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Chapter 1

Introduction

Many clinical studies record relevant outcome measures repeatedly over time. His-

torically, such designs were often motivated by data monitoring reasons, and ana-

lysis still relied on univariate techniques (the last observed measurement, endpoint

analysis, summary measures). Currently, there is a tendency towards the use of gen-

uine longitudinal data techniques. Longitudinal data analysis is a very active area

of research and only recently have a number of book references become available

(Lindsey 1993, Longford 1993, Diggle, Liang and Zeger 1994, Hand and Crowder

1995, Verbeke and Molenberghs 1997, Vonesh and Chinchilli 1997). The linear

mixed model for normally distributed endpoints (Laird and Ware 1982) is perhaps

the most widespread, supported by the availability of flexible software: the SAS

procedure MIXED (Littell et al. 1996), the SPlus function LME, SPSS, etc. While

the linear mixed model, or its extension that incorporates serial association (Diggle

1988), is well established, its application is still not straightforward.

In contrast to normal data, there is less agreement on models for non-normal data

(binary data, counts). Among the most popular ones we find generalized estimating

equations (Liang and Zeger 1986) and generalized linear mixed models (Wolfinger

and O’Connell 1993, Breslow and Clayton 1993).

In a repeated measures design it is common that some variables fail to be recorded

for everybody. Sometimes, there is just one missing value for a subject, but it is not

unusual in practice for some sequences of measurements to terminate early for rea-

sons outside the control of the investigator, and any unit so affected is often called

1



2 Chapter 1 : Introduction

a dropout. For categorical outcomes, incomplete data entail that a subject is not

always classified into a single outcome category but rather into a set of categories,

whereas the actual single category represents the complete data. The frequent oc-

curence of dropout means that this is a common problem when analysing incomplete

longitudinal data, and it might therefore be necessary to accommodate dropout in

the modelling process. As a result of including the missingness process, one can

obtain correct inference, and answer a question of scientific interest about the miss-

ingness.

Following Laird (1988), major problems with incomplete longitudinal data are

the difficulties with implementing existing methods, efficiency loss, and the introduc-

tion of bias. Possible approaches are, apart from complete case analyses, univariate

analyses with adjustments for variance estimates, two-step analyses, and likelihood

based methods. Laird further distinguishes between likelihood based methods that

include an explicit model for dropout and methods that only model the measure-

ment process. Heyting, Tolboom and Essers (1992) discuss shortcomings of available

methods, and advocate the use of more modern methodology that was primarily de-

veloped for sample surveys with non-response and for observational studies. These

authors consider the following common causes of dropout: recovery, lack of im-

provement, unwanted signs or symptoms that may be related to the investigational

treatment, unpleasant study procedures, intercurrent health problems, external rea-

sons that seem to be unrelated to the trial procedures or to the progress of the

patient.

When refering to the missing data mechanism (non-response process) we will

use terminology first introduced by Rubin (1976), and further developed in Little

and Rubin (1987, Ch. 6). A non-response process is said to be missing completely

at random (MCAR) if the missingness is independent of both unobserved and ob-

served data and missing at random (MAR) if, conditional on the observed data,

the missingness is independent of the unobserved measurements. A process that is

neither completely random nor random is termed non-random (MNAR). In the con-

text of likelihood inference, and when the parameters describing the measurement

process and the parameters describing the missingness process are distinct, MCAR
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and MAR are ignorable, while a MNAR process is non-ignorable. If the process is

ignorable, then a valid analysis can be obtained through a likelihood-based analysis

that ignores the missing data mechanism. This leads to considerable simplification

in the analysis. Furthermore, there are situations where the MAR assumption gives

better results than MNAR (Rubin, Stern and Vehovar 1995). In many examples,

however, the reasons for missingness are many and varied and it is therefore difficult

to justify on a priori grounds the assumption of random missingness. Arguably,

in the presence of non-random missingness, a wholly satisfactory analysis of the

data is not feasible. While the treatment of missing data that are missing at ran-

dom requires some caution, one needs to be even more careful with non-randomly

missing data. This contradicts a common belief that, with the availability of meth-

ods for incomplete data, fitting models is of the same level of complexity as any

other statistical model building exercise and that in fact routine testing for the non-

randomness of the non-response process is possible. However, many instances of

the contrary have been reported. A classical example is found in Little and Ru-

bin (1987, Section 11.6). Several issues are discussed in Molenberghs et al. (1999).

It is illustrated how models are identifiable by virtue of model assumptions, which

are usually impossible to verify merely on statistical grounds. In addition to the

potential occurrence of non-unique, boundary solutions, and solutions that violate

constraints, we show that models often yield the same or similar fits to the observed

data, but produce qualitatively different predictions for the unobserved data. Other

issues are presented in Molenberghs, Goetghebeur, Lipsitz and Kenward (1999).

Work on incomplete categorical data has largely been devoted to partially clas-

sified contingency tables (see e.g., Baker and Laird 1988). Molenberghs, Kenward

and Lesaffre (1997) introduce a method for the analysis of longitudinal ordinal data

with non-random dropout. Their approach is based on Diggle and Kenward (1994),

who treat non-random dropout in continuous longitudinal data. The EM algorithm

(Dempster, Laird and Rubin 1977) is extensively used to maximize the likelihood

in case of incomplete categorical data, but other proposals have been made as well:

Molenberghs and Goetghebeur (1997) have introduced a simple method to construct

and maximize the observed data likelihood, whilst still formulating their models at
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the complete data level. An overview of methods for missing data in longitudi-

nal data is given in Laird (1988). The author distinguishes between ignorable and

non-ignorable missingness, in the context of both normally distributed and cate-

gorical data. Lehnen and Koch (1974) present a saturated likelihood approach.

They have to assume that the missingness is completely random. Log-linear models

for ignorable incomplete data can be fitted using the EM algorithm (Fuchs 1982).

Baker and Laird (1988) and Stasny (1986) consider models for non-ignorable non-

response with categorical outcomes. A general framework is provided by Fay (1986).

Conaway et al. (1992) use loglinear models and perform fitting within GLIM, with

the aid of the EM algorithm. Park and Brown (1994) follow a similar line of rea-

soning.

Diggle and Kenward (1994) propose an MNAR analysis by letting the probability

of dropout depend on the possibly unobserved outcomes. This probability model

is then combined with a linear mixed model for the measurement process. Further

approaches are proposed by Schluchter (1988), Laird, Lange and Stram (1987), Wu

and Bailey (1988, 1989), Wu and Carroll (1988). These last authors use random-

effects models to describe the censoring or non-response process. Greenlees, Reece

and Zieschang (1982), combine the probit of the dropout probability with the general

linear measurement model. Little (1995) gives a careful review of the different

modelling approaches.

Brown (1990) has shown that some progress can be made when the missingness

is assumed to depend on the unobserved values, but not on the observed measure-

ments. For multivariate Gaussian data, Brown constructs an estimator for the mean

and covariance parameters of the joint normal distribution. He called this a protec-

tive estimator. Brown studies an example where measurements are made relatively

far apart in time, such that the influence of a previous measurement on nonresponse

is negligible. He allows for the presence of all possible response patterns, but each

subject is measured at the first occasion. The categorical counterpart for this pro-

tective estimator can be found in Michiels and Molenberghs (1997). In Chapter 4,

one can find the protective estimator in both the normal and the categorical case.

Most methods are formulated within the selection modelling frame (Little and
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Rubin 1987) as opposed to pattern-mixture modelling (Little 1993). A selection

model factors the joint distribution of the measurement and response mechanisms

into the marginal measurement distribution and the response distribution, condi-

tional on the measurements. This is intuitively appealing since the marginal mea-

surement distribution would be of interest also with complete data. Further, Little

and Rubin’s taxonomy (MCAR, MAR, MNAR) is most easily developed in the

selection setting. However, it is often argued that, especially in the context of

non-random missingness models, selection models, although identifiable, should be

approached with caution. This point is well illustrated in Glynn, Laird and Ru-

bin (1986). One is confronted with fundamentally untestable assumptions, a point

raised by many discussants to Diggle and Kenward (1994).

Recently, Little (1993, 1994a, 1995) has been promoting the use of pattern-

mixture models as a viable alternative. His work is based on earlier material, such

as Rubin (1977) where the idea was used in a sensitivity analysis within a fully

Bayesian framework. Further references include Glynn, Laird and Rubin (1993),

Little and Rubin (1987), and Rubin (1987). In 1989, an entire issue of the Journal

of Educational Statistics was devoted to this theme and especially Wainer (1989),

as well as the accompanying discussion, deserves particular attention. Within the

family of pattern-mixture models, the marginal response distribution is coupled with

the measurement process, given the response pattern. Of course, these models are by

construction under-identified, since the complete data distribution of an incomplete

pattern is a priori a contradiction. Little solves this problem through the use of

identifying restrictions. In other words, inestimable parameters of the incomplete

patterns are set equal to (functions of) the parameters describing the distribution of

the completers. In a fully Bayesian context, both selection modelling and pattern-

mixture modelling has been used to investigate sensitivity (Rubin 1977).

Although selection models and pattern-mixture models are interchangeable from

a probabilistic point of view, in the sense that they represent different factorizations

of the same joint distribution, in practice they encourage different kinds of simpli-

fying assumptions. For this reason, it is important to consider their relative merits

as scientific models, especially when the probability of missingness depends on the
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unobserved outcomes. One attraction of selection models is that they fit naturally

into Little and Rubin’s taxonomy, whereas pattern-mixture models appear not to

do so. In Molenberghs, Michiels, Kenward and Diggle (1998), it is shown, on the

contrary, that the classical taxonomy of missing data models can also be applied

to pattern-mixture models. Clearly, since MCAR is merely independence between

measurement and dropout processes, it is common to both settings. If missingness

is restricted to dropout, MAR corresponds to what we call available case missing

value (ACMV) restrictions. Under this identifying restriction, a distribution that

is impossible to estimate directly in one pattern is set equal to the corresponding

distribution over the patterns for which all necessary components are observed. A

formal definition of ACMV can be found in Chapter 5.

Now that different missing data mechanisms are established in a selection model

and a pattern-mixture model context, a purely philosophical debate about the rela-

tive merits of the selection model and pattern-mixture model paradigms is unhelpful.

Instead, the choice of one of the models should be based on the statistical and sci-

entific merits of proposed missing value models on their own terms. For example,

if the question of scientific interest regards the treatment effect, averaged over all

dropout patterns, then choosing a selection model seems to be obvious. On the

other hand, if one is interested in the treatment effect, for various dropout patterns

separately, then a pattern-mixture model is a natural choice.

Furthermore, we advocate the use of pattern-mixture models as a tool to assess

sensitivity of a selection model to the modelling assumptions, or vice versa (Molen-

berghs, Michiels and Lipsitz 1999, Michiels, Molenberghs and Lipsitz 1998). Explic-

itly, extra confidence in the conclusions can be gained if two analyses, one within

each framework, coincide in key aspects, such as covariate dependencies, strength of

association between outcomes, etc. In Chapter 6, a selection model and a pattern-

mixture model with covariates will be fitted to the same set of data. We will also

show for the pattern-mixture model how precision estimates can conveniently be

obtained using profile likelihood and multiple imputation. The main emphasis is

on a marginal model (Molenberghs and Lesaffre 1994) since the use of identifying

restrictions in this context is less than straightforward. In this context, we choose
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to restrict attention mainly to MAR processes since they can be expressed easily

in both selection and pattern-mixture frameworks (Molenberghs, Michiels, Kenward

and Diggle 1998). Another example can be found in Chapter 8, where a repeated-

measures model is used to fit the data from a breast cancer study to a selection model

and a pattern-mixture model. In the analysis of this set of continuous outcomes,

the MAR assumption is relaxed. It is then shown how pattern-mixture models can

be used without explicit use of identifying restrictions (Michiels et al. 1998).

An alternative method to combine selection models and pattern-mixture models

consists in using a pseudo-likelihood (Arnold and Strauss 1991), containing the inter-

esting parts of both models. Although this looks appealing, only the MAR/ACMV

case is straightforward (Molenberghs, Michiels and Kenward 1998). Problems arise

if one wants to include non-random missingness. The pseudo-likelihood application

can be found in Chapter 7.





Chapter 2

Key Examples

In this chapter, two datasets that are often used throughout this manuscript, are

introduced. The first dataset contains data from a psychiatric study, where as

main outcomes the therapeutic effect and the side effects are measured. The second

dataset was collected at the Janssen Research Foundation, where a quality of life

quantity is studied. Other datasets are introduced whenever the need arises.

2.1 Fluvoxamine Data

The data come from a multicentre study involving 315 patients that were treated

by fluvoxamine for psychiatric symptoms described as possibly resulting from a dys-

regulation of serotonine in the brain. Patients with one or more of the following

diagnoses were included: depression, obsessive, compulsive disorder and panic dis-

order. After recruitment of the patient in the study, he or she was investigated

at four visits: at weeks 2, 4, 8 and 12. On the basis of about twenty psychiatric

symptoms, the therapeutic effect and the side effects were scored at each visit in

an ordinal manner. Side effect is coded as (0) = no; (1) = not interfering with

functionality of patient; (2) = interfering significantly with functionality of patient;

(3) = the side effects surpass the therapeutic effect. Similarly, the effect of therapy

is recorded on a four point ordinal scale: (0) no improvement or worsening; (1) min-

imal improvement (not changing functionality); (2) moderate improvement (partial

disappearance of symptoms) and (3) important improvement (almost disappearance

9
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of symptoms). Thus, side effects occur if new symptoms occur while there is ther-

apeutic effect if old symptoms disappear. Also 3 covariates are measured for these

patients: age, a continuous covariate, and sex and the occurence of psychiatric an-

tecedents, two binary covariates. The outcomes can be found in Tables 2.1 and 2.2.

These data were analysed by Molenberghs and Lesaffre (1994), Kenward, Lesaf-

fre and Molenberghs (1994), Molenberghs, Kenward and Lesaffre (1997), Michiels

and Molenberghs (1995, 1997), Molenberghs, Michiels and Lipsitz (1999), Michiels,

Molenberghs and Lipsitz (1998) and Molenberghs et al. (1999). A detailed account

is given in Lesaffre, Molenberghs and Dewulf (1996).

Since many cells are empty or sparsely filled, we only use a dichotomized version

of the data, where category 0 (no effect) is contrasted with the others (category 1) for

both outcomes. 299 patients have a measurement at the first time point, including

224 completers. A summary of the data can be found in Table 2.3, where the counts

are given for the patients with respect to their measurements at times 2, 3, and 4.

We will use the data in this form in Chapter 4.

In Chapter 6, we will restrict attention to the outcomes at times 2 and 5, also in

a dichotomized version. Here, we will also use the covariates. Therefore, 6 patients

drop out due to missing covariate levels. This leads to 293 patients, whose results

are shown in Table 2.4. For these 293 patients, the age varies from 16 up to 75

years, with a mean of 42.26, and a standard deviation of 13.18. There were 104 men

(35%), and 189 patients (65%) had psychiatric antecedents.

We wish to thank Solvay Duphar N.V. for the kind permission to use their data.
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Table 2.1: Fluvoxamine Data, Completers. Each cell gives the outcome at the four

visits. The numbers given under Side (side effect) and Ther (therapeutic effect) are

the number of patients with this measurement pattern.

Cell Side Ther Cell Side Ther Cell Side Ther Cell Side Ther

0000 84 9 1000 24 31 2000 1 12 3000 2 1

0001 4 0 1001 2 1 2011 0 1 3001 1 0

0010 2 1 1010 1 1 2100 0 22 3100 0 4

0011 1 0 1011 4 0 2101 0 2 3101 0 1

0032 1 0 1013 0 1 2102 0 1 3110 0 1

0100 2 0 1100 22 7 2110 1 12 3111 1 4

0101 1 0 1101 2 1 2111 5 11 3113 0 1

0110 1 1 1102 0 1 2113 0 1 3200 0 6

0111 6 0 1103 0 3 2120 0 1 3210 0 6

0122 0 1 1110 6 6 2131 0 1 3211 0 11

1111 37 14 2200 0 1 3212 0 1

1112 2 0 2210 0 3 3220 0 1

1121 0 1 2211 3 5 3221 0 2

1122 2 0 2220 0 2 3222 0 3

1200 0 1 2222 2 3 3232 0 1

1211 3 2 2233 0 1 3310 0 2

1221 1 0 2310 0 1 3320 0 2

1222 0 2 2311 0 2 3321 0 2

1310 0 1 3322 0 4

1322 0 1 3333 0 3

tot. 102 12 tot. 106 74 tot. 12 82 tot. 4 56

Total (completers) 224 224
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Table 2.2: Fluvoxamine Data, Incomplete Patterns. Each cell gives the outcome

at the four visits (a ”.” indicates the corresponding measurement is missing). The

numbers given under Side (side effect) and Ther (therapeutic effect) are the number

of patients with this measurement pattern.

Cell Side Ther Cell Side Ther Cell Side Ther Cell Side Ther

000. 6 2 00.. 5 1 0... 9 4 .100 1 0

001. 2 0 01.. 2 0 1... 6 6 .101 0 1

010. 1 0 10.. 2 2 2... 7 9 ...0 1 0

012. 1 0 11.. 4 2 3... 9 12 ...2 0 1

100. 1 1 12.. 2 2 .... 14 14

110. 2 1 13.. 1 1

111. 3 3 20.. 1 0

112. 0 1 21.. 0 6

122. 0 1 22.. 5 3

123. 1 0 23.. 2 1

133. 0 1 31.. 0 2

211. 1 1 32.. 0 1

320. 0 1 33.. 2 5

322. 0 3

333. 0 3

Total (monotone missingness) 75 75

Total (non-monotone missingness) 16 16
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Table 2.3: Fluvoxamine Data. Each cell gives the dichotomized (0 vs. 1/2/3)

outcome at the first 3 visits (a ”.” indicates the corresponding measurement is

missing). The numbers given under Side (side effect) and Ther (therapeutic effect)

are the number of patients with this measurement pattern.

Cell Side Ther

000 94 11

001 6 1

010 4 0

011 8 2

100 31 46

101 5 3

110 26 52

111 68 127

00. 5 1

01. 2 0

10. 3 2

11. 16 23

0.. 9 4

1.. 22 27

Total 299 299
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Table 2.4: Fluvoxamine Data. Each cell gives the dichotomized (0 vs. 1/2/3)

outcome at the first and last visit (a ”.” indicates the corresponding measurement is

missing). The numbers given under Side (side effect) and Ther (therapeutic effect)

are the number of patients with this measurement pattern (those with a missing

covariate are indicated separately).

Cell Side Ther

00 89 11

01 13 1

10 56 (1) 123 (1)

11 61 (4) 84 (4)

0. 25 (1) 7

1. 49 67 (1)

Total 293 (6) 293 (6)

2.2 The Vorozole Study

The data come from a randomized phase III trial comparing the new potent and

selective third generation aromatase inhibitor vorozole (VOR) with megestrol acetate

(MEG) in postmenopausal advanced breast cancer patients.

This study was an open-label, multicenter, parallel group design conducted at

67 North American centers. Patients were randomized to either vorozole (225 pa-

tients, 2.5 mg taken once daily) or megestrol acetate (227 patients, 40 mg four times

daily). The patient population consisted of postmenopausal patients with histo-

logically confirmed estrogen-receptor positive metastatic breast carcinoma. All 452

randomized patients were followed until disease progression or death. The main

objective was to compare the treatment group with respect to response rate while

secondary objectives included a comparison relative to duration of response, time to

progression, survival, safety, pain relief, performance status and quality of life. In

Chapter 8, we will focus on overall quality of life, measured by the total Functional

Living Index: Cancer (FLIC) (Schipper, Clinch and McMurray 1984). Precisely, a
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higher FLIC score is the more desirable outcome.

Patients underwent screening and for those deemed eligible a detailed examina-

tion at baseline (occasion 0) took place. Further measurement occasions were month

1, then from month 2 at bi-monthly intervals until month 44.

The median age was 66 years for VOR, and 67 for MEG, and the means were

respectively 65.1 (s.e. 9.8) and 65.6 (s.e. 10.0) years. The mean duration of breast

cancer was 6.8 (s.e. 5.4) years for VOR, and 6.9 (s.e. 5.5) years for MEG. The

average total FLIC score was 116.3 (s.e. 1.5) for VOR, and 117.1 (s.e. 1.3) for

MEG. These total FLIC scores were calculated based on 199 resp. 213 patients.

Full details of this study are reported in Goss et al. (1998).

Goss et al. (1998) analysed the data and found no significant differences: the

response rate was 9.7% for VOR, versus 6.8% for MEG (p=0.24); clinical benefit

from treatment was demonstrated in 23.5% of VOR-treated patients versus 27.2% of

MEG-treated patients (p=0.42). They also analysed FLIC using a two-way ANOVA

model with effects for treatment, disease status, as well as their interaction. Again,

no significant difference was found.

We wish to thank the Janssen Research Foundation for the kind permission to

use their data.
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Missing Data Terminology

In virtually all longitudinal studies missing data arise. Some studies are designed

such that the number of measurements per subject is variable or even random. The

measurement times themselves can vary across subjects and can be random as well.

We term these studies unbalanced . In such unbalanced studies it is usually not pos-

sible to identify non-response, unless measurement times have been recorded, even

for occasions at which no measurement was actually taken. In contrast, in a bal-

anced study the number of measurements per subject is fixed and the measurements

are usually taken at an approximately common set of occasions. In this situation,

missing observations can be identified without ambiguity. For this reason, we will

focus attention on missing data in the balanced case. Furthermore, the specific case

of dropout (i.e., a subject is completely observed until a certain point in time, where

after no more measurements are taken) can be handled in the unbalanced case sim-

ilarly to the balanced case, so restricting to balanced studies does not influence the

treatment of dropout.

A potential source of confusion is the fact that in a part of the literature also

the random effects are viewed as missing variables, which are then estimated using

a generalization of the EM algorithm (Laird and Ware 1982). The use of the EM

algorithm is discussed in Section 3.2.1. It ought to be clear that this is not the type

of missing data envisaged here. We are concerned with missing outcome variables,

i.e., measurements that potentially could have been obtained, in contrast with the

random effects, which are latent variables.

17
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A missing data formalism is given in Section 3.1, where the missing data ter-

minology, largely due to Rubin (1976) and Little and Rubin (1987), is used as a

standard framework to deal with missing data mechanisms and their effect on the

analysis. Section 3.2 gives some methods to deal with incomplete data, with em-

phasis on the EM algorithm and the theory of Multiple Imputation.

3.1 Missing Data

Assume that for subject s in the study a sequence of measurements Yst is designed

to be measured at occasions t = 1, . . . , T . Recall that we restricted attention to

balanced designs, so it is planned to obtain an equal number of measurements per

subject, and one furthermore intends to obtain these measurements at approximately

the same times. The outcomes are grouped into a vector Y s = (Ys1, . . . , YsT )′. In

addition, for each time t define

Rst =





1 if Yst is observed,

0 otherwise.

The missing data indicators Rst are grouped into a vector Rs which is of the same

length as Y s. The process generating Rs is referred to as the missing data process.

An hierarchy of missing data patterns can be considered. When missingness is due

to attrition, all measurements for a subject from baseline onwards up to a certain

measurement time are recorded, after which all data are missing. This pattern

is often called a dropout pattern. It is then possible to replace the information

contained in the vector Rs by a single indicator variable. We will use Ds to indicate

the last observed measurement occasion. Attrition is a particular monotone pattern

of missingness. If at one or more intermittent times an observation is missing, the

pattern is called non-monotone.

Partition Y s into two subvectors such that Y o
s is the vector containing those Yst

for which Rst = 1 and Y m
s contains the remaining components. These subvectors

are referred to as the observed and missing components respectively. The following

terminology is adopted:
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Complete data Y s: the scheduled measurements. This is the outcome vector that

would have been recorded if there were no missing data.

Full data (Y s,Rs): the complete data, together with the missing data indicators.

Note that one observes the measurements Y o
s together with the dropout indi-

cators Rs.

Covariates Xs: apart from the outcomes, additional information is measured.

This information can be collected before or during the study. The covariate

vector is allowed to change for different outcome components t and can include

continuous as well as discrete variables. We assume no missing values appear

in Xs. Methods in case of missing covariates have been explored by several

authors (Little 1992, Robins, Rotnitzky and Zhao 1994, Zhao, Lipsitz and Lew

1996).

3.1.1 Categorical Data

In case the measurements Y are categorical, we can represent the data by means of

a contingency table. First, one has to split the data with respect to their covariate

level. Suppose the study contains subjects with i = 1, . . . , N different covariate

levels. For each subject s = 1, . . . , ni within level i, one intends to measure a series

of covariate vectors X i (which are the same for all subjects within this covariate

level) and outcomes Yist, one for each of t = 1, . . . , T measurement occasions. Each

outcome component Yist can take on ct distinct values. If continuous covariates are

included, ni will be small and often even equal to one.

For each covariate level i, the complete data (Y is,Ris), s = 1, . . . , ni, are grouped

in a contingency table Zc
i of dimensions 2×· · ·×2× c1×· · ·× cT . These dimensions

are given by the number of possible outcomes: for Rst this is 2, and for Y st this

is ct. In case of dropout, the contingency table reduces to a table with dimensions

c0 × c1 × · · · × cT , where c0 is in most cases equal to T . The observed data are not

Zc
i but merely Zi, a partially classified table. These cell counts can be thought of

as arising by summing over the appropriate rows or columns in the corresponding

complete table. We then have a linear relationship between observed and complete
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quantities: Zi = CiZ
c
i . We call the matrix Ci which consists of 0’s and 1’s the

coarsening matrix in agreement with Molenberghs and Goetghebeur (1997) and

Heitjan and Rubin (1991). The corresponding cell-probabilities will be denoted

by νci for the complete table, and ν i for the observed table. Again, the coarsening

matrix gives the relation between both: νi = Ciν
c
i . The multinomial cell probability

vector νc
i has entries

νcir1...rT k1...kT
= P (Ris1 = r1, . . . , RisT = rT , Yis1 = k1, . . . , YisT = kT |Xi, θ),

(3.1)

with θ a vector of parameters of interest and X i the design matrix for the covariate

level i, constructed from the covariate information.

3.1.2 Missing Data Mechanisms

Consider the density of the full data

f(ys, rs|Xs, θ),

where Xs is the design matrix and θ is a vector that parameterizes the joint dis-

tribution. We will use θ = (β′,α′)′ to describe the measurement and missingness

processes respectively. The design matrix then splits up in two parts: Xβ
s and Xα

s .

A useful taxonomy, constructed by Rubin (1976) and further developed in Little

and Rubin (1987), is based on the factorization:

f(ys, rs|Xs, θ) = f(ys|Xβ
s ,β)f(rs|ys,Xα

s ,α), (3.2)

where the first factor is the marginal density of the measurement process and the

second one is the density of the missingness process, conditional on the outcomes.

This factorization forms the basis of selection modelling as the second factor corre-

sponds to the (self-)selection of individuals into ‘observed’ and ‘missing’ groups. An

alternative taxonomy can be built based on so-called pattern-mixture models. These

are based on the factorization

f(ys, rs|Xs, θ) = f(ys|rs,Xβ
s ,β)f(rs|Xα

s ,α). (3.3)
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Indeed, (3.3) can be seen as a mixture of different populations, characterized by the

observed pattern of missingness. After initial mention of these models (Little and

Rubin 1987, Glynn, Laird and Rubin 1986), they are receiving more attention lately

(Little 1993, 1994a, 1995, Hogan and Laird 1997, Ekholm and Skinner 1998).

