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Executive Summary 
 
Activity-based travel demand modeling systems to date can be classified into two 

modeling approaches Utility maximization-based econometric model systems, 

and Rule-based computational process model systems. This dissertation 

discusses three particular contributions with respect to rule-based computational 

process models specifically the ALBATROSS (A Learning-based Transportation 

Oriented Simulation System) models system. The first contribution is related to 

improving the predictive performance of the scheduling process models. The 

second contribution involves analysing performance boundaries for rule-based 

activity forecasting models. And the third contribution is to conduct a sensitivity 

analysis of the models at each decision step (decision tree models). To achieve 

the goals, the ALBAROSS model is integrated in the FEATHERS framework. 

FEATHERS (Forecasting Evolutionary Activity-Travel of Households and their 

Environmental RepercussionS) is an experimental framework developed to 

facilitate the development of modular activity-based models for transportation 

demand. To include ALBATROSS in FEATHERS (FEATALB), the model 

parameters were modified to fit the Flemish data. The ALBATROSS model and its 

components have been studied in details. However, some practical limitations 

were determined that restrained further experimentations and there was a need 

for new implementations. Some parts of the model were re-implemented. The 

implementation involved using technologies to boost the design of experiments 

conducted in this thesis.  

There are three major factors related to improve the predictive performance of 

rule-based models. The first factor is to ensure that the data are of good quality 

i.e. obtaining better data that are used to train the models at individual decision 

steps. The second factor involves utilizing better classifiers at individual decision 

steps that constitute the scheduling process model. The third factor is to achieve 

a better data representation in the context of reordering the decision steps in the 

process model.   
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The methodology to achieve the first goal is obtained by training the decision 

models in three different approaches. First by modeling all the decision models in 

the process model simultaneously, using a multi-target classification method. 

Using a multi-target classification method eliminates the activation dependency 

and attributes interdependencies features and it has the lowest fitting capacity. 

Second by training the decision models without the attributes interdependencies. 

This allowed investigating the added value of this feature in the model. Third by 

training the models at decision steps preserving the attributes interdependencies 

among models (fully-informed approach) while including observed rather predicted 

decision outcomes in subsequent decision steps. To investigate the classification 

method factor, the non-informed and fully-informed approaches are examined using 

three classification methods, CHAID, C4.5, and Logistic regression methods. 

  

The second contribution was related to investigating the data representation 

factor to improve the predictive performance of process models used in activity-

based models. This is achieved by presenting three different process models, i.e. 

the activation dependency feature by changing the order of decision models in 

the process model. 

 

The third contribution which is related to experiment the sensitivity of the models 

at each decision step (decision tree models). The sensitivity analysis was 

performed by experimenting two important factors used in the decision tree 

models in FEATALB. The first sensitivity factor involved identifying the ideal 

number of minimum cases per leaf node while training the decision tree models.  

In ALBATROSS this number was set to 30, however, this number was set to be 

used in the Dutch data. For the Flemish data, a different number might improve 

the performance. The second sensitivity factor is the action assignment rule used 

in predicting values at decision steps. ALBATROSS suggests a probabilistic 

action assignment rule which considers the probability of predicting a specific 

class. Rather than predicting a class variable according to the plurality rule. The 
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work reported in this thesis was conducted in within the FEATALB framework. 

The FEATALB framework is based on the FEATHERS framework, which 

currently integrates the ALBATROSS model as its core scheduling system. 

 

The predictive performance of the approaches and models experimented was 

assessed at three levels. The models at the individual classifier level are validated 

using Confusion Matrix statistics and the Brier Score. Where at the activity 

pattern level, the models are validated using the Sequence Alignment Method 

(SAM). And at the spatial and temporal level, OD matrices and work activity start 

times statistics are calculated using the correlation coefficient.  

 

The results of analyzing the factors affecting the predictive performance of 

activity-based models show that the attributes interdependencies feature is a 

critical factor. Maintaining this feature in activity-based models enhances the 

predictive performance. However, in this context, another factor that affects the 

predictive performance of process models is the relevance of the decision 

outcome that is added in subsequent decision models in predicting the class 

variable. On the other hand the results also suggest that the disposition of 

decision steps (activation dependency feature) or experiment other data 

representations within the work activity process model does not lead to 

significantly improve the predictive performance of the model. This is confirmed 

by the validation at the aggregated levels (activity pattern and Spatial and 

temporal levels). Hence, using the currently implemented work activity process 

model can achieve satisfactory work activity schedules. 

 

Considering the results of experiment the decision tree parameters (modifying 

the minimum number of cases at leaf nodes) suggest that increasing the 

minimum number of cases at leaf nodes to more than 30 cases will result in 

model under-fitting. Therefore, the models are trained by decreasing the 

minimum number of cases at leaf nodes to 20 and 5. The experimental results 

show that by decreasing the number to 20 cases at leaf nodes has no significant 
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effect on the predictive performance of the model. In addition, decreasing the 

number to 5 results in increase over-fitting and thus, decreases the predictive 

performance of the models. 
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Chapter 1  

Introduction 
 

1.1 Introduction and Research Motivation 
 
In the past few decades, various models of activity scheduling behaviour have 

been developed. These models are part of more comprehensive activity-based 

models of travel demand that predict which activities will be conducted, where, 

when, for how long, with whom and mode choice involved (Timmermans et al., 

2002). Activity-based models of travel demand are classified into two main 

approaches the simultaneous approach and the sequential approach (Ettema 

and Timmermans, 1997). The first approach employs a simultaneous choice 

among a set of activity-travel patterns.  Activity-travel patterns are identified by a 

set of attributes that are incorporated in the model. Examples of such models 

include CARLA (Jones et al., 1983), STARCHILD (Recker et al., 1986), and Wen 

and Koppelman (1999, and Wen, 1998). In the simultaneous approach, activity-

travel patterns are predicted using a utility-maximisation framework. Therefore, 

individuals are assumed to plan their activities such that their utilities are 

maximized, subject to a set of constraints. Utility-maximisation models predict 

activity-travel patters using multinomial logit models. However, the utility-

maximisation approach has been criticized that they do not always reflect the 

true behaviour underlying travel decisions. People tend to reason more logically 

in terms of heuristics based on “If-then-else” rules (Janssens et al., 2004).  

The second approach (sequential models) focuses on the need for rule-based 

computational process models. In their most basic form, rule-based 

computational process models use a set of “If-then” rules. Examples of such 

models include AMOS (Pendyala et al., 1995, 1998), FAMOS (Pendyala, 2004) 

and ALBATROSS (Arentze & Timmermans, 2000). Rule-based activity-based 

models have proven to be more flexible than utility-maximising models (Arentze 

et al, 2001) and they also perform well in predicting transport choice behaviour if 
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an induction technique is used (Wets et al, 2000). However, computational 

process activity-based models are argued to lack ease of interpretation, and hard 

to statistically assess the decision-rules performance (Moons, 2005). As a result, 

even though the computational process rule-based activity-based models are 

developed to better reflect the behavioural characteristic underlying activity-travel 

decisions, such models are viewed as black boxes. Examples of such models 

include SCHEDULER (GÄarling et al., 1989), AMOS (Pendyala et al., 1995, 

1998), and ALBATROSS (Arentze and Timmermans, 2000).  

Rule-based activity-based models aim at predicting which activities are 

conducted, where, when, with whom, for how long, and the transportation mode. 

Since one of the most important applications of Artificial Intelligence (AI) is 

decision making, this sequence of decisions shows the convenience of applying 

AI techniques. AI techniques can be divided into two broad categories, 

knowledge representation systems and machine learning systems. Knowledge 

representation systems provide a configuration for capturing and representing 

the knowledge of a human expert in a particular domain. While, machine learning 

systems, such as, neural networks, Induction (classification) methods, and 

genetic algorithms, aims at deriving decisions or solutions by learning patterns in 

data. Given that in rule-based activity-based models a set of rules is adapted to 

predict activity schedules, machine learning methods are typically used.  

As a rule-based computational process model, ALBATROSS (A Learning-based 

Transportation Oriented Simulation System) is a fully operational activity-based 

model developed in the Netherlands. It employs a sequential decision process to 

generate daily activity schedules of individuals. The sequential decision process 

uses 26 decision steps, where at individual decision step a CHi-

squared Automatic Interaction Detector (CHAID) based induction tree method is 

utilized. However, a decision process containing 26 decision trees, where each 

decision tree contains many condition variables is a complex process.   

Investigations of the complexity of the decision process model in ALBATROSS 

have been undertaken. For example Moons, et al (2005) conducted a study to 

investigate complex and simple classifiers within ALBATROSS. Simple models 
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include One Rule (OneR) and Feature selection techniques. On the other hand, 

the applied complex models were the original CHAID and C4.5 decision trees 

and Support Vector Machines (SVM). The study concluded that simple classifiers 

do not outperform complex models but are not inferior to complex models. In 

addition, the study revealed that different decision tree induction methods such 

as (CHAID, C4.5, CART etc.) achieved comparable results. Janssens et al., 

(2004) found that Bayesian networks performed better than CHAID decision 

trees in ALBATROSS. It was revealed that Bayesian networks are better suited 

to capture the complexity of the decision process model, since they take into 

account the interdependencies among the variables and decision steps outcome. 

Keuleers et al., (2001) did experiments in ALBATROSS by using Association 

Rules as classification rules. However, the research explained above was 

conducted on an earlier version of ALBATOSS, where the scheduling process 

model contained only 9 decision steps. And the process model does not contain 

activation dependencies, which encompasses different execution routes in the 

process model. While the current version of ALBATROSS employs 26 decision 

steps that are necessary to predict activity schedules for each person under 

study. Moreover, in the current version of ALBATROSS, the scheduling process 

model contains two interesting features:  

 

1. Activation dependency, in which the execution of the process model can take 

many paths depending on the outcome of decision steps. 

2. Attributes interdependencies, where the outcome of decision steps are 

included in the attribute set of subsequent decision steps. 

 

Hence, the complexity of the process model has increased. Therefore, it 

becomes essential to investigate the complexity of the current scheduling 

process model implementation. In addition, the sequence and order of the 

scheduler in ALBATROSS needs to be investigated for the purpose of reducing 

the complexity of the model. 
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The analysis in this work is developed within the FEATHERS (Forecasting 

Evolutionary Activity-Travel of Households and their Environmental 

RepercussionS) framework. The FEATHERS framework is developed to facilitate 

the development of modular activity-based models for transportation demand 

(Bellemans et al., 2010). In this study, Flanders (Belgium) is used as the study 

area. The scheduling engine that is currently implemented in the FEATHERS 

framework is based on the scheduling model that is present in the ALBATROSS 

system. 

1.2 Main Research and development Contribution of the 
Dissertation 
 

ALBATROSS is one of several operational micro-simulation models of travel 

demand. It aims to predict activity schedules using a sequential scheduling 

process executed using 26 decision steps. This dissertation discusses three 

particular contributions with respect to the ALBATROSS model. The first 

contribution is related to improving the predictive performance of the scheduling 

process models integrated in FEATHERS / ALBATROSS (FEATALB). Improving 

the predictive performance can be achieved by considering three major factors.  

The first factor is to ensure that the data are of good quality i.e. obtaining better 

data that are used to train the models at individual decision steps. The second 

factor involves utilizing better classifiers at individual decision steps that 

constitute the scheduling process model, which will be referred to as the process 

model throughout the thesis. The third factor is to attain a better data 

representation in the context of reordering the preference of decision steps in the 

process model.   

 

The data requirements for activity-based models are in general demanding 

compared to conventional travel demand models. Especially, that this type of 

micro-simulation models should be able to predict the travel behaviour in detail 

including how the activities are selected and scheduled. Moreover, several 

studies were conducted to experiment simple and complex classifiers to serve 
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the purpose of improving the predictive performance. Nevertheless, to date, 

studies on investigating the data representation in the scheduling process model 

do not exist.  

 

The current sequence process model in ALBATROSS is based on expert’s 

opinion. Therefore, three data representation (modeling the decision steps 

simultaneously, the fully-informed and non-informed representations) are 

investigated to assess the predictive performance of the work activity process 

model in FEATALB.  

 

The second contribution involves identifying performance boundaries for rule-

based activity forecasting models. This will be achieved by obtaining a simple yet 

sensible model that will serve as the lower performance bound (base line). 

Furthermore, the research identifies an upper performance bound by optimizing 

more complex and well-known classification methods that were already 

described in the literature.  

 

The third contribution is to conduct a sensitivity analysis of the models at each 

decision step (decision tree models). The sensitivity analysis is performed 

investigating two important factors used in the decision tree models in FEATALB. 

The first sensitivity factor involves identifying the ideal number of minimum cases 

per leaf node while training the decision tree models.  Decision tree learning 

involves setting parameters that are essential in influencing the resulting model’s 

performance. An important parameter is the minimum number of training 

instances at leaf nodes. Increasing the minimum number of instances at leaf 

nodes avoid the occurrence of model over-fitting.  In ALBATROSS this number 

was set to 30, however, this number was set using the Dutch data. For the 

Flemish data, a different number might improve the performance. The second 

sensitivity factor is the action assignment rule used in predicting values at 

decision steps. ALBATROSS suggests a probabilistic action assignment rule 

which considers the probability of predicting a specific class. Rather than 
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predicting a class variable according to the plurality rule. To read more on the 

action assignment rule in ALBATROSS, refer to Chapter 3. 

 

The FEATHERS framework is developed as a modular activity-based model for 

transportation demand in Flanders (Belgium). The process model that is currently 

implemented in the FEATHERS framework is based on the process model that is 

present in the ALBATROSS model. The FEATALB framework is fully operational 

at the level of Flanders, and the models in the process model are based on 

CHAID decision trees. Furthermore, the FEATALB framework is developed such 

that additional classifiers can be used. This flexibility allows conducting 

experiments with different types of classifiers.  

1.3 Organization of the thesis and subsequent chapters  
 
The thesis is structured in two main parts. Part one explains setting the scene 

and development of the experimental laboratory. Also the techniques used in the 

experiments are explained. In chapter 2 the FEATHERS framework and 

ALBATROSS model are discussed in details. We elaborate on the extension of 

the framework to integrate additional classification models.  Implementation using 

a data mining modeling standard is further demonstrated. In chapter 3, 

classification methods used to train the models and deployed for simulation are 

explained. Moreover, the action assignment rules and the derivation of rules from 

induction methods, and feature selection techniques are described. Chapter 4 

then gives a detailed description of the data sets and attributes that are used for 

training the models. Additionally, provides basic statistics on the distribution of 

the variables and the observed activity patterns and Origin-Destination trips 

matrices. 

 

The second part of the thesis discusses the research experiments and results. 

Chapter 5 represents the research design and the methodologies in which the 

aims of the dissertation are achieved. Next, in chapter 6, the work activity 

process model is experimented using different classifiers for the purpose of 
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identifying performance bounds is performed. Followed by chapter 7 where the 

introduction of alternative process models and their performance is illustrated. 

