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Chapter 1
Introduction

From an infectious disease perspective, statistical models are a flexible approach
to describe association between the variables, expressing the relation with a func-
tional form. As a result, these models allow the identification of risk factors although
there is not explicit causality.

In contrast, mathematical models provide a representation of how disease burden
is established, they can be used to predict prevalence and incidence of disease even
beyond range of data (Garnett et al.; 2011).

In this thesis we propose statistical and mathematical models to HIV and hepati-
tis C co-infection and to hospital-acquired (nosocomial) infections. Chapter 2 pro-
vides concepts and methods to analyse survival data; additionally we describe the
mathematical models for infectious disease transmission. Both parts constitute the
theoretical bases for the models included in this thesis.

In Chapter 3 we apply survival analysis models to quantify the effect of probi-
otics and antibiotics on nosocomial infection. The dataset comes from a clinical trial
performed in a university hospital in the Netherlands. Here we focus on interval-
censored data with time-dependent covariates.

The statistical models presented in Chapters 4 and 5 rely also on survival analysis
methodology and are applied to cohort study on injecting drug users collected in the
Netherlands.

In Chapter 6 we describe basic transmission models for Hepatitis C virus (HCV)
and HIV separately, and we introduce a joint mathematical model accounting for
both HIV and HCV co-infection attributed to sharing syringes and other parapher-
nalia. In Chapter 7 we describe a procedure to assess the joint mathematical model

1



2 Introduction

from a statistical perspective. The model is calibrated using a longitudinal study
of heroin users in Italy and a cross-sectional study of young adult heroin users and
Injecting Drug Users in Spain.

In this chapter we describe the importance of study HIV and hepatitis C co-
infection as well as some preventive measures for nosocomial infections. Subse-
quently, we describe the data sources used in this thesis.
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1.1 HIV and hepatitis C co-infection

The Acquired Immune Deficiency Syndrome (AIDS) was defined in 1982 after
the occurrence of deaths related with a reduced number of helper T cells. Two years
later, the causing virus of AIDS was isolated and named Human Immunodeficiency
Virus (HIV) which made the development of a blood sample based diagnostic test
possible. Afterwards, clinical studies helped to describe the history of HIV infec-
tion, providing information about incubation time. Then, the antiretroviral therapy
was introduced as mechanism to combat the progress of the virus. Despite the huge
advances in the last decades, AIDS is still an enormous issue in public health. Ac-
cording to UNAIDS in 2010, 34 million people lived with HIV, 2.5 million people
were newly infected, and more than two million died due to AIDS-related diseases
(UNAIDS; 2010).

On the other hand, hepatitis C is a viral infection of the liver whose virus HCV
was identified in 1989. The virus, which is spread by direct contact with infected
blood, is one of the major causes of hepatitis and chronic liver diseases such as cir-
rhosis and liver cancer. The screening procedures for blood products have reduced
the number of infections. However, according to estimates of the World Health Or-
ganization, 150 million people are infected around the world, and between 3 and 4
million are newly infected each year (World Health Organization (WHO); 2011).

There have been defined two disease stages: acute hepatitis C and chronic hep-
atitis C. The first one lasts around six months, is mostly asymptomatic and leads to
chronic infection in around 80% of the cases. Chronic hepatitis C can last up to 20
years, spontaneous clearance of the virus is rare, and increases the risk of cirrhosis,
hepatic decompensation and liver cancer. There is no vaccine against hepatitis C
partly because the virus mutates very easily. As re-infection can occur, the role of a
potential vaccine may be to prevent the progression of acute hepatitis C to chronic
infection (Wasmuth; 2010).

Co-infection between HCV and HIV often occur. A third of HIV infected individ-
uals in Europe and USA are co-infected with HCV and it is known that HIV accel-
erates the development of liver disease related with HCV and reduces the chance of
spontaneous clearance and possibly increases infectivity (Rockstroh and Spengler;
2004). The majority of the co-infected people are Injecting Drug Users (IDUs), so
focusing on this high-risk population could give us insights about the transmission
of HIV/HCV co-infection, how to formulate interventions and how the treatment of
acute or chronic infections can affect the prevalence.

Hepatitis C virus is usually acquired rapidly after having started with injecting
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drugs. In 2011, between 60-80% of the IDUs from 25 countries had a positive anti-
HCV test result. Whereas in 12 other countries a higher seroprevalence has been
reported (Nelson et al.; 2011). IDUs are also at higher risk to acquire HIV, in some
countries the HIV prevalence can reach up to 20% (Aceijas et al.; 2004). The main
transmission route for both viruses in this population is sharing injecting equipment
(Mathei et al.; 2006).

Based on mathematical models for HCV and HIV co-infection, HCV prevalence
has been proposed as an indicator of HIV among IDUs (Vickerman et al.; 2010). Then
De Vos et al. (2012) shows the existence of a threshold HCV equilibrium value below
which HIV cannot establish itself. (See Chapter 2).

Below we describe three datasets where the study populations are injecting drug
users. The projects were carried out in the Netherlands, Italy and Spain. The stud-
ies in the Netherlands and Italy were epidemiological studies aiming to assess the
impact of interventions.
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1.2 Studies about injecting drug users

1.2.1 Amsterdam Cohort Studies

The Amsterdam Cohort Studies (ACS) is a collaboration of Amsterdam Health
Service, Academic Medical Center of the University of Amsterdam, Sanquin Blood
Supply Foundation, and the University Medical Center Utrecht. ACS is part of
the Netherlands HIV Monitoring Foundation and is financially supported by the
Netherlands National Institute for Public Health and the Environment.

The prospective cohort study initiated in 1985 to investigate the prevalence, in-
cidence, and risk factors of HIV infections and other blood-borne and/or sexually
transmitted diseases, as well as the effects of intervention. Participation in the ACS
is voluntary, and informed consent is obtained for every individual at intake. ACS
participants visit the Amsterdam Health Service every 4-6 months. They complete
a standardized questionnaire about their health, risk behaviour, and sociodemo-
graphic situation. Questions at ACS entry refer to the 6 months preceding the visit;
questions at follow-up refer to the interim since the preceding visit. Blood is drawn
during each visit for laboratory testing and storage. Until 2010, 1,657 injecting drug
users were included in the ACS. The recruitment for the drug users was via methadone
programs, via a sexually transmitted diseases clinic for drug using sex workers and
by word of mouth.

The ACS database up to 2005 contains information on 1,206 IDUs of whom 254
lack information about their HCV serostatus since only those with at least two study
visits have been tested for HCV (Van den Berg et al.; 2007a,b). There were 3, 12 and
2 individuals having zero or negative time to infection for HIV only, HCV only and
both HIV and HCV, respectively. Zero time to infection implies that the year of first
injection coincides with the year of the first positive result, whereas negative time to
injection refers to individuals who had positive results before becoming IDUs. Table
1.1 shows the HIV and HCV serostatus for the remaining 935 individuals.

In Chapter 4 we included only the individuals who entered negative for HCV,
totalling 165 individuals (58 seroconverters and 107 who remained negative). On the
other hand, in Chapter 5 we consider all the 935 individuals, Table 1.2 and Figure 1.1
present the descriptive statistics for this group of individuals.

From table 1.2, 61.3% of the individuals were males; 41.6% stated sharing sy-
ringes at least once during the follow up period. Concerning the frequency of in-
jection at first visit, 23.2% did not inject recently, 30.5% reported using drugs more
than once a day and 29.4% used drugs between 2-6 days per week. The most com-
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Table 1.1: Amsterdam Cohort Studies dataset. Number of patients according to their
serostatus for HIV and HCV.

HCV status

HIV status Negative at the Positive Seroconverter Total
end of follow up before entry during the study

Negative at the 104 456 45 605end of follow up
Positive before entry 0 240 1 241
Seroconverter during 3 74 58 89the study

Total 107 770 58 935

mon drug was a combination of cocaine and heroin: 42.2%; followed by heroin and
cocaine use alone with 13.7% and 9.8%, respectively. The year in which individuals
start to inject drugs was highly variable (45.6% between 1962-1980; 40.4% between
1981-1990; and 14% between 1991-2002). The average age of first injection was 22.4
years (SE 6.4 years), whereas the mean age at first visit was 31.6 years (SE 6.5 years).

Figure 1.1 shows the time to infection for both viruses. A large percentage of
individual (48.8%) get infected with HCV but remain negative for HIV. For the in-
dividuals who become infected with any of the viruses the exact time to infection
is unknown, but partial information is available thanks to the regular visits (check
ups). Then the infection occurs between the last negative result and the first positive
result, this is known as case II interval-censored observation. To simplify the graph
we represent those observations using the mid-point imputation.
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Table 1.2: Amsterdam Cohort Studies dataset. Descriptive statistics for all the IDUs

Individuals (n=935) n (%) n (%)

HCV serostatus
Negative 107 11.44
Positive 828 88.56

HIV serostatus
Negative 605 64.71
Positive 330 35.29

Sharing syringes
No 542 57.97
Yes 389 41.60
Unknown 4 0.43

Year first injection
1962- 1980 426 45.56
1981- 1990 378 40.43
1991- 2002 131 14.01

Gender
Male 573 61.28
Female 362 38.72

First follow up visit Last follow up visit

Frequency of injection
No recent injections 217 23.21 503 53.8
More once per day 285 30.48 99 10.59
Once daily 45 4.81 14 1.50
2-6 days per week 275 29.41 129 13.8
Once a week 23 2.46 23 2.46
2-3 days per month 24 2.57 42 4.49
One day a month 10 1.07 14 1.50
Less than one day a month 52 5.56 77 8.24
Unknown frequency of injection1 4 0.43 34 3.64

Drug of injection
No recent injections 217 23.21 503 53.80
Heroin 128 13.69 91 9.73
Cocaine 92 9.84 53 5.67
Cocaine and heroin 395 42.25 215 22.99
Amphetamine 48 5.13 21 2.25
Methadone 25 2.67 17 1.82
Unknown drug of injection2 30 3.21 35 3.74

Mean Std. Dev.

Duration of injection at first visit (years) 9.13 6.62
Duration of injection at last visit (years) 17.29 8.27

1 Unknown frequency of injection was not associated with any of the covariates
2 Unknown drug of injection at first follow up visit was associated sharing syringes and

year of first injection
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Figure 1.1: Amsterdam Cohort Studies. Scatterplot of the time to HCV infection vs
time to HIV infection. The red dots represent the individuals who were not infected
with any of the viruses during the follow up time (right censored observations). The
green dots correspond to the individuals infected with both viruses. The blue dots
represent the individuals infected with HCV but negative for HIV. For the infected
individuals we use the mid-point imputation of the interval between the last nega-
tive result and the first positive result.

1.2.2 Vedette study

In Chapter 7 we used the Vedette study as one of the illustrative examples. The
dataset comes from a longitudinal study of heroin users in the Piedmont region, Italy.
All individuals were followed during 18 months from September 1998 to March
2001. Clinical history and personal information were collected at entry (Bargagli
et al.; 2006; Davoli et al.; 2007; Salamina et al.; 2010). The main goal of the study was
to evaluate the effectiveness of treatments provided by the National Health Services.
In total, the study was based on 115 drug treatment centers and included 10,454
heroin users in 13 Italian regions. Antibody levels were determined for HIV, HCV
and Hepatitis B.

For the analyses presented here, the individuals with missing serostatus for both
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infections and the duration of injection are not included. Table 1.3 and Figure 1.2
provide a description of the variables included in the dataset. Figure 1.2 presents
the joint and the marginal prevalence according to the length of injecting career, the
proportion of individuals who remain negative for both infections (p00t) diminishes
sharply in the first five years of injection, whereas the individuals that become pos-
itive only for HIV (p01t) remains very low (almost constant). In fact, most of the
individuals positive for HIV were also co-infected with HCV (p11t). For the Vedette
study the exact time to infection is unknown, as for the ACS dataset. However, here
we have a unique evaluation of the serostatus instead of a long follow up. This is
known as case I interval-censored data.
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Table 1.3: Vedette IDU dataset. Descriptive statistics

Individuals (n=1,846) n (%)

HCV serostatus
Negative 343 18.58
Positive 1,372 74.32
Unknown HCV serostatus1 131 7.10

HIV serostatus
Negative 1,426 77.25
Positive 125 6.77
Unknown HIV serostatus2 295 15.98

HBV serostatus
Negative 802 43.45
Positive 854 46.26
Unknown HBV serostatus3 190 10.29

Sharing syringes within the six months before the interview
No 1,625 88.03
Yes 144 7.80
Unknown sharing syringes status4 77 4.17

Sharing other paraphernalia within the six months before the interview
No 1,452 78.66
Yes 311 16.85
Unknown sharing paraphernalia status5 83 4.50

Gender
Male 1,500 81.26
Female 346 18.74

Mean Std. Dev.

Age at first injection (years) 21.28 6.62
Duration of injection (years) 9.36 5.04

1 Unknown HCV serostatus was not associated with any of the covariates
2 Unknown HIV serostatus was associated with HBV serostatus
3 Unknown HBV serostatus was associated with HCV serostatus
4 Unknown sharing syringes status was associated with HCV serostatus, and

sharing other paraphernalia
5 Unknown sharing other paraphernalia status was associated with HCV sharing syringes



1.2 Studies about injecting drug users 11

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exposure time (years)

P
ro

po
rt

io
n

HCV (−) HIV (−)

HCV (−) HIV (+)

(a) Proportions HCV(-) HIV(-): p00t and
HCV(-) HIV(+): p01t

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exposure time (years)

P
ro

po
rt

io
n

HCV (+) HIV (−)

HCV (+) HIV (+)

(b) Proportions HCV(+) HIV(-):p10t and
HCV(+) HIV(+): p11t

● ●
●

●

●
●

●

●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exposure time (years)

P
re

va
le

nc
e

●

●

●

●
●

● ●
●

Obs Prev HCV

Obs Prev HIV

(c) Prevalences for HCV (pr.t) and HIV
(p.st)

Figure 1.2: Vedette IDU dataset. Observed proportions: joint and marginal preva-
lence according to the length of injecting career. The size of the symbols is propor-
tional to the observed number of individuals at each exposure time.

1.2.3 Itinere study

The dataset comes from a study of young adult heroin users and IDUs in Spain.
All individuals were tested for both HCV and HIV between 2001 and 2003. Addi-
tionally, information about the length of the injecting career, the frequency of inject-
ing and sharing syringes was also collected (De La Fuente et al.; 2006). The main
goals were to monitor the health impact of drug use and to identify related factors.
The study was based on street recruitment, referred by other participants or by non-
participants (either drug users or ex-drug users).
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Table 1.4: Itinere IDU dataset. Descriptive statistics

Individuals (n=619) n (%)

HCV serostatus
Negative 165 26.66
Positive 454 74.34

HIV serostatus
Negative 462 74.64
Positive 157 25.36

HBV serostatus
Negative 482 77.87
Positive 137 22.13

Sharing syringes within the 12 months before the interview
No 476 76.89
Yes 114 18.42
Unknown sharing syringes status1 29 4.68

Gender
Male 459 74.15
Female 160 25.85

Mean Std. Dev.

Age at first injection (years) 19.37 3.80
Duration of injection (years) 6.72 4.52

1 Unknown sharing syringes status in the past 12 monts was not associated with any of the
covariates

For the analyses presented here, the individuals with missing serostatus for both
infections and the duration of injection are not included.

Table 1.4 provides a description of the variables included in the dataset. The
HIV prevalences for the Itinere dataset are larger than those for the Vedette dataset
(see Figures 1.2 and 1.3). In fact, the proportion of individuals positive for both
viruses is higher. This difference maybe attributed to the characteristics of the study
populations, for the Vedette data the individuals attended drug treatment centers
whereas the individuals that took part in the Itinere project were mainly street users.
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Figure 1.3: Itinere IDU dataset. Observed proportions: joint and marginal prevalence
according to the length of injecting career. The size of the symbols is proportional to
the observed number of individuals at each exposure time.

1.3 Nosocomial infections: preventive measures

Antibiotics are used to treat infections caused by bacteria; however many bac-
teria have become resistant to antibiotics. Hospital-acquired infections caused by
antibiotic-resistant bacteria are associated with longer hospitalization time, and with
higher morbidity and morality compared with infections caused by antibiotic-susceptible
bacteria (Davey et al.; 2005). Additionally, acquired antibiotic resistance seriously
limits the therapeutic options to treat the patients when infections occur, increasing
the clinical treatment failure and the mortality (Brown et al.; 2006).
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In the United States more than ten percent of the hospital-acquired infections are
attributed to Enterococcus species. The antibiotic resistance of Enterococcus has been
widely documented. In 1972 the antibiotic vancomicin was used for the first time
and only 15 years later vancomycin-resistant enterococci were observed. Among the
Enterococcus species, E. faecium poses the higher antibiotic resistance threat (Fisher
and Phillips; 2009).

Over the past years, despite of a huge effort to improve how antibiotics are pre-
scribed by physicians in hospitals, is estimated that half of the use of antibiotics
is inappropriate (Davey et al.; 2005). Therefore additional strategies should be im-
plemented to reduce the impact of antibiotic resistance. One strategy is the use of
probiotics to prevent infection. Even though some studies point the beneficial im-
pact of probiotics to maintain and restore the intestinal flora (Hickson et al.; 2007;
DSouza et al.; 2002), the evidence of efficacy of probiotics in infection prevention
needs further study (Oudhuis et al.; 2011).

UMCU probiotics study

The University Medical Center Utrecht (UMCU) designed a cohort study to quan-
tify the effects of probiotics and antibiotics on acquisition of ampicillin-resistant Ente-
rococcus faecium (ARE) in patients admitted to two hospital wards with documented
high prevalence of intestinal ARE carriage (de Regt et al.; 2008).

Of the 530 included patients, 436 patients were at risk for acquisition of ARE (236
females 54.1%). Their mean age at admission was 62.6 years (Std. Dev. 18.12 years)
and their average length of hospital stay was 12 days (Std. Dev. 8.7 days). Of these
436 patients, 111 (25.5%) received probiotics during at least one day and 207 (47%)
were treated with antibiotics.

1.4 Outline of the thesis

This thesis aims to develop statistical and mathematical models for HIV and hep-
atitis C virus (HCV) co-infection in the context of Injecting Drug Users (IDUs) as well
as for nosocomial infections. The models applied in this thesis take into account the
objectives of the study and the type of data.

The Amsterdam Cohort Studies and the UMCU probiotics are cohort studies that
provide information about time to event, in the first case about time to HIV and HCV
infection and in the second case about time to ARE acquisition. Considering the na-
ture of both datasets, survival analysis models are suitable to describe the force of
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infection and to identify risk factors associated with time to event. In Chapter 2 we
first describe the methods to analyse survival data ranging from completely non-
parametric to fully parametric methods. Since the time to event is interval-censored
for both datasets, we also include a literature review on this topic.

The Vedette and the Itinere projects also provide information about time to in-
fection, but they are not follow up studies. For both studies the serostatus of the
participants is given at a specific time point. Here, the main goal is to model the
transmission process using a mathematical model. Therefore, Chapter 2 includes
concepts about mathematical models reviewing the basic SIR model and a review of
transmission models for HCV and HIV in the context of injecting drug users.

Chapter 3 presents survival analysis methods to account for case II interval-
censored data including both fixed and time-dependent covariates. We focus on the
effects of covariates since the main goal is to measure the impact of probiotics and
antibiotics on ARE-colonization.

Chapter 4 includes: i) the estimation of the force of infection for HCV applying
the concepts and methods of survival analysis within the interval-censoring frame-
work; ii) the impact of risk factors such as frequency of injection, drug injected, shar-
ing of syringes and time of first injection on the time to HCV infection. We used
data from the Amsterdam Cohort Studies collected in The Netherlands, focusing on
those individuals who were HCV negative upon entry into the study. Previous es-
timates of the force of infection for HCV in IDU were based on cross-sectional data
(Del Fava et al.; 2011; Mathei et al.; 2006; Namata; 2008; Platt et al.; 2009; Sutton et al.;
2006, 2008). Here we use a large cohort study with more than 25 years of follow up.

The analyses presented in Chapter 4 contributed to the work of the "European
Study Group for Mathematical Modelling and Epidemiological Analysis of Drug-
Related Infectious Diseases", coordinated by European Monitoring Centre for Drugs
and Drug Addiction (EMCDDA) and the Center for Infectious Disease Control (RIVM)
with funding from World Health Organization/Europe and the government of The
Netherlands.

Chapter 5 describes the frailty models as an alternative to analyse multivariate
survival data. Here the excess of risk of an event in a cluster (or an individual) is
represented by a random effect: the frailty term. The model is defined as shared
frailty if a common random effect is assumed for all the members within a cluster.
On the other hand, if the random effect is specific to an individual within the cluster
then is a correlated frailty model, since the correlation between the random effects
may be assumed.

In infectious disease epidemiology, the shared frailty has been applied before
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(Farrington et al.; 2001; Sutton et al.; 2006, 2008). Then, Cattaert (2008) applies several
frailty models to seroprevalence data on mumps and rubella and to parvo and vari-
cella data. After, Hens et al. (2009) studied the behaviour of the bivariate-correlated
gamma frailty model for case I interval-censored data (current status data) and com-
pared the correlated with the shared frailty model using cross-sectional data on hep-
atitis A and B.

Chapter 5 builds on the work of Cattaert (2008) and Hens et al. (2009) consider-
ing exact time to event, right censored and case II interval-censored data. First, we
describe the gamma frailty model and the estimation procedure, then we apply sev-
eral frailty models to the Amsterdam Cohort Studies data. Finally, we perform two
simulation studies, the first one is to assess the performance of the correlated frailty
model in presence of interval-censored data and the second one is to evaluate how
different frailty variances impact the estimation of the parameters in the model.

On Chapter 6 we move to mathematical models, focussing on the transmission.
We first propose basic mathematical models for HCV and HIV, for some particular
cases we found the solution of the system of the equation. Then we combine the two
basic models into a joint model accounting for HIV/HCV co-infection. The mathe-
matical models are proposed in the contex of injection drug users.

Chapter 7 presents a statistical concepts and methods are used to assess the joint
model from a statistical perspective, in order to get further insights in: i) the compar-
ison and selection of optional model components, ii) the unknown values of the nu-
merous model parameters, iii) the parameters to which the model is most ‘sensitive’
and iv) the combinations or patterns of values in the high-dimensional parameter
space which are most supported by the data. Data from heroin users in Italy and
Spain are used to illustrate the application of the proposed joint model and its sta-
tistical assessment. The model assessment of the joint transmission model includes
the estimation of the parameters or the calibration of the model to data, the quan-
tification of model uncertainty and model selection, the assessment of the statistical
variability, and analyses of the model parameters in the high-dimensional parameter
space. Finally, we close with some conclusions and further research.



Chapter 2
Concepts of statistical and
mathematical models

2.1 Statistical models

Models are simplified representations of reality and are used in many areas of
science, finance and industry. When a model includes a probabilistic component is
called a statistical model (Lindsey; 2007). Statistical modelling has been a very active
area of research, taking into account the nature of the outcome variable and explana-
tory variables. We may consider simple linear regression model when the outcome
variable follows a normal distribution and the interest is to assess the impact of a
covariate. If the outcome variable does not follow a normal distribution the gener-
alized linear models are an option. Here, the generalization has two aspects: the
outcome may follow a distribution of the exponential family and the models include
a transformation of the mean. Lindsey (2007) presents an interesting classification of
the outcome variable: i) measurements that can take positive or negative values, ii)
measurements strictly positive, and iii) number of occurrences of one or more kinds
of events. Additionally, the random component corresponds to the distribution of
the outcome variable. The time to some event is of special interest among the out-
comes in the second type. The Amsterdam Cohort Studies and the Probiotics study
provide time to event data. Therefore, in the following section we describe those
models in detail.

17
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2.2 Survival analysis: concepts and methods

In survival analysis an individual is followed over time for the occurrence of
a specific event (recovery, death, infection). The main outcome is the time to the
event and typically we are interested on estimating the time until the event happens
(survival function) or the event risk (hazard function) and assessing the impact of
covariates.

One of the distinctive features of the time to event data is censoring, which oc-
curs whenever the exact time to event is unknown (but there is some level of infor-
mation). The most common type of censoring is right-censoring where by the end of
the observation period the event of interest has not yet occurred (the time to event is
larger than the censoring time). Left-censoring is the censoring type where the event
occurred before the first observation time. Sometimes the event is known to have
occurred within two observation times but the exact time is unknown. The time to
event is then said to be interval-censored with right and left censoring as special
cases.

A second characteristic of survival data is truncation, that is only those individ-
uals whose event time lies within a certain observational window are observed. In
Chapter 4 we provide further details about left truncation and how it can be taken
into account in an analysis.

The event time of an individual can be represented by a nonnegative random
variable T with a cumulative distribution function F(t) = P(T ≤ t). The comple-
ment of F(t) is the survival function S(t) = 1− F(t), which is the probability that
the individual survives beyond time t. The hazard function λ(t) also known as the
force of infection, or the intensity function, describes the instantaneous probability
of the event, conditional on having survived up to time t is defined as:

λ(t) = lim
∆t→0

P(t ≤ T < t + ∆t|T ≥ t)
∆t

=
f (t)
S(t)

= − d
dt

ln S(t). (2.1)

In fact, the definition given by (Klein and Moeschberger; 2003) is:

λ(t) =
f (t)
S(t)

=
f (t)

1− F(t)
(2.2)

The cumulative hazard function is given by:

Λ(t) =
∫ t

0
λ(u)du = − ln S(t) (2.3)

Throughout the present work we assume independent censoring: the censoring
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mechanism is independent of the time to event.

2.2.1 Nonparametric estimation of the survival and the hazard func-
tions

The survival function can be estimated without any a priori assumption regard-
ing the distribution of the time to event using the estimator Kaplan-Meier also known
as the Product-Limit estimator by Kaplan and Meier (1958) for right-censored data.
The estimator is a step function with jumps at the observed event times; the size of
the jumps depends on the number of events observed at each event time and the pre-
vious censored observations. Another option is to estimate the cumulative hazard
function using the Nelson-Aalen estimator, originally proposed by Nelson (1972)
and rediscovered by Aalen (1978), which has better small-sample-sized properties
than the Product-Limit estimator.

For interval-censored data Turnbull (1976) extended and generalized previous
results from Peto and Lee (1973). Here, the survival function estimator is also known
as Nonparametric Maximum Likelihood Estimator. It is an iterative procedure, first
a grid of time points is defined and an initial estimate of the survival function for the
grid should be provided, then the algorithm is as follows: i) computes the probability
of an event, ii) estimate the number of events, iii) computed the estimated number
of people at risk and iv) computed the updated Product-Limit estimator using the
estimated data from ii) and iii). The process is repeated until the old and the updated
survival function are close.

The most common algorithm to obtain the NPMLE is the self-consistency algo-
rithm proposed by Turnbull (1976). The interval-censored data is treated as incom-
plete data and the Expectation-Maximization (EM) algorithm (Dempster et al.; 1977)
is applied to take these incomplete data into account. The drawback is that it can
be very slow for large sample sizes and the convergence is not guaranteed (Gómez
et al.; 2009). More efficient proposals are the Iterative Convex Minorant (ICM) pro-
posed in 1992 and the EM-ICM proposed in 1998; another option is to use Project
Gradient Methods (PGM).

Comparing survival curves

If the interest is in testing the hypothesis comparing either survival or hazard
functions there are several tests proposed for right-censored data. Among them are:
the log-rank test, the Gehan, the Tarone-Ware, the Peto and the Fleming-Harrington
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test. The last one is in fact a general class of tests that includes the Log-rank test as
special case. Klein and Moeschberger (2003, chap. 7) provides a detailed description
of the tests to compare survival curves.

For interval-censored data there are two type of tests to compare survival curves:
rank-based and survival-based tests. The first class is based on weighted differences
between the estimated hazard functions and it is appropriate to detect ordered haz-
ard alternatives but unsuitable for crossing hazards. Whereas the second focuses on
the estimated survival functions and is applicable for ordered survival functions but
inappropriate for crossing survival functions. For a detailed description of the tests
we refer the paper by Lesaffre et al. (2005) and the book of Sun (2006). Among the
more recent proposals are: a family of tests that extends the Fleming-Harrington test
described in the paper by Gómez et al. (2009) and a weighted logrank test proposed
by Fay and Shaw (2010).