In the special case of categorical outcomes, factorization is done on νci . We will

use the following notation: a selection model is given by

νcir1...rT k1...kT
(θS) = µScik1...kT

(βS) φScir1...rT |k1...kT
(αS), (3.4)

with θS = ((βS)′, (αS)′)′. So the marginal measurement probabilities µSc
i are given

by

µScik1...kT
(βS) = P (Yis1 = k1, . . . , YisT = kT |Xβ

i ,β
S),

and the missingness probabilities, conditional on the outcomes, φSc
i are defined as

φScir1...rT |k1...kT
(αS) = P (Ris1 = r1, . . . , RisT = rT |Yis1 = k1, . . . , YisT = kT ,X

α
i ,α

S).

Alternatively, a pattern-mixture model is based on the factorization

νcir1...rT k1...kT
(θP ) = φPcir1...rT (αP ) µPcik1...kT |r1...rT

(βP ), (3.5)

with θP = ((βP )′, (αP )′)′. Now, µPc
i·|r1...rT

are the complete data measurement prob-

abilities for response pattern R1 = r1, . . . , RT = rT :

µPcik1...kT |r1...rT
(βP ) = P (Yis1 = k1, . . . , YisT = kT |Ris1 = r1, . . . , RisT = rT ,X

β
i ,β

P ).

Clearly, they cannot be fully identified and additional assumptions will be required.

The missingness probabilities are expressed in an unconditional form:

φPcir1...rT (αP ) = P (Ris1 = r1, . . . , RisT = rT |Xα
i ,α

P ). (3.6)

The natural parameters of selection models and pattern-mixture models have

a different meaning, and transforming one probability model into one of the other

framework is in general not straightforward, even not for normal measurement mod-

els. When a selection model is used, it is often mentioned that one has to make

untestable assumptions about the missing data mechanism (discussion of Diggle
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and Kenward 1994, Molenberghs, Kenward and Lesaffre 1997). Because in pattern-

mixture models different densities (possibly with different parameters) are consid-

ered for each of the observed values of R, it is explicit which parameters cannot

be identified. Little (1993) suggests the use of identifying relationships between

identifiable and non-identifiable parameters. Thus, even though these identifying

relationships are also unverifiable (Little 1995), the advantage of pattern-mixture

models is that the verifiable and unverifiable assumptions can easily be separated.

The assumptions about the missing data mechanism were originally defined for

selection models. This classical taxonomy is based on the second factor of (3.2):

f(rs|ys,Xα
s ,α) = f(rs|yos,yms ,Xα

s ,α). (3.7)

If (3.7) is independent of the measurements, i.e., when it assumes the form

f(rs|Xα
s ,α), then the process is termed missing completely at random (MCAR).

If (3.7) is independent of the unobserved (missing) measurements Y m
s , but

depends on the observed measurements Y o
s, thereby assuming the form

f(rs|yos,Xα
s ,α), then the process is referred to as missing at random (MAR).

Finally, when (3.7) depends on the missing values Y m
s , the process is referred

to as informative missingness or missing not at random (MNAR). An informative

process is allowed to depend on Y o
s.

It is important to note that the above terminology is independent of the statis-

tical framework chosen to analyse the data. This is to be contrasted with the terms

ignorable and non-ignorable missingness. The latter terms depend crucially on the

inferential framework (Rubin 1976).

3.1.3 Ignorability

If one uses likelihood based estimation, ignorability can be defined. The full data

likelihood contribution for subject s assumes the form

L∗(θ|Xs,ys, rs) ∝ f(ys, rs|Xs, θ).

Since inference has to be based on what is observed, the full data likelihood L∗ has

to be replaced by the observed data likelihood L:

L(θ|Xs,y
o
s, rs) ∝ f(yos, rs|Xs, θ)
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with

f(yos, rs|Xs, θ) =
∫
f(ys, rs|Xs, θ)dyms

=
∫
f(yos,y

m
s |Xβ

s ,β)f(rs|yos,yms ,Xα
s ,α)dyms .

Under an MAR process, we obtain

f(yos, rs|Xs, θ) =
∫
f(yos,y

m
s |Xβ

s ,β)f(rs|yos,Xα
s ,α)dyms

= f(yos|Xβ
s ,β)f(rs|yos,Xα

s ,α), (3.8)

i.e., the likelihood factorizes into two components of the same functional form as the

general factorization (3.2) of the complete data. If further β and α are disjoint in

the sense that the parameter space of the full vector (β′,α′)′ is the product of the

individual parameter spaces then inference can be based on the marginal observed

data density only. This technical requirement is referred to as the separability

condition.

In conclusion, when the separability condition is satisfied, within the likelihood

framework , ignorability is equivalent to the union of MAR and MCAR. Hence, non-

ignorability and ‘informativeness’ are synonyms in this context. A formal derivation

is given in Rubin (1976), where it is also shown that the same requirements hold for

Bayesian inference, but that frequentist inference is ignorable only under MCAR.

Of course, ignorability is unhelpful when at least part of the scientific interest is

directed towards the missingness process.

Classical examples of the more stringent condition with frequentist methods

are ordinary least squares and the generalized estimating equations approach of

Liang and Zeger (1986). These GEE define an asymptotically unbiased estimator

only under MCAR. Robins, Rotnizky and Zhao (1995) have established that some

progress can be made under MAR and even under informative processes. Their

method is based on including weights that depend on the missingness probability,

proving the point that at least some information on the missingness mechanism

should be included and thus that ignorability does not hold.
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3.2 Approaches to Incomplete Data

Missing data nearly always entail problems for the practicing statistician. First,

inference will often be invalidated when the observed measurements do not constitute

a simple random subset of the complete set of measurements. Secondly, even when

correct inference would follow, it is not always an easy task to trick standard software

into operation on a ragged data structure.

Little and Rubin (1987) give an extensive treatment of methods to analyse in-

complete data, many of which are intended for continuous, normally distributed

data. Some of these methods were proposed more than fifty years ago. Examples

are Yates’ (1933) iterated ANOVA and Bartlett’s (1937) ANCOVA procedures to

analyse incomplete ANOVA designs. The former method is an early example of

the Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin 1977).

This EM-algorithm is discussed in Section 3.2.1.

The computationally simplest technique is a complete case analysis, in which the

analysis is restricted to the subjects for whom all intended measurements have been

observed. A complete case analysis is popular because it maps a ragged data matrix

into a rectangular one, by deleting incomplete cases. An alternative approach, with

a similar effect on the applicability of complete data software, is based on imputing

missing values. One distinguishes between single imputation and multiple imputa-

tion (Rubin 1987). In the first case, a single value is substituted for every ‘hole’

in the data set and the resulting data set is analysed as if it represented the true

complete data. Also in the multiple imputation technique, ’holes’ in the data set are

filled, but to account for the uncertainty in filling in missing values, the imputation

is done multiple times, and each time the complete data are analysed. The theory

of multiple imputation is explained in Section 3.2.2.

3.2.1 EM-algorithm

The EM algorithm consists of two components, the Expectation and Maximization

steps. Each step is completed once within each algorithm cycle. Cycles are repeated

until a suitable convergence criterion is satisfied. In the expectation step the un-
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observed (or missing) data are estimated by their expectations given the observed

data and current parameter values. In the maximization step the parameters are

estimated using maximum likelihood applied to the observed data augmented by

the estimates of the unobserved data. Effectively this maximizes, in each cycle, the

expectation of the complete data log likelihood E[logL(θ)] where the expectation is

taken with respect to the observed data and the current fitted values of θ. Dempster,

Laird and Rubin (1977) show that on convergence the fitted parameters are equal

to a local maximum of the likelihood function, which is the maximum likelihood

estimate in the case of a unique maximum.

Two of the main drawbacks of the EM algorithm are its typically very slow

rate of convergence and its lack of direct provision of a measure of precision for

the maximum likelihood estimates. Both problems are in fact related and several

proposals have been made to overcome them. We mention the technique suggested

by Louis (1982), the EM-aided differentation by Meilijson (1989), the “rate matrix”

method of Meng and Rubin (1991), and the linear transformation method of Baker

(1992). Standard errors and Wald statistics are computed directly from the observed

information and score tests are also relatively simple to compute.

We will use Meilijson’s (1989) proposal, which is based on the property that the

derivative of the complete data score vector coincides with the observed information

matrix. It leads to an easy numerical algorithm, using the classical finite differences

of the score vector to approximate the derivative. Let the constant that defines the

differences be ε. To compute the jth column of the information matrix, one changes

θ to θj, where all components remain the same, except for the jth one which is

changed to θj + ε. Then one E step is carried out, yielding Y (θj). Next, the score

vector Sj is computed. An approximation for the jth column is given by (Sj−S)/ε,

where S is the score vector at maximum. Replacing all quantities by their estimated

values yields a convenient algorithm.

3.2.2 Multiple Imputation

The theory of multiple imputation is presented in Rubin (1987). Several other

sources, such as Rubin and Schenker (1986), Little and Rubin (1987), Rubin (1996)
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and Schafer (1997), give an excellent account of the technique. As discussed by

Rubin and Schenker (1986), the theoretical justification for multiple imputation is

most easily understood using Bayesian methodology.

Suppose interest lies in estimating the vector β, containing the parameters of

interest. Rubin (1987) proposed using multiple imputation to “fill-in” the unob-

served components of the outcome vectors using the observed data and then use the

filled-in data to estimate β. His method also yields a variance estimator. In order

to be able to fill in values, we need the distribution of the missing data, given the

observed data and a parameter vector γ. Multiple imputation is most useful when

γ is an easily estimated set of parameters, while β is complicated to estimate in the

presence of missing data.

Recall that the observed data are Y o and the complete data are Y . Multiple

imputation uses Y o to fill in Y m, leading to the complete data Y = (Y o,Y m). If we

knew the distribution of Y m, with parameter vector γ, then we could impute Y m

by drawing from the conditional distribution f(Y m|Y o,γ). Since γ is unknown, we

estimate it from the data, yielding γ̂, and use the distribution f(Y m|Y o, γ̂). Because

γ̂ is a random variable, we must also take its variability into account in drawing

imputations. In Bayesian terms, γ is a random variable of which the distribution

depends on the data. So we first obtain the posterior distribution of γ from the

data, a distribution which is a function of γ̂.

After formulating the posterior distribution of γ, we use the following imputation

algorithm.

1. Draw γ∗ from the posterior distribution of γ, f(γ|X,Y o). We approximate

this posterior distribution by a normal.

2. Draw Y m from f(Y m|X,Y o,γ∗).

3. Use the completed data Y and the model to estimate the parameter of interest

β∗ and its variance Σ(β∗), called the within-imputation variance.

These three steps are repeated independently M times, resulting in β∗
m, Σ(β∗

m),

m = 1, . . . ,M .
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In case the data to be filled in are categorical, we use a uniform random number

generator in step 2 (see Rubin 1987, pp. 169-170). Suppose the count Z is to be

distributed over the cells Zc
k , k = 1, . . . , c. Then, the cumulative probabilities

λ0 = 0,

λk =

∑k
k′=1 ν

c
k′

ν
, k = 1, . . . , c

are calculated and Z draws Ut from a uniform U [0, 1] distribution are made. Next,

Zc
k is set equal to

∑
t(λk−1 < Ut ≤ λk).

Finally, we combine the estimates obtained after M imputations. The overall

estimated parameter vector is the mean of all individual estimates:

β∗ =
1

M

M∑

m=1

β∗
m.

The variance is obtained as a weighted sum of the within-imputation variance and

the between-imputations variance:

Σ∗ = W +
M + 1

M
B

where

W =
1

M

M∑

m=1

Σ(β∗
m),

the mean of the within-imputation variances, and

B =
1

M − 1

M∑

m=1

(β∗
m − β∗)(β∗

m − β∗)′,

the between-imputations variance (Rubin 1987). Based on these variances, one can

calculate approximate 95% confidence intervals. Finding an appropriate reference

distribution is not an easy matter. Rubin (1987) proposes a multivariate T distri-

bution. Shafer (1997, p. 113) suggests that the approximations by Li, Raghunathan

and Rubin (1991) work well in practice. Since in our case the number of imputations

will be large, we can certainly rely on the corresponding normal approximation.





Chapter 4

Protective Estimation

For multivariate Gaussian data, Brown (1990) constructs an estimator for the mean

and covariance parameters of the joint normal distribution. He assumes that the

missingness depends on the unobserved values, but not on the observed measure-

ments, a particular type of MNAR. He called this estimator a protective estimator.

Brown (1990) studies an example where measurements are made relatively far apart

in time, such that the influence of a previous measurement on nonresponse is negligi-

ble. He allows for the presence of all possible response patterns, but each subject is

measured at the first occasion. In Section 4.1, the protective estimator as introduced

by Brown is given.

In Section 4.2, we will consider repeated categorical measurements, where each

subject is observed at the first occasion, and missingness is due to attrition, ruling

out nonmonotone patterns. We have constructed a protective estimator in this set-

ting, which can be used both in a selection model, as well as in a pattern-mixture

modelling framework (Michiels and Molenberghs 1995, 1997). Estimation of mea-

surement parameters is possible, without explicitly modelling the dropout process.

It is well known (see e.g., Baker and Laird 1988) that specific problems arise with

non-random missingness models for categorical outcomes. One can be confronted

with non-unique, invalid, and/or boundary solutions. In contrast to Brown who

only gives necessary conditions for consistent solutions, we will derive a theorem

specifying necessary and sufficient conditions for a unique solution in the interior of

the parameter space. An intuitive and appealing interpretation of these conditions

29
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is given. An algorithm is presented which consists of the repeated calculation for a

bivariate outcome, with the first one always observed and the second one possibly

missing. This procedure circumvents working with intractible systems of equations.

A connection with direct likelihood estimation is given in Section 4.3, and a link with

pseudo-likelihood estimation is established in Section 4.4. Section 4.5 is devoted to

variance estimation. The precision estimates will be based on the delta method,

the EM algorithm, and on multiple imputation. The relative merits of these tech-

niques are discussed and they are contrasted with the results from likelihood and

pseudo-likelihood estimation. Finally, the method is illustrated with two examples

in Section 4.6.

4.1 The Protective Estimator for Gaussian Data

Brown (1990) introduced the protective estimator for normal data. He called it

protective because it is an estimator that retains its consistency over a wide range

of non-random missing data mechanisms.

Let Y be a T -dimensional random variable, following a multivariate normal dis-

tribution. Let R be a vector of the same dimension as Y , indicating the missingness.

So, Y st is the tth measure on the sth subject (s = 1, . . . , N ; t = 1, . . . , T ). Recall

that Rst = 1 if Y st is observed, and Rst = 0 if Y st is missing. The joint distribution

of Y and R is factorized in a selection modelling way as

f(y, r) = n(y; µ,Σ) ω(R = r|Y = y)

where n(.; .) is the normal density. There are nearly no conditions on ω, because

little is generally known about the missing data mechanism. A GCM (Generalized

Censoring Mechanism) is defined as

ω(R = (r1, . . . , rT )′|Y = (y1, . . . , yT )′) =
T∏

t=1

ht(rt|yt)

where ht(t = 1, . . . , T ) are functions bounded between 0 and 1, but without further

restrictions.

Under GCM, missingness on each variable depends on that variable alone. Be-

cause one usually assumes the first variable to be observed for every subject, we set
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h1 constant. For the other ht, we know nothing about the form or the conditions

we have to put on them.

To obtain estimators for the unknown parameters in the model, Brown uses

statistics whose distributions do not depend on the mechanism. It can be proven

that this method leads to consistent estimators. To explain the method, we will

restrict attention to the case with T = 3. Generalization to higher dimensions is

straightforward.

The first two moments of Y1 can be estimated independently from the missing

data mechanism, because the first measurement is observed for all subjects. This

leads to estimators for µ1 and σ11. Furthermore, the distributions of Y1|(Y2;R2 = 1),

Y1|(Y3;R3 = 1), and Y1|(Y2, Y3;R2 = 1, R3 = 1) do not depend on ω (e.g.,

f(y1|(y2; r2 = 1)) = n(y1|y2; β), where β are measurement parameters, i.e., func-

tions of (µ,Σ)). This leads to the following statistics, which are independent of the

mechanism: µ1 − σ11

σ22
µ2 ; σ12

σ22
; σ11.2(= σ11 − σ2

12

σ22
).

Under the mild assumption that neither σ12 nor σ13 equal zero, these statistics

lead, using some algebra, to µ2, σ12, σ22, µ3, σ13 and σ33. If one furthermore calculates

the partial regression coefficients to predict Y1:

β12.3 =
σ12σ33 − σ13σ23

σ22σ33 − σ2
23

and

β13.2 =
−σ12σ23 + σ13σ22

σ22σ33 − σ2
23

,

the only statistic not yet estimated is given as:

σ23 =





−β13.2σ12σ33−β12.3σ13σ22

β12.3σ12−β13.2σ13
if ρ2

12 6= ρ2
13

σ12σ33

σ13
if ρ2

12 = ρ2
13 6= 0 and β12.3 = 0

±√
σ22σ33(

√
σ11

σ22

ρ12
β12.3

− 1) if ρ12 = ±ρ13 and β12.3 6= 0

The next step is to estimate all these statistics, by using the observed data. In

the following, the superscripts will indicate whether a measurement is observed (1),

missing (0), or marginalized (.). Then the estimates for all the statistics we need
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are:

µ̂1 = Ȳ1
(1..)

σ̂11 = s
(1..)
11

µ̂2 =
Ȳ1

(1..) − Ȳ1
(11.)

b
(11.)
12

+ Ȳ2
(11.)

σ̂22 =
σ̂11 − s

(11.)
11.2

(b
(11.)
12 )2

σ̂12 = b
(11.)
12 σ̂22

µ̂3 =
Ȳ1

(1..) − Ȳ1
(1.1)

b
(1.1)
13

+ Ȳ3
(1.1)

σ̂33 =
σ̂11 − s

(1.1)
11.3

(b
(1.1)
13 )2

σ̂13 = b
(1.1)
13 σ̂33

We obtain σ̂23 by minimizing a residual variance expression for Y1|Y2, Y3 in terms

of already calculated estimates: define

M1.23(y2, y3; σ
∗
23) = µ̂1 +

σ̂12σ̂33 − σ̂13σ
∗
23

σ̂22σ̂33 − (σ∗
23)

2
(y2 − µ̂2) +

σ̂13σ̂22 − σ̂12σ
∗
23

σ̂22σ̂33 − (σ∗
23)

2
(y3 − µ̂3)

Then, σ̂23 is that value of σ∗
23 that minimizes

∑

s:rs1=rs2=rs3=1

(ys1 −M1.23(ys2, ys3; σ
∗
23))

2

One can use the steepest descent method to minimize this expression, starting from

the sample covariance based on cases where Y2 and Y3 are both observed.

Brown also gives necessary conditions to have consistent estimators. In general,

these conditions are: ∀t : ρ1t 6= 0 and P (Yt is observed) > 0. Notice that these

conditions are not sufficient.

A drawback of this method is that all missingness patterns (with the first variable

observed) are needed to obtain the necessar estimates. If one has a study with

dropout only, no complete solution can be found using the protective estimator for

normal data.
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4.2 The Protective Estimator for Categorical Data

A class of protective estimators for repeated categorical data will be presented next.

In contrast to the protective estimator for normal data, in the case of categorical

data we have to restrict to dropout to find unique estimates. We will use the notation

for categorical data, introduced in Section 3.1.1. Since we do not use covariates in

this chapter, and since missingness is restricted to dropout (indicating the time of

last observation), the (intended) data, grouped in a contingency table, are Zc
d,k1...kT

,

with multinomial cell probabilities

νcd,k1...kT
= P (Ds = d, Ys1 = k1, . . . , YsT = kT ). (4.1)

Since the same variables are recorded at different times, the outcomes Yst can

take on the same number of levels for all times, denoted by r.

We will use the following simplified notation for the selection model and the

pattern-mixture model:

νcd,k1...kT
= µck1...kT

φcd|k1...kT
(4.2)

νcd,k1...kT
= φcd µ

c
k1...kT |d. (4.3)

Since we only observed the first d measures, the observed data are Zd,k1...kd
. So we

can estimate the probabilities

µck1...kd |d
, (4.4)

directly from the data, as well as derived marginal and conditional probabilities.

These probabilities are of a pattern-mixture nature and correspond to a “partial

classification” of Model (4.3). The aim is to construct the cell probabilities µck1...kT
,

when a selection model is thought appropriate, or µck1...kT |d for pattern-mixture mod-

els.

A main assumption for protective estimation is that dropout (possibly) depends

on the unobserved outcome, but not on the (previously) observed outcomes. The

method used to estimate all the probabilities needed, is based on statistics that are
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independent of the missing data mechanism. Factorize the probability νc(D≥d),k1k2...kt

first as

νc(D≥d),k1k2...kt
= νc(D≥d),k2...kt

νck1|k2...kt;(D≥d) (4.5)

and alternatively as

νc(D≥d),k1k2...kt
= µck1k2...kt

φc(D≥d)|k1k2...kt

= µck1k2...kt
φc(D≥d)|k2...kt

= νc(D≥d),k2...kt
νck1|k2...kt

, (4.6)

where we assume, as Brown did, that the first variable is always observed, and hence

dropout does not depend on its value. Equating (4.5) and (4.6) yields

νck1|k2...kt;(D≥d) = νck1|k2...kt
. (4.7)

Choosing t = d, the left hand side of (4.7) contains the probabilities directly observed

through the patterns for which at least d measurements are available; they can be

written as µk1|k2...kd
. The right hand side contains the complete data measurement

probabilities, marginalized over all dropout patterns, i.e., µck1|k2...kd
, and hence (4.7)

can be rewritten as µck1|k2...kd
= µk1|k2...kd

. This result means that the conditional

probability of the first outcome, given the outcomes on the d − 1 measures that

follow can be estimated directly through the observed data.

Let us summarize the relevant quantities that are directly available from the data.

First, table d yields µck1...kd |d
. Secondly, tables d through T provide the conditional

probabilities

µck1|k2...kd
. (4.8)

In particular, all tables contribute to µck1 , whereas only the last table contributes to

µck1|k2...kT
. The next step is the computation of µck1...kd

, for all d. Denote by µk1...kd

the directly observed cell probabilities, estimated from tables d through T .

For d = 1, µck1 follows from the data. Let us first consider the construction

of µck1k2. Recall that neither the observed µk1k2 , nor the µk1k2|d for d ≥ 2 are of
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direct use; they only contribute through (4.8) by estimating µck1|k2 . Then, µck1k2 is

determined by solving the system of equations

r∑

k2=1

µck1|k2µ
c
k2

= µck1 , k1 = 1, . . . r, (4.9)

where µck1|k2 act as coefficients and µck2 as unknowns. Solving this system yields

µck2 , whereafter µck1k2 is obtained by a simple multiplication. Writing (4.9) as

M1|2M2 = M1, it clearly follows that a unique solution can be found if and only if

the determinant of the matrix M1|2 is nonzero. This is equivalent with det(M12) =

det(µk1k2) 6= 0. Further, in order to obtain a valid solution, one has to guarantee

that all components of M2 are nonnegative. Necessary and sufficient conditions are

given in Theorem 1.

We now proceed by induction. Suppose that we have constructed all marginal

probabilities, up to order d − 1. We will construct µck1...kd
. For a fixed multi-index

(k2, . . . , kd−1), consider the system of equations

r∑

kd=1

µck1|k2...kd
µckd |k2...kd−1

= µck1|k2...kd−1
, k1 = 1, . . . r. (4.10)

Solving this system yields µckd |k2...kd−1
and hence µck1kd |k2...kd−1

, resulting in

µck1k2...kd−1kd
= µck1k2...kd−1

µck1kd|k2...kd−1

µck1|k2...kd−1

; (4.11)

all quantities on the right hand side being determined. Writing (4.10) as

M
(k2...kd−1)
1|d M

(k2...kd−1)
d = M

(k2...kd−1)
1 , (4.12)

we obtain a family of systems of equations, one for each combination (k2, . . . , kd−1).

Each one of these systems is exactly of the form (4.9). We now state the conditions

for a valid solution.

Theorem 1 The System of Equations (4.10) has a unique, valid (i.e., nonnegative)

solution if and only if

1. det(µk1...kd
) 6= 0, for k2, . . . , kd−1 fixed;

2. the column vector M
(k2...kd−1)
1 = (µk1|k2...kd−1

)k1 is an element of the convex hull

of the r column vectors, indexed by kd,
(
(µk1|kd ;k2...kd−1

)k1
)
.
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Note that the vectors
(
(µk1|kd ;k2...kd−1

)k1
)

are the columns of M
(k2...kd−1)
1|d . By requiring

that this theorem holds for all d = 2, . . . T and for all 1 ≤ k2, . . . , kd−1 ≤ r, one

ensures the existence of an overall solution.

Proof of Theorem 1

Clearly, the matrix equation has a unique root if and only if detM
(k2...kd−1)
1|d 6= 0,

where only k1 and kd are free indexes. Whether or not this determinant is zero is

not altered by multiplying each column of the matrix with µkd |k1...kd−1
. Equivalently,

one can construct the determinant of the two-way table, obtained from the observed

probabilities µk1...kd
by keeping k2, . . . , kd−1 fixed.

We need to establish that the solution is nonnegative if and only if the column

on the right hand side is an element of the convex hull of the columns of the matrix

M
(k2...kd−1)
1|d . However, the convex hull is formed by all elements for which there exists

a linear combination of which all coefficients are in the unit interval and summing

to 1, i.e., a vector of probabilities. �

These conditions can be interpreted as follows. The model implies that the

column distributions in both tables are the same, as indicated by (4.7). Therefore,

the single column we observe on the right hand side of (4.10) must be a convex

linear combination of the set of column distributions we observe on the left hand

side. An interesting consequence is that a negative solution points to a violation

of the assumptions: the data can contradict the model, even without applying a

model checking procedure. A nonzero determinant is equivalent to a set of column

distributions which is of full rank. We could call this condition the “full association”

condition. It is worthwile to observe that in the case of binary outcomes (r = 2)

these conditions reduce to: (1) the odds ratio of the table on the left hand side is

different from 1, (2) the (marginal) odds of the only column on the right hand side

lies in the interval bounded by the two (conditional) odds of the columns on the

left hand side. For the binary case, these conditions were spelled out by Baker and

Laird (1988, p.67).

The algorithm presented here is not the only method to find the cell probabil-

ities. By requiring that the cell probabilities µck1...kT
sum to one and have (4.8)
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as conditionals, one is able to construct a single system of rT equations in rT un-

knowns. Although appealing at first sight, the procedure advocated in this section

has several important advantages. First, a potentially complex procedure is broken

into a sequence of simple, identical procedures, for which the validity requirements

are readily verified. No large matrices have to be inverted. If the method yields

a non-valid solution, one can at least compute the estimator for a subset of the

outcomes, e.g., the first t − 1 outcomes, when the first problem occurs at variable

t. By removing the “problematic” variables, one can compute the estimator for a

maximal subset.

4.3 Likelihood Estimation

The protective estimator for two measurements can also be derived through like-

lihood estimation, by considering a saturated measurement model and a dropout

model which only depends on the unobserved outcome, i.e., the likelihood based on

the factorization νcd,k1k2 = µck1k2 φ
c
d|k2

. This model saturates the degrees of freedom,

available in the data. Maximizing the likelihood

L ∝
∏

k1,k2

(µck1k2 φ
c
2|k2

)z2,k1k2

∏

k1

(µck11 φ
c
1|1 + µck12 φ

c
1|2)

z1,k1 (4.13)

yields the protective estimator which is also equal to the estimator for the model

(Y1Y2, Y2R), discussed in Baker and Laird (1988; see also their Equation 2.1). The

likelihood estimator is seemingly attractive in allowing for flexible dependence on

outcomes and covariates, but explicit and often untestable assumptions about the

dropout process have to be made. The protective estimator leaves the dropout

model unspecified (non-parametric) and thus uses less degrees of freedom.
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An explicit solution to (4.13) can be derived:

µ̂c11 =
z2,11

z+,++

(
(z1,1 + z2,11)z2,22 − (z1,2 + z2,21)z2,12

z2,11z2,22 − z2,12z2,21

)
,

µ̂c12 =
z2,12

z+,++

(
(z1,2 + z2,22)z2,11 − (z1,1 + z2,12)z2,21

z2,11z2,22 − z2,12z2,21

)
,

µ̂c21 =
z2,21

z+,++

(
(z1,1 + z2,11)z2,22 − (z1,2 + z2,21)z2,12

z2,11z2,22 − z2,12z2,21

)
,

µ̂c22 =
z2,22

z+,++

(
(z1,2 + z2,22)z2,11 − (z1,1 + z2,12)z2,21

z2,11z2,22 − z2,12z2,21

)
,

φ̂c2|1 =
z2,11z2,22 − z2,12z2,21

(z1,1 + z2,11)z2,22 − (z1,2 + z2,21)z2,12
,

φ̂c2|2 =
z2,11z2,22 − z2,12z2,21

(z1,2 + z2,22)z2,11 − (z1,1 + z2,12)z2,21
.

