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Chapter

Introduction

From an infectious disease perspective, statistical models are a flexible approach
to describe association between the variables, expressing the relation with a func-
tional form. As a result, these models allow the identification of risk factors although
there is not explicit causality.

In contrast, mathematical models provide a representation of how disease burden
is established, they can be used to predict prevalence and incidence of disease even
beyond range of data (Garnett et al.; 2011).

In this thesis we propose statistical and mathematical models to HIV and hepati-
tis C co-infection and to hospital-acquired (nosocomial) infections. Chapter 2 pro-
vides concepts and methods to analyse survival data; additionally we describe the
mathematical models for infectious disease transmission. Both parts constitute the
theoretical bases for the models included in this thesis.

In Chapter 3 we apply survival analysis models to quantify the effect of probi-
otics and antibiotics on nosocomial infection. The dataset comes from a clinical trial
performed in a university hospital in the Netherlands. Here we focus on interval-
censored data with time-dependent covariates.

The statistical models presented in Chapters 4 and 5 rely also on survival analysis
methodology and are applied to cohort study on injecting drug users collected in the
Netherlands.

In Chapter 6 we describe basic transmission models for Hepatitis C virus (HCV)
and HIV separately, and we introduce a joint mathematical model accounting for
both HIV and HCV co-infection attributed to sharing syringes and other parapher-

nalia. In Chapter 7 we describe a procedure to assess the joint mathematical model
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from a statistical perspective. The model is calibrated using a longitudinal study
of heroin users in Italy and a cross-sectional study of young adult heroin users and
Injecting Drug Users in Spain.

In this chapter we describe the importance of study HIV and hepatitis C co-
infection as well as some preventive measures for nosocomial infections. Subse-

quently, we describe the data sources used in this thesis.
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1.1 HIV and hepatitis C co-infection

The Acquired Immune Deficiency Syndrome (AIDS) was defined in 1982 after
the occurrence of deaths related with a reduced number of helper T cells. Two years
later, the causing virus of AIDS was isolated and named Human Immunodeficiency
Virus (HIV) which made the development of a blood sample based diagnostic test
possible. Afterwards, clinical studies helped to describe the history of HIV infec-
tion, providing information about incubation time. Then, the antiretroviral therapy
was introduced as mechanism to combat the progress of the virus. Despite the huge
advances in the last decades, AIDS is still an enormous issue in public health. Ac-
cording to UNAIDS in 2010, 34 million people lived with HIV, 2.5 million people
were newly infected, and more than two million died due to AIDS-related diseases
(UNAIDS; 2010).

On the other hand, hepatitis C is a viral infection of the liver whose virus HCV
was identified in 1989. The virus, which is spread by direct contact with infected
blood, is one of the major causes of hepatitis and chronic liver diseases such as cir-
rhosis and liver cancer. The screening procedures for blood products have reduced
the number of infections. However, according to estimates of the World Health Or-
ganization, 150 million people are infected around the world, and between 3 and 4
million are newly infected each year (World Health Organization (WHO); 2011).

There have been defined two disease stages: acute hepatitis C and chronic hep-
atitis C. The first one lasts around six months, is mostly asymptomatic and leads to
chronic infection in around 80% of the cases. Chronic hepatitis C can last up to 20
years, spontaneous clearance of the virus is rare, and increases the risk of cirrhosis,
hepatic decompensation and liver cancer. There is no vaccine against hepatitis C
partly because the virus mutates very easily. As re-infection can occur, the role of a
potential vaccine may be to prevent the progression of acute hepatitis C to chronic
infection (Wasmuth; 2010).

Co-infection between HCV and HIV often occur. A third of HIV infected individ-
uals in Europe and USA are co-infected with HCV and it is known that HIV accel-
erates the development of liver disease related with HCV and reduces the chance of
spontaneous clearance and possibly increases infectivity (Rockstroh and Spengler;
2004). The majority of the co-infected people are Injecting Drug Users (IDUs), so
focusing on this high-risk population could give us insights about the transmission
of HIV/HCYV co-infection, how to formulate interventions and how the treatment of
acute or chronic infections can affect the prevalence.

Hepatitis C virus is usually acquired rapidly after having started with injecting
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drugs. In 2011, between 60-80% of the IDUs from 25 countries had a positive anti-
HCV test result. Whereas in 12 other countries a higher seroprevalence has been
reported (Nelson et al.; 2011). IDUs are also at higher risk to acquire HIV, in some
countries the HIV prevalence can reach up to 20% (Aceijas et al.; 2004). The main
transmission route for both viruses in this population is sharing injecting equipment
(Mathei et al.; 2006).

Based on mathematical models for HCV and HIV co-infection, HCV prevalence
has been proposed as an indicator of HIV among IDUs (Vickerman et al.; 2010). Then
De Vos et al. (2012) shows the existence of a threshold HCV equilibrium value below
which HIV cannot establish itself. (See Chapter 2).

Below we describe three datasets where the study populations are injecting drug
users. The projects were carried out in the Netherlands, Italy and Spain. The stud-
ies in the Netherlands and Italy were epidemiological studies aiming to assess the

impact of interventions.
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1.2 Studies about injecting drug users

1.2.1 Amsterdam Cohort Studies

The Amsterdam Cohort Studies (ACS) is a collaboration of Amsterdam Health
Service, Academic Medical Center of the University of Amsterdam, Sanquin Blood
Supply Foundation, and the University Medical Center Utrecht. ACS is part of
the Netherlands HIV Monitoring Foundation and is financially supported by the
Netherlands National Institute for Public Health and the Environment.

