∗ is perfect and hence compact, yielding

a derived equivalence

RHomDb(X)(E�E∗,−) : Db(X ×X)
'−→ Db(End(E�E∗))

it is easy to check that under this equivalence

• the structure sheaf of the diagonalO∆ corresponds to the module End(E)

• that the object E�E∗ corresponds to End(E)⊗ End(E)

implying that there is an isomorphism

RHomEnd(E)e(End(E),End(E)⊗ End(E)) ∼= RHomX×X(O∆,E�E∗)
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where ∆ is the diagonal. Using the well known formula

RHomOX×X (O∆,OX×X) = ω−1
∆ [−2] (4)

we obtain

RHomX×X(O∆,E�E∗) = R Γ(X ×X,RHomX×X(O∆,OX×X)
L
⊗X×X E�E∗)

(4)
= RΓ(X ×X,ω−1

∆

L
⊗X×X E�E∗)[−2]

= RHomY (E, ω−1
X ⊗E)[−2]

proving the second claim.

Finally, to compute the global dimension of A, first note that A is clearly finite

dimensional of finite global dimension. This means that both statements above

combine to show that B(H) is a 3-preprojective algebra in the sense of 0.1.14

and as such it is a 3-Calabi-Yau algebra. More precisely, B(H) is graded, and if

we denote the shift by (−1), Keller’s proof shows that that the Serre functor is

given by (−1)[3]. This implies that the global dimension ofB is exactly 3. Now,

let S, T be simple A = B0-modules which we view as B-modules concentrated

in degree zero. The part of degree zero of a graded projective resolution of

S is a projective resolution, implying that gl.dim(A) ≤ 3. Moreover, the

Calabi-Yau property on B implies that

Ext3
Gr(B)(S, T ) = HomGr(B)(T, S(−1))∗ = 0

and hence gl.dim(A) ≤ 2

Corollary 0.2.7. • There is an isomorphism B(H) ∼= Π3(A(E)) (see 0.1.15

• B(H) is 3-Calabi-Yau

• B(H) is isomorphic to the Jacobi algebra Jac(Q, w) for some quiver with

homogeneous potential of degree 1

Proof. The first statement is a combination of 1) and 2) above. The second

statement then follows from 0.1.16 (and was in fact used in its proof). To prove
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the final statement, since A has global dimension ≤ 2, we can apply 0.1.17, to

conclude that B ∼= Γ(Q, w) for some quiver with a homogeneous potential of

degree 1 and since B is concentrated in degree 0, we obtain B ∼= Jac(Q, w)

0.2.2 Representations of Cyclic Groups

For the purposes of this section, we assume that k is algebraically closed of

characteristic 0.

Let G be a finite group and V a finite dimensional representation of G. Recall

that the McKay quiver is constructed with

• vertices corresponding to isomorphism classes of irreducible representa-

tions ρi of G

• nij arrows from nodes i to j if the multiplicity of the representation ρj

in the representation V ⊗ ρi is nij

Example 0.2.8. We shall often consider the case where G ⊂ SL(V ) is a

cyclic group of order n generated by an element g. The representation theory

of cyclic groups implies that we can assume that V =
⊕d

i=1 kxi and that g acts

through the rule

g ∗ (x1, . . . xd) = (ξw1x1, . . . , ξ
wdxd) (5)

Where ξ is an n-th root of unity. The McKay quiver Q of G has

• vertices Q0 corresponding to the elements in Z/nZ

• arrows l
αl,i,l+wi−−−−−→ l + wi for each l ∈ Z/Z and 1 ≤ i ≤ d

We have the following beautiful connection between the skew group ring and

the McKay quiver:

Theorem 0.2.9. Let A = SV#G and let Q be the McKay quiver of the

representation G ⊂ SL(V ), then

• A is d-Calabi-Yau
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• If d = 3, there exists a potential such that A ∼= Jac(Q, w)

Proof. Both statements are well known, for the first, see for example [IR08],

for the second see [Gin, thm 4.4.6]

Returning to the example where G is a cyclic group, we can make this

theorem a little more explicit

Lemma 0.2.10. Let G ⊂ SL(V ) be a cyclic group of order n and let dimk(V ) =

3.. Let w be the potential satisfying the conclusion of theorem 0.2.9. Then with

the notations of (5) we have

w =
∑
σ∈S3

εσασ(1),i1ασ(2),i2ασ(3),i3

where ασ(1),i1ασ(2),i2ασ(3),i3 is a 3-cycle and the sign is such that εσ = 1 ⇐⇒
(σ(1), σ(2)), σ(3)) = (1, 2, 3) up to cyclic permutation

Proof. This first appeared in [CDT07] (see remark 2.9). It can also be found

in [Gin], [BWS10, theorem 3.2], or [AIR, prop 5.5]

0.3 Cluster Algebras and Categories

An important setting in which (DG)-Calabi-Yau algebras play a central role

is that of cluster categories. These arose as a construction of a certain type of

category in representation theory, which mimic the beautiful combinatorics of

cluster algebra. Cluster algebras in turn were defined by Fomin and Zelevinsky

in [FZ02], though the simple combinatorial process of seed mutation, which is

again an extension of the mutation rule for quivers (0.1.6)

Definition 0.3.1. A seed is a pair (Q, u) where Q is a quiver without loops

or 2-cycles on the vertex set {1, . . . n} and u = (ui)i a free generating set of

the field Q(x1, . . . xn)

Definition 0.3.2. Let (Q, u) be a seed and i ∈ Q0. The mutation of (Q, u)

at i is the seed µi(Q, u)
def
= (Q′, u′) where
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• Q′ = µi(Q) as in 0.1.6

• u′l = ul for l 6= i and

u′i =
1

ui

 ∏
α:h−→i

xi +
∏

α:i−→j
xj

 (6)

the relation (6) defining u′i is referred to as the exchange relation. We can

collect the data of the various mutations of a seed to form the cluster algebra:

Definition 0.3.3. Let (Q, {x1, . . . xn}) be a seed. We define clusters as being

the sets of variables appearing in a mutation of the seed. The cluster variables

are all the variables appearing in a cluster and finally, the cluster algebra is

the subalgebra of Q(x1, . . . xn) generated by all cluster variables. It is denoted

AQ

Morally, a cluster algebra associated to a quiver has an explicit set of vari-

ables, collected in distinguished generating sets called clusters equipped with a

mutation rule between these sets which is characterized by an exchange relation

as in (6).

In [BMR+06], this mantra was adapted in order to associate to an acyclic

quiver Q a category CQ instead, which has a similar combinatorial structure.

The role of cluster variable in this context is played by rigid indecompos-

able objects. To exhibit its construction, recall that for a finite dimensional

k-algebra of finite global dimension A, the left derived Nakayama functor

S(−)
def
= D(A)

L
⊗A − is a Serre functor on the category Db(A).

Definition 0.3.4. Let Q be an acyclic quiver. the factor category

CQ = Db(kQ)/(S−1[2])

is the cluster category of Q

The properties of this category are summarized in the following theorem

which highlights the analogy between the combinatorics of the cluster algebra

AQ and the cluster category CQ
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Theorem 0.3.5. Let Q be an acyclic quiver on n vertices. Then,

• the category CQ is Krull-Schmidt and 2-Calabi-Yau (see 0.0.2). More-

over, the canonical functor Db(kQ) −→ CQ is a triangle functor.

• any rigid indecomposable object T1 is part of a set T
def
= (T1, . . . , Tn) of

pairwise nonisomorphic irreducible objects satisfying

Ext1
CQ(Ti, Tj) = 0

called a cluster tilting set

• For any cluster tilting set T and 1 ≤ i ≤ n there is a unique irreducible

object T ∗i such that replacing Ti by T ∗i yields another cluster tilting set,

called the mutation of T at Ti

• the pair (Ti, T
∗
i ) is characterized by dimk Ext1(T ∗i , Ti) = 1. In this case

there are nonsplit exchange triangles

Ti −→ E −→ T ∗i −→ Ti[1] and T ∗i −→ E′ −→ Ti −→ T ∗i [1]

unique up to isomorphism

Proof. This was proven in [BMR+06] and we also refer to the excellent overview

paper [Kel08] for additional background.

Remark 0.3.6. Note that in particular as part of the definition of Krull-

Schmidt, CQ is Hom-finite. This will become a major technical issue in the

sequel.

In [IY08], Iyama and Yoshino realized that it is not necessary to involve

a quiver Q should one want to describe categories having similar properties

as 0.3.5. In fact, one can prove an analogous result for any Hom-finite 2-

Calabi-Yau category. To this end we let C denote a Hom-finite 2-Calabi-Yau

idempotent split triangulated category.

Definition 0.3.7. An object T is cluster tilting if
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• T is a direct sum of nonisomorphic indecomposable objects.

• {L ∈ C |Ext1(T, L) = 0} = add(T ), the category of direct sums of factors

of T .

The algebra EndC(T ) is called the associated cluster tilted algebra.

Theorem 0.3.8 ([IY08]). Let T be a cluster tilting object of C. Let T1 be an

irreducible component of T . Then

• there exists a unique irreducible T ∗1 such that the object µ1(T ) obtained

by replacing T1 by T ∗1 in the direct sum is cluster tilting.

• There are non split triangles, unique up to isomorphism

Ti
f−→ E −→ T ∗i −→ Ti[1]

where f satisfies a universal property (i.e f is the minimal left add((Ti)i 6=k)-

approximation.

The above theorem justifies the definition of cluster category:

Definition 0.3.9. A (generalized) cluster category is an (idempotent split)

Hom-finite 2-Calabi-Yau category C together with a choice of cluster tilting

object T .

The algebra EndC(T ) is the cluster tilted algebra of T .

The main technique for producing such categories is the following result

due to Keller ([Kel11]

Theorem 0.3.10. Let A be a DG algebra and assume that

• A is 3-Calabi-Yau

• Hp(A) = 0 for p ≥ 1

• dimkH
0(A) 6=∞
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Let Dfd(A) denote the subcategory of D(A) of DG modules with finite dimen-

sional total homology over k. Then Dfd(A) ⊂ Perf(A) and the category

CA
def
= Perf(A)/Db

fd(A)

is a cluster category where the image of A in CA is a cluster tilting object with

associated cluster-tilted algebra H0(A).

As an application, we obtain two ways to construct cluster categories:

Theorem 0.3.11. Let (Q, w) be a Jacobi-finite quiver with potential (0.1.2).

Then C(Q,w)
def
= CΓ(Q,w) is a generalized cluster category Γ with cluster tilting

object Γ(Q, w) and associated cluster tilted algebra Jac(Q, w).

The relation between mutations of quivers with potentials and cluster tilted

algebras is well-understood for quiver without loops or 2-cycles A second con-

struction of cluster categories is given by the following: theorem:

Theorem 0.3.12. [Ami09] Let A be a finite dimensional algebra of gldim ≤ 2

and assume that the 3-preprojective algebra Π3(A) (see 0.1.15) is finite dimen-

sional. Then the category

CA
def
= CΠ3(A)

is a cluster category in which the image of Π3(A) is a cluster tilting object

with cluster tilted algebra Π3(A).

Proof. This is a combination of 0.3.10 and 0.1.16

We end this introduction by stating that there is a higher version of the

theory of cluster categories with cluster tilting object. We shall not go into

details, but it is worth mentioning that Guo proved the following generalization

of theorem 0.3.10 to general dimensions:

Theorem 0.3.13. [Guo10] Assume that A is a DG algebra such that

• A is d-Calabi-Yau
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• Hp(A) = 0 for p ≥ 1

• dimkH
0(A) 6=∞

Then the category CA = Perf(A)/Db
f (A) is Hom-finite and d− 1 Calabi-Yau.

For this reason, the category is referred to as a d− 1-cluster category. By

Keller’s result 0.1.16, an example of this construction is provided by

CΠd(A) (7)

where A is a finite dimensional algebra of finite global dimension ≤ d− 1 such

that Πd(A) is finite dimensional.
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Chapter 1

on Nondegenerate QP’s

and Cluster Categories

1.1 Introduction

This chapter describes 2 results proven by the author and Van den Bergh in

[dTdVdB10] and [dTdVVdB13], which yields interesting examples of the con-

structions described in the introductory chapter above. In the first part we

exhibit an easy to check criterion which allow us to conclude as to when a Ja-

cobi algebra has an underlying quiver with potential which is nondegenerate as

defined in 0.1.9. We give a relatively simple technique to determine when a QP

(Q, w) has no loops or 2-cycles assuming the existence of an additional grading

on Jac(Q, w) and some technical conditions on that grading (see 1.2.11). Next,

we tweak these conditions a little to obtain a set of conditions which remain

invariant under derived equivalence, and hence under mutation by 1.2.7 (see

1.2.14) .

We show that our set of conditions are valid in two examples:

• Our proof of theorem 0.2.7 shows that the rolled-up algebra of a geo-
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metric helix on a Del Pezzo surface is a Calabi-Yau Jacobi algebra. We

show that for these algebras the conditions of our criterion are satisfied

• If G ⊂ SL(V ) acts on a vector space of dimension 3, then we stated

in 0.2.9 that the skew group ring is Jacobi. We shall prove that under

certain extra numerical constraints, it satisfies the criterion.

We conclude our study of this criterion by mentioning that one can use the

theory of deformed preprojective algebras as developed by Crawley-Boevey

and Holland in [CBH98] to construct a non-example which show the necessity

of the conditions.

Our next result uses the cluster categories defined in 0.3.9 to obtain some

explicit descriptions of the singularity category. Let R be a local Gorenstein

ring of Krull dimension d and let Df (R) = D(mod(R)). Recall that the sin-

gularity category is defined as the quotient sing(R) = Db
f (R)/Perf(R), which

is trivial in the case of a regular ring. If R has an isolated singularity, it is

known since the work of Auslander ([Aus78]) that sing(R) is Hom-finite and

(d − 1)-Calabi-Yau under these conditions. It is thus a natural question to

determine if sing(R) can in fact be described as the higher cluster category

associated to a DG algebra as described in 0.3.10. The solution is provided

by introducing the relative singularity category. Assume that R has a non-

commutative crepant resolution R −→ A (see §1.3.2). Then we consider the

category sing(R,A) = Db(A)/Perf(R). The passage of Db(R) to sing(R,A)

has an elegant description in the language of minimal DG models, which in

turn yields a description of sing(R).

To be more precise, we consider a minimal DG model TlV −→ A (see §1.3.1)

which by the finite global dimension of A must satisfy Df (A) = Perf(TlV ).

There is a way to modify TlV to obtain a DG algebra Γ which in turn satisfies

Perf(Γ) ∼= sing(R,A). We finally prove that modding out the category gener-

ated by the simple Γ-modules yields an equivalence Perf(Γ)/Db(Γ) ∼= sing(R).

Hence in the case where the DG algebra Γ satisfies the conditions of 0.3.10, we

obtain a description of the category sing(R) as a generalized cluster algebra.
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We shall discus the cases of where A is 3-Calabi-Yau and the case of cyclic

quotient singularities as applications of this construction

1.2 Nondegeneracy of Quivers with Potential

1.2.1 a Nondegeneracy Criterion

As mentioned in the introduction above, the key technical tool is the assump-

tion of a grading on the Jacobi algebra. We therefore begin our discussion by

explaining how to adapt the theory of QP’s as laid out in §0.1 in the presence

of a grading. To this end we fix an abelian group Λ.

Definition 1.2.1. A Λ-graded quiver with potential (Q, w) consists of a grad-

ing on Q such that w is a potential, homogeneous for the grading. The graded

path algebra kQ∧gr is defined as the path algebra kQ completed at sequences

of paths of constant degree.

The graded Ginzburg DG algebra Γgr(Q, w) is given as in 0.1.2 where kQ is

replaced by kQgr. And finally, the graded Jacobi algebra of (Q, w) is defined

as

Jacgr(Q, w) = H0(Γgr(Q, w)) = kQ∧gr /{∂αw |α ∈ Q1}

Definition 1.2.2. Two Λ-graded QP’s (Q, w) and (Q′ w) are right graded

equivalent if there is an isomorphism of graded algebras kQ∧gr −→ kQ′∧gr

such that φ|Q0
= Id and φ(w) is cyclically equivalent to w′.

The graded analogue of the splitting theorem (0.1.1) holds

Theorem 1.2.3. Any Λ-graded quiver with potential (Q, w) is graded right

equivalent to a direct sum of graded QP’s (Qtriv, wtriv) ⊕ (Qred, wred) where

(Qtriv, wtriv) is trivial and (Qred, wred) is reduced. This decomposition is unique

up to right graded equivalence.

Proof. This is an immediate corollary of the fact that the right equivalence

constructed in [FZ02] is in fact graded, see also [AO14, theorem 6.6]
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Remark 1.2.4. The proof of the above theorem immediately implies that the

reduced and trivial components of a QP coincide with the usual ones in the

non-graded splitting theorem

The mutation rule of quivers with potential 0.1.7 has a natural graded

version:

Definition 1.2.5. Let i ∈ Q0. Let (Q, w) be a Λ-graded QP where w is

homogeneous of degree r. The graded mutation of (Q, w) is the QP (Q′, w′) =

µi(Q, w) is defined in 0.1.7, graded through the following rule:

• arrows both in Q and Q′ have the same degree

• |[αβ]| = |α|+ |β|

• |α∗| = −|α| if α starts in i

• |α∗| = −|α|+ r if α end in i

Remark 1.2.6. Note that (Q, w) is graded and that w′ remains homogeneous

of degree r.

With this definition we have the following analogue of theorem 1.2.7, which

follows by keeping track of the grading in the proof of [KY11].

Theorem 1.2.7. [KY11] Let (Q, w) be a Λ-graded quiver with potential such

that Q has no loops or 2-cycles and let Γ = Γgr(Q, w) be the associated graded

Ginzburg DG algebra. Let i ∈ Q0 and write Γ′ = Γgr(µi(Q, w))

• There is a Γ⊗Γ′ DG bimodule T inducing mutually inverse equivalences

(−)
L
⊗Γ′ T : D+(Γ′) −→ D+(Γ) and RHomΓ(−, T ) : D+(Γ′) −→ D+(Γ)

(1.1)

• If Γ ∼= Jacgr(Q, w) has cohomology concentrated in degree 0, then so does

Γ′ ∼= Jacgr(µi(Q, w)) and T is a 2-term tilting complex.
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Theorem 1.2.8. Let (Q, w) be a Λ-graded quiver with potential and let i ∈ Q0.

Then there is a derived equivalence

T : D+(Γgr(Q, w)) −→ D+(Γgr(µi(Q, w)) (1.2)

In order to prove our main lemma 1.2.11, we need the following preparatory

result, the proof of which is a straightforward computation

Lemma 1.2.9. [deleting a vertex] Let (Q, w) be a QP. Let 0 ∈ Q0 and

e0 ∈ kQ∧ be the corresponding idempotent. Let (Q#, w#) be the quiver with

potential obtained by deleting the vertex 0 ∈ Q.

There is a canonical isomorphism of DG algebras

Γ(Q, w)/

(
Γ(Q, w)e0Γ(Q, w)

)
'−→ Γ(Q#, w#)

If moreover (Q, w) is Λ-graded, then so is (Q#, w#) and there is an isomor-

phism of DG algebras

Γgr(Q, w)/

(
Γgr(Q, w)e0Γgr(Q, w)

)
'−→ Γgr(Q#, w#)

Proof. The morphism defined by removing all instances of paths going through

the vertex is the required isomorphism

Remark 1.2.10. Taking cohomology in degree zero for both isomorphism im-

mediately yields analogous statements for the (graded) Jacobi algebra s of the

(graded) quiver with potential.

Lemma 1.2.11. Let (Q, w) be a Z-graded QP where Q is connected with at

least 3 vertices and w is a reduced homogeneous potential of degree r. Let

A
def
= Jacgr(Q, w) and assume the following conditions hold:

1. A is noetherian of finite global dimension.

2. dimkAi 6=∞ for all i and dimkA = 0 for i� 0

3. For each nonzero idempotent e ∈ A, dimk(A/AeA) 6=∞.
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4. A/[A,A] contains no homogeneous elements lying in the interval [1, r2 ]

Then Q has no loops or 2-cycles

Proof. Assume that Q contains a loop 0
α−→ 0. Let e =

∑
i6=0 ei ∈ kQ be the

sum of all idempotents corresponding to vertices different from 0. Then e is

a nonzero idempotent since | Q0 | ≥ 3 by hypothesis. By 1.2.9 and 1.2.10, we

have Ā
def
= A/AeA ∼= Jacgr(Q0, w0), where Q0 is the quiver whose sole vertex

is 0 and whose arrows are the loops around 0 and w0 is the potential consisting

of the cycles in w solely passing through 0.

If w0 = 0 then Jacgr(Q0, w0) = kQ∧gr is an infinite dimensional algebra, which

we exclude by (3). We can thus assume that w0 is sum of terms of degree r

which are products of loops

l1 · . . . · ln

where n ≥ 3 as w0 is a reduced potential by hypothesis. Assume that the

number n is minimal. It must then follow that there is a loop of li of degree

|li| < r
2 . Moreover, it is clear that li 6= 0 in A/[A,A]. Hence, in particular

li 6= 0 in A/[A,A]. Condition (4) now states that |li| ≤ 0, but then li is nilpo-

tent by the second part of condition (2). Since A is noetherian and of finite

global dimension by condition (1), we can apply Lenzing’s theorem [Len69] to

conclude that li ∈ [A,A], to obtain a contradiction.

If Q has a 2-cycle 0 −→ 1 −→ 0, then the argument is very similar: Let

e denote the idempotent defined by e =
∑
i 6=0,1 ei. Then e is a nonzero idem-

potent once again by | Q0 | ≥ 3. Using 1.2.10, Ā = A/AeA ∼= Jac(Q0,1, w0,1)

is the graded Jacobi algebra of the quiver with vertices 0 and 1, whose arrows

coincide with the arrows in Q between 0 and 1 and w0,1 is the potential whose

terms are the paths consisting of 2-cycles in w between 0 and 1. We exclude

w0,1 = 0 using condition (3) to conclude that w0,1 must be a sum of 2-cycles of

the form

α1β1 . . . αnβn
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Where n ≥ 2 since w0,1 is reduced. Again, there must be some 2-cycle αiβi

of degree ≤ r
2 in this product. This 2-cycle is again a nonzero element in

A/[Ā, Ā] by the minimality of n ≥ 2. It follows that αiβi 6= 0 in A/[A,A]

and αiβi must have degree ≤ 0 by condition (4) and in turn be nilpotent by

condition (2). Applying [Len69] using condition (1) once more finally yields a

contradiction.

The above conditions can be tweaked a little to obtain a set of conditions

which remain invariant under (graded) mutation of quivers with potentials,

and hence provide us with a criterion for nondegeneracy. To this end, we

make the following definition

Definition 1.2.12. Let R be a commutative noetherian N-graded ring and A

an N-graded algebra, finite as a module over R. The pair A/R is projectively

Azumaya if for all p ∈ Proj(R), Ap is Azumaya over Rp

Lemma 1.2.13. Let A be projectively Azumaya over a noetherian center R.

Then for any nonzero idempotent e, the module A/AeA is a finite R0-module

Theorem 1.2.14. Let (Q, w) be an N-graded QP where Q has at least 3 ver-

tices and w is reduced and let A
def
= Jacgr(Q, w). Assume the following condi-

tions hold:

1. dimkAi 6=∞ for all i

2. A is a 3-CY and projectively Azumaya over a noetherian center

3. the graded module A/[A,A] contains no homogeneous elements in the

interval [1, r2 ]

Then (Q, w) is nondegenerate

Proof. We proceed to verify the conditions of 1.2.11 for A. The algebra is

noetherian by condition (2) and has global dimension 3 again by condition

(2). Condition (2) of 1.2.11 coincides with condition (1) above. Next, by the

above lemma 1.2.13, for each nonzero idempotent A/AeA is a finite R0-module,
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and as dimkR0 ≤ dimkA0 6= 0 the third condition is satisfied. Finally, the

last conditions coincide in both statements. It follows that Q doesn’t contain

any loops or 2-cycles. We must thus show that A′
def
= Jacgr(µi(Q, w)) again

satisfies the conditions of 1.2.11. By 1.2.8, we immediately conclude that there

is a derived equivalence between A and A′ given by a 2-term tilting complex

T .

1. we clearly have dimkA
′
i 6=∞ for i ≥ 0 and the fact that A′i = 0 for i� 0

follows from the fact T is a bounded complex hence so is End(T ).

2. A′ is 3-Calabi-Yau by a combination of 0.1.3 and 1.2.8, It is well known

that the center is invariant under derived equivalence, implying that S
def
=

Z(A′) ∼= Z(A). It follows that Z(A′) is noetherian in particular. Finally,

to prove that A′ is projectively Azumaya over Z(A′), let p ∈ Proj(S).

Since the property of being Azumaya over the center is Morita invariant,

it suffices to show that there is a Morita equivalence Ap ' A′p. This

follows from [KY11, thm 6.2] with the fact that the tilting modules in

question become projective after localizing at p.

3. It is well know that the zeroth Hochschild cohomology HH0(A) = A/[A,A]

is a derived invariant. Moreover, by keeping track of the additional grad-

ing in [Kel03], it follows in this case that it preserves the grading on

Hochschild cohomology.

A′/[A′, A′] = HH0(A′) ∼= HH0(A) = A/[A,A]

which trivially yields the result

Remark 1.2.15. We note that the last condition, although rather technical

in nature cannot be omitted from the statement. In [CBH98], Crawley-Boevey

and Holland consider a deformed version of the preprojective algebra Πλ over

an acyclic quiver Q where λ ∈ kQ0. An explicit computation shows that

Πλ = Jac(Q, w) where Q is the formally doubled quiver as in definition 0.1.11,
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with an extra loop ti at each vertex and

w =

(∑
i∈Q0

ti

)(∑
α∈Q1

[α, α∗]

)
−
∑
i∈Q0

1

2
λit

2
i

Using methods from [CBH98] and [VB08] one proves that if Q is extended

Dynkin, under certain numerical conditions for λ, this algebra satisfies all but

the last condition in 1.2.14. Moreover, the quiver Q by construction has a loop

tiat each vertex i and a 2-cycle for each arrow α ∈ Q We refer the reader to

our paper [dTdVVdB13] for proofs of these statements

1.2.2 Some Applications

In this section, we apply the theorem 1.2.14 to the two examples discussed in

§0.2. We shall first consider the case of cyclic group actions on a vector space.

To this end, we assume that k is an algebraically closed field of characteristic

zero. We recall the following geometric fact:

Theorem 1.2.16. Let G ⊂ SL(V ) be a finite group acting on a vector space

of dimension d over the field k. The following are equivalent:

• the ring of invariants SV G has an isolated singularity

• the ring SV#G is projectively Azumaya over its center SV G

• the action of G on V is free outside of the origin

If d is an odd prime, then G is a cyclic group

Proof. The three equivalences follow from [IR08, 8.4]. The fact that G must

be cyclic in this case is the main result of [KN]

We consider the case d = 3 and as in §0.2.2, we write V = kx1⊕kx2⊕kx3.

We let G = Z/nZ act on V by weights (w1, w2, w3) after a choice of n-th

primitive root of unity ξ. The condition that G ⊂ SL3(V ) is equivalent to∑
wi = 0 modn
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Recall from 0.2.9 that SV#G is a 3-Calabi-Yau Jacobi algebra Jac(Q, w) where

the quiverQ is the McKay quiver and the potential w is a signed sum of 3-cycles

(and hence canonical graded of degree 3)

We can now prove:

Lemma 1.2.17. Let G ⊂ GL(V ) be a finite group of order n and V a repre-

sentation of dimension 3. The following are equivalent:

1. G ⊂ SL(V ) and SV#G satisfies the conditions of 1.2.14

2. G is cyclic of order n and the weights of the action of G on V satisfy

gcd(wi, n) = 1 and
∑
i

wi = 0 modn ,∀1 ≤ i ≤ n

Proof. By 1.2.16, the requirement that SV#G be projectively Azumaya is

equivalent to the action being free outside the origin. This immediately implies

that G is cyclic by 1.2.16 once again. It is easy to see that in this case the

condition of being free outside the origin translates to

gcd(wi, n) = 1

The condition
∑
i wi = 0 modn ,∀1 ≤ i ≤ n follows from the above discussion,

proving (1) =⇒ (2)

Conversely, assume that G is cyclic of order n with weights satisfying the

above conditions. The fact that Q is connected and that w is reduced and

homogeneous follows from the construction in 0.2.10. Moreover, Q must have

at least 3 vertices, as otherwise, we have 2 = | Q0 | = n and the condition∑
wi = 0 implies that one of the weights must be zero, contradicting that the

action is free outside the origin. We now use 1.2.16.

The first condition is trivially satisfied. The second condition is once again an

immediate application of 1.2.16, together with the above discussion.

The second condition is 1.2.16.

The last condition is equivalent to (A/[A,A])1 = 0 as the potential has degree

3. The only nonzero elements in this group are classes of loops, hence if
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(A/[A,A])1 6= 0, then Q must have a loop. This in turn implies that one

of the weights is 0 by the definition of the McKay quiver, contradicting our

assumption on weights once again

Summarizing both theorems yields 0.2.10 and 1.2.17 yields:

Theorem 1.2.18. Assume Z/nZ acts on V with dimk(V ) = 3 through weights

satisfying
∑
wi = 0 and gcd(wi, n) = 1 Let Q be the McKay quiver of G. Then

there exists a reduced homogenous potential w such that

• SV#G ∼= Jac(Q, w)

• the QP (Q, w) is nondegenerate

Proof. The statement in now a combination of 0.2.10, 1.2.17 and 1.2.14

We also give a counterexample, showing that the numerical conditions on

the action are in fact necessary. Let Z/6Z act on kx1⊕kx2⊕kx3 with weights

(u, v, w)
def
= (2, 5, 5) (note that gcd(2, 6) 6= 1, and hence the second condition

of 1.2.18 isn’t satisfied). The McKay quiver of this group has the following

pretty picture:

0̄

αu

��

αv

  αw
**1̄

αu

��

αv

44

αw

==

5̄
αu

oo

αv

��

αw

��
2̄

αu //

αv

KK

αw

SS

4̄

αu

YY

αv
tt

αw

~~
3̄

αu

EE

αv

``
αw

jj

where we have omitted the head and tail of the arrows from the notation

introduced in 0.2.8 for purposes of clarity.
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This quiver is naturally Z3 graded, we will grade by monomials x1, x2, x3

so that |αi| = xi. Following the computation in 0.2.10, the potential w is

homogeneous of degree x1x2x3. We leave the reader to check that a mutation

at 0 yields the 2-cycle [x1, x1]x1 of degree x3
1 between the vertices 2 and 4.

This 2-cycle remains after taking the reduced component following 1.2.3, since

by degree constraints, one can only remove 2-cycles for which the sums of the

degrees of the arrows is the degree of the homogeneous potential x1x2x3

As a second application, we turn to Del Pezzo surfaces for which we can

immediately prove

Theorem 1.2.19. Let X be a Del Pezzo surface, E a full exceptional sequence

in Db(X) and H = H(E) be the associated helix of period 2 (see 0.2.5). Assume

that H is geometric. Then the rolled up algebra B(H) is isomorphic to the

Jacobi algebra of a nondegenerate QP

Proof. The number of vertices of Q corresponds to the number of objects in

E, since it is well know that a full exceptional sequence of a Del Pezzo surface

must have at least 3 objects (as a corollary of 0.2.3), we obtain that | Q0 | ≥ 3.

Since it is well known that the Grothendieck group of a Del Pezzo surface has

rank at least 3, it immediately follows that Q has 3 vertices. Moreover it is

easy to see that Q is connected (by the description of B(H) in [BS10, thm 3.2],

for example). By 0.2.7, B(H) is isomorphic to a 3-Calabi-Yau Jacobi algebra

Jac(Q, w) where Q is N-graded and w is homogeneous of degree 1. We proceed

to verify the conditions of 1.2.14.

• We have B(H)i = 0 if i < 0 and dimkB(H) 6= ∞ since Db(X) is a

Hom-finite category.

• Next, B(H) is 3-Calabi-Yau by 0.2.7 and projectively Azumaya as it

is the pushforward of an Azumaya algebra on the total space of the

canonical bundle ωX (see [BS10] again)

• the last condition is vacuous as the degree of w is r = 1
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Remark 1.2.20. We note that the work of Bridgeland-Stern ([BS10]) on

the relation between mutations of quivers with potentials and mutations of

exceptional sequences implies the above nondegeneracy result as well.

1.3 Singularity Categories as Cluster Categories

In this section, we discuss a construction which allows us to describe singularity

categories as cluster categories in certain cases following §1.1

1.3.1 Minimal Models

Throughout k denotes an algebraically closed field of characteristic 0 and k −→
l a separable k-algebra.

Definition 1.3.1. Let A be a k-algebra. A finite minimal model for A is a

quasi-isomorphism (TlV, d) −→ A where (TlV, d) is a DG l-algebra such that

• V is a finitely generated graded l-bimodule

• TlV is the free graded-completed l-algebra over this bimodule

• TlV is concentrated in degree ≤ 0

• d(V ) lies in the two-sided ideal generated by V ⊗l V

Example 1.3.2. We have already seen an example of a finite minimal model

in the context of QP’s: let (Q, w) be a QP and let l = kQ0 and be the l-bimodule

V = kQ1. Then it is easy to see that the Ginzburg DG algebra Γ(Q, w) defined

in 0.1.2 is indeed of the required form. Moreover as the differential is 0 in

degree 0 we have a morphism of complexes,

π : Γ(Q, w) // // Jac(Q, w)
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0.1.3 shows that π is a quasi-isomorphism if and only if A = Jac(Q, w) is 3-

Calabi-Yau. Hence that Γ(Q, w) is a finite minimal model for A if and only if

A is 3-Calabi-Yau.

Theorem 1.3.3. Assume A is complete, let l = A/ rad(A) and assume dimk(l) 6=
∞. Then A has a minimal model, unique up to isomorphism

Proof. This is a special case of the discussion in [VdB10, appendix A]

We include this theorem solely to be complete. For our purposes, it will be

natural to assume that A is a Koszul l-algebra. In this case, it is well known

that the minimal model can be constructed directly (see [LV99, chapter 3] for

a detailed account of this theory). We will give however provide a direct proof

of this fact for the benefit of the reader. To this end let A = TlV/R where R

is a finitely generated l-bimodule in V ⊗l V . Define a series of l-bimodules by

Jn =
⋂

p+2+q=n

V ⊗p ⊗l R⊗l V ⊗q

By definition, we have J1 = V and J2 = R. Moreover, there is a canonical

map

δi,n−i : Jn −→ Ji ⊗l Jn−i

given by concatenating. We shall use Sweedler style notation δi,n−i(a) =

δi(a)′ ⊗ δi(a)′′ for a ∈ Jn throughout.

Now, A is graded by the so-called Adams grading which gives elements in V

degree 1. The maps δi,n−i become graded morphisms with this grading. We

define Ṽ
def
=
⊕

n≥1 Jn[n− 1] and construct a DG algebra through the rule

• Ã = TlṼ

• da = (−1)i−1
∑
δi(a)′ ⊗ δi(a)′′

We leave it to the reader to check that this is indeed a DG algebra, which is

a straightforward computation
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Lemma 1.3.4. Assume A is Koszul. Then the DG algebra Ã is a minimal

model of A where the quasi-isomorphism Ã −→ A is induced from the canonical

projection map Ṽ −→ J1 = V

Proof. The Koszul hypothesis on A implies that the following complex of

graded left A-modules is exact

· · · −→ A⊗l J2 −→ A⊗l J1 −→ A −→ l −→ 0 (1.3)

where the differential is given by

d : A⊗l Jn −→ A⊗l Jn−1 : a⊗ b 7→ aδ1,n−1(b)′ ⊗ δ1,n−1(b)′′

Put

M = (TlṼ )+
def
=
⊕
n≥1

Ṽ ⊗ln ⊂ TlṼ

We consider M as a left sub DG-Ã-module of Ã. As a left graded Ã-module

we have

M = Ã⊗l (J1 ⊕ J2[1]⊕ J3[2]⊕ · · · )

Let C̃ be the cone of the inclusion map i : M −→ Ã. As graded Ã-modules

we have

C̃ = Ã⊗l (l ⊕ J1[1]⊕ J2[2]⊕ · · · )

As coker i = l the obvious map C̃ −→ l is a quasi-isomorphism.

Put C = A ⊗Ã C̃. Then one checks that C is precisely the complex (1.3)

without the right most l.

· · · −→ A⊗l J2 −→ A⊗l J1 −→ A −→ 0

Thus C −→ l is a quasi-isomorphism as well and hence so is the canonical

map C̃ −→ C.

We now equip C̃ with an ascending filtration of sub-DG-Ã-modules as

follows: F0C̃ = Ã, F1C̃ = Ã⊗ (k⊕J1[1]), . . . etc and equip C with the similar

filtration. The canonical map C̃ −→ C is a map of filtered DG-Ã-modules.
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Assume we have shown that Ã −→ A is a quasi-isomorphism in Adams

degree ≤ n. Then (C̃/F0C̃)n+1 −→ (C/F0C)n+1 is a quasi-isomorphism.

Given that C̃n+1 −→ Cn+1 is a quasi-isomorphism we deduce that F0C̃n+1 =

Ãn+1 −→ An+1 = (F0C)n+1 is also a quasi-isomorphism and the result follows

by induction

It is worth making this construction more explicit in a few cases

Example 1.3.5. let V be a vector space over k and let A = SkV = TkV/(R)

where R = {v ⊗ w − w ⊗ v}. Then Jn ∼=
∧n

V and Ṽ =
⊕

n

∧n
V [n− 1] and

Ã = TkṼ . The differential is given by

d(v1 ∧ . . . ∧ wn) =
∑
i

(−1)i−1(v1 ∧ . . . ∧ vi)⊗ (vi+1 ∧ . . . ∧ vn)

Introducing a basis on V =
⊕

i kxi, we obtain that Ã is a DG algebra over k
explicitly described as

• as an algebra Ã = k〈xS〉 where S is an subset of strictly ascending num-

bers {1, . . . n}

• the grading on Ã is given by |xS | = |S|

• the differential is given by

dxS =
∑

S=AqB
(−1)|A|−1εA,BxA ∧ xB

where the sign εA,B is defined as xS = εA,BxA ∧ xB.

This example can be adapted to skew group algebras as follows:

Example 1.3.6. Assume that G is a finite group acting on a vector space

W . Let A = SW#G. Then A = TlV/R where l = kG, V is the l-bimodule

generated by W and R is the l-bimodule of symmetric relations. Repeating the

same procedure leads one to a minimal model for A.

• Ã = k〈xS〉#G where S is an subset of strictly ascending numbers {1, . . . n},
graded by |xS | = |S|
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• the differential is the kG-linear morphism which acts on the variables xS

as

dxS =
∑

S=AqB
(−1)|A|−1εA,BxA ∧ xB

where the sign εA,B is defined as xS = εA,BxA ∧ xB.

1.3.2 the Relative Singularity Category

Following the introduction 1.1, R will denote a local complete Gorenstein k-

algebra of Krull dimension d such that R/m ∼= k, with an isolated singularity.

It is well known that R is regular if and only if the subcategory Perf(R) of

complexes quasi-isomorphic to bounded complexes of finitely generated pro-

jective R-modules coincides with Db(R) (see [Orl46]). This leads one to study

the singularities of R through the following important invariant:

sing(R) = Db
f (R)/Perf(R)

called the singularity category of R.

The study of this category has proven to be very fruitful. We will mention one

celebrated theorem by Buchweitz in this context, which he describes as the

’raison d’être’ of maximal Cohen Macaulay modules. Recall that the category

of maximal Cohen Macauley modules can be defined as

MCM(R)
def
= {M ∈ mod(R) |Exti(M,R) = 0∀i > 0}

by the Gorenstein assumption on R. We denote by MCM(R) its associated

stable category

Theorem 1.3.7. (Buchweitz, [Buc]) The inclusion MCM(R)
� � // mod(R)

induces an equivalence of categories:

MCM(R)
'−→ sing(R)

In this section, we discuss a relative version of sing(R) which we introduced

in [dTdVdB10] and has since been studied by various authors (see [BK12] for

the origin of the term ’relative singularity category’).
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The strongest notion of resolution of singularities in algebraic geometry is

that of a crepant resolution. This is a morphism π : X −→ Spec(R) such that

π∗(ωR) = ωX . The characteristic aspects of this notion were generalized to

the setting of noncommutative rings by Van den Bergh leading to the concept

of a noncommutative crepant resolution (NCCR). Under the stated conditions

on R, this is an R-algebra of the form A = EndR(M) where M is given as a

direct sum M =
⊕
Mi over a complete set of nonisomorphic indecomposable

MCM modules {M0, . . . ,Mk} 1 such that A is of finite global dimension (we

refer to the foundational paper [VdB02a] and to the overview paper [Leu11] for

details). To fix notation, let ei : M −→Mi be the projection map, and let Pi =

Aei the corresponding projective module, Si = Pi/ radPi the corresponding

simple module and finally l
def
=
⊕

i kei the split semisimple k-algebra. Following

our assumption, we have P0
∼= HomR(M,R) and the properties of NCCR’s

imply that the functor ι := (−)
L
⊗RP0 defines an embedding of Perf(R) ∼= 〈P0〉

into Db(A). This allows us to define the singularity category of R, relative to

the NCCR A as

sing(R,A)
def
= Db

f (A)/ι(Perf(R)) = Db
f (A)/〈P0〉

Our result is an explicit relation between the derived category of A, the

relative singularity of R and the (absolute) singularity category of R using

minimal models. The explicit nature allows us to develop powerful methods

for certain examples.

Theorem 1.3.8. let TlV −→ A be a finite minimal model. Put Γ = TlV/TlV e0TlV .

1We shall always tacitly assume that R = M0

Page 37



SECTION 1.1.3

1. the modules Si are perfect Γ-modules and there is a commutative diagram

Perf(TlV )

'

��

(−)
L
⊗TlV Γ

// Perf(Γ)

'

��

// Perf(Γ)/Dfd(Γ)

'

��
Db
f (A)

mod〈P0〉
// sing(R,A)

mod〈Si6=0〉
// sing(R)

2. The DG algebra Γ has finite dimensional cohomology in each degree.

Moreover, we have

H0(Γ) = A/Ae0A

We shall prove the commutativity of the above diagram using the following

lemma

Lemma 1.3.9. The functor

Ξ : Db
f (A) −→ Db

f (R) : N 7→ e0N (1.4)

induces an equivalence

Db
f (A)/〈(Si)i6=0〉 ∼= Db

f (R)

Proof. Let U ∈ Db
f (R). Since P0 is a locally free on SpecR − {m} we know

that P0⊗RU has finite dimensional cohomology in each degree. Let N be such

that for n ≥ N we have H−n(U) = 0. We claim that for n ≥ N this implies

that H−n(P0

L
⊗R U) is an extension of (Si)i6=0, i.e. e0H

−n(P0

L
⊗R U) = 0.

Indeed

e0H
−n(P0

L
⊗RU) = H−n(e0Ae0

L
⊗RU) ∼= H−n(R

L
⊗RU) = H−n(U) = 0 (1.5)

Define Φ(U) = τ≥−N (P0

L
⊗R U). Then Φ(U) is a well defined object of the

category Db
f (A)/〈(Si)i 6=0〉. We will prove the claim by showing that assignment
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Φ(−) yields a quasi-inverse to (1.4). If U ∈ Db
f (R) then the computation (1.5)

shows that ΞΦ(U) = U . Conversely assume V ∈ Db
f (A). Then ΦΞ(V ) =

τ≥−N (P0

L
⊗R e0V ). Let C be the cone of the morphism

P0

L
⊗R e0V = Ae0

L
⊗R e0V −→ V

We immediately infer that e0C = 0, in other words C is zero inDb
f (A)/〈(Si)i 6=0〉.

Furthermore by our choice of N we have e0H
−n(V ) = H−n(e0V ) = 0 for

n ≥ N and hence H−n(V ) is an extension of (Si)i 6=0 for such n. Thus working

modulo 〈(Si)i 6=0〉 we have

τ≥−N (P0

L
⊗R e0V ) = τ≥−NV = V

which finishes the proof.

The bulk of the work in the second claim lies in the following lemma

Lemma 1.3.10. The category sing(R,A) = Db
f (A)/〈P0〉 is Hom-finite and in

addition

Homsing(R,A)(A,A) = A/Ae0A (1.6)

Proof. Since A has finite global dimension, by a standard homological argu-

ment, the claim of Hom-finiteness reduces to showing that it is sufficient to

prove for any M ∈ Db
f (A):

dim Homsing(R,A)(A,M) 6=∞ (1.7)

We make one further reduction as follows: if N ∈ mod(A) then there there is

a map

φ : Pn0 −→ N

such that cokerφ ∈ 〈(Si)i 6=0〉. Using φ we can resolve any object M ∈ Db(A)

by a complex P ∈ 〈P0〉 such that cone(P −→M) modulo 〈(Si)i 6=0〉 is an object

M1 in mod(A)[n] for n � 0. This further reduces the claim (1.7) to one of
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two cases where either M ∈ mod(A) or M = Si[p] for i 6= 0 and p ∈ Z.

To deal with the latter, let M = Si[p] and let N be an extension of (Si)i6=0

in mod(A). Then Homi
Dbf (A)(P0, N) = 0 from which we easily deduce

Homi
sing(R,A)(A,N) =

N if i = 0

0 otherwise
(1.8)

and the claim follows in this case

Now assume M ∈ mod(A). We first show that in this case

Homi
sing(R,A)(A,M) = 0 (1.9)

for i > 0. Let p be a map A −→ M [i] in sing(R,A) = Db
f (A)/〈P0〉. Then by

Verdier localization, p is represented in Db
f (A) by a diagram of the following

kind

C
p′

!!

q

��
A M [i]

such that P = cone q ∈ 〈P0〉. We then obtain a morphism of distinguished

triangles

P // C

p′

��

q // A

��
Q // M [i] // Z

where Z = (Q −→M [i]) is a complex

0 −→ Qt −→ · · · −→ Qi+2 −→ Qi+1 −→ Qi −→M −→ 0

for some t such that Qj ∼= P
aj
0 .

We deduce HomDbf (A)(A,Z) = 0 and hence p′ factors through Q. Thus p

(which is the image of p′ in Db
f (A)/〈P0〉) is the zero map. This finishes the

proof of (1.9) for i > 0.

Page 40



CHAPTER 1. ON NONDEGENERATE QP’S AND CLUSTER
CATEGORIES

To understand Homsing(R,A)(A,M) let M̄ = cokerφ. Applying (1.9) to-

gether with (1.8) to the exact sequence

0 −→ imφ −→M −→M −→ 0

we obtain

Homsing(R,A)(A,M) = M

Thus this is finite dimensional as well. Applying this identity with M = A

we immediately obtain (1.6). We leave it to the reader ti check that this

isomorphism respects the multiplications and is hence a ring-isomorphism

Proof of theorem 1.3.8. The simple modules are indeed perfect by [KY11, 2.19].