The first four estimates are identical to the protective estimator. Therefore, studying

likelihood (4.13) can shed some light on situations where boundary restrictions are

violated. Table 4.1 presents four artificial sets of data. The first one satisfies the

protective assumptions as the odds in the incomplete table are 1, well between 0.5

and 2. Table 4.1 (b) presents data on the boundary, whereas the data in Table 4.1 (c)

violate the protective assumption. Finally, Table 4.1 (d) is included to discuss model

fit. Parameter estimates and standard errors are presented in the first column of

Table 4.2.

In all four cases, parameter estimates coincide with those found by the protec-

tive estimator (third column). For the data in Table 4.1 (b) we estimate φ̂2|2 = 1.0,

implying that no observations from the second column drop out. In the third ex-

ample, the violation of the restrictions shows in the estimate for φ2|2. Note that the

cell probabilities give no direct hint on parameter space violations. However, the

probabilities predicted for the incomplete table are µ1,11 = 0.8333, µ1,12 = −0.0833,

µ1,21 = 0.4167, µ1,22 = −0.1667. The latter probabilities are found with a pattern-

mixture formulation of the protective estimator. The log-likelihood is −423.94.

To avoid parameter space violations, one can reparametrize the probabilities as
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Table 4.1: Four Sets of Artificial Data. Each time a contingency table for the com-

pleters (Y1 = 1/2, Y2 = 1/2), and an additional contingency table for the dropouts

(Y1 = 1/2) is given.

(a) 50 25

25 50

25

25

(b) 50 25

25 50

50

25

(c) 50 25

25 50

75

25

(d) 80 10

40 20

60

90

follows:

µck1k2 = exp [α1(k1 − 1) + α2(k2 − 1) + α3(k1 − 1)(k2 − 1) −A(α1, α2, α3)]

(4.14)

where A(α1, α2, α3) is a normalizing constant, and

φ2|k2 =
exp(γk2)

1 + exp(γk2)
. (4.15)

In this case, the parameters corresponding to the data in Table 4.1 (b) are

α1 = 0.6932, α2 = 0, α3 = 1.3863, γ1 = 0, and γ2 approaches infinity. The

log-likelihood at maximum is −390.40, independent of whether the untransformed

or transformed likelihoods are used.

When we switch to Table 4.1 (c) and again adopt parametrization (4.14) and

(4.15), the log-likelihood at maximum becomes −424.66, obtained for parameters
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Table 4.2: Parameter Estimates (Standard Errors) for the Artificial Data from Ta-

ble 4.1. Methods of Estimation Are: Likelihood (Untransformed and Transformed),

Protective Estimation With Delta Method, EM Algorithm, and Multiple Imputa-

tion.

Likelihood Protective

Data Par. Untr. Transf. Delta EM MI

(a) µ11 0.33(0.05) 0.33(0.05) 0.33(0.06) 0.33(0.05) 0.33(0.05)

µ12 0.17(0.04) 0.17(0.04) 0.17(0.04) 0.17(0.05) 0.17(0.04)

µ21 0.17(0.04) 0.17(0.04) 0.17(0.04) 0.17(0.04) 0.17(0.04)

µ22 0.33(0.05) 0.33(0.05) 0.33(0.06) 0.33(0.05) 0.33(0.05)

φ2|1 0.75(0.10) 0.75 0.75(0.10)

φ2|2 0.75(0.10) 0.75 0.75(0.10)

(b) µ11 0.44(0.04) 0.44(0.04) 0.44(0.06) 0.44(0.04) 0.43(0.04)

µ12 0.11(0.03) 0.11(0.02) 0.11(0.04) 0.11(0.04) 0.12(0.03)

µ21 0.22(0.06) 0.22(0.03) 0.22(0.03) 0.22(0.06) 0.21(0.04)

µ22 0.22(0.06) 0.22(0.03) 0.22(0.05) 0.22(0.06) 0.24(0.04)

φ2|1 0.50(0.07) 0.50 0.50(0.07)

φ2|2 1.00(0.23) 1.00 1.00(0.23)

(c) µ11 0.53(0.04) 0.50(0.03) 0.53(0.05) 0.53(0.04) 0.50(0.03)

µ12 0.07(0.03) 0.10(0.02) 0.07(0.05) 0.07(0.03) 0.10(0.02)

µ21 0.27(0.07) 0.20(0.02) 0.27(0.02) 0.27(0.07) 0.20(0.03)

µ22 0.13(0.07) 0.20(0.02) 0.13(0.03) 0.13(0.07) 0.20(0.03)

φ2|1 0.38(0.06) 0.43 0.38(0.06)

φ2|2 1.50(0.47) 1.00 1.50(0.75)

(d) µ11 0.33(0.08) 0.33(0.08) 0.33(0.03) 0.33(0.08) 0.33(0.06)

µ12 0.17(0.08) 0.17(0.08) 0.17(0.03) 0.17(0.08) 0.17(0.06)

µ21 0.17(0.05) 0.17(0.05) 0.17(0.05) 0.17(0.05) 0.17(0.04)

µ22 0.33(0.05) 0.33(0.05) 0.33(0.05) 0.33(0.05) 0.33(0.04)

φ2|1 0.80(0.19) 0.80 0.80(0.19)

φ2|2 0.20(0.06) 0.20 0.20(0.06)
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α1 = 0.6932, α2 = 0, α3 = 1.6095, γ1 = −0.2777, while γ2 approaches infinity.

These values correspond to dropout probabilities φ2|1 = 0.4286 and φ2|2 = 1.000.

This is a slight decrease of the log-likelihood, but all estimated probabilities are

valid. Corresponding marginal probabilities are given in the second column of Ta-

ble 4.2. They are further divided over completers: νc2,11 = 0.2143, νc2,12 = 0.1000,

νc2,21 = 0.0857, νc2,22 = 0.2000, and incomplete observations: νc1,11 = 0.2857,

νc1,12 = 0.0000, νc1,21 = 0.1143, and νc1,22 = 0.0000. A boundary solution is obtained,

where all marginal probabilities are as observed, but the association as observed for

the completers differs from the estimated association (consider e.g., the odds ratio).

The differences in standard errors are discussed in Section 4.5.

Table 4.1 (d) is generated by first assuming that Z11 = Z22 = 100 and

Z12 = Z21 = 50 and also that φ2|1 = 0.8 and φ2|2 = 0.2. This implies that the

completers’ table is as in Table 4.1 (d), that the dropouts’ full data are Z1,11 = 20,

Z1,12 = 40, Z1,21 = 10, Z1,22 = 80 and thus that the supplemental margin consists

of the counts 60 and 90, as shown in Table 4.1 (d). Fitting a protective model to

those data with all five methods yields exactly the same estimates. When these pa-

rameter estimates are used to construct fitted frequencies, then Z1,jk and Z2,jk (j,k

= 1,2) are recovered. The log-likelihood at maximum is -479.43. As an alternative

to maximizing likelihood (4.13) let us turn to the MAR likelihood

L ∝
∏

k1,k2

(µck1k2 φ
c
2|k1

)z2,k1k2

∏

k1

(µck11 φ
c
1|k1

+ µck12 φ
c
1|k1

)z1,k1

∝
∏

k1,k2

(µck1k2)
z2,k1k2

∏

k1

(µck1+)z1,k1

∏

k1

(φc2|k1)
z2,k1+

∏

k1

(φc1|k1)
z1,k1+ .

Then, the fitted probabilities (with standard errors) are µ̂11 = 0.44(0.03),

µ̂12 = 0.06(0.02), µ̂21 = 0.33(0.04) and µ̂22 = 0.17(0.03). The dropout probabil-

ities are φ̂2|k1=1 = 0.60(0.04) and φ̂2|k1=2 = 0.40(0.04). While the completers’ table

is recovered, the filled-in dropout table is estimated to be Ẑ1,11 = 53.33, Ẑ1,12 = 6.67,

Ẑ1,21 = 60.00 and Ẑ1,22 = 30.00, entirely different from the true underlying struc-

ture. However, the value of the maximized log-likelihood is still -479.43. This points

to a general problem with missing data: it is often impossible or at least very diffi-

cult to establish superiority of one dropout model over another, based on statistical

considerations alone. Indeed, whereas the MAR and protective models both fit the
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observed data perfectly, they yield entirely different predictors for the underlying

dropout table. Arguably, background and/or covariate information should be used

to support the model builder’s task.

4.4 Pseudo-Likelihood Estimation

While it is not straightforward to generalize the likelihood method, discussed in

the previous section, to more than 2 measurement occasions, one can proceed al-

ternatively by means of pseudo-likelihood estimation (Arnold and Strauss 1988).

Pseudo-likelihood has been used in the context of spatial data by Cressie (1991) and

for correlated binary data by Le Cessie and Van Houwelingen (1994).

Let us concentrate on three measurement occasions. The protective estimator

first determines µck1k2 and then µck1k3|k2. Each of these steps can be handled by means

of likelihood (4.13). This leads naturally to a new expression

L∗ ∝

 ∏

k1,k2

(µck1k2 φ
c
2|k2

)zk1k2

∏

k1

(
∑

k2

µck1k2 φ
c
1|k2

)zk1


 .

∏

k2


 ∏

k1,k3

(µck1k3|k2 φ
(k2)c
2|k3

)zk1k3|k2

∏

k1

(
∑

k3

µck1k3|k2 φ
(k2)c
1|k3

)zk1|k2


 (4.16)

which is merely the product of three components. All counts used in (4.16) are

based on the maximal amount of information, except for zk1, which is calculated

using the subjects being observed at the first time point only. This is clearly not a

likelihood since the factors are incorrectly assumed to be independent.

While the point estimator is consistent, one has to be careful with estimating

the precision (Arnold and Strauss 1988, Geys, Molenberghs and Ryan 1997). In

particular, let

λ = {µck1k2, µck1k3|k2, φc1|k2, φc2|k2, φ
(k2)c
1|k3

, φ
(k2)c
2|k3

; for all k1, k2, k3}

and

l(λ) =
N∑

i=1

li(λ) = ln(L∗(λ))

where li(λ) is the contribution of subject i to the log pseudo-likelihood and N is

the total sample size. Then,
√
N (λ̂ − λ) converges in distribution to the normal



Section 4.5 : Variance Estimation 43

distribution N(0,J(λ)−1K(λ)J(λ)−1) where

J(λ) = E

(
∂2l(λ)

∂λ∂λ′

)

and

K(λ) =
N∑

i=1

E

(
∂li(λ)

∂λ
(
∂li(λ)

∂λ
)′
)
.

This result is very close in spirit to the sandwich estimator, known from generalized

estimating equations (Liang and Zeger 1986). It yields an asymptotic measure of

precision for µck1k2 and µck1k3|k2 from which the precision for µck1k2k3 easily follows

using a standard delta method argument. Precision for the dropout probabilities is

also available. The method will be contrasted with different methods for variance

calculation for the protective estimator, described in the next section.

4.5 Variance Estimation

In order to complete the protective estimation procedure, we have to compute an

estimate of the variance. Whereas estimating the variance under an MAR mech-

anism is fairly straightforward (Little and Rubin 1987), it is much more involved

under non-random nonresponse. In our case, we are restricted by the fact that the

dropout parameters are not estimated. Brown (1990) does not outline a way to

estimate the variance of the parameters. We will discuss three procedures. The first

one is based on the delta method (see e.g., Agresti 1990). The second one uses EM

aided differentiation (see Section 3.2.1). The final technique makes use of multiple

imputation (see Section 3.2.2). At the end of this section, the artificial examples

considered in Section 4.3 will be revisited.

4.5.1 Delta Method

Throughout, the superscripts c will be dropped from the probabilities. Write (4.12)

as M1|dMd = M1. As M1 and M1|d are directly observed from the data, their

covariance matrices are immediate. Let V (.) indicate the covariance function. First,

M1, the vector of probabilities µk1 , has multinomial covariance matrix

V (M1) =
1

n1
(diag(M1) −M1M

′
1), (4.17)
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n1 indicating the sample size. In order to conveniently work with the matrix M1|d,

a matrix of which the columns represent independent multinomial distributions, we

introduce some extra notation. The components are µk1|kd
, while column kd (corre-

sponding to the kdth conditional distribution) is denoted by µ.|kd
. The covariance

matrix V (M1|d) is block diagonal with blocks

V (M1|d)(kd) =
1

n1|kd

((diag(µ.|kd
) − µ.|kd

µ′
.|kd

). (4.18)

It is convenient to write the components of M1 as µk1|0. Similarly, µ.|0 is defined.

Then (4.18) encompasses (4.17) by letting kd = 0, 1, . . . , r. Thus, in the remainder,

kd will be allowed to assume the value 0 also, which should be read as “uncondi-

tional”. From these covariance matrices and the observation that Md = M−1
1|dM1, the

covariance V (Md) is obtained by applying the delta method. Note that Md is a vec-

tor valued function, of which the arguments are a nonredundant set of components

of M1 and M1|d. The redundancies are given by the following identities:

gkd
=

r∑

k1=1

µk1|kd
− 1 = 0, kd = 0, 1, . . . , r. (4.19)

A possible nonredundant set is given by the first r−1 components of each probability

vector. Let us denote these sets by M̃1 and M̃1|d, with similar notation for the vectors

µ̃.|kd
. Grouping the vectors µ̃.|kd

into a vector T and the remaining µr|kd
into Y , we

can express the total derivative of Md w.r.t. T as

dMd

dT
=
∂Md

∂T
− ∂Md

∂Y

(
∂G

∂Y

)−1
∂G

∂T

where G is the set of functions, described by (4.19). It follows immediately that

∂G

∂Y
= Ir+1,

∂G

∂T
= Ir+1 ⊗ 11,r−1,

∂Md

∂M1
= M−1

1|d ,

∂Md

∂µk1|kd

= −M−1
1|dEk1kd

Md, k1, kd = 1, . . . , r,

where Ek1kd
is a zero matrix, except for a single 1 in entry (k1, kd). Using these

expressions, we obtain

Φ =
dMd

dT
= (Φ1,−M−1

1|dΦ2)
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where Φ1 is an r×(r−1) matrix of which the columns are ξ.|kd
−ξ.|r (kd = 1, . . . , r−1),

ξ.|kd
are the columns of M−1

1|d , and Φ2 = (Φ21, . . . ,Φ2r) with

Φ2kd
=




µkd
Ir−1

−µkd
11,r−1


 .

Finally, V (Md) = ΦWΦ′, with

W = cov(T ) =




V (M̃1) V1,1|d

V ′
1,1|d V (M̃1|d)



.

The matrix V (M̃1) is found from V (M1) by omitting the last row and column. Re-

placing µ.|kd
by µ̃.|kd

in (4.18) yields V (M̃1|d). Finally, V1,1|d describes the covariance

function of M1 and M1|d. A typical element is

cov(µk1 , µk′1|kd
) =

1

n12
µk′

1
|kd

(δk1k′1 − µk1),

k1, k
′
1 = 1, . . . , r − 1; kd = 1, . . . , r, with n12 the number of subjects, observed at

both occasions.

With similar computations, the covariance matrix of M1d (with this matrix ap-

propriately vectorized) is found to be

V (vec(M1d)) = Φ3V (µ̃.|kd
)Φ′

3 + bdiagrkd=1(Φ2kd
V (µ̃.|kd

)Φ′
2kd

)

with Φ3 given by

Φ3 =




µ.|1

µ.|2
. . .

µ.|r−1

−µ.|r . . . −µ.|r




.

The notation “bdiag” stands for a block diagonal matrix with blocks given by the

indexed argument.
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Probabilities of the form µck1...kd
can be written as a product of probabilities that

have been determined:

µck1...kd
= µck1kd |k2...kd−1

d−1∏

t=2

µckt |k2...kt−1
. (4.20)

Deriving a variance estimator from this expression is straightforward. One only

has to take into account that in each matrix (set of probabilities) a sum constraint

applies. This fact needs to be discounted in computing the derivatives.

4.5.2 EM Aided Differentiation

The computations based on the delta method are certainly involved, due to the

fact that a linear system of equations needs to be solved. We will show that a

computational scheme, based on the EM algorithm (see Section 3.2.1), is useful to

circumvent this step. The price to pay is that, although the dropout parameters are

not necessary for estimating the model parameters, they are required for variance

estimation. Suppose we want to estimate µck1kd |k2...kd−1
. Without loss of generality,

we will describe the algorithm for µk1k2 (setting d = 2 and dropping the superscript).

Information is based on two tables: those observed at both occasions, summarized

in table Z2,k1k2 and those observed at the first occasion only: Z1,k1.

Choosing starting values µ
(0)
k1k2

, one iterates between the E step and the M step

until convergence. The E step first calculates probabilities µ
(t)
k1|k2

, given µ
(t)
k1k2

. To-

gether with the probabilities µ1,k1, directly computed from the incomplete table

Z1,k1 , the probabilities µ
(t)
1,k1k2

are found by solving

r∑

k2=1

µ
(t)
k1|k2

µ
(t)
1,k2

= µ1,k1, (4.21)

and hence µ
(t)
1,k1k2

= µ
(t)
1,k2

µ
(t)
k1|k2

. From these probabilities and the observed data Z1,k1

the expected counts in the completed table Z
(t)
1,k1k2

are readily found. Note that the

dropout probabilities are implicitly determined since

φ2|k1k2 = φ2|k2 =
µ2,k1k2

µk1k2
.
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The M step merely sums over both tables Z
(t)
k1k2

= Z
(t)
1,k1k2

+Z2,k1k2 and determines

an update for the probabilities:

µ
(t+1)
k1k2

=
Z

(t)
k1k2

Z++
. (4.22)

Observe the strong connection with the likelihood approach. Indeed, expression

(4.22) maximizes the complete data log-likelihood

`(t) =
∑

k1,k2

Z
(t)
k1k2

ln(µ
(t+1)
k1k2

). (4.23)

An important advantage of this technique is that log-likelihood (4.23) can be re-

placed by another one, such as the independence log-likelihood, thereby opening

perspectives of modelling the effect of predictor variables. This is feasible without

distorting the protective restrictions as they are used only in the E step.

To calculate the variance, we will use the method proposed by Meilijson (1989)

(see Section 3.2.1). Suppose we define β to be a nonredundant set of µk1k2. In the

E step the only probabilities used are µ1,k1 and µ1,k1k2(βi). The former are fixed, the

latter change as they depend on the small perturbations of the parameter vector.

This implies that the dropout probabilities are implicitly changed, whereas they are

a formal part of the parameter vector, and should remain fixed. A simple solution

is to compute the dropout probabilities and consider them as a formal part of the

parameter vector:

φ2|k2 =
Z2,k1k2

Zk1k2
, (4.24)

with the complete data cell counts evaluated at the maximum. The right hand side

of (4.24) is independent of k1 due to the protective assumption.

The corresponding E step will be based on µ1,k1(βi) and µ2,k1k2(βi) and hence

the correct information matrix is obtained. There is another reason for the use of

the φ parameters. Because the covariance between the µ and the φ parameters

is in general not zero, unless one assumes MAR, the correct covariance matrix is

obtained only if it is based on the full information for both µ and φ.

In conclusion, the EM algorithm is a simple method to compute parameter es-

timates and their variances, but two major criticism apply. First, the estimates
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can easily be determined using the methods of Section 4.2, making the technique

redundant for parameter estimation. Secondly, for variance estimation, estimation

of dropout probabilities is required, thereby weakening the advantage of protective

estimation. An important advantage of the method is that it can be used to calcu-

late a variance estimator for general T dimensional outcome vectors. In order to do

so, the EM computations can be used to replace the variance computations for all

r × r tables that occur, whereafter a delta method argument is applied to combine

these variances into a variance for the multivariate cell probabilities.

4.5.3 Multiple Imputation

We will present the method of multiple imputation (see Section 3.2.2) for only two

variables. Generalization is discussed at the end of this section.

Our interest lies in estimating the parameter vector β, containing a nonredun-

dant subset of µck1k2 . The set of easily estimable parameters γ includes µ1,k1 and the

conditional probabilities µk1|k2 , determined from µ2,k1k2 .

Using a normal posterior distribution for θ, the algorithm for‘ ‘filling-in’ the data

is:

1. Draw γ∗ from the posterior distribution of γ. This yields µ∗
k1|k2

and µ∗
1,k1

,

which are easily transformed to µ∗
1,k1k2

using the algorithm of Section 4.2.

2. Draw Z∗
1,k1k2

from f(Z1,k1k2 |Z1,k1,γ
∗). As discussed in Section 3.2.2, this is

easily realized using a uniform random generator.

3. Calculate the estimate of the parameter of interest, and its estimated variance,

using the completed data:

µ̂k1k2 =
Z∗

1,k1k2
+ Z2,k1k2

Z+,++
,

U = V̂ar(β̂) =
1

Z+,++

(
diag(µ̂) − µ̂µ̂′

)
.

Repeating the previous three steps M times, and combining these results as in

Section 3.2.2, the parameters and variances of interest are found.
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The method described above can easily be generalized to T dimensional contin-

gency tables. Two obvious methods are: (1) use multiple imputation to estimate the

variance of each two-way table, occuring in the computational method outlined in

Section 4.2; combine the variance estimators into an estimator for the T dimensional

table using e.g., the delta method (similar to the extension suggested in previous sec-

tion); (2) use multiple imputation to complete all partial tables into T dimensional

contingency tables.

Note that, although some of the draws may yield negative µ∗
1,k1k2

, this does not

imply that the procedure breaks down. It merely means that the corresponding

table Z∗
1,k1k2

will contain structural zeros. Further, a variance estimate is obtained

without having to estimate the dropout probabilities, which is closer in spirit to

protective estimation than the EM algorithm. This reduction in parameters to be

estimated may result in a more efficient variance estimator. Assuming that γ is

normally distributed is only an approximation, which may result in a bias for small

samples (see Section 3.2.2).

4.5.4 Illustration

To illustrate the use of the three protective (variance) estimation procedures, con-

sider the data of Table 4.1. Parameter estimates and standard errors are shown

in Table 4.2. In all four cases, the EM based estimator coincides exactly with

the likelihood estimator. A disadvantage is that likewise negative probabilities are

found. Two solutions to this problem can be proposed. First, one can use a different

(parametrization of the) likelihood in the M step. A second solution is to enforce

restrictions in the E step. When the conditions of Theorem 1 are not satisfied, the

probabilities found from (4.21) are invalid and have to be replaced by the appro-

priate boundary solution. Applying this technique to Table 4.1 (c) yields exactly

the same solution as found with the transformed likelihood. We have omitted it

from Table 4.2. A further disadvantage is that the dropout probabilities need to be

estimated.

Although the delta method does not require the dropout probabilities, it also

suffers from parameter space violations. Moreover, the delta method is known to be
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somewhat inefficient, although reasonable agreement is observed for Table 4.1 (a)

and the method shows to be superior for Table 4.1 (d). For Table 4.1 (b) caution

should be used because parameters lie on the boundary of their space, and for

Table 4.1 (c) even parameter estimates are not meaningful.

For Table 4.1 (a), multiple imputation yields the same result as both the direct

likelihood and EM methods. It was based on 5000 samples. Although the procedure

is more time consuming, we obtain a correct answer without having to estimate the

dropout probabilities. With Table 4.1 (b), small differences are seen. The effect of

these is that parameters move slightly away from the boundary. Indeed, the direc-

tion in which the MI parameters move is the same as the one seen for Table 4.1 (c).

In the latter case, the MI estimator yields different results than seen with other

methods, but they coincide with the transformed likelihood parameters (and with

the EM parameters when a valid solution in the E step is ensured). In other words,

using multiple imputation automatically ensures valid parameters, whereas other

methods require some additional work such as finding a solution on the boundary,

which is quite involved when the number of categories r is large. The standard

errors differ between the two methods, but also the standard errors between both

likelihood procedures differ, due to the fact that one of the dropout parameters

with the transformed likelihood equals infinity, and asymptotic properties should

be interpreted with caution. For Table 4.1 (d), the MI standard errors are slightly

smaller than the likelihood based standard errors. In conclusion, multiple imputa-

tion seems to be a recommendable technique, not only for variance estimation, but

also to estimate the parameters.

4.6 Examples

4.6.1 Fluvoxamine Data

The first example is taken from the data introduced in Section 2.1. We used the

observations at times 2, 3 and 4, leading to the data of Table 2.3.

Table 4.3 gives the cell probability estimators and estimates of the standard

errors under MAR, with all three protective estimators, with pseudo-likelihood and
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Table 4.3: Estimated Cell Probabilities (Standard Errors) for the Fluvoxamine Data

(all quantities were multiplied by 1000). The cell gives the outcomes at the 3 times

considered. 6 Methods were used: likelihood estimation once for the completers

only, and once assuming MAR, protective estimation using the Delta method, the

EM algorithm and multiple imputation to calculate standard errors, and finally

pseudo-likelihood using the protective assumption.

Likelihood Protective PL

Cell Comp. MAR Delta EM MI

Side Effects

000 388(31) 355 (28) 342 (33) 342 (34) 343(30) 342 (34)

001 25(10) 23 (91) 31 (15) 31 (21) 30(13) 31 (21)

010 17 (8) 17 (81) 18 (29) 18 (27) 19 (9) 18 (27)

011 33(11) 34(111) 37 (25) 37 (29) 36(12) 37 (28)

100 128(21) 129 (21) 113 (20) 113 (21) 115(20) 113 (21)

101 21 (9) 21 (9) 26 (13) 26 (13) 24(10) 26 (13)

110 107(20) 117 (21) 115(179) 115(179) 129(35) 115(178)

111 281(29) 305 (29) 318(186) 318(180) 305(40) 318(179)

Therapeutic Effect

000 45(13) 51(13) 44 (30) 48(-) 50(15) 46 (18)

001 4 (4) 5 (5) 12 (36) 9(-) 7 (6) 15 (15)

010 0 (0) 0 (0) 0 (0) 0(-) 0 (0) 2 (3)

011 8 (6) 9 (6) 7 (5) 7(-) 7 (5) 11 (6)

100 190(25) 177(23) 184(117) 200(-) 205(33) 187 (70)

101 12 (7) 12 (7) 37(105) 22(-) 17(10) 35 (61)

110 215(26) 217(27) 265 (29) 265(-) 254(35) 168(273)

111 525(32) 531(31) 449 (37) 449(-) 461(41) 536(275)
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for the subset of completers. Both side effects and therapeutic effect are analysed.

Let us discuss the results for side effects first.

Clearly the three protective estimation strategies yield (virtually) the same re-

sults, apart from very large standard errors found with both the delta method and

with the EM algorithm for cells 110 and 111. This might be explained by the fact

that the information for cells 110 and 111 is largely the same because they are im-

puted from the same cells (11∗ and 1∗∗). No violations of the boundary restrictions

were encountered. The results obtained using pseudo-likelihood are very close to

delta- and EM-results. Point estimates coincide, and standard errors are very sim-

ilar. Once again, MI seems to yield more precise standard errors, perhaps because

there is no need to sacrifice information to the estimation of dropout parameters.

