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Samenvatting

In deze thesis bestuderen we de diffusie van interagerende deeltjes in sterk begrenzende
structuren. Een voorbeeld van materialen met een begrenzende structuur zijn nanoporeuze
materialen, zoals zeolieten. Veel zeolieten bestaan uit een aaneenschakeling van holtes.
In iedere holte kunnen slechts enkele moleculen zitten. We beschouwen een roostermodel,
waarbij iedere holte een punt op het rooster is. De deeltjes voeren een willekeurige wandeling
uit op het rooster, beschreven door een Markov dynamica. Er is interactie tussen deeltjes
die dezelfde positie bezetten op het rooster. Deze interactie wordt beschreven door een vrije
energie F (n) die afhangt van het aantal deeltjes n op die positie. Hiernaast wordt ook nog
het maximale aantal deeltjes nmax per roosterplaats ingevoerd. De begrenzende structuur
van het materiaal en de interactie van de deeltjes bëınvloeden dan de vorm van F (n) en de
waarde van nmax.

Diffusie wordt beschreven door verschillende coëfficiënten. In thermodynamisch even-
wicht is de zelfdiffusie Ds de relevante grootheid. Ds geeft aan hoe snel de gemiddelde
kwadratische verplaatsing van een deeltje groeit in de tijd. Indien er een concentratie-
gradiënt aanwezig is gebruikt men de transport diffusie Dt. Deze geeft de verhouding tussen
de deeltjesflux en de concentratiegradiënt in het systeem. Tot voor kort vond men in ex-
perimenten dat de transport diffusie altijd groter is dan de zelfdiffusie. In een experiment
in een nanoporeus materiaal vond men recent het omgekeerde gedrag: de zelfdiffusie was
groter dan de transport diffusie. Later werd er gesuggereerd dat dit het gevolg is van het
clusteren van de deeltjes. Met ons model kan het verband tussen het clusteren van deeltjes
enerzijds en Ds > Dt anderzijds op een duidelijke manier begrepen worden. We stellen vast
dat het clusteren van de deeltjes een noodzakelijke maar niet voldoende voorwaarde is voor
Ds > Dt. Verder kan ook de experimenteel geobserveerde concentratie-afhankelijkheid van
Ds en Dt begrepen worden met ons model.

We berekenen analytische uitdrukkingen voor Ds en Dt voor willekeurige interactiesterk-
tes en deeltjesconcentraties. Deze uitdrukkingen worden bekomen door gebruik te maken
van een gemiddelde-veld benadering. Dit houdt in dat de correlaties tussen opeenvolgende
sprongen van de deeltjes genegeerd worden. De uitdrukkingen zijn exact indien de parame-
terwaarden zo zijn dat ons model een zero-range process is.

De exacte Markov dynamica van het systeem, met inbegrip van correlaties, wordt nume-
riek gesimuleerd met kinetische Monte Carlo. We vinden dat ons model in staat is om het
diffusief gedrag van zowel aantrekkende als afstotende deeltjes in nanoporeuze materialen te
beschrijven. De diffusie vertraagt altijd door de correlaties. Voor de experimenteel relevante
gevallen kan de verhouding van Ds en Dt goed voorspeld worden via de niet-gecorreleerde
uitdrukkingen, ook als Ds en Dt afzonderlijk sterk bëınvloed worden door correlaties.

In veel toepassingen wordt een leeg nanoporeus materiaal in contact gebracht met een
deeltjesreservoir. De snelheid waarmee de deeltjes in het materiaal stromen is van cruciaal
belang. Het omgekeerde proces, namelijk het leegstromen van het materiaal in contact met
een leeg reservoir, is evenzeer van belang. We bestuderen daarom beide processen voor
verschillende deeltjesinteracties. We vinden dat de snelheid van absorptie en desorptie sterk
afhankelijk is van de startconcentratie en interactie. Deze resultaten worden besproken aan
de hand van de tijdsafhankelijke concentratieprofielen.

We bestuderen het gemiddelde en de fluctuaties van de deeltjesstroom in de stationaire
niet-evenwichtstoestand, in de macroscopische limiet. We vinden dat de fluctuaties van de
stroom voorspeld kunnen worden door het zogenaamde additiviteitsprincipe.



Abstract

In this thesis we study the diffusion of interacting particles in confined geometries.
An example of materials with a confining geometry are nanoporous materials, such
as zeolites. Many zeolites consist of a series of connected cavities. Each cavity can
contain only a few molecules. We consider a lattice model, where each cavity is a
site on the lattice. The particles perform a random walk on the lattice, described
by a Markovian dynamics. Particles occupying the same lattice site interact. This
interaction is described by a free energy F (n) that depends on the number of particles
n on that site. Also the maximal number of allowed particles at a lattice site nmax

is introduced. The confinement of the material and the particle interactions then
influence the shape of F (n) and the value of nmax.

Diffusion is described by different coefficients. In thermodynamic equilibrium the
self-diffusion Ds is the relevant quantity. Ds quantifies how fast the mean squared
displacement of a single particle increases in time. If a concentration gradient is
present, one uses the transport diffusion Dt. This quantity gives the ratio of the
particle flux and concentration gradient in the system. Until recently, one found in
experiments that the transport diffusion is always larger than the self-diffusion. In
an experiment in a nanoporous material one recently found the reverse behavior: the
self-diffusion was larger than the transport diffusion. Later, it was suggested that this
was the result of particle clustering. With our model, the connection between particle
clustering on the one hand and Ds > Dt on the other hand can be clearly understood.
We find that particle clustering is a necessary but not sufficient condition forDs > Dt.
Furthermore, our model allows for an understanding of the experimentally observed
concentration dependence of Ds and Dt.

We calculate analytical expressions for Ds and Dt which are valid for all inter-
actions and concentrations. These expressions are found by using a mean field ap-
proximation. This means that correlations between subsequent particle jumps are
neglected. These expressions are exact if the parameters are such that our model
becomes a zero-range process.

The exact Markov dynamics, including correlations, is simulated numerically us-
ing kinetic Monte Carlo. We find that our model can correctly describe the diffusive
behavior of both attractive and repulsive particles in nanoporous materials. The diffu-
sion always slows down because of correlations. For the experimentally relevant cases
the ratio of Ds and Dt can be accurately predicted from the uncorrelated expressions,
even if Ds and Dt separately are strongly influenced by correlations.

In many applications an empty nanoporous material is brought into contact with a
particle reservoir. The rate at which particles are absorbed in the material is of crucial
importance. The reverse process, i.e., the desorption of particles from a material in
contact with an empty reservoir, is of equal importance. We study, therefore, both
processes for different particle interactions. We find that the rates of absorption
and desorption strongly depend on the starting concentration and interaction. These
results are understood from a discussion of the time-dependent concentration profiles.

We study the average and fluctuations of the particle current in the nonequilibrium
steady state, in the macroscopic limit. We find that the fluctuations can be predicted
by the so-called additivity principle.
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Chapter 1

Introduction

1.1 Diffusion: A short history

We start the introduction with a short historical account of the experiments and
theories that led to the understanding of Brownian motion and Fickian diffusion.
Both phenomena are the result of the perpetual erratic motion of matter on the atomic
scale. Historically, however, their experimental investigation has occurred separately.
It took almost 80 years before Albert Einstein made the connection between the two,
in one of his four annus mirabilis papers of 1905 [1].

The part about Brownian motion is mostly based on the work of Stephen Brush
[2]. Refs. [3] and [4] were also consulted. The discussion on Fickian diffusion is
based on articles by Mehrer and Stolwijk [5] and Philibert [6]. A dutch translation of
Einstein’s original paper [1] can be found in [7].

1.1.1 Early experiments: Brown, Graham, and Fick

Robert Brown

Robert Brown (1773-1858) was a Scottish botanist who performed pioneering work
in the use of the microscope. He was one of the first to give a detailed description
of the cell nucleus. Brown’s research on diffusion originated from an attempt to find
the mode of action of pollen in the process of impregnation. Small particles that are
contained in the pollen, with lengths of around 0.005 mm, were immersed in water and
observed under a microscope (see [8] for a recent account of the same experiment).
Brown published his results in 1828; he describes his observations as follows [9]:

While examining the form of these particles immersed in water, I observed
many of them very evidently in motion; their motion consisting not only
of a change of place in the fluid, manifested by alterations in their relative
positions, but also not infrequently by a change of form of the particle
itself . . . In a few instances the particle was seen to turn on its longer
axis. These motions were such as to satisfy me, after frequently repeated
observation, that they arose neither from currents in the fluid, nor from
its gradual evaporation, but belonged to the particle itself.
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This erratic and perpetual movement of small particles suspended in a liquid is
nowadays referred to as Brownian motion. It had, in fact, been observed several times
before Brown. In his second publication on the subject, Brown himself mentioned ten
different previous accounts of the motion he observed. Nevertheless, there are very
good reasons to name the phenomenon after Brown. He was the first to study the
motion precisely and extensively. By performing measurements for several different
substances, ranging from organic matter to pieces of glass to a fragment of the Sphinx
of Giza, he showed that dead and living matter exhibited equally well the motion. This
proved that the motion was not self-animated, a common view among biologists at
the time, who thought their observations were particular to organic particles. Brown’s
observations moved the subject from biology to physics.

Also physicists and chemists observed the motion. The first (known) written ac-
count is from Jan Ingen-Housz (1784). After introducing finely ground charcoal in a
drop of alcohol he describes what he sees as follows: “. . . one will see these corpuscles
in a confused continuous and violent motion as if they were animalcules which move
violently forward”. Ingen-Housz did however not investigate the matter further. He
ascribed the motion to evaporation. Brown showed in his experiments that this expla-
nation is incorrect. Other prior observers gave either no or erroneous explanations,
did not perform further investigations, and were unsuccessful in popularizing their
findings.

Thomas Graham

The Scottish chemist Thomas Graham (1805-1869) was probably the first to study
the diffusion in gases systematically. This was done over the years 1828 to 1833 (note
that Graham started in the year of Brown’s first publication). He found that the
rate at which gases diffuse is inversely proportional to the square root of their molar
masses:

vA
vB

=

√

MB

MA
, (1.1)

with MA and MB the molar masses and vA and vB the average velocities of the A
and B molecules. This relation is called Graham’s law. Its importance lies in the fact
that it could be understood from the molecular-kinetic theory of gases developed by
Maxwell and Clausius. More specifically, it could be attributed to the equipartition
of the kinetic energies of the molecules

MAv
2
A/2 = MBv

2
B/2 = 3kT/2, (1.2)

with k the Boltzmann constant and T the temperature. This provided a connection
between the random motion of molecules in gases on the one hand and diffusion on
the other hand. Graham also studied the diffusion of salts in liquids, noticing that it
was at least several thousand times slower than in gases.

Adolf Fick

Adolf Fick (1829-1901) was a German physiologist. He made important contributions
to medicine, where he applied the concepts of physics to the study of living organisms.
He was both a gifted experimentalist and theorist. Fick studied the diffusion of salt
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in water, which was published in 1855. He had read the work Graham, but regretted
that no fundamental law of diffusion was developed. In analogy to Fourier’s law of
thermal conduction and Ohm’s law of electrical conduction, Fick postulated that the
particle flux j is proportional to the gradient of the concentration c:

j = −D
∂c

∂x
. (1.3)

This is nowadays known as Fick’s first law. D is called the diffusion coefficient. Using
conservation of matter he also found the equation

∂c

∂t
= D

∂2c

∂x2
, (1.4)

now called the diffusion equation or Fick’s second law.
Fick measured the concentration profiles of salt in water in a vertical cylinder

and a funnel. The stationary concentration profile was created by putting one end
of the system in contact with a reservoir at high salt concentration and the other
end with pure water. One finds from the diffusion equation that the concentration
profile is linear in the cylinder, and inversely proportional to the length for the funnel.
This was indeed what Fick observed experimentally. He also determined the diffusion
coefficient of salt by measuring the flux in the stationary state.

Fick’s theoretical work was later extended to multicomponent diffusion by James
Clerk Maxwell (1866) and Josef Stefan (1871).

1.1.2 Theoretical understanding of Brownian motion: Ein-

stein and Smoluchowski

Although Brownian motion was widely known after Brown’s original publications,
none of the great kinetic theorists such as Boltzmann, Clausius, and Maxwell, investi-
gated it. Other scientists did try to give an explanation of the observed effect. Some
suggested that the presence of a temperature gradient due to evaporation caused the
motion, apparently unaware that Brown had already dismissed this possibility. The
idea that repulsive particle interactions are the driving force was revisited several
times. Also here Brown had already performed convincing experiments that excluded
this possibility. Others conjectured it was an electrical phenomenon, or the conse-
quence of local hydrodynamic currents or temperature gradients, and so on.

Careful experiments were conducted by Christian Wiener (1863) and Léon Gouy
(1889). Both concluded that the motion was not due to external influences, but must
come from internal motions in the fluid. Wiener thought that matter consists of
material atoms and aether atoms. An important role in his explanation was reserved
for the aether atoms. His attempt to understand the physical mechanism underlying
Brownian motion was therefore unsuccessful. Gouy dismissed the possibility that the
uncoordinated collisions of molecules are responsible for the motion, and suggested
that molecular movements in liquids are partly coordinated at small spatial scales.

To summarize, by the end of the 19th century Brownian motion was widely known,
and many scientists assumed it had something to do with thermal motions in the fluid
itself. Unfortunately, there was still no quantitative theory that made experimental
predictions, or a clear picture of the physical mechanism.
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Albert Einstein

The first quantitative theory of Brownian motion was published by Albert Einstein in
1905 [1]. He considered particles of small size suspended in a fluid at equilibrium. His
aim was to contrast the predictions of thermodynamics and molecular-kinetic theory
on the motion of the particles.

Thermodynamics predicts that a solution of particles enclosed by a semipermeable
membrane exerts an osmotic pressure. The pressure is predicted by van ’t Hoff’s law;
in today’s notation it is seen to be the ideal gas law pV = NkT , with V the volume, N
the number of particles in the volume, and p the osmotic pressure. Small particles (i.e.,
much bigger than the molecules in the solvent) suspended in a liquid do not exert
a pressure according to thermodynamics. Einstein argued that this is an artificial
distinction, and showed that kinetic-molecular theory predicts that small suspended
particles also obey van ’t Hoff’s law. He combined this result with Stokes law for
the velocity (v) of a spherical particle experiencing a force (F ) in a fluid: v = F/ζ.
Here, ζ = 6πηRp is the friction coefficient, with η the viscosity of the fluid and Rp

the radius of the particle.
Now consider a constant force that is exerted on the particles. This creates a

concentration gradient of particles. In the steady state, this force is counteracted
by the osmotic pressure. By balancing the diffusive flux due to the concentration
gradient, Eq. (1.3), and the flux resulting from the constant force, one finds

D = kT/ζ. (1.5)

This is known today as the Stokes-Einstein or Sutherland-Einstein relation.
Einstein then goes on to derive the diffusion equation (1.4). Since it is assumed

that the particles do not influence each other, this equation can be applied to the
position of a single particle. If at time t = 0 the particle is at position x = 0, the
probability distribution of its position x at time t is, in one dimension, given by

f(x, t) =
1√
4πD

e−x2/4Dt

√
t

. (1.6)

From this probability distribution one can derive that the average deviation around
the starting position is given by

x2 = 2Dt. (1.7)

This equation tells us that a particle suspended in a fluid at equilibrium fluctuates
around its average position, i.e., molecular-kinetic theory predicts Brownian motion.
The average position squared scales linearly with the observation time.

Einstein’s contribution can be summarized as follows. Firstly, he showed that
Brownian motion follows from the application of molecular-kinetic theory to fluids.
Secondly, the relevant experimental quantity is the mean-squared displacement (MSD)
of the particles. The MSD grows linearly in time and is proportional to the diffu-
sion coefficient introduced by Fick. This provides a quantitative connection between
Brownian motion and Fickian diffusion. We will later see that using Fick’s diffu-
sion coefficient in Eq. (1.7) is correct only if the particles are noninteracting, as was
explicitly assumed by Einstein. Finally, the result allowed for an experimental deter-
mination of the size of the particles or Avogadro’s number.
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Marian Smoluchowski

Marian Smoluchowski published his paper on Brownian motion in 1906, shortly after
Einstein. His approach was based on the kinetic theory of gases, which was less
abstract than Einstein’s statistical mechanics approach.

After a discussion of the experimental results on the subject, Smoluchowski pro-
ceeds by clearing up a common misconception. The argument was that an individual
collision of a fluid particle with the suspended particle is much too weak to have a vis-
ible effect on the movement of the particle. Furthermore, if the particle is bombarded
from all sides the effect of the different collisions is expected to average out. Why
this argument is erroneous can be understood from a simple calculation. Consider a
particle in one dimension, surrounded to its left and right by fluid particles. The fluid
particles collide from the left and right with equal probability. A collision from the
left (right) imparts a velocity v = +1 (−1) on the particle. If there are n collisions in
total, the probability to have m collisions from the left is

pn,m =
1

2n

(

n

m

)

. (1.8)

The average positive or negative deviation from zero velocity (i.e., m = n/2), equals

v = 2
n
∑

m=n/2

(2m− n)pn,m =
n

2n

(

n

n/2

)

. (1.9)

For large n one finds
v ≃

√

2n/π. (1.10)

In words: the velocity of the suspended particle increases with the square root of the
number of collisions. The large number of collisions is therefore an argument in favor
of the interpretation that Brownian motion is caused by atomic collisions.

This model is, however, too simple. It does, for example, not take into account
that if the particle has a certain velocity, collisions are less likely to increase its velocity
in that direction. Smoluchowski therefore proceeds with the consideration of a more
detailed model. The equipartition theorem predicts that the average velocity v of the
particle is equal to

v = vf
√

m/M, (1.11)

with vf andm, respectively, the average velocity and mass of the fluid particles, andM
the mass of the suspended particle. Due to collisions the particle changes its direction
around 1016 times per second. It therefore follows a zigzag path, constantly changing
its direction, making it impossible to observe its average velocity. One can only
observe the displacement over many steps of this path. Assume therefore a particle
that moves around with the average velocity of Eq. (1.11), but with a constantly
changing direction. If one furthermore assumes that molecular collisions happen at
equal time intervals, one finds the mathematically tractable problem of calculating
the average MSD of a chain made up of segments of equal lengths. After performing
the calculation and making several estimates on, e.g., the number of collisions per
second, Smoluchowski arrives at the same result as Einstein Eq. (1.7). His diffusion
coefficient is about 0.65 times smaller than Einstein’s. This is because Smoluchowski
makes several assumptions from kinetic theory, while Einstein assumes Stokes law to
be valid.
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1.1.3 Experimental verification: Perrin

There had been quite a few experimental studies on Brownian motion before Einstein’s
result. Unguided by theory, these efforts were aimed at the determination of the
velocity of the suspended particles, as determined from the equipartition theorem. As
explained by Smoluchowski and Einstein, the path of a particle is much too erratic
to perform such a measurement. Indeed, the velocity is the derivative of the position
x with respect to the time t. Such a quantity is only sensible if the function x(t) is
sufficiently smooth.

The conclusive experimental verification was performed in the lab of Jean Per-
rin. Perrin had a strong interest in the atomic hypothesis and a good knowledge of
theoretical developments. Before he started his experiments he already gave talks
where he referred to Brownian motion as an example of the violation of the second
law on small scales. He was aware of the mathematical studies of functions that are
continuous but non-differentiable, and mentioned Brownian motion as a physical ex-
ample. Perrin took on the task of verifying Einstein’s predictions after a presentation
of Langevin to the Académie des Sciences in Paris in 1908. He later wrote: “ever
since I became, through M. Langevin, acquainted with the theory, it has been my aim
to apply to it the test of experiment”. Svedberg and Henri had already found that
the MSD scales linearly with time. Their diffusion constants were, respectively, six
and four times larger than Einstein’s prediction.

For a quantitative agreement it is of crucial importance that the suspended parti-
cles follow Stokes law. Perrin therefore first checked its validity for small particles of
gamboge. He found that Stokes law is valid for particles as small as 0.0001 mm, at
least for short enough times. Using spherical grains of gamboge whose radius Rp was
precisely measured, Perrin and his students found exact agreement with Eq. (1.7) by
taking Avogadro’s number NA = 64× 1022. The distribution of particles was shown
to follow Eq. (1.6). These results were published in 1908 and 1909. Perrin spend a
significant amount of time popularizing his results. He argued that his work was a
decisive demonstration of the atomic hypothesis. He was most successful: almost all
skeptics finally admitted to the reality of atoms. For his work, Perrin was awarded
the nobel prize in physics in 1926.

Experimental progress since the days of Perrin has been quite spectacular. The
measurement of the instantaneous velocity of a brownian particle has been recently
performed [10]. The measurement of the transition between ballistic and diffusive
motion of a particle suspended in a liquid has been reported in [11].

1.2 Diffusion in confinement

Until now we considered freely suspended particles in a liquid. Often the motion of
the particles is restricted by obstacles or a confining geometry. This is common in
biological systems. Most of the molecules that make up the cell membrane are able to
diffuse on the plane of the membrane [12]. On the membrane there are also immobile
structures, called fences. Diffusion can be seen as “free” diffusion on the membrane,
temporarily slowed down when a fence is encountered, over which the particle must
“hop”. This can lead to a MSD that scales as x2 ∝ Dtα with α < 1, in contrast
to Eq. (1.7). A scaling with α 6= 1 is called anomalous diffusion. The diffusion of
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(a) (b)

Figure 1.1: (a) A schematic representation of the zeolite Linde type A. (b) Molecules
diffusing in the material. (Reprinted figure with permission from [E. Beerdsen, B.
Smit, and D. Dubbeldam, Phys. Rev. Lett., 93, 248301, 2004.] Copyright (2004) by
the American Physical Society.)

polymers such as DNA through narrow channels is an active field of research [13].
The confinement introduced by the channel wall significantly influences the diffusive
behavior. The modeling of particle diffusion in confining geometries is the topic of this
thesis. This topic has received considerable attention from theorists in recent years
[14]. The main application of the model considered in this thesis is the description of
diffusion in nanoporous materials.

1.2.1 Nanoporous materials

An everyday example of a porous material is a sponge: it has a structure that con-
sists of many interconnected voids or pores. These pores are of a macroscopic size
and contain a fluid or a gas different from the material. Sponges are therefore ideally
suited for water absorption. Materials that are porous on the molecular scale are
called nanoporous, although often a distinction is made between macro-, meso-, and
microporous, depending on the size of the pores. A well known example of naturally
occurring nanoporous materials are zeolites; see Figure 1.1 for an example. Porous
structures possess interesting properties. Consider for example the problem of sep-
arating a mixture of two different substances. If these two substances are spaghetti
and water, life is relatively easy: spaghetti is much larger than a water molecule, and
appropriate sieves can be found in the supermarket. However, often one is interested
in separating a mixture of molecules of comparable sizes. A nanoporous material can
now play the role of the sieve: if its pores allow the passage of one molecule but not
the other, one simply needs to introduce a stream of the mixture on one end of the
material, and collect the output on the other end. In practice such molecular sieving
is more subtle than this simple mechanism, cf. Chapter 20 in [15], but the qualitative
idea stays the same.

Nanoporous materials have many more applications. They are currently used, e.g.,
for catalysis in the petroleum industry [16] and as ion exchangers in water softeners.
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Possible future applications include storage of carbon dioxide [17] and hydrogen [18],
and use as insulators with a low dielectric constant [19].

Nanoporous materials can be found in nature: over 40 naturally occurring zeolite
structures have currently been identified [20]. They can also be synthesized in the
laboratory [21]. An important new class of materials is metal-organic frameworks
(MOFs) [22]. These are created by combining organic and inorganic molecules, leading
to the connection of inorganic subunits by organic linkers. During the last decade
hundreds of different MOFs have been synthesized. Since the range of inorganic
units, organic linkers, and their interconnection is essentially unlimited, the number
of possible structures is practically infinite [23]. This opens up the possibility to
synthesize the structure of the material as a function of its application.