The hypothesis testing procedures do not provide any parameter to quantify the
effect of each covariate; they only produce information regarding their significance.
When the main interest is to quantify the impact of several factors, or to predict the
time to event, then regression modelling techniques are more appropriate. Those
include the well-known Cox proportional hazard models (semi-parametric) and the
Accelerated Failure Time (AFT) models (parametric) that we describe below.

2.2.2 Semi-parametric regression - Cox model

The Cox model is the most common method to analyse right-censored data. Here
covariates can be fixed or time-dependent. The hazard function is modelled as a
product of two factors: the baseline hazard that is left unspecified (nonparametric
part) and a factor that characterizes how the baseline hazard function changes as a
function of subject covariates (parametric part). The estimation of the model is done
using partial likelihood and was proposed by Cox (1972).

λ(t) = λ0(t) exp(γ′X), (2.4)

where γ ′ = (γ1, γ2, . . . γp) is a vector of regression coefficients,X = (x1, x2, . . . , xp)′

is a p-variate vector of covariates. The Cox model is also known as the proportional
hazard models, in fact the ratio between the hazard of two different individuals is
constant over time.

Note that there are some parametric options of proportional hazard model such
as the Weibull distribution, where the baseline hazard is fully specified. Addition-
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ally, there are also some semiparametric AFT models where the error distribution is
unknown.

Semi-parametric regression of interval-censored data

There are still unresolved issues to extend the Cox model to interval-censored
data, and so far there is no unified approach. Next we describe some approaches
have been followed grouping them according to the methods used.

Some proposals are based on the EM algorithm and an approximation to the
likelihood function (see for instance Finkelstein (1986) and Goetghebeur and Ryan
(2000)), the last one reduces to the Cox proportional hazards model in absence of
interval-censored data.

Some other authors relied on multiple imputation of the unobserved survival
times. Here we have the rank-based method proposed by Satten (1996), which
combines Monte Carlo simulations with the EM algorithm and fits Cox models for
complete-data setting. Two years later, Satten et al. (1998) used a parametric model
of the baseline hazard function to impute the exact time in case of interval and right
censored observations. Whereas, Goggins et al. (1998) modified the initial propose
of Satten (1996) using Montecarlo simulations only in the E-step. Then Pan (2000)
proposed a multiple imputation approach based on Breslow’s estimate of the sur-
vivorship function. The drawback of these methods is that they are computationally
demanding.

Other proposals include smoothing of the baseline hazard: Kooperberg and Clark-
son (1997) used smoothed parametric splines; Betensky et al. (1999) proposed the use
of local likelihood smoothing focusing on the estimation of the baseline hazard with-
out considering covariates. In Betensky et al. (2002) extended the local likelihood
estimation procedure to include covariates making minimal assumptions about the
hazard. However, the method requires manual entry of the bandwidth which deter-
mines the amount of smoothing in the hazard function. Additionally, the analytical
standard errors were not derived; hence, bootstrap standard errors may be calcu-
lated; however, in this setting are quite computationally demanding. Cai and Beten-
sky (2003) presented a linear spline model assuming a log linear spline mixed model
for the baseline hazard, and the Cox proportional hazards for the covariate effect.
Finally, the proposal of Sun (2006) is to restrict the baseline hazard using non de-
creasing and continuous piecewise linear functions. An interesting feature of these
models is that predictive smooth survival and the hazard functions are available as
a results of the model fit.
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It is worth to mention the paper by Zhang and Davidian (2008) proposing a gen-
eral framework for regression analysis under different censoring settings assuming
that the elements of the density of the survival time can be approximated by a "semi-
nonparametric" (SNP) density estimator.

2.2.3 Accelerated failure time models

One could use a specific shape for the hazard function that includes covariates
following a fully parametric approach. One option is the Accelerated Failure Time
(AFT) model, which assumes that the log-transformed time to event is a linear func-
tion of the predictor variables (similar to a classical linear regression model).

T = ln(Y) = µ + γ′X + σW, (2.5)

where γ′ = (γ1, γ2, . . . γp) is a vector of regression coefficients, X is a vector of
covariates and W is an error term, assumed to follow a certain distribution. This type
of models will be further implemented in Chapters 3 and 4.

Under the accelerated failure time model 2.5, the hazard function for an individ-
ual with covariate X is related to a baseline hazard rate λ0HCV as follows:

λ(t, X) = exp(−γ′X)λ0[t exp(−γ′X)] (2.6)

The factor exp(−γ′X) is called the acceleration factor, which reflects the expan-
sion or the contraction of survival time as a function of the covariates. Table 2.1
shows the different distributions and the corresponding hazard functions as consid-
ered in Chapter 4.

The AFT model can be directly used in presence of interval-censored data, apply-
ing maximum likelihood methods to estimate parameters of the baseline and regres-
sion coefficients. The construction of the likelihood considers what information pro-
vides each individual. That means, if for an individual the exact time to event is ob-
served, he/she provides information on the probability that the event occurs at that
specific time f (t), which is approximately equal to the density function. On the other
hand, for an individual with right censored observation we only know the event oc-
curs after the censoring time, then the information he/she provides corresponds to
the survival function evaluated at censoring time S(Cr). For a left-censored observa-
tion we only know the event has already occurred, so his/her contribution is in terms
of the cumulative distribution function F(Cl) = 1− S(Cl). Finally, if the observation
is interval-censored we only know the event time is in the interval S(Lj) − S(Rj).
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Table 2.1: Force of infection and survival functions for the different parametric dis-
tributions

Distribution Force of Infection (FOI) Survival Function
λ(t) S(t)

Weibull
αβtβ−1 exp[−αtβ]

α, β > 0, t ≥ 0

Gompertz
α exp(βt) exp

(
− α

β [exp(βt)− 1]
)

α, β > 0, t ≥ 0

Log-normal φ[(ln t−α)/β]
βtΦ[−(ln t−α)/β]

1−Φ
[

ln t−α
β

]
−∞ < α < ∞, β > 0, t ≥ 0

Log-logistic αβtβ−1

1+αtβ

1
1+αtβα, β > 0, t ≥ 0

Generalized Gamma f (t)
S(t) 1− I∗[δtα, β]

α, β, δ > 0, t ≥ 0

I∗ denotes the incomplete gamma function

The likelihood function is then the product of all the individual contributions.

An extension of the parametric regressions models to account for both fixed and
time-dependent covariates was proposed by Sparling et al. (2006). The method is
based on a general form of the hazard function. A detailed description of the method
and an application is shown in Chapter 3.

2.2.4 Other methods to analyse interval-censored data

Other regression models for time to event data are: i) the additive risk model
where the hazard function at time t is given by the sum of the baseline hazard and a
linear combination of the covariates (more details in Klein and Moeschberger (2003,
chap. 10)); ii) weakly parametric methods (named due to their flexibility). Essen-
tially, the baseline hazard is estimated using set of parameters that may change dur-
ing the observation period. These models can be additive or multiplicative Farring-
ton (1996).

A similar approach may be to consider an arbitrarily interval-censored problem
as a binary outcome regression problem with a complementary log-log as link func-
tion, a detailed description of the method is provided in Hosmer et al. (2008). In
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this case the outcome variable can be zero if the individual survives the interval and
one if the event is observed during the interval for that specific individual. This is
also a semi-parametric approach since the baseline hazard is left unspecified. The
estimation of the model can be done via maximum likelihood. If a logistic distribu-
tion is used as a link function the model uses the proportional odds assumption, if a
complementary log-log is used as a link function this is also a proportional hazards
model.

2.3 Frailty models

In survival analysis, frailty models account for correlation between (survival)
times and deal with the problem of heterogeneity due to unobserved covariates. For
instance, event times from individuals who have common characteristics (siblings,
married couples, and so on), or times to ocurrence of different diseases within the
same subject.

Assuming a proportional hazards model with frailties, the conditional hazard
function of the event is given by:

λ(t|ω) = λ0(t) exp
(
γ′X +ω

)
where γ is the vector of regression coefficients, X denotes the matrix of covariates,
andω denotes the random effect, which follows a certain distribution fΩ. This model
can be rewritten as follows:

λ(t|ω) = λ0(t) exp
(
γ′X

)
Z (2.7)

where Z = exp(ω) is called the frailty which follows a distribution fZ.
Different choices are possible for the frailty distribution. However, the distribu-

tion is often chosen out of mathematical convenience. Here we summarize some of
the options described by Wienke (2011):

• Discrete frailty, where the population is divided in a given number of sub-
groups, each of them with different risk of an event.

• Gamma frailty, this is one of the most common frailty distributions due to its
computational and analytical advantages. As we see in this chapter, thanks
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to the simplicity of the Laplace transform, it is posible to derive closed form
expressions for the hazard function and the unconditional survival function.
However, there is no "biological" reason to prefer this distribution.

• Positive stable frailty. If the normalized sum of n independent random vari-
ables has the same distribution than the original variables, then the distribu-
tion is called positive stable. The Laplace transform has a simple form, how-
ever, there is no closed form expression for the survival function of a random
variable with a positive stable distribution.

• Inverse gaussian frailty. It was proposed as an alternative to the gamma frailty
model, having closed form expressions for the conditional survival and the
hazard function. The power variance function distribution is a three parameter
family and includes gamma, inverse gaussian and positive stable distribution.

• Compound Poisson Frailty. It is based on the sum of a Poisson distributed
number of independent and identically gamma distributed random variables.
There are closed form expressions for the Laplace transform, the marginal sur-
vival and hazard function. One interesting property is that it includes a sub-
group of zero frailty, with no event.

• Log-normal frailty. Since there is no explicit form of the unconditional likeli-
hood, the estimation strategies for this model rely on numerical integration.

• Univariate frailty cure model. Here we assume that a proportion of people in
the population will not experience the event of interest (cured fraction).

In Chapter 5 we restrict to gamma frailty models thanks to its mathematical prop-
erties.

In the infectious diseases context, statistical models are very flexible and are use-
ful for identifying risk factors for the infection at hand; however, they do not focus
on the transmission process of the viruses (Garnett et al.; 2011). On the other hand,
the mathematical models described in Section provide a mechanistic representation
of the disease spread.
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2.4 Mathematical models for infectious disease trans-

mission

Infection is an invasion of one host organism by smaller disease-causing organ-
ism (pathogen), constitutes an ubiquitous phenomenon. There is a variety of ways in
which transmission can occur, for instance, through air, from direct or indirect con-
tact with an infected person, and through contaminated food or water among others.
There are also many infectious agents: microparasites (virus, bacteria and protozoa)
and macroparasites (Helminths and arthorpods). Understanding the dynamic of a
infectious disease is key to provide a sensible model.

A considerable amount of literature has been published on mathematical mod-
els for infectious disease transmission. Hens et al. (2012) provide an overview of
the early contributions on the topic: dÁlembert (1761) is the oldest of those; then
Bernoulli (1766) presented a differential equations model of smallpox dividing the
population in susceptible and immune (Dietz and Heesterbeek; 2002).

After the papers of Ross (1916) and Ross and Hudson (1917) outlined the de-
terministic theory for the spread of epidemics in three papers. Then, Kermack and
McKendrick (1927, 1932, 1933) studied a deterministic model for a closed population
with susceptibles, infectives and removals (those who had died, or had recovered or
were immune). The stochastic equivalent of the Kermack and McKendrick model
was proposed by Bartlett (1949) (Gani; 2010).

Over the years, the transmission of many infectious diseases such as: smallpox,
rubella, malaria, dengue fever, HIV and Hepatis A among others have been an im-
portant research topic, with increasing research activity over the last years (Hens
et al.; 2012). The transmission models have been extremely helpful in the control of
infections and in assessing the effectiveness of vaccination and intervention strate-
gies.

In the next section we present some concepts about the basic SIR model as de-
scribed in Hens et al. (2012). Subsequently, we describe some transmission models
on HCV and HIV for injecting drug users.

2.4.1 Compartmental models

Let us consider a transmission model with three compartments: susceptibles (S),
infected (I), immune or recovered (R), we assume all the individuals are born into the
susceptble class, then the age of the individual constitutes the exposure time. After
infection, the individuals move to the infected class and after clearing the infection
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Figure 2.1: Flow diagram for the SIR model. S: susceptible, I: infected, R: recov-
ered/immune

the individuals move to the rcovered/immune class. We assume all the individuals
gain lifelong immunity after recovery and do not participate anymore in the trans-
mission process. The SIR model is widely used to model many viral infections in
childhood.

Although the exposure time is the age, the transmission parameters may depend
on the calendar time. In this case the SIR model can be described by a following set
of partial differential equations:

∂S(a, t)
∂(a)

+
∂S(a, t)

∂(t)
= −(λ(a, t) + ν(a, t))S(a, t),

∂I(a, t)
∂(a)

+
∂I(a, t)

∂(t)
= λ(a, t)S(a, t)− (ω(a, t) + α(a, t) + ν(a, t))I(a, t),

∂R(a, t)
∂(a)

+
∂R(a, t)

∂(t)
= ω(a, t)I(a, t)− ν(a, t)R(a, t), (2.8)

where S(a, t), I(a, t), and R(a, t) are the age- and time-specific number of sus-
ceptibles, infected, and recovered respectively. There are some boundary conditions
given by the assumptions of the model: S(0, t) = B(t) the number of births at time
t in the population, I(0, t) = R(0, t) = 0, discarding vertical transmission of the in-
fection. Additionally, N(a, 0) denotes the age-specific population size at time zero,
whereas ν(a, t) and α(a, t) denote the natural and disease-related death rate, respec-
tively. The force of infection λ(a, t) is the rate at which individuals are infected and
ω(a, t) is the recovery rate.

The mathematical models referred in Chapters 5 and 7 are static models, that is,
assume time homogeneity. In the manuscript we consider the time since the individ-
ual starts to inject drugs as the exposure time. Furthermore, we consider a dynamic
transmission model where the force of infection depends on the number of infected
individuals in the population (Vynnycky and White; 2010).

As a general framework, the next section describes some transmission model of
hepatitis C in injecting drug users proposed by Kretzschmar and Wiessing (2004) to
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provide some concepts and to introduce the notation used in Chapters 6 and 7. Then,
we also present transmission models accounting for HIV and HCV co-infection pro-
posed by Vickerman et al. (2008) and De Vos et al. (2012).

2.4.2 Mathematical models for HCV, and HIV/HCV co-infection on
IDUs

To date various models have been developed and introduced with at least one of
the following objectives: i) to estimate the prevalence and incidence of HCV and/or
HIV, ii) to quantify the disease burden of the two viruses and iii) to assess the impact
of the treatment. This section provides an overview of some transmission models
which have been proposed.

2.4.2.1 HCV transmission models on IDUs

Based on the natural course of the infection, the model considers three disease
stages: acute infection, chronic carrier and recovered. At this point there was a lot of
uncertainty about secondary infections so the authors did not consider them in the
model.

SHCV denotes the number of susceptibles, IHCV the number of acute infectious
individuals, CCHCV the number of chronic carriers and RHCV the number of recov-
ered. The recruitment rate is determined by B and the exit rate is denoted by ν. The
force of infection depends on the rate of borrowing injecting equipment κ and the
transmission rate. If a susceptible individual borrows equipment from a someone
with acute infection the transmission rate is denoted by bI , and is denoted by bCC

if the infectious individual is a chronic carrier. N denotes the total population size.
A person with primary acute infection leaves that state with rate ωI , with a fraction
ψ of becoming chronic carriers and the remaining 1− ψ recovering completely. The
chronic carriers can still recover at a rate ωCC. The model can be represented by the
diagram presented in Figure 2.2.

The following set of differential equations can be used to describe the model:



2.4 Mathematical models for infectious disease transmission 29

 

SHCV 

    

IHCV 

     

CCHCV RHCV 

B 

    

    

    

        

Figure 2.2: Flow diagram of the mathematical model for HCV. SHCV : suscepti-
ble HCV, IHCV : acute HCV infected, CCHCV : chronic HCV carrier RHCV : recov-
ered/immune

dSHCV(t)
d(t)

= B− λHCV(t)SHCV(t)− νSHCV(t),

dIHCV(t)
d(t)

= λHCV(t)SHCV(t)−ωI IHCV(t)− νIHCV(t),

dCCHCV(t)
d(t)

= ψωI IHCV(t)−ωCCCCHCV(t)− νCCHCV(t),

dRHCV(t)
d(t)

= (1− ψ)ωI IHCV(t) + ωCCCCHCV(t)− νRHCV(t), (2.9)

with the force of infection given by:

λHCV(t) = κ

(
bI

IHCV(t)
N(t)

+ bCC
CCHCV(t)

N(t)

)
. (2.10)

To account for the heterogeneous behaviour of the injecting drug users, the model
can be extended assuming that there are two subgroups in the population. One of the
subgroups with a high average rate of needle sharing and one with a low rate. The
authors assume that the subgroups differ in their behaviour but not in the disease-
specific parameters, and all the people entering to specific risk group will remain
there during their entire injecting career. The time at risk is actually the duration of
injection reflecting the exposure time of the individuals during their injecting career.

The HCV transmission model presented in Chapter 7 is an extended version of
model proposed by Kretzschmar and Wiessing (2004). The joint model accounts
for multiple HCV infections and distinguishes between acute, chronic infected and
susceptible individuals who spontaneously clear the virus. The HCV transmission
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model in Chapter 5 also considers multiple HCV infections; however, it does not
include recruitment and exit rates.

Other models HCV include: Hutchinson et al. (2005) who estimated the current
and future burden of hepatitis C in Scotland; the authors developed a transmission
model including in the disease stages chronic HCV (mild and moderate), compen-
sated and decompensated cirrhosis, hepatocellular carcinoma and as treatment al-
ternative the liver transplantation for a proportion of patients suffering form de-
compensated cirrhosis. Hutchinson et al. (2006a) considers an stochastic model with
two sequential acute infectious stages (not infectious and infectious), recovery and
chronic infection.

Then, Vickerman et al. (2007) developed a mathematical model to explore the im-
pact of strategies to decrease syringe sharing in London. The model is an adaptation
of the model proposed by Kretzschmar and Wiessing (2004), modified to allow two
kinds of acute infection, one leading to a chronic HCV infection and the other to
spontaneous clearance of the virus.

In Australia, mathematical models have been proposed to estimate HCV inci-
dence and prevalence (Law et al.; 2003) and to assess the economic impact of the
treatment uptake (NCHECR; 2010). Other proposals account by hepatitis C treat-
ment for injecting drug users are: Martin et al. (2011b), Martin et al. (2011a), and
among others.

2.4.2.2 HCV and HIV co-infection models

Vickerman et al. (2008) developed a mathematical model for HIV and HCV co-
infection aimed at assessing the cost-effectiveness of needle and syringe programmes.
The Figures 2.3 and 2.4 represent the model.

A similar model was used to explore the hypothesis of a low prevalence of HCV
despite the high rates of sharing needles/syringes, and to project future HIV/HCV
co-infection while assessing the impact of interventions (Vickerman et al.; 2009). Re-
cently, Vickerman et al. (2011) used a mathematical model to understand the trends
in HIV and HCV prevalences, determining epidemiological profiles.

De Vos et al. (2012) developed a mathematical model to investigate the relation-
ship between the prevalences and the heterogeneity of injecting risk behavior. The
authors found that there is threshold HCV prevalence at which HIV can invade into
an IDU population. Their results agreed with previous results from Vickerman et al.
(2010).

The development of a mathematical model should consider an assessment of un-
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Figure 2.3: Flow diagram of the mathematical model for HIV Vickerman et al. (2008).
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Figure 2.4: Flow diagram of the mathematical model for HCV Vickerman et al.
(2008). SHCV : susceptible HCV, I1

HCV : acute HCV infected who afterwards become
chronic carriers, CCHCV : chronic HCV carrier, I2

HCV : acute HCV infected who may
spontaneously clear the virus, SAB

HCV : susceptible individuals who spontaneously
clear infection, IA1

HCV : Immune with antibodies, and IA2
HCV : Immune without an-

tibodies
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certainty. Below we present the theoretical framework we follow to assess model
uncertainty and calibration.

2.5 Model uncertainty and calibration in infectious dis-

ease models

Several authors have pointed to the importance of rigorous sensitivity analysis
to model the dynamics of a given infectious disease (Bilcke et al.; 2011; Garnett et al.;
2011; Jit and Brisson; 2011; Okais et al.; 2010; Vanni et al.; 2011). Vanni et al. (2011)
and Bilcke et al. (2011) provide a methodological framework to account for different
sources of uncertainty and to calibrate the model to observational data. Bilcke et al.
(2011) classifies the uncertainty in decision analytic-models in three components:
methodological (which normative modelling approach should be used?), structural
(what structural aspects should be incorporated to capture the relevant character-
istics of the disease?), and parameter uncertainty (what is the true value of each
model parameter?). Jit and Brisson (2011) adds the model uncertainty to refer to
variations due to different categorical choices that cannot be readily parameterized
(e.g. a choice between static and dinamic models).

In the HIV/HCV model presented in Chapter 6 we account by structural uncer-
tainty because we consider two definitions for the force of infection and parameter
uncertainty.

Vanni et al. (2011) proposed a seven steps approach to guide the calibration pro-
cess of a mathematical model:

• Select the parameters should be varied in the calibration process

• Select the calibration targets. It refers to the data used to calibrate the model
based on the objectives of the study.

• Define a goodnes of fit measure. It allows to assess how close is the model to
the data

• Select a parameter search strategy.

• Determine acceptable goodness of fit sets. It is directly related with the conver-
gence criteria

• Determine the stopping rule to ends the calibration process.
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• Integrate the calibration results and the economical parameters. This is useful
to measure intervention strategies.

Following Vanni et al. (2011) on Chapter 7 we calibrate HIV/HCV model (pre-
sented in Chapter 6) using statistical methods and concepts. The seven steps we
follow are: i) we did not discard any parameter in the calibration process; ii) our
target is to reproduce the trends observed on a regional data from Italy and Spain;
iii) our goodness of fit measure is a multinomial likelihood considering the serosta-
tus of the individuals and the duration of injection; iv) we use the latin hypercube
sampling as parameter search strategy; v) the acceptance criterion was based on the
observed percentiles of the multinomial likelihood; vi) as stopping rule we consider
500,000 parameter sets; the last point was not considered.

Additionally we assess the statistical variability using bootstrap and perform
analyses of the model parameters in the high-dimensional parameter space.

2.6 Statistical and mathematical models to analyse

cross-sectional data

The force of infection can be estimated from cross-sectional seroprevalence sur-
veys. In such survey, taken at a certain calendar time, each participant is tested for
the presence of infection-specific antibodies, a marker for a past infection and thus
constituting current status data on past infection. The participant age is usually con-
sidered as the time at risk.

Hens et al. (2010) presented an overview on estimating the force of infection
from cross-sectional data. Key-contributions of the 20-th century on the topic are
attributed to: Muench (1934), Wilson and Worcester (1941) (with constant force of in-
fection), Griffiths (1974) (with linear force of infection), Grenfell and Anderson (1985)
(polynomial), Farrington (1990) (non-linear) and Keiding (1991) (non-parametric es-
timation).

At Hasselt University a lot of work has been done in the area of modelling in-
fectious diseases. Shkedy et al. (2003, 2006); Namata et al. (2007) proposed non-
parametric, semiparametric and parametric methods to model seroprevalence data
in the generalized linear mixed model framework by using local polynomials, frac-
tional polynomials and penalized splines. Additional contributions have been in-
cluded in the book of Hens et al. (2012).

In the IDU setting serological data constitutes one valuable source of informa-
tion for understanding HIV and HCV epidemiology. Serological data comprises the
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serostatus for each individual and self-reported data on the duration of injection can
be considered as a measurement of the time at risk. Several studies have addressed
modelling the force of infection and co-infection for HCV and HIV in IDU popula-
tions based on serological data (Sutton et al.; 2008; Platt et al.; 2009; Del Fava et al.;
2011). In these models, the force of infection has been estimated as a function of the
exposure time and a term reflecting the individual heterogeneity in the acquisition
of the virus; a frailty term.

Platt et al. (2009) use a piecewise constant model and consider the serostatus
for HIV and HCV. Sutton et al. (2008) use a random effect model considering three
viruses: HIV, HCV and HBV. Where the proportion of individuals infected is a func-
tion of the cumulative force of infection. The study evidences the individual hetero-
geneity of force of infection estimates within the overall IDU population. Del Fava
et al. (2011) use marginal models to estimate the association measures between HCV
and HIV infections. The authors also consider a risk factor analysis and some ran-
dom effect models to take into account the individual heterogeneity in the acquisi-
tion of the infections.

The statistical models are very flexible and are useful for identifying risk factors
for the infection at hand; however, they do not focus on the transmission process
of the viruses (Garnett et al.; 2011). On the other hand, the mathematical models
described in section 2.4 provide a mechanistic representation of the disease spread.

The models proposed by: Vickerman et al. (2007, 2011) are some examples of
mathematical models calibrated to cross-sectional surveys. Whereas (Law et al.;
2003; Vickerman et al.; 2008; Hutchinson et al.; 2005) consider several sources of in-
formation simultaneously for the calibration process.



Chapter 3
Effect of probiotics on acquisition
of multiresistant Enterococci:
survival analysis with
interval-censored data and
time-dependent covariates

As indicated in Chapter 1, antibiotic resistance has a considerable impact on mor-
bidity and mortality of the hospitalized patients. Although new generations of an-
tibiotics with fewer side effects have been developed, the incidence of antibiotic asso-
ciated diarrhea ranges between 3.2 and 29 per hundred hospitalized patients (Gupta
and Garg; 2009). Some studies suggest that probiotics may help to maintain the
integrity of the intestinal flora and that they augment restoration of integrity after
disruption (Hickson et al.; 2007; DSouza et al.; 2002). However, there is need of ev-
idence to support the use of probiotics to prevent infections as it has been pointed
by Oudhuis et al. (2011). Well-designed clinical trials are the answer to quantify the
impact of probiotics to prevent infections.

In the University Medical Center Utrecht proportions of ampicillin-resistant Ente-
rococcus faecium (ARE) increased in the last 15 years, from 2% in 1994 tot 50% in 2008.
A prospective cohort was designed to quantify the effects of probiotics and antibi-
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Effect of probiotics on acquisition of multiresistant Enterococci:

survival analysis with interval-censored data and time-dependent covariates

otics on acquisition of ARE-colonization in patients admitted to two hospital wards
with, previously documented, high prevalence of intestinal ARE carriage (de Regt
et al.; 2008).

Acquired antibiotic resistance seriously limits therapeutic options when infec-
tions occur, increasing the risk of treatment failure (Brown et al.; 2006). Typically,
infections with multiresistant nosocomial pathogens such as ARE are preceded by
colonization. Since colonization is asymptomatic, colonized patients serve as silent
reservoirs with a high propensity of unnoticed spread to the other patients.

The data used in this chapter was kindly provided by M. de Regt. This chapter
constitutes an extension of the previous analyses presented on de Regt et al. (2010).
Here we account for the interval-censored observations and time dependent covari-
ates. We first estimate the survival curve (the probability that the time to event
does not occur before a specific point in time) without any distributional assump-
tion (nonparametrically). Secondly, we present several methods to compare survival
curves between groups. Next, we introduce semi-parametric, parametric regression
methods accounting by interval-censored data. The parametric regression technique
applied here also accounts for time-dependent covariates.

The study was performed in the gastroenterology/nephrology and geriatric ward,
of the University Medical Center Utrecht between June 2007 and March 2008. The
patients with expected length of stay longer than two days were screened for ARE
colonization by obtaining perianal swabs, the screenings took place within 48 hours
after admission, twice weekly and within 48 hours before discharge. In each ward
there were two periods one without the intervention, being the control period, and
one with intervention in which all the recruited patients were offered probiotics
twice daily during their entire stay on the wards.

The study collected information about 530 patients, 94 (18%) were ARE colonized
at admission and were not included in this analyses. Of remaining 436 noncolonized
patients at admission, 92 acquired are colonization. For the purpose of this analysis,
we only include the 436 patients. The data includes: i) demographic characteristics
of the patienst such as gender and age; ii) variables related to the hospitalization
such as admision and discharge dates, ward, date of last negative result for ARE
colonization, date of first positive result for ARE colonization, probiotics use, and
first date and last date of probiotics intake.

