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Chapter 1
Introduction

1.1 Introduction

During the last 25 years, the vast increase in computational possibilities has taken modern
statistical mathematics from early standard analyses, based on simple data settings, to
more computationally demanding applications of multi-dimensional and large sample data
structures. This evolution has been accompanied by successful integrations of statistics
in different scientific fields, such as large sample survey data (Bethlehem, 2009) or com-
plex type-III clinical studies in which cohorts are followed up through time (Bliddal et
al., 2011, Kazemi et al., 2013). Other examples can be found in environmental sciences
where multiple samples are taken on different, possibly correlated locations (Ruthsworth
et al., 2014, Wang et al., 2014), among many other examples. Indeed, while traditional
statistical practices involved data coming from study designs that were based on strong
assumptions, such as independence between observations within populations, recently de-
veloped methods can cope with the introduction of different forms of correlation structures
and subsequent hierarchies within the data, such as in e.g. spatio-temporal data modeling
(Cressie and Wikle, 2011). This thesis builds upon those statistical modeling techniques
that take into account one or more of these data complexities, while this introductory
chapter specifically gives an overview of the data types and settings on which emphasis
is placed further on.

1.2 Correlated data

Throughout this thesis, all topics will based on different ways to take variability in data
into account. A lack or an excess of variability can often be attributed to the presence

1
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of correlation within the data, which can be best illustrated with an example: Imagine a
study in which one wants to assess if the egg weights of two closely related bird species
differ. Due to possible genetic parent factors affecting birth weight, common sense tells
that it is good to measure only one egg from a number of nests for each species in order to
obtain random and representative samples. If however multiple eggs are weighted within
each nest, not all observations are independent any more, as eggs will be genetically
more related to eggs from the same nests than to eggs from other nests. In other words,
some observations are correlated in a way that the weight of the first egg can vaguely
predict the weight of the other eggs in the same nest. This induces a hierarchy in the
data, which causes problems when the goal is to obtain a random sample. Off course,
in many cases, these problems can be avoided by thinking through and setting up a
thorough study design, but sometimes these correlations are necessary due to regulatory
or practical reasons (e.g. when the number of nests to be sampled from is small) or due
to the scientific question itself. E.g., when one wants to do a clinical follow-up study,
patients are measured on multiple occasions through time, making the observations within
an individual correlated. Or when the occurrence of a certain disease is investigated on
a spatial scale, observations on locations that lie close to each other are possibly more
correlated than when the distance between both is large. In this thesis, the main focus
is pointed towards spatial data structures, but also data with a time structure will be
investigated.

1.2.1 Longitudinal data

In the bird eggs example, observations within nests were correlated, but there was no
reason to assume that there was a direction in the correlation structure in the sense that
egg A was not correlated in a different way to egg B than to egg C. This is in contrast
with a follow-up study in which individuals are measured a number of times throughout
the study. Indeed, these so-called longitudinal data also induce a data hierarchy where
observations are nested in individuals, but here, observations are structured in a way that
the first measurement can be differently correlated with the second measurement than with
the third. A lot of research has been done towards the implementation of longitudinal data
structures in statistical methods, resulting in an extensive amount of literature devoted to
the topic (Verbeke and Molenberghs, 2000, Molenberghs and Verbeke, 2005, Fitzmaurice
et al., 2009). This thesis will focus on the longitudinal setting in a number of cases,
especially in the chapters 3, 4, 5 and 7.
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1.2.2 Spatial data

As the name already implies, spatial data are data which have a certain location in space.
Let s ∈ Rd be a data location in d-dimensional Euclidean space and suppose the potential
datum Z(s) at spatial location s is a random quantity. When s varies over an index set
D ⊂ Rd, a multivariate random field (or random process)

{Z(s) : s ∈ Rd}

is formed (Cressie, 1991). Therefore, the correlation structure here is multi-dimensional,
in contrast to a longitudinal data structure, which only has one dimension. Different types
of spatial data exist and they can be subdivided in three classes, namely geostatistical,
lattice and point pattern data.

(1) Geostatistical data are defined as data with a spatial index s that can vary
continuously over Rd. These data have an origin in mining engineering sciences, in which
geostatistics emerged in the early 1980’s as a discipline that combined engineering with
mathematics and statistics. Matheron (1963) is known as one of the founders of this
scientific niche and largely used these techniques to predict the ore grade in a mining
block from observed samples, a still very popular prediction process which he named
kriging. (2) Lattice data comprise of data that are measured on a collection of subsets
of Rd, called lattices. When these locations are regularly spaced points in Rd, these can
be referred to as regular lattices. This type of data is used in many scientific fields, such
as in remote sensing from satellites where the earth’s surface is divided in a grid of small
rectangles, called pixels. Irregular lattices on the other hand do not have displacements
that follow a predictable pattern and do not have obvious geometrically linkages. An
example can be found in disease mapping, where e.g. the counts of newly diagnosed
cases of a certain disease within a specified time period are mapped per municipality.
(3) When the variable to be analyzed is the location of a set of events Z(si), one is
interested in point patterns, e.g. when the interest lies in the clustering through space of
a certain disease.

While methods from one class of spatial data can be borrowed from methods associated
with another class (for an overview, consult Cressie, 1991), the spatial analyses of this
thesis are built around irregular lattice data analysis on a flat plane, in other words, with
d = 2. The setting will be that of disease mapping, a scientific field which has become
increasingly popular in recent years (Elliott at al., 2000, Lawson, 2013). An extension here
exists in that spatial observations can be done on multiple occasions through time. These
so-called spatio-temporal or space-time data have gained considerable popularity in recent
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years, partly due to the post-millennium computational developments that have made it
possible to analyze these mostly large and complex data sets. Cressie and Wikle (2011)
give a complete and in-depth overview of these modeling techniques. Spatial analyses are
considered in chapters 6-8.

1.3 Discrete data

In spatial and longitudinal data analysis, different types of data can be analyzed, such as
continuous data, categorical data, time-to-event data, etc. This thesis however specifically
investigates the use of binary and count data: (1) Binary data are a categorical data type
that can take only two possible values, such as "success" versus "failure" or "yes" versus
"no". Note however that by dichotomization, continuous data or categorical data with
more than 2 categories can be converted into a binary variable. (2) Count data on
the other hand are numerical data that can only take non-negative integer values. It is
important to add that these integers arise from counting, not by ranking. Ordinal data
may also consist of integers, but in the latter, individual values are subject to their location
on an arbitrary scale while only the relative ranking is important. This is in contrast to
count data, which have a quantitative value, rather than a qualitative. Agresti (2002)
delivers a thorough overview of the statistical methodology concerning these and other
types of discrete data. As the next chapters will explain more clearly, there are some
issues with binary and count data the practitioner has to deal with, which mainly have to
do with known and/or unknown structures within the data. Therefore, this manuscript
will focus on the implementation of longitudinal or spatial correlation structures in binary
and count data, with special emphasis on disease mapping with count data.



Chapter 2
Data sets

2.1 Introduction

In the following chapters, a number of data sets will be used to support the methodological
concepts. All of these data sets exhibit one or more hierarchical characteristics, which
will be highlighted and dealt with in the remainder of this thesis. Most of the data are
confidential and therefore not publicly available. A division is made between count and
binomial data, as later chapters will show that these types of data need different modeling
approaches.

2.2 Data sets with count responses

2.2.1 Likar data

The Limburgs Cancer Registry (LIKAR) withholds a number of data sets that will be
used in this thesis. LIKAR is designed to register all cancers in the province of Limburg
(Belgium), making it possible to consult information about a specific type of cancer per
region, age and gender (http://likas.edm.uhasselt.be/). The LIKAR database contains
the numbers of new, histologically or cytologically proven invasive cancers within male
or female inhabitants of Limburg between the years 1996 and 2005. The data collected
and stored in the LIKAR cancer registry are obtained from participating laboratories and
practitioners.

The area of the Limburg Cancer Registry consists of the province Limburg, situated
in the north east of Belgium. It consists of 44 towns, with the largest populations centred
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Table 2.1: Summary Statistics for different cancer types for the 44 municipalities of Limburg.

Kidney Prostate Bladder

Male Male Male Female

Mean 12.21 128.14 23.82 5.46

Standard deviation 11.09 107.23 29.85 8.21

Minimum 0 1 0 0

Maximum 57 591 192 48

in the middle of the province. Although Limburg is known as a less urbanized province in
the upper part of Belgium (Flanders), the northern towns have suffered from elevated soil
concentrations of heavy metals. Also fruit cultivation which is centred around St.-Truiden
in the southwestern part of Limburg, is notorious for causing elevated levels of chemicals
in soil and water. Herbicides and pesticides have been indicated as risk factors for kidney
cancer (Mellemgaard et al., 1994) and prostate cancer (Ferris-i-Tortajada et al., 2011), so
it is therefore not unlikely to notice higher cancer aggregations in particular agricultural
areas.

In chapters 6 and 8, a number of disease mapping methods will be illustrated by using
male kidney cancer, prostate cancer and male and female bladder cancer LIKAR counts
during the ten-year period of 1996-2005. Summary statistics are given in Table 2.1 and
a map of the observed number of cancer cases in Figure 2.1. Prostate cancer cases are
much more encountered than the other cancer types. In fact, it is the most prevalent
cancer type among men in Limburg (an average of 128 cases per town). Male bladder
and kidney cancer on the other hand have mediocre numbers, with respective averages
being 24 and 12 per town, while female bladder cancer is relatively rare (an average of 5
cases per town).

2.2.2 Flemish mesothelioma data

The Flemish mesothelioma data consist of counts of newly diagnosed mesothelioma cases
for males in 1999 in Flanders (without Brussels). This very rare but highly aggressive
cancer that affects the membrane lining of the lungs and abdomen is typically linked
to asbestos exposure. In Flanders, mainly Eternit NV, a corporation involved with the
production of house coating materials, which was based in Kapelle-op-den-Bos, a small
town close to Antwerp, has been notorious for using asbestos until 1994. These data
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Figure 2.1: Maps of observed counts for male kidney cancer, prostate cancer and male and
female bladder cancer in the 44 municipalities of Limburg between 1996 and 2005.

are part of a larger study aimed at determining long-term effects of asbestos exposure
and contamination, since after 1994 mesothelioma incidences in and around Kapelle-op-
den-Bos have remained frequent, possibly caused by Eternit-sourced asbestos exposure.
Due to the disease being very rare, many zero counts occur, with most cases seen in
and around Kapelle-op-den-Bos (Table 2.2, Figure 2.2). A specific statistical approach to
deal with excessive zeros will be proposed in Chapter 7, where these data will be further
investigated.

2.2.3 Georgia asthma and COPD data

The Georgian asthma and chronic obstructive pulmonary disease (COPD) data set repre-
sents counts of new cases of asthma and COPD in all 159 counties of Georgia (USA) in
2005 (Figure 2.3). Note that these respiratory diseases are likely to show similar spatial or
non-spatial tendencies since it is expected that they may have common etiological factors



8 Chapter 2. Data sets

Table 2.2: Male mesothelioma cases
in the 308 municipalities of Flanders
in 1999: summary statistics.

Statistics Mesothelioma

n 308

mean 0.32

sd 1.24

median 0

min 0

max 19

Figure 2.2: Observed male mesothelioma counts in the
308 municipalities of Flanders in 1999.

or determinants. The two diseases have similar mean numbers and standard deviations,
while maximum asthma values are almost twice as high as the COPD counts (Table 2.3).
It is clear that the observed numbers of both diseases are drastically increased in and
around Georgia’s capital, Atlanta, although it is not clear if this is truly caused by in-
creased risks of getting the diseases in those areas or if this is just an artefact from the
larger population sizes compared to e.g. the south western municipalities. In Chapter
8, methods will be discussed to simultaneously investigate the risks of getting asthma or
COPD. This data set was also analyzed by Lawson (2013).

2.2.4 Epilepsy data

The epilepsy data set (Faught et al., 1996) has been studied already frequently in statistical
literature (Booth et al., 2003, Molenberghs et al., 2010). The main goal of this study

Table 2.3: Summary statistics for asthma and COPD counts in the 159 counties of Georgia in
2005.

Asthma COPD

Mean 72.15 92.99

Standard deviation 138.48 112.93

Minimum 0 0

Maximum 1105 697
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Figure 2.3: A map of observed counts for asthma and COPD in the 159 counties in Georgia
(USA) in 2005.

was to investigate if a new anti-epileptic drug (AED), in combination with one or two
other AEDs reduced the number of epileptic seizures. After a 12-week baseline period,
45 patients were randomized into a placebo group, with 44 patients assigned to the
active (new) treatment group. Patients were followed (double-blind) during 16 weeks and
measured weekly, after which they became part of a long-term open-extension study, with
some individuals being followed for 27 weeks (Figure 2.4). The primary outcome variable
is the number of epileptic seizures per week. In this manuscript, emphasis is placed on
the relation between the number of these seizures in relation to treatment type and time
as explanatory variables and will be used in chapters 5 and 7.

2.2.5 Flemish contact data

The Flemish contact data set (Goeyvaerts et al., 2014) is part of a large-scale study on
social contact behaviour in households with young children in the Flemish geographic
region including Brussels. From April to November 2011, participants were recruited
to complete a paper diary of their contacts during one randomly assigned day without
changing their usual behaviour. The data set used here, which comes directly from that
survey, gives the number of contacts (physical contact involving skin-to-skin touching,
with or without conversation, or a two-way conversation at less than 3 meters distance)
a person reported during 1 day. In this survey, individuals are clustered within households
and the households are clustered within municipalities. In total, data were collected from
1312 participants, from 336 households within 211 municipalities. One of the questions
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(a) Control (b) Treatment

Figure 2.4: Longitudinal profiles displaying the number of epileptic seizures per patient
throughout the study in the epilepsy study.

of interest is whether the number of contacts differed between males and females. Table
2.4 and Figure 2.5 give summary statistics and boxplots which already indicate that
differences in the number of contacts between males and females are small. In contrast to
the previous data sets, more than two data hierarchies, caused by collecting data within
households and sampling households within municipalities, have to be taken into account
in this setting. This data set will be analyzed in Chapter 5.

2.3 Data sets with binomial responses

2.3.1 Jimma infant growth study

The Jimma infant survival differential longitudinal growth study is an Ethiopian study,
set up to establish risk factors affecting infant survival and to investigate socio-economic,
maternal, and infant-rearing factors that contribute most to the child’s early survival.
Children born in Jimma, Keffa and Illubabor, located in south western Ethiopia were
examined for their first year growth characteristics. At baseline, there were a total of
7969 infants enrolled in the study, whereby 4317, 1494, and 2158 were from rural, urban,
and semi-urban areas, respectively. The children were followed-up every two months,
until the age of one year. Of special interest in this thesis is the risk factor for overweight
in children. Overweight among infants is associated with various risk factors.

It is of particular interest to identify these risk factors in early life through weight
and height measurements, which helps in prevention and treatment of overweight and
obesity to reduce the incidence of several adulthood diseases (Freedman et al., 1999).
This outcome is defined by dichotomization of the body mass index (BMI), with a BMI
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Table 2.4: Summary statistics for the number
of contacts per person for females and males in
the Flemish contact study.

Statistics Female Male

Sample size 660 652

Mean 15.63 15.22

Standard deviation 11.24 10.76

Median 13 12

Minimum 0 0

Maximum 90 90 Figure 2.5: Boxplots for the number of
contacts per person for females and males in
the Flemish contact study.

over the 85th percentile for his or her age referring to overweight. The 85th percentile for
age- and sex-specific BMI classification of overweight is used based on Center for Disease
Control recommendation (Mei et al., 2002). The first question of interest is whether the
percentage of overweight infants changes over time, and whether the evolution differs
between genders and the place of residence (rural, urban and semi-urban), as well as
the breastfeeding behaviour. Table 2.5 gives a summary of the percentage of overweight
infants as a function of gender, location and follow-up time (age in months). Figure
2.6 shows that differences in evolution can probably be found between children with
or without breastfeeding. It is important to note though that numbers in the group
without breastfeeding were very low when compared to the group with breastfeeding,
especially in the early months, e.g. in month 0, there were only 6 children that received
no breastfeeding, while 7866 did receive it. The rather steep increase through time for
the group without breastfeeding can therefore be an artefact of the small sample size in
the early months. Also the place of residence is likely to have an effect, while both gender
trends seem to behave alike. These data will be investigated in Chapter 4.

2.3.2 Jimma longitudinal family survey of youth

The Jimma longitudinal family survey of youth is another Ethiopian study where data were
collected from households. The study began in 2005, and was repeated in 2007. More
than 90% of the study subjects present at baseline were visited and willing to respond
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Table 2.5: Percentage of overweight male and female infants by place of residence for each of
the seven follow-up times in the Jimma infant growth study.

rural urban semi-urban

Time female male female male female male

0 11.5 12.2 16.5 14.5 20.3 21.5

2 12.1 12.7 13.4 13.5 20.6 22.4

4 12.1 12.4 12.7 16.4 22.5 20.2

6 13.4 12.3 13.8 14.9 18.3 21.0

8 12.7 11.8 14.9 19.5 20.2 23.1

10 13.4 11.4 14.9 14.9 19.5 22.6

12 13.8 14.1 16.9 16.0 17.6 18.2

in the second round. The study population is representative of the relatively large town
of Jimma, the small towns of Yebu, Serbo, and Sheki, and nearby rural areas. The
sample includes 3700 households as well as 700 adolescents. The outcome of interest
is the adolescents’ current school attendance coded as 0 (not currently attending) or
1 (currently attending). Current school attendance was 90.2% and 91.1% in the first
round survey and 93.5% and 92.8% in the second round for male and female adolescents,
respectively. The research question is to examine whether or not the percentage of school
attendance depends on the adolescents’ involvement in work to support themselves or their
families to earn money, whether they are living in urban towns or rural areas, as well as
on gender and age (Belachew et al., 2011). An overview of the summary statistics (Table
2.6) does not give a clear view of possible important factors, although it is likely that
the work status is important. Furthermore, the evolution for the categorical covariates
does not seem to differ among their categories. It is clear that statistical modeling will
be needed to obtain a better insight into these data, as will be done in Chapter 4.
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Table 2.6: Numbers for adolescents that were or were not at school at both survey rounds in
the Jimma longitudinal family survey of youth. Also the mean and variance for the age of the
adolescents at both rounds is given.

Covariate
Category/ Round 1 Round 2

Statistic In school Not in school In school Not in school

Work
Yes 393 79 462 73

No 1331 99 1320 58

Gender
Male 845 92 874 68

Female 879 86 908 63

Place

Rural 582 110 615 70

Urban 667 32 665 39

Semi-urban 475 36 502 22

Age
Mean 13.658 13.517 15.093 15.015

Variance 1.500 1.347 1.620 2.031
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Figure 2.6: Longitudinal profiles for the proportion overweight in children for the Jimma infant
growth study.



Chapter 3
Extra-variance

3.1 Introduction

In Chapter 1, a selection of count and proportion data sets was presented. Typically,
count data are modeled through the use of the Poisson distribution, while grouped binary
(or binomial) data are assumed to follow a binomial distribution. An issue frequently
encountered in analyses focusing on these forms of data, is that the data show more
variation than what would be expected from the assumed underlying distributions, which
can be caused by a number of reasons. It is important to take this additional variability into
account, because it may be originated from structural aspects in the data or unknown
factors that influence the outcomes. This chapter first discusses basic concepts about
distributions for binomial and count data. The second part of this chapter is dedicated
to the specification of different models that provide ways of dealing with so-called extra-
variance.

3.2 Basic concepts

As already was indicated in Chapter 1, the modeling of binomial and count data may not
always be straight-forward. Binomial data comprise grouped binary data, which contain
a minimum of information as they only give information on whether an event occurred or
not. Count data contain substantially more information but are also limited as they are
bound to be non-negative integers. Due to the omnipresence of these data types, many
methods have been developed to use them in statistical inference. Before discussing these
techniques, the following paragraphs give an overview of a number of the concepts on
which these models were built.

15
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3.2.1 Binomial distribution

Suppose y1, y2, ..., yn denote binary responses (1 = "success", 0 = "failure") for n trials.
Those trials are assumed to be identical, meaning that the probability of success P (Yi =
1) = π, and therefore also the probability of failure P (Yi = 0) = 1−π, is the same for each
trial, and secondly independent, meaning that {Yi} are independent random variables.
The total number of successes, Y =

∑n
i=1 Yi then follows a binomial distribution with

index n and parameter π, denoted by bin(n,π). The probability mass function for the
possible outcomes y for Y is

p(y) =
(
n

y

)
πy(1− π)n−y,

with y = 0, 1, 2, ..., n. Since E(Yi) = E(Y 2
i ) = π, and V ar(Yi) = π(1−π), the binomial

distribution has mean and variance

µ = E(Y ) = nπ

σ2 = V ar(Y ) = nπ(1− π),

while skewness is described by E(Y −µ)3/σ3 = (1− 2π)/
√
nπ(1− π). The distribution

converges to normality, as n increases.

3.2.2 Poisson distribution

When dealing with count data not resulting from a fixed number of trials, observation yi
will be a non-negative integer. A well-known distribution that places mass on that range is
the Poisson distribution. It expresses what the probability is that a count of events occurs
in a fixed interval of time and/or space, while it assumes that one event is independent
of the others. Say, Y is a discrete random variable and has a Poisson distribution with
parameter λ > 0 and y = 0, 1, 2, . . . , then the probability mass function of Y , denoted
by Poi(λ) (Poisson, 1837, p. 206), is given by

p(y) = e−λλy

y! ,

with λ = E(Y ) = V ar(Y ). It is unimodal with the mode equal to the integer part of
λ. Its skewness is described by E(Y − λ)3/σ3 = 1/

√
λ. The distribution approaches

normality as λ increases.

3.2.3 Extra-variance

In practice, the assumptions for the previous distributions that the mean and variance
depend on a single parameter, are frequently violated. For example, count observations
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often have more variability than predicted by a Poisson distribution. When looking at
the kidney or prostate cancer data example (Section 2.2.1), this is indeed the case. One
can think of a geographical factor, caused by for example industrial pollution or other,
unknown explanatory variables that introduce heterogeneity. In order to put this issue in
a more general context, suppose that Y is a random variable with parameter λ, but λ can
vary because of known or unknown factors. If µ = E(λ), than unconditionally,

E(Y ) = E [E(Y |λ)] ,

V ar(Y ) = E [V ar(Y |λ)] + V ar [E(Y |λ)] .

If Y is conditionally Poisson (given λ), then E(Y ) = E(λ) = µ and
V ar(Y ) = E(λ) + V ar(λ) = µ+ V ar(λ) > µ.

A similar phenomenon can be seen in analyses assuming binomial data. Recall the
egg data example from Section 1.2. Suppose one wants to investigate the predation
probability on the nests. Let ni denote the number of eggs in nest i ad π the probability
for an egg to be predated. In practice, π might vary between nests due to e.g. location
or individual parent behaviour. In such cases, extra-variation is typically seen due to this
additional nest-to-nest variation, with the distribution of the number of egg predation
per nest ranging from 0 to ni, which is more than when there was only a single value of π.

These forms of extra-variance are typically called overdispersion. Note that underdis-
persion, when the variance is smaller than expected, also exists, but it is only rarely seen in
practice. For example, in the egg data example it is possible that parental behaviour gen-
erally improves during the nesting season, which might decrease predation. The decrease
in predation across nests can make the nests more similar than they would be by chance.
In this thesis, a slightly specific nomenclature is applied when the variance assumption is
violated: (1) overdispersion is defined as all extra-variance caused by unknown factors,
also known as uncorrelated heterogeneity (UH), while (2) all extra-variance caused by a
known structural aspect of the data (e.g. a time structure in a longitudinal analysis, a
spatial structure in a disease mapping) is denoted as correlated heterogeneity (CH). In
the following sections, an overview is given to take these issues into account, with a final
description of the so-called combined model that literally combines methods to deal with
CH and UH.

3.3 Models dealing with extra-variance

While ordinary linear regression is typically used to investigate the effect of one or more
explanatory variables on Gaussian data, generalized linear models (GLMs) are often
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employed for modeling univariate non-Gaussian data. GLMs include a wide range of
statistical models that relate outcome variables such as counts, binary rates and ratios,
etc, to a linear combination of predictor variables (McCullagh and Nelder, 1989, Agresti,
2002, Molenberghs and Verbeke, 2005). A GLM typically has three components: (1)
a random component identifies the probability distribution of a vector of observations
of Y , (2) a systematic component specifies the vector µ in terms of a vector of p fixed
unknown parameters ξ and (3) the link function specifies the function of E(Y ) that the
model equates to the systematic component.

Let Y be a random variable from an exponential family distribution. The density can
then be written as

f(y) ≡ f(y|η, φ) = exp
{
φ−1[yη − ψ(η)] + c(y, φ)

}
,

with unknown parameters η (natural parameter) and φ (dispersion or scale parameter),
and ψ(·) and c(·, ·) known functions. Recall from Section 3.2.1 that for grouped binary
responses, Y ∼ Bin(π, n). When the goal is to relate the variability in the outcome to a
set of covariates, a density function

f(y|η, φ) = πy(1− π)1−y = exp
[
y ln

(
π

1− π

)
+ ln(1− π)

]
, (3.1)

is used and thus η = ln[π/(1 − π)], ψ(η) = ln[1 + exp(η)], φ = 1 and c(y, φ) = 0.
As indicated before, the mean is given by µ = ψ′(η) = π and the variance, var(Y ) =
φψ′′(η) = π(1 − π) (Nelder and Wedderburn, 1972). Now let Y1, . . . , YN be a set of
independent binary outcomes, and let x1, . . . ,xN be the corresponding p-dimensional
vectors of covariate values. With a logit link function, πi is linked to the linear predictor
by taking the natural logarithm of the odds of π, ln

(
πi

1−πi

)
= xi

′ξ, with ξ a vector
of unknown regression coefficients, resulting in the well-known logistic regression model.
Other link functions are available such as the probit or inverse normal, Φ−1(π) = xi

′ξ or
the complementary log-log function, ln{− ln(1−π)} = xi

′ξ. When turning to statistical
inference, let Li = f(yi|ηi, φ) denote the contribution of yi to the likelihood for N
independent observations, Y1, . . . , YN . The likelihood function L then is

L(ξ) = ΠN
i=1Li = ΠN

i=1f(yi|ηi, φ),

where f(yi|ηi, φ) is as defined by (3.1) for observation i. Without going into much detail,
it is noteworthy to add that general-purpose iterative methods, such as Newton-Raphson
or Fisher Scoring, can be applied to obtain the maximum likelihood estimates of the
unknown model parameters (McCullagh and Nelder, 1989, Agresti, 2002).



3.3. Models dealing with extra-variance 19

For count outcomes, the model of interest is: Y ∼ Poisson(λ). A GLM density
function is

f(y) = e−λλy

y! ,

with η = lnλ, ψ(η) = exp(η) = λ, φ = 1 and c(y, φ) = −lny!. The key assumption of the
Poisson distribution is the mean-variance equality. Note that when one defines V ar(Y ) =
φv(λ), the assumption translates to φ = 1. If Y1, . . . , YN is a set of independent count
outcomes, and if x1, . . . ,xN are the p-dimensional vectors of covariate values, then the
Poisson regression model with ξ a vector of p fixed, unknown regression coefficients is
given by log(µi) = xi

′ξ. For observation yi the contribution to the log-likelihood is
proportional to Li = yi logωi − ωi. The likelihood function L then becomes (McCullagh
and Nelder, 1989)

L(ξ) = ΠN
i=1Li = ΠN

i=1exp(yi log λi − λi).