1.2.2 Experimental techniques

For almost all applications it is important to understand how atoms and molecules
diffuse in such structures. Reliable measurement techniques are therefore of crucial
importance. There are macroscopic techniques, where a step change of the pressure is
introduced in the environment and the uptake or release of particles is measured. On
the other hand there are microscopic methods such as pulsed-field-gradient nuclear
magnetic resonance (PFG NMR), which record the diffusion paths of molecules over
micrometers [15]. Finding agreement between the different methods [24], and correctly
interpreting the experimental data [25], has not always been an easy task.

If the particles do not influence each other, the diffusion coefficients of Fick
[Eq. (1.3)] and Einstein [Eq. (1.7)] are equal. Once particle interactions come into play
they can differ significantly. In this case the Fick diffusion coefficient is commonly
referred to as the transport diffusion Dt:

j = −Dt
∂c

∂x
. (1.12)

The coefficient of Eq. (1.7) is defined in equilibrium and is referred to as the self-
diffusion Ds:

x2 ∝ Dst. (1.13)

Recently, interference microscopy (IFM) and infrared microscopy (IRM) have
made it possible to record transient guest profiles in nanoporous materials [26, 27].
With these techniques one can measure the self- and transport diffusion with the same
device, under the same operating conditions. A measurement of the self- and trans-
port diffusion of methanol, ethanol, and ethane in a zeolitic imidazolate framework
(ZIF), MOF ZIF-8, was performed by Chmelik et al. [28]. MOF ZIF-8 is a highly
stable and defect free nanoporous material [29], and thus ideal for such an experiment.

The experimental results are shown in Figure 1.2. BothDs andDt depend strongly
on the concentration. Note that the transport diffusion can become significantly
smaller than the self-diffusion for methanol and ethanol. This was the first exper-
imental observation of such behavior. Figure 1.2d shows the adsorption isotherms,
i.e., the fractional loading θ (concentration divided by maximal concentration) as a
function of the pressure of the environment. θ(p) displays an “S-shaped” behavior
for methanol and ethanol. For ethane the concentration increases much more slowly
as a function of the pressure. The strong concentration dependence of the diffusion
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Figure 1.2: Self-diffusion (blue circles) and transport diffusion (red stars) of (a)
methanol, (b) ethane, and (c) ethanol, in MOF ZIF-8. The fractional loading as a func-
tion of the pressure is given in (d). (Reprinted figure with permission from [C .Chme-
lik, H. Bux, J. Caro, L. Heinke, F. Hibbe, T. Titze, and J. Kärger, Phys. Rev. Lett.,
104, 085902, 2010.] Copyright (2010) by the American Physical Society.)

coefficients is the result of the interplay between the interparticle interactions and
the confinement of the material, as was intuitively argued by Chmelik et al. [28].
Later, Krishna and van Baten presented an extensive set of results from molecular
dynamics (MD) simulations to show that the molecular mechanism responsible for
the self-diffusion exceeding the transport diffusion was the clustering of the particles
in the material [30–32].

1.3 Motivation for this work

We can summarize that already today nanoporous materials have a strong technologi-
cal relevance. The possibility to create new materials in a large variety of structures is
likely to increase this relevance in the future. New experimental techniques allow the
monitoring of time-dependent guest concentrations, and have created a wealth of new
data on particle diffusion coefficients. Nanoporous materials present us with a case
of confined diffusion, i.e., particles interact strongly with the material. At nonzero
loadings there are also strong interparticle interactions. The interplay between the
confinement and interparticle interactions leads to diffusion coefficients that depend
on the concentration in a nontrivial way, cf. Figure 1.2. One therefore wants to under-
stand the observed diffusive behavior from the underlying dynamics at the molecular
level.

Continuum descriptions of particles diffusing in a confining geometry of varying
cross section often rely on a perturbation expansion of some sort [33, 34]. If one
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furthermore considers interacting particles and/or high densities, also here a pertur-
bative approach [35–37] or a dynamical density functional theory [38] is necessary.
We circumvent these difficulties by putting the particles on a lattice. This type of
modeling follows naturally from the structure of many nanoporous materials.

Particle clustering implies that the particles are inhomogeneously distributed at
the molecular scale. This has a characteristic effect on the equilibrium properties, such
as the adsorption isotherm; cf. Figure 1.2d. A good model should correctly capture
the influence of different types of interactions on both the equilibrium properties and
the self- and transport diffusion. The description of the interactions should be as
general and conceptually simple as possible. A study of the effect of correlations
upon the diffusion is also of interest. Also here one would like to have a conceptually
simple model that exhibits a variety of behaviors. The construction of such a model
is the goal of this thesis.

1.4 Outline of the thesis

This thesis is structured as follows.
In Chapter 2 we introduce the model and discuss the relevant diffusion theory. The

methods to numerically determine the self- and transport diffusion are explained. We
discuss other lattice approaches to the same problem.

In Chapter 3 we investigate the equilibrium properties, namely the adsorption
isotherm and fluctuations in particle number, for different interactions. Recently,
there has been interest in systems containing particles that exhibit significant clus-
tering, i.e., the particles are inhomogeneously distributed at the nanoscale. This has
a characteristic impact on the equilibrium properties, which we discuss.

In Chapter 4 we calculate analytical results for the diffusion coefficients. These are
found by ignoring correlations in the system, which corresponds to the consideration
of systems of length 1. The uncorrelated solution is exact for systems of arbitrary
length under special conditions, i.e., if our model reduces to a so-called zero-range
process. An analytical analysis of the effect of correlations is provided by studying
systems of length 2.

In Chapter 5 we present results on the diffusion obtained by numerical simula-
tions. The connection between the self-diffusion exceeding the transport diffusion on
the one hand and particle clustering on the other hand, can be understood in simple
terms from our model. We find that a qualitative understanding of the behavior of
the self- and transport diffusion can be obtained both for repulsive and attractive
(clustering) particles, over the whole concentration range. Surprisingly, also a quan-
titative agreement can be obtained for clustering particles. We analyze the effect of
correlations upon the diffusion in detail. The status of our assumptions with respect
to experimental systems is discussed at the end.

Chapter 6 contains a discussion of the adsorption and desorption kinetics of the
system. We find that for clustering particles the desorption can proceed faster than
the adsorption, contrary to what is commonly observed.

In Chapter 7 we study the probability distribution of the current through the
system in the nonequilibrium steady state, in different dimensions. The first three
cumulants obtained from direct simulations are compared with predictions from the
additivity principle [39]. In one and two dimensions the first three cumulants agree
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with the predictions from the additivity principle. In three dimensions agreement is
found for the first two cumulants. There is insufficient statistics for a reliable estimate
of the third cumulant.

Finally, we present our conclusions and some perspectives on interesting further
work in Chapter 8.
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Chapter 2

The Model

We introduce the model that is studied in this thesis in Section 2.1. Possible forms of
the transition rates are calculated using transition-state theory (TST) in Section 2.2.
A short introduction to the required diffusion theory is presented in Section 2.3. In
Section 2.4 we explain the simulation methods that were used to obtain the diffusion
coefficients. Finally, we discuss other work that is related to our model in Section 2.5.

2.1 Construction of the model

The materials we consider consist of a large array of cavities, which are connected to
each other by narrow passages, also called windows; see Fig. 2.1. In such a setup, it is
natural to assume that the time spent by a particle in a cavity before moving to one
of its neighbors is much larger than the equilibration time of particles inside a cavity.
This allows us to coarse grain the intracavity degrees of freedom [40]. Interactions
are described by the equilibrium free energy F (n), depending only on the number of
particles n in the cavity. Contributions to F (n) are the result of particle-particle and
particle-wall interactions inside a cavity. When the system is in equilibrium with a
particle reservoir at chemical potential µ and temperature T , the probability to have
n particles in any cavity is equal to

peqn (µ) = [Z(µ)]
−1

e−β[F (n)−µn], (2.1)

with β = (kT )−1, k the Boltzmann constant, and Z the grand-canonical partition
function:

Z(µ) =

nmax
∑

n=0

e−β[F (n)−µn]. (2.2)

Averages over the equilibrium distribution Eq. (2.1) are denoted by 〈·〉, e.g.,

〈n〉(µ) =
nmax
∑

n=0

npeqn (µ). (2.3)

Since the equilibrium distribution is known for any given F (n) and µ, all equilibrium
quantities can be calculated analytically in function of these two variables. For later
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Figure 2.1: The system, shown here between dashed lines, consists of an array of cavi-
ties connected by narrow passages. On the boundaries it is connected to uncorrelated
cavities with the equilibrium distribution.

reference, we introduce the grand potential Ω(n, µ) = F (n)−µn, which captures the n
dependence of the probability. Confinement limits the amount of particles in a cavity
and is represented in our model by nmax, which is the maximal number of particles a
cavity can contain.

A schematic representation of the model in one dimension is given in Fig. 2.1. It
consists of pairwise connected cavities numbered from 1 to L. Because we integrate
out the intracavity degrees of freedom we can identify the cavities with sites on a
lattice. The center-to-center distance between two cavities is equal to λ. A particle
jumps from a cavity containing n particles to a cavity containing m particles with
probability per unit time knm. These rates satisfy local detailed balance:

knm
km+1,n−1

=
peqn−1(µ)p

eq
m+1(µ)

peqn (µ)peqm (µ)
(2.4)

= e−β[F (n−1)+F (m+1)−F (n)−F (m)]. (2.5)

This ensures that, when the system is in equilibrium, there are no net currents
and that the probability distribution equals the equilibrium distribution Eq. (2.1).
Particles can enter or leave the system through the boundaries, which are connected
to (particle) reservoirs. The left and right reservoirs have, respectively, chemical po-
tential µl and µr. A reservoir is modeled as a cavity characterized by the equilibrium
distribution peqn (µ) (µ is either µl or µr), whose state is uncorrelated from the cavity
it is connected to (see Appendix C). The rates at which a reservoir cavity at chemical
potential µ adds (kr,+n ) or removes (kr,−n ) one particle from a cavity containing n
particles are

kr,+n =

nmax
∑

m=1

kmnp
eq
m(µ); kr,−n =

nmax−1
∑

m=0

knmpeqm(µ). (2.6)

With the transition rates determined, one can construct the master equation describ-
ing the time evolution of the probability pn1,n2,...,nL

(t) for the system to be in state
(n1, n2, . . . , nL) at time t, with ni the number of particles in the ith cavity. We do
not repeat the theory of Markov processes here, see e.g. [41] for an introduction.

Since the focus is here on the influence of the various interactions as compared to
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Figure 2.2: Two cavities, A and B, divided by a transition-state surface TS. A particle
is in the transition state.

the ideal case, we write the free energy as

F (n) = F id(n) + f(n), (2.7)

where F id(n) is the free energy of an ideal gas:

F id(n) ≡ kT
[

ln(n!)− n ln
(

V/Λ3
)]

, (2.8)

with V the volume of a cavity, Λ = h/
√
2πMkT the thermal de Broglie wavelength, h

the Planck constant, and M the mass of one particle. Note that a linear term in F (n)
simply rescales the chemical potential of the system Eq. (2.1). Such a linear term does
therefore not influence the equilibrium statistics at a given particle concentration. We
call f(n) the interaction free energy, which includes all interactions and confinement.
The free energy can be derived from the partition function, defined by

Z(n) =
V n

n!Λ3n
z(n), (2.9)

z(n) =
1

V n

∫

V

dr1 . . .

∫

V

drne
−βU(r1,...,rn), (2.10)

with ri the position of the ith particle and U(r1, . . . , rn) the interaction energy. The
interaction free energy is then determined by the configurational integral z(n) through
f(n) = −kT ln z(n).

2.2 Transition rates

The free energy F (n) does not fully specify the dynamics, contained in the rates knm,
because only local detailed balance Eq. (2.4) has to be obeyed. For example, all rates
of the form

knm = νn
e−βc[f(n−1)−f(n)]

e−β(1−c)[f(m)−f(m+1)]
, (2.11)

obey local detailed balance for any c ∈ R (ν denotes a positive constant throughout
this thesis). As discussed in Appendix A, the physically relevant rates are found for
0 ≤ c ≤ 1, where c measures the importance of the interaction of the two cavities
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participating in the jump. We use transition-state theory [42] to calculate possible
forms of the jump rates. The details of the calculations can be found in Appendix A.

Consider two connected cavities, called A and B, containing respectively n and m
particles. In the middle of the window we define a transition-state (TS) surface. If the
center of a particle is located on the TS surface, it is said to be in the transition state.
The setup is illustrated in Fig. 2.2. The jump rate knm is equal to the probability that
a particle from cavity A is in the transition state, multiplied by its average velocity
towards cavity B.

Consider, first, particles which have no long-range interactions. An example is
when the particles only feel hard-core repulsion. As a result, the particle in the TS
has no influence on the interaction of the particles in cavities A and B. The rates
then have the form:

knm = k10e
−β[f(1)−f(0)]neβ[f(n)−f(n−1)]. (2.12)

As always we require that kn,nmax
= 0 for all n. This jump rate only depends on the

change in free energy of cavity A. Note that it corresponds to c = 1 for the rate given
in Eq. (2.11).

Consider now particles with long range interactions. The particle in the TS in-
teracts with the particles of both cavities A and B. knm therefore depends on the
change in interaction free energy of both cavities A and B. We study rates of the
form (see Appendix A):

knm = k10ne
−(β/2)[f(n−1)+f(m+1)−f(n)−f(m)]. (2.13)

Note that the change in free energy of cavities A and B is of equal importance. This
rate corresponds to c = 1/2 in Eq. (2.11).

2.3 Diffusion theory

We present the necessary diffusion theory that will be used in this thesis. We assume
that the diffusion is isotropic. Anisotropic diffusion is not considered in this thesis.
The average particle concentration at position r is denoted by c = c(r).

The self-diffusion coefficient Ds describes the average mean-squared displacement
(MSD) of a single particle in a system at equilibrium, in the long-time limit:

Ds = lim
t→∞

1

2dt
[r(t) − r(0)]

2
= lim

t→∞

1

2dt
∆r2(t), (2.14)

where d is the dimension of the system, r the position of the particle, and the overline
denotes the average over all equilibrium trajectories. A common way of measuring
this coefficient is by labeling a subset of the particles in the system (denoted by ∗);
see Fig. 2.3. Particles in the reservoir cavities are labeled with different percentages,
resulting in a concentration gradient∇c∗ of labeled particles under overall equilibrium
conditions. The resulting flux j∗ of the labeled particles reads [15]:

j∗ = −Ds∇c∗. (2.15)
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Figure 2.3: Measuring the self-diffusion: A concentration gradient of labeled particles
(open green circles) is introduced under overall equilibrium conditions.

The transport diffusion coefficient Dt, also called Fick or chemical diffusion, quan-
tifies the particle flux j appearing in response to a concentration gradient:

j = −Dt∇c. (2.16)

It is assumed that the concentration gradient is sufficiently small so linear response
is valid. Note the similarity between the definitions of the self-diffusion Eq. (2.15)
and the transport diffusion Eq. (2.16). The difference lies in the physical situation to
which they apply: out of equilibrium for Dt (Figure 2.1) and in equilibrium for Ds

(Figure 2.3).
One can rewrite Eq. (2.16) in terms of the gradient of the chemical potential. The

two gradients are related by ∇c = (∂c/∂µ)∇µ. Since c = 〈n〉/V with V the volume
of one cavity, and d〈n〉/dµ = β(〈n2〉 − 〈n〉2), as follows from Eq. (2.3), this yields:

j = −Dtβ
〈n〉
V

〈n2〉 − 〈n〉2
〈n〉 ∇µ. (2.17)

The Maxwell-Stefan (MS) diffusion coefficient Dms is defined as [43]

j = −Dmsβc∇µ. (2.18)

From Eqs. (2.17) and (2.18) it follows that

Dt = ΓDms, (2.19)

where we have defined the thermodynamic factor:

Γ(µ) =
〈n〉

〈n2〉 − 〈n〉2 . (2.20)

From Eq. (2.19) one can see that the transport diffusion is the product of a ther-
modynamic term Γ and a kinetic term Dms. Because thermodynamic effects are
“factored out”, or corrected for, in Dms, it is sometimes called the corrected diffusion.
The Maxwell-Stefan diffusion coefficient can be written as

Dms = lim
t→∞

1

2dNt

(

N
∑

i=1

∆ri(t)

)2

, (2.21)
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where the sum runs over all N particles in the system. The equivalence of Eq. (2.18)
and Eq. (2.21) follows from the Kubo-Green expression for Dms [44]

Dms =
1

Nd

∫ ∞

0

dt

(

N
∑

i=1

vi(t)

)

.

(

N
∑

i=1

vi(0)

)

, (2.22)

with vi(t) the velocity of the ith particle at time t. Because we study particles on a
lattice it is better to rewrite Eq. (2.22) as a function of the particle positions ri(t).
This leads to Eq. (2.21).

The definition Eq. (2.21) is similar to the one for the self-diffusion Eq. (2.14), with
the MSD of N times the center of mass of all particles instead of the MSD of one
particle. Dms is therefore also called the center-of-mass diffusion coefficient. From
Eqs. (2.19) and (2.21) one finds the following relation between the self- and transport
diffusion:

Dt = lim
t→∞

Γ

2dNt





∑

i

∆r2i +
∑

i,j 6=i

∆ri.∆rj



 (2.23)

= ΓDs + lim
t→∞

Γ

2dNt

∑

i,j 6=i

∆ri(t).∆rj(t). (2.24)

For conciseness we do not write the time dependence in Eq. (2.23).
Two types of correlation effects influence the diffusion. The first type considers

only a single particle. If the direction and average rate of subsequent jumps of a
single particle are uncorrelated, the self-diffusion is equal to Ds = λ2kav/2d, with
kav the average jump rate. In general, however, subsequent jumps are correlated.
Consider, for example, the case where only one particle can occupy each lattice site.
If a particle jumps, it is more likely to return to the site from where it came, because
this site is more likely to be empty. These single-particle correlations influence the
self-diffusion Ds. The second type considers the correlation between jumps of different
particles. It is described by the second term on the right-hand side of Eq. (2.24). If
the particles have a tendency to drag along other particles, then this term is positive.
This happens, for example, when there is interparticle friction. The Maxwell-Stefan
theory of diffusion is often used to study diffusion in porous materials [43]. In this
context one can derive the relation:

1

Ds
=

1

Dms
+

1

Dcor
. (2.25)

Interparticle correlations are captured by the term 1/Dcor, while single-particle cor-
relations influence Ds. 1/Dcor is interpreted as resulting from interparticle friction
(in continuum models) or correlations between jumps of different particles (in lattice
models [45]). It is positive if the interparticle correlation term in Eq. (2.24) is positive
and vice versa.

2.4 Numerical simulations: methods

We discuss how the diffusion coefficients are obtained from numerical simulations. The
Markov dynamics of the system is simulated using the kinetic Monte Carlo method, as

18



0 20 40 60 80 100 120 140 160

L

0.1

0.2

0.3

0.4
D

s

f(n) = −0.2n2

nmax = 13

〈n〉/nmax = 0.2

〈n〉/nmax = 0.4

〈n〉/nmax = 0.8

(a)

0.23

0.24

0.25

0.26

D
s

〈n〉/nmax = 0.2

0.25255− 0.0945/L

0.15

0.16

0.17

0.18

D
s

〈n〉/nmax = 0.4 0.16319− 0.0007/L

1
5

1
15

1
25

1
50

1
150

0.13

0.14

0.15

0.16

D
s

1/L

〈n〉/nmax = 0.8

0.14146 + 0.0635/L

(b)

Figure 2.4: Self-diffusion in a one-dimensional system with f(n) = −0.2n2, nmax = 13,
the rates of Eq. (2.13), and loadings 〈n〉/nmax = 0.2, 0.4, and 0.8. (a) Ds as a function
of the length L of the system. (b) The same data, plotted as a function of 1/L. The
analytical fit is obtained using Mathematica, and was done for all lengths except
L = 1.
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Figure 2.5: Transport diffusion in one dimension as a function of δ〈n〉, for L = 20,
nmax = 2, 〈n〉 = 1, f(n) = 0, and the rates of Eq. (2.13).

discussed in Appendix B. The chemical potential corresponding to a certain loading
〈n〉 can be found numerically via Eq. (2.3). This chemical potential determines the
rates at which particles are injected or removed at the boundaries; see Eq. (2.6). Note
that we only consider isothermal systems.

2.4.1 Self-diffusion

To measure the self-diffusion at loading 〈n〉(µ) both reservoirs are put at the chemical
potential µ. A concentration gradient of labeled particles is introduced by labeling
particles that enter from the left or right reservoir with different percentages. Ds

can then be found using Eq. (2.15). In the simulations, all particles coming from
the left reservoir are labeled (100%), and none of the particles coming from the right
reservoir are labeled (0%). Taking different percentages gives the same Ds. We are
interested in the situation where the boundary cavities have negligible influence. The
length dependence of Ds in a one-dimensional system, for the parameters f(n) =
−0.2n2, nmax = 13, the rates of Eq. (2.13), at loadings 〈n〉/nmax = 0.2, 0.4, and
0.8, is shown in Fig. 2.4a. Once L > 1 the diffusion is influenced by correlations, as
discussed in Chapters 4 and 5, and one observes a sharp decrease of Ds. The influence
of the boundary cavities decreases with increasing length. For large L the length
dependence scales as ∝ 1/L. This 1/L dependence can be increasing, decreasing, or
(approximately) constant, depending on the loading of the system, cf. Fig. 2.4b.

2.4.2 Transport diffusion

The transport diffusion at loading 〈n〉 is measured by putting the left and right
reservoirs at different chemical potentials corresponding to, respectively, 〈n〉+ δ〈n〉/2
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Figure 2.6: Transport diffusion in a one-dimensional system with the rates of
Eq. (2.13). (a) f(n) = −0.2n2, nmax = 13, and 〈n〉/nmax = 0.8. (b) f(n) = 0,
nmax = 2, and 〈n〉 = 1.
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Figure 2.7: Transport diffusion in two dimensions as a function of Ly, for Lx = 20,
nmax = 2, 〈n〉 = 1, f(n) = 0, and the rates of Eq. (2.13). Periodic boundary conditions
are imposed in the y direction.

and 〈n〉 − δ〈n〉/2, where δ〈n〉 should be small enough to ensure that one is in the
regime of linear response. An example of the convergence to linear response is shown
in Figure 2.5. By measuring the particle flux through the system one can calculate
Dt using Eq. (2.16). We note that the Maxwell-Stefan diffusion can be found from
Eq. (2.19), where the thermodynamic factor Eq. (2.20) is known analytically. The
length dependence of the transport diffusion for two different parameter sets is plotted
in Fig. 2.6. Also here one observes a sharp decrease of Dt for small L. A convergence
to the L → ∞ limit is found around L = 20. The time needed to achieve good
statistics is much larger for the transport diffusion than for the self-diffusion. This is
because the transport diffusion is measured for a small concentration gradient. For
large L the particle flux becomes very small, and the error bars on the transport
diffusion are very large. This is in contrast to Ds, where a concentration gradient
of labeled particles is applied, which can be made arbitrarily high (100% in the left
reservoir and 0% in the right reservoir). The problem of a very small labeled particle
flux occurs much later compared to the transport diffusion. We have therefore not
studied the length dependence of Dt for large lengths. For practical purposes one can
assume that Dt has converged at L ≈ 20, as can be seen from Figure 2.6.