The prospective cohort study initiated in 1985 to investigate the prevalence, in-
cidence, and risk factors of HIV infections and other blood-borne and/or sexually
transmitted diseases, as well as the effects of intervention. Participation in the ACS
is voluntary, and informed consent is obtained for every individual at intake. ACS
participants visit the Amsterdam Health Service every 4-6 months. They complete
a standardized questionnaire about their health, risk behaviour, and sociodemo-
graphic situation. Questions at ACS entry refer to the 6 months preceding the visit;
questions at follow-up refer to the interim since the preceding visit. Blood is drawn
during each visit for laboratory testing and storage. Until 2010, 1,657 injecting drug
users were included in the ACS. The recruitment for the drug users was via methadone
programs, via a sexually transmitted diseases clinic for drug using sex workers and
by word of mouth.

The ACS database up to 2005 contains information on 1,206 IDUs of whom 254
lack information about their HCV serostatus since only those with at least two study
visits have been tested for HCV (Van den Berg et al.; 2007a,b). There were 3, 12 and
2 individuals having zero or negative time to infection for HIV only, HCV only and
both HIV and HCV, respectively. Zero time to infection implies that the year of first
injection coincides with the year of the first positive result, whereas negative time to
injection refers to individuals who had positive results before becoming IDUs. Table
1.1 shows the HIV and HCV serostatus for the remaining 935 individuals.

In Chapter 4 we included only the individuals who entered negative for HCV,
totalling 165 individuals (58 seroconverters and 107 who remained negative). On the
other hand, in Chapter 5 we consider all the 935 individuals, Table 1.2 and Figure 1.1
present the descriptive statistics for this group of individuals.

From table 1.2, 61.3% of the individuals were males; 41.6% stated sharing sy-
ringes at least once during the follow up period. Concerning the frequency of in-
jection at first visit, 23.2% did not inject recently, 30.5% reported using drugs more
than once a day and 29.4% used drugs between 2-6 days per week. The most com-
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Table 1.1: Amsterdam Cohort Studies dataset. Number of patients according to their
serostatus for HIV and HCV.

HCV status

HIV status Negative at the Positive Seroconverter  Total
end of follow up before entry during the study

Negative at the

104 456 45 605
end of follow up
Positive before entry 0 240 1 241
Seroconverter during
the study 3 74 58 89
Total 107 770 58 935

mon drug was a combination of cocaine and heroin: 42.2%; followed by heroin and
cocaine use alone with 13.7% and 9.8%, respectively. The year in which individuals
start to inject drugs was highly variable (45.6% between 1962-1980; 40.4% between
1981-1990; and 14% between 1991-2002). The average age of first injection was 22.4
years (SE 6.4 years), whereas the mean age at first visit was 31.6 years (SE 6.5 years).

Figure 1.1 shows the time to infection for both viruses. A large percentage of
individual (48.8%) get infected with HCV but remain negative for HIV. For the in-
dividuals who become infected with any of the viruses the exact time to infection
is unknown, but partial information is available thanks to the regular visits (check
ups). Then the infection occurs between the last negative result and the first positive
result, this is known as case II interval-censored observation. To simplify the graph
we represent those observations using the mid-point imputation.



1.2 Studies about injecting drug users

Table 1.2: Amsterdam Cohort Studies dataset. Descriptive statistics for all the IDUs

Individuals (n=935) n (%) n (%)
HCYV serostatus

Negative 107 11.44

Positive 828 88.56
HIV serostatus

Negative 605 64.71

Positive 330 35.29
Sharing syringes

No 542 57.97

Yes 389 41.60

Unknown 4 0.43
Year first injection

1962- 1980 426 45.56

1981- 1990 378 40.43

1991- 2002 131 14.01
Gender

Male 573 61.28

Female 362 38.72

First follow up visit

Last follow up visit

Frequency of injection

No recent injections 217 23.21 503 53.8
More once per day 285 3048 99 10.59
Once daily 45 481 14 1.50
2-6 days per week 275 29.41 129 13.8
Once a week 23 246 23 2.46
2-3 days per month 24 257 42 4.49
One day a month 10 1.07 14 1.50
Less than one day a month 52 556 77 8.24
Unknown frequency of injection’ 4 043 34 3.64
Drug of injection
No recent injections 217 23.21 503 53.80
Heroin 128 13.69 91 9.73
Cocaine 92 984 53 5.67
Cocaine and heroin 395 4225 215 22.99
Amphetamine 48 513 21 225
Methadone 25 267 17 1.82
Unknown drug of injection? 30 321 35 3.74
Mean Std. Devw.
Duration of injection at first visit (years) 9.13 6.62
Duration of injection at last visit (years)  17.29 8.27

! Unknown frequency of injection was not associated with any of the covariates
2 Unknown drug of injection at first follow up visit was associated sharing syringes and

year of first injection
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Figure 1.1: Amsterdam Cohort Studies. Scatterplot of the time to HCV infection vs
time to HIV infection. The red dots represent the individuals who were not infected
with any of the viruses during the follow up time (right censored observations). The
green dots correspond to the individuals infected with both viruses. The blue dots
represent the individuals infected with HCV but negative for HIV. For the infected
individuals we use the mid-point imputation of the interval between the last nega-
tive result and the first positive result.

1.2.2 Vedette study

In Chapter 7 we used the Vedette study as one of the illustrative examples. The
dataset comes from a longitudinal study of heroin users in the Piedmont region, Italy.
All individuals were followed during 18 months from September 1998 to March
2001. Clinical history and personal information were collected at entry (Bargagli
et al.; 2006; Davoli et al.; 2007; Salamina et al.; 2010). The main goal of the study was
to evaluate the effectiveness of treatments provided by the National Health Services.
In total, the study was based on 115 drug treatment centers and included 10,454
heroin users in 13 Italian regions. Antibody levels were determined for HIV, HCV
and Hepatitis B.