We proceed to show the properties of the diagram 1. We begin by showing

that the downward functors are equivalences

• Perf(TlV ) −→ Db
f (A) as Perf(TlV ) ∼= Perf(A) since TlV −→ A is a quasi-

isomorphism and Perf(A) ∼= Db
f (A) since A has finite global dimension

• For the second claim, we must show that Perf(Γ) ∼= Db
f (A)/〈P0〉. We

have Perf(TlV ) ∼= Perf(A) ∼= Db
f (A) and we now invoke [Kel11, lemma

7.2] and its proof.

• to see that the downward right functor is in fact an equivalence, we first

note that Db
fd(Γ) coincides with the triangulated category generated by

the simple modules (as in [KY11, thm. 2.19a]) and hence

Perf(Γ)/Dfd(Γ) ∼= sing(R,A)/〈(Si)i6=0〉 ∼= Db
f (A)/〈P0, (Si)i 6=0〉

We now compute:

Db
f (A)/〈P0, (Si)i 6=0〉 =

(
Db
f (A)/〈(Si)i6=0〉

)
/〈P0〉

=Db
f (R)/〈P0〉

=Db
f (R)/Perf(R)

= sing(R)
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where we used lemma 1.3.9

For the second claim, note that

Hn(Γ) = HomPerf(Γ)(Γ,Γ[n])

hence since Perf(Γ) ∼= Perf(TlV ) ∼= Db
f (A) once again, the second statement

is an immediate consequence of 1.3.10

We can apply this theorem in the case of 3-Calabi-Yau algebras, using 1.3.2

Theorem 1.3.11. Assume that R has Krull dimension 3 and let R −→ A be

an NCCR for R, which is complete. Then

• A ∼= Jac(Q, w)

• there is an equivalence of categories

sing(R) ∼= C(Q0,w0)

where (Q0, w0) is obtained by removing a vertex from (Q, w)

Proof. It is well known that an NCCR is always Calabi-Yau. Since A is com-

plete, it follows from 0.1.5 that A is the Jacobi algebra of a QP (Q, w). Apply-

ing example 1.3.2 yields that the Ginzburg DG algebra Γ(Q, w) is a minimal

model. The construction laid out in 1.3.8, together with 1.2.9 now yields the

result.

Example 1.3.12. Let R = k[[t, x, y, z]]/(xy− zt) be the ordinary double point

singularity. Then R has a noncommutative crepant resolution EndR(R ⊕ I)

with I = (x, z). The corresponding quiver is

0

p ++
q ++ 1
r

kk s
kk

with super potential

w = psqr − prqs
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We see that Q0 consists of the single vertex 1 and w0 = 0. Hence

Γ(Q0, w0) = k[t]

with deg t = −2. The associated cluster category is simply the category of

Z2-graded vector spaces SupVec(k) and we recover the well-known fact

sing(R) ∼= SupVec(k)

1.3.3 an Application to Cyclic Quotient Singularities

Assume thatG
def
= Z/nZ ⊂ GL(V ) acts on V =

⊕d
i kxi with weights (ξw1 , . . . , ξwd).

(following the notation in §0.2.2 as always). We assume the additional condi-

tions

gcd(wi, n) = 1 and
∑
i

wi = 0 mod n

so that G ⊂ SL(V ) by 1.2.17, R = SV G is a Gorenstein isolated singularity by

1.2.16 (R is in fact Gorenstein for any finite group by Watanabe’s theorem).

Moreover, the following is well known:

Lemma 1.3.13. The canonical morphism SV G −→ SV#G is an NCCR

Proof. This is a consequence of ’Auslander’s McKay correspondence ’[Aus78]

(see also [Leu11, thm J.2] for a discussion) or [IT10] for a detailed proof

Hence to apply our construction, we need to explicitly compute a minimal

model for SV#G, This was done in example 1.3.6. Recall that for a finite

group G and an irreducible character χ : G −→ C, there is an associated

primitive idempotent

ei =
1

|G|
∑
g∈G

χ(g−1)g

Specifying to the case of a cyclic group of order n, Each irreducible character

is given as

χi : Z/nZ −→ C∗ : a 7→ ξia
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so that in this case we obtain

ei =
1

n

n−1∑
ā=0

ξaia

We have kG =
⊕

kei. By the construction of SV#G we have the relation

axi = ξawia which translates into

ejxi = xiej+wi

This, together with example 1.3.6 shows the following:

Lemma 1.3.14. The algebra A
def
= SV#G has a minimal model Ã over l = kG

given by the free l-algebra Ã = l〈xS〉S where S ⊂ [n] is a choice of numbers in

ascending order subject to the relations

el · xS = xS · el+d(S)

where d(S) =
∑
i∈S

wi

We will reformulate this example in terms of quivers. We described in

§0.2.2 how to compute the McKay quiver Q of G as indexed by edges Z/nZ
and arrows xl,i,l+wi . [AIR, prop 5.5] now shows that SV#G is the path algebra

of the McKay quiver modulo relations:

xl,i,l+wi · xl+wi,k,l+wi+wk = xl,k,l+wk · xl+wk,i,l+wk+wi

(see §0.2.10, for a superpotential inducing these relations in the case d = 3)

This allows us to give a second description of the finite minimal model of

SV#G as follows: let Q̃ denote the graded quiver with same vertices as Q
and arrows xj,S,j+d(S) of homological degree −|S|+1 going from j to j+d(S).

Then Ã = kQ̃, d) with differential given by

dxj,S,j+d(S) =
∑

S=A
∐
B,A6=∅,B 6=∅

(−1)|A|−1εA,Bxj,A,j+d(A) · xj+d(A),B,j+d(S)

(1.10)
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Let Q̃0 be the quiver obtained from Q̃ by dropping all arrows adjacent to 0.

Thus the arrows in Q̃0 are of the form xj,S,j+d(S) with j 6= 0, j + d(S) 6= 0.

We can now specialize theorem 1.3.8 to the current situation we obtain the

following result:

Proposition 1.3.15. Let A = k[x1, . . . , xn] and assume that the cyclic group

G = Z/mZ acts linearly on A with weights (ξa1 , . . . , ξan) satisfying the addi-

tional properties
∑
i ai = 0 mod 0 and gcd(ai,m) = 1. Then

sing(ÂG) ∼= Perf(kQ̃0
, d)/〈(Si)i=1,...,m−1〉

where the differential is given by (1.10) (taking into account that arrows ad-

jacent to the vertex 0 should be suppressed on the righthand side). The DG

algebra (kQ̃0
, d) has finite dimensional cohomology and

H0(kQ̃0, d) ∼= Â/Âe0Â

Proof. The morphism ÂG −→ Â#G is an NCCR by 1.3.13. We described

the minimal model (kQ̃, d) −→ Â#G above. The result now follows from

theorem 1.3.8, by noting that the associated DG algebra Γ is precisely given

by removing the vertex 0

We conclude our example by mentioning that this example yields an in-

terpretation of sing(R) as a higher cluster category as described in 0.3.13.

This in particular gives an alternate explanation of Auslander’s result that

the singularity category of ÂG is d − 1-Calabi-Yau. To this end, we consider

the following construction of a quiver algebra: Let P be the quiver with the

same vertices as Q̃0 but only with ascending arrows subject once again to the

relations

xl,i,l+wi · xl+wi,k,l+wi+wk = xl,k,l+wk · xl+wk,i,l+wk+wi

Let C be the resulting path algebra. As in [10, 15] we define the inverse

dualizing complex of C as
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Proposition 1.3.16. There is a quasi-isomorphism of DG algebras

(kQ̃0, d)
'−→ ΠnC

In particular sing(ÂG) is a generalized d− 1-cluster category as in (7) of the-

orem 0.3.13.

Proof. We refer the reader to our paper [dTdVdB10, prop 6.6.1] for a detailed

proof.
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Chapter 2

the Deformation Theory of

Calabi-Yau Algebras

2.1 Introduction and Statement of Results

In this chapter we describe the deformation theory of Calabi-Yau algebras.

We will tweak the definition given in 0.0.2 a little in order to better suit our

purposes. More precisely, Calabi-Yau algebra will consist of an ordinary as-

sociative algebra A together with a cocycle η0 in negative cyclic homology

HC−d (A) which encodes the duality RHomAe(A,A
e)
∼−→ Ae[d] (see 2.3.7 be-

low). This interpretation allows us to adapt the classical deformation theory

of associative algebras to the setting of Calabi-Yau algebras. In fact, we con-

sider the category Testk of so-called test algebras over the field k, that is,

commutative, local finite-dimensional k-algebras (R,m), whose maximal ideal

is nilpotent and satisfies R/m = k. A deformation functor1 is a pseudo-functor

Testk −→ Gd where Gd is the 2-category of groupoids. In the classical defor-

mation theory of associative algebras one assigns to a test algebra (R,m) the

1We shall also use refer to this as a deformation theory
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groupoid of associative R-algebras which reduce to A after tensoring with k
to obtain a deformation functor

DefA : Testk −→ Gd .

We extend this by associating to the Calabi-Yau algebra (A, η0) the groupoid of

algebra deformations of A equipped with a negative cyclic chain lifting η0 in the

appropriate sense (see §2.4). It will immediately follow from the definition that

these algebra deformations are themselves d-Calabi-Yau algebras (2.4.2) and

we can thus obtain the deformation functor of a Calabi-Yau algebra (A, η0):

DefA,η0
: Testk −→ Gd

An important way to generate deformation functors is through the Maurer-

Cartan equation associated to a nilpotent DG Lie algebra g• (see §2.5). One

considers the set MC(g•) of Maurer-Cartan elements x ∈ g1 satisfying the

equation

dx+
1

2
[x, x] = 0

and shows that the group exp(g•)
def
= {exp(x) |x ∈ g0}, with product given by

the Baker-Campbell-Hausdorff formula, acts on MC(g•), endowing it with the

structure of a groupoid. This allows one to define a pseudo-functor

MC(g•) : Testk −→ Gd : (R,m) 7→ MC(g• ⊗m).

The interesting invariants associated to a deformation theory have a simple

description for this type of deformation functor: the tangent space to the

deformation theory -defined as the groupoid associated to the algebra of dual

numbers- is given by H1(g•). Moreover, although obstruction theories for

deformation functors need not be unique, in this case there is a canonical choice

of obstruction space O(g•) which can be computed as an explicit subspace of

H2(g•).

Returning to the classical case of deformations of associative algebras, it

is well know that shifted Hochschild cochain complex C•(A) can be endowed
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with a bracket giving it the structure of a DG Lie algebra. Moreover, the

associated deformation functor MC(C•(A)) controls the deformation theory

of A in the sense that there is a natural transformation

πA :MC(C•(A)) −→ DefA

from the Maurer-cartan functor of C•(A) to the deformation functor of the

associative algebra A such that for any test algebra (R,m), the morphism

of groupoids π(R,m) is essentially surjective on objects and surjective on

morphisms. We can again adapt this result to our setting of Calabi-Yau

deformations as follows: The higher operations on C•(A) interact with the

(normalized) negative cyclic complex CC
−
• (A) to produce the structure of a

noncommutative calculus (see [TT05]). In particular there is an operation

L, the Lie derivative which gives CC
−
• (A) the structure of a DG Lie mod-

ule over C•(A). This allows us to construct the semi-direct product DG Lie

algebra C•(A) n CC
−
• (A)[d − 1]. Moreover, the properties of η0 show that

we can deform the differential by adding [η0,−] to produce a DG Lie algebra

D•(A,µ, η0). 23. Our first result in this chapter is that this DG Lie algebra

controls the deformation theory of the Calabi-Yau algebra D•(A, η0) in the

sense explained above.

Theorem A. (see 2.6.3 ) There is a morphism of pseudo-functors

πA,η0 :MC(D•(A, η0)) −→ Def(A,η0)

such for any (R,m) in Testk, the morphism of groupoids π(R,m) is essentially

surjective on objects and surjective on morphisms.

2In fact this is slightly imprecise as D•(A, η0) is only determined up to a non-unique

isomorphism. The actual definition of D•(A, η0) depends on the lift of η0 to an explicit

cycle in a suitable complex but we will ignore this subtlety in the introduction.
3This in similar in spirit to [Ter06] which treats the deformation of finite dimensional

A∞-algebras with a non-degenerate inner product. We do note however that this analogy

is merely conceptual as we do not necessarily require A to be finite dimensional or to carry

an inner product
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As a formal consequence we obtain a bijection between equivalence classes

of deformations

MC(D•(A, η0)⊗m)/' ←→ DefA,η0
(R)/'.

It is also easy to see that the morphism πA,η0
of the deformation theory of

Calabi-Yau deformations agrees with the morphism πA of the usual theory of

associative algebra deformations of A in an obvious sense (see §2.6.2).

In the next section, we give an explicit description of the cohomology of

D•(A, η0) and its induced graded Lie bracket. The negative cyclic homology

of A is endowed with a ’string topology’ bracket of degree d − 1 constructed

from the cup product on Hochschild homology by using Poincaré duality 4.

This bracket coincides with the one on D•(A, η0) in the following sense:

Theorem B. (see 2.7.1) There is a quasi-isomorphism of complexes

Ψ : D•(A, η0)
qis−−→ Σ•+d−1 CC−(A)

such that the bracket of degree d − 1 on HC•(A) induced from H(D•(A, η0))

coincides with the string topology bracket.

The fact that the deformations of Calabi-Yau algebras are controlled by the

Maurer-Cartan functor D•(A, η0) together with the above description of its

homology allows us to describe the tangent space and, with a little more work,

also give a constraint on the obstruction space O(D(A, η0)) we mentioned

above.

Theorem C. • the tangent space of Def(A,η0) is precisely HC−d−2(A)

• there is a natural obstruction theory for Def(A,η0) which lies in in the

kernel of the map HC−d−3(A) −→ HCper
d−3(A)

4The name comes from an alternative description of this bracket wich was given by

Menichi in [Men09] based on intuition coming from Chas-Sullivan’s string topology ([CS99]
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The first statement is a formal consequence of theorem B. The second state-

ment is theorem 2.8.1 below. It follows in particular that if HC−d−3(A) −→
HCper

d−3(A) is injective then the deformation theory of A as Calabi-Yau algebra

is unobstructed. This happens for example if d ≤ 3 (see Corollary 2.8.8 and

lemma 2.8.9 below).

In the final part of this chapter, we focus on the ’commutative case’. I.e. we

let A = O(X) be the algebra of global section on a smooth affine Calabi-Yau

variety X of dimension d. In this setting case the element η0 can be inter-

preted as a volume form through the Hochschild-Kostant-Rosenberg theorem.

Let T poly,•(A) be the Lie algebra of poly-vector fields on A (see §2.9 below).

Kontsevich’s famous result from [Kon03] yields an L∞-quasi-isomorphism

T poly,•(A)
qis−−→ C•(A)

This was later extended to an L∞-quasi-isomorphism between L∞-modules

over T poly,•(A)

(CC
−
• (A), b + uB) −→ (Ω•(A)[[u]], ud)

by Willwacher in [Wil08] 5. In our final result we will use this morphism to

obtain an analogous statement for the DG Lie algebra D•(A, η0): the vol-

ume form η0 defines a divergence operator div on T poly,•(A), and using this

differential, we prove:

Theorem D. Let u have degree 2. There is an commutative diagram

(T poly,•(A)[[u]],−udiv)
∼ //

u 7→0

��

D•(A, η0)

φ

��
T poly,•(A) ∼

// C•(A)

(2.1)

where the horizontal maps are isomorphisms in the homotopy category of DG

Lie algebras.

5He proves this for cyclic chains, but the result follows by extending u-linearly
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2.2 Preliminaries on the Hochschild- and Cyclic

Complex

In this section we recall the basic operations on the Hochschild and cyclic

complexes (introducing notation and conventions for the rest of the chapter

along the way).

Convention 2.2.1. We mix homological and cohomological indices, using the

classical convention Xi = X−i.

Let R be a commutative ring and let B be an R-algebra6. The complexes

C•(B) and C•(B) will denote the usual relative Hochschild (co)chain of B over

R:

C•(B) =
⊕
n

HomR(ΣB⊗n, B)

C•(B) =
⊕
n

B ⊗ (ΣB)⊗n

(here and below, all unadorned tensor products are over R) We also use the

following notation for the shifted Hochschild cochain complex

C•(B) = ΣC•(B) =
⊕
n

HomR(ΣB⊗n,ΣB)

Convention 2.2.2. If x ∈ Cn(B) then we write |x| = n − 1. Thus |x| refers

to the cohomological degree of x

Finally it will be convenient to pass to the normalized versions of these

complexes:

C̄•(B) =
⊕
n

HomR(Σ(B/R)⊗n, B)

C̄•(B) =
⊕
n

B ⊗ Σ(B/R)⊗n

with a similar definition for C̄•(B). The following is well known:

6We reserve the notation of a k-algebra A to denote a specific Calabi-Yau algebra we

wish to deform
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Lemma 2.2.3. the canonical morphisms C̄•(B) −→ C•(B) and C•(B) −→
C̄•(B) are quasi-isomorphisms (and hence so are its shifted versions)

Proof. see for example [Wei94, Thm 8.3.8, lemma 8.3.7].

Recall that if M is a complex of Be-modules then its Hochschild homology

and cohomology are respectively defined as

HHi(B,M) = H−i(M
L
⊗Be B)

HHi(B,M) = Hi(RHomBe(B,M))

As usual we write HHi(B) = HHi(B,B) and similarly HHi(B) = HHi(B,B).

One has

HHi(B) = H−i(C•(B))

and if B is a projective R-module then

HHi(B) = Hi(C•(B))

Convention 2.2.4. We shall assume that B is a projective R-module so that

the above equality is always satisfied.

2.2.1 the Hochschild Cochain Complex

The standard algebraic structures on the Hochschild cochain complex can all

be deduced from its structure as a brace algebra (for an excellent account see

[GV95] as we shall merely summarize its results). Recall that braces are maps

C•(B)⊗ . . .⊗ C•(B) −→ C•(B) : x⊗ x1 ⊗ · · · ⊗ xm 7→ x{x1, . . . , xm}

defined explicitly by

x{x1, . . . , xm}(b1, . . . bn) =∑
0≤i1...≤im≤n

(−1)εx(b1, . . . bi1 , x1(bi1+1, . . . bi1+|x1|+1), . . . , bim , xm(bim+1, . . . , bim+|xm|+1), . . . bn)

Page 53



SECTION 2.2.2

where the sign is given by ε =
∑m

1 |xk|ik The corresponding Lie bracket on

C•(B) is

[x, y] = x{y} − (−1)|x||y|y{x}

Let µ ∈ C1(B) = Hom(ΣB ⊗ ΣB,ΣB) denote the “inverse” multiplication

µ(b1, b2) = −b1b2. Then [µ, µ] = 0 and hence

dx = [µ, x] (2.2)

defines a differential of degree one on C•(B). The cupproduct on C•(B) is

defined by

x ∪ y = (−1)|x|µ{x, y}

This is an associative product of degree one on C•(B), or equivalently an

associative product of degree zero in the unshifted C•(B). The main properties

of these operations can be summarized as follows

Theorem 2.2.5. The operations on the Hochschild cochain complex satisfy

the following properties:

• (C•(B), d,∪) is a DG algebra.

• (C•(B), d, [ , ]) is a DG-Lie algebra.

• for cohomology classes, x, y, z ∈ HH•(B), we have the graded Leibniz

rule:

[x, y ∪ z] = [x, y] ∪ z̄ + ȳ(−1)|x|(|y|+1)[x, z].

• for x and y ∈ HH•(B) the cup product is graded commutative:

x̄ ∪ ȳ = (−1)|x||y|ȳ ∪ x̄.

Proof. see [GV95]

As a result HH•(A) has the structure of a so-called Gerstenhaber algebra.

Remark 2.2.6. Up to suitable -and for us irrelevant- signs the cup product

∪ coincides with the Yoneda product given by the isomorphism HH•(B) ∼=
Ext•Be(B,B)
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2.2.2 the Hochschild Chain Complex

The combination of the Hochschild cochain- and chain complexes yields a much

more complex structure. We refer to ([TT05, CR11]) for more details. The

first basic operation is the contraction.

i : C•(B)⊗ C•(B) −→ C•(B)

defined through the formula

ix(b0 ⊗ . . .⊗ bn)
def
= b0x(b1, . . . bd)⊗ bd+1 ⊗ . . .⊗ bn

for x ∈ C•(B) and b0 ⊗ . . .⊗ bn ∈ C•(B). Note that |ix| = |x|+ 1. We have

ixiy = (−1)(|x|+1)(|y|+1)iy∪x (2.3)

Convention 2.2.7. The contraction is often written as a cap product:

ix(−) = x ∩ −.

Remark 2.2.8. The cap product ∩ on HH•(B) coincides with the action of

HH•(B) on HH•(B) = H−•(B⊗LBe B) through its action on the second factor

(see e.g. [CRVdB10, Prop 11.1, 12.1])

The second basic operation is the Lie derivative

L : C•(B)⊗ C•(B) −→ C•(B)

given explicitly as

Lx(b0 ⊗ . . .⊗ bn) : =

n−|x|−1∑
i=0

(−1)|x|ib0 ⊗ . . .⊗ bi ⊗ x(bi+1, . . . , bi+|x|+1)⊗ . . .⊗ bn

+

n∑
i=n−|x|

(−1)n(i+1)+|x|x(bi+1, . . . bn, b0, . . . , b|x|−n+i)⊗ . . .⊗ bi

The Lie derivative defines an action of C•(B) on C•(B) for which |Lx| = |x|
and

[Lx, Ly] = L[x,y] (2.4)
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The Hochschild differential on C•(B) is defined as

b = Lµ (2.5)

Convention 2.2.9. If we simply wish to consider b as a differential without

referring to its properties, we shall write d as always.

Some basic properties of these two actions are summarized in the following

theorem:

Theorem 2.2.10. the space of Hochschild chains (C•(B), b) is equipped with

• an action i of the graded algebra (C•(B),∪) on the graded vector space

(C•(B), b).

• a DG Lie action L of the DG Lie algebra (C•(B), d, [, ]) on the complex

(C•(B), b).

satisfying the following compatibilities:

1. for x, y ∈ C•(B), [Lx, iy] = i[x,y]

2. for x, y ∈ C•(B), La∪b = Lxiy + (−1)|x|ixLy

3. for x ∈ C•(B) [b, ix] = Lx

4. for x ∈ C•(B): [b, ix] + idx = 0

Proof. See for example [TT05], although some parts of the statement are quite

trivial. As an example, from (2.2) and (2.4) one obtains

[b, Lx] = Ldx (2.6)

showing that (C•(B), b) is not only a graded - but a DG Lie module over

C•(B).

This theorem implies in particular that both the action of i and L are well

defined on homology and that (HH•(B),HH•(B)) is an example of what is

referred to as a calculus in [TT05, 3.2]
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The last basic operation we need is the Connes differential.

B : C•(B) −→ C•(B)

with formula

B(b0 ⊗ . . .⊗ bn) =

n∑
i=0

(−1)ni1⊗ bi ⊗ . . .⊗ bn ⊗ b0 ⊗ . . .⊗ bi−1

+

n∑
0

(−1)n(i+1)bi−1 ⊗ 1⊗ bi ⊗ . . .⊗ bn ⊗ b0 ⊗ . . .⊗ bi−2

It is well-known that |B| = −1, bB + Bb = 0, B2 = 0. One summarizes these

properties as follows:

Theorem 2.2.11. (C•(B), b,B) is a mixed complex

Proof. see for example [Lod98, section 2.1]

We will also need an important equality that holds for normalized cyclic

chains: if x ∈ C̄•(B) is a normalized chain then ix, Lx remain well-defined

operations on C̄•(B). We have the following

Lemma 2.2.12. Assume x ∈ C̄•(B). Then on C̄•(B) we have

[B, Lx] = 0 (2.7)

Remark 2.2.13. The formula 2.7 does not hold for unnormalized cyclic chains.

2.2.3 the Negative Cyclic Complex

Let u be a variable of degree 2 and put

CC−• (B) = C•(B)[[u]].

Equipped with the cyclic differential b+uB, this is the negative cyclic complex.

Performing the same construction with the normalized Hochschild chain com-

plex C•(B), we obtain the normalized negative cyclic complex CC
−
• (B). We
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can extend the operations on C•(B) discussed in 2.2.1 to CC−• (B) by making

them u-linear. This applies in particular to ix and Lx. Combining (2.6) and

(2.7) we obtain

[b + uB, Lx] = Ldx, (2.8)

which immediately shows the following:

Lemma 2.2.14. With the action of the Lie derivative L, the complex CC
−
• (B)

becomes a DG Lie module over the DG Lie algebra C̄(A).

The relation between the contraction ix with and the cyclic differential

is more subtle however. In [TT05] (see also [Get92]) Tamarkin and Tsygan

define for x ∈ C̄•(B) a graded endomorphism Sx of C̄•(B) (depending linearly

on x) of degree |Sx| = |x| − 1 and such that the following identity holds

[b + uB, (i+ uS)x] + (i+ uS)dx = uLx (2.9)

on CC
−
• (B). This identity will be important for us in the sequel. Note that it

implies (2.8). Finally, we mention the following special case of [TT05, Prop.

3.3.4] which will be crucial later on.

Lemma 2.2.15. Let x, y ∈ C̄•(B) be such that dx = dy = 0. Then [Lx, (i +

uS)y] is homotopic to (−1)|x|(i[x,y] + uS[x,y]).

Convention 2.2.16. (A comment on base change) IF k is a field, A a k-

algebra and k −→ R is a morphism of commutative rings then for B = A⊗kR

it is clear that CR,•(B) ∼= C•(A)⊗kR. Since the negative cyclic complex involves

a product this is not true for CC−R,•(B). It is true if R is finite dimensional

over k however. Similarly in that case we have C•R(B) ∼= C•(A) ⊗k R. In the

sequel we will not mention these base change isomorphisms explicitly.

Convention 2.2.17. (a word on signs) The operations ix, Lx, Sx, b,B of de-

gree |x| + 1, |x|, |x| − 1, 1, −1 were defined as acting on C̄•(B). We define
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corresponding operations on shifts ΣrC•(B) using the usual Koszul convention:

ix(srb) = (−1)r(|x|+1)srix(b)

Lx(srb) = (−1)r|x|srLx(b)

Sx(srb) = (−1)r(|x|−1)srSx(b)

b(srb) = (−1)rsrb(b)

B(srb) = (−1)rsrb(B)

where s is the degree change operator |sb| = |b| − 1. The relations between

ix, Lx, Sx, b,B stated in §2.2.2 and §2.2.2 carry over to all shifts ΣrC•(B)

without any sign changes, since all terms in the identities (necessarily) have

the same degree

2.3 Reinterpreting the Calabi-Yau Condition

We now show how one can encode the extra Calabi-Yau duality from 0.0.2

using negative cyclic classes, allowing us to give an alternate description of

Calabi-Yau algebras:

Lemma 2.3.1. Assume B is homologically smooth (see 0.0.2). Let M be a

perfect Be-module. Then there is a canonical isomorphism

HHi(B,M) ∼= HomBe(Σ
i RHomBe(M,Be), B) (2.10)

in D+(R).

Proof. There is an obvious morphism

B ⊗Be M −→ HomBe(HomBe(M,Be), B) (2.11)

in Mod(R), giving rise to a morphism

B
L
⊗Be M −→ HomBe(RHomBe(M,Be), B) (2.12)
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in D+(R). We must show that this is a quasi-isomorphism. Since M is perfect

we may replace it with a complex of finitely generated projective Be-modules,

which in turn reduces the claim to the case M = Be. It is clear that the first

morphism (2.11) is an isomorphism in this case.

The above lemma justifies the following definition:

Definition 2.3.2. Let B be a homologically smooth algebra R and η ∈
HHd(B). We say that η is nondegenerate if its image under (2.10) is an iso-

morphism.

This allows us to make a first step towards restating the definition (0.0.2) of

a d-Calabi-Yau algebra over R. We temporarily redefine a Calabi-Yau algebra

as a couple (B, η) where

• B is a homologically smooth R-algebra

• η is a non-degenerate element of HHd(B)

In order to fully take advantage of the rich structure relating the negative

cyclic complex and the Hochschild complex described in 2.2.3, we will mas-

sage this temporary definition further below.

The following theorem -known as Poincaré duality- was first stated in [VdB02b].

We give a sketch of a proof and elucidate the exact nature of the duality mor-

phism as it wasn’t stated explicitly in[VdB02b]

Proposition 2.3.3. (“Poincaré duality”) Let η ∈ HHd(B) be such that (B, η)

is d-Calabi-Yau in the above sense. Then for each i, the map

HHi(B) −→ HHd−i(B) : µ 7→ µ ∩ η (2.13)

is an isomorphism

Proof. The isomorphism (2.12) in D+(R)

RHomBe(RHomBe(B,B
e),
↓
B) ∼= B ⊗LBe

↓
B (2.14)
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is in fact compatible with the RHomBe(B,B)-actions on the marked copies of

B.

By our definition of Calabi-Yau, the class η ∈ H−d(B ⊗LBe B) must corre-

spond to an isomorphism η+ : RHomBe(B,B
e) → Σ−dB under (2.14). This

yields an isomorphism

RHomBe(Σ
−dB,

↓
B) −→ RHomBe(RHomBe(B,B

e),
↓
B) : θ 7→ θ ◦ η+ (2.15)

which is again compatible with the marked RHomBe(B,B)-actions. Compos-

ing (2.14) and (2.15) yields an isomorphism

ξ : RHomBe(Σ
−dB,

↓
B) −→ B ⊗LBe

↓
B

which sends IdB to η. Taking into account the remark 2.2.8, the compatibility

with the RHomBe(B,B)-actions implies that ξ transforms ∪ into ∩ on the

level of cohomology. More precisely

ξ(µ ∪ σ) = ±µ ∩ ξ(σ)

The lemma now follows by taking σ = IdB .

This immediately implies the following observation:

Corollary 2.3.4. Let η ∈ HHd(B) be such that (B, η) is d-Calabi-Yau. Then

HHi(B) = 0 for i 6∈ [0, d]

HHi(B) = 0 for i 6∈ [0, d]

We remind the reader that CC−• (B) = (C•(B)[[u]], b + uB) is the negative

cyclic complex with corresponding homology by HC−• (B) as in §2.2.3.

Proposition 2.3.5. Let η ∈ HHd(B) be such that (B, η) is d-Calabi-Yau.

Then HC−i (B) = 0 for i > d and furthermore the map

π : CC−• (B) −→ C•(B) :
∑

biu
i 7→ b0

induces an isomorphism HC−d (B) ∼= HHd(B).
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Proof. We prove this through a spectral sequence argument. We view CC−• (B)

as a double complex with b pointing vertically upwards and uB pointing hor-

izontally to the right. By Corollary 2.3.4 we have HHi(B) = 0 for i > d.

Hence if we filter CC−• (B) by column degree then the E1 term of the resulting

spectral sequence looks like

0 HHd−2(B)
uB // uHHd−1(B)

uB // u2 HHd(B)

0 HHd−1(B)
uB // uHHd(B) 0

0 HHd(B) 0 0

0 0 0 0

This implies the result

This allows us extend the notion of nondegeneracy to the negative cyclic

complex:

Definition 2.3.6. Let B be a homologically smooth R-algebra. We say that

an element η ∈ HC−d (B) is nondegenerate if π(η) is non-degenerate as in 2.3.2.

This brings us to our ultimate definition of Calabi-Yau algebra which we

will use for the rest of this chapter :

Definition 2.3.7. (Restatement of definition 0.0.2.) A Calabi-Yau algebra

of dimension d over R is a couple (B, η) where B is a homologically smooth

R-algebra and η is a non-degenerate element of HC−d (B).

The preceding discussion shows:

Theorem 2.3.8. Let B be a homologically smooth R-algebra. Then the fol-

lowing are equivalent:
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• B is d-Calabi-Yau

• there exists an η ∈ HC−d (B) such that (B, η) is Calabi-Yau

Remark 2.3.9. In the more general setting of DG algebras this is no longer

the case (the main hurdle being the existence of cohomology in negative degrees,

which breaks the spectral sequence argument we made). It is generally believed

that definition 2.3.7 is the “correct” definition for a d-Calabi-Yau algebra in

the DG case. We refer to the works [KS09] and Keller [Kel11] for this point

of view

2.4 Deformations of Calabi-Yau Algebras

In this section we fix a d-Calabi-Yau algebra (A, η0) over a field k as in def-

inition 2.3.7 and we explain how one can associate a deformation theory to

(A, η0), illustrating some of its basic properties along the way.

Let Testk be the category of commutative, finite dimensional, local k-algebras

(R,m) such that R/m = k, henceforth known as test algebras. For (R,m) ∈
Testk we define a groupoid DefA,η0(R) as follows

• The objects in DefA,η0
(R) are triples (B, s, η) such that B is a flat R-

algebra, s : B → A is an R-algebra morphism inducing an isomorphism

B ⊗R k→ A and η is an element of HC−d (B) such that s(η) = η0.

• A morphism (B1, s1, η1)→ (B2, s2, η2) is a commutative diagram

B1
φ //

s1   

B2

s2~~
A

such that η2 = φ(η1).

This indeed defines a groupoid as the following lemma shows:
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Lemma 2.4.1. A morphism (B, s1, η1) −→ (B2, s2, η2) in the category DefA,η0

is necessarily invertible

Proof. One easily deduces that B1 and B2 are isomorphic to A ⊗k R as R-

modules, we can thus assume B1 = B2 = A ⊗k R. Any R-linear map φ :

A ⊗k R −→ A ⊗k R is determined by the k-linear map φ|A : A −→ A ⊗ R.

Using the exact sequences

0 −→ mi+1 −→ mi −→ mi/mi+1 −→ 0

and the fact that m is nilpotent, we obtain a direct sum decomposition

R =

n⊕
0

mi/mi+1

It follows that φ|A is given as a sum of maps φi : A −→ A ⊗k m
i/mi+1 with

φ0 = IdA⊗1. As this map is invertible, one can use the classical inverse

formula to obtain an inverse for
∑
φi, and hence for φ.

To be able to rightfully claim that DefA,η0
describes the Calabi-Yau defor-

mations of (A, η0) we need the following elementary lemma:

Lemma 2.4.2. Assume that (B, s, η) ∈ DefA,η0(R). Then (B, η) is d-Calabi-

Yau.

Proof. We have to show that B is a perfect Be-module and that η induces

an isomorphism η+ : RHomBe(B,B
e)→ Σ−dB. Since R is finite dimensional

every flat R-module is R-projective. This applies in particular to B and Be.

Let

0→ Pu → · · · → P0 → A→ 0

be a finite resolution of A by finitely generated projective Ae-modules. It is

easy to see that this resolution can be lifted step by step to a resolution

0→ Qu → · · · → Q0 → B → 0
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where the Qi are finitely generated projective Be-modules satisfying Qi⊗Rk ∼=
Pi. In particular B is perfect.

Since η+ is now a map between perfect modules, H = cone η+ is itself

perfect. Moreover, as s(η) = η0, using 2.12, it it easy to see that η+
L
⊗ k ∼= η+

0

and hence (cone η+)
L
⊗k ∼= cone(η+

L
⊗k) ∼= cone η+

0 = 0. It now suffices to note

that if H is perfect and H
L
⊗ k = 0 then H = 0.

Varying the choice of test algebra (R,m) results in a pseudo-functor

DefA,η0
: Testk → Gd : (R,m) 7→ DefA,η0

(R)

It will be more convenient to work with a variant of the groupoid DefA,η0
(R)

which is easier to describe cohomologically. We remind the reader of the base

change convention exhibited in §2.2.16 which we will use throughout. As in

§2.2.1 let −µ0 ∈ C1(A) be the multiplication map on A and let η̂0 be a lift

of η0 to CC
−
d (A). We define an associated groupoid Def[A,µ0,η̂0

(R) as follows:

The objects are couples (µ, η) where

• µ ∈ C1(A)⊗kR is such that −µ defines a unital associative multiplication

on A⊗k R;

• µmodm = µ0;

• η ∈ CC
−
d (A)⊗k R;

• (Lµ + uB)(η) = 0;

• ηmodm = η̂0.

Concerning the 4th condition, recall that by (2.5), Lµ is the Hochschild dif-

ferential of the algebra (A ⊗k R,µ). Hence Lµ + uB = bµ + uB is the cyclic

differential for the algebra (A⊗k R,µ).

A morphism (µ1, η1)→ (µ2, η2) in Def[A,µ0,η̂0
(R) is a couple (f, ξ) where

1. f is a unital map of R-algebras f : (A⊗k R,−µ1) −→ (A⊗k R,−µ2);
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2. f ⊗ k = Id;

3. ξ is an element of CC
−
d+1(A)⊗k m;

4. (Lµ2 + uB)(ξ) = φ(η1)− η2.

The composition of morphisms

(µ1, η1)
(f ′,ξ′)−−−−→ (µ2, η2)

(f,ξ)−−−→ (µ2, η2)

is defined by

(f, ξ) ◦ (f ′, ξ′) = (φ ◦ f ′, φ(ξ′) + ξ) (2.16)

The following observation is necessary yet trivial:

Lemma 2.4.3. the above construction defines a groupoid structure on Def[A,η̂0

Proof. The reader will check that composition is associative. Let (f, ξ) be a

morphism inDef[A,µ0,η̂0
. Then the first two conditions of morphisms imply that

f is bijective. It follows that (f−1, f−1(ξ)) is the inverse morphism.

We again obtain a pseudo-functor

Def[A,η0
: Testk → Gd : (R,m) 7→ Def[A,η0

(R)

This pseudo-functor is not exactly equivalent to the one defined for Calabi-

Yau deformations, but satisfies the following weakened property of ’control-

ling’, which is very useful in the context of deformation functors

Definition 2.4.4. Let F,G : Testk −→ Gd be two deformation functors.

We say that F controls G if there is a natural transformation F −→ G of

pseudo-functors such that for any (R,m) ∈ Testk, the morphism of groupoids

F (R,m) −→ G(R,m) is essentially surjective on objects and surjective on

morphisms.

Below we will use the notation η for the cohomology class of a cocycle.
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Proposition 2.4.5. DefbA,η̂0
controls DefA,η0

. More precisely, the assignmentOb(Def[A,η̂0
(R)) −→ Ob(DefA,η0(R)) : (µ, η) 7→ ((A⊗k R,−µ), “ modm”, η̄)

Mor(Def[A,η̂0
(R)) −→ Mor(DefA,η0(R)) : (f, ξ) 7→ f

is a morphism of groupoids, essentially surjective on objects and surjective on

morphisms.

Proof. We first prove essential surjectivity. Let (B, s, ψ) ∈ DefA,η0(R). Then

since R is a finite dimensional local k-algebra and B is R-flat we have an

isomorphism φ : B ∼= A ⊗k R as R-modules and it is easy to see that this

isomorphism may be chosen to make the following diagram commutative

B
φ //

s
��

A⊗k R

modm
{{

A

We now transfer the multiplication on B to A ⊗k R where it becomes an

element of −µ ∈ C1(A) ⊗k R which modulo m is equal to −µ0. We do the

same with ψ ∈ HC−d (B) and we choose an element η ∈ CC
−
d (A) ⊗k R such

that (Lµ + uB)(η) = 0, η̄ = φ(ψ). Thus in DefA,η0(R) we have

(B, s, ψ) ∼= ((A⊗k R,−µ),−modm, η̄)

This proves essential surjectivity. Now we prove surjectivity on morphisms.

Let (µ1, η1), (µ2, η2) ∈ Ob(Def[A,η̂0
(R)) and let f be a unital algebra morphism

(A⊗k R,−µ1) −→ (A⊗k R,−µ2)

inducing the identity modulo m and satisfying f(η̄1) = η̄2.

It follows that f(η1) − η2 is a boundary in the negative cyclic complex of

(A⊗k R,−µ2). In other words there exists ξ ∈ CC
−
d+1(A)⊗k R such that

φ(η1)− η2 = (Lµ2 + uB)(ξ)

We have to show that we may in fact choose ξ ∈ CC
−
d+1(A) ⊗k m. Since f is

Page 67



SECTION 2.2.5

the identity modulo m we have

φ(η1)− η2 modm = η1 − η2 modm

= η̂0 − η̂0

= 0

It follows that φ(η1) − η2 ∈ CC
−
d (A) ⊗k m and hence dξmodm = 0. Since

HC−d+1(A) = 0 by Proposition 2.3.5 we see that there exists γ ∈ CC
−
d+2(A)⊗kR

such that (Lµ2 + uB)(γ) ∼= ξmodm. In other words

ξ′ = ξ − (Lµ2
+ uB)(γ) ∈ CC

−
d (A)⊗k m

Then the couple (f, ξ′) is a pre-image for f .

For the sake of completeness we state the following:

Proposition 2.4.6. Let η̂′0 ∈ CC
−
0 (A) be a different lift of η0. Then Def[A,η̂′0(R)

and Def[A,η̂0
(R) are isomorphic.

We could easily prove this here directly, however we will postpone the proof

until §2.6 where we reinterpret Def[A,η̂0
(R) in terms of the Maurer-Cartan

equation.

2.5 the Maurer-Cartan Formalism

In this section we briefly recall the construction of the deformation functor

associated to a DG-Lie algebra.

Let g• be a DG-Lie algebra over k. The set

MC(g•)
def
=

{
y ∈ g1

∣∣∣∣dy +
1

2
[y, y] = 0

}
is the set of solutions to the Maurer-Cartan equation in g•. If g• is a nilpotent

DG Lie algebra, this set has a natural structure of a groupoid which we now
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describe. Let Û(g) be the enveloping algebra of g, completed at the augmenta-

tion ideal. Then the group exp(g) is by definition the set of group like elements

in Û(g). It is well-known and easy to see that there is a bijection

exp : g −→ exp(g) : x 7→ ex

between the primitive and the group like elements in Û(g). Û(g0) acts on the

graded Lie algebra g• using the adjoint action and hence so does the gauge

group G(g•)
def
= exp(g0). This action does not commute with the differential

and in particular it does not preserve MC(g•). However the following modified

gauge action does:

exp(x) ∗ y def
= ead x(y)− ead x − 1

adx
(dx)

= ead x(y)−
∞∑
n=0

1

(n+ 1)!
(adx)n(dx)

(2.17)

where x ∈ g0, y ∈ g1 and (adx)(u) = [x, u]. An elegant derivation of this

action is given by Manetti in [Man04, §V.4]. One first formally adjoins an

element δ of degree one to g• and considers the DG Lie algebra g•⊕ kδ where

δ satisfies the rules:

dx = [δ, x], dδ = 0 and [δ, δ] = 0

We use this to rewrite (2.17):

Lemma 2.5.1.

exp(x) ∗ y = ead x(y + δ)− δ (2.18)
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Proof. We have

ead x(δ + y) = δ + y +

∞∑
1

1

n!
adn(x)(δ + y)

= δ + y +

∞∑
1

1

n!

(
adn(x)(δ) + adn(x)(y)

)
= δ +

∞∑
1

1

n!

(
adn(x)(δ) + ead x(y)

)
= δ +

∞∑
0

1

n+ 1!

(
adn(x)(−dx)) + ead x(y)

)
= δ + ead x(y)−

∞∑
n=0

1

(n+ 1)!
(adx)n(dx)

This shows that the action preserves the set MC(g•) since for y ∈ g1 it is

easy to check that

y ∈ MC(g•) ⇐⇒ [y + δ, y + δ] = 0.

and the latter equation is preserved under the action ead x. Hence, in the sequel

we view MC(g•) as a groupoid through the G(g•)-action given by (2.17). Now

assume that (R,m) ∈ Testk is a test algebra over k. Given an arbitrary DG-

Lie algebra g• over k, the vector space g• ⊗k m becomes a nilpotent DG-Lie

algebra by extending the differential and the bracket in the obvious way. We

thus obtain a pseudo-functor

MC(g•) : Testk −→ Gd : (R,m) 7→ MC(g• ⊗k m)

This is the “deformation functor” associated to g•. For this type of functor we

can give an explicit description of some important notions from deformation

theory. Recall that the tangent space of a deformation functor is the groupoid

associated to the k-algebra of dual numbers k[ε]/(ε2). We can compute that

T 1(MC (g•))
def
= MC g•(k[X]/(X2)) = H1(g•) (2.19)
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Any deformation functor also comes with a family of obstruction theories which

roughly determine when a deformation can be lifted along small extensions of

rings in Testk in a functorial way (see [Man09] for a detailed account of the

general situation). Although there are a priori many different such theories

for a given deformation functor, the particular setting of a Maurer-Cartan

functor allows us to define a canonical one, denoted O(g•). Let (S, n)→ (R,m)

be a surjective morphism in Testk with one-dimensional kernel ks ⊂ n. Let

x ∈ g1⊗m be a solution to the Maurer-Cartan equation. Lift x to an arbitrary

element x̂ of g1 ⊗ n and let p(x̂) ∈ g2 be such that p(x̂)s = dx̂+ 1
2 [x̂, x̂]. Then

clearly dp(x̂) = 0 and furthermore the cohomology class o(x)
def
= p(x̂) ∈ H2(g•)

does not depend on the chosen lift x̂ of x. It is easy to see that o(x) = 0 if

and only if x can be lifted to an element of MC(g• ⊗ n). The class of o(x) is

called the obstruction class of x and the obstruction space O(g•) is the linear

span in g2 of all such o(x) as we vary the morphisms (S, n) → (R,m) with

one-dimensional kernel and all x ∈ MC(g• ⊗m) as above (we refer once again

to [Man09, §4] for a more detailed discussion in this case).

Finally, we shall need to perform the following twist operation in the sequel:

for y ∈ MC(g•), by definition g•y is the DG-Lie algebra which is g• as graded

Lie algebra but which has the deformed differential

dy = d+ [y,−] (2.20)

It follows from the Maurer-Cartan equation that g•y is indeed a DG Lie alge-

bra. We have the following

Lemma 2.5.2. for x ∈ g0, the morphism

ead x : g•y −→ g•exp(x)∗y (2.21)

is an isomorphism of DG-Lie algebras

Proof. This is an immediate application of (2.18)
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2.6 the DG-Lie Algebra D•(A, η)

2.6.1 Controlling Calabi-Yau Deformations

Following 2.3.7, we will consider a d-Calabi-Yau algebra (A, η̄0) where η0 ∈
CC
−
d (A) satisfies (Lµ0

+ uB)(η0) = 0, with −µ0 ∈ C1(A) being the multipli-

cation on A. In this section we associate a DG-Lie algebra D•(A, η0) to A

and prove that its deformation functor (see §2.5) is isomorphic to the functor

Def[A,η0
introduced in §2.4. As a corollary to 2.6.3, we obtain that this DG Lie

algebra D(A, η0) controls the deformation theory of the Calabi-Yau algebra

(A, η0)

If g• is a DG-Lie algebra and M• a DG Lie module over g•, then the

direct sum complex g• ⊕M• becomes a DG-Lie algebra when endowed with

the following bracket:

[(g,m), (g′,m′)]
def
= ([g, g′], gm′ − (−1)|g

′||m|g′m) (2.22)

The resulting DG-Lie algebra is called the semi-direct product of g• and M•

and is denoted by g• nM•

By (2.2.10) we have a DG-Lie action L of Cb(A) on the negative cyclic

chains. Using 2.2.17, this yields an action on the shifted negative cyclic chains

also:

C̄•(A)× Σ−d−1CC
−
• (A) −→ Σ−d−1CC

−
• (A) : (x, η) 7→ Lxη

Consequently, we can form the corresponding semi-direct product D•(A)] =

C̄•(A) n Σ−d−1CC
−
• (A).