We have also performed simulations in two- and three-dimensional systems. If
periodic boundary conditions are imposed in the y and z directions, convergence to
the limit of large system size is remarkably fast. An example of this convergence is
shown in Figure 2.7.
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2.4.3 Determination of the error bars

The error bars are determined as follows. We measure the value of the self- and
transport diffusion each 108 Monte Carlo steps and store these values in a list A. Error
bars are found by calculating σ =

√

〈δA2〉 /n, where n is the number of elements in
the list and

〈

δA2
〉

=
1

n− 1

n
∑

i=1

(Ai − 〈A〉)2, (2.26)

with 〈A〉 the average of the list. The error bars have value 〈A〉 ± σ. The error bars
are generally encompassed by the symbol sizes. If this is not the case they have been
included in the Figures. The error bars for Figures 5.1, 5.3, and 5.4 were measured
differently. Four different diffusion coefficients were simulated, and the maximum and
minimum values were taken as the error bars.

2.5 Related work

Crystalline nanoporous materials exist in a variety of forms. One commonly distin-
guishes between channel-type and cage-type structures [46]. We refer to the supple-
mentary material of [47] for an overview of a representative subset of these materials.
Channel-type structures consist of straight channels, which are either interconnected
in a network or disconnected one-dimensional lines. A notable example is MFI [48],
which is used in many commercial petrochemical and separation processes. Cage-type
materials consist of cages separated by windows. A distinction can be made between
materials with window sizes comparable to the cage size and those with window sizes
that are significantly smaller. In the latter case, the size of the window is often com-
parable to the size of the guest molecules diffusing in the material. Our model is
inspired by cage-type nanoporous materials connected by narrow windows. An exam-
ple is Linde Type A (LTA), whose applications include paraffin cracking and use in
water softeners. Another prominent example is MOF ZIF-8. It has shown potential
for the separation of carbon dioxide and methane [49, 50], a necessary step in the
refinement of natural gas.

Given their great technological and fundamental importance, it is no surprise
that these materials are widely studied. Furthermore, the structure of the cage-type
materials naturally suggests a coarse-graining procedure like the one we perform. In
this Section, we give a short overview of the most relevant literature regarding the
diffusion. Relevant work on equilibrium properties is discussed in Section 3.2. For a
more general introduction on the modeling of diffusion in nanoporous materials we
refer to [15].

2.5.1 Transition-state theory models

Analytical TST calculations

An early application of TST to diffusion in cage-type materials can be found in [51, 52].
One calculates the average jump rate of a particle from TST. It is assumed that sub-
sequent particle jumps are uncorrelated. The self- and Maxwell-Stefan diffusion are
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then equal to each other by construction. The self-diffusion is predicted by [Eq. (4.42)
in [15])]

Ds =
λ2

h

p

〈n〉
f+

fg
exp

(

−E0 − U0

kT

)

. (2.27)

f+ and fg are the molecular partition functions (i.e., without translational degrees of
freedom) of a molecule in, respectively, the window and the free gas phase. p is the
pressure of the reservoir, E0 is the energy difference between the state in the cavity
and in the window, and U0 is the difference in the zero energy levels between the free
gas phase and the absorbed state.

From Eq. (2.27) one can rationalize several experimental results, cf. Chapter 16
in [15]. Particle diffusion constitutes a case of activated diffusion over a barrier.
One therefore expects, as predicted by the exponential factor in Eq. (2.27), that
the diffusion coefficients show Arrhenius (∝ 1/T ) behavior. This is indeed observed
experimentally. Furthermore, larger molecules or smaller windows make it less likely a
particle occupies the transition state, i.e., f+ decreases. A slower diffusion for larger
particles or smaller windows is indeed observed. By a calculation of the partition
functions one was able to predict the correct order of magnitude of the diffusion at
infinite temperature of several light molecules [53].

From molecular dynamics to random walks

A very popular approach to the understanding of diffusion in nanoporous materials
are molecular dynamics (MD) simulations [16, 54]. Diffusion in cavity-type materials
with narrow windows is a process of activated diffusion: particles spend a long time
in a cavity before they jump to a neighboring cavity. A standard MD simulation
therefore spends a lot of computational time on the “uninteresting” situation of the
particles sitting in the cavities. This issue can be resolved by performing short MD
simulations which, based on transition-state theory techniques, allow to compute the
jump rates between the cavities. Standard TST techniques can be straightforwardly
applied to diffusion at low loadings, when different particles have negligible influence
on each other [55, 56]. The extension to high loading is non-trivial.

A first attempt to produce a TST scheme that quantitatively reproduces MD re-
sults for the self-diffusion at arbitrary loadings was undertaken by Tunca and Ford
[57–59]. They assumed that interactions can be described by a free energy function
that depends on the number of particles in a cavity and in its neighboring cavities. The
jump rates knm were determined from TST simulations. This was achieved by closing
off all cavities except A and B (as in Figure 2.2). These jump rates were employed
in a kMC simulation to determine the self-diffusion. Their attempt to quantitatively
reproduce the self-diffusion was not completely successful: some discrepancy between
MD and TST calculations persisted. The similarities with our model are the consid-
eration of free energies which depend solely on the particle numbers in the cavities
and the use of kMC simulations with rates knm. Because the question was about the
quantitative reproduction of MD results, they only considered one parameter set (one
type of interaction). They also only studied the self-diffusion.

A quantitative agreement with MD simulations was obtained by Beerdsen, Dubbel-
dam, Smit, and Vlugt [60, 61]. They computed the effective hopping rate of a single
particle. Quantitative agreement with MD simulations was achieved by taking into
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account interactions with all neighboring cavities (not only A and B), and allowing
for simultaneous jumps of other particles during the TST simulation. Since one as-
sumed that subsequent particle jumps are uncorrelated, the self-diffusion could be
calculated directly from the effective hopping rate. By considering all other particles
as the environment and integrating over these interactions, the free energy of a single
particle as a function of its position in the cavity can be calculated, see, e.g., Figure
2 from [60]. This position-dependent free energy allows for an understanding of the
concentration-dependence of the self-diffusion.

2.5.2 Lattice gas models

Cellular automata

A lattice gas approach that most resembles our model is found in the work of Pazzona,
Demontis, and Suffritti [62–65]. A lattice of connected cavities is considered, where
each cavity can contain between zero and nmax particles. The difference in setup is
that different cavities are connected via another lattice site, which can maximally
contain one particle. Introducing such sites has the advantage of incorporating the
decreased probability of moving to a cavity that is already highly occupied. It however
also introduces extra parameters in the model. The updating is performed according
to a cellular automaton approach [62, 63]. Therefore, despite the similarity in setup,
the dynamical rules are very different compared to our model. Furthermore, as with
all the works discussed up to now, the transport diffusion is not studied.

Other lattice gas approaches

A very popular approach is to consider a lattice where each site can contain maximally
one particle, see e.g. [66–70]. Reed and Ehrlich studied such a lattice gas with nearest
neighbor interactions in the context of surface diffusion [71, 72]. The application to
zeolites was given by Krishna, Paschek, and Baur [73].

A lattice that can contain at most one particle per site and does not interact with
other particles is called a simple exclusion process (SEP) in the physics literature.
This model has been studied extensively, for example in the context of nonequilibrium
statistical mechanics [74]. If one allows multiple particles per site and defines a set
of jump rates that depend only on the particle numbers of the two participating
sites, one has a generalized exclusion process (GEP) [75]. Such systems are studied
in the mathematical physics literature [76]. Our model constitutes a GEP with a
thermodynamic interpretation for the rates.

2.6 Conclusion

Inspired by diffusion in cage-type nanoporous materials, we have introduced a lattice
model of interacting particles. The dynamics is Markovian and is simulated using
kinetic Monte Carlo. The rates, which are used as input in the simulations, are
calculated from transition-state theory. Both the self- and transport diffusion can be
numerically determined from a straightforward procedure. Finally, we have briefly
discussed other similar models.
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Chapter 3

Equilibrium properties

Before turning to the diffusive properties, we study the equilibrium behavior of the
model. The effect of f(n) on fluctuations in particle number, and the equivalence of
a concave f(n) and clustering, is discussed. An investigation of particle clustering
in porous materials using MD simulations can be found in Refs. [30–32]. If particles
cluster the inverse thermodynamic factor Γ−1 is larger than 1, and there are steep
adsorption isotherms. Porous materials are classified by the characteristic dimensions
of their structure. If the pore dimensions are smaller than 2 nm, then the material
is called microporous; if the dimensions are between 2 and 50 nm, then it is called
mesoporous; and even larger pores are called macroporous. Steep isotherms and
Γ−1 > 1 are more common in macro- and mesoporous materials than in microporous
materials, i.e., the more confining the geometry the less likely particle clustering
occurs. All these features are present in our model and can be understood from the
shape of the interaction free energy, as discussed in this Chapter.

3.1 Fluctuations in particle number

Fluctuations in particle number are encoded in the thermodynamic factor, Eq. (2.20).
We discuss the behavior of Γ−1 instead of Γ because the latter goes to infinity at max-
imum loading, making it more difficult to interpret graphically. Let us first consider
noninteracting particles with zero volume, i.e., f(n) = 0 and nmax = ∞. The distri-
bution peqn (µ) is then a Poisson distribution,

peqn (µ) =
〈n〉n
n!

e−〈n〉, (3.1)

for which 〈n2〉 − 〈n〉2 = 〈n〉 and Γ = 1 at all loadings. The change in variance
〈n2〉 − 〈n〉2 is caused by the convexity versus concavity of f(n). For better insight
into the dependence of the equilibrium distributions on this convexity or concavity of
f(n) we consider the grand potential Ω(n, µ), which we write as

Ω(n, µ) = F id(n) + f(n)− µn, (3.2)

or, by defining the constant µ0 ≡ kT ln
(

V/Λ3
)

,

Ω(n, µ) = kT ln (n!) + f(n)− (µ+ µ0)n. (3.3)
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Figure 3.1: The probability distribution of cavity occupation peqn , Eq. (2.1), at different
loadings and with nmax = 13, for (a) f(n) = 0 (b) f(n) = 0.2n2 (c) f(n) = −0.2n2.
(d) Ω(n) for the different interactions, at 〈n〉 = 5. The lines are a guide to the eye.
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/〈n〉, for nmax =
13 and different interactions.

µ0 changes the chemical potential for which a certain loading is achieved; it does
not change the behavior of Ω(n, µ) at a given loading. Because we only consider
isothermal systems kT is a constant, which we take to be equal to 1. We discuss
three situations: no interactions f(n) = 0; convex interactions, with as an example
f(n) = 0.2n2; and concave interactions, with as an example f(n) = −0.2n2. For all
interactions we take nmax = 13, corresponding to f(n) = ∞ for n > nmax.

To understand the effect of introducing an nmax, we consider the situation f(n) = 0
and nmax = 13. The probability distributions of cavity occupation peqn at different
loadings are plotted in Fig. 3.1a. As long as peqnmax

≈ 0, peqn is equal to the Poisson
distribution Eq. (3.1) and Γ = 1. Once the probability to be full becomes nonzero
the variance decreases compared to the Poisson distribution, resulting in Γ−1 < 1;
see Fig. 3.2.

To understand the change in variance for different interactions we plot Ω(n, µ)
as a function of n, at the chemical potentials for which 〈n〉 = 5; see Fig. 3.1d. For
graphical clarity the three curves are shifted vertically so Ω(5) = 0. For f(n) = 0
the minimum of Ω(n) lies at n = 〈n〉. All other values of Ω(n) are higher, because
Ω(n) = kT ln (n!) − (µ + µ0)n is a convex function of n. By adding a convex f(n),
Ω(n) increases faster around its minimum, and therefore all states that differ from
n = 〈n〉 become less likely compared to f(n) = 0. This is clear from the probability
distributions of cavity occupation for f(n) = 0.2n2; see Fig. 3.1b. As a result, Γ−1 < 1
at all loadings, cf. Fig. 3.2. An example of a convex f(n), and hence a concave z(n),
is discussed in Ref. [59], where it was attributed to excluded volume interactions
between the methane molecules.

Adding a concave f(n) gives the opposite behavior. Ω(n) increases more slowly
around the average, and occupations that differ from the average become more likely
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Figure 3.3: a), b), c) Ω(n) for different interactions and loadings, with nmax = 13. For
f(n) = 0 and f(n) = 0.2n2 the curves are shifted vertically so that Ω(〈n〉) = 0. For
f(n) = −0.2n2 the curves are shifted vertically so that Ω(0) = 0. The lines are a
guide to the eye. d) Adsorption isotherms 〈n〉(µ). The curves are shifted horizontally
so that 〈n〉(0) = 0.5nmax.

compared to f(n) = 0. For a very concave f(n), Ω(n) no longer has a single mini-
mum around n = 〈n〉; there are two minima, at n = 0 and n = nmax; see Fig. 3.1d.
The probability distributions of cavity occupation for f(n) = −0.2n2 are shown in
Fig. 3.1c. The particles cluster: The cavities are mostly empty or full. As a result,
Γ−1 > 1 for low and medium loadings, after which the effect of nmax becomes dom-
inant; cf. Fig 3.2. An example of a concave contribution to f(n) is the energy of a
cluster of particles feeling short-range attractive interactions, which scales as ∝ n2/3

for large n [77]. An example of clustering is found for particles undergoing hydrogen
bonding [30].

3.2 Adsorption isotherm

Adsorption isotherms give the equilibrium concentration of particles in the system
as function of, e.g., the pressure or chemical potential of the reservoir. Studies of
adsorption in porous materials which use the same model assumptions as presented in
this paper have been performed by several authors. In these studies one tries to predict
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interaction f(n) = −0.2n2. The curves are shifted horizontally to have 〈n〉(0) =
0.5nmax.

and explain the behavior of the adsorption isotherm, using only a few microscopic
parameters that describe the particle-particle and particle-cavity interaction. One of
the first such analyses was performed by Ruthven [78]. Similar studies have been
performed both analytically [65, 79–83] and numerically [59, 84, 85]. We refer to
Ref. [86] for an introduction. We discuss here the qualitative influence of f(n) and
nmax on the adsorption isotherm. The particle concentration is equal to 〈n〉/λd (with
d the dimension). Since the term λd only rescales the adsorption isotherm by a
constant, we study 〈n〉(µ).

The adsorption isotherms 〈n〉(µ) for the three considered interactions are plotted in
Fig. 3.3d. The grand potentials at different loadings are shown in Figs. 3.3a,b,c. The
adsorption isotherm for the concave f(n) is steeper than the one for f(n) = 0, which
is steeper still than the one for the convex f(n). Such behavior can be understood
from 〈n〉(µ):

d〈n〉
dµ

= β
(

〈n2〉 − 〈n〉2
)

= β〈n〉Γ−1. (3.4)

A concave f(n) leads to a larger value of Γ−1, which means a steeper adsorption
isotherm. Steep isotherms occur if there is a first-order phase transition, for example,
when there is capillary condensation [87]. They have also been found for systems
where the particles cluster; see Ref. [31] and references therein. The connection among
clustering, first-order phase transitions, and steep isotherms can be understood from
Fig. 3.3. For noninteracting and repulsive particles (Figs. 3.3a,c) only the average
concentration 〈n〉 is stable (i.e., a local minimum). Increasing the chemical potential
gradually shifts this local minimum to higher concentrations. For the concave f(n),
Fig. 3.3b, there are in contrast two stable concentrations, at n = 0 and n = nmax.
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Increasing the chemical potential causes a sudden shift of the global minimum from
n = 0 to n = nmax, resulting in a steep isotherm.

While stepped isotherms are commonly encountered in mesoporous materials, they
are quite rare in microporous materials [31]. This can be seen as the result of the
confinement, which prevents the formation of stable macroscopic phases [87–89]. We
discuss how such behavior is reproduced in our model.

We take the diameter of the cavities as the characteristic dimension of the system
(i.e., nmax). Consider the same type of particles in materials with cavities of different
size. The smaller the volume of the cavities the lower nmax. To study the transi-
tion from micro- to macroporous for clustering particles, we consider the interaction
f(n) = −0.2n2, for nmax = 5, 13, and 40. The adsorption isotherms are presented in
Fig. 3.4. Their steepness decreases with decreasing cavity size. For an interpretation
of this behavior we plot peqn and Ω(n) at loading 〈n〉/nmax = 0.5, for nmax = 40 and
nmax = 5 in Fig. 3.5. For nmax = 40 a stable cluster consists of 40 particles, and the
thermodynamic barrier between the stable phases n = 0 and n = 40 is very large,
cf. Fig. 3.5a. Fluctuations between the two phases are highly unlikely, as can be seen
from peqn in Fig. 3.5c. This resembles the situation where there is a macroscopic phase
separation (i.e., in the thermodynamic limit), where moving on the infinitely steep
part of the adsorption isotherm corresponds to changing the relative portion of the two
phases of the system. For nmax = 5 the maximum size of a cluster is 5 particles. Such
a cluster is easily broken by fluctuations. In fact, the grand potential does not show
the typical structure of two stable minima [see Fig. 3.5b], and the adsorption isotherm
shows no real steepness. nmax = 13 is an intermediate case of these two situations;
see Figs. 3.1c and 3.3b. The inverse thermodynamic factors are plotted in Fig. 3.6.
For nmax = 40, Γ−1(〈n〉) is approximately a straight line between Γ−1(0) ≈ nmax and
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Γ−1(nmax) = 0. This can be understood by making the approximation that cavities
are either empty or full. In this case, pnmax

= 〈n〉/nmax, p0 = 1− 〈n〉/nmax, and

Γ−1(〈n〉) = nmax

(

1− 〈n〉
nmax

)

. (3.5)

If particle clustering occurs the inverse thermodynamic factor goes from showing
almost no increase above 1 for microporous materials, to a straight line between nmax

at 〈n〉 = 0 and 0 at 〈n〉 = nmax for macroporous materials, cf. Fig. 3.6.

3.3 Conclusion

We conclude that the effect of interactions can be best understood by considering
whether the interaction free energy is convex or concave. Repulsive particle interac-
tions lead to a convex f(n) and a homogeneous particle distribution in the system.
Attractive particle interactions give a concave f(n) which leads to particle clustering
in the cavities. The equilibrium behavior observed experimentally and in MD sim-
ulations for clustering particles can then easily be understood within the context of
our model. The above discussion applies to all lattice models where the same as-
sumption of a time-scale separation between inter- and intra-cavity dynamics is made
[86]. Having discussed the equilibrium properties we now turn to the main subject of
this thesis, namely the different diffusion coefficients and how they are influenced by
interactions.
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Chapter 4

Diffusion: analytical results

We calculate and discuss the analytical results that were obtained for the self- and
transport diffusion. The uncorrelated result is found for systems of length L = 1.
The final expressions for Ds and Dt are remarkably simple. The uncorrelated result
is also found for zero-range processes (ZRPs). In a ZRP the transition rates only
depend on the number of particles in the departing cavity, i.e. the rates must be of
the form knm = kn. The steady state distribution of a ZRP can be interpreted as
the generalization of the L = 1 case to arbitrary lengths. Finally, we discuss exact
solutions for L = 2 and nmax = 2, which includes correlations.

4.1 Length L = 1

We derive an exact expression forDt andDs, in a limiting situation where correlations
between particle numbers in different cavities are absent. Consider a system consisting
of three cavities, with nl, n and nr specifying the number of particles inside the left,
middle and right cavity, respectively, as depicted in Figure 4.1. The left (right)
cavity is connected to an equilibrium reservoir at a fixed chemical potential µl (µr)
and temperature T . These reservoirs try to impose their equilibrium distribution,
Eq. (2.1), to the cavity that is connected to them. This is the model of Section 2.1,
with more general equilibrium reservoirs at the boundaries. In the limit in which the
exchange rates with the middle cavity are small compared to the exchange rates with
the reservoirs, the left and right cavity are effectively uncorrelated from the middle
cavity, and are characterized by the equilibrium probability distribution peqnl

(µl) and
peqnr

(µr), respectively. An explicit calculation for this separation of time-scales is given
in Appendix C. This setup allows us to obtain exact analytical results at arbitrary
particle density. The probability distribution pn for the middle cavity obeys the
following master equation:

ṗn = k+n−1pn−1 + k−n+1pn+1 −
(

k+n + k−n
)

pn, (4.1)
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Figure 4.1: The model with general particle reservoirs. (a) Transport diffusion: a
concentration gradient shows a current. (b) Self-diffusion: a concentration gradient
of labeled particles is introduced under overall equilibrium conditions.

with k+n and k−n the rates to add or remove a particle from the middle cavity containing
n particles:

k+n =
∑

nl

peqnl
(µl)knln +

∑

nr

peqnr
(µr)knrn (4.2)

k−n =
∑

nl

peqnl
(µl)knnl

+
∑

nr

peqnr
(µr)knnr

. (4.3)

The particle flux and concentration difference between the left and middle cavity read:

j(µl, µr) =
∑

n,nl

(knln − knnl
) peqnl

(µl)pn, (4.4)

dc(µl, µr) = (1/λ)
∑

n,nl

(n− nl)p
eq
nl
(µl)pn, (4.5)

where λ is the center-to-center distance between cavities. The transport diffusion
Dt, quantifying the linear response of j with respect to dc, is found from the ratio
−j/(dc/λ) in the limit δ = (µl − µr)/2 → 0. Introducing the average chemical
potential µ = (µl + µr)/2, one finds for Eqs. (4.2) and (4.3) up to linear order in δ:

k+n = 2
∑

m

peqm(µ)kmn, k−n = 2
∑

m

peqm(µ)knm. (4.6)

One concludes from Eq. (4.1) that at this order in δ, the steady state solution of the
master equation is given by pn = peqn (µ). The corresponding current and concentration
difference are obtained from the expansion of Eqs. (4.4) and (4.5) to first order in δ,
see Appendix D, resulting in

Dt(µ) =
λ2
∑

n,m peqn (µ)peqm (µ)knm

〈n2〉 − 〈n〉2 ≡ λ2〈k〉
〈n2〉 − 〈n〉2 , (4.7)

where 〈·〉 denotes the average over peq(µ).
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We next turn to the self-diffusion, using the labeling procedure discussed in Section
2.3. Since the final expression for Ds does not depend on the labeling percentages,
we consider a simple case: all particles in the left reservoir are labeled, those in the
right reservoir remain unlabeled. As a result, all particles in the left and none in
the right cavity are labeled. The state of the middle cavity is now described by two
numbers, n (total number of particles) and n∗, the number of labeled particles. The
corresponding steady state probability distribution pn,n∗ is:

pn,n∗ = peqn (µ)
n!

n∗!(n− n∗)!

1

2n
. (4.8)

The flux of labeled particles and concentration difference between the left and middle
reservoir read:

j∗ =
∑

nl,n,n∗

(

knln − knnl

n∗

n

)

pn,n∗peqnl
(µ) =

〈k〉
2

dc∗ = (1/λ)
∑

nl,n,n∗

(n∗ − nl)pn,n∗peqnl
(µ) = −〈n〉

2λ
. (4.9)

Hence, the self-diffusion Ds = −j∗/(dc∗/λ) reads

Ds(µ) = λ2 〈k〉
〈n〉 . (4.10)

A derivation of self-diffusion for a general concentration difference of labeled particles
is given in Appendix E. Equations (4.7) and (4.10) are valid at all values of the
concentration and can be calculated for any interaction. From Eqs. (4.7) and (4.10),
one finds for the ratio of Dt and Ds:

Dt(µ)

Ds(µ)
=

〈n〉
〈n2〉 − 〈n〉2 =

〈n〉
Var(n)

= Γ(µ), (4.11)

where Γ(µ) is the thermodynamic factor Eq. (2.20), an equilibrium property. Equation
(4.11) can be derived by a general argument, when correlations are ignored [44, 90].