To assess the fit of the models, a deviance statistic was computed. To obtain a satu-

rated model, one needs to consider a different probability table for each of the three

observed patterns. The deviance is 11.23 for the protective estimator and 9.40 for

the MAR model, on 4 degrees of freedom in both cases. Assuming a χ2 distribution,

P values are 0.024 and 0.052 respectively, pointing to a similar (lack of) fit for both

models.

An alternative strategy consists of estimating both the measurement parameters

and the dropout model, using the model advocated by Molenberghs, Kenward and

Lesaffre (1997), using likelihood based estimation. Describing the dropout probabil-

ity, given the outcomes, by a logistic regression, where the linear predictor describes

the effect of both the previous and the current (possibly unobserved) outcome:

logit(φd|kd−1kd
) = β0 + βd−1kd−1 + βdkd,

several models can be considered. Estimates for the marginal cell probabilities and

for the dropout parameters are given in Table 4.4. Standard errors are given between

parentheses.

Several observations can be made. First, the overall deviances (corresponding

to the likelihood of measurement and dropout processes simultaneously) convey a

different message than the deviances of the dropout process. The overall deviances

do not show a clear distinction between MAR and informative models. Indeed, al-

though both terms in the informative model MNAR(2) are significant, the MAR
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Table 4.4: Parametric Models for the Fluvoxamine Data, Side Effects, Likelihood

Based Estimation. The cell gives the outcomes at the 3 times considered. Measure-

ment probabilities are multiplied by 1000.

MCAR MAR MNAR(1) MNAR(2)

Cell

000 355(28) 355(28) 346(29) 331(44)

001 23 (9) 23 (9) 25(10) 29(17)

010 17 (8) 17 (8) 17 (8) 18 (9)

011 34(11) 34(11) 40(13) 50(25)

100 129(21) 125(21) 115(20) 99(33)

101 21 (9) 21 (9) 22 (9) 22 (9)

110 117(21) 117(21) 108(20) 99(26)

111 305(29) 305(29) 327(29) 353(54)

Dropout Parameter

β0 -2.19 -3.56 -4.33 -5.59(0.34)

βd 1.35 2.71(0.14)

βd−1 0.86 -0.70(0.38)

Deviance(overall) 618.16 613.86 613.69 613.55

Deviance(dropout) 184.98 180.67 174.33 160.08

model and the informative model MNAR(1) with dependence on the current out-

come only, describe the data equally well. This seems to be due to the “balance”

which is achieved between dropout and measurement processes. Indeed, when the

dropout model shows a better fit, achieved by including relevant parameters, the

measurement model (with the same number of parameters) can afford to show a

greater lack-of-fit. It clearly shows that the likelihood is very flat and similar like-

lihood values are obtained for conceptually very different models. This observation

is in agreement with those made in Section 4.3 regarding the comparison of MAR

and protective models for Table 4.1 (d). When either the previous measurement
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only or the current observation only are included to describe the dropout process,

the latter is the clear winner in terms of fitting the dropout process. It should

be remembered, however, that it uses the current (possibly unobserved) value as a

covariate and hence it should be considered jointly with the measurement model,

at which level the fit is comparable. The conclusion is that at least one outcome

should be included in the dropout model. This is in agreement with the results

by Molenberghs, Kenward and Lesaffre (1997) who postulated that dropout mainly

depends on the size of side effects, whereas a decrease in the therapeutic outcome

seems to be responsible for dropout. From the deviances (p. 52) of the models in

Table 4.3 we would infer that the previous measurement is the better candidate to

describe dropout with respect to the side effects outcome. The fitted cell proba-

bilities reported in Tables 4.3 and 4.4 are of similar magnitude. In contrast to the

examples in Section 4.3, the standard errors are smaller for likelihood estimation

than for protective estimation.

Therapeutic effect is more complicated because one of the combinations (010)

does not occur. EM and delta method show slightly different estimates because EM

was enforced to satisfy the boundary conditions. No sensible precision estimates

are obtained with the EM method. Multiple imputation yields similar results and

automatically satisfies the conditions. Note that the delta estimator still yields a

valid set of probabilities. But when the corresponding dropout probabilities are

computed, a situation comparable to the one in Table 4.1 (c) occurs e.g., for the

cross-classification of the first and the third variable, given the second one equals

0. The counts are Z00|0 = 11, Z01|0 = 1, Z10|0 = 46, Z11|0 = 3, Z0∗|0 = 1, Z1∗|0 = 2,

and hence violation of the restrictions might be due to chance. This means that the

hypothetically complete table will have negative (but small) cell counts. Therefore,

the delta method estimator can still be considered sensible. The zero cell counts lead

to instability of the pseudo-likelihood estimator. A satisfactory solution is provided

by applying a continuity correction, i.e., by adding 0.5 to all cell counts. The results

then differ slightly from the ones obtained with the delta method.

For therapeutic effect, Molenberghs, Kenward and Lesaffre (1997) found that

MAR and MCAR fitted equally well, but the fit was much improved by allowing
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for informative dropout. In our analysis, the deviance for the MAR model is 5.57

on 4 degrees of freedom, which has to be contrasted with a deviance of 20.28 on

4 degrees of freedom for the protective estimator. Interpretation of these statistics

should be done with caution, as the frequencies in some cells are very small and the

estimator lies on the boundary.

4.6.2 Koch Dataset

The second example is taken from Koch et al. (1991). Presence or absence of colds

during three successive years is recorded on 5554 subjects. Covariates are sex and the

area of the residence of the subject. Considering the monotone sequences only, we

have a subsample of 3112 subjects. Table 4.5 shows estimated cell probabilities for

different strata. Apart from the entire set of data, we also considered stratification

by sex (M/F), area (1/2), and by sex and area simultaneously. For all strata, we

considered both an MAR and a protective model. All zeros in the table correspond

to a boundary estimate and are not due to rounding. It is interesting to observe

that a boundary solution for strata combined does not imply a boundary solution

for the strata separately (e.g., all data versus stratified by area) and vice versa (e.g.,

area 1 versus area 1 stratified by sex).

Finally, EM and multiple imputation estimators are slightly different when ap-

plied to those tables in which boundary problems occur. As an example, we consider

the estimates for the full set of data with EM: 23, 9, 6, 12, 11, 8, 9, and 22 respec-

tively. They are much closer to the MAR solution, with the multiple imputation

estimates even closer. This phenomenon is observed for all other tables as well. It

means that the correction for parameter space violations is too extreme with the

delta method estimator.

4.7 Conclusion

An estimator for a longitudinal categorical data table, subject to dropout, has been

proposed. This protective estimator assumes that dropout depends on the unob-

served outcomes, but not on the observed ones. Such an estimator had already been
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Table 4.5: Estimated Cell Probabilities for the Koch Dataset (all quantities were

multiplied by 100). Stratification for sex is indicated by male (M) and female (F);

stratification for area is indicated by area 1 (1) and area 2 (2). A + indicates that

the corresponding stratificator is not used.

++ M+ F+ +1 +2 M1 M2 F1 F2

Protective Estimators

111 23 20 29 21 26 15 21 24 32

112 9 7 10 9 11 9 11 11 11

121 0 3 0 3 6 7 7 8 4

122 18 16 17 15 11 11 10 10 12

211 11 13 10 11 11 11 13 10 9

212 8 7 8 10 6 12 6 10 7

221 0 5 0 4 12 12 14 11 11

222 31 30 27 29 17 24 19 18 16

MAR Estimators

111 22 17 27 24 16 27 24 35 32

112 10 10 11 12 8 3 11 8 11

121 7 7 7 5 2 0 3 4 4

122 11 11 10 12 17 18 15 12 12

211 10 11 10 10 12 16 10 10 9

212 9 9 8 7 10 2 10 6 7

221 12 13 11 11 3 0 3 10 11

222 20 22 17 19 33 34 25 16 16

proposed for normal data by Brown (1990). The advantage of this technique is that

no further assumptions on the missing data process have to be made in order to

estimate the measurement parameters. This advantage is also shared by the more

familiar MAR assumption. Both can be seen as estimators that are valid under a

class of dropout models, rather than under a single mechanism.
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The estimator is presented in the selection modelling framework, through deriva-

tion of a single set of cell probabilities. Alternatively, the cell probabilities for each

pattern separately can be constructed, implying that all tables are completed, re-

gardless of the number of observed components.

A connection with likelihood and pseudo-likelihood based estimation is estab-

lished. Several estimation techniques have been proposed. A variance estimator

can be based on the delta method, the EM algorithm, and on multiple imputation.

Whereas the second and especially the first are computationally less demanding,

the latter one has the important advantages that no range restriction violations oc-

cur. In order to avoid this problem with the other techniques, more complicated

parametrizations have to be used.

The method is applied to a set of artificial data, in order to compare the different

variance estimators, and also two sets of data have been analysed.

Our procedure can be extended to a modelling approach where covariates are

measured, along with the outcomes. Especially the EM algorithm and the mul-

tiple imputation method are very promising in this respect. Estimating marginal

probabilities and measures of association can be particularly desirable. Such a tech-

nique would be very appealing because one can assume a parsimonious model to

describe the influence of predictor variables on the measurement probabilities, with-

out having to model the dropout process explicitly in case a protective estimator

is chosen. This property is shared with a MAR mechanism. Of course, one has to

have evidence that either MAR or protective assumptions are plausible. Preferably,

contextual information should be considered.





Chapter 5

Missing at Random for

Pattern-Mixture Models

The missing data mechanisms introduced by Rubin (1976) and Little and Rubin

(1987) (MCAR, MAR, and MNAR, see Section 3.1.2), are developed for a selection

modelling framework. In Section 5.1, we define the available case missing value

restrictions (ACMV, Molenberghs, Michiels, Kenward and Diggle 1998), and prove

it to be the pattern-mixture counterpart of the MAR assumption. This facilitates

a sensitivity analysis based on selection models and pattern-mixture models under

the same assumption about the missing data mechanism. Indeed, since MCAR is

merely independence and thus equivalent in both frameworks, and since we now

have established a pattern-mixture counterpart of MAR, the taxonomy of Little

and Rubin (1987) can also be made for pattern-mixture models. Although selection

models and pattern-mixture models yield different parameters, a comparison of both

concerning e.g., treatment effect, can give extra confidence in the obtained results.

It is necessary to note that the equivalence developed here is for the special but im-

portant case of (monotone) dropout. A counterexample in the case of non-monotone

missingness is given in Section 5.2.

59
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5.1 Available Case Missing Value Restriction

In this section, we will restrict attention to a longitudinal data setting, where miss-

ingness is due to dropout. It will be shown in Section 5.2 that the results obtained

for this case cannot be generalized to non-monotone patterns.

In a selection model, the joint density f(y, d) is factorized as in Section 3.1.2 as

f(y, d) = f(y)f(d|y). (5.1)

The MAR assumption, where a subject’s missingness mechanism depends on its

observed outcomes only, can be written as

f(d = t|y1, · · · , yT ) = f(d = t|y1, · · · , yt), for t = 1, . . . , T.

Remember that in a pattern-mixture model, the joint density of f(y, r) is fac-

torized as

f(y, d) = f(d)f(y|d).

We will now show how pattern-mixture models can be classified using exactly

the same taxonomy as is used for selection models. Furthermore, we establish a link

between this classification and the identifying restrictions proposed in Little (1993).

Clearly, selection models and pattern-mixture models coincide under MCAR,

since in either case the joint density simplifies to f(y)f(d). Next, we show that

MAR can be expressed in a pattern-mixture framework through restrictions, related

to the complete case missing value (CCMV) restrictions (Little 1993), which we

call available case missing value (ACMV) restrictions. Little’s CCMV restrictions

set a conditional density of unobserved components given a particular set of ob-

served components equal to the corresponding conditional density in the subgroup

of completers. Our ACMV restrictions equate this conditional density to the one

calculated from the subgroup of all patterns for which all required components have

been observed. It is intuitively more appealing to use a component based on all

available information, than based on a smaller, and possibly less similar, group.

In our setting of longitudinal data with dropouts, CCMV can be defined formally
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as the condition that

∀t ≥ 2, ∀j < t : f(yt|y1, · · · , yt−1, d = j) = f(yt|y1, · · · , yt−1, d = T ),

whereas ACMV is the condition that

∀t ≥ 2, ∀j < t : f(yt|y1, · · · , yt−1, d = j) = f(yt|y1, · · · , yt−1, d ≥ t).

(5.2)

If there are only 2 time points (T = 2), then ACMV and CCMV coincide.

With these definitions, our main result is:

Theorem 2 For longitudinal data with dropouts, MAR ⇐⇒ ACMV.

To establish the proof of this theorem, a lemma is needed:

Lemma 1 In a longitudinal setting with dropout,

ACMV ⇐⇒ ∀t ≥ 2, ∀j < t : f(yt|y1, · · · , yt−1, d = j) = f(yt|y1, · · · , yt−1).

Proof of Lemma 1

Take t ≥ 2, j < t, then ACMV leads to:

f(yt|y1, · · · , yt−1)

=
t−1∑

i=1

f(yt|y1, · · · , yt−1, d = i)f(d = i|y1, · · · , yt−1)

+ f(yt|y1, · · · , yt−1, d ≥ t)f(d ≥ t|y1, · · · , yt−1)

=
t−1∑

i=1

f(yt|y1, · · · , yt−1, d = j)f(d = i|y1, · · · , yt−1)

+ f(yt|y1, · · · , yt−1, d = j)f(d ≥ t|y1, · · · , yt−1)

= f(yt|y1, · · · , yt−1, d = j)

[
t−1∑

i=1

f(d = i|y1, · · · , yt−1)

+ f(d ≥ t|y1, · · · , yt−1)]

= f(yt|y1, · · · , yt−1, d = j).
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To show the reverse direction, take again t ≥ 2, j < t.

f(yt|y1, · · · , yt−1, d ≥ t)f(d ≥ t|y1, · · · , yt−1)

= f(yt, d ≥ t|y1, · · · , yt−1)

= f(yt|y1, · · · , yt−1) −
t−1∑

i=1

f(yt|y1, · · · , yt−1, d = i)f(d = i|y1, · · · , yt−1)

= f(yt|y1, · · · , yt−1) −
t−1∑

i=1

f(yt|y1, · · · , yt−1)f(d = i|y1, · · · , yt−1)

= f(yt|y1, · · · , yt−1)

[
1 −

t−1∑

i=1

f(d = i|y1, · · · , yt−1)

]

= f(yt|y1, · · · , yt−1, d = j)

[
1 −

t−1∑

i=1

f(d = i|y1, · · · , yt−1)

]

= f(yt|y1, · · · , yt−1, d = j)f(d ≥ t|y1, · · · , yt−1).�

Proof of Theorem 2

MAR ⇒ ACMV

Consider the ratio Q of the complete data likelihood to the observed data likelihood.

This gives, under the MAR assumption:

Q =
f(y1, · · · , yT )f(d = i|y1, · · · , yT )

f(y1, · · · , yi)f(d = i|y1, · · · , yi)

=
f(y1, · · · , yT )f(d = i|y1, · · · , yi)
f(y1, · · · , yi)f(d = i|y1, · · · , yi)

= f(yi+1, . . . , yT |y1, . . . , yi). (5.3)

Further, one can always write:

Q =
f(yi+1, · · · , yT |y1, · · · , yi, d = i)f(y1, . . . , yi|d = i)f(d = i)

f(y1, . . . , yi|d = i)f(d = i)

= f(yi+1, . . . , yT |y1, . . . , yi, d = i). (5.4)

Equating expressions (5.3) and (5.4) for Q we see that

f(yi+1, · · · , yT |y1, · · · , yi, d = i) = f(yi+1, · · · , yT |y1, · · · , yi). (5.5)

To show that (5.5) implies the ACMV conditions (5.2), we will use the induction

principle on t. First, consider the case t = 2.



Section 5.1 : Available Case Missing Value Restriction 63

Using (5.5) for i = 1, and integrating over y3, · · · , yT , we obtain

f(y2|y1, d = 1) = f(y2|y1),

leading to, using Lemma 1,

f(y2|y1, d = 1) = f(y2|y1, d ≥ 2).

Suppose by induction ACMV holds ∀t ≤ i. We will now prove the hypothesis for

t = i + 1. Choose j ≤ i. Then from the induction hypothesis and Lemma 1, it

follows that

∀j < t ≤ i : f(yt|y1, · · · , yt−1, d = j) = f(yt|y1, · · · , yt−1, d ≥ t)

= f(yt|y1, · · · , yt−1).

Taking the product over t = j + 1, · · · , i then gives

f(yj+1, · · · , yi|y1, · · · , yj, d = j) = f(yj+1, · · · , yi|y1, · · · , yj). (5.6)

After integration over yi+2, · · · , yT , Equation (5.5) leads to

f(yj+1, · · · , yi+1|y1, · · · , yj, d = j) = f(yj+1, · · · , yi+1|y1, · · · , yj). (5.7)

Dividing (5.7) by (5.6) and equating the left and right hand sides, we find that

f(yi+1|y1, · · · , yi, d = j) = f(yi+1|y1, · · · , yi).

This holds ∀j ≤ i, and Lemma 1 shows this is equivalent with ACMV.

ACMV ⇒ MAR

Starting from the ACMV assumption and Lemma 1, we have

∀t ≥ 2, ∀j < t : f(yt|y1, · · · , yt−1, d = j) = f(yt|y1, · · · , yt−1). (5.8)

We now factorize the full data density as

f(y1, · · · , yT , d = i) = f(y1, · · · , yi, d = i)f(yi+1, · · · , yT |y1, · · · , yi, d = i)

= f(y1, · · · , yi, d = i)
T∏

t=i+1

f(yt|y1, · · · , yt−1, d = i).
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Using (5.8), it follows that

f(y1, · · · , yT , d = i) = f(y1, · · · , yi|d = i)f(d = i)
T∏

t=i+1

f(yt|y1, · · · , yt−1)

= f(y1, · · · , yi|d = i)f(d = i)f(yi+1, · · · , yT |y1, · · · , yi)

=
f(y1, · · · , yi|d = i)f(d = i)

f(y1, . . . , yi)
f(y1, · · · , yT )

= f(d = i|y1, . . . , yi)f(y1, . . . , yT ) (5.9)

An alternative factorization of f(y, d) gives

f(y1, · · · , yT , d = i) = f(d = i|y1, · · · , yT )f(y1, · · · , yT ). (5.10)

It follows from (5.9) and (5.10) that

f(d = i|y1, · · · , yT ) = f(d = i|y1, · · · , yi).�

An interesting by-product of this theorem is that, since MAR corresponds to a

set of (untestable) restrictions (ACMV) in the pattern-mixture framework, MAR

itself is also untestable. This fact is often overlooked in the selection framework.

Little (1993) suggested the possibility of using more than the completers to

construct identifying restrictions for two practical reasons: (1) the set of completers

may be small and (2) there may be a closer similarity between the conditional

distributions given d = t and some other incomplete pattern d = s, than between

those for d = t and the completers, d = T .

We suggest the use of the following procedure, which uses the maximum amount

of information. First, restrict the dataset to the first two components only. Then,

missing data patterns d = 2, . . . , T collapse into a single pattern d ≥ 2. Applying

ACMV restrictions to d = 1 and d ≥ 2 leads to the construction of the density

f(y2|y1, d = 1) = f(y2|y1, d ≥ 2), as in (5.2). Multiplying by f(y1|d = 1) leads to

f(y1, y2|d = 1), thus determining the joint densities of f(y1, y2|d) for all d = 1, · · · , T .

Next, f(y3|y1, y2, d) (d = 1, 2) can be calculated from f(y3|y1, y2, d ≥ 3). We then

proceed by induction to construct all joint densities.
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5.2 Non-Monotone Patterns: A Counterexample

It has to be noted that the result of Theorem 2 does not hold for general missing

data patterns. Consider a bivariate outcome (y1, y2) where missingness can occur in

both components. Let (r1, r2) be the corresponding bivariate missingness indicator,

where rj = 0 if yj is missing and 1 otherwise (j = 1, 2).

Consider the following MAR mechanism:

f(r|y) = P (r1, r2|y1, y2) =





p if (r1, r2) = (0, 0),

qy1 if (r1, r2) = (1, 0),

sy2 if (r1, r2) = (0, 1),

1 − p− qy1 − sy2 if (r1, r2) = (1, 1).

(5.11)

We need to indicate how the concept of ACMV will be translated to this setting.

Several proposals can be considered. A trivial extension of the ACMV restrictions

in the monotone case, implies for the patterns r = (1, 0) and r = (0, 1):

r = (1, 0) : f(y1, y2|r = (1, 0)) = f(y1|r = (1, 0)).f(y2|y1, r = (1, 1)), (5.12)

r = (0, 1) : f(y1, y2|r = (0, 1)) = f(y2|r = (0, 1)).f(y1|y2, r = (1, 1)). (5.13)

The idea is that the density of missing components, given observed components,

is replaced by the corresponding density of patterns for which both are available.

Restrictions for the pattern r = (0, 0) will be discussed further.

From condition (5.12) we derive

f(r = (1, 0)|y1, y2)f(y1, y2)

f(r = (1, 0))
=

f(r = (1, 0)|y1)f(y1)

f(r = (1, 0))

f(r = (1, 1)|y1, y2)f(y1, y2)

f(r = (1, 1)|y1)f(y1)

m

f(r = (1, 0)|y1, y2) =
f(r = (1, 0)|y1)f(r = (1, 1)|y1, y2)

f(r = (1, 1)|y1)

m
f(r = (1, 1)|y1, y2) = f(r = (1, 1)|y1),

since f(r = (1, 0)|y1, y2) = f(r = (1, 0)|y1) = qy1 , implying that sy2 is constant.

Similarly, condition (5.13) implies that qy1 is constant:
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f(r = (0, 1)|y1, y2)f(y1, y2)

f(r = (0, 1))
=

f(r = (0, 1)|y2)f(y2)

f(r = (0, 1))

f(r = (1, 1)|y1, y2)f(y1, y2)

f(r = (1, 1)|y2)f(y2)

m

f(r = (0, 1)|y1, y2) =
f(r = (0, 1)|y2)f(r = (1, 1)|y1, y2)

f(r = (1, 1)|y2)

m
f(r = (1, 1)|y1, y2) = f(r = (1, 1)|y2),

since f(r = (0, 1)|y1, y2) = f(r = (0, 1)|y2) = sy2 .

Clearly, since both qy1 and sy2 have to be constant, the mechanism needs to

be MCAR. In other words, ACMV≡MCAR, independent of the restrictions for

f(y1, y2|r = (0, 0)), and hence ACMV and MAR differ.

There are different methods to construct f(y1, y2|r = (0, 0)):

f(y1, y2|r = (0, 0)) = f(y1, y2|r = (1, 1)),

= f(y1|r = (1, 1) or r = (1, 0))f(y2|y1, r = (1, 1)),

= f(y2|r = (1, 1) or r = (0, 1))f(y1|y2, r = (1, 1)).

The first proposal is CCMV: take the things one does not have from the completers.

The second proposal means that we first identify the density of the first component

by equating it to the density of the patterns where y1 is observed (r = (1, 0) and

r = (1, 1)), and that we then identify the density of y2 given y1 based on the

completers. This is in fact also ACMV, which is more relaxed than CCMV, because

one takes what one needs from as much cases as possible. The third proposal is

analogous to the second, with only y1 and y2 interchanged. Although it seems one

would have to choose between one of these three proposals, due to the other patterns

that lead to MCAR, the different options are in fact exactly the same.

5.3 Conclusion

In a missing data context, the choice of modelling framework needs careful con-

sideration. The simplicity of the classical MCAR, MAR, and MNAR taxonomy is
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not a feature particular to the selection modelling approach, since, in the case of

monotone missing data, the same taxonomy can be developed for pattern-mixture

models. The MAR assumption is translated in the latter case into the ACMV re-

striction. This intermediate case corresponds to an explicit and reasonably natural

set of restrictions on the unidentifiable components of the full data distribution. It

is also shown that this equivalence does not hold for non-monotone missing data

patterns.

Since we have the same missing data mechanism in both the selection and the

pattern-mixture framework, a sensitivity analysis can be carried out. This is done

in Chapter 6 for categorical data, and in Chapter 8 for a dataset with continuous

outcomes. Furthermore, another advantage of this equivalence is that the interesting

parts of both frameworks can be combined into a pseudo-likelihood (see Chapter 7).





Chapter 6

Selection Models and

Pattern-Mixture Models for

Incomplete Data With Covariates

In the previous chapter, we have established ACMV, the pattern-mixture analogue

for the MAR assumption in the selection modelling framework. This leads to a

(theoretical) equivalence of selection and pattern-mixture models, since they are

both factorizations of the same distribution, and we have an expression for the same

missing data mechanism in both frameworks. Here, we study how this result can

be used to model longitudinal data. We have analysed two sets of categorical data,

and in both cases we came up with similar conclusions (Molenberghs, Michiels and

Lipsitz 1999, Michiels, Molenberghs and Lipsitz 1998).

In Section 6.1, we establish the notation used in this chapter. A comparison be-

tween selection models and pattern-mixture models is given in Section 6.2. All mod-

els are based on the odds ratio model proposed by Dale (1986) and Molenberghs and

Lesaffre (1994, 1999). First, selection models are explored, and precision estimates

are derived. Then we look at pattern-mixture models. Here, identifying restric-

tions are needed. Since we assumed MAR as modelling assumption for the selection

model, we chose to use ACMV for the pattern-mixture model. Both models yield

different parameters, therefore a comparison of their relative merits is included. We

end the section with a discussion of the precision estimates for the pattern-mixture

69
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model, based on profile likelihood and on multiple imputation. Two examples with

categorical outcomes are discussed in Section 6.3, where all issues of the previous

section are encountered.

6.1 Marginal Modelling of Incomplete

Categorical Data

We adopt notation introduced in Chapter 3. The observed data are Zi, a partially

classified table of the complete data Zc
i . The cell counts and corresponding proba-

bilities of the margin can be thought of as arising by summing over the appropriate

rows or columns in the corresponding complete table. We then have a linear rela-

tionship between observed and complete quantities: Zi = CiZ
c
i and νi = Ciν

c
i . We

call the matrix Ci which consists of 0’s and 1’s the coarsening matrix, in agreement

with Molenberghs and Goetghebeur (1997) and Heitjan and Rubin (1991). Then

the kernel of the multinomial (observed) loglikelihood is

`(θ; Z) =
N∑

i=1

Z ′
i ln(ν i)

subject to the constraints
∑
k νik = 1, where the summation index k cycles through

all (multi-indexed) cells of νi.

We develop estimation of the parameters θ = (β′,α′)′ (either θS or θP ). Fol-

lowing McCullagh and Nelder (1989), the score equations are given by

∂`

∂θ
=

N∑

i=1

(
∂νi

∂θ

)′

V −
i (Zi − niνi),

with V i = diag(νi) − νiν
′
i. Further,

(
∂νi

∂θ

)′

=

(
∂νci
∂θ

)′ (
∂νi

∂νci

)′

=

(
∂νci
∂θ

)′

C ′
i. (6.1)

Implementing a Newton-Raphson algorithm involves computation of second deriva-

tives of the likelihood for which expressions can be found in Molenberghs and Lesaf-

fre (1999). Alternatively, the log-likelihood can be fed to a numeric optimizer such

as the GAUSS-procedure OPTMUM or the S-PLUS-function NLMINB.
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We assume that the data are collected following a multinomial sampling scheme

and let composite generalized linear models hold:

• for the parameters of the selection model:

ηSi (µ
Sc
i ) = X

Sβ
i βS , (6.2)

ξSi (φ
Sc
i ) = XSα

i αS, (6.3)

• and for the parameters of the pattern-mixture model:

ηPi (µPc
i|d) = X

Pβ
i|d βP

d , d = 1, . . . , T, (6.4)

ξPi (φPc
i ) = XPα

i αP . (6.5)

Denote βP = (βP
d )d=1,...,T , X

Pβ
i = (XPβ

i|d )d=1,...,T , XS
i = (XSβ

i ,XSα
i ), and

XP
i = (XPβ

i ,XPα
i ).