The element x = (0, s−d−1η0) ∈ D•(A, η0)] satisfies dx = 0 and [x, x] = 0.

Hence it satisfies the Maurer-Cartan equation. Put D•(A, η0) = D•(A)]x, with

notation as in §2.5.

Theorem 2.6.1. Let (R,m) ∈ Testk. There is an isomorphism of groupoids

Φ(R) : MC(D•(A, η0)⊗k m) −→ Def[A,η0
(R)
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which on objects is given by

(µ, s−d−1η) 7→ (µ0 + µ, η0 + η) (2.23)

Corollary 2.6.2. There is a natural transformation of pseudo-functors

Φ :MC(D•(A, η0)) −→ Def[A,η0

which, when evaluated on (R,m) ∈ Testk, is an isomorphism of groupoids.

As an immediate corollary of 2.6.1 and 2.6.3, we obtain:

Corollary 2.6.3. The deformation theoryMC(D•(A, η0)) controls the Calabi-

Yau deformations of (A, η0) as in 2.4.4

We shall prove theorem 2.6.1 by a subsequent series of lemmas. Throughout

we fix (R,m) ∈ Testk. The following lemma says that Φ(R) behaves correctly

on objects.

Lemma 2.6.4. Let µ ∈ C̄•1(A) ⊗k m and η ∈ CC
−
d (A) ⊗k m. The following

are equivalent:

1. (µ, s−d−1η) ∈ MC(D•(A, η0)⊗k m);

2. (µ0 + µ, η0 + η) ∈ Def[A,η0
(R).

Proof. We will work out what it means for (µ, s−d−1η) ∈ D1(A, η0) ⊗k m

to satisfy the Maurer-Cartan equation. To simplify the notations we write

η′0 = s−d−1η0, η′ = s−d−1η. We compute

1

2
[(µ, η′), (µ, η′)] + dD(µ, η′) =

1

2
([µ, µ], 2Lµ(η′)) + ([µ0, µ], (Lµ0 + uB)(η′)) + [(0, η′0), (µ, η′)]

=
1

2
([µ, µ], 2Lµ(η′)) + ([µ0, µ], (Lµ0

+ uB)(η′)) + [0, Lµ(η′0)]

= (
1

2
[µ, µ] + [µ0, µ], Lµ(η′) + (Lµ0

+ uB)(η′) + Lµ(η′0))

= ([µ0 + µ, µ0 + µ], (Lµ+µ0 + uB)(η′ + η′0))
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where in the last line we have used [µ0, µ0] = 0, (Lµ0
+ uB)(η′0) = 0. Thus

if (µ0 + µ, η0 + η) ∈ Def[A,η0
(R) then (µ, s−d−1η) ∈ MC(D•(A, η0) ⊗k m). To

prove the converse the only thing we still need to check is that −(µ0 + µ)

defines a unital multiplication on A⊗k R. This follows immediately from the

fact that −µ0 is unital and µ is normalized.

The next two lemmas will help us describe the gauge group action of the

group G(D•(A, η)) = exp(D0(A, η0)).

Lemma 2.6.5. Let g be a nilpotent Lie algebra over k and let M a Lie module

over g. Then there is an isomorphism of groups

exp(g) nM −→ exp(gnM) : (exp(n),m) 7→ exp(n, 0) exp(0,m)

Proof. This can bee seen as a consequence of the fact that there is an isomor-

phism of groups U(g nM) ∼= U(g) n Sym(M) More explicitly, consider the

map

Φ : exp(goM) −→ exp(goM) : exp(g,m) −→ exp(0,m) exp(g, 0)

Since [(0,m), (0,m)] = 0, according to the Baker-Campbell-Hausdorff formula

we have

exp(g,
geg

eg − 1
m) = exp(g, 0) exp(0,m)

Moreover, we have the following exchange relation:

exp(g, 0) exp(0,m) = exp(0, egm) exp(g, 0) (2.24)
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Indeed:

exp(0,m)exp(g, 0) =(exp(−g, 0)exp(0,−m))−1

= exp(−g, −ge
−g

e−g − 1
(−v))

= exp(g,− ge−g

e−g − 1
v)

= exp(g,
g

1− e−g
(e−gv))

= exp(g,
geg

eg − 1
(e−g(v))

= exp(g, 0) exp(0, e−gv).

Hence the above map is given by the composition:

Φ = exp(Id,
geg

eg − 1
(−)) ◦ exp(Id, e−g(−))

Now, the first map is clearly bijective and the second one is so by a final

application of the Baker-Campbell-Hausdorff formula.

Lemma 2.6.6. Let g•] be a nilpotent DG-Lie algebra over k and M• a nilpo-

tent DG Lie module over g•]. Consider the DG algebra g• which is g•] nM•

as graded Lie algebras and which is equipped with a deformed differential

(dg, dM ) + d0 where d0 : g• −→M is of the form g 7→ (−1)|g|gm0 for suitable

m0 ∈M1. Then for g ∈ g0, m ∈M0 and (g1,m1) ∈ g1 we have

exp(g, 0) ∗ (g1,m1) = (exp(g) ∗ g1, e
g(m1 −m0) +m0)

exp(0,m) ∗ (g1,m1) = (g1,m1 − (g1 + dM )m)
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Proof. We compute

exp(g, 0) ∗ (g1,m1) = ead(g,0)(g1,m1)−
∑
n

1

(n+ 1)!
adn(g, 0)(dg(g, 0))

= (ead gg1, e
gm1)−

∑
n

1

(n+ 1)!
adn(g, 0)(dgg, d0g)

= (ead gg1, e
gm1)−

∑
n

1

(n+ 1)!
(adn(g)(dgg), gn+1m0)

= (eg ∗ g1, e
g(m1 −m0) +m0)

Similarly:

exp(0,m) ∗ (g1,m1) = ead(0,m)(g1,m1)−
∑ 1

(n+ 1)!
adn(0,m)(dg(0,m))

= (g1,m1)− (0, g1m)− (0, dMm)

= (g1,m1 − (g1 + dM )m)

We will also use the following variant of (2.18):

Lemma 2.6.7. Let g• be a nilpotent DG-Lie algebra with inner differential

d = [µ0,−]. Then for x ∈ g0, y ∈ g1 one has

exp(x) ∗ y = ead x(y + µ0)− µ0.

Proof. Direct evaluation of the righthand side yields the formula (2.17) for

exp(x) ∗ y.

Proof of theorem 2.6.1. We start by verifying that (2.23) indeed defines a map

of groupoids. To this end we have to define Φ(R) on maps. Note that by lemma

2.6.5 each element of exp(D0(A,µ0, η0)⊗k m) can be uniquely written as

exp(0, s−d−1ξ) exp(f, 0)

for f ∈ C̄0(A) ⊗k m = Hom(A/k, A) ⊗k m ⊂ Hom(A,A) ⊗k m and ξ ∈
CC
−
d+1(A) ⊗k m. We put φ = ef . Then φ ∈ Hom(A,A) ⊗k R is such that

φmodm = IdA.
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Assume that(
exp(0, s−d−1ξ) ∗ exp(f, 0)

)
∗ (µ1, s

−d−1η1) = (µ2, s
−d−1η2) (2.25)

We define Φ(R) on maps as follows

Φ(R)(exp(0, s−d−1ξ) exp(f, 0)) = (ef , (−1)dξ) (2.26)

For this to be well defined we should have a morphism

(φ, (−1)dξ) : (µ0 + µ1, η0 + η1) −→ (µ0 + µ2, η0 + η2)

in Def[A,η0
(R). In other words:

(a) φ : (A ⊗k R,−(µ0 + µ1)) −→ (A ⊗k R,−(µ0 + µ2)) is an R-algebra

morphism;

(b) φ(η0 + η1) = η0 + η2 + (−1)d(Lµ0+µ2
+ uB)(ξ).

Put η′i = s−d−1ηi for i = 0, 1, 2, ξ′ = s−d−1ξ. We invoke lemma 2.6.6 with

m0 = −η′0. Then (2.25) yields

(µ2, η
′
2) =

(
exp(f) ∗ µ1, e

f (η′0 + η′1)− η′0 − Lexp(f)∗µ1
(ξ′)− (Lµ0 + uB)(ξ′)

)
(2.27)

We may compute exp(f)∗µ1 inside unnormalized cochains C•(A) and then we

may invoke lemma 2.6.7. We find

exp(f) ∗ µ1 = ead f (µ0 + µ1)− µ0

Furthermore a direct computation shows that

ead f (µ0 + µ1) = ef ◦ (µ0 + µ1) ◦ (e−f , e−f )

= φ ◦ (µ0 + µ1) ◦ (φ−1, φ−1)

Hence (2.27) translates into

µ0 + µ2 = φ ◦ (µ0 + µ1) ◦ (φ−1, φ−1)

η′0 + η′2 = φ(η′0 + η′1)− (Lµ0+µ2
+ uB)(ξ′)

Page 77



SECTION 2.2.6

The first of these equations yields (a). The second yields (b) taking into

account that Lµ0+µ2
+ uB has degree one, which induces a sign change.

It remains to show that our assignment respects compositions. By lemma

2.6.5 we have for f, g, h ∈ C̄0(A) ⊗k m such that exp(h) = exp(g) exp(f),

ν, ξ ∈ CC
−
−d−1(A)⊗k m:

Φ(R)
(

exp(0, s−d−1ν) exp(g, 0) ◦ exp(0, s−d−1ξ) exp(f, 0)
)

=Φ(R)
(

exp(0, s−d−1ν) exp(0, s−d−1egξ) exp(g, 0) exp(f, 0)
)

=Φ(R)
(

exp(0, s−d−1(ν + egξ)) exp(h, 0)
)

=(eh, (−1)d(ν + egξ))

=(egef , (−1)d(ν + egξ))

and

Φ(R)(exp(0, s−d−1ν) exp(g, 0)) ◦ Φ(R)(exp(0, s−d−1ξ) exp(f, 0))

= (eg, (−1)dν)(ef , (−1)dξ)

= (egef , (−1)d(ν + egξ))

by (2.16). We conclude that Φ(R) is indeed a map of groupoids. By lemma

2.6.4 it is bijective on objects, and running the above computation backwards,

starting from (2.26), we see that it also bijective on maps. Thus Φ(R) is an

isomorphism of groupoids.

The following result implies proposition 2.4.6.

Proposition 2.6.8. Assume that η0, η
′
0 ∈ CC

−
d (A) induce the same element

in HC−d (A). Then D•(A, η0) ∼= D•(A, η′0).

Proof. From (2.21) one sees that it is sufficient to show that (0, s−s−1η0), (0, s−d−1η′0)

are in the same G(D•(A)]) orbit. Pick ξ ∈ CC
−
d+1(A) such that η′0 = η0 +

(−1)d(Lµ0 + uB)ξ. We compute using (2.17)

exp(0, s−d−1ξ) ∗ (0, s−d−1η0) = (0, s−d−1η0)− (0, (Lµ0 + uB)(s−d−1ξ))

= (0, s−d−1η′0)
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2.6.2 Relation with Hochschild Cohomology

Let (A, η0) be a d-Calabi-Yau k-algebra and let −µ0 be the multiplication of A.

Let (R,m) ∈ Testk. We may define pseudo-functors DefA, Def[A : Test −→ Gd

in the same way as DefA,η0
and Def[A,η0

, simply by ignoring the datum of η0.

The induced morphism

Def[A(R) −→ DefA(R)

is essentially surjective on objects and surjective on morphisms. Furthermore

there is an isomorphism of groupoids

Φ(R) : MC(C•(A)⊗k m) −→ Def[A(R) : µ 7→ µ0 + µ

The obvious morphism of DG-Lie algebras

φ : D•(A, η0) −→ C•(A) : (µ, η) 7→ µ

makes the following diagram commutative:

MC(D•(A, η0))

Φ

��

φ //MC(C•(A))

Φ

��
DefA,η

forget η
// DefA

2.7 Homology of D•(A, η0)

We remain in the setting where (A, η̄0) is a d-Calabi-Yau algebra with mul-

tiplication −µ0. In this section we prove that the homology of the DG Lie

algebra D•(A, η0) is isomorphic to HC−−•+d−1(A). Furthermore we show that

the induced Lie bracket on HC−−•+d−1(A) is given Menichi’s string topology

bracket [Men09]. In our statements and computations we will use the following

conventions:

• Taking homology classes is indicated by overlining.
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• Depending on the context ∼= will mean either “up to homotopy” (when

discussing maps) or “up to addition of a coboundary” (when discussing

elements).

Theorem 2.7.1. The map

Ψ : D•(A, η0) −→ Σ−d+1CC
−
• (A) : (µ, s−d−1η) 7→ (−1)|µ|−1(iµ+uSµ)(s−d+1η0)+us−d+1η

is a quasi-isomorphism of complexes.

Proof. To simplify the notation we put

Iµ = iµ + uSµ (2.28)

We first check that Ψ does indeed commute with differentials. Write η′0 =

s−d−1η0 and η′ = s−d−1η. Then

Ψ(µ, η′) = s2((−1)|µ|−1Iµη
′
0 + uη′) (2.29)

and hence

(d ◦Ψ)(µ, η′) = (b + uB)s2((−1)|µ|−1Iµη
′
0 + uη′)

= s2((−1)|µ|−1(b + uB)Iµη
′
0 + u(b + uB)η′)

= s2((−1)|µ|−1[b + uB, Iµ](η′0) + u(b + uB)η′) (since (b + uB)η′0 = 0)

= s2((−1)|µ|−1(uLµ − Idµ)η′0 + u(b + uB)η′) (by (2.9))

= s2((−1)|µ|Idµη
′
0 + u((b + uB)η′ − (−1)|µ|Lµη

′
0))

= Ψ(dµ, (b + uB)η′ − (−1)|µ|Lµη
′
0) (by (2.29))

= (Ψ ◦ d)(µ, η′)

To see that Ψ is indeed a quasi-isomorphism, consider the following commu-

tative diagram

0 // Σ−d−1CC
−
• (A) //

Ψ
��

D•(A, η0) //

��
Ψ
��

C̄•(A) //

Ψ

��

0

0 // uΣ−d+1CC
−
• (A) // Σ−d+1CC

−
• (A) // Σ−d+1C̄•(A) // 0
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The map on the left is multiplication by u which is an isomorphism. The

map Ψ is given on cohomology by

µ 7→ ±Iµη0 modu = ±iµπ(η0)

where π is as in Proposition 2.3.5. Hence Ψ is an isomorphism by Propo-

sition 2.3.3. From the five lemma we conclude that the middle arrow is an

isomorphism on cohomology as well.

We now describe the Lie bracket on HC−• (A) induced by the quasi-isomorphism Ψ.

As already used in the above proof the map

− ∩ π(η̄0) : HHi(A) −→ HHd−i(A)

is invertible by Poincaré duality 2.3.3. Let us denote its inverse by j. Using

j, one can transport the cup product on Hochschild cohomology HH•(A) to a

product on Hochschild homology HH•(A)

· : HHi(A)×HHj(A) −→ HHi+j−d(A)

with explicit formula

a · b = (j(a) ∪ j(b)) ∩ π(η̄0)

or in a form more suitable for us below

iµ1
π(η̄0) · iµ2

π(η̄0) = iµ1∪µ2
π(η̄0) (2.30)

Theorem 2.7.2. The Lie bracket induced on

H•(Σ−d+1CC
−
• (A)) = HC•+d−1(A)

by the quasi-isomorphism Ψ is given by

[−,−] : HC−n (A)×HC−m(A) −→ HC−n+m−d+1(A) : (η1, η2) 7→ (−1)|η1|+dB(π(η1) ·π(η2))

where B is given by

B : HHq(A) −→ HC−q+1(A) : ν̄ 7→ Bν
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We first need the following technical lemma.

Lemma 2.7.3. Let µ ∈ C̄•(A) and η ∈ CC
−
• (A) be cocycles. Then Lµη and

Biµπ(η) are both cocycles in CC
−
• (A) and Biµπ(η) = Lµη in HC−• (A).

Proof. Lµη is a cocycle by 2.8. Biµπ(η) is a cocycle since π(η) is a cocycle in

C̄•(A) and

(b + uB)(Biµπ(η)) = bBiµπ(η) = −Bbiµπ(η) = 0

where the last equality follows from 2.2.10(4).

For the second claim, we first multiply by u:

u(Lµη − Biµπ(η)) = [b + uB, Iµ]η − uBiµπ(η) (by (2.9))

= (b + uB)Iµη − uBiµπ(η) (since (b + uB)η = 0)

= (b + uB)(Iµη − iµπ(η)) (since biµπ(η) = 0)

Now, π(Iµη−iµ(π(η)) = iµπ(η)−iµπ(η) = 0, which means that Iµη−iµπ(η)

is divisible by u. Thus it follows that

Lµη − Biµπ(η) = (b + uB)(u−1(Iµη − iµπ(η)))

hence the claim.

Proof of theorem 2.7.2. Let (µ1, s
−d−1η1) and (µ2, s

−d−1η2) be two cocycles

in D•(A, η0). We must prove for η′i
def
= s−d−1ηi

sd−1Ψ([(µ1, η′1), (µ2, η′2)]) = [sd−1Ψ(µ1, η′1), sd−1Ψ(µ2, η′2)] (2.31)

We will first compute the left-hand side of (2.31). Writing out the differential

in D•(A, η′0) explicitly, the fact that (µ1, η
′
1), (µ2, η

′
2) are cocycles implies

dµ1 = dµ2 = 0

(b + uB)η′1 − (−1)|µ1|Lµ1
η′0 = (b + uB)η′2 − (−1)|µ2|Lµ2

η′0 = 0
(2.32)

Page 82



CHAPTER 2. THE DEFORMATION THEORY OF CALABI-YAU
ALGEBRAS

where η′0 = s−d−1η′0. We compute

x
def
= sd−1Ψ([(µ1, η

′
1), (µ2η

′
2)])

= sd−1Ψ([µ1, µ2], Lµ1
η′2 − (−1)|µ1||η′2|Lµ2

η′1)

= sd+1((−1)|µ1|+|µ2|−1I[µ1,µ2]η
′
0 + u(Lµ1η

′
2 − (−1)|µ1||µ2|Lµ2η

′
1))

(2.33)

where we have used (2.29) and the fact that |η′2| = |µ2|.
We now consider the boundary element (b + uB)Iµ1η

′
2. By (2.9), we have

(b + uB)Iµ1
η′2 − (−1)|µ1|+1Iµ1

(b + uB)η′2 + Idµ1
η′2 = uLµ1

η′2

Taking into account (2.32) this becomes

(b + uB)Iµ1
η′2 = (−1)|µ1|−1Iµ1

(b + uB)η′2 + uLµ1
η′2

= (−1)|µ1|−1+|µ2|Iµ1Lµ2η
′
0 + uLµ1η

′
2

and similarly

(b + uB)Iµ2
η′1 = (−1)|µ2|−1+|µ1|Iµ2

Lµ1
η′0 + uLµ2

η′1

We now subtract both boundaries with appropriate sign from (2.33) to

obtain the following homologous cocycle

x ∼= (−1)|µ1|+|µ2|−1sd+1(I[µ1,µ2]η
′
0 − Iµ1

Lµ2
η′0 + (−1)|µ1||µ2|Iµ2

Lµ1
η′0)

= (−1)|µ1|+|µ2|−1sd+1(I[µ1,µ2] − Iµ1
Lµ2

+ (−1)|µ1||µ2|Iµ2
Lµ1

)η′0
(2.34)

By lemma 2.2.15 and (2.32):

[Lµ1
, Iµ2

]− (−1)|µ1|I[µ1,µ2]
∼= 0

Thus

I[µ1,µ2]
∼= (−1)|µ1|(Lµ1Iµ2 − (−1)|Lµ1

||Iµ2
|Iµ2Lµ1)

= (−1)|µ1|(Lµ1
Iµ2
− (−1)|µ1|(|µ2|+1)Iµ2

Lµ1
)

= (−1)|µ1|Lµ1Iµ2 − (−1)|µ1||µ2|Iµ2Lµ1
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Substituting this in (2.34) we obtain

x ∼= (−1)|µ1|+|µ2|−1sd+1((−1)|µ1|Lµ1
Iµ2

η′0 − Iµ1
Lµ2

η′0)

Next we observe, using (2.9)

[b + uB, Iµ1Iµ2−(−1)(|µ1|+1)(|µ2|+1)Iµ2∪µ1 ]

= [b + uB, Iµ1
]Iµ2

+ (−1)|µ1|+1Iµ1
[b + uB, Iµ2

]− (−1)(|µ1|+1)(|µ2|+1)[b + uB, Iµ2∪µ1
]

= u(Lµ1
Iµ2

+ (−1)|µ1|+1Iµ1
Lµ2
− (−1)(|µ1|+1)(|µ2|+1)Lµ2∪µ1

)

(2.35)

and also using (2.3):

Iµ1
Iµ2
− (−1)(|µ1|+1)(|µ2|+1)Iµ2∪µ1

modu = iµ1
iµ2
− (−1)(|µ1|+1)(|µ2|+1)iµ2∪µ1

= 0

In other words Iµ1Iµ2−(−1)(|µ1|+1)(|µ2|+1)Iµ2∪µ1 is divisible by u and we obtain

from (2.35)

Lµ1
Iµ2

+ (−1)|µ1|+1Iµ1
Lµ2
∼= (−1)(|µ1|+1)(|µ2|+1)Lµ2∪µ1

Substituting this back in (2.35) we find

x ∼= (−1)|µ1|(|µ2|+1)sd+1Lµ2∪µ1
η′0

= (−1)|µ1|(|µ2|+1)sd+1Biµ2∪µ1
π(η′0) (by lemma 2.7.3)

∼= (−1)|µ2|+1sd+1Biµ1∪µ2
π(η′0) (by §2.2.1)

∼= (−1)|µ2|+1(−1)(|µ1|+|µ2|+1)(d+1)Biµ1∪µ2π(η0)

and hence by (2.30)

x̄ = (−1)|µ2|+1(−1)(|µ1|+|µ2|+1)(d+1)B(iµ1
π(η̄0) · iµ2

π(η̄0))

To compute the righthand side of (2.31) we note

π(sd−1Ψ(µi, η
′
i)) = π(sd+1((−1)|µi|−1Iµiη

′
0 + uη′i)) (by (2.29))

= (−1)|µi|−1(−1)(|µi|+1)(d+1)iµiπ(η0)
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so that

[sd−1Ψ(µ1, η′1), sd−1Ψ(µ2, η′2)] = (−1)|µ1|+dB(sd−1Ψ(µ1, η′1) · sd−1Ψ(µ1, η′1))

= (−1)|µ1|+d+|µ1|+|µ2|(−1)(|µ1|+|µ2|)(d+1)B(iµ1
π(η0) · iµ2

π(η0))

= (−1)|µ2|+1(−1)(|µ1|+|µ2|+1)(d+1)B(iµ1
π(η̄0) · iµ2

π(η̄0))

finishing the proof.

2.8 Obstructions

Recall from §2.5 that there is a natural obstruction theory O(g•) for deforma-

tion functors MC(g•) of Maurer-Cartan type. The obstruction space is given

as the linear span in H2(g•) of all cohomology classes o(x) = dx̂ + 1
2 [x̂, x̂] of

lifts x̂ ∈ g1⊗n of x ∈ MC(g•⊗m) for all morphisms (S, n)→ (R,m) with one-

dimensional kernel. Clearly o(x) and hence O(g•) is functorial under DG-Lie

algebra morphisms.

The periodic cyclic complex CCper
• (A) of a k-algebra A is obtained by inverting

the element u in CC−• (A). Its homology will be denoted by HCper
• (A). The

following is the main result of this section.

Theorem 2.8.1. Let (A, η̄) be a d-Calabi-Yau algebra. Then the composition

O(D•(A, η)) ↪→ H2(D•(A, η))
Thm 2.7.1∼= HC−d−3(A)→ HCper

d−3(A)

is zero.

The main ingredient in the proof is a result by Tsygan and Daletskii (see

[DT99]) which extends the Lie derivative action of C•(A) on CC
−
• (A) to an L∞

action of a complex (C•(A)[u, ε]) on CC
−
• (A). For the benefit of the reader,

we collect all the required notions on the language of L∞-algebras, -modules

and -morphisms in the section below:
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2.8.1 a Reminder on L∞-Algebras

Let g• be a graded k-vector space. An L∞-structure on g• is most elegantly

defined as a square zero, degree one coderivation Q on the symmetric coalgebra

Sc(Σg•). Such an L∞-structure is determined by its Taylor coefficients ∂nQ

which are maps

Sn(Σg•) −→ Σg•

Convention 2.8.2. Here and in related situations below we always assume

that zeroth order Taylor coefficient are zero.

A DG-Lie algebra can be made into an L∞-algebra by putting

∂1Q(sg) = −sdg, ∂2Q(sg, sh) = (−1)|g|s[g, h], and ∂nQ = 0 for n ≥ 3

A morphism of L∞-algebras ψ : (g•, Q) → (h•, Q) is a coalgebra morphism

ψ : Sc(Σg•) −→ Sc(Σh•) commuting with Q. It is in turn also determined by

its Taylor coefficients

∂nψ : Sn(Σg•) −→ Σh•

If V • is a graded k-vector space then an L∞-g•-module structure on V • is a

square zero, degree one differential R : Sc(Σg•)⊗V • → Sc(Σg•)⊗V • satisfying

(Q⊗ IdScg⊗ IdV + IdScg⊗R) ◦ (∆⊗ IdV ) = (∆⊗ IdV ) ◦R

as morphisms Sc(Σg•) ⊗ V • −→ Sc(Σg•) ⊗ Sc(Σg•) ⊗ V • An L∞-g•-module

structure R on V • is entirely determined by the maps

∂n+1R : Sn(Σg•)⊗ V • −→ V •

If g• is a DG-Lie algebra and V • is a DG-module over it then V • can be made

into an L∞-module over g by putting

∂1R(v) = dv, ∂2R(sg, v) = g · v and ∂nR = 0 for n ≥ 3

Assume that (V •, R), (W •, R) are L∞-h•-modules. An L∞ morphism µ :

V • −→W • is a comodule map µ : Sc(Σg)⊗V • −→ Sc(Σg)⊗W •. commuting
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with R. It is determined by its Taylor coefficients

∂nµ : Sn(Σg•)⊗ V • −→W •

The DG Lie algebra D•(A, η) is constructed by subsequently applying a se-

quence of operations: shifting a DG-Lie module (2.2.17), forming the semi-

direct product between a DG-Lie algebra and module (2.22), twisting a DG

Lie algebra using a Maurer-Cartan element (2.20). Moreover, to extend Kont-

sevich’s L∞-morphism of DG Lie algebras to an L∞-morphism of DG-Lie

modules we shall also need to pull such modules back. We shall give a short

account of these operations in the L∞-setting

• if V • is an L∞-g•-module then so are ΣmV • for all m using the obvious

sign convention

∂n+1R(sg1, . . . , sgn, s
mv) = (−1)m(n+|g1|+···+|gn|)∂n+1R(sg1, . . . , sgn, v)

• The L∞-structures on g• and ΣV •can be combined to make the direct

sum g• ⊕ V • into an L∞-algebra. We will denote the resulting L∞-

algebra by g• n V • and call it the semi-direct product of g•. This is an

obvious generalization of the semi-direct product of a DG-Lie algebra

with a DG-module which was used in §2.6.

• Given an L∞-morphism ψ : g• −→ h• and an L∞-module V • over h,

the pullback V •ψ of V • is defined as follows:

∂n+1Rψ(sg1, . . . , sgn, v) =∑
t,1≤m1<···<mt−1<n

±∂t+1R(∂m1ψ(sgi1 , . . . , sgim1
), ∂m2−m1ψ(sgim1+1

, . . . , sgim2
),

. . . , ∂n−mt−1ψ(sgimt−1+1
, . . . , sgn), v)

where for all j: imj+1 < · · · < imj+1
and the sign is the Koszul sign of the

corresponding shuffle of the (sgi)i. By construction we have a canonical

L∞-morphism

ψV : g• n V •ψ −→ h• n V •
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which restricted to Sn(Σg) coincides with ∂nψ.

• If g• is equipped with some type of topology, we can consider the set of

Maurer-Cartan element ω ∈ g1 satisfying the L∞-Maurer-Cartan equa-

tion ∑
i≥1

1

i!
(∂iQ)(ω · · ·ω︸ ︷︷ ︸

i

) = 0

Remark 2.8.3. One has to assume that one is in a situation where all

occurring series are convergent and standard series manipulations are

allowed. In our application below the series are in fact finite.

We can twist the L∞-structure on g• by defining g•ω as the same graded

vector space with

(∂iQω)(γ) =
∑
j≥0

1

j!
(∂i+jQ)(ω · · ·ω︸ ︷︷ ︸

j

γ) (for i > 0)by[Yek06] (2.36)

• We can transport the element ω along ψ by defining a morphism ψω and

the resulting ω′ ∈ h1 as

(∂iψω)(γ) =
∑
j≥0

1

j!
(∂i+jψ)(ω · · ·ω︸ ︷︷ ︸

j

γ) (for i > 0) (2.37)

ω′ =
∑
j≥1

1

j!
(∂jψ)(ω · · ·ω︸ ︷︷ ︸

j

) (2.38)

Then [Yek06, 3.19-3.20] shows that ω′ again a solution of the Maurer-

Cartan equation on h• and that ψω is an L∞-map g•ω −→ h•ω′ .

2.8.2 the Proof of the Obstruction Theorem

The proof is an application of the following beautiful result by Tsygan and

Daletskii [Tsy99, Thm 1] (see also [DT99]).

Theorem 2.8.4. The DG Lie action of C•(A) on CC−• (A) can be extended

to a u-linear L∞-action of the DG-Lie algebra (C•(A)[u, ε], d + u∂/∂ε), with

Page 88



CHAPTER 2. THE DEFORMATION THEORY OF CALABI-YAU
ALGEBRAS

|ε| = 1, ε2 = 0 and such that

∂1R(γ) = dγ

∂2R(sσ, γ) = Lσγ

∂2R(s(εσ), γ) = Iσγ

for σ ∈ C•(A), γ ∈ CC−• (A) using the notations of §2.2 and the definition of

Iσ as in in 2.28

Remark 2.8.5. The claim about ∂2R(s(εσ), γ) isn’t explicitly mentioned in

the statement of[Tsy99, Thm 1]. It does however easily follow from the proof.

In the rest of this section (A, η) is a d-Calabi-Yau algebra.

Lemma 2.8.6. There is a commutative diagram of complexes

(C•(A) n Σ−d−1 CC−• (A))(0,η′)
//

Ψ **

(C•(A)[u, ε] n Σ−d−1 CC−• (A))(0,η′)

Ψ′tt
Σ−d+1 CC−• (A))

(2.39)

where

• Ψ was introduced in theorem 2.7.1;

• η = s−d−1η′;

• the horizontal map is a twist (see §2.8.1) of the map obtained from the ob-

vious inclusion of DG-Lie algebras (C•(A), d) ↪→ (C•(A)[u, ε], d+ ∂/∂ε).

• Ψ′ restricted to C•(A)[u, ε] is u-linear and satisfies

Ψ′(σ) = (−1)|σ|+1Iση
′

Ψ′(εσ) = 0
(2.40)

for σ ∈ C•(A).
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• Ψ′ restricted to Σ−d−1 CC−• (A) is multiplication by u.

Proof. The commutativity of the diagram is clear. We only have to show that

Ψ′ commutes with the differential. For Ψ′ restricted to Σ−d−1 CC−• (A) this is

obvious. As far as the restriction of Ψ′ to C•(A)[u, ε] is concerned: the only

non-trivial case (given that Ψ already commutes with the differential) is the

evaluation on an element of εg.

Using (2.36) we find for σ ∈ C•(A)

d(0,η′)(εσ) = (d(εσ), (−1)|g|Iση
′)

Given (2.40) we have to show

Ψ′(d(0,η′)(εσ) = 0

We compute

Ψ′(d(0,η′)(εσ)) = Ψ′(d(εσ), (−1)|σ|Iση
′)

= Ψ′(−εdσ + uσ, (−1)|σ|Iση
′)

= (−1)|σ|+1uIση
′ + (−1)|σ|uIση

′

= 0

Lemma 2.8.7. Consider Σ−d+1 CCper
• (A) as an abelian DG-Lie algebra. Then

there exists an L∞-morphism

∆ : D•(A, η)→ Σ−d+1 CCper
• (A)

such that the following diagram is commutative

H•(D•(A, η))

H•(∆) **

H•(Ψ) // H•(Σ−d+1 CC−• (A))

canonical

��
H•(Σ−d+1 CCper

• (A))
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Proof. To simplify the notations put g• = C•(A), V − = Σ−d−1 CC−• (A),

V per = Σ−d−1 CC−• (A). Thus we get L∞-morphisms (see §2.8.1)

(g•nV −)(0,η′) → (g•[u, ε]nV −)(0,η′) → (g•[u, u−1, ε]nV per)(0,η′)
c←− (0nV per)(0,η′)

∼= V per
×u∼= Σ2V per (2.41)

Here c goes in the wrong direction but it is easy to see that (g•[u, u−1, ε], d+

u∂/∂ε) is acyclic. Hence c is an quasi-isomorphism. This means that there is

an L∞-quasi-isomorphism c′ which goes in the opposite direction and which

inverts c on the level of cohomology. Taking the composition of everything we

obtain an L∞-morphism

(g• n V −)(0,η′) −→ Σ2V per

which is the desired ∆.

It remains to show that ∆ and Ψ are compatible on the level of cohomology.

This follows from the following commutative diagram whose upper row is a

compressed version of (2.41) and whose lower row we obtain from (2.39).

(g• n V −)(0,η′)

∆

++//

Ψ

��

(g•[u, u−1, ε] n V per)(0,η′)

Ψ′

��

c′ //∼= V per

c
oo ×u

// Σ2V per

Σ2V − //

canonical

33Σ2V per V per
×u

oo ×u // Σ2V per

Proof of theorem 2.8.1. The theorem follows from lemma 2.8.7 together with

the functoriality of obstruction spaces under L∞-morphisms and the fact that

the obstruction space of an abelian Lie algebra is trivial.

Corollary 2.8.8. If the map HC−d−3(A) −→ HCper
d−3(A) is injective then the

deformation theory of A is unobstructed.

This corollary applies for example in the case d ≤ 3 by the following well-

known lemma.
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Lemma 2.8.9. HC−n (A) −→ HCper
n (A) is an isomorphism for n ≤ 0.

Proof. There is an exact sequence

HCn−1(A) −→ HC−n (A) −→ HCper
n (A) −→ HCn−2(A)

(e.g. [Lod98, Prop. 5.1.5]) where HC•(A) denotes ordinary cyclic homology.

The complex computing ordinary cyclic homology is concentrated in homolog-

ical degrees ≥ 0. Hence HCn(A) = 0 for n < 0. This finishes the proof.

2.9 the Case of Calabi-Yau Varieties

In this section we will use formality results from [Dol06, Kon03, Sho03, Tsy99,

Wil08] so we will assume that the ground field k contains R. Let A = O(X)

where X is a smooth affine d-dimensional Calabi-Yau variety over k. Let

T poly,•(A) = Γ(X,
∧•

TX) denote the poly-vector fields on X. The Schouten-

Nijenhuis bracket defines a Lie algebra structure on T poly,•(A). We will im-

plicitly assume that T poly,•(A) is shifted so that the bracket has degree 0,

in which case T poly,•(A) becomes a graded Lie algebra. In 1997 Kontsevich

proved the following famous theorem

Theorem 2.9.1 ([Kon03], see also [CFT02, Yek05] ). (Kontsevich Formality)

There is an L∞-isomorphism7

U : (T poly,•(A), 0) −→ (C•(A), d)

We let Ω•(A) be the differential forms on X (not shifted) and fix a volume

form η ∈ Ωd(A). The Hochschild-Kostant-Rosenberg theorem furnishes an

isomorphism

HKR : Ωd(A)
'−→ HHd(A)

It follows that η defines an element in HHd(A) and hence by Proposition 2.3.5,

we obtain a cycle in CC−d (A) which we will still write as η by abuse of notation.

7The reader will find a brief overview of the language of L∞ algebras in the next section
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By [Gin, ex. 3.2.1], the fact that η is a volume form implies that (A, η) is a

Calabi-Yau algebra in the sense of 2.3.7. Let

div : T poly,•(A) −→ T poly,•−1(A)

be the divergence operator corresponding to η characterized via the following

identity

ddR(γ ∩ η) = div γ ∩ η

where ∩ denotes the classical contraction and ddR is the de Rham differen-

tial. It immediately follows that div2 = 0. Moreover div acts as a deriva-

tion with respect to the Schouten-Nijenhuis bracket, defining a dg Lie algebra

(T poly,•(A),−div). Finally, the Tian-Todorov lemma states that

(1)|γ1|[γ1, γ2] = div(γ1γ2)− div(γ1)γ2 − (1)|γ1|+1γ1 div γ2

implying that (T poly,•,−div,∧) is a BV algebra (see [Sch06, theorem 2.3] for

a complete proof).

Theorem 2.9.2. There exists an L∞-quasi-isomorphism

(T poly,•(A)[[u]],−udiv) ∼= D•(A, η)

yielding a commutative square in the homotopy category of DG-Lie algebras

which extends Kontsevich’s formality L∞-quasi-isomorphism2.9.1 in the fol-

lowing way:

(T poly,•(A)[[u]],−udiv)
∼ //

u 7→0

��

D•(A, η)

φ

��
T poly,•(A)

U
// C•(A)

(2.42)

2.9.1 Applying Formality to D(A, η)

Recall that the operation L endows the normalized negative cyclic complex

CC
−
• (A) with the structure of a DG Lie-module over C•(A). Using Kontse-

vich’s L∞-morphism U (2.9.1 ) we can pull this structure back (see §2.8.1) and
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consider CC
−
• (A) as a DG Lie module -module over T poly,•(A).

In turn it is well known that the complex of differential forms Ω•(X) in turns

becomes an L∞-module over T poly,• through the classical Lie derivative. The

main result of [Wil08] (see also [Sho03, Tsy99]) after adding the formal variable

u in degree 2 reads:

Theorem 2.9.3. There is a quasi-isomorphism of L∞-modules over T poly,•(A)

(CC
−
• (A), b + uB) −→ (Ω•(A)[[u]], ud)

This yields a roof of L∞-quasi-morphisms of graded DG-Lie algebras

Tpoly,•(A) n Σ−d−1CC
−
• (A)

S

tt

U

**
Tpoly,•(A) n Σ−d−1Ω•(A)[[u]] C̄•(A) n Σ−d−1CC

−
• (A)

(2.43)

We in turn obtain a new roof by twisting with (0, η′) where η′ = s−d−1η

(following §2.8.1 ).

(Tpoly,•(A) n Σ−d−1CC
−
• (A))

(0,η′)
S

(0,η′)

uu

U
(0,η′)

))
T•(A, η) D•(A, η)

(2.44)

where we denote

T•(A, η) = (T poly,•(A) n Σ−d−1Ω•(A)[[u]])(0,η′)

The complexes here are 2-step filtered. The arrows are quasi-isomorphisms

since if we take the associated graded complexes for the 2-step filtrations we

find the same arrows as in (2.43). To simplify T•(A, η), we make use the of

the divergence operator as mentioned in the introduction:

div : T •,poly(A) −→ T •−1,poly(A)
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which satisfies the following identity

d(γ ∩ η) = div γ ∩ η

We conclude immediately

div2 = 0

theorem 2.9.2 reduces to showing

Proposition 2.9.4. There is an L∞-isomorphism of DG-Lie algebras

δ : (T poly,•(A)[[u]],−udiv) −→ T•(A, η)

The proof of this statement implicitly combines two L∞-quasi-isomorphism

which are rather technical technical in nature:

• there exists an L∞-isomorphism

(T poly,•(A)[[u]],−udiv) −→ (T poly,•(A) n a,−udiv) (2.45)

where a is the abelian graded Lie algebra on the vector space uT poly,•(A)[[u]]

with action of T poly,•(A) on a given by

γ ? a = [γ, a] + (−1)|γ| div γ ∪ a

• there is an isomorphism of DG Lie algebras

δ′ : (T poly,•(A) n a,−udiv) −→T•(A, η) (2.46)

(γ, a) 7→(γ, (−1)|a|u−1a ∩ η′)

BV-Algebras and the Proof of the L∞-isomorphism (2.45)

Recall that a DG-BV-algebra is a quadruple (g•, d,∆,∪) where (g•, d) is a

complex, ∪ is a commutative, associative product of degree8 1 on g• compati-

ble with d and ∆ is a differential of degree −1.

8As always our grading conventions are such that Lie brackets have degree zero.
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(g•, d, [−,−]) is a DG-Lie algebra when endowed with the bracket [−,−] de-

fined by:

[g, h] = (−1)|g|+1(∆(g ∪ h)−∆g ∪ h− (−1)|g|+1g ∪∆h)

In this case ∪ and [−,−] are related by the Leibniz rule:

[g, h1 ∪ h2] = [g, h1] ∪ h2 + (−1)|g|(|h1|+1)h1 ∪ [g, h2]

It is shown in [KKP08, Ter08] that if g• is a DG-BV-algebra then (g•((u)), d+

u∆) is homotopy abelian. The same proof goes over without change to the

case where for ug•[[u]], d+ u∆) but not for (g•[[u]], d+ u∆).

Our aim in this section is to make (g•[[u]], d+ u∆) as “commutative as possi-

ble” (see proposition 2.9.8 below) by making at least its sub-DG-Lie algebra

(ug•[[u]], d+u∆) abelian. This is not completely straightforward since in order

to do this we have to twist the action of g• on ug•[[u]].

The fact that (g•((u)), d+u∆) and (ug•[[u]], d+u∆) are homotopy abelian

is in fact a special case of a general result in [ST08]. For the benefit of the

reader we will give a complete proof of this result below. Afterwards we will

reuse the proof to treat the DG-BV-algebra (g•[[u]], d+ u∆). It is convenient

to use the following (ad hoc) definition.

Definition 2.9.5. A BV− algebra is a DG-Lie algebra g• equipped with a

commutative, associative product ∪ of degree −1, compatible with d, such

that

[g, h] = (−1)|g|+1(d(g ∪ h)− dg ∪ h− (−1)|g|+1(g ∪ dh) (2.47)

and

[g, h1 ∪ h2] = [g, h1] ∪ h2 + (−1)|g|(|h1|+1)h1 ∪ [g, h2] (2.48)

Lemma 2.9.6. [ST08] Let g• be a BV−-algebra and let a• be the same as g•

but with the Lie bracket set to zero. Then there is a L∞-morphism ψ : g• −→
a• such ∂1ψ is the identity. In other words g• is homotopy abelian.
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Example 2.9.7. Let (g•, d,∆,∪) be a DG-BV-algebra. Then (ug•[[u]], d +

u∆, [−,−], u−1(− ∪ −)) is a BV−-algebra and hence by the previous lemma

(ug•[[u]], d+u∆) is homotopy abelian. The same reasoning applies to (g•((u)), d+

u∆).

Proof of lemma 2.9.6. Put V • = Σg•. The coderivation Q on ScV • corre-

sponding to the DG-Lie structure is given by (see §2.8.1

∂1Q : V • −→ V • : sg 7→ −s dg

∂2Q : S2V • −→ V • : (sg, sh) 7→ (−1)|g|s[g, h]

and all other ∂nQ are zero.

For simplicity of notation we put

sg1 · sg2 · · · sgn = s(g1 ∪ · · · ∪ gn)

From (2.47)(2.48) we obtain:

∂1Q(v1 · v2 · · ·vn) =
∑
i

εi∂
1Q(vi)v1 · · · v̂i · · · vn

+
∑
i<j

εi,j∂
2Q(vi, vj)v1 · · · v̂i · · · v̂j · · · vn

(2.49)

where the signs are determined by

v1 · v2 · · · vn = εivi · v1 · · · v̂i · · · vn
= εi,jvi · vj · v1 · · · v̂i · · · v̂j · · · vn

Consider ∂1Q as a coderivation of ScV • and let ψ : ScV • −→ ScV • be the

coalgebra automorphism determined by

∂nψ(v1, . . . , vn) = v1 · v2 · · · vn

Then (2.49) becomes

∂1Q ◦ ψ = ψ ◦Q

which finishes the proof.
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Proposition 2.9.8. Let (g•, d,∆,∪) be a DG-BV-algebra. Let a• be the graded

vector space ug•[[u]]. The following operation

h ? a = [h, a] + (−1)|h|+1∆(h) ∪ a (2.50)

for h ∈ g•, a ∈ a• makes a• into a graded g•-representation. Furthermore

d+ u∆ defines a derivation on the Lie algebra g• n a• and finally there is an

L∞-isomorphism

φ : g•[[u]] −→ (g• n a•, d+ u∆)

such that ∂1φ is the identity.

Proof. In the proof below we identify the underlying vector spaces of g•[[u]] and

g•na in the obvious way. The fact that (2.50) defines indeed a representation

as well as compatibility with differentials is an easy direct verification: Now

put V • = Σa•, W • = Σg•. Let Q be the coderivation on Sc(W • ⊕ V •)

corresponding to g•[[u]]. We observe that ∂1Q|W • = ∂1Q1 + ∂2Q2 where

∂1Q1 = −d and ∂1Q2 = −u∆. Let Q′ be the coderivation on Sc(W • ⊕ V •)
corresponding to (g• n a•, d+ u∆). We have ∂1Q′ = ∂1Q. Furthermore

∂2Q′(w1, w2) = ∂2Q(w1, w2) for w1, w2 ∈W •

∂2Q′(v1, v2) = 0 for v1, v2 ∈ V •

and for h ∈ g•, a ∈ a•

∂2Q′(sh, sa) = (−1)|h|s(h ? a)

= (−1)|h|s[h, a]− s(∆h ∪ a)

= ∂2Q(sh, sa) + ∂1Q2(sh) · sa

where as above x · y = u−1(x ∪ y). In other words

∂2Q′(w, v) = ∂2Q(w, v) + ∂1Q2(w) · v for w ∈W •, v ∈ V • (2.51)

We now construct the desired L∞-morphism. By definition ∂nψ = Id for

n = 1. For n > 1, i ≥ 1, w1, . . . , wi ∈W •, v1, . . . , vj ∈ V • we put

∂nψ(w1, . . . , wi, v1, . . . , vj) = 0
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and

∂nψ(v1, . . . , vj) = v1 · v2 · · · vn

We now verify

ψ ◦Q = Q′ ◦ ψ

We must evaluate both sides on SiW • ⊗ SjV •. If i = 0 then the desired

equality follows from the proof of lemma 2.9.6. If i > 2 then both sides are

zero so this case is trivial as well. If i = 2 then both sides are zero unless j = 0

in which case we reduce to ∂2Q|S2W • = ∂2Q′|S2W •.