4.2 Zero-range processes

Exact expressions for transport and self-diffusion are possible when the model satisfies
the criteria of a zero-range process [91]. Because the rates are of the form knm = kn,
the particle is not aware of the state of the cavity it moves to. Clearly this can only
be true if the number of particles at each site is unlimited, i.e. nmax = ∞. Local
detailed balance then gives the following condition:

kn
peqn (µ)

peqn−1(µ)
= km+1

peqm+1(µ)

peqm(µ)
. (4.12)

Since this condition must hold for all values of m and n, both sides of the equation
must be equal to a function g(µ). Using Eq. (2.1) one finds:

kn = g(µ)e−βµneβ[f(n)−f(n−1)]. (4.13)
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Since kn only depends on particle interactions in the cavity it must be independent
of the chemical potential of the reservoir. As a result g(µ) = νeβµ. The model is
therefore a ZRP for the rates:

kn = νneβ[f(n)−f(n−1)]. (4.14)

As discussed in Section 2.1, a linear term in the free energy is not relevant, and can
be absorbed in ν. The transition rates describing the exchange of particles with the
reservoirs follow directly by substituting Eq. (4.14) in Eq. (2.6):

kr,+n (µ) = νeβµ; kr,−n (µ) = kn. (4.15)

Consider pn1,n2,...,nL
(µl, µr, t), the probability for the system to be in state (n1, n2, . . . , nL)

at time t, with ni the number of particles in the ith cavity. For a ZRP the stationary
distribution pn1,n2,...,nL

(µl, µr) can be calculated exactly:

pn1,n2,...,nL
(µl, µr) =

L
∏

i=1

peqni
(µi), (4.16)

with

µi = β−1 ln

[

eβµl − i

L+ 1

(

eβµl − eβµr
)

]

. (4.17)

The stationary state is found by postulating Eq. (4.16) as the solution, and using
this solution in the master equation. This results in a set of equations for µi that
depend on µl and µr, which can be solved recursively [92]. It is important to note here
that it is not always possible for the system to reach a stationary state. For example
attractive particles can condensate in the system, which continues to absorb particles
from the reservoirs since nmax = ∞. We refer to [92] for a derivation of Eq. (4.16)
and a discussion on its range of validity. This type of interactions are excluded in
the following discussion. The solution is a product measure: particle numbers in
different cavities are uncorrelated, for all possible interactions. Performing a first
order expansion in δ around δ = 0, as explained in Section 4.1, one finds that µi

decreases linearly between the cavities:

µi = µ+ δ

(

1− 2i

L+ 1

)

. (4.18)

From this result one can derive that Dt is equal to the uncorrelated result Eq. (4.7).
The self-diffusion coefficient of a ZRP can be calculated directly from the definition

Eq. (2.14), see for example [93]. We succeeded to calculate Ds via the alternative
method by introducing labeled particles in the system. The stationary solution is
again a product measure:

pn1,n∗

1
,...,nL,n∗

L
(µ, αl, αr) =

L
∏

i=1

peqni
(µ)

(

ni

n∗
i

)

α
n∗

i

i (1− αi)
ni−n∗

i , (4.19)

with αl and αr the fraction of labeled particles in the left and right reservoir respec-
tively and

αi = αl − (αl − αr)
i

L + 1
. (4.20)
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The fraction of labeled particles decreases linearly between the cavities. The method
of solution is analogous to the case without labeled particles [92]. One postulates
Eq. (4.19) as the solution. Using Eq. (4.19) in the master equation gives a set of
equations for αi, of which the solution is Eq. (4.20). From Eq. (4.19) one can derive
that Ds is equal to the uncorrelated result Eq. (4.10).

The obtained stationary states Eqs. (4.16) and (4.19) can be interpreted as gen-
eralizations of the L = 1 case of Section 4.1. Indeed, to calculate Dt and Ds from
the stationary states one can take three neighboring cavities, consider the left and
right cavity as reservoir cavities, and perform the same calculation as for the L = 1
case. This is however only possible for ZRPs. In general, correlations influence the
stationary state.

4.3 Length L = 2 and nmax = 2

The influence of correlations appear only for system sizes L = 2 and larger. How-
ever, for increasing system size L and nmax the resulting calculations quickly become
unfeasible, even when making use of a symbolic calculator. We were able to calcu-
late analytically the self- and transport diffusion for systems of length L = 2 and
nmax = 2, for the rates of Eq. (2.13). As follows from Eq. (2.13), adding a linear term
to f(n) does not influence the dynamics. As discussed in Section 2.1, the equilib-
rium statistics in function of particle concentration is also not influenced by a linear
term in f(n). Without loss of generality, we rescale the interaction free energy by
f(n) → f(n) − n[f(1)− f(0)]− f(0), which makes f(0) = f(1) = 0. Both the equi-
librium and dynamical quantities then only depend on f(2). Putting β ≡ 1, x ≡ eµ,
and y ≡ ef(2)/2, the exact analytical results for Dt and Ds are

Dt = 2

(

x
5 + x

4(7 + x)y + x
3(21 + 8x)y2 + x

2(15 + x(23 + 2x))y3 + 2x(19 + 33x

+ 6x2)y4 + 2(10 + x(17 + 5x))y5 + 8(1 + x)y6

)/(

x
4(4 + x) + x

3(4 + x)(5 + x)y

+ 2x2(20 + 3x(6 + x))y2 + 2x(40 + x(29 + x(10 + x)))y3 + 4x(7 + x)(1 + 2x)y4

+ 4(10 + x(9 + x))y5 + 16(1 + x)y6

)

(4.21)

Ds =

(

2y2(2x7(1 + y) + 64y6(1 + y)2(5 + 2y) + x
6(2 + 30y + 32y2 + 9y3)

+ 8xy5(71 + 283y + 274y2 + 88y3 + 8y4) + x
5
y(24 + 198y + 227y2 + 100y3 + 8y4)

+ x
4
y
2(118 + 726y + 958y2 + 435y3 + 64y4) + 2x2

y
4(237 + 1309y + 1604y2 + 652y3

+ 72y4) + x
3
y
3(304 + 1686y + 2371y2 + 1030y3 + 152y4))

)/(

2x8(1 + y) + 128y8

(1 + y)2(5 + 2y) + x
7(2 + 30y + 38y2 + 15y3) + x

6
y(26 + 212y + 301y2 + 178y3

+ 39y4) + 16xy6(40 + 127y + 179y2 + 186y3 + 152y4 + 40y5) + x
5
y
2(146 + 856y

+ 1314y2 + 931y3 + 354y4 + 42y5) + 2x4
y
3(214 + 991y + 1692y2 + 1434y3 + 654y4

+ 154y5 + 8y6) + 4x2
y
5(108 + 681y + 1081y2 + 1448y3 + 916y4 + 248y5 + 32y6)

+ 2x3
y
4(298 + 1354y + 2508y2 + 2725y3 + 1410y4 + 384y5 + 48y6)

)

. (4.22)
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The exact and uncorrelated results for f(2) = −2, 0, 2, and 5 are plotted in Fig. 4.2.
Ds has a minimum at 〈n〉 = 1 for f(2) = 5 because the state (n1, n2) = (1, 1) is
very stable, and particles will not diffuse easily. The transport diffusion shows a
maximum in this situation, because a particle that enters the system when it is in
state (n1, n2) = (1, 1) is “pushed out” again rapidly. The transport diffusion has a
minimum for low and medium concentrations for f(2) = −2 because particles are
attracted against the concentration gradient, see also Section 5.1.

Correlations always lower the self-diffusion compared to the uncorrelated result.
This was checked analytically for all interactions. Correlations lower the transport
diffusion almost always compared to the uncorrelated result, except for ln(2) < f(2) <
ln(9/4). For these interactions the transport diffusion is slightly higher than the
uncorrelated result. The particle concentrations at which this occurs depends on the
interaction. Because the effect is very small we do not plot this situation. It is an
open question whether positive correlations for the transport diffusion also exist for
systems with L ↑ ∞, when the influence of the reservoir cavities is negligible.
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Figure 4.2: System of length L = 2, nmax = 2, and the rates of Eq. (2.13). a), b), c),
and d): self-diffusion Ds, exact (solid line) and uncorrelated (dashed line); e), f), g),
and h): transport diffusion Dt, exact (solid line) and uncorrelated (dashed line); i),
j), k), and l): Γ−1 (dashed line) and Ds/Dt (solid line), for respectively f(2) = −2,
f(2) = 0, f(2) = 2, and f(2) = 5.
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Chapter 5

Diffusion: numerical results

In an experiment of particle diffusion in a nanoporous material one found, for the
first time, that the self-diffusion can exceed the transport diffusion; see the discussion
in Section 1.2.2. In Section 5.1 we use our model to give a simple interpretation
of this result. In Section 5.2 we show that, furthermore, one is able to reproduce
the experimental data of the diffusion coefficients and the thermodynamic factor. An
alternative derivation of the uncorrelated results for Ds and Dt is presented in Section
5.3. It allows for a better understanding of what it means to neglect correlations in
the diffusion. In Section 5.4 we discuss the diffusion for the two rates of Eqs. (2.12)
and (2.13), for different interactions. The effect of correlations is studied in detail.
In Section 5.5 we examine the assumptions underlying our model and discuss when
agreement with experiments and molecular dynamics simulations can be expected.

5.1 Relation of the self- and transport diffusion

Chmelik et al. measured the self- and transport diffusion of methanol and ethanol
in a nanoporous material, MOF ZIF-8 [28]. At variance with previous experiments
[94–99], it was found that the self-diffusion could exceed the transport diffusion. This
was attributed to the strong influence of interparticle interaction. The experimental
finding of Ds exceeding Dt was explained on the basis of MD simulations [30–32] as
due to clustering of the particles.

Starting from our model, the connection between Ds > Dt and clustering can be
understood from a simple analytical argument. Since a concave f(n) gives 〈n2〉 −
〈n〉2 > 〈n〉 one finds from Eq. (4.11) that Ds > Dt is possible only for clustering
particles. A cavity can typically contain a limited number of particles n ≤ nmax.
This corresponds to f(n) = ∞ for all n > nmax, i.e., f(n) is “infinitely convex” at
nmax. We conclude from the above argument that a concave section is a necessary,
but not sufficient, condition for having 〈n2〉 − 〈n〉2 > 〈n〉, i.e., for Ds to exceed Dt.
One can give an intuitive explanation as to why a concave f(n) promotes Ds > Dt.
Dt is measured by a flux j. If f(n) is concave, particles tend to cluster, which will
mostly happen in cavities that are already high in particle number. This causes the
particles to be “pulled back” towards the region of higher concentration. The net
effect is a force in the direction of higher concentration, lowering the particle flux.
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Figure 5.1: Ds/D0, Dt/D0 and Γ−1 as a function of loading θ = 〈n〉/nmax, nmax = 13;
for (a) βf(n) = 0, (b) βf(n) = 0.2n2, (c) βf(n) = −0.2n2 and (d) βf(n) that is
subsequently concave, convex and again concave, see Table 5.1 and Figure 5.2. The
red dashed lines (analytical solution, Eq. (4.7)) and squares (simulations) show the
transport diffusion and the blue dotted lines (analytical solution, Eq. (4.10)) and full
circles (simulations) the self-diffusion (values on lhs axis). The analytical Γ−1 (black
full lines, Eq. (2.20)) are compared with the ratio of Ds and Dt (black stars) from
the simulations (values on rhs axis).

Ds is measured by a flux of labeled particles j∗. Since the system is in equilibrium
there is no concentration gradient. As a result, there is no preferential direction for
clustering, and there will be no force counteracting the current of labeled particles.

The ratio of Ds and Dt Eq. (4.11) however ignores correlations. We have therefore
performed kinetic Monte Carlo simulations, cf. Section 2.4. Our choice of rates is:

knm = νne−
β
2
[f(n−1)+f(m+1)−f(n)−f(m)]. (5.1)

The factor ν determines the time scale. We refer to Section 2.2 for a rationalization
of the use of these rates for clustering particles. In the limit of infinite dilution,
both Dt and Ds are equal to νλ2 ≡ D0. For an ideal gas f(n) = 0, knm = νn,
i.e., the rates satisfy the law of mass action [41]. The simulations presented here
are for 15 pairwise connected cavities, with nmax = 13. Ds/D0, Dt/D0 and Γ−1 are
plotted in Fig. 5.1 for different types of free energies, as a function of the loading
θ = 〈n〉/nmax. Both the simulation data and the analytical curves Eqs. (4.7) and
(4.10) are shown. The stars in the figures correspond to the ratio between the self-
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and transport diffusion obtained from simulations. Since correlations are included in
the simulations but absent in the analytical result, the difference of the two curves is a
measure of the effect of correlations on the diffusion. Figure 5.1(a) shows the diffusion
for noninteracting particles βf(n) = 0, with confinement (presence of nmax). At low
and medium loadings the particles are not influenced by the confinement; Γ = 1
and Ds = Dt. At high loading, the confinement comes into play: Γ−1 decreases,
Dt rises and Ds lowers. The effect of correlations is negligible: the simulation data
and analytical results coincide almost perfectly. Figure 5.1(b) shows the diffusion in
the case of a convex free energy βf(n) = 0.2n2. Γ−1 is lower than one, and Dt is
always larger than Ds. Correlations have a negligible influence. Fig. 5.1(c) shows the
diffusion for a concave free energy βf(n) = −0.2n2. As expected, Ds > Dt for low to
moderate loading. At moderate and high loading the “convexity effect” of confinement
takes over: Γ−1 decreases and eventually becomes smaller than one with Dt > Ds.
This curve should be compared with Figs. 3(a), (c) in [28]. Noteworthy is the fact
that the transport diffusion shows a minimum when the thermodynamic factor is
around its maximum. This feature is in agreement with experimental observations
[28, 100, 101] and with MD simulations [102]. It is now easily understood: when Γ−1

is at its highest, the tendency to cluster is maximal, therefore the force opposing the
current is also at its strongest. Turning to the effect of correlations, we note that they
are quite strong: both Dt and Ds are significantly lower than the analytical results.
The effect is the largest for self-diffusion. Nevertheless, the ratio of Dt and Ds is still
very close to Γ, again in agreement with what is observed in experiments [28] and MD
simulations in similar systems [103]. Fig. 5.1(d) shows the diffusion for a free energy
that is first concave, then convex and then concave, as given in table 5.1. A plot of
this free energy is given in Figure 5.2. From 0 to 6 f(n) is concave, between 5 and 7
it is convex, and between 6 and 13 it is concave (nmax = 13).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
βf(n) 0 0 0 0 -0.2 -0.6 -4.0 -0.6 -0.2 0 0 0 0 0

Table 5.1: βf(n) used in Fig. 5.1(d).

For the first concave part the self-diffusion exceeds the transport diffusion. For
the second concave part this is no longer the case, due to the confinement and the
influence of the convex part in the middle. This is an illustration of how concavity is
necessary but not sufficient for Ds > Dt. Dt shows a (local) maximum in the convex
part, whereas Ds shows a (local) minimum. Correlations have noticeable effect, and
are now more important for Dt than for Ds. Notice that in all cases correlations lower
the diffusion coefficients.

5.2 Fit with experimental data

Motivated by the qualitative agreement with experiments, we have tried to reproduce
the experimental results from [28] quantitatively. Inspired by the form of the energy
function for Lennard-Jones crystals [104], we take βf(n) = an2 + bn3 for n ≤ nmax,
with nmax = 13 taken from the experimental data [28]. The parameters a and b are
determined by fitting the thermodynamic factor (Eq. (2.20)) with the experimental
data, resulting in βf(n) = 0.000642n2 − 0.0083n3. The parameters ν and λ only
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

Figure 5.2: βf(n) of Table 5.1 and Fig. 5.1(d).

appear in the combination νλ2, which follows directly from the experimental value of
Dt at very low loading. In Fig. 5.3 we compare the obtained simulation results for Ds

and Dt with experimental data of methanol in ZIF-8 [28]. Quantitative agreement is
found for both Ds and Dt at all values of the loading. This is remarkable since a and
b are determined from the equilibrium quantity Γ, and only the experimental value
of Dt at very low loading is used in the fit of νλ2.

A similar quantitative agreement is also found for ethanol in ZIF-8. To find a
good free energy function for ethanol, we used a different fitting procedure. Using
the analytical results for the thermodynamic factor and the diffusion coefficients as a
guide, several free energies where tried until a good resemblance with experiment was
found. Since calculation of the analytical results for different free energies requires
no computation time, this resemblance can easily be checked “by hand”. D0 is taken
slightly higher than the experimental value of Dt for the lowest measured loading
(D0 = 9.6 10−13 m2/s). nmax is taken equal to 9. The values of βf(n) are given in
Table 5.2. The first part of f(n) is constant, after which it becomes (very) concave.
The last part is convex. The simulation results and experimental data are given in
Figure 5.4. Good agreement is found with experiment, except for the outlier for Γ−1

around 〈n〉 ≈ 1.6.

n 0 1 2 3 4 5 6 7 8 9
βf(n) 0 0 0 0 -0.2 -6.8 -13.6 -19.0 -21.0 -21.0

Table 5.2: βf(n) used in simulations for ethanol in ZIF-8, Fig. 5.4.

5.3 Dynamical mean-field approximation

In Section 4.1 we obtained analytical expressions for Ds and Dt for a system of length
L = 1. We now show that the same expressions are obtained in an infinitely long
system if one ignores all dynamical correlations. This derivation provides a basis
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Figure 5.3: Comparison of experimental data of methanol in ZIF-8 [28] with simu-
lations from our model. The experimental self-diffusion and transport diffusion are
represented by the blue full circles and red squares, respectively, with the correspond-
ing results from simulations given by the blue dotted line and the red dashed line
(values on lhs axis). The experimental (black open circles) and analytical (full black
line) Γ−1 are compared with the ratio of self- and transport diffusion (black stars)
taken from the simulations (values on rhs axis). The inset shows βf(n).
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Figure 5.4: Diffusion of ethanol in ZIF-8. The experimental self-diffusion is given by
the blue full circles and the results from simulations by the blue dotted line. The
experimental transport diffusion is given by the red squares and the results from
simulations by the red dashed line (values on lhs axis). The free energy function
is shown in the inset. βf(n) is represented by the black open triangles, the black
line serves as a guide to the eye. The ratio between the self-diffusion and transport
diffusion taken from the simulations is given by the black stars. The experimental
Γ−1 is given by black open circles, the analytical result is given by a full black line
(values on rhs axis). Experimental data from [28]
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for the understanding of the effect of correlations upon the diffusion, as discussed in
Section 5.4.

Consider an infinitely large equilibrium system at chemical potential µ. The lattice
is cubic and has dimension d, i.e., each cavity has 2d neighbors. We tag one particle
at time t = 0, and calculate its average MSD in the limit t ↑ ∞. Subsequent jumps of
the tagged particle are correlated because of memory effects in the environment (i.e.,
the other particles), as already explained in Section 2.3. For example, for nmax = 1,
the tagged particle is more likely to jump back to its previous position, because this
cavity is more likely to be empty. The influence of such memory effects is discussed in
detail in Section 5.4. In the dynamical mean-field (DMF) approximation all memory
effects, or correlations between particle jumps, are neglected [44]. This assumption is
equivalent to assuming that, after a jump of the tagged particle, the environment loses
its memory instantly. Because the environment is memoryless, the cavities connected
to the cavity containing the tagged particle have the equilibrium distribution peqn (µ)
at all times. We calculate p̂n, the probability that the cavity containing the tagged
particle has n particles in total (including the tagged particle). The tagged particle
jumps away from a cavity containing n particles to a cavity containing m particles
with rate knm/n. In the DMF approximation, the master equation for p̂n reads:

˙̂pn =

nmax
∑

m=1

p̂mpeqn−12d
km,n−1

m
−

nmax−1
∑

m=0

p̂np
eq
m2d

knm
n

+

nmax
∑

m=1

p̂n−1p
eq
m2dkm,n−1 −

nmax−1
∑

m=0

p̂np
eq
m2dknm

n− 1

n

+

nmax−1
∑

m=0

p̂n+1p
eq
m2dkn+1,m

n

n+ 1
−

nmax
∑

m=1

p̂np
eq
m2dkmn. (5.2)

The positive terms are transitions toward the state p̂n: a jump of the tagged particle to
a cavity containing n−1 particles (first line), a particle jump to the cavity containing
the tagged particle from the state p̂n−1 (second line), and a particle jump away
from the cavity containing the tagged particle from the state p̂n+1 (third line). The
negative terms are transitions away from p̂n: a jump of the tagged particle to another
cavity (first line), a particle jump away from the cavity containing the tagged particle
(second line), and a particle jump to the cavity containing the tagged particle (third
line). The stationary solution is

p̂n =
n

〈n〉p
eq
n (µ). (5.3)

This can be checked by filling in Eq. (5.3) in the master equation and realizing that the
two terms on each line cancel each other because of local detailed balance Eq. (2.4).

The average jump rate k̂av of the tagged particle is equal to:

k̂av = 2d

nmax
∑

n=1

nmax−1
∑

m=0

knm
n

p̂np
eq
m (5.4)

= 2d

nmax
∑

n=1

nmax−1
∑

m=0

knm
peqn (µ)

〈n〉 peqm = 2d
〈k〉
〈n〉 . (5.5)
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The particle is performing a random walk on a d-dimensional lattice with average
jump rate k̂av. The self-diffusion is in this case equal to:

Ds =
λ2

2d
k̂av =

λ2〈k〉
〈n〉 . (5.6)

Because all particle jumps are assumed to be uncorrelated, the inter-particle correla-
tion term in Eq. (2.24) is zero and one finds:

Dt =
λ2〈k〉

〈n2〉 − 〈n〉2 . (5.7)

As a result, Dms = Ds in the DMF approximation. The self-diffusion Eq. (5.6) and
transport diffusion Eq. (5.7) obtained from the DMF approximation are the same as
calculated for a system of length L = 1, see Section 4.1.

5.4 Diffusion and correlations

We now consider the diffusion for different combinations of rates and interactions.
We take k10e

−β[f(1)−f(0)] = 1 for the rates of Eq. (2.12) and k10 = 1 for the rates
of Eq. (2.13). In all cases kT = λ = 1. We first discuss one-dimensional systems.
Diffusion in two- and three-dimensional systems is considered at the end of the section.

Memory effects are studied by measuring directional correlations of subsequent
jumps of a single particle, similarly to, e.g., Ref. [105]. We tag one particle and
record the direction of its first jump. We measure the probability p̃(m) that its mth

jump has the same direction as its first jump. If the jumps are uncorrelated one
has for a one-dimensional system that p̃(m) = 1/2 for all m ≥ 1. We also measure
p(n|n̂), the probability that a neighboring cavity has n particles given there are n̂
particles in the cavity of the tagged particle. In the DMF approximation one has
that p(n|n̂) = peqn . When we say that correlations increase or decrease the diffusion
this is always with reference to the DMF situation. The self-diffusion is influenced
by correlations of subsequent jumps of a single particle. By comparing the ratio of
the self- and transport diffusion with Γ we have access to interparticle correlations,
cf. Eq. (2.24).

For nmax = 1 our model reduces to the well-known Langmuir gas model [106].
In an infinitely long one-dimensional equilibrium system single-file diffusion occurs
[107, 108], resulting in 〈x(t)〉 ∝

√
t and Ds = 0. In higher-dimensional systems

the diffusion is normal. The self-diffusion is lowered because of the back-correlation
mechanism: If a particle jumps, the cavity it came from is more likely to be empty,
making it more likely that the particle jumps back. The transport diffusion is equal
to the DMF value for all loadings: Dt = k10 = 1 [90].