For the analyses presented here, the individuals with missing serostatus for both
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infections and the duration of injection are not included. Table 1.3 and Figure 1.2
provide a description of the variables included in the dataset. Figure 1.2 presents
the joint and the marginal prevalence according to the length of injecting career, the
proportion of individuals who remain negative for both infections (pgo;) diminishes
sharply in the first five years of injection, whereas the individuals that become pos-
itive only for HIV (po1;) remains very low (almost constant). In fact, most of the
individuals positive for HIV were also co-infected with HCV (py1¢). For the Vedette
study the exact time to infection is unknown, as for the ACS dataset. However, here
we have a unique evaluation of the serostatus instead of a long follow up. This is

known as case I interval-censored data.
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Table 1.3: Vedette IDU dataset. Descriptive statistics

Individuals (n=1,846) n (%)
HCV serostatus
Negative 343 18.58
Positive 1,372 74.32
Unknown HCV serostatus! 131 7.10
HIV serostatus
Negative 1,426 77.25
Positive 125 6.77
Unknown HIV serostatus? 295 15.98
HBYV serostatus
Negative 802 43.45
Positive 854 46.26
Unknown HBV serostatus® 190 10.29
Sharing syringes within the six months before the interview
No 1,625 88.03
Yes 144 7.80
Unknown sharing syringes status* 77 417
Sharing other paraphernalia within the six months before the interview
No 1,452 78.66
Yes 311 16.85
Unknown sharing paraphernalia status® 83 4.50
Gender
Male 1,500 81.26
Female 346 18.74
Mean Std. Dev.
Age at first injection (years) 21.28 6.62
Duration of injection (years) 9.36 5.04

1 Unknown HCV serostatus was not associated with any of the covariates

2 Unknown HIV serostatus was associated with HBV serostatus
3 Unknown HBV serostatus was associated with HCV serostatus

# Unknown sharing syringes status was associated with HCV serostatus, and

sharing other paraphernalia

5 Unknown sharing other paraphernalia status was associated with HCV sharing syringes
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Figure 1.2: Vedette IDU dataset. Observed proportions: joint and marginal preva-
lence according to the length of injecting career. The size of the symbols is propor-
tional to the observed number of individuals at each exposure time.

1.2.3 Itinere study

The dataset comes from a study of young adult heroin users and IDUs in Spain.
All individuals were tested for both HCV and HIV between 2001 and 2003. Addi-
tionally, information about the length of the injecting career, the frequency of inject-
ing and sharing syringes was also collected (De La Fuente et al.; 2006). The main
goals were to monitor the health impact of drug use and to identify related factors.
The study was based on street recruitment, referred by other participants or by non-
participants (either drug users or ex-drug users).
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Table 1.4: Itinere IDU dataset. Descriptive statistics

Individuals (n=619) n (%)
HCV serostatus

Negative 165 26.66

Positive 454 74.34
HIV serostatus

Negative 462 74.64

Positive 157 25.36
HBYV serostatus

Negative 482 77.87

Positive 137 22.13
Sharing syringes within the 12 months before the interview

No 476 76.89

Yes 114 18.42

Unknown sharing syringes status! 29 4.68
Gender

Male 459 74.15

Female 160 25.85

Mean Std. Dev.

Age at first injection (years) 19.37 3.80
Duration of injection (years) 6.72 4.52

! Unknown sharing syringes status in the past 12 monts was not associated with any of the
covariates

For the analyses presented here, the individuals with missing serostatus for both
infections and the duration of injection are not included.

Table 1.4 provides a description of the variables included in the dataset. The
HIV prevalences for the Itinere dataset are larger than those for the Vedette dataset
(see Figures 1.2 and 1.3). In fact, the proportion of individuals positive for both
viruses is higher. This difference maybe attributed to the characteristics of the study
populations, for the Vedette data the individuals attended drug treatment centers
whereas the individuals that took part in the Itinere project were mainly street users.
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Figure 1.3: Itinere IDU dataset. Observed proportions: joint and marginal prevalence
according to the length of injecting career. The size of the symbols is proportional to
the observed number of individuals at each exposure time.

1.3 Nosocomial infections: preventive measures

Antibiotics are used to treat infections caused by bacteria; however many bac-

teria have become resistant to antibiotics. Hospital-acquired infections caused by

antibiotic-resistant bacteria are associated with longer hospitalization time, and with

higher morbidity and morality compared with infections caused by antibiotic-susceptible

bacteria (Davey et al.; 2005). Additionally, acquired antibiotic resistance seriously

limits the therapeutic options to treat the patients when infections occur, increasing

the clinical treatment failure and the mortality (Brown et al.; 2006).
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In the United States more than ten percent of the hospital-acquired infections are
attributed to Enterococcus species. The antibiotic resistance of Enterococcus has been
widely documented. In 1972 the antibiotic vancomicin was used for the first time
and only 15 years later vancomycin-resistant enterococci were observed. Among the
Enterococcus species, E. faecium poses the higher antibiotic resistance threat (Fisher
and Phillips; 2009).

Over the past years, despite of a huge effort to improve how antibiotics are pre-
scribed by physicians in hospitals, is estimated that half of the use of antibiotics
is inappropriate (Davey et al.; 2005). Therefore additional strategies should be im-
plemented to reduce the impact of antibiotic resistance. One strategy is the use of
probiotics to prevent infection. Even though some studies point the beneficial im-
pact of probiotics to maintain and restore the intestinal flora (Hickson et al.; 2007;
DSouza et al.; 2002), the evidence of efficacy of probiotics in infection prevention
needs further study (Oudhuis et al.; 2011).

UMCU probiotics study

The University Medical Center Utrecht (UMCU) designed a cohort study to quan-
tify the effects of probiotics and antibiotics on acquisition of ampicillin-resistant Ente-
rococcus faecium (ARE) in patients admitted to two hospital wards with documented
high prevalence of intestinal ARE carriage (de Regt et al.; 2008).