We concentrate on the case i = 1. We find

(Q′ ◦ ψ)(w1, v1, . . . , vj) = ∂2Q′(w1, v1 · v2 · · · vn)

and

(ψ ◦Q)(w1, v1, . . . , vj) = ∂1Q2(w1) · v1 · · · vj +
∑
l

±∂2Q(w1, vl) · v1 · · · v̂l · · · vj

= ∂1Q2(w1) · v1 · · · vj + ∂2Q(w1, v1 · v2 · · · vj)

We conclude by (2.51).

The above lemma allows us to yield a proof of 2.45.

Lemma 2.9.9. there exists an L∞-isomorphism

(T poly,•(A)[[u]],−udiv) −→ (T poly,•(A) n a,−udiv)

where a is the abelian graded Lie algebra on the vector space uT poly,•(A)[[u]].

The action of T poly,•(A) on a is given by

γ ? a = [γ, a] + (−1)|γ| div γ ∪ a

Proof. By [Sch06], we have the following equality

(−1)|γ1|[γ1, γ2] = div(γ1γ2)− div(γ1)γ2 − (−1)|γ1|+1γ1 div γ2

implying that (T poly,•(A),−div,∪) is a BV-algebra. The result is now an

immediate application of 2.9.8
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The second required isomorphism can be computed directly:

Lemma 2.9.10. The morphism from 2.46

δ′ : (T poly,•(A) n a,−udiv) −→ T•(A, η)

is an isomorphism of DG-Lie algebras.

Proof. First we show that

δ′ : a −→ Σ−d−1Ω•(A)[[u]] : a 7→ (−1)|a|u−1(a ∩ η′)

is compatible with the action of T poly,•(A). We compute for γ ∈ T poly,•(A)

and a ∈ a.

δ′(γ ? a) = δ′([γ, a] + (−1)|γ| div γ ∪ a)

= (−1)|γ|+|a|u−1([γ, a] + (−1)|γ| div γ ∪ a) ∩ η′

= (−1)|γ|+|a|u−1((−1)|γ| div(γ ∪ a)

− (−1)|γ| div(γ) ∪ a+ γ ∪ div(a) + (−1)|γ| div(γ) ∪ a) ∩ η′

= (−1)|γ|+|a|u−1((−1)|γ| div(γ ∪ a) + γ ∪ div a) ∩ η′

= (−1)|γ|+|a|u−1((−1)|γ|d(γ ∩ (a ∩ η′)) + γ ∩ d(a ∩ η′))

= Lγ(δ′(a))

Now we check compatibility with the differential of δ′ on an element a ∈ a.

δ′(−udiv a) = −(−1)|a|+1 div a ∩ η′

= (−1)|a|d(a ∩ η′)

= d(δ′(a))

Finally we check compatibility with the differential of δ′ on γ ∈ T poly,•(A).

δ′(−udiv γ) = −(−1)|γ|+1 div γ ∩ η′

= (−1)|γ|d(γ ∩ η′)

= (−1)|γ|Laη
′

= [(0, η′), (γ, 0)]

Page 100



CHAPTER 2. THE DEFORMATION THEORY OF CALABI-YAU
ALGEBRAS

We finally have all the required tools to prove theorem 2.9.2:

Proof of theorem 2.9.2. It suffices to combine diagram (2.44) with proposition

2.9.4, taking into account that an L∞-quasi-isomorphism yields an isomor-

phism in the homotopy category of DG-Lie algebras.
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Numerical Classification of

Exceptional Sequences in

Rank 4

3.1 Introduction and Statement of Results

We discussed in §0.2 how one can construct a 3-Calabi-Yau algebra starting

from an exceptional sequence on a Del Pezzo surface X. From the point of

view of noncommutative geometry, it is natural to try and impose conditions

on a triangulated category which reflect the geometry of a Del Pezzo surface in

order to produce new Calabi-Yau algebras using exceptional sequences in the

same way. This chapter can be seen as a first step towards this goal in which

we investigate the Grothendieck groups of such categories in the presence of

exceptional sequences.

The set of exceptional sequences in a given triangulated category has very rich

structure. It was proven in [GK04] that the braid group Bn acts on these

sequences through an operation called mutation. In [KO95], Kuleshov and
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Orlov investigated the mutation action in the case where T = Db(X). They

showed in particular that this category indeed has a full, strong exceptional

sequence and that the mutation action is transitive on Db(X).

The Grothendieck group K of T is equipped with an Euler form defined

through the formula 〈X,Y 〉 def
=
∑
i(−1)i dimk Hom(X,Y [i]). The classes in

a full exceptional sequence E in T define an ordered basis E of K for which

the Gram matrix M is upper triangular with ones on the diagonal. We call

such an ordered basis again exceptional and a matrix of this form exceptional

as well. There is an obvious way to define a braid group action on exceptional

bases of free abelian groups with a unimodular form (which we call a ’lattice’)

as in §3.4.3 and on exceptional matrices (see §3.4.4) in general in such a way

that the maps

T −→ K(T ) −→ SLn(Z) : E 7→ E 7→M

are Bn-equivariant.

We will also consider the closely related notion of helix mutation. In this case

the cylindrical braid group CBn acts on the set of helices. This action extends

the action of Bn on exceptional sequences described above in the appropriate

sense (see 3.4.9). We can similarly define helices in the general context of lat-

tices, define a cylindrical braid group action on them and show that the action

on helices is compatible with the action on exceptional bases in a similar way

(see 3.4.14). In the setting of exceptional matrices, one can define two obvious

cylindrical braid group actions however. We shall show that the orbits under

both actions actually coincide (3.4.23). This will prove to be a useful technical

tool when making explicit computations.

In this chapter we propose that the results of Kuleshov-Orlov on the beauti-

ful properties of exceptional sequences in Db(X) described above should be

a consequence of some extra structure present in this triangulated category.

This extra structure comes from the Serre functor S which translates into a

unique automorphism s on the Grothendieck group K(X) for which the for-

mula 〈v, sw〉 = 〈w, v〉 holds. If we let s act on the numerical Grothendieck

group K(X)num = K(X)/ rad 〈−,−〉, the fact that X is smooth and projective
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implies two fundamental properties, the second of which is new to the best of

our knowledge:

Theorem E (see 3.3.7 ). Let X be a smooth projective surface over C. Then

the Serre automorphism s on K(X)num satisfies the following conditions:

• (s− 1)3 = 0

• rk(s− 1) ≤ 2

We consider more generally the setting of a lattice K (as mentioned, to us

this means a finitely generated free abelian group with a unimodular bilinear

form) and impose axioms on K based on the above theorem 1. We refer to this

as a lattice of smooth projective surface* (’SPS*’) type. There is a canonical

2-step filtration F iK on K which generalizes the codimension filtration. We

call F 2K and F 1K/F 2 respectively the rank group and the numerical Picard

group. The form 〈−,−〉 restricts to a symmetric non-degenerate form (−,−)

on the numerical Picard group (after tensoring with Q), which we call the

negative intersection form. Using this filtration, it is possible to define many

other notions such as rank, degree, canonical class, in this more general context

of an SPS* lattice. All these notions coincide with the usual geometric ones

in the case where K = K(X)num is the numerical Grothendieck group of X

(see 3.3.26,3.3.11). Moreover in §3.3.1, we exhibit a formula reminiscent of

the Riemann-Roch theorem. In view of our wish to reinterpret the Kuleshov-

Orlov theory valid for Del Pezzo surfaces in the more general setting of lattices,

our focus will lie on lattices of SPS type for which the self-intersection of the

canonical class is negative, which we aptly call of Del Pezzo surface (’DPS*’)

type 2..

Using these geometric notions in our new more general context allows us to

1More precisely, we impose the additional conditions that 〈, 〉 is nondegenerate and that

(s− 1)2 6= 0, which are natural in the presence of an exceptional basis
2The reader may note the sign difference from the usual definition coming from the fact

that our notion of intersection form differs from the classical one by a sign
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classify lattices of SPS type with an exceptional basis in rank 3. More precisely,

for such a lattice K, following [BP94], we note that the unipotency of the

Serre automorphism gives a restraint on the nontrivial coefficients of the Gram

matrix in the form of the Markov equation

a2 + b2 + c2 = abc

Markov’s theorem [Mar79] concerning this equation now proves that one can

mutate the exceptional basis so that the resulting coefficients are given by the

standard solution (3, 6, 3). This yields the result that K is isomorphic to the

Grothendieck group of P2.

We use this result and the technique of its proof to exhibit a classification of

lattices of DPS* type with a rank 4 exceptional basis (e1, e2, e3, e4). The unipo-

tency of the Serre automorphism in this case yields a system of 2 Diophantine

equationsa2 + b2 + c2 + d2 + e2 + f2 − bad− edf − ace− bcf + abdf = 0

af + bd = ce

whose solutions contrarily to the rank 3 case cannot be described in a straight-

forward manner analogous to Markov’s approach. The key to analyzing this

situation is to consider two simpler cases.

• if the element e1 has an element of rank 0, it is not to difficult to show that

(e2, e3, e4) is in turn a sublattice of rank 3 which is again of SPS type. By

the previous result, we can perform a mutation so that (d, e, f) = (3, 6, 3)

• If the exceptional basis satisfies 〈e2, e3〉 = 0, then the Markov equation in

rank 4, together with this extra condition is equivalent to the following

generalization of the Markov equation

ka2 + kb2 + c2 = kabc

Our main reduction result using the tools provided by the different (cylindrical)

braid action developed above is that one can always mutate so that either of
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these additional constraints are satisfied. This allows us to prove the following

classification result:

Theorem F. Let K be a lattice of DPS* type with an exceptional basis of

length 4. Then K is isomorphic to one of four lattices for which the Gram

matrix has a basis of one of 4 respective nonisomorphic forms
1 0 0 0

0 1 3 6

0 0 1 3

0 0 0 1

 ,


1 2 2 4

0 1 0 2

0 0 1 2

0 0 0 1

 ,


1 2 3 5

0 1 1 3

0 0 1 2

0 0 0 1

 and


1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1


The first type is a trivial extension the Grothendieck group of P2 to a rank

4 lattice. The next two matrices correspond to the Grothendieck groups of the

surfaces P1×P1 and F1 respectively. The last type however doesn’t correspond

to the Grothendieck group of a Del Pezzo surface (see 3.5.18), and we shall

dedicate the last chapter of this thesis to the construction of a noncommutative

geometric model for this lattice

3.2 Geometric Conditions on Grothendieck Groups

Let X be a smooth projective variety of dimension d and let S
def
= (−)⊗XωX [d]

denote the Serre functor on Db(X). Then s induces an automorphism s on

the Grothendieck group K(X). The following is well known:

Theorem 3.2.1. s satisfies ((−s)d − 1)d+1 = 0 on K(X).

Proof. see [Dol08, 3.3.8]

It is a trivial observation that s remains a well-defined automorphism on

the numerical Grothendieck group K(X)num = K(X)/ rad(〈−,−〉 If X is a

surface, the rank of (s− 1) on K(X)num can be bounded by 2 by using Chern

classes. Although the proof of this result is quite elementary, this result seems

to be new to the best of our knowledge.
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Lemma 3.2.2. rk(s− 1) ≤ 2 on K(X)num

Proof. As mentioned above, we shall use the Chern character (we refer for

example to [Kar77] for the basic properties we use below):

ch : K(X) −→ Heven(X,Q)

Define the homological Grothendieck group by the quotient

K(X)hom
def
= K(X)/ ker(ch).

We first show that the identity induces a well defined morphism π : K(X)hom
// // K(X)num.

to this end, let E be a vector bundle on X. Since ci(E∨) = (−1)ici(E), the split-

ting principle implies that ch(E∨) = τ(ch(E)) where τ ∈ Aut(Heven(X,Q)) is

defined through the rule

τ(v2i)
def
= (−1)i(v2i)

This, together with the Hirzebruch-Riemann-Roch theorem, yields:

〈E ,F〉 = χ(E∨ ⊗F)

= (ch(E∨ ⊗F)Todd(X))top

= ((τ(ch(E))ch(F)Todd(X))top

where Todd(X) denotes the Todd genus of X. This in particular implies that

ker(ch) ⊂ rad 〈, 〉, proving the well-definedness of the morphism π. The sur-

jectivity of π which shows that we may prove that rk(s− 1) ≤ 2 on K(X)hom

instead. Moreover, since ch is an injective morphism on K(X))hom, the claim

finally to reduces to rk(ch(s− 1)) ≤ 2 on Heven(X,Q). We compute:

ch(s− 1)E = ch(E ⊗ ωX [2])− ch(E)

= ch(E)ch(ωX)− ch(E)

= ch(E)(c1(ωX) +
c1(ω)2

2
)

: = ch(s− 1) ch(E)
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This action is given by multiplication by an element of degree ≥ 2 and

ch(s− 1)(Heven(X,Q)) = ch(s− 1)(H0(X,Q))⊕ ch(s− 1)(H2(X,Q)⊕H4(X,Q))

⊂ ch(s− 1)
(

H0(X,Q)⊕H4(X,Q)
)

Now H0(X,Q) = Γ(X,Q) = Q and H4(X,Q) = Q since X is an orientable

complex surface. Hence rk ch(s− 1) ≤ 2 and the claim is proven.

Throughout, we shall make use of the following ’folklore’ theorem which

relates the intersection form on the Picard group to the Euler form on the

Grothendieck group

Lemma 3.2.3. Let X be a smooth complex projective surface

1. For smooth curves C and C ′ intersecting transversely and line bundles

U and V on C and C ′ respectively, we have

C · C ′ = −〈U ,V〉

2. For line bundles L and L′ on X, we have

L · L′ = −〈L −OX ,L′ −OX〉

where the first product is the standard intersection pairing on the Picard

group of a smooth surface.

Proof. We proceed to prove the first claim:

〈U ,V〉 = dimC (HomX(U ,V))− dimC
(
Ext1

X(U ,V)
)

+ dimC
(
Ext2

X(U ,V)
)

We analyze each term separately. We have

HomX(U ,V) = Γ (X,HomX(U ,V)) .

Now, at a point P ∈ X, we have HomX(U ,V)P = HomOX,P (UP ,VP ) since

both sheaves are coherent. If P /∈ C ∩ C ′ this module is clearly 0. In the

other situation, we can argue locally: let A
def
= OX,P be a regular local ring
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with maximal ideal m. Then UP = A/(f) and VP = A/(g) for some distinct

prime ideals (f) and (g) such that (f, g) = m. It is now an easy fact left to

the reader that there are no nonzero A-linear morphisms A/(f) −→ A/(g). It

follows that in this case we also obtain HomOX,P (UP ,VP ) = 0, implying that

HomX(U ,V) = 0 and in particular HomX(U ,V) = 0

Next, by Serre duality Ext2
X(U ,V) = HomX(V,U ⊗ωX) = 0 by an application

of the previous argument as U ⊗ ωX is again a line bundle.

Finally, to compute Ext1
X(U ,V), we use the local to global spectral sequence

Hp (X, ExtqX(U ,V))⇒ Extp+qX (U ,V) (3.1)

We have already shown that Hp (X, Extq(U ,V)) for q = 0. Moreover, the Ext-
sheaves have no higher cohomology: indeed, we can write ExtqX(U ,V) = i∗F
where i : C ∩ C ′ −→ X is the canonical embedding and F is some quasi-

coherent sheaf on C ∩ C ′. The Leray spectral sequence

Hp(X,Rqi∗F) =⇒ Hp+q(C ∩ C ′,F)

collapses since i is an affine morphism to yield

Hp(X, ExtqX(U ,V)) = Hp(X, i∗F) = Hp(C ∩ C ′,F)

This latter group is clearly zero for p > 0 as C ∩ C ′ is a finite set of points.

Thus, Hp(X, Extq(U ,V)) is nonzero only for q = (1, 2) and p = 0. This implies

that the local-to-global spectral sequence (3.1) degenerates to the equation

H0(X, Ext1X(U ,V)) = Ext1
X(U ,V)

again we obtain

Γ(X, Ext1X(U ,V)) = ⊕P∈C∩C′(Ext1X(U ,V))P

= ⊕P∈C∩C′ Ext1
OX,P (UP ,VP )

Which is supported on solely on point of intersection. For each point, as above

dimOX,P (Ext1
X(UP ,VP )) = dimC Ext1

A(A/(f), A/(g)) = 1
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Hence we obtain that dimC(Ext1
X(U ,VX)) = C · C ′ and −〈U ,V〉 = C · C ′ as

required.

To show the second claim, we let L and L′ be line bundles on X this time. By

a standard Bertini type argument (see e.g. the proof of [Har97, lemma V.1.3])

we may assume that

L = OX(D − E)

L′ = OX(D′ − E′)

where D,E,D′, E′ are smooth curves intersecting each other pairwise transver-

sally. In K(X), we have

L −OX = OX(D − E)−OX
= OX(D)⊗X (OX(−E)−OX(−D))

= OX(D)⊗X ((OX −OX(−D))− (OX −OX(−E)))

= OD(D)−OE(D).

and similarly

L′ −OX = OD′(D′)−OE′(D′).

Hence

〈L − OX ,L′ −OX〉 = 〈OD(D),OD′(D′)〉 − 〈OD(D),OE′(D′)〉

− 〈OE(D),OD′(D′)〉+ 〈OE(D),OE′(D′)〉. (3.2)

On the other hand, by the definition of the intersection pairing on Pic(X), we

have

L · L′ = OX(D −E) · OX(D′ −E′) = D ·D′ −D ·E′ −E ·D′ +E ·E′ (3.3)

The result now follows by comparing 3.2 and 3.3 and applying the first

claim.
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3.3 Lattices of SPS* Type

In this section, we use the conditions inferred in the previous section as inspi-

ration for a set of axioms on a finitely generated free abelian group K with a

nondegenerate bilinear form 〈−,−〉 (henceforth known as a ’lattice’). These

axioms allow us to define a codimension filtration, which in turn gives rise to

rank and degree functions as well as a numerical Picard group endowed with

a negative intersection form. We conclude the section by showing that all

notions coincide with the known ones in the case where K is the numerical

Grothendieck group of a smooth projective surface satisfying a certain extra

condition 3.

Convention 3.3.1. We shall assume additionally that the form 〈−,−〉 is

unimodular. This is always trivially satisfied for the numerical Grothendieck

groups of surfaces with an exceptional sequence, which is precisely what we aim

to generalize.

The map s used in the previous section can be abstractly described as

follows:

Definition 3.3.2. A right Serre automorphism is a map s ∈ Aut(K) such that

〈v, sw〉 = 〈w, v〉 ,∀v, w ∈ K. A left Serre automorphism is a map t ∈ Aut(K)

such that 〈tv, w〉 = 〈w, v〉

We summarize the basic properties of Serre automorphisms in the following

lemma:

Lemma 3.3.3. We have the following facts:

• K has a unique right Serre automorphism s

• s is an orthogonal linear map

3We ask the reader to be careful with this statement, as some notions only coincide after

tensoring with Q or up to a sign (see 3.3.18)
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• s is the right Serre automorphism if and only if s−1 is the left Serre

automorphism

Proof. Let M be the Gram matrix of the form with respect to some chosen

basis with associated coordinate map co : K −→ Zn such that

〈v, w〉 =t co(v).M.co(w)

Then S
def
= M−1 ·M t is a matrix with integral coefficients by 3.3.1 which defines

an automorphism s on K which clearly satisfies the required property. This s

is unique by the nondegeneracy of the form

It is orthogonal as 〈sv, sw〉 = 〈w, sv〉 = 〈v, w〉. Finally
〈
s−1v, w

〉
= 〈v, sw〉 =

〈w, v〉, which shows that s−1 is a left Serre automorphism, the other implication

follows by symmetry

The previous section motivates the following definition:

Definition 3.3.4. Let K be a finitely generated free abelian group with uni-

modular form 〈−,−〉 and Serre automorphism s. We say that K is of smooth

projective surface (SPS) type if

• s is unipotent.

• rk(s− 1) ≤ 2.

Throughout, the following condition will be crucial to our various construc-

tions

(∗) (s− 1)2 6= 0

We will say that K is of SPS* type if it is of SPS type and satisfies the

above condition (∗)

Remark 3.3.5. The easiest example of a situation where (*) is not satisfied

is a Calabi-Yau surface X. Indeed, In this case the Serre functor is given by

shifting by 2, and hence (s− 1) = 0 on K(X)
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Remark 3.3.6. Note that if K is of SPS* type, we have rk(s − 1) = 2, as

otherwise 1 = rk(s − 1) = rk(s − 1)2, contradicting the fact that (s − 1) is

nilpotent

The results of the previous section can be summarized as:

Theorem 3.3.7. Let X be a smooth projective surface over C, then K(X)num

is of SPS type.

Proof. It is well known that K(X)num is torsion free and hence free. More-

over, the chern character shows that K(X)hom = K(X)/ ker(ch) injects into

Heven(X,C) and hence is finitely generated and finally the proof of 3.2.2 shows

that K(X)num is also finitely generated.

Lemma 3.2.1 shows that (s − 1) is unipotent on K(X)num showing the first

condition. The second condition is 3.2.2.

Convention 3.3.8. We shall sometimes use dimension arguments. To this

end, we let V = K ⊗Z Q. We denote the induced bilinear form and the asso-

ciated Serre automorphism s⊗ 1 again by 〈−,−〉 and s respectively.

As we shall be concerned mostly with lattices of rank at most 4, the fol-

lowing lemma, which tells us that the second condition in 3.3.4 is void in those

cases, will be very handy.

Lemma 3.3.9. Assume K has rank ≤ 4. If s is unipotent satisfying (*) then

K is of SPS* type.

Proof. We need to show that rk(s−1) ≤ 2. We argue with V instead following

3.3.8.

Since we have

{v, w} def
= 〈w, v〉 − 〈v, w〉 = 〈v, (s− 1)w〉

it follows immediately that the radical of the antisymmetrisation {−,−} of

the form 〈−,−〉 is the space ker(s− 1).

Hence V/ ker(s−1) ∼= im(s−1) is endowed with a nondegenerate antisymmetric

Page 113



SECTION 3.3.3

form and must be even dimensional in particular. As (s − 1) is nilpotent, it

cannot be surjective and hence rk(s− 1) 6= 4. Furthermore, since (s− 1)2 6= 0,

we have rk(s− 1) 6= 0. It follows that rk(s− 1) = 2 as required.

Lemma 3.3.10. Assume K is of SPS* type. There exists a filtration on K

F 3(K)
def
= 0 ⊂ F 2K ⊂ F 1K ⊂ F 0(K)

def
= K

such that

• (s− 1)F iK ⊂ F i+1K if i 6= 1 and (s− 1)F 1K ⊗Q = F 2K ⊗Q

• F 0(K)/F 1K ∼= F 2K ∼= Z

Proof. Let F 1K
def
= ker(s− 1)2 and F 2K

def
= im(s− 1)2.

As (s − 1) is nilpotent, rk(s − 1)i > rk(s − 1)j whenever i < j. Hence the

hypothesis rk(s− 1) = 2 immediately implies (s− 1)3 = 0 and that rkF 2K =

rk(s−1)2 = 1, proving simultaneously that this indeed defines a filtration and

that the second condition is satisfied.

We go on to show that (s− 1) decreases the filtration.

The three inclusions (s−1)(K) ⊂ F 1K, (s−1)F 2K ⊂ 0 and F 2K ⊂ (s−1)F 1K

are all trivial consequences of (s − 1)3 = 0, hence the only thing to prove is

that the last inclusion is in fact an equality after tensoring with Q. To this

end, following convention 3.3.8, write K ⊗ Q = V and let n = dimQ(V ). We

must show that

dimQ((s− 1)F 1(V )) = dimQ(F 2(V )) = 1

The properties deduced above imply that have a well defined Q-linear surjec-

tive morphism

(s− 1)|F 1(V ) : F 1(V )/ ker(s− 1) // // (s− 1)F 1(V )
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This immediately implies

dimQ(F 1(V )/(s− 1)) = dimQ ker(s− 1)2 − dimQ
(

ker(s− 1)
)

=n− dimQ rk(s− 1)2 − (n− rk(s− 1))

=n− 1− (n− 2) = 1

≥ dimQ((s− 1)F 1(V ))

thus, since (s−1)F 1(V ) 6= 0 -as this would imply in particular that (s−1)2 = 0-

we obtain the required equality.

This filtration has the following, more intrinsic characterization, after ten-

soring over the rationals

Lemma 3.3.11. Let V be a Q-vector space of dimension n with bilinear form

〈−,−〉 and Serre automorphism s. Let F ′iV be a filtration

0
def
= F ′3V ⊂ F ′2V ⊂ F ′1V ⊂ F ′0V = V

such that

• (s− 1)F ′iV ⊂ F ′i+1V

• dimQ F
′2V = 1 = n− dimQ F

′1V

then F coincides with the filtration on V defined above

Proof. Let F denote the filtration constructed above. As the dimensions of

F i ⊗Q and F ′i coincide, it suffices to show the appropriate inclusions. Since

(s − 1)2F ′1(V ) = 0, we have F ′1(V ) ⊂ F 1(V ) and we immediately have (s −
1)2(V ) = F 2(V ) ⊂ F ′2(V ) in a similar vein.

Corollary 3.3.12. Let X be a smooth projective surface such that K(X)num

satisfies (*). The codimension filtration coincides with the filtration on the

vector space K(X)num ⊗Z Q defined above
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Proof. It is well known that the codimension filtration of a smooth projective

surface satisfies the requirements of 3.3.11.

The above result justifies the following definition:

Definition 3.3.13. Let K be of SPS* type. The filtration on K constructed

in 3.3.10 is called the codimension filtration

Convention 3.3.14. From now on, we shall assume additionally for the rest

of this section that K is a lattice of SPS* type for the rest of this section, so

that the existence of the codimension filtration is guaranteed

Definition 3.3.15. We define the numerical Picard group of K as

Num(K)
def
= F 1K/F 2K

Lemma 3.3.16. Let K be a lattice of SPS* type. Restriction induces a non-

degenerate symmetric form on NumQ(K)
def
= Num(K)⊗Q.

Proof. Since Q is divisible over Z, it is Z-flat and if we write V = K ⊗ Q
following 3.3.8, we may prove the claim for the group Num(V ) instead.

We first show that F 2(V ) lies in the (right) radical of the restriction of 〈−,−〉
on F 1(V ). Let v ∈ F 1(V ) and (s− 1)2(w) ∈ F 2(V ). Then〈

v, (s− 1)2w
〉

=
〈
s−2(s− 1)2v, w

〉
= 0

since (s− 1)2v = 0. The proof is similar for the left radical, showing that the

form is indeed well defined on Num(V ).

Conversely, let v ∈ F 1(V ) such that 〈v,−〉 = 0 on F 1(V ), then in particular

we have 〈v, (s− 1)w〉 = 0 for all w ∈ K. Since〈
(s−1 − 1)v, w

〉
= 〈v, (s− 1)w〉

we have (s−1−1)v = 0 and hence (s−1)(v) = 0. It follows that v ∈ ker(s−1) =

(s− 1) ker(s− 1)2 = (s− 1)F 1(V ) as both have the same dimension by 3.3.10.

Since (s − 1)F 1V = F 2V by the first condition of 3.3.10, the form is indeed

nondegenerate and symmetric on Num(V ).
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Definition 3.3.17. The restriction of 〈−,−〉 to F 1K is called the negative

intersection form and denoted by (−,−). By the above lemma, it induces a

well defined nondegenerate symmetric form on NumQ(K) which we also denote

by (−,−)

The name negative intersection form is justified by the following:

Lemma 3.3.18. Let X be a smooth projective surface over C. There is an

isomorphism

Φ : NumQ(X) −→ Num (K(X)num ⊗Q)

such that Φ(V.W ) = −Φ(V ).Φ(W )

Proof. Let F icodK(X) denote the classical codimension filtration on the Grothendieck

group of X.

The morphism

Φ : CH1(X)
'−→ F 1

codK(X)/F 2
codK(X) : C 7→ OC

which sends the class of a curve C in the 1st Chow group to the class of its

structure sheaf is well known to be an isomorphism. We consider the induced

map after tensoring with Q. Since algebraic equivalence is finer than numerical

equivalence, we obtain an isomorphism

NumQ(X)
'−→
(
F 1

codK(X)/F 2
codK(X))/Φ

(
rad(− · −)

))
⊗Q

By 3.3.12, we can drop the subscript cod and moreover, by 3.2.3, the radical

of the Euler form 〈−,−〉 on K(X) coincides with Φ(rad(− · −)), yielding an

isomorphism

Φ : NumQ(X) −→ Num (K(X)num ⊗Q)

The fact that Φ(V.W ) = −Φ(V ).Φ(W ) is again an application of 3.2.3

Convention 3.3.19. We recall that our running assumption is that K denotes

a lattice of SPS* type following 3.3.14. Using the fact that K/F 1K ' Z by

3.3.10, we -once and for all- fix an element e ∈ K such that e generates

K/F 1K.
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Definition 3.3.20. The element ω
def
= (s − 1)e is the canonical class of K.

The degree of K is δ(K)
def
= (ω, ω)

Lemma 3.3.21. δ(K) is an integer which is independent of the choice of e.

Proof. δ(K) is an integer by construction.

Any other element generating K/F 1K must be of the form e′
def
= ±(e+ γ) for

some η ∈ F 1K = ker(s− 1)2, if we let ω′
def
= (s− 1)e′, then

(ω′, ω′) = (ω, ω) + (ω, (s− 1)γ) + ((s− 1)γ, ω) + ((s− 1)γ, (s− 1)γ)

only the first term in this sum is nonzero since

(s− 1)γ ∈ (s− 1)F 1(K) ⊂ F 2(K) ⊂ rad(−,−)

by 3.3.16, proving the claim.

We can use e to express the bilinear form on V
def
= K ⊗Z Q in a new way:

Lemma 3.3.22. Let v ∈ V \F 1V . There exists unique rv ∈ Q and ηv ∈ F 1K

such that v = rv(e+ ηv). Moreover, rv ∈ Z if v ∈ K

Proof. Let v ∈ K. Since e generates K/F 1K, we have v = ne + γ for unique

n ∈ Z and γ ∈ F 1K. Hence v = n(e+ 1
nγ), and we let n = rv,

1
nγ = ηv.

The result follows for KQ by extension to the rationals.

Lemma 3.3.23. The maps d, r : K −→ Z defined by

1. r(v) =

0 if v ∈ F 1K

rv otherwise.

2. d(v) =

(v, ω), if v ∈ F 1K

rv(ηv, ω) otherwise.

are linear and independent of the choice of e up to a sign
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Proof. Let v, w ∈ K.

r(−) indeed takes values in Z by (3.3.22). To see that d(−) also does, note

that

d(v) = 〈v, ω〉 − rv 〈e, ω〉 (3.4)

which is indeed an integer.

The morphism r is linear as it coincides with the morphism

K −→ K/F 1K
'−→ Z

the last map being provided by the choice of generator e after convention

3.3.19.

The morphism d is linear as the equation 3.4 is an expression which is linear

in v.

To show that d and r only depend on the sign of e, let e′ be another element

such that e′ generates K/F 1K. Then e′ = ±(e+ γ) with γ ∈ F 1K. It follows

that rev = ±re′v and ηe
′

v = ±(ηev − γ). This shows that r is independent up to

a sign and d is so since (γ,−) = 0 on F 1K

Definition 3.3.24. The above maps r and d are called rank and degree re-

spectively.

Convention 3.3.25. Throughout this chapter, we shall freely make use of the

notations ηv, r(v) and d(v).

The definitions of rank and degree agree with the usual ones in the case

of Grothendieck groups of smooth projective surfaces satisfying the condition

(*):

Lemma 3.3.26. Let X be a complex smooth projective surface and K =

K(X)num. Then OX is a generator for K/F 1K. Moreover, if we let e = OX ,

then for a coherent sheaf F and a curve C

1. r(F) = rk(F)

2. ηOX(C) = OC(C)
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3. δ(K) = −(ω · ω)

Proof. It is well known that OX is a generator for K/F 1K. We thus write

e = OX The functions rk and r are both zero on F 1K and satisfy 1 = rk(OX) =

r(OX). It follows that they must coincide.

Next, we have the exact sequence

0 −→ OX −→ OX(C) −→ OC(C) −→ 0

This implies thatOC(C) = OX(C)−OX SinceOC(C) ∈ F 1K and r(OX(C)) =

1, we obtain ηO(C) = OC(C)

Finally, in K(X), we have

(s− 1)e = (s− 1)OX = ωX −OX

The result now follows immediately from the formula

−〈ωX −OX , ωX −OX〉 = ωX · ωX

which was proven in 3.2.3, (2)

Convention 3.3.27. If K = K(X)num is the numerical Grothendieck group

of a smooth projective surface X satisfying (*), we shall tacitly assume that

e = OX so that ω indeed coincides with the class of the canonical bundle.

3.3.1 a Riemann-Roch-Type Formula

We conclude this section by using the decomposition 3.3.22 to exhibit a Riemann-

Roch-type formula for the bilinear form in terms of the negative intersection

form 3.3.17 and the rank and degree function 3.3.24.

Theorem 3.3.28. Assume v and w have nonzero ranks.

If v and w satisfy 〈v, v〉 = 〈w,w〉 = 1, then

〈v, w〉 =
r(v)r(w)

2

(
1

r(v)2
+

1

r(w)2
+ (ηv − ηw, ηw − ηv − ω)

)

Page 120



CHAPTER 3. NUMERICAL CLASSIFICATION OF EXCEPTIONAL
SEQUENCES IN RANK 4

Moreover, if 〈w, v〉 = 0 then

〈v, w〉 = r(v)r(w)
(
ηw − ηv, ω

)
= r(v)d(w)− r(w)d(v)

Proof. This is a simple computation. First we have 1
r(v)2 = 〈ηv + e, ηv + e〉

and 1
r(w)2 = 〈ηw + e, ηw + e〉.

hence

〈v, w〉 = 〈r(v)(ηv + e), r(w)(ηw + e)〉

=r(v)r(w) 〈ηv + ηw − ηw + e, ηw + e〉

=r(v)r(w)

(
1

r(w)2
+ 〈ηv − ηw, ηw + e〉

)

and similarly

〈v, w〉 = r(v)r(w)

(
1

r(v)2
+ 〈ηv + e, ηw − ηv〉

)
taking the average of both identities, we obtain

〈v, w〉 =
r(v)r(w)

2

(
1

r(v)2
+

1

r(w)2
+ 〈ηv − ηw, ηw + e〉+ 〈ηv + e, ηw − ηv〉

)
=
r(v)r(w)

2

(
1

r(v)2
+

1

r(w)2
+ 〈ηv − ηw, ηw + e− sηv − se〉

)
Hence

〈v, w〉 =
r(v)r(w)

2

(
1

r(v)2
+

1

r(w)2
+ (ηv − ηw, ηw − sηv − ω)

)
=
r(v)r(w)

2

(
1

r(v)2
+

1

r(w)2
+ (ηv − ηw, ηw − ηv − ω)

)
where the last line follows from 3.3.16.

Now assume moreover that 〈w, v〉 = 0. Then by the previous formula

1

r(v)2
+

1

r(w)2
+ (ηw − ηv, ηv − ηw − ω) = 0
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Hence

(ηv − ηw, ηv − ηw − ω) =
1

r(v)2
+

1

r(w)2

Thus

〈v, w〉 =
r(v)r(w)

2

(
(ηv − ηw, ηv − ηw − ω) + (ηv − ηw, ηw − ηv − ω)

)
=
r(v)r(w)

2
(ηv − ηw,−2ω)

=r(v)r(w)(ηw − ηv, ω)

= r(v)d(w)− r(w)d(v)

3.4 Mutating Exceptional Sequences, - Bases

and - Matrices

This section contains very little new material, but as references seem scarce

we include this exposition for the purposes of clarity.

3.4.1 Braids, Cylindrical and Signed

We recall the following definitions of (signed) (cylindrical) braids: for n > 1,

the braid group Bn is the free group on {(σi)1...n−1} subject to the relations

• σiσj = σjσi whenever |i− j| > 1

• σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 1

The cylindrical braid group is the free group CBn on symbols {(σi∈Zn , ρ}
subject to the relations

• σiσj = σjσi whenever i− j and j − i 6= 1

• σiσi+1σi = σi+1σiσi+1 ∀i ∈ Zn
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• ρσiρ−1 = σi+1 ∀i ∈ Zn

Remark 3.4.1. The relations imply that CBn is isomorphic to Bn o 〈ρ〉, the

braid group by the infinite cyclic group

There is a signed version of both groups: the signed braid group ΣBn is

generated by ((εi)1...n , (σi)1...n−1) and subject to the usual braid relations as

described above and the additional relations

• ε2i = 1 and εiεj = εjεi

• εiσj = σjεi if |i− j| 6= 1

• εiσiεi+1 = σi for 1 ≤ i ≤ n− 1

Similarly the group of signed cylindrical braids is the group ΣCBn with gener-

ators (εk∈Zn , σi∈Zn , ρ) subject to the usual cylindrical braid relations described

above and

• ε2i = 1 and εiεj = εjεi

• εiσj = σjεi if i− j, j − i 6= 1

• εiσiεi+1 = σi otherwise.

Remark 3.4.2. There is a more geometric interpretation of these groups: the

braid group is group of paths between two sets of n collinear points in R3 up to

homotopy and the cylindrical braid group is the same group where the n points

are placed on a circle. To obtain the signed version, we place a sign at the

start of each strand of a braid and compose by multiplying signs along each

strand. In this interpretation, the generators εk are realized by the trivial braid

with a (−)-sign above the k-th strand and a (+) sign elsewhere.

These 4 different types of braids come with an automorphism given by

’flipping the braid over’ as follows:
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Lemma 3.4.3. There are involutions

r : Bn −→ Bn : σi 7→ σn−i

r : CBn −→ CBn : (σi, ρ) 7→ (σn−i, ρ
−1)

r : ΣBn −→ ΣBn : (εk, σi) 7→ (εn−k+1, σn−i)

r : ΣCBn −→ ΣCBn : (εk, σi, ρ) 7→ (εn−k+1, σn−i, ρ
−1)

Proof. Clearly all maps have order 2 and hence the only nontrivial part of

the claim is the welldefinedness. It is readily verified that the relations are

compatible in all cases.

There are two canonical projections from cylindrical braids to usual braids

which are related through conjugation by r. Visually, one can interpret them

as ’opening up the circle’ and placing them on the line

Lemma 3.4.4. The maps πF , πB : CBn −→ Bn given as
πF (σi) = σi if 0 < i < n

πF (σn) = σ1 . . . σn−1σ
−1
n−2 . . . σ

−1
1

πF (ρ) = σ1. . . . σn−1

and 
πB(σi) = σi if 0 < i < n

πB(σn) = σ−1
1 . . . σ−1

n−2σn−1 . . . σ1

πB(ρ) = σ−1
1 . . . σ−1

n−1

are surjective group morphisms satisfying

πB = r ◦ πF ◦ r−1

Proof. The relation πF = r ◦ πB ◦ r−1 is trivially verified. We only need to

show that πF is a group morphism, which reduces to showing that the image

of the relations in CBn are trivial. Only the following three are nontrivial:
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• πF (σn−1)πF (σn)πF (σn−1) = πF (σn−1)πF (σn)πF (σn−1)

• πF (σ1)πF (σn)πF (σ1) = πF (σn)πF (σ1)πF (σn)

• πF (ρ)πF (σi)(πF (ρ−1) = πF (σi)

We leave this as an exercise for the reader.

There is the obvious signed extension of the theorem:

Lemma 3.4.5. The maps πF , πB : ΣCBn −→ ΣBn defined as

πF (εk, σi, ρ) = (εk, πF (σi), πF (ρ))

and

πF (εk, σi, ρ) = (εk, πB(σi), πB(ρ))

are surjective group morphisms satisfying

πB = r ◦ πF ◦ r−1

Proof. This is once again a straightforward computation.

Definition 3.4.6. We call πF the front and πB the back projection of (Σ)CBn

onto (Σ)Bn

Remark 3.4.7. These projections have an intuitive interpretation as follows:

if we consider a cylindrical braid between two sets of points lying on a circle,

we can make a cut in the circles at the back and unbend them to the front

to obtain two sets of n collinear points resulting in a standard braid. This is

precisely the back projection. The front projection is the result of a similar

process where the cut is made at the front

3.4.2 Mutating Exceptional Sequences and Helices

We start by recalling the theory of mutations of exceptional sequences as

developed in [GK04]. Throughout, T will denote an Ext-finite triangulated
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category over k with Serre functor S. Recall that exceptional sequences and

helices were introduced and discussed in 0.2.1 and 0.2.4 in the introductory

chapter

Definition 3.4.8. For an exceptional pair (E,F ) of objects in T , we define

LEF as the cone of the morphism4

Hom•T (E,F )⊗ E −→ F −→ LEF (3.5)

and we denote σ(E,F ) = (LEF,E).

For an exceptional sequence E def
= (E1, . . . En) we define

• for i ∈ 1, . . . n− 1, the mutation at i by

σi(E)
def
= (E1, . . . , σ(Ei, Ei+1), . . . , En)

• for 1 ≤ k ≤ n the shift at k, by

εk(E1, . . . , Ek, . . . En)
def
= (E1, . . . , Ek[1], . . . En)

Recall from 0.2.5 that after a choice of order d, an exceptional sequence E
gives rise to a helix of order d, H = H(E) and that conversely, each helix H is

defined by its initial thread E = E(H).

We define for i ∈ Zn,

• the translation by

ρ(H) = (Ei−1)i∈Z

• for i ∈ Zn, the left mutation at i by

σi(H)) = ρ−i+1H(σ1(E(ρi−1(H)))

• for k ∈ Zn, the shift at k by

εk(H) = H(εk(E(H)))

4Since the pair is exceptional, the cone is unique up to a unique isomorphism in this case,

see [GK04]
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We denote the set of full exceptional sequences of length n by En(T ) and

the set of helices of type (n, d) by Hn,d(T ). If n = rkK(X), we drop the index

altogether. To state the main results of mutating exceptional sequences and

helices in triangulated categories, we invoke the notation Sym(X) for the set

of bijections on a set X. By 0.2.5, there is a bijection

Ω : Sym(H(n,d)(T )) −→ Sym(En(T )) : f 7→ E ◦ f ◦ H

Theorem 3.4.9. • The following assignments define group actions on the

set of exceptional sequences and helices respectivelyΣBn −→ Sym(En(T )) : (σi, εk) 7→ (σi(−), εk(−))

ΣCBn −→ Sym(H(n,d)(T )) : (σi, ρ, εk) 7→ (σi(−), ρ(−), εk(−))

• the above rules induces a commutative diagram of groups

ΣCBn

��

πF // ΣBn

��
S(H(n,d)(T ))

Ω
// S(En(T ))

Proof. see [GK04, 2.4.2 and 2.8.6]

As mentioned in the introduction, mutations and exceptional sequences are

particularly well-behaved when T = Db(X) is the bounded derived category

of coherent sheaves on a Del Pezzo surface.

theorem (Kuleshov-Orlov). Let X be a Del Pezzo surface and n = rkK(X)

Then

• Db(X) has a full strong exceptional sequence

• any exceptional sequence of length n is full.

• the braid group acts transitively on the set of exceptional sequences in

(Db(X))
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3.4.3 Mutating Exceptional Bases

By considering the Grothendieck groups of triangulated categories, we obtain

exceptional bases and induced mutation actions. In the present setting, we

consider a free abelian group K with a unimodular bilinear form 〈−,−〉 and

corresponding Serre automorphism s.

Definition 3.4.10. A vector e ∈ K is exceptional if 〈e, e〉 = 1.

A sequence (e1, . . . en) of vectors in K is exceptional if 〈ei, ej〉 = 0 for j < i.

Definition 3.4.11. A helix in K is a sequence (ei)i∈Z such that any thread

(ei, . . . ei+n) is an exceptional basis and ek−n = sek.

Remark 3.4.12. It is easy to see that there is a one-to-one correspondence

between helices and exceptional bases by analogy with 0.2.5. To an exceptional

basis, we assign a helix H(E) through the rule ei−n = sei. Taking the first

n vectors E(H) of a helix H in turn results in an exceptional basis. We call

E the initial thread of H and write E = E(H). We say that the helix H is

generated by E and write H = H(E)

.

The definition 3.4.8 can be adapted to the setting of lattices

Definition 3.4.13. If (v, w) is an exceptional couple, the left mutation of

(v, w) is defined as

σ(v, w)
def
= (w − 〈v, w〉 v, v).

For an exceptional basis E
def
= (e1, . . . , en), we define

• and for 1 ≤ i ≤ n− 1, the left mutation at i as

σi(E)
def
= (e1, . . . , σ(ei, ei+1), . . . , en)

• for 1 ≤ k ≤ n, the sign change

εk(e1, . . . , ek, . . . en)
def
= (e1, . . . ,−ek, . . . en)
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For a helix H = (ei)i∈Z generated by E and i ∈ Z we define:

• the translation as

ρ(H) = (ei−1)i∈Z

• the left mutation at i as

σi(H(E)) = ρ−i+1H(σ1(E(ρi−1(H)))

• the sign change as

εk(H)(E) = H(εk(E))

We denote the set of exceptional bases on K by E(K) and the set of helices

by H(K). Once again, we have a bijection

Ω : Sym(H(K)) −→ Sym(E(K)) : f −→ E ◦ f ◦ H.

We obtain a version of 3.4.9 for exceptional bases and helices on lattices:

Theorem 3.4.14. • The following assignments define group actions on

the sets of exceptional bases and helicesΣBn −→ S(E(K)) : (σi, εj) 7→ (σi(−), εj(−))

ΣCBn −→ S(H(K))(σi, ρ, εj) 7→ ((σi(−), ρ(−), εj(−))

• We have the following commutative diagram of morphisms of groups

ΣCBn

��

πF // ΣBn

��
Sym(H(K))

Ω
// Sym(E(K))

• the maps

E(T ) −→ E(K(T )) : E 7→ E

H(T ) −→ H(K(T )) : H 7→ H
are ΣBn, resp. ΣCBn-equivariant
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Proof. We only discuss the commutativity of the diagram and leave the rest

of the statement as an easy exercise for the reader. The claim is clearly trivial

for the sign changes εk and for the elements σ1, . . . , σn−1. To show the claim

for ρ, we have to prove that for an exceptional basis E with associated helix

H = H(E),

πF (ρ)(E) = (ρ ◦ Ω−1)(E) = E(ρ(H(E)))

Now, for any helix H, generated by a thread (e1, . . . , en), we have

E(ρ.H) = (sen, . . . en−1)

and πF (ρ)(e1, . . . en) = (σ1 . . . σn−1)(e1, . . . en) = (v, e1 . . . en−1), for some v.