We first discuss the diffusion for f(n) = 0. In this case the two rates are the same.
Figure 5.5a shows the diffusion for nmax = 2. Single-particle correlations are caused
by the back-correlation mechanism and lower the self-diffusion significantly. This can
be seen in Figure 5.6a, where we plot p̃(m) at loading 〈n〉 = 1. Fig. 5.5a shows that
interparticle correlations are positive (Γ−1 > Ds/Dt), signifying that a particle drags
along other particles. This can be understood as follows. Suppose a tagged particle
has diffused in a certain direction. The vacancies it leaves behind can be occupied
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Figure 5.5: Ds, Dt (left axis) and Γ−1, Ds/Dt (right axis). (a) f(n) = 0 and nmax = 2;
(b) f(n) = 0 and nmax = 13; (c) f(n) = 0.2n2, nmax = 13 and the rates of Eq. (2.13)
; (d) f(n) = 0.2n2, nmax = 13 and the rates of Eq. (2.12); (e) f(n) = −0.2n2,
nmax = 13 and the rates of Eq. (2.13); (f) f(n) = 0.000642n2 − 0.0083n3, nmax = 13
and the rates of Eq. (2.12).
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Figure 5.6: Single-particle memory p̃(m) for different interactions and loadings and
the rates of Eq. (2.13).

by other particles. In front the other particles have had to “make way” for the
tagged particle. Both effects cause particles in the environment to diffuse in the same
direction as the tagged particle. The transport diffusion is almost equal to the DMF
value (different from nmax = 1, for which it is exactly equal). The Maxwell-Stefan
diffusion is higher than the self-diffusion and almost equal to the DMF result.

Figure 5.5b shows the diffusion for f(n) = 0 and nmax = 13. The diffusive behavior
is discussed in Section 5.1. Correlations have a small influence on the self-diffusion,
even at high loading. This is because jumps of other particles erase the memory of
the environment. The only type of correlations in the system are back-correlations,
which occur at loadings where peqnmax

6= 0. For nmax = 2, if the tagged particle jumps
from a full cavity, the cavity it jumps to contains at most one other particle. For
nmax = 13 at loadings 〈n〉 ≈ nmax, a particle that jumps from a full cavity will arrive
in a cavity containing around 12 other particles. If one of these other particles jumps
back, the memory effect of the environment on the tagged particle is lost. The back-
correlation effect is therefore smaller compared to the case nmax = 2; see p̃(m) at
loading 〈n〉 = 11 in Fig. 5.6a. Similarly to single-particle correlations, interparticle
correlations are also small (Γ−1 ≈ Ds/Dt). Since the back-correlation mechanism is
small, this is what one would expect. In all graphs where Γ−1 ≈ Ds/Dt one has that
Dms ≈ Ds; we do not plot the MS diffusion for these cases.

We now discuss the diffusion for f(n) = 0.2n2 and nmax = 13. Figure 5.5d
shows the diffusion for the rates of Eq. (2.12). The self-diffusion shows an increasing
trend with increasing concentration and a decrease near 〈n〉 ≈ nmax. This is typical
behavior observed in MD simulations [46, 109]. Similar behavior is obtained for
repulsive particles in other lattice models [47, 62, 64]. For convex f(n)’s with the
rates of Eq. (2.12) this behavior always occurs, as can be understood as follows. The
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difference [f(n− 1) + fTS]−f(n) measures the change in interaction free energy when
a particle moves to the TS (fTS is the interaction free energy of a particle in the TS,
cf. Appendix A). Since f(n) is convex the difference f(n) − f(n − 1) grows with
increasing n: It becomes easier to jump to the TS for higher loadings, increasing the
diffusion. This interpretation of such behavior is well known [47, 54, 60]. As long as
the system does not feel that there is an nmax (peqnmax

≈ 0) the dynamics is a ZRP and
the DMF solution is exact; see Section 4.2. When the presence of nmax is felt there
are correlations because of the back-correlation mechanism. We can conclude that
the rates of Eq. (2.12) provide the correct qualitative behavior for repulsive particles,
as observed in MD simulations [46, 47, 109].

Figure 5.5c shows the diffusion for f(n) = 0.2n2, nmax = 13, and the rates of
Eq. (2.13). A close-up of the self-diffusion is shown in Fig. 5.11. The diffusive behavior
is discussed in Section 5.1 and qualitatively differs from Fig 5.5d. It was noted that
correlations have a small influence on the diffusion. Because the rates depend on the
number of particles in both cavities there are correlations caused by the interaction,
besides the back-correlation mechanism. This can be seen by comparing the self-
diffusion (Fig. 5.11) with the self-diffusion for f(n) = 0 and nmax = 13 (Fig. 5.5b).
While correlations only have an influence for f(n) = 0 if the presence of nmax is felt,
correlations are also present at loadings where nmax is not felt for f(n) = 0.2n2. We
investigate correlations at loading 〈n〉 = 6. The probability to be full is then negligible
[see peqn in Fig. 5.7a], and all correlation effects are caused by the interaction. Single-
particle correlations due to the interaction can be understood as follows. Consider
two cavities containing six particles. If the tagged particle hops, (6, 6) → (5, 7),
the average number of particles in the cavity it came from is smaller compared the
average of peqn . Because the free energy favors a homogeneous density distribution,
this increases the rate at which the particle jumps back, lowering the self-diffusion
compared to the DMF approximation. If the tagged particle makes the jump (8, 4) →
(7, 5), the rate to jump back is smaller compared to the DMF approximation, thereby
enhancing the diffusion. p̃(m) ≈ 1/2 for all m > 1 and is slightly smaller for m = 1;
see Fig. 5.6b. Memory effects are small on average: The self-diffusion is around 2.6
% lower than the DMF value. p(n|n̂) for different n̂ and peqn are shown in Fig. 5.7a.
There is a clear difference between p(n|n̂) and peqn for n̂ 6= 〈n〉. There are two reasons
why the effect of correlations on the diffusion is small. Because there are on average
6 particles per cavity, jumps of other particles tend to erase the memory effect of the
environment, as discussed previously. The effect on the diffusion is further diminished
because correlations contribute both positively and negatively. They therefore partly
cancel each other.

Figure 5.5e shows the diffusion for f(n) = −0.2n2, nmax = 13, and the rates of
Eq. (2.13). We refer to Section 5.1 for a discussion of the diffusive behavior. There are
strong memory effects; see p̃(m) for 〈n〉 = 6 in Fig. 5.6c. Not only is p̃(1) much smaller
than 1/2, the memory effect is also long lived. These strong correlations are caused by
the clustering of the particles. An example of a strongly correlated event is when the
tagged particle jumps from a full to an empty cavity. The probability to jump back is
then large; see the difference between peqn and p(12|n̂ = 1) at 〈n〉 = 6 in Fig. 5.7b. For
this event there are no other particles in the cavity where the tagged particle jumps
to whose presence could decrease the memory effect. Even though correlations have
a strong effect on the self- and transport diffusion, interparticle correlations are small
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of Eq. (2.13) for (a) f(n) = 0.2n2 and (b) f(n) = −0.2n2.
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(Γ−1 ≈ Ds/Dt). To understand why particles do not drag along other particles, we
examine the dynamics more carefully. For all n ≤ nmax one has that kn,n−1 = nk10,
which is the same rate as for f(n) = 0. In other words, particle exchange between
cavities that are both almost full or both almost empty follows a dynamics similar
to the situation for noninteracting particles. In this case, particles do not drag along
other particles; see Fig. 5.5b. As can be seen from peqn (Figs. 3.1c and 5.7b), this type
of transition occurs a lot. The other type of transition that often occurs is a particle
jump from a full to an empty cavity. These are strongly correlated events, but they
influence only the diffusion of a single particle.

We now discuss the diffusion for the concave free energy f(n) = 0.000642n2 −
0.0083n3 with nmax = 13, which was obtained by fitting the analytical Γ from our
model with the experimental Γ of methanol in ZIF-8, as discussed in Section 5.2. The
experimental Γ is calculated from the experimentally measured adsorption isotherm.
However, f(n) does not specify the type of rates that should be used, as discussed
in Section 2.2. For the rates of Eq. (2.13) a good agreement with the experimental
diffusion data was found; see Fig. 5.3. In contrast, Fig. 5.5f shows the diffusion for the
same parameters, with the rates of Eq. (2.12). The diffusive behavior qualitatively
differs: both self- and transport diffusion become much smaller for high loadings,
and Γ−1 > Ds/Dt. This is in contrast to the experiments where Γ−1 ≈ Ds/Dt

[28], which is also reproduced by the rates of Eq. (2.13), cf. Figs. 5.3 and 5.4. We
therefore conclude that for clustering particles the rates of Eq. (2.13) give the correct
qualitative behavior of the diffusion. This is further supported by the discussion of
the calculation of the transition rates in Section 2.2 and Appendix A. Correlations
have a strong effect on the diffusion, cf. Fig. 5.5f. Because the rates only depend
on the number of particles in the cavity of the tagged particle, these correlations are
caused by the back-correlation mechanism. Since the probability to be full is non-
negligible even at low loadings, this is not surprising. Γ−1 > Ds/Dt, i.e., interparticle
correlations are positive. Since the back-correlation mechanism has a strong impact
on the self-diffusion one expects significant inter-particle correlations, as discussed for
f(n) = 0 and nmax = 2. The Maxwell-Stefan diffusion is higher than the self-diffusion
but still significantly smaller than the DMF result. Note that because peqnmax

6= 0 even
at low loadings, the dynamics can never be approximated by a ZRP.

Figure 5.8a shows the diffusion for nmax = 13, the rates of Eq. (2.13), and the
f(n) from Table 5.1. We study this interaction because it switches among concave,
convex, and concave. This in contrast to the previous interactions, which are concave,
convex, or constant over the whole concentration range. We again refer to Section
5.1 for a discussion of the diffusion. We focus here on the fact that Γ−1 < Ds/Dt for
6 ≤ 〈n〉 ≤ 10 [see Fig. 5.8b], implying negative interparticle correlations. The grand
potential Ω(n) and peqn at loadings 〈n〉 = 6 and 〈n〉 = 9 are plotted in Fig. 5.9. The
crucial property to obtain Γ−1 < Ds/Dt is that the cavity occupation n = 6 is very
stable, while all other occupations around it are not. Consider a tagged particle that
has diffused in a certain direction, in a system at loading 〈n〉 = 6. In this case almost
all cavities contain six particles. When the tagged particle jumps to a neighboring
cavity, (6, 6) → (5, 7), it immediately pushes one of the other particles in its new
cavity to the cavity it came from to restore the situation where every cavity has six
particles. A particle that has diffused in a certain direction therefore pushes other
particles in the opposite direction. The interparticle correlation term in Eq. (2.24)
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Figure 5.8: f(n) of Table 5.1, nmax = 13, and the rates of Eq. (2.13). (a) Ds, Dt (left
axis) and Γ−1, Ds/Dt (right axis). (b) Close-up of diffusion curves for 5 ≤ 〈n〉 ≤ 12.
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Figure 5.9: Ω(n) and peqn for the f(n) of Table 5.1 with nmax = 13, at 〈n〉 = 6 and
〈n〉 = 9.

is then negative and Γ−1 < Ds/Dt. In the theory of Maxwell-Stefan diffusion this
means that 1/Dcor < 0 and Dms < Ds, as shown in Fig. 5.8b. We are unaware of
any previous studies where Dms < Ds was found (or at least explicitly mentioned).
Indeed, it is often assumed that the self-diffusion is always higher than the Maxwell-
Stefan diffusion [43].

We now discuss the diffusion in two- and three-dimensional systems. The two-
dimensional lattice has a square geometry and the three-dimensional lattice is cubic.
For these geometries the DMF results Eqs. (5.6) and (5.7) are equal to the one-
dimensional case; see Section 5.3. In Fig. 5.10 we plot the self- and transport diffusion
for f(n) = −0.2n2, nmax = 13, and the rates of Eq. (2.13) in one, two, and three
dimensions. The qualitative behavior stays the same. The effect of correlations
decreases with increasing dimension, which can be understood as follows. If a tagged
particle has jumped, most of the memory of the environment comes from the cavity
from which it came. The relative influence of this cavity decreases if there are more
cavities connected to the cavity of the tagged particle. One therefore expects the
effect of correlations to decrease proportionally to the number of neighbors of each
cavity. Also plotted is the diffusion in the x direction in a three-dimensional system,
where the rates in the y and z directions are 10 times faster than the rates in the
x direction (i.e., there is anisotropy in the dynamics). The effect of correlations is
further reduced: If a particle jumps in the x direction, the memory of the environment
is erased faster by particles jumping the y and z directions. In Fig. 5.11 we plot the
self-diffusion for f(n) = 0.2n2, nmax = 13, and the rates of Eq. (2.13) in one, two,
and three dimensions. Also here the qualitative behavior stays the same, with the
effect of correlations decreasing with higher dimensionality. The effect of correlations
on the transport diffusion is already negligible in one dimension, so we do not plot
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the data for higher dimensions.

5.5 Correspondence with simulations and experi-

ments

In Section 5.2 quantitative agreement with experimental results of methanol and
ethanol diffusion in ZIF-8 was found. In this case the particles undergo strong (at-
tractive) interactions via hydrogen bonding [30]. The behavior of the thermodynamic
factor and both the self- and transport diffusion was reproduced correctly over the
whole concentration range. This was achieved for an interaction free energy that
correctly reproduced the experimentally measured thermodynamic factor. We now
examine the assumptions underlying our model and discuss when agreement with
experiments and molecular dynamics simulations can be expected.

We assume that particles in neighboring cavities do not interact with each other.
The only exception is when a particle is in the transition state, in which case it can
interact with particles in both cavities, as discussed in Section 2.2. The same assump-
tion has been made when modeling the behavior of adsorption isotherms; see Section
3.2. A good agreement with experiments can be achieved for apolar molecules at low
and medium loadings [86]. For high loadings and polar molecules this assumption is
generally not quantitatively correct. The importance of intercavity interactions on
equilibrium properties was investigated using simulations in Refs. [59, 110]. It was
found that at high loadings this interaction is in general non-negligible. At low tem-
perature intercavity interactions can be important at low loadings, cf. Ref. [110]. In

Ref. [60] the average jump rate of a particle between two cavities (k̂av) was calculated
numerically using dynamically corrected TST. It was found that if all other cavities
(differing from cavities A and B as defined in Section 2.2) connected to the cavity
of the particle that jumps are closed off, the calculated self-diffusion can differ by
as much as 60 %. From these results it is clear that agreement with experiments
can, in general, only be expected for low and medium loadings. The agreement with
experiment was found for strongly interacting particles, using the rates of Eq. (2.13).
For these rates, the particle in the transition state interacts with the particles in both
cavities. Hence, the most important intercavity interaction, when one of the particles
is in the transition state, is taken into account in the dynamics.

We did not include a dynamical correction factor in the rates, i.e., we assumed that
all particles crossing the TS equilibrate in cavity B (see the discussion in Appendix
A). A quantitative influence of the correction factor was found for particles feeling
repulsive interactions [46, 60]. This is understandable for repulsive interactions, be-
cause particles in cavity B tend to push back the particle that jumps. Agreement
was found with experiments of clustering particles, which are attractive. It can be
expected that recrossing of the TS on short time scales are of less importance in this
case, because a particle that has crossed the TS is attracted by the other particles in
cavity B.

Flexibility of the material can have an influence, as was found for ethane diffusion
in MOF ZIF-8 [111]. It remains an open question if it is important for ethanol and
methanol diffusion. We note that cavity windows whose size depends on the loading,
as found in Ref. [111], can be accounted for by making the interaction free energy of
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the TS depend on the number of particles: fTS = fTS(n).

From the above discussion one can conclude that in general a qualitative agree-
ment can be expected with experimental systems. For the case of clustering particles,
our model seems to allow for a quantitative agreement of both dynamical and equilib-
rium properties over the whole concentration range. Both the free energy F (n) and
the rates knm can be determined numerically using MD simulations [59, 112, 113].
The quality of our assumptions and choice of rates could be verified using these
techniques. Such a study would also be of interest to investigate memory effects.
Beerdsen, Dubbeldam, and Smit have studied diffusion in microporous materials us-
ing dynamically corrected TST [60, 61, 109]. In their work it is assumed that, after
the particle has equilibrated in the cavity it has jumped to, memory effects are negli-
gible. Abouelnasr and Smit presented a study where these memory effect are included
[112] for a system showing behavior similar to that in Fig. 5.5d. In this case memory
effects in the environment can be expected to be negligible, as was found in Ref. [112].
For clustering particles this memory effect is, however, much stronger, especially in a
one-dimensional system, cf. Fig. 5.5e.

5.6 Conclusion

We conclude that our model allows for an understanding of the effect of clustering
on the self- and transport diffusion. For clustering particles, the behavior of the self-
and transport diffusion observed in experiments can be understood over the whole
concentration range. Rather surprisingly, also a good quantitative agreement with
the experimental results can be obtained. Given the proper choice of transition rates,
one finds the diffusive behavior of repulsive particles as observed in MD simulations
and other lattice models. The interpretation of this behavior agrees with those given
in previous studies.

It is commonly assumed that inter-particle correlations are negligible in cage-type
materials connected by narrow windows, i.e., Γ−1 ≈ Ds/Dt; see the discussion in
[27]. Only at high concentrations one observes significant inter-particle correlations
[54]. The results from Chmelik et al. [28] provided the first experimental verification
that Γ−1 ≈ Ds/Dt by measuring the three terms independently. However, from the
discussion in Section 5.4 one can conclude that for clustering particles Γ−1 ≈ Ds/Dt

does not follow automatically from the geometry of the material. Indeed, if particles
cluster a significant fraction of the cavities are full also at low loadings, and at high
loadings the approximation Γ−1 ≈ Ds/Dt fails. The observation that Γ−1 ≈ Ds/Dt is
then a non-trivial result of the specific dynamics associated to the clustering particles.

By choosing an “extreme” shape of f(n) one can find negative interparticle corre-
lations. To our knowledge, this is the first observation of this phenomenon in a lattice
gas. From the analytical results for L = 2 in Section 4.3 one is interested in finding
an f(n) for which the net effect of correlations is positive for L → ∞. Given that the
effect is very small already for L = 2, and that one furthermore has to simulate Dt

for several different interactions and concentrations, finding this numerically seems
difficult.

Finally, from the discussion in Section 5.5 it is clear that our model can in general
not lead to a quantitatively correct description of diffusion in porous materials. Why
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it works so well for clustering particles is an interesting question. The techniques to
study this with MD simulations are available.
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Chapter 6

Adsorption and desorption

kinetics

In this Chapter we investigate the adsorption and desorption kinetics of the model. In
the adsorption process an empty system is brought into contact with a particle reser-
voir at a fixed density. Particles flow into the system until the particle concentration
in the system is equal to the reservoir density. The desorption process proceeds oppo-
sitely: a system at some particle concentration is brought into contact with a reservoir
at a lower concentration. Particles then flow out of the system until the particle con-
centration in the system is equal to the reservoir density. The rates at which particles
are absorbed and desorbed from porous materials is of crucial importance for many
applications [86]. Particle interactions have a large influence on the adsorption and
desorption behavior [114]. The influence of interactions is therefore studied in detail.
A one-dimensional system of length 100 is considered. We assume that there is no
extra resistance at the boundaries, i.e. there are no surface barriers, which can be the
case in experiments [115]. The process is assumed to be isothermal, which is a good
approximation for materials of small size. The dynamics is simulated using kinetic
Monte Carlo (kMC). Adsorption and desorption runs are performed between 5.103

and 3.104 times each (depending on the interaction) to achieve good statistics. We
again take k10e

−β[f(1)−f(0)] = 1 for the rates of Eq. (2.12) and k10 = 1 for the rates
of Eq. (2.13). In all cases kT = λ = 1.

6.1 Non-interacting particles

We first consider non-interacting particles f(n) = 0 and no nmax. Both the rates of
Eqs. (2.12) and (2.13) are equal to knm = n, and peqn (µ) is the Poisson distribution
with average 〈n〉, for which 〈n2〉−〈n〉2 = 〈n〉. Since all particle jumps are uncorrelated
Dt is given by Eq. (4.7), which reduces to 〈k〉/(〈n2〉 − 〈n〉2) = 〈n〉/(〈n2〉 − 〈n〉2) = 1,
cf. Fig. 6.1c. In the desorption process the system is equilibrated according to peqn (µ)
with the chemical potential corresponding to 〈n〉 = 13. Starting at time t = 0 the
reservoir cavities are put at chemical potential µ → −∞ for all times (peqn (−∞) = δn0).
The adsorption proceeds oppositely: the system starts in a completely empty state,
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Figure 6.1: Adsorption/desorption between 〈n〉 = 13 and 〈n〉 = 0, for f(n) = 0,
no nmax, and rates kn = n. a) Average concentration c(t). b) Rate of adsorption
and desorption. c) Transport diffusion (analytical solution) and Γ−1. d), e) Average
number of particles 〈n〉(x, t) in each cavity at different times t, during respectively
adsorption 〈n〉ads(x, t) and desorption 〈n〉des(x, t). For visual clarity markers are
shown each 5 positions. The lines are a guide to the eye. f) 〈n〉ads(x, t)+〈n〉des(x, t)−
13. Markers are shown each 10 points. The lines are a guide to the eye.

and the reservoir cavities are put at the chemical potential corresponding to 〈n〉 = 13
at time t = 0. The average number of particles in cavity x at time t is denoted by
〈n〉(x, t).

In Fig. 6.1 we plot the adsorption and desorption kinetics. The average particle
concentration in the system, c(t) =

∑L
x=1〈n〉(x, t)/L, during adsorption and desorp-

tion is shown in Fig. 6.1a. Adsorption and desorption proceed at the same rate, see
Fig. 6.1b. The average number of particles in each cavity at different times are plot-
ted in Figs. 6.1c and 6.1d, for respectively adsorption (〈n〉ads(x, t)) and desorption
(〈n〉des(x, t)). In Fig. 6.1f we plot 〈n〉ads(x, t)+ 〈n〉des(x, t)−13. Since adsorption and
desorption proceed at the same rate this quantity is zero for all x and t. If adsorption
proceeds faster than desorption it is positive, and vice versa.

In a continuous system with constant transport diffusion Dt, the concentration
dependence c(x, t) = 〈n〉(x, t) during desorption can be found by solving the diffusion
equation:

∂c(x, t)

∂t
= Dt

∂2c(x, t)

∂x2
, (6.1)

with boundary conditions

c(0, t) = c(L, t) = 0, ∀t, (6.2)

c(x, 0) = 〈n〉start, 0 < x < L. (6.3)
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Figure 6.2: Adsorption/desorption between 〈n〉 = 13 and 〈n〉 = 0, for f(n) = 0.2n2,
nmax = 13, and the rates of Eq. (2.13). a) Average concentration c(t). b) Rate
of adsorption and desorption. c) (red squares, left axis) Transport diffusion from
kMC, the line is a guide to the eye. Dt at 〈n〉 = 0 and 〈n〉 = 13 was calculated
analytically. (black line, right axis) Γ−1 d), e) Average number of particles 〈n〉(x, t)
in each cavity at different times t, during respectively adsorption 〈n〉ads(x, t) and
desorption 〈n〉des(x, t). Markers are shown each 5 positions. The lines are a guide to
the eye. The black dashed lines represent respectively 〈n〉ads(x, t) and 〈n〉des(x, t) for
the parameters of Fig. 6.1, with the same concentration c(t) as for t = 100 in this
figure. f) 〈n〉ads(x, t)+ 〈n〉des(x, t)− 13. Markers are shown each 10 points. The lines
are a guide to the eye.

The solution is [116]:

cdes(x, t) =
4〈n〉start

π

∞
∑

n=0

1

2n+ 1
sin

(

(2n+ 1)πx

L

)

e−Dt[(2n+1)π/L]2t. (6.4)

The concentration dependence during adsorption is simply cads(x, t) = 〈n〉start −
cdes(x, t). It was checked that for L ↑ ∞ our simulations converge to this solution.