Note that, in a selection model, the dropout probabilities are modelled condi-

tional on the outcomes. This implies that XSα
i contains, apart from the covariates

included in the study, also the outcome variables.

Choices for the vector link functions ηSi , ηPi , ξSi and ξPi will be discussed later.

6.2 Selection Models Versus Pattern-Mixture

Models

A specific model choice is based on the form of (6.2) and (6.3), or (6.4) and (6.5), re-

flected in the matrix ∂νci/∂θ in (6.1). We will discuss selection models and pattern-

mixture models in turn. To simplify notation, a specific bivariate setting of the

notation in Chapter 3 will be considered. Extension to the general case is straight-

forward albeit heavy in notation.

6.2.1 Notation

Assume complete data consist of a design matrix and a categorical outcome (with

c levels) measured on two occasions for each subject. Assume further that each
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subject is seen at the first occasion, with only part of them measured at the second

occasion. The observed multinomial data consist of a set of complete c × c tables

Zi2 with counts Zi2jk (j, k = 1, . . . , c) and a supplemental margin Zi1 with counts

Zi1j, where j = 1, . . . , c. The (hypothetical) full data amount to two c × c tables

Zc
idjk with d = 1, 2 and j, k = 1, . . . , c. Obviously, the relation between complete and

observed counts is Zi2jk = Zc
i2jk and Zi1j =

∑c
k=1 Z

c
i1jk. Adopting the convention

that the counts of all tables corresponding to design level i are represented as vectors

in lexicographic ordering, and further that Zi = (Z ′
i2,Z

′
i1)

′ with a similar expression

for Zc
i , we deduce that the coarsening matrix Ci in this case is given by

C = Ci =



Ci0 0

0 Ci1


 =




Ic2 0c2,c2

0c,c2 Ic ⊗ 11,c


 , (6.6)

with I. the identity matrix, 0. a matrix of zeros, 1. a matrix of ones and ⊗ the

Kronecker product.

6.2.2 Selection Models

As before, we denote the probability for an observation with design XS
i to fall into

category (j, k) of the dth table by

νScidjk(θ
S) = µScijk(β

S)φScid|jk(α
S). (6.7)

Since in this section, we work only in the selection model setting, the superscript S

will be omitted. There are obvious constraints on these probabilities. For each i:

2∑

d=1

c∑

j=1

c∑

k=1

νcidjk =
c∑

j=1

c∑

k=1

µcijk = 1 and
2∑

d=1

φcid|jk = 1 for all j, k.

In this section, we define φijk = φci2|jk = 1−φci1|jk, the probability that a measurement

is made at the second occasion, given that the complete data are (Yi1 = j, Yi2 = k).

When the complete data Zc
i would be available, the information required to

estimate the measurement parameters β could be obtained from the collapsed table

with entries Zc
i1jk + Zc

i2jk, while the parameters of α would follow from the pairs

(Zc
i1jk, Z

c
i2jk) for all (j, k). For the partially observed table however, we have to fit
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the observed data likelihood with cell probabilities νi2jk and

νi1j+ =
c∑

k=1

νci1jk =
c∑

k=1

µcijk(1 − φijk).

In general, the latter expression does not split into a µ and a φ part.

To fully specify (6.2) and (6.3), we will choose link functions for the left hand

sides of the form:

ηi(µ
c
i ) = Dµ ln(Aµµ

c
i) and ξi(φ

c
i) = Dφ ln(Aφφ

c
i ), (6.8)

where Aµ and Aφ are matrices containing zeros and ones, used to construct sums

of probabilities (e.g., probabilities of collapsed tables), and Dµ and Dφ are contrast

matrices (with entries equal to 0, 1 or −1). In other words, log contrasts of the

probabilities are equated to a set of linear predictors. The logistic model forms a

special case, but the general form was also used by McCullagh and Nelder (1989) and

Lang and Agresti (1994). Log odds ratios to model associations can be incorporated

in this formulation.

Observing that νci = νci (µ
c
i ,φ

c
i ) (see Equation 6.7), we find

∂νci
∂(µc

i ,φ
c
i)

=




Fi Mi

I − Fi −Mi




with Fi = diag(φc
i ) and Mi = diag(µc

i ). Introducing some extra notation

Tηi =

(
∂ηi
∂µc

i

)
= Dµ(diag(Aµµ

c
i ))

−1Aµ,

Tξi =

(
∂ξi

∂φc
i

)
= Dφ(diag(Aφφ

c
i ))

−1Aφ

the score equations become

∂`

∂(β,α)
=

N∑

i=1



Xβ
i 0

0 Xα
i




′

T−1
ηi 0

0 T−1
ξi




′


Fi Mi

I − Fi −Mi




′

C ′
iV

−
i Si

(6.9)

with Si = Zi−niνi. Solving these equations can be done using a Newton-Raphson

algorithm, as discussed in Section 6.1. The inverse of the matrix of second deriva-

tives, evaluated at the maximum of the likelihood function, provides an estimator

of the precision.
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6.2.3 Pattern-Mixture Models

For pattern-mixture models, we factorize the complete data probabilities as products

of marginal dropout parameters and measurement probabilities conditional on the

dropout pattern:

νPcidjk(θ
P ) = φPcid (αP ) µPcijk|d(β

P ). (6.10)

In this section, only the pattern-mixture model setting will be treated, and therefore

the superscript P will be omitted. The constraints on these probabilities are, for

each i:
c∑

j=1

c∑

k=1

µcijk|d = 1, d = 1, 2 and
2∑

d=1

φcid = 1.

To derive the score equation, we need to adapt the notation slightly. The mea-

surement probabilities for pattern d = 1, 2 are collected into a vector µc
i|d and the

dropout parameters into φc
i . The design for the measurement part has 2 compo-

nents ηi|d = ηi(µ
c
i|d) = X

β
i|dβd (d = 1, 2). As in Equations 6.8, we can write the

link functions as

ηi|d = ηi(µ
c
i|d) = Dµ|d ln(Aµ|dµ

c
i|d), d = 1, 2 and ξi(φ

c
i) = Dφ ln(Aφφ

c
i ),

where again Aµ|d and Aφ are sum matrices, and Dµ|d and Dφ are contrast matrices.

This leads to

Tηi|d =

(
∂ηi|d

∂µc
i

)
= Dµ|d(diag(Aµ|dµ

c
i|d))

−1Aµ|d,

Tξi =

(
∂ξi
∂φc

i

)
= Dφ(diag(Aφφ

c
i ))

−1Aφ

We can now write the score equations as:

∂`

∂(β,α)
=

N∑

i=1




Xβ
i|1 0

Xβ
i|2 0

0 Xα
i




′


T−1
ηi|1 0 0

0 T−1
ηi|2 0

0 0 T−1
ξi




′


Fi 0 µc

i|1

0 I − Fi −µc
i|2




′

C ′
iV

−
i Si.

(6.11)

In order to maximize the pattern-mixture likelihood, we need to discuss identifying

restrictions first.
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6.2.4 Identifying Restrictions

As mentioned in Section 3.1.2, a pattern-mixture model is chronically under-identi-

fied. In the case described above, the incomplete pattern (d = 1) would provide

information about the first measurement, but neither about the second one, nor

about the association between both. To be specific, for the incomplete pattern, only

the probabilities µcij|1 are identified, leaving the µcik|1j inestimable.

We will describe a solution to this problem, by first considering a measurement

model and secondly combining it with a particular form of identifying restrictions

on the model parameters.

A possible modelling approach is to consider a bivariate model for the com-

pleters, i.e., a Dale model (Dale 1986), and a univariate model for the incomplete

observations, i.e., a logistic regression model. We will term this the minimal ap-

proach. The Dale model, applied to two binary outcomes Yi1 and Yi2, supplements

a logistic regression for each of the outcomes separately, with an odds ratio:

ψi =
P (Yi1 = 0, Yi2 = 0|X i)P (Yi1 = 1, Yi2 = 1|X i)

P (Yi1 = 0, Yi2 = 1|X i)P (Yi1 = 1, Yi2 = 0|X i)
. (6.12)

In terms of the probabilities µcijk, we define

ηi1 = ln

(
µci+1

(1 − µci+1)

)
= X

β
i(1)β, (6.13)

ηi2 = ln

(
µci1+

(1 − µci1+)

)
= X

β
i(2)β, (6.14)

ηi3 = lnψi = ln

(
µci11(1 − µci1+ − µci+1 + µci11)

(µci1+ − µci11)(µ
c
i+1 − µci11)

)
= X

β
i(3)β. (6.15)

Here X
β
i(t), t = 1, . . . , 3 is a row vector containing design and covariate information.

Their union is X
β
i . The model extends naturally to multiple ordinal outcomes

(Molenberghs and Lesaffre 1994). Explicit solutions for the probabilities can be

found:

µci1+ =
exp(ηi1)

1 + exp(ηi1)
,

µci+1 =
exp(ηi2)

1 + exp(ηi2)
,
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and

µci11 =





1+(µc
i1+

+µc
i+1

)(ψi−1)−S(µc
i1+

,µc
i+1

,ψi)

2(ψi−1)
if ψi 6= 1,

µci1+µ
c
i+1 if ψi = 1,

with

S(q1, q2, ψ) =
√

[1 + (q1 + q2)(ψ − 1)]2 + 4ψ(1 − ψ)q1q2.

The above expression was studied by Plackett (1965), Mardia (1970) and Dale

(1986). Details on the estimation of the covariance matrix can be found in Molen-

berghs and Lesaffre (1994, 1999). Molenberghs and Lesaffre (1994) extended the

Dale model to multivariate ordinal outcomes. They generalized the computations of

the bivariate Plackett distribution in order to establish the multivariate cell prob-

abilities. The Plackett distribution is also used in GEEs when the odds ratio is

used to measure the association (Lipsitz, Laird and Harrington 1991). Thus, the

Dale model combines logistic regression for each of the measurements with marginal

global odds ratios to describe the association between outcomes. It belongs to the

family of marginal measurement models (Liang, Zeger and Qaqish 1992).

Often, one is interested in model parameters for the full set of repeated outcomes.

Little (1993, 1995) proposes the use of identifying restrictions: identify unknown

probabilities by equating them to functions of known probabilities. In our bivariate

setting, we identify µcik|1j by equating them to appropriate functions of µi2jk. The

simplest example is the set termed complete case missing value (CCMV) restrictions:

µcik|1j = µcik|2j = µik|2j. Other restrictions are discussed by Little (1993). Another set

of restrictions is defined in Molenberghs, Michiels, Kenward and Diggle (1998). They

define the available case missing value (ACMV) restrictions, which are equivalent

to MAR. These restrictions have already been introduced in Chapter 5. It is also

stated that ACMV and CCMV coincide in the simple case of two time points. In

some settings, such as a bivariate normal sample, restrictions are very natural to

apply, because both the marginal distribution of the first measurement, as well

as the conditional distribution of the second measurement given the first one, can

be expressed as simple functions of the mean vector and the covariance matrix

components. For categorical data in general, and the Dale model in particular,

there is no easy transition from marginal to conditional distributions in terms of the
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model parameters. In order to apply ACMV to the Dale model, we have to proceed

in a different way.

First, the minimal approach is followed in the sense that a bivariate Dale model

for the complete pattern is combined with a univariate logistic model for the incom-

plete pattern. From this approach β̂
P

0 and α̂P
0 follow and hence the underlying prob-

abilities µ̂ijk|2 and µ̂ij|1 can be estimated. Then, ACMV implies that µ̂ik|1j ≡ µ̂ik|2j

and hence the partial count Zij|1 can be used to impute Z∗
ijk|1 = Zij|1µ̂ik|2j . From

these completed counts and Zc
ijk|2, one can estimate the parameters of interest, in

our example a Dale model for both patterns, yielding β̂
P

and α̂P ≡ α̂P
0 .

Above two-step procedure is clearly not restricted to the Dale model. Further-

more, extension to more than two measurement occasions is straightforward, cer-

tainly in the case of monotone dropout. Although parameter estimation is very

elegant and computationally simple with the two-step procedure, precision estima-

tion is less simple. Indeed, treating the filled-in table as if it represented observed

data fails to reflect random variability in the unobserved counts. Strategies to de-

termine confidence intervals will be discussed in Section 6.2.6.

6.2.5 Relative Merits of Both Families

It is worthwile to consider the reason why pattern-mixture models are tied to re-

strictions, whereas selection models apparantly are not. It is useful to start our

discussion with the MAR case. For the selection model, such a mechanism entails

φcid|jk = φcid|j. For a pattern-mixture model, it implies µcik|1j = µcik|2j (Molenberghs,

Michiels, Kenward and Diggle 1998). In other words, MAR naturally translates into

assumptions about the dropout probabilities in a selection model, but into a re-

striction in the pattern-mixture section. Then, data to estimate φcid|jk (in particular

φcid|j) are available, but the data to estimate µcik|1j are not.

However, it is important to understand that both are different faces of the same

coin and that in both cases this assumption is untestable. While this is clearly true

for the pattern-mixture models, it is less obvious for the selection models, since

wide classes of models for φcid|jk are estimable. However, in order to correctly test

for MAR, one would need to observe both measurements in both patterns, which
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is by definition impossible. See also Glynn, Laird and Rubin (1986), as well as the

discussion.

The same is true for non-random missingness mechanisms. For pattern-mixture

models, MNAR mechanisms are reflected by different restrictions (e.g., protective

restrictions, see Chapter 4). For selection models, MNAR is encompassed by models

for φcid|jk that depend explicitly on k. In Molenberghs and Goetghebeur (1997) it

is seen how two non-random selection models can be supported by the observed

data almost equally, but yield radically different interpretations for the unobserved

data, in the sense that different models distribute an observed count Zi1j in entirely

different ways over the full data cells Zc
i1jk.

An advantage of pattern-mixture models in the context of non-random dropout,

quoted by Little (1995), is that no explicit model for the dropout process is needed,

as long as the restrictions imposed are acceptable. However, this claim is slightly

deceptive, since there is no symmetry between the φ parameters in the two families.

In a selection model, φcid|jk contains all information about the dropout process,

whereas the same information is spread out over φid and µcijk|d in a pattern-mixture

model. This is seen through the fact that MAR is emanated by the φ’s in the

first case but by the µ’s in the latter. Furthermore, the interdependence between

dropout and measurement processes is modelled in φcid|jk in the first case and in

µcijk|d in the latter one. The pattern-mixture dropout probabilities φid can be seen

as the “covariate dependent” part of the dropout mechanism.

Arguably, a framework has to be chosen based on the questions of scientific

interest. For instance, in case one is interested in the population as a whole, a

selection model might be the natural choice. However, investigators who would like

to explore differences among subgroups that are identified by their response patterns,

should consider fitting pattern-mixture models. The latter situation could be of

interest to differentiate therapies between subgroups. For instance, if males would

suffer more from dropout than females, one may want to establish sex dependent

treatment protocols.
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6.2.6 Precision Estimation with Pattern-Mixture Models

We propose two methods to calculate 95% confidence intervals: profile likelihood

and multiple imputation.

Let us discuss profile likelihood (Clayton and Hills 1993, Welsh 1996) first. For

each component βPi of the measurement parameter vector βP , the profile likelihood

is constructed by keeping βPi fixed and maximizing the observed data log-likelihood

`(βP ) =
N∑

i=1

c∑

j=1

(
c∑

k=1

Zi2jk log νi2jk(β
P ,αP ) + Zi1j log νi1j(β

P ,αP )

)

with respect to the remaining parameters. In particular, lower and upper bounds βPil

and βPiu of a 95% confidence interval for β̂Pi are found by solving

2(`(β̂
P
) − `(β̂

P

(i))) = χ2
1(0.05), where β̂

P

(i) is the constrained maximization over

βPi = βPil or βPi = βPiu and χ2
1(0.05) is the 95% quantile of the χ2 distribution

with a single degree of freedom. The advantage of profile likelihood is that it is able

to reflect asymmetry in the log-likelihood function.

Alternatively, multiple imputation (see Section 3.2.2) can be used to construct

an asymptotic covariance matrix for β̂
P
, from which asymptotic 95% confidence

intervals readily follow.

1. Draw γ∗ from the posterior distribution of γ. In our case, the vector γ are just

the parameters of interest βP , and we approximate the posterior distribution

by a normal.

2. Draw Zc
i from f(Zc

i |Zi,γ
∗). This is most easily done by using a unifom ran-

dom number generator (see Section 3.2.2) to divide Zi1j over the cells Zc
i1jk,

k = 1, . . . , c.

3. Use the completed data Zc
i and the model to estimate the parameter of interest

βP∗ and its variance Σ(βP∗), called the within-imputation variance.

These three steps are repeated independentlyM times, resulting in βP∗
m , Σ(βP∗

m ),

m = 1, . . . ,M .
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Finally, we combine these estimates as described in Section 3.2.2. Since in our

case the number of imputations is large, we can certainly rely on the corresponding

normal approximation to obtain 95% confidence intervals.

These two methods do not need to give the same results for the variances. Apart

from sampling variation, introduced through multiple imputation, and different ref-

erence distribution approximations, the main difference is that multiple imputation

based confidence intervals are symmetric by construction, while profile likelihood

confidence intervals are not.

6.3 Analysis of Fluvoxamine Data

We will analyse the data presented in Section 2.1. The observations at times 2 and 5

will be used. Since we will use the covariates as well, only 293 patients are included

in the study. The outcomes can be found in Table 2.4.

6.3.1 Selection Modelling for Side Effects

Table 6.1 represents parameter estimates and asymptotic confidence intervals for

a selection model including age, sex and psychiatric antecedents, both into the

marginal measurement model as well as in the logistic model for dropout. Note that

age is a continuous covariate, while the other two are dichotomous. To allow for

MAR, the first response is also entered in the dropout model. The association is

modelled in terms of a constant log odds ratio. The model leads to the marginal

log odds of no side effects at both occasions, and the log of the probability of no

dropout.

In the marginal model, sex and antecedents seem to have little effect, while age

is borderline and its coefficients at both measurement occasions are very similar.

Likewise, age and antecedents add little to the dropout model, and further sex and

the outcome at the first occasion are borderline, albeit at different sides of the

critical level. The association between both measurements, even with adjustment of

the marginal regression for covariate effects, remains very high, with an odds ratio

of exp(2.038) = 7.675.
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Table 6.1: Fluvoxamine Data, Side Effects: Selection Model (full)

Parameter Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

intercept 0.786 -0.083 1.654 1.432 0.397 2.467

age (/30) -0.669 -1.218 -0.119 -0.676 -1.318 -0.034

sex -0.318 -0.811 0.175 0.254 -0.337 0.846

antecedents 0.134 -0.366 0.633 -0.057 -0.649 0.536

Association

log odds ratio 2.038 1.335 2.740

Dropout Model

intercept 1.583 0.571 2.595

previous -0.556 -1.119 0.007

age (/30) -0.261 -0.874 0.352

sex 0.608 0.052 1.164

antecedents -0.254 -0.836 0.327

Some simplification of the model is clearly necessary. A backward selection

procedure was followed on the measurement and dropout processes separately. At

each step, one or two parameters were removed based on a likelihood ratio test.

Parameters were removed in the following order. For the measurement model: both

antecedents effects and both sex effects were removed. Subsequently, the two age

parameters were combined into a common age effect. For the dropout model: age

and antecedents were removed. The result is shown in Table 6.2. From this model, it

is seen that the probability of side effects is higher at the first measurement occasion

than at the last one, and increases with age. In particular, for an increase of 1 year,

the odds of side effects increases with a factor exp(0.664/30) = 1.022, because age

was divided by 30 for ease of display of the estimates. The probability of dropout is

higher if side effects are observed at the first occasion, and is higher for males than



82 Chapter 6 : Selection Models and Pattern-Mixture Models

Table 6.2: Fluvoxamine Data, Side Effects: Selection Model (reduced)

Parameter Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

intercept 0.661 -0.043 1.365 1.560 0.823 2.297

common age (/30) -0.664 -1.141 -0.188

Association

log odds ratio 1.956 1.270 2.642

Dropout Model

intercept 1.085 0.547 1.624

previous -0.584 -1.140 -0.028

sex 0.568 0.025 1.110

for females. In particular, the dropout probabilities are 0.256 (0.161) for females

with (without) previous side effects, and 0.377 (0.253) for males with (without) side

effects. The association, as well as the other parameters, except for the intercept,

are similar to the ones found in Table 6.1.

Figure 6.1 plots age versus the probability of side effects on the first, the last, and

on either occasion (union probabilities). Each plot shows the response for males and

females as predicted by the model, labelled marginal (male) and marginal (female).

As sex has disappeared from the marginal model, both profiles obviously coincide.

From the predicted probabilities ν̂cidjk, we can compute the response profile for the

completers and dropout groups separately, also shown in these plots. Because sex

is part of the dropout model, the curves for males and females separate in this case.

Even though the marginal probabilities for males and females are the same, the

chance of side effects is higher for males in both groups separately.



Section 6.3 : Analysis of Fluvoxamine Data 83

Figure 6.1: Fluvoxamine Data, Selection Model: Probabilities of Side Effects w.r.t.

Age (a) at the First Occasion, (b) at the Last Occasion, (c) at Any Occasion

6.3.2 Pattern-Mixture Modelling for Side Effects

For the pattern-mixture approach, the parameter estimates and confidence intervals

for the variables age, sex and antecedents can be found in Table 6.3. The model

is parametrized as follows: intercepts and covariate effects are given for the com-

plete observations, together with the differences between effects for incomplete and

complete observations. The latter ones would be zero if the distribution among

completers would equal the distribution among dropouts. This model is used for

the first as well as for the last observation. A constant log odds ratio is assumed for
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the association between both measurements. The confidence intervals are calculated

using profile likelihood, and using multiple imputation. For the multiple imputation

technique, the results are given for 100 imputations. We have also calculated the

confidence intervals for 1000 and 4100 imputations; the differences were minor, but

of course the computing time increased accordingly. Although some differences were

anticipated, both methods to calculate confidence intervals gave approximately the

same results. The same variables are used to fit the dropout model, and because

the data needed to estimate this model are complete, we have calculated confidence

intervals based on the asymptotic variance. Although multiple imputation is only

performed to estimate the precision, we also display the corresponding parameter

estimates as an extra indication for convergence of the algorithm.

Antecedents and sex have nearly no effect on the measurement model, but the sex

parameter for the first measurement gives a borderline influence. Age has an effect

on the measurement outcomes, but there is no difference between this effect for the

complete and incomplete observations. The association between both measurements

is very strong. The odds ratio is exp(2.038) = 7.675. Age and antecedents have no

effect on the dropout model, but sex has.

Again, we simplified our model using a backward selection procedure. The selec-

tion was based on a likelihood ratio test. For the measurement model, we dropped

antecedents , the additional age effect for the incomplete observations, and all the sex

effects. Finally, a joint age effect for both time points is assumed. In the dropout

model, antecedents and age were removed. Sex was kept, although it is borderline.

The final model can be found in Table 6.4.

From this model one can see that the probability of dropout is higher for males

than for females: 0.253 and 0.168 respectively. The probability of having side effects

is higher at the first occasion than at the last, and increases for those who did not

show up at the last visit. This probability also increases with age. For an increase

of 1 year, the odds of having side effects increases with 1.022. The association is

similar to its value in the full model, found in Table 6.3.

Figure 6.2 plots age versus the probability of having side effects at the first, the

last, and at either occasion. We have plotted the responses for males and females
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Table 6.3: Fluvoxamine Data, Side Effects: Pattern-Mixture Model, Profile Likeli-

hood (PL) and Multiple Imputation (MI) (full)

Parameter Method Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

Complete Observations

intercept PL 1.296 0.289 2.339 1.664 0.616 2.767

MI 1.296 0.268 2.325 1.663 0.596 2.731

age (/30) PL -0.849 -1.519 -0.203 -0.756 -1.440 -0.091

MI -0.849 -1.500 -0.198 -0.756 -1.414 -0.097

sex PL -0.593 -1.189 -0.007 0.127 -0.497 0.739

MI -0.593 -1.182 -0.004 0.127 -0.483 0.737

antecedents PL 0.222 -0.353 0.805 -0.016 -0.634 0.594

MI 0.222 -0.357 0.800 -0.016 -0.621 0.589

Incomplete Minus Complete Observations

intercept PL -2.151 -4.300 -0.084 -0.913 -4.376 3.204

MI -2.156 -4.224 -0.087 -1.018 -4.393 2.357

age (/30) PL 0.869 -0.396 2.142 0.366 -1.845 2.435

MI 0.871 -0.396 2.139 0.395 -1.503 2.292

sex PL 0.879 -0.268 2.050 0.382 -1.413 2.236

MI 0.879 -0.274 2.033 0.347 -1.477 2.171

antecedents PL -0.234 -1.428 0.986 -0.107 -2.271 1.802

MI -0.234 -1.439 0.970 -0.012 -1.858 1.834

Association

log odds ratio PL 2.038 1.354 2.789

MI 2.065 1.346 2.784

Dropout Model, Confidence Intervals Based on Asymptotic Variance (AV)

intercept AV 1.390 0.450 2.370

age (/30) AV -0.349 -0.953 0.255

sex AV 0.559 0.010 1.108

antecedents AV -0.232 -0.809 0.345

for both the complete and incomplete groups, as predicted by the model. Also the

marginal probabilities are calculated and plotted. Because sex is not part of the

dropout model, the plots for males and females coincide if we look at the completers

and dropouts separately. But if we look at the marginal probabilities, a difference
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Table 6.4: Fluvoxamine Data, Side Effects: Pattern-Mixture Model, Profile Likeli-

hood (PL) and Multiple Imputation (MI) (reduced)

Parameter Method Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

Complete Observations

intercept PL 0.762 0.036 1.478 1.590 0.846 2.333

MI 0.747 0.029 1.466 1.576 0.836 2.315

Incomplete Minus Complete Observations

intercept PL -0.499 -1.065 0.050 -0.268 -1.123 0.704

MI -0.499 -1.055 0.056 -0.275 -1.071 0.521

Common Age Effect

PL -0.650 -1.132 -0.162

MI -0.639 -1.121 -0.158

Association

log odds ratio PL 1.977 1.291 2.682

MI 1.943 1.263 2.623

Dropout Model, Confidence Intervals Based on Asymptotic Variance (AV)

intercept AV 0.766 0.353 1.179

sex AV 0.517 -0.021 1.056

appears. Marginally we can see that the probability of side effects is higher for males

than for females. This difference is due to the fact that sex is part of the dropout

model.

Finally, note that the pattern-mixture model assumed a common odds ratio

among completers and dropouts. This implies that the conditional distribution of

the missing second measure follows the same conditional distribution given the first

variable as do the complete variable. This ACMV/CCMV restriction, as discussed

in Section 6.2.4, is equivalent to the MAR assumption in the selection model.
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Figure 6.2: Fluvoxamine Data, Pattern-Mixture Model: Probabilities of Side Effects

w.r.t. Age (a) at the First Occasion, (b) at the Last Occasion, (c) at Any Occasion

6.3.3 Comparison for Side Effects

Both reduced models include age as a predictor for side effects. For the selection

model, this effect is the same at both measurement occasions. The same is true for

the pattern-mixture model and although it could in principle differ for completers

and dropouts, it is the same for both subgroups. Due to the latter fact, the estimates

of age effects in both frameworks become comparable and their numerical values are

indeed very close. By construction, the association parameters are also comparable;

they are certainly of the same magnitude. As for the dropout models, they are
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different because only in a selection model can one include measurements into the

dropout part. The sex effect is similar in both models, but its effect is borderline.