We must show that v = sen.

Now since both lie in 〈e1, . . . en−1〉⊥, they lie in the same 1-dimensional space.

Moreover as both are exceptional, we conclude v = ±sen. Thus with respect

to the exceptional basis E, both maps E(ρ(H) and πF (ρ) have same the matrix

perhaps up to a sign in the first column. To show that the signs coincides, it

is sufficient to show that they the determinant of both matrices coincides. Let

Mσi be the matrix of the mutation σi with respect to the basis (e1, . . . , en) we

see that Mσi is the identity matrix everywhere except on the 2 × 2 subspace

corresponding to (ei, ei+1). On that subspace the matrix is given by(
−〈ei, ei+1〉 1

1 0

)

which has determinant (−1). Hence det(Mσi)) = −1 and det(πF (ρ) = (−1)n−1.

Now, we consider the matrix associated to ρ. Since ρ(ei) = ei−1 for i > 1,

after expanding the determinant using the first column, we see that the only

nonzero minor is the last one and det(Mρ) = (−1)n+1an where sen =
∑n

1 aien.

But we have

an =
〈
en,
∑

aiei

〉
= 〈en, sen〉 = 1

hence det(ρ) = (−1)n+1 = (−1)n−1 = det(πF ), which finishes the proof of

the claim in the case of the element ρ. The final nontrivial case is that of the
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element σn. This is a straightforward computation: we have

σn.H(e1, . . . en) = H(sen, e2, . . . en−1, s
−1e1 −

〈
en, s

−1e1

〉
en)

and

πF (σn)(e1, . . . , en) = πF (ρ).σn−1πF (ρ)−1(e1, . . . , en)

= πF (ρ).σn−1(e2, . . . en, s
−1e1)

= πF (ρ)(e2, . . . s
−1e1 −

〈
en, s

−1e1

〉
en, en)

= (sen, e2, . . . en−1, s
−1e1 −

〈
en, s

−1e1

〉
en)

Corollary 3.4.15. The assignments E and H defined in 3.4.12 induce bijec-

tions on the orbit spaces

E,H : H(K)/ΣCBn ←→ E(K)/ΣBn

Proof. Let H,H ′ ∈ H(K) and σ ∈ CBn. If H = σ.H ′, then E(H) =

E(σ(H)) = πF (σ)E(H ′) by the above theorem, which shows that E is well

defined. It is clearly surjective and moreover if E(H) = τ.E(H ′), then by

the surjectivity of π, τ = πF (γ) and E(H) = πF (γ)(E(H) = E(τ(H)) and

H = τ ′H ′ by the injectivity of E. It is clear that H is the inverse bijections.

3.4.4 Mutating Exceptional Matrices

There is a third and final setting in which we shall make use of braid group ac-

tions (and its variations described in §3.4), this time on a subgroup of SLn(Z).

The braid group action on exceptional bases described in the previous section

induces an action on the corresponding Gram matrices which we will describe

explicitly in this section. The analogue of theorem 3.4.9 will be a little more

subtle however as this action extends to a cylindrical braid group action in

two canonical ways (using the morphisms described in 3.4.4), both of which
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will be relevant in the sequel. We will prove however that the orbit space of

the braid group action and two cylindrical group actions all coincide (3.5.16)

Definition 3.4.16. A matrix M in SLn(Z) is exceptional if it is upper trian-

gular with Mi,i = 1. We denote the set of exceptional matrices by E(SLn(Z))

It will be convenient to use the notation M{i,j} to denote Mi,j if i ≤ j

Definition 3.4.17. Let M be an exceptional matrix. For 1 ≤ n−1, we define

the mutation at i as the exceptional matrix σi(M) by

σi(M){k,l} =


M{k,l} if i, i+ 1 /∈ {k, l}
M{k,i} if l = i+ 1

M{k,i+1} −M{k,i}M{i,i+1} if l = i

− M{i,i+1} if {k, l} = {i, i+ 1}

for 1 ≤ k ≤ n, similarly, εk(M) is defined by

εk(M){i, j} =

{
M{i,j} if k 6= i, j

− M{i,j} otherwise

Lemma 3.4.18. The assignment

ΣBn −→ Sym(E(SLn(Z))); (σi, εk) 7→ (σi(−), εk(−))

defines a group action in such a way that the canonical map

E(K) −→ E(SLn(Z))

which sends an exceptional basis to its Gram matrix is ΣBn-equivariant

Proof. Let E be an exceptional basis with Gram matrix M . We leave it

to the reader to check that the operation σi(M) indeed coincides with the

Gram matrix of the mutated basis σi(E). The sign actions coincide for trivial

reasons

As mentioned above, there are two ways to extend this action to a cylin-

drical braid group action. The first is a consequence of the following trivial

observation:
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Lemma 3.4.19. Let G denote the image of the cylindrical group action on

helices in K

ΣCBn −→ Sym(H(K))

defined in 3.4.13. Then assigning to a helix the Gram matrix of its initial

thread as in 3.4.12 yields a morphism of groups G −→ S (E(SLn(Z))

Proof. It suffices to note that the formulas in 3.4.13 are invariant under or-

thogonal isomorphism

The combination of 3.4.18 and 3.4.19 allows us to define an group action

on the set of exceptional matrices

∗1 : ΣCBn −→ G −→ Sym(E(SLn(Z)) (3.6)

Moreover, as an immediate corollary of 3.4.14, we obtain the following

Theorem 3.4.20. The group action ∗1 fits inside the following commutative

diagram:

ΣCBn

∗1 ''

πF // ΣBn

ww
Sym(E(SLn(Z))

Proof. This is a trivial consequence of the construction of ∗1

We construct a second action through the following operations:

Definition 3.4.21. For M ∈ E(SLn(Z)), we define the shift ρ as follows:ρ(M){i,j} = M{i−1,j−1} i 6= 1

ρ(M)i,j = −Mj,n i = 1

Theorem 3.4.22. The assignment

∗2 : ΣCBn −→ Sym(E(SLn(Z))) : (σi, ρ, εk) 7→ (σi(−), ρ(−), εk(−))
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defines a group action. Moreover, there is a commutative diagrams

ΣCBn

∗2 ''

πB // ΣBn

ww
Sym(E(SLn(Z))

Proof. We leave it to the reader to show that the map is in fact a group

action. The above diagram trivially commutes for the elements σi and εk. For

ρ, assume that M is the Gram matrix of an exceptional basis (e1, . . . , en). We

compute

πB(ρ)(e1, . . . en)

=(σ−1
1 . . . σ−1

n−1)(e1, . . . en)

=(en, e1 − 〈e1, en〉 en, . . . , ei − 〈ei, en〉 en, . . . , en−1 − 〈en−1, en〉 en)

def
=(e′1, . . . , e

′
n)

and this sequence clearly satisfies the rule
〈
e′i, e

′
j

〉
= 〈ei−1, ej−1〉 i 6= 1

〈e1, , ej〉 = −〈ej , en〉 otherwise

It follows that the Gram matrix of the resulting exceptional basis indeed co-

incides with ρ(M).

Finally for the element σn, the claim follows from the fact that σn indeed acts

as the mutation ’on the couple (n, 1)’ which coincides with πB(ρ)−1σ1πB(ρ).

Corollary 3.4.23. The following three orbit spaces coincide:

SLn(Z)/ΣBn = SLn(Z)/(ΣCBn, ∗1) = SLn(Z)/(ΣCBn, ∗2).
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3.5 Classifying Exceptional Bases in Rank ≤ 4

3.5.1 the Rank 3 Case

We now direct our attention to classifying lattices of rank 3 of SPS* type de-

fined in 3.3.4 up to isomorphism. Note that by the rank 3 hypothesis, lemma

3.3.9 shows that this is equivalent to s being unipotent, the second condition of

definition 3.3.4 being automatically fulfilled. Most of the results in this section

are well known and follow from the 19th-century work of Markov in ([Mar79]).

This section serves more as a preparation for the more involved rank 4 case.

The archetypical example of a lattice of SPS* type of rank 3 is the Grothendieck

group of X = P2, which has a full exceptional sequence of the form(
OX ,OX(1),OX(2)

)
The associated exceptional basis for K(X) has Gram matrix

Π
def
=

1 3 6

0 1 3

0 0 1

 . (3.7)

Lemma 3.5.1. Let K be a lattice with a bilinear form 〈−,−〉 with Gram

matrix 1 a b

0 1 c

0 0 1


in a certain basis. Then K has a Serre automorphism which is unipotent if

and only if the Markov equation

a2 + b2 + c2 = abc. (3.8)

is satisfied.
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Proof. the proof of 3.3.3 shows that

S = M−1.tM =

1 −a ac− b
a −a2 + 1 a2c− ab− c
b −ab+ c abc− b2 − c2 + 1


From this, it follows that the characteristic polynomial of s− 1 is

Ps−1(X) = X3 + (a2 + b2 + c2 − abc)X2 + (a2 + b2 + c2 − abc)X

Hence (s− 1) is nilpotent if and only if all lower terms of Ps−1(X) vanish

which is clearly equivalent to the Markov equation.

Theorem 3.5.2 (Markov). Let M ′ be an exceptional matrix with coefficients

satisfying the Markov equation (3.8), then M lies in the same orbit as Π defined

above (5.38) under ΣBn with the action 3.4.17.

Proof. This was proven in [Mar79] and is discussed in §3.5.5. Indeed, a combi-

nation of lemmas3.5.21 and 3.5.20 in the case where k = 1 shows that any such

M lies in the same orbit under (CBn, ∗2) as the exceptional matrix M ′ with

coefficients a = ±3, b = ±6, c = ±3, with an even number of minus signs. The

resulting 4 matrices lie in the same orbit under as Π under the sign action.

Theorem 3.5.3. Let K be of SPS* type of rank 3 with an exceptional basis.

Then there is an orthogonal isomorphism K ∼= K(P2).

Proof. Let K and K ′ be two such lattices. Then 3.5.2 shows that there is an

orthogonal isomorphism between them.

3.5.2 Additional Geometric Conditions

In order to prove a similar classification result as theorem3.5.3 in the rank 4

case, we need to impose two additional conditions. The first relates to the

signature of the negative intersection form:
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Definition 3.5.4. Let K be a lattice of SPS* type. Then we say that K

satisfies the ”Hodge index condition’ (HI for short) if the negative intersection

form on NumQ(K) described in 3.3.17 is indefinite.

Theorem 3.5.5. Let X be a smooth projective surface. Then K(X)num sat-

isfies condition HI.

Proof. The intersection pairing on Num(X) has signature (+1,−1 . . . ,−1) by

[Har97, rem 1.9.1]. Theorem 3.2.3 now shows that Num(K(X)num) has signa-

ture (−1,+1, . . . ,+1).

The second condition we shall require is a translation of the Del Pezzo

condition to our new more general setting:

Definition 3.5.6. We say that K satisfies condition DP if

〈(s− 1)v, (s− 1)v〉 < 0

for some v.

Lemma 3.5.7. The following are equivalent:

1. K satisfies the DP condition

2. 〈(s− 1)v, (s− 1)v〉 < 0 whenever rv 6= 0

3. δ(K) < 0.

Proof. Let r(w) 6= 0 and write w = rw(ηw + e) with rw 6= 0. Then

〈(s− 1)w, (s− 1)w〉 = r2
w((s− 1)(ηv + e), (s− 1)(ηv + e))

= r2
w((s− 1)e, (s− 1)e)

where the last equality comes from the fact that

(s− 1)ηv ∈ (s− 1)F 1K ⊂ F 2K ⊂ rad(−,−)

It follows that the sign of 〈(s− 1)w, (s− 1)w〉 is independent of the choice of

w if rw 6= 0. The claim follows.
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Definition 3.5.8. We say that K is of DPS* type if

• K is of SPS* type and

• K satisfies the conditions HI and DP.

Corollary 3.5.9. Let X be a Del Pezzo surface. Then K(X)num is of DPS*

type.

Proof. This is a combination of 3.3.7, 3.5.5, 3.3.26(3) and 3.5.7(3) together

with the fact that the degree of a del Pezzo surface is positive.

3.5.3 a Reduction Argument

The rest of this chapter is devoted proving a similar classification result as

3.5.3 when K has an exceptional basis of rank 4, provided we assume the

additional DPS* condition from definition3.5.8. To this end, we fix a lattice

of SPS* type K, and we will specialize to the DPS* case later on. Our first

step is to reduce to two simpler types of lattices. To this end, we prove two

lemmas. The first provides a reduction step in the case where the exceptional

basis contains a vector of rank 0, the second shows that we can reduce to the

case where one number 〈ei, ei+1〉 must be 0 if all basis vectors have nonzero

rank.

Lemma 3.5.10 (dimension-reduction). Let (e1, . . . , en) be an exceptional basis

on K. If r(e1) = 0 then the Serre automorphism on (e2, . . . , en) is unipotent.

Proof. If r(e1) = 0, then (s−1)2(e1) = 0. It is easy to see that (e2, . . . , en) = ⊥(e1).

Let

π : K −→ (e2, . . . , en) : v 7→ v − 〈v, e1〉 e1

denote the orthogonal projection.

Then π ◦ s is the Serre automorphism on (e2, . . . , en), since for v, w ∈ ⊥e1, we

have

〈v, sw − 〈sw, e1〉 e1〉 = 〈w, sv〉 = 〈v, w〉 .
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We must thus show that (π ◦ s) is unipotent. Indeed, we have

(π◦s−1)2(v) = (s−1)2(v)−〈sv, e1〉 (s−1)(e1)−
〈
(s2 − s)v − 〈sv, e1〉 se1, e1

〉
e1

and the last term in this expression is 0 as〈
(s2 − s)v, e1

〉
=
〈
v, (s−2 − s−1)e1

〉
=
〈
v, (s−1 − 1)e1

〉
= 〈sv, e1〉 ,

where we used (s − 1)2(e1) = 0 as r(e1) = 0 (see 3.3.24) and 〈se1, e1〉 =〈
s2e1, se1

〉
= 〈(2s− 1)e1, e1〉 = 1, hence〈

(s2 − s)v − 〈sv, e1〉 se1, e1

〉
e1 = 〈sv, e1〉 e1 − 〈sv, e1〉 〈se1, e1〉 e1 = 0

Using this, we obtain

(π ◦ s− 1)3(v) = (s− 1)3(v)− 〈sv, e1〉 (s− 1)2(e1)

−
〈
s(s− 1)2v − 〈sv, e1〉 (s− 1)e1, e1

〉
e1

= −
〈
s(s− 1)2v − 〈sv, e1〉 (s− 1))e1, e1

〉
e1

= −
〈
(s− 1)2v − 〈sv, e1〉 (s2 − s)e1, e1

〉
e1

= −(〈sv, e1〉 − 〈sv, e1〉)e1

= 0.

If all the vectors in an exceptional basis have nonzero rank, we shall need

to simplify the situation in a different way. To this end for a collection of

vectors (v1, . . . , vk) in K, we define the rank of the sequence by

M(v1, . . . , vn)
def
=

n∑
1

|r(vi)|. (3.9)

Lemma 3.5.11. Let (v, w) be an exceptional couple with strictly positive ranks.

Assume the following two conditions are satisfied:

• (ηw − ηv, ηw − ηv) > 0
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• h def
= 〈v, w〉 > 0

Then M(τ(v, w)) <M(v, w) where τ is one of the two braids σ or σ−1 ∈ B2.

Proof. We compute

0 < (ηw − ηv, ηw − ηv) = ((ηw + e)− (ηv + e), (ηw + e)− (ηv + e))

=
1

r(v)2
− (ηv + e, ηw + e) +

1

r(w)2

def
=

1

r(v)2
− h

r(v)r(w)
+

1

r(w)2

=
1

r(v)r(w)

(
r(v)2 − hr(v)r(w) + r(w)2

)
(3.10)

where by the Riemann-Roch type theorem 3.3.28,

h
def
= 〈v, w〉 = r(v)r(w)(ηw − ηv, ω) > 0.

Consider the quadratic form

Q : Q2 −→ Q : (x, y) 7→ x2 − hxy + y2

Let [−,−] denote the associated symmetric bilinear form. That is,

[−−] : Q2 ×Q2 : Q : ((x, y), (a, b)) −→ ax+ yb− h

2
(ay + xb)

Then the above expression becomes

0 < Q(r(v), r(w)) = [(r(v), r(w)), (r(v), r(w))]

= r(v)[(1, 0), (r(v), r(w))) + r(w)[(0, 1), (r(v), r(w))]

It follows that one of the two terms on the left hand side is positive. We

assume the latter and leave the other case to the reader5.

Then

0 < [(0, 1), (rv, rw)] = r(w)− h

2
r(v)

5In the other case, the element τ
def
= σ−1 is necessary to conclude the theorem
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which immediately implies 2r(w)−hr(v) < 0 or r(w)−hr(v) < r(w). Since we

trivially also have hr(v) − r(w) < r(w), we conclude |hr(v) − r(w)| < |r(w)|.
And thus

M(σ(v, w)) = |hr(w)− r(v)|+ |r(v)| < |r(w)|+ |r(v)| =M((v, w)).

The following lemma is crucial to showing that the conditions of one of

the two reduction lemmas 3.5.10 or 3.5.11 are always satisfied in the rank 4

case. To simplify notation, we fix an exceptional basis (e1, e2, e3, e4). We let

e5
def
= s−1e1 and write r(ei) = ri, ηei = ηi, etc.

Lemma 3.5.12. If ri > 0,∀ 0 ≤ i ≤ 4 and
∏
i 〈ei, ei+1〉 6= 0, then there exists

an index 0 ≤ i ≤ 4 such that the conditions enumerated in lemma 3.5.11 are

satisfied for the exceptional couple (ei, ei+1).

Proof. We write Ti = ηi+1 − ηi. Note that since Ti ∈ F 1(K) the bilinear

form is symmetric on these Ti’s by lemma3.3.16. We start by inferring some

conditions:

1. by the decomposition 3.3.22, we have

(Ti, Ti+2) = (Ti+2, Ti) = (ηi+3 − ηi+2, ηi+1 − ηi)

=((ηi+3 + e)− (ηi+2 + e), (ηi+1 + e)− (ηi + e))

=
〈ei+3, ei+1〉
ri+3ri+1

− 〈ei+2, ei+1〉
ri+2ri+1

+
〈ei+3, ei〉
ri+3ri

− 〈ei+2, ei〉
ri+2ri

=0.

2. A similar argument shows

(Ti, Ti+1) = − 1

r2
i+1

< 0.

3. We deduce that if (Ti, Ti) < 0, by the computation in (3.10) we have

〈ei, ei+1〉 > 0 and hence also (Ti, ω) > 0 by the Riemann-Roch-type

theorem 3.3.28.
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4. by the DP condition 3.5.6, we have

(T1 + T2 + T3 + T4, ω) = (−ω, ω) = −δ(K) > 0.

We prove the result by showing that any sequence of elements (T1, T2, T3, T4)

satisfying the above three inferred conditions must have an element Ti simul-

taneously satisfying (Ti, Ti) > 0 and (Ti, ω) > 0.

For this purpose, we first simplify the bilinear form using coordinate changes:

consider the real plane Num(K)⊗Z R, obtained by base change from the nu-

merical Picard group 3.3.15. The form (−,−) is indefinite by condition HI of

3.5.8. It follows that if we pick an element L orthogonal to ω and normalize

both ω and L we obtain a basis, which we again denote as (ω,L) in which the

associated quadratic form is given by

Q((x, y)) = y2 − x2

We make one more coordinate transformation: one easily computes that with

respect to the basis (L+ω
2 , L−ω2 ) the quadratic form is simply Q((x, y)) = x.y.

Note that with this choice of ω, the inequalities in (3) and (4) remain valid.

It finally follows that the negative intersection form on Num⊗ZR is given by

((x, y), (a, b)) =
1

2
(xb+ ya) (3.11)

with respect to this basis. Note that for this form we have (x, y)⊥ = R(−x, y).

We denote the coordinates of Ti with respect to this basis by (xi, yi).

Since the coordinates of ω are given by (1,−1), we see that ((x, y), ω) > 0 ⇐⇒
y > x. Also ((x, y), (x, y)) > 0 precisely when x and y have the same sign.

The third condition tells us that if x.y < 0 then y > x. Hence the regions

where both the required conditions are simultaneously satisfied are 0 < x < y,

x < y < 0 and the fourth quadrant Q4. Finally, since (Ti, ω) = 〈ei,ei+1〉
riri+1

= 0 is

excluded by hypothesis, we can exclude the line x = y. Visually, we exclude

the red zone in the following picture
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Next, Since (T1 + T2 + T3 + T4, ω) > 0, by (4) there must be an index for

which (Ti, ω) > 0. Applying the shift πF (ρ), (see 3.4.3) we assume that i = 1

so that (T1, ω) > 0. The above conditions then imply that the coordinates of

T1 satisfy x1y1 > 0 and by the picture above, T1 lies somewhere in the 2nd

quadrant and since (T1, T3) = 0, T3 lies on the reflection of the line RT1 about

the y-axis.

There are two options now: T3 lies either in the first quadrant or in the third.

We assume it lies in the first, in which case (T3, T3) > 0and let the reader treat

the other case. By the above figure, we must have y3 < x3, hence −x1 > y1

and T1 lies strictly under the line R(1,−1) as in the following figure where T1

lies in the green zone and T3 is its reflection

Page 143



SECTION 3.3.5

T3T1

We finally look at T2. Since (T2, T1) < 0 and (T1, T1) < 0 by (T1, ω) > 0, T2

lies on the same side of as T1 of the line defined by the condition (−, T1) = 0.

This condition defines the line T⊥1 = RT3 as T1. Similarly, since (T3, T3) > 0

and (T3, T2) < 0, T2 lies on the opposite side of T3 of the line RT1. Hence, T2

must lie somewhere in the intersection of these two half planes. Taking into

account the red area, we have colored this intersection orange

T3
T1

T2

But since (T2, T4) = 0, T4 must lie in the reflection of the orange zone about
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the y-axis (the other option, reflection along the x-axis is colored red already)

since (T3, T3) > 0. This area lies in the half plane of vectors v such that

(v, T3) > 0, contradicting the fact that (T3, T4) < 0.

Corollary 3.5.13. Let K be of DPS* type with an exceptional basis (e1, . . . e4).

Then E is equivalent under ΣBn to a basis (e′1, . . . , e
′
4) satisfying either of the

following properties

• r(e′1) = 0

• 〈e′2, e′3〉 = 0.

Proof. If a vector ei ∈ E has rank 0, then using 3.4.15, we can shift with the

element πF (ρ) until we obtain an exceptional basis E′ where e′1 = ei, so that

the first condition is satisfied.

If all vectors in E have nonzero rank, after applying the sign action, we may

assume that all ranks are positive. If 〈ei, ei+1〉 = 0 for some i, repeated

application of 3.4.15 again yields the required collection. If not, we can apply

3.5.11 and the above lemma 3.5.12 to obtain a mutation such that the resulting

exceptional bases E′ satisfies

0 <M(e′1 . . . e
′
4) <M(e1, . . . , e4)

(see 3.9). This process must stop, resulting in an exceptional basis satisfying

the second condition.

3.5.4 Classifying Exceptional Bases in Rank 4

The reduction lemma 3.5.13 was the chief technical step required to obtain

a classification for lattices of DPS* type with an exceptional sequence up to

mutation. We begin by describing the analogue of the Markov equation 3.8 in

the rank 4 case:
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Lemma 3.5.14. Assume K is a free abelian group with a bilinear form 〈−,−〉
which has Gram matrix 

1 a b c

0 1 d e

0 0 1 f

0 0 0 1

 (3.12)

in a certain basis. Then K has a Serre automorphism s wich is unipotent if

and only if the system of equationsa2 + b2 + c2 + d2 + e2 + f2 − bad− edf − ace− bcf + abdf = 0

af + bd = ce
(3.13)

is satisfied.

Proof. The proof is similar to 3.5.1. The Serre automorphism is given by

s
def
= M−1.tM as in 3.3.3. The unipotency is equivalent to the characteristic

polynomial of s − 1 having no terms of lower degree. Explicitly writing out

this polynomial, reveals that this condition is equivalent to the two above

equations

We shall refer to the above system of diophantine equations as the Markov

equation in rank 4. Before describing our classification result, we list four

archetypical examples of lattices wich satisfy these equations:

• there is a obvious trivial type (type 0), given by extending the rank 3

case by zeroes: let K be the lattice Z4 and consider the bilinear form

whose Gram matrix with respect to the standard basis is
1 0 0 0

0 1 3 6

0 0 1 3

0 0 0 1

 .
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• Let X = P1 × P1. Then Db(X) has a full exceptional sequence given by

(OX ,OX(1, 0),OX(0, 1),OX(1, 1)). This yields an exceptional basis for

K(X) with Gram matrix 
1 2 2 4

0 1 0 2

0 0 1 2

0 0 0 1


we refer to this lattice as type 1.

• Let X = F1, the blow up of P2 at the origin. In this case Db(X) has a

full exceptional sequence of the form (OX ,OX(1, 0),OX(1, 1),OX(2, 2))

by [Orl92]. The Gram matrix of the bilinear form on K(X) with respect

to this basis is given by 
1 2 3 5

0 1 1 3

0 0 1 2

0 0 0 1


we refer to this lattice as type 2.

• The last example is a little more subtle. We consider the lattice K = Z4

and endow it with a bilinear form whose Gram matrix with respect to

the standard basis is given by
1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1


we refer to this lattice as type 3.

Lemma 3.5.15. The above four lattices are mutually nonisomorphic and of

DPS* type
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Proof. We leave the reader to verify that all four lattices satisfy the conditions

of 3.3.4 and the additional condition (*) (recall that the Serre automorphism

has matrix M−1 ·M t) To show that these lattices satisfy the additional DP

condition, we compute their degrees. For type 0, the vector e2 = (0, 1, 0, 0) is

a generator for K/F 1(K) satisfying the required condition of 3.3.19. We then

consider the associated ω = (s − 1)e and compute δ = blωω = −9. For the

other three cases we make the choice of e1 = (1, 0, 0, 0). and compute that the

degrees are -8,-8 and −20 for types 1,2 and 3 respectively. This computation

also immediately shows that all four types satisfy HI (although this also fol-

lows from 3.5.9 for types 0,1 and 2).

We immediately also infer that all types are nonisomorphic except possibly 1

and 2 since δ is an invariant of K by 3.3.21.

To show that types 1 and 2 are nonisomorphic, we note that the Serre auto-

morphism on type 1 is the identity modulo 2, which is not the case in type

2.

Lemma 3.5.16. Let K be of DPS* type with an exceptional basis E. Then

there exists a series of mutations of E such that the Gram matrix of the re-

sulting basis is of one of four forms listed above.

Proof. First assume that E contains an element of rank 0. Using the orbits of

the cylindrical braid actions 3.4.15, we may shift the basis so that this element

is e1. It follows that K = span(e2, e3, e4) is a lattice of DPS* type. Using the

action of ΣB3 on this subspace, we can mutate until the Gram matrix has the

standard form 1 3 3

0 1 3

0 0 1

 .
We obtain that the Gram matrix for the bilinear form on K with respect to
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(e1, e2, e3, e4) must be of the form
1 a b c

0 1 3 3

0 0 1 3

0 0 0 1

 .
Plugging these coefficients in the Markov equation (3.8), we obtain that a = n,

b = 2n and c = n for some n ∈ Z. Now, we use that K satisfies the additional

DP condition of definition 3.5.6. Picking e = (0, 1, 0, 0) as a generator for

K/F 1K, we obtain that δ = 〈(s− 1)e, (s− 1)e〉 = n2 − 9. Hence n = 0, 1, 2.

• If n = 0, we obtain the matrix
1 0 0 0

0 1 3 3

0 0 1 3

0 0 0 1

 .
of trivial type.

• If n = 1, then we have

ε2πB(ρ)σ3σ1σ2




1 2 3 5

0 1 1 3

0 0 1 2

0 0 0 1


 =


1 1 2 1

0 1 3 3

0 0 1 3

0 0 0 1


which is the Gram matrix of K(F1), our second type

• If n = 2, the sequence of mutations

ε4πB(ρ2)σ2
2πB(ρ)ε3




1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1


 =


1 2 4 2

0 1 3 3

0 0 1 3

0 0 0 1


showing that this case is equivalent to the third type.
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We thus assume that no vector in E has zero rank. Then 3.5.13 tells us that

〈ei, ei+1〉 for a certain i, which we may assume to be 2 using 3.4.15. Plugging

this extra condition into the second equation of (3.13), we obtain
1 rx sx z

0 1 0 ry

0 0 1 sy

0 0 0 1


for (r, s, x, y, z) ∈ Z.

The first equation of 3.13 now translates into the generalized Markov equation

kx2 + ky2 + z2 = kxyz (3.14)

where k = r2 + s2. We show in the appendix 3.5.21 that this equation has

solutions exactly when k = 1, 2 or 5.

• if k = 1, then (x, y, z) are solutions to the classical Markov equation in

degree 3. Moreover, since we may assume that r = 0 (for example), we

end up with the matrix 
1 0 3 3

0 1 0 0

0 0 1 3

0 0 0 1

 .
Applying ε4πB(ρ) results in the Gram matrix of trivial type.

• if k = 2, then r = s = 1. By a combination of 3.5.21 and 3.5.20 we can

mutate so that 
1 2 2 4

0 1 0 2

0 0 1 2

0 0 0 1


which is equal to the Gram matrix of the first type, K(P1 × P1).
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• Finally if k = 5, there are four cases. We treat one and leave the reader

to check that the other three are all equivalent using the appropriate

shifts and signs (πB(ρ) and εk). We assume that r = 1 and s = 2. The

classification of solutions 3.5.21 and 3.5.20, shows that we can mutate

to obtain a solution of one of 2 types. We assume (x, y, z) = (2, 1, 5),

the other type being completely similar. Then the resulting matrix is

precisely 
1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1

 .
which is the matrix corresponding to the third type

Restating the above lemma a little, we obtain the main result of this chap-

ter:

Theorem 3.5.17. Let K be of DPS* type. Then K is isomorphic to one of

the 4 standard types listed above.

Proof. This is a reformulation of 3.5.16.

Remark 3.5.18. One can wonder as to what the geometry behind the type 3

model can look like. Since the degree of the surface is -20 following the proof

of 3.5.16, it is clear that this type does not correspond to a Del Pezzo surface.

Instead, we will construct a model using noncommutative geometry.

3.5.5 Solutions to the Generalized Markov Equation

In this section, we adapt the results of [KN98] to our setting: for k ∈ N and

x, y, z ∈ Z, we consider the generalized Markov equation

M : kx2 + ky2 + z2 = kxyz

There is an obvious type of transformation on the set of Markov solutions:
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Lemma 3.5.19. The following 3 bijections

1. µ1 : Z3 −→ Z3 : (x, y, z) −→ (x, z, xz − y)

2. µ2 : Z3 −→ Z3 : (x, y, z) −→ (kxy − z, y, x)

3. µ3 : Z3 −→ Z3 : (x, y, z) −→ (y, yz − x, z)

are preserve the subset of solutions to M

The above proposition thus yields a group action of the group G generated

by 〈µ1, µ2, µ3, 〉 on the set of solutions of M . An important aspect of this

action is how it relates to mutation of exceptional matrices (§3.4.4):

Lemma 3.5.20. Let r, s be fixed. Let k = r2 + s2 and consider the map

α : Z3 −→ E(SL4(Z)) : (x, y, z) −→


1 rx sx z

0 1 0 ry

0 0 1 sy

0 0 0 1


Then we have using the notation of the action ∗2 of ΣCBn on E(SL4(Z) (see

3.4.4)

α ◦ µ3 = σ1 ◦ α, α ◦ µ2 = (ρ3σ1σ2) ◦ α and α ◦ µ3 = (ρ3σ−1
1 σ−1

2 ) ◦ α

Proof. This is a dreary check left to the reader

Theorem 3.5.21. The Markov equation has solutions exactly when k = 1, 2

or 5. In which case every solution is equivalent under the action of G in 3.5.19

to

1. (±3,±6,±3) for k = 1

2. (±1,±2,±5) and (±2,±1,±5) for k = 5

3. (±2,±2,±4) for k = 2

where either no or exactly 2 signs are negative

Proof. See [KN98, prop 3.5]
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Chapter 4

Generalized Preprojective

Algebras

4.1 Introduction and Statement of the Results

In this chapter, we describe joint work with Dennis Presotto ([dTdVP14]) in

which we investigated a new class of algebras which are a relative version of

the classical preprojective algebra on the star quiver. Our main motivation for

studying these algebras lies in the fact that they provide a local description of

the noncommutative geometry required to construct a model for a ’lattice of

DPS* type 3’ from §3.5.4. More precisely, we shall consider a noncommuta-

tive notion of a P1-bundle in chapter 5 and we will prove there that over an

affine scheme, the category of sheaves over this noncommutative space form a

summand of category of modules over the type of ring consider here 1.

We start by considering a relative version of the notion of a Frobenius pair of

commutative noetherian rings R −→ S (see definition 4.2.2). To such a pair,

we associate an N-graded R-algebra ΠR(S) which is the quotient of the R⊕S-

1we refer the impatient reader to 5.3.18 for the precise version of this statement
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tensor algebra over a certain R⊕S-bimodule modulo some elementary relations

(0.1.11). The fact that this definition coincides with the preprojective algebra

of a star quiver in the split case R −→ Rn follows easily (see lemma 4.2.10).

We shall investigate the ringtheoretic properties of these algebras when S is

of rank 4 over R. More precisely, we prove 3 results of interest:

Theorem G. [see 4.3.9] for each degree d, the R-module ΠR(S)d is projective

and we have

rk(ΠR(S)d) =

{
5(d+ 1) if d is even

4(d+ 1) if d is odd

Subsequently, we show how one can construct a morphism

σR,S : R[(Z(ΠR(S))4]⊕n −→ ΠR(S) (4.1)

and prove

Theorem H (see 4.5.2 and 4.5.1). σR,S is surjective, in particular ΠR(S) is

Noetherian and finite over its center.

In the final section, we bound the global dimension of generalized prepro-

jective algebras as follows

Theorem I. [see 4.6.1] If R and S have finite global dimension, then so does

ΠR(S). We have the following explicit upper bound:

gl.dim(ΠR(S)) ≤ max

(
gl.dim(R), gl.dim(S)

)
+ 2

Theorems G and I are proven using a similar technique by increasing the order

of generality of R. In the first step, we assume R = k to be an algebraically

closed field. We introduce a notion of deformation (4.2.5) for Frobenius al-

gebras over R and show that over an algebraically closed field all Frobenius

pairs fit inside a simple directed diagram of such deformations (see figure 4.3).

Since the dimension of the vector space ΠR(S)d increases and the morphism

σR,S from (4.1) preserves its surjectivity after applying a deformation, both
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theorems in this setting reduce to some explicit computations for the Frobe-

nius algebra k[s2, t2], to which the extra section §4.7 is dedicated. The result

in the case where R = k is any field then follows from dimension reasons resp.

faithfully flatness. Extending the result to the general setting where R can

be any ring turns out to require a convoluted series of implications. Simpli-

fying a little, we could say that we prove that given any morphism of rings

f : R −→ R′

• the construction of ΠR(S) commutes with base change under f

• Forming the center Z(ΠR(S))4 in degree 4 and the morphism σR,S also

commutes with base change under f

The first claim is a formal consequence of the construction, whereas the second

is not trivial at all and specific to ΠR(S). It follows from the fact that the

center of ΠR(S) in degree 4 is a split submodule of ΠR(S)4, projective of rank

2 (see 4.4.2, 4.4.3 and 4.4.4): Diagrammatically, we summarize our method of

proof as follows:

2 specific cases

alg. closed field field local domain

domain

local ring with k = klocal ringring

4.2.7

[Gro71, 1.4.4]

4.3.8

4.3.7

(4.2)
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4.2 Frobenius Pairs and Generalized Prepro-

jective Algebras

4.2.1 Frobenius Pairs

Convention 4.2.1. Throughout S/R will denote a pair of commutative rings

equipped with a ring morphism R −→ S. Moreover we will always assume R

is Noetherian, although some of the results also hold in higher generality.

Definition 4.2.2. We say that S/R is relative Frobenius of rank n if:

• S is a free R-module of rank n.

• HomR(S,R) is isomorphic to S as S-module.

Remark 4.2.3. • It is clear that if R is a field, then a relative Frobenius

pair coincides with a finite dimensional Frobenius algebra in the classical

sense.

• Let e1, . . . , en be any basis for S as an R-module. Then it is easy to see

that the second condition is equivalent to the existence of an element λ

in HomR(S,R) such that the R-matrix (λ(eiej))i,j with respect to this

basis is invertible.

• We may equally well assume that S/R is projective of rank n. However

all results we prove may be reduced to the free case by suitably localizing

the ring R.

If R is an algebraically closed field, it is an easy exercise to describe all

such algebras:

Lemma 4.2.4. Let k be an algebraically closed field and F a commutative

Frobenius algebra of dimension 4 over k. Then F is isomorphic to one of the
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following algebras: 

k⊕ k⊕ k⊕ k
k[t]/(t2)⊕ k⊕ k

k[s]/(s2)⊕ k[t]/(t2)

k[t]/(t3)⊕ k
k[t]/(t4)

k[s, t]/(s2, t2)

Proof. Recall the following classical facts

1. a direct sum of Frobenius algebras is Frobenius.

2. a finite dimensional commutative local k-algebra is Frobenius if and only

if it has a unique minimal ideal.

It follows immediately that k[t]/(tn) is Frobenius (of dimension n) over k as it

has a unique minimal ideal (tn−1) and that k[x1, . . . , xn]/(x2
1, . . . , x

2
n) is also

Frobenius (of dimension 2n) with unique minimal ideal (x1 · . . . · xn). By the

first observation, the algebras in the above list certainly are Frobenius.

Now let F be Frobenius of dimension 4. Since F is Artinian, the structure

theorem for Artinian rings (see for example [AM69, theorem 8.7]) states that

F must (uniquely) decompose as a direct sum of local, Artinian k-algebras:

F ∼= F1 ⊕ . . .⊕ Fn

We can now use the classification of local k-algebras of small rank in [Poo08,

Table 1].

If n = 4, then clearly F = k⊕ k⊕ k⊕ k.

If n = 3, then F ∼= A1⊕k⊕k where dimk(A1) = 2, hence A1
∼= k[t]/(t2) which

is Frobenius.

If n = 2, then either F splits as a sum of 2-dimensional local k-algebras, in

which case we again obtain F ∼= k[s]/(s2) ⊕ k[t]/(t2) or F = A1 ⊕ k where

dimk(A1) = 3. This again yields 2 possibilities: either A1
∼= k[t]/(t3), which is

Frobenius, or A1
∼= k[s, t]/(s, t)2. The latter is however not Frobenius, because
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it is not self-injective (the morphism A1t −→ A1 : t 7→ s cannot be lifted to

A1 −→ A1).

Finally, assume n = 1. In this case F is a local k-algebra of dimension 4 and

by [Poo08] takes one of the five following forms:

k[t]/(t4)

k[s, t]/(s2, t2)

k[s, t]/(s2, st, t3)

k[s, t, u]/(s, t, u)2

k[s, t]/(s2 + t2, st) (if ch(k) = 2)

The first two algebras are Frobenius whereas the other three are not as they

are not self-injective by a similar argument as above.

The 6 Frobenius algebras listed in the above lemma are related to each

other by an appropriate notion of deformation:

Definition 4.2.5. Let F and G be Frobenius algebras over k.

A Frobenius deformation of F to G is a k[[u]]-algebra D such that D/k[[u]] is

relatively Frobenius and

1. D/uD ∼= F as a k-algebra

2. D(u)
∼= G⊗k k((u)) as a k((u))-algebra

we write F
def
99K G

Remark 4.2.6. Instead of requiring that D/k[[u]] be relative Frobenius we may

equivalently require that D be free over k[[u]] with rank equal to the dimension

of F . The condition that Homk[[u]]

(
D,k[[u]]

)
should be isomorphic to D as a

D-module is immediate by the corresponding condition on F/k.
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Lemma 4.2.7. There is a diagram of Frobenius deformations

k[t]/(t2)⊕ k[s]/(s2)

k[s, t]/(s2, t2) k[t]/(t4) k[t]/(t2)⊕ k⊕ k k⊕4

k[t]/(t3)⊕ k

de
f

2

def

3

def

4

def

5

def

6

def

1

(4.3)

Proof. We first let F
def
= k[s, t]/(s2, t2) and G

def
= k[t]/(t4) and describe F

def
99K G

Let R
def
= k[[u]], K def

= k((u)) and define

D
def
= R[s, t]/(us− t2, s2, t4)

We claim that D defines a deformation from F to G. It is clear that D/uD ∼= F

as a k-algebra and the map

D −→ K[t]/(t4) : u 7→ u, s 7→ t2/u, t 7→ t

factors through an isomorphism

D(u) −→ K[t]/(t4) = G⊗k K

Hence by the above remark it suffices to check that D is a free R-module of

rank 4. This is obviously the case with e1 = 1, e2 = s, e3 = t, e4 = st providing

an R-basis for D.

The other cases are similar. We first use the Chinese remainder theorem

to find an alternate presentation for F of the forms k[t]/(f(t)). Then for each

deformation F
def
99K G, we try to find an alternate presentation for G ⊗k K

(again using the Chinese remainder theorem) of the form K[t]/(g(t)) in such a

way that g(t)|u=0 = f(t). We then exhibit an R-algebra D
def
= R[t]/(g(t)). We

finally leave the reader to check that in each of our choices, (1, t, t2, t3) defines

an R-basis

.
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number 2 3 4 5 6* (char(k) 6= 2)

g(t) t2(t− u)2 t3(t− u) (t− 1)2t(t− u) t2(t− 1)(t− u) (t2 − u2)(t2 − 1)

2

4.2.2 Generalized Preprojective Algebras

We shall invoke the following notation: for a relative Frobenius pair S/R, let

M
def
= RSS . This R − S-bimodule can be considered as an R ⊕ S bimodule

by letting the R-component act on the left and the S-component on the right,

the other actions being trivial. Similarly, we let N
def
= SSR and consider it

an R ⊕ S-bimodule by only letting the S-component act on the left and the

R-component act on the right, the other actions again begin trivial. We now

define

T (R,S)
def
= TR⊕S(M ⊕N)

Note that by construction, we have M ⊗R⊕S M = N ⊗R⊕S N = 0, hence

T (R,S)2 = (MR⊕SN)⊕ (N ⊗R⊕S M) = (RS ⊗S SR)⊕ (SS ⊗R SR)

The algebra we are interested in, will be a quotient of T (R,S) as follows: by the

second condition of definition 4.2.2, there exists a generator λ of HomR(S,R) as

an S-module. The R-bilinear form 〈a, b〉 def
= λ(ab) is then clearly nondegenerate

and we can find dual R-bases (ei)i, (fj)j satisfying

λ(eifj) = δij

2* In the case where k has characteristic 2, one has to choose D = R[t]/(t(t− u))⊕R⊕2

for the 6th deformation. Then (1, 0, 0), (t, 0, 0), (0, 1, 0), (0, 0, 1) provides an R-basis for D.
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Definition 4.2.8. For a relative Frobenius pair, the generalized preprojective

algebra ΠR(S) is given by

T (R,S)/(rels)

where the relations (rels) are in degree 2 given by

1⊗ 1 ∈ RS ⊗S SR∑
i

ei ⊗ fi ∈ SS ⊗R SS

Remark 4.2.9. Up to isomorphism, the above construction is independent of

choice of generator and dual basis.

The name generalized preprojective algebra is motivated by the following:

Lemma 4.2.10. Let S be the ring R⊕n.

Then ΠR(S) is isomorphic to the preprojective algebra over R associated to

the quiver with one central vertex and n outgoing arrows as defined in 0.1.11.

Proof. Let e1, . . . , en be the set of complete orthogonal idempotents in S and

write x1, . . . , xn (resp. y1, . . . , yn) ∈ ΠR(S)1 for the corresponding elements

in the bimodules N (respectively M) discussed at the beginning of §4.2.2. We

can describe the tensor algebra T (R,S) as the free algebra

F
def
= R〈e1, . . . , en, x1, . . . , xn, y1, . . . , yn〉

subject to the relations

1. eiej = δijei.

2. eixj = δijxi and yiej = δijyi

3. xiej = eiyj = 0

4. xixj = yiyj = 0

The first relation defining ΠR(S) is given by 1⊗ 1 ∈M ⊗S N . The first unit,

1 is given by 1 =
∑
xi whereas the second unit satisfies 1 =

∑
yi, we obtain
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5. y1x1 + . . .+ ynxn = 0

To compute the second relation, we note that

λ : S → R :

n∑
i=1

riei 7→
∑
i

ri

is a generator of HomR(S,R) as an S-module and hence (ei)i is a basis, self-

dual for the associated form 〈−,−〉. The relation inside SS⊗RSS now becomes

6. x1y1 + . . .+ xnyn = 0

It now remains to show that F subject to the above 6 relations is isomorphic

to the preprojective algebra of the quiver Q:

• • •

• • •

• . . . •

an
a1

a2

a3an−1

We let Q denote the formally doubled quiver of Q and consider the map

F −→ RQ defined by

• sending ei to the outer node ni

• sending yi to the arrow ai and xi to the formal inverse a∗i

The first 4 relations now precisely describe the multiplication in the path

algebra of Q and the relations 5 an 6 precisely map to the two relations defining

a preprojective algebra
∑
aia
∗
i = 0 =

∑
a∗i ai
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4.3 Computing rk(ΠR(S)d)

The construction of ΠR(S) is compatible with base change in the following

way:

Lemma 4.3.1 (Base Change for ΠR(S)). Let S/R be relative Frobenius of

finite rank and R −→ R′ a morphism of rings. Then

1. (R′ ⊗R S)/R′ is relative Frobenius of rank n

2. there is a canonical isomorphism

R′ ⊗R ΠR(S) ∼= ΠR′(R
′ ⊗R S)

Proof. Assume that S/R is relative Frobenius with generator λ and basis

{e1, . . . , en}. Then it is a straightforward verification that (R′ ⊗R S)/R′ is

relative Frobenius with generator 1⊗ λ and basis {1⊗ e1, . . . , 1⊗ en}. With

this data we can thus construct the algebra ΠR′(R
′ ⊗R S). Moreover we have

a series of isomorphisms

R′ ⊗R (RSS ⊕ SSR) ∼= R′(R
′ ⊗R S)R′⊗RS ⊕ R′⊗RS(R′ ⊗R S)R′

as an (R′, R′⊗R S)-bimodule. This implies that we obtain a canonical isomor-

phism

R′ ⊗R T (R,S) ∼= T (R′, R′ ⊗R S)

which by our choice of basis preserves the relations, in turn inducing an iso-

morphism

R′ ⊗R ΠR(S) ∼= ΠR′(R
′ ⊗R S)

To prove that the R-modules ΠR(S)d are projective and to compute their

ranks following the technique of diagram (4.2), we first treat the case where

R is an algebraically closed field. We have the following lemma relating the

dimension of these vector spaces under deformation:
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Lemma 4.3.2. Let F and G be Frobenius algebras over k and let F
def
99K G be

a Frobenius deformation. Then for all d, we have

dimk(Πk(F )d) ≥ dimk(Πk(G)d)

Proof. Let R = k[[u]] and K = k((u)).