In the following sections, we discuss and illustrate three different approaches to
analyze interval-censored data. First, we do not make any assumption regarding the
shape of the survival function nor the relationship between the covariates and the
time to acquisition (nonparametric). Next, we assume a specific type of relationship
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between the hazard function and the covariates but not regarding the shape of the
hazard function (semi-parametric). Finally, we assume a distribution for the survival
function and for the covariates (parametric).
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3.1 Non-parametric analysis of the survival

Initially, we estimate the survival curve without any a priori assumption regard-
ing the distribution of the time to ARE acquisition. We use the Nonparametric Max-
imum likelihood Estimator Turnbull (1976) described in chapter 2. To estimate the
survival curve the self consistency algorithm available in the R packages ‘Interval’
and ‘Icens’ is used. The estimated curve provides the probability that a study sub-
ject survives past a specified time. Other two algorithms that can be used are: hybrid
Expectation Maximization-Iterative Convex Minorant estimator and Project Gradi-
ent Methods.

Secondly, we distinguish between subgroups as defined by several categorical
covariate: probiotics use and antibiotics use. Originally, age at admission is continu-
ous, yet in this section we dichotomize the variable as: 60 years or younger vs older
than 60 years. After, we describe some formal tests to compare the survival curves
providing information about the significance of the factors considered.

There are two types of tests: rank-based and survival-based tests. The rank-based
tests consider a weighted difference of the estimated hazard functions in the different
groups. The survival-based tests rely on the weighted differences of the estimated
survival functions. Only a few of these tests have been made available in existing or
implemented in new software. In R, the packages ‘Interval’ and ‘glrt’ can be used to
perform some of the tests. In SAS there is a macro that allows the comparison of two
survival curves accounting by interval-censored data (details are shown in Chang
(2006)).

We focus on four tests: in the first one the scores are associated with the grouped
proportional hazards model of Finkelstein (1986); the second corresponds to a gen-
eralization of the Wilcoxon Mann Whitney scores; and the last two are generalized
tests proposed by Zhao and Sun (2004) and Zhao et al. (2008).
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3.2 Semi-parametric regression for interval-censored data

The Cox model is the most commonly used method to analyze right-censored
data and is available in most statistical software packages. The Cox model provides
an estimate of the hazard ratio (a ratio of the hazards rates in the treated versus the
control group) and its confidence interval. The hazard for an individual is modelled
as a product of two factors: the baseline hazard that is left unspecified (nonparamet-
ric part) and a factor that characterizes how the baseline hazard function changes as
a function of subject covariates (parametric part).

For interval-censored data a unified approach is still lacking, since, the estima-
tion of the unknown baseline hazard is challenging. A more detailed overview was
presented on Chapter 2. Partly due to the great computational burden required to
implement any of those methods and due to the lack of a unified approach, only
the proposal made by Pan (2000) has been implemented in R, more specifically, in
the package ‘intcox’ albeit that the package does not provide standard errors for the
estimated regression parameters. Consequently, the authors of the package suggest
using a nonparametric bootstrap (Davison and Hinkley; 1997).
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3.3 Parametric regression models for interval-censored

data with time-dependent covariates

In the parametric regression models, we assume a distribution for the time to
event outcome. In the previous section the underlying assumption is that the effect
of the covariates is proportional (multiplicative) with respect to the hazard, whereas
in the AFT model the effect of the covariates is proportional (multiplicative) with
respect to the survival time.

To assess the impact of the multiple time dependent covariates, we use an ap-
proach proposed by Sparling et al. (2006). In this framework a parametric model
for the survival curve is assumed and time dependent covariates are also taken into
account. The approach is based on a smart parameterization of the hazard function.
And some of the well know distributions of the AFT model are special cases.

The general form of the hazard function is given by:

λ(t) =
αβtα−1

[1 + βtα]κ
. (3.1)

(α, β > 0; κ is any real number). For specific values of κ, we can appreciate
similarities with some of the distributions presented in Table 2.1. If κ = 0, λ(t) is
the hazard function for the Weibull distribution, when κ = 1, the family yields the
log-logistic distribution.

Let xi = (xi1, . . . , xip)
′ be a vector of p fixed covariates for the i-th subject. Addi-

tionally the time dependent covariates are updated at a sequence of updated times
τi0, . . . , τiki

, where τi0 is the time at which a subject enters follow up. The set of up-
date times τij may differ among subjects. At the jth update time of the ith subject τij,
let yij = (yij1, . . . , yijq)

′ denote the vector of q time dependent covariates values that
are updated at that time.

Let γ and η be the coefficient vector for the fixed and time dependent covariates
xi and yij, respectively, so that: γ′xi = γ1xi1 + . . . + γpxip and η′yij = η1yij1 + . . . +
ηqyijq

Let θ be the intercept of the model. βij = exp(θ + γ′xi + η′yij), is a rate parameter
conditional on the covariate values at update time τij. For subject i, conditional on
covariates measured at baseline at time τij, this hazard can be expressed as:

λ(τij|zi, yij) =
αβijτ

α−1
ij

[1 + βijτ
α
ij ]

κ
(3.2)
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In the study there are several time dependent covariates: probiotics use which is
one if the patient took the probiotics an specific day and zero otherwise, colonization
pressure defined as the proportion of colonized patients in a ward, antibiotics intake
as dummy variable being one when the patient took antibiotics and zero otherwise,
and as a fixed covariate we consider age at admission and ward. We also consider
the interaction between antibiotics and probiotics.
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3.4 Application to the UMCU probiotics dataset

In this section we present the results of the analysis of the UMCU dataset. Ini-
tially we present the nonparametric estimates of the survival function without any
covariates and then considering important covariates such as probiotics use, antibi-
otics use and age of admision. Initially, we ignore the time-dependence nature of
some of the covariates such as probiotics and antibiotics use and colonization pres-
sure.

Next, we present the results of a semi-parametric regression model proposed by
Pan (2000) and parametric survival model for interval-censored accounting by time-
dependent covariates following the approach proposed by Sparling et al. (2006).

3.4.1 Nonparametric estimation of the survival functions

Initially, we estimate the survival curve without any a priori assumption regard-
ing the distribution of the time to ARE acquisition. Figure 3.1 shows the nonpara-
metric maximum likelihood estimates (NPMLE) of the survival curves, based on the
self consistency algorithm, first without covariates (Figure 1a), and then with co-
variates Figures (1b-1d). The estimated curve (Figure 1a) provides the probability
that a study subject do not get infected after a specified period time (expressed in
days), e.g. the probability that a subject is free of colonization after one month in the
hospital is 0.32.

Next, we distinguish between subgroups as defined by the categorical covari-
ates: Figure 1b for age at admission; Figure 1c for probiotics use and Figure 1d for
antibiotics use. Originally, age at admission is continuous, yet in this section we
dichotomize the variable as: 60 years or younger vs older than 60 years. Based on
Figure 1b, the effect of age at admission seems more pronounced in the first 16 days,
with a longer time to acquisition for patients of 60 years or younger. Based on Figure
1c there is no consistent impact of probiotics use on the survival function: the two
curves are very close to each other during the first 15 days, whereas the estimated
survival curve of those who were not treated with probiotics is higher from day 16
to day 40. On the other hand, the impact of antibiotics use is quite clear; resulting in
a higher curve for the group without antibiotics (Figure 1d). The patients who took
antibiotics could have been exposed to an ARE therefore we see that the NPMLE for
time to colonization decreases in this group. For estimation purposes, probiotic and
antibiotics use was dichotomized in ‘Yes’ for those who took probiotics/antibiotics
at least once and ‘No’ otherwise.
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(c) NPMLE survival curve according to
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(d) NPMLE survival curve by antibiotics

Figure 3.1: UMCU probiotics dataset. Nonparametric maximum likelihood esti-
mates of the survival functions.
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We obtain similar results using two other algorithms to estimate the NPMLE: the
hybrid Expectation Maximization-Iterative Convex Minorant estimator and Project
Gradient Methods (results are not shown).

After comparing the NPMLE, we perform some non-parametric tests to compare
survival curves according to probiotics, antibiotics and age at admission.

In order to compare survival curves for interval-censored data several tests have
been proposed. For a detailed description we refer to (Lesaffre et al.; 2005) and
Sun (2006). Among the more recent proposals are: a family of tests that extends
the Fleming-Harrington test described in the paper by Gómez et al. (2009) and a
weighted logrank test proposed by Fay and Shaw (2010).

The tests can be classified into rank-based or survival-based tests. The rank-based
tests consider a weighted difference between the estimated hazard functions in the
different groups. The survival-based tests rely on weighted differences between the
estimated survival functions.

Despite the considerable amount of tests available for interval-censored data, a
detailed comparison including all the most recent proposals has not been performed.
However, some comparisons including the performance of certain tests have been
reported in Fay (1999) and Huang et al. (2008).

Deriving the asymptotic behaviour of the tests in an interval censored setting
is more complex, therefore some authors use asymptotic methods with the observed
Fisher‘s information, and some rely on resampling methods including permutations,
multiple imputation (Huang et al.; 2008) or bootstrap.

Furthermore, few of the tests have been directly implemented in software; in
R the packages ‘interval’ and ‘glrt’ compute some of the tests. Additionally, Gómez
et al. (2009) shows a detailed description in order to use the family of tests developed
by Gomez and Oller (2008).

In SAS the macro
It is worth to mention the time dependence nature of the covariates of the covari-

ates in the study is not taken into account under any of the approaches formulated
before.

We obtain consistent results with all the tests considered. Probiotics use was
found to be non significant, whereas antibiotics use was (Table 3.1). The results for
age of admission are not that clear, the p-values are between 5% and 10%. As we will
see in the next section the age of admission has an indirect effect on the outcome. In
fact the NPMLE shows that the survival curves cross after 20 days, this is certainly a
challenge, since the tests are more suitable to detect ordered survival curves.

The nonparametric tests presented above allow comparisons for each categorical
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factor one at a time; moreover, the joined effect of two (or more) categorical covari-
ates can be studied by defining a new variable with levels being all combinations of
the original covariates. However, this procedure might produce subgroups with a
very low number of observations or even empty subgroups. These tests can also be
used to compare subgroups of continuous covariates after categorization (as previ-
ously shown for age at admission).

The tests previously described do not provide any parameter quantifying the
effect of each covariate; they only provide information regarding their significance.
When the main interest is to quantify the impact of several factors, or to predict the
time to event, then regression modelling techniques are more appropriate. Those
include the extensions of the well-known Cox proportional hazard models (semi-
parametric) and the Accelerated Failure Time (AFT) models (parametric) that we
describe below.

Furthermore, note that the time dependent nature of the covariates in the study
has not been taken into account using the nonparametric approach. In the following
sections, we also point to some methods that can be applied in the presence of time
dependent covariates.

3.4.2 Semi-parametric model for interval-censored data

We applied the method proposed by Pan (2000) and calculated the bootstrap con-
fidence intervals using nonparametric bootstrap (Davison and Hinkley; 1997). Based
on the results we conclude that age at admission and probiotics use are not signifi-
cant. Antibiotics use is found to be a significant risk factor with the hazard of ARE
colonization being five times higher for those who were treated with antibiotics as
compared to those who did not receive antibiotics (3.2). Notice that the interest is to
reject the null hypothesis that the hazard ratio is equal to one, implying that there is
no impact of the variable on the hazard function.

3.4.3 Parametric models for interval-censored data considering time-
dependent covariates

Now we assume a particular distribution for the time to event outcome. The most
often applied method is the Accelerated Failure Time (AFT) Model. In the previous
section the underlying assumption is that the effect of the covariates is proportional
(multiplicative) with respect to the hazard, whereas in the AFT Model the effect of
the covariates is proportional (multiplicative) with respect to the survival time.
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Table 3.2: UMCU probiotics dataset. Parameter estimates and standard errors for the
semi-parametric regression model

Parameter Estimate (SE) P-value Hazard ratio 95% CI Hazard ratio

Age at admission 0.007 (0.0060) 0.1155 1.007 (0.996 ; 1.020)
Probiotics 0.259 (0.232) 0.1317 1.296 (0.824 ; 1.994)
Antibiotics 1.637 (0.352) <0.0001 5.142 (2.967 ; 11.977)

The AFT model assumes that the log-transformed time to event is a linear func-
tion of the predictor variables (similar to a classical linear regression model). One
common choice for the distribution is the Weibull distribution, implying that the
error term follows an extreme value distribution and that the proportional hazards
property (as in the Cox Proportional hazard model) is satisfied. Other popular dis-
tributions are the log-logistic and the log-normal distribution. To select the model
that fits the data best, likelihood ratio tests can be selected for the nested models and
selection criteria like the AIC for the non-nested models. Sparling et al. (2006) pro-
pose a model that accounts for interval-censored data considering time-dependent
covariates. The parameterization proposed by Sparling et al. (2006) described in Sec-
tion 3.3 has the Weibull and the log-logistic distributions as particular cases.

Firstly, we consider several models with one time-dependent covariate each (re-
sults are not shown), from them only age at admission and antibiotics use were sig-
nificant. The remaining time-dependent covariates probiotics use, isolation and col-
onization pressure were not significant. Subsequently we consider a full model with
the following terms: as main effects we include antibiotics use, probiotics use, isola-
tion and colonization pressure; and three interaction terms probiotics-age, probiotics-
antibiotics and antibiotics age. The three interaction terms as well as the main effects
for colonization pressure and isolation were sequentially removed from the model
following a backward selection procedure. We also assumed the shape parameter
κ equals zero taking into account the correspondent p-value. Hence, we assume a
Weibull distribution as a parametric form for the model. The estimates for the re-
duced model are shown in Table 3.3.

Based on the results of Table 3.3, those individuals who take antibiotics have
higher risk of developing ARE than those who do not. Besides we observe a slight
higher risk of ARE in the individuals that took probiotics. The results are counterin-
tuitive because the purpose of the probiotics administration is to protect again ARE
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Table 3.3: UMCU probiotics dataset. Estimates for the parametric reduced model
with age as fixed effect and probiotics and antibiotics use as time-dependent covari-
ates.

Parameter Estimate (SE) P-value Acceleration 95% CI for AF
Factor (AF)

Intercept -6.239 (0.561) <0.0001
Age at admission 0.009 (0.006) 0.1053 1.009 (0.998 ; 1.021)
Probiotics use: yes 0.549 (0.268) 0.0404 1.732 (1.024 ; 2.929)
Probiotics use: no 0.000 1.000
Antibiotics use: yes 2.150 (0.268) <0.0001 8.588 (5.075 ; 14.534)
Antibiotics use: no 0.000 1.000
Scale 1.302 (0.128)

colonization. Besides, probiotics use appears to be significant whereas the previous
tests did not show any significant result.

In contrast, age at admission showed some borderline significant results in the
non-parametric tests, when the variable was dichotomized, but does not appear sig-
nificant in the model. As we pointed out before, this may be attributed to the fact
that the age effect is changing during the analysis period. Therefore, we focus on the
marginal distribution of the age at admission by probiotics use.

Figure 3.2 shows some difference in the distribution of age according to probi-
otics intake, the peak of the density function for this group is around 80 years old,
whereas the peak for the group without probiotics is around 60 years. Meaning that
the individuals who took probiotics where in general older than those who did not.
As we can expect, older people run a higher risk of ARE-acquisition compared to
younger individuals.

We categorize the age variable because we do not think the relationship between
time to colonization and age is linear. We define four groups: younger than 41 years
old, between 41 and 60 years, between 61 and 80 years and older than 80 years.

In fact, the results considering a model with the three age categories shown in
Table 3.4 reveal that the impact of probiotics use was not significant in this study;
additionally, there is no significance difference in the time to ARE infection for the
patients in older age groups, the difference is only significant between the first cate-
gory (younger than 41) and the baseline (older than 80 years old).
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Figure 3.2: UMCU probiotics dataset. Estimated density function of age at admission
according to the probiotics intake.

3.5 Concluding remarks

The study was performed in a hospital with documented high prevalence of in-
testinal ARE carriage, in this setting we did not find significant impact of daily pro-
biotics intake on the reduction of the time to ARE acquisition. In the same sense,
a recent meta-analysis by Hempel et al. (2012) mentions that most of the trials did
not show a statistically significant advantage of probiotics use and a review made by
(Oudhuis et al.; 2011) shows conflicting results regarding the effects of probiotics on
infection rates.

When we compare distribution of the age of admission for the two groups: with
and without probiotics we notice the patients who receive probiotics tend to be older
than those who did not receive them. This may indicate a selection bias which can
clear affect the results agains probiotics use.

Therefore, more research is needed to demonstrate which are the most effective
probiotics and to target the patients according to the type of antibiotics they take
(Hempel et al.; 2012). Another aspect that should be taken into account is the clinical
condition of the patient (Oudhuis et al.; 2011).

As a sensitivity analysis we assess the impact of the interval-censoring on the
results. We compare the model estimates from Table 3.3 with imputed time to event.
The imputation approach is a common naive way to deal with interval-censored
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Table 3.4: UMCU probiotics dataset. Estimates for the parametric reduced model
with age as fixed effect categorized in three groups and probiotics and antibiotics as
time-dependent covariates.

Parameter Estimate (SE) P-value Acceleration 95% CI for AF
Factor (AF)

Intercept -5.606 (0.449) <0.0001
Age at admission ≤40 -1.088 (0.489) 0.0260 0.337 (0.129 ; 0.878)
Age at admission 41-60 0.011 (0.290) 0.9705 1.011 (0.572 ; 1.786)
Age at admission 61-80 0.090 (0.253) 0.7213 1.095 (0.666 ; 1.799)
Probiotics use: yes 0.520 (0.268) 0.0525 1.682 (0.994 ; 2.846)
Probiotics use: no 0.000 1.000
Antibiotics use: yes 2.173 (0.268) <0.0001 8.789 (5.192 ; 14.879)
Antibiotics use: no 0.000 1.000
Scale 1.319 (0.130)

data, here the time to event is imputed using a left, right or midpoint value of the
interval after which standard methods to analyse the data can be applied. It has
been shown that this approach can lead to biased and misleading results (Lindsey
and Ryan; 1998). Additional analyses carried out shown that for this specific data
the impact of interval-censored data is negligible.

However, in general ignoring interval-censored data and naively imputing the
exact time to event is not recommended. Several methods can be implemented de-
pending on the objectives of the study. In this Chapter, we presented a brief overview
of methods and available software, with an illustration in the microbiological con-
text. We did not attempt to present an exhaustive review, excluding topics such as
clustering and correlated data, current status data as a particular case of interval-
censored, or casting methods in a bayesian framework. Chapter 5 describes some
methods to account for clustering and current status data.

We also did not mention flexible modelling, such as smoothing splines for contin-
uous covariates or mixture distributions for the error terms, which can be applied.
For the weakly parametric methods, the ‘Epi’ package from R, can be used to fit
additive and multiplicative models as proposed by Farrington (1996).

We present three algorithms to obtain a Nonparametric Maximum Likelihood Es-
timator, as well as some options to compare survival curves considering a categorical
covariate. To test for continuous covariates or more than one covariate simultane-



3.5 Concluding remarks 51

ously parametric regression methods are straightforward to apply and, importantly,
time dependent covariates can be taken into account albeit with some software limi-
tations. In this framework the inferences depend upon the assumption of the model,
which is difficult to assess in this setting. Therefore the approach is parametric in
nature, in contrast to the nonparametric estimation (NPMLE).

Interval-censored data is very common when the event of interest can only be
monitored at specific time points, yet many of the proposed methods have not been
implemented in any statistical software. The lack of software is notorious in the ex-
tensions of the Cox proportional hazard models, the most popular method for right
censored data, partly due to the lack of a unified approach in this setting in combina-
tion with the large computational efforts that are needed. Finally, for right censored
settings the assumption of proportional hazards in the Cox model can be tested by
visual methods as well as formal tests based on the residuals of the models or the
inclusion of time dependent indices (Therneau and Grambsch; 2000). For interval-
censored data the proportionality may only be assessed using graphical techniques.

All the methods discussed here assumed that the censoring mechanism is inde-
pendent of the time to event (independent interval censoring). To deal with depen-
dent or informative interval censoring we refer to Sun (2006).
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Chapter 4
The estimation of the force of
infection for HCV among
injecting drug users using
interval-censored data

As has been mentioned in Chapter 1, hepatitis C virus is a clear treat for public
health. In developed countries, 90% of the persons with chronic HCV infection are
current or ever injecting drug users, or have a history of transfusion with unscreened
blood. In addition, IDUs are also at high risk to acquire HIV and other infectious dis-
eases due to common transmission routes such as sharing syringes or other injecting
paraphernalia.

There is a vast amount of literature dealing with the estimation of the infection
hazard, often referred to as the force of infection (FOI), from cross-sectional sero-
prevalence surveys (see Hens et al. (2010), for an overview). In such a survey, taken
at a specific calendar time, each participant is tested for the presence of infection-
specific antibodies, a marker for past infection and thus constituting current status
data on past infection. In general, the participant’s age is considered the time at risk.
However, in the setting of IDUs, the cross-sectional sample has information on the
serostatus of each individual and the self-reported duration of injection is usually
considered as a more precise measurement of the time at risk. A quintessential as-
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sumption in the estimation of the FOI from cross-sectionally collected seroprevalence
data is the assumption of time homogeneity, i.e. assumes that the FOI is invariant
with respect to calendar time. This assumption can be relaxed when either a cohort
study or repeated cross-sectional studies are available.

The Amsterdam Cohort Studies is a prospective cohort study that test partici-
pants’ blood for infections at each follow-up visit. Therefore, the exact time to event
is unknown but the time interval in which the infection occurs is known. In sur-
vival analysis, data of this type are known as type II interval-censored data, whereas
current status data constitute type I interval-censored data (Sun; 2006). In the litera-
ture, several authors ignored the interval and imputed the time to event T using the
left, right or midpoint value of the interval after which they applied standard time
to event techniques to analyse the data. It has been shown that this approach can
lead to biased and misleading results (Lindsey and Ryan; 1998); e.g. the right end-
point imputation yields inflated estimates of the risk Dorey et al. (1993). Therefore
appropriate techniques have to be used (Sun; 2006).

The estimation of the force of infection for the IDU population was based previ-
ously on cross-sectional data (Del Fava et al.; 2011; Mathei et al.; 2006; Namata; 2008;
Platt et al.; 2009; Sutton et al.; 2006, 2008). The major contribution of this study is the
estimation of the FOI for HCV among IDUs using a large cohort study, with more
than 25 years of follow up, while assessing the impact of self-reported behavioural
risk factors (injection frequency, type of drug injected, sharing of syringes) using an
adequate statistical model. Moreover, the inclusion of date of first injection as a fac-
tor relaxes the assumption of time homogeneity which is made when cross-sectional
data is analysed.

The chapter is organized as follows. In Section 4.2, we describe nonparametric
survival models to estimate the time to HCV infection using interval-censored data
and parametric survival models to identify potential risk factors. The models are
applied to the Amsterdam Cohort Studies data in Section 4.3 while focusing on the
estimation of the FOI for HCV and the identification of risk behaviour factors asso-
ciated with infection. We end with a discussion in Section 4.4.
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4.1 Study population and data

The Amsterdam Cohort Studies is a collaboration of several institutions in the
Netherlands. ACS is part of the Netherlands HIV Monitoring Foundation and is
financially supported by the Netherlands National Institute for Public Health and
the Environment.

The cohort study initiated in 1985 to investigate the prevalence, incidence, and
risk factors of HIV infections and other blood-borne and/or sexually transmitted
diseases, as well as the effects of intervention. Participation in the ACS is voluntary,
and informed consent is obtained for every individual at intake. ACS participants
visit the Amsterdam Health Service every 4-6 months, they complete a standard-
ized questionnaire about their health, risk behaviour, and sociodemographic situa-
tion. Questions at ACS entry refer to the 6 months preceding the visit; questions at
follow-up refer to the interim since the preceding visit. Blood is drawn each visit for
laboratory testing and storage. Until 2006, 1,663 DUs have been included in the ACS.
The recruitment for the DUs was via methadone programs, a sexually transmitted
diseases clinic for drug using sex workers and by word of mouth. A drug user was
defined as an IDU if he or she reported ever having injected drugs (World Health
Organization (WHO); 2011).
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4.2 Methods to estimate force of HCV infection and

survival function

Several attempts have been made to estimate the force of infection of HCV in
the IDU context based on cross-sectional data (Del Fava et al.; 2011; Mathei et al.;
2006; Namata; 2008; Platt et al.; 2009; Sutton et al.; 2006, 2008). All authors assume a
parametric function for the prevalence and the force of infection, either assessing the
impact of covariates or taking into account the association with other viruses. The
proposed methods were applied to the binary data representing the current status
of the disease of each IDU. Diverse and more appropriate techniques can be applied
to cohort data and therefore, given the data at hand a survival analysis taking into
account censoring and truncation should be considered.

Within survival analysis the main interest is in the estimation of the time to event
distribution and factors that affect it. One of those factors is the censoring, where
only partial information about the event is known. Denote T, the time until an event
occurs also called survival time, and d, the censoring indicator, which takes value
one if the event occurs and zero if at the end of the study period the event has not
been observed. In that case, the subject is said to be right censored and the time to
event T is taken to be equal to the follow up period. If the event of interest, in our
case infection with HCV, has occurred before the subject enters the study, the data is
left censored.

The ACS is a follow up study in which the exact time to infection with the HCV
virus (T) is unknown but the time interval in which the infection occurs is known.
Let T denote the time to infection and L and R the left and right limit of the interval in
which the subject was infected, L ≤ T ≤ R. For current status data R = ∞ for a right
censored subject (seronegative) or L = 0 for a left censored subject (seropositive).

We use the definitions for survival and hazard function described in Chapter 2
Section 2.2.

Considering the characteristics of the study population, the time at risk is given
by the self-reported number of years injecting. That is, the time since an IDU starts to
inject drugs until he or she becomes infected with HCV. In what follows we first dis-
cuss nonparametric approaches to estimate the survival function in case of interval-
censored data. We then introduce accelerated failure time models for interval-censored
data and estimate the force of infection in case of interval-censored data while ac-
counting for behavioural risk factors and time heterogeneity.
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4.2.1 Nonparametric estimation of the survival function

We consider a nonparametric estimate for the survival curve, using the algo-
rithm proposed by Turnbull (1976) which is called a self-consistency algorithm to ob-
tain a nonparametric maximum likelihood estimator (NPMLE) of the survival func-
tion. The interval-censored data is treated as incomplete data and the Expectation-
Maximization (EM) algorithm Dempster et al. (1977) is applied to take these incom-
plete data into account.

4.2.2 Accelerated Failure Time Models

Assessing the influence of risk factors in a survival analysis can be done within
the accelerated failure time framework, where the time to HCV infection is assumed
to follow a specific distribution. We follow the description of the AFT model pre-
sented in Section 2.2.3. The regression coefficients have an interpretation similar to
those in standard regression.

For the participants in the ACS, the exact time of HCV infection is unknown.
Hence we define the limits for the interval in which an IDU was infected as follows:
for the seroconverters the lower limit of the interval is the number of years of in-
jection at the last negative result for HCV whereas the upper limit is the number of
years of injection at the first positive result; for the individuals who were negative at
the end of the follow up the lower limit is the number of years of injection until at
last visit, and the upper limit is infinite, that is:

Last negative test result ≤ T ≤ first positive test result, seroconverter
Last negative test result ≤ T ≤ ∞ seronegative

4.2.3 Left truncation

Left truncation arises when individuals come under observation only some known
time after the natural time origin of the phenomenon under study (Klein and Moeschberger;
2003). For this study, the data are left truncated as a condition for inclusion in the
study is that individuals are uninfected at cohort entry. To account for left trunca-
tion Pencina et al. (2006) proposed five different methods all yielding similar results.
The method employed here accounts for left truncation by including the duration of
injection at the first visit as a covariate in the model and the results thus warrant a
conditional interpretation.
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4.3 Application to the Amsterdam Cohort Studies dataset

The description of the ACS dataset was presented in Section 1.2.1. For the analy-
sis presented in this chapter we only included those who entered negative for HCV,
totalling 165 individuals: 58 who became seroconverters during the follow up period
and 107 who remained negative.

From this group of IDUs 66.1% were males. The average age of first injection
was 25.4 years (se 7.8 years), whereas the mean age at first visit was 30 years (se
7.4 years), the mean of the follow up time was 7.9 years (se 5.4 years). With respect
to sharing needles, 33.5% stated sharing syringes at least once during the follow
up period; concerning the frequency of injection, 41.4% did not recently inject at
first visit, 15.4% reported using drugs more than once a day and 16.7% used drugs
between 2-6 days per week. The most common drug was a combination of cocaine
and heroin: 21.8%; followed by heroin and cocaine use alone with 19.4% and 8.5%,
respectively. Individuals started to inject drugs between 1962 and 1980: 12.7%; 1981
and 1990: 43.6%; and 1991 and 2002: 43.6% (table 4.1).