Here also, the Newton-Raphson or Fisher Scoring can be used to obtain the maximum
likelihood estimates of unknown model parameters (McCullagh and Nelder, 1989, Agresti,
2002).

3.3.1 Overdispersion models

Recall that the previous basic models for binomial and count data assume the mean and
variance to depend on a single parameter. A way to avoid those stringent assumptions,
is to use so-called overdispersion models. Here, the dispersion parameter φ is allowed to
differ from 1, which induces the possibility to have larger ranges in the variability, e.g.
for count data V ar(Y ) = φv(λ), while still specifying a relation between the mean and
the variance. The general idea is use a two-stage approach in which one assumes the
parameter of interest (π for binomial data, λ for count data) to be a random variable
that introduces an extra form of variation. This is easily illustrated for the Poisson case:
Assume that Yi|λi ∼ Poi(λi) and that λi is a random variable with E(λi) = µi and
V ar(λi) = σ2

i . As in Section 3.2.3, it follows that

E(Yi) = E [E(Yi|λi)] = E(λi) = µi,

V ar(Yi) = E [V ar(Yi|λi)] + V ar [E(Yi|λi)] = E(λi) + V ar(λi)

= µi + σ2
i .

Similarly, this can also be shown for binomial data. Note however that a set of i.i.d.
Bernoulli data cannot contradict the mean-variance relationship, but a violation is
possible for hierarchical Bernouilli cases and the related binomial data setting.
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More generally, the two-stage approach can be defined as follows: There is a distribu-
tion for the outcome, given a random effects f(yi|θi) which, combined with a model for
the random effect, f(θi), produces the marginal model

f(yi) =
∫
f(yi|θi)f(θi)dθi.

Typically, full distributional assumptions about the random effects are made, which are
bound together by the property of conjugacy, in the sense of Cox and Hinkley (1974,
p. 370) and Lee et al. (2006, p. 178). Conjugacy refers to the fact that hierarchical
and random-effects densities have similar algebraic forms, producing a general and
closed-form solution for the corresponding marginal distribution. Common choices are
the beta distribution for πi and the gamma distribution for λi. For the former, this
leads to the so-called beta-binomial model, in which the binomial model is combined
with a beta distribution (Molenberghs and Verbeke, 2005, Skellam, 1948, Hinde, and
Demétrio, 1998a, Hinde, and Demétrio, 1998b, Kleinman, 1973). For Poisson data, the
unconditional distribution of the outcome turns out to be a negative binomial distribution
(Breslow, 1984, Hinde and Demétrio, 1998a, Hinde and Demétrio, 1998b). Indeed, if
σ2
i > 0 in (3.2), the variance is larger than the mean, implying that the negative binomial

allows for overdispersion. When σ2
i = 0, the Poisson model results as a special case.

3.3.2 Generalized linear mixed models

When non-Gaussian data are hierarchically organized (repeated measures, spatial clus-
tering, etc.), the GLM is usually extended to a generalized linear mixed model (GLMM).
This model type has one or more subject-specific random effects, usually a Gaussian
type, added in the linear predictor to capture the correlation (Engel and Keen, 1992,
Molenberghs and Verbeke, 2005, Pinheiro and Bates, 2000) and/or multiple hierarchies
(Goldstein, 2002).

Let Yij be an outcome for the ith subject measured at the jth time point. Let
the elements of bi, being the q-dimensional vector of the random effects, be normally
distributed with mean 0 and variance-covariance matrix D, that is bi ∼ N(0, D), with
E(bi) = 0 and Var(bi) = D. Then, it is assumed that the conditional distribution of the
response, Yij |bi is independent and belongs to the following exponential family density

fi(yij |ξ, bi, φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(y, φ)

}
.

The expectation is, E(Yij |bi) = µij = h−1(x′ijξ + z′ijbi), where h(.) is a known link
function, xij is a p-dimensional design matrix of the fixed effect parameters ξ, and zij
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is a q-dimensional design matrix of the random effects bi. The marginalized likelihood
contribution of subject i is

fi(yij |ξ, bi, φ) =
∫ ni∏

j=1
fij(yij |ξ, bi, φ)f(bi|D)dbi.

From this, the marginal likelihood for ξ, D and φ is given as

L(ξ, D, φ) =
N∏
i=1

∫ ni∏
j=1

fij(yij |ξ, bi, φ)f(bi|D)dbi, (3.2)

Numerical approximations are needed, since in general, expression (3.2) does not have
an analytical solution. An extensive overview of different approximation techniques
can be found in Molenberghs and Verbeke (2005) and Skrondal and Rabe-Hesketh (2004).

For the case of binomial data Yij , a multi-stage presentation is

Yij ∼ Bin(n, πij = κij),

κij =
exp

(
x′ijξ + z′ijbi

)
1 + exp

(
x′ijξ + z′ijbi

) ,
bi ∼ N(0, D)

Turning to count data, a similar approach yields

Yij ∼ Poi(λij),

λij = exp
(
x′ijξ + z′ijbi

)
,

bi ∼ N(0, D).

Note that the difference between a GLMM and an overdispersion model is vague. Both
models have emerged from two disparate strains of methodological research, but indeed,
an overdispersion model can introduce correlation structures and it can be specified such
that it becomes a GLMM.

3.4 The combined model

In many cases however, known structural aspects are present in the data while at the same
time extra-variance can be caused by unknown factors. In other words, a model could
benefit from taking into account the previously introduced correlated and uncorrelated
heterogeneity. While in the previous section models were presented that roughly dealt
with one or the other form of additional variability, in this section, we introduce the
combined model as proposed by Molenberghs et al. (2007). The model literally combines
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an overdispersion model with a GLMM, and by bringing both the overdispersion effects
as well as the normal random effects towards the generalized linear model framework, a
general family is produced (Molenberghs et al., 2010).

Let Yij be the jth binomial/Poisson outcome measured for subject i (i = 1, . . . , N ,
j = 1, . . . , ni) and the ni measurements are grouped into a vector Y i. Then, conditionally
on the q-dimensional random effects bi ∼ N(0, D), one assumes the outcomes Yij to be
independent and to have densities of the form

fi(yij |bi, ξ, θij , φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
,

with the conditional mean being

E(Yij |bi, ξ, θij) = µcij = θijκij .

The conditional mean is factorized into an overdispersion component θij where
the random variable θij ∼ Gij(ϑij , σ2

ij), and again the GLMM component
κij = g(ηij) = g(x′ijξ + z′ijbi) with xij and zij p-dimensional and q-dimensional
vectors of known covariate values, with ξ a p-dimensional vector of unknown fixed
regression coefficients, while bi ∼ N(0, D). Note that the linear predictor and/or the
natural parameter can be referred to with two notations, ηij and λij since the former
refers to the ‘GLMM part’, while the latter encompasses the random variables θij .

The likelihood contribution of subject i is

fi(yi|ξ, D,ϑi,Σi) =
∫ ni∏

j=1
fij(yij |ξ, bi,θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi, (3.3)

and from this, the marginal likelihood is given as

L(ξ, D,ϑ,Σ) =
N∏
i=1

fi(yi|ξ, D,ϑi,Σi)

=
N∏
i=1

∫ ni∏
j=1

fij(yij |ξ, bi,θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi,

where ϑi = E(θi) = E [(θi1, ..., θini
)′], Var(θi) = Σi and ξ again groups all covariate

parameters. Note however that in the model types used in this thesis, such as the
Poisson-gamma model for count data, the components θij of θi are assumed to be
independent, such that Σi reduces to a diagonal matrix. Although this is natural in
many cases, since the correlation is taken up by the normal random effects, it is possible
to allow for covariance structures within θi. Furthermore, it is possible to allow for
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dependence between θi and bi, but in most cases, such as throughout this thesis,
independence is assumed. Also note that the conjugacy here is not interpreted any
more as described in Section 3.3.1. For the combined model, strong conjugacy, which is
defined as conjugacy conditional on the normal random effect bi, is needed. Recall that
only a few distributions allow for strong conjugacy. The Poisson distribution is one of
them, but the Bernoulli and related binomial distributions only satisfy conjugacy in the
sense of Section 3.3.1, or in other words, conjugacy does not "survive" the inclusion of
the normal random effects in the Bernoulli and binomial distributions. In Chapters 4 and
5 however, a number of methods will be presented which make it possible to fit both
Poisson and binomial combined models.

For binomial data, we obtain

Yij ∼ Bernoulli(πij = θijκij),

κij =
exp

(
x′ijξ + z′ijbi

)
1 + exp

(
x′ijξ + z′ijbi

) .
When considering θij ∼ Beta(α, β), then φ = α/(α+ β), and

σ2
ij = σi,jj = αβ

(α+ β)2(α+ β + 1) , σi,jk = ρijk
αβ

(α+ β)2(α+ β + 1) .

Closed forms for neither mean nor variance follow when normal random effects are
present, which may result in problems in practice.

For the Poisson case, a multi-stage model presentation will mostly be used throughout
the following chapters. It can be written as

Yij ∼ Poisson(θijκij), (3.4)

κij = exp
(
x′ijξ + z′ijbi

)
, (3.5)

bi ∼ N(0, D), (3.6)

θij ∼ gamma(α, β). (3.7)

Remember that it is implicitly assumed that the components θij of θi are independent.
See also Molenberghs et al. (2007) and Aregay et al. (2013), amongst others for exten-
sive investigation of this model. Note that the Poisson-gamma model can be partially
marginalized as,

Yij ∼ NegBin(α, κijβ), (3.8)

κij = exp
(
x′ijξ + z′ijbi

)
, (3.9)

bi ∼ N(0, D), (3.10)
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as will be done in parts of this thesis. Indeed, the above negative binomial model is
obtained from the Poisson-gamma-normal model, by integrating out the gamma random
effect (see also e.g. Molenberghs et al., 2007, Neyens et al., 2012). Note that to
avoid overparametrization problems, a restriction has to be applied to shape parameter
α and scale parameter β. Therefore, in the following chapters, α = 1/β is used when
the combined model is applied. Also note that in most literature and in a selection of
software packages (such as SAS) the gamma distribution is defined in terms of the shape
and scale parameters. Others, such as WinBUGS, use the parametrization with the shape
and rate (1/scale) parameters. While this thesis is written using the former notation, this
has to be taken into account when consulting program codes in the appendices.



Chapter 4
Bayesian Estimation of the
Combined Model for Binomial
Data

4.1 Introduction

In Chapter 3, an overview of different model families was given. When an appropriate
model is chosen, the decision of what estimation method to use, forms the following step.
Initially, inference for the combined model was conducted in the likelihood framework
by the use of partial integration, in which the conjugate random effect is integrated out
analytically while the normal random effect is integrated out numerically (Molenberghs
et al., 2007). Others also worked within the likelihood framework, such as Njagi et
al. (2013), who used the combined model in the joint modeling context, and Efendi et
al. (2013) and Kassahun et al. (2014) in the context of marginalized combined models.
Kalema and Molenberghs (2014) proposed the use of pseudo-likelihood as an alternative
estimation method. Others however, such as Aregay et al. (2013) and Ghebretinsae et al.
(2012b) embedded the combined model for count and time-to-event data, respectively,
in a Bayesian framework, with estimation done with Markov Chain Monte Carlo methods
(MCMC). Neyens et al. (2012) also used MCMC to introduce the combined model into
a spatial data analysis. MCMC is a simulation-based method that, although it also
works with a likelihood function, is based on a vastly different set of assumptions than
the likelihood techniques. In practice, Bayesian estimation is popular when the data
hierarchies become complex or when the analyst wants to include prior knowledge in the

25
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analysis. It is important however to assess if likelihood and Bayesian analyses for the
combined model yield the same results.

This chapter presents a comparison between the combined and traditional models
via both partial likelihood and MCMC. In Section 4.2, partial likelihood and MCMC are
introduced, while Section 4.3 focusses on model comparison techniques. In Section 4.4,
two binary data case studies will be investigated, namely the Jimma infant growth study
and Jimma longitudinal survey of youth, which were introduced in Sections 2.3.1 and
2.3.2 respectively, while a discussion is given in Section 4.5.

4.2 Estimation methods

As seen in Chapter 3, the combined model for binomial data contains a set of normal and
beta random effects. In the next sections, partial integration, a likelihood-based technique,
and MCMC, a Bayesian method, will be introduced. It was mentioned earlier that the
lack of strong conjugacy might be problematic for estimation in the likelihood framework,
but it still remains feasible in the binomial case, as will be shown next. MCMC, which is
a sampling-based method, does not build on the conjugacy characteristic as it does not
need a closed-form posterior distribution.

4.2.1 Partial integration

Partial integration, or partial marginalization, is a straight-forward method in the
likelihood framework and is recommended in many data settings, although computational
issues arise when working with very large data sets and/or when the data contain multiple
hierarchies. In this method, the conjugate random effect is first integrated out analytically
from the likelihood, while leaving the normally distributed random effect embedded in the
predictor. The fully marginalized likelihood is then obtained by numerically integrating
out the normal random effect using software such as the SAS procedure NLMIXED
or the R function nlme. Details concerning its implementation when working with the
combined model can be found in Molenberghs et al. (2010), but an overview is given here.

The likelihood contribution for subject i is given by (3.3) with fij(yij |ξ, bi,θi) cor-
responding with the hierarchical distribution, e.g. a Poisson or binomial distribution,
f(bi|D) with the normal random effects distribution and f(θi|ϑi,Σi) with the conjugate
random effects distribution, such as a gamma or beta random effects distribution which
is conjugate to respectively the Poisson or binomial distribution, and θi = (θi1, ..., θini

).
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Partial integration leads to the likelihood

fi(yi|ξ, D,ϑi,Σi) =
∫ ni∏

j=1
fij(yij |ξ, bi,ϑi,Σi)f(bi|D)dbi.

For the binomial data, Molenberghs et al. (2010) investigated the logit and probit links,
while in this thesis, only the former will be looked at, mainly due to its omnipresence
in univariate data analyses. Because there is lack of strong conjugacy, it is impossible
to exploit the conjugate form, such as the beta-binomial here. It is however possible
to integrate out the beta random effects that are assumed to be independent within a
subject. The corresponding probability becomes

f(yij |bi, ξ, α, β) = 1
αj + βj

.(κijαj)yij . [(1− κij)αj + βj ]1−uij ,

which can be used afterwards to obtain the fully marginalized likelihood by numerical
integration. Indeed, while strong conjugacy does not apply for the binomial case, inte-
gration over θ is fairly simple, pointing out that partial integration brings a simple way to
overcome the issue of defeating strong conjugacy.

4.2.2 Markov chain Monte Carlo

An attractive alternative to likelihood-based estimation is the Bayesian method, which still
builds upon the likelihood principle, stating that the information content of the data is
solely and entirely expressed by the likelihood function, but which assumes all parameters
- so both types of parameters that were defined in the likelihood framework as fixed
or random - to be stochastic. Inference is based on the posterior distribution, which is
proportional to the product of likelihood and priors

p(ξ, bi, D,ϑi,Σ|yi) ∝

 ni∏
j=1

fij(yij |ξ, bi,θi)f(bi|D)f(θi|ϑi,Σ)

 [p(ξ)p(D)p(ϑi)p(Σi)] ,

where fij(yij |ξ, bi,θi), f(bi|D) and f(θi|ϑi,Σ) are as before, while p(ξ), p(D), p(ϑi)
and p(Σi) are the prior densities for ξ, D, ϑi and Σi respectively. Note that in the
binomial case,

p(ξ, bi, D, α, β|yi) ∝

 ni∏
j=1

fij(yij |ξ, bi,θi)f(bi|D)f(θi|α, β)

 [p(ξ)p(D)p(α)p(β)] ,

follows. Sampling algorithms are used, with Markov Chain Monte Carlo (MCMC) being
most widespread (Ripley, 1987, Gelman and Rubin, 1992) to obtain the normalizing
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constant of the posterior distribution. MCMC methods use iterative simulation of
parameter values within a Markov chain. When this chain runs over a long period, it
will converge towards a stationary distribution (posterior distribution) and one is then
able to generate a sample from that posterior distribution. However, although the
simulation-based method behind MCMC is said to be able to tackle very complex models,
it is known to hamper a lot of the more complex analyses, mainly by a computational
burden. Indeed, MCMC is an exact method, in the sense that in theory, when you sample
throughout a large amount of iterations, convergence will always be met. It should be
noted though that in practice however convergence of complex models can be highly
time-consuming, due to associations among the parameters, which forces the user to end
the MCMC sampler at one point, making it not exact any more.

An important feature of Bayesian inference is the inclusion of prior knowledge. Al-
though this prior knowledge can be very informative, in this thesis, weakly informative
priors will mostly be used. In this chapter particularly, the following prior distributions
are used, in accordance to Kassahun et al. (2012): ξ ∼ N(0, 10−6), bi ∼ N(0, τi), with
τi = 1/σ2

i , as also suggested in the literature (Gilks et al., 1996; Gelman et al., 2004)
and θij ∼ beta(α, β), is unimodal and concave, when α > 1, β > 1 (Agresti, 2002).
Note that if one or both of these parameters would be less than 1, then the probability
mass function would go to infinity near its boundaries, 0 and 1, and hence would not
be concave. As a result, the mode would not exist, leading to computational problems
in MCMC. For this reason, the restriction α > 1, β > 1 is used, such that the density
is always concave and unimodal whereby it is always finite over the support [0, 1]. For
the hyper parameters τi, the inverse-gamma prior IG(0.001, 0.001), and for α and β, an
improper uniform prior is used, as also suggested by Gelman et al. (2004).

4.3 Model comparison

In order to assess fit, the well-known log-likelihood and Akaike Information Criterion
(AIC) were used when working in the likelihood framework. In Bayesian statistics, this
issue is more controversial. Spiegelhalter et al. (2002) suggest the use of the so-
called deviance information criterion (DIC). Assume a probability model P (y|θ). The
effective number of parameters with respect to a model with parameter Θ is given
by pD{y,Θ, θ̃(y)} = Eθ|y[−2 log p(y|θ)] + 2 log[p{y|θ̃(y)}]. Note that the arguments
{y,Θ, θ̃(y)} are usually dropped from the notation. In general, θ̃(y) = E(θ|y), the pos-
terior mean of the parameters is used for estimation purposes. For f(y) being a fully
specified standardizing term that is a function of the data alone, pD, defined as a ‘mean
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deviance minus the deviance of the means’, is given by pD = E[D(θ|y)] − D(E[θ|y]),
where D(θ) = −2 logP (y|θ) + 2 log f(y) is the Bayesian deviance, used as a measure for
goodness-of-fit. The deviance information criterion, defined as the classical estimate of fit
plus twice the effective number of parametersDIC = D(E[θ|y])+2pD = E[D(θ|y)]+pD
is used for model comparison. According to this criterion, the model with the smallest DIC
is to be preferred. pD and DIC are easily computed using the available MCMC output by
taking the posterior mean of the deviance to obtain E[D(θ|y)] and the plug-in estimate
of the deviance D(E[θ|y]) using the posterior means E[θ|y] of the parameter θ. In non-
hierarchical models, pD approximates the effective number of parameters to be estimated.
However, for hierarchical models, pD is a measure of model complexity instead of being
merely the number of effective parameters to be estimated. In general, it is difficult to
say what would constitute an important difference in DIC for model comparison. Spiegel-
halter et al. (2002) suggested models receiving DIC within 1-2 of the ‘best’, deserve
consideration, and 3-7 have considerably less support. These rules of thumb appear to
work reasonably well (Spiegelhalter et al., 2002). For the best model preferred based on
DIC, the important risk factors could be identified looking at the credible intervals. In the
case of a single parameter and data that can be summarised in a single sufficient statistic,
the credible interval and the confidence interval can be treated equivalently. Hence, to
identify the risk factor, the consideration whether zero is in or outside of the credible
interval was made. In terms of parameter interpretation, it is important to refer back
to the beneficial properties that come with the conjugacy property. Indeed, because the
θij follow a conjugate distribution, the interpretation of the parameters is the same as in
a classical generalized linear mixed model. Precisely, this means that the effect on the
regression parameters only comes from the normal random effects in the linear predictor,
a fact well documented. For a review, see for example Molenberghs and Verbeke (2005).

4.4 Case studies: Jimma infant growth study and Jimma longitu-
dinal survey of youth

For the Jimma infant growth study, assuming independence, the sample average prob-
ability of success and the sample variance are 0.150 and 0.128, respectively, indicating
that the prescribed mean-variance link is maintained. Note that this is always true for the
Bernoulli case. In the binomial setting however, which takes the hierarchical structure into
account, the sample average and the sample variances are 0.141 and 2.107, respectively,
thus implying the mean-variance relationship for these data is violated. When looking at
the binomial case for the Jimma longitudinal survey of youth data, the sample average
probability of success was 0.919 and the sample variance was 0.168, which indicates that
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the results are in line with the prescribed mean-variance relationship. This may suggest,
at first sight, that these data are not prone to exhibit strong extra-variance, even in the
hierarchical binomial setting. In addition to the exploratory analysis, tests for overdisper-
sion were conducted. The commonly used approach is to compute the ratio of the residual
deviance to the residual degrees of freedom, which approximates the overdispersion pa-
rameter (φ̂). When the ratio is appreciably larger than 1, overdispersion is said to occur.
It is pointed out that this approach could be misleading when nipi is not sufficiently large,
where pi is the probability of the success event. This is because it is based on asymptotic
theory. As a result, a better approach is based on a quasi-binomial model, which allows
extra dispersion (Skellam, 1948). The approximated overdispersion (φ̂ = 2.37), computed
as the ratio of the residual deviance to the residual degrees of freedom in the binomial, and
the one estimated in the quasi-binomial model, based on a χ2 statistic instead of residual
deviance (φ̂ = 2.47), for the Jimma infant growth data are very similar, both suggesting
the presence of strong overdispersion. However, a similar analysis for the Jimma family
survey data, does not suggest considerable overdispersion, with values 0.765 and 1.129,
approximated by the ratio of the residual deviance to the residual degrees of freedom in
the binomial, and estimated by the quasi-binomial, respectively.

4.4.1 Jimma infant growth study: estimation via partial integration

In order to model the binary BMI data in function of a set of covariates, the following
combined model specification can be used for subject i and measurement j:

Yij ∼ Bernoulli(θijκij),

logit(κij) = ξ0 + b0,i + (ξ1 + b1,i)Timeij + ξ2Sexi +

ξ3Rurali + ξ4Urbani + ξ5Breastfedij + ξ6Sexi ∗ Timeij
+ξ7Rurali ∗ Timeij + ξ8Urbani ∗ Timeij + ξ9Breastfedij ∗ Timeij ,

b0,i ∼ N (0, d0) ,

b1,i ∼ N (0, d1) ,

θij ∼ beta(α, β).

T imeij is the time point at which the jth measurement is taken for the ith subject,
which is centred at month six. Spatial differences between rural, urban and semi-urban
places were investigated. The infant growth data set is analyzed with (i) a simple
logistic model, so the model above without b0,i, b1,i and θij , (ii) a beta-binomial model
introducing only the overdispersion parameter θij , (iii) a random-effects logistic model
with only b0,i and b1,i and (iv) the combined model, as specified above.
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Table 4.1: Jimma infant growth study. Parameter estimates, standard errors, and p-values for
the regression coefficients in (1) the logistic model, (2) the beta-binomial model. Estimation
was done by maximum likelihood using numerical integration over the normal random effect, if
present.

Logistic Beta-binomial
Effect Parameter Estimate (s.e., p) Estimate (s.e., p)
Intercept ξ0 −1.896(0.128, 0.001) −0.448(1.099, 0.683)
Time ξ1 0.127(0.031, 0.001) 0.188(0.090, 0.037)
Gender: male ξ2 0.027(0.025, 0.294) 0.029(0.039, 0.456)
Place: rural ξ3 −0.602(0.029, 0.001) −0.949(0.501, 0.058)
Place: urban ξ4 −0.376(0.037, 0.001) −0.628(0.381, 0.099)
Breastfeeding ξ5 0.545(0.128, 0.001) 0.788(0.347, 0.023)
Slope gender: male ξ6 −0.003(0.006, 0.602) −0.007(0.011, 0.534)
Slope place: rural ξ7 0.018(0.007, 0.014) 0.029(0.020, 0.161)
Slope place: urban ξ8 0.016(0.009, 0.097) 0.026(0.022, 0.251)
Slope breastfeeding ξ9 −0.133(0.031, 0.001) −0.199(0.098, 0.041)
Std. dev. random intercept

√
d0 — —

Std. dev. random slope
√
d1 — —

Ratio α/β — 1.827(1.622, 0.259)
−2log-likelihood 41286 41286
AIC 41306 41308

Parameter estimates of the logistic model and the beta-binomial model are presented
in Table 4.1 and the corresponding estimates of the logistic-normal model and the com-
bined model are given in Table 4.2. Clearly, the logistic-normal model is an important
improvement, in terms of fit (AIC), relative to both the ordinary logistic model and the
beta-binomial. Moreover, considering the combined model, there is a very strong im-
provement in fit when the beta and normal random effects are simultaneously allowed for.
The overdispersion term in the combined model is significant (p < 0.001), implying the
presence of considerable extra-variability due to the grouped nature of the data, which is
beyond what can be accommodated by the commonly used logistic-normal model.

The logistic-normal model ignores the overdispersion that results from the grouped
nature of the data. On the other hand, the beta-binomial model accommodates overdis-
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Table 4.2: Jimma infant growth study. Parameter estimates, standard errors, and p-values for
the regression coefficients in (1) the logistic-normal model, and (2) the combined model.
Estimation was done by maximum likelihood using numerical integration over the normal
random effect, if present.

Logistic-normal Combined
Effect Parameter Estimate (s.e., p) Estimate (s.e., p)
Intercept ξ0 −2.741(0.186, 0.001) −2.661(0.215, 0.001)
Time ξ1 0.132(0.042, 0.002) 0.147(0.049, 0.003)
Gender: male ξ2 0.010(0.054, 0.852) 0.020(0.064, 0.751)
Place: rural ξ3 −0.908(0.064, 0.001) −1.058(0.082, 0.001)
Place: urban ξ4 −0.581(0.082, 0.001) −0.689(0.099, 0.001)
Breastfeeding ξ5 0.635(0.179, 0.001) 0.764(0.209, 0.001)
Slope gender: Male ξ6 −0.003(0.010, 0.728) −0.005(0.012, 0.660)
Slope place: rural ξ7 −0.015(0.011, 0.167) 0.024(0.014, 0.085)
Slope place: urban ξ8 −0.011(0.014, 0.432) 0.015(0.017, 0.377)
Slope breastfeeding ξ9 −0.149(0.044, 0.001) −0.167(0.049, 0.001)
Std. dev. random intercept

√
d0 1.774(0.034, 0.001) 2.107(0.088, 0.001)

Std. dev. random slope
√
d1 0.193(0.007, 0.001) 0.237(0.014, 0.001)

Ratio α/β — 0.234(0.045, 0.001)
−2log-likelihood 37000 36971
AIC 37024 36997

persion which is assumed independent, implying independence between repeated measure-
ments. Again, this is not realistic and therefore the combined model is the more viable
candidate, supported further by the aforementioned AIC and likelihood comparison. The
combined model suggests a significant time interaction with breastfeeding. Although the
interaction between time and place of residence was not significant, the main residence
effects were however. Furthermore, the main effect and slope of gender were not signifi-
cant, implying that the proportion of overweight seems to be invariant among male and
female infants over time. This means that early initiation of breastfeeding has a protective
effect against the risk of being overweight in late infancy (ξ̂9 = −0.167, p = 0.001). Next
to that, infants living in rural and urban areas are at lower risk of being overweight as
compared to those in semi-urban areas with (ξ̂3 = −1.058, p = 0.001), and (ξ̂4 = −0.689,
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p = 0.001), respectively, as shown in Table 4.2.