Then in chapter 8 a sensitivity analysis of decision tree models utilized at 

individual decision steps is performed. Finally the thesis concludes with chapter 9 

with the final discussion, final conclusions and future research.    
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Chapter 2  

The FEATHERS/ALBATROSS (FEATALB)    
Framework / Model 
 
The purpose of this chapter is to introduce the FEAHTERS framework. Firstly, 

the ALBATROSS model and its basic components are explained. This includes 

discussing the scheduling process model, which is the core of the system that 

controls the scheduling processes. In order to increase flexibility we introduce the 

FEATHERS framework, in this framework we can add new functionalities and 

execute new research experiments. For example, thanks to the modular design 

of the FEATHERS framework we can easily use various classification models. In 

the framework we also developed different tools like model validation criteria to 

evaluate model's performance and calculating Origin-Destination matrices of 

different dimensions. The rest of the chapter is arranged as follows. The 

ALBATROSS model system flexibility requirements are elaborated, which are 

then considered in the implementation of FEATHERS. Then, the FEATHERS 

framework is introduced, which is currently based on the scheduling process 

model that is present in ALBATROSS. Next explanation on how the FEATHERS 

framework modular design is extended to be able to use different induction 

methods. Consequently, the development of model validation criterion and 

implementation issues is discussed. And finally the chapter ends up with the 

conclusions.   

2.1 The ALBATROSS SYSTEM 
  
In the past few decades, many studies have been conducted in order to try to 

understand the nature of travel demand.  Travel demand is derived from the 

human needs to participate in activities that are distributed in time and space.  

Models that simulate travel demand using an activity-based approach have been 

gaining growing attention in recent times due to their strong behavioral 

foundation and insightful theoretical demand. Recognizing that travel is a 
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demand derived from the individuals' needs to perform  activities, researchers in 

travel demand modeling have become increasingly interested in analyzing and 

predicting individuals' decisions about activity participation. Activity-scheduling 

models share the objective to predict the sequence of decisions that leads to an 

observed activity pattern of households/individuals. Activity-based models aim at 

predicting on a daily basis and for individuals which activities are conducted, by 

whom, for how long, at what time, the location, and which transport mode is used 

when traveling is involved (Arentze and Timmermans, 2000). Most activity-based 

modeling systems are either based on a system of econometric models, or are 

rule-based models based on a system of rules and heuristics (e.g., 

ALBATROSS). Some of the tools applied in rules-based models include decision 

trees, neural networks, informal map analysis and trend surface analysis. 

 

ALBATROSS is a fully operational activity-based model incorporating household 

decision making (Arentze and Timmermans, 2000, 2004, 2005). It is a rule-based 

computational process model developed for The Dutch Ministry of 

Transportation, Public Works and Water Management. ALBATROSS differs from 

other models, which use utility maximization as a framework for modeling activity 

scheduling decisions. In contrast, ALBATROSS uses IF-THEN rules as a 

formalism to represent and predict activity-travel choices of individuals and 

households. The decision rules are extracted from activity diary data in the form 

of a decision tree by using a CHAID-based decision tree induction method. In 

ALBATROSS a sequential decision process model is assumed to generate a 

schedule.  

 

To generate a schedule for each person, for each day, a sequential decision 

process is assumed. Decision rules are derived from 26 decision trees, and the 

activity scheduling process model consists of four components or sub models 

(Anggraini et al. 2007). The first component is responsible for generating primary 

work activities and their start time, duration of each work episode if more than 

one episode is predicted, their location, and the transport mode for the work trip. 
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The second component is used to generate secondary fixed activities, typically 

work-related, such as bring/get, business or other mandatory activities. In 

addition, this decides which type of activities is performed, the number of 

episodes for each activity, and their start time and duration. The third component 

is similar to the second component, except that the former determines the flexible 

activities in the schedule. Flexible activities are those that may or may not be 

included in the schedule. The fourth and last component is in charge of predicting 

the transport mode of secondary fixed and flexible activities. It is important to 

note that in ALBATROSS, the activity travel behavior of the two heads of the 

household only is captured. These main components assume a sequential 

decision process in which key choices are made and predefined rules delineate 

choice sets and implement the choices made in the current schedule. Interactions 

between individuals within households are to some extent taken into account by 

developing the scheduling processes simultaneously and alternating decisions 

between the persons involved.  

2.1.1 The ALBATROSS Scheduler Process Model  
 
The ALBATROSS system applies a fixed sequence of decision models, which 

forms the ALBATROSS scheduling process model (Arentze and Timmermans 

2004). In the later part of this thesis when we refer to the process model we mean 

the scheduling process model. The applied decision models in ALBATROSS are 

rule-based models. These rules are accommodated in the rule-based scheduling 

engine to infer individuals’ activity schedules at the household level. In addition, 

these rules take into account different space and time aspects, possible scheduling 

constraints, as well as decision trees derived from individuals’ daily activity-travel 

diaries. The schedules are generated in the scheduling engine, a fixed sequential 

decision process is assumed in which fixed activities such as work and other fixed 

activities are scheduled prior to flexible activities. Furthermore, details about each 

activity, its starting time, duration, trip-chaining, location and transport mode choice 

(if needed) are derived in a priority-based sequential order. Fixed activity related to 

work is considered in this thesis. To schedule the activities, household interactions 
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between individuals as well as constraints are taken into account in the 

ALBATROSS system. The constraints can be of different types: (1) situational 

constraints (persons cannot be in different locations at the same time), (2) 

institutional constraints (opening hours), (3) household constraints (bringing 

children to/from school), (4) spatial constraints (e.g. particular activities cannot be 

performed at particular locations) and (5) time constraints (each activity requires 

a minimum amount of time). 

 

The analyses reported in this thesis are performed on the first component of 

ALBATROSS, excluding the transport mode decision step. Figure 2.1 depicts the 

work activity decision process model used in ALBATROSS. Each numbered 

rectangle refers to a decision tree model derived from activity diary data. In the 

work activity decision process model only two work episodes can be predicted. A 

work episode is a periods of time in which the person under study performs a 

work activity continuously without a break time. The index j refers to the number 

of work episodes, if more than one work activity episode is predicted. 

The first decision step evaluates whether the individual’s schedule contains a 

work activity or not. If so, the duration of the work activity can be predicted. Next, 

the number of work activity episodes is predicted. If two work episodes are 

predicted, then the ratio between work episodes and the break time duration 

decision steps are executed. Finally, the work activity start time is predicted. 

Decision steps 1 and 3 are discrete choices, whereas, decision steps 2, 4, 5 and 

6 are continuous choices.  It is noteworthy that if decision step 1 infers no work 

episode, then decision steps 2-6 will not be executed. Similarly, if decision step 3 

evaluates to one work episode, then decision steps 4 and 5 will not be evaluated. 

This means that there is an activation dependency in the execution of this 

process model.  

The rules at decision steps in the scheduler decision process model in 

ALBALTROSS are derived using a Chi-squared Automatic Interaction Detector 

(CHAID)-based induction method. CHAID is applied to generate decision trees 

trained from activity-travel diary data. This means that the chi-square measure is 



 30 

used to successively split condition variables to find homogeneous sets until a 

stop criterion is met. This process is represented in a decision tree. Decision tree 

concepts and other induction methods used in this thesis are discussed in details 

in Chapter 3.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Work activity process model in ALBATROSS, adapted from Arentze and Timmermans 
(2004). 
 
In the next section, the FEATHERS framework emphasizing on its modular design 

is discussed. Subsequently, the expansion of the framework to adopt various 

induction methods is explained. Then the data used to train the models is 

discussed in details. Finally, the derivation of decisions from induction methods is 

explained.  
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2.2 The FEATHERS Framework  
 

The FEATHERS (Forecasting Evolutionary Activity-Travel of Households and 

their Environmental RepercussionS) framework is developed to facilitate the 

development of a modular activity-based model for transportation demand in 

Flanders (Belgium). At first the framework adopted a four-stage development 

trajectory, for a smooth transition from the four-step models towards static 

activity-based models in the short term and dynamic activity-based models in the 

longer (Bellemans et al. 2010). In this study, Flanders (Belgium) is used as the 

study area. 

In order to include ALBATROSS in FEATHERS, the model parameters must be 

modified to fit the Flemish data and situation. The modification of the model 

parameters and the decision models, involved gathering data for the Flemish 

region and training and replacing each of the 26 decision trees. To achieve this, 

the ALBATROSS components and model parameters have been studied in 

details and later adapted to fit the Flemish situation, for more on this refer to 

Kochan, 2012. However, some practical limitations were determined that 

restrained further experimentations and there was a need for new 

implementations. The following two sections, describe this development and 

implementation work in more details.  

 
The original ALBATROSS model is developed using Borland C++. This 

prevented further implementation and impedes adding new functionalities. 

Hence, while reverse engineering the model, a porting process to Microsoft 

Visual C++ is performed.  

Some parts of the model were re-implemented. The implementation involved 

using technologies to boost the design of experiments conducted in this thesis. 

Technologies, such as incorporating a database with the system to capture the 

output (predicted) schedules of persons. Using a database enhances conducting 

experiments by being able to generate statistics of the predicted schedule 

without having to run the simulation again.  
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Next we added new functionalities. First, in ALBATROSS, at each decision step 

in the process model is controlled by a CHAID decision tree. The process model 

contains 26 decision trees which are hard coded into the system. This approach 

makes experimenting with other induction or classification methods inapplicable. 

Therefore, the platform is extended to employ other induction methods.  

Second, to generate outcome statistics and Origin-Destination (OD) matrices, the 

simulation must be run. So in case extra statistics or ODs with extra dimensions 

need to be generated, the simulation must be run, which is a time consuming 

process. To overcome this limitation the outcome (predicted) schedule 

information is captured and stored in a database system. Which allows for 

generating extra statistics and ODs by introducing a Statistical Module (StatMod) 

that is configurable to generate several statistics and ODs with many dimensions 

from a the database version of the schedule without needing to run the 

simulation. 

Third, the validation of the models at the individual classifier, the activity pattern, 

and the spatial and temporal levels are also implemented.  The models at the 

individual classifier level are validated using Confusion Matrix statistics and the 

Brier Score. Where at the activity pattern level, the models are validated using 

the Sequence Alignment Method (SAM). And at the spatial temporal level, OD 

matrices and other statistics are calculated. Model validation is discussed in 

details in chapter 3.  

Figure 2.2 represents an overview of the FEATHERS framework and its modular 

design. The interactions between modules are depicted by arrow lines. As can be 

seen in the Figure, the ALBATROSS model is integrated as part of the Schedule 

module (SchedMod). SchedMod is a generic module where other models can be 

integrated. In the following subsections important modules used within this study 

are discussed. 

 
Configuration module (ConfMod) 
To take full advantage of the modular design of FEATHERS, flexible 

configuration functionality is necessary. ConfMod maintains a configuration file, 
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in which each module is included with its own setting. As shown in Figure 2.2 all 

modules in the system communicates with ConfMod in order to employ a specific 

setting while running the system. The configuration file stores all the 

configuration settings for the FEATHERS modules in XML format (W3C, 2006). 

Using XML allows for ease of adding or modifying new modules and/or module 

setting(s), since it is human readable. In addition, XML is supported by most 

programming languages. Each module can be switched on (active) or off 

(inactive). And this allows users to perform experiments without having to load 

unnecessary modules or functionalities.  

Each module in the configuration file contains its own settings and parameters 

that necessary to be provided while running the simulation. Hence, ConfMod was 

implemented to easily browse through the different levels up and down, using a 

single instance of ConfMod to ensure file access consistency. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2.2 A schematic overview of the FEATHERS modules, their functionalities and 
interactions, adapted from Bellemans et. al. (2010) 

Logistic Regression 
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Data module (DatMod) 
This is a core module in the FEATHERS framework. It provides access to the 

data that will be accessible by all other modules. As shown in Figure 2.2, DatMod 

contains two main data types: supply and demand data. The supply data 

includes the transportation network and information on geographical zones in the 

area under study. On the other hand, the demand data consist of the activity-

travel diaries or schedules that describe the demand for the execution of 

activities at certain locations as well as the resulting demand for transportation. 

Both the supply and the demand data managed by the data module are made 

available to other modules through the data module’s standardized interface. 

 
Population module (PopMod) 
In order to perform a simulation of activity and travel behavior of individuals in a 

population, a synthetic population consisting of persons and households (and 

optionally cars belonging to the household) needs to be built. The population 

module is responsible for the management of the different agents (persons) that 

are used in the synthetic population. The synthetic population therefore consists 

of a collection of agents where each agent is characterized by a number of 

attributes. As mentioned previously, the data required are available at population 

level in Flanders by means of the socio-economic survey. 

 
Statistics (StatMod)  
The statistics module provides reports regarding the (synthetic) population and 

the activity-travel schedules to the FEATHERS user. This includes information 

that can be extracted on the households’ level (e.g. distribution of households 

according to availability of means of transportation); persons (e.g. usage of 

transportation modes), journeys (e.g. average number of journeys per day); lags 

(e.g. average number of lags per journey) and activities. Given the similarity in 

the person, household, car, activity, journey and lag entities and their relations in 

both the data module and the population module, the statistical module and the 

visualization module make abstraction from the fact whether they consult the 

Decision Maker 



 35 

data module or the population module to extract the data to report to the user. 

Hence, statistics that are implemented for the survey data in the data module can 

readily be used to draw the corresponding statistics on simulated data from the 

population module. The statistics are to be drawn by the statistical module is 

configured through the configuration module. As the activity-travel diaries contain 

detailed travel information, the statistical module provides the functionality of 

scanning through all schedules and compiling an OD matrix. With the 

functionality of storing predicted schedules in a database, StatMod can generate 

schedule statistics without having to run the simulation. Given the level of detail 

of the data, the travel information can be aggregated in segmented OD matrices 

such as time sliced OD matrices, OD matrices per transportation mode, and OD 

matrices per activity type. In addition, the spatial level of detail can be selected 

while calculating OD matrices. In FEATHERS three layers are provided, 

subzone, zone and superzone levels which corresponds to the spatial level of 

which the travel information is provided. The OD dimensions and levels are 

discussed in more details in section 2.6. 

 

Schedule module (SchedMod) 
The schedule module is a generic module in which different process models and 

different decision models can be implemented. Determining which process model 

is used for simulation is activated in the configuration module. The schedule 

module is tightly interfaced with the population module as it implements the 

process model that uses input data from the population module and stores the 

results in the schedules in the population module. 

The process model that is currently implemented in the FEATHERS framework is 

based on the process model that is present in the ALBATROSS system, which 

will be referred to as the FEATALB framework. This means the 26 CHAID based 

decision trees are implemented in FEATHERS as one process model 

implementation. Each decision tree is used to model decisions on specific activity 

(e.g. going to work) and its properties such as, duration, start time, and transport 

mode for work journey. In addition SchedMod contains algorithms to make 
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schedules consistent, taking into consideration all types of constraints. 

Consequently, considering the analyses performed in the context of this work, 

the FEATHERS framework is extended to conduct experiments using alternate 

induction methods, such as decision tree, logistic regression and OneR (Holte 

1993) on one hand. And to be able to change the order of decision steps in the 

work activity process model on the other hand. Therefore the DecisionMaker 

class is integrated in the SchedMod to facilitate employing other data mining 

methods within FEATALB.  

In the next section, the extension of the FEATALB framework and its 

implementation to accommodate additional induction or classification methods is 

discussed in details. Additional induction methods include decision trees 

(discrete and continuous) other than CHAID, Logistic regression and OneR. The 

development of calculating Origin-Destination matrices at different zoning levels 

and dimensions is further explicated. Then the implementation of SAM within 

FEATHERS is explained.  