Clearly frequency of injection and type of drug are subject to change during the
injecting career. Table 4.1 shows both values at entry and at the last follow up visit.
In order to simplify the model, we consider the responses provided in the first follow
up visit.

Figure 4.1 shows the Nonparametric Maximum Likelihood estimate for the sur-
vival curve (Sun; 2006). Clearly the longer the duration of injecting at first visit the
longer the time to HCV infection during follow up. The figure illustrates it is impor-
tant to not ignore the issue of left truncation as the NPMLE changes according to the
level of duration of injecting at first visit.

Given the relatively small sample size the model selection was as follows: our
initial model only includes duration of injection at first visit to select the distribution.
Then, we performed simple analyses with one of the behavioural risk factors. Finally
we consider a multiple model where only the risk factors with at least one significant
covariate was included.

Table 4.2 shows the different parametric models with their AIC-values, favouring
the generalized gamma model. Therefore, we retain this model as the best model
amongst the set of candidate models.

Considering the parametric distributions as introduced above, we performed
simple (single covariate) analyses with each of the behavioural risk factors (sharing
syringes, frequency of injection and main drug injected) and year of first injection.
For each of the models we compared the different distributions in terms of Akaike’s
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Table 4.1: Amsterdam Cohort Studies dataset. Descriptive statistics for IDUs who
enter negative for HCV to the cohort study (n=165)

Individuals (n=165) n (%) n (%)

HCV serostatus
Negative 107 64.85
Positive 58 35.15

Sharing syringes
No 109 66.46
Yes 55 33.54

Year first injection
1962- 1980 21 12.73
1981- 1990 72 43.64
1991- 2002 72 43.64

Gender
Male 109 66.06
Female 56 33.94

First follow up visit Last follow up visit

Frequency of injection
No recent injections 67 41.36 114 71.7
More once per day 25 15.43 10 6.29
Once daily 1 0.62 2 1.26
2-6 days per week 27 16.67 9 5.66
Once a week 3 1.85 3 1.89
2-3 days per month 10 6.17 8 5.03
One day a month 5 3.09 1 0.63
Less than one day a month 24 14.81 12 7.55

Drug of injection
No recent injections 67 40.61 114 69.09
Heroin 32 19.39 14 8.48
Cocaine 14 8.48 5 3.03
Cocaine and heroin 36 21.82 21 12.73
Amphetamine 6 3.64 4 2.42
Methadone 5 3.03 1 0.61
Unknown drug of injection 5 3.03 6 3.64

Mean Std. Dev.

Duration of injection at first visit 4.59 5.14
Duration of injection at last visit 12.44 7.43
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Figure 4.1: Amsterdam Cohort Studies dataset. Non-parametric maximum likeli-
hood estimator of the survival function for time to HCV infection for different levels
of duration of injection at first visit.

Information Criterion (AIC) and the likelihood ratio test (results not shown) and
found the generalized gamma to be the best distribution for most of the models.

4.3.1 The effect of sharing syringes

To assess the impact of sharing syringes we take into account all responses of
the individual during the follow up period, which include information on receptive
sharing. Modelling the effect of sharing syringes using the accelerated failure time
model was done by extending the model 2.5 including whether the IDU shared sy-
ringes (X = 1) or not (X = 0) where γ is the regression coefficient quantifying the
effect of sharing syringes on HCV infection time and W is the error term. Hence, the
FOI is given by:

λHCV(t, X) =

 exp(−γ)λ0HCV(t exp(−γ)) for those who share syringes,

λ0HCV(t) for those who do not share syringes.
(4.1)

Under the accelerated failure model, the relation between the survival functions
is as follows:
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Table 4.2: Amsterdam Cohort Studies dataset. Parametric models for time to HCV
infection, including only duration of injection at first visit.

Model Log likelihood AIC

Weibull -235.904 477.807
Log Logistic -229.367 464.733
Log Normal -226.057 458.113
Generalized Gamma -212.282 432.564

SHCV(t|sharing) = SHCV(t exp(−γ)| no sharing), for all t, (4.2)

implying that the median infection time of those IDUs who share syringes (X =

1) is exp(γ) times the median infection time of those IDUs who do not share. Or
equivalently, the median survival time of those IDUs not sharing syringes (X = 0) is
exp(−γ) times the median survival time of those who share.

The acceleration factor, for those who share syringes compared to those who do
not, equals exp(−γ) = exp(0.22) = 1.25 and thus the median time to HCV infection
for an IDU who does not share is estimated to be 1.2 times longer than that of an IDU
sharing syringes. The acceleration factor is adjusted by the duration of injection at
the first visit in order to account for left truncation.

4.3.2 Frequency of injection

The frequency of injection at first follow up visit has eight categories, no recent
injections, less than one day per month, one day per month, 2-3 days per month,
once weekly, 2-6 days per week, once daily and more times daily. We consider a
categorization based on four groups: no recent injections (0); less than one day per
month, one day per month and 2-3 days per month (1); once weekly and 2-6 days
per week (2); and once daily and more times daily (3). The results are shown in Table
4.3.

In this model, significant differences were found between the baseline category
(no recent injections) and the remaining three categories. Moreover, we observe a
trend in the estimates: when the frequency of injection increases, the acceleration
factor increases. For instance the acceleration factor for an IDU who injects once
a day or more is exp(1.16) = 3.2, resulting in a threefold increase in median time
to HCV infection for an IDU who did not inject recently compared with one who
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injects once a day or more. Similarly, the acceleration factor for the first and the sec-
ond group are exp(0.88) = 2.4 and exp(0.96) = 2.6, respectively, leading to similar
conclusions.

4.3.3 Drug of injection

There are 7 categories for drug of injection: no recent injections, heroin, cocaine,
the combination of heroin and cocaine, amphetamine, methadone and recent IDU
with unknown drug of injection. Due to the small number of individuals in the
last three categories we recombined them. The results of the models are shown in
Table 4.4. The baseline class is no recent injections. Clearly the acceleration factor
for injecting any drug as compared to not injecting is very high. For instance, the
acceleration factor for heroin (alone) is exp(0.78) = 2.2 that is the median time to
HCV infection for the IDUs with no recent injections is two times the median time to
HCV infection of those who inject heroin. The remaining three acceleration factors
are quite large too, with 3.4 for those who inject cocaine, 2.6 for the combination
of heroin and cocaine and 2.9 for those who inject amphetamine, methadone or are
recent IDU.

4.3.4 Time dependent force of infection

The models discussed above assume that the baseline hazard depends on the
length of the injecting career of the IDU. In this section we include calendar time of
the first injection as a covariate in order to investigate if the risk of IDU to be infected
changed with time. We consider a categorical variable with three time categories.

Xi =


1 if first injection between 1962-1980

2 if first injection between 1981-1990

3 if first injection between 1991-2002 and

The hazard for this model is given by:

λHCV(t, Xj) = exp(γj)λ0HCV(t exp(−γj)) (4.3)

where γj is the effect of time group j = 1 and 2 on the hazard rate. Since the
model includes a time effect it does not assume time homogeneity (i.e., the assump-
tion that the disease is in a steady state). This is in contrast with models for current
status data for which one of the model assumptions is time homogeneity.
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Figure 4.2: Amsterdam Cohort Studies dataset. Force of infection according to dura-
tion of injection at first visit.

The parameter estimates for the generalized gamma model are shown in Table
4.4, the reference group is 1991-2002. The acceleration factor for the IDUs with
first injection before 1980 compared with IDUs who first inject in 1991-2002 equals
exp(−2.2) = 0.11 . Hence, the median HCV infection time for the IDUs starting
to inject in 1991-2002 is approximately one tenth of the median HCV infection time
of the IDUs who start to inject between 1962 and 1980 and were still HCV negative
at cohort entry after 1985. This variable is negatively correlated with the duration
of injection at first visit and was therefore not considered in the multiple risk factor
model. Note that caution should be taken when interpreting the results of this par-
ticular analysis because of the omission of the adjustment by left truncation is not
explicitly taken into account; besides the calendar time is likely strongly influenced
by the recruitment procedure.

Figure 4.2 shows the behaviour of the FOI according to the duration of injection
at first visit. The acceleration factor is equal to 0.77, reflecting the fact that those with
long exposure time before entering negative to the cohort are low risk IDUs.

4.3.5 Models including several risk factors

Finally we consider a multiple risk factor model, all the risk factors from the
single covariate models were included when at least one of their categories was sig-
nificant (Table 4.5). Comparing the results of the multiple risk factor model with the
results of the single risk factor models, the covariates which turns out to be non-
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significant are sharing syringes and frequency of injection. The acceleration factor
for heroin is 2.2, for cocaine 4.8, for the combination of those two 3.2 and for other
drugs 3.1. Clearly, current IDUs have a higher risk than non-recent IDUs for HCV
infection.
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4.4 Concluding remarks

In our study we found a higher risk of HCV infection in the first three years of
an IDU career, this is consistent with other studies (Platt et al.; 2009; Sutton et al.;
2006; Van den Berg et al.; 2007a,b). Drug of injection was associated with HCV se-
roconversion but sharing syringes was not. Our findings provide important addi-
tional evidence that it is crucial to target HCV prevention to new injectors as soon
as they start to inject and that any efforts to reduce incidence need to take recent
injectors into account. However, since it might be hard to find these recent injec-
tors additional efforts are needed to prevent the transition to injecting drug use in
non-injecting drug users.

Previous work focused on the estimation of the FOI for HCV in the IDU context
based on cross-sectional data thereby relying on time homogeneity. Our study fo-
cuses on estimating the FOI based on cohort data, taking into account risk factors
as well as the complexities inherent to this type of data while relaxing the time ho-
mogeneity assumption. This approach is innovative in the field and it is reassuring
to conclude that previous findings can be confirmed. The Amsterdam Cohort Study
is a valuable and unique source of information because it includes a follow-up of
IDUs of more than 20 years, in this sense allows us to test one crucial assumption
that is frequently made and untested when we analyse current status data and is
the time heterogeneity. In fact, some studies have confirmed the decrease in the risk
behaviour and in the prevalence and incidence of HCV (Van den Berg et al.; 2007a,b;
Van de Laar et al.; 2005). Furthermore, a declining trend of injection among groups of
drug users, with low or declining rates of injection have been described among opi-
oid users in several European countries although differences between countries are
large (Wiessing et al.; 2010); specifically in Amsterdam (Van den Berg et al.; 2007a,b;
Van de Laar et al.; 2005; Welp et al.; 2002; Van Ameijden and Coutinho; 2001), no-
tably the decrease in HCV seroprevalence due to impopularity of injecting among
drug users and the success of prevention campaigns.

For this study we use interval-censored data methodology, which takes into ac-
count the uncertainty about the exact time to event. The nonparametric estimates
show the highest risk of HCV infection in the first 3 years of injection; based on the
parametric models there is an effect of frequency of injection and drug of injection.

The fact that frequency of injection and the drug of injection were significant risk
factors is consistent with previous studies (Van den Berg et al.; 2007a,b; Hahn et al.;
2001; Thorpe et al.; 2000; Miller et al.; 2003a,b). It reflects the cumulative exposure
to infected needles and injection paraphernalia. On the other hand, sharing syringes
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was not identified as a risk factor. A similar result to that observed in Van de Laar
et al. (2005).

Analyses include the combined analysis of both HIV and HCV infections consid-
ering the time at risk for each of them are shown in Chapter 5; this is done using
frailty models considering the bivariate type of data. The general idea is to specify
latent variables which act multiplicatively over the baseline hazard, and reflect how
frail an individual is to acquire the infections. The frailty could be shared when one
latent variable is considered per individual or correlated when a joint latent distribu-
tion for both infections is assumed. An illustration of the use of shared frailty models
on current status data for Hepatitis B and C has been reported (Sutton et al.; 2006);
also for Hepatitis C and HIV infection in (Sutton et al.; 2008) and for Hepatitis A and
B with correlated frailties in (Hens et al.; 2009).

In terms of study population, further research could include all IDUs participants
in the ACS, like the results presented on Chapter 5. In terms of modelling, we did not
take into account all the values of the time dependent covariates during the follow
up, therefore more complex models can be developed; like the ones presented on
Chapter 3 also a more flexible approach could use splines to incorporate the duration
of injection at first visit.
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Chapter 5
Correlated frailty model: an
application to HIV/HCV
co-infection

In survival analysis, frailty models account for correlation between (survival)
times and deal with the problem of heterogeneity due to unobserved covariates. For
instance, event times from individuals who have common characteristics (siblings,
married couples, and so on), or times to ocurrence of different diseases within the
same subject.

The frailty concept was introduced by Beard in 1959 as a longevity factor, in or-
der to improve the modelling of the mortality. Then, 20 years later Vaupel (who
introduced the frailty term) and Lancaster independently suggested random effects
models for durations. Vaupel’s goal was to demonstrate that population mortality
hazard rates do not reproduce the mortality hazard rates of individuals from that
population. Duchateau and Janssen (2008) provide a full description of Beard and
Vaupel contributions. In a frailty model a random effect describes the excess of risk,
or frailty of an individual or a cluster; those who are more frail experience the event
of interest earlier.

Recently, a large amount of literature on the frailty model has been published.
The books of Duchateau and Janssen (2008) and Wienke (2011) are valuable sources
of information describing concepts and techniques to fit those models. In what fol-
lows, we describe the frailty model and mention some applications of such mod-

71
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els in infectious disease area. Lastly, we focus on a specific type of frailty model
applied to data for which the event times are known to lay in between to observa-
tion/inspection times, i.e. type II interval-censored data.

Assuming a proportional hazards model with frailties, the conditional hazard
function of the event is given by:

λ(t|ω)ij = λ0(t) exp
(
γ′Xij +ωj

)
where γ is the vector of regression coefficients, Xij denotes the vector of covariates
for the ith subject in the jth subgroup, and ωj denotes the random effects, which
follows a certain distribution fΩ. This model can be rewritten as follows:

λ(t|ω)ij = λ0(t) exp
(
γ′Xij

)
Zj (5.1)

where Zj = exp(ωj) is called the frailty which follows a distribution fZ. In this
model all individuals from the same cluster j share the same frailty term, therefore
is known as shared frailty model.

For bivariate data, Yashin et al. (1995) proposed an extension of the shared frailty
considering correlated frailty, i.e., where instead of a common random effect for indi-
viduals within the cluster, two random effects are included (one for each individual
or event of interest). A description of the correlated frailty model assuming a gamma
frailty distribution is provided in Section 5.3.

This chapter builds on the work of Cattaert (2008) and Hens et al. (2009) consid-
ering exact event times, right censored and case II interval-censored data. First we
extend the bivariate correlated gamma frailty model describing the individual con-
tribution to the likelihood for case II interval-censored data. Then, we apply several
frailty models to the Amsterdam Cohort Studies dataset, previously used in Chap-
ter 4. Subsequently, we describe the procedure to generate the data according to
different baseline hazard functions for the simulation studies.

The objectives of the simulation studies are: i) to assess model behaviour of a
correlated frailty model in presence of type II interval-censored data and ii) to assess
the impact of different frailty variances on a correlated gamma frailty model. In the
latter case we know that the estimation procedure becomes challenging due to the
restriction imposed on the correlation between the frailties. Finally, we present the
results of two simulation studies.
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In this chapter we use gamma frailty models for its appealing mathematical prop-
erties, although results can be generalized to other frailty distributions. First, we
present the univariate gamma frailty model, the restrictions to make the model iden-
tifiable, as well as the conditional and the unconditional survival functions.
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5.1 Frailty models for current status data

In the infectious disease context, the book by Hens et al. (2012) provides an
overview about individual heterogeneity and how to account for that in modeling
bivariate serological data. In this section we mention some of the advances in the
area, however the list is far from being exhaustive.

Farrington et al. (2001) proposed the use of a shared frailty to model heterogene-
ity in the acquisition of measles, mumps and rubella. The main objective of the paper
was to describe the force of infection for the diseases at different ages. This was a
starting point for further applications in the infectious disease area. This model can
also be used to estimate the basic reproduction number R0, defined as the average
number of secondary infections generated by an infective individual in a completely
susceptible population. The authors note that the individual heterogeneity inflates
R0 with a factor 1 + var(σ2) where σ2 is the variance of the shared frailty. An exten-
sion of this model, accounting for time dependency has been proposed by Unkel and
Farrington (2012). Recently Farrington et al. (2013) proposes new methods for inves-
tigating the extend of heterogeneity in effective contact rates. The authors apply a
Dirichlet-multinomial model with an additional overdispersion parameter.

In the context of injecting drug users, Sutton et al. (2006) modelled the force of
infection for hepatitis B (HBV) and C (HCV) on injecting drug users, applying a
shared frailty model. Later, Sutton et al. (2008) applies a similar model accounting
for infection with HIV, HBV and HCV. Del Fava et al. (2011) applied a shared gamma
frailty model to HCV and HIV coinfection.

Cattaert (2008) applied several frailty models to seroprevalence data for mumps,
rubella, parvo b19 and varicella infection data. Cattaert (2008) and Hens et al. (2009)
studied the behaviour of the bivariate-correlated gamma frailty model for case I
interval-censored data (current status data) and compared the correlated with the
shared frailty model using cross-sectional data on hepatitis A and B. Abrams and
Hens (2014) extend some frailty models to account for waning immunity.

Some applications are unrelated to infectious diseases. However, it is worth to
mention them since they were applied to current status data. Zhang et al. (2005)
presented an additive hazards frailty model accounting for informative observa-
tion time, that is the observation time may be related with the underlying survival
time. Dunson and Dinse (2002) proposed Bayesian models to analyse current status
data with informative censoring. Later on, Chen et al. (2009) described the use of
a marginal frailty model on multivariate current status data and applied the model
to data coming from a tumorigenicity experiment. A cure model, a special case of a
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discrete frailty model, where a proportion of individuals are not susceptible to the
event of interest, was applied to current status data in Ma (2009).
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5.2 Univariate gamma frailty model

In survival analysis one may be interested to assess the impact of several covari-
ates on the event times. In this case, the observed covariates can be included in a
proportional hazards model. However, it is impossible to account for all important
risk factors that may influence the event times. For instance, some of the factors
can be difficult to collect due to financial or time constrains. Then, it is useful to
consider two sources of variability: one attributed to the observed risk factors in
the model and another caused by unknown covariates. These non-observable risk
factors may be described by the frailty in the survival analysis context. Assuming a
proportional hazards model conditional upon the random effects (frailty) and a mul-
tiplicative effect of the frailties, then the frailty acts multiplicatively on the baseline
hazard function as it has been indicated in equation (5.1).

Here, the Laplace transform of the frailty distribution, denoted by L(u) plays
a key role to characterize the unconditional density function as well as the frailty
distribution. That is, knowing the form of the Laplace transform, we can derive
the unconditional survival and the density functions, as well as the mean and the
variance of the frailty distribution (Wienke; 2011). These expressions hold for all the
models regardless of the frailty distribution.

S(t) = E [S(t|z)] = E [exp(−zΛ(t))] = L(Λ(t)),

f (t) = −λ0(t)L′(Λ(t)), (5.2)

where Λ(t) is the cumulative baseline hazard function and Z is the frailty term.

Thanks to its mathematical tractablity and its flexibility, the gamma distribution
has been widely applied in this context. If the random effects are assumed to follow
a gamma distribution, identifiability can be ensured by restricting the parameters of
the gamma to be equal, i.e. Z ∼ Γ(1/σ2, σ2), implying E(Z) = 1. k = 1/σ2 denotes
the shape parameter. Then, the conditional survival function is given by:

S(t|z) = e−zΛ(t). (5.3)

The unconditional survival function is given by:

S(t) =
1

(1 + σ2Λ(t))1/σ2 . (5.4)
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Estimation of standard errors

We estimate the standard errors for the baseline hazard parameters and parame-
ter of the shape parameter of the gamma (k) using maximum likelihood. This was
possible because Matlab codes used in this chapter also provide the hessian matrix.
The estimation of the standard error for σ is based on the delta method as described
below.

In the univariate gamma frailty model σ2 = 1/k then σ = k−1/2. Taking the
derivative of σ respect to k: dσ

dk = − 1
2 k−3/2. Then, the variance of σ using the delta

method is given by the following expression:

Var(σ) = 1/4k−3Var(k)

A natural extension of the univariate gamma frailty model would be a multi-
variate model where individuals (or events for the same individual) share the same
frailty term. This has been described at the begining of this chapter.

5.3 Correlated gamma frailty model

This model is an extension of the univariate gamma frailty model and it has been
introduced by Yashin et al. (1995). In what follows, we describe the model as pre-
sented in Cattaert (2008) and we include the likelihood contributions when interval-
censored data are considered.

We start from three independent gamma distributed random variables Yl ∼ Γ(kl , 1)
for l = 0, 1, 2, with shape kl and scale 1. Here Y0 represents shared risk factors while
Y1 and Y2 represent non-shared risk factors. The frailty variables Zi, with i = 1, 2,
are then composed as:

Zi = σ2
i (Y0 + Yi). (5.5)

From the properties of the gamma distribution it then follows that Zi ∼ Γ(k0 +

ki, σ2
i ). In order to make the frailties identifiable, it is assumed that E(Zi) = 1, imply-

ing that θi ≡ 1/σ2
i = k0 + ki and hence Zi ∼ Γ(1/σ2

i , σ2
i ). This then leads to variances

Var(Zi) = σ2
i , and correlation

ρ ≡ Corr(Z1, Z2) = σ1σ2k0. (5.6)

The restrictions ki > 0 imply a constraint on the correlation, i.e.
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0 < ρ < min
(

σ1

σ2
,

σ2

σ1

)
≤ 1. (5.7)

Note that also ρ = 0 is possible, but then the corresponding gamma distribution
is degenerate, i.e. for k0 = 0 all the probability mass is concentrated at Y0 = 0.

Assuming proportional hazards (i.e. the frailties act multiplicatively on the base-
line hazards) and furthermore conditional independence (i.e. conditional on the frail-
ties Zi the event times Ti are independent), the conditional survival function is given
by:

S(t1, t2|z1, z2) = e−z1Λ1(t1)e−z2Λ2(t2), (5.8)

where Λi(t) are the cumulative baseline hazard functions, to be calculated from the
baseline hazard rates λi(t) by integration, i.e. Λi(t) =

∫ t
0 λi(s)ds.

The unconditional bivariate survival function is found as a Laplace transform.
From the Laplace transform L(u) ≡ E[exp(−uYi)] = (1 + u)−ki of Yi, the Laplace
transform of (Z1, Z2) is seen to be

L(u1, u2) ≡ E
[
e−(u1Z1+u2Z2)

]
= (1 + (k0 + k1)

−1u1 + (k0 + k2)
−1u2)

−k0(1 + (k0 + k1)
−1u1)

−k1

(1 + (k0 + k2)
−1u2)

−k2 .

This is then used to calculate the unconditional bivariate survival function

S(t1, t2) = E
(

e−Z1Λ1(t1)−Z2Λ2(t2)
)

=
[
1 + (k0 + k1)

−1Λ1(t1)
]−k1

[
1 + (k0 + k2)

−1Λ2(t2)
]−k2

[
1 + (k0 + k1)

−1Λ1(t1) + (k0 + k2)
−1Λ2(t2)

]−k0

= [S1(t1)]
1− k0

k0+k1 [S2(t2)]
1− k0

k0+k2

[
[S1(t1)]

k0+k1 + [S2(t2)]
k0+k2 − 1

]−k0
,

where Si(t) are the marginal survival functions given by:

Si(t) =
[
1 + (k0 + ki)

−1Λi(t)
]−(k0+ki)

.

To estimate the model parameters of the gamma frailty model we use maximum
likelihood. As it was mentioned in Chapter 2, the contribution to the likelihood de-
pends on the information provided by each individual. Since we are considering
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two outcomes the contributions for both should be taken into account. If an indi-
vidual experiences an event, he/she provides information on the probability that
the event occurs (density function). The right censored observations provide infor-
mation regarding the survival function evaluated at the censoring time. Instead for
the interval-censored observation we consider the difference between the lower and
the upper limit of the survival function. In the following section we describe the
contributions considering bivariate outcomes.
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5.3.1 Log-likelihood contributions

For uncensored time to event data in each of the two outcomes the log-likelihood
is given by the bivariate density function:

` =
n

∑
j=1

ln f (t1j, t2j), (5.9)

where

f (t1, t2) =
∂2

∂t1∂t2
S(t1, t2)

= S(t1, t2)[C1(t1, t2) + C2(t1, t2) + C3(t1, t2)](k0 + k1)
−1(k0 + k2)

−1λ1(t1)λ2(t2),

with

C1(t1, t2) =
k1k2

[1 + (k0 + k1)−1Λ1(t1)] [1 + (k0 + k2)−1Λ2(t2)]
,

C2(t1, t2) =
k0

1 + (k0 + k1)−1Λ1(t1) + (k0 + k2)−1Λ2(t2)[
k1

1 + (k0 + k1)−1Λ1(t1)
+

k2

1 + (k0 + k2)−1Λ2(t2)

]
,

C3(t1, t2) =
k0(k0 + 1)

[1 + (k0 + k1)−2Λ1(t1) + (k0 + k2)−1Λ2(t2)]2
.

In case at least one of the outcomes is right censored the log-likelihood contribu-
tion for the censored observation corresponds to the survival function and for the
uncensored time to events to the density function:

` =
n

∑
j=1

1

∑
i,k=0

δδ1j ,iδδ2j ,k ln Aik(x1j, x2j), (5.10)

where A00 corresponds to the case when both event times are right censored; A10 and
A01 represent the cases when one of the outcomes is right censored; A11 = f (t1, t2)

represents the case when both outcomes are uncensored.
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A00(x1, x2) = S(t1, t2),

A10(x1, x2) = − ∂

∂t1
S(t1, t) = S(t1, t)[C4(t1) + C6(t1, t)](k0 + k1)

−1λ1(t1),

A01(x1, x2) = − ∂

∂t2
S(t, t2) = S(t, t2)[C5(t2) + C6(t, t2)](k0 + k2)

−1λ2(t2),

A11(x1, x2) =
∂2

∂t1∂t2
S(t1, t2), (5.11)

with

C4(t1) =
k1

1 + (k0 + k1)−1Λ1(t1)
,

C5(t2) =
k2

1 + (k0 + k2)−1Λ2(t2)
,

C6(t1, t2) =
k0

1 + (k0 + k1)−1Λ1(t1) + (k0 + k2)−1Λ2(t2)
(5.12)

For case II: interval-censored data the log-likelihood is given by:

` =
n

∑
j=1

2

∑
i,k=0

δδ1j ,iδδ2j ,k ln Aik(x1j, x2j), (5.13)

where A00, A01, A10 and A11 are defined as in (5.11) and with A20 and A02 cor-
responding to the case when one of the events is right censored and the other is
interval-censored; A21 and A12 are the contributions when one observation is interval-
censored and the other is an uncensored observation; and A22 indicates both times
are interval-censored.

A20(x1, x2) = S(t1L, t2)− S(t1R, t2),

A02(x1, x2) = S(t1, t2L)− S(t1, t2R),

A12(x1, x2) = − ∂

∂t1
[S(t1, t2L)− S(t1, t2R)]

= {S(t1, t2L)[C4(t1) + C6(t1, t2L)]− S(t1, t2R)[C4(t1) + C6(t1, t2R)]}

(k0 + k1)
−1λ1(t1),
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A21(x1, x2) = − ∂

∂t2
[S(t1L, t2)− S(t1R, t2)]

= {S(t1L, t2)[C5(t2) + C6(t1L, t2)]− S(t1R, t2)[C5(t2) + C6(t1R, t2)]}

(k0 + k2)
−1λ2(t2),

A22(x1, x2) = S(t1R, t2R)− S(t1R, t2L)− S(t1L, t2R) + S(t1L, t2L) (5.14)

with C4(t1) and C5(t2) as in (5.12) and:

C6(t1L, t2) =
k0

1 + (k0 + k1)−1Λ1(t1L) + (k0 + k2)−1Λ2(t2)
,

C6(t1R, t2) =
k0

1 + (k0 + k1)−1Λ1(t1R) + (k0 + k2)−1Λ2(t2)
,

C6(t1, t2L) =
k0

1 + (k0 + k1)−1Λ1(t1) + (k0 + k2)−1Λ2(t2L)
,

C6(t1, t2R) =
k0

1 + (k0 + k1)−1Λ1(t1R) + (k0 + k2)−1Λ2(t2R)
. (5.15)

We work with the parameters ki rather than σi and ρ because the restriction (5.6)
is more naturally stated in terms of these. Positivity of the shape parameters ki is en-
sured by logarithmic transformation. In our application we use two baseline hazard
distributions, namely, a Weibull and a Gompertz, using parameterization described
in Table 5.1. The parameters of both distributions are denoted by αi and βi and we
use logarithmic transformation to ensure positivity of the baseline hazard parame-
ters.