4.4.2 Jimma longitudinal survey of youth: estimation via partial
integration

In order to model the current school attendance in function of a set of covariates, the
following model, with Yij ∼ Bernoulli(θijκij) and

logit(κij) = ξ0 + b0,iξ1Ageij + ξ2Urbanij + ξ3Semiurbanij + ξ4Workij

+ξ5Sexij + ξ6Roundij ,

is considered, where Yij denotes the school attendance status of individual i at time
point j and b0,i ∼ N

(
0, σ2

0
)
and θij ∼ beta(α, β). Also here, differences between rural,

urban and semi-urban places were investigated. Again, a model without random effects,
an overdispersion model, a model with only the normal random effects and lastly the
combined model were fitted.

Results from fitting all four models can be found in Tables 4.3 and 4.4. AIC and
likelihood comparison of the beta-binomial with the standard logistic model shows no
improvement in fit, implying absence of strong evidence for overdispersion. This can be
noted from likelihood comparisons of the simple logistic and the beta-binomial on the one
hand, as well as the logistic-normal and the combined, on the other. One can easily see,
however, that the commonly used logistic-normal and the combined models are significant
improvements over the standard logistic model. We further observe, while the logistic-
normal model suggests a significant intercept (p = 0.045), that the same does not emerge
when the combined model is considered (p = 0.099), implying the beta random effect has
some impact on the p-values. For these data, with two repeated measures per subject,
the logistic-normal model seems adequate and the overdispersion term in the combined
model is not significant (p = 0.29), strengthening what has been mentioned in the earlier
sections. Further extension by adding a random slope did not improve the fit of neither
the logistic-normal nor the combined models (details not shown).

Based on the logistic-normal model in Table 4.4, adolescents living in urban and
semi-urban areas have a higher school attendance than those living in rural areas, with
ξ̂2 = 1.098 (p = 0.001) and ξ̂3 = 1.092 (p = 0.001), respectively. Gender is also
significantly associated with school attendance, while this is lower for female adolescents
(ξ̂4 = −1.241, p = 0.001). There is evidence that school attendance increases in the
second round visit compared to the first (ξ̂6 = 0.398, p = 0.010).
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Table 4.3: Jimma longitudinal family survey of youth. Parameter estimates, standard errors,
and p-values for the regression coefficients in (1) the logistic model, (2) the beta-binomial
model. Estimation was done by maximum likelihood using numerical integration over the
normal random effect, if present.

Logistic Beta-binomial
Effect Parameter Estimate (s.e., p) Estimate (s.e., p)
Intercept ξ0 1.171(0.626, 0.061) 1.155(0.702, 0.099)
Age ξ1 0.039(0.049, 0.414) 0.044(0.055, 0.421)
Place: urban ξ2 0.971(0.148, 0.001) 1.089(0.266, 0.001)
Place: semi-urban ξ3 0.979(0.159, 0.001) 1.104(0.284, 0.001)
Gender: female ξ4 −1.111(0.123, 0.001) −1.226(0.237, 0.001)
Work ξ5 0.134(0.122, 0.274) 0.146(0.138, 0.288)
Round ξ6 0.341(0.141, 0.016) 0.390(0.178, 0.029)
Std. dev. random effect

√
d — —

Ratio α/β — 0.009(0.014, 0.528)
−2log-likelihood 1987.7 1987.4
AIC 2001.7 2003.4

4.4.3 Bayesian estimation

For comparison with the previously applied estimation method in the likelihood
framework, the same models were applied to the two surveys, but now in a Bayesian
framework. Convergence was checked using the Gelman-Rubin diagnostic as well as by
visual inspection of the trace and QQ plots (Brooks and Gelman, 1998).

The posterior summaries of logistic and beta-binomial for the Jimma infant growth
data set are given in Table 4.5, while the corresponding estimates of the logistic-normal
and combined models are presented in Table 4.6. Similarly, for the Jimma longitudinal
family survey of youth, estimates of these four models are shown in Tables 4.7 and 4.8.
The parameter estimates are fairly similar to what was obtained previously in the
likelihood approach in both cases, except for differences in the case of the beta-binomial
for the Jimma Infants data in Table 4.5 when compared with Table 4.1. In terms
of significance of the parameters, the same conclusion is reached for the two case
studies in both approaches, except that the beta-binomial for the intercept and time
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Table 4.4: Jimma longitudinal family survey of youth. Parameter estimates, standard errors,
and p-values for the regression coefficients in (1) the logistic-normal model, and (2) the
combined model. Estimation was done by maximum likelihood using numerical integration over
the normal random effect, if present.

Logistic-normal Combined
Effect Parameter Estimate (s.e., p) Estimate (s.e., p)
Intercept ξ0 1.443(0.719, 0.045) 1.463(0.888, 0.099)
Age ξ1 0.046(0.056, 0.408) 0.058(0.070, 0.408)
Place: urban ξ2 1.098(0.178, 0.001) 1.379(0.393, 0.001)
Place: semi-urban ξ3 1.092(0.189, 0.001) 1.339(0.368, 0.001)
Gender: female ξ4 −1.241(0.147, 0.001) −1.499(0.339, 0.001)
Work ξ5 0.153(0.144, 0.287) 0.189(0.182, 0.296)
Round ξ6 0.398(0.155, 0.010) 0.519(0.237, 0.028)
Std. dev. random effect

√
d 1.138(0.188, 0.001) 1.342(0.318, 0.001)

Ratio α/β — 0.013(0.013, 0.293)
−2log-likelihood 1972.9 1972.1
AIC 1988.8 1990.1

effects in the Jimma infants study shows significance in the likelihood framework as
given in Section 4.4.1, while the same does not emerge from the Bayesian analysis, as
observed from the 95% credible interval which include zero for these effects. The various
models using DIC were compared. For both studies, there is a significant reduction
in the DIC of the logistic-normal and the beta-binomial, as compared to the simple
logistic. We observe a rather high degree of model improvement by combining beta and
normal random effects simultaneously, to allow for both the overdispersion and the data
hierarchy. Moreover, the logistic and the beta-binomial ignore the correlation stemming
from the data hierarchy on the one hand, and the logistic-normal does not allow for the
overdispersion, on the other, which altogether make the combined model the preferred one.

According to Spiegelhalter et al. (2002), in comparing complex hierarchical models
where the number of parameters is not clearly defined, pD, defined as the difference
between the posterior mean of the deviance and the deviance at the posterior means of
the parameters of interest, not only measures the effective number of parameters but
also the model complexity. These authors further noted that the contribution pDi of
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each observation i turned out to be its leverage, defined as the relative influence that
each observation has on its own fitted value. For yi conditionally independent given θi,
pDi shows its interpretation as the difficulty in estimating θi with yi. This shows the
connection between the sample size, the parameters to be estimated, and the pD. The
Jimma infants (n = 7969) and the Jimma longitudinal family survey (n = 2100) data
have a large number of subjects followed longitudinally, where each subject was measured
seven and two times, respectively. For these reasons, the pD values, as presented in
Table 4.6 and Table 4.8, appeared to be larger for the infant growth study than for the
longitudinal family survey of youth as the by-product of the MCMC estimation to obtain
leverage of each observation. The two competing models, i.e., the logistic-normal model
and the combined model resulted relatively in larger values of pDs in both of our case
studies.

Unlike the Jimma infants study in Table 4.6, the pD of the combined model for
the Jimma longitudinal family survey of youth in Table 4.8 (pD = 211.9) is lower than
that of the logistic-normal (pD = 241.5). This implies that for the Jimma longitudinal
family survey of youth there is reduced dimensionality suggesting that the combined
model is less complex to fit than the logistic-normal, although this is not what we
usually expect, as the combined model seems more complex, since it includes both beta
and normal random effects, while the logistic-normal includes only the normal random
effects. However, for these specific data, this resulted likely because there is less conflict
between the specific data set, and the prior distributions which could be associated to
the conjugacy of the beta random effects, as well as the peculiar data features including
the number of subjects and repeated measurements per subject.

4.5 Concluding remarks

In this chapter, a comparison between partial integration and MCMC was given for the
combined model for binary data, while its modeling flexibility was illustrated too. The
analysis of the case studies shows that, in the presence of overdispersion and clustering,
the combined model results in an improvement in model fit, which is similar to the finding
in Molenberghs et al. (2010). Maximum likelihood estimation through partial integration
was considered by using the SAS procedure NLMIXED, while Bayesian inference was
applied via WinBUGS. Note for the latter that information about the parameters induces
correlation, which then leads to reduced effective dimensionality although the reduction
depends on the available data (Spiegelhalter et al., 2002). Complexity reflects the
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Table 4.5: Jimma infant growth study. Estimated posterior mean and standard deviation in (1)
the logistic model, (2) the beta-binomial model.

Logistic Beta-binomial
Effect Mean(s.d.) Mean(s.d.)
Intercept ξ0 −1.894(0.123) − 1.486(1.488)
Time ξ1 0.126(0.031) 0.155(0.207)
Gender: male ξ2 0.027(0.026) 0.003(0.066)
Place: rural ξ3 −0.602(0.029) −2.486(1.290)
Place: urban ξ4 −0.377(0.037) −1.973(1.210)
Breastfeeding ξ5 0.543(0.123) 1.126(0.294)
Slope gender: male ξ6 −0.003(0.006) −0.015(0.016)
Slope place: rural ξ7 0.018(0.007) 0.160(0.178)
Slope place: urban ξ8 0.015(0.009) 0.1610.182)
Slope breastfeeding ξ9 −0.132(0.030) −0.289(0.097)
Std. dev. random intercept

√
d0 — —

Std. dev. random slope
√
d1 — —

Ratio α/β — 3.222(0.524)
DIC 41310.0 40390.0
pD 9.9 2511.0

difficulty in fit and hence it seems reasonable that the measure of complexity may depend
on both the prior information concerning the parameters under scrutiny and the specific
data that are observed. This can be elucidated from the Jimma longitudinal family
survey of youth result, where the combined model is less complex in fit, which likely
results from the conjugacy of the beta random effect and the number of subjects as
well as the repeated measurements per subject (Kassahun et al., 2012). In this chapter,
we have shown that Bayesian estimation via MCMC provides similar results as partial
integration-based inference for the combined model for binomial data. The Bayesian
methodology provides a useful alternative for parameter estimation of the combined model.

Although this study mainly focussed on the technical aspects of the scientific question
at hand, the interpretation of the results remained largely untouched. The Jimma infant
growth study revealed however that early breastfeeding lowers the risk of overweight
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Table 4.6: Jimma infant growth study. Estimated posterior mean and standard deviation in (1)
the logistic-normal model, and (2) the combined model.

Logistic-normal Combined
Effect Mean(s.d.) Mean(s.d.)
Intercept ξ0 −2.773(0.191) −2.755(0.258)
Time ξ1 0.137(0.042) 0.169(0.062)
Gender: male ξ2 0.020(0.054) 0.026(0.069)
Place: rural ξ3 −0.915(0.065) −1.115(0.085)
Place: urban ξ4 −0.606(0.083) −0.749(0.103)
Breastfeeding ξ5 0.666(0.185) 0.903(0.253)
Slope gender: male ξ6 −0.003(0.010) −0.006(0.012)
Slope place: rural ξ7 0.015(0.011) 0.026(0.015)
Slope place: urban ξ8 0.011(0.014) 0.017(0.018)
Slope breastfeeding ξ9 −0.144(0.041) −0.192(0.061)
Std. dev. random intercept

√
d0 1.783(0.035) 2.212(0.074)

Std. dev. random slope
√
d1 0.193(0.007) 0.250(0.013)

Ratio α/β — 0.288(0.031)
DIC 33605.1 33377.6
pD 5400.7 6218.3

at late infancy. This finding is in line with Bergmann et al. (2003), who showed that
breastfed infants had lower BMI’s after 3 months from birth than bottle-fed infants,
though the BMIs at birth were nearly identical in both groups. Owen et al. (2005),
who reviewed 61 studies, states that initial breastfeeding protects against obesity in
later life, although the precise magnitude of the association remains unclear. Unlike
Owen et al. (2005), the present study showed that infants in the breastfed group were
fatter, at birth, as compared to those who were not breastfed. This is likely because
of the unmeasured maternal history, such as maternal BMI, and socio-cultural aspects,
which are considered to be the risk factors of overweight in children (Gillman et al.,
2006). In addition, it is a common practice in the study area that mothers provide
additional liquid or solid food starting from early infancy, in addition to breastfeeding.
This is probably because they believe that a child with more weight is considered as
healthy, which is likely to have its own impact on the BMI in the early infancy. In this
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Table 4.7: Jimma longitudinal family survey of youth. Estimated posterior mean and standard
deviation in (1) the logistic model, (2) the beta-binomial model.

Logistic Beta-binomial
Effect Mean(s.d.) Mean(s.d.)
Intercept ξ0 1.185(0.624) 1.151(0.731)
Age ξ1 0.039(0.049) 0.047(0.057)
Place: urban ξ2 0.977(0.148) 1.134(0.183)
Place: semi-urban ξ3 0.987(0.161) 1.161(0.202)
Gender: female ξ4 −1.113(0.123) −1.266(0.148)
Work ξ5 0.133(0.122) 0.154(0.140)
Round ξ6 0.343(0.142) 0.404(0.165)
Std. dev. random effect

√
d — —

Ratio α/β — 0.0111(0.0029)
DIC 2002.0 2001.0
pD 6.97 13.77

study, it is also shown that place of residence does not have a long term effect in the
risk of being overweight. Instead it is the mode of feeding, which is more important.
Spatial differences, in the sense of differences observed in the risk of overweight among
infants living in urban versus semi-urban areas, might be attributable to other family
related factors like social class, family income, educational level of the parents, and other
socio-cultural variables, which are indicated to affect the nutrition of young children and
women in Ethiopia (Macro, 2008). Future studies on early growth of children could
benefit from careful measurement of a wider range of potential confounders of overweight.

In investigating school attendance among adolescents, it was shown that girls have a
lower rate of current school attendance than boys, which is a common situation in most
Sub-Saharan African Countries. According to the World Health Organization (WHO,
2009), there was a clear gender gap observed in primary or secondary school enrolment
when the Gender Parity Index (GPI), the ratio of female to male enrolment, is considered.
Between the years 1999 and 2003, the GPI was found to be 0.7, indicating that there were
only 7 girls enrolled at primary schools for every 10 boys. This gender gap increases as
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Table 4.8: Jimma longitudinal family survey of youth. Estimated posterior mean and standard
deviation in (2) the logistic-normal model, and (2) the combined model.

Logistic-normal Combined
Effect Mean(s.d.) Mean(s.d.)
Intercept ξ0 1.452(0.732) 1.272(0.953)
Age ξ1 0.047(0.057) 0.077(0.078)
Place: urban ξ2 1.107(0.180) 1.427(0.270)
Place: semi-urban ξ3 1.104(0.192) 1.382(0.269)
Gender: female ξ4 −1.247(0.149) −1.528(0.214)
Work ξ5 0.155(0.145) 0.199(0.184)
Round ξ6 0.401(0.157) 0.521(0.203)
Std. dev. random effect

√
d 1.148(0.203) 1.417(0.266)

Ratio α/β — 0.013(0.003)
DIC 1943.0 1915.0
pD 241.5 211.9

the level of education increases. This study showed spatial differences, with adolescents
in urban and semi-urban area having a higher rate of school attendance than those in
the rural areas, which is in line with report of the World Bank (2005), where it was
stated that among children in rural areas with a school in the neighbourhood, less than
44 % registered for school; in urban areas, the percentage is much higher (up to 86 %).
According to the report, the distance to the nearest school, household characteristics,
and the learning environment were among the possible reasons of the gap in school
attendance. Further efforts should be made to fill the gap in school attendance among
boys and girls, also in urban and rural areas by focusing on the potential causes, such
as lagging experience in primary schooling, which is then exacerbated by such factors as
the practice of early marriage among Ethiopian women and families’ reluctance to invest
in girls’ education. Situating schools closer to children’s homes in rural areas, and an
improvement of the quality of the services is necessary. Longitudinal studies with a larger
number of repeated measurements per subject should indeed be conducted to get better
insights in these long-time school enrolments.



Chapter 5
Integrated Nested Laplace
Approximation for the
Combined Model for Count
Data

5.1 Introduction

In Chapter 4, partial likelihood and MCMC were compared and gave similar results.
While especially the Bayesian framework is attractive in several applications in this
thesis, such as multi-hierarchical and spatial designs, MCMC-based computation can be
time-consuming. Rue et al. (2009) proposed integrated nested Laplace approximation
(INLA) as an alternative estimation method for Bayesian computing to overcome the
computational burden of MCMC. The method has already been proven successful in
many situations (Paul et al. 2010, Schrödle and Held 2010, Riebler et al. 2011), but
others, e.g. Taylor and Diggle (2014) have criticized the claim that INLA is more robust
than MCMC (Paul et al. 2010). Indeed, as INLA is an approximation method, it is of
interest to investigate whether or not the method is useful for estimation of the combined
model in terms of (1) shortened computation time and (2) quality of the parameter
estimation, in comparison with MCMC.

In this chapter, INLA will be introduced within the context of the combined model.
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Section 5.2 will introduce partial integration, MCMC and INLA within the context of
count data, while Section 5.3 will focus on case studies and a simulation study. Finally,
concluding remarks are given in Section 5.4.

5.2 Estimation methods

Before introducing integrated nested Laplace approximation (INLA), I will recall partial in-
tegration and MCMC. In Chapter 4, both estimation techniques were already investigated
for binomial data, but the Poisson case remained untouched. The focus in this chapter
will be put on count data, since the binomial combined model cannot be estimated yet via
integrated nested Laplace approximations. The reason for this is fairly simple: INLA only
provides a number of likelihood functions, such as the negative binomial or beta-binomial,
but the combined model is not yet a part of this selection. Due to strong conjugacy, the
combined model for Poisson data can be formulated though as a negative binomial model
with a normal random effect. For binomial data however, the lack of strong conjugacy
inhibits the combined model formulation as a beta-binomial model with a normal random
effects. This issue will be made more clear in Section 5.2.3.

5.2.1 Partial integration

Recall that in partial integration, the conjugate random effect is first integrated out ana-
lytically from the likelihood, while the normal random effect is integrated out numerically.
Thus, while partial integration leads to the likelihood given in (3.3), the gamma random
effects, that are assumed to be independent within a subject are integrated out, leading
to the probability

f(yij |bi, ξ, α) =
(
α+ yij − 1
α− 1

)
.

(
1/α

1 + κij/α

)yij

.

(
1

1 + κij/α

)α
κ
yij

ij ,

corresponding with the specification of the model in (3.8)-(3.10).

5.2.2 Markov chain Monte Carlo

A general Bayesian formulation of the combined model was also already presented in
Section 4.2.2. In the Poisson case, the posterior distribution becomes

p(ξ, bi, D, α|yi) ∝

 ni∏
j=1

fij(yij |ξ, bi,θi)f(bi|D)f(θi|α)

 [p(ξ)p(D)p(α)] ,



5.2. Estimation methods 43

where α = 1/β denotes the gamma shape parameter. While MCMC is the most
popular Bayesian estimation technique, the computational burden of its sampling-based
nature can become problematic as was mentioned earlier, in practice leading to (1) long
computing times and (2) sampling from non-converged posteriors. These issues have been
the main reason for researchers to search for approximate methods which are as accurate
as MCMC but with much faster computation times.

5.2.3 Integrated nested Laplace approximation

Rue and Held (2005) proposed an alternative method for the traditional MCMC-based
Bayesian analyses, namely INLA (integrated nested Laplace approximation). INLA is
an alternative Bayesian estimation method for models with a Gaussian Markov random
field (GMRF). In order to use INLA to estimate the combined model (3.4)-(3.7), partial
integration of the conjugate random effect is again required. The posterior distribution
after partial integration is given by

p(ξ, bi,ϑi, D,Σi|y) ∝

 ni∏
j=1

fij(yij |ξ,ϑi,Σi, bi)f(bi|D)

 [p(ξ)p(D)p(ϑi)p(Σi)] ,

where now fij(yij |ξ,ϑi,Σi, bi) corresponds with the distribution resulting from inte-
grating out the conjugate random effects (e.g. the negative-binomial distribution in the
Poisson case), as before. Interest is in the posterior distribution of the random effects
p(bi|y) and of the so-called hyperparameters p(ξ|y), p(D|y), p(ϑi|y) and p(Σi|y).
Again, the Poisson case follows from replacing ϑi and Σi by α. Instead of deriving these
marginal posteriors via sampling, INLA approximates them using Laplace approximations,
using three steps.

First, the marginals of the hyperparameter vector are approximated. Say we use
z = (ξ,ϑi,Σi, D), then this marginal can be expressed as

p(z|y) = p(b, z|y)
p(b|z,y)

for any vector b. A Laplace approximation is now performed by replacing the denominator
by a Gaussian approximation

p̃G(b|z,y) ∝ exp{−1
2(b− µ(z))′Q∗(z)(b− µ(z))},

by matching the mode and curvature of the approximation with a series expansion of
the original density, followed by a evaluation for each z at the mode of the Gaussian
approximation. This results in

p̃(z|y) = p(b, z|y)
p̃G(b|z,y) |b=b∗(z),



44
Chapter 5. Integrated Nested Laplace Approximation for the Combined Model

for Count Data

in which b∗(z) denotes the mode of the iteratively obtained Gaussian approximation.

In a second step, approximations to p(bi|y, z) are calculated, with three ways to go
forward: (1) a simple but notoriously inaccurate method (termed the ’gaussian’ option
when using R-INLA) is to derive the marginals as the univariate marginals of the Gaussian
approximation p̃G(b|z,y), by p̃(bi|z,y) = N(bi;µi(z), σ2

i (z)). (2) A second method
uses the Laplace approximation, as described above, but the marginals of the latent field
are now estimated by

p̃(bi|z,y) ∝ p(b, z|y)
p̃GG(b−i|ζi, z,y) |b−i=b∗

−i(bi,z),

where p̃GG is the Gaussian approximation to the distribution b−i|bi, z,y. Due to the fact
that this method, which is denoted as ’laplace’ in R-INLA, requires an iterative search
of the mode b∗−i(bi, z) for all bi’s, it is known to become time-consuming. (3) The
default in R-INLA, termed ’simplified.laplace’, performs a series expansion of the latter
Laplace approximation and then fits a skew-normal distribution to this series expansion.
The use of the skew-normal brings more flexibility than when working with a Gaussian
distribution. On top of that, it can be understood as an approximation with improved
location and skewness errors, which is claimed to be very fast and still very accurate
(Rue et al., 2009).

The resulting estimates of the marginals can thus be given as

p̃(bi|y) =
∫
p̃(bi|y, z)p̃(z|y)dz

p̃(zj |y) =
∫
p̃(z|y)dz−j ,

with p̃(bi|y, z) found by one of the three approximation strategies mentioned above.
Because the main interest lies in the estimation of the marginals of the latent field, the
third and final step is to perform numerical integration with respect to z, by finding the
sum

p̃(bi|y) ≈
∑
k

p̃(bi|y, zk)p̃(zk|y)∆k,

where ∆k denotes the area weight corresponding to the integration point zk. There are
two ways of choosing these points. In this manuscript, we only use the so-called Central
Composite Design (CCD) strategy, which also is the default in R-INLA. Here, a small
amount of support points in the m-dimensional space of the hyperparameter vector are
used and each center point is augmented with a group of points used to estimate the
curvature of p̃(z|y), yielding a fast and precise method (Rue et al., 2009).
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5.3 Estimation method comparison

In this section, data analyses are described for both the epilepsy data (Section 2.2.4)
and the Flemish contact data sets (Section 2.2.5). For both analyses, results for the
MCMC and INLA estimation are provided. Three versions of the INLA estimation are
provided, as introduced in Section 5.2.3: the simplified Laplace approximation, the full
Laplace and the Gaussian approximation. Likelihood-based results are only provided
for the epilepsy data. Here, estimation could be easily done with partial integration.
The Flemish contact data set however has multiple hierarchies, as observations were
nested within house households and households were nested within towns. Hence, a
multi-hierarchical model was needed, which is easy to fit using Bayesian techniques, but
with no straight-forward procedure in the likelihood setting. The likelihood, MCMC and
INLA analyses were done in SAS 9.4 (proc NLMIXED), WinBUGS 14 (via BRUGS in R
3.0.1) and R 3.0.1 (R-INLA package), respectively. INLA’s default prior specifications
were used, namely N(0, 1000) for the ’fixed’ effects, γ(1, 10000) for the precision
of structured normal random effects and γ(1, 1) for the overdispersion parameter in
the negative binomial model. The same prior specification was used in the MCMC analysis.

In order to make a comparison between the INLA and MCMC estimation methods, the
agreement statistic, in line with the accuracy statistic as proposed by Faes et al. (2011),
is proposed. If f(ζ|y) is defined as the posterior density of a parameter ζ estimated
by MCMC and f̃(ζ|y) as the posterior density estimated by INLA, then the integrated
absolute difference is defined as IAD(f̃ , f) =

∫ +∞
−∞ |f̃(ζ|y) − f(ζ|y)|dζ, which is scale-

independent between 0 and 2 and invariant to monotone transformations on the parameter
ζ. The agreement statistic used in this thesis is defined as

Agreement(f̃ , f) = 1− {IAD(f̃ , f)/ sup
f̃ ,f is density

IAD(f̃ , f)} = 1− IAE(f̃ , f)/2,

which lays in the interval [0, 1]. The agreement statistic can be interpreted as the per-
centage of overlap between the posterior densities f(ζ|y and f̃(ζ|y).
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Table 5.1: Parameter estimates (and s.d.) for the epilepsy data and the Flemish contact data.
Three INLA-based, likelihood and MCMC results are provided.