2.3 Open architecture of the FEATALB Framework to use 
different Induction methods (PMML functionality) 
 
To overcome the limitation of using induction methods other than CHAID, it was 

required to extend the FEATALB framework. Furthermore, to be able to 

experiment the model with other induction methods, a portable mechanism is 

required to be integrated within FEATALB. This mechanism allows users to have 

the functionality to choose a specific induction method at any decision step in the 

ALBATROSS in the chosen process model. The additional functionality allows us 

to train models outside FEATALB, using data mining packages that can export 

Predictive Model Markup Language (PMML) (Guazelli et al. 2010). PMML is an 

XML based language to annotate data mining model parameters in textual form 

with meta-data for re-use.  It is developed by the Data Mining Group (DMG) to 

provide a way for applications to describe models related to predictive 

analytics and data mining and to share those models between PMML-compliant 

applications (http://www.dmg.org/v4-0). Thus, using this functionality, the CHAID 
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induction method is replaced by other decision tree methods or alternative 

induction methods. Namely C4.5 decision tree (Quinlan 1986), or any other 

decision tree based induction within the scheduling model.  The modular design 

of FEATHERS allows for easy integration, thus, the DecisionMaker class is 

implemented as an abstract class for other induction methods classes. This class 

is used at any place in the code to evaluate specific decision step using any of 

the implemented induction method in PMML format. In addition, a polymorphic 

function is facilitated in the implementation to provide flexibility while invoking a 

specific induction method at any decision step. 

Figure 2.3 shows the class diagram of the DecisionMaker class. The 

DecisionTree, Regression and OneR classes inherits functionalities from the 

DecisionMaker class. Using the DecisionTree class implementation, any decision 

tree model in PMML format can be utilized and used. The LinearRegression 

class can employ Linear and Logistic regression PMML models. And similarly, 

the OneR class employs One Rule induction methods.   

 

 
Figure  0.3 DecisionMaker class diagram 
 

Another issue related to extending FEATHERS to use different induction 

methods is adding relevant sections in the configuration file. So, extra information 

related to available induction methods and paths to models for each decision 

step is added accordingly. 

2.3.1 Predictive Model Markup Language (PMML) 
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PMML is an independent method of defining models so that incompatibilities are 

no longer a burden to the exchange of models between applications. It allows 

users to develop models within any third party application and use other 

applications to visualize, analyze, evaluate or deploy the models. Previously, this 

was very difficult, but with PMML, the exchange of models between compliant 

applications is straightforward. PMML is an XML-based standard, so the 

specifications come in the form of an XML-schema. As shown in Figure 2.4, 

PMML is composed of several elements which summed different functionality as 

it relates to the input data, model, and outputs (Guazelli et al. 2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4 PMML overall structure described sequentially from top to bottom. Adapted from 
Guazelli et al. (2009) 
 
The header element contain general information about the PMML document, 

such as copyright information for the model, its description, and information 

about the application used to generate the model such as name and version. The 

data dictionary element contains definitions of variable types, valid, invalid, and 

missing values. Variable types are defined as, continuous, categorical, or ordinal. 

The Data transformation element is responsible for mapping user data into other 
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desirable forms that can be used by the data mining method. Several data 

transformation are defined in PMML: normalization (e.g. Maps values to 

numbers), Discretization (e.g. mapping continuous values to discrete values), 

functions (e.g. derive a value by applying a function to one or more parameters), 

and aggregation (e.g.  Summarizes or collects groups of values).  

 

In the Model element, the definition of the data mining model is specified. In 

addition the model name, function name (classification or regression) and 

technique-specific attributes are defined. Followed by the model representation, 

this begins with the Mining Schema, which lists all fields used in the model. The 

Model element also contains the Targets element, which allows for the scaling of 

predicted variables.  

2.4 Model Validation  
 
Model validation is an important step in the model building sequence. The 

ALBATROSS model is validated at three levels. First, the individual classifier 

step using confusion matrix accuracy statistics. Secondly, the activity pattern 

levels using SAM to calculate how close predicted to the observed activity 

pattern sequence are. Thirdly, at the spatial level, by calculating correlation 

coefficient between observed and predicted OD matrices.  

 

As a new functionality, the validation of FEATHERS framework is performed 

outside the system. To validate the newly integrated induction methods, 

effectively and automatically, it was necessary to implement them inside the 

DecisionMaker architecture. Similarly, calculating the SAM distance to validate 

the model at the activity pattern level is developed by adding the SAM class 

implementation. The SAM class implementation required extracting activity 

pattern symbols from observed and predicted schedules. The output SAM 

distances are reported in a text file, by calculating the average distances for all 

cases under study. Finally, to gain more understanding of the model, and be able 

to conduct more experiments, ODs for several dimensions at all spatial layers are 
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developed. The development of the OD generation is included in StatMod. The 

travel information is aggregated in segmented OD matrices, ODs per each hour 

of the day, per transport mode, per activity type. Additionally, using the 

configuration file functionality, ODs of more detailed dimensions can be 

generated i.e. ODs for each hour of the day per transport mode, per gender, per 

activity type, per age group etc. The implementation of generating ODs is 

performed from the predicted database setting, so the simulation is run once, and 

ODs may be generated at anytime later. 

2.5 Conclusions 
 
Many activity-travel demand micro-simulation models have become operational. 

Moving the currently operational activity-based models into practice is an 

increased concern (Bellemans et. al, 2010). Some of the operational activity-

based models introduced these interdependencies, however, operational micro-

simulation of activity-travel demand models have remained limited (Davidson et. 

al, 2007). There are several reasons for this slow dissemination that can be 

thought of in this regard. One of the main challenges faced by the travel demand 

forecasting industry is the ability to quickly plug-in several new theoretical 

advances in a time and cost effective manner. To explore these theoretical 

advancements, scientific laboratory experiments are needed, for this reason it is 

important to depend on a basic platform where these advancements can serve 

as system add-ons.  

Taking the above into consideration, the FEATHERS platform is developed as a 

modular activity-based travel demand model, where the emphasis is on the 

practical use of the system by practitioners and end users. The platform is 

modular by design using the object-oriented programming paradigm, which 

allows for more flexibility. Moreover, this framework also allows for rapid 

employment of activity-based models for new study areas so that the threshold 

for these kind of models shrinks tremendously. In line with the latter advantage, 

with this general simulation framework, any activity-based travel survey can be 
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used with a minimum of processing time in order to train/re-train the transport 

model inside the framework. 

The ALBATROSS model system and its main components were explained. The 

ALBATROSS system limitations from an implementation point view were then 

discussed. Three limitations are found, (1) the ability to employ induction 

methods other than the CHAID decision trees at each decision step. (2) 

Generating statistics without having to run the simulation, and (3) Validating the 

model while running the simulation for model comparison and experimentation 

purposes.  

To overcome these limitations The FEATALB framework was developed to 

facilitate the development of modular activity-based models for transportation 

demand. The FEATALB framework was extended to facilitate the use of various 

induction methods using PMML, a data mining modeling standard. This allows 

studying the effect of introducing new sequential process models and decision 

models, also allows for replacing the original CHAID-based decision trees by 

other induction methods.  
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Chapter 3  

Essential Components, Classifiers, Derivation of 
decisions from classifiers, Model validation and 
model comparison criteria 
 

The aim of this chapter is to introduce the essential components of the analyses, 

classifiers, experimentation and models validation and comparison criteria used 

in this thesis. A survey of simple and complex classification methods used in 

FEATALB as a rule-based activity based model are discussed. The difference 

between discrete choice and continuous classification methods is further 

explored. Then the classification methods used in this dissertation, namely, 

Decision trees (CHAID, C4.5, and CART), One Rule (OneR), Logistic 

Regression, and Multi-Target Info Fuzzy Networks (M-IFN). For each 

classification method, the learning process is based on a specific statistical 

approach. Therefore, the action assignment rule, which is the selection of a value 

of the response variable to generate a prediction for a given case (referred to as 

the derivation of decisions from classifiers), is discussed. The derivation of 

decisions from discrete choice and continuous models are elaborated separately. 

Models comparison criteria and validation levels are then explained, as the 

different classifiers are used in each decision step in the scheduler process 

model. The validation levels are introduced to demonstrate models performance 

taking in account attribute interdependencies between decision steps. Finally, for 

purposes serving the analyses introduced in this thesis, the attribute selection 

and discretization methods are discussed. 

3.1 Introduction 
 
In the past few decades, research has been conducted in order to try to 

understand the nature of travel demand. Travel demand is derived from the 

human needs to participate in activities that are dispersed in time and space. 

Recognizing that travel is a demand derived from individuals' needs to perform  
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activities, researchers in travel demand modeling have become increasingly 

interested in analyzing and predicting individuals' decisions about activity 

participation. Activity-scheduling models share the objective to predict the 

sequence of decisions that leads to an observed activity pattern of 

households/individuals. Activity-based models aim at predicting on a daily basis 

and for individuals which activities are conducted, by whom, for how long, at what 

time, the location, and which transport mode is used when traveling is involved 

(Arentze and Timmermans, 2005). The utility-maximization modeling assumes 

that individuals make their activity-travel decisions to maximize the utility derived 

from the choices they make (Timmermans et. al, 2002). However, this approach 

has been argued by scholars that individuals do not necessarily arrive at ‘optimal’ 

choices (Arentze et. al, 2001). Conversely individuals use context-dependent 

heuristics (Timmermans et. al, 2002). Alternatively, computational process 

activity-based models formalize choices of outcomes to such heuristics as rules 

to predict activity-travel patterns. Rule-based activity-based models have proved 

to be more flexible than utility-maximising models (Arentze et. al, 2001) and they 

also perform well in predicting transport choice behaviour if an induction 

technique is used (Wets et. al, 2000). However, computational process activity-

based models are argued to lack ease of interpretation, and hard to statistically 

assess the decision-rules performance (Moons, 2005). As a result, even though 

computational process rule-based activity-based models are developed to better 

reflect the behavioural characteristic underlying activity-travel decisions, such 

models are viewed as black boxes. Examples of such models include Scheduler 

(GÄarling et. al, 1989), AMOS (Pendyala et. al, 1995), and ALBATROSS 

(Arentze and Timmermans, 2000).  

As a rule-based computational process model, ALBATROSS is a fully operational 

activity-based model. It employs a sequential decision process to generate daily 

activity schedules of individuals in the context of a household. The sequential 

decision process contains 26 decision steps, where at each decision step CHi-

squared Automatic Interaction Detector (CHAID) based induction tree methods 

are utilized. However, a decision process containing 26 decision trees, where 
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each decision tree contains many condition variables, and when those condition 

variables are included in the decision tree rules yields a complex process model.   

 

Initiatives to investigate the complexity of the ALBATROSS decision process 

model have been undertaken. A study was conducted to investigate complex and 

simple classifiers within ALBATROSS by Moons, et al (2005). Simple models 

include OneR (Holte, 1993) and Feature selection techniques. OneR is a very 

simple classifier that provides a rule that is based on the value of a single 

attribute. Further, feature selection techniques aims at reducing the number of 

irrelevant attributes, which as a consequence reduce the size of decision tree 

rules. On the other hand, complex models applied were C4.5 decision trees 

(Quinlan, 1986) and Support Vector Machines (SVM). The study showed that 

simple classifiers do not outperform complex models but are not inferior to more 

complex models. Furthermore, models obtained by very simple models may not 

be applicable in the sense that they do not generate realistic schedules, as 

obtained by Sammour et al. (2012). Therefore, obtaining a simple model that is 

applicable is needed. Janssens et. al. (2006) found that Bayesian networks 

performed better than CHAID decision trees in ALBATROSS. And that Bayesian 

networks are better suited to capture the complexity of the decision process 

model, since they take into account the interdependencies among the variables 

and decision steps outcome in the decision process model.  Other classification 

methods, such as, Association Rules were experimented with ALBATROSS as 

illustrated by Keuleers et. al (2001). In comparative studies by Wets, et al. (2000) 

and Moons, et al. (2004) revealed that different decision tree induction algorithms 

such as (CHAID, C4.5, CART etc.) achieve comparable results.  

3.2 Discrete choice and Continuous classifiers 
 
Two main groups of data mining methods are supervised and unsupervised 

learning methods. Classification is one of the supervised learning methods for 

data mining that uses predictive approach. Classification is learning a function 

that maps (classifies) a data item into one of several predefined classes (Weiss 
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and Kulikowski 1991; Hand 1981). Classifiers are first learned (model 

construction) and then applied (model usage).  

Model construction needs a set of predefined cases where each case belongs to 

a predefined class. A subset of the cases is used for model construction (training 

set). And the model is represented as classification rules, decision trees, or 

mathematical formulae. On the other hand, model usage entails classifying future 

or unknown cases.  Nevertheless, before using a model, it has to be validated by 

applying the model on an unseen set of cases (test set), where the classes/labels 

are already known. There are several accuracy measures to signify model 

validation, for example the accuracy rate, which is the percentage of test set 

samples that are correctly classified. Validation and model comparison criterion 

are discussed in details in section 3.5. Some data mining classification 

algorithms require specific data types and specific content types to be able to 

function correctly. Data types can be discrete, which is a finite number of values 

of a tuple with no continuum between values, such as gender. Another type of 

data is continuous, which means that the column contains values that represent 

numeric data on a scale that allows intervening values. Unlike a discrete column, 

which represents finite, countable data, a continuous column represents scalable 

measurements, and it is possible for the data to contain an infinite number of 

fractional values. A column of temperatures is an example of a continuous 

attribute column. Some predictive modeling techniques are more designed for 

handling continuous predictors, while others are better for handling categorical or 

discrete variables. 

3.2.1 Decision Tree induction methods general concepts 
 
Decision tree models are mainly used in classification because of their ease of 

construction and usage. The main goal of tree induction is to find a set of rules 

that best fits the data. Each path from the root of a decision tree to one of its 

leaves can be transformed into a rule simply by joining the tests along the path, 

and taking the leaf’s class prediction as the class value. 
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The FEATALB framework uses a probabilistic action-assignment rule, for both 

discrete and continuous choice decisions, instead of a deterministic assignment 

rule, because this results in a better prediction of the aggregate distributions 

(Moons, et. al, 2005). And so, each rule is assigned a probability distribution that 

is derived from the class frequency distribution. Another important issue in 

decision tree learning is over-fitting on the data. The concept of over-fitting 

occurs when the induction algorithm generates a decision tree that perfectly fits 

the data in the training data set but lacks the capability of generalization of 

instances not present in the training set. To avoid over-fitting the minimum 

number of cases at leaf nodes was set to 30 for CHAID, C4.5 and CART decision 

tree models (Hall, et. al, 2009). 

3.2.1.1 CHAID based decision Tree Induction 
 

The CHAID stands for CHi-squared Automatic Interaction Detector, and was 

introduced by Kass (1980) as an efficient statistical technique for segmentation. It 

originated from the automatic interaction detection (AID) method (Morgan and 

Sonquist 1963).  