6.2 Repulsive particles

For interacting particles the transport diffusion is concentration dependent and, as
a result, adsorption and desorption proceed at different rates [86, 117, 118]. For a
continuous system the concentration dependence can be found by solving the diffusion
equation with a concentration-dependent transport diffusion:

∂c(x, t)

∂t
=

∂

∂x

(

Dt(c(x, t))
∂c(x, t)

∂x

)

, (6.5)

with the correct boundary conditions for adsorption/desorption. If the transport
diffusion can be calculated analytically, this equation can be solved numerically. If
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Figure 6.3: Adsorption/desorption between 〈n〉 = 13 and 〈n〉 = 0, for f(n) = 0.2n2,
no nmax, and the rates of Eq. (2.12). a) Average concentration c(t). b) Rate of
adsorption and desorption. c) (dashed line, left axis) Transport diffusion (analytical
result). (black line, right axis) Γ−1 d), e) Average number of particles 〈n〉(x, t) in each
cavity at different times t, during respectively adsorption 〈n〉ads(x, t) and desorption
〈n〉des(x, t). Markers are shown each 5 positions. The lines are a guide to the eye.
f) 〈n〉ads(x, t) + 〈n〉des(x, t)− 13. Markers are shown each 10 points. The lines are a
guide to the eye.

not, it is necessary to first perform kMC simulations to measure the transport diffusion
at different concentrations. This result can then be interpolated to obtain Dt(c),
which can be used to numerically solve Eq. (6.5). Such a procedure is however time
consuming, and one has to be careful with the numerical accuracy of the obtained
result. Instead, we simulate directly the adsorption and desorption behavior using
kMC.

Consider the parameters f(n) = 0.2n2, nmax = 13, and the rates of Eq. (2.13), with
the adsorption and desorption proceeding between 〈n〉 = 0 and 〈n〉 = 13, cf. Fig. 6.2.
The reservoirs are put at 〈n〉 = 13 by taking the chemical potential µ → ∞ (peqn (∞) =
δnnmax

). The system system starts at 〈n〉 = 13 by taking ni = 13 for 1 < i <
L. As discussed in Chapter 3, the particles are repulsive for this interaction. The
transport diffusion therefore increases with concentration, cf. Fig. 6.2c. The rate
of adsorption is higher than the rate of desorption, as can be seen from Fig. 6.2b.
If the system is almost completely filled in the adsorption process the desorption
starts proceeding faster. 〈n〉ads(x, t) and 〈n〉des(x, t) at different times are plotted in
respectively Figs. 6.2d and 6.2e. In Fig. 6.2f we plot 〈n〉ads(x, t) + 〈n〉des(x, t) − 13.
Since the transport diffusion grows with increasing concentration, particles diffuse
faster from high to low concentration if the particle concentration is high. During
adsorption the reservoirs provide a steady input of particles, which creates a front of
high concentration that moves into the system. During desorption the region of high
concentration gradually disappears. Adsorption therefore proceeds at a higher rate.
The front of high concentration moving into the system during adsorption (Fig. 6.2d)
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results in two inward moving peaks in Fig. 6.2f. For small times, the desorption
in the middle of the system is faster than the adsorption. The effect is however
smaller, and disappears when the middle of the system decreases in concentration.
By comparing Figs. 6.1 and 6.2 one sees that adsorption and desorption proceed
faster compared to the non-interacting case, as can be expected. The black dashed
lines in Figs. 6.2d and 6.2e represent respectively 〈n〉ads(x, t) and 〈n〉des(x, t) for the
parameters of Fig. 6.1, with the same average concentration c(t) as for t = 100 in
Fig. 6.2. During the adsorption of non-interacting particles, a particle diffuses as fast
near the boundaries as in the middle. For repulsive particles the diffusion is higher
at the boundaries than in the middle of the system. This makes the concentration
of repulsive particles higher near the boundaries and lower in the middle, for the
same average concentration. During desorption the repulsive particles diffuse faster
in the middle of the system, also leading to a concentration that is higher near the
boundaries and lower in the middle.

We now consider a ZRP with f(n) = 0.2n2, with the adsorption and desorption
proceeding between 〈n〉 = 0 and 〈n〉 = 13, cf. Fig. 6.3. Since the difference in transport
diffusion between 〈n〉 = 0 and 〈n〉 = 13 is much higher than in the previous case, the
difference between adsorption and desorption is more pronounced. The qualitative
behavior stays the same.

6.3 Attractive particles

We now study attractive particles. Consider the parameters f(n) = 0.000642n2 −
0.0083n3, nmax = 13, and the rates of Eq. (2.13). This interaction is qualitatively
similar to f(n) = −0.2n2, but is more interesting because it provides a good descrip-
tion of methanol diffusion in ZIF-8, cf. Section 5.2. The transport diffusion has a
minimum for low and medium concentrations and a maximum near 〈n〉 = 13, cf. 6.4c.
The adsorption and desorption kinetics between 〈n〉 = 13 and 〈n〉 = 0 are shown
in Fig. 6.4. Even though the transport diffusion shows a strong minimum for low
and medium concentrations, adsorption still proceeds faster than desorption. This is
because of the maximum in the transport diffusion around 〈n〉 = 13, resulting in the
same qualitative behavior as in Figs. 6.2 and 6.3. Adsorption and desorption proceed
slower compared to Figs. 6.1 and 6.2, because of the minimum in the transport diffu-
sion. The black dashed lines in Figs. 6.4d and 6.4e represent respectively 〈n〉ads(x, t)
and 〈n〉des(x, t) for the parameters of Fig. 6.1, with the same concentration c(t) as
for t = 4000 in Fig. 6.4. The difference for adsorption is qualitatively the same as
in Fig. 6.2d, although it is more pronounced due to the large difference in the trans-
port diffusion between low and high concentration. For small times the difference in
desorption is qualitatively the same as in Fig. 6.2e. For longer times this behavior
is reversed compared to Fig. 6.2e. Once the middle of the system is no longer at
〈n〉 = 13, the diffusion near the boundaries (where 〈n〉 ≈ 0) is faster than in the
middle of the system.

The adsorption and desorption kinetics between 〈n〉 = 7 and 〈n〉 = 0 for the same
parameters are shown in Fig. 6.5. In contrast to the previous cases, the transport
diffusion at the starting concentration of the adsorption (〈n〉 = 7) is smaller than
at 〈n〉 = 0. The steady flow of particles from the reservoirs now slows down the
adsorption compared to the desorption. The behavior in Fig. 6.5f is the reverse of the
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Figure 6.4: Adsorption/desorption between 〈n〉 = 13 and 〈n〉 = 0, for f(n) =
0.000642n2 − 0.0083n3, nmax = 13, and the rates of Eq. (2.13). a) Average con-
centration c(t). b) Rate of adsorption and desorption. c) (red squares) Transport
diffusion from kMC, the line is a guide to the eye. Dt at 〈n〉 = 0 and 〈n〉 = 13 was
calculated analytically. (black line) Γ−1 d), e) Average number of particles 〈n〉(x, t)
in each cavity at different times t, during respectively adsorption 〈n〉ads(x, t) and des-
orption 〈n〉des(x, t). Markers are shown each 5 positions. The lines are a guide to the
eye. The black dashed lines represent respectively 〈n〉ads(x, t) and 〈n〉des(x, t) for the
parameters of Fig. 6.1, with the same concentration c(t) as for t = 4000 in this figure.
f) 〈n〉ads(x, t) + 〈n〉des(x, t)− 13. Markers are shown each 10 points. The lines are a
guide to the eye.
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Figure 6.5: Adsorption/desorption between 〈n〉 = 7 and 〈n〉 = 0, for f(n) =
0.000642n2 − 0.0083n3, nmax = 13, and the rates of Eq. (2.13). a) Average con-
centration c(t). b) Rate of adsorption and desorption. c) (red squares) Transport
diffusion from kMC, the line is a guide to the eye. Dt at 〈n〉 = 0 and 〈n〉 = 13 was
calculated analytically. (black line) Γ−1 d), e) Average number of particles 〈n〉(x, t)
in each cavity at different times t, during respectively adsorption 〈n〉ads(x, t) and des-
orption 〈n〉des(x, t). Markers are shown each 5 positions. The lines are a guide to
the eye. The black dashed lines represent respectively 〈n〉ads(x, t) and 〈n〉des(x, t) for
non-interacting particles between 〈n〉 = 7 and 〈n〉 = 0, with the same concentration
c(t) as for t = 1000 in this figure. f) 〈n〉ads(x, t)+ 〈n〉des(x, t)− 7. Markers are shown
each 10 points. The lines are a guide to the eye.
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previous cases. The black dashed lines in Figs. 6.5d and 6.5e represent respectively
〈n〉ads(x, t) and 〈n〉des(x, t) for non-interacting particles between 〈n〉 = 7 and 〈n〉 = 0,
with the same concentration c(t) as for t = 1000 in Fig. 6.5. The difference in
adsorption is reversed compared to Fig. 6.2d: the concentration at the boundaries is
here lower than for the non-interacting case. The difference in desorption is the same
as for Fig. 6.4e at long times.

For attractive particles with the rates of Eq. (2.12) and nmax = ∞ there is particle
condensation, as mentioned in Section 4.2. We therefore don’t study this situation.

6.4 Conclusion

To conclude, we studied the adsorption and desorption kinetics for different inter-
actions. In the adsorption process the system is initialized at concentration clow.
At time t = 0 the system is connected to particle reservoirs at higher concentra-
tion chigh, after which equilibration to chigh occurs. The desorption process proceeds
reversely: the system is initialized at chigh, and the reservoirs are fixed at concentra-
tion clow. Both adsorption and desorption processes are strongly influenced by the
concentration-dependent transport diffusion. For repulsive particles the transport
diffusion is a monotonic increasing function of concentration. In this case adsorp-
tion is always faster than desorption. For attractive particles the transport diffusion
is nonmonotonic. Around 〈n〉 ≈ 0 it decreases for increasing concentration, has a
minimum at an intermediate concentration and increases up to its maximal value at
〈n〉 = nmax. In this situation both adsorption or desorption can proceed faster than
the other, depending on the choice of chigh and clow.
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Chapter 7

Current fluctuations

7.1 Introduction

A system connected to two particle reservoirs at different densities relaxes to a
nonequilibrium steady state (NSS), with a particle current flowing through it. The
description of the fluctuations of this current has recently received much attention
[119–133]. In equilibrium, thermodynamic potentials are related to exponentially un-
likely fluctuations away from the average [134], as was already discussed by Einstein
[135]. Analogously, one can construct nonequilibrium thermodynamic potentials from
the study of exponentially unlikely current and density fluctuations away from the
NSS [136]. A theoretical framework for this approach is provided by the macroscopic
fluctuation theory (MFT) [137–141].

Using the MFT, Akkermans and co-workers studied current fluctuations in diffu-
sive systems connected to two reservoirs [142]. They showed analytically that for a
system of arbitrary (but fixed) dimension, the ratio of the cumulants of the current
distribution is independent of the shape of the system and the shape of the contacts
with the reservoirs. This derivation is valid if both the system and the contacts with
the reservoirs are macroscopic in size. The analytical prediction was tested by nu-
merically calculating the ratio of the first two cumulants, called the Fano factor, for
the symmetric simple exclusion process (SSEP). In two dimensions, convergence to
the analytical predictions was found for large system sizes by assuming a power-law
behavior and extrapolating the numerical data. In three dimensions no convergence
was found. The numerical results were, however, obtained for contacts that are not
macroscopic in size. Akkermans et al. therefore argued that the discrepancy between
numerics and theory was caused by too small contact sizes with the reservoirs.

Under certain conditions, the asymptotic current distribution of a one-dimensional
system that is described by the MFT can be calculated from an additivity principle
(AP) postulated by Bodineau and Derrida [39]. The validity of this AP has been
confirmed in several one-dimensional systems, both analytically [39, 143–146] and
numerically [120, 146–149]. An interesting question is if one can use the AP to
predict the current distribution in higher-dimensional systems. This is especially
important because many experimental systems are higher-dimensional. The results
from [142] indicate that it is, indeed, possible to do this. So far, only a few studies have
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addressed this question. Saito and Dhar studied heat fluctuations in a deterministic
system connected to stochastic reservoirs [150]. They found that the AP can predict
the current distribution in three dimensions, both for diffusive and anomalous heat
transport. Hurtado, Pérez-Espigares, del Pozo, and Garrido confirmed the validity of
the AP for the two-dimensional Kipnis-Marchioro-Presutti (KMP) model [120, 151].

We study numerically the first three cumulants of the current distribution of
boundary driven generalized exclusion processes (GEPs) [75]. The dynamics is simu-
lated using kinetic Monte Carlo (kMC). The simplest case of a GEP is the SSEP, where
only one particle can occupy each lattice site. In our simulations of the SSEP we con-
sider contacts with the reservoirs that are macroscopic in size. Complete convergence
of the Fano factor to the analytical prediction of [142] is found in two dimensions. For
three dimensions the data indicate convergence for large system sizes. We proceed
with the study of the transport-diffusion coefficient and the current fluctuations in a
GEP where maximally two (interacting) particles can occupy each lattice site. The
first three cumulants of the current distribution are calculated by combining the AP
with the results from [142]. In one and two dimensions the first three cumulants ob-
tained from kMC are in agreement with the predicted values. In three dimensions the
first two cumulants are in agreement with the AP. The statistics for the third cumu-
lant is insufficient for a reliable comparison. Because the transport diffusion depends
on the dimension, the current statistics change for different dimensions. The current
statistics are independent of the spatial dimension for the SSEP and the zero-range
process.

7.2 Theory

Consider a one-dimensional system of length L in contact with two particle reservoirs,
called A and B, at densities ρA and ρB. The dynamics in the bulk of the system is
diffusive, i.e., there is no external driving in the bulk. The total number of particles
that have passed through the system in the time interval [0, t], in the NSS, is denoted
by Qt. To measure Qt one could, e.g., count the net number of particles entering the
system from reservoir A. Qt is a stochastic quantity and is described by a probability
distribution P (Qt). We study P (Qt) in the limit t ↑ ∞ and L ↑ ∞. Bodineau and
Derrida showed that, by postulating an AP, one can calculate the cumulants of P (Qt)
in a one-dimensional system from the integrals Im [39, 143]

Im =

∫ ρA

ρB

Dt(ρ)σ(ρ)
m−1dρ. (7.1)

Dt(ρ) is the transport diffusion Eq. (2.16). σ(ρ) describes equilibrium fluctuations of
Qt for large t

〈Q2
t 〉
t

=
1

L
σ(ρ), ρA = ρB = ρ. (7.2)
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The first three cumulants of P (Qt) are equal to

〈Qt〉
t

=
1

L
I1, (7.3)

〈Q2
t 〉c
t

=
〈Q2

t 〉 − 〈Qt〉2
t

=
1

L

I2
I1
, (7.4)

〈Q3
t 〉c
t

=
〈(Qt − 〈Qt〉)3〉

t
=

1

L

3(I3I1 − I22 )

I31
. (7.5)

The ratio of the first two cumulants is called the Fano factor

F = lim
L→∞

lim
t→∞

〈Q2
t 〉 − 〈Qt〉2
〈Qt〉

=
I2
I21

. (7.6)

Consider all density profiles ρj(x, t
′), with 0 ≤ x ≤ L and 0 ≤ t′ ≤ t, that

lead to the same particle flux j. In the long-time limit t ↑ ∞, only the most probable
(optimal) of these profiles is relevant for the current distribution [141]. The AP is valid
as long as the optimal profiles are time-independent: ρj(x, t

′) ≡ ρj(x). The point at
which the optimal profile becomes time-dependent corresponds to a dynamical phase
transition [140, 152–154]. For example, for one-dimensional systems on a ring, large
fluxes are created by traveling waves [152–154]. One can show from the MFT that a
sufficient condition on Dt(ρ) and σ(ρ) for the validity of the AP is [140]

Dt(ρ)σ
′′(ρ) ≤ D′

t(ρ)σ
′(ρ), ∀ρ. (7.7)

Note that (7.7) is a sufficient but not a necessary condition.
A qualitative explanation of the AP goes as follows. The system is divided into

subsystems. Their density profiles are considered to be independent of each other,
except at the contacts between them. The subsystems should be so small that they
are close to (local) equilibrium, but yet be large enough to allow for coarse graining.
In this case, each subsystem has Gaussian current fluctuations around its determinis-
tic behavior (2.16), which is completely described by Dt(ρ) and σ(ρ). By calculating
the optimal densities at the contacts between the subsystems, one finds the cumulant
generating function (CGF) of the current distribution. From this CGF one can calcu-
late (7.3), (7.4), (7.5). Hence, the AP allows one to calculate the current distribution
arbitrarily far from equilibrium using only the equilibrium quantities Dt(ρ) and σ(ρ).

We now consider systems in d ≥ 1 dimensions. Fick’s first law is then given by

~j = −Dt(ρ)~∇ρ, (7.8)

with Dt(ρ) a symmetric d × d matrix. If the diffusion is isotropic, which is the case
considered here, one can write Dt(ρ) = Dt,d(ρ)Id, with Dt,d(ρ) a scalar function
depending on the dimension. A sufficient condition that excludes the possibility of a
dynamical phase transition is (7.7) with the scalar functions Dt,d(ρ) and σd(ρ) [140].

Akkermans et al. studied current fluctuations in higher-dimensional diffusive sys-
tems [142]. The shape of the system and the contacts with the reservoirs are taken
arbitrary, but macroscopic in size. If the optimal density and current profiles are
time-independent, the MFT predicts that the CGF of the system in d dimensions
µd(λ) equals [142]

µd(λ) = κµ1(λ), (7.9)
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Figure 7.1: The type of contacts used for the SSEP in two dimensions (a) and in
three dimensions (b). The black dots are sites with a particle density of 1 (A) or 0
(B), whose state is uncorrelated from the rest of the system. In two dimensions, 1/2
of the lower left is connected to reservoir A and 1/2 of the upper right is connected
to reservoir B. In three dimensions, 2/3 of the lower left is connected to reservoir A
and 2/3 of the upper right is connected to reservoir B.

with κ a constant that depends on the shape of the system and shape of the contacts
with the reservoirs. The calculation of κ is explained in Appendix F.4. µ1(λ) is the
CGF of a one-dimensional system described by Dt,d(ρ) and σd(ρ). Since one assumes
that the optimal density and current profiles are time-independent, µ1(λ) can be
calculated from the AP, by using Dt,d(ρ) and σd(ρ) in (7.1).

7.3 Symmetric simple exclusion process

The SSEP is a stochastic lattice gas where particles interact by exclusion, i.e., each
site can contain maximally one particle. Each particle attempts to hop to its nearest
neighbors with unit rate. A hopping attempt is successful if the site is empty. The
distance between two sites is equal to one. For the SSEPDt(ρ) = 1 and σ(ρ) = 2ρ(1−
ρ) in any dimension. (7.7) is therefore always satisfied. We consider reservoirs with
densities ρA = 1 and ρB = 0. A calculation from the AP [39] or an exact microscopic
derivation [155] shows that F = 1/3 in one dimension. Since Dt(ρ) and σ(ρ) are
independent of the dimension, F = 1/3 in any dimension. It is, however, important
that the size of the contacts scales with the system size, thereby maintaining a finite
fraction of the boundary in contact with the reservoirs. The numerical computation
of the Fano factor in [142] was performed for systems where this scaling is absent. We
present simulations in which the contacts do scale with the system size.

The dynamics is simulated using a kMC algorithm, cf. Appendix F.1. How the
Fano factor is computed from the simulation data is explained in Appendix F.2. In
two dimensions we consider squares of size L × L and in three dimensions cubes of
size L × L × L. The contact between the system and the reservoirs is modeled as
lattice sites whose densities are fixed and uncorrelated from the rest of the system,
as in [142]. The shape of the contacts is illustrated in Figure 7.1.

The numerical results for the Fano factor are presented in Figure 7.2a. For two
dimensions the Fano factor has converged to 1/3 at L ≈ 40. This extends the extrap-
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Figure 7.2: (a) The Fano factor with one-sigma error bars for the SSEP, for squares
L × L and cubes L × L × L as depicted in Figure 7.1. The lines are a guide to
the eye. The two-dimensional results show a convergence to 1/3 at L ≈ 40. The
three-dimensional results have not yet converged. (b) The three-dimensional data as
a function of 1/L2 for L ≥ 9. The thin black line is a 1/L2 fit using the method of
least squares with weighted error bars. The thick black lines are one-sigma error bars
on the L → ∞ limit predicted by the fit.

olation presented in Figure 3 of [142]. We determined numerically that κ ≈ 0.663L for
the geometry in Figure 7.2a, cf. Appendix F.4. The average current indeed converges
to L〈Qt〉/t ≈ 0.663L, compared to L〈Qt〉/t = 1 in one dimension (data not shown).
For three dimensions convergence to 1/3 is not yet attained at L = 15. However, the
data indicate convergence to 1/3 for larger system sizes. For the same distance L
between the two reservoirs, the Fano factor in three dimensions is lower than in two
dimensions. One therefore expects convergence before L = 40 in three dimensions. In
Figure 7.2b we plot the Fano factor in three dimensions as a function of 1/L2. There
is no specific reason to assume that this is the correct convergence law. We choose
this scaling because we want to compare our results with Figure 4 of [142]. A 1/L2

fit indicates an L → ∞ limit of F = 0.3344, with one-sigma error bar σ = 0.0018.
The fit was performed using the method of least squares with weighted error bars
[156]. The extrapolation is in agreement with the expected value of F = 1/3. Our
numerical results validate the conjecture from [142] that the observed discrepancy
between numerics and theory is caused by too small contacts with the reservoirs.

7.4 Generalized exclusion processes

7.4.1 The model

We now study the model defined in Section 2.1. The length of the system is equal to
L = N+1, with N the number of cavities. This model is a GEP [75] with a stochastic
thermodynamical interpretation for the equilibrium statistics and dynamics. In the
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following, we fix the parameters to nmax = 2 and β = 1. The rates we consider are

knm = ne−[f(n−1)+f(m+1)−f(n)−f(m)]/2. (7.10)

It is clear that a linear term in F (n) (or f(n)) does not influence these rates. Hence,
we can rescale F (n) so that f(0) = f(1) ≡ 0 without loss of generality. All possible
interactions are then described by f(2).

For an isothermal system, which we consider here, Dt(ρ) and σ(ρ) are related by
the following fluctuation-dissipation relation [160]

σ(ρ) = 2kbTρ
2κ(ρ)Dt(ρ), (7.11)

with κ(ρ) the isothermal compressibility. One knows from statistical physics that κ(ρ)
can be written as

κ(ρ) = β
V

〈n〉
〈n2〉 − 〈n〉2

〈n〉 , (7.12)

with V the volume in which the average 〈n〉 and particle fluctuations 〈n2〉 − 〈n〉2 are
measured. Because particles in different cavities do not interact, one can take the
averages over one cavity, V = 1 and ρ = 〈n〉. One then finds for σ(ρ) (7.11)

σ(ρ) = 2(〈n2〉 − 〈n〉2)Dt(ρ). (7.13)

Regarding notation, since ρ = 〈n〉 we use ρ and 〈n〉 interchangeably. Also, averages
〈·〉 are a function of the chemical potential of the reservoirs. These can, however, be
straightforwardly converted to densities via (2.3). In this chapter we write everything
as a function of the density.

From (7.13) one finds that Im (7.1) can be written as

Im =

∫ 〈n〉A

〈n〉B

Dt(〈n〉)m
[

2(〈n2〉 − 〈n〉2)
]m−1

d〈n〉, (7.14)

where 〈n〉A and 〈n〉B are the average number of particles in, respectively, reservoir
cavity A and B. One can compute Im by numerically simulating Dt(〈n〉) and analyt-
ically calculating 〈n2〉 − 〈n〉2 from peqn (µ).