5.3.2 Estimation of standard errors

It is possible to estimate the standard errors for the baseline hazard parameters,
and for ki using maximum likelihood thanks to the availability of the hessian matrix.

The estimation of the standard errors for σ1, σ2 and ρ are based on the delta
method as described below.

In the correlated frailty model σ2
1 = 1/(k0 + k1), then σ1 = 1/

√
k0 + k1. The par-

tial derivatives of σ1 respect to k0, k1 and k2 are given by the following expressions:
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∂σ1

∂k0
= − 1

2(k0 + k1)3/2

∂σ1

∂k1
= − 1

2(k0 + k1)3/2

∂σ1

∂k2
= 0

On the other hand, σ2
2 = 1/(k0 + k2), then σ2 = 1/

√
k0 + k2. The partial deriva-

tives of σ1 respect to k0, k1 and k2 are given by the following expressions:

∂σ2

∂k0
= − 1

2(k0 + k2)3/2

∂σ2

∂k1
= 0

∂σ2

∂k2
= − 1

2(k0 + k2)3/2

Finally, ρ = σ1σ2k0 = k0

[(k0+k1)(k0+k2)]
1/2 . The partial derivatives of ρ respect to k0,

k1 and k2 are given by the following expressions:

∂ρ

∂k0
=

1

[(k0 + k1)(k0 + k2)]
1/2 −

k0 [2k0 + k1 + k2]

2 [(k0 + k1)(k0 + k2)]
3/2

∂ρ

∂k1
= − k0

2(k0 + k1)3/2(k0 + k2)1/2

∂ρ

∂k2
= − k0

2(k0 + k1)1/2(k0 + k2)3/2

Following the definition of the delta method, the variance of σ1, σ2 and ρ are
given by:

Var(σ1) = ∇σ′1Cov(k0, k1, k2)∇σ1

Var(σ2) = ∇σ′2Cov(k0, k1, k2)∇σ2

Var(ρ) = ∇ρ′Cov(k0, k1, k2)∇ρ (5.16)

where ∇σi is the gradient vector of σi respect to k0, k1 and k2, ∇ρ is the gradient
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vector of ρ respect to k0, k1 and k2, while Cov(k0, k1, k2) is the variance-covariance
matrix for k0, k1, and k2.
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5.4 Application to the Amsterdam Cohort Studies dataset

As in Chapter 4, we use the Amsterdam Cohort Studies dataset as an illustrative
example. In this chapter, we consider both time to HCV and HIV infection as out-
comes and all 935 individuals are included, whereas in Chapter 4 we focussed only
on time to HCV infection for those individuals who entered negative for HCV to the
cohort study. In this section, we fit univariate, shared, and correlated frailty models
to the data using code in Matlab (an initial version of the code was provided by Cat-
taert 2008). For each of the models we consider two baseline hazards distribution,
namely, a Weibull and a Gompertz, using parameterization described in Table 5.1.
The ti values are the ones we used for the simulation studies as described in Section
5.5.1.

Table 5.1: Baseline hazard functions and their corresponding expressions for time to
event data

Distribution Hazard function Cumulative baseline ti values
λi(t) hazard Λi(t)

Weibull
αiβitβi−1 αitβi (Λi/αi)

1/βi
αi, βi > 0, t ≥ 0

Gompertz
αi exp(βit)

αi
βi
[exp(βit)− 1] ln(1+βiΛi/αi)

βiαi, βi > 0, t ≥ 0

The standard errors were calculated using a maximum likelihood or delta method
as described in previous sections; the model fitting requires to provide initial values
to the parameter estimates. We tried several initial values to gain confidence that the
global maximum has been found. The estimates and the standard errors are shown
in Table 5.2.

Univariate frailty models for time to HCV and HIV infection are fitted separately,
so we obtain one estimate of the frailty variance per outcome. The shared frailty
model assumes a common variance component for both outcomes, while in the cor-
related frailty model the frailties of outcomes in a cluster are correlated but not neces-
sarily shared. This aspect allows to consider questions about the association between
time to events.

The first two columns show the results of applying the univariate frailty model,
in this case a model for each outcome is fitted separately allowing one variance of
the frailty term per outcome. The individual likelihood values for each model are
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added up and included in the ninth row in columns 2 and 3.
The log-likelihood value of the univariate frailty model for time to HCV assum-

ing a Weibull baseline hazard is equal to -703.1853 (-703.1870 when we assume Gom-
pertz baseline hazard), whereas the log-likelihood value of the univariate frailty
model for time to HIV assuming a Weibull baseline hazard is equal to -1011.6769
(-1011.6322 when we assume Gompertz baseline hazard).

The parameter estimates for the frailty variances indicate a pretty large difference
between both outcomes (one is approximately twice the other one). This large differ-
ence between the variances is ignored in the shared frailty models, where a common
variance is assumed. The results of the shared frailty models are shown in columns
4 and 5.

Finally, with the correlated model (results are shown in columns 6 and 7) we
obtain the highest log-likelihood values. The estimates are close to the ones of the
univariate frailty model. Assuming a Weibull baseline hazard shows the best fit to
the data according to the AIC values. Additionally, one of the frailty variances is
2.5 times the other one and the estimated frailty correlation is 0.42. Note that the
correlation is on the boundary of the parameter space, because under the correlated
frailty model the correlation is restricted to the smallest ratio of the frailty standard
deviations.

Here, the frailty variances measure the population heterogeneity in the suscepti-
bility to HCV and HIV. High values of the parameter ρ indicate similar transmission
routes: for IDUs these are sharing syringes and sexual intercourse.
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Figure 5.1: Comparison between the NPMLE of the survival function and the fitted
frailty models based on a Gompertz baseline hazard for time to HCV infection

We also compare the unconditional survival functions under the different frailty
models with the Non-Parametric Maximum Likelihood Estimates for both outcomes.
The comparison is shown in Figures 5.1 to 5.4. The figures also include the confi-
dence bands from the Nonparametric Maximum Likelihood Estimations.

Using the Gompertz baseline hazard we observe that the results for the univariate
frailty models are better than the results for the shared frailty. Additionally, there is
a big improvement under the correlated frailty model compared with the other two
models. In fact, Figure 5.1 shows that the unconditional survival function for time
to HCV infection under the univariate frailty model does not properly reflect the
NPMLE.
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Figure 5.2: Comparison between the NPMLE of the survival function and the fitted
frailty models based on Gompertz baseline hazard for time to HIV infection

In Figure 5.2 it becomes clear that the poor goodness of fit results for the shared
frailty model are attributed to the time to HIV infection, where the shared frailty
model deviates from the NPMLE of the unconditional survival function. Since we
may have detected a local maxima based on the starting values we choose for the
optimisation. We try to improve the fitted model selecting several sets of starting
values but we did not succeed in finding a better solution for this model.
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Figure 5.3: Comparison between the NPMLE of the survival function and the fitted
frailty models based on Weibull baseline hazard for time to HCV infection

Under the Weibull baseline hazard, for time to HCV infection the unconditional
survival functions under the univariate and the correlated frailty models are basi-
cally overlapping (Figure 5.3). Instead, for time to HIV infection we observe a small
difference between both models (Figure 5.4. For both times to HCV and HIV infec-
tion the shared frailty model shows a slightly different fit than the other two models.
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Figure 5.4: Comparison between the NPMLE of the survival function and the fitted
frailty models based on a Weibull baseline hazard for time to HIV infection

The large difference between the frailty variances for both outcomes inspires the
simulation study presented in the next section. The simulation study has two objec-
tives: first, we want to study the behaviour of the correlated frailty model in presence
of interval-censored data; secondly we investigate the effect of the large difference
between the frailty variances on the estimation procedure.
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5.5 Simulation study based on a correlated frailty model

In the previous section we applied several frailty models to the Amsterdam Co-
hort Studies dataset. We compared the parameter estimates and assessed the good-
ness of fit using the log-likehood values, the AIC and a graphical comparison of the
unconditional survival function with the NPMLE for both time to events. The results
favoured the correlated frailty model with a Weibull baseline hazard.

To get further insights about the correlated frailty model and its properties in
presence of interval-censored data, we perform a simulation study with a twofold
objective: to assess model behaviour of a correlated frailty model in presence of type
II interval-censored data and to assess the impact of different frailty variances on
a correlated gamma frailty model. In the latter case we know that the estimation
procedure becomes challenging due to the restriction imposed on the correlation
between the frailties.

In this section, we first describe how to generate data from a correlated gamma
frailty model, then we present the results of the simulations.

5.5.1 Generating data from a correlated gamma frailty model

First z1 and z2 are generated from a correlated gamma frailty as follows: for fixed
values of σ1, σ2 and ρ that satisfy the restriction (5.17), we calculate the corresponding
values of k0, k1 and k2.

0 < ρ < min
(

σ1

σ2
,

σ2

σ1

)
≤ 1. (5.17)

Once those values have been calculated we generate the values y0, y1 and y2 from
gamma distribution functions Γ(k0, 1), Γ(k1, 1) and Γ(k2, 1) respectively. Next, we
calculate z1 = σ2

1 (y0 + y1) and z2 = σ2
2 (y0 + y2) using the values of yi and ki. Con-

ditional on the frailties (z1 and z2) we generate the exact time to event using the
baseline hazard function for each particular distribution. Table 5.1 includes the dis-
tributions considered in this chapter.

The procedure to generate the exact time to event is as follows: we generate
uniform random numbers ui in the unit interval, then we calculate the cumulative
distribution function Λi = − ln(ui/zi), finally using the expressions given in the
last column of Table 5.1 we obtain the time to event. The time to event data are
also reduced to censored data, i.e. data that are either right censored, uncensored or
interval-censored data (case II).
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We assume that the censoring times are uniformly distributed on [0, 40], inde-
pendent of the event times. We thus generate t ∼ Un[0, 40], and define the indicator
variable δi = I(ti < t). Hence δi = 0 if ti > t, indicating right censoring, and δi = 1
if ti < t, indicating either no censoring or left censoring, depending on the context.
Now letting j indicate observations, for uncensored time to event data we observe
the event times T1j and T2j. For right censored data we observe X1j = min(T1j, Tj)

and X2j = min(T2j, Tj), where Tj are the measurement times, and the indicators
∆1j = I(t1j < tj) and ∆2i = I(t2j < tj).

For the interval-censored data, let Tij denote the failure time random variable fol-
lowing the distribution F(tij). We follow one of the approaches described in Gómez
et al. (2009), generating censoring intervals (Lij, Rij) from FLij ,Rij(lij, rij) such that the
censoring occurs non informatively.

A proportion of the time to event data are assumed to be interval-censored. For
each time to event Tij we generate values from two independent uniform distribu-
tions in the interval (0, c): U1

ij and U2
ij. Then the limits of the interval-censored ob-

servations for the ith variable are given by: Lij = max(Tij −U1
ij, Tij + U2

ij − c) and
Rij = min(Tij + U2

ij, Tij −U1
ij + c). We use c = 1.

In the first simulation study, around 20% of the observations were exact times
whereas the percentage of interval-censored observations ranges from 30% to 50%.
In the second simulation study, the proportion of interval-censored data was based
on the ACS data. For the first outcome around 65% of the observations are uncen-
sored (exact time to event is observed), and the remaining portion is right censored.
However, by construction of the simulation the proportion of interval-censored data
decreases when the frailty variance decreases. Then, for the second outcome about
half of the observations are right censored and this proportion remains almost con-
stant since there is no change on the frailty variance.

From each dataset we estimate the parameters as well as the standard errors (SE)
as was described in subsection 5.3.2. The average of the estimations over the 500
generated samples (mean), its estimated standard deviation or Empirical Standard
Error (ESE) , the average of the standard errors, the bias, the variance (based on the
Empirical Standard Errors) and the Mean Squared Error (MSE) are computed as:
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mean = θ̂ =
500

∑
i=1

θ̂i
500

ESE = SD
(

θ̂
)
=

√√√√√500

∑
i=1

(
θ̂i − θ̂

)2

499
,

bias = θ̂ − θ,

MSE = MSE
(
θ̂
)
= bias2

(
θ̂
)
+ SD2

(
θ̂
)

, and

mean(SE) =
500

∑
i=1

SE
(
θ̂i
)

500

The ESE provides information about the variability of the results between sam-
ples, whereas the SE provides information about the variability of the results within
a sample. The average of the estimations (mean) are used to calculated the bias,
whereas the variance corresponds to the square of the Empirical Standard Error.

For each of the settings 500 samples were generated. In some cases a solution
could not be reached therefore we did not have estimates for the parameters or the
hessian matrix was not positive definite. These cases were not included in the sum-
mary statistics and we defined the success rate in the estimation procedure as the
percentage of samples that produce a solution and the hessian matrix is positive def-
inite over the total number of samples.
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5.5.2 Parameter estimation of a correlated frailty model with
type II interval-censored

The correlated gamma model has been applied to cross-sectional data (type I
interval-censored data). Our simulation study compliments previous work reported
on Cattaert (2008) and Hens et al. (2009) to type II interval-censored. Our objective
is to investigate the performance of the parameter estimates when the amount of
interval-censored observations increases implying that the number of right censored
values decreases with the number of exact time to events kept constant.

We consider three different sample sizes n=1,000, 3,787 and 10,000 and assume
both outcomes follow a Gompertz baseline hazard. The proportion of exact time to
event observations is about 20%, whereas the proportion of right censored obser-
vations ranges from 30% (when 50% of the observations are interval-censored) to
50% (when 30% of the observations are interval-censored). The time to event data is
generated as described in Section 5.5.1.

Here, to be able to compare results, the parameters of the Gompertz baseline
hazard were chosen in accordance with Hens et al. (2009): α1 = 0.006, α2 = 0.008,
β1 = 0.02 and β2 = 0.03, the frailty parameters are σ1 = 1.6, σ2 = 1 and ρ = 0.5.

Table 5.3 shows the true values, the mean of the parameter, its empirical stan-
dard error (calculated as described in the previous section) as well as the mean of
the standard errors. We assume a correlated frailty model based on 1,000 individ-
uals and with 30%, 40% and 50% of interval-censored observations. The mean of
the standard errors and the empirical standard errors decrease for all the parame-
ters when the percentage of interval-censored observations increases. This result is
expected given the extra information provided by the increase in the percentage of
interval-censored observations.

Table 5.4 presents bias, variance, MSE and in the last column the success rates of
the estimation procedure for the first simulation setting. We do not observe any bias
on the estimates of the baseline hazard and on the frailty parameters. The estimate
for σ1 with 30% of interval-censored observation has the highest variance, however
its variance reduces considerably when the percentage of interval-censored observa-
tions increases and by the decrease in the percentage of right censored data.

In general, the MSEs are mainly driven by the variances of the estimates. In addi-
tion, the MSEs and the variances decrease when the percentage of interval-censored
observations increases as a result of the decrease in the empirical standard error.

The success rate of the estimation procedure is 84% when 30% of the observations
are interval-censored and 90% in the other two cases.
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When we increase the sample size to 3,787 (Tables 5.5 and 5.6), the empirical
standard errors and the mean of the standard errors decrease with respect to the
ones based on n=1,000. As a results the estimated MSEs are also smaller.

Results on Tables 5.5 and 5.6 can be compared with the ones of Table II in Hens
et al. (2009). The mean estimates in Table 5.5 almost coincides with the ones reported
in table II assuming uncensored time to event. Moreover, the ESE are slightly larger
than the ones assuming uncensored time to event and smaller than the ones assum-
ing right censored data reported in Table II.

Assuming 30% interval-censored observations, the success rate of the estimation
procedure is 97% as indicated in Table 5.6; which is higher than the 84% for the sam-
ple size of 1,000. The success rate when 40% of the observations are interval-censored
is 97%; whereas the success rate when 50% observations are interval-censored is 93%.

Assuming 40% interval-censored observations, we observe some indication of
bias and larger values for the MSE and variance of σ1 and σ2 compared to the ones
observed when 30% of the observations are interval-censored. An inspection of the
results reveals that three samples have estimates for σ1 larger than 8 and estimates
for σ2 larger than 3. When the results of those three samples are removed we ob-
serve the consistent pattern previously described: when we increase the percentage
of interval-censored observations bias, variance and MSE decrease.

When we assume 50% of interval-censored observations we observe a similar sit-
uation. The variance and the MSE for σ1 are larger than the ones observed when 30%
of the observations are interval-censored. In this case we notice one of the samples
have an estimate of σ1 larger than 8. Results obtained for sample size n=10,000 are
presented in Tables 5.7 and 5.8.

For the baseline hazard parameters, as well as k’s estimates show consistency
when sample size increases. Furthermore, we have a more precise estimates in a
larger sample size setting. That is, bias, averaged standard errors and empirical
standard error remains constant or decrease when sample size increases as it can be
seen in Table 5.7. This decline is also reflected in the variance and the MSE presented
in Table 5.8.

However, results for σ1 and σ2 assuming 50% of interval-censored observations
are a bit counterintuitive (Table 5.8). The bias and empirical standard error are
the largest ones comparing n=10,000 with the other two sample sizes (n=1,000 and
n=3,787) assumming 50% interval-censored observations. As a result, the variance
and the MSE are also the largest of the observed ones. A close inspection at the re-
sults reveals that in six out of 500 samples the estimates for σ1 were larger than 7 and
the estimates of k0, k1 and k2 are very small. We perform some exploratory analyses
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5.5 Simulation study based on a correlated frailty model 103

(results are not shown) and the same six cases are very distant from other observa-
tions for all the parameters. Therefore, we classified those six samples as outliers.

We also notice for σ2 the bias and the empirical standard error are the largest one
compared to previous scenarios. After removing the outliers the results are more
inline to what we had expected for this scenario (Table 5.9). Mean estimates, empir-
ical standard error, averaged standard errors, bias, variance and mean square errors
when the six samples with high estimates for σ1 are removed are presented in Table
5.9.

Additionally, the success rate in this scenario (Table 5.8) is the lowest one (86.4%)
compared to the ones for n=1,000 and n= 3,787. The results were so different to what
we had expected that we re-run this scenario (n=10,000 and 50% interval-censored
observation) once more. However, we got similar results to the ones presented here:
success rate lower than 90% and few large estimates for σ1 leading to large vari-
ance and MSE. Perhaps the uncertainty attributed to the large proportion of interval-
censored observations combined with the large sample size lead to results that can be
considered as outliers in some of the generated samples. This topic clearly deserves
further investigation.

The success rate assuming 30% of interval-censored observation increases slightly,
from 97% when n=3,787 to 98% when n=10,000. However, when we consider 40%
interval-censored observations the success rates decrease from 97% to 95%. Al-
though the decrease seems small it may be related to the issue described in the pre-
vious paragraph.

The variance and MSE for σ1 and σ2 with 40% interval-censored and 10,000 ob-
servations are slightly larger to the ones observed when n=3,787. To a lesser extend,
we observe a similar situation that has been described.

Our results are in agreement with the results presented by Hens et al. (2009) and
Cattaert (2008). The empirical standard errors reported in Table 5.7 are larger than
the ones for uncensored observations and smaller than the ones for right censored
observations reported by Hens et al. (2009) in Table AI. Clearly, type II interval-
censored data provide more information than right censored data but less than exact
time to event.

In all the scenarios presented in this section, we observed a correlation smaller
than -0.6 between the estimates of σ1 and ρ, and smaller than -0.4 between σ2 and
ρ. In fact, a negative correlation between the variance and the correlation estimates
has been recognized by Wienke (2011), we provide further insights about this issue
in the second simulation study.
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5.5.3 Impact of restrictive frailty correlation in the
parameter estimation of a correlated frailty models

As pointed out before, the correlation should not exceed the smallest ratio of the
frailty standard deviations. This property can restrict the model when the variances
are very different. In fact in the Amsterdam Cohort example the frailty correlation
is located on the boundary of the parameter space. Here, we assess the impact of
the restricted correlation. Initially, we assume equal frailty variances and then we
gradually decrease one of the variances to assess how the estimation procedure is
affected by the restriction.

The parameters for the baseline hazard rates (αi, βi) were based on the estimated
values for the Amsterdam Cohort Studies data. For each scenario we simulate 500
datasets with 1,000 individuals. The time to event data is generated as described in
Section 5.5.1. In the first scenario, the percentage of exact time to event observations
for the first outcome is 65%, whereas for the second outcome is 50% reflecting the
conditions observed in the ACS data.

The percentage of censored observations for the second outcome remains un-
changed throughout all the scenarios. On the other hand, for the first outcome the
percentage of censored observations decreases when the frailty variance decreases
from 35% in the first six scenarios to 7% in the last three scenarios. The reason is that
the cumulative baseline hazard (and therefore the time to event) gets smaller when
the frailty variance decreases.

We separate the scenarios in three groups: in the first six scenarios the frailty
variances are equal and the correlation ranges from 0.1 to 0.98; in the second group
there is a moderate difference between the frailty variances; and in the third group
we consider large difference between the frailty variances.

For each group we first present a table describing the frailty parameters and the
sucess rates of each of the scenarios in the group (Tables 5.10, 5.13 and 5.16). As in
the previous simulation study the rate is defined as the percentage of samples for
which a solution is obtained and the hessian matrix is positive definite.

Then, we present another table including mean estimates, ESE and the mean of
the standard errors (Tables 5.11, 5.14 and 5.17). Finally we include the bias, the vari-
ance and the MSE in Tables 5.12, 5.15 and 5.18.

In the first six scenarios the sucess rate ranges from 90% to 100%. The lowest
success rate is observed when ρ is equal to 0.98 (Table 5.10). When the correlation is
between 0.3 and 0.7 the success rate was 100%. Only two of the generated samples
did not produce standard errors in the real line when the correlation was equal to 0.1
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and 0.9.
As can be seen in 5.11, the mean of the standard errors and the empirical stan-

dard errors are pretty similar in terms of magnitude for all the estimates, indicating
that the variability within sample (standard error) resembles the variability across
samples (empirical standar error).

Additionally, for most of the parameters, except k0 and α2, we observed a de-
creasing trend in the empirical standard error and the mean of the standard errors
when the frailty correlation increases. For α2 the mean of the standard errors remains
practically without change in all the six scenarios. Instead for k0 increases in the first
five scenarios and then decreases in the last one (Table 5.11).

We do not observe any bias in most of the parameters, except in scenarios 1 and
6 for the frailty variances σ1, σ2. We also notice some small biases for α1. The MSEs
are mainly driven by the variance of the estimates. There is a decreasing trend in the
variances of the estimates and MSEs as a result of the decreasing trend observed in
the ESE (Table 5.12).

Although under equal frailty variances the correlation may range from 0 to 1, we
found some indications to be cautious with the results when ρ is on the boundary of
the parameter space (ρ < 0.1 or ρ > 0.9).

It has been recognized by Wienke (2011), that there is a negative correlation be-
tween the variance and the correlation estimates. Our results suggest that the neg-
ative correlation is not fixed, for instance, in Scenario 1 the Pearson’s correlation
between the estimates of σ2 and ρ is -0.05, then in Scenario 2 is -0.15, and in Scenario
5 the correlation is -0.53. We also notice a similar pattern between the correlation
σ1 and ρ, where the Pearson’s correlation ranges from -0.08 in Scenario 1 to -0.37 in
Scenario 5.

Scenarios 7-10 consider a variance ratio equals to 0.75, here the frailty correlation
ranges between 0.2 and 0.71. The success rates of the estimation procedure are above
99%, the lowest values are for those where the correlation is higher (Table 5.13).

As previously described, for most of the parameters we notice a decreasing trend
in the empirical standard errors and the means of the standard errors when the cor-
relation increases. The empirical standard errors are of the same magnitude than
the means of the standard errors for all the parameters (Table 5.14). The Pearson’s
correlation coefficient between σ2 and ρ decreases from -0.13, in Scenario 7 to -0.62 in
Scenario 10. The Pearson’s correlation coefficient between σ1 and ρ ranges between
-0.09 and -0.21, however in this case we do not observe any clear trend.

In Scenarios 11-13, the variance ratio is 2 and the frailty correlation ranges be-
tween 0.3 and 0.49. The success rate ranges from 94% (when the frailty correlation is
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Table 5.10: Success rate and frailty parameters assuming equal frailty variances and
Weibull baseline hazard. The following parameters remain constant for all the sim-
ulation settings: α1 = 1.21, α2 = 0.12, β1 = 0.81, β2 = 1.10 and σ1 = σ2 = 2. ρ < 1
n=1,000. Part I

Index σ1 σ2 ρ k0 k1 k2 Success rate
1 2 2 0.10 0.0250 0.2250 0.2250 99.6%
2 2 2 0.30 0.0750 0.1750 0.1750 100.0%
3 2 2 0.50 0.1250 0.1250 0.1250 100.0%
4 2 2 0.70 0.1750 0.0750 0.0750 100.0%
5 2 2 0.90 0.2250 0.0250 0.0250 99.6%
6 2 2 0.98 0.2450 0.0050 0.0050 89.6%

equal to 0.49) to 99% (Table 5.13). As described before we observe a decreasing trend
in the empirical standard errors and the mean of the standard errors when the frailty
correlation increases (Table 5.14).

We do not observe any bias in the estimates of the parameters; therefore the MSEs
are mainly attributed to the variances of the estimates. The decreasing trends in the
ESEs and the means of the standard errors are also reflected here in the variances
and the MSEs (Table 5.15).

Regarding the correlation between the variances and the correlation estimates
described before. We observe a similar trend in Scenarios 11-13. In Scenario 11, the
Pearson correlation coefficient between σ2 and ρ is -0.12, in Scenario 12 is -0.32 and
in Scenario 13 reaches -0.5.
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Table 5.13: Success rate and frailty parameters assuming a moderate difference be-
tween the frailty variances and Weibull baseline hazard. The following parameters
remain constant for all the simulation settings: α1 = 1.21, α2 = 0.12, β1 = 0.81 and
β2 = 1.10. n=1,000.

Index σ1 σ2 ρ k0 k1 k2 Success rate
σ1 = 1.5, σ2 = 2, ρ ≤ 0.75

7 1.5 2.0 0.20 0.0667 0.3778 0.1833 100.0%
8 1.5 2.0 0.40 0.1333 0.3111 0.1167 100.0%
9 1.5 2.0 0.70 0.2333 0.2111 0.0167 99.2%

10 1.5 2.0 0.71 0.2367 0.2078 0.0133 99.2%
σ1 = 1, σ2 = 2, ρ ≤ 0.5

11 1.0 2.0 0.30 0.1500 0.8500 0.1000 99.4%
12 1.0 2.0 0.40 0.2000 0.8000 0.0500 99.2%
13 1.0 2.0 0.49 0.2450 0.7550 0.0050 94.0%

Last six scenarios show the results for large differences between the frailty vari-
ances: the frailty variance ratio ranges between 4 and 20. In these cases, the frailty
correlation is heavily restricted as described in Table 5.16.

In Scenarios 14 and 15 the ratio of the frailty variances is 4 and the frailty correla-
tion is 0.2 and 0.24 respectively. In both scenarios the success rate of the estimation
procedure is lower than 95%. In most of the samples classified as failures, the stan-
dard error for k2 was given in complex number. In these two scenarios the empirical
standard errors and the means of the standard errors have the same magnitude (Ta-
ble 5.17).

In Scenario 14 the highest bias is observed in the estimates of k1, whereas in Sce-
nario 15 there is some indication of bias in the estimates of k1, k2 and ρ (Table 5.18).
From Scenario 15 onwards, the variance and the MSE for σ1 and σ2 are also large
compared to previous scenarios.

In Scenarios 16 and 17 the ratio between the frailty variances is 6.67 and the frailty
correlation is 0.1 in Scenario 16 and 0.145 in Scenario 17. The success rates of the es-
timation procedure are 89% and 87% respectively (Table 5.16). From Scenario 16
onwards the means of the standard errors are much larger than the empirical stan-
dard errors, indicating much larger within sample variability than between sample
variability. However, the empirical standard errors are also very large and show an
increasing trend when the difference in the frailty variance is larger.