Let m = dimk(Πk(F )d). Assume that D is the R-algebra deforming F to G

provided by the definition 4.2.5. Then since

Πk(F ) = Πk(k⊗R D) = k⊗R ΠR(D)

by lemma 4.3.1, Nakayama’s lemma implies that a k-basis of cardinality m for

Πk(F )d lifts to a set of generators for ΠR(D)d. Moreover, as

K⊗k Πk(G) = ΠK(K⊗k G) = ΠK(K⊗R D) = K⊗R (ΠR(D)),

this set of generators contains a K-basis for K⊗Πk(G). It follows that

dimK(K⊗k (Πk(G)d) = dimk(Πk(G)d) ≤ m

Convention 4.3.3. From now on we will only focus on the rank 4 case for

the rest of the paper. I.e. when using the notation S/R, we will always assume

this is a relative Frobenius pair of rank 4. Similarly all upcoming Frobenius

algebras F or G will have dimension 4 over k.

We will now prove that in the case of Frobenius algebras of rank 4 the

above inequality is actually an equality. We first compute the ranks in two

explicit cases:

Lemma 4.3.4. We have

dimk

(
Πk

(
k[s, t]

(s2, t2)

)
d

)
≤

{
5(d+ 1) if d is even

4(d+ 1) if d is odd

Proof. This is the content of 4.7.1
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Lemma 4.3.5. Let k be an algebraically closed field, then

dimk

(
Πk(k⊕4)d

)
=

{
5(d+ 1) if d is even

4(d+ 1) if d is odd

Proof. By lemma 4.2.10, Πk(S) is the preprojective algebra over k associated

to the extended Dynkin quiver of Q = D̃4.

Let Q be the formally doubled quiver. Let 0 denote the central vertex and

1, 2, 3, 4 the outer vertices. Then for each d ∈ N we consider the matrix

Wd ∈ N5×5 where (Wd)ij gives the number of paths of length d in Q starting

at vertex i and ending at vertex j, modulo relations. Finally write W (t) =∑∞
d=0Wdt

d ∈ N5×5[[t]]. Then by [EE07, Proposition 3.2.1] we have

W (t) =
1

1− t · C + t2

Where C is the adjacency matrix of Q, i.e.

W (t) =

1− t ·


0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

+ t2



−1

=
1

(1− t2)2(1 + t2)
·


(1 + t2)2 t(1 + t2) t(1 + t2) t(1 + t2) t(1 + t2)

t(1 + t2) 1− t2 + t4 t2 t2 t2

t(1 + t2) t2 1− t2 + t4 t2 t2

t(1 + t2) t2 t2 1− t2 + t4 t2

t(1 + t2) t2 t2 t2 1− t2 + t4


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This gives the desired result as the Hilbert series of Πk(S) now becomes

hΠk(S)(t) =

∞∑
d=0

 4∑
i,j=0

(Wd)i,j

 td

=

4∑
i,j=0

∞∑
d=0

(Wd)i,jt
d

=
(1 + t2)2 + 8t(1 + t2) + 4(1− t2 + t4) + 12t2

(1− t2)2(1 + t2)

=
5 + 8t+ 5t2

(1− t2)2

= (5 + 8t+ 5t2)

∞∑
l=0

(l + 1)t2l

=

∞∑
l=0

(5l + 5(l + 1))t2l + 8(l + 1)t2l+1

=

∞∑
l=0

(5(2l + 1))t2l + 4((2l + 1) + 1)t2l+1

These two computations immediately apply the required result over a field:

Corollary 4.3.6. Let k be a field and F a Frobenius algebra (of rank 4 by

4.2.1) over k then:

dimk (Πk(F )d) =

{
5(d+ 1) if d is even

4(d+ 1) if d is odd

Proof. By lemma 4.3.1 we can reduce to the case where k is algebraically

closed. The statement then follows as a combination of lemmas 4.2.4, 4.2.7,

4.3.2, 4.3.4 and 4.3.5

To extend the result from fields to general rings we will need the following

two lemmas. Combined, they essentially show that locally a relative Frobenius

pair is constructed through base change of a relative Frobenius pair where the

ground ring is a polynomial ring over the integers.
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Lemma 4.3.7. Let R be a local ring with residue field k. Then there is a

faithfully flat morphism R −→ R where R is a local ring whose residue field is

the algebraic closure k of k.

Proof. This is an immediate application of [GD71, 10.3.1]

Lemma 4.3.8. Let R be a local ring with an algebraically closed residue field

k. Let S/R be relative Frobenius of rank 4 (following convention 4.2.1). Then

there exists a domain R̃, together with a morphism R̃ −→ R and a ring S̃ with

S̃/R̃ relative Frobenius of rank 4 such that S̃ ⊗R̃ R ∼= S.

Moreover R̃ can be chosen to be of the form

R̃ =

(
Z[x1, . . . , xm]

)
f

the localization of a polynomial ring over Z at some non-zero element f .

Proof. We prove the theorem in a specific case and sketch the other cases,

leaving some details to the reader for the sake of brevity. By lemmas 4.3.1

and 4.2.7, S ⊗R k is one of 6 Frobenius algebras. The case we consider is

S ⊗R k = k[s, t]/(s2, t2). Let s̃, t̃ ∈ S be lifts of s and t. Since {1, s, t, st)} is

a basis for Sk, By Nakayama’s lemma {1, s̃, t̃, s̃t̃} forms a set of R-generators

for S. In particular we can write:

s̃2 = a1 + b1s̃+ c1t̃+ d1s̃t̃

t̃2 = a2 + b2s̃+ c2t̃+ d2s̃t̃

where the coefficients a1, . . . , d2 all lie in the maximal ideal m of R (because

s2 = t2 = 0 in S ⊗R k). We subsequently obtain a canonical morphism

π : R[s̃, t̃]/(a1 + b1s̃+ c1t̃+ d1s̃t̃− s̃2, a2 + b2s̃+ c2t̃+ d2s̃t̃− t̃2) −→ S

such that π⊗Rk is the identity morphism on k. This immediately implies that

π is surjective. Moreover since S is free over R, we have 0 = ker(π ⊗R k) =

ker(π)⊗R k and ker(π) = 0 by Nakayama’s lemma. π is thus an isomorphism.

There is a canonical morphism

A
def
= Z[a1, b1, c1, d1, a2, b2, c2, d2] −→ R
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Let f
def
= 1 − d1d2 and denote R̃ = Af . As the image of f in R is invertible

(because d1, d2 lie in the maximal ideal of m of R), the above morphism factors

through a morphism R̃ −→ R. Finally set S̃ = R̃[s̃, t̃]/(a1 + b1s̃+ c1t̃+ d1s̃t̃−
s̃2, a2 + b2s̃+ c2t̃+ d2s̃t̃− t̃2). By construction we have

S̃ ⊗R̃ R ∼= R[s̃, t̃]/(a1 + b1s̃+ c1t̃+ d1s̃t̃− s̃2, a2 + b2s̃+ c2t̃+ d2s̃t̃− t̃2)
π∼= S.

It hence suffice to prove S̃/R̃ is relative Frobenius of rank 4. For this note that

(ei)
4
1

def
= {1, s̃, t̃, s̃t̃)} is an R̃-basis for S̃ and if we let λ ∈ HomR̃(S̃, R̃) denote

the projection onto the component R̃s̃t̃, the matrix of λ(eid · ej) is of the form

Θ
def
=


0 0 0 1

0 d1 1 ∗
0 1 d2 ∗
1 ∗ ∗ ∗


Hence Θ has determinant 1 − d1d2, which by construction is invertible in R̃,

proving that S̃ is indeed Frobenius of rank 4 over R̃ by remark 4.2.3.

In the 5 other cases from lemma 4.2.4 we have S ⊗R k = k[t]/(t4 + at3 +

bt2 + ct+ d) for some coefficients a, b, c, d ∈ k and we can choose R̃, S̃ to be of

the form R̃
def
= Z[α, β, γ, δ] and S̃

def
= R̃[t]/(t4 + αt3 + βt2 + γt + δ). For each

choice of α, β, γ, δ we have that S̃/R̃ is relative Frobenius of rank 4, because

the corresponding matrix Θ will have determinant exactly 1. We leave the

details to the reader.

We can now prove the main theorem of this section:

Theorem 4.3.9. ΠR(S)d is projective. Moreover, we have

rk(ΠR(S)d) =

{
5(d+ 1) if d is even

4(d+ 1) if d is odd

Proof. First let R be a local domain with residue field k and field of fractions

K. By Corollary 4.3.6 and lemma 4.3.1 we have for each degree d:

dimK(K⊗R ΠR(S)d) = dimK(ΠK(K⊗R S)d)

= dimk(Πk(k⊗R S)d) = dimk(k⊗R ΠR(S)d)
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Theorem [Gro71, 1.4.4] implies that ΠR(S) is free of the stated ranks.

Next, let R be any domain. Then for each p ∈ Spec(R), Rp ⊗R ΠR(S) ∼=
ΠRp

(Rp ⊗ S) is a generalized preprojective algebra over the local domain Rp

and hence in each degree a free module of the stated rank (recall that R is

always assumed noetherian by 4.2.3). As these ranks do not depend on the

choice of p, Serre’s theorem (see for example [Ser55]) now implies that ΠR(S)d
is projective of the stated rank.

For the next step, we let R be a local ring with algebraically closed residue

field. Then by lemma 4.3.8 there is a domain R̃, a morphism R̃ −→ R and an

R-algebra S̃ such that S̃/R̃ is relative Frobenius of rank 4 and S ∼= S̃ ⊗R̃ R.

By the above ΠR̃(S̃)d is a projective R̃-module of the given ranks and hence

ΠR(S)d = ΠR̃(S̃)d ⊗R is a projective R-module of the above rank.

To extend the result to general local rings, we invoke lemma 4.3.7 to find a

faithfully flat morphism R −→ R. By the above ΠR(R ⊗ S)d ∼= R ⊗ ΠR(S)d

is a free R-module of the desired rank. By the faithfully flatness of R −→ R,

ΠR(S)d is itself a free R-module of the desired rank.

Finally we extend the statement from local rings to general commutative rings

by again applying Serre’s theorem.

We conclude this section by mentioning the following lemma which is a

slight improvement of theorem 4.3.9. It will be needed for technical reasons in

§4.6. Since the proof closely follows that of 4.3.9, we will limit ourselves with

a mere sketch of the proof

Lemma 4.3.10. (1R ·ΠR(S))d and (1S ·ΠR(S))d are projective R-modules of

ranks respectively d+ 1 if d is even

2(d+ 1) if d is odd

and 4(d+ 1) if d is even

2(d+ 1) if d is odd
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Proof. We have

ΠR(S) = 1R ·ΠR(S)⊕ 1S ·ΠR(S)

which immediately shows that both modules are indeed projective. This de-

composition is compatible with base change and Frobenius deformations in the

obvious ways. An argument similar to the proof of theorem 4.3.9 shows that it

suffices compute ranks in the two specific cases S = k⊕4 and S = k[s, t]/(s2, t2).

For the first case we notice that the Hilbert function h1k·ΠR(S)(t) can be de-

duced from the proof of lemma 4.3.5 by adding the entries in the first column

of W (t), resulting in

h1k·Πk(S)(t) =
(1 + t2)2 + 4 · t(1 + t2)

(1− t2)2(1 + t2)

=
1 + 6t+ t2

(1− t2)2

= (1 + 6t+ t2)

∞∑
l=0

(l + 1)t2l

=

∞∑
l=0

(2l + 1)t2l +

∞∑
l=0

2((2l + 1) + 1)t2l+1

Similarly we find

h1S ·Πk(S)(t) =

∞∑
l=0

4(2l + 1)t2l +

∞∑
l=0

2((2l + 1) + 1)t2l+1

For the second explicit case S = k[s, t]/(s2, t2) the result is an immediate

corollary of the “Type I-II”-classification of the generators for Πk(S) described

in §4.7.

4.4 Base Change for Z4(R, S) and rk(Z4(R, S))

Convention 4.4.1. To ease notation, we shall denote the center of ΠR(S) in

degree d by

Zd(R,S)
def
= Z(ΠR(S)d)
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Throughout this section we prove the following results for the center in

degree 4:

Theorem 4.4.2. Z4(R,S) is a split R-submodule of ΠR(S)4.

Theorem 4.4.3. Let S/R be relative Frobenius of rank 4 and R −→ R′ a

morphism of rings. Then the canonical base change map

Z4(R,S)⊗R R′ −→ Z4(R′, S ⊗R R′)

is an isomorphism.

Theorem 4.4.4. Z4(R,S) is a projective R-module of rank 2.

The proofs of these theorems are heavily intertwined, we shall prove them

according to the following diagram of implications:

theorem 4.4.4 when R is a field

⇓

theorems 4.4.4 and 4.4.2 when R is a local domain

⇓

theorem 4.4.2 for general R

⇓

theorem 4.4.3 for general R

⇓

theorem 4.4.4 for general R

In several of these steps we use the fact that in each degree d, the center

Zd(R,S) can be obtained as kernel of a morphism between (projective) R-

modules. For this, note that by the above section §4.3, there exists R-bases
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a0
1 . . . , a

0
5 for ΠR(S)0 and a1

1 = e1, . . . , a
1
8 for ΠR(S)1. Moreover, since ΠR(S)

is generated in degrees 0 and 1, for each d there is a map

φR,S : ΠR(S)d −→ ΠR(S)⊕5
d ⊕ΠR(S)⊕8

d+1 : x 7→
( (

[x, a0
i ]
)
i
,
(
[x, a1

j ]
)
j

)
(4.4)

whose kernel is precisely Zd(R,S). I.e. there is a left-exact sequence

0 −→ Zd(R,S) −→ ΠR(S)d
φR,S−→ ΠR(S)⊕5

d ⊕ΠR(S)⊕8
d+1 (4.5)

This discussion allows us to immediately prove that the center is compatible

with change of ground ring for flat morphisms:

Lemma 4.4.5 (flat base change). Let R −→ R′ be a flat morphism of rings.

Then the canonical map

R′ ⊗R Zd(R,S) −→ Zd(R
′ ⊗R S)

is an isomorphism

Proof. The construction of φR,S is compatible with base change and the tensor

product with flat modules preserves kernels. Hence

R′ ⊗R Zd(R,S) = R′ ⊗R (ker(φR,S)) = (R′ ⊗R ker(φR,S))

= ker(φR′,R′⊗S) = Zd(R
′, R′ ⊗ S)

Following our philosophy established in the introduction (see 4.2) we shall

first compute the dimension of Z4(k, S) in two specific cases. The first is

S = k4. To simplify the computation, we first give an alternate description of

Πk(S) using the McKay correspondence.

Recall that the binary dihedral group is given by

BD2n = < a, b | a4 = 1, a2 = b2, ab = ba3 >

Page 172



CHAPTER 4. GENERALIZED PREPROJECTIVE ALGEBRAS

Lemma 4.4.6. Let k be an algebraically closed field with ch(k) 6= 2 and F =

k⊕4, then Πk(F ) is Morita equivalent to the skew group ring k[x, y]#BD8

where the binary dihedral group of order 8 acts on k[x, y] through its natural

action on the complex x− y-plane:

a · x = ix, a · y = −iy, b · x = y, b · y = x

Proof. Let Q def
= D̃4 be the star quiver on 4 vertices (or equally, the Dynkin

quiver of type D4) and denote by Q the associated formally doubled quiver.

Then Q is the McKay-quiver of BD8 and by [CBH98] (which was already

announced in [RVdB89]) the preprojective algebra on Q is Morita equivalent

to k[x, y]#BD8, the result now follows from lemma 4.2.10.

Lemma 4.4.7. Let R = k be an algebraically closed field with ch(k) 6= 2 then

dimk(Z4(k,k⊕4)) = 2.

Proof. By lemma 4.4.6 and the fact that the center of a ring is invariant under

Morita equivalence, we only need to show that the degree 4 polynomials in

k[x, y] invariant under the action of BD8 span a 2-dimensional vector space.

One easily checks that these invariants are given by kx2y2 ⊕ k(x4 + y4).

In order to include the case of characteristic 2, we need to compute the

center explicitly through brute force.

Lemma 4.4.8. Let k be an algebraically closed field of characteristic 2, then

dimk(Z4(k,k⊕4)) = 2.

Proof. Let a, b, c, d denote the 4 idempotent elements. We exhibit two linearly

independent central elements of degree 4 in Πk(F ). Πk(F ) is generated by

elements of two types:

Type I) Elements of the form f ∗ ef ∗ ef . . . ∗ ef ∗ e(f∗) where each ∗ is either

a, b, c or d

Type II) Elements of the form ∗ef ∗ ef . . .∗ ef ∗ e(f∗) where each ∗ is either a, b, c

or d
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The relations on Πk(F ) imply the following relations for these generators:

• aefa = befb = cefc = defd = 0

• fae+ fbe+ fce+ fde = 0

We first find elements in degree 2 which are normalizing with respect to some

automorphism σ satisfying σ2 = Id. One such element is the following:

uab/cd
def
= aefb+befa+cefd+defc+fae+fbe = aefb+befa+cefd+defc+fce+fde

The equality follows from the above relations combined with the fact that

ch(k) = 2 (we use the subscript to denote that this element only depends on

the partition of {a, b, c, d} in the subsets {a, b} and {c, d}. By symmetry there

are 2 other such elements, namely uac/bd and uad/bc.)

This element is normalizing with respect to the automorphism

σab/cd : a 7→ b, b 7→ a, c 7→ d, d 7→ c

since for example:

(ce)uab/cd = cefde = uab/cd(de) = uab/cd · σab/cd(ce)

and similarly for a, b and d. By symmetry we obtain the same for the elements

uac/bd and uad/bc. Since the automorphisms have order 2, it follows that the

squares of these three elements are in fact central.

xab/cd
def
= u2

ab/cd = aefbefa+ befaefb+ cefdefc+ defcefd+ faefbe+ fbefae

xac/bd
def
= u2

ac/bd = aefcefa+ befdefb+ cefaefc+ defbefd+ faefce+ fcefae

xad/bc
def
= u2

ad/bc = aefdefa+ befcefb+ cefbefc+ defaefd+ faefde+ fdefae

We claim that these 3 elements are pairwise linearly independent. Indeed,

suppose for example that xab/cd and xac/bd were linearly dependent. Then

faefbe+ fbefae and faefce+ fcefae should be linearly dependent. By the

nature of the relations and the fact that we are working in characteristic 2

there are only 3 possibilities:
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• faefbe+ fbefae = 0

• faefce+ fcefae = 0

• faefbe+ fbefae+ faefce+ fcefae = 0

The first two options are obviously impossible and third option gives faefde+

fdefae = 0, leading to a contradiction. Hence xab/cd and xac/bd must be

linearly independent. On the other hand one checks that these elements satisfy

the relation xab/cd + xac/bd + xad/bc = 0. This shows that there are 3 central

elements satisfying one linear relation, hence dimk(Z4(k,k⊕4)) = 2.

For the second specific case we have:

Lemma 4.4.9. Let k be a field, then dimk(Z4(k,k[s, t]/(s2, t2))) = 2.

Proof. The proof is similar to the above argument and based on an explicit

description of generators. We refer the reader to §4.7.2

In order to compute the dimension of (Z4(k, F )) for any Frobenius algebra

F , we use the following lemma, which relates these dimensions under Frobenius

deformation:

Lemma 4.4.10. Let F and G be two Frobenius algebras over a field k such

that F
def
99K G. Then for each d ∈ N,

dimk(Zd(k, F )) ≥ dimk(Zd(k, G))

Proof. Let D be the algebra deforming F to G as in definition 4.2.5 and denote

R = k[[u]], K = k((u)). Using the morphism (4.4), we write Zd(R,D) = ker(φ)

and let Φ be the matrix corresponding to φ.

Let ΦK denote the same matrix with coefficients viewed in the fraction field K
and Φk denote the matrix with coefficients viewed in the residue field k. Then

by construction,

ker(ΦK) = ker(K⊗R φ) = Zd(K,K⊗R D)

ker(Φk) = ker(k⊗R φ) = Zd(k,k⊗R D)
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Now,

dimk(Zd(k, G)) = dimK(K⊗k (Zd(k, G))

= dimK(Zd(K,K⊗k G))

= dimK(Zd(K,K⊗R D))

= dimK ker(ΦK)

Since clearly dimk(ker(Φk) ≥ dimk(ker(ΦK)), the claim follows.

Lemma 4.4.11. For any field k and Frobenius algebra F of dimension 4, we

have dimk(Z4(k, F )) = 2

Proof. If k is algebraically closed, this follows from lemmas 4.2.4, 4.2.7, 4.4.10,

4.4.7, 4.4.8 and 4.4.9.

For the general case we use lemma 4.4.5.

Lemma 4.4.12. theorems 4.4.4 and 4.4.2 hold in the case where (R,m) is a

local domain.

Proof. Let φR,S be the morphism in (4.4), then φR,S is a morphism between

free R-modules of finite rank and hence can be represented by a matrix Φ with

respect to some chosen basis for V
def
= ΠR(S)4 and W

def
= ΠR(S)⊕5

4 ⊕ΠR(S)⊕8
5 .

Let Φk be the matrix obtained by replacing each entry of Φ by its corresponding

class in the residue field k def
= R/m, then Φk is a matrix-representation for

k⊗R φR,S using the induced k-basis for k⊗R V and k⊗RW . Let a = rk(Φk).

Then there is an invertible a × a submatrix Ψk in Φk. The corresponding

submatrix Ψ of Φ has a determinant which does not lie in m and is thus itself

invertible. By a suitable base change on V and W we can now rewrite Φ in

the form:

Φ =

[ ]
Ida×a 0

0 Ψ′

where all entries of Ψ′ lie in m (any entry not in m would give rise to an

invertible submatrix of rank a+ 1 by elementary row and column operations).
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It follows that we can decompose V and W into a direct sum of free submodules

V = V1⊕V2 and W = W1⊕W2 such that φR,S = φ1⊕φ2 where φ1 : V1
∼−→W1

and φ2 : V2 −→ W2 satisfies k ⊗R φ′2 = 0. This implies that Z4(k,k ⊗R S) =

(k⊗R φR,S) = k⊗R V2 and hence V2 is free of rank 2 by lemma 4.4.11.

Now, by construction ker(φR,S) ⊂ V2 and hence K⊗ ker(φR,S) ⊂ K ⊗V2. But

then, since K is flat over R, lemma 4.3.1 gives:

dimK(K⊗R ker(φR,S)) = dimK(K⊗ Z4(R,S))

= dim(Z4(K,K⊗R S) = 2 = dim(K⊗ V2)

It follows that ker(φR,S) = V2 from which φ2 = 0 and hence Z4(R,S) ↪→
ΠR(S)4 splits. It also follows that Z4(R,S) is projective of finite rank since

ΠR(S)4 is so by 4.3.9 and this rank must equal 2 by lemma 4.4.11.

We can now finish the proofs of the main results of this section. This is

done in a way similar to the proof of theorem 4.3.9:

Proof of theorem 4.4.2. By lemma 4.4.12 we already know that the result holds

if R is a local domain and by the local nature of splitting (see for example

[Lam07, ex. 4.13, p.105]) hence also if R is any domain.

Now let R be a local ring with algebraically closed residue field. Then by

lemma 4.3.8 S/R is a base change of S̃/R̃ by a morphism R̃ −→ R for some

domain R̃ and the result follows in this case as the base change of a split

embedding is a split embedding.

If R is any local ring, we can consider the faithfully flat morphism R −→ R

provided by lemma 4.3.7. As the residue field of R is algebraically closed the

monomorphism φR,S⊗R = φR,S ⊗R from (4.4) is split. This implies that φR,S

must be split itself by the lemma 4.4.13 below.

Finally, again using the local nature of splitting, we obtain the result for any

ring R.
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Lemma 4.4.13. Let R be a local ring and let R −→ R be as in lemma 4.3.7.

Let φ : A ↪→ B be an embedding of finitely generated R-modules such that B

is projective. Moreover assume φ⊗ R : A⊗ R ↪→ B ⊗ R is split. Then φ is a

split injection

Proof. Let k be the residue field of R and k its algebraic closure, then there

is a commutative diagram

R k

R k

As φ⊗R is split, φ⊗k is injective. The above commutative diagram combined

with the faithfully flatness of k −→ k implies φ ⊗ k is also injective. Let

C = coker(φ), then we have a long exact sequence

. . . −→ TorR1 (B, k) −→ TorR1 (C, k) −→ A⊗ k φ⊗k−→ B ⊗ k −→ C ⊗ k −→ 0

Since B is a projective R-module, it is flat, implying TorR1 (B, k) = 0. From

this it follows that TorR1 (C, k) = 0 and because R is a local noetherian ring,

this implies C is a projective R-module and the exact sequence 0 −→ A
φ−→

B −→ C −→ 0 is indeed split.

Proof of theorem 4.4.3. This is an immediate consequence of theorem 4.4.2

and the fact that the construction of φR,S in (4.5) is compatible with base

change.

Proof of theorem 4.4.4. First let R be a local domain with residue field k and

field of fractions k. Then by lemma 4.4.11,

dimK(K⊗R (Z4(R,S)) = dimK(Z4(K,K⊗R S)) = 2

= dimk(Z4(k,k⊗R S)) = dimk(k⊗R Z4(R,S))

Hence by [Gro71, ch. 1, cor. 4.4], Z4(R,S) is free of rank 2.
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If R is a domain, then for any p ∈ Spec(R), Rp is a local domain such that

Rp⊗RZ4(R,S) = Z4(Rp, Rp⊗RS) is a free module of rank 2. Serre’s theorem

then proves that Z4(R,S) is projective of rank 2.

Now let R be a local ring with algebraically closed residue field and let S̃/R̃ be

as in lemma 4.3.8. Then we know that Z4(R̃, S̃) is projective over R̃ of rank

2. Hence Z4(R,S) = Z4(R̃, S̃)⊗R is free of rank 2 over R.

To extend the statement to general local rings we just use lemma 4.3.7.

Finally Serre’s theorem extends the statement to non-local rings as well.

4.5 ΠR(S) is Noetherian and Finite Over Its

Center

We recall the reader that we follow convention 4.2.1 and that S/R relative

Frobenius of rank 4 over a noetherian commutative ring R. In this section we

give a proof of the following fact:

Theorem 4.5.1. ΠR(S) is noetherian.

To this end, we define a map

σR,S : R[Z4(R,S)]⊕N → ΠR(S)

as follows: by the first condition of the definition of a relative Frobenius pair,

4.2.2 we may choose an R-basis (x, y, z, w) for S. Let e be the element corre-

sponding to 1S ∈ N and f be the element corresponding to 1S ∈ M (recall

the definition for N and M from §4.2.2). There is a map

π : R < x, y, z, w, e, f >−→ TR⊕S(M ⊕N)

Where x, y, z, w have degree 0 and e, f have degree 1 in R < x, y, z, w, e, f >.

The R-module T (R,S)0 is generated by (1R, x, y, z, w) and these 5 elements

are the images under π of the corresponding elements in R < x, y, z, w, e, f >,
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hence π is surjective in degree 0.

Moreover, T (R,S)1 = RSS⊕SSR is generated by (xe, ye, ze, we, fx, fy, fz, fw)

as an R−R-bimodule and hence π is also surjective in degree 1.

Finally since T (R,S) is a tensor algebra, it is generated in degree 0 and 1 and π

is surjective. Composing with the canonical quotient map T (R,S) // // ΠR(S)

yields a surjection

χ : R < x, y, z, w, e, f > // // ΠR(S)

Now, the R-module ΠR(S)≤6 is generated the image of the words of length at

most 6 in {e, f}. We can reduce this set by making the following remarks:

1. since {1R, x, y, z, w} forms an R-basis for ΠR(S)0, we can assume that

any subword of degree zero is precisely a letter in this set

2. by the definition of the multiplication of ΠR(S), we have e2 = f2 = 0

Hence if we let H be the finite set set of words in {x, y, z, w, e, f} of length at

most 6 in {e, f} such any two instances of x, y, z, w are separated by at least

one e or f , we obtain χ(R ·H) = ΠR(S)≤6. If we list this set as

H = {a1, . . . , an}

we can define σR,S as

σR,S : R[Z4(R,S)]⊕n → ΠR(S) : (zi)
n
i=1 7→

n∑
i=1

ziχ(ai)

We shall prove the following theorem

Theorem 4.5.2. σR,S is a surjective map. In particular ΠR(S) is finite over

its center.

From this theorem 4.5.1 will readily follow as Z4(R,S) is finitely generated

over R by 4.4.4. In turn we prove theorem 4.5.2 first for fields following the

diagram 4.2. The general result will the follow quickly.
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First we give some base change arguments: Let R −→ R′ be any morphism

of rings, then by theorem 4.4.3 we have a diagram

R′[Z4(R′, R′ ⊗R S)]⊕n
σR′,R′⊗RS // Π′R(R′ ⊗R S)

R′ ⊗R R[Z4(R,S)]⊕n
R′⊗R(σR,S)

//

ζ

OO

R′ ⊗R ΠR(S)

η

OO
(4.6)

Lemma 4.5.3. For any morphism ϕ : R −→ R′, the diagram in (4.6) is

commutative.

Proof. We recall that if S/R be relative Frobenius with generator λ and basis

{e1, . . . , en}. Then (R′ ⊗ S)/R′ is relative Frobenius with generator 1R′ ⊗ λ
and basis {1R′ ⊗ e1, . . . , 1R′ ⊗ en} (see lemma 4.3.1). Following the successive

steps in the construction of σR′,R′⊗RS we see that
ΠR′(R

′ ⊗R S) = 1R′ ⊗ΠR(S)

χR′ = 1R′ ⊗ χR
HR′ = 1R′ ⊗HR

Let zi be an element in R[Z4(R,S)] considered as the ith component of

R[Z4(R,S)]⊕n, then

η ◦ (1R′ ⊗R (σR,S)) (r′ ⊗ zi) = η (r′ ⊗ ziχR(ai))

= r′(1⊗ ziχR(ai))

= r′(1⊗ zi)(1⊗ χR(ai))

= r′(1⊗ zi)(χR′(1⊗ ai))

= σR′,R′⊗S(r′(1⊗ zi))

= σR′,R′⊗S ◦ ζ(r′ ⊗ zi)

As in the proof of theorems 4.3.9 and 4.5.1, to prove the claim in the case

of fields, we relate the surjectivity of σ under Frobenius deformation:
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Lemma 4.5.4. Let F and G be Frobenius algebras over k such that F
def
99K G.

If σk,F is surjective, then so is σk,G

Proof. Let D be the algebra deforming F to G provided by the definition 4.2.5

and write R
def
= k[[u]] and K def

= k((u)).

Then lemma 4.4.12 and lemma 4.3.1 imply that the vertical maps in (4.6) are

isomorphisms, hence k⊗R σR,D = σk,F . Thus Nakayama’s lemma implies that

σR,D is surjective whenever σk,F is. A second application of (4.6) together with

lemma 4.3.1 and theorem 4.4.3 shows that K ⊗k σk,G = K ⊗R σR,D, showing

that K⊗kσk,G is surjective in this case and hence also σk,G since K is faithfully

flat over k.

Lemma 4.5.5. Let F
def
= k[s, t]/(s2, t2). Then the map σk,F is surjective

Proof. This is proven in A.3.

Corollary 4.5.6. Let F be Frobenius over a field k. Then σk,F is surjective

Proof. If k is algebraically closed, then any Frobenius algebra F over k can

be obtained from k[s, t]/(s2, t2) by a finite number of Frobenius deformations

following the diagram 4.3. Hence this case follows immediately from lemma

4.5.5 and lemma 4.5.4.

For a general field we use that k is faithfully flat over k.

Proof of theorem 4.5.2. If R is a local ring, then k⊗R σR,S ∼= σk,k⊗RS and the

result follows by the above and an application of Nakayama’s lemma.

If R is any ring, for any p ∈ Spec(R), we have Rp ⊗R σR,S = σRp,Rp⊗RS ,

which is a surjective morphism. As this holds for all p ∈ Spec(R), σR,S is

itself surjective.

4.6 The Global Dimension of ΠR(S)

In this section we prove the following:
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Theorem 4.6.1. The global dimension of ΠR(S) is bounded by the number

max

(
gl.dim(R), gl.dim(S)

)
+ 2

We first bound the projective dimension of R and S as ΠR(S)-modules.

Lemma 4.6.2. There is a projective resolution of R⊕S of the following form:

0 −→ ΠR(S)(−2)
α2−→ (SSR ⊕ RSS)⊗ΠR(S)(−1)

α1−→ ΠR(S)
α0−→ R⊕ S −→ 0

(4.7)

Proof. α0 is the canonical projection with kernel ΠR(S)≥1. This module is

generated by ΠR(S)1 = SSR ⊕ RSS , hence im(α1) = ker(α0). Since the re-

lations of ΠR(S) are generated in degree 2, we also have im(α2) = ker(α1).

Only the injectivity of α2 remains to be checked.

The sequence splits into the following two subsequences:

0 −→ 1R ·ΠR(S)(−2) −→ 1S ·ΠR(S)(−1) −→ 1R ·ΠR(S) −→ R −→ 0 (4.8)

0 −→ 1S ·ΠR(S)(−2) −→ (1R ·ΠR(S)(−1))⊕4 −→ 1S ·ΠR(S) −→ S −→ 0

(4.9)

By lemma 4.3.1 exactness can be checked after localization at each prime ideal

of R, hence we may assume all terms in (4.8) and (4.9) are free R-modules of

finite rank in each degree by lemma 4.3.10. The claim reduces to the following

relation on the Hilbert series: for each d ∈ N we must have

hd−2(1R ·ΠR(S)(−2))− hd−1(1S ·ΠR(S)(−1)) + hd(1R ·ΠR(S))− δd0 = 0

hd−2(1S ·ΠR(S)(−2))− 4hd−1(1R ·ΠR(S)(−1)) + hd(1R ·ΠR(S))− 4δd0 = 0

(where hd(−) denotes the rank of the degree d-part as an R-module)

Using lemma 4.3.10 we see that this is indeed the case.

Lemma 4.6.3. Each simple ΠR(S)-module is either a simple R-module or a

simple S-module.
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Proof. Each simple R or S-module is clearly simple when considered as a

ΠR(S)-module. Conversely if M is a simple ΠR(S)-module, then M = 1RM

or M = 1SM since M = 1RM⊕1SM . Moreover we claim that ΠR(S)≥1M = 0

or equivalently ΠR(S)1M = 0. For this assume for example that M = 1RM .

If x ∈ SSR then

xM = (1Sx)M = 1S(xM) = 0

and if x ∈ RSS then

xM = (x1S)M = x(1SM) = 0

Hence only the R-component in degree 0 acts non-trivially on M , it follows in

particular that M is also a simple R-module. The case M = 1SM is completely

similar.

Proof of theorem 4.6.1. It suffices to check that if M is a simple ΠR(S)-module

then:

pdΠR(S)(M) ≤ max

(
gl.dim(R), gl.dim(S)

)
+ 2

By lemma 4.6.3, M is a simple R-module or a simple S-module. We assume the

former, the other case being completely similar. Let P• −→M be a resolution

of M by projective R-modules of length pdR(M) ≤ gl.dim(R). Then for each

i, by lemma 4.6.2 we have

pdΠR(S)(Pi) ≤ pdΠR(S)(R) ≤ pdΠR(S)(R⊕ S) ≤ 2

A standard long exact sequence-argument now gives the desired result.

4.7 Explicit Computations for S =
k[s, t]

(s2, t2)

We describe Πk(S) through generators and relations:

• Πk(S)0 = k⊕S. Let a denote (1k, 0) and b = (0, 1S) then since a+b = 1,

a, 1, s, t, st is a k-basis for Πk(S)0. It is clear that this set satisfies the

relations

a2 = a, as = sa = at = ta = 0
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• Πk(S)1 = kSS ⊕ SSk. Let f be (1S , 0) and e = (0, 1S), then we can

write Πk(S)1 = fS⊕Se. Hence f, fs, ft, fst, e, se, te, ste is a k-basis for

Πk(S)1. By construction, each generator 6= 1 of Πk(S)0 acts nontrivially

on exactly one side of each component. Hence we have the relations

ea = e, af = f, ae = fa = 0, es = et = sf = tf = 0

Note that this implies e2 = f2 = 0 since for example

e2 = (ea)e = e(ae) = 0

• It is clear that the relation 1 ⊗ 1 ∈ kSS ⊗ SSk takes the form fe = 0.

To compute the second relation, note that projection onto kst provides

the duality isomorphism HomR(S,R) ∼= S (see lemma 4.2.7). It imme-

diately follows that (e, se, te, ste) is dual to (fst, ft, fs, f) in the sense

of definition 0.1.15. The relation now takes the form

efst+ seft+ tefs+ stef = 0 (4.10)

To summarize Πk(S) is a quotient of the free algebra k < a, s, t, e, f > by the

relations 

s2 = t2 = st− ts = 0

a2 = a, as = sa = at = ta = 0

ea = e, af = f, ae = fa = 0, es = et = sf = tf = 0

fe = efst+ seft+ tefs+ stef = 0

Note that Πk(S) is a graded algebra via deg(a) = deg(s) = deg(t) = 0 and

deg(e) = deg(f) = 1.

4.7.1 an Explicit Set of Generators for Πk(S)

In this subsection we give sets of generators in each degree, hence giving an

upper bound for dimk (Πk(S)d). More explicitly we prove that

dimk

(
Πk

(
k[s, t]

(s2, t2)

)
d

)
≤

{
5(d+ 1) if d is even

4(d+ 1) if d is odd
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which proves 4.3.4 For this we make the following remarks:

• In each degree there are generators of two types:

Type I) Elements of the form f ∗ ef ∗ ef . . . ∗ ef ∗ e(f(∗)) where each ∗ is

either s, t or st

Type II) Elements of the form (∗)ef ∗ ef . . . ∗ ef ∗ e(f(∗)) where each ∗ is

either s, t or st

• Let R denote the relation (4.10), then fRe, tR, sR, stR take the form

fsefte = −ftefse (4.11)

steft = −tefst (4.12)

stefs = −sefst (4.13)

stefst = 0 (4.14)

• As a consequence of the above equalities, we know that for any non-zero

element there is at most one appearance of st. For example:

fstefsefst = fstef(sefst) = −fstef(stefs) = −f(stefst)efs = 0

We say any of the above elements is of bidegree (m,n) if there are m appear-

ances of s and n appearances of t. It is easy to see that the above relations do

not violate this bidegree and that it turns Πk(S) into a Z×Z-graded ring. Us-

ing the above remarks we create (minimal) sets of generators by a case-by-case

study:

• Case 1: d even and Type I

All words in this case take the form (f ∗e) . . . (f ∗e). We can use relations

(4.11), (4.12), (4.13) to write the element in the form±(fse)i(fste)ε(fte)j

where ε = 0, 1. For ε = 0 we have d
2 + 1 choices for i and j and for ε = 1

we have d
2 choices, giving a total of d+ 1 generators.
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• Case 2: d even and Type II

These are elements of the form (∗)(ef∗) . . . (ef∗)ef(∗) and since there is

at most one occurrence of st the bidegree satisfies d
2 −1 ≤ m+n ≤ d

2 +2.

If m+n = d
2−1 the element can be written in the form ±(efs)m(eft)nef ,

giving d
2 choices. Similarly if m+ n = d

2 + 2 the element can be written

in the form ±(sef)m−1st(eft)n−1. Giving d
2 + 1 choices.

Assume m + n = d
2 . If (n,m) = (d2 , 0) (or (n,m) = (0, d2 )) we have 2

generators: (sef)
d
2 and (efs)

d
2 (or (tef)

d
2 and (eft)

d
2 ).

In all other cases we need 3 generators: (sef)m(tef)n, (efs)m(eft)n and

(efs)m−1efstef(tef)n−1. This gives a total of 3d
2 + 1 generators for this

sub-case.

Finally assumem+n = d
2 +1. If (m,n) = (d2 +1, 0) (or (m,n) = (0, d2 +1))

we have 1 generator: (sef)
d
2 s (or (tef)

d
2 t ).

In all other cases we need 3 generators: (sef)m(tef)n−1t, (efs)m−1efst(eft)n−1

and (sef)m−1stef(tef)n−1. This gives a total of 3d
2 + 1 generators for

this sub-case.

For case 2 this results in
d

2
+

(
3d

2
+ 1

)
+

(
3d

2
+ 2

)
+

(
d

2
+ 1

)
= 4(d+1)

generators.

Finally adding up the number of generators from Case 1 and Case 2

yields 5(d+ 1) generators.

• Case 3: d odd and Type I

All elements in this case take the form (f ∗ e)(f ∗ e) . . . (f ∗ e)f(∗). By a

completely similar argument as above, we conclude that generators can

be chosen of the following forms:

(fse)m(fte)nf , (fse)m(fte)n−1ft, (fse)
d−1

2 fs, (fse)n−1(fte)m−1fst and

fste(fse)n−1(fte)m−1f . This gives a total of

d+ 1

2
+
d+ 1

2
+ 1 +

d+ 1

2
+
d− 1

2
= 2(d+ 1)

generators

• Case 4: d odd and Type II
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Elements in this case are of the form (∗)e(f ∗e)(f ∗e) . . . (f ∗e). Note that

any such word can be obtained by taking a word from Case 3, reading it

from right to left and interchanging e and f . Applying this “procedure”

to the generators of Case 3 yields a set of generators for the current case

by symmetry. Hence in the current case we have 2(d + 1) generators,

adding up to 4(d+ 1) generators in case d is odd.

4.7.2 the Dimension of Z4(k, S)

Consider the elements

u
def
= sef + efs+ fse and v

def
= tef + eft+ fte (4.15)

It is easy to see that u is normalizing with respect to the automorphism σ

on Πk(S) which sends t to −t and is the identity on the other generators. As

σ2 = Id we have as an immediate consequence that u2 is central. A completely

similar discussion yields that v2 is central. Using the relations defining Πk(S)

we can write u2 and v2 as

sefsef + efsefs+ fsefse and teftef + efteft+ ftefte

In what follows we explain why there are no other central elements. This is

done by constructing a basis for Πk(S)4 which reduces the search for central

elements to some standard linear algebraic computations. By the arguments

in 4.7.1, the following 25 elements generate Πk(S)4:

Type I) – 1 element of bidegree (1, 1): fsefte

– 1 element of bidegree (2, 0): fsefse

– 1 element of bidegree (0, 2): ftefte

– 1 element of bidegree (2, 1): fsefste

– 1 element of bidegree (1, 2): fstefte

Type II) – 1 element of bidegree (1, 0): efsef
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– 1 element of bidegree (0, 1): eftef

– 2 elements of bidegree (2, 0): sefsef, efsefs

– 2 elements of bidegree (0, 2): teftef, efteft

– 1 element of bidegree (3, 0): sefsefs

– 1 element of bidegree (0, 3): tefteft

– 3 elements of bidegree (1, 1): seftef, efseft, efstef

– 3 elements of bidegree (2, 1): sefseft, efsefst, sefstef

– 3 elements of bidegree (1, 2): sefteft, efsteft, steftef

– 1 element of bidegree (2, 2): sefsteft

– 1 element of bidegree (3, 1): sefsefst

– 1 element of bidegree (1, 3): stefteft

Corollary 4.3.6 implies that they form a k-basis for Πk(S)4.

Since the center of a graded ring is a homogeneous subring, we can write

Zd(k, S) as

Zd(k, S) =
⊕

(m,n)

Zd(k, S)m,n

Where Zd(k, S)m,n consists of the central elements in Πk(S) of degree d and

bidegree (m,n). It follows that generators for Z4(k, S) can be chosen as linear

combinations of elements of fixed bidegree. This reduces the computations

to 12 linear combinations of at most 4 elements. A brute force computation

shows that sefsef + efsefs + fsefse and teftef + efteft + ftefte are the

only linear combinations that are central.

4.7.3 the Surjectivity of σk,S

Let u and v be the normalizing elements defined above in 4.15. Let V ⊂ Πk(S)2

be the k-vector space spanned by u and v. Let µ3 be the multiplication

morphism given by the composition

µ3 : V ⊗Πk(S)1 −→ Πk(S)2 ⊗Πk(S)1 −→ Πk(S)3
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Then we use a brute force computation to show that µ3 must be surjective. I.e.

we show that any element of Πk(S)3 can be written as a linear combination of

elements of the form u · x or v · x with x ∈ Πk(S)1. It suffices to check this for

the generators of Πk(S)3:

Type I) : elements of the form f ∗ ef(∗).
These can all be put into the form fsef(∗) or ftef(∗) where ∗ is either

s, t or st. Now use fsef(∗) = u · f(∗) and similarly ftef(∗) = v · f(∗).

Type II) : elements of the form (∗)ef ∗ e

• efse = u · e and efte = v · e

• sefse = u · se and tefte = v · te

• sefste = u · ste and tefste = v · ste

• sefte = −tefse− eftse = v · (−se)

• tefse = −sefte− efste = u · (−te)

Which shows that µ3 is indeed surjective.

Now for each degree d we have a commutative diagram

V ⊗Πk(S)d+1 Πk(S)d+3

V ⊗Πk(S)1 ⊗Πk(S)d Πk(S)3 ⊗Πk(S)d
µ3 ⊗ Πk(S)d

where the top horizontal arrow must be a surjection as the other three are

surjective. Hence by induction (and the fact that V ⊗ − is right exact) we

have for each n ∈ N a surjection

µ2n+ε : V ⊗n ⊗Πk(S)ε −→ V ⊗n−1 ⊗Πk(S)2+ε −→ . . . −→ Πk(S)2n+ε

Next let W be the vector space spanned by u2 and v2, then for each n and

ω = 1, 2 there is a surjection

W⊗n ⊗ V ⊗ω // // V ⊗2n+ω

Page 190



CHAPTER 4. GENERALIZED PREPROJECTIVE ALGEBRAS

and we have a commutative diagram

W⊗n ⊗ V ⊗ω ⊗Πk(S)ε W⊗n ⊗Πk(S)2ω+ε

V ⊗2n+ω ⊗Πk(S)ε ⊗Πk(S)d Πk(S)4n+2ω+ε

ρ4n+2ω+ε

µ4n+2ω+ε

where ρ4n+2ω+ε must be surjective because the other three morphisms are.

Then using the commutative triangle

W⊗n ⊗Πk(S)2ω+ε Πk(S)4n+2ω+ε

k[Z4(k, S)]n ⊗Πk(S)2ω+ε

ρ4n+2ω+ε

ρ4n+2ω+ε

we must have that ρ4n+2ω+ε : k[Z4(k, S)]n ⊗ Πk(S)2ω+ε −→ Πk(S)4n+2ω+ε

must be surjective. As 2ω + ε takes the values 3,4,5,6 we have an induced

surjection:

ρ : k[Z4(k, S)]⊗Πk(S)≤6
// // Πk(S)

(where we included Πk(S)d for d = 0, 1, 2 on the left hand side to guarantee

surjectivity in these three lowest degrees).