Epilepsy data

Model
Computation ξ0 ξ1 ξ2

time Est. (s.d.) Est. (s.d.) Est. (s.d.)
INLA (Simp. Laplace) 5.787 sec. 0.858 (0.170) -0.147 (0.234) -0.018 (0.005)
INLA (Laplace) 1.287 min. 0.858 (0.170) -0.147 (0.234) -0.018 (0.005)
INLA (Gaussian) 6.283 sec. 0.864 (0.170) -0.143 (0.234) -0.018 (0.005)
Likelihood 18.550 sec. 0.858 (0.167) -0.173 (0.267) -0.018 (0.005)
MCMC 25.430 min. 0.915 (0.172) -0.157 (0.260) -0.018 (0.005)

Model
α σ

Est. (s.d.) Est. (s.d.)
INLA (Simp. Laplace) 2.446 (0.208) 1.067 (0.087)
INLA (Laplace) 2.446 (0.208) 1.065 (0.087)
INLA (Gaussian) 2.446 (0.208) 1.065 (0.089)
Likelihood 2.462 (0.212) 1.060 (0.087)
MCMC 2.456 (0.207) 1.069 (0.088)

Flemish contact data

Model Computation ξ0 ξ1 ξ2
time Est. (s.d.) Est. (s.d.) Est. (s.d.)

INLA (Simp. Laplace) 10.527 sec. 2.784 (0.079) -0.004 (0.029) -0.043 (0.015)
INLA (Laplace) 2.134 min. 2.784 (0.079) -0.004 (0.029) -0.043 (0.015)
INLA (Gaussian) 9.366 sec. 2.773 (0.079) -0.004 (0.029) -0.043 (0.015)
MCMC 58.027 min. 2.787 (0.080) -0.005 (0.029) -0.044 (0.015)

Model α σ0 σ1
Est. (s.d.) Est. (s.d.) Est. (s.d.)

INLA (Simp. Laplace) 5.817 (0.368) 0.010 (0.005) 0.487 (0.025)
INLA (Laplace) 5.817 (0.368) 0.010 (0.005) 0.487 (0.025)
INLA (Gaussian) 5.817 (0.368) 0.010 (0.005) 0.487 (0.025)
MCMC 5.813 (0.367) 0.014 (0.014) 0.489 (0.026)

5.3.1 Epilepsy data

Let Yij be the number of epileptic seizures for the ith person (i = 1, ..., 89) in week j
(j = 1, ..., ni). The following combined model was fitted to the data:

Yij ∼ Poi(θijκij),

κij = exp (ξ0 + b0,i + ξ1Trti + ξ2Timeij) ,

b0,i ∼ N
(
0, σ2) ,

θij ∼ gamma(α, 1/α)

with ξ0, ξ1 and ξ2 being the intercept, the treatment and time effect respectively, b0,i the
random intercept effects with standard deviation σ and θij the conjugate random effect
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with parameter α. Indeed, due to strong conjugacy in the Poisson case, the combined
could be written as a negative binomial model that includes a normal random effect, as
is done in INLA.

Results are given in the top panel of Table 5.1. MCMC results are based on 10000
runs after a burn-in of 10000 runs. All estimation methods agree on a non-significant
treatment effect, while there is a slightly negative significant time effect. Only small
differences between the simplified Laplace, full Laplace and Gaussian options in INLA were
observed, with the first almost exactly the same. Figure 5.1 gives a visual representation
of the posterior and likelihood estimates for the epilepsy data example. INLA and MCMC
posteriors are very similar for the treatment and time effects ξ1, ξ2, the random effects
standard deviation σ and the overdispersion parameter α (> 94%) while the agreement
was lower for the intercept, ξ0 (85%). Also note that the ML estimates coincide with the
MCMC and INLA posterior’s mode for all parameters, except for a slight difference for
the intercept ξ0. In conclusion, in this example, all methods give similar results, while a
major time gain is obtained with INLA as compared to MCMC.

5.3.2 Contact data

The number of contacts Yijk in municipality i (i = 1, ..., 211) in household j (j = 1, ..., ni)
for individual k (k = 1, ..., nij) was modeled using a multi-hierarchical combined model.
The model can be summarized as follows:

Yijk ∼ Poi(θijkκijk),

κijk = exp (ξ0 + b0,i + b1,ij + ξ1Sexijk + ξ2Timeijk) ,

b0,i ∼ N
(
0, σ2

0
)
,

b1,ij ∼ N
(
0, σ2

1
)
,

θijk ∼ gamma(α, 1/α).

In analogy with the epilepsy data model, ξ0, ξ1 and ξ2 are the intercept, the gender
(female is reference) and time effect, respectively. Now, b0,i and b1,ij are random effect
terms modeling the correlation within municipalities and within households, respectively.
And again, α is the overdispersion parameter.

Results are given in the lower panel of Table 5.1 and in Figure 5.2. For the contact
data, there was no significant gender effect, but a negative time effect was present. Again,
these results were in good agreement between all estimation methods. The agreement
statistics show that the INLA and MCMC posteriors are very alike, except for σ0. The
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Figure 5.1: Visual representation of the posterior/likelihood parameter estimates for the
epilepsy data example. Full line = MCMC, dashed line = INLA (strategy = simplified Laplace),
dotted line (vertical) = MLE.

INLA method provides smaller estimates for the heterogeneity amongst the municipalities
as compared to the MCMC method.

5.3.3 Simulation study

Next to the results given by the case studies, it is useful to conduct a simulation study in
order to investigate the properties of the different methods further on. In accordance to
the epilepsy case study model, data were simulated as coming from a combined negative
binomial model for count data,
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Figure 5.2: Visual representation of the posterior parameter estimates for the contact data
example. Full line = MCMC, dashed line = INLA (strategy = simplified Laplace).

Yi ∼ Poi(θiκi), (5.1)

κi = exp (ξ0 + b0,i + ξ1Trti + ξ2Timei) , (5.2)

b0,i ∼ N
(
0, τ−1) , (5.3)

θi ∼ gamma(α, 1/α) (5.4)

For each individual, observations at 5 time points were generated according to
(5.1)-(5.4). In total, 4 different simulation settings were considered, with either 50
or 200 individuals generated on one hand, and with σ either 0.5 or 2 on the other
hand. For each setting, 100 data sets were created and analyzed with INLA (here
only the simplified Laplace approximation strategy was applied), partial integration
and MCMC. In INLA, default priors were used for ξ0, ξ1, ξ2 and τ . In MCMC,
normal priors with mean= 0 and precision= 0.0001 were given to ξ0, ξ1 and ξ2 and
a gamma distribution with parameters 0.1 and 1000 to τ . A normal prior with a
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mean = 0 and precision = 0.01 was specified for log(α) in both INLA and MCMC
analyses. Mean bias =

∑i
n=1(θ̂i − θtrue)/n, estimated variance =

∑i
n=1 s.e.(θ̂i)/n

and mean squared error (MSE) =
∑i
n=1(θ̂i − θtrue)2/n with i = 1, .., n were used as

summary statistics to compare the results. Next to that, the agreement statistic, as
explained earlier, was applied to investigate in what way the INLA and MCMC results
were alike. Table 5.2 summarizes the results.

The average calculation times in INLA were up to several hundreds of times faster
than calculations done with MCMC and also slightly faster but still within the same time
frame of the partial integration’s computation times. Exact numbers are not given, since
in an attempt to obtain research results within a manageable time frame, the simulation
study was divided among several computers with differing processor strength (1.9 − 2.3
GHz) and memory (4096− 16382 MB RAM), which would make an in-depth comparison
in computation times unfair. It suffices to say however that when an INLA analysis (INLA
analyses never took longer than a few seconds) took around 5 seconds, the analyses
via MCMC would take approximately half an hour. Indeed, the enormous shortening
of computing time has been argued before to be the major advantage of INLA over MCMC.

Before comparing the different estimation techniques, a few observations appear
immediately when looking at the INLA results (Table 5.2) only (with similar results
for MCMC and the likelihood approach). First of all and as expected, results become
more accurate when the sample size increases. Indeed, the MSE values for all parameter
estimates clearly show a downward trend as sample sizes increase. On the other hand,
it is apparent that when the standard deviation of the normal random effect increases,
the parameter estimates change in terms of their precision, but not all in the same way.
Fixed effect and normal random effect’s variance parameters tend to become estimated
less accurately when the standard deviation increase. In contrast, the overdispersion
parameter is estimated more accurately when the variability in the normally distributed
extra-variance increases. This is also to be expected, since estimation of fixed effects is
known to be more precise when the variability in the data is small, while the overdispersion
parameter estimation benefits from larger extra-variance in the data.

When a comparison between INLA, the likelihood approach and Bayesian MCMC
analysis (Table 5.2) is made, some other properties are observed: Overall, INLA behaves
approximately the same as the likelihood and Bayesian MCMC methods. While MSE
values are almost alike, they often slightly favour the likelihood approach as compared
to the Bayesian approach. However, focusing on the overdispersion parameter α, con-
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siderable differences exist between the estimation techniques, especially when the sample
size and standard deviation are both small (n= 50 and sd= 0.50). In this case, partial
integration performs best, while both Bayesian estimation methods have large bias, with
MCMC performing worse than INLA. Further, focusing on the variance parameter σ2, it
is observed that INLA produced larger (negative) bias, especially for large sample sizes.
This corresponds with the observation seen in the data application, that INLA often leads
to too small estimated standard deviation. When comparing INLA and MCMC, one can
conclude that there is no indication to favour one of the estimation methods, which is
compelling since INLA is an approximation technique that was shown earlier to work
hundreds of times faster than MCMC. Furthermore, boxplots of the agreement statistics
(Figure 5.3) give an idea of how much overlap there is between the INLA and MCMC
posterior densities. Interestingly, very high overlap (between 0.9 and 1) was seen for all
covariates and the overdispersion parameter, indicating that INLA and MCMC give al-
most the same results. The standard deviation of the normal random effects term had
a consistently lower agreement in settings with low heterogeneity (σ = 0.5), which is in
line with the results from the case studies performed earlier.

5.4 Concluding remarks

In this chapter, it has been made clear that when working with the combined model for
count data, INLA provides a very good alternative to MCMC, with computation times
that are shortened up to 600 times and parameter estimates that are as precise as those
given by the more conventional methods, such as PROC NLMIXED in SAS or MCMC
in WinBUGS. Small differences between the estimation options do sometimes occur,
most notably for standard deviations of the normal random effects. The agreement
statistics also show that MCMC and INLA provide similar results, but that differences in
the estimated standard deviations can be considerable, with an underestimation of the
variability by INLA. This is mainly observed when the standard deviation is small.
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Figure 5.3: Boxplots of the agreement statistic per simulation setting for each estimated
parameter.
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Table 5.2: Results for the likelihood, INLA and MCMC based simulation studies. Four
situations were simulated, which differed in terms of sample size (n = 50 and n = 200) and
structured random effects standard deviation (σ = 0.5 and σ = 2). Other true values are
ξ0 = 0.9, ξ1 = −0.25, ξ2 = −0.025 and α = 2.5.

n Parameter Mean Bias Variance MSE Mean Bias Variance MSE
s.d.=0.5 s.d.=2

INLA

50

ξ0 -0.0072 0.0344 0.0387 -0.0332 0.1978 0.2168
ξ1 -0.0129 0.0365 0.0395 0.02081 0.3617 0.3943
ξ2 -0.0036 0.0018 0.0018 -0.0021 0.0018 0.0017
α 0.3194 0.9589 1.3371 0.1677 0.2765 0.3548
σ -0.0248 0.0092 0.0118 0.0234 0.0615 0.0636

200

ξ0 0.0123 0.0082 0.0081 0.0134 0.0475 0.0452
ξ1 -0.0125 0.0086 0.0100 -0.0058 0.0868 0.0716
ξ2 -0.0006 0.0004 0.0004 0.0008 0.0004 0.0004
α 0.0384 0.0966 0.0999 0.0210 0.0525 0.0510
σ -0.0163 0.0021 0.0023 -0.0126 0.0142 0.0156

Likelihood

50

ξ0 -0.0063 0.0333 0.0385 0.0256 0.1940 0.1961
ξ1 -0.0119 0.0343 0.0391 -0.0166 0.3567 0.3612
ξ2 -0.0035 0.0018 0.0018 0.0064 0.0017 0.0019
α 0.2003 0.6766 0.8610 0.2128 0.2756 0.3887
σ -0.0231 0.0090 0.0088 -0.0106 0.0601 0.0777

200

ξ0 0.0117 0.0082 0.0080 0.0159 0.0483 0.0369
ξ1 -0.0122 0.0085 0.0099 0.0020 0.0882 0.0904
ξ2 -0.0005 0.0004 0.0004 -0.0035 0.0004 0.0004
α 0.0222 0.0935 0.0948 0.0364 0.0530 0.0599
σ -0.0129 0.0021 0.0020 -0.0002 0.0146 0.0103

MCMC

50

ξ0 -0.0018 0.0344 0.0387 -0.0215 0.2000 0.2267
ξ1 -0.0137 0.0361 0.0394 0.0835 0.3655 0.4049
ξ2 -0.0027 0.0018 0.0018 -0.0015 0.0018 0.0016
α 0.4134 10.8652 3.1744 0.1474 0.2726 0.3546
σ -0.0221 0.0114 0.0127 0.0270 0.0679 0.0618

200

ξ0 0.0078 0.0082 0.0079 0.0061 0.0481 0.0373
ξ1 -0.0082 0.0084 0.0099 0.0342 0.0829 0.0695
ξ2 -0.0002 0.0004 0.0004 0.0002 0.0004 0.0004
α 0.0391 0.0978 0.1010 0.0031 0.0516 0.0525
σ -0.0086 0.0021 0.0020 -0.0097 0.0150 0.0164





Chapter 6
The Spatial Combined Model
for Count Data

6.1 Introduction

In Chapters 4 and 5, the use of the combined model was illustrated for binomial and
count data. From this point onwards, a progression will be made to spatial count data,
more specifically to disease mapping, a relatively new scientific field in which disease
count data are modeled in a spatial data setting. The main goal is to describe the
spatial distribution of the disease with respect to the place of occurrence. Indeed, in
our increasingly health-conscious and environmentally aware society, members of the
public are much more likely to notice unusual aggregations of a disease in a small
neighbourhood and to attribute them to some nearby industrial source of pollution. To
investigate these claims, the number of cases is related to the number expected counts
for a typical population, which is accomplished through disease mapping.

Typically, hierarchical Bayesian methods are used to model the overdispersion and
the spatial correlation in the data. Classic random-effects based solutions to deal
with overdispersion, such as the previously introduced Poisson-gamma model and the
Poisson-lognormal model, have mainly been popular in the early years of disease mapping
(e.g. Clayton and Kaldor, 1987). The reason for this overdispersion can be manifold, e.g.,
a misspecification of the model in terms of a forgotten (spatially unstructured) covariate,
an excess of zero counts or many outlying counts, problems encountered frequently in
disease mapping. On the other hand, focusing on the spatial autocorrelation in the data,
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the conditional autoregressive model (Besag et al., 1991) has gained a lot of popularity.
Due to the flexibility to apply many different weighting schemes, the model has been
used extensively within the literature and has been proved to provide better solutions
than the spatially unstructured counterparts. Also, its straight-forward implementation
in Bayesian software such as WinBUGS (Spiegelhalter et al., 2007) has made it the most
attractive among other so-called convolution models, which combine an unstructured
random effects term (uncorrelated heterogeneity, UH) and a spatially-structured random
effects term (correlated heterogeneity, CH) (Anselin, 1988; Cressie, 1993).

Although a convolution model provides a method to model spatially structured and
unstructured variation together, the interesting conjugate feature in the Poisson-gamma
framework that cannot be achieved via the Gaussian implementation has remained rela-
tively unexplored. Wolpert and Ickstadt (1998) undertook an effort by using correlated
gamma field models, however a simulation study comparing different disease mapping
models (Best et al., 2005) noted a poor performance of this model. So far, extensions
of the Poisson-gamma model to account for spatial heterogeneity have been limited
(e.g. the gamma field models mentioned earlier). The reasons are two-fold: (1) because
the gamma distribution does not easily allow for inclusion of covariate effects, and (2)
because the gamma distribution does not easily extend to include spatial structure. The
combined model offers a convenient method for including covariate effects and random
effects. In this chapter, an extension of the combined model towards the inclusion of
spatial correlation is proposed and the applicability of this model in the spatial disease
mapping context will be compared with the classical used models.

The structure of this chapter is as follows: Section 6.2 gives an overview of the mostly
used models, Section 6.3 focuses on prior specification, while case studies and a simulation
study are conducted in Sections 6.4 and 6.5 respectively. In Section 6.6, MCMC and INLA
estimation for the spatial combined model are compared and a general conclusion is given
in Section 6.7.

6.2 Disease mapping models

An important feature in disease mapping is the use of offsets, the so-called expected
counts, which are usually standardized for confounders such as age class and gender. Two
main standardization techniques exist, being direct and indirect standardization. In direct
standardization, one calculates the sex-age rates (or the rates based on the particular
confounders at play) and applies it to the population, while in indirect standardization,
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which is used in these analyses, it works the other way around. Here, the sex-age rates
of the overall region are applied to the each individual stratum that is studied. The sum
of those expected counts in each stratum provides the standardized expected counts for
each area.

Disease mapping models are used to link the observed counts Yi for spatial (lattice)
location i = 1, ..., n to the expected counts Ei and they mainly differ in the way they
smooth away the extra variation seen in Yi in comparison to Ei. Let ωi denote the
unknown relative risk for the ith area (i = 1, . . . , n). Many models have been proposed
to estimate the relative risk. A classical model assumes that Yi simply follows a Poisson
distribution with parameter λi = Eiωi, with ωi independent. The maximum likelihood
estimator for ωi coincides here with another important statistic of the risk in a given area,
namely the standardized incidence rate

ω̂i = SIRi = Yi/Ei,

(Figure 6.2). The use of SIR estimates will mostly be insufficient to model real-world
dynamics because of overdispersion and the spatial dependence in the data, such that
an extension of this basic statistical model is necessary. This can be done in numerous
ways and in what follows, a short overview is given of some frequently used extensions,
with on the one hand the Poisson-gamma and Poisson-lognormal models which model
overdispersion only (the so-called uncorrelated heterogeneity, UH) and on the other hand
the so-called convolution models which include terms for both the overdispersion and the
spatial correlation (correlated heterogeneity, CH).

The combined model for spatial lattice data is extended in the following way from
(3.4)-(3.7). By way of overview, let’s assemble the different parts:

Yi ∼ Poisson(Eiκiθi), (6.1)

κi = exp (ξ0 + x′iξ + bi) , (6.2)

θi ∼ gamma(α, β∗), (6.3)

with ωi = κiθi, bi being the normal random effect terms and the rate parameter
β∗ = 1/β. Note that (only) within Section 6.2 I will apply a gamma parametrization
with rate parameter β∗ instead of the earlier used scale parameter β, this in order to
make the presented formulations easier to interpret. A number of models can be formed
by formulating different assumptions:

(1) Poisson-gamma model: The model in (6.1)-(6.3) reduces to the Poisson-
gamma (PG), or negative binomial model, when one sets exp (ξ0 + x′iξ + bi) = 1.
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As already covered in Chapter 3, a closed-form posterior distribution can be provided
here and is given by a gamma distribution with parameters Yi + α and Ei + β∗,
respectively. As a result, the posterior mean of ωi is a weighted average of the
prior mean α/β∗ and the SIR, Yi/Ei. Because of the mathematical convenience due
to the conjugacy, the Poisson-gamma model has been one of the most commonly
used models in disease mapping. Because of the disadvantage that this model does
not take the spatial dependence into account, together with the difficulty to include
covariates in this model, the Poisson-gamma model has been criticized and shown to be
inferior to more complex models such as the CAR convolution model (Lawson et al., 2000).

(2) Poisson-lognormal model: When it is assumed that θi = 1 and
bi = b0,i ∼ N(0, σ2

0), the Poisson-lognormal (PN) model follows, which is a
GLMM with an unstructured distributed random effects term bi and optionally covariates
xi. Although in some situations the PG and the PN behave similarly (Kim et al..,
2002), the mean-variance relationship of the random-effect terms, being linear for the
gamma distribution and quadratic for the lognormal distribution can cause the PN to
be more conservative (less extreme in range) when estimating UH. Bayesian estimation
with PN is straightforward in e.g. WinBUGS and due to the availability of powerful
software packages, this model, which is easily extended with covariates, has become very
popular. While this model does not yet account for spatial autocorrelation, it can be eas-
ily extended with a parameter representing CH, resulting in a so-called convolution model.

(3) Convolution model: A well-known convolution model controlling for spatial
autocorrelation is the conditional autoregressive (CAR) convolution model. It is formed
by assuming in (6.1)-(6.3) that θi = 1 and that bi consists of two normal random effects
terms, namely b0,i ∼ N(0, σ2

0) to capture UH and b1,i, an intrinsic CAR model such as
introduced by Besag and Kooperberg (1995),

b1,i|b1,j,i 6=j ∼ N
(
µ̄i, σ

2
1,i
)
, (6.4)

µ̄i = 1∑N
j=1 wij

N∑
j=1

wijuj , (6.5)

σ2
1,i = σ2

1∑N
j=1 wij

, (6.6)

which takes the heterogeneity caused by the spatial structure into account. Here,
wij = 1 if areas i and j adjacent and 0 otherwise. Indeed, the CAR random effect
is normally distributed with the mean and variance being weighted with the means
and variances of adjacent areas. Although the weighting scheme presented above is
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the most common one, others can be applied too. Bivand et al. (2008) provide an
in-depth view on this issue. Note that the CAR convolution model presented here
uses an intuitively easy to understand CH prior distribution, but more methods exist to
incorporate neighbourhood dependence. Moreover, a CAR model, as presented above, is
a special case of the so-called proper CAR (PCAR) models, which introduce dependence
between neighbourhoods, but which also allow an additional correlation parameter. More
details can be found in Stern and Cressie (1999). The CAR convolution model is known
to be very robust when simulating a wide range of underlying true risk models and it is
therefore widely used in spatial disease mapping (Lawson et al., 2000). Problems occur
though, especially in the estimation of b0,i and b1,i separately, making it sometimes
unclear whether they have been attributed the correct proportion of extra-variance.
Because of this, it is important to be careful when using both uncorrelated and correlated
heterogeneity terms in the same model and to avoid over-interpretation of the separate
CH and UH estimates. Note that in this chapter, both the convolution model as well
as the model with only the CAR distributed CH term will be used, denoted ’CAR
convolution (CARCON)’ and ’CAR’, respectively.

(4) Spatial combined model: follows when in (6.1)-(6.3) bi = b1,i with the same
specification as in (6.4)-(6.6). Indeed, this model, which stems from a very different
area of statistics is closely related to the CAR convolution model. The only difference
is that the uncorrelated heterogeneity is modeled via a gamma distribution instead of a
lognormal distribution. There is reason to believe that this model is a valuable alternative
to the commonly used CAR convolution model, since the results shown earlier along
those presented by Molenberghs et al. (2010) show that the gamma distribution is able
to model extra-variance very well. Again note that as a result from the strong conjugacy,
the posterior distribution of ωi given the random effect b1,i is

ωi|b1,i, Yi ∼ gamma(α+ Yi, β
∗ + Eiυi)

with υi = exp (ξ0 + x′iξ + b1,i). Thus, the conditional mean of ωi given the random
effects b1,i is (α + Yi)/(β∗ + Eiυi), and can be re-written as a weighted average of the
prior mean α/β∗ and the area-specific standardized incidence rate Yi/Ei, with weights
β∗/(β∗+Eiυi) and Ei/(β∗+Eiυi), respectively. It can also be re-written as a weighted
average of the prior mean α/β∗ and the ratio of the incidence rate versus spatially-
structured relative risk Yi/(Eiυi), with weights 1 − wi and wi, respectively, with wi =
Eiυi/(β∗+Eiυi). While these full conditionals are not of primary interest, this relationship
can give us an understanding of how smoothing in obtained is this model. The weights
wi are inversely related to the variance of Yi/Ei. Thus, for rare diseases and small areas,
there is a lot of shrinkage to the prior mean α/β∗. This is similar to the Poisson-gamma
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model. When a large amount of overdispersion is present in the data (β∗ small), there will
be less shrinkage to the prior mean α/β∗. Now also, the weights wi depend on the spatial
structure υi, and thus also the amount of smoothing is spatially structured. If υi contains
a strongly spatially structured effect, the weights (and the amount of shrinkage) will also
be spatially structured. It is again important to note that to avoid overparametrization
problems, again a restriction needs to be applied to α and β∗. Similar to common practice
in the frailty context (Duchateau and Janssen, 2008), we assumme α = 1/β = β∗. This
standardizes the gamma random effect to mean 1.

6.3 Prior specification

It was already mentioned before that the combined model can be specified as an
extension of a Poisson-gamma model or a negative binomial, the latter being a PG
model in which the overdispersion effect is already integrated out. If interest lies in
the two random effects, corresponding to the uncorrelated and correlated heterogeneity,
Bayesian estimation using the hierarchical (PG) specification such as presented in the
previous section is very appealing. In the next sections, this approach will mainly
be applied. Vague priors were used for the hyperprior parameters: To ensure the
range of possible values of the hyperparameters α and β in the gamma distribution
of the Poisson-gamma model and the combined model (only α) to be large enough,
α ∼ exp(1) and 1/β ∼ gamma(0.1, 1) were used, as also suggested by Lawson (2013).
The variance parameters in the normally distributed UH term of the Poisson-lognormal
model and the CAR convolution model on the one hand and the CH term of the CAR
(CH) model, CAR convolution model and the combined model on the other hand had
1/σ2

0 ∼ gamma(0.5, 2000) and 1/σ2
1 ∼ gamma(0.5, 2000) as prior distribution, again to

avoid to place restrictions on the possible values of the hyperparameter values, similar
to suggestions made by Kelsall and Wakefield (1999). In a sensitivity analysis, Neyens
et al. (2012) compared the gamma priors for the precision parameters with a uniform
prior (U(0, 10000)), as suggested by Gelman (2006). Also, for parameter α in the
gamma-distributed CH parameter in the Combined, a comparison was done between
α ∼ exp(1) and α ∼ gamma(0.1, 1) as suggested by George et al. (1993). For both
sensitivity analyses, the presented maps of the RR estimates which are presented later
on, did not change, justifying the use of the priors presented before.

If there is no genuine interest in the uncorrelated heterogeneity, but rather interest
is only in the spatially correlated heterogeneity after correction for the overdispersion in
the data, estimation can proceed by first integrating out the conjugate prior distribution,
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conditional on the Gaussian CAR distribution. A spatial extension, such as in (6.4)-(6.6)
of the model specification given in (3.8)-(3.10) is

Yi ∼ NegBin(α, κi/α),

κi = exp (ξ0 + x′iξ + bi) .

Note that the potential of this model specification becomes more apparent now that
relative risk estimation gets involved. Indeed, relative risks can now be based on the
inclusion of the both random effects (PG specification) or only based on a spatial random
effect (NB specification). Note that a similar model with a negative binomial specification
instead of a Poisson model was proposed before by Gschössl and Czado (2008).