Of the 530 included patients, 436 patients were at risk for acquisition of ARE (236
females 54.1%). Their mean age at admission was 62.6 years (Std. Dev. 18.12 years)
and their average length of hospital stay was 12 days (Std. Dev. 8.7 days). Of these
436 patients, 111 (25.5%) received probiotics during at least one day and 207 (47%)
were treated with antibiotics.

1.4 Outline of the thesis

This thesis aims to develop statistical and mathematical models for HIV and hep-
atitis C virus (HCV) co-infection in the context of Injecting Drug Users (IDUs) as well
as for nosocomial infections. The models applied in this thesis take into account the
objectives of the study and the type of data.

The Amsterdam Cohort Studies and the UMCU probiotics are cohort studies that
provide information about time to event, in the first case about time to HIV and HCV
infection and in the second case about time to ARE acquisition. Considering the na-
ture of both datasets, survival analysis models are suitable to describe the force of



1.4 Outline of the thesis 15

infection and to identify risk factors associated with time to event. In Chapter 2 we
first describe the methods to analyse survival data ranging from completely non-
parametric to fully parametric methods. Since the time to event is interval-censored
for both datasets, we also include a literature review on this topic.

The Vedette and the Itinere projects also provide information about time to in-
fection, but they are not follow up studies. For both studies the serostatus of the
participants is given at a specific time point. Here, the main goal is to model the
transmission process using a mathematical model. Therefore, Chapter 2 includes
concepts about mathematical models reviewing the basic SIR model and a review of
transmission models for HCV and HIV in the context of injecting drug users.

Chapter 3 presents survival analysis methods to account for case II interval-
censored data including both fixed and time-dependent covariates. We focus on the
effects of covariates since the main goal is to measure the impact of probiotics and
antibiotics on ARE-colonization.

Chapter 4 includes: i) the estimation of the force of infection for HCV applying
the concepts and methods of survival analysis within the interval-censoring frame-
work; ii) the impact of risk factors such as frequency of injection, drug injected, shar-
ing of syringes and time of first injection on the time to HCV infection. We used
data from the Amsterdam Cohort Studies collected in The Netherlands, focusing on
those individuals who were HCV negative upon entry into the study. Previous es-
timates of the force of infection for HCV in IDU were based on cross-sectional data
(Del Fava et al.; 2011; Mathei et al.; 2006; Namata; 2008; Platt et al.; 2009; Sutton et al.;
2006, 2008). Here we use a large cohort study with more than 25 years of follow up.

The analyses presented in Chapter 4 contributed to the work of the "European
Study Group for Mathematical Modelling and Epidemiological Analysis of Drug-
Related Infectious Diseases", coordinated by European Monitoring Centre for Drugs
and Drug Addiction (EMCDDA) and the Center for Infectious Disease Control (RIVM)
with funding from World Health Organization/Europe and the government of The
Netherlands.

Chapter 5 describes the frailty models as an alternative to analyse multivariate
survival data. Here the excess of risk of an event in a cluster (or an individual) is
represented by a random effect: the frailty term. The model is defined as shared
frailty if a common random effect is assumed for all the members within a cluster.
On the other hand, if the random effect is specific to an individual within the cluster
then is a correlated frailty model, since the correlation between the random effects
may be assumed.

In infectious disease epidemiology, the shared frailty has been applied before
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(Farrington et al.; 2001; Sutton et al.; 2006, 2008). Then, Cattaert (2008) applies several
frailty models to seroprevalence data on mumps and rubella and to parvo and vari-
cella data. After, Hens et al. (2009) studied the behaviour of the bivariate-correlated
gamma frailty model for case I interval-censored data (current status data) and com-
pared the correlated with the shared frailty model using cross-sectional data on hep-
atitis A and B.

Chapter 5 builds on the work of Cattaert (2008) and Hens et al. (2009) consider-
ing exact time to event, right censored and case II interval-censored data. First, we
describe the gamma frailty model and the estimation procedure, then we apply sev-
eral frailty models to the Amsterdam Cohort Studies data. Finally, we perform two
simulation studies, the first one is to assess the performance of the correlated frailty
model in presence of interval-censored data and the second one is to evaluate how
different frailty variances impact the estimation of the parameters in the model.

On Chapter 6 we move to mathematical models, focussing on the transmission.
We first propose basic mathematical models for HCV and HIV, for some particular
cases we found the solution of the system of the equation. Then we combine the two
basic models into a joint model accounting for HIV/HCYV co-infection. The mathe-
matical models are proposed in the contex of injection drug users.

Chapter 7 presents a statistical concepts and methods are used to assess the joint
model from a statistical perspective, in order to get further insights in: i) the compar-
ison and selection of optional model components, ii) the unknown values of the nu-
merous model parameters, iii) the parameters to which the model is most ‘sensitive’
and iv) the combinations or patterns of values in the high-dimensional parameter
space which are most supported by the data. Data from heroin users in Italy and
Spain are used to illustrate the application of the proposed joint model and its sta-
tistical assessment. The model assessment of the joint transmission model includes
the estimation of the parameters or the calibration of the model to data, the quan-
tification of model uncertainty and model selection, the assessment of the statistical
variability, and analyses of the model parameters in the high-dimensional parameter

space. Finally, we close with some conclusions and further research.
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Concepts of statistical and

mathematical models

2.1 Statistical models

Models are simplified representations of reality and are used in many areas of
science, finance and industry. When a model includes a probabilistic component is
called a statistical model (Lindsey; 2007). Statistical modelling has been a very active
area of research, taking into account the nature of the outcome variable and explana-
tory variables. We may consider simple linear regression model when the outcome
variable follows a normal distribution and the interest is to assess the impact of a
covariate. If the outcome variable does not follow a normal distribution the gener-
alized linear models are an option. Here, the generalization has two aspects: the
outcome may follow a distribution of the exponential family and the models include
a transformation of the mean. Lindsey (2007) presents an interesting classification of
the outcome variable: i) measurements that can take positive or negative values, ii)
measurements strictly positive, and iii) number of occurrences of one or more kinds
of events. Additionally, the random component corresponds to the distribution of
the outcome variable. The time to some event is of special interest among the out-
comes in the second type. The Amsterdam Cohort Studies and the Probiotics study
provide time to event data. Therefore, in the following section we describe those
models in detail.