Now σk,S factors as ρ ◦ ς where ς is the morphism:

ς : k[Z4(k, S)]⊕N −→ k[Z4(k, S)]⊗Πk(S)≤6 : (zi)
N
i=1 7→

N∑
i=1

zi ⊗ χ(ai)

By the choice of the ai in H, ς is surjective and hence also σk,S proving the

lemma.
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Chapter 5

the Exotic Rank 4 Surface

5.1 Introduction and Statement of Results

One of the main results of chapter 3 (3.5.17) states that any lattice with an

exceptional basis of rank 4 of DPS* type must either be trivial, isomorphic to

the Grothendieck group of a Del Pezzo surface or to a lattice of so called ’type

3’ given as Z4, equipped with a bilinear from whose Gram matrix is given by
1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1


This chapter is devoted to a construction made by the author in collaboration

with D. Presotto that can be viewed as a noncommutative surface Z together

with a full exceptional sequence E of four Z-modules whose classes in the

Grothendieck group K(Z) form a basis in which the Euler form has the above

Gram matrix. The top-left and bottom-right 2 × 2 submatrices, show that

the couples (E1, E2) and (E3, E4) are isomorphic to the standard sequence

(OX ,OX(1)) on K(P1). We heuristically conclude that Z should be equipped

with 2 ’maps’ (in the noncommutative sense) Π0,Π1 : Z −→ P1 such that E
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is obtained by pulling back (OX ,OX(1)) along both:

E =

(
Π∗1(OP1),Π∗1(OP1(1)),Π∗0(OP1),Π∗0(OP1(1))

)
(5.1)

The construction of this exotic rank 4 surface is an adaptation of Van den

Bergh’s theory of noncommutative P1-bundles over a smooth finite type k-

scheme X as developed in [VdB12]. In that paper, Van den Bergh proposes a

new construction which results in a sheafified notion of a Z-algebra as follows:

let E be a coherent X-bimodule (see 5.2.2) which is locally free on both sides.

Then there is an appropriate notion of left- and right dual ∗E resp. E∗ (5.2.9).

Applying the construction indefinitely yields higher duals ∗mE resp. E∗m,

which by naturality come with a counit morphism

γm : O∆ −→ E∗m ⊗X E∗m+1

Van den Bergh defines the symmetric sheaf Z-algebra S(E) as

• S(E)m,m = OX

• S(E)m,m+1 = E∗m

• S(E) is freely generated by S(E) subject to the relations given by the

images of the morphism γm

This is recalled in 5.2.4. There is an associated category of graded modules

Gr(S(E)) which is Grothendieck (5.2.8). The intuition behind the definition

of S(E) comes from the fact that in the case where E is a central bimodule

of rank (2, 2), the definition coincides with the notion of a P1-bundle over X

in the sense that there is an equivalence between their categories of graded

modules. For the convenience of the reader, we provide an explicit proof of

this in 5.2.20.

Pushing our heuristic intuition further, if we assume that the exceptional se-

quence E is strong (as in definition 0.2.1), we have

HomZ(Π∗1(OP1(1)),Π∗0(OP1(1)) = 〈Π∗1OP1(1)),Π∗0(OP1(1)〉 = 4
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which seems to suggest that the bimodule E should have rank 4 on the left and

a similar argument shows that rE should have rank 1 on the right. This leads

one to adapt Van den Bergh’s work under the assumption that the bimodule E
is locally free of rank (4, 1) instead. To construct the noncommutative scheme

Proj(S(E)) and establish its properties, we shall first prove two facts in the

setting: The first is a description of S(E) in the case where the base scheme

X is affine. More precisely, we relate S(E) to the generalized preprojective

algebras introduced in the previous chapter as follows:

Theorem J. (see 5.3.10 and 5.3.15 together with 5.3.18) Let E be a bimodule

of rank (4, 1) over X. Then there is a finite affine open cover Ui ⊂ X such

that the category Gr(S(E)|Ui) identifies with a direct summand of Gr(ΠRi(Si))

where Ri −→ Si is relatively Frobenius of rank 4

Second, we adapt the technique of point modules which was developed in

[VdB12] for the rank (2, 2) case to the rank (4, 1) case. This proves to be a

substantial modification, requiring an adaptation of the very definition of point

module. We use this theory to prove that S(E)n,m is a locally free bimodule

in each degree. This, together with the previous result allows us to adapt the

ideas of [Mor07] and [Nym04a] to obtain a proof of the fact that Gr(S(E) is a

locally noetherian category. We summarize:

Theorem K. (see 5.3.1 and 5.4.5) Let E be a bimodule of rank (4, 1) over X.

Then

• Gr(S(E)) is a noetherian category

• Each bimodule S(E)n,m is locally free and the ranks can be explicitly

computed by (5.4.5).

This allows us to consider the noncommutative scheme Z = Proj(S(E) in

the language of [AZ94]. Z comes with a sequence of maps Πn : Z −→ X (again

in the sense of [AZ94]) given by taking the n-th degree of the graded module.

We describe these and show that Π0 and Π1 contain all the information on

these maps in a certain sense. With these definitions, we finally prove
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Theorem L. (See 5.4.22) Let E be a P1-bimodule of rank (4, 1). Let S(E)) be

the associated symmetric sheaf Z-algebra and put Z = Proj(S(E). Then(
Π∗1(OP1),Π∗1(OP1(1)),Π∗0(OP1),Π∗0(OP1(1))

)
is a full strong exceptional sequence on Z for which the Gram matrix of the

Euler form is given by 
1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1


5.2 Symmetric Sheaf Z-Algebras

5.2.1 Definitions and Construction

We begin by giving a summary of the material needed to construct symmetric

sheaf Z-algebras following the article [VdB12].

Convention 5.2.1. In this chapter k denotes an algebraically closed field. W ,

X and Y will denote smooth varieties (that is smooth, integral1, separated and

of finite type over k).

Definition 5.2.2. A coherent X−Y bimodule E is a coherent OX×Y -module

such that the support of E is finite over X and Y . We denote the corresponding

category by bimod(X − Y ). More generally an X − Y -bimodule is a quasi-

coherent OX×Y -module which is a filtered direct limit of objects in bimod(X−
Y ). The category of X−Y -bimodules is denoted BiMod(X−Y ). A bimodule E
is called locally free if πX∗(E) and πY ∗(E) are locally free, where πX denotes the

standard projection X×Y −→ X and πY is defined similarly. If rk(πX∗(E)) =

m and rk(πY ∗(E)) = n, we write rk E = (m,n).

1One could leave out this condition, which leads to the more general setting of disjoint

unions of varieties, we choose not to do this for purposes of clarity
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For W , X and Y the tensor product of OW×X×Y -modules induces a tensor

product

BiMod(W −X)⊗ BiMod(X − Y ) −→ BiMod(W − Y ) : (E ,F) 7→ E ⊗X F

through the formula

E ⊗ F def
= πW×Y ∗

(
π∗W×X(E)⊗W×X×Y π∗X×Y (F)

)
For each E ∈ BiMod(W −X) this defines a functor :

−⊗X E : Qcoh(W ) −→ Qcoh(X) :M 7→M⊗X E
def
= πX∗

(
π∗W (M)⊗W×X E

)
(5.2)

which is right exact in general and exact if E is locally free on the left. We

mention that [VdB12, lemma 3.1.1.] shows that this functor determines the

bimodule E uniquely.

Definition 5.2.3. LetW be a variety with morphisms u : W −→ X, v : W −→ Y .

If U ∈ Qcoh(W ), then we denote (u, v)∗U ∈ BiMod(X−Y ) as uUv. One easily

checks:

−⊗ uUv = v∗(u
∗(−)⊗W U) (5.3)

A bimodule isomorphic to one of the form uUu ∼= Id(u∗U)Id is called central.

This chapter will use the language of sheaf Z-algebras, a ’sheafified version’

of a classical Z-algebra.

Definition 5.2.4. Let (Xi)i∈Z be a sequence of smooth varieties.

A sheaf Z-algebra A is a collection of Xi −Xj-bimodules Aij equipped with

multiplication maps µi,j,k and identity maps ui:

µi,j,k : Ai,j ⊗Aj,k −→ Aik and ui : OXi −→ Ai,i

such that the usual associativity

Ai,j ⊗Aj,k ⊗Ak,l
µi,j,k⊗1 //

1⊗µj,k,l
��

Ai,k ⊗Ak,l
µi,k,l

��
Ai,j ⊗Aj,l µi,j,l

// Ai,l
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and unit diagram

OXi ⊗Ai,j
ui⊗1 //

%%

Ai,i ⊗Ai,j

µi,i,j
yy

Ai,j ⊗OXi
1⊗ui //

%%

Ai,j ⊗Aj,j

µi,j,j
yy

Ai,j Ai,j

commute

In a similar vain, we introduce the notion of graded module over a sheaf

Z-algebra:

Definition 5.2.5. Let A be a sheaf Z-algebra.

A graded A-module is a sequence of Xi-modules Mi together with maps

µi,j :Mi ⊗Aij −→Mj

such that the associativity,

Mi ⊗Ai,j ⊗Aj,k
µi,j,k⊗1 //

1⊗µj,k,l
��

Mj ⊗Aj,k
µi,k,l

��
Mj ⊗Aj,k µi,j,l

//Mk

and unit diagram

OXi ⊗Mi
ui⊗1 //

$$

Ai,i ⊗Mi

µi,i,j
zz

Mi ⊗OXi
1⊗ui //

%%

Mi ⊗Ai,i

µi,j,j
yy

Ai Mi

commute. A morphism of graded A-modules f : M −→ N is a collection of

Xi-module morphisms fi :Mi −→ Ni such that the diagram

M⊗Ai,j
fi //

��

N ⊗Ai,j

��
Mj

fj

// Nj

commutes. The associated category is denoted Gr(A)
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Definition 5.2.6. An A-module is right bounded if Mi = 0 for i � 0. An

A-module is called torsion if it is a filtered colimit of right bounded modules.

Let Tors(A) be the subcategory of Gr(A) consisting of torsion modules. Then

if Gr(A) is a locally noetherian category 2, Tors(A) is a localizing subcategory

and the corresponding quotient category is denoted by Proj(A).

This construction yields a projection functor p : Gr(A) −→ Proj(A) with right

adjoint ω (see [Smi99]).

Remark 5.2.7. It an easy observation that Gr(A) is abelian and that all

universal constructions are defined ’degreewise’

The fundamental example of a graded right A-module is given by the col-

lection enA satisfying (
enA

)
i

= An,i (5.4)

Theorem 5.2.8. Let A be a sheaf Z-algebra. Then Gr(A) is Grothendieck.

Proof. Let (Mi, fij) be a direct system of graded A-modules. In each degree

d, we obtain a direct system of quasi-coherent Xd-modules (Md, fdij). Since

Qcoh(Xn) is Grothendieck, we can form the direct limit in each degree to

obtain a sequence of Xn-modules Ln
def
= lim−→(Mn

i , f
n
ij). If we fix a couple

(n,m), the universality of the direct limit naturally defines a map

An,m ⊗ Ln = An,m ⊗ lim−→(Xn
i , f

n
ij) −→ lim−→(Xm

i , f
m
ij ) = Lm

showing that L is in fact a graded A-module. The fact that L is a direct limit

and that the formation of L is exact is an easy consequence of the construction.

Next, for each, i let Gji be a collection of generators for Qcoh(Xi). Then the

collection

{Gji ⊗ eiA | n ∈ Z,N ∈ Nn} (5.5)

forms a set of generators for Gr(A).

2As mentioned in the introduction, this property is nontrivial and in fact one of the main

results of this chapter
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The first crucial ingredient in our construction is a certain duality between

locally free bimodules. The this end, we recall that we assume that5.2.1 that

X and Y are smooth varieties over k

Lemma 5.2.9. (see [VdB12, §4]) Let E ∈ bimod(X−Y ) be a locally free coher-

ent bimodule. Then there is a unique object -the right dual- E∗ ∈ bimod(Y −X)

such that the functor

−⊗Y E∗ : Qcoh(Y ) −→ Qcoh(X)

defined in 5.2 is right adjoint to the functor − ⊗X E, i.e for M ∈ Qcoh(X)

and N ∈ Qcoh(Y ), there is a natural isomorphism:

HomY (M⊗E ,N ) ∼= HomX(M,N ⊗ E∗).

Remark 5.2.10. Van den Bergh also gives an explicit formula (see the dis-

cussion following prop. 4.1.6 in [VdB12]): if E = uUv then E∗ is given by

vHomW (U , v!OY )u

The opposite notion leads to the left dual: an object ∗E such that

HomX(N ⊗ ∗E ,M) ∼= HomY (N ,M⊗E)

By Yoneda’s lemma we have E =∗ (E∗) = (∗E)∗. Repeated application of duals

leads to the following notation as well:

E∗n =


E

n︷ ︸︸ ︷
∗ . . . ∗ n ≥ 0
−n︷ ︸︸ ︷
∗ . . . ∗E n < 0

In the sequel it will be convenient to invoke the following notation:

Convention 5.2.11. For the smooth varieties X and Y , we shall often im-

plicitly consider the sequence (Xi)i∈Z defined as

Xn = X if n is even and Y if n is odd
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From the adjointness properties of the duals defined above, there are unit

and counit morphisms:

in : OXn −→ E∗n ⊗ E∗n+1 (5.6)

jn : E∗n ⊗ E∗n−1 −→ OXn

Our next ingredient is that of a nondegenerate bimodule.

Definition 5.2.12. We say that Q ∈ bimod(X − W ) is invertible if there

exists a bimodule Q−1 ∈ bimod(W −X) such that

Q⊗W Q−1 ∼= OX and Q−1 ⊗X Q ∼= OW .

If there are bimodules E ∈ bimod(X − Y ) and F ∈ bimod(Y − W ) such

that Q ⊂ E ⊗Y F , the we say the inclusion is nondegenerate if the following

composition

E∗ ⊗X Q −→ E∗ ⊗X ⊗ (E ⊗Y F) −→ F

is an isomorphism.

Definition 5.2.13. Let (Xi)i∈Z be a sequence of smooth varieties over k and

let Ei be locally free Xi − Xi+1-bimodules. Then the tensor sheaf Z-algebra

T({Ei}) is the sheaf Z-algebra generated by the {Ei}. More precisely:

T({Ei})m,n =


0 n < m

Id

(
OXm

)
Id

n = m

Em ⊗ . . .⊗ En−1 n > m

If X and Y are smooth varieties and E a locally free X − Y -bimodule, the

standard tensor algebra is the sheaf Z-algebra T(E) constructed by applying

the convention 5.2.11 and considering

En = E∗n

in the above definition
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We can now state the definition of the main object of study in this chapter:

the symmetric sheaf Z-algebra.

Definition 5.2.14. Let (Xi)i∈Z be a sequence of smooth varieties over k and

let Ei be locally free Xi−Xi+1-bimodules. Suppose that for each i we are given

a nondegenerate Xi − Xi+2-bimodule Qi ⊂ Ei ⊗ Ei+1. Then the symmetric

sheaf Z-algebra S({Ei}, {Qi}) is the quotient of T({Ei}) by the relations (Qi)i.
I.e. S({Ei}, {Qi})m,n is defined asT({Ei})m,n n ≤ m+ 1

T({Ei})m,n/[(Qm ⊗ . . .) + (Em ⊗Qm+1 ⊗ . . .) + . . .+ (. . .⊗Qn−2)] n ≥ m+ 2

If X and Y are smooth varieties and E an X − Y -bimodule, the standard

symmetric sheaf Z-algebra S(E) is constructed form the standard tensor sheaf

Z-algebra T(E) by considering the following sequence of nondegenerate invert-

ible bimodules:

Qn = in (OXn) ⊂ E∗n ⊗ E∗n+1 (5.7)

A fundamental operation in the context of sheaf Z-algebras is that of twist-

ing by a sequence of invertible bimodules:

Theorem 5.2.15. Let (Xi)i and (Yi)i be sequences of smooth varieties over

k and A a sheaf Z-algebra on (Xi)i.

Given a collection of invertible Xi − Yi-bimodules (Ti)i, one can construct a

sheaf Z-algebra B by

Bij
def
= T −1

i ⊗Aij ⊗ Tj

called the twist of A by (Ti)i.
There is an equivalence of categories given by the functor

T : Gr(A) ∼= Gr(B) :Mi −→Mi ⊗ Ti

Moreover, every symmetric sheaf Z-algebra can be obtained from a standard

symmetric one by performing such a twist operation.

Proof. This is proven [VdB12, §5.1]
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5.2.2 The Rank (2, 2) Case

In this section, we give a proof of the result that Proj(S(E)) is commutative in

the case where E has rank (2, 2). As mentioned in the introduction however,

our primary concern is the rank (4, 1) case. This section’s sole purpose is to

acquire a little geometric intuition for the object S(E). As such it may be

skipped by the reader without any trouble.

We first begin by introducing notation for the Z-graded-to-Z-algebra construc-

tion in our setting

Convention 5.2.16. Let G be a graded algebra in the monoidal category

bimod(X) Then we denote by Ĝ the sheaf Z-algebra over X whose (i, j)-

component is the X-bimodule Gj−i

Remark 5.2.17. It is clear that in the above situation, taking the direct sum

yields an equivalence:

Gr(G)
'−→ Gr(Ĝ) : (M)i 7→

⊕
i∈Z
Mi

If E is an X-bimodule, then it is easily seen that the graded sheaf of algebras

Sym(E) satisfies these conditions. The following lemma (which was already

announced but not proven in [VdB12]) shows that symmetric sheaf Z-algebras

over central bimodules rank (2,2) indeed essentially coincide with sheaves of

commutative graded algebras:

Lemma 5.2.18. Let V be a locally free X-module of rank 2. There is an

equivalence of the form

Gr(S(IdVId))
T−→ Gr

(∧
SymX×X(IdVId)

) ∼=−→ Gr(SymX(V))

where T is given by twisting through
((∧2 V

)b i2c)
i∈Z as in theorem 5.2.15.
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Proof. We first describe the second equivalence: by the remark 5.2.17, we may

remove the hat and simply consider the sheaf of graded algebras SymX×X Id(IdVId).

The second equivalence now follows tautologically from the definitions, since

in each degree d, d′,

Md ⊗ SymX×X(IdVId)d′ =Md ⊗ Id (SymX(V))Id
5.2.1
= Md ⊗X SymX(V)d′

implying that both multiplications coincide. We now explain the first equiva-

lence:

Let E = IdVId. Using the explicit expression for the dual given in 5.2.10, we

obtain

E∗ = IdHom(V, Id!OX)Id = Id(V∗)Id

In particular the equalities E∗2n = E = Id(V)Id and E∗2n+1 = E∗ = Id(V∗)Id

hold for all n. Since the pairing V ⊗ V −→ Λ2V is perfect, there is an isomor-

phism

V∗ ⊗ (Λ2V)
∼=−→ V (5.8)

Let (Ti)i = (
∧2 V)b

i
2c. It follows from the definition of T(E), that as sheaf

Z-algebras, we have

T(E) = T̂X(V)

By theorem 5.2.15 applying the twist by the sequence (Ti) yields an equivalence

Gr(T(E))→ Gr(T̂X(V)) :
(
Mi

)
i
7→
(
Mi ⊗ (Λ2V)b

i
2c)

i

specifically in each component:

T(E)m,n ∼= Id

(
(Λ2V)b

m
2 c ⊗ TX(V)n−m ⊗ (Λ2V)−b

n
2 c
)

Id
(5.9)

We now claim that the twisting in (5.9) induces a twisting

S(E)m,n ∼= Id

(
(Λ2V)b

m
2 c ⊗ SymX(V)n−m ⊗ (Λ2V)−b

n
2 c
)

Id

and hence an equivalence of categories:

Gr(S(E))→ Gr(SymX(V)) :
(
Mi

)
i
7→
⊕
i

Mi ⊗ (Λ2V)b
i
2c (5.10)
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So we are left with proving the claim. For this we must understand what

happens under (5.9) to the relations that define S(E) as a quotient of T(E).

As the relations are generated in degree 2, it suffices to consider S(E)m,m+2 ⊗
Id(Λ2V)Id. This is the quotient of

T(E)m,m+2 ⊗ Id(Λ2V)Id
∼= Id (TX(V)2)Id = Id (V ⊗ V)Id

by the relation

i
(

Id(OX)Id

)
⊗ Id(Λ2V)Id ⊂ Id

(
V ⊗ V∗ ⊗ Λ2V

)
Id
∼= Id (V ⊗ V)Id .

We have to check that this relation is exactly the one that defines SymX(V)

as a quotient of TX(V). The latter relation is defined locally, so it suffices

to check on a trivializing open subset U for V. If V|U ∼= OX |U u ⊕ OX |U v
then i

(
Id(OX)Id

)
is locally given by u ⊗ u∗ + v ⊗ v∗. One checks that the

isomorphism (5.8) maps u∗ ⊗ (u∧ v) to v and v∗ ⊗ (u∧ v) to −u, the induced

relation in V ⊗ V is locally given by u ⊗ v − v ⊗ u, the defining relation of

SymX(V).

We have the following result:

Proposition 5.2.19. Let E be any X − Y -bimodule of rank (2, 2). Then

Gr(S(E)) is noetherian

This proposition ensures that we can perform the Proj construction on

S(E) if the rank of E is (2,2) by 5.2.6. The resulting noncommutative scheme

is equivalent to a projective bundle over X as follows:

Corollary 5.2.20. With the assumptions of the previous theorem we have an

induced equivalence:

Φ : Proj(S(Id(V)Id))
'−→ Proj(SymX(V))

'−→ Qcoh(PX(V))

Proof. The equivalence given in (5.10) obviously maps torsion modules onto

torsion modules, hence it factors to yield an equivalence Proj(S(Id(V)Id)
'−→

Proj(SymX(V)).
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The second equivalence is a well known result from classical algebraic geometry

and is given by the following pair of functors

Proj(SymX(V)) Qcoh(PX(V))

(̃−)

p ◦ Γ∗
def
= p

[
⊕iπ∗

(
(−)(i)

)]
Where π is the canonical projection π : PX(V) −→ X.

5.2.3 Truncation Functors and Periodicity

Let A be a sheaf Z-algebra over a sequence of varieties (Xi)i∈Z. Then we can

define a sequence of truncation functors as follows: for each m ∈ Z, we can

consider the functor

Gr(A)
(−)m // Qcoh(Xm)

We shall need the following easy result on these functors:

Lemma 5.2.21. Let emA be the right A-module defined in 5.4. There is an

adjoint pair

−⊗ emA a (−)m

Proof. The proof of this is standard and left to the reader

Our next result shows that there is a certain 2-periodic behavior among

these functors. To this end, for n ∈ Z, we denote by A(n) the sheaf Z-algebra

A(n)i,j = An+i,n+j (5.11)

Proposition 5.2.22. Let (Xi)i∈Z be a sequence of smooth varieties and A be a

symmetric sheaf Z-algebra. There is an autoequivalence α on Gr(A) inducing
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a commutative diagram for each m:

Gr(A)
(−)m //

α

��

Qcoh(Xm)

⊗ωXm
��

Gr(A)
(−)m+2

// Qcoh(Xm)

Proof. By theorem 5.2.15 A is Morita equivalent to a symmetric sheaf Z-

algebra S(E) in standard form with E ∈ bimod(X − Y ) (using the notation

5.2.11 ). Moreover by [VdB12, 4.1.7], we have

E∗2 ∼= ω−1
X ⊗ E ⊗ ωY

Hence the twist by (ωXi)i∈Z yields an equivalence

T : Gr(S(E))
∼=−→ Gr(ω−1 ⊗ S(E)⊗ ω)

∼=−→ Gr(S(E∗2))

where we used the short-hand notation(
ω−1 ⊗ S(E)⊗ ω

)
m,n

= ω−1
Xm
⊗ S(E)m,n ⊗ ωXn .

Next, the construction of a standard symmetric sheaf Z-algebra implies that

there is an equivalence Ψ : Gr(S(E)(2)) −→ Gr(S(E∗2)) (where we used the

notation (5.11). We now simply define

α
def
= (−2) ◦Ψ−1 ◦ T : Gr(S(E)) −→ Gr(S(E∗2)) −→ Gr(S(E)(2)) −→ Gr(S(E))

In the commutative case of a symmetric sheaf Z-algebra constructed with a

central bimodule of rank (2,2) (as discussed in 5.2.2) the 0th truncation functor

coincides with the pushforward functor in the following sense:

Theorem 5.2.23. Let V be a vector bundle on X of rank 2 and consider the

associated symmetric sheaf Z-algebra S(Id(V)Id).

Let

Φ : Proj(S(Id(V)Id)) −→ Qcoh(PX(V))
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be the equivalence provided by Corollary 5.2.20. Then the following diagram

commutes

Gr(S(Id(V)Id))

(−)0

''
Proj(S(Id(V)Id))

ω

66

Φ ((

Qcoh(X)

Qcoh(PX(V))

π∗

77

Proof. Let Z
def
= PX(V) and A def

= S(Id(V)Id). The formula we need to prove

explicitly is

π∗

(
˜⊕i(−)⊗ Ti

)
∼=
(
ω(−)

)
0

where Ti =
((∧2 V

)b i2c)
i∈Z is given as in the statement of 5.2.18.

Now by lemma 5.2.21 and the definition of ω, the functor
(
ω(−)

)
0

is right

adjoint to p
(
(−) ⊗ e0A

)
. Another formal computation using corollary 5.2.20

shows that π∗

(
˜⊕i(−)⊗ Ti

)
is right adjoint to the functor T −1

[
(p ◦ Γ∗)

(
π∗(−)

)]
.

This functor in turn being equal to p
[(
π∗
(
π∗(−)(i)

)
⊗ T −1

i

)
i

]
, which by the

projection formula, simplifies to p
((

(−)⊗ π∗OZ(i)⊗ T −1
i

)
i

)
. The unicity of

adjoint functors thus reduces the claim to proving the isomorphism(
(−)⊗ π∗OZ(i)⊗ Ti

)
i
∼= (−)⊗ e0A (5.12)

Since rk(E) ≥ 2, [Har97, Proposition II.7.11.a] implies that there is an isomor-

phism π∗
(
OZ(i)

)
= SymX(V)i. Now, by the choice of Ti, we have SymX(V)i =

A0i ⊗ Ti. The 2-periodicity (5.12) thus becomes(
(−)⊗π∗OZ(i)⊗T −1

i

)
i

=
(
(−)⊗A0i⊗Ti⊗T −1

i

)
i

=
(
(−)⊗A0i

)
i

= (−)⊗e0A

proving the claim.

We also have a different 1-periodic behaviour for the truncation functors

in this case:
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Proposition 5.2.24. Let V be a locally free sheaf of rank 2 on X and S(IdVId)

the associated symmetric sheaf Z-algebra. Then there is an equivalence β and

for each n, a line bundle Ln on X making the diagram

Gr(S(IdVId))
(−)n //

β

��

Qcoh(X)

−⊗Ln
��

Gr(S(IdVId))
(−)n+1

// Qcoh(X)

commute.

Proof. By lemma 5.2.18 there is a sequence of X −X-bimodules Ti such that

the following is an equivalence of categories

Gr(S(IdVId)) −→ Gr(SymX(V)) : (Mi)i 7→
⊕
i

Mi ⊗ Ti

Let (−1) denote the inverse shift functor on Gr(SymX(V)), i.e. (M(−1))i =

Mi−1 and define β as the autoequivalence making the diagram

Gr(S(IdVId))
T //

β

��

SymX(V)

(−1)

��
Gr(S(IdVId))

T
// SymX(V)

commute. Since we clearly have (−)n+1 ◦ (−1) = (−)n, we get the required

result by choosing the line bundle Ln
def
= Tn ⊗ T −1

n+1 with Tn as in the proof of

lemma 5.2.18.

Remark 5.2.25. the previous result of 1-periodicity clearly implies 2-periodicity

after repeated application in the sense that

(−)n+2 ◦ β2 =
(
Ln+1 ⊗ Ln

)
⊗ (−)n

hence one can wonder whether this periodicity coincides with proposition 5.2.22.

This is not the case in general. Indeed, from the explicit form of T in propo-

sition 5.2.22 and β in Proposition 5.2.24, we obtain

Ln =
( 2∧
V
)bn2 c ⊗ ( 2∧

V
)−bn+1

2 c
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and Ln+1⊗Ln =
(∧2

(V)
)−1

, which obviously does not coincide with ωX/S in

general.

5.3 Noetherianity of Gr(S(E))

As explained in the introduction, it is the case of a bimodule E of rank (4, 1)

that we are particularly interested in. This section is dedicated to proving one

of the important geometric properties of S(E) in this setting:

Theorem 5.3.1. Let X and Y be smooth varieties over k and E ∈ bimod(X−
Y ) be locally free of rank (4,1). Then the category Gr(S(E)) is locally noethe-

rian.

As an immediate consequence, the category Tors(S(E)) is localizing and we

can form the noncommutative scheme Z
def
= Proj(S(E). Lemma [Smi99, 14.19]

now also shows:

Theorem 5.3.2. Under the conditions of 5.3.1, Z is a noetherian noncom-

mutative scheme

The next lemma shows that under these assumptions, the bimodule E can

written in a convenient form using a line bundle on Y and a finite map f of

degree 4.

Lemma 5.3.3. Assume that X,Y are smooth varieties of finite type over k
and E is a locally free X − Y -bimodule of rank (n, 1). Then there is a line

bundle L on Y and a finite surjective morphism f : Y −→ X of degree n such

that E ∼= fLId (see 5.2.3 ).3

Proof. Let W ⊂ X × Y be the scheme theoretic support of E and denote the

projections W −→ X, W −→ Y by g, h respectively:

3note that f is automatically flat here
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Supp(E) = W

X × Y

X Y

ι

g h

πX πY

By definition g, h are finite morphisms. Furthermore E ∼= gFh for F ∈
coh(W ) such that SuppF = W . By Lemma 5.3.4 below we conclude that h is

an isomorphism and that F is a line bundle on Z. Put L = h∗F , f = gh−1.

Then E ∼= fLId. Since L is a line bundle, f∗L and f∗OY are locally isomorphic

(e.g. by Lemma 5.3.8 below). So f∗OY is locally free of rank n as well and

therefore f is flat of degree n.

Lemma 5.3.4. Assume that h : W −→ Y is a finite morphism between smooth

varieties, F is a coherent sheaf on W whose scheme theoretic support is W

and h∗F is locally free of rank one. Then h is an isomorphism and F is a line

bundle on Z.

Proof. Since h is finite it is affine, we may assume that Y = SpecR, W =

SpecS and F = F̃ for F an S-module which is invertible as R-module. The

composition of

R
h−→ S

s7→(f 7→sf)−−−−−−−→ EndR(F ) ∼= R

is the identity and the middle map is injective since W is the scheme-theoretic

support of F . It follows that all maps are isomorphisms. The claim follows.

Convention 5.3.5. Inspired by 5.3.3, we will often consider the setting where

X,Y are smooth varieties over k with a finite surjective morphism f : Y −→ X

of degree 4 and and E is an X−Y bimodule given as E ∼= fLId for a line bundle

L on Y .
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5.3.1 Restricting to an Open Subset

The first step in the proof of theorem 5.3.1 is showing that there is an appro-

priate notion of restricting a sheaf Z-algebra to an open subset and that the

statement of theorem 5.3.1 can be reduced to an open cover in this sense.

To this end, we let A denote a sheaf Z-algebra over a sequence of smooth va-

rieties Xi and U = (Um)m∈Z be a sequence of affine open subsets Um ⊂ Xm.

For a bimodule F ∈ bimod(Xm −Xm+1), and a graded A-module M we will

use the notation (−)|U to denote the restriction to the corresponding open

subset. I.e.

F|U
def
= F|Um×Um+1

(A|U )
m,n

def
= (Am,n)|U = (Am,n)|Um×Un

(M|U )
m

def
= (Mm)|Um

To ensure that the restrictions of A to an open subset remains a sheaf Z-

algebra, we need the following technical condition:

Lemma 5.3.6. Let A be a sheaf Z-algebra and U as above such that m,n:

Supp((Am,n)|Um×Xn) ⊂ Um × Un and Supp((Am,n)|Xm×Un) ⊂ Um × Un

then

i) A|U has an induced algebra structure.

ii) Restriction of modules to U defines a functor |U : Gr(A)→ Gr(A|U )

Proof. i) We must show that for all l,m, n ∈ Z there are multiplication mor-

phisms Al,m|U⊗Am,n|U → Al,n|U induced by the morphismsAl,m ⊗Am,n → Al,n.

It is evident that the latter induces a morphism of U l −Un-bimodules as

follows:

(Al,m ⊗Am,n)|U → Al,n|U
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Now the claim follows from the following chain of isomorphisms:

(Al,m ⊗Am,n)|U =
(
πXl,Xn∗

(
π∗Xl,Xm(Al,m)⊗Xl×Xm×Xn π∗Xm,Xn(Am,n)

))∣∣
U l×Un

= πU l,Un∗

((
π∗Xl,Xm(Al,m)⊗Xl×Xm×Xn π∗Xm,Xn(Am,n)

)∣∣
U l×Xm×Un

)
= πU l,Un∗

(
π∗Xl,Xm(Al,m)

∣∣
U l×Xm×Un

⊗ π∗Xm,Xn(Am,n)
∣∣
U l×Xm×Un

)
= πU l,Un∗

(
π∗U l,Xm(Al,m|U l×Xm)⊗U l×Xm×Un π

∗
Xm,Un(Am,n|Xm×Un)

)
= πU l,Un∗

(
π∗U l,Um(Al,m|U l×Um)⊗U l×Um×Un π∗Um,Un(Am,n|Um×Un)

)
= Al,m|U ⊗ Am,n|U

where πU l,Xm and πU l,Um are the projections πU l,Xm : U l ×Xm × Un → U l ×Xm

and πU l,Um : U l × Um × Un → U l × Um, with similar definitions for πXm,Un

and πUm,Un .

The first equality is the definition of tensor product of bimodules

bimod(Xl −Xm)× bimod(Xm −Xn)→ bimod(Xl −Xn)

The second equality follows from the commutation of pushforward and

restriction of sheaves. The third equality follows from the commutation

of tensor product of sheaves and restriction. The fourth equality follows

from the commutation of pullback and restriction of sheaves. The fifth

equality follows the assumption of the lemma. The last equality is the

definition of multiplication

bimod(U l − Um)× bimod(Um − Un)→ bimod(U l − Un)

ii) This essentially reduces to showing (Mi ⊗Ai,j)|Uj = (M|U )
i
⊗ (A|U )

i,j

which is completely similar to i).

Our main motivation to study restriction of sheaf Z-algebra lies in the

following result whose proof is straightforward:
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Lemma 5.3.7. Let Ui be a finite set of sequences such that for each m ∈ Z,⋃
i(U

m)i = Xm. Assume that A is a sheaf Z-algebra such that the conditions

in lemma 5.3.6 are satisfied for all Ul, then

∀l : M|Ul ∈ Gr(A|Ul) is noetherian ⇒M ∈ Gr(A) is noetherian

Proof. Suppose we are given an ascending chain of sub-objects of Mn ⊂ M
in Gr(A) such that the restriction of this chain to any of the sequence Ul
stabilizes. As there are only finitely many Ul, there is an N ∈ N such that for

all n ≥ N and for all l: (Mn)|Ul = (Mn+1)
∣∣
Ul

. The graded modulesMn and

Mn+1 must coincide.

Following the convention 5.3.5, we now consider the case where A = S(E)

for E =f LId. Then, for an affine open subset U ⊂ X we define the associated

sequence U by Um ⊂ Xm as follows:

U i =

U if i is even

f−1(U) if i is odd

Note that U i is indeed an affine open subset because f is a finite morphism.

The results of lemma 5.3.6 in this context can be stated as follows:

Corollary 5.3.8. For any U ⊂ X,

i) S(E)|U has an algebra structure induced by S(E)

ii) There is a functor |U : Gr(S(E))→ Gr(S(E)|U )

iii) There is an isomorphism of symmetric sheaf Z-algebras: S(E)|U ∼= S(E|U )

Proof. i+ii) As E is given as f (L)Id following convention 5.3.5, the conditions

in lemma 5.3.6 are trivially satisfied for A = S(E). For iii) We first show that

for all m ∈ N there is a natural isomorphism

θE : (E∗m)|U = (E|U )
∗m

(5.13)
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Using remark 5.2.10 we see by induction that for each m ≥ 0 there is a line

bundle Lm such that

E∗2m = f (Lm)Id

E∗2m+1 = Id(Lm)f

where L0 = L. The explicit form of the dual in 5.2.10 shows that it suffices to

exhibit isomorphisms

f

(
HomY (Lm, f !OX)

)
Id

∣∣
U
∼= f |U

(
Homf−1(U)( (Lm)|f−1(U) , (f |U )!OU )

)
IdU

However as restriction to open affine subsets commutes with f∗, HomY and

f !, this isomorphism is immediate.

This implies that (5.13) is valid for m < 0 as well: indeed, it suffices to show

this for m = −1. In this case. there is at least a morphism νE :∗ (E|U ) −→
(∗E) |U . To show that ηE is an isomorphism, we may apply (−)∗, since this is

a fully faithful functor. This yields a commutative diagram(∗(E|U )
)∗ ' //

µ∗E
��

E|U

1

��

(
(∗E)∗|U

)
θE

��(
(∗E)∗

)
|U '

// E

proving the claim.

Finally, the naturality of θE immediately implies that the restricted unit mor-

phisms im|U coincides with

Id (OUm)Id −→ (E|U )
∗m ⊗ (E|U )

∗m+1

Implying in particular that θE induces an isomorphism

im(Id (OUm)Id) ∼= im(Id (OXm)Id)|Um

Page 214



CHAPTER 5. THE EXOTIC RANK 4 SURFACE

and we can extend θE to an isomorphism

θ : S(E)|U ∼= S(E|U )

5.3.2 Covering by Relative Frobenius Pairs

The above lemma 5.3.7 shows that verifying that an A-module is noetherian

can be done locally. In this subsection we construct an open cover X =
⋃
l Ul

for which the categories Gr(S(E)|Ul) can explicitly described (see 5.3.10). The

first step in this description is a finite cover Ui for which the maps on rings

of sections are relatively Frobenius as in 4.2.2. In the next section, we shall

subsequently use this to relate the sections of the symmetric sheaf Z-algebra

on such affine cover to the generalized preprojective algebras as defined in

the previous chapter (4.2.8). Throughout, we shall make use of the following

lemma, well-known to experts:

Lemma 5.3.9. Let f : Y −→ X be a finite morphism of smooth varieties.

Let L be a line bundle on Y and p ∈ X. Then there is an open subset U ⊂ X
containing p, such that L|f−1(U)

∼= Of−1(U).

Proof. Since affine open subsets form a base and f is affine (as it is finite), we

can reduce to the case where X = Spec(R), Y = Spec(S) are affine varieties

over k and S is finitely generated over R and L = L̃ for some invertible S-

module L. Let p be the prime ideal in Spec(R) corresponding to f(p) ∈ X, then

Sp
def
= S ⊗R Rp is a semi-local ring, hence every finitely generated projective

Sp-module of constant rank is free and in particular the Picard group of Sp is

trivial. Consequently, there exists an l ∈ L such that

Sp
·l−→ Lp

is an isomorphism.

Now consider the morphism S
·l−→ L with kernel K and cokernel C. Then

there is an exact sequence

0 −→ K −→ S
·l−→ L −→ C −→ 0 (5.14)
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K is a finitely generated R-submodule of S by the noetherianity of R. L is

finitely generated over R, being an invertible S-module. It follows that C is

finitely generated over R as a quotient of L. Now let α1, . . . , αn be a set of

generators for k, then as K ⊗ Rp = 0 there exist elements x1, . . . , xn ∈ R\p
such that α1x1 = . . . = αnxn = 0. Set x

def
= x1 · . . . · xn ∈ R\p, then α · x = 0

for all α ∈ K. Similarly there is a x′ ∈ R\p such that β · x′ = 0 for all β ∈ C.

Now define z = x · x′, then K ⊗Rz = C ⊗Rz = 0 implying that ·l defines an

isomorphism

S ⊗Rz
∼=−→ L⊗Rz

U = Spec(Rz) then is the desired open subset.

We can now prove the main lemma of this subsection, which yields a cover

on which many desirable geometric properties are satisfied:

Lemma 5.3.10. Write E = f (L)Id as in lemma 5.3.3. There is a finite cover

X =
⋃
l Ul by affine open subsets Ul = Spec(Rl) such that:

i) L|f−1(Ul)
is a trivial Of−1(Ul)-module

ii) ωY |f−1(Ul)
is a trivial Of−1(Ul)-module

iii) ωX |Ul is a trivial OUl-module

iv) f−1(Ul) = Spec(Sl) where Sl/Rl is relative Frobenius of rank 4.

Proof. We first note the following two facts:

• Let Spec(R) be an affine open subset on which i), ii), iii) or iv) holds.

Then the same statement holds for any standard open Spec(Rf ) ⊂
Spec(R). This is obvious for i), ii) and iii). For iv) it follows from

the first statement of 4.3.1.

• Let Spec(R) and Spec(R′) be affine open subsets of X, then their inter-

section is covered by open subsets which are simultaneously distinguished

in each space, in other words subsets of the form Spec(Rf ) = Spec(R′g)
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By these two facts it suffices to find affine open covers for i), ii), iii) and iv)

separately. For i) and ii) such a cover exists by lemma 5.3.9 and the fact

that ωY is a line bundle on the smooth variety Y . The existence of a cover

satisfying iii) is immediate from the fact that ωX is a line bundle. We have

reduced the claim to exhibiting a cover satisfying iv).

Now by lemma 5.3.9: f !ωX is completely determined by f∗
(
f !ωX

)
and we

have an isomorphism of f∗OY -modules

f∗
(
f !ωX

) def
= HomX(f∗OY , ωX) ∼= f∗ωY (5.15)

As moreover f is also surjective and flat, there is a cover X =
⋃
l Ul with

Ul = Spec(Rl) and f−1(Ul) = Spec(Sl) where Sl is a free Rl-module of rank 4

for each l. By the previous arguments we can assume that ii) and iii) are also

satisfied on this cover. In this case, replacing f by its restriction f−1(Ul) −→
Ul, (5.15) reads

f∗
(
f !OUl

) def
= HomUl(fOf−1(Ul),OUl) ∼= f∗Of−1(Ul)

and taking sections yields the required isomorphism of Sl-modules:

HomRl(Sl, Rl)
∼= Sl

5.3.3 from Periodic Z-Algebras to Graded Algebras

The previous section showed how we can reduce the statement of 5.3.1 to

the case where X and Y are affine, and satisfy some convenient geometric

properties (see 5.3.10). In this section, we provide a second technical tool

which allows us to reduce to the case where the Z-algebra comes from a graded

algebra. The (̂−)-construction (see 5.2.16) assigns a Z-algebra to a graded

algebra. In this section, we shall conversely show that a periodic Z-algebras A

gives rise to a graded algebra A such that Gr(A) is a direct summand of the

category Gr(A). We start by describing the following slight generalization of

Z-algebras in order to be able to easily apply the result in our required setting:
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Definition 5.3.11. Let k be a commutative groundring and let (Ri)i∈Z be a

sequence of commutative k-algebras. A bimodule Z-algebra over (Ri)i∈Z is a

collection of Ri −Rj-bimodules Ai,j together with multiplication maps

Ai,j ⊗Rj Aj,l −→ Ai,l

and Ri-linear unit maps Ri −→ Aii satisfying the usual Z-algebra axioms. If

Ri = R ∀i, then A is a bimodule Z-algebra over R

Definition 5.3.12. Let A be a Z-algebra over (Ri)i∈Z and d > 0 an integer.

Assume that for each i, we have Ri+d = Ri. We say A is d-periodic if there

is an isomorphism of Z-algebras ϕ : A
∼−→ A(d). I.e. there is a collection of

Ri − Rj-bimodule isomorphisms {ϕij : Ai,j
∼−→ Ai+d,j+d}i,j compatible with

the multiplication and unit maps.

Let A be d-periodic and let R
def
=

d−1⊕
i=0

Ri. We construct a graded R-algebra

A as follows: let An be a d× d-matrix with entries

(
An
)
i,j

=

{
Ai,i+n if j − i ≡ n (mod d)

0 else
(5.16)

(Where we use the convention that the numbering of rows and columns of the

matrix starts at 0 instead of 1.)

By way of example,

A1 =



0 A0,1 0 . . . 0

0 0 A1,2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Ad−2,d−1

Ad−1,d 0 0 . . . 0


EachAn is naturally a left (resp. right)R-module by letting a d-tuple (r0, . . . rd−1)

act as a diagonal matrix D with entries Dii
def
= ri on the left (resp. right).

Moreover, there is a canonical multiplication map

An ⊗R Am −→ An+m
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given by the ordinary matrix multiplication and applying the periodicity iso-

morphisms φij whenever necessary. The (Ri)i∈Z-linearity of the Z-algebra

multiplication implies that the above maps are indeed R-bilinear.

Lemma 5.3.13. Suppose A is d-periodic, then the above maps define a graded

(unital) R-algebra structure on the R-module A
def
= ⊕i∈ZAi

Proof. The reader checks that the compatibility of the periodicity isomor-

phisms with the Z-algebra multiplication maps implies that the multiplication

is associative. The algebra has a unit given by

1 =


e0 0 . . . 0

0 e1 . . . 0
...

...
. . .

...

0 0 . . . ed−1

 ∈ A0

where ei is the unit in Aii.

There is a convenient description of the category of graded right A-modules

as follows: let M ∈ Gr(A). Then by definition we have a decomposition

M =
⊕

i∈ZMi. Moreover, each R-module Mi in turn has a direct sum decom-

position given by Mi =
⊕d−1

j=0 ejMi. We define M j
i

def
= ejMi.

This decomposition allows us to give a description of the A-module structure

of M . For a matrix a ∈ Am, ej .a only has one nonzero entry at position

(j, j + m). It follows from the right R-structure on Am that eja = a.ej+m

(where we consider j +m mod d following 5.16). Thus the right action of Am

on M j
i becomes a map of the form M j

i ⊗ Aj,j+m −→ M j+m
i+m or equivalently

for l = j +m,

M j
i ⊗Aj,l −→M l

i+l−j

we now have:

Lemma 5.3.14. Suppose A is d-periodic and let C be the category defined as

follows:
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1. an object is a collection of R-modules (M j
i )i∈Z,0≤j≤d−1, such that M j

i is

an Rj-module together with multiplication maps

µMi,j,l : M j
i ⊗Aj,l −→M l

i+l−j

for each i, j, l (where l and i + l − j should be interpreted modulo d)

satisfying the obvious compatibility condition for multiplication and unit.