6.4 Case studies

Recall the male kidney cancer and prostate cancer data sets from Section 2.2.1. An
in-depth data explanation is provided by Loesbergh et al. (2007). Both data sets clearly
show a large amount of extra Poisson-variation (Table 2.1). Note that extremely small
numbers in the lower range of these domains were sampled in a very small town, called
Herstappe and high values were partly attributed by highly populated cities, such as
Hasselt or Genk, may cause overdispersion. The observed counts however do not tell us
much more, and although standardizing (Inskip et al., 1983) these counts for age solves
a part of the problem, extra-Poisson variation is still present in the resulting expected
counts (Figure 6.1). It is also very likely that part of the remaining variability can be
explained by correlations through space on one hand but also by spatially uncorrelated
overdispersion (e.g. caused by not standardizing for an important but still unknown
factor) on the other hand. In other words, SIR estimates (Figure 6.2), may be overly
simplistic and models which include random effects for both uncorrelated heterogeneity
(UH) and correlated heterogeneity (CH) will probably be better suited for these data.

To illustrate the use of the combined model and to compare it with the traditional
modeling options, an in-depth analysis of the kidney and prostate cancer data sets
(Section 2.2.1) is presented here. As introduced above, the Poisson-gamma (PG),
Poisson-lognormal (PN), CAR (CAR), the CAR convolution (CARCON) and the
combined (COM) model were of primary interest and therefore applied to both data
sets. Goodness-of-fit (GOF) was tested on one hand via the deviance information
criterion (DIC). Note that again, when DIC differences were borderline, less complex
models having lower effective number of parameters (pD) were chosen. On the other
hand, the overall loss across the data was assessed by the use of the mean squared
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Figure 6.1: Observed and standardized expected counts for kidney and prostate cancer in the
44 municipalities of Limburg.

predictive error (MSPE), which is an average of the item-wise squared error loss,
MSPE =

∑
i

∑
j(Yi − Y prij )2/(G × m), with Y prij being the predictive data item at

iteration j, m being the number of observations and G being the sampler’s sample size.
Note that although both measures are considered to be goodness-of-fit statistics, they do
not give exactly the same information, since the DIC measures the global goodness-of-fit,
while MSPE is a measure for predictive ability.

MCMC convergence was visually investigated by the use of features provided by
WinBUGS, such as trace plots, history plots, etc. and it was met without any problems
for all models. When looking at the fit statistics of the models of primary interest (Table
6.1, columns 2-6), one can see that in terms of DIC the CAR model is favoured for the
kidney cancer data set, closely followed by the PN model, while for prostate cancer the
Combined model fits best (note that DIC values differed only slightly between COM and
PG, but that pD values favoured the COM model). It is noticeable too that PG and COM
(the ’COM’ column; the ’COM alt’ column will be dealt with later) on the one hand



6.4. Case studies 63

Figure 6.2: Standardized incidence rate for kidney and prostate cancer in the 44 municipalities
of Limburg.

Table 6.1: DIC (pD) and MSPE values for all models (including both estimation methods for
the combined model) analyzing kidney and prostate cancer data in the 44 municipalities of
Limburg between 1996 and 2005.

PG PN
CAR

COM
COM

PCAR
CH CH + UH alt

DIC
Kidney 235.89 (27.3) 213.55 (2.3) 213.45 (1.7) 214.10 (3.3) 230.74 (23.5) 231.57 (2.2) 213.23 (1.5)
Prostate 363.98 (40.4) 371.87 (35.8) 397.24 (30.4) 373.13 (35.8) 364.36 (39.3) 423.22 (2.5) 364.36 (36.1)

MSPE
Kidney 22.30 22.47 22.88 22.62 21.65 50.07 22.92
Prostate 253.1 258.1 284.0 258.3 253.6 4412.0 256.6

and PN, CAR and CARCON on the other hand have similar DIC values, leading to the
impression that difference between the gamma- and lognormal UH terms is important.
When looking at relative risk (RR) estimates (see Appendix), it shows that for kidney
cancer for all municipalities, the credibility intervals for RR contain 1, indicating again
that a CARCON or COM model is not necessary to fit the data. For prostate cancer,
RR estimates do differ from 1 for several municipalities, and it is in this case that the
combined model with CH and relatively large UH terms is favoured. It also has to be
noticed that significance of the traditional CAR convolution model and the proposed
combined model does not change amongst the models in these examples. MSPE values
show somewhat different results: for both data sets, the MSPE for the combined model
is small, indicating that the model has a good predictive behaviour.
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Table 6.2: Parameter Estimates for all Models. σ2
1 is the variance of the CAR random effect,

σ̂2
0 is the variance of the uncorrelated random effect at the scale of the relative risk.

PG PN
CAR

COM
COM

CH CH + UH alt
Kidney
ξ0 / -0.004699 -0.002699 -0.005883 -0.02507 -0.02392
σ2

0 0.185726 0.00313 / 0.00316 0.118315 /
σ2

1 / / 0.004818 0.004909 0.004397 0.004975
Prostate
ξ0 / -0.0206 -0.01366 -0.01993 0.003677 0.002367
σ2

0 0.170858 0.05726 / 0.04920 0.111520 /
σ2

1 / / 0.09864 0.01298 0.004744 0.003757

Similar conclusions are drawn from the parameter estimates (Table 6.2), in which
the estimated values for the intercept, the variance of the spatially structured CAR
random effect, σ2

1 and the variance of the spatially unstructured random effect, σ2
0 are

displayed. The latter comes from either the gamma distributed random effect in the PG
or combined model, or from the lognormal distributed random effect in the PN and CAR
convolution (CH + UH) model. First of all, for the kidney cancer data it is clear that the
CAR convolution model has similar variability in the CH term as the CAR (CH) model
and similar variability in the UH term as the PN, while the combined model has UH and
CH term variances that are in agreement with the ones in the PG and CAR (CH) models.
The prostate cancer DIC values on the other hand favoured the models with the gamma
overdispersion term, especially the combined model. Parameter estimates transparently
show a drop in σ2

1 when going from the CAR based models to the combined model, while
σ̂2

0 increases.

RR maps visualize how the different models, in contrast to the SIR estimates, take
the extra-variance into account. These maps show what has been seen in previous
analyses too: the gamma distribution provides estimates in a larger range than the
lognormal distribution, and one can conclude that some data sets will ’prefer’ the larger
overdispersion estimates in the COM model, while for others like kidney cancer, the
lognormal UH terms in the PN and the CARCON or even the absence of an UH term (in
the CAR model) will be sufficient. Figure 6.3 shows how the combined model ’combines’
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Figure 6.3: Relative risk estimates for the five models for the kidney cancer data in the 44
municipalities of Limburg.

a part of the overdispersion modeled by the PG and the spatial pattern proposed by the
CAR (CH) model, while the CAR convolution model is similar to the overdispersion as
proposed by the PN on the one hand and the spatial correlation represented by CAR
(CH) on the other hand. The CAR convolution model with its lognormally distributed
random effect seems to be more conservatively (smaller range) to model overdispersion
than the combined model. We have to keep in mind though that although there are
clear differences in the maps of different models, kidney cancer does not ’need’ the
more complex models here, as mentioned earlier. Figure 6.4 shows similar RR maps
for the prostate cancer data set. Visually, the convolution model does not differ much
from the other models, although in terms of DIC the combined model clearly fitted better.

In Section 3.4, it was explained that the combined model can also be fitted by first
integrating out the conjugate prior distribution, conditional on the CAR distribution.
Parameter estimates, DIC and MSPE values are shown in the ’COM Alt’ columns in
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Figure 6.4: Relative risk estimates for the five models for the prostate cancer data in the 44
municipalities of Limburg.

Tables 6.1 and 6.2, and relative risk maps are shown in Figure 6.5. The parameter
estimates obtained from the two estimation procedures are very similar. DIC and MSPE
values are similar for the kidney data, but extremely different for the prostate data.
Looking at the RR maps, it can be seen that much more smoothed estimates are obtained
as compared with estimates based on the hierarchical modeling approach. This effect
comes from the fact that in the hierarchical model setting the area-specific random
effects related to overdispersion are taken into account in the estimation of the RR, i.e.
ω̂i = θ̂i exp(ξ̂0 + b̂1,i), while in the negative binomial model this random effect is not part
of the estimation of the RR. Exactly the same RR estimates are obtained by using the
hierarchical modeling approach but ignoring the overdispersion effect in RR estimation,
i.e. ω̃i = κ̂i = exp(ξ̂0 + b̂1,i). It can be expected that ω̂i and ω̃i are similar when only
little overdispersion is present in the data (kidney example), but very different when the
overdispersion is omnipresent (prostate example). In contrast to the negative binomial
estimation procedure, the hierarchical method allows the investigation of all random
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Figure 6.5: Relative risk estimates obtained by the alternative method of the combined model
in the 44 municipalities of Limburg.

effects as well as estimation of ω̂i and ω̃i.

Note that all models taking into account neighbourhood dependence were fitted via
the dependence structure as indicated before. Although it was not of primary interest, it
was useful to investigate how the CAR spatial structure behaves compared to the more
general one in a proper CAR model (PCAR). Surprisingly, fits and predictive capabilities
for the PCAR model were among, if not the best of all models, a result which encourages
further research on spatial structures departing from the standard used CAR ’special case’.

6.5 Simulation study

To examine the properties of the combined model, the proposed methodology was
also investigated using a simulation study. Data were simulated under three different
situations: (1) the case where only uncorrelated heterogeneity is present (UH), (2) the
case where only spatially correlated heterogeneity was present (CH), and (3) the case
where both types of heterogeneity were present simultaneously (convolution model,
CON). These three processes were simulated separately for two settings: setting A where
the data contained a large amount of uncorrelated heterogeneity and only little spatially
structured heterogeneity on one hand and setting B where the spatially structured
heterogeneity was largely present in the data while there was only little uncorrelated
heterogeneity on the other.

To achieve consistency with the data analyses, the map of Limburg was used to



68 Chapter 6. The Spatial Combined Model for Count Data

simulate relative risk distributions within. The expected number of cases from the male
kidney cancer data set were used. To simulate the data, the multinomial model, in line
with Rodeiro and Lawson (2004), was used

Yi ∼ Multinomial
(
n,

Eiκi∑N
j=1 Ejκj

)
with n = 44 (total number of towns for which we had expected counts), such that the
total number of cases was fixed. To introduce the three different settings in terms of
included heterogeneity, the relative risks were simulated as coming from different models.

(1) Lognormal (UH) model:

κi = exp(b0,i),

b0,i ∼ Normal(0, σ2
0).

To simulate a relatively high amount of UH (setting A), we chose to use τ2
0 = 0.05, in

the setting with little UH (setting B), we took τ2
0 = 0.5 (with τ2

0 = 1/σ2
0).

(2) CAR (CH) model:

κi = exp(b1,i),

b1,i|b1,j,i 6=j ∼ N
(
µ̄i, σ

2
1,i
)
,

µ̄i = 1∑N
j=1 wij

N∑
j=1

wijuj ,

σ2
1,i = σ2

1∑N
j=1 wij

.

The spatially structured heterogeneity (b1,i) values were sampled directly from WinBUGS.
By assuming a certain value for τ2

1 (τ2
1 = 1/σ2

1), one is able to control the amount of
simulated spatially structured overdispersion. By setting τ2

1 = 500, only little CH was
simulated (setting A), while a relatively high amount of CH (setting B) was simulated
when τ2

1 = 5.

(3) CAR convolution model:

κi = exp(b0,i + b1,i),

with b0,i and b1,i defined as in (1) and (2). Also, exactly the same values as simulated
in (1) and (2) were both included in this model.



6.5. Simulation study 69

Table 6.3: Simulation study: average MSE values for setting A (large UH, small CH) and B
(small UH, large CH). The columns indicate the models from which data were simulated, while
the rows indicate the fitted models.

Setting A Setting B
Fitted

PN
CAR CAR

PN
CAR CAR

Model (CH) (CON) (CH) (CON)
PG 0.163 0.0533 0.191 0.0384 0.107 0.107
PN 0.168 0.0142 0.198 0.00278 0.102 0.103
CAR (CH) 0.194 0.0138 0.227 0.00276 0.108 0.109
CARCON 0.169 0.0145 0.200 0.00306 0.101 0.102
COM 0.163 0.0521 0.191 0.0373 0.106 0.106

All simulated observed counts were analyzed with five models: the Poisson-gamma
model, the Poisson-lognormal model, the CAR (CH) model, the CAR convolution
(UH + CH) model and the combined model. Both settings A and B were used
to simulate data from, separately 200 times and ultimately yielding 200 times 5
analyses of 3 models for each setting A and B. Mean squared error, formulated as
MSE =

∑i
n=1((ω̂i − ωtrue)2/(n− 1)) with i = 1, .., n with n = 44 which was averaged

over the 200 simulations, was used to compare models.

Although the results presented in Table 6.3 do not show large differences in average
MSE between models, they are consistent with the results seen in the previous paragraph:
the combined model behaves particularly well when there is a sufficient amount of UH
present in the data (setting A). In this setting, average MSE values are slightly lower
for the combined and Poisson-gamma model for the cases in which UH was present in
the data (PN and CARCON columns). In Setting B, in which the simulated amount of
CH is large, while UH is small, average MSE values are overall smaller than those of the
combined model. This again is consistent with previous observations, which state that the
combined model does well when there is a large portion of uncorrelated overdispersion, but
not necessarily when a map contains a lot of spatially induced extra-variance. But when
there is zero or very little extra-variance present in the data, the gamma models, including
the combined model, will analyze the data not as good as the normal distribution-based
solutions. This simulation study shows that in several cases, the proposed method can be
a good alternative to the commonly used models.
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6.6 Estimation

Due to the frequent use of convolution models with CAR assumptions and the subsequent
need to model complex and multiple random effects structures, disease mapping has been
mainly developed in a Bayesian environment. From Chapter 5, I concluded that INLA
gives fairly good results when working with count data. To investigate this for spatial
data, a comparison between MCMC and INLA can be made here too, using the kidney
and prostate cancer data sets. The combined model was fitted as previously,

Yi ∼ Poisson(Eiκiθi),

κi = exp (ξ0 + b1,i) ,

θi ∼ gamma(α, 1/α),

with b1,i being the CAR spatial random effect.

Results for the kidney cancer analysis are given in the top panel of Table 6.4. For
the kidney cancer data, INLA and MCMC for estimates ξ0 and α were very alike , with
the overdispersion parameter α being relatively large and significant. Larger differences
between the estimation methods are observed for the random effects standard error. This
may be caused by the map of Limburg being rather small (44 municipalities), which can
result in difficulties when estimating a variance parameter. The agreement statistic is
very large when comparing MCMC posteriors and INLA approximate densities between
the intercept and the overdispersion parameter, but the agreement is lower (71%) for the
standard deviation of the spatially structured normal random effects (Figure 6.6). INLA
results in a smaller standard deviation estimate σ, and will therefore produce a smoother
map of the relative risks as compared to MCMC. For the prostate cancer data, results are
given in the lower panel of Table 6.4. Here differences between the estimation techniques
were more substantial for all three considered parameters. Parameter estimates differ
consistently, while the agreement statistics remain under 75%. The overdispersion
parameter has the lowest agreement (59%).

INLA and MCMC estimations differ more for the spatial data sets than the other
non-spatial count data sets in Chapter 5. As mentioned earlier, this may be due to the
small sample size which can affect estimation.
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Table 6.4: Parameter estimates (and s.d.) for the kidney and prostate data sets. Three
INLA-based and the MCMC results are provided.

Kidney cancer data

Model
Computation ξ0 α σ1

time Est. (s.d.) Est. (s.d.) Est. (s.d.)
INLA (Simp. Laplace) 1.234 sec. -0.034 (0.074) 8.441 (2.309) 0.007 (0.003)
INLA (Laplace) 1.299 sec. -0.034 (0.074) 8.441 (2.309) 0.007 (0.004)
INLA (Gaussian) 1.929 sec. -0.030 (0.074) 8.441 (2.309) 0.007 (0.003)
MCMC 11.887 sec. -0.024 (0.074) 8.492 (2.331) 0.014 (0.013)

Prostate cancer data

Model
Computation ξ0 α σ1

time Est. (s.d.) Est. (s.d.) Est. (s.d.)
INLA (Simp. Laplace) 1.180 sec. -0.034 (0.050) 11.467 (2.556) 0.008 (0.003)
INLA (Laplace) 1.570 sec. -0.032 (0.050) 11.467 (2.556) 0.008 (0.003)
INLA (Gaussian) 1.144 sec. -0.031 (0.050) 11.467 (2.556) 0.008 (0.003)
MCMC 13.984 sec. 0.002 (0.055) 8.972 (2.112) 0.019 (0.009)

6.7 Concluding remarks

As shown in the previous sections, the spatial combined model provides an interesting
alternative to the popular CAR convolution model, that sometimes suffers from spatially
oversmoothing of RR maps. Compared to the lognormally distributed UH term in the
CAR convolution model, the gamma distribution in the combined model is shown to al-
low for a wider range of relative risk estimates. The proposed model therefore provides
an alternative convolution model with improved modeling capabilities when the data con-
tain a large amount of uncorrelated heterogeneity. One of the main reasons why the
CAR convolution model has known such popularity is due to the robustness and easy
implementation using Bayesian software, such as WinBUGS. The combined model has
these advantages too; it allows for two different specification methods to calculate the
RR estimates, it can easily be extended to a model with covariates, and interpreted with
respect to the strong-conjugacy properties. Unfortunately, both convolution models also
share the same disadvantages, namely the possibility to suffer from identifiability prob-
lems. As a consequence of this, we chose to limit ourselves to the investigation of relative
risks only, in order not to overinterpret the results by looking at the CH and UH effects
separately. Finally, estimation via INLA is shown to become somewhat problematic in the
spatial case, making the computationally more demanding MCMC method in WinBUGS
recommended.
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Figure 6.6: Visual representation of the posterior parameter estimates for the kidney data
example. Full line = MCMC, dashed line = INLA (strategy = simplified laplace).

Figure 6.7: Visual representation of the posterior parameter estimates for the data data
example. Full line = MCMC, dashed line = INLA (strategy = simplified laplace).



Chapter 7
The Combined Model for
Excessive Zero Counts

7.1 Introduction

In the previous chapters, extensions of the Poisson model for count data were investi-
gated. Two main reasons for doing this were one one hand the presence of a hierarchical
structure in the data, e.g., due to clustering in the data, repeated measurements of
the outcome, etc., causing extra-variability. On the other hand, the occurrence of
overdispersion, meaning that the variability in the data is not equal to the mean as
prescribed by the Poisson distribution, due to the exclusion of important covariates, has
to be taken into account. A third important issue was left untouched until now: the
occurrence of extra zeros beyond what a Poisson model allows for, can cause additional
variability. While the first issue is often accommodated through the inclusion of normal
random subject-specific effects (Engel and Keen, 1992, Breslow and Clayton, 1993,
Wolfinger and O’Connell, 1993, Molenberghs and Verbeke, 2005) and overdispersion is
often dealt with through an overdispersion model, such as, for count data examples, the
negative-binomial model (Breslow, 1984, Lawless, 1987), where the natural parameter
is assumed to follow a gamma distribution, an excessive number of zeros is regularly
accounted for using so-called zero-inflated or zero-truncated models. Zero-inflated
models were studied for univariate count data by Lambert (1992) and Greene (1994),
with an extension towards the hierarchical setting studied in Min and Agresti (2005) and
Lee et al. (2006). A zero-truncated model, the so-called hurdle model, was proposed by
Mullahy (1986) and also extended to complex data settings, e.g. by Scheel et al. (2013).

73
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While the combined model that accommodated clustering and overdispersion through
two separate sets of normal and gamma random effects in a Poisson model was investi-
gated earlier, this chapter proposes a general modeling framework in which correlation,
overdispersion and an excess of zeros can appear together. An in-depth analysis of the
usability of two extensions of the combined model, namely the zero-inflated combined
model (ZICOM) and the hurdle (or zero-truncated) combined model (HCOM) is given.
In Section 7.2, the zero-inflated and hurdle models are introduced, while estimation is
considered in Section 7.3. Section 7.4 presents two case studies, while simulation study
results are shown in Section 7.5. Finally, concluding remarks are given in Section 7.6.

7.2 Models for counts with an excess of zeros

While overdispersion models can deal with some extra-variance caused by a large amount
of zeros, specific models for that case have been developed. Here, two of them are
investigated: (1) the zero-inflated model (Lambert, 1992), assumes zeros to come from
a point mass as well as a count component. (2) A hurdle model (Mullahy, 1986) on the
other hand uses a binary model distinguishing between zeros and positive values, while if
positive, a zero-truncated Poisson distribution is fitted.

7.2.1 Zero-inflated model

In zero-inflated count models, it is assumed that there are two processes that can generate
zeros: zeros may come from both a point mass (process 1) as well as from the count
component (process 2). It is assumed that for observation i at time or location j, process 1
is chosen with probability πij and process 2 with probability 1−πij (Hinde, and Demétrio,
1998a, Hinde, and Demétrio, 1998b). Process 1 generates only zeros, whereas process 2,
fi(yij |b1i, ξ, θij), generates counts from a Poisson, a negative-binomial model, a Poisson-
normal GLMM, or a Poisson-normal-gamma combined model. In its most general form,
the zero-inflated Poisson-normal-gamma model is given as the following mixture:

Yij ∼

{
0 with probability πij ,
fi(yij |b1i, ξ, θij) with probability 1− πij ,

leading to the probabilities p(Yij = yij |b1i, ξ, θij , πij) given by

p(Yij = yij |b1i, ξ, θij , πij) =
{

πij + (1− πij)fi(0|b1i, ξ, θij) if yij = 0,
(1− πij)fi(yij |b1i, ξ, θij) if yij > 0.

The zero-inflation component πij = π(x′2ijγ + z′2ijb2i) is modeled using a Bernoulli
model: in the simplest case with only an intercept, but potentially containing known
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regressors x2ij and z2ij , a vector of zero-inflation coefficients γ to be estimated, as well
as random effects b2i. Common link functions, such as the logit or probit, can be used.
Note that xij , zij , and bi from the earlier sections are now replaced by x1ij , z1ij , and
b2ij , respectively, for the non-zero count part. The regressors in the count and zero-
inflation component can either be overlapping, a subset of the regressors can be used for
the zero-inflation, or entirely different regressors for the two parts can be used. In terms
of the random effects to include, many options exist. A simple random-intercept model
might be adequate, where b1i = b1i, b2i = b2i, and z1ij = z2ij = 1. Assuming that the
random effects are normally distributed and possibly correlated with correlation parameter
ρ, the variance-covariance matrix is

D =
(

d1 ρ
√
d1
√
d2

ρ
√
d1
√
d2 d2

)
.

The model is denoted as the zero-inflated combined model (ZICOM). Three obvious
special cases are the zero-inflated Poisson-lognormal (ZIPN), the zero-inflated Poisson-
gamma (ZINB), and the zero-inflated Poisson (ZIP) model. Also, all four models without
zero inflation are special cases as well. The conditional mean and variance of the ZICOM
are:

E(Yij |b1i, ξ, θij) = θijκij(1− πij),

Var(Yij |b1i, ξ, θij) = θijκij(1− πij)[1 + θijκij(πij + 1/α)].

It can be seen that the conditional variance is inflated as a result of either overdispersion
in the data (parameter α), or as a result of zero-inflation (parameter πij), or both.

7.2.2 Hurdle model

The hurdle model is a way of modeling count data using a two-part approach, whereby
the first part is a binary model for the count value zero or positive. Within the context of
the combined model, say one again defines an observation i at time or spatial location j.
Given the value is positive, a count distribution fi is truncated-at-zero and fitted for the
second part. Suppose Yij is a univariate count outcome, and πij is probability of the ith

observation at time point or location j to be in the zero state. The hurdle model assumes
Yij fulfils a distribution given by

p(Yij = yij |b1i, ξ, θij , πij) =

 πij if yij = 0,
(1− πij) fi(yij |b1i,ξ,θij)

1−fi(0|b1i,ξ,θij)
if yij > 0,

again with πij = π(x′2ijγ + z′2ijb2i) defined as in Section 7.2.1. Merging ideas of
the combined model of Molenberghs et al. (2010) and the hurdle model (Mullahy, 1986),
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a two-part hurdle combined model is considered to deal with zero-inflated overdispersed
clustered count data. While the first part models only the zero state with probability πij ,
the second part handles non-zero counts, which are assumed to follow a truncated-at-
zero probability mass function, such as, in this case, a truncated Poisson-normal-gamma
model.

7.3 Estimation

Recall that likelihood estimation of the combined model for count data was done by
marginalizing analytically over the gamma random effect, with then further numerical
integration over the normal random effects, via e.g. PROC NLMIXED in SAS. When the
ideas in Section 5.2.1 are extended to the zero-inflated case, the partially marginalized
ZICOM takes the form:

f(yij |b1i, ξ, b2i,γ)

= I(yij = 0)πij

+(1− πij)
(
αj + yij − 1
αj − 1

)
·
(

1/αj
1 + κij1/αj

)yij

·
(

1
1 + κij1/αj

)αj

κ
yij

ij ,

The hurdle counterpart, the partially marginalized HCOM, becomes

f(yij |b1i, ξ, b2i,γ) = I(yij = 0)πij + (1− πij)g1(bi),

where

g1(bi) =
(
αj + yij − 1
αj − 1

)
·
(

1/αj
1 + κij1/αj

)yij

·
(

1
1 + κij1/αj

)αj

κij
yij · 1

1−
(

1
1+κc

ij
1/αj

)αj
,

with πij = π(x′2ijγ + z′2ijb2i) in both cases. Note that in this thesis, only the logit link
was investigated, but extensions to other link functions are possible, such as the probit
link which was investigated by Kassahun et al. (2014b). In WinBUGS, MCMC-based
sampling was performed by using the so-called zeros trick, which is used whenever a
sampling distribution, here being the zero-inflated and hurdle combined model, is not
included in the list of standard distributions (Spiegelhalter et al., 2007). A sample of the
SAS and WinBUGS implementation code is given in the Appendix.

7.4 Case studies

In order to investigate and compare zero-inflated, hurdle and traditional models, case
studies were performed in both a longitudinal and a spatial context. For the longitudinal



7.4. Case studies 77

case, the epilepsy data, as introduced in Section 2.2.4, were used. As can be seen in Figure
2.4, zero counts represent a considerable part of the measurements (33%), while the
sample average and standard deviation are 3.18 and 6.14, respectively. The investigation
of a combined model approach that takes into account the excess zeros therefore seems
mandatory. In the spatial framework, the mesothelioma data (Section 2.2.2) were studied.
Again, a possible spatial structure should be investigated, since the presence of the disease
is likely to be strongly correlated with asbestos exposure. Furthermore a sample average
and standard deviation of resp. 0.32 and 1.24 and a large amount of zero counts (81%)
make considering a zero-inflated or hurdle combined model useful.