The CHAID based induction tree method is able to generate trees with more than 

two branches attached to the same node at any level of the tree and mainly 

suited for the analysis of large data sets. It is based on the chi-squared (χ2) 

statistic to identify the best split of the data set on condition variables into 

homogenous partitions with respect to the class variable. In addition the CHAID 

based tree induction method allows for specifying a threshold (α) for splitting of 

the significance level for the χ2 value and the minimum number of cases at leaf 

nodes. The tree building algorithm is performed by recursively iterating through 

the condition variables to test for each variable the pair of categories whether 

there is no statistically significant difference within the pair with respect to the 

class variable. The split with the highest significance value across condition 

variables is selected. This procedure is repeated until no significant splits are 

found or the maximum number of cases at leaf node nodes is reached.  
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The CHAID tre building algorithm proceeds in steps. It first detects the best 

partition for each predictor. Then the predictors are compared and the best one is 

chosen. The attributes are subdivided according to this chosen predictor. Each of 

these subgroups are then re-analysed independently, to produce further 

subdivisions for analysis. Let the dependent variable Y have d ≤ 2 response 

categories, and a particular predictor under analysis X have c ≤ 2 categories. A 

subproblem in the analysis is to reduce the given c × d contingency table to the 

most significant j × d table by combining (in an allowable manner) categories of 

the predictor. The full CHAID algorithm works as follows: 

 

Step 1. For each predictor in turn: cross-tabulate the categories of the predictor 

with the categories of the dependent variable and do steps 1a and 1b. 

Step 1a. Find the pair of categories of the predictor (only considering allowable 

pairs as determined by type of the predictor) whose 2 × d sub-table is least 

significantly different. If this significance does not reach a critical value, merge 

the two categories, consider this merger as a single compound category, and 

repeat this step. 

Step 1b. For each compound category consisting of three or more of the original 

categories, find the most significant binary split (constrained by the type of 

predictor) into which the merger may be resolved. If the significance is beyond a 

critical value, implement the split and return to step 1a. 

Step 2. Calculate the significance of each optimally merged predictor, and isolate 

the most significant one. If this significance is greater than a criterion value, 

subdivide the data according to the (merged) category of the chosen predictor. 

Step 3. For each partition of the data that has not yet been analysed, return to 

step 1. This step may be modified by excluding from further analysis partitions 

with a small number of observations (to ensure the validity of the significance 

test). 

 

For the derivation of the decision models in ALBATROSS the threshold α was set 

to 0.05 and the minimum number of cases is set to 30 (Arentze and 
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Timmermans, 2005), therefore, the minimum number of cases per leaf node is 

also set to 30 for all decision tree induction methods in this research. 

3.2.1.2 The C4.5 Decision Tree induction 
 

One popular example of a decision tree construction method is ID3 (Quinlan, 

1986) which is based on an information theory approach, in an attempt to 

minimize the number of tests required to classify a case. An improvement of the 

ID3 decision tree induction algorithm that is able to handle non-categorical data 

is the C4.5 algorithm developed by Quinlan, 1993. Like CHAID, C4.5 is not 

restricted to binary splits and it produces a tree of variable number of decision 

and/or leaf nodes, and for this reason C4.5 was chosen to be employed in this 

analysis as it is expected to have more or less the same performance as the 

CHAID based induction method, which will support the analysis of the work 

activity process model. 

There are two stages for building a classification decision tree in the C4.5 

algorithm. The first stage involves generating the decision tree based on the 

training data set, where the second stage has to do with pruning the decision tree 

based on the validation or test data set. The algorithm works as follows. Assume 

we have a date set S of training cases or samples, each case consists of n 

condition or explanatory variables xi1, xi2, … xin and a class or response variable 

Ci, for i = {1,2, … p} classes. C4.5 first grows an initial tree using the divide-and-

conquer technique by splitting the training set into homogeneous subsets S1, 

S2…Sp, until the leaf nodes contain only cases from a single class. An important 

issue in learning classification trees is over-fitting on the data. The concept of 

over-fitting is very important in data mining as in decision tree induction. It occurs 

when the induction algorithm generates a decision tree that perfectly fits the data 

in the training data set but lacks the capability of generalization of instances not 

present in the training set. In decision trees over-fitting usually occurs when the 

tree has too many nodes relative to the training data available. Therefore to avoid 

over-fitting C4.5 adopts pruning strategy, where the decision tree is simplified by 

removing one or more subtrees and replacing them with leaves. In the C4.5 
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WEKA (Witten and Frank 2005) implementation (J48), over-fitting can be avoided 

also by selecting the minimum number of cases at leaf nodes. This parameter 

forces the algorithm to stop growing the tree when a preferred number of cases 

are reached. In the next sections the techniques of splitting or partitioning the 

data set and the pruning strategy C4.5 employs will be discussed. 
 

Splitting criterion 
 
C4.5 uses two heuristic criteria to split the training cases, the information gain 

that uses attribute selection measure, which minimizes the total entropy of the 

subset {Si}, and the default gain ratio that divides information gain by the 

information provided by the test classes. The information gain criterion is based 

on information theory. As stated by Quinlan (1993) the information theory on 

which the gain criterion is based can be explained using the following concepts 

and definitions: 

- Information of a message: The information conveyed by a message depends on 

its   probability and can be measured in bits as minus the logarithm to base 2 of 

that probability. The information of a message that a random case belongs to a 

certain 

Class Ci is computed as: 

 

bits 
|S|

S)freq(Ci,log2 







−                                                                                           (3.1) 

 

Where S is a training set of cases, Ci is a class i, freq (Ci, S) is the number of 

cases in S that belongs to class Ci and |S| is the number of cases in S. 

The above definitions forms the basis of the average amount of information 

needed to identify the class of a case in the training set, which is called the 

entropy. 

 
-  Entropy of a training data set: 
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E (S) = 
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i                                                           (3.2) 

Where S a training set of cases, p the number of classes, Ci is a class i, freq (Ci, 

S) is the number of cases in S that belongs to class Ci and |S| the number of 

cases in S. Entropy is also measured after that S has been partitioned in to m 

sets using the outcome of a test carried out on attribute X. This gives: 

- The Entropy after the training set has been partitioned on a test X:  
  

 EX (S) = )E(S|S|
|S|

i

m

1i

i ×∑
=

                                                                                    (3.3) 

Using these two measures the information gain, which means how much 

information, can be gained by branching on attribute X can be computed as 

follows: 

   

 Gain (X) = E (S) - EX (S)                                                                                 (3.4) 

 

The C4.5 algorithm is an enhancement over the ID3 decision tree induction 

algorithm to handle non-categorical and missing data. In ID3, the split test 

selected is the one which maximizes information gain because it is expected that 

the remaining subsets in the branches will be the easiest to partition. However 

the gain criterion has one drawback, namely the information gain applied to 

attributes that can take on a large number of distinct values might learn 

the training set too well. Therefore, in C4.5 an adapted form of information gain is 

employed. This criterion is called the gain ratio, where in this criterion the gain 

attributable to tests with many outcomes is adjusted using some kind of 

normalisation. This indicates the information generated by partitioning S into m 

subsets. Consequently, the split info(X) measurement has to be defined. 

split info(X) = 





×∑

=
− |S|

|Si|log2
m

1i |S|
|Si|

                                                              (3.5) 

The gain ratio corresponds to how much of the gained information is useful for 

the classifier; consequently, C4.5 will select the test that has the maximum gain 
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ratio. After the decision tree is built, pruning takes place, which in turn will 

simplify the decision tree by eliminating one or more subtrees and replace them 

by leaves. 

 

Pruning 
Pruning is useful for decision trees as it improves generalization and accuracy of 

unseen test instances. C4.5 uses an approach called pessimistic pruning. In this 

approach the decision tree is evaluated on the training data set, it was also 

proposed by Quinlan (1993), and was developed in the context of ID3. Quinlan 

found that it is too optimistic to use a training set to test the error rate of a 

decision tree, because decision trees have been customized to the training set. 

In this case, the error rate can approach 0. But if some data other than the 

training set is used; the error rate will increase dramatically. To solve this 

problem, Quinlan used continuity correction for the binomial distribution to get an 

error rate. If a given branch has a higher error rate than a simple leaf, the branch 

is replaced with a leaf. This heuristic is applied to the decision tree from bottom 

to top. The error rate is calculated in the following manner (Quinlan 1993). If n 

training examples are covered by a leaf, where the number of incorrect examples 

is e, the algorithm considers this as a sample in which e events are observed 

from n trials. To determine the predicted error rate, C4.5 consequently attempts 

to predict the probability of an error across the cases covered by a leaf. Since 

this probability cannot be determined exactly, a posterior probability distribution is 

calculated using an upper and lower confidence interval. 

The C4.5 decision tree model was trained and generated using the Rattle 

package for R (Williams 2009). The model was then exported to PMML and the 

decisionMaker class is used in the FEATHERS framework to deploy PMML 

decision trees.  

3.2.1.3 Classification and Regression Trees (CART) 
 
CART (Classification And Regression Trees), a non-parametric statistical 

algorithm developed by Breiman et al. (1984), CART is capable of predicting or 
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analyzing both categorical (classification) and continuous or numerical 

(regression) data. Unlike other statistical analysis procedures, CART illustrates 

the data in the form of a decision tree, where each node is split into two nodes. 

And that is why CART is referred to as binary recursive partitioning techniques.  

The tree starts from the root node containing the data objects, which is split into 

two child nodes, depending on the splitting criterion for the variable selected from 

the group of independent or explanatory variables. The result of the split can be a 

terminal or leaf node, which implies that it cannot be split further, or a decision 

node which consist of instances to be divided again into two child nodes. This 

process is repeated until resulting child nodes are homogenous or the predefined 

number of instances at leaf nodes is reached (Caetanoa et. al, 2005). Decision 

tree building in CART comprises three stages. In the first stage a complete tree 

with maximum size is grown by recursive partitioning the data. In the second 

stage a group of nodes is pruned using cross validation and cost complexity. In 

the final stage, a predictive error is considered as a criterion to select the optimal 

tree. 
 
Growing the CART decision tree 
The tree building process begins by splitting the root node into two child nodes, 

the best split is obtained when the impurity function, which exists between the 

parent node and two child nodes, is minimized. The best split equation is given 

by: 

 
Δ (s,t) = i(t) – (pL i(tL) + PR i(tR))                                                                         (3.6) 
 
Where s is the split of the independent variable, t is the parent node, i(t) is the 

impurity of node t, PL and PR are number of instances going to left and right 

nodes, and i(tL) and i(tR) are impurities of the left and right nodes respectively 

(Caetanoa et. al, 2005). For a classification tree i(t) is computed using a different 

criteria such as the Gini Index, Entropy Index, and Towing rule, which determine 

the best split. For a regression tree used to predict numeric class variable, the 

Least-Square Deviation is used as an estimate of node impurity, which is given 

by the following formula: 
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Where Nw(t) is the measure of the weighted number of objects in node t, wi is the 

value of the weighing variable for instance i, fi is the frequency variable, yi is the 

value of the dependent variable, and y (t) is the mean of the instances in node t. 

 
Pruning the CART decision tree 
For a fully grown decision tree in the initial step of CART, the tree will have many 

leaf nodes fitting the data, which leads to over-fitting and thus, the prediction 

accuracy is low for new unseen instances. Therefore, pruning, which develops an 

optimal tree, is needed, by shedding off the branches of large sub trees. The 

pruning process develops a sequence of smaller trees and computes cost 

complexity for each tree, and based on the cost-complexity parameter, the 

pruning procedure identifies the optimal tree with the highest accuracy. The cost-

complexity parameter Rα is set forth a linear combination of tree complexity and 

cost associated with the tree. Complexity is given by the following equation: 
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Where R(T) is the re-substitution error, |T| is the number of terminal or leaf nodes 

in the tree, and α is the cost complexity associated with the tree. The re-

substitution error R (T) in case of a regression tree, is given by expected squared 

error, and is computed by the following equation: 
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Where (yi,xi) is the learning sample and d is the numerical predictor. The value of 

the complexity parameter in the pruning usually lies between 0 and 1. The 

pruning procedure develops a group of trees using different values of complexity 

parameter, giving different sizes of tree. According to Brieman et al. (1984), 
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among a group of trees of different sizes, for a value of α, only one tree of 

smaller size has high accuracy. 

3.2.3 Logistic Regression classification 
 

Regression is a collection of statistical function fitting techniques. These 

techniques are categorized according to the form of the function being fit to the 

data. Linear regression for example, is useful for data with linear relations or 

applications for which a first-order approximation is adequate. There are many 

applications for which linear regression is not appropriate or optimal. Because 

the range of the linear model using linear regression for data with continuous 

outcomes in (0, 1) or binary outcomes may not be appropriate. Logistic 

regression (Cox, 1958), sometimes referred to as Logistic regression models, is 

an alternative regression technique naturally suited to categorical (or 

dichotomous) data. Logistic Regression fits an S-shaped curve to the data.  Such 

a shape, often referred to as sigmoid, is difficult to describe with a linear equation 

for two reasons. First, the extremes do not follow a linear trend. Second, the 

errors are neither normally distributed nor constant across the entire range of 

data (Peng et al., 2001). Let X,Y be a dataset with a binary response or class 

variable, where X is a vector of k independent variables (x1, x2,…, xk) for each 

case in X the response or dependent variable is either yi=1 or yi=0, the logistic 

model predicts the logit of Y from X. The logit is the natural logarithm (ln) of odds 

of Y, and odds are ratios of probabilities π of Y happening (i.e., a work activity 

exists in an individual’s schedule a specific day) to probabilities (1 –π) of Y not 

happening (i.e., a work activity does not exists in an individual’s schedule a 

specific day). The simple logistic model has the following form: 
 

                                                       (3.10) 

Where ln is the natural logarithm, π is the probability of the class variable Y=1, α 

is the Y intercept, and β1, β2,…, βk are the regression coefficients. The probability 

(π) that the class variable Y=1 is computed by: 

( ) kk2211 x...xx1ln)Y(itlog βββα
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The α and β1, β2,…, βk are typically estimated by the maximum likelihood 

method, which is preferred over the weighted least squares approach according 

to Haberman (1978) and Schlesselman (1982). The maximum likelihood method 

is designed to maximize the likelihood of reproducing the data given the 

parameter estimates. 

The Logit models were trained and generated using the Rattle package for R 

(Williams 2009). The model was then exported to PMML and the decisionMaker 

class is used in the FEATHERS framework to deploy PMML Logistic regression 

models. The derivation of decisions (action assignment rule) from Logistic 

regression is used for model scoring as discussed in Chapter 2. 

3.3.4 Multi-target classifiers using Info-Fuzzy Networks 
 
Multi-target classifiers 
 
Most data mining techniques (decision trees, Association rules, Naïve Bayes, 

artificial neural networks, etc.) work under the assumption that a classification 

problem has one target objective or class variable. Such assumption subsumes 

that an instance in the dataset do not contain more than one class variable. The 

common assumption of most data mining algorithms (decision trees, Naïve 

Bayes, artificial neural networks, etc.) that a learning task has only one class 

variable is very restrictive (Last, 2011, Caruana, 1997 and Suzuki et. al, 2001). In 

many real world datasets data objects may be concurrently assigned multiple 

class variables related to multiple tasks. These class variables or objectives may 

be strongly related to each other, weakly related or completely unrelated. 