17
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2.2 Survival analysis: concepts and methods

In survival analysis an individual is followed over time for the occurrence of
a specific event (recovery, death, infection). The main outcome is the time to the
event and typically we are interested on estimating the time until the event happens
(survival function) or the event risk (hazard function) and assessing the impact of
covariates.

One of the distinctive features of the time to event data is censoring, which oc-
curs whenever the exact time to event is unknown (but there is some level of infor-
mation). The most common type of censoring is right-censoring where by the end of
the observation period the event of interest has not yet occurred (the time to event is
larger than the censoring time). Left-censoring is the censoring type where the event
occurred before the first observation time. Sometimes the event is known to have
occurred within two observation times but the exact time is unknown. The time to
event is then said to be interval-censored with right and left censoring as special
cases.

A second characteristic of survival data is truncation, that is only those individ-
uals whose event time lies within a certain observational window are observed. In
Chapter 4 we provide further details about left truncation and how it can be taken
into account in an analysis.

The event time of an individual can be represented by a nonnegative random
variable T with a cumulative distribution function F(t) = P(T < t). The comple-
ment of F(t) is the survival function S(t) = 1 — F(t), which is the probability that
the individual survives beyond time t. The hazard function A(t) also known as the
force of infection, or the intensity function, describes the instantaneous probability
of the event, conditional on having survived up to time ¢ is defined as:

Pt<T<t+AHT >t) f(t) d

At) = Al}go A7 = S = —ElnS(t). (2.1)

In fact, the definition given by (Klein and Moeschberger; 2003) is:

Ay = fO __F® 22

S(t)  1—F(t)

The cumulative hazard function is given by:

AF) = /Ot)\(u)du — _InS() 2.3)

Throughout the present work we assume independent censoring: the censoring
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mechanism is independent of the time to event.

2.21 Nonparametric estimation of the survival and the hazard func-
tions

The survival function can be estimated without any a priori assumption regard-
ing the distribution of the time to event using the estimator Kaplan-Meier also known
as the Product-Limit estimator by Kaplan and Meier (1958) for right-censored data.
The estimator is a step function with jumps at the observed event times; the size of
the jumps depends on the number of events observed at each event time and the pre-
vious censored observations. Another option is to estimate the cumulative hazard
function using the Nelson-Aalen estimator, originally proposed by Nelson (1972)
and rediscovered by Aalen (1978), which has better small-sample-sized properties
than the Product-Limit estimator.

For interval-censored data Turnbull (1976) extended and generalized previous
results from Peto and Lee (1973). Here, the survival function estimator is also known
as Nonparametric Maximum Likelihood Estimator. It is an iterative procedure, first
a grid of time points is defined and an initial estimate of the survival function for the
grid should be provided, then the algorithm is as follows: i) computes the probability
of an event, ii) estimate the number of events, iii) computed the estimated number
of people at risk and iv) computed the updated Product-Limit estimator using the
estimated data from ii) and iii). The process is repeated until the old and the updated
survival function are close.

The most common algorithm to obtain the NPMLE is the self-consistency algo-
rithm proposed by Turnbull (1976). The interval-censored data is treated as incom-
plete data and the Expectation-Maximization (EM) algorithm (Dempster et al.; 1977)
is applied to take these incomplete data into account. The drawback is that it can
be very slow for large sample sizes and the convergence is not guaranteed (Gémez
et al.; 2009). More efficient proposals are the Iterative Convex Minorant (ICM) pro-
posed in 1992 and the EM-ICM proposed in 1998; another option is to use Project
Gradient Methods (PGM).

Comparing survival curves

If the interest is in testing the hypothesis comparing either survival or hazard
functions there are several tests proposed for right-censored data. Among them are:
the log-rank test, the Gehan, the Tarone-Ware, the Peto and the Fleming-Harrington
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test. The last one is in fact a general class of tests that includes the Log-rank test as
special case. Klein and Moeschberger (2003, chap. 7) provides a detailed description
of the tests to compare survival curves.

For interval-censored data there are two type of tests to compare survival curves:
rank-based and survival-based tests. The first class is based on weighted differences
between the estimated hazard functions and it is appropriate to detect ordered haz-
ard alternatives but unsuitable for crossing hazards. Whereas the second focuses on
the estimated survival functions and is applicable for ordered survival functions but
inappropriate for crossing survival functions. For a detailed description of the tests
we refer the paper by Lesaffre et al. (2005) and the book of Sun (2006). Among the
more recent proposals are: a family of tests that extends the Fleming-Harrington test
described in the paper by Gomez et al. (2009) and a weighted logrank test proposed
by Fay and Shaw (2010).

The hypothesis testing procedures do not provide any parameter to quantify the
effect of each covariate; they only produce information regarding their significance.
When the main interest is to quantify the impact of several factors, or to predict the
time to event, then regression modelling techniques are more appropriate. Those
include the well-known Cox proportional hazard models (semi-parametric) and the

Accelerated Failure Time (AFT) models (parametric) that we describe below.

2.2.2 Semi-parametric regression - Cox model

The Cox model is the most common method to analyse right-censored data. Here
covariates can be fixed or time-dependent. The hazard function is modelled as a
product of two factors: the baseline hazard that is left unspecified (nonparametric
part) and a factor that characterizes how the baseline hazard function changes as a
function of subject covariates (parametric part). The estimation of the model is done
using partial likelihood and was proposed by Cox (1972).