In Scenario 16, in 71 samples (14%) the standard error for k1 is more than twice
the value of the estimate for the parameter (Table 5.17). At this point is difficult to
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define a common criterion for all scenarios to discard any of the samples with large
standard errors. In fact our results illustrate potential problems that arise in presence
of large difference in the frailty variances.

When there is large difference between the frailty variances the estimation of
the parameters also become challenging. In Scenario 16, in 60 samples (12%) the
estimates of k1 double the value of the estimate of the parameter. Certainly there is
overlap, in each sample that the estimate is large the standard error is also large.

In general, in Scenario 17 mean estimates, empirical standard error, mean stan-
dard error, variance, MSE and bias for k1 are larger compared to the ones observed
in the previous scenario. On the other hand, Scenarios 16 and 17 have similar values
for the bias and the MSE for k0, k2 and ρ (Tables 5.17 and 5.18).

The impact of the large difference between the frailty variances is clearly reflected
on the estimation of k1; however, the impact in the estimation of σ1 is limited. There
are two reasons: i) the magnitude of σ1 does not allow to observe high values for
the mean estimates and consequently the bias. Since σ1 is smaller than one, and
the bias2 can be at most 0.09 (a relatively small value compare to the ones we may
observe for other parameters). The second reason is large estimates of k1 lead to
smaller estimates of σ1 pulling down the mean estimate and bias but not as much as
high values can do.

The Pearson correlation coefficient between σ2 and ρ in Scenarios 16 and 17 is
-0.10. Whereas the Pearson correlation coefficient between σ1 and ρ is 0.24 in Sce-
nario 16 and 0.28 in Scenario 17. The positive correlation between σ1 and ρ may be
influenced by the large estimates of k1, however this requires more investigation if
possible.

In Scenarios 18 and 19 we assume a ratio of the frailty variances of 10 and a
frailty correlation smaller than 0.1. The success rate of the estimation procedure for
scenario 18 is 72% and 69% for Scenario 19 as can be seen in Table 5.16. In both
scenarios means, empirical standard errors and averaged standard errors for k1 are
even larger than the ones observed in scenarios 16 and 17.

In Scenario 18, 76 samples have a very large standard errors for k1 (twice larger
than the correspondent estimate). Moreover, 40 of those 76 samples have also large
estimates for k1 and we see some indication of bias in the baseline hazard parameters,
particularly in α1. We also notice slight bias in the frailty parameters k0, k2 and σ1.

In this scenario, the pearson correlation coefficient between σ2 and ρ is -0.16 and
the pearson correlation between σ1 and ρ is 0.32.

In Scenario 20 only 52% of the samples were classified as successful. In two of the
samples considered as failure the program did not produce standard errors, whereas
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Table 5.16: Success rate and frailty parameters assuming a large difference between
the frailty variances and Weibull baseline hazard. The following parameters remain
constant for all the simulation settings: α1 = 1.21, α2 = 0.12, β1 = 0.81 and β2 = 1.10.
n=1,000.

Index σ1 σ2 ρ k0 k1 k2 Success rate
σ1 = 0.5, σ2 = 2, ρ ≤ 0.25

14 0.50 2.0 0.200 0.2000 3.8000 0.0500 94.0%
15 0.50 2.0 0.240 0.2400 3.7600 0.0100 94.8%

σ1 = 0.3, σ2 = 2, ρ ≤ 0.15
16 0.30 2.0 0.100 0.1667 10.9444 0.0833 88.8%
17 0.30 2.0 0.145 0.2417 10.8694 0.0083 86.8%

σ1 = 0.2, σ2 = 2, ρ ≤ 0.1
18 0.20 2.0 0.080 0.2000 24.8000 0.0500 72.0%
19 0.20 2.0 0.099 0.2475 24.7525 0.0025 68.8%

σ1 = 0.1, σ2 = 2, ρ ≤ 0.05
20 0.10 2.0 0.049 0.2450 99.7550 0.0050 52.4%

in the other cases the hessian matrix was not positive definite. After discarding al-
most half of the samples, we observe very large values for the estimates and the
standard errors for k1.

The Pearson correlation coefficients between σ1 and ρ in Scenarios 16 to 20 are
positive. Which may be artificial due to the large estimates for k1 in some of the
samples.

Frailty variance differences we consider in Scenarios 16 to 20 are rather extreme
and point out how difficult the estimation process can be. The issue is not just the
parameter estimation but also the estimation of the standard errors, which hampers
statistical inference and model selection.
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5.6 Concluding remarks

The frailty model offers a powerful tool for the analysis of multivariate survival
data, handle clustered survival data and account for heterogeneity due to unob-
served covariates.

In case of clustered data, the shared frailty model is frequently used. In this case,
all the subjects belonging to the same cluster share the same frailty term and there-
fore a common variance for all the time to event outcomes is assumed. However,
this model may be too restrictive and therefore the correlated frailty model becomes
an appealing alternative.

Under the correlated frailty model a natural division within a cluster can be taken
into account and a set of random effects for each subcluster is included. In this
model, the variances are not necessarily the same and the frailties allowed to be cor-
related. This model has been described by Wienke (2011) and applied in infectious
disease context for current status data by Abrams and Hens (2014), Hens et al. (2009)
and Cattaert (2008).

In this chapter, we derive the log-likelihood contributions for the correlated frailty
model considering type II interval-censored data. We then apply several frailty mod-
els to the ACS data and compare the results. From these results we notice substantial
differences in the frailty variances for both outcomes. Additionally, under the corre-
lated frailty model, the correlation is on the boundary of the parameter space (given
the constraints of the correlation for the bivariate gamma frailty model). These find-
ings inspired the simulation study with a twofold objective. To assess model be-
haviour of a correlated frailty model in presence of type II interval-censored data
and to assess the impact of the constrained correlation when the frailty variances are
different.

The results of the first simulation study indicated that the performance of the
model depends on the proportion of type II interval-censored observations. In this
sense, our estimates are consistent and in agreement with the ones presented by
Hens et al. (2009) and Cattaert (2008). Furthermore, there is information gain (re-
flected by smaller empirical standard errors), mainly attributed to the interval-censored
observations.

We implement successfully the correlated frailty model considering interval-censored
data. In general, estimates were more consistent and more precise when the sample
size and percentage of interval-censored observation increase.

The success rates also tend to increase when the sample size and/or percentage
of interval-censored increase.
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Most of the samples we classified as failures a solution could not be reached (the
model did not converge) or the parameter estimates are complex numbers. In some
other cases, the model converge but the hessian matrix was not positive definite or
it was not produced by the software.

A high correlation between the parameter estimates may be an indication of iden-
tifiability issues. Several authors have pointed to the conditions under which the
correlated frailty model is identifiable. Besides, Wienke (2011) suggests to include
observed covariates in order to improve identifiability. Based on the results from
Yashin and Iachine (Yashin et al.; 1995; Iachine; 2004) we know that the correlated
frailty model is identifiable thanks to the additive decomposition, even without co-
variates and without parametric shape for the baseline hazard rate. Except in the
case of current status data.

It has been recognized by Wienke (2011), there is a negative correlation between
the variance and the correlation estimates. In our simulation studies we notice that
the negative correlation it is not fixed and in fact decreases when the frailty correla-
tion increases. Then, as it is expected, the correlated gamma frailty model can have
serious identifiability issues when the correlation is on the border of the parameter
space. Caution should be taken when the frailty correlation is smaller than 0.1 or
closer to the smaller ratio between the frailty variances (if that ratio is larger than
0.1).

The results of our second simulation study are limited to the values we consider
for σ1 and σ2. The model parameters and sample size were chosen to reflect the
Amsterdam Cohort Studies example. We assume equal frailty variances, moderate
and large difference between frailty variances. In total 20 scenarios were considered
assuming different frailty correlation.

When frailty variances are equal some cautious interpretations should be made
if the estimated correlation is lower 0.1 or larger than 0.9. In those cases we suggest
to perform further sensitivity analyses to assess the reliability of the results.

If the variance ratio is equal to 0.75, we recommend to perform senstivity analy-
ses when the frailty correlation is lower 0.1 or larger than 0.5. If the variance ratio is
equal to 0.5 the recommendation is to perform sensitivity analyses regardless of the
frailty correlation.

Our conclusions are restricted to the frailty parameters we choose as well as the
baseline hazard function. It is possible that other options for baseline hazard func-
tions and different values of frailty parameters lead to different results. Based on the
information available for this study it is hard to perform extrapolations.

More research is needed in the area to implement a more complex baseline haz-
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ard such as the generalized gamma, the generalized F (Cox; 2008) or the one pro-
posed by Sparling et al. (2006). Another option could be consider a semi-parametric
approach where the univariate marginal survival is left unspecified. For the ACS,
we implemented the baseline hazard proposed by Sparling et al. (2006), however
we face major difficulties with the convergence of the model which to date remain
unresolved.

Another aspect that deserves further attention is the impact of misspecification
of model components. Further research should examine the misspecification of the
baseline hazard, the frailty distribution and the type of frailty (for instance shared
frailty versus correlated gamma frailty). Cattaert (2008) reports biases on the frailty
and the baseline hazard parameters when a shared gamma frailty is fitted to a dataset
coming from correlated gamma frailty model. Hens et al. (2009) presents similar
results in terms of the mean estimates, also pointing at differences in the estimated
variances.

The models implemented here do not include any covariate. An extension of the
analyses in this chapter could include that aspect. An extensive simulation study
that includes covariates is presented in Chapter 5 of Wienke (2011). The author
adresses the impact of estimation strategies on the correlated frailty models.

The bivariate correlated frailty model can be extended when more than two ob-
servations per cluster are considered. In this case, Goethals (2011) presents an overview
of a four-dimensional correlated gamma frailty models assuming different correla-
tion structures. The first model is a shared frailty, and the other three are corre-
lated gamma fralty models. She applied the four models to a dataset of mastitis, the
inflammation of the udder of a dairy cow. The models also take into account the
interval-censored nature of the data.

The four-dimensional frailty distribution imposes constrains on the correlation
between the frailty variances. Even though the restrictions are reasonable for practi-
cal situations, we may face convergence problems when we are in the border of the
parameter space. The impact can be different depending on the correlated gamma
frailty model that is applied.

An extension of the correlated frailty models presented here may include the
mathematical models presented in Chapter 6, where the survival function is based
on the solution of mathematical models.
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Chapter 6
Basic mathematical models for
HCV and HIV

This chapter introduces two basic transmission model for HIV and HCV respec-
tively, and a joint transmission model accounting for HIV and HCV co-infection; in
the three models the transmission is exclusively attributed to sharing syringes. For
HCV our models extends the model by Kretzschmar and Wiessing (2004) to account
for multiple HCV infections and distinguishes between acute, chronic infected and
susceptible individuals who cleared the virus. For HIV we consider two phases:
infected with HIV and AIDS.

The joint model combines the two basic transmission models adding extra com-
partments for those individuals who got infected whit HCV virus in acute stage but
afterwards clear the virus spontaneously.

6.1 Mathematical model for HIV

In the context of injecting drug users, to simplify the model we ignore transmis-
sion associated with sexual contacts and the time at risk is the duration of injec-
tion. The susceptible individuals (SHIV) are infected with HIV at a per capita rate
λHIV , which may depend on: the proportion of people in each disease phase, the
syringe sharing rates per unit of time, the sharing partners, the transmission rates,
and the proportion of syringes shared. Once an individual acquires HIV it enters
into an infected stage (IHIV) that last during (1/ωHIV), after which he/she develops

121
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SHIV 

     

IHIV 

     

AHIV 

     

Figure 6.1: Flow diagram of the mathematical model for HIV. SHIV : susceptible HIV,
IHIV : HIV positive, and AHIV : AIDS

AIDS(AHIV). The disease associated mortality is given by the parameter γHIV . The
model can be represented by diagram in figure 6.1.

The HIV model assumming a closed population (no entry and exit rates) can be
described by the following set of differential equations:

dSHIV(t)
dt

= −SHIV(t)λHIV

dIHIV(t)
dt

= λHIVSHIV(t)−ωHIV IHIV(t)

dAHIV(t)
dt

= ωHIV IHIV(t)− ηHIV AHIV(t) (6.1)

Solving the differential equation for SHIV(t), taking into account SHIV(0) = 1:

dSHIV(t)
dt

1
SHIV(t)

= −λHIV∫ t

0

dSHIV(s)
ds

1
SHIV(s)

ds =
∫ t

0
−λHIVds

ln SHIV(t)− ln SHIV(0) = −ΛHIV

SHIV(t) = exp(−ΛHIV) (6.2)

SHIV(t) is the conditional survival function for HIV given the random effects.
Assuming proportional hazards, the unconditional survival function S∗HIV(t) can be
derived by taking the expectation with respect to the random effects Z. Then, the un-
conditional survival function coincides with the Laplace transform of the cumulative
baseline hazard for HIV.

S∗HIV(t) = E{SHIV(t|Z)} = E{exp (−tλHIV(Z))} = L(ΛHIV)
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Figure 6.2: Model-based proportions for a HIV transmission model - one risk group.
Disease stages: Susceptible, HIV infected, and AIDS

The figure 6.2 shows one fit of the HIV model. We include the proportion of
susceptible, infected with HIV and AIDS. For this model fit, the proportion of sus-
ceptibles individuals starts to reduce slowly after 5 years of exposure. Whereas the
number of HIV infected individuals steadily increases. The proportion of individu-
als in the AIDS stage shows small increase after ten years..
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6.2 Mathematical model for HCV

The time at risk is given by the duration of injection (exposure time) denoted
by t. The susceptible individuals (SHCV) are infected with HCV at a per capita rate
λHCV , which depends on: the proportion of people in each disease phase, the num-
ber of syringes shared, the transmission probabilities and the proportion of syringes
shared. Once an individual acquires HCV he enters into an acute phase (IHCV) that
last during (1/ωHCV), after which he becomes a chronic carrier (CC) or clears the
virus going back to the susceptibe class. The proportion of IDUs who do not clear
spontaneously the virus is denoted by ψ. The individual can be re-infected later one
assuming the same force of infection λHCV . The disease associated mortality is given
by the parameter ηHCV . The model can be represented by the diagram in figure 6.3:

 

SHCV 

      
IHCV 

     

CCHCV 

          

     

Figure 6.3: Flow diagram of the mathematical model for HCV. SHCV : susceptible
HCV, IHCV : acute HCV infected, CCHCV : chronic HCV carrier

The HCV model shown in figure 6.3 can be described by the following set of
differential equations:

dSHCV(t)
d(t)

= (1− ψ)ωHCV IHCV(t)− λHCVSHCV(t)

dIHCV(t)
d(t)

= λHCVSHCV(t)−ωHCV IHCV(t)

dCCHCV(t)
d(t)

= ψωHCV IHCV(t)− ηHCVCCHCV(t) (6.3)

The solution of the system is far from trivial. We apply the general solution and
the expression we obtain is given by:
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SHCV(t) = exp

t

−λHCV −ωHCV +
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2


∗

ωHCV − λHCV +
√

λ2
HCV + ω2

HCV + 2λHCVωHCV(2ψ− 1)

2
√

λ2
HCV + ω2

HCV + 2λHCVωHCV(2ψ− 1)
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HCV + 2λHCVωHCV(2ψ− 1)
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ωHCV − λHCV −
√

λ2
HCV + ω2

HCV + 2λHCVωHCV(2ψ− 1)

2
√
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HCV + ω2

HCV + 2λHCVωHCV(2ψ− 1)

 (6.4)
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Figure 6.4: Model-based proportions for a HCV transmission model - one risk group.
Disease stages: HCV Susceptible, Acute HCV infected, and Chronic HCV carrier

Figure 6.4 shows one fit of the HCV model based on a specific set of parameters.
We include the proportion of susceptible, acute infected and chronic carriers. Based
on the input parameters in the model, we observe the proportion of susceptibles
individuals reduce sharply in the first three years of exposure. Additionally, the
peak of acute infected individuals occurs immediately after, whereas the proportion
of chronic carriers increase steadly until seven years of exposure and reduce slowly
afterwards.

The HCV and HIV models can be combined to generated a joint transmission
model for HCV/HIV co-infection as it is shown in the following section. We add an
extra stage in the HCV model to differentiate the individuals who are susceptible for
HCV but were previously infected by the virus.
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6.3 Mathematical model for HCV/HIV co-infection

The joint transmission model we use is shown in Figure 6.5 and consists of the fol-
lowing disease stages for HCV: susceptible (SHCV), acute infected (IHCV), susceptible
after spontaneously clearing the virus (S+

HCV) (only possible after acute infection)
and chronic carrier (CCHCV). For HIV the stages are: susceptible (SHIV), infected
with HIV (IHIV) and AIDS (AHIV). An individual can be first infected by HCV and
then by HIV or vice versa, then we consider a joint model with 18 compartments as
described in Figure 6.5.
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Figure 6.5: Flow diagram of the joint mathematical model for HCV/HIV for one
risk group. SHCV : susceptible HCV, SHIV susceptible HIV, S+HCV : susceptible after a
previous infection with HCV, IHCV : acute HCV infected, IHIV : HIV infected, CCHCV :
chronic HCV carrier and AHIV : AIDS. Entry and exit rates are not shown.
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In general the behavior of IDUs is very heterogeneous, some hardly ever share in-
jecting equipment while others do share more frequently. In order to account for that
heterogeneity we consider different models extending the single risk group model
to a two risk group model (low and high risk) and to a three group risk model (low,
moderate and high risk). We assume that once an individual starts injecting drugs,
he/she belongs to a specific risk group (denoted by i) without switching groups. The
proportion of individuals in a certain risk group is also represented as a model pa-
rameter. In figure 6.6 we only consider one risk group, however in the next chapter
we consider one, two and three risk groups.

As in the previous models, the time at risk is given by the duration of injection
(exposure time). The flow of individuals is as follows: the susceptible individuals are
infected with HCV at a per capita rate λHCVi , which depends on: the proportion of
people in each disease phase, the number of syringes shared, the transmission proba-
bilities and the proportion of syringes shared with members of other risk groups. An
HCV positive individual remains acute infected during a period of average length
1/ωHCV , whereas the average infectious period for HIV is denoted by 1/ωHIV . The
diseases specific mortality parameters are denoted by ηHCV and ηHIV , respectively
and cessation rates by νi. We did not take into account HIV treatment due to the
relatively low use of antiretrovirals (Camoni; 2011). A proportion of the acute in-
fected individuals, ψ, becomes chronic carrier and the remaining proportion, 1− ψ,
clears the virus spontaneously. Those who clear the virus, can also be reinfected at
the same rate λHCVi .

The probability of spontaneous clearance of the HCV virus is reduced in case
of co-infection (Wasmuth; 2010; Micallef et al.; 2006). The high viral load for HCV
could also imply rapid liver disease progression (Wasmuth; 2010). To account for the
extra viral load in the presence of co-infection we include the term r1 to accelerate
the disease progression. Additionally, the term r2 impacts the spontaneous clearance
due to co-infection.



6.3 Mathematical model for HCV/HIV co-infection 129

The dynamic model for one particular risk group is represented by the following
set of ordinary differential equations:

dY1i
dt

= B−Y1i(λHCVi + λHIVi + νi)

dY2i
dt

= λHCVi Y1i + λHCVi Y4i −Y2i(ωHCV + λHIVi + νi)

dY3i
dt

= ψωHCVY2i −Y3i(λHIVi + ηHCV + νi)

dY4i
dt

= (1− ψ)ωHCVY2i −Y4i(λHIVi + λHCVi + νi)

dY5i
dt

= λHIVi Y2i + λHCVi Y7i −Y5i(ωHIV + ψr1ωHCV + (1− ψ)r2ωHCV + νi)

dY6i
dt

= λHIVi Y3i + ψr1ωHCVY5i −Y6i(r1ηHCV + ωHIV + νi)

dY7i
dt

= (1− ψ)r2ωHCVY5i + λHIVi Y4i −Y7i(λHCVi + ωHIV + νi)

dY8i
dt

= ωHIVY5i + λHCVi Y9i −Y8i(ηHIV + ψr1ωHCV + (1− ψ)r2ωHCV + νi)

dY9i
dt

= (1− ψ)r2ωHCVY8i + ωHCVY7i −Y9i(ηHIV + λHCVi + νi)

dY10i
dt

= ψr1ωHCVY8i + ωHIVY6i −Y10i(ηHIV + r1ηHCVi + νi)

dY11i
dt

= λHIVi Y1i −Y11i(ωHIV + λHCVi + νi)

dY12i
dt

= Y11iωHCV −Y12i(ηHIV + λHCVi + νi)

dY13i
dt

= λHCVi (Y11i + Y15i)−Y13i(ωHIV + ψr1ωHCV + (1− ψ)r2ωHCV + νi)

dY14i
dt

= λHCVi (Y12i + Y16i) + ωHIVY13i −Y14i(ψr1ωHCV + (1− ψ)r2ωHCV + ηHIV + νi)

dY15i
dt

= (1− ψ)r2ωHCVY13i −Y15i(λHCVi + ωHIV + νi)

dY16i
dt

= ωHIVY15i + (1− ψ)r2ωHCVY14i −Y16i(λHCVi + ηHIV + νi)

dY17i
dt

= ψr1ωHCVY13i −Y17i(ωHIV + r1ηHCV + νi)

dY18i
dt

= ψr1ωHCVY14i + ωHIVY17i −Y18i(ηHIV + r1ηHCV + νi)
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It is far more complex to find a general solution for this model, therefore we only
focus on the solution of the model based on integration routines. To illustrate the
complexity of the model we refer to De Vos et al. (2012), where a detailed analysis of
a similar model is provided assuming HCV equilibrium.

For the joint model, we consider two definitions for the force of infection. The
first corresponds to the model proposed by Kretzschmar and Wiessing (2004) and
assumes the same transmission rate for every syringe-sharing; while the second def-
inition, following Garnett and Anderson (1994) takes the number of partners into
account.

6.3.1 A first definition of the force of infection

The force of infection in each of the risk groups i (λHCVi ), is a function of the shar-
ing rates (κi for the i-th risk group), the transmission rate per syringe-sharing event at
each infection stage (bHCVI , bHCVCC ), the proportion of syringes shared with members
of other risk groups (mij: mixing proportions among the risk groups), and the pro-
portion of infected individuals in each risk group for every disease stage (endemic
prevalences: PrevHCVI j , PrevHCVCCj ). For this parametrization the force of infection
is given by:

λHCVi = κi

R

∑
j=1

mij

(
bHCVI PrevHCVI j + bHCVCC PrevHCVCCj

)
, (6.5)

with R the number of risk groups. Note that ∑j mij = ∑i mij = 1. Similarly, we
define the force of infection for HIV by:

λHIVi = κi

R

∑
j=1

mij

(
bHIVI PrevHIVI j + bHIVA PrevHIVAj

)
. (6.6)

Two issues arise when using this definition of the force of infection. First, it as-
sumes that every syringe-sharing event has the same transmission rate (although,
it does depend on the stage of infection); when in fact the transmission depends
not only on the syringe-sharing event but also on the number of sharing partners.
Secondly, it is difficult to quantify the degree of mixing, because this depends on
the parameters mij (probability that a member of risk group i shares syringes with a
member of group j). Although the extremes are fully assortative (for i = j, mij = 1
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whereas for i 6= j, mij = 0) or fully disassortative (for i = j, mij = 0), it is not
straightforward to interpret the degree of mixing for different values of mij.

6.3.2 A second definition of the force of infection

Following Garnett and Anderson (1994), the force of infection may account for
the number of sharing partners per unit of time (ni). An individual may be infected
by a syringe partner in a certain disease stage in one of τ contacts. The probability
of infection per unit of time is then given by BHCVk = 1− (1− bHCVk )

τ , where k = I
for infected and k = CC for chronic carriers. The second definition for the force of
infection is

λHCVi =
R

∑
j=1

nimij

(
BHCVI PrevHCVI j + BHCVCC PrevHCVCCj

)
. (6.7)

The mixing patterns are given by mij =
Tjnj

∑ Tini
(1− ν) + νδij where δij is a dirac-delta

function equal to one if i = j and zero otherwise. The parameter ν denotes the
degree of assortative mixing: ν = 0 corresponds to random mixing and ν = 1 to
fully assortative mixing. Ti denotes the number of IDUs in the i-th risk group. In an
equivalent way the force of infection for HIV is defined.

6.3.3 Illustration of the mathematical model for HCV/HIV co-infection

An example of a joint model is presented on figure 6.6. Here we assumed only
one risk group and the first definition of the force of infection. Since the information
about the serostatus for HCV and HIV is available, in figure 6.6 we include the pro-
portion of susceptible for both infection, the proportion of positive for at least one of
the viruses and the proportion of individuals positive for both viruses.

The proportion of individuals susceptible for both diseases decreases steadily
over the exposure time until about 15 years of exposure, then remains almost con-
stant. On the other hand, the proportion of individuals positive for HIV and negative
for HCV increases reaching a peak around 12 years, after dimishes due to the increas
of the individuals who become positive for HCV.

The fitted values presented in this chapter for the different models are examples,
they have not been calibrated to any real data example and therefore do not reflect
any real life trend. In the following chapter we apply a seven step procedure to
callibrated a model to the data.
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Figure 6.6: Model-based proportions for a joint HCV/HIV transmission model - one
risk group with the first definition of the force of infection

This chapter presented two basic transmission models for HCV and HIV and a
joint model that accounts simultaneously for the transmission of both viruses. The
last model will be considered in the next chapter, where we calibrate the joint model
to two different datasets (the Vedette and the Itinere) and assess the model from a
statistical perspective.



Chapter 7
A mathematical model for
HIV/HCV co-infection and
its assessment from a statistical
perspective

In the IDU setting serological data constitutes one valuable source of informa-
tion for understanding HIV and HCV epidemiology. Serological data comprises the
serostatus for each individual and self-reported data on the duration of injection can
be considered as a measurement of the time at risk. Several studies have addressed
modelling the force of infection and co-infection for HCV and HIV in IDU popula-
tions based on serological data (Del Fava et al.; 2011; Sutton et al.; 2006, 2008). In
these models, the force of infection has been estimated as a function of the expo-
sure time and a term reflecting the individual heterogeneity in the acquisition of the
virus; a frailty term. Those models are very flexible and are useful for identifying
risk factors for the infection at hand; however, they do not focus on the transmission
process of the viruses (Garnett et al.; 2011).

In infectious disease epidemiology, mathematical models are used to model mech-
anistically the spread of certain diseases and to assess the impact of intervention
policies. In mathematical models, the force of infection reflects the transmission
process explicitly using the effective contact rate, transmission probabilities and the
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number of infected individuals. One of the first examples of a joint dynamic model
for HCV/HIV aimed at assessing the cost-effectiveness of needle and syringe pro-
grammes (Vickerman et al.; 2008). A similar model was used to explore the hypoth-
esis of a low prevalence of HCV despite the high rates of sharing needles/syringes,
and to project future HIV/HCV co-infection while assessing the impact of interven-
tions (Vickerman et al.; 2009). Recently, Vickerman et al. (2011) used a mathematical
model to understand the trends in HIV and HCV prevalences, determining epidemi-
ological profiles and De Vos et al. (2012) investigated the relationship between the
prevalences and the heterogeneity of injecting risk behavior.

This chapter build up on the joint transmission model described in Chapter 6
and the methods and results based on the Vedette dataset have been published on
Castro Sanchez et al. (2013).

Here, we present a procedure to assess the model from a statistical perspective,
using bivariate serological data from both infections. For HCV our model extends
the model by Kretzschmar and Wiessing (2004) to account for multiple HCV infec-
tions and distinguishes between acute, chronic infected and susceptible individuals
who cleared the virus. For HIV we consider two phases: infected with HIV and
AIDS.

In model development, the estimation or ‘calibration’ of the model to data and
the assessment of the sensitivity to capital parameters and uncertainty in projections
are key aspects of any analysis. Several authors have pointed to the importance of
rigorous sensitivity analysis to model the dynamics of a given infectious disease (Bil-
cke et al.; 2011; Garnett et al.; 2011; Jit and Brisson; 2011; Okais et al.; 2010; Vanni et al.;
2011). For example, Vanni et al. (2011) and Bilcke et al. (2011) provide a methodolog-
ical framework to account for different sources of uncertainty and to calibrate the
model to observational data.