7.4.1 Epilepsy data

For the epilepsy data (Section 2.2.4), let Yij represent the number of epileptic seizures
that patient i experiences during week j of the follow-up period. Consider the combined
model from Section 3.4, but now accounting for excess zeros, assuming that counts are
generated from a combined model process with mean µcij = κijθij :

κij = exp (ξ0 + b0,i + ξ1Trti + ξ2Timeij + ξ3Trti ∗ Timeij) ,

with the zero part probability (πij) modeled as logit(πij) = γ0 + b1,i + γ1Timeij and
b0,i and b1,i being correlated with parameter ρ. Both zero-inflated and hurdle model
specifications were investigated, while Poisson, Poisson-normal and negative binomial
parametrizations followed in a straight-forward way. For the sake of comparison, also the
non-excess-zero counterparts were fitted. Note that while originally estimation was only
done in a likelihood framework (Kassahun et al., 2014a), also a Bayesian approach was
investigated in this thesis. Parameters ξ0, ξ1, ξ2, and ξ3 were given normal priors with
mean 0 and variance 10000, while γ0 and γ1 received more informative normal priors with
mean 0 and variance 10, due to estimation problems when leaving those uninformative.
Furthermore, U(0, 100) priors were assigned to the normal random effects standard devia-
tions

√
d1 and

√
d2, while ρ ∼ U(−1, 1). Note that for the combined and Poisson-gamma

versions of the excess-zero and traditional models, a negative binomial parametrization
as in (3.8)-(3.10) was applied. Again, α = 1/β and was assigned igamma(0.01, 0.01).
For the HNB model α ∼ exp(1) was used though, since the former prior specification
caused estimation problems. Next to the Bayesian results, the likelihood approach is still
presented, since interesting differences between both estimation methods were seen, as
will be presented in the following paragraphs. A selection of codes is given in the Appendix.

While model selection in the likelihood context can be done via log-likelihood compar-
ison, difficulties arise in the Bayesian framework. Since zero-inflated and hurdle models
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are mixture models and non-excess-zero models are not, DIC values, which indicate model
complexity, can not be compared as they will typically increase heavily in mixture mod-
els. A solution is provided by the conditional predictive ordinate (CPO), for individual i
(i = 1, ..., k) on occasion j (j = 1, ..., ni) defined as

CPOij = 1
N

k∑
i=1

ni∑
j=1

[exp(−llij)]−1,

with N the total number of observations (Geisser, 1993). From this, the marginal predic-
tive likelihood (M) can be calculated as

M =
k∑
i=1

ni∑
j=1

log(CPOij),

which can be used as a goodness-of-fit statistic (larger is better). Note however, that
similar to DIC-based model selection, there are no formal tests or guidelines on how large
differences between M values have to be in order to indicate improved fits.

Parameter estimates and predicted probabilities of zeros for the likelihood and
Bayesian analyses are presented in Tables 7.1 and 7.2 respectively. The GOF statistics
(-2log-likelihood and M) clearly show that the models for excessive zeros outperformed
the traditional ones, with a substantial preference for the hurdle models. The ZINB
and HNB models show an important improvement relative to the ZIP and HP models
respectively, while even more improvement is gained when normal random intercepts are
introduced, with the combined zero-inflated and hurdle parametrizations leading to the
best fits.

None of the zero-inflated and hurdle models suggest evidence of significance in slope
difference and slope ratio, except for the ZIP and HP, where significance is maintained
for the slope difference (both p = 0.0004 in the likelihood case). However, those models,
unrealistically, omit correlation and overdispersion. Furthermore, the zero-inflation and
hurdle regression coefficients, which can be interpreted as model coefficients for the
proportion of extra zeros, are statistically significant. It is important to note though, that
while most likelihood and Bayesian results are similar, a few estimates differ substantially
(e.g. γ̂0 and γ̂1 in the ZINB model). Furthermore, problems arose in the model fitting
process. Likelihood estimation showed to be very sensitive to the choice of the initial
parameters in PROC NLMIXED, which leads to the impression that estimates may come
from a local maximum in the likelihood function. Next to that, uninformative priors for
γ0, γ1 and sometimes α resulted in convergence problems. This can be expected in these
models though, since the extra-variability in the data has to be allocated to a structured
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random effects term, an overdispersion random effect and/or a zero process.

Finally it can be observed that both hurdle and zero-inflated models in all settings
predict the probability of zeros well. When the zero part is omitted, namely when the
traditional models are fitted, this prediction becomes worse, except for the COM model.
Indeed, it thus seems that the combined model can deal fairly well with excessive zeros via
its structured and unstructured random effects. It even seems that the inclusion of both
structured and unstructured random effects without a zero process is more important
that the inclusion of only one of those random effects with a zero process (e.g. by
comparing -2log-likelihood between COM, HNB and HPN). It is also observed that by
omitting either the overdispersion or the correlation between the normal random effects,
the predicted probability of zeros are underestimated, which becomes worse when both
are omitted at the same time. For example, when the ZICOM model is fitted without
random effects in the zero-inflation part (not shown in Tables 7.1 and 7.2), -2log-likelihood
becomes 5386.8 and the predicted probability of zeros equal to 0.3271. This implies that
the inclusion of random effects in the zero-inflation part tends to have little impact on
the predicted probability of zeros. However, based on likelihood comparison, model fit
improves considerably. This same phenomenon is also evident in the ZIPN model fitted
with random effects included only in the non-zero count part (-2log-likelihood is 5971.9,
and predicted probability of zeros 0.3112).

7.4.2 Mesothelioma data

For the mesothelioma data (Section 2.2.2), let Yi represent the number of newly diagnosed
male mesothelioma cases in municipality i = 1, ..., 308. A model that accounts for excess
zeros, overdispersion and a spatial trend seems reasonable when looking SIR estimates
that show spatial trends and many zeros (Figure 7.1). A full model for excessive zero
counts can be presented as a model with mean µci = κiθi:

κi = exp (ξ0 + b0,i) ,

with the zero part probability (πi) modeled as logit(πi) = γ0 + b1,i. The random effects
term b0,i introduces a spatial CAR structure, such as in (6.4)-(6.6) while b1,i is assumed
to be unstructured and normally distributed. Again, both hurdle and zero-inflated
models were fitted, with e.g. a spatial combined model following by omitting b1,i, while
a CARCON model emerges when θi is assumed to be equal to 1. Note that other
parametrizations are possible and that the particular choice here was primarily made
in order to work with a concise set of parameters, but also because of convergence
problems when fitting more random effects terms simultaneously, an issue that will be
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made clear in the next paragraph. Due to the spatial context, a Bayesian approach was
investigated. Priors were ξ0 ∼ N(0, σ2 = 10000), γ0 ∼ N(0, σ2 = 100), the latter prior
choice again made due to estimation problems in the uninformative case. Furthermore,
a gamma(0.05, 2000) was assigned as a prior for τ0 and τ1, the respective precisions
of b0,i and b1,i similar as in Chapter 6. Again the combined and Poisson-gamma
versions of all models here were fitted via the negative binomial parametrization in
(3.8)-(3.10), with α = 1/β ∼ igamma(0.01, 0.01), except for the HNB and HCOM
models, where α ∼ exp(1) was used. Again, a selection of codes are given in the Appendix.

When looking at the results, immediately a few interesting observations can be made
(Table 7.3). In terms of the M statistic, the ZICAR and CAR models perform best. It
is apparent that the hurdle options provide the worst fits, while the models without an
excess-zero part fit as good or better than their excess-zero counterparts. Also noteworthy
is the fact that when using uninformative priors for the zero parts, γ0 estimates became
extremely negative, making π̂ ≈ 0. A part of the explanation lies in the fact that although
more than 80% of the observations in the data are zeros, the non-zero counts are mostly
very low. Therefore, a Poisson model with a low mean will be capable of capturing a
large amount of zeros. This is in line with the predicted probability of zeros that was
approximately the same in a ZICOM model than in a simple Poisson model (Table 7.3).
Another important part of the explanation is given by very nature of disease mapping.
Since one works with one map, the information within these data becomes limited, possi-
bly too limited to fit these complex models. Indeed, within the epilepsy context (Section
7.4.1), there were 89 entities (individuals) that were investigated through time. Here,
there is only 1 entity (1 map) that is investigated through space, which makes it diffi-
cult for the estimation process to assign the correct amount of extra-variability to the
corresponding random effects. This was also seen when data were generated with 80%
zeros, but with 20% non-zeros with high counts (mean = 40) which were concentrated
in 1 Flemish province (not shown here). In that case, the zero-inflated and hurdle models
fitted better than the traditional ones, but still only when informative priors were used
for the parameters in the zero part. In other words, zero-inflated and hurdle models can
be good options for data analyses with many zeros, but they are difficult to use in the
disease mapping context.

7.5 Simulation study

In this section, a simulation study was set up to examine the bias in estimating the re-
gression parameters when dealing with overdispersed, longitudinal count data with excess



7.5. Simulation study 81

Figure 7.1: Standardized incidence rate (SIR) map of newly diagnosed male mesothelioma
cases in the 308 municipalities of Flanders in 1999.

zeros. To keep the results concise, only longitudinal zero-inflated and traditional models
were investigated in a likelihood setting, as was done in Kassahun et al. (2014a). Also
note that only large sample scenarios were considered, in order to assess the ZI models
performances in an ideal setting.

7.5.1 Simulation setting

Data were generated along a design inspired by an Ethiopian study, in which diarrhoeal
disease in young children was investigated. The number of days of children’s diarrhoeal
illness in the two months before a visit by a medical doctor were recorded. While more
information and an in-depth case study is provided by Kassahun et al. (2014a), here age
in months and the status of getting medical help were used as covariates of interest.

A total of 200 data sets were randomly generated from the zero-inflated combined
model for 2000 subjects with 10 measurements per subject. The response vector yi for the
ith subject was generated as a correlated and overdispersed count from a negative bino-
mial process subject to zero-inflation. That is, for each subject, Yij ∼ NB(ψij , θ), where
θ = 1 with ψij = (1 + κij/θ)−1 and where κij = exp {ξ0 + bi + ξ1Timeij + ξ2Helpij}
for i = 1, . . . , 2000 and j = 1, . . . , 10. Further, Timeij represents the time point at
which the jth measurement is recorded for the ith subject and Helpij denotes whether or
not the ith subject is given any medical help at the jth measurement occasion, generated
from a Bernoulli process with p = 0.9. Correlation was induced via a subject-specific
random intercept bi generated from a normal distribution with mean 0 and variance
0.8. Then, zero-inflation was added by defining the final response vector Y ∗i to have
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components Yij∗ = (1 − uij)Yij , where the uij are Bernoulli random variables with
parameters πij and logit(πij) = γ0 + γ1Timeij .

Three different scenarios were considered for data generation: S1: without excess ze-
ros; S2: with an excess of zeros of around 20%; S3: with an excess of zeros of roughly 40%.
The corresponding total zero percentages were 48%, 68%, and 88%, respectively. This
was achieved, for each scenario, by appropriately choosing the zero-inflation coefficients.
The true parameter values used to generate the data were ξ = (1.12, 0.13,−1.89)T . Sim-
ilarly, for the zero-inflation part, γ = (−1,−1)T , γ = (1,−0.25)T and γ = (1.8,−0.1)T

were used for S1, S2, and S3, respectively.

7.5.2 Simulation results

The simulated data were analyzed by the ZICOM, ZINB, ZIPN, and ZIP, as well
as by their non-zero-inflated counterparts. Mean, relative bias (rbias) and predicted
probabilities of zero counts are summarized for the three scenarios in Tables 7.4–7.6,
respectively. Parameter estimates of the ZICOM are in agreement with their true model
in all scenarios. This shows that the different components (zero-inflation, overdispersion
and correlation) can be well separated in practice, in settings like the ones considered
here. The zero-inflated model converged for almost all simulated data sets.

Under S1, as shown in Table 7.4, the ZICOM and the COM performed well and fairly
similar in terms of relative bias, except for the intercept ξ0 for which a larger bias is
observed in the COM. The percentage of zero counts (48%) is nearly equally predicted
in both cases, but severe impact starts to emerge in the non zero-inflation models when
excess zero counts are present, but not accounted for (Tables 7.5 and 7.6). The predicted
number of zero counts is largely underestimated in the non-zero-inflated models. When
many zeros are allowed for, as in S3, the effect is more pronounced in the intercept
term and the negative binomial parameter α as compared to S2. Moreover, the bias in
the standard deviation of the random effects, for instance, in the ‘true’ model tends to
increase in S3, which gets substantially higher for models with neglected zero-inflation
component, such as the COM and PN. The impact of omitting the overdispersion is
remarkable. This can be clearly observed, for example, from the considerable increment
in the relative bias of the ZIPN. When overdispersion is omitted, the zero-inflation
component will try to recover part of the overdispersion. When the correlation stemming
from the repeated measurements is misspecified, substantial impact appears in inferences
of the ZINB, which gets even worse in the PG, as evidenced quite clearly from the larger
relative bias of the intercept term. When correlation is omitted from the model, the
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overdispersion term will try to recover for this misspecification. Unlike in S1, the ZICOM
significantly beats the COM, confirming the importance of accounting for the excess
zeros in addition to the repeated measures nature and the overdispersion.

We conclude that failure to account for excessive zeros, overdispersion, and/or corre-
lation has a substantial impact on bias and predicted probabilities. This was clearly shown
on such key model parameters as the intercept term, the overdispersion parameter, and
the variance of the random effects. All scenarios suggest that the zero-inflated combined
model is the preferred one in terms of relative bias and predicted probabilities of zeros.

7.6 Concluding remarks

In this chapter, a modeling strategy for a hierarchical count data was described where
excessive zeros, correlation and overdispersion can occur together and are assembled in
one single model. This combined model extension to further deal with zero-inflation
provides a parsimonious yet useful approach. Of course, with the considerations of not
only one but multiple sets of random effects comes the obligation to reflect on the precise
nature of such latent structures. As underscored by Verbeke and Molenberghs (2010),
full verification of the adequacy of a random effects structure is not possible based on
statistical considerations alone. Furthermore, one can question whether the data contain
enough information to feed these complex random effects structures. Indeed, as seen
in both case studies, but especially in the spatial context, models venture towards a
border where they become intractable. If data sets are large, zero-inflated and hurdle
models are good options to model data with excess zeros. In the simulation study that
was conducted to investigate the impact of omitting each or a combination of zero-
inflation, overdispersion and correlation, it was shown that omitting such features, while
actually present, introduced considerable bias in parameter estimates and hence may lead
to incorrect inferences. When data sets become small however, non-excess-zero models
seem do be able to capture the excessive zeros well while estimation remains feasible. This
leads to interesting avenues for further research, namely a simulation study to investigate
which sample sizes allow good estimation in the zero-excess models.
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Chapter 8
The Spatial Bivariate Combined
Model for Count Data

8.1 Introduction

While Chapter 6 and 7 dealt with implementing the combined model into the spatial
context, only the univariate data setting was investigated. In practice however, counts
per area are available for different diseases or for different population groups, and interest
may be in the spatial distribution of both diseases or population groups, as well as in
the correlation between the spatial distributions. Existing spatial modeling frameworks
for multivariate data are based on the extension of the CAR convolution model (Section
6.2), assuming a Poisson distribution for the counts conditional on the spatial process,
and assuming that the spatial process is the sum of a Gaussian Markov random field plus
an additional unstructured Gaussian variation, such as proposed by Besag et al. (1991),
and illustrated in e.g. Clayton and Bernardinelli (1992), Rue and Held (2005) and Lawson
(2013) amongst others. Recall that the convolution model allows to account for both
the overdispersion, also called uncorrelated heterogeneity, via the unstructured variation,
as well as for the spatial correlation, also called correlated heterogeneity, via the Markov
random field, explaining the wide use and applicability of the convolution model. Also
recall that, as proposed by Neyens et al. (2012), the combined model assumes that the
spatial process is the sum of a Gaussian Markov random field, to account for the spatial
heterogeneity, plus a gamma-distributed unstructured heterogeneity term.

Extensions of the convolution model towards two or more diseases have been given

91



92 Chapter 8. The Spatial Bivariate Combined Model for Count Data

by e.g. Knorr-Held and Best (2001), Gelfand and Vounatsou (2003) and Lawson (2013,
chapter 10). Knorr-Held and Best (2001) propose the use of a shared component
model, assuming a shared Gaussian Markov random field for both diseases. Gelfand and
Vounatsou (2003) propose a multivariate conditional autoregressive model, introducing
correlation in the spatial component. Lawson (2013) discusses introducing correlation in
both the aspatial component, and in the spatially structured component. This has been
used also by Kramer and Williamson (2013), showing the flexibility of the latter model
and the possibility to quantify the correlation between the spatial processes. In this
chapter, an alternative extension of the latter model is proposed, with correlation between
the aspatial components introduced via gamma-distributed random effects. This forms
an alternative method to the commonly assumed Gaussian convolution model, provid-
ing the practitioner with more tools to efficiently model the bivariate disease distributions.

In this chapter, Section 8.2 gives an explanation on existing methods to model spatial
counts bivariately and proposes a new bivariate extension of the combined model. The
data application considers the study of asthma and COPD in Georgia (USA), and the
study of bladder cancer in males and females in Limburg (Belgium) and is covered in
Section 8.3. A conclusion is provided in Section 8.4.

8.2 Bivariate disease mapping
Throughout the previous chapters, different extensions of the combined model were in-
vestigated. These were all based on data coming from one population, although working
towards the inclusion of two populations seems interesting. Indeed, when looking at
the spatial data setting covered in Chapters 6 and 7, the univariate disease map gave
a number of answers to scientific questions, but issues concerning interactions between
the two diseases remain unsolved and require a bivariate approach. In what follows, a
general modeling framework for two diseases will be given before focusing on the bivariate
extension of the combined model.

8.2.1 Bivariate convolution model

To put the definitions of the proposed bivariate combined model into perspective, it is
important to keep in mind that basically two strategies exist in the bivariate setting,
namely models with common random effects and models with correlated random effects.
The first type of models assumes that specific spatial or non-spatial extra-variance terms
are shared between the models, while both models may also have a set of separate terms.
As an extension of the convolution model, one could consider the following model (for an
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overview of models, see Lawson, 2013):

κ1i = exp (ξ0,1 + b0,i + b1,1i) ,

κ2i = exp (ξ0,2 + b0,i + b1,2i) ,

with b1,1i and b1,2i defined univariately as mentioned in Section 6.2 and b0,i ∼ N(0, σ2
0).

Alternatively, one can choose to take the spatial random effects as shared (b1,1i = b1,2i =
b1,i) while the UH term may be taken as disease-specific (b0,li, l = 1, 2). When the
diseases are not equally common, it is proposed to take into account a scaling component
(Knorr-Held and Best, 2001). By doing so, the amount of overdispersion explained by
the random effects is not equal any more. As an example, a typical model is:

θ1i = exp (ξ0,1 + δb0,i + b1,1i) ,

θ2i = exp (ξ0,2 + b0,i/δ + b1,2i) ,

with δ the scaling component. On the other hand, it is not difficult to understand that
models with shared terms are somehow too restrictive and indeed, intuitively two related
diseases are seen as diseases that act alike, not the same. This can be modeled by
assuming that both random effects are correlated. In the disease mapping context, such
models are not yet widely available, although the multivariate CAR convolution model
has been developed (Stern and Cressie, 2000), which in the bivariate framework uses the
MCAR specification, which models spatial correlation on a multivariate scale (Gelfand
and Vounatsou, 2001), while it uses (b0,1i, b0,2i) ∼ MVN(0,Σ) for the aspatial extra-
variance. As an alternative to this model, we propose a bivariate extension of the combined
model, given in the next section.

8.2.2 Bivariate combined model

In the bivariate combined model, we assume that

Yi1 ∼ Poisson(Ei1κi1θi1),

Yi2 ∼ Poisson(Ei2κi2θi2),

with the relative risks modeled as

κi1 = exp (ξ0,1 + b1,1i) ,

κi2 = exp (ξ0,2 + b1,2i) .

The random effects b1,1i and b1,2i are conditional autoregressive random effects, and are
specified either univariately as in Section 6.2 or multivariately, using the MCAR specifi-
cation (Gelfand and Vounatsou, 2001; Stern and Cressie, 2000). The gamma-distributed
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overdispersion random effects gi1 and gi2 can also be modeled either uni- or bivariately,
with the bivariate distribution defined as follows:

θi1 = 1
k0 + k1

(γi0 + γi1) ∼ Γ(k0 + k1,
1

k0 + k1
)

θi2 = 1
k0 + k2

(γi0 + γi2) ∼ Γ(k0 + k2,
1

k0 + k1
).

where k0, k1 and k2 are three real positive variables, similar as in Hens et al. (2009).
The terms γ0, γ1, and γ2 are assumed as independent gamma-distributed random vari-
ables. The common term is assumed to be γ0 ∼ Γ(k0, 1), and the two disease- or
population-specific terms are γ1 ∼ Γ(k1, 1) and γ2 ∼ Γ(k2, 1). Consequently, the as-
patial heterogeneity terms are associated, with the Pearson product-moment correlation
coefficient equal to ρ = k0√

(k0+k1)(k0+k2)
. This is clearly less restrictive than the assump-

tion of a perfect correlation when assuming a shared aspatial effect gi1 = gi2. Note
however that the correlation coefficient for the correlated gamma model is bounded such
that 0 ≤ ρ ≤ min(σg1

σg2
,
σg2
σg1

). Further, note that by using this formulation, g1 and g2

remain gamma-distributed, such that the conjugacy between the Poisson and gamma
distributions still yields a closed-form distribution for each disease.

8.3 Data application

In this section, we compare the different models within this modeling framework. The
asthma and COPD data from Georgia (Section 2.2.3) and the male and female bladder
cancer data from Limburg (Section 2.2.1) were used. Both data sets contain two outcomes
that are interesting to model simultaneously: For the first data, asthma and COPD counts
were collected in Georgia. It is likely that the occurrences of these outcomes are corre-
lated, since they are both respiratory diseases and therefore can be caused by the same
agents. The bladder cancer data on the other hand consists out of counts for males and
females. A similar risk could be expected for these two sub-populations, and therefore it
seems interesting to model of the spatial distribution of males and females simultaneously.

From Figure 2.2 in Section 2.2.3, it was noticeable that observed counts for asthma
and COPD were very high in and around Atlanta. This was probably due to Georgia’s
largest population sizes being found in those regions, since SIR estimates seem to be
highest in the southeastern region (Figure 8.1). Biased interpretations can also emerge
when only looking at the observed male and female bladder cancer counts in Limburg
(Figure 2.1). This cancer type is diagnosed relatively frequently, more in males than
females, and it is clear that for both genders, the southwestern towns have increased
SIR’s (Figure 8.2). As was mentioned before, SIR estimates do not suffice to capture
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Figure 8.1: Standardized Incidence Rates (SIRi = Yi/Ei) per county for asthma (left panel)
and COPD (right panel) in Georgia (USA).

spatial or non-spatial extra-variance in the data, which point towards the need of
models, more precisely those that model both populations simultaneously to take possible
inter-population correlations into account.

Several models will be considered for both case studies and are listed in Table 8.1. It
can be seen that there is a large set of possible models, amongst which the best model
can be chosen. Included are univariate models fitted separately on the two outcomes,
joint models with a correlated random effect and joint convolution models (two ran-
dom effects). In order to evaluate goodness-of-fit, DIC and MSPE were used again (for
an in-depth explanation, consult Sections 5.2 and 6.4.2). Furthermore, the empirically-
based Pearson correlations between both diseases/population groups were calculated for
the estimated spatial random effects, non-spatial random effects and relative risks, i.e.
rx1,x2 = cov(x1,x2)

sd(x1)sd(x2) with x = b0,i, b1,i, gi or κi.

8.3.1 Asthma and COPD in Georgia

Table 8.2 gives an overview of the model fits. For the Georgia data, Model 3 (d) did not
converge, even after considerable extra iterations. The best model according to DIC was
achieved by model 3 (c), with 2 univariate CAR random effects and a bivariate UH term.
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Figure 8.2: Standardized Incidence Rates for bladder cancer (SIRi = Yi/Ei) per municipality
for males (left panel) and females (right panel).

It is also apparent that the models with gamma bivariate terms had consistently smaller
DIC values than those with normal bivariate UH random effects, e.g. when comparing
bivariate model 2 (b) and 2 (c) or the convolution bivariate models 3 (a) and 3 (c).
Further, it can be observed that the univariate models do not seem to do much worse
than bivariate models, e.g. univariate model 1 (a) had a lower DIC value than many
other bivariate models, such as the convolution model 3 (b). In terms of MSPE, different
things can be seen: Model 2 (c) and 2 (b), the models with respectively only a gamma
and a bivariate normal random effects term, had the lowest error values followed by the
univariate gamma model. Although differences between gamma and normal bivariate
UH terms were small, it can be stated that also in terms of MSPE, the bivariate gamma
term performed equally or better than the bivariate normal term. Lastly, it is interesting
to point out that of all models, model 2 (a), with only a MCAR term, did worse in
terms of both DIC and MSPE. This may be due to the combination of the need for
a UH random effects term and the non-necessity of a MCAR term as spatial random effect.

The last column in Table 8.2 shows the empirical-based correlation estimates for
the relative risks. These estimates summarize the correlation between COPD and
asthma. From all models, it can be seen that the correlation between the two diseases
is estimated around 0.5. At first sight, this is unexpected, since the first two models
(1 (a) and 1 (b)) model the two diseases independently. This indicates that these
models are indeed insufficient in understanding the source of association between
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Table 8.1: An overview of the fitted case study models for the Georgia and Limburg bladder
cancer data.

Model Family
Random Effects

Spatial Non-Spatial
1(a) Univariate models on two outcomes / disease-specific univariate gamma
1(b) Bivariate models with correlated random effects disease-specific UCAR /
2(a) Bivariate models with correlated random effects MCAR /
2(b) Bivariate models with correlated random effects / bivariate normal
2(c) Bivariate models with correlated random effects / bivariate gamma
3(a) Bivariate convolution models disease-specific UCAR bivariate normal
3(b) Bivariate convolution models MCAR bivariate normal
3(c) Bivariate convolution models disease-specific UCAR bivariate gamma
3(d) Bivariate convolution models MCAR bivariate gamma

the diseases. In addition, when modeling the association between the two diseases,
correlations increase to around 0.6, indicating that a misspecification of the models
might underestimate the correlation. Among the bivariate models, the correlation of the
RRs remains relatively alike. However, in order to understand the source of association,
also the empirical correlations of the random effect terms were calculated. Looking
at the best fitting models (models 3 (c) based on DIC and models 2 (b) and 2 (c)
based on MSPE), a significant correlation is observed for the non-spatial heterogeneity
terms and a non-significant correlation for the spatial component. This consistently
indicates that the correlation between two diseases does not have an environmental cause.

When looking at the relative risk maps (Figure 8.3), based on model 3 (c), we indeed
see that both diseases are correlated, with a shared increase in relative risk in the central
southeastern part of Georgia, while there are also disease-specific patterns scattered
around the map. When investigating Figure 8.4, which shows maps of γ0, γ1 and γ2,
the shared and disease-specific parts of the bivariate gamma-distributed random effects,
we see that γ0 represents the shared relative risk increase in the southeast, while γ1

and γ2 take the disease-specific relative risk changes throughout the map into account.
Furthermore, γ0, γ1 and γ2 only give information about the UH in the data, while relative
risks also include the CH, which is shown in Figure 8.5. Indeed, also the CH maps show
higher values in the southeastern part of the map, which indeed suggests that in this
case extra-variance, which was not taken into account by the spatial random effect, was
modeled by γ0, γ1 and γ2.
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Table 8.2: Model fits and empirically based correlations (with 95% credible intervals) between
random effects and relative risks.