Let us now compare Figures 6.1 and 6.2. Qualitatively, most of the conclusions

are very similar. But because the frameworks differ in the choice of distributions

that are modelled directly, slight differences are to be expected. For example, in

our selection model, the marginal curves for males and females coincide, whereas

the response pattern specific curves for males and females coincide in the pattern-

mixture version. This can be explained as follows. In our selection model, the

measurement distribution is independent of sex, but the conditional curves are based

upon the probabilities

νcjk|d =
µcjkφ

c
d|jk∑2

d=1 µ
c
jkφ

c
d|jk

and since φcd|jk depends on sex, the curves necessarily do too. A similar argument

explains why the marginal curves are sex dependent in the pattern-mixture model.

However, even for the curves that differ with sex , the discrepancy is very small.

A noteworthy feature is that the marginal probability of side effects is slightly

higher for males than for females in the pattern-mixture model (Figure 6.1) and equal

in the selection model, whereas the conditional probability of side effects given the

non-response pattern (completers and dropouts) is higher for males than for females

in the selection model (Figure 6.2), and equal in the pattern-mixture model. Of

course, we should not forget that the differences between separating curves are not

big, since sex disappeared from the measurement models in both frameworks.

It is important to note that the pattern-mixture model can yield valuable insight

in its own right. Specifically, the probability of side effects, after adjusting for age,

is higher in the dropout group than in the completers group, both at the first as

well as at the last measurement occasion. For someone aged 30 say, the probabilities

of side effects at the first measurement occasion for in the completers’ group and

the dropouts’ groups are 0.4720 and 0.5956 respectively. At the last measurement

occasion these probabilities are 0.2809 and 0.3380 respectively. These values can

be obtained in a selection framework as well, but less straightforwardly. Another

advantage of the pattern-mixture model is that the model building can be done for

the different dropout groups separately. For example, if sex would be a prognostic
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Table 6.5: Fluvoxamine Data, Therapeutic Effect: Selection Model (full)

Parameter Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

intercept -3.282 -5.126 -1.438 0.638 -0.372 1.647

age (/30) 0.272 -0.812 1.355 0.169 -0.468 0.806

sex 0.883 -0.265 2.031 -0.243 -0.839 0.352

antecedents -0.686 -1.656 0.284 -0.363 -0.948 0.222

Association

log odds ratio 2.009 -0.046 4.064

Dropout Model

intercept 0.701 -0.653 2.055

previous 0.725 -0.270 1.719

age (/30) -0.338 -0.944 0.269

sex 0.603 0.048 1.158

antecedents -0.270 -0.852 0.312

factor for side effects in the dropout group but not in the completers group, this is

easily incorporated in the pattern-mixture analysis.

6.3.4 Selection Modelling for Therapeutic Effect

For the therapeutic effect, the same covariates as for the analysis of the side effects

are included: age, sex and psychiatric antecedents. The parameter estimates and

asymptotic confidence intervals are represented in Table 6.5. To allow for MAR,

the first response is also entered in the dropout model. The association is again

modelled in terms of a constant log odds ratio.

In the marginal measurement model, only the intercepts seem to have an effect

on the therapeutic effect. The association between both measurements, even with

adjustment of the marginal regression for covariate effects, remains very high, with

an odds ratio of exp(2.009) = 7.456. In the dropout model, only the sex effect seems
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Table 6.6: Fluvoxamine Data, Therapeutic Effect: Selection Model (reduced)

Parameter Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

intercept -2.669 -3.134 -2.204 0.469 0.198 0.740

Association

log odds ratio 2.016 0.114 3.918

Dropout Model

intercept 1.085 0.821 1.349

to be significant, although borderline.

But to come to more thorough conclusions, a backwards selection procedure

was performed, based on the likelihood ratio test. The following parameters were

removed: for the measurement model the age, sex and antecedents effects at both

occasions; for the dropout model the age, antecedents , previous and sex effects. So

only the intercepts and the association remain in the model. This result is shown

in Table 6.6. From this model, it is seen that the probability of therapeutic effect

is higher at the first measurement occasion (0.926) than at the last one (0.385).

The dropout probability is 0.747, independent of the previous measurement. All

these probabilities are independent from the patients’ age, gender and psychiatric

antecedents. The association is similar to the one found in Table 6.5.

6.3.5 Pattern-Mixture Modelling for Therapeutic Effect

Next, we analysed the therapeutic effect using a pattern-mixture model. The pa-

rameter estimates and confidence intervals for the variables age, sex and antecedents

in the pattern-mixture model can be found in Table 6.7.

The model is parametrized as follows: intercepts and covariate effects are given

for the complete observations, together with the differences between effects for in-

complete and complete observations. The latter ones would be zero if the distribu-
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Table 6.7: Fluvoxamine Data, Therapeutic Effect: Pattern-Mixture Model, Profile

Likelihood (PL) and Multiple Imputation (MI) (full)

Parameter Method Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

Complete Observations

intercept PL -4.296 -7.291 -1.809 0.566 -0.588 1.743

MI -4.297 -6.644 -1.951 0.566 -0.447 1.580

age (/30) PL 0.951 -0.608 2.514 0.213 -0.524 0.968

MI 0.951 -0.376 2.278 0.213 -0.428 0.855

sex PL 0.431 -1.017 2.245 -0.281 -0.978 0.397

MI 0.431 -0.931 1.792 -0.281 -0.879 0.318

antecedents PL -0.415 -1.811 1.063 -0.334 -1.015 0.331

MI -0.415 -1.648 0.819 -0.334 -0.922 0.254

Incomplete Minus Complete Observations

intercept PL 2.604 -2.394 7.109 0.323 -4.188 6.994

MI 2.645 -1.366 6.655 0.493 -3.363 4.350

age (/30) PL -1.779 -4.664 0.855 -0.170 -3.171 2.852

MI -1.810 -4.251 0.632 -0.278 -2.595 2.039

sex PL 1.365 -1.409 5.231 0.143 -2.591 2.612

MI 1.372 -1.191 3.935 0.205 -1.647 2.057

antecedents PL -0.807 -3.351 1.575 -0.138 −∞ 2.387

MI -0.813 -2.931 1.305 -0.196 -2.338 1.946

Association

log odds ratio PL 2.018 0.137 5.561

MI 2.132 0.020 4.243

Dropout Model, Confidence Intervals Based on Asymptotic Variance (AV)

intercept AV 1.390 0.450 2.370

age (/30) AV -0.349 -0.953 0.255

sex AV 0.559 0.010 1.108

antecedents AV -0.232 -0.809 0.345

tion among completers would equal the distribution among dropouts, i.e., MCAR.

A similar model is used for the first as well as for the last observation. A constant

log odds ratio is assumed for the association between both measurements. The

confidence intervals are calculated using profile likelihood, and using multiple impu-
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tation. Although multiple imputation is only performed to estimate the precision,

the parameter estimates are produced as a by-product and hence they are displayed

as an extra indication for convergence of the algorithm. Results for the two ap-

proaches are comparable except for the striking difference in the case of antecedents

(last measurement, difference between both patterns), where profile likelihood yields

an unbounded interval, reflecting that one tail of the likelihood levels off at a value

close to the maximum. For the multiple imputation technique, the results are given

for 100 imputations. As a check, we also calculated the confidence intervals for 10

and 1000 imputations, leading to negligible differences. These results can be found

in Table 6.8.

The same variables are used to fit the dropout model, and because the data

needed to estimate this model are complete, we have calculated confidence intervals

based on the asymptotic variance.

In the measurement model, antecedents , age and sex have nearly no effect.

The association between both measurements is very strong. The odds ratio is

exp(2.018) = 7.523. Age and antecedents have no effect on the dropout model,

but sex has a (borderline) significant influence.

We reduced our model using a backward selection procedure. For the mea-

surement model, we dropped antecedents , age and sex effects for the first and last

observations, both for the complete observations and for the difference between the

incomplete and complete observations. In the dropout model, antecedents , age and

sex were removed, although the latter was borderline. The final model can be found

in Table 6.9.

The probability of therapeutic effect is much higher at the first occasion than

at the last, and decreases a little for those who did not show up at the last visit:

for a person with two observations, the probabilities of therapeutic effect at the

first and last observations are respectively 0.945 and 0.388; for a person who drops

out after the first measurement, these probabilities are respectively 0.905 and 0.366.

The dropout probability is 0.747. The association is similar to its value in the full

model, found in Table 6.7.



Section 6.3 : Analysis of Fluvoxamine Data 93

Table 6.8: Fluvoxamine Data, Therapeutic Effect: Pattern-Mixture Model, Multiple

Imputation (MI) (full)

Parameter AV MI(10) MI(100) MI(1000)

Completers, First Measurement

intercept -4.296(1.197) -4.295(1.197) -4.297(1.197) -4.297(1.197)

age (/30) 0.951(0.677) 0.951(0.677) 0.951(0.677) 0.951(0.677)

sex 0.431(0.695) 0.431(0.695) 0.431(0.695) 0.431(0.695)

antecedents -0.415(0.629) -0.416(0.629) -0.415(0.629) -0.415(0.629)

Completers, Last Measurement

intercept 0.566(0.517) 0.566(0.517) 0.566(0.517) 0.566(0.517)

age (/30) 0.213(0.327) 0.213(0.327) 0.213(0.327) 0.213(0.327)

sex -0.281(0.305) -0.281(0.305) -0.281(0.305) -0.281(0.305)

antecedents -0.334(0.300) -0.334(0.300) -0.334(0.300) -0.334(0.300)

Dropouts - Completers, First Measurement

intercept 2.604(2.040) 2.611(2.061) 2.645(2.046) 2.629(2.051)

age (/30) -1.779(1.236) -1.764(1.250) -1.810(1.246) -1.802(1.246)

sex 1.365(1.303) 1.374(1.308) 1.372(1.308) 1.407(1.315)

antecedents -0.807(1.071) -0.868(1.080) -0.813(1.081) -0.849(1.081)

Dropouts - Completers, Last Measurement

intercept 0.323(1.045) -0.177(1.842) 0.493(1.968) 0.328(1.789)

age (/30) -0.170(0.638) -0.144(1.019) -0.278(1.182) -0.150(1.088)

sex 0.143(0.583) 0.081(1.085) 0.205(0.945) 0.112(0.958)

antecedents -0.138(0.621) 0.289(1.193) -0.196(1.093) -0.155(1.052)

Association

log odds ratio 2.018(0.853) 1.992(1.051) 2.132(1.077) 2.140(1.091)

Dropout Model

intercept 1.390 (0.500)

age (/30) -0.349 (0.308)

sex 0.559 (0.280)

antecedents -0.232 (0.294)



94 Chapter 6 : Selection Models and Pattern-Mixture Models

Table 6.9: Fluvoxamine Data, Therapeutic Effect: Pattern-Mixture Model, Profile

Likelihood (PL) and Multiple Imputation (MI) (reduced)

Parameter Method Estimate Confidence Interval Estimate Confidence Interval

Lower Upper Lower Upper

Measurement Model

First Measurement Last Measurement

Complete Observations

intercept PL -2.848 -3.588 -2.241 0.455 0.147 0.770

MI -2.848 -3.430 -2.266 0.455 0.183 0.727

Incomplete Minus Complete Observations

intercept PL 0.589 -0.593 1.677 0.093 -1.021 1.540

MI 0.589 -0.383 1.561 0.047 -0.843 0.937

Association

log odds ratio PL 1.992 0.154 5.550

MI 2.099 0.059 4.139

Dropout Model, Confidence Intervals Based on Asymptotic Variance (AV)

intercept AV 1.085 0.821 1.349

6.3.6 Comparison for Therapeutic Effect

The reduced measurement models in both frameworks are similar. No effect of age,

sex or antecedents remain in the model. Only the intercepts were kept. By con-

struction, the association parameters are comparable as well. The dropout models

are exactly the same. Once the first observation is taken out of the model, both

dropout models are equal.

It is important to note that the pattern-mixture model can yield valuable insight

in its own right. Specifically, the probability of therapeutic effect is higher in the

dropout group than in the completers group, both at the first as well as at the last

measurement occasion. Since these differences are not significant, we know there is

no difference in therapeutic effect between the completers and the dropout group.

These values can be obtained in a selection framework as well, but less straightfor-

wardly. Another advantage of the pattern-mixture model is that the model building
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can be done for the different dropout groups separately.

6.3.7 Different Missing Data Mechanisms

For the pattern-mixture model, we assumed MAR as missing data mechanism to

complete the data. Restricting this further to MCAR, we can complete the data in

essentially two ways: with or without covariance dependance. We have done this

for the side effects, leading to the results displayed in Table 6.10.

Since the observed data remain the same, the dropout models coincide. Fur-

thermore, the parts based on the observed data (first and second margin for the

completers, first margin for the dropouts) are very alike. The only differences ap-

pear in the parts where the ’filled in’ data is used: the second margin for the dropouts

(or in this case, the difference in second margin between the dropouts and the com-

pleters), and the association. Under MAR, the association is assumed to be the

same for both the completers’ and the dropout group, but the MCAR-assumptions

neglects this association, which brings the log odds ratio much closer to 1 (=no asso-

ciation). Also in the fourth part (difference in second margin), the results differ for

the three methods: assuming ’raw’ MCAR, this part only depends on the random

number generator used to fill in values; if one allows dependence on the covariates,

this fourth part has nearly no influence, since the dependence is already captured

in the second margin for the completers, which was used to fill in the data.

6.4 Conclusion

While selection models are much more prominent in the literature than pattern-

mixture models, this chapter has shown that fitting pattern-mixture models is no

more complex than fitting selection models. Discordant views in this matter are

presumably inspired by the discrepancy between the volume of research devoted to

both frameworks. Further, identifying restrictions in the pattern-mixture case play

a very similar role to the modelling assumptions in the selection case. Indeed, for

instance assuming MAR implies a particular form for the dropout mechanism in

selection models and dictates a set of restrictions in pattern-mixture modelling.
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Table 6.10: Fluvoxamine Data, Side Effects: Different Pattern-Mixture Models (full)

Parameter MCAR MCAR(X) MAR

Completers, First Measurement

intercept 1.294 (0.525) 1.294 (0.525) 1.296 (0.525)

age (/30) -0.848 (0.332) -0.848 (0.332) -0.849 (0.332)

sex -0.594 (0.301) -0.594 (0.301) -0.593 (0.301)

antecedents 0.224 (0.295) 0.224 (0.295) 0.222 (0.295)

Completers, Last Measurement

intercept 1.669 (0.545) 1.669 (0.545) 1.664 (0.545)

age (/30) -0.761 (0.336) -0.761 (0.336) -0.756 (0.336)

sex 0.126 (0.312) 0.126 (0.311) 0.127 (0.311)

antecedents -0.010 (0.309) -0.010 (0.309) -0.012 (0.309)

Dropouts - Completers, First Measurement

intercept -2.144 (1.055) -2.162 (1.055) -2.151 (1.055)

age (/30) 0.862 (0.647) 0.874 (0.647) 0.868 (0.647)

sex 0.876 (0.589) 0.881 (0.589) 0.879 (0.589)

antecedents -0.229 (0.614) -0.234 (0.614) -0.234 (0.614)

Dropouts - Completers, Last Measurement

intercept -0.682 (1.035) 0.093 (1.088) -3.145 (1.122)

age (/30) 0.286 (0.629) -0.056 (0.653) 1.148 (0.674)

sex -0.314 (0.572) -0.016 (0.593) -0.381 (0.617)

antecedents -0.020 (0.599) 0.004 (0.623) 0.126 (0.653)

Association

log odds ratio 1.492 (0.285) 1.479 (0.292) 2.038 (0.309)

Dropout Model

intercept 1.390 (0.500) 1.390 (0.500) 1.390 (0.500)

age (/30) -0.349 (0.308) -0.349 (0.308) -0.349 (0.308)

sex 0.559 (0.280) 0.559 (0.280) 0.559 (0.280)

antecedents -0.232 (0.294) -0.232 (0.294) -0.232 (0.294)

We analysed categorical outcomes using a Dale model. Both frameworks lead to

similar results, and hence a particular framework can be chosen, depending on the

scientific interest. In case one is interested in the population as a whole, a selection

model might be the natural choice. However, investigators who would like to explore
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differences among subgroups that are identified by their response patterns, should

consider fitting pattern-mixture models instead. The latter situation could be of

interest to differentiate therapies between subgroups. For instance, if males would

suffer more from dropout than females, one may want to establish sex-dependent

treatment protocols.

Further, it has been argued that fitting both a selection model as well as a

pattern-mixture model can be a valuable sensitivity analysis tool. In our example,

the conclusions reached under both formalisms are virtually identical, so that more

confidence can be put into them. This points to the use of pattern-mixture models

to assess sensitivity of selection models. Even without applying restrictions, pattern-

mixture models are useful to assess the fit of an MAR selection model. Indeed, should

the MAR assumption be violated, then an ignorable selection model is invalid, but an

unstructered pattern-mixture model will correctly reflect differences between models

for different patterns.

A sensitivity analysis based on a selection model and a pattern-mixture model,

but then for continuous data, can be found in Chapter 8.





Chapter 7

Pseudo-Likelihood Estimation for

a Combined Selection and

Pattern-Mixture Model

In this chapter we develop pseudo-likelihood methods for the estimation of param-

eters in a model that is specified in terms of both selection modelling and pattern-

mixture modelling quantities (Molenberghs, Michiels and Kenward 1998). When

scientific interest focuses on both the structure of the non-response mechanism and

the behavior of subjects given their response pattern, it is natural to study both

of the quantities f(r|y) and f(y|r) simultaneously. This idea was formulated also

by Holland (1986) and Wainer (1989), where essentially, apart from the observable

parts of f(y|r), one also models f(r|y). Clearly, f(r|y) and f(y|r) cannot be

combined straightforwardly into a likelihood function, except in the trivial MCAR

case. When both components are derived from the same joint distribution, it follows

from Gelman and Speed (1993) that they uniquely determine this distribution. We

will consider two cases: (1) the model is specified directly from a joint model for

the measurement and dropout processes; (2) conditional models for the measure-

ment process given dropout and vice versa are specified directly. In the latter case,

compatibility constraints to ensure the existence of a joint density are derived.

The goal of this chapter is to present methods for statistical inference in such

conditionally specified distributions, subject to their non-response pattern. Note

99
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that conditionally specified distributions are encountered in other areas of statistics

as well. Standard applications are found in spatial statistics (Cressie 1991; Ge-

man and Geman 1984), where the Hammersley-Clifford theorem (Besag 1974) is

used to ensure existence of a valid probability model. Arnold, Castillo and Sara-

bia (1992) give a comprehensive treatment of conditionally specified distributions.

But both of their constraints are of no use if one wants to specify the conditional

models directly. Therefore new compatibility constraints are defined. We will focus

on pseudo-likelihood estimation (Arnold and Strauss 1991; Geys, Molenberghs and

Ryan 1997, 1999), a method that can operate directly on the conditional distribu-

tions.

In Section 7.1, pseudo-likelihood is reviewed and tailored to the needs of incom-

plete data problems. Section 7.2 illustrates these ideas using a trivariate loglinear

model, in which case the results from the pseudo-likelihood are exactly the maxi-

mum likelihood estimates, as is shown in Theorem 3. We will show in Section 7.3

how progress is still possible when the conditional distributions are not compatible

(i.e., do not necessarily correspond to a joint probability model). These methods

are used in Section 7.4, where the fluvoxamine data introduced in Chapter 2 are

analysed.

7.1 Pseudo-Likelihood

7.1.1 Definition and Properties

The full data log-likelihood can be written as

`(θ) ∝
N∑

s=1

ln f(ys, rs|Xs, θ).

As in Section 3.1.2, the full density can be written as

f(ys, rs|Xs, θ) = f(ys|Xβ
s ,β)f(rs|ys,Xα

s ,α) (7.1)

in a selection modelling framework, and for a pattern-mixtuire model as

f(ys, rs|Xs, θ) = f(ys|rs,Xβ
s ,β)f(rs|Xα

s ,α). (7.2)
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One is often interested in both the dependence of the missing data process on

the responses f(rs|ys,Xα
s ,α) as well as in the pattern-specific average profiles

f(ys|rs,Xβ
s ,β). Using the joint distribution, a choice has to be made, implying

that one of these densities is described in terms of simple parameters, while the

other has to be calculated using, for example, Bayes theorem. Therefore, pseudo-

likelihood will be a useful alternative for full likelihood estimation. In our case, the

log-pseudo-likelihood can be written as

p`(θ) ∝
N∑

i=s

ln
[
f(rs|ys,Xα

s ,α)f(ys|rs,Xβ
s ,β)

]
.

Not all choices for the conditional models lead to a pseudo-likelihood that corre-

sponds to a probability model. Arnold, Castillo and Sarabia (1992) discuss necessary

and sufficient conditions in the case of two variables: to ensure the existence of an

underlying likelihood, it is necessary to be able to write the ratio of the two com-

ponents of the pseudo-likelihood as the product of two functions where the first

one depends solely on the first component, and the other solely on the second com-

ponent. In our situation, these two components are replaced by the measurement

vector and the vector of dropout indicators respectively:

f(y|r)

f(r|y)
= u(y)v(r).

These constraints are clearly necessary. To indicate that they are sufficient note

that, given the functions u and v, the marginal density for y can be expressed as:

u(y)∫ ∫
f(r|y)u(y)drdy

,

with a similar expression for the marginal density of r. We will refer to these

constraints as the compatibility constraints.

Arnold and Strauss (1991) have shown that such a pseudo-likelihood yields

consistent point estimators. To estimate precision, purely model based standard

errors are unacceptable, since they do not take into account that some informa-

tion is used more than once and that, due to the compatibility constraints, β and

α are not necessarily functionally independent. This results in an underestima-

tion of the variance, and therefore a correction is needed to get consistent stan-

dard errors. This correction is made by calculating the robust variance estimator
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(Michiels and Molenberghs 1995, 1997; Geys, Molenberghs and Ryan 1997, 1999):

let λ be the union of the parameters β and α. Write the log-pseudo-likelihood

as p`(λ) =
∑N
s=1 p`s(λ), where p`s is the contribution of the s-th subject to the

log-pseudo-likelihood. Then
√
N(λ̂ − λ) converges in distribution to the normal

distribution N(0,J(λ)−1K(λ)J(λ)−1), where

J(λ) = E

(
∂2p`(λ)

∂λ∂λ′

)

and

K(λ) =
N∑

s=1

E

((
∂p`s(λ)

∂λ

)(
∂p`s(λ)

∂λ

)′)
.

Similar ideas have been used in the context of generalized estimating equations

(Liang and Zeger 1986). We have used this robust estimator also in Section 4.4.

7.1.2 Missing Data Mechanisms

Let us adapt the taxonomy of missing data mechanisms to the case of pseudo-

likelihood, still restricting attention to dropout. The notation of these models is sim-

ilar to the one in the previous chapter. If we assume MCAR, the pseudo-likelihood

reduces to f(d)f(y), and hence to the likelihood. MAR implies f(d|y) = f(d|yo).
As shown in Chapter 5, this is equivalent to available case missing value restrictions

(ACMV), implying that, for any j ≤ t:

f(ys,t+1|ys1, . . . , yst, ds = j) = f(ys,t+1|ys1, . . . , yst, ds ≥ t+ 1) (7.3)

= f(ys,t+1|ys1, . . . , yst). (7.4)

Using this assumption, the pseudo-likelihood reduces to

f(d|y)f(y|d)

= f(d|y)
N∏

s=1




n∏

j=1


f(ys1 , . . . , ysj|ds = j)

n−1∏

t=j

f(ys,t+1 |ys1, . . . , yst, ds = j)






= f(d|yo)

N∏

s=1




n∏

j=1


f(ys1, . . . , ysj|ds = j)

n−1∏

t=j

f(ys,t+1|ys1, . . . , yst, ds ≥ t + 1)




 . (7.5)

All quantities in (7.5) can be calculated from the observed data.
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7.2 A Trivariate Loglinear Model

To illustrate these concepts, consider the trivariate loglinear model (Cox 1972)

f(y1, y2, d) =
1

C
exp(α1y1 + α2y2 + α3d+ α4y1y2 + α5y1d + α6y2d+ α7y1y2d),

(7.6)

where C is the normalizing constant. For simplicity, subscripts s are suppressed.

Assume the first outcome, Y1, is always observed, and the second, Y2, is possibly

missing. The dropout indicator D is 1 if Y2 is observed, and 0 otherwise. Both

Y1 and Y2 are binary. Based on this model, we can calculate the two conditional

densities needed for the pseudo-likelihood

f(y1, y2|d) =
exp(α1y1 + α2y2 + α4y1y2 + α5y1d + α6y2d + α7y1y2d)

1 + exp(α1 + α5d) + exp(α2 + α6d) + exp(α1 + α2 + α4 + α5d + α6d + α7d)
,

(7.7)

f(d|y1, y2) =
exp(α3d + α5y1d+ α6y2d+ α7y1y2d)

1 + exp(α3 + α5y1 + α6y2 + α7y1y2)
. (7.8)

Note that, while these full conditionals have a simple form, the marginals such as

f(y1, y2) or f(d) do not, rendering the construction of both selection and pattern-

mixture models starting from (7.6) complicated. Since (7.7) and (7.8) stem from

the same joint distribution, the compatibility constraints are automatically fulfilled.

Depending on the missing data mechanism, some of the parameters in (7.7) and

(7.8) will be zero. Under the MAR/ACMV assumptions, the following conditions

have to be satisfied: f(y2|y1, d) = f(y2|y1) and f(d|y1, y2) = f(d|y1). From

f(y2|y1, d) =
exp(α2y2 + α4y1y2 + α6y2d+ α7y1y2d)

1 + exp(α2 + α4y1 + α6d + α7y1d)

and (7.8) it follows that both α6 and α7 need to be 0. Then, the pseudo-likelihood

components reduce to

f(y1, y2|d) =
exp(α1y1 + α2y2 + α4y1y2 + α5y1d)

1 + exp(α1 + α5d) + exp(α2) + exp(α1 + α2 + α4 + α5d)
,

f(d|y1, y2) =
exp(α3d + α5y1d)

1 + exp(α3 + α5y1)
.

We consider four sets of data to illustrate several possible cases. They are displayed

in Table 7.1.
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Table 7.1: Four Sets of Artificial Data. Each time a contingency table for the com-

pleters (Y1 = 0/1, Y2 = 0/1), and an additional contingency table for the dropouts

(Y1 = 0/1) is given.

(a) 50 25

25 50

25

25

(b) 50 25

25 50

50

25

(c) 50 25

25 50

75

25

(d) 80 10

40 20

60

90

We calculated the parameter values for the pseudo-likelihood model, together with

their robust standard errors. These results are shown in Table 7.2. For reference,

we have also included the results of the likelihood analysis. The first three sets of

artificial data have the same counts for the completers, which is reflected in the

equality of the estimates for α2 and α4.

From these results, one can observe that the parameter estimates and standard

errors for the pseudo-likelihood and the likelihood models are exactly the same.