2. a morphism is a collection fi,j of Rj- linear maps M j
i −→ N j

i such that

fi+l−j,l ◦ µMi,j,l = µNi,j,l ◦ (fi,j ⊗Aj,l)

Then there is a canonical isomorphism of categories C ∼= Gr(A)

Proof. The above discussion shows that the assignmentM −→ (Mlei)l∈Z,0≤i≤n−1

is well defined and essentially surjective. A morphism of graded modules

f : M −→ N will satisfy f(Miej) ⊂ Niej and we can define fi,j as the re-

striction to these submodules. The A-linearity guarantees that (fi,j)i,j indeed

defines a morphism in C and since ⊕Miej = M it is clear that this assignment

is faithful. Since any collection of maps fi,j satisfying the above compatibility

with the multiplication will sum up to an A-linear map, the assignment is also

full.

Lemma 5.3.15. There exists a decomposition

C = C0 ⊕ . . .⊕ Cd−1

where Cn is the full subcategory of C whose objects are collections of R-modules

(M j
i )i∈Z,0≤j≤d−1 where M j

i = 0 unless j − i ≡ n (mod d).

Proof. This follows immediately from the construction of C and the fact that

j − i = l − (l + i− j). Hence, if (Mj
i )ij is a non-zero object in Cn, then so is

(Ml
l+i−j)ij for all l.

Proposition 5.3.16. There is an exact embedding of categories

(−) : Gr(A) ↪→ Gr(A)

moreover the essential image is a direct summand of Gr(A).
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Proof. Let M be an A-module with multiplication maps µi,m : Mi⊗RAm −→
Mi+m and let C be as above. We define an object M in C by

M
j

i =

{
Mi if j ≡ i mod d

0 else

where the multiplication is given by

µi,j,l =

{
µi,l−j if j ≡ i mod d

0 else

This assignment clearly defines an exact embedding Gr(A)
'−→ C0 ↪→ C, fin-

ishing the proof by lemmas 5.3.14 and 5.3.15.

5.3.4 a Local Description of S(E)

In this final step in the preparation of the proof of theorem 5.3.1, we complete

the local description of S(E). By 5.3.10, we have reduced the claim to the case

where X and Y are affine. By our hypothesis on X and E (see 5.2.1,5.3.5), we

assume that X = Spec(R) and Y = Spec(S) are affine varieties over k such

that S/R is relative Frobenius of rank 4 and ωX ∼= OX , ωY ∼= L ∼= OY . After

applying the global section functor, we obtain a bimodule Z-algebra in the

sense of 5.3.11 which is 2-periodic. The graded algebra associated to this Z-

algebra by the construction in §5.3.3 is precisely the generalized preprojective

algebra defined in 4.2.8 and studied in chapter 2.

We start by introducing some auxiliary notations. Recall the convention

5.2.11 and let A be a sheaf Z-algebra over Xi. There is a Z-algebra over k,

Γ(A) defined in each component by

Γ(A)i,j
def
= Γ(Xi ×Xj ,Ai,j)

since each component Γ(A)i,j is an R−S or S−R bimodule depending on the

parity of the indices, Γ(A) is in fact a Z-algebra over commutative groundring

R⊕S as in the discussion in the beginning of §4.2.2. The equivalence between
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quasi-coherent sheaves over an affine scheme and modules over the ring of

global sections can easily be adapted to our setting to yield an equivalence:

Γ : Gr(A)
'−→ Gr(Γ(A)) : {Mn}n∈Z 7→ {Γ(Xn,Mn)}n∈Z

The following is an immediate consequence of the assumptions of this sec-

tion:

Lemma 5.3.17. The Z-algebra Γ(S(E)) is 2-periodic in the sense that

Γ(S(E))i,j = Γ(S(E))i+2,j+2

Proof. By 5.2.22, there are isomorphisms S(E))i+2,j+2
∼= ω−1

i ⊗S(E))⊗ωj . By

the assumptions in the beginning of this section, both canonical bundles are

trivial, implying that S(E)i,j = S(E)i+2,j+2. The result follows after applying

Γ(−).

Using lemma 5.3.13, the 2-periodic Z-algebra Γ(S(E)) gives rise to a graded

algebra Γ(S(E)). We now have:

Lemma 5.3.18. Let X = Spec(R) and Y = Spec(S) be smooth affine varieties

such that S/R is relative Frobenius of rank 4. Let f : Y → X be the induced

morphism and E = f (OY )Id. Then Γ(S(E)) ∼= ΠR(S).

Proof. Consider the quotient map

T(E) // // S(E)

Taking global sections in each component Γ(Xi×Xj , (−)i,j) yields a surjection

Γ(T(E)) // // Γ(S(E)).

as Xi ×Xj is affine.

Since the functor (−) preserves surjectivity (see Proposition 5.3.16), we obtain

a map

π : Γ(T(E)) // // Γ(S(E)).
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We first show that there is a canonical isomorphism of R⊕ S-modules

Γ(T(E)) ∼= T (R,S) (5.17)

For this (as Γ (S(E)) is clearly generated in degrees 0 and 1) it suffices to show

the following three facts

• Γ(T(E))0
∼= T (R,S)0 = R⊕ S as rings

• Γ(T(E))1
∼= T (R,S)1

∼= RSS ⊕ SSR as R⊕ S-modules

• the multiplication map yields isomorphisms

Γ(T(E))1 ⊗ Γ(T(E))n
∼=−→ Γ(T(E))n+1

For the first statement, we compute:

Γ(T(E))0 =

(
Γ(T(E))0,0 0

0 Γ(T(E))1,1

)

=

(
Γ (X ×X, Id (OX)Id) 0

0 Γ (Y × Y, Id (OY )Id)

)

moreover, we have

Γ (X ×X, Id (OX)Id) = Hom (OX×X ,∆∗ (OX))

= Hom (∆∗ (OX×X) ,OX)

= Hom (OX ,OX)

∼= R

And similarly Γ (Y × Y, Id (OY )Id) ∼= S. combining these calculations yields

Γ(T(E))0
∼=

(
R 0

0 S

)
∼= R⊕ S
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In a completely similar fashion, we check the second condition:

Γ(T(E))1 =

(
0 Γ(T(E))0,1

Γ(T(E))1,2 0

)

=

(
0 Γ (X × Y, E)

Γ (Y ×X, E∗)

)

=

(
0 Γ (X × Y, f (OY )Id)

Γ (Y ×X, Id(OY )f ) 0

)

∼=

(
0 RSS

SSR 0

)
∼= RSS ⊕ SSR

To check the final condition, we have the isomorphisms

T(E)i,i+1 ⊗ T(E)i+1,i+n+1 −→ T(E)i,i+n+1

We now apply the functor Γ(Xi ×Xi+n+1,−) and note that since all varieties

are affine, the tensor product and Γ(−) commute, resulting in an isomorphism

Γ(T(E))i,i+1 ⊗ Γ(T(E))i+1,i+n+1 −→ Γ(T(E))i,i+n+1

application of the functor (−) yields

Γ(T(E))1 ⊗ Γ(T(E))n
'−→ Γ(T(E))n+1

we have thus constructed the required isomorphism (5.17). Finally, we prove

that the relations defining ΠRS coincide with the kernel of π, i.e. there is a

commutative diagram:

Γ(T(E))

∼=
��

π // Γ(S(E))

∼=
��

T (R,S)
π

// ΠR(S)

The isomorphisms in the previous step yield isomorphisms:

ζ0 : HomX×X(Id (OX)Id , E ⊗ E
∗)

'−→ HomR(R,RSS ⊗S SR)
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ζ1 : HomY×Y (Id (OY )Id , E
∗ ⊗ E)

'−→ HomS(S, SSR ⊗R SS)

Recall that S(E) is defined as a quotient of T(E) by the relations given by the

unit morphisms i0 ∈ HomX×X(Id (OX)Id , E⊗E∗) and i1 ∈ HomY×Y (Id (OY )Id , E∗⊗
E)described in (5.6). Similarly ΠR(S) is defined as a quotient of TR(S) by ele-

ments η0 ∈ HomR(R,RSS ⊗S SR), η1 ∈ HomS(S, SSR ⊗R SS). Hence we must

prove ζ0(i0) = η0 and ζ1(i1) = η1. To this end, note that there is a commuta-

tive diagram of isomorphisms

HomX×Y (E , E) HomX×X(Id (OX)Id , E ⊗ E∗)

HomR⊗S(RSS ,R SS) HomR(R,RSS ⊗S SR)
ϕ0

ζ0

where ϕ0 is given by the adjunction (−⊗R SS) a (−⊗S SR) = (−)R. Hence

ζ0(i0) = ϕ0(Id
RSS ) : 1R 7→ 1S ⊗ 1Sand this morphism indeed coincides with

η0. Similarly the existence of the dual bases (ei)i, (fj)j implies there is an

adjunction

−⊗S SR = (−)R a (−)⊗R SS given by

ϕ1 : HomR(M⊗SSR, N) −→ HomS(M,N⊗RSS) : ψ 7→

(
ψ′ : m 7→

∑
i

ψ(mei)⊗ fi

)
Where we used the lemma 5.3.19 below to show that the morphisms in the

image of ϕ1 indeed have an S-module structure. A commutative diagram as

above shows that ζ1(i1) = ϕ1(Id
SSR) : 1S 7→

∑
i ei ⊗ fi which coincides with

η1.

Lemma 5.3.19.
∑
i ei ⊗ fi is central in the S-bimodule S ⊗R S. I.e. for all

a ∈ S we have ∑
i

aei ⊗ fi =
∑
i

ei ⊗ fia

Proof. It is sufficient to prove that for all j, k we have∑
i

λ(aeifj)λ(fiek) =
∑
i

λ(eifj)λ(fiaek)
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which is clear since both sides are equal to λ(aekfj).

5.3.5 Proof of Theorem 5.3.1

We will now combine everything. As X and Y are noetherian we know that

Qcoh(X) and Qcoh(Y ) are locally noetherian categories and hence there exist

collections of noetherian generating objects for these categories, say NX def
=

{NX
i }i∈I and N Y def

= {N Y
j }j∈J . For each n ∈ Z we define Nn in Qcoh(Xn)

as:

Nn =

{
NX if n is even

N Y if n is odd

We shall prove that the collection

{N ⊗ enS(E) | n ∈ Z,N ∈ Nn} (5.18)

forms a set of noetherian generators for Gr(S(E)). Note that the collection is

easily seen to generate as for each M∈ Gr(A) there is a surjective morphism⊕
n∈Z
Mn ⊗ enA // // M

and for each n ∈ Z there is a surjective morphism⊕
α

(Nn
α )mα // // Mn

where Nn
α ∈ Nn. Hence we only need to show that the elements of (5.18) are

noetherian objects in Gr(S(E)). By lemma 5.3.7 and Corollary 5.3.8 this can

be checked locally for any open cover X =
⋃
l Ul. By theorem 5.3.10 we may

hence assume that X = Spec(R) and Y = Spec(S) are smooth affine varieties

such that

i) L ∼= OY ∼= ωY

ii) ωX ∼= OX

iii) S/R is relative Frobenius of rank 4.
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With these assumptions there are functors

Gr(S(E))

Gr(Γ (S(E)))

Gr
(

Γ (S(E))
)

Gr(ΠR(S))

∼= Γ(−)

∼= lemma 5.3.18

Proposition 5.3.16

(5.19)

Let F : Gr(S(E)) −→ Gr(ΠR(S)) be the composition. Then the above diagram

shows that F is an exact embedding of categories. Hence N ⊗ enS(E) is a

noetherian object in Gr(S(E)) if F (N ⊗ enS(E)) is a noetherian object in

Gr(ΠR(S)). On the other hand, as N is noetherian in Qcoh(Xn) there is an

m ∈ N and a surjection O⊕mXn // // N giving rise to an surjection

F (OXn ⊗ enS(E))⊕m // // F (N ⊗ enS(E))

Hence it suffices to show that F (OXn ⊗ enS(E)) is a Noetherian object in

ΠR(S). This is however obvious as

F (OXn ⊗ enS(E)) =

R ·ΠR(S)(−n) if n is even

S ·ΠR(S)(−n) if n is odd

As both R · ΠR(S) and S · ΠR(S) are direct summands of ΠR(S), which is a

noetherian ring by theorem 4.5.1, we have proven the theorem.

5.4 the Homological Properties of S(E)

5.4.1 A Formula for Ext-Groups

Throughout this section E will be a locally free X −Y -bimodule of rank (4, 1)

and we let A def
= S(E) denote the associated symmetric sheaf Z-algebra in
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standard form (see 5.3.5). This section is dedicated to adapting the results in

[VdB12], [Nym04a], [Nym04b] and [Mor07] to obtain a formula for the Ext-

groups of pulled back sheaves on Proj(A). To keep the geometric intuition

we denote the truncation functors (ω(−))m : Proj(A) −→ Qcoh(Xm) by Πm∗

(compare with 5.2.23). The left adjoints, which are given explicitly by p((−)⊗
emA) following 5.4 and 5.2.6, are in turn denoted by Π∗m. We shall use the

notations Xn and Qn as in 5.2.11 and (5.7).

If E ∈ bimod(X −X) is locally free of rank (2,2) and A = S(E), [Mor07]

computes the Euler characteristics 〈Π∗mF ,Π∗nG〉 for two locally free sheaves

F and G on X. In this section, we perform an analogous calculation in our

setting where the bimodule E ∈ bimod(X − Y ) is of rank (4,1). Motivated by

Proposition 5.2.22 our focus lies on 〈Π∗mF ,Π∗nG〉 with |n−m| ≤ 1 This section

is dedicated to proving the following slightly more general statement:

Theorem 5.4.1. Let E ∈ bimod(X,Y ) be locally free of rank (4,1). Let F
and G be locally free sheaves on Xm respectively Xn for m,n ∈ Z such that

m ≥ n− 1. Then

ExtiProj(A) (Π∗mF ,Π∗nG) ∼= ExtiXm (F ,G ⊗ S(E)n,m)

for all i ≥ 0.

This formula implies the following facts:

Corollary 5.4.2. With the above assumptions, one has

• 〈Π∗mF ,Π∗nG〉 = 〈F ,G ⊗ S(E)n,m〉

• Let {F1, . . . ,Fα} and {G1, . . . ,Gβ} be exceptional sequences of locally free

sheaves on Xn and Xn+1 respectively.

Then Π∗n+1G1, . . .Π
∗
n+1Gb,Π∗nF1, . . . ,Π

∗
nFb is an exceptional sequence on

Proj(A).
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The proof of theorem 5.4.1 is based on the existence of an exact sequence

(see 5.20 below). To this end, we consider Θm defined by

(Θm)n =

0 m 6= n

OXm n = m

Remark 5.4.3. Note that Θm is a right A-module using Ai,i = OXi

Theorem 5.4.4. For each m, there is an exact sequence of locally free ob-

jects in bimod(OXm −A) (see [VdB12, Section 3.2.] for the definition of this

category)

0 −→ Qm ⊗ em+2A −→ E∗m ⊗ em+1A −→ emA −→ Θm −→ 0 (5.20)

Proof. By the nature of the relations this sequence is known to be right exact.

The proof of the left exactness uses so-called ’point modules’ and is deferred

to 5.4.2.

As an immediate corollary of this theorem and its proof we find:

Corollary 5.4.5. for each i, j ∈ Z, the bimodule Ai,j is locally free both on

the left and on the right. The ranks are given by

rk(A)i,j
def
=


(j − i+ 1, j − i+ 1) i ≡ j mod 2(
j − i+ 1

2
, 2(j − i+ 1)

)
i odd, j even(

2(j − i+ 1),
j − i+ 1

2

)
i even, j odd

Proof. We have rk(E) = (4, 1) and rk(E∗) = (1, 4), rk(Qm) = (1, 1). Since

the rank is additive on short exact sequence, one can now verify the claim by

induction in the three cases on n using the sequences in 5.20

This theorem in turn implies the following convenient fact

Lemma 5.4.6. For each m ∈ Z, the functor Π∗m : Qcoh(Xm) −→ Proj(A) is

an exact functor
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Proof. For each n ≥ m, Am,n is locally free by Corollary 5.4.5, hence the

functor −⊗Am,n : Qcoh(Xm) −→ Qcoh(Xn) is exact.

As an example application of 5.4.6, we mention the following adjoint for-

mula:

Lemma 5.4.7. There is a natural isomorphism for all F ∈ Qcoh(Xm) and

M∈ D+(Proj(A)):

RHomProj(A)(Π
∗
mF ,M) ∼= RHomXm(F ,R Πm∗M) (5.21)

Proof. Since Π∗m is an exact left adjoint to Πm,∗, the latter must preserve

injective objects and the result follows.

For the purposes of proving theorem 5.4.1 we are especially interested in

the case where M = Π∗nG for a locally free sheaf G on Xn in the isomor-

phism (5.21). It follows that we need to understand complexes of the form

RΠm∗(Π
∗
nG). The strategy for computing the homology of this complex is as

follows: by lemma 5.4.9 below, it suffices to give a description the derived func-

tors of the torsion functor τ : Gr(S(E)) −→ Tors(S(E). These in turn follow

from the derived functors of an internal Hom-functor Hom (lemma 5.4.11).

Lemma 5.4.8. We have the following facts for the derived functors of the

torsion functor τ : Gr(A) −→ Tors(A):

i) for i ≥ 1, there is an isomorphism of functors

Ri+1 τ ∼= (Ri ω) ◦ p

ii) For each M∈ Gr(A) there is an exact sequence:

0 −→ τ(M) −→M −→ ω(p(M)) −→ R1 τ(M) −→ 0

Proof. By theorem 5.3.1, Gr(A) is a locally noetherian category. By [Nym04b,

lemma 2.12], any essential extension of a torsion module remains a torsion

module. In particular, the category Tors(A) is closed under injective envelopes,

the result now follows from [Smi99, theorem 2.14.15].
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Lemma 5.4.9. For i ≥ 1, there is an isomorphism

Ri Πm∗(Π
∗
nV) ∼= Ri+1 τ(V ⊗ enA)m

Proof. As the functors p and (−)m are exact there is a functorial isomorphism

(Ri Πm∗)(p)(−) ∼= Ri ω(p(−))m. (5.22)

Combining this isomorphism with the one in lemma 5.4.8 we obtain for each

i ≥ 1 :

Ri Πm∗(Π
∗
nV)

def
= Ri Πm∗(p(V⊗enA)) ∼= Ri ω(p(V⊗enA))m ∼= Ri+1 τ(V⊗enA)m.

The following is based on [Nym04a, Section 3.2]:

Let BiMod(A−A) denote the category whose objects are of the form

{Bm,n ∈ BiMod(Xm −Xn)}m,n

such that the left and right multiplications

Al,m ⊗ Bm,n −→ Bl,n and Bm,n ⊗An,l −→ Bm,l

are compatible in the obvious sense. We denote by B the subcategory for which

all Bm,n are coherent and locally free. There are Hom-functors

Hom : Bop ×Gr(A) −→ Gr(A) and

Hom : BiMod(OXn −A)×Gr(A) −→ Qcoh(Xn)

satisfying the following properties:

Proposition 5.4.10. i) Hom(B,M)m = Hom(emB,M) for all B ∈ B and

M∈ Gr(A)

ii) Hom : Bop ×Gr(A) −→ Gr(A) is a bifunctor, left exact in both its argu-

ments
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iii) Hom : BiMod(OXn −A)×Gr(A) −→ Qcoh(Xn) is a bifunctor, left exact

in both its arguments

iv) Hom(Q ⊗ emA,M) ∼= Mm ⊗ Q∗ for all M ∈ Gr(A) and locally free

Xm-bimodules Q

Proof. i) This follows immediately by checking the precise definitions in

[Nym04a, Section 3.2]

ii) see [Nym04a, Proposition 3.11, theorem 3.16(1)]

iii) see [Nym04a, theorem 3.16(3)]

iv) see [Nym04a, theorem 3.16(4)]

By ii. and iii. in the above proposition one cans define the right derived

functors Ext i and Ext i for all i ≥ 0. Moreover we use the notation A≥l to

denote the object in B given by

(A≥l)m,n =

{
Am,n if n−m ≥ l

0 else

and A0
def
= A/A≥1. Then we have the following relation between the derived

functors of τ and the Ext i:

Lemma 5.4.11. Riτ(−) ∼= lim
l→∞

Ext iGr(A)(A/A≥l,−)

Proof. By [Nym04b, Proposition 3.19], we have an isomorphism of functors

τ ∼= lim
l→∞

HomGr(A)(A/A≥l,−)

Applying this to the injective resolution and subsequently taking homology

yields the required result

Lemma 5.4.12. Let B ∈ B be concentrated in degree l ≥ 0 (i.e. Bm,n = 0

whenever m + l 6= n) and V a locally free sheaf. Then for n − l − 1 ≤ m and

for all i ≥ 0:

Ext i(B,V ⊗ enA)m = 0
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Proof. By [Nym04a, cor. 4.6], there is an isomorphism

Ext i(B,V ⊗ enA)m ∼= Ext i(A0,V ⊗ enA)m+l ⊗ B∗m,m+l

which easily reduces the proof to the case B = A0 and in particular l = 0.

By Proposition 5.4.10(4) we see that the exact sequence from theorem 5.4.4

forms a resolution of emA0 = Θm through Hom(−,V ⊗ enA)-acyclic sheaves.

In particular we can calculate Ext i(A0,V ⊗ enA)m = Ext i(emA0,V ⊗ enA) by

taking homology of the complex

0 −→ Hom(emA,V ⊗ enA)
d0−→ Hom(E∗m ⊗ em+1A,V ⊗ enA)

d1−→ Hom(Qm ⊗ em+2A,V ⊗ enA) −→ 0

using Proposition 5.4.10(iv), this complex becomes

0 −→ V⊗An,m
d0−→ V⊗An,m+1⊗E∗m+1 d1−→ V⊗An,m+2⊗Q∗m −→ 0 (5.23)

Hence we have

• Ext 0(emA0,V ⊗ enA) = ker(d0)

• Ext 1(emA0,V ⊗ enA) = ker(d1)/ im(d0)

• Ext 2(emA0,V ⊗ enA) = coker(d1)

• Ext i(emA0,V ⊗ enA) = 0 for all i ≥ 3

To show the exactness of (5.23), we first note that the explicit nature of the

isomorphisms in [Nym04a] yield that (5.23) is obtained from the sequence

0 −→ An,m −→ An,m+1 ⊗ E∗m+1 −→ An,m+2 ⊗Q∗m −→ 0 (5.24)

by tensoring with V. Since V is locally free, it preserves exactness and it suffices

to verify that (5.24) is exact. Next, we tensor with the invertible bimodule

Qm to obtain

0 −→ An,m ⊗Qm
d0−→ An,m+1 ⊗ E∗m+1 ⊗Qm

d1−→ An,m+2 −→ 0 (5.25)
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We can replace the middle term in 5.25 to obtain:

0 −→ An,m ⊗Qm
d0−→ An,m+1 ⊗ E∗m+1 d1−→ An,m+2 −→ 0 (5.26)

A similar but tedious computation as in [Nym04a, §7.5] shows that this se-

quence coincides with is the exact sequence 5.4.4 in degree n for left modules.

We conclude the result by the same argument as for 5.4.4

Lemma 5.4.13. Ext i(A/A≥l,V ⊗ enA)m = 0 for m ≥ n− 1 and i ≥ 0

Proof. Consider the short exact sequence

0 −→ A≥l/A≥l+1 −→ A/A≥l+1 −→ A/A≥l −→ 0

Applying Hom(−,V ⊗ enA) gives rise to a long exact sequence for each m ≥
n− 1

. . . −→ Ext i(A≥l/A≥l+1,V ⊗ enA)m −→ Ext i(A/A≥l+1,V ⊗ enA)m

−→ Ext i(A/A≥l,V ⊗ enA)m −→ Ext i+1(A≥l/A≥l+1,V ⊗ enA)m −→ . . .

As m ≥ n − 1 it follows from lemma 5.4.12 that for each i ≥ 0 we have an

exact sequence

0 −→ Ext i(A/A≥l+1,V ⊗ enA)m −→ Ext i(A/A≥l,V ⊗ enA)m −→ 0

Hence

Ext i(A/A≥l,V ⊗ enA)m ∼= Ext i(A/A≥0,V ⊗ enA)m = Ext i(0,V ⊗ enA)m = 0

We can now finish the proof of theorem 5.4.1

Proof. of theorem 5.4.1

Take m,n ∈ Z with m ≥ n− 1. Let F be locally free on Xm and G locally free

on Xn, then by Corollary 5.4.7:

ExtiProj(A) (Π∗mF ,Π∗nG) = hi
(
R HomProj(A) (Π∗mF ,Π∗nG)

)
∼= hi (R HomXm (F ,R Πm∗Π

∗
nG))
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Now for i ≥ 1 we have

Ri Πm∗Π
∗
nG ∼= Ri+1 τ(G ⊗ enA)m

∼= lim
l→∞

Ext i+1(A/A≥l,G ⊗ enA)m

= 0

by lemmas 5.4.9, 5.4.11 and 5.4.13 respectively.

In particular the complex R Πm∗Π
∗
nG is quasi-isomorphic to the complex that

is equal to Πm∗Π
∗
nG concentrated in position zero. Finally we can conclude

by noticing that Πm∗Π
∗
nG = (ωp(G ⊗ enA))m and by lemma 5.4.8 there is an

exact sequence

0 = τ(G ⊗ enA)m −→ G⊗An,m
∼=−→ ω(p(G ⊗ enA))m −→ R1 τ(G ⊗ enA)m = 0

where the first term equals zero because G ⊗ enA is torsion free and the last

term is zero because R1 τ(G ⊗ enA)m ∼= lim
l→∞

Ext 1(A/A≥l,G ⊗ enA)m = 0.

Hence we can conclude that for m ≥ n− 1 we have

ExtiProj(A) (Π∗mF ,Π∗nG) ∼= hi (R HomXm (F ,R Πm∗Π
∗
nG))

∼= hi (R HomXm (F ,G ⊗ An,m))

= ExtiXm (F ,G ⊗An,m)

5.4.2 Point Modules in the Rank (4, 1) Case

We remain in the setting where A = S(E) denotes a symmetric sheaf Z-algebra

in standard form with E ∈ bimod(X−Y ) locally free of rank (4,1), given in the

form of E = f (L)Id for a finite flat morphism f : Y −→ X as in lemma 5.3.3.

Furthermore, X,Y are smooth varieties over the algebraically closed field k
and denote by α : X −→ Spec(k) and β : Y −→ Spec(k) be the structure

morphisms. Extending our convention, 5.2.11 we will write

(Xn, αn) =

{
(X,α) if n is even

(Y, β) if n is odd
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We say Pn ∈ coh(Xn) is locally free over k of rank l if the support of Pn is

finite over k and dimk αn,∗Pn = l.

A module P ∈ Gr(A) is said to be generated in degree m if Pn = 0 for

all n < m and Pm ⊗ Am,n −→ Pn is surjective for all n ≥ m. As A is gener-

ated in degree one as an algebra, we have surjectivity of Pn1
⊗An1,n2

−→ Pn2

for all n2 ≥ n1 ≥ m by the following commuting diagram

Pm ⊗Am,n1 ⊗An1,n2 Pn1 ⊗An1,n2

Pm ⊗Am,n2
Pn2

Remark 5.4.14. An obvious example of a module generated in degree m is

emA. The above diagram implies that the maps Am,n ⊗ enA −→ emA are

surjective for all m ≥ n.

An m-shifted point-module over A is defined in [VdB12] as an object P ∈
Gr(A) such that P is generated in degree m and for which Pn is locally free of

rank one over k for all n ≥ m. As the next lemma shows, this concept however

is not very useful in our setting:

Lemma 5.4.15. Let i ∈ Z and P ∈ Gr(A) generated in degree 2i such that P2i

and P2i+1 are locally free of rank one over k. Then Pn = 0 for all n ≥ 2i+ 2.

Proof. Recall that the following composition

P2i −→ P2i ⊗ E∗2i ⊗ E∗2i+1 −→ P2i+1 ⊗ E∗2i+1 −→ P2i+2

must be zero as it represents the action of Q2i. By [VdB12, lemma 4.3.2.] this

composition equals

P2i
ϕ∗2i−→ P2i+1 ⊗ E∗2i+1 ϕ2i+1−→ P2i+2

where ϕ∗2i is obtained by adjointness from ϕ2i : P2i⊗E∗2i −→ P2i+1 and E∗2i+1

has rank (1, 4). Since P2i and P2i+1⊗E∗2i+1 are locally all free of rank one over
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k we obtain that ϕ∗2i is either an isomorphism or the zero morphism. Similarly

ϕ2i+1 is either injective or zero. Hence the only way the composition can be

zero is if ϕ∗2i = 0 or ϕ2i+1 = 0. The first doesn’t occur as ϕ2i 6= 0 (because

P is generated in degree 2i and P2i+1 6= 0). Hence we have ϕ2i+1 = 0.

However ϕ2i+1 is surjective (because P is generated in degree 2i), implying

that P2i+2 = 0. Using surjectivity of P2i+2⊗A2i+2,n −→ Pn for all n ≥ 2i+ 2

the result follows.

We thus propose the following variation of the above definition, better

suited to our needs:

Definition 5.4.16. A shifted point module is an object P ∈ Gr(A) which is

generated in degree 2i for some integer i and such that for all n ≥ 2i, Pn is

locally free over k of rank one if n is even and rank two if n is odd. We will

often use the short hand notation dimk(Pn) = dimk(αn,∗(Pn)) whenever the

latter is finite. So we could say P is a shifted point module if is generated in

degree 2i and:

dimk(Pn) =


0 if n < 2i

1 if n ≥ 2i is even

2 if n > 2i is odd

The following lemma shows that this new definition of point modules is

better behaved than the naive one:

Lemma 5.4.17. Let P ∈ Gr(A) be a graded module and i ∈ Z such that:

• P is generated in degree 2i

• dimk(P2i) = 1

• dimk(P2i+1) = 2

Then for all n ≥ 2i+ 2 fixed, we have

dimk(Pn) ≤

{
1 if n is even

2 if n is odd
(5.27)
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Moreover if equality holds in (5.27), then Pn is characterized up to unique

isomorphism by the data ϕ2i : P2i ⊗ E∗2i −→ P2i+1.

If on the other hand (5.27) is a strict inequality for some n, then Pl = 0 for

all l > n.

Proof. We prove all facts by induction on n. So suppose (5.27) and the sub-

sequent claims hold for n = 2i, . . . ,m. We distinguish several cases depending

on whether the inequalities are in fact equalities or not.

Case 1: Equality holds in (5.27) for n = 2i, . . . ,m.

The following composition is zero:

Pm−1

ϕ∗m−1−→ Pm ⊗ E∗m
ϕm−→ Pm+1

ϕm is surjective, using the fact that the ranks are (4, 1) or (1, 4) depending

on the parity of m, on easily verifies that (5.27) holds for n = m+ 1 if ϕ∗m−1

is injective. Moreover the same reasoning show that if the equality holds for

dimk(Pm+1), then Pm+1
∼= coker(ϕ∗m−1) and is hence defined up to unique

isomorphism.

Case 1a: m is odd

dimk(Pm−1) = 1 hence it suffices to prove ϕ∗m−1 6= 0 and this holds because

ϕm−1 6= 0

Case 1b: m is even

If ϕ∗m−1 is not injective, then there is with W ⊂ Pm−1, of dimk(W ) = 1 such

that the composition

W ↪→ Pm−1

ϕ∗m−1−→ Pm ⊗ E∗m

or equivalently the composition

W ⊗ E∗m−1 ↪→ Pm−1 ⊗ E∗m−1 −→ Pm

is zero. This implies that there is a W ∈ Gr(A) given by Wm−1 = W and

W l = 0 for l 6= m− 1 such that there is an embedding χ : W ↪→ P≥m−2. Let
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C = coker(χ)≥m−2. Then C is generated in degree m−2 (which is even!) and

degk(Cm−2) = degk(Cm−1) = degk(Cm) = 1 contradicting lemma 5.4.15.

Case 2: There is an integer n ∈ {2i + 2, . . . ,m} such that there is

a strict inequality for dimk(Pn) in (5.27)

Let n0 be the smallest such n. We have to show Pl = 0 for all l > n0.

Assume that Pn0
= 0, then Pl = 0 by surjectivity of Pn0

⊗An0,l −→ Pl.

The only nontrivial case is when n0 is odd and dimk(Pn0) = 1. In this case

dimk(Pn0−1) = 1 as well and the result follows from lemma 5.4.15.

Remark 5.4.18. The proof of the above lemma also shows that any data

ϕ2i : P2i ⊗ E∗2i � P2i+1 with dimk(P2i) = 1 and dimk(P2i+1) = 2 can be

extended to a shifted point module which is unique up to a unique isomorphism.

From now on we use the following short hand notation:

Ln,p
def
= Op ⊗ enA (5.28)

where p is any point on Xn.

Proof. of theorem 5.4.4

Exactness of the sequence (5.20) can be checked for each degree n separately:

0 −→ Qm ⊗Am+2,n −→ E∗m ⊗Am+1,n −→ Am,n −→ 0 (5.29)

As all terms in this sequence are elements of bimod(Xm −Xn), applying the

pushforward of the projection Xm × Xn −→ Xm, πm,∗ yields a sequence of

coherent sheaves on Xm:

0 −→ πm,∗(Qm ⊗Am+2,n) −→ πm,∗(E∗m ⊗Am+1,n) −→ πm,∗(Am,n) −→ 0

(5.30)

and (5.30) is exact if and only if (5.29) is since the support of these bimodules

is finite. The structure of the relations on A implies that (5.20) and hence

also (5.29) and (5.30) are right exact. Now for any point p ∈ Xm the following
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complex will be right exact as well:

0→ Op ⊗ πm,∗(Qm ⊗Am+2,n) → Op ⊗ πm,∗(E∗m ⊗Am+1,n)→

→ Op ⊗ πm,∗(Am,n)→ 0 (5.31)

As all terms (5.31) are locally free over k, its left exactness can be checked

numerically. Hence in order to prove the lemma we show that the terms in

(5.31) have the ’correct’ constant dimension (see (5.36) for each point p. From

this it follows that (5.29) is exact and its terms are locally free on the left. The

locally freeness on the right then follows from [VdB12, Proposition 3.1.6.]. . )

So we are left with finding the length of the objects in (5.31). Any object

in bimod(Xm −Xn) is of the form uUv for finite maps u and v. As taking the

direct image through a finite morphism does not change the length of sheaves,

we have for such a bimodule:

dimk(Op ⊗ πm,∗(uUv)) = dimk(Op ⊗ u∗U)

= dimk(u∗(u
∗(Op)⊗ U))

= dimk(u∗(Op)⊗ U)

= dimk(v∗(u
∗(Op)⊗ U))

= dimk(Op ⊗ uUv))

Hence the length of the terms in (5.31) can be calculated from

0→ Op ⊗Qm ⊗Am+2,n → Op ⊗ E∗m ⊗Am+1,n → Op ⊗Am,n → 0 (5.32)

In the case where m = 2i− 1, the fact that dimk(Op⊗E∗2i−1) = 1, implies

that there must be a point q ∈ X2i such that Op ⊗ E∗2i−1 = Oq. Similarly,

in the case where m = 2i, we have dimk(Op ⊗ E∗2i) = 4, and there must be

points q̃a ∈ X2i+1, a = 1, . . . , 4 such that Op⊗E∗2i is an extension of the Oq̃a .

Put

M2i+1,p = Op ⊗X2i
E∗2i ⊗X2i+1

e2i+1A.
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Then M2i+1,p is an extension of the L2i+1,q̃a . The sequence (5.32) now gives

rise to the following right exact sequences

L2i+1,p −→ L2i,q −→ L2i−1,p −→ 0 (5.33)

L2i+2,p −→M2i+1,p −→ L2i,p −→ 0 (5.34)

Finally there also is a right exact sequence:

L2i+1,p′ −→ L2i−1,p −→ Pp −→ 0 (5.35)

where the morphism L2i+1,p′ −→ L2i−1,p comes from the fact that dimk(Op⊗
A2i−1,2i+1) = 3 > 0 so that there is a p′ ∈ X2i+1 with a nonzero morphism

Op′ −→ Op ⊗A2i−1,2i+1. Pp is defined as the cokernel of this morphism.

We now prove the following by induction on j (simultaneously for all p and all

i):

dimk((Pp)2i+2j) = 1

dimk((Pp)2i+2j+1) = 2

dimk((L2i,p)2i+2j) = 2j + 1 (5.36)

dimk((L2i,p)2i+2j+1) = 4j + 4

dimk((L2i−1,p)2i+2j) = j + 1

dimk((L2i−1,p)2i+2j+1) = 2j + 3

It is easy to see that these claims hold for j = 0. So by induction we suppose

they hold for j = 0, . . . , l, for all p and for all i ∈ Z. We prove that the claims

also hold for j = l + 1.

Page 241



SECTION 5.5.4

By (5.34) we see:

dimk((L2i,p)2i+2l+2) ≥ dimk((M2i+1,p)2i+2l+2)− dimk((L2i+1,p)2i+2l+2)

=

4∑
a=1

dimk((L
2i+2,q̃a2i+1

)2i+2l+2)− dimk((L(2i+2,p)2i+2l+2)

= 4 · (l + 1)− (2l + 1)

= 2l + 3

where the last equality follows from the induction hypothesis. This can be

written schematically as:

0

↑
L2i,p 0 1 4 3 . . . 2l + 1 4l + 4 2l + 3 4l + 8

↑
M2i+1,p 0 0 4 4 . . . 4l 8l + 4 4l + 4 8l + 12

↑
L2i+2,p̃ 0 0 0 1 . . . 2l − 1 4l 2l + 1 4l + 4

(5.37)

Where the numbers on the right of a module signifies dimk((−)x) for

x = 2i − 1, . . . , 2i + 2l + 3 and an underlined number implies a lower bound

for dimk. Similarly we write N to denote an upperbound for a certain dimk.

Now consider the module Pp,≥2i+2l. It is generated in degree 2i+2l because Pp

is a quotient of L2i−1,p. Moreover dimk((Pp)2i+2l) = 1 and dimk((Pp)2i+2l+1) =

2, so lemma 5.4.17 implies dimk((Pp)2i+2l+2) ≤ 1 and dimk((Pp)2i+2l+3) ≤ 2.

Together with the right exact sequence (5.35) this gives us the following upper
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bounds:

0

↑
P 1 1 2 . . . 1 2 1 2

↑
L2i−1,p 1 1 3 . . . l + 1 2l + 3 l + 2 2l + 5

↑
L2i+1,p′ 0 0 1 . . . l 2l + 1 l + 1 2l + 3

(5.38)

Combining the bounds found in (5.37) and (5.38) and using (5.33) we have

found

0

↑
L2i−1,p 1 1 4 . . . l + 1 2l + 3 l + 2 2l + 5

↑
L2i,q 0 1 4 . . . 2l + 1 4l + 4 2l + 3 4l + 8

↑
L2i+1,p̃ 0 0 1 . . . l − 1 2l + 1 l + 1 2l + 3

(5.39)

Right exactness of (5.33) implies that the bounds in (5.39) are in fact equalities,

because for example we find the upper bound

dimk((L2i,q)2i+2l+2) ≤ dimk((L2i−1,p)2i+2l+2) + dimk((L2i+1,p̃)2i+2l+2)

≤ l + 2 + l + 1

= 2l + 3

which equals the already known lower bound for dimk((L2i,q)2i+2l+2. Hence

we have found exact values for dimk((L2i+1,q). A priori the above right exact

sequence only gives those exact value for the points q ∈ X2i for which there is a

p ∈ X2i−1 such that Op⊗E∗2i−1 = Oq. But as E∗2i−1 is of the form Id(Li−1)f

as in (5.14) we have q = f(p) and surjectivity of f implies that q runs through

all points of X2i as p runs through all points of X2i−1. With the same rea-

soning we now obtain from (5.31) the exact values for dimk(L2i−1)2i+2l+2 and
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dimk(L2i−1)2i+2l+3..

Hence we have proven (5.36) for all i, j ∈ Z and for all points p. As these

values do not depend on p and X is a smooth variety, it follows from [Har97,

ex. II, §5, no.8] that the terms in (5.30) are locally free on the left (and hence

also on the right). Filling in these values for (5.31), the theorem follows.

5.4.3 the Main Full Exceptional Sequence

We have done the preparatory work needed to compute the dimensions of the

Ext-groups of the exceptional sequence 5.1. We will prove that the sequence

5.1 is full through the following series of lemmas:

Lemma 5.4.19. Let T be a k-linear triangulated category. Assume that

E1, . . . , En is a collection of objects in T such that

(a)
∑
j dim Homj

T (Ei, T ) <∞ for all i and for all T ∈ Ob(T ).

(b) (Ei)i satisfies the conditions for an exceptional sequence (see definition

0.2.1), except that we do not require Hom-finiteness of T .

(c) we have

((Ei)i)
⊥ def

= {Y ∈ T |Homi(Em, Y ) = 0 ∀m} = 0

Then

1. E1, . . . , En generate T as a triangulated category and

2. T is Ext-finite.

Proof. Let T ∈ T . We have to prove that T is in the triangulated subcategory

of T generated by E1, . . . , En. We put Tn = T and define Ti−1 inductively by

LEiTi for i = n, n− 1, . . . , 1, i.e.

Ti−1 = cone(Hom•T (Ei, Ti)⊗k Ei −→ Ti)
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(see 3.5) Then Ti is in the triangulated subcategory of T generated by Ti−1

and Ei. Furthermore

Hom•T (Ej , Ti) = 0 for j > i

It follows that T0 = 0. Hence we are done.

For (2) we have to prove that if T1, T2 ∈ T then
∑
j dim Homj

T (T1, T2) <

∞. Since T1 is in the triangulated category generated by (Ei)i we may assume

T1 = Ei for some i. But then the claim is part of the hypotheses.

Lemma 5.4.20. Let X,Y be smooth varieties over k and let E be a locally

free X − Y -bimodule of rank (4, 1). Put A = S(E). Then for all m ∈ Z one

has

1. the cohomological dimension of Πm,∗ satisfies4

cd Πm,∗ ≤ 1.

2. If F is a noetherian object then RiΠm,∗F is a coherent sheaf for all i.

Proof. 1. By (5.22), we have

Ri Πm,∗(p(−)) = Ri ω(p(−))m

which reduces the claim to cdω = 1. From lemma 5.4.8 we in turn obtain

Ri ω(p(−)) ∼= Ri+1 τ

and the claim now reduces to cd τ = 2. This is proved as in [Nym04a,

cor 4.10] using the exact sequence (5.20) instead of the exact sequence

(4.1) in loc. cit.

4It is easy to see that in (1) the cohomological dimension is exactly one, but we do not

need it and leave it out for clarity

Page 245



SECTION 5.5.4

2. Since Gr(A) is locally noetherian we may construct a left resolution of

F by objects which are finite direct sums of objects of the form

p(G ⊗OXn enA) = Π∗n(G)

for G ∈ coh(Xn). Using that Πm,∗ has finite cohomological dimension

we reduce to the case F = Π∗n(G).

Tensoring (5.20) (with m replaced by n) on the left with G ∈ coh(Xn)

we obtain exact sequences in Z = ProjA

0 −→ Π∗n+2(G) −→ Π∗n+1(G ⊗Xn E∗n) −→ Π∗n(G) −→ 0 (5.40)

Hence repeatedly using such exact sequences we may reduce to the case

F = Π∗n(G) for n ≤ m. When n ≤ m it is shown in the proof of theorem

5.4.1 that

RiΠm,∗Π
∗
nG =

G ⊗Xn An,m if i = 0

0 otherwise

This is indeed coherent.

Lemma 5.4.21. Assume X = P1 and let f : Y −→ X be a morphism of

degree 4. Put E = f (OX)Id and A = S(E). Then the right orthogonal to the

subcategory generated by

E = (Π∗1(OP1),Π∗1(OP1(1)),Π∗0(OP1),Π∗0(OP1(1)))

in D(ProjA) is zero.

Proof. Assume that A ∈ ProjA is right orthogonal to E. Using the exact

sequences

0 −→ OP1(a) −→ OP1(a+ 1)⊕2 −→ OP1(a+ 2) −→ 0

and the right exactness of Π∗m (Lemma 5.4.7) we find that A is right orthogonal

to Π∗m(OP1(a)) for m = 0, 1 and all a.
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From (5.40) we obtain exact sequences in ProjA

0 −→ Π∗m+2(OP1(a)) −→ Π∗m+1(OP1(a)⊗Xm ⊗E∗m) −→ Π∗m(OP1(a)) −→ 0

Since OP1(a)⊗Xm E∗m, being locally free, is isomorphic to a sum of OP(b) we

conclude by induction that A is right orthogonal to Π∗m(OP1(a)) for all m, a.

Now (Π∗m(OP1(a)))m,a is a collection of generators for ProjA as a Grothendieck

category. From this it is easy to see that the right orthogonal to (Π∗m(OP1(a)))m,a

in D(ProjA) is zero. This finishes the proof.

We are now ready to prove the main theorem of this chapter:

Theorem 5.4.22. Let E be a P1-bimodule of rank (4, 1). Let S(E)) be the

associated symmetric sheaf Z-algebra and put Z = Proj(S(E)). Let D denote

the triangulated subcategory of objects in D(Z) with bounded noetherian coho-

mology. Then D is Ext-finite and(
Π∗1(OP1),Π∗1(OP1(1)),Π∗0(OP1),Π∗0(OP1(1)

)
is a full strong exceptional sequence in D for which the Gram matrix of the

Euler form is given by 
1 2 1 5

0 1 0 4

0 0 1 2

0 0 0 1


Proof. The computation of the Gram matrix, the strongness and exceptional-

ity is an immediate application of 5.4.1:

ExtiZ (Π∗nF ,Π∗nG) = ExtiP1 (F ,G ⊗ S(E)n,n) = ExtiP1 (F ,G)

proving the claim for the subsequences(
Π∗1(OP1),Π∗1(OP1(1))

)
and

(
Π∗0(OP1),Π∗0(OP1(1)

)
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There are no backward Hom’s by the formula 5.4.1 once again.

There are four remaining cases. Since they are all very similar, we pick one

out and leave the other three to the reader:

ExtiZ (Π∗1(OP1),Π∗0(OP1(1)) = ExtiP1(OP1 ,OP1(1)⊗ S(E)0,1)

= ExtiP1(OP1 ,OP1(1)⊗ f (OP1)Id)

= Hi(P1,OP1(1)⊗OP1(1)⊗ f (OP1)Id)

(5.3)
= Hi(P1, f∗OP1(1))

= Hi(P1,OP1(4))

which is indeed only nonzero for i 6= 0, in which case it is 5-dimensional over

k.

To show that the sequence is full, We have to verify conditions (a)(b)(c) of

lemma 5.4.19. Condition (a) follows from Lemma 5.4.20, which implies that

RΠm,∗G lives in Db
coh(Qcoh(Xm)), combined with the fact that by Lemma

5.4.8 we have ExtiProjA(Π∗m(OP1(a)),G) = ExtiXm(OP1(a), RΠm,∗G).

Condition (b) is proven above. Finally, condition (c) follows from Lemma

5.4.21 þ
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