Model
Random Effects Model Fit EB RE Corr EB
Spat. Non-Spat. DIC pD MSPE Spatial Non-spatial RR corr

Georgia Data
1(a) / univ. gam. 2376.7 281.0 330.7 / 0.5002 [0.4299; 0.5683] 0.5002 [0.4299; 0.5683]
1(b) UCAR / 2399.2 275.1 347.9 0.47 [0.4047; 0.4709] / 0.5186 [0.4512; 0.5839]
2(a) MCAR / 2452.4 297.8 402.3 0.5731 [0.506; 0.636] / 0.6101 [0.5429; 0.6732]
2(b) / biv. norm. 2380.5 273.3 330.2 / 0.5646 [0.4949; 0.6294] 0.5935 [0.5229; 0.6599]
2(c) / biv. gam. 2359.8 265.4 330.1 / 0.6257 [0.559; 0.6879] 0.6257 [0.559; 0.6879]
3(a) UCAR biv. norm. 2375.7 271.5 336.2 0.145 [-0.3594; 0.5042] 0.6221 [0.4932; 0.7346] 0.5836 [0.5136; 0.6506]
3(b) MCAR biv. norm. 2393.0 280.2 342.6 0.6289 [0.3105; 0.8144] 0.4278 [0.06492; 0.7373] 0.5889 [0.5193; 0.6545]
3(c) UCAR biv. gam. 2346.1 254.3 335.4 0.13 [-0.4128; 0.543] 0.6736 [0.5786; 0.7636] 0.6124 [0.5458; 0.675]
3(d) MCAR biv. gam. / / / / / /

Limburg Data
1(a) / univ. gam. 465.6 55.3 57.7 / 0.3525 [0.125; 0.5621] 0.3525 [0.125; 0.5621]
1(b) UCAR / 479.9 43.8 68.2 0.5264 [0.2859; 0.7164] / 0.5913 [0.3515; 0.7572]
2(a) MCAR / 459.3 43.7 63.15 0.7305 [0.478; 0.8868] / 0.7375 [0.496; 0.8881]
2(b) / biv. norm. 459.8 51.1 57.11 / 0.5897 [0.3102; 0.7889] 0.6102 [0.3541; 0.7983]
2(c) / biv. gam. 450.5 39.8 56.94 / 0.8367 [0.6385; 0.9509] 0.8367 [0.6385; 0.9509]
3(a) UCAR biv. norm. 460.6 52.0 57.44 0.01876 [-0.4529; 0.4948] 0.5744 [0.2711; 0.5903] 0.595 [0.3311; 0.788]
3(b) MCAR biv. norm. 463.4 57.2 56.7 0.5227 [-0.09472; 0.8513] 0.3091 [-0.1761; 0.6829] 0.5283 [0.2604; 0.7354]
3(c) UCAR biv. gam. 454.2 42.0 57.27 0.03011 [-0.4401; 0.501] 0.8236 [0.586; 0.9585] 0.8065 [0.5666; 0.952]
3(d) MCAR biv. gam. 453.7 45.1 57.58 0.5549 [-0.02187; 0.8565] 0.7362 [0.2832; 0.9449] 0.6675 [0.396; 0.8531]

8.3.2 Bladder cancer in Limburg

The analysis of the Limburg data tells a different story. Results are summarized in the
bottom panel of Table 8.2. When looking at the DIC (and pD) values, the univariate
models resulted in poorer fits than the multivariate models. Again, the convolution
models, which combine CH with UH terms, did not have better fits than the other
bivariate models (models 2 (a) - 2 (c)). In fact, the model with the lowest DIC was
model 2 (c), which only has a bivariate gamma term. Furthermore, it again is striking
that the bivariate gamma term provides better fits than the bivariate normal one, e.g.
when comparing DIC values from model 2 (b) with 2 (c), or the convolution models 3
(a) with 3 (c) and 3 (b) with 3 (d), the models with a bivariate gamma term consistently
turn out as the better ones. When looking at the MSPE statistics, it seems that models
without UH terms (Models 1 (b) - 2 (a)) do worse than the others. The best models
in terms of MSPE are models 3 (b) (MCAR CH random effects and a bivariate random
effect) and 2 (c) (only a bivariate gamma term). When looking at the DIC and MSPE
investigations together, model 2 (c) would then constitute as the best model.

When looking at the RR correlation estimates, we see that model 1 (a) has a
substantially smaller estimate than the other models. Furthermore, RR correlation
estimates were less stable among the models when compared with those given by the
Georgia data analyses. When focusing on the random effects correlation estimates, again
relatively high values were estimated for the univariate models. Again all correlation
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Figure 8.3: RR maps for asthma and COPD counts in the counties of Georgia.

Figure 8.4: Maps of γ0, γ1 and γ2 for asthma and COPD counts in the counties of Georgia.

estimates are positive, but not all of them differ significantly from zero. When looking
at the convolution models in particular, the spatial random effects correlations are never
significant and for model 3 (b) also the non-spatial random effects are not significantly
correlated between males and females. However, RR correlation estimates do show
significant positive correlations for all models.

When looking at the RR estimates (Figure 8.6), based on model 2 (c), it is clear that
there is a high correlation between the male and female cases with elevated risks in the
southwestern parts of Limburg. This high correlation is also visible in Figure 8.7 (b),
where the shared UH (γ0) has large values, while the disease specific UH terms (γ1 and
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Figure 8.5: Disease-specific CH maps for asthma and COPD counts in the counties of Georgia.

γ2) do not contribute that much.

8.4 Concluding remarks

In this chapter, a novel method for the bivariate analysis of spatial disease counts was
proposed, and an investigation of the source of correlation between diseases or population
was presented. As indicated by the modeling results, the bivariate combined model,
which introduces a bivariate gamma distributed random effects term to capture aspatial
extra-variance, fitted better than a model with the same spatial random effects but with a
multivariate normal random effect for UH. As data sets differ, the best way to analyze them
will differ too. Therefore, the bivariate combined model proposes an interesting option
when working with two possibly related data sets existing out of counts. Although prior
and initial values choices for the shape parameters in γ0, γ1 and γ2 have to be assigned
thoughtfully to avoid iterating difficulties and malconvergence, it has been shown that the
bivariate combined model presents an interesting new piece in the spatial statistician’s
toolbox.



8.4. Concluding remarks 101

Figure 8.6: RR maps for male and female bladder cancer counts in the municipalities of
Limburg.

Figure 8.7: Maps of γ0, γ1 and γ2 for male and female bladder cancer counts in the
municipalities of Limburg.





Chapter 9
General discussion and
conclusion

This thesis was built around the combined model, which is a GLMM that specifically
models uncorrelated and correlated extra-variance by combining overdispersion models
that exploit the conjugacy characteristic and normal random effects that take the
structural aspects in the data into account. I focused on binomial and count data types.
This thesis has shown that the combined model is very useful in most cases. A number
of remarks and avenues for future research can be noted.

In Chapters 4 and 5, I closely compared different estimation techniques. The reason
here lies in the fact that the combined model was developed in a likelihood framework and
used partial marginalization along the exponential model family’s conjugacy characteristic
to allow for both a normal and a conjugate random effects term. Not surprisingly,
the combined model provided very good results when using it in PROC NLMIXED
(Molenberghs et al., 2010). However, recent statistical science has developed tools
to adequately work with multi-hierarchical data, with MCMC being the most popular
one. Indeed, it feels natural to further develop the combined model, which provides
a way to efficiently model extra-variance caused by different sources in the data, in a
Bayesian setting. I have been closely involved in these developments (Neyens et al.,
2012, Neyens et al., 2015a, Neyens et al., 2015c), while I also have been involved with
research that specifically compared the model’s behaviour between the likelihood and
MCMC framework (Neyens et al., 2015b, Kassahun et al., 2012, Kassahun et al., 2015).
Without going into detail, it is safe to say that the combined model extends well into
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the MCMC territory. For both binary and count data, in longitudinal and spatial data
settings, MCMC provides ways to deal with multiple hierarchies within the context of the
combined model, presuming the data set is sufficiently large. In Neyens et al. (2015b),
which is mainly covered in Chapter 5, a comparison between the likelihood, MCMC and
INLA estimation techniques was undertaken. INLA is an approximate Bayesian method
that uses Laplace approximations to work around MCMC’s long computing times, which
is a well-known issue and MCMC’s most important drawback. Although INLA works
extremely fast and mostly provides good estimates, the reported problems which have
to do with random effects parameter estimation, make its usefulness doubtful in a
number of cases. Further research is needed though, mainly because of the following
reason: Bayesian methodology promised from the beginning that the possibility to build
models with many complexities, would revolutionize modern statistical science. It has
partly done so, but in order to receive good results from MCMC, one has to wait very
long, mostly to find out that still a few parameters have not been converged. The
paradox here is that inferential validity rests on the convergence of a Markov chain to
its equilibrium distribution, which in fact can never be perfectly achieved and therefore
is difficult to verify empirically. To fully exploit the possibilities that Bayesian statistical
methodology offers, its use should be made more attractive to the average end user. I
strongly believe that approximation techniques are the best way forward. Although INLA
still remains to be improved, not only in terms of parameter estimation, but also in its
modeling flexibility, it seems to be an important avenue for future research, among other
approximation techniques (e.g Ghebretinsae et al., 2012a).

The combined model has been a source of research for many statisticians and not
all of the research I was involved with, has become part of this thesis. In Chapter 4, I
focused on the combined model for the logit case, based on Kassahun et al. (2012). As
was explained in Chapter 3, the use of the combined model is not as natural in the logit
case as in the Poisson case, on which the rest of this thesis is built. It however gave very
good modeling opportunities. The combined model has been extended towards the joint
modeling case too, research in which I was closely involved too (Kassahun et al., 2015a),
but in which others also did important work (Njagi et al., 2013). Next to investigations
by Efendi et al. (2013), I was also part of research towards the implementation of the
combined model in the context of marginalized models for count data (Kassahun et
al., 2014b), in which it also worked very well. For count data, I have focused mainly
on spatial data, when modeling one spatial count outcome (Neyens et al., 2010), or
when investigating two counts simultaneously (Neyens et al., 2015a). In the univariate
case, the combined model proved to be a good tool and a worthy counterpart for the
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popular CAR convolution model. In the bivariate case, the bivariate gamma random
effects were shown to be superior to the frequently used bivariate log-normal random
effects. Finally, I have been involved with the extensions of the combined model towards
the setting with many zeros, in the longitudinal (Kassahun et al. 2014a, Kassahun et
al, 2015a, Kassahun et al, 2015b) and the spatial setting (Neyens et al., 2015c). While
the longitudinal cases all considered large sample cases and have shown the extensive
capabilities of zero-excess models, the spatial models, as they were based on smaller
data sets needed more assumptions in order to make the models estimable. Keeping this
in mind, the fully multivariate and spatio-temporal case becomes an interesting research
avenue. With the arrival of supercomputers, it has become tempting to model many
variables simultaneously through time and space. Although the statistical complexities
that arise are not to be underestimated, many have been investigating those cases (e.g.
Cressie and Wilke, 2011) and it has shown to be an important field in future statistical
science. I believe that this path provides the way forward and extensions of the successful
combined model into those territories will be obligate.
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Appendix A
Appendix

A.1 Chapter 4

WinBUGS combined model codes for the epilepsy data set.

{for(j in 1 : N) {

# Specifying the likelihood:

Y[j] ~ dnegbin(p[j],alpha)

p[j] <- alpha/(alpha+mu[j])}

log(mu[j]) <- ksi0 + b0[ id[j] ] + ksi1*trt[j]

+ ksi2*studyweek[j]

# Normal random effects:

for (l in 1:89) {

b0[l] ~ dnorm(0.0, tau.b0)}

# Other priors:

ksi0 ~ dnorm(0.0,0.0)

ksi1 ~ dnorm(0.0,0.001)

ksi2 ~ dnorm(0.0,0.001)

tau.b0 ~ dgamma(1,1.0E-5)

sigma.b0 <- sqrt(1/tau.b0)

alpha~ dgamma(1,1)}
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INLA combined model codes for epilepsy data set.

formula = Y ~ Trt + Time + f(id,model="iid")

inla(formula,data=data,family="nbinomial",verbose=TRUE,

control.inla = list(strategy="simplified.laplace"),

control.compute=list(dic=TRUE))

SAS combined model codes for epilepsy data set.

proc nlmixed data=epilepsy qpoints=50;

title ’Poisson-normal Model’;

parms ksi0=0.5 ksi1=1 ksi2=0.1 tau.b0=1 alpha=5;

eta = ksi0 + ksi1*trt + b0 + ksi2*studyweek ;

kappa = exp(eta);

beta=alpha**-1;

loglik=lgamma(alpha+Y)-lgamma(alpha)+Y*log(beta)

-(Y+alpha)*log(1+beta*kappa)+Y*eta;

model Y ~ general(loglik);

random b0 ~ normal(0,tau.b0**-1) subject = id;

estimate ’sigma.b0’ sqrt(tau.b0**-1);

run;
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WinBUGS combined model codes for the Flemish contact data set.

{for(j in 1 : N) {

# Specifying the likelihood:

Y[j] ~ dnegbin(p[j],alpha)

p[j] <- alpha/(alpha+mu[j])

log(mu[j]) <- ksi0 + b1[hh_id[j]] +b2[zipcode[j]] +

ksi1*Sex[j] + ksi2*Time[j]}

# Normal random effects:

for (l in 1:336) {

b1[l] ~ dnorm(0.0, tau.b1)}

for (k in 1:211) {

b2[k] ~ dnorm(0.0, tau.b2)}

# Other priors:

ksi0 ~ dnorm(0.0,0.0)

ksi1 ~ dnorm(0.0,0.001)

ksi2 ~ dnorm(0.0,0.001)

tau.b1 ~ dgamma(1,5.0E-5)

sigma.b1 <- sqrt(1/tau.b1)

tau.b2 ~ dgamma(1,5.0E-5)

sigma.b2 <- sqrt(1/tau.b2)

alpha ~ dgamma(1,1)}
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INLA combined model codes for the Flemish contact data set.

formula = Y ~ Sex + Time + f(zipid,model="iid") + f(hhid,model="iid")

inla(formula,data=data,family="nbinomial",verbose=TRUE,

control.inla = list(strategy="simplified.laplace"),

control.compute=list(dic=TRUE))

INLA combined model codes for the Jimma infant growth study.

formula = Y ~ TIME + SEX + RUR + URB + BF + f(ID,model="iid")

inla(formula,data=data,family="betabinomial",verbose=TRUE,

control.inla = list(strategy"simplified.laplace"),

control.compute=list(dic=TRUE))

INLA combined model codes for the Jimma longitudinal family survey of youth.

formula = Y ~ AGE + URB + SURB + WORK + SEX + ROUND + f(ID,model="iid")

inla(formula,data=data,family="betabinomial",verbose=TRUE,

control.inla = list(strategy = "simplified.laplace"),

control.compute=list(dic=TRUE))
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A.2 Chapter 5

SAS combined model codes for the Jimma infant growth study.

proc nlmixed data = infant noad qpoints = 10;

title ’Combined Model-Jimma infants with const = beta/

alpha’;

parms ksi0 = -3.23 ksi1 = 0.0602 ksi2 = 0.0402

ksi3 = -0.8369 ksi4 = -0.552

ksi5 =1.7266 ksi6 = -0.003 ksi7 = -0.0262

ksi8 = -0.0184 ksi9 = -0.1584

sd0 = 1.3662 sd1 = 0.2576 const = 0.0944;

eta = ksi0 + b0+ (ksi1 + b1)

*time + ksi2*sex + ksi3*(place = 1) + ksi4*

(place = 2)

+ksi5*(Bf ) + ksi6*(sex)*time + ksi7*time*

(place = 1) + ksi8*time*(place = 2)

+ ksi9*time*(BF);

kappa = exp(eta);

ll = -log(1 + const) +Y*eta - Y*log

(1 + kappa)

+ (1-Y)*log((1-kappa/(1 + kappa)) + const);

model Y ~ general(ll);

random b0 b1 ~ normal([0,0],[sd0**2,0,sd1**2])

subject = id;

run;
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WinBUGS combined model codes for the Jimma infant growth study.

model { for (i in 1:49112) {

# Specifying the likelihood:

Y[i] ~ dbern(p[i])

p[i]<-kappa[i]*theta[i]

logit(kappa[i])<- xi0 + (b0[ID[i]] + xi1)*TIME[i]

+ xi2*SEX[i] + xi3*RUR[i] + xi4*URB[i] + xi5*BF[i]

+ xi6*SEX[i]*TIME[i] + xi7*RUR[i]*TIME[i]

+ xi8*URB[i]*TIME[i] + xi9*BF[i]*TIME[i] + b1[ID[i]]

# Overdispersion random effects:

theta[i] ~ dbeta(alpha,beta)}

# Normal random effect:

for (j in 1:7969) {

b0[j] ~ dnorm(0.0,tau.b0)

b1[j] ~ dnorm(0.0,tau.b1)}

# Other priors:

alpha ~ dunif(3,5)

beta ~ dunif(1.1,1.5)

c<-beta/alpha

xi0 ~ dnorm(0.0,1.0E-6)

xi1 ~ dnorm(0.0,1.0E-6)

xi2 ~ dnorm(0.0,1.0E-6)

xi3 ~ dnorm(0.0,1.0E-6)

xi4 ~ dnorm(0.0,1.0E-6)

xi5 ~ dnorm(0.0,1.0E-6)

xi6 ~ dnorm(0.0,1.0E-6)

xi7 ~ dnorm(0.0,1.0E-6)

xi8 ~ dnorm(0.0,1.0E-6)

xi9 ~ dnorm(0.0,1.0E-6)

tau.b0 ~ dgamma(0.001,0.001)

tau.b1 ~ dgamma(0.001,0.001)

sd0<-sqrt(1/tau.b0)

sd1<-sqrt(1/tau.b1)}
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SAS combined model codes for the Jimma longitudinal family survey of youth.

proc nlmixed data = ado noad qpoints = 10 ;

title ’Combined Model-Jimma youth with const = beta/

alpha’;

parms ksi0 =1.1652 ksi1 = 0.04351 ksi2 = 1.0911

ksi3 = 1.1051

ksi4 = -1.2249 ksi5 = 0.1471 ksi6 = 0.3903

const = 0.05 sd = 0.5;

eta = Beta_0 + ksi1*age + ksi2*(typplace = 1)

+ ksi3*(typplace = 2) + ksi4*currwork + ksi5*sex

+ksi6*round + b0;

kappa = exp(eta);

ll = -log(1 + const) + Y*eta - Y*log

(1 + kappa)

+ (1-Y)*log((1-kappa/(1 + kappa)) + const);

model Y ~ general(ll);

random b0 ~ normal(0,sd*sd) subject = id ;

run;
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WinBUGS combined model codes for the Jimma longitudinal family survey of youth.

{for (i in 1:3815) {

# Specifying the likelihood:

Y[i] ~ dbern(p[i])

p[i]<-theta[i]*kappa[i]

logit(kappa[i])<- xi0 + xi1*AGE[i] + xi2*URB[i]

+ xi3*SURB[i] + xi4*WORK[i] + xi5*SEX[i]

+ xi6*TIME[i] + b0[ID[i]]

# Overdispersion random effects:

theta[i] ~ dbeta(alpha,beta)}

# Normal random effects:

for (j in 1:1956) {

b0[j] ~ dnorm(0,tau.b0)}

# Other priors:

alpha ~ dunif(110,210)

beta ~ dunif(1.1,2.2)

c<-beta/alpha

xi0 ~ dflat()

xi1 ~ dnorm(0.0,0.00001)

xi2 ~ dnorm(0.0,0.00001)

xi3 ~ dnorm(0.0,0.00001)

xi4 ~ dnorm(0.0,0.00001)

xi5 ~ dnorm(0.0,0.00001)

xi6 ~ dnorm(0.0,0.00001)

tau.b0 ~ dgamma(1,0.00001)

sd0<-1/sqrt(tau.b0)}
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A.3 Chapter 6

WinBUGS combined model codes for the kidney and prostate cancer data sets.

model{ for (i in 1 :N) {

# Specifying the likelihood:
Y[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + ksi0 + b[i] + log(theta[i])
RR[i] <- exp(ksi0 + b[i] + log(theta[i]))

# Overdispersion random effect:
theta[i] ~ dgamma(alpha,alpha)}

# CAR random effects:
b[1:N] ~ car.normal(adj[], weights[], num[], tau.b)
for(k in 1:sumNumNeigh) {

weights[k] <- 1}

# Other priors:
ksi0 ~dflat()
mean <- exp(ksi0)
tau.b ~dgamma(0.5, 0.0005)
sigma.b <- 1 / tau.b
alpha ~ dexp(1)}

INLA combined model codes for kidney cancer data set.

inla(Y~f(spatialgrid$locationID, model="besag", graph="spatialgrid.adj"
,adjust.for.con.comp = FALSE),
control.inla = list(strategy = "simplified.laplace"),
family="nbinomial", E=kidney$E, data=kidney,
control.fixed=list(compute=TRUE),control.compute=list(config e=TRUE))
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A.4 Chapter 7

SAS ZICOM model codes for the epilepsy data set.

proc nlmixed data=epil.epilepsy qpoints=20;
parms beta0= 0.8511 beta2=-0.01048 beta1=-0.0346 beta3=0.00248
alpha=0.2937 d11=1.0810 rho=0 d22=3.19 gamma0=-1.78 gamma1=0.052;
eta = beta0 + beta1*Trt + beta2*Time + beta3*Time*Trt + b0;
lambda = exp(eta);
eta_prob = gamma0+gamma1*Time+b1;
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*lambda);
if Y=0 then
ll = log(p_0 + (1-p_0)*(p**m));
else ll = log(1-p_0) + log(gamma(m + Y)) - log(gamma(Y + 1))
- log(gamma(m)) + m*log(p) + Y*log(1-p);
random b0 b1 ~ normal([0,0], [d11**2,rho*d11*d22,d22**2]) subject = id;
model Y ~ general(ll);
predict p_0+(1-p_0)*(1/(1+lambda/m))**m out=ZIPNG;
run;

SAS HCOM model codes for the epilepsy data set.

proc nlmixed data=epil.epilepsy qpoints=20;
title ’HPNG’;
parms beta0= 0.8511 beta2=-0.01048 beta1=-0.0346 beta3=0.00248
alpha=0.2937 d11=1.0810 rho=0 d22=3.19 gamma0=-1.78 gamma1=0.052;
eta = beta0 + beta1*Trt + beta2*Time + beta3*Time*Trt + b0;
lambda = exp(eta);
eta_prob = a0+a1*Time+b1 ;
p_0=exp(eta_prob)/(1+exp(eta_prob));
m = 1/alpha;
p = 1/(1+alpha*lambda);
if Y=0 then ll = log(p_0);
else ll = log(1-p_0) + log(gamma(m + Y)) - log(gamma(Y + 1))
- log(gamma(m)) + Y*log(alpha*lambda)-
(Y+m)*log(1/p)-log(1-(1/p)**(-m));
model Y ~ general(ll);
random b0 b1 ~ normal([0,0],[d11**2,rho*d11*d22,d22**2]) subject=id;
predict p_0 out=HPNG;
run;
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WinBUGS ZICOM model codes for the epilepsy data set.

model{for (i in 1 :N) {

#Zeros trick:
ze[i]<-0
ze[i]~dpois(phi[i])
phi[i]<- -ll[i]+10000

#Count part:
mu[i]<-theta[i]
log(theta[i]) <- beta0 + beta1*Trt[i] + beta2*Time[i] +

beta3*Trt[i]*Time[i] + b[id[i],0]

#Group membership part:
logit(q0[i]) <- gamma0 + gamma1*week[i] + b[id[i],1]
p0[i]<-max(0.001,min(0.999,q0[i]))

#Log-Likelihood:
zero[i]<-equals(Y[i],0)
p[i]<-1/(1+theta[i]*alpha)
ll[i] <- zero[i]*log(p0[i]+ (1-p0[i])*pow(p[i],1/alpha))

+(1-zero[i])*(log(1-p0[i])+loggam(1/alpha+Y[i])
- loggam(Y[i] + 1) - loggam(1/alpha)
+ 1/alpha*log(p[i]) +Y[i]*log(1-p[i]))

pzero[i]<-p0[i]+ (1-p0[i])*pow(p[i],1/alpha)

#M-statistic:
CPinv[i]<-exp(-ll[i])
cpo[i]<-pow(CPinv[i],-1)
Lcpo[i]<-log(cpo[i])}
MargL<-sum(Lcpo[])

#Predicted zeros:
predzero<-mean(pzero[])

#Priors:
gamma0~dnorm(0, 0.1)
gamma1~dnorm(0, 0.1)
beta0~dnorm(0, 0.0001)
beta1~dnorm(0, 0.0001)
beta2~dnorm(0, 0.0001)
beta3~dnorm(0, 0.0001)
alpha<- 1/invalpha
invalpha ~ dgamma(0.01, 100)
sig1~dunif(0, 100)
sig2~dunif(0, 100)
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rho~dunif(-1, 1)
Sigma.B[1, 1] <- pow(sig1, 2)
Sigma.B[2, 2] <- pow(sig2, 2)
Sigma.B[1, 2] <- rho*sig1*sig2
Sigma.B[2, 1] <- Sigma.B[1, 2]
covariance <- Sigma.B[1, 2]
Tau.B[1:2, 1:2] <- inverse(Sigma.B[,])

for (i in 1:89) {
B.hat[i, 1] <- beta0
B.hat[i, 2] <- gamma0
b[i, 1:2]~dmnorm(B.hat[i, ], Tau.B[,])
b1[i] <- b[i, 1] # random intercept 1
b2[i] <- b[i, 2] # random intercept 2}}
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WinBUGS HCOM model codes for the epilepsy data set.

model{for (i in 1 :N) {

#Zeros trick:
ze[i]<-0
ze[i]~dpois(phi[i])
phi[i]<- -ll[i]+10000

#Count part:
mu[i]<-theta[i]
log(theta[i]) <- beta0 + beta1*Trt[i] + beta2*Time[i] +

beta3*Trt[i]*Time[i] + b[id[i],0]

#Group membership part:
logit(q0[i]) <- gamma0 + gamma1*week[i] + b[id[i],1]
p0[i]<-max(0.001,min(0.999,q0[i]))

#Log-Likelihood:
zero[i]<-equals(Y[i],0)
p[i]<-1/(1+theta[i]*alpha)
ll[i] <- zero[i]*log(p0[i])+(1-zero[i])*(log(1-p0[i])

+ loggam(1/alpha+Y[i]) - loggam(Y[i]+1)
- loggam(1/alpha)+Y[i]*log(alpha*theta[i])
-(Y[i]+1/alpha)*log(1/p[i])
-log(1-pow((1/p[i]),(-1/alpha))))

pzero[i]<-p0[i]

#M-statistic:
CPinv[i]<-exp(-ll[i])
cpo[i]<-pow(CPinv[i],-1)
Lcpo[i]<-log(cpo[i])}
MargL<-sum(Lcpo[])

#Predicted zeros:
predzero<-mean(pzero[])