Examples, as discussed in Dietterich et al, (1995), include student’s grades in 

several courses, symptoms and diagnoses of a given patient, etc. A simple 

solution to the multi-objective classification problem is to generate a separate 
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model for each objective using any single-objective classification method. 

However, using a multi-objective model may be much more comprehensible than 

a collection of single-objective models. The storage and maintenance of multiple 

models in non-stationary systems may become a tedious task (Last, 2002). In 

addition, the combination of several single-objective classifiers in a single model 

may increase the overall predictive performance (Caruana, 1993). 

In the next section the multi-objective Info-Fuzzy Networks is discussed in 

details, thus to provide a unified framework for single-objective and multi-

objective classification, an extended classification task is presented below which 

includes the following components (based on Last, 2004): 

• R = (C1,…, Ck) – a set of k attributes in the dataset (k ≥ 1). 

• C – a non-empty subset of n candidate input features (variables), where C 

⊂ R and |C| = n ≥ 1. The values of these features are usually known and 

can be used to predict the values of target attributes.  

• O – a non-empty subset of m target (output) attributes, where O ⊂ R and 

|O| = m ≥ 1. This is a subset of attributes representing the variables to 

predict. Discrete output attributes are also called class dimensions. The 

extended classification task is developed to predict the values of all target 

attributes, based on the corresponding dependency subset. 

 
Multi-target classification Info-Fuzzy networks 
 
As shown in Last (2004), an m-target classification function is represented by a 

multi-target info-fuzzy network (M-IFN), where each terminal node is associated 

with the probability distributions of all target attributes. The M-IFN model is an 

extension of an Oblivious Read-Once Decision Graph (OODG) called information 

network (IN) (Last and Maimon, 2004). As in OODG, the information network 

uses the same input attribute across all nodes of a given layer (level). The input 

attributes are selected incrementally by the IN induction algorithm to maximize a 

global decrease in the conditional entropy of the target attribute. The IN algorithm 

uses a prepruning approach: such that when no attribute causes a statistically 
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significant decrease in the entropy, the network construction is stopped. As 

shown in Last and Maimon  (2004), the IN algorithm produce much more 

compact models than other decision tree learning models, and at the same time 

preserve nearly similar level of classification accuracy. 

M-IFN construction is an iterative process; at every iteration the algorithm utilizes 

the entire training set instances to select an input variable which maximizes the 

decrease in the total conditional entropy of all class dimensions. The conditional 

entropy decrease, also called conditional mutual information gain (Cover and 

Thomas, 1991) is a feature selection criterion in single-target and multi-target 

decision tree algorithms. The conditional entropy measures the degree of 

uncertainty of a variable Y given the values of other variables X1,…, Xn and it is 

calculated, as shown in Cover and Thomas (1991), as: 

 

)x ,,x/y(plog)yx ,,xp(- ) X ,,X|Y(H n1n1 ,n1 ……=… ∑                                  (3.12) 

 

The conditional mutual information (MI) of the class dimension Yi and the input 

variable Xn given the features X1,…, Xn-1 is calculated by (Cover and Thomas, 

1991): 
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Each internal node in the last layer, in a M-IFN with n-1 layer, represents a 

conjunction of values on n-1 input variables X1,…, Xn-1, As a result, the 

conditional mutual information of a class dimension Yi and an input variable Xn 

given the variables X1,…, Xn-1 over all terminal (leaf) nodes z in the last layer Ln-1 

can be calculated as follows: 
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The M-IFN algorithm evaluates discrete and continuous variables in a different 

way. Hence, the conditional mutual information of each discrete input variable Xj 

and the class dimension Yi given a terminal node z is calculated using the 

following formula: 
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Where xj and yi are distinct values of variables Xj and Yi respectively. 

The M-IFN algorithm, utilize the Likelihood-Ratio Test to evaluate the actual 

capability of an internal node to decrease the conditional entropy of an output by 

splitting it on the values of a particular input variable. The Likelihood-Ratio Test is 

a general-purpose technique for testing the null hypothesis H0 that two random 

variables are statistically independent. The default significance level (pvalue) for 

rejecting H0 is set to 0.1%. If the likelihood-ratio statistic is significant for at least 

one class dimension, the algorithm marks the node z as “split” on the values of 

an input feature Xj. in the case of the work activity process model dataset, the 

split occurs using the work status “wstat” variable. This variable is the split for all 

nodes of a given layer. 

As discussed by Last (2004) the M-IFN algorithm comprise the following 

theoretical properties: 

 

• In a m class dimension in an n-input m-dimensional model M, the average 

conditional entropy is not greater than the average conditional entropy 

over m single-target models Si (i=1,…, m) based on the same n input 

variables. This inequality is reinforced if the multi-target model M is trained 

over more variables than the single-target models. 

• The input variable selected by the algorithm will minimize the joint 

conditional entropy of all classes, either if the class variable is mutually 

independent or totally independent on each other.   
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Figure 3.1 shows the multi-target info-fuzzy network construction algorithm from 

a set of input variables. As discussed above the multi-target info-fuzzy network 

classification method is designed to find an accurate model(s) for predicting the 

values of m equally important class dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Multi-target Info-Fuzzy Network Construction Algorithm (adapted from Last, 2004) 
 

3.3.5 Illustrative Example 
 
To illustrate using the classification methods at the decision steps in the work 

activity process model, an illustrative example is given in Figure 3.2. Hence, 

using the DecisionMaker class and PMML implementation in FEATALB, it is now 
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easier to experiment the process model with different classifiers. Discrete 

classifiers are employed at discrete choice decision models and continuous 

classification methods are use at continuous decision models. As shown in 

Figure 3.2, at each decision step relative classification methods are utilized and 

validation results are computed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Employing discrete and continuous classification methods at decision steps 
 

At discrete choice models (decision steps 1 & 3), are analysed using three 

classification methods, CHAID, C4.5, and Logit methods. On the other hand 

continuous models are trained and deployed using CHAID and CART decision 

tree methods. The reason for using CART instead of CHAID for some models is 
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that the latter is hard coded in ALBATROSS. As a result, training the models 

using different settings or modifying some model building parameters may be 

infeasible. Furthermore, changing the order of decision models will be plausible. 

The CHAID-based decision tree model is the original classification method used 

in ALBATROSS. Hence, when using CHAID for all decision models, the model 

will be referred to as the CHAID model. Consequently, when using the C4.5 and 

the Logit classifiers for discrete decision models, will be referred to as the C4.5 

and Logit models, while maintaining the CHAID continuous decision trees for 

continuous decision models.   

However, for the M-IFN multi-target classification method, the approach is 

different. All six decision steps (work, duration, number_of_episodes, ratio, 

break_time, and start_time) are predicted in one step. Using this approach all 

models are predicted without any preference and with equal priority.  And this 

allows experimenting and analyzing the attributes interdependency and the 

activation dependency features in the process models. It is important to note that 

all decision steps in the process model share the same features.  

 
3.4 Derivation of Decisions from Classifiers (Action Assignment 
Rules) 

3.4.1 Derivation of Decisions from decision trees  
 
The original induction method used in ALBATROSS is the CHIAD based 

induction method. Each discrete choice decision in the work activity process 

model is controlled by a decision tree model. Each decision model is derived 

from corresponding observations (training data set) in the activity diary data set. 

This section considers the action assignment rule from induction methods used 

to determine decisions in the prediction stage, as explained in Arentze and 

Timmermans (2005). Discrete and continuous choices are separately discussed.  
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3.4.1.1 Discrete Choice 
 

In ALBATROSS the derivation of decision rules employs a probability distribution 

among classes. The levels at which decisions in the work activity pattern are 

taken which decides on the inclusion of work activity and the number of work 

episodes in the schedule. Accordingly, the definition of a case differs between 

decision trees. For example, the conceptual design is assumed that at the given 

moment in the decision process, a decision is derived for N cases. ALBATROSS 

employs a probabilistic action assignment rule, and this rule derivation method is 

used for the CHAID decision tree induction and C4.5 decision tree methods. A 

model in general and a decision tree in specific define a classification function as 

follows. 

 
 Pr (k|Xj) = f(Xj)                                                                                                (3.16) 
 
Where k is the leaf node index and Xj is a vector of attribute level for a given case 

j. Given that the decision tree model design is crisp and deterministic, the 

probability of assigning case j to node k is either 1 or 0 (Arentze and 

Timmermans, 2005). Subsequently, the action assignment rule using equation 

(3.1) becomes: 

  
 Pr (i|k) = f(qk, δj)                                                                                             (3.17) 
 
Where i is the index of discrete choice alternatives in the decision tree, qk is the 

choice probability distribution of the class alternatives at leaf node k and δj is a 0-

1 vector indicating the availability of each class in case j. It is important to note 

that qk is a feature of the decision tree, while δj is calculated for each case during 

the prediction stage. Therefore, the probability of selecting alternative I in case j 

is calculated as follows: 
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The probabilistic action assignment rule f(qk, δj) used in ALBATROSS is 

calculated considering the subset of cases assigned to leaf node k, and for the 

sake of simplicity dropping the subscript k, can be written as: 
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Where pij is the probability of selecting choice alternative i in case j at leaf node k, 

δj is a 0-1 variable representing the availability of i in case j, and finally qi is the 

probability of choice alternative i given by the decision tree at leaf node k and 

estimated on the training data. 

3.4.1.2 Continuous Choices  
 

The work activity pattern process model contains four continuous choice decision 

models, related to formulate and describing the work activity duration, start time,, 

the ratio between two work episodes, and the  break time between two work 

episodes (if any). In ALBATROSS, continuous choice decision trees provide a 

specific distribution of the continuous dependent variable at each leaf node 

(Arentze and Timmermans, 2005). Consequently the continuous choice action 

assignment rule in accordance to equation (3.4) becomes: 

 

Pr (y|k) =  f(Rk , Bj),      y = 0, 1, 2, ..., 1440                                                    (3.20) 

 

Where Pr (y|k) is the probability of selecting value y at leaf node k, Rk is a vector 

containing parameters defining the distribution of values at leaf node k and Bj is a 

set of tuples in the form (b1, b2) containing blocked ranges [b1, b2] on dimension 

y in case j due to temporal constraints. ALBATROSS uses minutes as a measure 

of time and further the schedule has a time window of 24 hours, which implies 

that the value of y must have predefined minimum and maximum values. In 

addition y assumed to have natural numbers.  
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Continuous decision trees used in ALBATROSS define distributions at each leaf 

node specifying m-1 cutoff points and the minimum and maximum of the range. 

The cutoff points divide the range into m intervals, taking in account that an equal 

number of training cases at leaf nodes is observed in each interval, this also 

means that Rk stipulate m+1 parameters. If the complete range of the schedule is 

available the number of elements of the set Bj is zero, if parts of the range are 

blocked by temporal constraints the range will be set to a value bigger than zero. 

ALBATROSS employs a probabilistic approach for the continuous action 

assignment rule, to illustrate the method, consider the following notations. Let Pj 

(y) denote the probability of selecting y = 0, 1,…, 1440 in case j, m denote the 

number of Equal Frequency Intervals (EFI) used in continuous decision trees, di 

represent the width of equal frequency interval i, bij be the width of the blocked 

part of equal frequency interval i in case j defined by the combination of Rk and Bj 

and Pj (y) =1, if y falls in the unblocked part of the interval I and 0 otherwise. 

 

j)i|yPr()iPr()y(Pj i∑ ∀=                                                                        (3.20) 

Where Pr (i) is the probability of selecting EFI i and Pr (y|i) is the probability of 

selecting y given i. Pr (i) is defined as: 
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The first term represents the priory probability of selecting i. Since EFIs represent 

an equal number of cases, an equal probability is assumed for all m EFIs. The 

second and third terms define a correction to this equal probability. The first 

correction is equal to the proportion of the available range in the EFI i and the 

third factor makes sure that probabilities sum up to one across EFIs. 

Continuous decision tree describes a continuous distribution of responses for 

each leaf node. Figure 3.2 presents a graphical illustration of a continuous 

decision tree. The hypothetic example describes a tree that defines two-way 

splits on variables X1, X2 (in the ‘X1 = A’ branch) and X3 (in the ‘X1 = B’ branch). 

Associated with each of the K = 4 leaf nodes is a distribution representing the 
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responses on the response variable found in the corresponding partition of the 

training set. An action assignment rule defines for each new case at leaf node k 

how a prediction is drawn from a response distribution at leaf node k. Response 

distributions at leaf nodes can be represented in different ways. First, in case the 

distributions follow a standard normal form the mean and standard deviation 

would fully describe the distribution. However, durations and start-times of 

activities tend to deviate strongly from the normal distribution in the context of 

activity patterns (Greaves and Stopher 2000).  

Other standard forms, such as for example a Poisson distribution, may 

approximate empirical distributions in some cases. Still, however, any standard 

form would only approximate with varying degrees of fit the empirical form. It is 

for this reason that we propose an assumption-free method for describing 

distributions at leaf nodes. Similar to the approach chosen by Greaves and 

Stopher (2000), this alternative way of describing a distribution is based on 

discretisizing a continuous range using the equal-frequency-interval method. In 

this method, the observed minimum and maximum (of training cases) at the leaf 

node defines the range of the variable. This range is then divided into m intervals 

by identifying the m − 1 cut-off points such that each interval includes the same 

number of observations. Hence, the method uses m + 1 parameters to describe 

each distribution at a leaf node including a minimum, maximum and m − 1 cut-off 

points, where m is a value set by the user. The higher the value for m the better 

the observed distribution is approximated. However, one may expect that at 

some point, model generalization will decrease with a further increase of m. 

Thus, the choice of m has a certain optimum, depending on sample size. 

 

The FEATLAB framework uses the same approach of derivation of rules from 

decision trees i.e. the probabilistic action assignment rules as described below. 

 



 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3   Graphical illustration of a continuous decision adapted from (Arentze and 
Timmermans, 2003) 
 

3.4.2 Derivation of Decisions from Logistic regression models 
 
The derivation of rules from logistic regression models as proposed by the 

literature of classification for logistic regression is using the probability equation. 

The probability (π) that the class variable Y=1 is computed by: 
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The logistic regression equation attempts to model probabilities for the class 

variable Y, if the probability of a case is greater than a cutoff, usually for logistic 

regression the cutoff = 0.5, the model predicts Y=1. And if the probability is less 

than 0.5 the model classifies Y=0. Different cutoff values, other than 0.5 have 



 69 

been proposed by the literature. However, most practical cases and without any 

supplementary  information, such as the relative cost of misclassification or 

relative frequency of the class variable choice alternatives in the training data, 

0.5 is recommended as a probability cutoff value. In FEATALB, the probabilistic 

action assignment rule is used, however, considering only the probability 

distribution obtained by equation 3.22. Consequently, for a specific case, π (y=1) 
is the probability of predicting the positive class and 1- π (y=1) is the probability 

of predicting the negative class.  

 3.4.3 Derivation of Decisions from Multi-Target Info Fuzzy Network 
(M-IFN) Model  
 
M-IFN generates the model as a set of rules which are responsible for predicting 

each class. For discrete class variables, the probabilities class alternatives or 

intervals are also specified. While for continuous models the average values of 

all cases belonging to each rule serves as the predicted value. Therefore and for 

model comparison purposes, the action assignment rules for discrete and 

continuous models adapted in decision tree models are also applied in the M-IFN 

models. 