A(t) = Ao(t) exp(v'X), (24)

where~' = (71,72, ...7p) is a vector of regression coefficients, X = (x1,x2,...,xp)’
is a p-variate vector of covariates. The Cox model is also known as the proportional
hazard models, in fact the ratio between the hazard of two different individuals is
constant over time.

Note that there are some parametric options of proportional hazard model such
as the Weibull distribution, where the baseline hazard is fully specified. Addition-
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ally, there are also some semiparametric AFT models where the error distribution is

unknown.

Semi-parametric regression of interval-censored data

There are still unresolved issues to extend the Cox model to interval-censored
data, and so far there is no unified approach. Next we describe some approaches
have been followed grouping them according to the methods used.

Some proposals are based on the EM algorithm and an approximation to the
likelihood function (see for instance Finkelstein (1986) and Goetghebeur and Ryan
(2000)), the last one reduces to the Cox proportional hazards model in absence of
interval-censored data.

Some other authors relied on multiple imputation of the unobserved survival
times. Here we have the rank-based method proposed by Satten (1996), which
combines Monte Carlo simulations with the EM algorithm and fits Cox models for
complete-data setting. Two years later, Satten et al. (1998) used a parametric model
of the baseline hazard function to impute the exact time in case of interval and right
censored observations. Whereas, Goggins et al. (1998) modified the initial propose
of Satten (1996) using Montecarlo simulations only in the E-step. Then Pan (2000)
proposed a multiple imputation approach based on Breslow’s estimate of the sur-
vivorship function. The drawback of these methods is that they are computationally
demanding.

Other proposals include smoothing of the baseline hazard: Kooperberg and Clark-
son (1997) used smoothed parametric splines; Betensky et al. (1999) proposed the use
of local likelihood smoothing focusing on the estimation of the baseline hazard with-
out considering covariates. In Betensky et al. (2002) extended the local likelihood
estimation procedure to include covariates making minimal assumptions about the
hazard. However, the method requires manual entry of the bandwidth which deter-
mines the amount of smoothing in the hazard function. Additionally, the analytical
standard errors were not derived; hence, bootstrap standard errors may be calcu-
lated; however, in this setting are quite computationally demanding. Cai and Beten-
sky (2003) presented a linear spline model assuming a log linear spline mixed model
for the baseline hazard, and the Cox proportional hazards for the covariate effect.
Finally, the proposal of Sun (2006) is to restrict the baseline hazard using non de-
creasing and continuous piecewise linear functions. An interesting feature of these
models is that predictive smooth survival and the hazard functions are available as

a results of the model fit.
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It is worth to mention the paper by Zhang and Davidian (2008) proposing a gen-
eral framework for regression analysis under different censoring settings assuming
that the elements of the density of the survival time can be approximated by a "semi-
nonparametric" (SNP) density estimator.

2.2.3 Accelerated failure time models

One could use a specific shape for the hazard function that includes covariates
following a fully parametric approach. One option is the Accelerated Failure Time
(AFT) model, which assumes that the log-transformed time to event is a linear func-

tion of the predictor variables (similar to a classical linear regression model).

T=In(Y)=pu++v'X+0W, (2.5)

where v/ = (71,72, ... 7Yp) is a vector of regression coefficients, X is a vector of
covariates and W is an error term, assumed to follow a certain distribution. This type
of models will be further implemented in Chapters 3 and 4.

Under the accelerated failure time model 2.5, the hazard function for an individ-
ual with covariate X is related to a baseline hazard rate Aggcy as follows:

At X) = exp(—7'X)Ao[texp(—7'X)] (2:6)

The factor exp(—+'X) is called the acceleration factor, which reflects the expan-
sion or the contraction of survival time as a function of the covariates. Table 2.1
shows the different distributions and the corresponding hazard functions as consid-
ered in Chapter 4.

The AFT model can be directly used in presence of interval-censored data, apply-
ing maximum likelihood methods to estimate parameters of the baseline and regres-
sion coefficients. The construction of the likelihood considers what information pro-
vides each individual. That means, if for an individual the exact time to event is ob-
served, he/she provides information on the probability that the event occurs at that
specific time f(t), which is approximately equal to the density function. On the other
hand, for an individual with right censored observation we only know the event oc-
curs after the censoring time, then the information he/she provides corresponds to
the survival function evaluated at censoring time S(C; ). For a left-censored observa-
tion we only know the event has already occurred, so his/her contribution is in terms
of the cumulative distribution function F(C;) = 1 — S(C;). Finally, if the observation
is interval-censored we only know the event time is in the interval S(L;) — S(R;).
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Table 2.1: Force of infection and survival functions for the different parametric dis-
tributions

Distribution Force of Infection (FOI) Survival Function

A(t) S(t)
Weibull 1
x,B>0,t>0 aptf exp[—atF]
Gompertz
kB> 0t>0 wexp(pt) exp (—lexp(pr) ~1))
Log-normal ¢[(Int—a)/B] 1— {Intﬂx}
—o<a<0oo,f>0,t>0 PptP-(Int—a)/p| B
Log-logistic aptb1 1
x,>0,t>0 1+atP 1+atP
Generalized Gamma £(b) ks
a,B,6>0,t>0 HO) 1—I*[ot*, B

I* denotes the incomplete gamma function

The likelihood function is then the product of all the individual contributions.

An extension of the parametric regressions models to account for both fixed and
time-dependent covariates was proposed by Sparling et al. (2006). The method is
based on a general form of the hazard function. A detailed description of the method
and an application is shown in Chapter 3.

2.24 Other methods to analyse interval-censored data

Other regression models for time to event data are: i) the additive risk model
where the hazard function at time f is given by the sum of the baseline hazard and a
linear combination of the covariates (more details in Klein and Moeschberger (2003,
chap. 10)); ii) weakly parametric methods (named due to their flexibility). Essen-
tially, the baseline hazard is estimated using set of parameters that may change dur-
ing the observation period. These models can be additive or multiplicative Farring-
ton (1996).