7.4.2 Transport-diffusion coefficient

From Section 5.4 one can conclude that Dt(ρ) is, in general, influenced by correlations
(see also [161]). Since the effect of correlations changes and is actually seen to di-
minish with increasing dimension, cf. Section 5.4, the function Dt(ρ) depends on the
dimension. If the effect of correlations upon the diffusion is completely neglected one
can show that Dt(ρ) is given by (4.7). This result is valid for a (hyper)cubic lattice in
any dimension. Because one arrives at (4.7) by neglecting all correlations, it could be
argued that in the limit of infinite dimension Dt(ρ) converges to (4.7). Although we
do not have a rigorous proof of this statement, it is confirmed by numerical evidence
given below (see also Section 5.4). We therefore denote the results that are calculated
from (4.7) as the d → ∞ limit. Note that in this limit the integral (7.14) can be
calculated analytically.
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Figure 7.3: Dt(ρ) for f(2) = −2.5 and nmax = 2 in one, two, three, and infinite
dimensions. The error bars are smaller than the symbol sizes.

The uncorrelated result (4.7) is exact for the SSEP (nmax = 1), which is easily
checked by using that peq1 = ρ and peq0 = 1 − ρ. It is also the same in any dimension
[162]. (4.7) is also exact for the one-dimensional ZRP [159], as discussed in Section
4.2. Since the particle distribution in the NSS factorizes in any dimension for the ZRP
[163], the calculation from Section 4.2 can be straightforwardly extended to higher
dimensions to show that Dt(ρ) is independent of the dimension. To our knowledge,
these are the only two cases where the uncorrelated result is exact for GEPs. It is,
then, no surprise that Dt(ρ) is independent of the dimension.

We consider now f(2) = −2.5. This is a concave f(n), signifying attractive parti-
cles. We choose this interaction because correlations have a large effect for attractive
particles. In Figure 7.3 we plot Dt(ρ) in one, two, three, and infinite dimensions.
We refer to Appendix F.3 for details on the simulations. Dt(ρ) appears to converge
with increasing dimension towards the d → ∞ result (4.7). The transport diffusion
in function of the dimension for 〈n〉 ≈ 0.51 and 〈n〉 ≈ 1.49 is shown in, respectively,
Figures 7.4a and 7.4b. The behavior is well approximated by a 1/d dependence. Fig-
ure 7.4c shows the same quantity for the interaction f(2) = 0 at 〈n〉 = 1. Also here
an approximate 1/d dependence is found. This dependence can be understood as fol-
lows. Correlations are the result of memory effects in the environment, as discussed in
Section 5.4. The strongest contribution comes from the increased probability that a
particle jumps back to its previous position. The probability to do so is approximately
1/2d as there are 2d neighboring cavities. This simple argument indeed suggests that
the effect of correlations will decrease approximately as ∝ 1/d.
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Figure 7.4: The transport diffusion as a function of the dimension, for nmax = 2. The
data are normalized w.r.t. the analytical uncorrelated result (4.7), which is denoted
by Dt(∞). The black circles are from kMC simulations and the red squares are (4.7).
The error bars are smaller than the symbol sizes. 1/d fits were performed with the
method of least squares. In all three cases this fit provides a good estimate for the
transport diffusion at infinite dimension, with a relative error (Dt,fit(∞)/Dt(∞)− 1)
of a) 0.3 %, b) 2.0 %, and c) 0.07 %.

7.4.3 Current fluctuations

The sufficiency condition (7.7) is not satisfied for f(2) = −2.5, as shown in Figure
7.5 for d → ∞ (4.7). The numerically simulated Dt(ρ)’s do not give smooth results
for (7.7), since one has to calculate the second derivative of an interpolated function.
The qualitative behavior of (7.7) for finite dimensions is, however, the same as for
d → ∞. Starting from (4.7), one sees that (7.7) does not hold for many GEPs. One
can show analytically that all GEPs with nmax = 2 and f(2) < 0 do not satisfy (7.7).
Numerically, one finds that GEPs with nmax = 2 and f(2) & 2.917 also do not satisfy
(7.7). Although (7.7) is not satisfied for the parameters considered here, we expect
that the AP is still valid. Dynamical phase transitions have only been observed for
closed systems [140, 152–154], not boundary driven ones [147–149]. Also, dynamical
phase transitions do not occur for currents close to the average current [141]. Currents
created by time-dependent density profiles, if any, are therefore highly unlikely, and
their influence on the first three moments of the current distribution is expected to
be negligible.

We study the current statistics for f(2) = −2.5 and reservoir densities 〈n〉A =
nmax = 2 (µA = ∞) and 〈n〉B = 0 (µB = −∞). Plots of L〈Qt〉/t = I1 and L〈Q2

t 〉c/t =
I2/I1 as a function of the length are shown in, respectively, Figures 7.6a and 7.6b. The
values predicted by the AP are given by lines, which are the one-sigma error bars.
These error bars arise from the error bars on the simulated Dt(ρ)’s. Values from
direct numerical simulations are also given with one-sigma error bars, as explained in
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Appendix F.2.

Let us first consider the one-dimensional data. We estimate convergence in length
at L ≈ 175. How we check for convergence in time is explained in Appendix F.2.
The value for I1, cf. Figure 7.7a, is taken from the highest considered length in Fig-
ure 7.6a. To achieve a good statistics for the second and third cumulant, we have
performed an extensive simulation for length L = 251. The simulated values for
L〈Q2

t 〉c/t = I2/I1, F = I2/I
2
1 , and L〈Q3

t 〉c/t for this length are given in, respectively,
Figures 7.7b, 7.7c, and 7.7d. I1 from the AP is slightly higher than the directly simu-
lated value (IAP

1 /Isim1 ≈ 1.0018). The most likely reason for this is that the simulated
Dt(ρ) slightly overestimates the real Dt(ρ). The transport diffusion should be mea-
sured in the limit of an infinitely small concentration gradient, while of course the
simulations are performed at a finite concentration gradient. Similarly, one should in
principle simulate an infinitely long system, so that all boundary effects have disap-
peared. Both approximations cause the numerically simulated Dt(ρ) to overestimate
the real value [161]. Furthermore, to calculate IAP

1 one has to interpolate the sim-
ulated points of Dt(ρ), and then integrate this interpolated function. This could
introduce a small numerical imprecision. Since the relative difference is less than
0.2% we consider this result a very good agreement between IAP

1 and Isim1 . Also the
variance and the Fano factor are in very good agreement with the value from the AP:
(IAP

2 /IAP
1 )/(Isim2 /Isim1 ) ≈ 1.0007 and FAP/F sim ≈ 0.9989.

Figure 7.7d shows the third cumulant. Although the error bars are significantly
larger compared to the first two cumulants, the data indicate agreement between
the AP and the directly simulated values. Finally, we plot P (Qt) obtained from kMC
together with the Gaussian prediction from the first two moments of the AP in Figure
7.8. The small error on I1 from the AP is noticeable for determining 〈Qt〉. When
using the simulated 〈Qt〉, one sees that P (Qt) is well approximated by a Gaussian.
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Figure 7.6: (a) L〈Qt〉/t = I1 and (b) L〈Q2
t 〉c/t = I2/I1, for f(2) = −2.5, nmax = 2,

and different lengths in one, two, and three dimensions. The lines are predictions from
the AP, and represent one-sigma error bars. The points with one-sigma error bars
are from a direct simulation of the current. In two (three) dimensions, the directly
measured cumulants are divided by Ly (LyLz), see Appendix F.4.

Indeed, the skewness of P (Qt) is small 〈Q3
t 〉c/〈Q2

t 〉
3/2
c ≈ 0.034, i.e., P (Qt) is almost

symmetric. Although the difference is small, one observes that for Qt < 320 the
simulated P (Qt) is consistently lower than the Gaussian, while for Qt > 365 it is
consistently higher.

We now discuss the higher-dimensional systems. In contrast to the SSEP, all sites
at the boundaries are in contact with the reservoirs. If periodic boundary conditions
are imposed in the y direction, Dt(ρ) converges in two dimensions to the Ly ↑ ∞ limit
at Ly ≈ 3. In the simulations we take Ly = Lz = 5 with periodic boundary conditions.
The transport diffusion is simulated for the same concentration gradients and length
in the x direction as for the one-dimensional case. The different coupling to the
reservoirs compared to the SSEP is done for numerical reasons. The program for the
GEP is too slow to simulate a convergence in both the x direction and y (z) direction.
The periodic boundary conditions employed here are equivalent to the Ly(Lz) ↑ ∞
limit. All sites at the boundaries are coupled to the reservoirs because this gives the
highest particle flux. The higher the particle flux, the better the current statistics
for a given simulation time. If all boundary sites are connected to the reservoirs
κ = Ly and κ = LyLz in, respectively, two and three dimensions. This is explained
in Appendix F.4.

For two dimensions we assume convergence in length at L ≈ 120. The error on I1
is comparable to the one-dimensional case (IAP

1 /Isim1 ≈ 1.0010). The second and third
cumulants are determined from extensive simulations at length L = 121. The variance
and Fano factor are slightly underestimated by the AP: (IAP

2 /IAP
1 )/(Isim2 /Isim1 ) ≈

0.9982 and FAP/F sim ≈ 0.9971. We consider this a very good agreement between
the direct simulations and predictions from the AP. The relative difference is less
than 0.3 %, and all quantities show a large overlap within their error bars. The
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Figure 7.7: (a) I1, (b) I2/I1, (c) F , (d) L〈Q3
t 〉c/t for f(2) = −2.5 and nmax = 2 as a

function of the dimension. Predictions from the AP are denoted by blue error bars
without symbol. The limiting case d → ∞ is shown as a black line. Direct numerical
simulations are denoted by black diamonds. In two (three) dimensions, the directly
measured cumulants are divided by Ly (LyLz), see Appendix F.4. Note that the error
bar at d = 3 in (d) spans approximately 7 times the whole y axis.
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Figure 7.8: P (Qt) from kMC (red) in one dimension for nmax = 2, f(2) = −2.5,
L = 251, and t = 8.104. A Gaussian distribution (black) with average and variance
predicted by the AP (a) and the simulated average and variance from the AP (b) is
also plotted. The data is well approximated by a Gaussian distribution.

third cumulant is also compatible with the AP prediction, although the error bar on
the directly simulated value is rather large. The shape of P (Qt) is similar to the
one-dimensional case (data not shown).

For three dimensions the simulation times become much longer. We therefore
only simulate the current for systems of length L = 101 and L = 121. Since the
two-dimensional system has converged at L = 121, one can safely assume that this
is also the case for the three-dimensional system. The cumulants from Figure 7.7
are calculated for L = 121. The average, variance, and Fano factor are correctly
predicted by the AP. There is insufficient data to achieve a reliable estimate for the
third cumulant. The obtained value shown in Figure 7.7d agrees well with the AP,
but the error bar is very large: L〈Q3

t 〉c/t + σ = 0.438 and L〈Q3
t 〉c/t − σ = −0.110.

The shape of P (Qt) is similar to the one-dimensional case (data not shown).

7.5 Conclusion

To conclude, we have studied numerically current fluctuations in the symmetric simple
exclusion process (SSEP) and a generalized exclusion process (GEP). For the SSEP
we find that the Fano factor is independent of the spatial dimension and (macroscopic)
shape of the contacts with the reservoirs. For the GEP our numerical simulations are
in agreement with the predictions from the AP combined with the MFT [142]. In
one and two dimensions agreement is found for the first three cumulants. In three
dimensions the first two cumulants agree with the AP, while the statistics for the
third cumulant are insufficient for a reliable comparison. The transport diffusion, and
as a result the current statistics, depends on the dimension. Only for the SSEP and
the ZRP is the transport diffusion independent of the dimension.

A more precise numerical determination of the transport diffusion from Fick’s
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first law is computationally very time consuming, at least using the methods presented
here. It would therefore be of interest to find exact analytical results for the transport
diffusion for the GEP. Another interesting question concerns the simulation of higher
moments of the current distribution. This could be achieved using a sophisticated
Monte Carlo algorithm to simulate rare events, see e.g. [164–166]. Both the SSEP and
the ZRP satisfy the sufficiency condition for the validity of the AP (7.7). However,
many GEPs do not satisfy (7.7). Hence, one might observe deviations from the
predictions of the AP for large current fluctuations. An analysis of the optimal density
profiles, before and (possibly) after the dynamical phase transition, is also of interest.

The quantitiesDt(ρ) [26] and σ(ρ) [167] are experimentally accessible in nanoporous
materials. The average particle flux through a system in contact with two particle
reservoirs can also be measured [15]. If it is possible to measure the variance of the
particle flux with a good precision, these techniques present an opportunity for an
experimental verification of the additivity principle and, therefore, the macroscopic
fluctuation theory.
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Chapter 8

Conclusions and perspectives

Recent experimental progress has opened up the possibility to measure both the self-
and transport diffusion in nanoporous materials with great precision at all concen-
trations [26, 27]. This has created a wealth of new experimental data for different
molecules and materials. Inspired by cage-type nanoporous materials we have con-
structed a lattice model where the interaction is described by a free energy function
F (n) that solely depends on the number of particles in a cavity, as discussed in Chap-
ter 2. Because of recent experimental results [28] and molecular dynamics studies
[30–32], a special interest is taken in the behavior of clustering particles.

In Chapter 3 we have presented a systematic study of the dependence of the ad-
sorption isotherm and thermodynamic factor on the shape of F (n). Several studies
with similar model assumptions have appeared in the literature [86]. These are, how-
ever, mostly aimed at finding a specific set of parameters that reproduce experimental
adsorption isotherms. Our discussion is more general. It provides a good understand-
ing of the effect of clustering on the adsorption isotherm and thermodynamic factor.
As far as we know, the only other work to consider clustering particles on a lattice is
[168], which provided an intuitive explanation of why Γ−1 > 1 for clustering particles
in terms of fractional vacancies.

In Chapter 4 we derived analytical results for the self- and transport diffusion.
These were obtained by ignoring correlations in the system. The obtained expressions
are remarkably simple. Moreover, one can give a clear physical interpretation to
what it means to ignore correlations in the diffusion; see Section 5.3. The effect of
clustering on the self- and transport diffusion can be easily understood from our model,
cf. Section 5.1. The self-, Maxwell-Stefan, and transport diffusion are investigated for
different types of interactions and transition rates in Section 5.4. This analysis is much
more extensive than what has appeared previously in the literature; see the discussion
of similar models in Section 2.5. Given the discussion of the model assumptions in
Section 5.5, it is surprising that the experimental diffusion behavior of clustering
particles is so well reproduced in our model (Section 5.2).

The precision obtained in our numerical simulations seems of interest to a number
of theoretical studies on the diffusion in lattice gases [169, 170]. In these works one
calculates the transport-diffusion coefficient analytically. The validity of this expres-
sion is checked by comparing the stationary concentration profiles from simulations
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with those predicted by the analytically obtained Dt. A direct simulation of the
transport diffusion seems, however, preferable [161].

In Chapter 6 we studied the adsorption and desorption kinetics of our model.
We gained interest in this topic after reading the paper of Tsotsalas et al. [114].
The authors describe an experiment on the adsorption and desorption kinetics in
Cu-BTC, a cage-type material. A metastable state during desorption was observed,
i.e., the desorption temporarily stopped. This was attributed to molecular clustering.
From the discussion in Chapter 6, more specifically Figures 6.4 and 6.5, one sees
that such a metastable state is not observed for clustering particles in our model.
Cu-BTC consists of three different types of cavities. This can be described by a
straightforward extension of the model studied in this thesis. Adsorption isotherms
and thermodynamic factors are already available for a variety of different molecules
[171–174], both from experiments and MD simulations. One can find the correct
interaction by searching an F (n) that reproduces these equilibrium quantities. The
adsorption and desorption kinetics can then be studied as in Chapter 6. Such a study
could maybe clarify the microscopic origin of the metastable state that is observed
in [114]. One could furthermore study the self- and transport diffusion using the
same free energy. This would be of interest, since there are only a few results on the
diffusion of clustering molecules (such as ethanol and methanol) in Cu-BTC [172].

In Chapter 7 we predicted the probability distribution of the particle flux through
the system from the additivity principle. The input for the additivity principle is the
transport diffusion and the fluctuations in particle number 〈n2〉 − 〈n〉2. Both these
quantities are experimentally available. The flux through a block of nanoporous ma-
terial connected to two particle reservoirs at different densities can also be measured;
see Section 14.9 in [15]. If it is possible to measure the second moment of the particle
flux with a good precision, this could provide the first experimental verification of the
additivity principle. We do, however, not know if this is possible. Chapter 7 could be
seen as a first attempt to connect experimental work on nanoporous materials with
results from nonequilibrium statistical mechanics. Since a lot of research on nonequi-
librium statistical mechanics is done on lattice models, it is an interesting question
whether this can also be done for other results.
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Appendix A

Transition-state-theory

calculations

Because the window separating the two cavities is a perfect choice for the transi-
tion state, the system under study is ideally suited for a TST calculation; see, e.g.,
Refs. [51, 52, 55, 57, 58, 66]. We use the expression given by Tunca and Ford [58]:

kTST
nm = (2πMβ)

−1/2 S

V
n
z(n− 1, 1,m)

z(n)z(m)
, (A.1)

where M is the mass of one particle, S the area of the TS surface, and V the volume
of the cavity. z(n, 1,m) is the configurational integral with a particle in the TS:

z(n, 1,m) =
1

SV n+m

∫

S

∫

VA

∫

VB

drTSdrAdrBe−βUtot . (A.2)

The labels rTS, rA, and rB denote the positions of all the particles in, respectively,
the TS, cavity A, and cavity B. Utot is the total interaction energy of the particles in
the TS and both cavities. It is assumed that the TS can hold at most one particle.
The TST rate of Eq. (A.1) has a simple physical interpretation: The second term
gives the probability that a particle from cavity A is in the TS, while the first term

(2πMβ)−1/2 is the average velocity towards cavity B of a particle in the TS. Their
product gives the rate at which a particle jumps from cavity A to cavity B. Note
that these rates always satisfy local detailed balance.

The total interaction energy can be written as follows:

Utot = UTS(r
TS) + U(rA) + V (rA, rTS) + U(rB) + V (rB, rTS). (A.3)

UTS(r
TS) is the energy of the particle in the TS due to interactions with the cavity

wall. The interaction energy in cavity A is equal to U(rA)+V (rA, rTS). U(rA) is the
same function as in Eq. (2.10), i.e., the total interaction energy in cavity A if there
is no particle in the TS. V (rA, rTS) is the contribution to the interaction energy of
cavity A caused by the particle in the TS.

We now derive the transition rate of Eq. (2.12). Since there are no long-range
interactions, one can make the approximation that the particle in the TS does not
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influence the particles in the cavities: V (rA, rTS) = V (rB, rTS) = 0. Using Eq. (A.3)
one finds that the configuration integral Eq. (A.2) can be written as z(n, 1,m) =
zTSz(n)z(m), with the definition:

zTS =
1

S

∫

S

drTSe−βUTS(r
TS). (A.4)

Writing fTS = −kT ln zTS one finds the transition rate:

knm = (2πMβ)
−1/2 S

V
e−βfTSneβ[f(n)−f(n−1)]. (A.5)

Rewriting this as a function of k10 gives Eq. (2.12).
For long-range particle interactions the assumption that V (r, rTS) = 0 no longer

holds true. The specific form of V (r, rTS) depends on the interparticle interactions.
An analytical calculation of z(n, 1,m) is difficult in this case. It also can no longer be
expected that z(n, 1,m) can be written as a function of f(n). We can, however, put
upper and lower bounds on f(n, 1,m) = −kT ln z(n, 1,m) as a function of f(n). Con-
sider f(n,m|TS) = f(n, 1,m)− fTS, with fTS the interaction free energy of a particle
in the TS that has no interaction with particles in the cavities: fTS = −kT ln z(0, 1, 0).
All interparticle interactions are then included in f(n,m|TS). This function must lie
in between:

f(n) + f(m) ≤ f(n,m|TS) ≤ f(n+ 1) + f(m+ 1). (A.6)

The lower bound becomes an equality if the particle in the TS does not interact
with the particles in the cavities, in which case one finds Eq. (A.5) for knm. This
corresponds to c = 1 in Eq. (2.11). The upper bound becomes an equality if the
particle in the TS interacts with the particles in the cavities in exactly the same way
as if it was located in the cavities. This gives the rates with c = 0 in Eq. (2.11).
The rates of Eq. (2.13) are found for the choice f(n− 1,m|TS) = [f(n− 1) + f(n) +
f(m) + f(m+ 1)]/2, which is the average of the lower and upper bound. This choice
takes the interaction free energy in both cavities as the average of the situation where
the TS particle is present or absent in the cavity. Since half of the particle in the TS
is physically in contact with the particles in cavities A and B, this is a reasonable
choice. Equal importance is given to the change in free energy of both cavities, and
the rate is a function of f(n):

knm =
Sne−(β/2)[f(n−1)+f(m+1)−f(n)−f(m)]

V (2πMβ)
1/2

eβfTS

. (A.7)

Rewriting this as a function of k10 gives Eq. (2.13). Note that this rate corresponds
to c = 1/2 in Eq. (2.11).

We finally remark that the expression Eq. (A.1) assumes that all particles cross-
ing the TS equilibrate in cavity B. This is generally not the case: The particle can
recross the TS surface on short time scales and equilibrate in cavity A. Recrossings
can be accounted for by including a dynamical correction factor in the rates, which
is determined from short MD simulations [61]. Studies of diffusion in microporous
materials using dynamically corrected TST can be found in Refs. [46, 59, 60].
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Appendix B

Kinetic Monte Carlo

Consider a system with a discrete space of states that follows a Markovian dynamics.
The kinetic Monte Carlo algorithm proceeds as follows:

1. Set the time at t = 0

2. Construct an ordered list of the rates ri of all possible transitions (i ∈ {1, N})

3. Calculate the function Ri =
∑i

j=1 rj for all i ∈ {1, N}

4. Draw a uniform random number u from (0, 1]

5. Find the transition i for which Ri−1 < uRN ≤ Ri

6. Perform transition i

7. Draw a uniform random number u′ from (0, 1]

8. Update the time t → t+∆t with ∆t = −R−1
N lnu′

9. Return to step 2

This algorithm was implemented in C++. The chemical potentials for the con-
centration 〈n〉 are determined numerically with Mathematica. Random numbers are
generated using the Mersenne Twister random number generator [175]. The rates
knm, kr,+n , and kr,−n depend on F (n), µl, and µr; they are calculated and stored in a
list before the program starts.

One-dimensional systems

We now discuss how we implemented the above algorithm to simulate one-dimensional
systems. The number of particles at site i is initialized according to the probability
distribution peqn (µi), with

µi = µl + (µr − µl)
i

L+ 1
. (B.1)
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When measuring the self-diffusion one also has to initialize the number of labeled
particles at each site. Consider the case where αl (αr) percent of the particles in the
left (right) reservoir is labeled. Given that there are n particles at the ith site, we
initialize this site with n∗ labeled particles with probability

(

n

n∗

)

αn∗

i (1− αi)
n−n∗

, (B.2)

where

αi = αl − (αl − αr)
i

L + 1
. (B.3)

This corresponds to the uncorrelated probability distribution for the labeled particles,
as discussed in Section 4.2. The system is equilibrated before the measurements start.
We take the equilibration time to be long, i.e., we make sure that many transitions
have occurred at each site (at least 104) when the equilibration ends.

There are 2(L−1) possible transitions (particle jumps between the cavities) in the
system. There are 4 possible transitions at the boundaries (addition or removal of a
particle at each boundary). After initialization, the rate of each possible transition is
stored in a list Lr with length 2(L− 1)+ 4. This list contains the rates of all possible
transitions, also the ones with rate zero (for example if a cavity is full n = nmax,
particles jump to this cavity with rate zero). The sum of all the transition rates,
Rsum, is also calculated. For the updating procedure we perform a linear search
on the list to determine which transition takes place (step 5 in the algorithm). An
improvement of the search speed is obtained by starting the search at the end of
the list if u > 0.5, and otherwise starting at the beginning. After the transition
is performed, the list of rates Lr is updated only for the events that are influenced
by the transition. These events are all particle jumps from and to the two cavities
participating in the transition. Both Rsum and Lr therefore only need to be updated
for maximally 6 different transitions, regardless of the length of the system.