3.5 Model Comparison criteria and Model Validation  
 
The model comparison criteria and model Validation are performed at three 

levels, the individual classifier (decision model) level, the activity pattern level, 

and the spatial and temporal levels. The reason for using these validation levels 

is that at each level provides more understanding of the model. For example at 

the individual classifier, the validation results provide information about the 

predictive performance about the classification method. Nevertheless, it does not 

give insight about the significance of the predicted schedules and the spatial-

temporal resolutions. Validating the models at the activity pattern levels will be 

presented using the SAM method. This measure provides insight about the 

predicted activity patterns and how close they are to the observed ones. The 

validation at this level confirms the predictive performance at an aggregated 



 70 

level. Finally, the validation at the spatial resolution (i.e. Origin-Destination (OD) 

matrices) and temporal level (the activity start time) provides aggregated 

validation information at the zonal and temporal resolutions.  

3.5.1 Classifier Level Accuracy Analysis  

3.5.1.1 Discrete choice models 
 
The evaluation criteria for discrete choice models are presented using two 

accuracy measures. The first is the confusion matrix (also called contingency 

table) accuracy measure, since both discrete choice classifiers are binary. And 

the second measure is the Brier score (Brier 1950), because of the probabilistic 

action assignment rule used in scoring the models.  
 

Confusion Matrix Accuracy Statistics 
 
The confusion matrix records correctly and incorrectly recognized examples for 

each class. The following accuracy statistics can be derived from the confusion 

matrix: 
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Where TP is the number of true positive values, FP is the number of false 

positive values, TN is the number of true negative values and FN is the number 

of false negative values. The precision in the F-Measure can be computed as: 

precision = TP/ (TP+FP). Accuracy is not a preferred performance measure for 

imbalanced datasets (Lim et al. 2000). Working with a highly imbalanced dataset, 

a classifier classifying everything as a majority class sample will result in a high 
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predictive accuracy. Sensitivity approximates the probability of the positive class 

being correctly classified, and specificity estimates the probability of correctly 

predicting the negative class. The F-measure focuses more on the dropout class 

taking into consideration sensitivity and precision as this measure is the weighted 

average of the precision and the sensitivity. An F-measure value reaches its best 

value at 1 and its worst value at 0. 

 
Brier Score 
The Brier Score (BS) is a metric related to the mean-squared-error often used in 

statistical fitting as a measure of model goodness. It is a descriptive measure 

often used in the literature on prediction accuracy. The Brier score is calculated 

as follows: 
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Where pi is the predicted probability and oi is the observed value of the instance i 

(0 if negative and 1 if positive) and N is the number of cases. The BS measures 

the average squared deviation between predicted probabilities for a set of events 

and their outcomes. So, a lower score represents a higher accuracy. 

Taking in account that the derivation of decisions in discrete choice models is a 

probabilistic approach in the ALBATROSS/FEATHERS framework, as will be 

discussed later in this chapter, the BS is a sensible measure at the classifier 

level. In addition, the BS is not derived from the confusion matrix accuracy 

statistics hence it can be used to further confirm model performance and 

comparison. 

3.5.1.2 Continuous models 
 
The continuous choice models which were trained using only the CHAID tree 

induction method used originally in ALBATROSS were kept the same for the 

analyses performed using alternative discrete choice models. The performance 

of continuous choice models was assessed by means of the Relative Absolute 
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Error (RAE) which gives an indication of how good a predicted value is relative to 

the observed value. The reason for selecting this measure is that it can be 

reported as a percent error measure for numeric or continuous predictions. The 

RAE is calculated by dividing the sum of the absolute difference between the 

predicted and observed values by the observed cases. 

Mathematically, the relative absolute error Ei of an individual program i is 

evaluated by the equation:           
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Where Pi is the predicted value for case i, Ai is the actual value of case i, A is the 

mean of actual values, and n is the number of cases. 

3.5.2 Activity Pattern Level 
 

The work related to sequential analysis of activity patterns in activity-based 

models reached a new milestone, with the introduction of Sequence Alignment 

Methods (SAM) which was examined in transportation research by Wilson 

(1998). The predicted activity patterns can be compared to the observed ones by 

calculating a distance measure. This distance is based on the Sequence 

Alignment Method (SAM) and is obtained by calculating the effort required to 

make the two sequences identical.  The interesting characteristic of the SAM is 

that it makes use of biological distance rather than geometric (Euclidean) 

distance as the basic concept of comparison (Joh et al. 2002). In Activity-based 

models, the SAM is used as a measure of goodness of fit at the activity pattern 

level (Arentze and Timmermans, 2000c; Moons, 2005; Janssens et al., 2006; 

Vanhulsel et al., 2007). The lower the SAM measure, (less operations of 

inserting, deleting or substitution of activities) the more similar the two sequences 

are. 

Since experiments are conducted on the work process model only, the SAM 

distance is calculated for both, all activities in the schedule, and for work 
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activities only. The work activity patterns are expected to contain sequences of 

one, two or four symbols. It contains one symbol when the schedule does not 

contain a work activity so the sequence contains only a Home activity (e.g. H). It 

contains two symbols when the schedule a work activity with one episode (e.g. H 

W). Finally, the work activity pattern will contain four symbols when the schedule 

includes a work activity with two work episodes with a Break time in between 

(e.g. H W B W).  The minimum number of symbols in the all activities sequence 

may be one, when the schedule does not contain any activities, i.e. the person 

under consideration stays at home on that day (H). On the other hand the 

maximum number of symbols for the all activities sequence is 11, i.e. when the 

person’s schedule contains a work activity with two work episodes and he 

conducts all 7 activities considered in FEATALB.   

The SAM method is fully implemented in the FEATALB framework. While running 

the simulation for model validation the SAM class methods are invoked for 

calculating the distance between predicted and observed activity sequences. The 

validation at the activity pattern level provides additional understanding and 

model assessment especially, the attribute interdependencies between decision 

steps feature. One of the outputs of FEATALB is a sequence of activities 

performed by an individual in a specific day. The order of activities that are 

performed is determined by the sequence of decision steps in the process model. 

The order of execution of decision steps in the process model is determined 

depending on the decision outcome. Therefore, validating the models at the 

activity pattern level using SAM confirms the activation dependency and 

attributes interdependencies in the scheduler process model.  

The SAM distance is not just influenced by the difference in symbols but also by 

the length of the sequence, i.e. the number of symbols (activities) in the activity 

sequence. Thus, to be able to interpret the validation at the activity pattern level, 

a confusion matrix of work activity sequence lengths is created.  

As discussed above the work activity sequence may contain one, two, or four 

symbols and thus, a confusion matrix of the actual versus the predicted 

sequence lengths are plotted in a confusion matrix. 
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3.5.3 Work Activity Trip Matrix and Trips Start Time Level Accuracy 
Analysis (Spatial and Temporal Resolutions) 
 

At the trip matrix level, the observed and predicted Origin-Destination (OD) 

matrices are compared. A trip is the basic unit for calculating an OD matrix. An 

OD matrix contains the frequency of trips between an origin (row) and a 

destination (column). Based on the assumption that a trip starts from home and 

ends at home within a 24-hour time frame, symmetry of OD matrices is assumed. 

The zoning system inside FEATHERS is defined by three hierarchical 

geographical layers. This hierarchy contains land use data available at different 

level of detail. The Superzone level refers to all municipalities inside Flanders, 

while each Superzone is divided into Zones. Zones corresponds to administrative 

units (a zone belongs to only one Superzone) and similarly, each Zone is divided 

into Subzones. The Subzones level consists of virtual areas that are based on 

homogenous characteristics. There are a total of 327 Superzones, 1145 Zones, 

and 2386 Subzones.  

In FEATHERS, OD matrices can be calculated at all of the three levels, where 

additional matrices, other than trip frequencies are generated.  Additional travel 

information is aggregated in segmented OD matrices, such as ODs per each 

hour of the day, per transport mode, per activity type, ODs for each hour of the 

day per transport mode, per gender, per activity type, per age group etc.  

To validate the models at the trip OD matrix level, the frequency of work activity 

trips for destinations at the Zone level in Flanders is aggregated forming a one 

dimensional array (1145 cells) with work activity trip counts at each zone for each 

day. The work trips at destination zones were selected and aggregated. 

Destination zones were chosen because it is a predicted value, keeping in mind 

that the source (i.e. the home location) for a person is always the same. 

Furthermore, ODs for all days of the week are aggregated and the correlation 

coefficient is calculated between observed and predicted OD matrix entries 

ρ(observed, predicted) to measure the degree of correspondence. It is important 

to note that work trips at destination zones was selected because it provides a 

level of detail more than the Superzone level on one hand, and a reasonable 
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aggregation level than the Subzone level, given the size of the cases in the data 

sets.  

At the work activity start time (temporal) level, the work activities start times for 

each hour of the day is reported. The correlation coefficient between predicted 

and observed number of work activities per hour is calculated.  

An advantage of using the correlation coefficient is that it is insensitive to the 

difference in scale between column frequencies (i.e. the difference in the total 

number of trips).  

3.6 Attribute selection and discretization methods 

3.6.1 Feature Selection: Relief-F 
 

There are two main classes in feature selection techniques: the filter and the 

wrapper approach. The difference between them is the evaluation criterion used 

to select or rank attributes. For the wrapper approach, the ranking results from 

the estimation of the performance on the intended learning algorithm, while the 

filter approach evaluates features according to heuristics which is based on the 

characteristics of the data itself. Feature selection methods and their approaches 

have been compared comprehensively (Hall, 1999a, 1999b; Koller and Sahami, 

1996). In this analysis, the filter approach, particularly the Relief-F feature 

selection method, is selected since it uses the data set characteristics to 

compute attributes relevance to the class variable. 

 

The Relief feature selection (Kira and Rendall, 1992) is a distance-based 

technique weighting algorithm. It assigns an initial value of zero to each attribute 

that will be adapted with each run through the instances of the data set. The 

attributes with the highest weights are considered to be the most relevant, while 

attributes with weights close to zero or with negative weights are considered 

irrelevant. The weight of a particular attribute reflects its relevance in identifying 

the class attribute. Relief works by sampling instances randomly and finding its 

nearest neighbour from the same and opposite class. The nearest neighbour is 
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defined in terms of the Euclidean distance. Consider an n-dimensional sample 

space, defined by the variables X1,…,Xn, the distance between two instances i 

and j is calculated as follows: 
       

∑ =
−= n

1k
2

jkik )xx()j,i(d                                                                              (3.28) 
 
Where i = (xi1,…,xin) and j are two dimensional vectors. The algorithm 

approximates the difference of probabilities for the weight of attribute x as 

follows: 
 

ReliefX = P (different value of X| different class)    

           - P (different value of X| same class)                                                   (3.29) 

 

An extension of the Relief feature selection technique that can handle multiple 

classes, noise caused by missing values, and outliers, is the Relief-F method 

developed by Kononenko, (1994). Relief-F attempts to find the k nearest hits and 

misses from each class and averages their contribution. The average is weighted 

by the prior probability of each class. 

3.6.2 Discretization Methods 
 
Discretization is an important data mining preprocessing task. Most machine 

learning algorithms are capable of extracting knowledge from data sets that store 

discrete attributes (Marzuki and Ahmad, 2007). However, many data sets 

contains continuous attributes, one solution to this problem is to make use of 

discretization methods which transforms them into discrete attributes. 

Discretization methods are used to divide the range of a continuous attribute into 

intervals (Kurgan. and Cios, 2001). In addition, discretization makes learning 

more accurate and faster (Dougherty et. al, 1995). The resulting model (decision 

tree, induction rules, etc.) are usually more compact and more accurate when 

compared to continuous models.  

A typical discretization process consists of four steps (Liu et. al, 2002): 
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1. Sort all the continuous values of the attribute to be discretized. 

2. Choose a cut point to split the continuous values into intervals. 

3. Split or merge the intervals of continuous values. 

4. Choose the stopping criteria of the discretization process. 
 

In general, discretization methods are divided into two categories supervised and 

unsupervised methods. Supervised methods discretize attributes by taking into 

account the class attribute, while unsupervised discretization methods, that 

discretize attributes without taking into account the class labels.  

In the work reported in this thesis, unsupervised discretization is used namely 

Equal Frequency Discretization (EFD). EFD is a simple unsupervised and 

univariate discretization method which discretizes continuous valued attributes by 

dividing the values into a specific number of intervals. Each interval contains 

approximately the same number of training instances, and each interval is 

associated with a distinct discrete value. In the FEATALB framework, the data 

sets contain continuous attributes which are discretized before training the 

models using EFD method. In addition, attribute interdependencies are 

preserved within decision steps, i.e. the inclusion of previous decision outcomes 

in the attribute list in subsequent decision steps. And thus, if the decision 

outcome is a continuous variable, it is discretized using EFD before included in 

the data set of subsequent decision steps. The data sets and types of attributes 

are discussed in details in the next chapter. 
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Chapter 4  

Flemish activity travel diary data 
 
This chapter describes and discusses the data used in the analyses and the data 

sets employed to train and evaluate the models. The attributes types and 

interdependencies among data sets used for each decision step are further 

discussed. In addition, basic statistics and distribution of class variables are 

provided to gain better understanding the data. These statistics are used to 

assist the validation of individual models or choice facets in the process model. 

Activity pattern sequences of the observed schedules are generated. An activity 

pattern sequence consists of activities performed by an individual throughout the 

day. Activity sequences lengths are calculated to present the average number of 

symbols in an activity sequence. Finally Origin-Destination (OD) matrices for 

work activity are generated on the zone level. 

In the next section the Flemish activity travel diary data is discussed and 

presented. In order to understand the data sets used to train the six models that 

constitute the process model by explaining condition and class variables.  

4.1 Flemish Activity Travel Diary Data  
 
The analysis and estimation of activity-based models requires data that are 

extracted from conventional travel surveys. Travel surveys contain information 

about the sequence of trips, performed by individuals, time of day, where, when, 

with whom, for how long, and with which transport mode. More precisely, data on 

activity patterns are required to build an activity-based model for transport 

demand. Contemporary household travel surveys mainly depend on the use of 

mail, telephone, internet and multimedia methods to obtain information on the 

daily travel and performed activities of a sample of the population (Kochan et. al, 

2006).  

Based on the discussion above, the data used to for building the activity-based 

model must provide measurements of activities at the end of trips and how and 
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when the survey respondent chose to perform them. The data sets used for 

training the models in FEATHERS originates from a travel survey for the Flemish 

study area. Hence, the Onderzoek VerplaatsingsGedrag Vlaanderen (OVG) 

survey is used. The OVG survey is a trip-based survey method, where 

information about trip purposes and information about activities in between trips 

are available. The OVG survey was conducted on 8,800 persons that were 

selected based on a random sample from the national register. The travel survey 

was primarily based on face-to-face interviews. In addition, information about the 

demographic, socioeconomic, household and trip-making characteristics of these 

individuals was collected.  

The analyses reported in this thesis are restricted to the first component of the 

ALBATROSS model, i.e. the work activity model. For this reason, data sets for 

work activities were filtered out from the OVG travel survey. The filtering resulted 

in obtaining 5,288 cases (persons) in the include work activity data set as the first 

decision step in the work activity process model. Furthermore, the survey data 

was checked for data inconsistencies, specifically ensuring that schedules do not 

contain gaps in each individual’s travel survey diary, which might originate from 

non-reporting of a trip while conducting the survey. 