A similar approach may be to consider an arbitrarily interval-censored problem
as a binary outcome regression problem with a complementary log-log as link func-
tion, a detailed description of the method is provided in Hosmer et al. (2008). In
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this case the outcome variable can be zero if the individual survives the interval and
one if the event is observed during the interval for that specific individual. This is
also a semi-parametric approach since the baseline hazard is left unspecified. The
estimation of the model can be done via maximum likelihood. If a logistic distribu-
tion is used as a link function the model uses the proportional odds assumption, if a
complementary log-log is used as a link function this is also a proportional hazards
model.

2.3 Frailty models

In survival analysis, frailty models account for correlation between (survival)
times and deal with the problem of heterogeneity due to unobserved covariates. For
instance, event times from individuals who have common characteristics (siblings,
married couples, and so on), or times to ocurrence of different diseases within the
same subject.

Assuming a proportional hazards model with frailties, the conditional hazard
function of the event is given by:

AMtlw) = Ag(t)exp (V' X + w)

where + is the vector of regression coefficients, X denotes the matrix of covariates,
and w denotes the random effect, which follows a certain distribution fq. This model
can be rewritten as follows:

AMtlw) = Ao(t)exp (V' X) Z (2.7)

where Z = exp(w) is called the frailty which follows a distribution f7.

Different choices are possible for the frailty distribution. However, the distribu-
tion is often chosen out of mathematical convenience. Here we summarize some of
the options described by Wienke (2011):

¢ Discrete frailty, where the population is divided in a given number of sub-
groups, each of them with different risk of an event.

¢ Gamma frailty, this is one of the most common frailty distributions due to its

computational and analytical advantages. As we see in this chapter, thanks
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to the simplicity of the Laplace transform, it is posible to derive closed form
expressions for the hazard function and the unconditional survival function.

However, there is no "biological" reason to prefer this distribution.

¢ Positive stable frailty. If the normalized sum of n independent random vari-
ables has the same distribution than the original variables, then the distribu-
tion is called positive stable. The Laplace transform has a simple form, how-
ever, there is no closed form expression for the survival function of a random
variable with a positive stable distribution.

* Inverse gaussian frailty. It was proposed as an alternative to the gamma frailty
model, having closed form expressions for the conditional survival and the
hazard function. The power variance function distribution is a three parameter

family and includes gamma, inverse gaussian and positive stable distribution.

e Compound Poisson Frailty. It is based on the sum of a Poisson distributed
number of independent and identically gamma distributed random variables.
There are closed form expressions for the Laplace transform, the marginal sur-
vival and hazard function. One interesting property is that it includes a sub-

group of zero frailty, with no event.

* Log-normal frailty. Since there is no explicit form of the unconditional likeli-
hood, the estimation strategies for this model rely on numerical integration.

¢ Univariate frailty cure model. Here we assume that a proportion of people in
the population will not experience the event of interest (cured fraction).

In Chapter 5 we restrict to gamma frailty models thanks to its mathematical prop-
erties.

In the infectious diseases context, statistical models are very flexible and are use-
ful for identifying risk factors for the infection at hand; however, they do not focus
on the transmission process of the viruses (Garnett et al.; 2011). On the other hand,
the mathematical models described in Section provide a mechanistic representation

of the disease spread.
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2.4 Mathematical models for infectious disease trans-
mission

Infection is an invasion of one host organism by smaller disease-causing organ-
ism (pathogen), constitutes an ubiquitous phenomenon. There is a variety of ways in
which transmission can occur, for instance, through air, from direct or indirect con-
tact with an infected person, and through contaminated food or water among others.
There are also many infectious agents: microparasites (virus, bacteria and protozoa)
and macroparasites (Helminths and arthorpods). Understanding the dynamic of a
infectious disease is key to provide a sensible model.

A considerable amount of literature has been published on mathematical mod-
els for infectious disease transmission. Hens et al. (2012) provide an overview of
the early contributions on the topic: dAlembert (1761) is the oldest of those; then
Bernoulli (1766) presented a differential equations model of smallpox dividing the
population in susceptible and immune (Dietz and Heesterbeek; 2002).

After the papers of Ross (1916) and Ross and Hudson (1917) outlined the de-
terministic theory for the spread of epidemics in three papers. Then, Kermack and
McKendrick (1927, 1932, 1933) studied a deterministic model for a closed population
with susceptibles, infectives and removals (those who had died, or had recovered or
were immune). The stochastic equivalent of the Kermack and McKendrick model
was proposed by Bartlett (1949) (Gani; 2010).

Over the years, the transmission of many infectious diseases such as: smallpox,
rubella, malaria, dengue fever, HIV and Hepatis A among others have been an im-
portant research topic, with increasing research activity over the last years (Hens
et al.; 2012). The transmission models have been extremely helpful in the control of
infections and in assessing the effectiveness of vaccination and intervention strate-
gies.

In the next section we present some concepts about the basic SIR model as de-
scribed in Hens et al. (2012). Subsequently, we describe some transmission models
on HCV and HIV for injecting drug users.

24.1 Compartmental models

Let us consider a transmission model with three compartments: susceptibles (S),
infected (I), immune or recovered (R), we assume all the individuals are born into the
susceptble class, then the age of the individual constitutes the exposure time. After
infection, the individuals move to the infected class and after clearing the infection
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Figure 2.1: Flow diagram for the SIR model. S: susceptible, I: infected, R: recov-
ered /immune
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the individuals move to the rcovered /immune class. We assume all the individuals
gain lifelong immunity after recovery and do not participate anymore in the trans-
mission process. The SIR model is widely used to model many viral infections in
childhood.