The model assessment of the proposed joint transmission model includes the
estimation of the parameters or the calibration of the model to data, the quantifi-
cation of model uncertainty and model selection, the assessment of the statistical
variability, and analyses of the model parameters in the high-dimensional parame-
ter space. Although maximum likelihood (ML) theory is not entirely applicable in
our overparameterized setting, ML concepts are used together with modern statis-
tical techniques developed for high-dimensional problems. In what follows, model
uncertainty refers to the joint mathematical model itself and the option to consider
different alternatives for certain components of the model. We will consider two
components of special interest: i) the number of risk groups (one, two or three), and
ii) the formulation of the force of infection (two options). As it is uncertain which
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option is best, the models corresponding to the different options are examined and
compared with statistical measures. Six different models will be compared and em-
pirical evidence will be used to select the best model.

7.1 Overview of the datasets

The deterministic model was calibrated separately to two different datasets. Here
we briefly described them, some exploratory data analyses are provided on Chapter
1.

7.1.1 The Vedette IDU data

The dataset comes from a longitudinal study of heroin users in Italy. The main
goal was to evaluate the effectiveness of treatments provided by the National Health
Services. Antibody levels were determined for HIV, HCV and Hepatitis B. The sub-
set used for the analyses presented in this manuscript corresponds to the Piedmont
region totalling 2,628 IDUs.

7.1.2 The Itinere IDU data

The dataset corresponds to the baseline measurement of a cohort study of heroin
drug users in Spain. The main goals were to monitor the health impact of drug use
and to identify risk factors. Determination of antibodies was made for HIV, HCV,
Hepatitis B, and Human T-lymphotropic virus, using dried blood samples.



136
A mathematical model for HIV/HCV co-infection and

its assessment from a statistical perspective

7.2 Description of the statistical methods for model as-

sessment

The deterministic joint model for HCV/HIV co-infection has been introduced in
Chapter 6. Here, we present the techniques to assess the model from a statistical
perspective before turning to the results section.

7.2.1 Identification and estimation of the model parameters

An overview of all model parameters is shown in Table 7.1 and Table 7.2: 14
parameters for the single risk group model, 19 for the two risk group and 26 for
the three risk group model, regardless of which definition is used for the force of
infection. The right column of Table 7.1 and Table 7.2 gives the range of plausible
values for each parameter, based on literature as far as available (only for Table 7.1).
Denote θ the vector of all parameters

θ = (bHCVI , bHCVCC , bHIVI , bHIVA , . . . ),

and Θ the Cartesian product space of all intervals of plausible ranges. We assume
that the estimate θ̂ that maximizes the likelihood given the data belongs to Θ.

However, standard application of ML-estimation (with Newton-Raphson-like nu-
meric approaches based on derivatives) is not applicable in this case: the model is
defined through an extensive set of differential equations with 13 or more parame-
ters and the serological data provide no direct information (through e.g. summary or
sufficient statistics) about any of the individual parameters. For such an overparam-
eterized model, one can expect several combinations of parameter values (solutions)
to lead to similar (log)likelihood values (flat likelihood surface).

The approach we take is as follows. For every parameter we draw values from
a uniform distribution (using the ranges from Table 7.1 and 7.2) and select 500,000
parameter sets using Latin Hypercube Sampling (LHS). LHS is an efficient technique
to generate parameter values from the high dimensional space Θ (Stein; 1987; Blower
and Dowlatabadi; 1994; Hoare et al.; 2008). In order to “estimate” the parameter
vector θ (or to calibrate the model, i.e. to find the value of θ most supported by the
observed data), we use ML concepts and measures. In our case, the estimate for θ

corresponds to a mathematical model that reflects as closely as possible the trends in
the observed joint prevalences for HCV and HIV as a function of exposure time.

In cross-sectional serological studies the serostatus for HCV and HIV as well as
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Table 7.1: List of all parameters in the joint mathematical model for HCV/HIV: part
I.

Model parameter definition Range References
Transmission rate per syringe-sharing event of HCV

In acute stage (bHCVI ) 0.005 - 0.2 Yazdanpanah et al. (2005); De
Carli et al. (2003)In chronic stage (bHCVCC ) 0.005 - 0.2

Transmission rate per syringe-sharing event of HIV
In infection stage (bHIVI ) 0.001 - 0.1 Baggaley et al. (2006); White

et al. (2007)In AIDS stage (bHIVA ) 0.000 - 0.1
Duration in every stage HCV

Duration in acute infection
stage HCV (1/ωHCVI )

4-6 months Wasmuth (2010); Hutchinson
et al. (2006a,b); Deuffic-Burban
et al. (2004)Duration as chronic carrier of

HCV (1/ηHCVCC ) ≥ 10 years

Duration in every stage HIV

Duration in the infection stage
HIV (1/ωHIVI )

3-30 years
UNAIDS (2010); Vickerman
et al. (2009); Garcia de la Hera
et al. (2004); Jarrin et al. (2008);
Serraino et al. (2009); Todd et al.
(2007)Duration as AIDS (1/ηHIVA ) 1 - 10 years

Spontaneous clearance and co-infection
Proportion of people who do
not spontaneously clear the
HCV in acute stage ψ

0.4 - 1.0

Wasmuth (2010); Micallef et al.
(2006); Hutchinson et al.
(2006a,b); Deuffic-Burban et al.
(2004)

Acceleration factor for disease
progression of HCV in presence
of co-infection r1

1.0 - 4.0

Factor to modify spontaneous
clearance of HCV in presence of
co-infection r2

0.0 - 4.0

Entry and exit rate parameters
Entry rate (E) 0.0 - 0.2
Exit rates, including cessation
(νi), assuming a injecting career
length at least 5 years

0.0 - 0.2 Bouhnik et al. (2004); Galai et al.
(2003); Steensma et al. (2005)
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Table 7.2: List of all parameters in the joint mathematical model for HCV/HIV: part
II.

Model parameter definition Range
Behavioral parameters

Mixing proportions mij 0-1
Degree of assortativeness ν 0-1
Sharing syringe rate per trimester κ1 (one RG) 1-300
Sharing syringe rate per trimester low risk group κ1 (2 RGs) 1-100
Sharing syringe rate parameter f1 = κ2/κ1 (2 RGs) 1-50
Sharing syringe rate low risk group κ1 ( 3 RGs) 1-100
Sharing syringe rate parameter f2 = κ2/κ1 (3 RGs) 1-50
Sharing syringe rate parameter f3 = κ3/κ2 (3 RGs) 1-20
Mixing proportions mij 0-1
Degree of assortativeness ν 0-1
Number of sharing partners partners n1 (1 RG) 1-50
Sharing syringe events per partner τ (1 RG) 1-20
Number of sharing partners low RG n1 (2 RGs) 1-50
Number of sharing partners parameter g1 = n2/n1 (2 RGs) 1-20
Sharing syringe events per partner τ (2 RGs) 1-20
Number of sharing partners low RG n1 (3 RGs) 1-50
Number of sharing partners parameter g2 = n2/n1 (3 RGs) 1-20
Number of sharing partners parameter g3 = n3/n2 (3 RGs) 1-20
Sharing syringe events per partner τ (3 RGs) 1-10

the self-reported duration of injection (exposure time) are available for each partici-
pant. An individual with a certain exposure time is either positive for both viruses,
negative for both or positive for only one of them, leading to a multinomial distri-
bution. Let p00t, p01t, p10t and p11t denote the proportion of IDUs with an injecting
career length t that are uninfected, infected by HIV and not by HCV, infected by HCV
and not by HIV, and infected by both HIV and HCV, respectively. Given a specific pa-
rameter vector θ, we use integration routines to solve the differential equations, from
which the corresponding values for p00t(θ), p01t(θ), p10t(θ) and p11t(θ) are derived.
Denote T the set of distinct observed exposure times. The multinomial likelihood
function is given by

L(θ|{yrst}t∈T) = ∑
t∈T

(p00t(θ))
y00t(p01t(θ))

y01t(p10t(θ))
y10t(p11t(θ))

y11t , (7.1)

where yrst is the observed number of individuals for the corresponding combination
r = 0, 1; s = 0, 1 with exposure time d. According to the ML principle, the higher the
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likelihood L(θ) the better the data supports the parameter vector θ. In the next two
subsections we describe how the bootstrap can be used the get additional guidance
in selecting a final model and in assessing variability. In a last subsection we discuss
different ways to further evaluate the model parameters from a statistical point of
view.

7.2.2 Model selection

In general, there exist several statistical criteria for model selection. Here we
focus on Akaike’s information criterion (AIC, see e.g. Akaike (1974)), which rewards
goodness of fit (measured by the likelihood) but also penalizes for complexity. The
AIC value for each candidate model with likelihood L is defined as

AICL = −2 log{max
θ

L(θ|{yrst}t∈T)}+ 2× (number of model parameters),

and the candidate model with the smallest AIC-value is considered to be the best
model. To assess which model would perform best across several samples (of the
same size), we extend the model selection exercise with the application of the non-
parametric bootstrap (i.e. resampling the data, see e.g. Davison and Hinkley (1997)).
Using this nonparametric bootstrap we address model selection uncertainty. The in-
dividuals in the sample are resampled (with replacement) in order to get a bootstrap
sample (of the same size). For each bootstrap sample b (b = 1, ..., B), the likelihood
function L(b)(θ|{y∗rst(t)}t∈T) (where y∗rst(b) are the observed counts in the bootstrap
sample) is maximized (again over the 500,000 LHS-generated parameter vectors) for
each candidate model, leading to B AIC values AIC∗L(b) for each candidate model.
The model that is most often selected as best model over all bootstrap samples, is
retained as the final model.

7.2.3 Assessing variability

As an alternative to ML-standard errors, we propose to apply again the nonpara-
metric bootstrap as a method to quantify sampling variability. We follow the same
bootstrap approach as in the previous subsection but limited to the final model, and
leading to B estimates θ̂∗(b). The number of times each different LHS-generated
parameter vector is selected as maximizer of the likelihood is calculated. This fre-
quency distribution characterizes the variability.
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7.2.4 Statistical evaluation of model parameters

As mentioned in previous sections, standard ML estimation and inference can-
not be applied. In this section we do not focus on the value of θ that maximizes
L(θ|{yrst}t∈T) but to the subset Θ1% ⊂ Θ that corresponds to the top 1% of highest
values of L(θ|{yrst}t∈T). This subset Θ1% is then examined in various ways to get
further insights in the parameters, their association and their impact on the model.
We used several standard multivariate techniques including principal component
analysis, cluster analyses, etc as well as some recently developed methods shown to
be useful in the context of data mining and analysis of genetic data. We limit our-
selves to describing the results of a specific version of classification trees, generalized
additive models and a very recently developed association measure, the maximum
information coefficient; but we start with exploring the parameter space univariately.

7.2.4.1 Univariate explorative analysis of Θ1%

A parameterwise graphical comparison of the density fU of the initial uniform
distribution (range as in Table 7.1) with the density fΘ1% corresponding to the val-
ues within the subspace Θ1%, allows us to indicate which parameters are (highly)
influenced by the data (with a peaked unimodal density fΘ1% ). It resembles the com-
parison of prior and posterior densities in a Bayesian approach.

7.2.4.2 Activity region finder

Amaratunga and Cabrera (2004) developed a recursive partitioning classification
tree (ARF = Activity Region Finder) to characterize a subset of cases that respond
positively or have high response values (such as highly expressed genes in microar-
ray experiments). Consider each of the 500,000 LHS-generated parameter vectors θ

as input (explanatory variables) and the corresponding binary indicators that equal
1 if θ ∈ Θ1% and 0 otherwise as output (response variable). Applying ARF on these
500,000 ‘observations’ gives insights in which patterns and structures are character-
izing the subspace Θ1%. The procedure is available as an R package (downloadable
from one of the author’s website Amaratunga and Cabrera (2004)).

7.2.4.3 Generalized additive models

Generalized additive models (GAM, see e.g. Wood (2006)) are well-established
flexible regression models. In essence, it is a generalized linear model with a lin-
ear predictor involving a sum of smooth functions of the covariates. Here we apply
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GAM on the same input-output setting as used with the ARF. More precisely it re-
lates the linear combination

α + f1(bHCVI ) + f2(bHCVCC ) + f1(bHIVI ) + f2(bHIVA) + . . . , (7.2)

where f j’s are cubic splines functions to the probability that the corresponding likeli-
hood belongs to the top 1%. Finally, as in logistic regression, a logit link is used. This
is again an alternative and flexible way to gain further insights in which patterns of
parameter vectors θ characterize the subspace Θ1%.

7.2.4.4 Maximal information coefficient

Based on our sampling algorithm we do not expect to see any association be-
tween the parameters in the full space Θ. We however expect some association struc-
ture between the parameters in the subset Θ1%. To quantify the association one can
use the Maximal Information Coefficient (MIC) proposed by Reshef et al. (2011). The
MIC captures a wide range of associations not limited to functional relationships
(generality property). In addition it gives the same score to equally noisy relation-
ships (equitability property). The MIC ranges between 0 and 1, the higher the value
the stronger the relationship between the variables. There is no closed form expres-
sion to calculate the MIC, but software provided by the authors of Reshef et al. (2011)
can be used.
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7.3 Application to the Vedette dataset

The AIC values in the second column of Table 7.3 suggest that the model using
the first definition of the force of infection with two risk groups fits best to the data,
with only a very small difference in favor of the second definition of the force of in-
fection. Of course, for a similar sample of the same size the result could be different.
Therefore, we motivate our final decision on the results of a nonparametric bootstrap
exercise (with B = 500 runs). The last column of Table 7.3 indicates that the two-risk
group model with the first definition for the force of infection is selected more often
(41%) than any other model; and therefore we select that one as our final model. The
parameter values of this final model at the maximal multinomial likelihood are listed
in Table 7.4. As mention before standard ML inference cannot be applied, therefore,
we cannot report standard errors in Table 7.4.

Panels (a) and (b) of Figure 7.1 show the model-based fits for p00t, p01t, p10t, p11t

considering one, two and three risk groups with the first definition of the force of
infection on top of the observed probabilities. The fits follow the data pattern rea-
sonably well for short and medium exposure times, whereas for longer exposure
times all three models deviate from the observed data, specially when only one risk
group is considered in the model. It is worth noting that the limited number of in-
dividuals at longer exposure times may explain the poor fit in this region. A closer
inspection confirms that the two-risk group model fits better to the data. Panel (c)
depicts the marginal probabilities p·1t and p1·t. The fitted curves p11t and p01t for the
two-risk group do however exhibit a peculiar bump at an exposure time of 5 years.

7.3.1 Assessing variability

It turns out that only 29 out of 500,000 (that is only 0.01%) parameter vectors θ

were associated with the highest likelihood values L(b)(θ|{y∗rst(b)}t∈T) in at least one
of the B = 500 bootstrap samples.

The model-based prevalence curves for HCV and HIV for these 29 parameter
vectors are shown in Figure 7.2 (gray lines). Furthermore, only six of them were se-
lected in 74.4% of the bootstrap samples. The colored lines and symbols represent the
model-based prevalence curves corresponding to the three most often selected pa-
rameter sets (29.4%, 17.4% and 9.6%, in total 56.4% of all bootstrap samples). Not un-
expectedly, the model-based curves show more variability for exposure times more
than 15 years (due to less data in that region) Additionally, the model-based curves
for HCV are less variable compared with those for HIV.
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Table 7.3: Vedette IDU dataset. Results of all models combining one to three risk
groups with two definitions for the force of infection: value of the multinomial like-
lihood, AIC value, and the number of times that the respective combination was
selected as best model, out of 500 bootstrap resamples.

# Risk Multinomial AIC based on Boostrap
groups likelihood Multinomial Frequency

First definition for the force of infection
One -1,071.723 2,171.447 0
Two -1,050.930 2,139.860 205
Three -1,047.111 2,146.222 31

Second definition for the force of infection
One -1,056.612 2,143.224 57
Two -1,056.952 2,151.904 65
Three -1,048.735 2,141.470 142

For the six parameter vectors θ selected by 74.4% of the bootstrap samples, the
rate of sharing for the low risk groups is between 5.7 and 23.7 syringes per three
months period and the ratio between the rates of sharing for both groups (κ2/κ1) is
between 31 and 48.3. Thus, the highest risk group shares between about thirty and
fifty times more syringes than the low risk group. The ratio between the transmission
rates per syringe-sharing event in the acute infected stage of HCV against infected
stage of HIV is between 1.23 and 29.6, indicating HCV is more transmissible than
HIV. The percentage of individuals in the low risk group varies between 29% and
95%.

7.3.2 Univariate explorative analysis of Θ1%

We limit ourselves to the sharing rates parameters (κ1, κ2/κ1), the transmission
rate (bHIVI ), the proportion of individuals in the low risk group (prop) the mixing
parameters (m11 and m22), as the results were most pronounced for these parameters
and because they will repeatedly play a more prominent role in the further analy-
ses. Figure 7.3 demonstrates more peaked densities fΘ1% (as compared to fU) for the
sharing rate κ1 and the transmission rate bHIVI and less pronounced peaks of mass
concentration for κ2/κ1, prop, m11, and m22. Note also that the location of the mode
of each marginal density plot fΘ1% deviates substantially from the multidimensional
location of the mode of the multinomial likelihood (Table 7.4), indicating that the
parameters are not independent in the full dimensional parameter space. The de-
pendence structure of the parameters is further investigated in the next sections.
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Figure 7.1: Vedette IDU dataset. Observed proportions together with model-based
joint and marginal prevalence fits for the model with one, two and three risk groups,
combined with the first definition for the force of infection. The size of the symbols
is proportional to the observed number of individuals at each exposure time.

7.3.2.1 Activity region finder

Although all parameters were included, only the sharing rates parameters κ1 and
f1 = κ2/κ1, the transmission rates per syringe-sharing event bHIVI and bHCVCC , the
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Figure 7.2: Vedette IDU dataset. Bootstrap results - observed prevalences (circles)
and model-based prevalences. The gray lines correspond to parameter sets that lead
to the highest likelihood value for at least one bootstrap sample. The other colored
lines indicate the parameter sets that produce the highest likelihood values more
frequently.

entry rate (E), the proportion of people in the low risk group prop and the proportion
of individuals who become chronic carriers after being acute infected with HCV (ψ)
take part in the recursive partitioning classification process.

The sharing rate in the low risk group κ1 is responsible for the first split, fol-
lowed by splits using the transmission rate per syringe-sharing event bHCVCC . In
total 37 regions were classified as high activity regions. The most relevant regions
can be described as follows. A sharing rate in the low risk group (κ1) between 1.24
and 3.88 combined with a transmission rate per syringe-sharing event of HCV at
chronic stage (bHCVCC ) between 0.087 and 0.2, with proportion of individuals who
become chronic carriers (after being HCV acute infected) ψ between 0.73 and 0.995,
with a transmission rate per syringe-sharing event of HIV at infectious stage (bHIVI )
produce on average log-likelihood values of -1472.9. Another significant region is
obtained combining κ1 between 0.132 and 6.176 with bHCVCC between 0.087 and 0.2,
and with f1 = κ2/κ1 between 1.35 and 10.53; here the average of the log-likelihood
values is -1557.78.
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Figure 7.3: Analysis of the Vedette IDU dataset. Overlaid smoothed density plots
fΘ1% and fU for the sharing rates κ1, κ2/κ1 and the transmission rate bHIVI , the pro-
portion of individuals in the low risk group prop, and the mixing parameters m11
and m22.

7.3.2.2 Generalized additive models

The parameters that show a significant p-value in this analysis are the sharing
rates parameters (κ1 and f1 = κ2/κ1), the transmission rate per syringe-sharing event
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of HIV at infection stage (bHIVI ), the transmission rate of HCV per syringe-sharing
event at chronic carrier stage (bHCVCC ), the proportion of syringes shared within the
low risk group (m11) and the proportion of individuals in the high risk group. Table
7.5 shows the χ2 and corresponding p-values for all the parameters in the model
significant at the 5% level. In Figure 7.4 the fitted probabilities of a high likelihood
are shown for the two most significant parameters in the additive model. Values
smaller than 20 for the syringes rate in the low risk group (κ1) are associated with
a high likelihood; whereas transmission rates of HIV at the infection stage smaller
than 0.04 increase the probability of obtaining a high likelihood value.

Table 7.5: Vedette IDU dataset. Results of the generalized additive model: χ2 and p-
values for the selection of parameters that have a significant effect on the probability
of a high (top 1%) multinomial likelihood.

Parameter χ2 p-value
Sharing rate in the low risk group (κ1) 750.05 <0.0001
Factor increasing sharing syringe rate high risk group ( f1) 65.39 <0.0001
Proportion of syringes shared within the low risk group (m11) 116.01 <0.0001
Proportion of individuals in the low risk group (prop) 10.17 0.0225
HCV transmission rate at chronic stage (bHCVCC ) 102.03 <0.0001
HIV transmission rate at infected stage (bHIVI ) 13.42 0.0062

7.3.2.3 Maximal information coefficient

The highest MIC is 0.25 and measures the association between the sharing rate
parameter in the low risk group κ1 and the transmission rate per syringe-sharing
event in the chronic carrier of HCV bHCVCC . The second highest MIC is 0.20 and
quantifies the strength of association between the transmission rate bHIVI per syringe-
sharing event in the infected stage of HIV and the sharing rate parameter in the low
risk group κ1. The MIC between the transmission rate bHIVI and the sharing rate pa-
rameter f1 = κ2/κ1 also equals 0.14. All other MIC values are lower than 0.12. With
respect to the directionality of the association, the sharing syringe rate in the low
risk group κ1 is negatively correlated with the transmission rates bHCVCC and bHIVi ;
the same occurs between the transmission rate bHIVI and the sharing rate parameter
f1 = κ2/κ1.
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Figure 7.4: Vedette IDU dataset. Results of the generalized additive model: Pre-
dicted probabilities of high likelihood values considering estimated components κ1
and bHIVI .

7.4 Application to the Itinere dataset

The AIC values in the second column of Table 7.6 suggest that the model using
the first definition of the force of infection with two risk groups fits best to the data,
with only a very small difference in favor of the second definition of the force of in-
fection. Of course, for a similar sample of the same size the result could be different.
Therefore, we motivate our final decision on the results of a nonparametric bootstrap
exercise (with B = 500 runs). The last column of Table 7.6 indicates that the two-risk
group model with the first definition for the force of infection is selected more often
(81%) than any other model; and therefore we select that one as our final model. The
parameter values of this final model at the maximal multinomial likelihood are listed
in Table 7.7.

Panels (a) and (b) of Figure 7.5 show the model-based fits for p00t, p01t, p10t, p11t

considering one, two and three risk groups with the first definition of the force of
infection on top of the observed probabilities. The fit for one risk group does not
reflect the data pattern observed in the joint and the marginal prevalences. At longer
exposure times there is small number of individuals and none of the models follow
observed trends. As for the Vedette dataset the two-risk group model fits better to
the data. Panel (c) depicts the marginal probabilities p·1t and p1·t.
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Table 7.6: Itinere IDU dataset. Results of all models combining one to three risk
groups with two definitions for the force of infection: value of the multinomial like-
lihood, AIC value, and the number of times that the respective combination was
selected as best model, out of 500 bootstrap resamples.

# Risk Multinomial AIC based on Boostrap
groups likelihood Multinomial Frequency

First definition for the force of infection
One -724.114 1,476.227 0
Two -674.921 1,387.841 404
Three -682.827 1,417.654 1

Second definition for the force of infection
One -764.484 1,558.968 0
Two -681.636 1,401.273 50
Three -678.364 1,400.728 45

7.4.1 Assessing variability

It turns out that only 28 out of 500,000 (that is only 0.01%) parameter vectors θ

were associated with the highest likelihood values L(b)(θ|{y∗rst(b)}t∈T) in at least one
of the B = 500 bootstrap samples.

The model-based prevalence curves for HCV and HIV for these 28 parameter
vectors are shown in Figure 7.6 (gray lines). Four of the 28 parameter vector were
selected in 88% of the bootstrap samples. The colored lines and symbols represent
the model-based prevalence curves corresponding to the four most often selected
parameter sets (49.4%, 21.8%, 9.4% and 7.8%).

The model-based curves show more variability for the Itinere study than the ones
for the Vedette data. Additionally, the model-based curves for HCV are less variable
compared with those for HIV.

For the five parameter vectors θ selected by 88% of the bootstrap samples, the
rate of sharing for the low risk group is between 10.0 and 20.1 syringes per three
months period (larger than the values for the Vedette data) and the ratio between
the rates of sharing for both groups (κ2/κ1) is between 24.6 and 41.2. Thus, the
highest risk group shares between twenty to forty times more syringes than the low
risk group. The ratio between the transmission rates per syringe-sharing event in the
acute infected stage of HCV against infected stage of HIV is between 4.4 and 15.4,
indicating HCV is more transmissible than HIV. The percentage of individuals in the
low risk group varies between 70% and 98%.

Comparing the fitted models for both datasets, we notice that the percentage of
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Figure 7.5: Itinere IDU dataset. Observed proportions together with model-based
joint and marginal prevalence fits for the model with one, two and three risk groups,
combined with the first definition for the force of infection. The size of the symbols
is proportional to the observed number of individuals at each exposure time.

individuals in the low risk group is larger in the Itinere study, however the individ-
uals in this group exhibit a more risky behaviour compared to those in the Vedette
study. The results reflect the differences in the study populations, whereas the Itinere
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Figure 7.6: Itinere IDU dataset. Bootstrap results - observed prevalences (circles)
and model-based prevalences. The gray lines correspond to parameter sets that lead
to the highest likelihood value for at least one bootstrap sample. The other colored
lines indicate the parameter sets that produce the highest likelihood values more
frequently.

focuses on street young drug users, the Vedette data focusses on IDUs attending
treatment centers.

7.4.2 Univariate explorative analysis of Θ1%

We limit ourselves to the sharing rate parameter in the low risk group (κ1), the
transmission rate of HIV at infectious stage (bHIVI ), the mixing parameter (m11),
and the proportion of individuals in the low risk group (prop), as the results were
most pronounced for these parameters and because they will repeatedly play a more
prominent role in the further analyses. Figure 7.7 demonstrates more peaked densi-
ties fΘ1% (as compared to fU) for the sharing rate κ1 and the transmission rate bHIVI

and less pronounced peaks of mass concentration for m11 and prop.

7.4.2.1 Activity region finder

For Itinere dataset ten parameters take part in the recursive partioning classifica-
tio process: the sharing rate parameters κ1 and f1 = κ2/κ1, the transmission rates per
syringe-sharing event bHIVI , bHCVI and bHCVCC , the entry rate (E), the proportion of
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Figure 7.7: Analysis of the Itinere IDU dataset. Overlaid smoothed density plots fΘ1%
and fU for the sharing rates κ1, the transmission rate bHIVI , the mixing parameter
m11, and the proportion of individuals in the low risk group prop.

people in the low risk group prop, the proportion of individuals who become chronic
carriers after being acute infected with HCV (ψ), the mixing proportion m22 and the
acceleration factor r1.

The sharing rate in the low risk group κ1 is responsible for the first split, followed
by splits using the transmission rate per syringe-sharing event bHCVCC . In total 40
regions were classified as high activity regions. The most relevant regions can be
described as follows. A sharing rate in the low risk group (κ1) between 3.5 and
8 combined with a transmission rate per syringe-sharing event of HIV at infected
stage (bHIVI ) between 0.008 and 0.029, with a factor of increasing sharing syringe
rate ( f1 = κ2/κ1) between 8.8 and 49.7, and with a transmission rate per syringe-
sharing event of HCV at chronic stage (bHCVCC ) between 0.082 and 0.199 produce on
average log-likelihood values of -963.7.
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Table 7.8: Itinere IDU dataset. Results of the generalized additive model: χ2 and p-
values for the selection of parameters that have a significant effect on the probability
of a high (top 1%) multinomial likelihood.

Parameter χ2 p-value
Sharing rate in the low risk group (κ1) 662.42 <0.0001
Factor increasing sharing syringe rate high risk group ( f1) 188.40 <0.0001
Proportion of syringes shared within the low risk group (m11) 17.96 0.0028
Proportion of syringes shared within the low risk group (m22) 25.76 0.0001
Proportion of individuals in the low risk group (prop) 48.28 <0.0001
HCV transmission rate at infectious stage (bHCVI ) 18.22 0.0033
HCV transmission rate at chronic stage (bHCVCC ) 82.71 <0.0001
HIV transmission rate at infected stage (bHIVI ) 79.76 <0.0001

7.4.2.2 Generalized additive models

The parameters that show a significant p-value in this analysis are the sharing
rates parameters (κ1 and f1 = κ2/κ1), the transmission rate per syringe-sharing event
of HIV at infection stage (bHIVI ), the transmission rates of HCV per syringe-sharing
event (bHCVI and bHCVCC ), the mixing parameters (m11 and mm22) and the proportion
of individuals in the high risk group. Table 7.8 shows the χ2 and corresponding p-
values for all the parameters in the model significant at the 5% level. In Figure 7.8
the fitted probabilities of a high likelihood are shown for the two most significant
parameters in the additive model. Values smaller than 20 for the syringes rate in the
low risk group (κ1) are associated with a high likelihood; whereas transmission rates
of HIV at the infection stage smaller than 0.04 increase the probability of obtaining a
high likelihood value.