Table 4.1 shows the situational and socio-demographic variables that are used 

as prediction variables in FEATALB.  

Household level attributes are urban density, household composition, presence 

of young children in the household, socio-economic class, and car ownership. 

Attributes related to the individual are gender, driver’s license, work status and 

work status of the person’s partner. Additionally, variables related to the 

measures of accessibility in decameters (dm) given the home location of the 

household (Xdag, Xn-dag, Xarb, Xpop, Ddag, Dn-dag, Darb and Dpop).   

Table 4.2 depicts the class variables for each data set used in the decision 

models used in the process model. While executing the work activity process 

model these variables are predicted and included in the attribute set for the next 

decision model. Continuous variables such as duration, Ratio, Inter (break time 

duration) and start time are discretized using Equal Frequency Interval (EFI) 
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method.  Tables 4.3 - 4.4 provides statistics for discrete choice and continuous 

class variables respectively. These data sets are used for building and validating 

the models that are used for predicting work activities in the process model. The 

datasets are divided using a 70-30% training-test split. 
 

Name Description Categories 
Urb Urban density 0: highest density, 4: lowest density 

Comp Household composition 0:single without children, 1:single with children,2:single with 
parents,3: partner without children,4: partner with children 

Child Presence of the youngest children 0:no children, 1:< 6, 2: 6-12, 3: >12 years 
Day Day of the week 0: Monday to 6: Sunday 
pAge Age category 0: <35, 1: 35<55, 2: 55- <65, 3: 65-<75, 4:>75 years 

SEC Household income  
(in €) 0: <16,250, 1: 16,251 – 23,750, 2: 23,751 – 38,750, 3 >3: 38,750 

Ncar Number of cars in household 0: no cars, 1: 1 car, 2: 2 or more cars 
Gend Gender 0: female, 1: male 
Driver Driving license of person 0: is not a driver, 1: is driver 
Wstat Work status of person 0: no work, 1:part time, 2: full time  
Pwstat Work status of person’s partner 0: no work, 1:part time, 2: full time  

Xdag Number employees daily-good 
sector within 3.1 km from home 

0: <0,115], 1: <115,253], 2: <253,307], 3: <307,507], 4: <507,675], 
5: >675 

Xn-dag Number employees non-daily-good 
sector within 4.4 km from home 

0: <0,395], 1: <395,635], 2: <635,762], 3: <762,938], 4: 
<938,2525], 5: >2525 

Xarb Number employees within 4.4 km 
from home 

0: <0,8785], 1: <8785,12995], 2: <12995,16120], 3: 
<16120,20199], 4: <20199,70314], 5: >70314 

Xpop Number households within 3.1 km 
from home 

0: <0,5050], 1: <5050,8845], 2: <8845,13217], 3: <13217,16833], 
4: <16833,22884], 5: >22884 

Ddag Distance (dm) to nearest 160 
employees daily-good sector 

0: <0,71], 1: <71,127], 2: <127,165], 3: <165,202], 4: <202,346], 5: 
>346 

Dn-dag Distance (dm) to nearest 260 
employees non-daily-good sector 

0: <0,92], 1: <92,145], 2: <145,176], 3: <176,258], 4: <258,334], 5: 
>334 

Darb Distance (dm) to nearest 4500 
employees total 

0: <0,92], 1: <92,128], 2: <128,201], 3: <201,274], 4: <274,360], 5: 
>360 

Dpop Distance (dm) to nearest 5200 
households 

0: <0,0], 1: <0,105], 2: <105,126], 3: <126,163], 4: <163,278], 5: 
>278 

Table 4.1 Work activity data sets description  
 

Table 4.2 Class variables of models in the work activity process model 
 

Name Description Categories 
Work Work  0:No, 1: Yes 

Dur Total duration (min.) of work activity 0:<0,395], 1:<395,495], 2:<495,526], 3:<526,565], 4: 
>565 

More_Work_Ep Number of work episodes 0: one, 1: two 

Ratio Ratio (%) between first and second 
work episodes. 0:<0,40],1:<40,48],2:<48,52], 3:<52,60], 4:>60 

Inter Duration (min.) of break time between 
first and second work episodes 0:<0,25], 1:<25,47], 2:<47,60], 3:<60,95],4:>95 

StartTime Work activity start time 0:<0,436], 1:< 436, 467], 2:< 467, 484], 3:< 484, 
510],          4:< 510, 540] ,5: >540 
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4.2 Basic Data Statistics and Distributions 
 

The default work activity process model in FEAHTERS contains six decision 

steps, where decision steps 1 and 3 are discrete choice models. While decision 

steps 2, 4, 5, and 6 are continuous models. As shown in Table 4.3, the include 

work model contains 5,288 cases, where 19 condition variables that are used in 

the models to predict the class variable. The class variable is a binary discrete 

variable which takes two values 0 for “no work” (nWo) and 1 for “work” (yWo). 

The include work data set is unbalanced with 27% towards the yWo class. The 

Number of work episode (More_Work_Ep) data set contains 1453 persons (i.e. 

persons who go to work). The data set contains 20 condition variables and the 

class variable is also a binary valued attribute 0 (one work episode) and 1 (two 

work episodes). Finally, the More_Work_Ep data set is highly skewed towards 

the negative class (one work episode) with 86%. 
 

Data set Number of condition 
variables 

Number of 
cases Minority class (%) 

Include work 19 5288 27% 
No. of work episodes 
(More_Work_Ep) 20 1453 14% 

 
Table 4.3 Discrete choice models description  
 

Table 4.4 illustrates a description of the continuous models, i.e. data sets for 

decision steps 2, 4, 5 and 6. The data sets contains 19, 20, 21, and 23 condition 

variables respectively, it is noteworthy that number of condition variables 

increase because of the attribute interdependencies between decision steps in 

the default process model. The average work duration is around 483 minutes 

however the standard deviation of the work duration variable is 129 which means 

that values are dispersed from the average work duration value as also depicted 

by Figure 4.1. The Duration ratio data set reports that the average ratio between 

the two work episodes is around 50 with a standard deviation of 13, which 

implies that in this data set the values are concentrated around the average as 

shown in Figure 4.2. The statistics for the Duration of break time model reveals 

that this data set is skewed to the left, as shown by Figure 4.3, with an average 
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break time duration of 70 minutes and a standard deviation of 60. In the context 

of activity-based travel demand modeling the statistics for this data set is rather 

realistic. Finally, the Work start time data set an average of 491 with a standard 

deviation of almost 60. This data set is also skewed to the left, i.e. work duration 

start times mostly start early as shown in Figure 4.4. 
 

  Class variable 

Dataset Number of  
condition variables Min.  Max. Mean Standard 

Deviation 
Work duration 19 75 800 483.5 129.2 
Duration ratio 20 21 83 50.6 13 
Duration of break time 21 10 300 70 60 
Work activity start time 23 360 700 491.3 59.8 

 
Table 4.4 Continuous choice models description  
 

4.3 Activity Pattern and Origin-Destination (OD)  

      Matrices statistics 
 

An activity pattern for all individuals in the travel survey is generated for all 

activities in the schedule and for work activities only. Moreover, Origin-

Destination (OD) matrices for trips initiated for work is also calculated on the 

zone geographical level.  

Observed activity pattern sequences are extracted from the travel survey data for 

each individual moreover, observed work activity sequences are also extracted. 

Once a sequential activity-travel combination is extracted such as for instance 

Sleep-Eat-Work-Break-Work-Shop-Leisure-Sleep, it is meaningful to observe 

how activities are executed in time. Statistics about the observed activity pattern 

sequence are provided because the models will be validated at this level, using 

the Sequence Alignment Methods (SAM). The SAM is fully explained in Chapter 

3.   
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Figure  0.1 Distribution of the Work duration class variable 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
Figure 4.2 Distribution of the Ratio class variable 
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Figure 4.3 Distribution of the Work Break time class variable 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.4 Distribution of the Work Begin time class variable 
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Table 4.5 shows statistics about the observed activity sequences and work 

activity sequences.  In FEATHERS nine activities (Home, Work, Bring/get, 

Shopping, Services, Social visits, Leisure, Touring, and Other) are involved in the 

travel survey, where the Home activity is the default activity in all schedules for 

all persons.  
 

  

Average 
sequence Length 

Standard 
Deviation 

Observed Activity 
Pattern Sequence 5.16 2.3 

Observed Work 
Activity Sequence 1.71 0.95 

 
Table 4.5 Activity pattern sequence statistics 

 
The average length of the observed activity sequence is around 5 symbols with 

standard deviation of 2.3, while the average length of the work activity sequence 

is almost 2 symbols with standard deviation of 0.95. Considering the work activity 

process model, the activity sequence may be one (Home), when the person’s 

schedule contains no work activity, 2 symbols (Home-Work) when the schedule 

contains one work episode, and 4 (Home-Work-Break-Work), when there are two 

work episodes. These statistics will assess the validation of the models at the 

Activity pattern level. 
 

 The basic unit of calculating an OD matrix is the trip. An OD matrix constitutes of 

rows representing origins and columns representing destinations. In FEATHERS 

OD matrices are generated at three hierarchical levels, superzones, zones, and 

subzones. Statistics related for work trips OD generated at the zone level. The 

work activity is selected since the experiments are performed on the work activity 

process model. As shown in Table 4.6, for all 1145 zone 3422 work trips are 

performed with an average of 3 trips per zone. 
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total 
Number of 

trips 

Average 
number of 

work trips per 
zone 

Work activity 
Trips 3422 2.99 

 
Table 4.6 Origin-Destination work activity statistics 

 

4.4 Conclusions 
 

This chapter described the Flemish activity travel diary data and the data sets 

that were extracted from the survey, which are used in training the models 

(decision steps) in the work activity process models. Condition and class 

variables, for discrete choice and continuous models, are explained. In 

FEATHERS, continuous condition variables are discretized according to the 

Equal Frequency Discretization (EFD) method before the data sets are used for 

training the models. Moreover, to maintain attribute interdependencies model 

outcomes (predicted values) attributes are included as attribute in the data sets 

for subsequent decision steps or models. Continuous outcome variables are 

discretized using EFD before included in data sets of subsequent models. 

The statistics of discrete choice models (Include work and number of work 

episodes models) revealed that they are unbalanced with 73% and 86% for 

decision steps 1 and 3 respectively. Continuous models statistics were also 

presented and revealed that the distributions are sensible.  

Activity pattern and work activity sequences of the observed schedules are 

calculated. Statistics demonstrate that the average length of activities for the 

observed schedule is 5 symbols and around 2 symbols for work activities. 
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Part 2: Research Experiments and Results 
 

In this part of the thesis the research design, experiments, and methodologies to 

achieve the aims are discussed. The objectives of this thesis is to firstly, study 

the effect of introducing new decision process models in ALBATROSS to the 

overall model performance. In addition, study the effect of modeling the decision 

steps in the process model simultaneously in one step. As a result, this might 

lead to finding better process models and to identify critical decision steps within 

the process model. Secondly, attempts to identify performance bounds for rule-

based activity-based models. To accomplish these goals the work activity 

process model is elaborated in details. New work activity process models are 

introduced, additionally; the original CHAID-based decision tree is replaced by 

other induction methods for each new process model.  Finally for each new 

process model the models are validated at three levels: (i) the induction method 

used at each decision step or choice facet level, using the predictive accuracy of 

each decision step in the scheduling process. (ii) The activity pattern level, 

Sequence Alignment Methods (SAM) is used to assess the correspondence 

between the observed and predicted activity patterns. (iii) The work activity trip 

matrix and trips start time level accuracy analysis (Spatial and Temporal 

Resolutions), where correlation coefficients are calculated to measure the degree 

of correspondence between the observed and the predicted Origin-Destination 

(OD) matrices and work activity start times.  
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Chapter 5     

Research Design, Experiments, and Methodology 
 

This chapter aims at introducing the research design and the experimental 

design presented in this thesis. In addition it discusses the methodology of the 

research to achieve the desired goals. The factors involved in improving process 

models performance are determined. To improve a process model performance 

one can improve quality of data used to train the models at individual decision 

step, obtain a better classifier, or find a better data representation within the 

process model. Moreover, a discussion on potential factors and the experiments 

required to improve the performance of process models are explained. The better 

classifier view is discussed by training and deploying the model using three 

approaches. Firstly, by modeling the decision steps in the process model 

simultaneously. This is achieved by using a multi-target classifier. Secondly, 

training and deploying models at each decision step independently i.e. without 

attributes interdependencies, which is referred to as the non-informed approach. 

And thirdly, by training the models while preserving attribute interdependencies 

and including the observed (actual) attribute values in subsequent decision 

steps, which will be referred to as the fully-informed approach. To asses the 

performance of process models, a performance lower (baseline model) and 

upper bounds are defined. Finally, the better data representation is discussed by 

explaining the work activity process model identifying critical decision steps and 

all possible execution paths.  

5.1 Introduction 
 
Computational process models constitute a powerful theoretical approach that 

conceptualizes choices as outcomes of using context-dependent heuristics. 

ALBATROSS, as a rule-based computational process activity-based model, 

consists of a series of agents that together handle the consistency of the data. 

The core of the ALBATROSS framework is the scheduling engine which controls 
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the scheduling processes as a sequence of decision steps. At each decision step 

the scheduling engine classifies the condition information for making a key 

decision.  Hence, computational process rule-based models are based on a set 

of rules that represent transport choice behaviour. ALBATROSS employs a 

sequential decision process to generate daily activity schedules of individuals. 

The sequential decision process contains 26 decision steps, where at each 

decision step Chi-squared Automatic Interaction Detector (CHAID) based 

induction tree methods are utilized. However, a decision process containing 26 

decision trees, where each decision tree contains many condition variables 

results in a complex process model.   

 

Initiatives to investigate the complexity of the ALBATROSS decision process 

model have been undertaken. A study was conducted to investigate complex and 

simple classifiers within ALBATROSS by Moons, et al (2005). Simple models 

include OneR and Feature selection techniques. OneR is a very simple classifier 

that provides a rule that is based on the value of a single attribute (Holte, 1993), 

while feature selection techniques aims at reducing the number of irrelevant 

attributes, which as a consequence reduce the size of decision tree rules. On the 

other hand, complex models applied were C4.5 decision trees (Quinlan, 1986) 

and Support Vector Machines (SVM). The study showed that simple classifiers 

do not outperform complex models but are not inferior to complex models. 

However, the above mentioned studies were conducted on an earlier version of 

ALBATROSS where the scheduling process model contained only nine decision 

steps. In addition, some models obtained by very simple models may be 

insensible, as obtained in a study on the current version of ALBATROSS by 

Sammour et al. (2012). Therefore, obtaining a simple model that is sensible is 

needed. Janssens et. al, (2004) found that Bayesian networks performed better 

than CHAID decision trees in ALBATROSS. And that Bayesian networks are 

better suited to capture the complexity of the decision process model, since they 

take into account the interdependencies among the variables and decision steps 

outcome in the decision process model.  Other classification methods, such as, 
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Association Rules were experimented with ALBATROSS as illustrated by 

Keuleers et al. (2001). In comparative studies by Wets, et al. (2000) and Moons, 

et al. (2004) revealed that different decision tree induction algorithms such as 

(CHAID, C4.5, CART etc.) achieve comparable results. However, investigations 

on modeling the decision steps, in the scheduling process model in 

FEATHERS/ALBATROSS, simultaneously in one model does not exist.  
 