This result is not specific to our datasets. It holds more generally for the trivariate

loglinear model under MAR/ACMV:
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Table 7.2: Parameter Estimates (Standard Errors) for the Artificial Data from Ta-

ble 7.1, based on a Loglinear Model

Data Param. Pseudo-Likelihood Likelihood

(a) α1 -0.6931(0.3367) -0.6931(0.3367)

α2 -0.6931(0.2449) -0.6931(0.2449)

α3 1.0986(0.2309) 1.0986(0.2309)

α4 1.3863(0.3464) 1.3863(0.3464)

α5 0.0000(0.3266) 0.0000(0.3266)

(b) α1 -1.3863(0.3055) -1.3863(0.3055)

α2 -0.6931(0.2449) -0.6931(0.2449)

α3 0.4055(0.1826) 0.4055(0.1826)

α4 1.3863(0.3464) 1.3863(0.3464)

α5 0.6931(0.2944) 0.6931(0.2944)

(c) α1 -1.7918(0.2944) -1.7918(0.2944)

α2 -0.6931(0.2449) -0.6931(0.2449)

α3 0.0000(0.1633) 0.0000(0.1633)

α4 1.3863(0.3464) 1.3863(0.3464)

α5 1.0986(0.2828) 1.0986(0.2828)

(d) α1 0.1178(0.1936) 0.1178(0.1936)

α2 -2.0794(0.3354) -2.0794(0.3354)

α3 0.4055(0.1667) 0.4055(0.1667)

α4 1.3863(0.4430) 1.3863(0.4330)

α5 -0.8109(0.2357) -0.8109(0.2357)
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Theorem 3 For a trivariate loglinear model f(y1, y2, d), assuming missingness is

random (MAR/ACMV), the estimates obtained from the score-equations based on

the pseudo-likelihood f(y1, y2|d)f(d|y1, y2) are equal to the maximum likelihood esti-

mates, obtained from the score-equations from the likelihood.

Proof of Theorem 3

Denote the observed data as nijd, i, j, d ∈ {0, 1,+}, where a ”+” indicates one has

to marginalize over that index. Let i indicate the result of the first, fully observed

outcome; j indicates the result of the second outcome and d indicates the dropout

value: d = 1 corresponds to an observation that has been observed twice; d = 0

indicates that subject dropped out after the first observation. So the observed data

consists of six counts (n001, n011, n101, n111, n0+0, n1+0).

Using the following notation

N1 = 1 + eα2 + eα1 + eα1+α2+α4,

N2 = 1 + eα2 + eα1+α5 + eα1+α2+α4+α5,

N3 = 1 + eα1 + eα2 + eα3 + eα1+α2+α4 + eα1+α3+α5 + eα2+α3 + eα1+α2+α3+α4+α5,

the pseudo-likelihood score-equations can be written as:

n1++ = n++0

eα1 (1 + eα2+α4 )

N1

+n++1

eα1+α5(1 + eα2+α4)

N2

, (7.9)

n+11 + n0+0

eα2

1 + eα2

+ n1+0

eα2+α4

1 + eα2+α4

= n++0

eα2 (1 + eα1+α4 )

N1

+n++1

eα2(1 + eα1+α4+α5)

N2

, (7.10)

n++1 = n0++

eα3

1 + eα3

+ n1++

eα3+α5

1 + eα3+α5

, (7.11)

n111 + n1+0

eα2+α4

1 + eα2+α4

= n++0

eα1+α2+α4

N1

+ n++1

eα1+α2+α4+α5

N2

, (7.12)

2n1+1 = n1++

eα3+α5

1 + eα3+α5

+ n++1

eα1+α5(1 + eα2+α4)

N2

.(7.13)
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Based on the same notation, the likelihood score-equations can be written as:

n1++ =n+++

eα1 (1 + eα2+α4 )(1 + eα3+α5)

N3

, (7.14)

n+11 + n0+0

eα2

1 + eα2

+ n1+0

eα2+α4

1 + eα2+α4

=n+++

eα2 (1 + eα1+α4 + eα3 + eα1+α3+α4+α5)

N3

,(7.15)

n++1 =n+++

eα3 (1 + eα1+α5 + eα2 + eα1+α2+α4+α5)

N3

,(7.16)

n111 + n1+0

eα2+α4

1 + eα2+α4

=n+++

eα1+α2+α4(1 + eα3+α5)

N3

, (7.17)

n1+1 =n+++

eα1+α3+α5(1 + eα2+α4)

N3

. (7.18)

We will prove that, if the pseudo-likelihood score-equations (7.9)–(7.13) are ful-

filled, the likelihood score-equations (7.14)–(7.18) are too.

Equation (7.11) leads to

n++0 = n0++
1

1 + eα3
+ n1++

1

1 + eα3+α5
. (7.19)

Using (7.11) and (7.19), (7.9) can be rewritten as

n0++e
α1(1 + eα2+α4)(1 + eα3+α5)(N2 + eα3+α5N1) = n1++(1 + eα3)A,

where

A = [(1 + eα3+α5)N1N2 − eα1(1 + eα2+α4)(N2 + eα3+2α5N1)]

= (1 + eα2)(N2 + eα3+α5N1).

This leads to

n1++(1 + eα3)(1 + eα2) = n0++e
α1(1 + eα2+α4)(1 + eα3+α5). (7.20)

Based on (7.20), we find that

n0++

1 + eα3
= n+++

1 + eα2

N3
(7.21)

n1++

1 + eα3+α5
= n+++

eα1(1 + eα2+α4)

N3
. (7.22)
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Plugging (7.21) and (7.22) into (7.11), we obtain (7.16). Since N3 = N1 + eα3N2, we

find, using (7.16), that

n++0

N1
=

n+++

N3
, (7.23)

n++1

N2
=

n+++e
α3

N3
. (7.24)

Based on these two equations, (7.14), (7.15) and (7.17) follow immediately from

(7.9), (7.10) and (7.12) respectively. Finally, (7.18) follows from (7.13), (7.22) and

(7.24).

This implies that the pseudo-likelihood estimator satisfies the likelihood equations

and hence coincides with the maximum likelihood estimator. �

The pseudo-likelihood model we used is derived from the joint distribution. This

case will turn out to be convenient when the joint distribution is complex to evaluate

(e.g., due to a complicated normalizing constant), but the conditionals are not. By

using pseudo-likelihood methods instead of likelihood methods, the joint distribution

is avoided or restricted to a single evaluation (e.g., to calculate the joint probabilities

using the estimated parameters). In addition, when the conditionals f(y|d) and

f(d|y) are of interest, the pseudo-likelihood is well-motivated. Another advantage

of the pseudo-likelihood theory can be found in the next section, where we consider

the case when conditionals are constructed directly, without necessarily starting

from a joint distribution.

7.3 No Underlying Joint Density

Suppose we do not want to address the model for f(y1, y2, d) directly. Under the

MAR/ACMV assumption, the pseudo-likelihood reduces to f(d|y1)f(y1|d)f(y2|y1).

Thus, we have to define models for each of these three components. Since we work

with binary data, a natural choice is to assume logistic models. Furthermore, these
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models yield an easy interpretation for their parameters. Thus, suppose:

f(d|y1) =
exp[(α3 + α5y1)d]

1 + exp(α3 + α5y1)
, (7.25)

f(y1|d) =
exp[(α1 + α6d)y1]

1 + exp(α1 + α6d)
, (7.26)

f(y2|y1) =
exp[(α2 + α4y1)y2]

1 + exp(α2 + α4y1)
. (7.27)

Then, the compatibility constraint

f(d|y1, y2)

f(y1, y2|d)
=

f(d|y1)

f(y1|d)f(y2|y1)
= u(y1, y2)v(d)

implies α5 = α6. The Hammersley-Clifford constraints for existence of a valid

joint likelihood (Besag 1974), or the compatibility constraints as defined by Arnold,

Castillo and Sarabia (1992), are of no use here since they assume three full condi-

tional densities. For our pseudo-likelihood, only the components f(d|y1) and f(y2|y1)

are full conditionals, whereas f(y1|d) is marginalized over y2. We use the full con-

ditionals f(d|y1, y2) and f(y1, y2|d), leading to our constraints.

After specifying these conditional models, f(d) and f(y1, y2) can be deduced

from the compatibility constraints and they can be used to fit a pattern-mixture or

a selection model respectively:

f(d) =
exp(α3d)[1 + exp(α1 + α5d)]

1 + exp(α1) + exp(α3) + exp(α1 + α3 + α5)
,

f(y1, y2) =
exp(α1y1)[1 + exp(α3 + α5y1)]

1 + exp(α1) + exp(α3) + exp(α1 + α3 + α5)
.
exp[(α2 + α4y1)y2]

1 + exp(α2 + α4y1)
.

However, these marginal models will often have complicated expressions, suggesting

that pseudo-likelihood will be the preferred technique.

The results from fitting Model (7.25)–(7.27) under the constraint α5 = α6 to

the data from Table 7.1 are displayed in Table 7.3. The results are the same as in

Table 7.2, except for α1, which has a different interpretation. See also Table 7.4.

As one can observe from this table, α4 and α5 have exactly the same interpreta-

tion in both models. This does not hold for the other parameters, although, under

the MAR/ACMV assumption, α2 and α3 are equal. The only difference is α1, which
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Table 7.3: Parameter Estimates (Standard Errors) for the Artificial Data from Ta-

ble 7.1, based on a Pseudo-Likelihood containing Three Logistic Models

(a) (b) (c) (d)

α1 0.0000(0.2828) -0.6931(0.2449) -1.0986(0.2309) 0.4055(0.1667)

α2 -0.6931(0.2449) -0.6931(0.2449) -0.6931(0.2449) -2.0794(0.3354)

α3 1.0986(0.2309) 0.4055(0.1826) 0.0000(0.1633) 0.4055(0.1667)

α4 1.3863(0.3464) 1.3863(0.3464) 1.3863(0.3464) 1.3863(0.4430)

α5 ≡ α6 0.0000(0.3266) 0.6931(0.2944) 1.0986(0.2828) -0.8109(0.2357)

Table 7.4: Interpretation of the Parameters (logits of the means of the random

variables for α1, α2, and α3, and log odds ratios for α4 and α5)

Trivariate Loglinear Model Three Logistic Models

α1 Y1|(y2, d) = (0, 0) Y1|d = 0

α2 Y2|(y1, d) = (0, 0) Y2|y1 = 0

α3 D|(y1, y2) = (0, 0) D|y1 = 0

α4 Y1Y2 Y1Y2

α5 Y1D Y1D

in the loglinear model represents the conditional logit of Y1, given Y2 and D are

zero, and for the three logistic models gives the conditional effect of Y1, given that

only D is zero.

At first sight, it seems somewhat strange that two different models yield such

similar results. Let us investigate the similarity between both approaches more

closely. We can rewrite the loglinear model from Section 7.2 as Equations (7.25),

(7.27) and

f(y1|d) =
exp[(α1 + α5d)y1][1 + exp(α2 + α4y1)]

1 + exp(α1 + α5d) + exp(α2) + exp(α1 + α2 + α4 + α5d)
.

(7.28)

Based on (7.25) and (7.27), α2, α3, α4 and α5 can be estimated. Models (7.28) and



Section 7.4 : Fluvoxamine Data 111

(7.26) are only needed to estimate α1. This last component is different for both

models, leading to a different estimate for α1. It has to be noted that, although

α2 seems to be equal in both settings, in fact its interpretation is different. In the

loglinear model, α2 describes the logit of Y2 given Y1 = 0 and D = 1, whereas

for the logistic models, α2 captures the logit of Y2 given Y1 = 0. But due to the

MAR/ACMV assumption, both values are equal. A similar argument holds for α3.

In fact, due to the compatibility constraints, we did not have to reduce the model

to the missing data mechanisms the way we did. If one includes the missing data

mechanism in only one component, f(y1, y2|d) say, then the compatibility constraints

reduce the other component, f(d|y1, y2), to the compatible missing data mechanism.

As suggested by Louise Ryan (private communication), ignoring the compatibil-

ity constraints when fitting the model can be used as a sensitivity analysis. Indeed,

by formally considering the difference between parameters that should be equal, the

sensitivity of the model to the assumptions made can be assessed, at least in part.

In the case of Model (7.25)–(7.27), this procedure would ignore the constraint

α5 ≡ α6. Parameter estimates and standard errors found by fitting the model to the

data of Table 7.1, are exactly the same as those displayed in Table 7.2. In particular,

α̂5 = α̂6, and is also equal to the value found in Table 7.2. This implies, once again,

that the constraint was correctly chosen. Furthermore, the estimates of precision

are exactly the same, indicating that both models use exactly the same information

to estimate the (Y1, D) interaction. Indeed, the fact that the information about this

interaction is used twice in Table 7.2, is properly corrected by means of the robust

variance estimator.

7.4 Fluvoxamine Data

Until now, we have considered only artificial data consisting of a single contingency

table with supplemental margins. We now turn our attention to a real set of data

with a repeated categorical outcome and individual level covariates. We will use the

data introduced in Section 2.1, only looking at times 2 and 5, where the outcome is

dichotomized. This comes down to the side effects from Table 2.4.
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We included the covariates as main effects in the three logistic models (7.25),

(7.26) and (7.27):

f(d|y1) =
exp[(α3 + β1age + β2sex + β3antecedents + α5y1)d]

1 + exp(α3 + β1age + β2sex + β3antecedents + α5y1)
,

f(y1|d) =
exp[(α1 + γ1age + γ2sex + γ3antecedents + α6d)y1]

1 + exp(α1 + γ1age + γ2sex + γ3antecedents + α6d)
,

f(y2|y1) =
exp[(α2 + δ1age + δ2sex + δ3antecedents + α4y1)y2]

1 + exp(α2 + δ1age + δ2sex + δ3antecedents + α4y1)
.

Parameter estimates and standard errors are displayed in Table 7.5. The fit of a

more parsimonious model, found with a backward selection procedure, is presented

in Table 7.6.

Since a positive sex effect remains in the model for f(y2|y1), this means that the

probability of having side effects at the second time point is higher for males than

for females, both for those with and without side effects at the first time point. In

particular, for someone without side effects at the first time point, the probability of

side effects at the second time is 0.268 for females, and 0.441 for males. For someone

with side effects at the first time, these probabilities are increased to 0.747 and

0.864 respectively. Furthermore, side effects at the first time increase the dropout

probability (0.398 versus 0.147), thereby ruling out completely random dropout.

These results are in agreement with the results found in Chapter 6.

7.5 Conclusion

While full likelihood is commonly used to analyse incomplete data, a choice is typi-

cally made between a selection or a pattern-mixture model. This forces one to choose

between f(y|d) and f(d|y). In many cases, both relationships will be of interest. If

a choice is not preferable, an alternative procedure is pseudo-likelihood. A loglin-

ear model, such as (7.6), can be rewritten in a selection model or pattern-mixture

model way, but although the calculation of f(y|d) or f(d|y) is straightforward, f(d)

and f(y) have no easy form. Thus, using pseudo-likelihood theory has not only the

advantage of easy forms for the models for f(y|d) and f(d|y), but also no choice is

implied.
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Table 7.5: Fluvoxamine Data, Side Effects (full)

Parameter Estimate (s.e.)

α1 -0.048(0.507)

α2 -1.737(0.602)

α3 1.808(0.543)

α4 2.031(0.361)

α5 ≡ α6 -1.307(0.291)

β1 -0.165(0.349)

β2 0.507(0.289)

β3 -0.224(0.305)

γ1 0.553(0.297)

γ2 -0.156(0.261)

γ3 0.014(0.263)

δ1 0.652(0.350)

δ2 0.784(0.333)

δ3 -0.262(0.324)

Table 7.6: Fluvoxamine Data, Side Effects (reduced)

Parameter Estimate (s.e.)

α1 0.673(0.246)

α2 -1.004(0.294)

α3 1.758(0.217)

α4 2.085(0.361)

α5 ≡ α6 -1.346(0.284)

δ2 0.767(0.329)
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Another major advantage of pseudo-likelihood is that, rather than deriving both

full conditionals from a joint model, we have shown that the conditional densities

can be specified directly, leaving the investigator the choice of models with a more

convenient form. But since not all choices for both conditional densities are com-

patible, constraints are needed. To this end, we have generalized the compatibility

constraints from Arnold, Castillo and Sarabia (1992). This procedure has the ad-

vantage of enabling the specification of simple models for all conditional densities

involved. We have established a situation where the joint density compatible with

the conditionals specified is different from but similar to the trivariate loglinear

model. In particular, most of the parameters retain their interpretation.

We have applied this method to the fluvoxamine data (see Chapter 2). The

conclusions from the pseudo-likelihood analysis are similar to the ones obtained

from previous likelihood based analyses.



Chapter 8

Sensitivity Analysis for a

Longitudinal Quality of Life

Measure in a Cancer Trial

In this chapter, we advocate the use of pattern-mixture models as a tool to assess

sensitivity of a selection model to the modelling assumptions, or vice versa, for

continuous data (Michiels et al. 1998). It complements Chapter 6, where a sensitivity

analysis based on selection models and pattern-mixture models for categorical data

is performed. Explicitly, it will be argued that extra confidence in the conclusion

can be gained if two analyses, one within each framework, coincide in key aspects,

such as covariate dependencies, strength of association between outcomes, etc. We

will outline ways to fit both selection and pattern-mixture models, based on linear

mixed models for the measurement process. Virtually all models will be fitted using

standard statistical software.

In the first section, the mixed model is introduced. The data used throughout this

chapter come from the Vorozole Study, described in Section 2.2. A first exploratory

analysis is given in Section 8.2. Then the model is analysed using a selection model

(Section 8.3), and a pattern-mixture model (Section 8.4).

115
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8.1 A Repeated-Measures Model

A model for repeated measurements, incorporating random effects (Laird and Ware

1982) and serial correlation (Diggle 1988) can be written as

Y s = Zβ
s β + Zsbs + W s + εs (8.1)

where Y s is the ns dimensional response vector for subject s with components Ysj ,

1 ≤ s ≤ N , N is the number of subjects, Zβ
s and Zs are (ns × p) and (ns × q)

dimensional matrices of known covariates, β is the p dimensional vector containing

the fixed effects, bs ∼ N(0, D) is the q dimensional vector containing the random

effects, W s ∼ N(0, τ 2Hs) is a vector of ns realizations of a Gaussian stochastic

process and εs ∼ N(0, σ2Ins) is a ns dimensional vector of uncorrelated error terms.

Further, D is a general (q × q) covariance matrix, τ 2 is the serial variance, Hs is

the serial correlation matrix, usually modelled in terms of one or a few parameters,

and σ2 is the measurement error variance. Often, the serial and measurement error

processes are combined to yield a single residual variance matrix Σs = τ 2Hs+σ2Ins.

Two popular choices to capture serial correlation is by means of exponential or

Gaussian decay. An exponential process is based on writing the correlation between

two residuals at times tsj and tsk as

Corr(tsj, tsk) = exp

(
−|tsj − tsk|

φ

)
= ρ|tsj−tsk|, (8.2)

for some value of φ > 0, where ρ = exp(−1/φ). The Gaussian counterpart is

Corr(tsj, tsk) = exp

(
−(tsj − tsk)

2

φ2

)
= ρ(tsj−tsk)2, (8.3)

for some value of φ > 0, where ρ = exp(−1/φ2).

It follows from (8.1) that, conditional on the random effect bs, Y s is normally

distributed with mean vector Zβ
s β + Zsbs and with covariance matrix Σs. Define

Vs = ZsDZ
′
s + Σs. Then the marginal distribution of Y s is

Y s ∼ N(Zβ
s β, Vs). (8.4)

The most popular approaches to parameter estimation are maximum likelihood

and restricted maximum likelihood (Verbeke and Molenberghs 1997, Section 3.4).
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8.2 Exploratory Analysis

Most books on longitudinal data discuss exploratory analysis. See, for example,

Diggle, Liang and Zeger (1994). However, most effort is spent on model building

and formal aspects of inference. In this section, we present a selected set of plots

to underpin the model building. We distinguish between two modes of display: (1)

plots averaged over (sub)populations and (2) individual profile plots. Both ways

are used to present three fundamental aspects of the longitudinal structure: (1) the

average evolution; (2) the variance function, (3) the correlation structure. Each of

those will be discussed in turn. In addition, the variogram will be discussed. The

data come from the Vorozole Study, introduced in Section 2.2. We will, apart from

treatment, correct for dominant site of the disease as well as the baseline value

for each patient. Most missing values in this study are due to dropout. The few

intermittent missing values are treated as MCAR. The dropout process itself will

be explored in further sections.

8.2.1 The Average Evolution

The average evolution describes how the profile for a number of relevant subpop-

ulations (or the population as a whole), evolves over time. The results of this

exploration will be useful in order to choose a fixed-effects structure for the linear

mixed model.

The individual profiles are displayed in Figure 8.1, while the mean profiles per

treatment arm, as well as their 95% confidence intervals, are plotted in Figure 8.2.

The average profiles indicate an increase over time which is slightly stronger for the

vorozole group until month 14, and afterwards, the megestrol acetate group obtains

a slightly higher FLIC-score. As can be seen from the confidence intervals, these

differences do not seem to be significant.

The individual profiles augment the averaged plot with a suggestion of the vari-

ability seen within the data. The thinning of the data towards the later study times

suggests that trends at later times should be treated with caution. While these plots

also give us some indications about the variability at given times and even about
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Figure 8.1: Vorozole Study: Individual Profiles for Change (Raw, Detrended, and

Standardized)

the correlation between measurements of the same individual, it is easier to base

such considerations on residual profiles and standardized residual profiles.

8.2.2 The Variance Structure

In addition to the average evolution, the evolution of the variance is important to

build an appropriate longitudinal model. Clearly, one has to correct the measure-

ments for the fixed-effects structure and hence detrended residuals have to be used.

These detrended residuals are merely the outcome values (change in FLIC-score),

from which the mean change is subtracted, calculated at each time point separately.

Again, two plots are of interest. The first one pictures the average evolution of the

variance as function of time, the second one merely produces the individual residual

plots. The detrended profiles are displayed in Figure 8.1, while the corresponding

variance function is plotted in Figure 8.3.
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Figure 8.2: Vorozole Study: Mean Profiles and 95% Confidence Intervals

The variance function seems to be relatively stable, except for a sharp decline

near the end, due to the large amount of dropout, and hence a constant variance

model could be a plausible starting point. The individual detrended profiles show

subjects’ tendency, most clearly in the vorozole group, to decrease right before they

leave the study. In addition, also the detrended profiles suggest that the variance

would decrease over time.

8.2.3 The Correlation Structure

The correlation structure describes how measurements within a subject correlate.

The correlation function depends on a pair of times and only under the assumption

of stationarity does this pair of times simplify to the time lag only. This is important

since many exploratory and modelling tools are based on this assumption. A plot

of standardized residuals is useful in this respect (see Figure 8.1). The picture is

not radically different from the previous individual plots, which can be explained
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Figure 8.3: Vorozole Study: Variance Function

by the relative flatness of both mean profile and variance functions. If one or both

structures is varying with time, the standardized residuals will contribute useful

additional information.

A different way of displaying the variance structure is using a scatterplot matrix,

such as in Figure 8.4. The off-diagonal elements picture scatterplots of standardized

residuals obtained from pairs of measurement occasions. The decay of correlation

with time is studied by considering the evolution of the scatters with increasing

distance to the main diagonal. Stationarity on the other hand implies that the

scatterplots remain similar within diagonal bands if measurement occasions are ap-

proximately equally spaced. In addition to the scatterplots, we place histograms on

the diagonal, capturing the variance structure including such features as skewness.

Since the axes are given the same scales, it is very easy to capture the attrition rate

as well.
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Figure 8.4: Vorozole Study: Scatterplot Matrix

8.2.4 The Variogram

Model (8.1) distinguishes between three components of variability. The first one

groups traditional random effects (as in a random-effects ANOVA model) and ran-

dom coefficients (Longford 1993). It stems from inter-individual variability, i.e.,

heterogeneity between individual profiles. The second component, serial associa-

tion, is present when residuals close to each other in time are more similar than

residuals further apart. This notion is well-known from the time-series literature

(Ripley 1981, Diggle 1983, Cressie 1991). Finally, on top of the other two compo-

nents, there is potentially also measurement error. This results from the fact that

for delicate measurements (e.g., laboratory assays), even immediate replication will

not be able to avoid considerable variation. In longitudinal data, these three com-

ponents of variability can be distinguished by virtue of both replication as well as a

clear distance concept (time).

Diggle (1990) and Diggle, Liang and Zeger (1994) promote the so-called semi-
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variogram to picture the variance components. It is easily estimated even with

irregular observation times (but might require some amount of smoothing). Given a

stationary mean-zero stochastic process Y (t) with constant variance, the variogram

is defined as

V (u) =
1

2
E
{
[Y (t) − Y (t− u)]

2
}
.

Specializing (8.1) to random intercept only, D simplifies to a scalar, δ2 say, and it

is easy to show (Diggle 1990) that the variogram equals

V (u) = σ2 + τ 2(1 − ρ(u)),

where u = tsj− tsk is the time lag between both measurements and ρ(u) is the serial

correlation between two measurements with the specified lag, calculated for example

from (8.2) or (8.3). Note that V (0) = σ2 and V (∞) = σ2 + τ 2. Plotting the process

variance,

Var(Ysj) = δ2 + σ2 + τ 2,

as a horizontal line and the variogram as a curve, the three components of variability

are easy to retrieve. The measurement error is V (0), the random intercept variance

is the difference between the process variance and V (∞), and the variance of the

serial process is seen as the band, occupied by the variogram, which increases from

V (0) to V (∞). With irregularly spaced data, it is usually necessary to smooth the

variogram. The shape of the variogram conveys information about the structure of

the serial correlation function.

The variogram for this study is given in Figure 8.5, where the three components

of variability are seen to be roughly of the same magnitude.

8.3 A Selection Model Formulation

First, a linear mixed model for the measurements of the form (8.1) is assumed.

Secondly, we will model the dropout mechanism. We assume that incompleteness

is due to dropout only, and that the first measurement Ys1 is obtained for everyone.

The model for the dropout process is based on a logistic regression for the probability

of dropout at occasion j, given the subject is still in the study. We denote this
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Figure 8.5: Vorozole Study: Variogram

probability by g(hsj , ysj), in which hsj is a vector containing all responses observed

up to but not including occasion j, as well as relevant covariates Xα
sk. We then

assume that g(hsj , ysj) satisfies

logit[g(hsj, ysj)] = logit [P (Ds = j|Ds ≥ j,ys,X
α
s )] = hsjα0 + ysjαd s = 1, . . . , N,

(8.5)

where α = (α′
0, αd)

′. When αd equals zero, the dropout model is random, and all

parameters can be estimated using standard software since the measurement model

for which we use a linear mixed model and the dropout model, assumed to follow a

logistic regression, can then be fitted separately. If αd 6= 0, the dropout process is

assumed to be non-random.
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Model (8.5) is now used to construct the dropout process:

f(ds|ys,Xα
s ,α) =





ns∏

j=2

[1 − g(hsj , ysj)] for ds = ns + 1,

d−1∏

j=2

[1 − g(hsj, ysj)]g(hsd, ysd) for ds = d ≤ ns.
(8.6)

Several authors point to the sensitivity of this model to assumptions about the

dropout process which are fundamentally not verifiable. See the discussion to Diggle

and Kenward (1994) and Verbeke et al. (1998).

Application to the Vorozole Study

Since we are modelling change versus baseline, all models are forced to pass through

the origin. This is done by omitting the main covariate effects, and looking only at

interactions of these covariates with time. The following covariates were considered

for the measurement model: baseline value, treatment, dominant site, and time in

months. Second order interactions were considered as well. For design reasons, treat-

ment was kept in the model in spite of its non-significance. An F test for treatment

effect produces a p value of 0.5822. Apart from baseline, no other time-stationary

covariates were kept. A quadratic time effect provided an adequate description of

the time trend. Based on the variogram, we confined the random-effects structure

to random intercepts, and supplemented this with a spatial Gaussian process and

measurement error. The final model is presented in Table 8.1. The fitted variance

structure is represented by means of the fitted variogram in Figure 8.5. The total

correlation between two measurements, one month apart, equals 0.696. The residual

correlation, which remains after accounting for the random effects, is still equal to

0.491. The serial correlation, obtained by further ignoring the measurement error,

equals ρ = exp(−1/7.222) = 0.981.

The fitted profiles are displayed in Figure 8.6 and Figure 8.7. For the latter,

the random effects were taken into account when calculating the predicted values,

for the first they were not. For each treatment group, we obtain three sets of

profiles. The fitted complete profile is the average curve that would be obtained,
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Table 8.1: Vorozole Study: Selection Model

Effect Estimate (s.e.)