Higher-dimensional systems

For the study of the transport diffusion and current fluctuations in higher dimensions
a faster algorithm is needed. We have implemented the algorithm described by Schulze
[176] for our model with nmax = 2. The idea is that, because there is a small number
of different rates, the search for the transition (step 5) can be performed much faster.

Consider N distinct rates Rn (note that the notation is different compared to the
previous section). In our case these rates are k10, k20, k11, k21, k

r,+
0 (µl/r), k

r,+
1 (µl/r),

kr,−1 (µl/r), and kr,−2 (µl/r), so N = 12. We maintain N lists that contain all events
that occur with rate Rn. These lists are stored in the array Lnk. We also maintain
an address list Am, which contains the positions of all events m in the array Lnk.
Furthermore, we keep track of the total number of events Cn in each of the N lists.

The algorithm then proceeds as follows:

1. Calculate the overall rate R =
∑N

n=1 RnCn; retain all the partial sums Sn

2. draw a uniform random number u from [0, R)
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3. Search through the list of partial sums Sn until u < Sn

4. Select an event from the set of events that occur at this rate by computing

k = Int

(

(Sn − u)

Rn

)

The event stored in the array Lnk at row n and column k (k ∈ {1, Cn}) is then
selected

5. Execute this event and update the configuration

6. For the events that have their rate changed from Rni
to Rnf

(a) move them to
the end of the list nf ; add 1 to Cnf

; update Am; (b) move the event listed as
LniCni

into the vacated position on list ni; reduce Cni
by 1; update Am

7. Draw a uniform random number u′ from (0, 1]

8. Update the time t → t+∆t with ∆t = −R−1 lnu′

9. return to step 1

The search in step 3 is through a list of length 12. The computation time for
this search is independent of the system size. The order of the rates in the list Rn is
arbitrary. We take the system rates k10, k20, k11, and k21 as the first four rates, since
there are much more events with these rates than with the boundary rates. Because
interactions are local, only a limited number of events need to be updated in step 6.

This algorithm should be contrasted with the algorithm for one-dimensional sys-
tems, where the search in step 5 is through a list whose size scales linearly with the
system size. As a result, the computation time for a fixed number of Monte Carlo
steps scales linearly with the system size. For the Schulze algorithm, this computation
time is independent of the system size.

The Schulze algorithm has the drawback that it is only useful for systems with
a small nmax. The two- and three-dimensional results presented in Figures 5.10 and
5.11 were obtained using an algorithm where the list Lr was recalculated at each
Monte Carlo step. This is easier to implement, but requires longer simulation times.
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Appendix C

Separation of time-scales

It is shown how to obtain the master equation for a system with time-scale separation,
Eq. (4.1). The theory and notation from [40] is used. The system consists of three
cavities. The left and right cavity are connected to particle reservoirs. The state is
denoted by (nl, n, nr), the number of particles in respectively the left, middle, and
right cavity. Following notation from [40], “microstates” are denoted by (nl, n, nr),
and “mesostates” are denoted by n, the number of particles in the middle cavity.
By time-scale separation, we mean that the dynamics between different microstates
belonging to the same mesostate is much faster than between microstates belonging to
different mesostates. In our model, this means that transitions between the reservoirs
and the cavities are much faster than transitions between the cavities. The probability
to find the system in mesostate n equals

Pn =
∑

nl,nr

p(nl, n, nr). (C.1)

The conditional probability to be in microstate (nl, n, nr) being in the mesostate n is
given by

Pn(nl, nr) = p(nl, n, nr)/Pn. (C.2)

Due to the time-scale separation, the Pn(nl, nr) evolve much faster than the mesostate
probabilities Pn. The Pn(nl, nr)’s obey an almost isolated dynamics inside the mesostate
n, eventually relaxing to the stationary distribution P

st
n (nl, nr):

∑

n′

l
,n′

r

W(nl,n,nr),(n′

l
,n,n′

r)
P
st
n (n

′
l, n

′
r) = 0, (C.3)

where W(nl,n,nr),(n′

l
,n,n′

r)
is the rate to jump from (n′

l, n, n
′
r) to (nl, n, nr). This rate

can be separated into a sum of rates due to the left and right reservoir

∑

n′

l
,n′

r

W(nl,n,nr),(n′

l
,n,n′

r)
P
st
n (n

′
l, n

′
r) (C.4)

=
∑

n′

l
,n′

r

(

W
(l)
(nl,n,nr),(n′

l
,n,nr)

+W
(r)
(nl,n,nr),(nl,n,n′

r)

)

P
st
n (n

′
l, n

′
r), (C.5)
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where transitions with the left (right) reservoir only change nl (nr). Because particles
only interact within the same cavity, transition rates of the reservoirs only depend on
the particle number of the cavity they are connected to. Eq. (C.5) can be rewritten
as

∑

n′

l
,n′

r

(

W
(l)
nl,n′

l

+W
(r)
nr ,n′

r

)

P
st
n (n

′
l, n

′
r). (C.6)

These rates are independent of n, so P
st
n (nl, nr) does not depend on n, allowing us to

write Pst(nl, nr). Moreover, W
(l)
nl,n′

l
and W

(r)
nr ,n′

r
are not influenced by each other. The

probabilities to have nl or nr particles are therefore uncorrelated, and we can write
P
st(n′

l, n
′
r) = P

st(n′
l)P

st(n′
r). Eq. (C.6) can be written as

∑

n′

l
,n′

r

(

W
(l)
nl,n′

l

P
st(n′

l)P
st(n′

r) +W
(r)
nr ,n′

r
P
st(n′

l)P
st(n′

r)
)

(C.7)

=
∑

n′

l

W
(l)
nl,n′

l
P
st(n′

l) +
∑

n′

r

W
(r)
nr ,n′

r
P
st(n′

r) = 0. (C.8)

The rates of the left (l) and right (r) reservoir obey local detailed balance

W
(l,r)
i,i+1

W
(l,r)
i+1,i

= exp

(

−F (i)− µ(l,r)i− F (i + 1) + µ(l,r)(i+ 1)

kT

)

. (C.9)

P
st(nl) and P

st(nr) are therefore equal to the equilibrium probability distributions
peqnl

(µl) and peqnr
(µr). The end result reads

P
st
n (nl, nr) = peqnl

(µl)p
eq
nr
(µr). (C.10)

Using first-order perturbation theory (see Appendix A of [40]), one can show that the
master equation of Pn is given by

Ṗn = V st
n,n−1Pn−1 + V st

n,n+1Pn+1 − (V st
n−1,n + V st

n+1,n)Pn, (C.11)

with

V st
n+1,n =

∑

nl,nr,n′

l
,n′

r

W(nl,n+1,nr),(n′

l
,n,n′

r)
P
st
n (n

′
l, n

′
r) (C.12)

=
∑

nl,nr,n′

l
,n′

r

W(nl,n+1,nr),(n′

l
,n,n′

r)
peqn′

l

(µl)p
eq
n′

r
(µr) (C.13)

=
∑

n′

l
,n′

r

(kn′

l
n + kn′

rn)p
eq
n′

l

(µl)p
eq
n′

r
(µr) (C.14)

=
∑

n′

l

peqn′

l

(µl)kn′

l
n +

∑

n′

r

peqn′

r
(µr)kn′

rn, (C.15)

which is the equation for k+n Eq. (4.2). k−n is found similarly. One then finds that
Eq. (C.11) equals Eq. (4.1).
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Appendix D

First-order expansion of the

current and concentration

gradient

Consider a chemical potential µ + δ with δ small. A first order expansion of peqn (µ)
around δ = 0 gives:

peqn (µ+ δ) = peqn (µ) + δβ(n− 〈n〉)peqn (µ) +O(δ2). (D.1)

Since we have that µl = µ+ δ and µr = µ− δ, the concentration difference Eq. (4.5)
is

dc(µ+ δ, µ− δ) =
1

λ

∑

n,nl

(n− nl)p
eq
nl
(µ+ δ)peqn (µ). (D.2)

Using Eq. (D.1), one finds in first order around δ = 0:

λdc(µ+ δ, µ− δ) =
[

∑

n,nl

(n− nl)p
eq
n (µ)peqnl

(µ) + δβ
∑

n,nl

(n− nl)(nl − 〈n〉)peqn (µ)peqnl
(µ)

]

=
[

〈n〉 − 〈n〉+ δβ
(

〈n〉2 − 〈n〉2 − 〈n2〉+ 〈n〉2
)]

= −δβ
[

〈n2〉 − 〈n〉2
]

. (D.3)
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Similarly, one finds for the particle flux j(µ+ δ, µ− δ) in first order around δ = 0:

j(µ+ δ, µ− δ) =
∑

n,nl

(knln − knnl
)peqn (µ)peqnl

(µ+ δ)

=
∑

n,nl

[

(knln − knnl
)peqn (µ)peqnl

(µ) + δβ(knln − knnl
)(nl − 〈n〉)peqn (µ)peqnl

(µ)
]

= 〈k〉 − 〈k〉 − δβ〈n〉(〈k〉 − 〈k〉) + δβ
∑

n,nl

(knln − knnl
)nlp

eq
n (µ)peqnl

(µ)

= δβ
∑

n,nl

(knln − knnl
)nlp

eq
n (µ)peqnl

(µ)

= δβ
∑

n,nl

peqn (µ)peqnl
(µ)knln(nl − n). (D.4)

On the last line we have used that
∑

n,nl
knnl

nlp
eq
n (µ)peqnl

(µ) =
∑

n,nl
knlnnp

eq
n (µ)peqnl

(µ),
which follows from a change in dummy summation indices. Writing the summation
boundaries explicitly one finds

j(µ+ δ, µ− δ) = δβ

nmax
∑

nl=1

nmax−1
∑

n=0

peqn (µ)peqnl
(µ)knln(nl − n)

= δβ

nmax−1
∑

nl=0

nmax−1
∑

n=0

peqn (µ)peqnl+1(µ)knl+1,n(nl + 1− n)

= δβ

nmax−1
∑

nl=0

nmax−1
∑

n=0

Tnl,n, (D.5)

where we have used that k0,m = km,nmax
= 0 for all m, and where on the last line we

have defined
Tnl,n = peqn (µ)peqnl+1(µ)knl+1,n(nl + 1− n). (D.6)

We now show that

nmax−1
∑

n=0

nmax−1
∑

n=0

Tn,m =

nmax
∑

n=0

nmax
∑

m=0

peqn (µ)peqm (µ)knm = 〈k〉. (D.7)

We can rewrite the second term in Eq. (D.7) as

nmax
∑

n=0

nmax
∑

m=0

peqn peqmknm =

nmax−1
∑

n=0

nmax−1
∑

m=0

peqn+1p
eq
mkn+1,m, (D.8)

where we again use that k0,m = km,nmax
= 0 for all m. To shorten notation we do not

write the µ dependency. Eq. (D.7) then becomes:

nmax−1
∑

n=0

nmax−1
∑

m=0

peqn+1p
eq
mkn+1,m(n+ 1−m) =

nmax−1
∑

n=0

nmax−1
∑

m=0

peqn+1p
eq
mkn+1,m

nmax−1
∑

n=0

nmax−1
∑

m=0

Tnm =

nmax−1
∑

n=0

nmax−1
∑

m=0

Knm,
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where we have defined a new quantity Knm. First note that Tnn = Knn by definition.
For the elements n 6= m we look at the sum Tnm + Tmn:

Tnm + Tmn =

peqn+1p
eq
mkn+1,m + peqn peqm+1km+1,n +

[

peqn+1p
eq
mkn+1,m − peqn peqm+1km+1,n

]

(n−m)

= peqn+1p
eq
mkn+1,m + peqn peqm+1km+1,n = Knm +Kmn,

The term on the second line is zero because of detailed balance Eq. (2.4). This
completes the proof that j = δβ〈k〉. Using these expressions for j and dc one finds
the end result Eq. (4.7)
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Appendix E

Self-diffusion: arbitrary

percentages of labeled

particles

Again consider three cavities with the separation of time-scales discussed in Appendix
C. Suppose α percent of the particles is labeled in the left cavity, and β percent in the
right cavity. Due to the time-scale separation, these percentages are constant. The
system is in equilibrium at chemical potential µ. The stationary probability pn,n∗ to
find n particles of which n∗ are labeled in the middle cavity equals

pn,n∗ = peqn (µ)

(

n

n∗

)(

α+ β

2

)n∗
(

1− α+ β

2

)n−n∗

≡ peqn (µ)Bn,(α+β)/2(n
∗). (E.1)

Bn,(α+β)/2 is the binomial distribution with parameters n and (α+β)/2. The average
of Bn,α(n

∗) equals αn. One can understand that this is the correct distribution
from a combinatorial argument. The probability to have n particles is given by the
equilibrium distribution peqn (µ); the labeling of the particles has no influence on this
result. What is the probability to have n∗ labeled particles if there are n particles
in the cavity? A particle that enters the middle cavity has equal probability to have
come from the left or right cavity, since the system is in equilibrium. The probability
that a particle entering from the left is labeled equals α; when it enters from the right
this probability is β. The total probability that a particle entering the middle cavity
is labeled is therefore (α + β)/2. The probability to have n∗ labeled particles when
there are n particles in the middle cavity equals

(

n

n∗

)(

α+ β

2

)n∗
(

1− α+ β

2

)n−n∗

≡ Bn,(α+β)/2(n
∗). (E.2)

This is the binomial distribution Bn,(α+β)/2(n
∗). It should be interpreted as to prob-

ability to win n∗ times out of n tries, when the probability to win equals (α + β)/2.
pn,n∗ is found by multiplying Eq. (E.2) with peqn (µ). For α = 1 and β = 0 one recovers
the result Eq. (4.8).
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To verify this is the correct solution, one can solve the master equation for pn,n∗ .
The rate for an unlabeled particle to enter the middle cavity equals k+n (1− (α+ β)/2);
a labeled particle enters with rate k+n (α+ β)/2. The rates to leave the middle cavity
depend on the state (n, n∗): An unlabeled particle leaves the middle cavity at rate
k−n ((n− n∗)/n); a labeled particle leaves the middle cavity with rate k−n (n∗/n). The
master equation reads

ṗn,n∗ =

(

1− α+ β

2

)

k+n−1pn−1,n∗ +
α+ β

2
k+n−1pn−1,n∗−1

+
n+ 1− n∗

n+ 1
k−n+1pn+1,n∗ +

n∗ + 1

n+ 1
k−n+1pn+1,n∗+1

−
(

k+n + k−n
)

pn,n∗ . (E.3)

Using the probability distribution Eq. (E.1) for pn,n∗ , this equation reduces to

ṗn,n∗ = k+n−1p
eq
n−1 + k−n+1p

eq
n+1 −

(

k+n + k−n
)

peqn = ṗeqn = 0. (E.4)

One finds

λdc∗ =
∑

nl,n∗

l
,n,n∗

(n∗ − n∗
l )p

eq
nl
(µ)peqn (µ)Bnl,α(n

∗
l )Bn,(α+β)/2(n

∗) (E.5)

=
β − α

2
〈n〉, (E.6)

and

j∗ =
∑

nl,n∗

l
,n,n∗

(

knln
n∗
l

nl
− knnl

n∗

n

)

peqnl
(µ)peqn (µ)Bnl,α(n

∗
l )Bn,(α+β)/2(n

∗) (E.7)

= −β − α

2
〈n〉. (E.8)

The end result reads
Ds = λ2〈k〉/〈n〉. (E.9)
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Appendix F

Simulation of Current

fluctuations

F.1 Algorithms

Because we consider ρA = 1 and ρB = 0 for the SSEP, all transition rates are equal
to one (also at the boundaries). All n possible transitions are stored in a list. A
random integer between 0 and n − 1 decides which transition takes place. The time
between two events is taken from the distribution p(t) = n exp(−nt). For the GEP
with nmax = 2 there are 12 different rates (four in the system and four at the contact
with each reservoir). Since this is a small number, one can use the algorithm described
by Schulze [176], as discussed in Appendix B. For a fixed number of Monte Carlo
steps, the computation time of both algorithms is constant for different system sizes.

F.2 Data analysis

The current fluctuations are measured as follows. First the system is allowed to relax
to its steady state, after which we put the time at 0. The net number of particles that
have entered the system between time 0 and t is denoted by Qt,1. The net number
of particles that have entered between time t and 2t is denoted by Qt,2, and so on.
In the simulations Qt is determined by measuring the particle current at the left and
right boundary. One then has a list {Qt} with Nl elements. The average is equal to

Qt =

Nl
∑

i=1

Qt,i/Nl. (F.1)

For large Nl the average Qt is a good approximation for the average 〈Qt〉 over P (Qt).
The sample variance is equal to

S2
t =

Nl
∑

i=1

(Qt,i −Qt)
2/(Nl − 1). (F.2)
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For large Nl, S
2
t converges to 〈Q2

t 〉 − 〈Qt〉2.
The one-sigma error bar on Qt is equal to (assuming the Qt,i’s are independent

identically distributed variables)

σ =
√

S2
t /Nl. (F.3)

The variance of S2
t is equal to

Var(S2
t ) =

1

Nl

(

σ4 −
Nl − 3

Nl − 1
σ4

)

, (F.4)

with σ4 = 〈(Qt−〈Qt〉)4〉 the fourth central moment of P (Qt) (see for example exercise
7.45 in [177]). We estimate σ by (F.3). We do not estimate σ4 directly from the
simulation data, because our data do not allow for an accurate prediction of the
fourth moment. Rather, we use the prediction for σ4 from the AP [39]. One-sigma

error bars on S2
t are equal to

[

Var
(

S2
t

)]1/2
. Except for the third cumulant, all other

error bars are obtained from addition and multiplication of Qt and S2
t . The rules for

finding these error bars can be found in e.g. [178]. The Fano factor is calculated by
F (t) = S2

t /Qt. The error bar on the third cumulant is found by bootstrapping the
simulated data.

By adding the currents pairwise Qt,i +Qt,i+1 (with i odd), one can calculate Q2t

and S2
2t for the time interval 2t (with Nl/2 points), and so on. We study the Fano

factor F (nt) for 1 ≤ n ≤ 6.
We now explain how we check if the data have converged in time. For clarity we

consider the specific example of the two-dimensional SSEP at L = 40 with t = 2.104.
The autocorrelation (AC) of Qt,i and Qt,i+1 is

AC =

∑Nl−1
i=1 (Qt,i −Qt)(Qt,i+1 −Qt)

∑Nl

i=1(Qt,i −Qt)2
. (F.5)

The AC is plotted in Figure F.1a, together with the critical values (CVs) to reject the
null hypothesis that AC = 0 at 95 % significance level. All points are smaller than
the CVs. The point at n = 1 is, however, very close to the lower CV. This suggests
that there is still a non-negligible AC for times 1t. Indeed, for small times the AC is
always negative. For large times, when the Qt,i’s are uncorrelated, the AC fluctuates
close to zero. The scale of “close to zero” is determined by the CVs.

The Fano factor F (nt) is plotted in Figure F.1b. F (1t) is slightly higher than the
other 5 points, indicating again that there is not yet convergence in time. The first
two point that are converged in time are F (2t) and F (3t). A plot in function of the
number of simulated points Nl for F (3t) is shown in Figure F.2. After Nl ≈ 25.104 the
data fluctuate around the end value Ffinal, indicating a good convergence for F (3t).
The average of F (2t) and F (3t) is taken as the final data point (as plotted in Figure
7.2a). For most points, the first two converged values are averaged to calculate the
final result. If computation times are exceedingly long, such as for the SSEP in two
dimensions for L = 50, only the first converged point is taken. In this case this point
is F (2t). F (3t) has not yet converged as can be seen from a graph similar to Figure
F.2. This explains the large error bar for L = 50 compared to the other points for
the two-dimensional SSEP.
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Figure F.1: The two-dimensional SSEP with t = 2.104, L = 40, and the geometry of
Figure 7.1a. (a) (circles) Autocorrelation (F.5). (red squares) Critical values to reject
the null hypothesis AC = 0 at 95 % significance level. (b) (circles) F (nt). (dashed
line) Average of F (2t) and F (3t). This is the value of the data point in Figure 7.2a.
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Figure F.2: The two-dimensional SSEP with t = 2.104, L = 40, and the geometry
of Figure 7.1a. (thick black line) F (3t) after Nl simulated points. (thin grey lines)
one-sigma error bars. (dashed line) final value of F (3t).
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F.3 Simulation of transport diffusion

Dt(ρ) is simulated for 30 concentrations. The length in the x direction is L = N+1 =
16 in two and three dimensions. In one dimension the analysis was performed for
L = 21 and L = 16. The predicted values of I1 were the same up to a relative difference
of 0.006%. The data presented in Chapter 7 are for L = 21 in one dimension. The
concentration gradient for low and high concentrations is taken between ∆ρ = 0.05
and ∆ρ = 0.03. For the other concentrations we take ∆ρ = 0.06. The values at
ρ = 0 and ρ = nmax can be calculated analytically: Dt(0) = 1 and Dt(2) = 2. An
approximation for the continuous function Dt(ρ) is achieved by interpolating these
32 points (using the “Interpolation” function of Mathematica). For concentrations
smaller than ρ ≈ 0.04 and higher than ρ ≈ 1.96 the interpolated values are higher
than the uncorrelated result (4.7). Since we know that correlations lower Dt(ρ), we
consider the uncorrelated results for these concentrations instead of the interpolated
function.

F.4 Cumulant generating function in d > 1

The CGF µd(λ) of a d-dimensional system is equal to (cf. the last equation in [142])

µd(λ) =

[

Ld−2

∫

d~r
(

~∇v(~r)
)2
]

× [Lµ1(λ)] . (F.6)

µ1(λ) is the CGF of a one-dimensional system described by Dt,d(ρ) and σd(ρ). Con-
sider a rectangular system of length Lx and height Ly. All sites at x = 0 are coupled
to reservoir A and all sites at x = Lx are coupled to reservoir B. L is the typical
domain size, which we take equal to Lx. v(x, y) is function on the domain 0 ≤ x ≤ 1,
0 ≤ y ≤ Ly/Lx, that satisfies the Laplace equation ∆v(~r) = 0, with v(0, y) = 0,
v(1, y) = 1, and Neumann boundary conditions otherwise. For the geometry we
consider it is straightforward to show that v(x, y) = x. One then finds

µ2(λ) =

[

∫ 1

0

∫ Ly/Lx

0

dxdy

]

× [Lxµ1(λ)] = Lyµ1(λ). (F.7)

The calculation for the same geometry in three dimensions shows that µ3(λ) =
LyLzµ1(λ).

The density ρ(x, y) can be found from the one-dimensional profile ρ1(x) (equation
(33) in [142])

ρ(x, y) = ρ1(v(x, y)) = ρ1(x). (F.8)

Note that the only assumption required for these results is the time-independence
of the optimal density and current profiles. In the study of the two-dimensional
KMP model with all the boundary sites connected to reservoirs [120, 151], one made

the extra assumption that the optimal current profile is constant ~j~J(~r) = ~J . This
extra assumption is unnecessary: it can be derived from the time-independence of the
optimal profiles and the MFT. Indeed, in one dimension time-independent profiles
imply a constant current profile. A constant current profile in two dimensions follows
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from (F.8). Note that for more general couplings to the reservoirs, such as in Figure
7.1, the optimal current profile need not be constant.

We have solved numerically the Laplace equation for v(~r) for the domain in Figure
7.2a. One finds µ2(λ) ≈ 0.663Lµ1(λ). This agrees with our kMC results, as discussed
in Section 7.3.
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