Although the exposure time is the age, the transmission parameters may depend
on the calendar time. In this case the SIR model can be described by a following set

of partial differential equations:

= —(Ma,t)+v(a,t))S(a,t),

ala((i’)t) + ala((i’)t) = Aa,t)S(a,t) — (w(a,t) +a(a,t) +v(a,t))l(a,t),
BISEZ’;) + 81;((%15) = w(a,t)I(at)—v(a,t)R(a,t), (2.8)

where S(a,t), I(a,t), and R(a,t) are the age- and time-specific number of sus-
ceptibles, infected, and recovered respectively. There are some boundary conditions
given by the assumptions of the model: S(0,t) = B(t) the number of births at time
t in the population, I(0,¢) = R(0,t) = 0, discarding vertical transmission of the in-
fection. Additionally, N(a,0) denotes the age-specific population size at time zero,
whereas v(a,t) and «(a,t) denote the natural and disease-related death rate, respec-
tively. The force of infection A(a, t) is the rate at which individuals are infected and
w(a, t) is the recovery rate.

The mathematical models referred in Chapters 5 and 7 are static models, that is,
assume time homogeneity. In the manuscript we consider the time since the individ-
ual starts to inject drugs as the exposure time. Furthermore, we consider a dynamic
transmission model where the force of infection depends on the number of infected
individuals in the population (Vynnycky and White; 2010).

As a general framework, the next section describes some transmission model of

hepatitis C in injecting drug users proposed by Kretzschmar and Wiessing (2004) to
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provide some concepts and to introduce the notation used in Chapters 6 and 7. Then,
we also present transmission models accounting for HIV and HCV co-infection pro-
posed by Vickerman et al. (2008) and De Vos et al. (2012).

2.4.2 Mathematical models for HCV, and HIV/HCV co-infection on
IDUs

To date various models have been developed and introduced with at least one of
the following objectives: i) to estimate the prevalence and incidence of HCV and/or
HIV, ii) to quantify the disease burden of the two viruses and iii) to assess the impact
of the treatment. This section provides an overview of some transmission models
which have been proposed.

2.4.2.1 HCYV transmission models on IDUs

Based on the natural course of the infection, the model considers three disease
stages: acute infection, chronic carrier and recovered. At this point there was a lot of
uncertainty about secondary infections so the authors did not consider them in the
model.

Sycv denotes the number of susceptibles, Icy the number of acute infectious
individuals, CCycy the number of chronic carriers and Rycy the number of recov-
ered. The recruitment rate is determined by B and the exit rate is denoted by v. The
force of infection depends on the rate of borrowing injecting equipment x and the
transmission rate. If a susceptible individual borrows equipment from a someone
with acute infection the transmission rate is denoted by b;, and is denoted by b¢cc
if the infectious individual is a chronic carrier. N denotes the total population size.
A person with primary acute infection leaves that state with rate wj, with a fraction
¢ of becoming chronic carriers and the remaining 1 — ¢ recovering completely. The
chronic carriers can still recover at a rate wcc. The model can be represented by the

diagram presented in Figure 2.2.

The following set of differential equations can be used to describe the model:
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Figure 2.2: Flow diagram of the mathematical model for HCV. Sgcy: suscepti-
ble HCV, Iycy: acute HCV infected, CCycy: chronic HCV carrier Rycy: recov-
ered /immune

dSpcv(t)

a0 = B Aucv(Sucy(h) —vSucv (),
dll;%(t) = Ancv(DSucv () — wilpey () — vigey (b),
d(j(iifz;-’)v(t) = ywilpcv(t) — wecCChcv (t) — vCChcy (1),
de;(Ct‘;U) = (1= ¢)wilucy (t) + wccCCrcv () = vRuev (1), (29)

with the force of infection given by:

Amcy(t)

+ bCC

K (bl IHCV(t) (210)

CCHCV(t)>
N(t) '

N()

To account for the heterogeneous behaviour of the injecting drug users, the model
can be extended assuming that there are two subgroups in the population. One of the
subgroups with a high average rate of needle sharing and one with a low rate. The
authors assume that the subgroups differ in their behaviour but not in the disease-
specific parameters, and all the people entering to specific risk group will remain
there during their entire injecting career. The time at risk is actually the duration of
injection reflecting the exposure time of the individuals during their injecting career.

The HCV transmission model presented in Chapter 7 is an extended version of
model proposed by Kretzschmar and Wiessing (2004). The joint model accounts
for multiple HCV infections and distinguishes between acute, chronic infected and
susceptible individuals who spontaneously clear the virus. The HCV transmission
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model in Chapter 5 also considers multiple HCV infections; however, it does not
include recruitment and exit rates.

Other models HCV include: Hutchinson et al. (2005) who estimated the current
and future burden of hepatitis C in Scotland; the authors developed a transmission
model including in the disease stages chronic HCV (mild and moderate), compen-
sated and decompensated cirrhosis, hepatocellular carcinoma and as treatment al-
ternative the liver transplantation for a proportion of patients suffering form de-
compensated cirrhosis. Hutchinson et al. (2006a) considers an stochastic model with
two sequential acute infectious stages (not infectious and infectious), recovery and
chronic infection.

Then, Vickerman et al. (2007) developed a mathematical model to explore the im-
pact of strategies to decrease syringe sharing in London. The model is an adaptation
of the model proposed by Kretzschmar and Wiessing (2004), modified to allow two
kinds of acute infection, one leading to a chronic HCV infection and the other to
spontaneous clearance of the virus.

In Australia, mathematical models have been proposed to estimate HCV inci-
dence and prevalence (Law et al.; 2003) and to assess the economic impact of the
treatment uptake (NCHECR; 2010). Other proposals account by hepatitis C treat-
ment for injecting drug users are: Martin et al. (2011b), Martin et al. (2011a), and

among others.

2.4.2.2 HCYV and HIV co-infection models

Vickerman et al. (2008) developed a mathematical model for HIV and HCV co-
infection aimed at assessing the cost-effectiveness of needle and syringe programmes