Fixed-Effect Parameters:

time 7.78 (1.05)

time∗baseline -0.065 (0.009)

time∗treatment 0.086 (0.157)

time2 -0.30 (0.06)

time2∗baseline 0.0024 (0.0005)

Variance Parameters:

random intercept (δ2) 105.42

serial variance (τ 2) 77.96

serial association (φ) 7.22

measurement error (σ2) 77.83

had all individuals been completely observed. If we use only those predicted values

that correspond to occasions at which an observation was made, then the fitted

incomplete profiles are obtained. The latter are somewhat above the former when

the random effects are included, and somewhat below when they are not, suggesting

that individuals with lower measurements are more likely to disappear from the

study. In addition, while the fitted complete curves are very close (the treatment

effect was not significant), the fitted incomplete curves are not, suggesting that there

is more dropout in the standard arm than in the treatment arm. This is in agreement

with the dropout rate, displayed in Figure 8.8. Finally, the observed curves, based

on the measurements available at each time point, are displayed. These lie highest,

but this should be viewed with the standard errors of the observed means in mind,

which lie around 18.5 (see also Figure 8.2).

Next, we will study factors which influence dropout. A logistic regression model,

described by (8.5) and (8.6) is used. To start, we restrict attention to MAR pro-

cesses, whence αd = 0. The first model includes treatment, dominant site, baseline,
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Figure 8.6: Vorozole Study: Fitted Profiles (averaging the predicted means for the

incomplete and complete measurement sequences, without random effects)

and the previous measurement but only the last two are significant, producing

logit[g(hsj)] = 0.080(0.341) − 0.014(0.003)bases − 0.033(0.004)ys,j−1 .

(8.7)

Diggle and Kenward (1994) and Molenberghs, Kenward and Lesaffre (1997) con-

sidered non-random versions of this model by including the current, possibly un-

observed measurement, such as in (8.5). This requires more elaborate fitting al-

gorithms, since the missing data process is then non-ignorable, and hence the full

density needs to be used. Diggle and Kenward used the simplex algorithm (Nelder

and Mead 1965), while Molenberghs, Kenward and Lesaffre fitted their models with

the EM algorithm (Dempster, Laird and Rubin 1977). The algorithm of Diggle

and Kenward is implemented in Oswald (Smith, Robertson and Diggle 1996). With

larger datasets such as this one, convergence can be painstakingly difficult and one

has to worry about apparant convergence. Therefore, we first proceed in an al-
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Figure 8.7: Vorozole Study: Fitted Profiles (averaging the predicted means for the

incomplete and complete measurement sequences, including the random effects)

ternative way. Both Diggle and Kenward (1994) and Molenberghs, Kenward and

Lesaffre (1997) observed that in informative models, dropout tends to depend on

the increment, i.e., the difference between the current and previous measurements

ysj−ys,j−1. Clearly, a very similar quantity is obtained as ys,j−1−ys,j−2, but a major

advantage of such a model is that it fits within the MAR framework. In our case,

we obtain

logit[g(hsj)] = 0.033(0.401) − 0.013(0.003)bases + 0.012(0.006)ys,j−2

−0.035(0.005)ys,j−1

= 0.033(0.401) − 0.013(0.003)bases − 0.023(0.005)
ys,j−2 + ys,j−1

2

−0.047(0.010)
ys,j−1 − ys,j−2

2
(8.8)

indicating that both size and increment are significant predictors for dropout. We

conclude that dropout increases with a decrease in baseline, in overall level of the
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Figure 8.8: Vorozole Study: Observed Dropout per Treatment Arm

outcome variable, as well as with a decreasing evolution in the outcome.

Using Oswald (Smith, Robertson and Diggle 1996), both dropout models (8.7)

and (8.8) can be compared with their non-random counterparts, where ysj is added

to the linear predictor. The first one becomes

logit[g(hsj, ysj)] = 0.53 − 0.015bases − 0.076ys,j−1 + 0.057ysj (8.9)

while the second one becomes

logit[g(hsj , ysj)] = 1.38 − 0.021bases − 0.0027ys,j−2 − 0.064ys,j−1 + 0.035ysj .

(8.10)

Formal testing of dropout models (8.9) versus (8.7) and (8.10) versus (8.8) are pos-

sible in principle, but will not be carried out for two reasons. First, the likelihood

function tends to be very flat for non-random dropout models and therefore the

determination of the likelihood ratio is often computationally non-trivial. More

fundamentally, Rubin (1994), Little (1994b), Laird (1994), and Molenberghs, Ken-

ward and Lesaffre (1997) point out that formal testing for non-random dropout



Section 8.4 : A Pattern-Mixture Model Formulation 129

faces philosophical objections. Indeed, non-random dropout models are identified

only due to strong but unverifiable assumptions. Hogan and Laird (1997) suggest

pattern-mixture models as a viable alternative.

8.4 A Pattern-Mixture Model Formulation

Recall from Section 3.1.2 that a pattern-mixture model is based on the following

factorization:

f(ys, ds|Xs, θ) = f(ys|ds,Xβ
s ,β)f(ds|Xα

s ,α). (8.11)

The dropout process (8.6) thus simplifies to f(ds|Xα
s ,α) which is a, possibly

covariate-corrected, model for the probability to belong to a particular pattern. Its

components, g(hsj), containing only covariates now, describe the dropout rate at

each occasion.

The measurement model has to reflect dependence on dropout. In its most

general form, this implies that (8.1) is replaced by





Y s = Zβ
s β(ds) + Zsbs + εs

bs ∼ N(0, D(ds)),

εs ∼ N(0,Σs(ds)).

(8.12)

Thus, the fixed effects as well as the covariance parameters are allowed to change

with dropout pattern and a priori no restrictions are placed on the structure of this

change.

Model (8.12) contains underidentified members since it describes the full set of

measurements in pattern ds, even though there are no measurements after occasion

ds−1. Little (1993, 1994a) advocated the use of identifiying restrictions which works

well in relatively simple settings. Molenberghs, Michiels, Kenward and Diggle (1998)

proposed a particular set of restrictions for the monotone case which correspond

to MAR. To avoid this problem, simplified (identified) models can be considered.
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The advantage is that the number of parameters decreases, which is generally an

issue with pattern-mixture models. Hogan and Laird (1997) noted that in order

to estimate the large number of parameters in general models, one has to make

the awkward requirement that each dropout pattern is sufficiently “filled”, in other

words one has to require large numbers of dropouts. Note however that simplified

models, qualified as “assumption rich” by Sheiner, Beale and Dunne (1997), are also

making untestable assumptions and therefore illustrate that even pattern-mixture

models do not provide a free lunch. A main advantage however is that the need of

assumptions and their implications are more obvious. For example, it is not possible

to assume an unstructured time trend in incomplete patterns, except if one restricts

attention to the time range from onset until dropout. In contrast, assuming a linear

time trend allows estimation in all patterns containing at least two measurements.

In general, we distinguish between two types of simplifications to identify pattern-

mixture models. First, trends can be restricted to functional forms supported by

the information available within a pattern. The linear time trend discussed earlier

is an example. Secondly, one can let the parameters vary across patterns in a para-

metric way. Thus, rather than estimating a separate time trend in each pattern, one

could asssume that the time evolution is unstructured in each pattern, but parallel

across patterns. The available data can be used to assess whether such simplifica-

tions are supported within the time ranges for which there is information. Using

the so-obtained profiles past the time of dropout still requires extrapolation.

Application to Vorozole Study

In analogy with the exploration in the selection model context, it is natural to

explore the data from a pattern-mixture point of view. To this end, plots per

dropout pattern can be constructed. Figures 8.9 and 8.10 display the individual

and averaged profiles per pattern.

Figure 8.10 clearly shows that pattern-specific profiles are of a quadratic nature

with in most cases a sharp decline prior to dropout. Note that this is in line with

the fitted dropout mechanism (8.8). Therefore, this feature needs to be reflected

in the pattern-mixture model. In analogy with our selection model, the profiles are
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Figure 8.9: Vorozole Study: Individual Profiles per Dropout Pattern
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Figure 8.10: Vorozole Study: Mean Profiles per Dropout Pattern

forced to pass through the origin. This is done by allowing only time as main effect

in the model, and adding interactions of other covariables with time.

The most complex pattern-mixture model we consider includes a different pa-

rameter vector for each of the observed patterns. We then proceed by backward

selection in order to simplify the model. First, we found that the covariance struc-

ture is common to all patterns, encompassing random intercept, a serial exponential

process, and measurement error.

For the fixed effects we proceeded as follows. A backward selection procedure,

starting from a model that includes a main effect of time and time2, as well as

interactions of time with baseline value, treatment effect, dominant site and pattern,

and the interaction of pattern with time2. This procedure revealed main effects of

time and time2, as well as interactions of time with baseline value, treatment effect,

and pattern, and the interaction of pattern with time2. This reduced model can

be found in Table 8.2. As was the case with the selection model in Table 8.1,
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Figure 8.11: Vorozole Study: Fitted Selection and First Pattern-Mixture Model

treatment effect is non-significant. Indeed, a single degree of freedom F test yields

a p value of 0.6868. Note that such a test is possible since treatment effect does not

interact with pattern, in contrast to the model which we will describe later. The

fitted profiles are displayed in Figure 8.11. We observe that the profiles for both

arms are very similar. This is due to the fact that treatment effect is not significant

but perhaps also because we did not allow a more complex treatment effect. For

example, we might consider an interaction of treatment with the square of time and,

more importantly, an treatment effect which is pattern-specific. Some evidence for

such an interaction is seen in Figure 8.10.

Our second, expanded model, allowed for up to cubic time effects, the interac-

tion of time with dropout pattern, dominant site, baseline value and treatment, as

well as their two- and three-way interactions. After a backward selection proce-

dure, the effects included are time and time2, the two-way interaction of time and

dropout pattern, as well as three factor interactions of time and dropout pattern
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Table 8.2: Vorozole Study: First Pattern-Mixture Model

Fixed-Effect Parameters (Estimate (s.e.)):

Pattern Time Time∗Base Time2 Time∗Group (0)

main 4.671 (0.844) -0.031 (0.004) -0.034 (0.029) -0.067 (0.166)

3 -8.856 (2.739)

4 -0.796 (2.958) -1.918 (1.269)

5 -1.959 (1.794) -0.145 (0.365)

6 1.600 (1.441) -0.541 (0.197)

7 0.292 (1.295) -0.107 (0.133)

8 1.366 (1.035) -0.181 (0.080)

9 1.430 (1.045) -0.132 (0.071)

10 1.176 (1.025) -0.118 (0.061)

11 0.735 (0.934) -0.083 (0.049)

12 0.797 (1.078) -0.078 (0.055)

13 0.274 (0.989) -0.023 (0.046)

14 0.544 (1.087) -0.026 (0.049)

15

Variance Parameters:

Random intercept (δ2) 78.45

Serial variance (τ 2) 95.38

Serial association (φ) 8.85

Measurement error (σ2) 73.77
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Table 8.3: Vorozole Study: Second Pattern-Mixture Model

Fixed-Effect Parameters (Estimate (s.e.)):

Pattern Time Time∗Base Time2 Time2∗Base

main 5.468 (5.089) -0.034 (0.040) -0.271 (0.206) 0.002 (0.002)

3 7.616 (21.908) -0.119 (0.175)

4 44.097 (17.489) -0.440 (0.148) -18.632 (7.491) 0.1458 (0.0644)

5 22.471 (10.907) -0.218 (0.089) -5.871 (2.143) 0.0484 (0.0178)

6 10.578 (9.833) -0.055 (0.079) -1.429 (1.276) 0.0080 (0.0107)

7 14.691 (8.424) -0.123 (0.069) -1.571 (0.814) 0.0127 (0.0069)

8 7.527 (6.401) -0.061 (0.052) -0.827 (0.431) 0.0058 (0.0036)

9 -12.631 (7.367) 0.086 (0.058) 0.653 (0.454) -0.0065 (0.0038)

10 14.827 (6.467) -0.126 (0.053) -0.697 (0.343) 0.0052 (0.0029)

11 5.667 (6.050) -0.049 (0.049) -0.315 (0.288) 0.0021 (0.0023)

12 12.418 (6.473) -0.093 (0.051) -0.273 (0.296) 0.0016 (0.0024)

13 1.934 (6.551) -0.022 (0.053) -0.049 (0.289) 0.0003 (0.0024)

14 6.303 (6.426) -0.052 (0.050) -0.182 (0.259) 0.0015 (0.0021)

15

Pattern Time∗Group (0) Time∗Domsite (1) Time∗Domsite (2) Time∗Domsite (3)

main -0.873 (1.073) 0.941 (0.845) 0.023 (0.576)

3 0.445 (5.095) -5.822 (17.401) -9.320 (9.429) 1.431 (9.878)

4 0.867 (1.552) 2.024 (3.847) 4.393 (2.690) 5.681 (2.642)

5 -1.312 (0.808) 2.937 (2.596) 0.940 (1.697) 1.414 (1.633)

6 -0.249 (0.686) -1.378 (2.699) -4.366 (2.367) -3.237 (2.289)

7 -0.184 (0.678) -0.547 (1.917) -1.099 (1.456) -1.015 (1.344)

8 0.527 (0.448) 1.302 (1.130) -0.914 (0.811)

9 0.782 (0.502) 3.881 (1.485) 1.733 (1.226) 4.548 (1.218)

10 -0.809 (0.464) 2.359 (1.241) -0.436 (0.843)

11 -0.080 (0.443) 1.138 (1.128) -0.326 (0.753)

12 0.331 (0.579) -3.595 (0.996)

13 -0.679 (0.492) 0.317 (1.152) 0.182 (0.825)

14 0.433 (0.688) -1.694 (0.972)

15 -1.323 (0.706)

Variance Parameters:

Random intercept (δ2) 98.93

Serial variance (τ2) 38.86

Serial association (φ) 6.10

Measurement error (σ2) 73.65
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Figure 8.12: Vorozole Study: Fitted Selection and Second Pattern-Mixture Model

with (1) baseline, (2) group, and (3) dominant site. Finally, time2 interacts with

dropout pattern and with the interaction of baseline and dropout pattern. No cu-

bic time effects were necessary, which is in agreement with the observed profiles in

Figure 8.10. The parameter estimates of this model are displayed in Table 8.3. The

model is graphically represented in Figure 8.12.

Because a pattern-specific parameter has been included, we have several options

for the assessment of treatment. Since there are 13 patterns, one can test the global

hypothesis, based on 13 degrees of freedom, of no treatment effect. We obtain

F = 1.25, producing p = 0.2403, indicating that there is no overall treatment effect.

Each of the treatment effects separately is at a non-significant level. Alternatively,

the marginal effect of treatment can be calculated, which is the weighted average of

the pattern-specific treatment effects, with weights given by the probability of occur-

rence of the various patterns. Its standard error is calculated using a straightforward

application of the delta method. This effect is equal to −0.286(0.288) producing a
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p value of 0.3206, which is still non-significant.

In summary, we obtain a differential assessment of treatment effect. We obtained

highly non-significant results from the selection model and from the first pattern-

mixture models. The 13 degrees of freedom assessment in the second pattern-

mixture models produced a smaller but still non-significant p value, and also the

marginal assessment in the second pattern-mixture model yielded a non-significant

p value.

8.5 Conclusion

In this chapter we have concentrated on total FLIC (i.e., change of the score ver-

sus baseline), a quality of life score measured in a multi-centric two arm study in

postmenopausal women suffering from metastatic breast cancer. Since virtually all

patients were followed up until disease progression or death, the amount of dropout

is large. A very large group of patients drops out after only a few months.

While classically only selection models are fitted, pattern-mixture models can be

seen as a viable alternative. The average profile in the selection model depends on

the baseline value, as well as on time. The latter effect is mildly quadratic. There is

no evidence for a treatment difference. However, it should be noted that the average

profile found is the one that would have been observed, had no subjects dropped out,

and under the additional assumption that the MAR assumption is correct. Fitting

non-random dropout models, in the sense of Diggle and Kenward (1994) is possible,

but computationally difficult for a fairly large trial like this one. A separate study

of the dropout mechanism revealed that dropout increases with three elements: (1)

an unfavourable baseline score, (2) an unfavourable value at the previous month,

as well as (3) an unfavourable change in value from the penultimate to the last

obtained value.

A pattern-mixture model is fitted by allowing at first a completely separate pa-

rameter vector for each observed dropout pattern, which is then simplified by using

standard model selection procedures, by considering whether effects are common to

all patterns. A first pattern-mixture model features a common treatment effect, of



138 Chapter 8 : Sensitivity Analysis

which the assessment is then straightforward. A second model includes a separate

treatment effect for each dropout pattern. This leads to two distinct test. The first

one tests for equality of the whole treatment vector to be zero. The second one first

calculates the marginal treatment effect from the vector of effects, by composing a

weighted sum, where the weights are the multinomially estimated probabilities of

the various patterns. In all cases, there is no treatment effect. However, a graphical

display of the fitted profiles per pattern is enlightening, since it clearly confirms

the trend detected in the selection models, that patients tend to drop out when

their quality of life score is declining. Since this feature is usually coupled to an

imminent progression or death, it should not come as a surprise. An important ad-

vantage of pattern-mixture models is that fitting them is more straightforward than

non-random selection models. The additional calculations needed for the marginal

treatment effect and its associated precision can be done straightforwardly using the

delta method.



Chapter 9

Concluding Remarks and Further

Research

Since in many longitudinal studies missing data appear, it is necessary to explore

methods to take this missingness into account. Most theory established for this prob-

lem is based on selection models, where a marginal measurement model is combined

with the missing data model, conditional on the measurements. Selection models

fit naturally into the different missing data mechanisms defined by Little and Rubin

(1987). They divide the assumptions into basically three groups: MCAR, where

independence between the measurements and the missingness process is assumed,

MAR, where missingness can depend on the observed data, and MNAR, where miss-

ingness can also depend on the unobserved measurements. A special case of MNAR

is the protective estimator, where one assumes missingness to depend on the unob-

served, but not on the observed measurements. Brown (1990) defined the protective

estimator for normal data. In Chapter 4, we translated the protective estimator to

a version for categorical data, adding methods to estimate the precision. In some

cases, this protective assumption can be much more realistic than MAR, for example

when the measurements are taken relatively far apart in time, and there is sufficient

washout.

In contrast to selection models, another factorization of the full density is pos-

sible, leading to pattern-mixture models. Here, for all the different missing data

patterns, different models need to be fitted. It is clear that, if one assumes similar
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models for different patterns, not all these models are identifiable, due to the miss-

ingness. Therefore, identifying restrictions are needed (Little 1993, 1995). These

restrictions are the counterpart of the modelling assumptions used in selection mod-

elling. But if one uses pattern-mixture models, it is clear what information is miss-

ing, and what assumptions about the missingness process are made. We established

the ACMV restrictions (Chapter 5), a counterpart for the MAR assumption in case

of monotone dropout. Due to this assumption, we can, in the case of dropout, make

the same subdivision for pattern-mixture models as for selection models. In case of

non-monotone missingness, the ACMV restrictions are not equivalent to MAR, and

further research is therefore needed to formulate plausible restrictions.

Now that the same assumption can be used in a selection model and a pattern-

mixture model, different methods combining both factorizations can be explored.

First, we created a pseudo-likelihood, combining the interesting parts of both mod-

els: the pattern-specific measurement models on the one hand, and the dropout

model, conditioned on the outcomes on the other (Chapter 7). This method has the

advantage that interesting models can be chosen for both parts (with mild condi-

tions on the compatibility), leading to results that are easy to interpret, or that are

of direct interest to the investigator.

A second reason for combining selection models and pattern-mixture models

is sensitivity analysis. If a selection model analysis and a pattern-mixture model

analysis lead to similar conclusions, more confidence can be given to these results.

We have carried out such a sensitivity analysis for categorical data assuming a Dale

model (Chapter 6) and for continuous data assuming mixed models (Chapter 8).

Pattern-mixture models are in fact much more honest than selection models,

because one can easily see which information is missing. Furthermore can it be

of interest to have the measurement model parameters for different missing data

patterns, values that demand quite some calculation after a selection model analy-

sis. Still most analyses containing missing data fix on selection models. Therefore,

pattern-mixture models should be included more in a comprehensive study, leading

to a more thorough sensitivity analysis. Finally, pattern-mixture models deserve to

be studied as sensitivity tools in their own right.



Samenvatting

In veel studies komt men het probleem tegen dat sommige waarden ontbreken.

Vooral in longitudinale studies, waar gegevens op regelmatige tijdstippen opgeme-

ten worden, moet met dit probleem rekening gehouden worden. Een speciaal geval

van ontbrekende waarden is dropout, waar men per subject in de studie een aan-

tal opeenvolgende metingen heeft, waarna verdere metingen ontbreken. Little en

Rubin (1987) gaven een opsplitsing in de veronderstellingen omtrent het ontbreken

van waarden. Ze gingen hiervoor uit van een selectiemodel, waar de gezamelijke

dichtheidsfunctie van zowel het meetproces als het proces dat aangeeft welke waar-

den ontbreken, wordt opgesplitst in het product van het meetproces met het proces

van de ontbrekende waarden, geconditioneerd op de meetresultaten. Little en Rubin

spitsten de assumpties op in drie groepen:

MCAR: Het ontbreken van gegevens heeft niets met de metingen te maken.

MAR: Het ontbreken van gegevens kan verklaard worden door de metingen die

men geobserveerd heeft.

MNAR: Ook de niet geobserveerde metingen zijn nodig om het ontbreken van

gegevens te verklaren.

Brown (1990) introduceerde de protective estimator, een speciaal geval van MNAR,

waarbij het ontbreken van een gegeven op een bepaald tijdstip enkel afhangt van dit

ontbrekende gegeven zelf. Deze aanname kan bij voorbeeld heel logisch zijn als de

tijd tussen verschillende metingen heel groot is.

Brown heeft de protective estimator enkel gedefinieerd voor Normaal verdeelde

gegevens. In Hoofdstuk 4 breiden we deze schatter verder uit naar categorische
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gegevens. Het schatten van de kansen vraagt het oplossen van een stelsel, maar

een vereenvoudigde methode is mogelijk, waarbij een aantal kleine stelsels moet

opgelost worden. Een extra voordeel van deze methode is dat een contradictie in de

voorwaarden tot uiting komt als negatieve kansen. Er worden ook drie methoden

behandeld om de precisie van de schattingen te bepalen.

De assumpties van Little en Rubin zijn gebaseerd op selectiemodellen. Een

andere factorisatie van de volledige dichtheid geeft aanleiding tot pattern-mixture

modellen. Hier bekijkt men voor elk patroon van ontbrekende waarden een afzon-

derlijk meetmodel, en wordt het model van de ontbrekende waarden apart behan-

deld. Aangezien er gegevens ontbreken, is het duidelijk dat niet voor alle patronen

het meetmodel identificeerbaar zal zijn. Daarom heeft men restricties nodig. Little

(1993, 1995) geeft een overzicht van een aantal restricties. De MCAR-assumptie, die

onafhankelijkheid veronderstelt tussen het meetproces en het proces van de ontbre-

kende waarden, is natuurlijk hetzelfde in een selectiemodel en een pattern-mixture

model. Maar de andere assumpties kunnen niet eenvoudig vertaald worden naar

restricties voor pattern-mixture modellen.

In Hoofdstuk 5 wordt de ACMV-restrictie gedefinieerd. Volgens deze restrictie

moet men, om een dichtheid op een bepaald tijdstip, gegeven de vorige metingen, te

berekenen voor een patroon waar niet alle informatie beschikbaar is, deze informatie

gaan lenen bij alle patronen waar deze dichtheid wel kan berekend worden. In het

geval van dropout hebben we in dit hoofdstuk bewezen dat ACMV en MAR equi-

valent zijn. Dit geeft de mogelijkheid om voor pattern-mixture modellen eenzelfde

soort opsplitsing te maken als voor selectiemodellen. Daardoor kan men een selec-

tiemodel en een pattern-mixture model fitten aan data, waarbij voor beide modellen

dezelfde veronderstelling gemaakt wordt over het ontbreken van metingen. Zo kan

men een sensitiviteitsanalyse uitvoeren. Als de twee modellen vergelijkbare resul-

taten geven, bij voorbeeld wat betreft het effect van de behandeling, kan men veel

meer vertrouwen hebben in deze resultaten. Een ander voordeel is dat de resul-

taten van het selectiemodel soms van klinisch belang zijn, maar soms is men juist

gëınteresseerd in de resultaten van het pattern-mixture model: is het effect van de

behandeling verschillend voor patiënten die op een ander moment de studie ver-
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laten? Door de equivalentie van beide modellen, kan dàt model gekozen worden dat

het beste aansluit bij de klinische vraag.

In Hoofdstuk 6 hebben we zo het therapeutisch effect en de nevenwerkingen

bestudeerd van het toedienen van fluvoxamine aan psychiatrische patiënten. Ge-

bruik makend van een bivariaat Dale model hebben we de kans op nevenwerkin-

gen en de kans op therapeutisch effect geschat, met als covariaten de leeftijd, het

geslacht en de psychiatrische voorgeschiedenis van de patiënten. Beide modellen

gaven vergelijkbare resultaten: voor de kans op nevenwerkingen was er stijging met

de leeftijd, en deze kans was hoger voor patiënten die uitvielen na de eerste me-

ting, dan voor patiënten die ook op de tweede meting aanwezig waren. Er was ook

een sterke associatie aanwezig tussen de verschillende metingen. De psychiatrische

voorgeschiedenis had helemaal geen invloed, en het geslacht had een klein effect op

de kans op nevenwerkingen. Voor het therapeutisch effect was er helemaal geen in-

vloed van leeftijd, geslacht, of psychiatrische voorgeschiedenis. Ook hier was er wel

een sterke associatie aanwezig. Al deze conclusies kunnen zowel uit het selectiemodel

als uit het pattern-mixture model getrokken worden.

Een andere dataset, waar patiënten met borstkanker behandeld worden met

Vorozole of met Megestrol Acetate, wordt behandeld in Hoofdstuk 8. Voor deze

patiënten werd gekeken naar de FLIC-score, een maat voor de levenskwaliteit tij-

dens de behandeling. Gebruik makend van mixed models, gaven het selectiemodel

en het pattern-mixture model weer vergelijkbare resultaten: er is geen invloed van

de behandeling op de FLIC-score.

Een combinatie van selectiemodellen en pattern-mixture modellen is mogelijk

door gebruik te maken van de theorie van de pseudo-likelihood (zie Hoofdstuk 7).

Voor de interessante stukken van zowel het selectiemodel als het pattern-mixture

model worden aparte, relevante modellen gedefinieerd, gebruik makend van dezelfde

assumptie voor het ontbreken van gegevens. Natuurlijk zijn er milde voorwaarden

nodig om de compatibiliteit te verzekeren. Die modellen worden dan gecombineerd

in een pseudo-likelihood, dewelke dan gefit wordt.

In de meeste studies wordt gebruik gemaakt van selectiemodellen. Dit wordt

mee veroorzaakt door de handige opsplitsing van de veronderstellingen omtrent het
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ontbreken van gegevens. Maar vermits dezelfde opsplitsing nu ook mogelijk is voor

pattern-mixture modellen, kan zo’n model ook gemakkelijk gebruikt worden. Dit

geeft de mogelijkheid om een model te gebruiken dat beter aansluit bij de klinische

vraag, of om meer vertrouwen te hebben in de gevonden resultaten, als zowel het

selectiemodel als het pattern-mixture model tot hetzelfde besluit leiden.

Toch is er nog meer onderzoek nodig naar pattern-mixture modellen, bij voor-

beeld in het geval van niet-monotone ontbrekende waarden, of om de sensitiviteits-

analyse verder uit te werken.
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