#Priors:
gamma0~dnorm(0, 0.1)
gamma1~dnorm(0, 0.1)
beta0~dnorm(0, 0.0001)
beta1~dnorm(0, 0.0001)
beta2~dnorm(0, 0.0001)
beta3~dnorm(0, 0.0001)
alpha<- 1/invalpha
invalpha ~ dgamma(0.01, 100)
sig1~dunif(0, 100)
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sig2~dunif(0, 100)
rho~dunif(-1, 1)
Sigma.B[1, 1] <- pow(sig1, 2)
Sigma.B[2, 2] <- pow(sig2, 2)
Sigma.B[1, 2] <- rho*sig1*sig2
Sigma.B[2, 1] <- Sigma.B[1, 2]
covariance <- Sigma.B[1, 2]
Tau.B[1:2, 1:2] <- inverse(Sigma.B[,])

for (i in 1:89) {
B.hat[i, 1] <- beta0
B.hat[i, 2] <- gamma0
b[i, 1:2]~dmnorm(B.hat[i, ], Tau.B[,])
b1[i] <- b[i, 1] # random intercept 1
b2[i] <- b[i, 2] # random intercept 2}}
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WinBUGS ZICOM model codes for the mesothelioma data set.

model{for (i in 1 :N) {

#Zeros trick:
ze[i]<-0
ze[i]~dpois(phi[i])
phi[i]<- -ll[i]+10000

#Count part:
zero[i] <- equals(Y[i], 0)
mu[i]<-(EE[i]+0.0001)*theta[i]
log(theta[i]) <- beta0 + b0[i]

#Group membership part:
logit(p0[i]) <- gamma0

#Log-Likelihood:
p[i]<-1/(1+mu[i]*alpha)
ll[i] <- zero[i]*log(p0[i]+ (1-p0[i])*pow(p[i],1/alpha))

+(1-zero[i])*(log(1-p0[i])+loggam(1/alpha+Y[i])
- loggam(Y[i] + 1) - loggam(1/alpha)
+ 1/alpha*log(p[i]) +Y[i]*log(1-p[i]))

pzero[i]<-p0[i]+ (1-p0[i])*pow(p[i],1/alpha)

#M-statistic:
CPinv[i]<-exp(-ll[i])
cpo[i]<-pow(CPinv[i],-1)
Lcpo[i]<-log(cpo[i])}
MargL<-sum(Lcpo[])

#Predicted zeros:
predzero<-mean(pzero[])

#Priors:
b0[1:N] ~ car.normal(adj[], weights[], num[], tau.b0)
for(k in 1:sumNumNeigh) {weights[k] <- 1}

alpha<- 1/invalpha
invalpha ~ dgamma(0.01, 100)
beta0 ~ dnorm(0, 0.0001)
gamma0 ~ dnorm(0, 0.01)
tau.b0 ~ dgamma(0.5, 0.0005) # prior on precision
sig.b0<-sqrt(1/tau.b0)}}
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WinBUGS HCOM model codes for the mesothelioma data set.

model{for (i in 1 :N) {

#Zeros trick:
ze[i]<-0
ze[i]~dpois(phi[i])
phi[i]<- -ll[i]+10000

#Count part:
zero[i] <- equals(Y[i], 0)
mu[i]<-(EE[i]+0.0001)*theta[i]
log(theta[i]) <- beta0 + b0[i]

#Group membership part:
logit(p0[i]) <- gamma0

#Log-Likelihood:
p[i]<-1/(1+mu[i]*alpha)
ll[i] <- zero[i]*log(p0[i])+(1-zero[i])*(log(1-p0[i])

+ loggam(1/alpha+Y[i]) - loggam(Y[i]+1)
- loggam(1/alpha)+Y[i]*log(alpha*mu[i])
-(Y[i]+1/alpha)*log(1/p[i])
- log(1-pow((1/p[i]),(-1/alpha))))

pzero[i]<-p0[i]

#M-statistic:
CPinv[i]<-exp(-ll[i])
cpo[i]<-pow(CPinv[i],-1)
Lcpo[i]<-log(cpo[i])}
MargL<-sum(Lcpo[])

#Predicted zeros:
predzero<-mean(pzero[])

#Priors:
b0[1:N] ~ car.normal(adj[], weights[], num[], tau.b0)
for(k in 1:sumNumNeigh) {weights[k] <- 1}

alpha ~ dexp(1)
beta0 ~ dnorm(0, 0.0001)
gamma0 ~ dnorm(0, 0.01)
tau.b0 ~ dgamma(0.5, 0.0005) # prior on precision
sig.b0<-sqrt(1/tau.b0)}}
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A.5 Chapter 8

WinBUGS combined (Bivariate gamma and MCAR random effects) model codes.

model{ for(i in 1:N){
Y[i,1]<-Y1[i]
Y[i,2]<-Y2[i]
E[i,1]<-E1[i]
E[i,2]<-E2[i]}

for (i in 1:N) {for (k in 1:2) {

# Specifying the likelihood:
Y[i, k] ~ dpois(mu[i, k])
log(mu[i, k]) <- log(E[i, k]) + ksi0[k] + b0[k, i]

+ log(g[i,k])}
RR1[i] <- exp(ksi0[1] + b0[1,i]+ log(g[i,1]))
RR2[i] <- exp(ksi0[2] + b0[2,i]+ log(g[i,2]))
RRprod[i]<-RR1[i] *RR2[i]
b01[i]<-b0[1,i]
b02[i]<-b0[2,i]

# Bivariate overdispersion random effects:
g[i,1] <-var1*(gamma0[i] + gamma1[i])
g[i,2] <-var2*(gamma0[i] + gamma2[i])
g1[i]<-g[i,1]
g2[i]<-g[i,2]
logg1[i]<-log(g[i,1] )
logg2[i]<-log(g[i,2] )
loggamma0[i]<-log(gamma0[i])
loggamma1[i]<-log(gamma1[i])
loggamma2[i]<-log(gamma2[i])
gamma0[i]~dgamma(k0,1)
gamma1[i]~dgamma(k1,1)
gamma2[i]~dgamma(k2,1)

# Specifying MSPE:
ypred1[i]~dpois(mu[i, 1])
pres1[i]<-Y1[i]-ypred1[i]
spe1[i]<-pow(pres1[i],2)
ypred2[i]~dpois(mu[i, 2])
pres2[i]<-Y2[i]-ypred2[i]
spe2[i]<-pow(pres2[i],2)}
mspe1<-mean(spe1[])
mspe2<-mean(spe2[])
mspe<-mspe1+mspe2
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# MVN random effects:
b0[1:2, 1:N] ~ mv.car(adj[], weights[], num[], omega[ , ])
for (i in 1:sumNumNeigh) {weights[i] <- 1}

# Other priors:
for (k in 1:2) {
ksi0[k] ~ dflat()}
k0~dexp(1)
k1~dexp(1)
k2~dexp(1)

# Empirical correlations:
var1<-1/(k0+k1)
var2<-1/(k0+k2)
mu1<-mean(RR1[])
mu2<-mean(RR2[])
sd1<-sd(RR1[])
sd2<-sd(RR2[])
mu12<-inprod(RR1[],RR2[])/N
CRR12<-(mu12-mu1*mu2)/(sd1*sd2)

uh_mu1<-mean(g1[])
uh_mu2<-mean(g2[])
uh_sd1<-sd(g1[])
uh_sd2<-sd(g2[])
uh_mu12<-inprod(g1[],g2[])/N
uh_CRR12<-(uh_mu12-uh_mu1*uh_mu2)/(uh_sd1*uh_sd2)

ch_mu1<-mean(b01[])
ch_mu2<-mean(b02[])
ch_sd1<-sd(b01[])
ch_sd2<-sd(b02[])
ch_mu12<-inprod(b01[],b02[])/N
ch_CRR12<-(ch_mu12-ch_mu1*ch_mu2)/(ch_sd1*ch_sd2)}}
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Table A.1: RR estimates and standard deviations for the kidney cancer data set MCMC
results. There were no significant differences from ’1’.

PG PLN CAR (UH) CAR CON COM
mean sd mean sd mean sd mean sd mean sd

RR[1] 1.462 0.347 1.015 0.07546 1.01 0.06021 1.025 0.08737 1.36 0.3076
RR[2] 0.8396 0.2959 0.9931 0.06959 0.992 0.05588 0.9858 0.07748 0.8565 0.2626
RR[3] 1.053 0.1866 1.002 0.06548 1.005 0.05509 1.006 0.07361 1.042 0.1782
RR[4] 0.7842 0.1785 0.9841 0.06736 0.9937 0.0537 0.9788 0.07403 0.7996 0.1697
RR[5] 1.091 0.2919 1.002 0.06913 0.9963 0.05798 0.9986 0.08009 1.059 0.261
RR[6] 0.8817 0.2631 0.9934 0.06836 0.9998 0.05826 0.9928 0.07868 0.8878 0.2385
RR[7] 0.8934 0.2442 0.9933 0.06801 0.9899 0.06145 0.9842 0.0806 0.8971 0.2266
RR[8] 1.256 0.2807 1.009 0.07127 1.003 0.05613 1.013 0.08008 1.203 0.2552
RR[9] 0.9511 0.2359 0.9953 0.06746 0.9904 0.06193 0.987 0.07999 0.9439 0.2183
RR[10] 1.115 0.1579 1.01 0.06497 1.0 0.04993 1.011 0.06918 1.103 0.1521
RR[11] 0.9314 0.2922 0.9952 0.06869 1.004 0.07315 0.9992 0.09057 0.9273 0.2609
RR[12] 0.8888 0.2794 0.9942 0.06892 1.0 0.07065 0.9949 0.08888 0.8946 0.2504
RR[13] 0.9566 0.2867 0.9961 0.06884 1.005 0.06755 1.001 0.08677 0.9506 0.257
RR[14] 1.179 0.2781 1.006 0.06985 1.005 0.07143 1.011 0.09025 1.139 0.2546
RR[15] 1.152 0.1465 1.016 0.06551 1.007 0.05129 1.022 0.06999 1.139 0.1419
RR[16] 1.118 0.299 1.002 0.06919 1.0 0.05653 1.003 0.0783 1.081 0.2663
RR[17] 1.271 0.3511 1.006 0.07171 1.004 0.06269 1.01 0.08547 1.193 0.3088
RR[18] 1.008 0.2791 0.9982 0.06839 1.004 0.06079 1.002 0.08081 0.9942 0.2518
RR[19] 0.9966 0.4502 0.9977 0.07073 0.9945 0.08658 0.9923 0.104 0.9685 0.3599
RR[20] 1.157 0.2171 1.008 0.06815 1.007 0.05556 1.015 0.07628 1.129 0.2031
RR[21] 0.9777 0.2935 0.9969 0.06881 0.9965 0.05697 0.9935 0.07859 0.9644 0.2598
RR[22] 0.9858 0.2094 0.9968 0.06621 0.9997 0.05143 0.9972 0.07197 0.9774 0.1955
RR[23] 0.7269 0.2404 0.9878 0.06947 0.9862 0.06566 0.9753 0.08393 0.761 0.223
RR[24] 0.8112 0.2828 0.9918 0.06865 1.0 0.05419 0.9925 0.07685 0.836 0.2548
RR[25] 1.259 0.2373 1.013 0.07092 1.001 0.0586 1.015 0.08109 1.218 0.2221
RR[26] 1.142 0.2772 1.004 0.069 1.007 0.06546 1.01 0.0845 1.107 0.2521
RR[27] 0.9059 0.1871 0.991 0.06552 0.995 0.06319 0.9872 0.07885 0.906 0.1794
RR[28] 0.8961 0.2457 0.9936 0.06844 1.003 0.05664 0.9964 0.07747 0.9004 0.2275
RR[29] 0.6875 0.1825 0.9808 0.06917 0.9868 0.05781 0.9688 0.07792 0.7166 0.1762
RR[30] 0.9678 0.1862 0.9954 0.06536 0.9947 0.0553 0.991 0.07349 0.9632 0.1766
RR[31] 1.184 0.3063 1.005 0.07032 0.9958 0.05542 1.001 0.07913 1.131 0.2712
RR[32] 1.176 0.2771 1.005 0.06968 0.9998 0.05993 1.007 0.08111 1.137 0.252
RR[33] 0.8447 0.2958 0.9932 0.0699 1.005 0.06017 0.9978 0.08081 0.8628 0.2642
RR[34] 0.8775 0.2897 0.9942 0.06948 0.9937 0.05582 0.9885 0.0778 0.8862 0.2585
RR[35] 0.7285 0.2285 0.9866 0.06932 0.9938 0.06132 0.9817 0.08091 0.7647 0.2172
RR[36] 0.9868 0.2616 0.997 0.06818 0.9973 0.05552 0.9957 0.07726 0.9737 0.2389
RR[37] 0.9148 0.2348 0.9936 0.06713 0.9944 0.0589 0.9889 0.07774 0.9151 0.2164
RR[38] 1.095 0.1832 1.005 0.06536 1.006 0.05757 1.011 0.07536 1.079 0.1732
RR[39] 1.057 0.2564 0.9999 0.06792 1.007 0.07218 1.008 0.0893 1.036 0.2347
RR[40] 0.6996 0.1602 0.977 0.0695 0.992 0.05523 0.9702 0.0758 0.7216 0.1542
RR[41] 0.8604 0.3244 0.9943 0.06988 0.9982 0.04339 0.9928 0.07002 0.8745 0.2788
RR[42] 0.9456 0.3118 0.9961 0.0691 1.004 0.05808 0.9999 0.08027 0.9414 0.2756
RR[43] 0.9903 0.2395 0.9974 0.06741 1.003 0.05616 1.001 0.07674 0.9812 0.2199
RR[44] 0.6664 0.271 0.9883 0.0701 0.9934 0.05636 0.9825 0.07823 0.7254 0.2455
Average 0.9857 0.2578 0.9977 0.0686 0.9991 0.0595 0.9973 0.0799 0.9760 0.2339
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Table A.2: RR estimates and standard deviations for the prostate cancer data set MCMC
results. Significant differences from ’1’ are denoted by *.

PG PLN CAR (UH) CAR CON COM
mean sd mean sd mean sd mean sd mean sd

RR[1] 1.107 0.1163 1.087 0.1081 1.12 0.09665 1.09 0.1074 1.103 0.1144
RR[2] 0.9621* 0.1349 0.9646* 0.1194 0.9357* 0.09229 0.9601* 0.1178 0.9609* 0.1313
RR[3] 1.175* 0.06626 1.166* 0.06448 1.147* 0.06336 1.165* 0.06428 1.174* 0.06631
RR[4] 0.7918 0.06158 0.8047 0.05946 0.7853 0.05331 0.8025 0.05914 0.7936 0.06123
RR[5] 1.03 0.109 1.022 0.1012 1.031 0.08753 1.023 0.1007 1.028 0.1078
RR[6] 0.8692 0.09884 0.8844 0.09186 0.9187 0.08332 0.887 0.0917 0.8716 0.09771
RR[7] 1.164 0.1043 1.142 0.09769 1.142 0.09207 1.143 0.0971 1.159 0.1022
RR[8] 1.243* 0.105 1.215* 0.09963 1.14 0.09037 1.208* 0.09947 1.235* 0.1034
RR[9] 1.157 0.09543 1.139 0.09074 1.109 0.08834 1.135 0.09065 1.152 0.09523
RR[10] 0.8228* 0.04409 0.8283* 0.04334 0.8412* 0.04326 0.8289* 0.04327 0.8236* 0.04417
RR[11] 1.243 0.1334 1.201 0.1228 1.214 0.1228 1.203 0.1233 1.233 0.1315
RR[12] 1.022 0.1147 1.014 0.1059 1.06 0.1087 1.021 0.1069 1.02 0.1134
RR[13] 0.9557 0.1119 0.9582 0.1024 0.9601 0.097 0.9589 0.1025 0.9556 0.11
RR[14] 1.082 0.09548 1.069 0.09046 1.069 0.09094 1.071 0.09043 1.079 0.09473
RR[15] 1.119* 0.04581 1.115* 0.04534 1.115* 0.04759 1.115* 0.04515 1.118* 0.04621
RR[16] 1.025 0.1115 1.017 0.1023 1.013 0.08681 1.017 0.1018 1.023 0.1094
RR[17] 1.017 0.1269 1.008 0.114 0.9952 0.1002 1.008 0.1132 1.015 0.1235
RR[18] 1.104 0.1108 1.085 0.1033 1.117 0.097 1.089 0.1032 1.099 0.1098
RR[19] 1.065 0.4091 1.018 0.2361 0.7604 0.2375 0.9847 0.2469 1.027 0.3461
RR[20] 1.291* 0.07958 1.273* 0.07764 1.262* 0.07586 1.272* 0.07726 1.287* 0.07974
RR[21] 0.7395* 0.1012 0.7839* 0.09423 0.7821* 0.07856 0.7815* 0.09283 0.747* 0.1004
RR[22] 1.015 0.07552 1.012 0.07243 1.016 0.06556 1.013 0.07204 1.015 0.07486
RR[23] 1.121 0.1168 1.099 0.1084 1.119 0.1035 1.102 0.108 1.116 0.1154
RR[24] 1.327* 0.156 1.262* 0.1415 1.136 0.1065 1.251 0.1404 1.309* 0.1515
RR[25] 0.8289* 0.06685 0.8399* 0.06434 0.7963* 0.06005 0.8354* 0.06446 0.8301* 0.06662
RR[26] 1.035 0.0954 1.027 0.08978 1.032 0.08692 1.028 0.08973 1.033 0.09471
RR[27] 1.05 0.06943 1.044 0.06739 1.035 0.06757 1.044 0.06739 1.049 0.06902
RR[28] 1.436* 0.1154 1.391* 0.1107 1.359* 0.102 1.389* 0.1097 1.424* 0.1141
RR[29] 1.21* 0.0847 1.192* 0.08171 1.17* 0.07662 1.191* 0.08141 1.205* 0.08449
RR[30] 0.6972* 0.0538 0.7164* 0.05246 0.7285* 0.05089 0.7164* 0.05235 0.6996* 0.05361
RR[31] 0.9731 0.1097 0.9717 0.1009 1.004 0.08663 0.9755 0.1001 0.9721 0.1077
RR[32] 1.004 0.09459 0.9996 0.08861 0.9953 0.08057 1.001 0.08824 1.003 0.09324
RR[33] 1.033 0.1375 1.021 0.1227 1.073 0.1113 1.027 0.1227 1.03 0.1345
RR[34] 1.124 0.1402 1.094 0.126 1.059 0.1036 1.091 0.1245 1.116 0.1368
RR[35] 0.8587 0.09339 0.8737 0.08692 0.8926 0.08104 0.8764 0.08705 0.8613 0.09198
RR[36] 0.9035 0.09575 0.9122 0.08904 0.9328 0.0773 0.9147 0.08834 0.9038 0.09405
RR[37] 0.6138* 0.06883 0.6595* 0.06725 0.6486* 0.06025 0.6571* 0.06683 0.6209* 0.06865
RR[38] 1.168* 0.06145 1.159* 0.06047 1.151* 0.06065 1.159* 0.06026 1.166* 0.0619
RR[39] 0.7978* 0.0807 0.8182* 0.07653 0.827* 0.07747 0.8196* 0.07694 0.801* 0.08036
RR[40] 0.6565* 0.051 0.6785* 0.05045 0.7003* 0.04764 0.6794* 0.05032 0.6595* 0.0513
RR[41] 0.2418* 0.07968 0.4965* 0.09751 0.9866 0.01644 0.53* 0.1185 0.2864* 0.08607
RR[42] 1.336* 0.1579 1.268* 0.1441 1.229* 0.1203 1.264* 0.1426 1.317* 0.1544
RR[43] 1.028 0.08917 1.021 0.08457 1.029 0.07958 1.023 0.08418 1.026 0.08863
RR[44] 0.7104* 0.1238 0.7816 0.1111 0.7583* 0.08461 0.7761 0.1091 0.723* 0.1219
Average 10.035 0.1044 10.030 0.0947 10.045 0.0850 10.029 0.0950 10.016 0.1019



Samenvatting

In zijn boek over spatiale statistische analyse dat nog steeds tot de belangrijkste
werken behoort binnen deze wetenschappelijke niche, definieert Cressie statistiek als de
wetenschap van de onzekerheid (Cressie, 1993) en geeft daarmee een allesomvattende
beschrijving aan iets dat voor velen een zwarte doos blijft binnen wetenschappelijk
onderzoek. Statistiek tracht variatie in observaties te verklaren aan de hand van geza-
menlijke kenmerken en maakt daarvoor gebruik van kanstheorie. Statistisch modelleren
gaat een stap verder door de realiteit weer te geven in een wiskundige formule die een
observatie verbindt met één of meerdere factoren en daarmee probeert alle geobserveerde
variatie te verklaren. In theorie zou, wanneer je alle verklarende variabelen vooraf
kent, alle variatie in de zogenaamde uitkomstvariabele kunnen worden uitgelegd a.d.h.v.
deze variabelen, maar dit is zelden het geval. Daarbij komt dat statistisch modelleren
meestal gebeurt binnen de context van een wiskundige verdeling die specifiek is voor
het type data dat de uitkomstvariabele betreft. Die verdelingen leggen typisch ook
bepaalde beperkingen op aan de data, zoals wat betreft de mate van variatie die de
uitkomstvariabele mag vertonen. In de praktijk zien we dat aan deze variatieassumptie
in heel wat gevallen niet wordt voldaan, wat statistische analyses via het desbetreffende
type model en de onderliggende verdeling onbetrouwbaar maakt. De oorzaak hiervan
is niet altijd duidelijk, maar heeft meestal te maken met twee belangrijke problemen:
(1) er zit een structuur in de data, m.a.w. de data zijn niet willekeurig verzameld, of
(2) er zijn onbekende verklarende factoren die een invloed hebben op de uitkomstvariabele.

In deze verhandeling werd een oplossing gezocht voor scenario’s waarin een te grote
mate van variabiliteit voorkomt en waarbij dus de assumptie omtrent variatie wordt
geschonden. Er werd specifiek gekeken naar gegroepeerde binaire data en data verkregen
door tellingen, waarbij gegroepeerde binaire data via de binomiale verdeling worden

137



138 SAMENVATTING

geanalyseerd, terwijl bij tellingen de Poisson-verdeling typisch wordt gebruikt. Centraal
in dit onderzoek stond het zogenaamde combined model (Molenberghs et al., 2010). Dit
is een model dat ontwikkeld werd voor meerdere datatypes en dat letterlijk twee soorten
modellen, nl. overdispersiemodellen en GLMM’s, combineert: (1) een overdispersiemodel
tracht via een dispersieparameter met een specifieke achterliggende (conjugate) verdeling
extravariatie toe te laten, terwijl (2) een GLMM typisch een normaal verdeeld random
effect gebruikt om structurele aspecten in de data in rekening te brengen. Het combined
model voegt op een slimme manier beide modellen samen tot één model met enerzijds
een conjugaat random effect en anderzijds één of meerdere normaal verdeelde random
effecten. Op deze manier kan extravariatie, veroorzaakt door respectievelijk onbekende
verklarende variabelen en structuur in de data, toegelaten worden.

Binnen de context van het combined model keek ik in eerste instantie naar het
gebruik ervan binnen verschillende statistische schattingsmethodes. Het combined model
werd namelijk ontwikkeld binnen de likelihood-methodologie. De Bayesiaanse schattings-
methode daarentegen heeft als groot voordeel in staat te zijn complexere datastructuren
te analyseren. In Hoofdstuk 4 en 5 toonde ik aan dat parameterschattingen nagenoeg
hetzelfde zijn wanneer in de likelihood- of in de Bayesiaanse setting wordt gewerkt.
Echter, een belangrijk nadeel van de Bayesiaanse statistiek is dat de meest gebruikte
methode, MCMC, gebaseerd is op Gibbs sampling, een methode die gebruik maakt van
simulaties die erg lang kan duren. Enkele snelle methodes werden ontwikkeld, maar zijn
door hun benaderende aard meestal minder goed wat betreft de kwaliteit van parameter-
schatten. Ik onderzocht in Hoofdstuk 5 (en deels in Hoofdstuk 6) ook de werking van
zo’n methode, met name INLA, maar besloot dat vooral parameterschattingen van de
variantieschatters voor de random effecten matig tot slecht waren.

Verder deed ik onderzoek naar het gebruik van het combined model in een aantal
settings. Zo onderzocht ik zijn toegevoegde waarde in longitudinale data analyse voor
binaire data (Hoofdstuk 4) en vergeleek ik de resultaten met resultaten verkregen uit de
traditionele modellen: het combined model deed het in de meeste gevallen beter. Dit kan
verklaard worden door het feit dat het combined model een goed onderscheid kan maken
tussen extravariatie komende van structuur in de data enerzijds en niet-gestructureerde
variabiliteit anderzijds. Dit heeft als gevolg dat de effecten van de verklarende variabelen
ook correcter worden geschat. Wanneer ik het combined model toepaste op teldata,
was dit meestal binnen de spatiale setting, m.a.w. de setting waarin de datastructuur
plaatsgebonden is. In Hoofdstuk 6 werkte ik het combined model uit voor spatiale teldata
en vergeleek deze met traditionele modellen binnen die niche. Een belangrijke conclusie
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was dat het combined model erg goede resultaten opleverde, vooral wanneer er veel
ongestructureerde variabiliteit aanwezig was. Juist in deze situatie gaf het combined mo-
del betere resultaten dan het populaire en slechts licht verschillende CAR-convolutiemodel.

Naast het voorkomen van onbekende verklarende factoren en een datastructuur, kan
ook het disproportioneel voorkomen van nul-observaties in teldata leiden tot schendingen
van de variabiliteitassumpties. Daarom onderzocht ik extensies van het combined
model in deze setting voor longitudinale en spatiale data. Vermits deze modellen een
grote hoeveelheid informatie trachten te destilleren uit data die dat niet altijd hebben,
bleken deze modellen erg goed te werken bij de analyse van grote datasets. Wanneer
datasets kleiner werden, onstonden er problemen tijdens het schattingsproces. Een
interesante onderzoekspiste is daarom ook het kwantificeren van de grens in termen van
steekproefgroottes waarop een model voor extra nullen nuttig wordt.

Ook onderzocht ik in Hoofdstuk 8 de mogelijkheid tot uitbreiding van het combined
model in de spatiale setting wanneer men twee i.p.v. één uitkomstvariabele wil modelle-
ren, waarbij een bivariate gamma-verdeelde dispersiefactor kan worden gebruikt. Hoewel
de complexiteit van deze analyses soms computationele problemen met zich meebrengt,
geeft dit zogenaamde bivariate combined model erg goede resultaten die in veel gevallen
superieur zijn t.o.v. de bestaande methodes. Het is ook in deze richting dat veel we-
tenschappelijke mogelijkheden liggen: het simultaan analyseren van meerdere uitkomst-
variabelen wanneer rekening wordt gehouden met zowel een spatiale als een longitudinale
structuur. Een uitbreiding van het combined model naar deze setting lijkt logisch vermits
het via de vooruitgang in computationele technieken mogelijk wordt om erg complexe
datastructuren te analyseren.
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