7.4.2.3 Maximal information coefficient

The highest MIC is 0.22 and measures the association between the sharing rate
parameter in the low risk group κ1 and the transmission rate per syringe-sharing
event in the chronic carrier of HCV bHCVCC . The second highest MIC is 0.2 and quan-
tifies the association between sharing rate parameter in the low risk group κ1 and
the transmission rate bHIVI per syringe-sharing event in the infected stage of HIV.
The MIC between κ1 and the mixing parameter m11 equals to 0.17. The MIC between
bHIVI and bHCVCC equals to 0.16. All other MIC values are lower than 0.14. With re-
spect to the directionality of the association, the sharing syringe rate in the low risk
group (κ1) is negatively correlated with the transmission rates bHCVCC and bHIVi .
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Figure 7.8: Itinere IDU dataset. Results of the generalized additive model: Predicted
probabilities of high likelihood values considering estimated components κ1 and
bHIVI .

7.5 Concluding remarks

This study proposes and studies a joint mathematical model for co-infection of
HCV and HIV in the context of injecting drug users. We propose the use of statistical
concepts and measures to calibrate the model to bivariate data and illustrate the
procedure with data from two studies of heroin IDUs in Italy and Spain.

The proposed joint mathematical model takes into account some of the biological
complexities observed in the dynamics of the transmission of HCV and HIV in the
IDU context. It accounts for parenteral transmission of the viruses, different trans-
mission rates per syringe-sharing event for both viruses in each disease stage, the
impact of co-infection on the transmissibility, the duration of the individual in every
disease stage and the length of the injecting career. In contrast, the sexual trans-
mission, which would increase HIV prevalence, is not explicitly represented in the
model because of the relatively safe sexual behavior reported in Barrio et al. (2007)
and Sabbatini et al. (2001). In fact our model cannot be used to evaluate the amount
of sexual HIV transmission.

For both data examples, there are some similarities: the results support the as-
sumption of two different risk groups (high and low risk group) in combination
with our first definition for the force of infection. Based on the statistical assessment,
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we observe a better fit in early exposure times, mainly due to the limited amount
of individuals with a longer duration of injection. The statistical analyses identified
the sharing rates parameters κ1 and f1 = κ2/κ1, the HIV transmission rate at in-
fected stage bHIVI and the HCV transmission rate at chronic stage bHCVCC to play a
major role whereas the HCV transmission rate at infected stage bHCVI , the mixing
parameter m11 and the proportion of individuals in the low risk group prop have a
moderate impact on the multinomial likelihood. Additionally, parameters such as
the cessation rates (µ1 and µ2), the duration in every disease stage 1/omegaHCVI ,
1/γHCVCC , 1/ωHIVI and 1/γHIVA , the term to reflect the extra transmissibility of
HCV (and faster liver disease progression) in presence of co-infection r1 seem to
be less relevant based on our analyses and given the data at hand. The main differ-
ence between the parameter estimates for both datasets is the HIV transmission rate
in AIDS stage bHIVA is larger for the Itinere dataset than for the Vedette dataset; the
result is expected considering the prevalence of HIV is larger for this Spanish study.
The difference in the HIV prevalence may be attributed to the study populations:
the individuals in the Itinere project were mainly street users whereas on the Vedette
data they were attending treatment centers.

We compare the parameter estimates of our model obtained in the variability
assessment section with those reported in other mathematical models for HCV in-
fection and HCV/HIV co-infection. For this comparison we discard the model pro-
posed by Kretzschmar and Wiessing (2004) because it ignores spontaneous clearance
of the HCV virus and secondary infections.

We notice similarities between some of the parameter estimates presented here
for both datasets and those described by Vickerman et al. (2008, 2009) and De Vos
et al. (2012). For instance, the HCV transmission rates (bHCVI and bHCVCC ), HIV
transmission rates (bHIVI and bHIVA ) and proportion of individuals that resolve their
infection (1− ρ) reported here are in agreement with those found by Vickerman et al.
(2008, 2009) and De Vos et al. (2012). Additionally, the factor difference between HIV
and HCV transmission probability of our model supports results reported by Vick-
erman et al. (2008). In our model, the estimates for the HCV transmission rate at
chronic stage bHCVCC seem slightly larger than the estimates for the HCV transmis-
sion rate at acute stage bHCVI (median ratio 1.2), while De Vos et al. (2012) assumed
both transmission rates are equal.

On the other hand, the estimates of the exit rates (µ1 and µ2) in our model for
the Vedette dataset are larger than the ones reported in De Vos et al. (2012) and Vick-
erman et al. (2007). A large exit rate implies short injecting career, which may be
attributed to a large cessation of injection. This discrepancy may be due to differ-
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ences in the study populations, that is, the individuals in the Vedette study were
admitted to treatment centers run by the National Health Service, whereas the mod-
els by Vickerman et al. (2007) and De Vos et al. (2012) were parameterized based on
prospective cohort studies and surveillance data.

Our model has several limitations such as the assumption of invariant force of
infection with respect to calendar time. Some studies have reported temporal differ-
ences in HIV prevalence and HIV risk related behavior among IDUs in Europe and
antiretroviral therapy use. For instance, one of the findings of Davoli et al. (1995)
was a decrease in sharing syringes among the self-reported HIV positive drug users
in Rome between 1990 and 1992; Suligoi et al. (2004) reported a decrease in the HIV
prevalence in the first half of the 1990s partly due to the implementation of preven-
tion programs aiming to modify risk behaviour among IDUs. In Spain, De La Fuente
et al. (2006) evaluated changes in the prevalence of HIV infection among young
heroin users, pointing at the decrease in proportion of individuals who ever inject. In
fact, the declining trend of injection in drug users has been also described in several
European countries (Wiessing et al.; 2010; Castro-Sanchez et al.; 2012). Additionally,
the disease-free survival time has been extended with the use antiretroviral ther-
apy that started in 1996 (Poundstone et al.; 2001), leading to a reduction in the HIV
prevalence. Both aspects may have an impact on the time homogeneity assumption.

Even though several previous studies have found that injectors with recently ini-
tiated IDUs can have higher risk behaviour than more experienced IDUs (Doherty
et al.; 2000); our model did not allow for changes in the risk over an injecting career.
However, earlier models allowed for this additonal risk but it did not improve the
goodness of fit of the model, so it was not included in the final version of the model.

Additionally, our model omits some injecting practices that prevent transmission,
such as syringe cleaning or disinfection. Even though some of these practices do not
substitute the use of sterile needles or cessation of injection, they may help to prevent
blood-borne infections such as HCV (Kapadia et al.; 2002), although their impact at
the population level is inconclusive (Hagan et al.; 2011). Unfortunately, information
regarding the frequency or method of syringe cleaning was scarce for the Vedette
and the Itinere data and so could not be included in our model.



Chapter 8
Discussion

This thesis presents several statistical and mathematical models applied to HIV
and HCV co-infection and to nosocomial infections. The models were applied to
four different studies, taking into account the objectives and characteristics of each
of the studies.

Regarding the statistical methods we focus on those applied to type II interval-
censored data. We include an overview of existing methods and software availability
to analyse this type of data.

In the literature review presented in Chapter 2, the first part describes statisti-
cal models applied to survival analysis ranging from completely non-parametric to
fully parametric methods. We present the options that deal with interval-censored
data. Here, we did not attempt to be exhaustive, excluding topics such as bayesian
framework. We also did not mention flexible modelling, such as smoothing splines
for continuous covariates or mixture distributions for the error terms, which can be
applied.

Although, interval-censored data is very common when the event of interest can
only be monitored at specific time points, many of the proposed methods have not
been implemented in any statistical software. The lack of software is notorious in
the extensions of the Cox proportional hazard models, due to the lack of a unified
approach in this setting in combination with the large computational efforts that are
needed.

In the analysis of interval-censored data, there are a lot of open questions such
as model assessment techniques and joint modelling with a longitudinal outcome.
Sun (2006) Chapter 10 describes goodness of fit tests when the baseline hazard is
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fully specified with a parametric form. In case of proportional hazard model the
author describes some procedures that can be applied as well as several graphi-
cal model-checking techniques. He also presents regression diagnostics based on
residual-based procedures when an additive hazards model is assumed.

All the statistical models, regarding survival analyses methodology, discussed in
this thesis assumed that the censoring mechanism is independent of the time to event
(independent interval censoring). To deal with dependent or informative interval
censoring we refer to Dunson and Dinse (2002), Zhang et al. (2005) and Sun (2006).

Chapters 3, 4 and 5 present our contribution applied to two different studies: one
clinical trial from a hospital and one observational study with long follow up (ACS).

In Chapter 3 the objective is to quantify the effect of the use probiotics and antibi-
otics on time to colonization with ampicillin-resistant Enterococcus faecium. Here the
risk factors are time dependent covariates, adding some complexity to the model.

The study was performed in a hospital with documented high prevalence of in-
testinal ARE carriage, in this setting we did not find significant impact of daily pro-
biotics intake on the reduction of the time to ARE acquisition. In the same sense,
a recent meta-analysis by Hempel et al. (2012) mentions that most of the trials did
not show a statistically significant advantage of probiotics use and a review made by
Oudhuis et al. (2011) shows conflicting results regarding the effects of probiotics on
infection rates.

When we compare distribution of the age of admission for the two groups (with
and without probiotics) we notice the patients who receive probiotics tend to be
older than those who did not receive them. This may indicate a selection bias which
can have a negative impact on the results of probiotics use.

The type of probiotics, the type of antibiotics the patient had received and the
clinical condition of the patients are aspects that become relevant to assess the impact
of probiotics intake on the reduction of the time to ARE acquisition according to
Hempel et al. (2012) and Oudhuis et al. (2011).

In Chapter 4 the goal is to estimate the force of infection and assess the impact
of risk factors on the time to HCV infection, this is possible the first time that the
HCV force of infection has been estimated using time to event data in the context of
injecting drug users. We use the ACS a study with more than 20 years follow up,
focusing on patients who enter negative to the cohort.

We found a higher risk of HCV infection in the first three years of an IDU ca-
reer. This is consistent with other studies like Platt et al. (2009); Sutton et al. (2006);
Van den Berg et al. (2007a,b).

Drug of choice to inject was associated with HCV seroconversion but sharing
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syringes was not. Similar results have been reported by Van den Berg et al. (2007a,b);
Hahn et al. (2001); Thorpe et al. (2000); Miller et al. (2003a,b); Van de Laar et al. (2005).
It reflects the cumulative exposure to infected needles and injection paraphernalia.

Our findings provide important additional evidence that it is crucial to target
HCV prevention to new injectors as soon as they start to inject and that any efforts to
reduce incidence need to take recent injectors into account. However, since it might
be hard to find these recent injectors additional efforts are needed to prevent the
transition to injecting drug use in non-injecting drug users.

Chapter 5 is dedicated to bivariate clustered data. Here, we present an overview
of frailty models and the theoretical framework of correlated gamma frailty model
when consider interval-censored data. Then we apply several frailty models to the
ACS data. The results inspire a simulation study with a twofold objective: to assess
model behaviour to assess model behaviour of a correlated frailty model in presence
of interval-censored data and to assess the impact of different frailty variances on a
correlated gamma frailty model.

In the first simulation study we show that it is possible to apply correlated frailty
model when part of the data is interval censored. Our estimates are consistent with
the ones presented by Hens et al. (2009) and Cattaert (2008).

From the second simulation study, we provide some suggestions on when it
would be suitable to perform sensitivity analyses based on the difference between
frailty variances and the frailty correlation.

A high correlation between the parameter estimates may be an indication of iden-
tifiability issues. Several authors have pointed to the conditions under which the
correlated frailty model is identifiable. Besides, Wienke (2011) suggests to include
observed covariates in order to improve identifiability. Based on the results from
Yashin and Iachine (Yashin et al.; 1995; Iachine; 2004) we know that the correlated
frailty model is identifiable thanks to the additive decomposition, even without co-
variates and without parametric shape for the baseline hazard rate. Except in the
case of current status data.

It has been recognized by Wienke (2011), there is a negative correlation between
the variance and the correlation estimates. In our simulations we notice that the
negative correlation it is not fixed and in fact decreases when the frailty correlation
increases. Then, as it is expected, the correlated gamma frailty model can have se-
rious identifiability issues when the correlation is on the border of the parameter
space. Caution should be taken when the frailty correlation is smaller than 0.1 or
closer to the smaller ratio between the frailty variances (if that ratio is larger than
0.1).
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The results of our second simulation study are limited to the values we consider
for frailty variances. The model parameters and sample size were chosen to reflect
the Amsterdam Cohort Studies example. We assume equal frailty variances, moder-
ate and large difference between frailty variances. In total 20 scenarios were consid-
ered assuming different frailty correlation.

When frailty variances are equal some cautious interpretations should be made
if the estimated correlation is lower 0.1 or larger than 0.9. In those cases we suggest
to perform further sensitivity analyses to assess the reliability of the results.

If the variance ratio is equal to 0.75, we recommend to perform senstivity analy-
ses when the frailty correlation is lower 0.1 or larger than 0.5. If the variance ratio is
equal to 0.5 the recommendation is to perform sensitivity analyses regardless of the
frailty correlation.

Our conclusions are restricted to the frailty parameters we choose as well as the
baseline hazard function. It is possible that other options for baseline hazard func-
tions and different values of frailty parameters lead to different results. Based on the
information available for this study is hard to perform extrapolations.

More research is needed in the area to implement a more complex baseline hazard
such as the generalized gamma, the generalized F (Cox; 2008) or the one proposed
by Sparling et al. (2006). Another option could be to consider a semi-parametric
approach where the univariate marginal survival is left unspecified. For the ACS,
we implemented the baseline hazard proposed by Sparling et al. (2006), however we
face major difficulties with the convergence of the model.

Chapters 6 and 7 are dedicated to the mathematical models. Here we are inter-
ested in the transmission process itself rather than on the risk factors or the shape of
the force of infection.

In Chapter 6 we introduce two basic transmission models for HCV and HIV and
a joint model that accounts simulataneously for the transmission of both viruses.

The joint transmission model is considered in Chapter 7, where we calibrate the
joint model to two different datasets and assess the model from a statistical perspec-
tive. The proposed joint mathematical model takes into account some of the biolog-
ical complexities observed in the dynamics of the transmission of HCV and HIV in
the IDU context.

For both data examples, there are some similarities: the results support the as-
sumption of two different risk groups (high and low risk group) in combination
with our first definition for the force of infection. Based on the statistical assessment,
we observe a better fit in early exposure times, mainly due to the limited amount of
individuals with a longer duration of injection.
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The sharing rates parameters, the HIV transmission rate at infected stage and the
HCV transmission rate at chronic stage play a major role according to the statistical
analyses performed. Whereas the HCV transmission rate at infected stage, one of
the mixing parameter and the proportion of individuals in the low risk group have
a moderate impact.

Additionally, parameters such as the cessation rates, the duration in every dis-
ease stage, the term to reflect the extra transmissibility of HCV (and faster liver dis-
ease progression) in presence of co-infection seem to be less relevant based on our
analyses and given the data at hand.

The main difference between the parameter estimates for both datasets is the HIV
transmission rate in AIDS stage is larger for the Itinere dataset than for the Vedette
dataset; the result is expected considering the prevalence of HIV is larger for this
Spanish study. The difference in the HIV prevalence may be attributed to the study
populations: the individuals in the Itinere project were mainly street users whereas
on the Vedette data they were attending treatment centers.

Our results regarding transmission rates and proportion of individuals that re-
solve their infection are consistent with the ones reported by Vickerman et al. (2008,
2009) and De Vos et al. (2012).

On the other hand, the estimates of the exit rates in our model for the Vedette
dataset are larger than the ones reported in De Vos et al. (2012) and Vickerman et al.
(2007). A large exit rate implies short injecting career, which may be attributed to a
large cessation of injection. This discrepancy may be due to differences in the study
populations, that is, the individuals in the Vedette study were admitted to treatment
centers run by the National Health Service, whereas the models by Vickerman et al.
(2007) and De Vos et al. (2012) were parameterized based on prospective cohort stud-
ies and surveillance data.

Our model has several limitations such as the assumption of invariant force of
infection with respect to calendar time. Some studies have reported temporal dif-
ferences in HIV prevalence and HIV risk related behavior among IDUs in Europe
and antiretroviral therapy use. For instance, in Italy Davoli et al. (1995) reports a
decrease in sharing syringes whereas Suligoi et al. (2004) describes a decrease in the
HIV prevalence in the first half of the 1990s. In Spain, De La Fuente et al. (2006)
points at the decrease in proportion of ever injection. A similar trend has been de-
scribed several European countries by Wiessing et al. (2010) and Castro-Sanchez et al.
(2012). This may have an impact on the time homogeneity assumption.

Even though several previous studies have found that injectors with recently ini-
tiated IDUs can have higher risk behaviour than more experienced IDUs (Doherty
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et al.; 2000); our model did not allow for changes in the risk over an injecting ca-
reer. However, earlier models allowed for this additonal risk but it did not improve
the goodness of fit of the model, so this was not included in the final version of the
model.

Additionally, our model omits some injecting practices that prevent transmission,
such as syringe cleaning or disinfection. Even though some of these practices do not
substitute the use of sterile needles or cessation of injection, they may help to prevent
blood-borne infections such as HCV (Kapadia et al.; 2002), although their impact at
the population level is inconclusive (Hagan et al.; 2011). Unfortunately, information
regarding the frequency or method of syringe cleaning was scarce for the Vedette
and the Itinere data and so could not be included in our model.
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Table A.2: Amsterdam Cohort Studies dataset. Predicted probabilities of an IDU will
be HCV negative after t-years of injecting drugs based on the model that year of first
injection.

Exposure time
(t-years)

Year of first injection
1962-1980 1981-1990 1991-2002

1 1.000 0.937 0.953
2 1.000 0.823 0.837
3 1.000 0.763 0.776
4 1.000 0.723 0.735
5 1.000 0.693 0.705
6 1.000 0.670 0.681
7 0.997 0.651 0.662
8 0.977 0.635 0.645
9 0.956 0.621 0.631

10 0.938 0.609 0.619

Table A.3: Amsterdam Cohort Studies dataset. Predicted probabilities of an IDU will
be HCV negative after t-years of injecting drugs based on the model with duration
of injection at first visit.

Exposure time
(t-years)

Duration of injection at first injection
0.5 years 3 years 7.5 years 15 years

1 0.950 1.000 1.000 1.000
2 0.759 0.945 1.000 1.000
3 0.660 0.832 1.000 1.000
4 0.598 0.754 0.999 1.000
5 0.554 0.698 0.981 1.000
6 0.520 0.656 0.943 1.000
7 0.493 0.622 0.902 1.000
8 0.471 0.594 0.864 1.000
9 0.452 0.570 0.830 1.000
10 0.436 0.550 0.801 1.000



Samenvatting

In dit proefschrift worden diverse statistische en wiskundige modellen voor HIV
en HCV co-infectie en voor nosocomiale infecties gepresenteerd. De modellen wer-
den toegepast op vier verschillende studies, rekening houdend met de doelstellin-
gen en kenmerken van elk onderzoek. In Hoofdstuk 2 presenteren we een literatu-
uronderzoek van statistische modellen die worden toegepast op survival analyse,
variërend van niet-parametrische tot volledig parametrische methoden. Daarnaast
presenteren we een kort overzicht van wiskundige modellen voor de overdracht van
infectieziekten. Het hoofddoel van Hoofdstuk 3 is om het effect te kwantificeren van
het probiotica- en antibioticagebruik op de kolonisatietijd van de Enterococcus faecium
bacteria die resistentie vertoond tegen ampicilline (ARE). In deze studie zijn de risi-
cofactoren tijdsafhankelijk, wat een extra complexiteit aan het model toevoegt. Het
onderzoek werd uitgevoerd in een ziekenhuis met gedocumenteerde hoge prevalen-
tie van intestinaal ARE-transport. In deze studie was er geen significante invloed
aangetoond van de dagelijkse probiotica-inname op de vermindering van de tijd tot
het oplopen van ARE. Soortgelijke conclusies waren getrokken uit een recente meta-
analyse van Hempel et al. (2012) waar werd vermeld dat in de meeste studies geen
statistisch significant voordeel van probioticagebruik werd aangetoond. Bovendien
heeft een overzicht in Oudhuis et al. (2011) aangetoond dat er tegensprekende resul-
taten bestaan over probiotica-effecten op de infectie ratios. Als we de verdeling van
opnameleeftijd voor de twee groepen (met en zonder probiotica) vergelijken, merken
we dat de patiÃ«nten die probiotica krijgen vaak ouder zijn dan diegenen die geen
probiotica krijgen. Dit kan een selectievertekening aanwijzen die een negatieve im-
pact zou kunnen hebben op de resultaten van probioticagebruik. Het type probiot-
ica, het type antibiotica dat de patiënt ontvangen heeft en de klinische toestand van

183



184 Samenvatting

de patiënten zijn relevante aspecten om de invloed van probiotica-inname op de ver-
mindering van de tijd tot het oplopen van ARE te beoordelen, aldus Hempel et al.
(2012) en Oudhuis et al. (2011).

In Hoofdstuk 4 schatten we de infectiedruk van HCV en beoordelen we de in-
vloed van risicofactoren op de tijd tot HCV-infectie. Waarschijnlijk is dit de eerste
keer dat HCV-infectiedruk geschat is op basis van time-to-event-gegevens in het
kader van injecterende drugsgebruikers (IDG). We maken gebruik van de ACS-studie
met meer dan 20 jaar opvolging, gericht op patiënten die negatief zijn op het moment
van opname in de cohort. We vonden een hoger risico op HCV-infectie in de eerste
drie jaar van een IDG-carrière. Dit wordt ook bewezen in andere studies, zoals Platt
et al. (2009); Sutton et al. (2006); Van den Berg et al. (2007a,b). De keuze van het geïn-
jecteerde drug werd geassocieerd met HCV-seroconversie, het delen van spuiten was
er niet mee geassocieerd. Soortgelijke resultaten zijn gerapporteerd door Van den
Berg et al. (2007a,b); Hahn et al. (2001); Thorpe et al. (2000); Miller et al. (2003a,b);
Van de Laar et al. (2005). Dit geeft de cumulatieve blootstelling aan besmette naalden
en injectie uitrusting weer.

Onze resultaten geven aanvullende aanwijzingen dat het cruciaal is om de HCV-
preventie op nieuwe injecterende druggebruikers te richten zodra ze met injecties
beginnen en dat alle inspanningen om de HCV-incidentie te verminderen rekening
moeten houden met recente injecterende gebruikers. Desalniettemin, aangezien het
moeilijk is om die recente injecterende gebruikers op te sporen, zijn er bijkomende
inspanningen nodig om de overgang van niet-injecterende drugsgebruikers naar in-
jecterend drugsgebruik te voorkomen.

Hoofdstuk 5 is gewijd aan geclusterde bivariate gegevens. Hierin presenteren
we een overzicht van frailty modellen en het theoretische kader van gecorreleerde
gamma frailty model voor interval gecensureerde data. Wij passen verschillende
frailty modellen toe op de ACS gegevens. Gebaseerd op deze resultaten, wordt er
een simulatiestudie met een tweeledig doel uitgevoerd: i) om het gedrag van een
gecorreleerd frailty model te evalueren in aanwezigheid van interval gecensureerde
data en ii) om de impact te beoordelen van verschillende frailty varianties op een
gecorreleerde gamma frailty model. In de eerste simulatiestudie tonen we aan dat
het mogelijk is om gecorreleerde frailty model toe te passen wanneer een deel van
de data interval gecensureerd is. Onze schattingen zijn consistent met resultaten
van Hens et al. (2009) en Cattaert (2008). Gebaseerd op de tweede simulatiestudie
geven we een aantal voorstellen wanneer het geschikt is om sensitiviteitsanalyses
te uitvoeren. Deze voorstellen zijn gebaseerd op het verschil tussen de frailty vari-
anties en de frailty correlatie. Wienke (2011) heeft aangetoond dat er een negatieve
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correlatie bestaat tussen de variantie en de correlatie schattingen. In onze simulaties
zien we dat deze negatieve correlatie niet constant is en, in feite, afneemt wanneer de
frailty correlatie toeneemt. Verder, volgens de verwachtingen, kan het gecorreleerde
gamma frailty model ernstige identificeerbaarheidsproblemen ervaren wanneer de
correlatie op de grens ligt van de parameterruimte. Voorzichtigheid moet genomen
worden bij frailty correlaties kleiner dan 0,1 of wanneer deze dichter bij de kleinere
verhouding tussen frailty varianties is (als die verhouding groter is dan 0,1).

De resultaten van onze tweede simulatiestudie zijn beperkt tot de gekozen waar-
den van de frailty varianties. Modelparameters en steekproefgrootte werden gekozen
om de ACS-voorbeeld na te botsen. Gelijke frailty varianties, matig en groot ver-
schil tussen frailty varianties worden verondersteld. In totaal werden 20 scenario’s
beschouwd met variërende frailty correlaties. Wij bieden een aantal algemene richtli-
jnenaan om de betrouwbaarheid van de resultaten te beoordelen wanneer het gecor-
releerde frailty model toegepast wordt. Onze conclusies zijn beperkt tot de gekozen
frailty parameters en de baseline hazard functie. Het is mogelijk dat andere opties
voor de baseline hazard functies en andere waarden van de frailty parameters lei-
den tot verschillende resultaten. Het is moeilijk om extrapolaties uit te voeren op
basis van dit onderzoek. Hoofdstukken 6 en 7 zijn gericht op de wiskundige mod-
ellen. Hier zijn we geïnteresseerd in het transmissie proces zelf in plaats van de
risicofactoren of de vormen van infectiedruk. In Hoofdstuk 6 introduceren we twee
fundamentele transmissiemodellen voor HCV en HIV en een gezamenlijk model dat
gelijktijdig de overdracht van beide virussen modelleert.

Het gezamenlijke transmissiemodel wordt beschreven in Hoofdstuk 7, waar we
gezamenlijke modellen toepassen op twee verschillende datasets. Bovendien wor-
den de gezamenlijke modellen vanuit een statistisch perspectief beoordeeld. Het
voorgestelde gezamenlijke wiskundige model houdt rekening met de biologische
complexiteiten, waargenomen in de dynamiek van HCV- en HIV-transmissie in de
IDG-context. Voor beide datavoorbeelden zijn er enkele overeenkomsten: de re-
sultaten ondersteunen de modelonderstelling van twee verschillende risicogroepen
(hoge en lage risico groep) in combinatie met onze eerste definitie van infectiedruk.
Op basis van de statistische beoordeling zien we een betere modelfit voor vroegere
blootstellingstijden, voornamelijk vanwege de beperkte hoeveelheid individuen met
een langere duur van drugsinjecties. Op basis van de uitgevoerde statistische zijn
analyses cruciale modelparameters bepaald. Enkele verschillen in de parameter-
schattingen voor beide datasets kunnen worden toegeschreven aan de studiepopu-
laties: individuen in het Itinere-project waren vooral druggebruikers op straat terwijl
in het Vedette-project individuen in behandelingscentra werden opgevolgd. Onze
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resultaten met betrekking tot transmissieratios en percentage van personen die her-
steld zijn van hun besmetting in overeenstemming met degenen vermeld door Vick-
erman et al. (2008, 2009) en De Vos et al. (2012). Ons model heeft een aantal beperkin-
gen, zoals de veronderstelling van een invariante infectiedruk met de kalender-
tijd. Sommige studies hebben tijdsgebonden verschillen gerapporteerd in de HIV-
prevalentie en het HIV-risico gerelateerd gedrag tussen IDG in Europa en het an-
tiretrovirale therapie gebruik. De modellen, die in dit proefschrift gepresenteerd
werden, dragen bij aan ons begrip van HCV- en HIV- transmissie in het kader van
injecterende drugsgebruikers. De beperkingen van de modellen wijzen op nieuwe
vragen die in verder onderzoek aangepakt zouden kunnen worden.
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