The analyses reported in this thesis are performed on the first component of the 

ALBATROSS model i.e. the work activity process model part of the scheduling 

engine. As discussed in Chapter 2, the work activity process model contains six 

decision steps. The first decision step evaluates whether the individual’s 

schedule contains a work activity or not. If so, the duration of the work activity 

can be predicted. Next, the number of work activity episodes is predicted. If two 

work episodes are predicted, then the ratio between work episodes and the 

break time duration decision steps are executed. Finally, the work activity start 

time is predicted. Decision steps 1 and 3 are discrete choices, whereas, decision 

steps 2, 4, 5 and 6 are continuous models. 

Based on the above discussion, the process model contains activation 
dependency, since the output of some decision steps branches the execution. 

The first decision step evaluates whether the individual’s schedule contains a 

work activity or not. If so, the duration of the work activity can be predicted. Next, 

the number of work activity episodes is predicted. If two work episodes are 

predicted, then the ratio between work episodes and the break time duration 

decision steps are executed. Finally, the work activity start time is predicted. It is 

noteworthy that if decision step 1 infers no work episode, then decision steps 2-6 

will not be executed. Similarly, if decision step 3 evaluates to one work episode, 

then decision steps 4 and 5 will not be evaluated. A valid question arises here, is 

this sequence of decision steps is the best, or if the order of decision steps is 

changed will have an added value to the model?  
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To answer this question, alternative process models will be introduced and 

further analysed and validated in an attempt to obtain better sequential process 

model. 

Additionally, attribute interdependency between decision steps is maintained, 

i.e. the inclusion of decision outcomes as attributes in subsequent decision steps. 

Figure 5.1 illustrates the activation dependency and attributes interdependency 

features in the work activity process model. 

The dashed arrow lines indicate the inclusion of the output of a decision step as 

an input variable for the decision pointing out to. Continuous decision steps such 

as, work duration, Ratio, duration of break and start time are discretized using 

EFI before added to subsequent decision step(s). This functionality (attribute 

interdependency) also affects the performance of classifiers used in each 

decision step. Another question comes to mind, does this feature has an added 

value for the performance of the model?  And to answer this question, an 

analysis of the work activity process model will be experimented with and without 

the attribute interdependency feature. This means that the models at decision 

steps will be trained and deployed with the inclusion of the actual values to 

replace the decision outcomes as attributes in subsequent decision steps. This 

will be referred to as the fully-informed approach. Conversely, models at 

decision steps will be trained independently (without including decision outcomes 

in subsequent decision steps) and this will be referred to as the non-informed 
approach. Additionally, modeling the decision steps in the work activity process 

model simultaneously will also be performed. 
 

Another concern, aside from model complexity, is the validation of rule-based 

activity-based models. The data requirements for activity-based models are in 

general demanding compared to conventional travel demand models. This is 

obvious since this type of micro-simulation models should be able to predict the 

travel behaviour in detail. And so the validation of such behavioural models 

becomes a difficult task. In several experimental and analytical studies with 

ALBATROSS, e.g. the study of Janssens et al. (2006), Moons (2005), and Joh et 
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al. (2001), model validation has been performed at three levels; choice facet, 

activity pattern and trip matrix levels. 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 The work activity process model attributes interdependency diagram in ALBATROSS 
 
 
In addition, a previous study by Sammour et al, (2012) proposed validation of 

FEATALB at the process model level by using SAM which provided extra 

understanding of the model by identifying critical decision steps. However, such 

validation levels indicate only the predictive performance of the models 

compared to observed data and/or comparing different classification methods. 

Hence, performance boundaries (lower and upper boundaries) for process 

models of rule-based activity-based models are required to assess and 

understand the complexity of such process models.  
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The rest of the chapter is structured as follows. In the next section the factors 

that improve process models performance are discussed and explained. Then 

the better classifiers view is explained in details by introducing multi-target 

classifiers, non-formed, and fully-informed approaches. Followed by the 

experimental design and performance bounds (Lower and upper process models 

performance bounds) section. The better data representation for improving 

process model performance is then discussed. And finally conclusions are 

presented.   

5.2 Improving Process models  
 

As discussed in the introduction of this chapter, the enhancement of the 

predictive performance of the work activity process model in FEATHERS / 

ALBATROSS may be achieved considering three major factors or views. Firstly, 

through obtaining better data originated from the travel diary data. Secondly, 

consider employing better classifiers using the attributes interdependency feature 

(fully-informed vs. non-informed approaches). Thirdly, consult a better data 

representation by the displacement of decision steps in the process model (the 

activation dependency feature).  

The data sets used for training the models in the work activity process model, as 

well as the other 26 decision trees in FEATHERS, originate from the OVG 

survey. This survey is a trip-based survey. The travel survey was conducted 

based on a random sample taken from the national register. The travel survey 

was primarily based on face-to-face interviews. Furthermore, the random 

selection from the OVG survey is preprocessed and cleaned to assure schedule 

consistency (i.e. eliminating schedules that contain gaps). Additionally, 

considering the data sets that contain attributes that are related to the measures 

of accessibility given the home location of the household. These attributes 

provides location dependent information of the household and thus, cannot be 

improved. In view of the above discussion and the fact that data collection is 

expensive, investing efforts in the direction of obtaining better data is not 

feasible.  



 99 

Several studies are conducted on improving process models by utilizing a better 

classifier at individual decision steps as discussed in the introduction of this 

chapter.  Nevertheless, in the context of the FEATALB model, experiments 

conducted on an earlier version of the model, where the process model 

contained only nine decision steps and no activation dependency exist. 

Therefore, investigating the better classifier approach and experimenting with 

different classifiers (simple and complex) may improve the process model’s 

performance. 

As for the better data representation view, the current process model in 

ALBATROSS is based on the researchers experience in activity-based models. 

Thus, modifying the order of the decision steps in the process model may result 

in improving the predictive performance of process models. Introducing new 

decision sequences, i.e. changing the order in which the models are executed in 

the process model, may also improve the process model.  

In the next sections, better classifier and better data representation as factors to 

improve the predictive performance are discussed in details. 

5.3 Better Classifier View 
 

As discussed in the introduction above, several studies have been conducted on 

investigating the predictive performance of rule-based activity-based models by 

comparing simple and complex classifiers at individual decision steps. Simple 

classifier models such as OneR and feature selection techniques, while complex 

classifiers include decision trees, SVM, Bayesian networks, Bagging and 

Boosting techniques, etc. However, the studies showed that simple classifiers do 

not outperform complex models but are not inferior to complex models (Moons, 

et. al, 2005). Moreover, the above mentioned studies were conducted on an 

earlier version of ALBATROSS where the scheduling process model contained 

only nine decision steps. Simple and complex classifiers will be investigated on 

the current ALBATROSS / FEATHERS framework using decision tree models 

and logistic regression at each decision step.  
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To this end, to investigate the predictive performance of rule-based activity-

based models (the work activity process model component) the attributes 

interdependency between decision steps will be investigated. The models at 

each decision step will be trained in three different settings. First using the fully-

informed approach, where actual values of decision outcomes are included in 

subsequent decision steps, as the process model executes. Second, using the 

non-informed approach, where the models are trained and deployed without the 

inclusion of decision outcomes to subsequent decision steps. Furthermore, the 

work process models will be modeled simultaneously in one model, using multi-

target classifiers.  

5.3.1 Multi-target classification Info-Fuzzy networks (M-IFN) 
 

Instead of utilizing a separate classifier at each decision step, the work activity 

process model is modeled simultaneously. The M-IFN is chosen for the analysis 

because it was never used in modeling rule-based activity-based models. Using 

a multi-target model may be much more comprehensible than a collection of 

single-target models (Last, 2004). As proposed by the literature, the combination 

of several single-objective classifiers in a single model may increase the overall 

predictive performance (Caruana, 1993). However, multi-target models do not 

always increase predictive performance. As shown in a study by Piccart et al. 

(2008), that single-target models may be more accurate than multi-target models.  

As discussed in chapter 3, the M-IFN classification method makes use of the 

total conditional entropy of all class dimensions as the feature selection criterion. 

The conditional entropy is also used in single-target decision tree algorithms. The 

conditional entropy is used in the Information Gain and the Gain ratio, which are 

used as measures of attribute splitting in decision tree algorithms such as ID3 

and C4.5 (Quinlan, 1986). Therefore, it is expected that the rules obtain by the 

M-IFN classifier will contain attributes that are similar to the first level of a 

decision tree model. It is also shown in several studies that decision tree models 

for rule-based activity-based models obtained comparable results.  
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Based on the above discussion, the M-IFN model is expected not to outperform 

decision tree models. Especially, using the M-IFN to model the work activity 

process model, the attribute interdependencies between decision steps is 

eliminated. Thus, the model (set of rules) obtained by M-IFN is expected to serve 

as a base line model (lower bound).   

5.3.2 Set of Single target classifiers 
 

In this section the training and the deployment of classifiers at individual decision 

steps of the work activity decision process is discussed. To investigate the added 

value of the attributes interdependency among decision steps the model is run in 

two settings. Firstly, the non-informed approach, in which the individual models 

are, trained excluding the attributes from previous decision steps. Secondly, the 

fully-informed approach, where the models are trained including the attributes 

(outcomes) of decision steps as attributes in subsequent models. 

5.3.2.1 Non-informed Approach 
 

In the non-informed approach the attributes interdependencies between decision 

steps are eliminated. In other words, the models at each decision step of the of 

the work activity process model are trained independently. To illustrate this, 

consider the model at decision step 3 (number of episodes) which includes 20 

condition attributes and a discrete choice class variable. As shown in Figure 5.1 

the outcome at decision step 2 (work duration) is discretized and then added as 

an attribute in the data set of this model (illustrated as a dashed line). In the non-

informed approach all the arrowed dashed lines, which indicates the attribute 

dependency feature are removed.  

5.3.2.2 Fully-informed Approach 
 

In the fully-informed approach, the observed values rather than predicted 

outcomes are included as attributes in subsequent decision steps. In real 

situations, this model cannot be obtained. Nevertheless, it is expected that the 
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performance of the models will be increased. Since, the observed attributes 

values are included for each case. And thus, such performance boundary can 

serve as the upper performance bound for the model. Classifiers such as CHAID, 

C4.5 and Logistic Regression, will be used in the experiments in this approach. 

CHAID and C4.5 decision tree methods are used to further prove the similar 

performance and compare these results with those of the C4.5 models obtained 

in the non-informed approach. This also applies to the Logistic Regression 

models.  

5.4 Experimental Design and Performance Bounds (Lower and 
upper process models performance bounds)  
 
In order achieve the desired goal in analysing and improving process models, the 

experiments on the classifier and data representation views are conducted. 

However, to assess the performance of rule-based activity based models, the 

models are validated at three different levels: (1) The individual classifier level, 

using confusion matrix accuracy statistics, (2) the Activity pattern level using the 

SAM distance measure, and (3) the spatial-temporal resolution, by calculating 

the correlation coefficient between observed and predicted work trips at each 

zone, and work activity start times.  

These validation levels assess the performance of a model compared to each 

other. Nonetheless, they do not provide information on how much a model’s 

performance is superior to a base line model. Additionally, when the predictive 

performance of process models is experimented, it is difficult to appraise the 

added value of attributes interdependencies or activation dependencies. 

Therefore, a base line model (lower bound) needs to be defined such that the 

added value of using better models is assessed. Correspondingly, an upper 

performance bound as the best possibly achieved model is defined (fully-

informed approach). These performance bounds allows one to evaluate and 

measure the added value of a model related to the base line model, attributes 

interdependencies, and activation dependencies of process models. 
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5.5 Data Representation View 
 

The original work activity process model in ALBATROSS is replaced by other 

process models, i.e. new process models are introduced. This allows for 

evaluating which data representation (including preserving the attributes 

interdependencies feature) of the decision results in a better performance. The 

alternative process models are developed such that they produce the same 

information needed to output schedules.  

 
The activation dependency in the work activity process model branches the 

execution of the decision steps. Depending on the outcome of some decision 

steps an execution path is obtained. Depending on the decision outcomes three 

execution paths exist. For example as shown in Figure 5.1 if at decision step 1 

the model predicts no work activity (path 1) the process model terminates. And if 

the model predicts a work activity, then the duration (decision step 2) and the 

number of work episodes (decision step 3) are predicted. If one work episode is 

predicted, the work activity start time (decision step 6) is obtained (path 2: 1-2-3-

6). If two work episodes are predicted, then the ratio model (decision step 4) and 

the break time duration (decision step5) are consulted. And finally the work 

activity start time (decision step 6) is predicted (path 3: 1-2-3-4-5-6).  

 

The current sequence process model in ALBATROSS is based on expert’s 

opinion. However, other logical process models may exist which may result in 

better process models. This implies that by representing the data in a different 

way (changing the decision steps sequence), might improve the predictive 

performance of process models. 

5.6 Conclusion 
 

In this chapter, the research methodologies, design of experiments and the 

performance bounds are explained. In addition a discussion on the factors that 

are involved in improving the predictive performance of process models. The first 
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factor is to obtain quality data, while the second factor using a better classifier 

and the third by attaining a better data representation, i.e. changing the 

sequence of decision steps in the process model.  

The experiments to identify performance bounds will be conducted by training 

and deploying the work activity process model in three settings. The first setting 

is by training the models (decision steps) of the process model using a multi-

target classification method. A multi-target classification method allows for 

predicting all the decision outcomes of the models in one step. Modeling the 

whole process model in one step will eliminate the attributes interdependency 

and the activation dependency features that exist in the process model. And will 

assess to understand the effects of these features on the predictive performance 

of the process model. The second setting (non-informed approach) is by 

eliminating the attributes interdependency feature, i.e. training and deploying the 

models without including decision outcomes to subsequent decision steps. This 

setting will help analyse the attributes interdependency feature on the predictive 

performance of the process model. Furthermore, comparing its performance with 

the multi-target’s model performance will appraise the added value (if any) of the 

attributes interdependency feature on the model. The third setting (fully-informed 

approach), which is the ideal performance of the model, is by training and 

deploying the models at the decision steps by including the actual values to be 

included to subsequent decision steps. This setting will allow for setting the 

maximum performance possible (upper performance bound). And as a result will 

help measure the magnitude of predictive performance of the process model. 

This can be achieved by comparing the results of the three settings. In addition, 

the added value of the attributes interdependency and the activation 

interdependency features and their effects to the predictive performance of the 

process model can be measured.  

The data representation alternatives in enhancing the predictive performance can 

be obtained by determining different process models. In other words, represent 

the decision models in a different order. Three logical data representations 

(process models) will be presented, analysed, and validated.  
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Model sensitivity terms of the parameters used to train decision tree models and 

the action assignment rules and their effect on the predictive performance will 

also be performed. Before training decision tree models, some parameters must 

be set before the models are constructed and deployed. One important 

parameter is the minimum number of cases at leaf nodes. This parameter 

influences the decision tree building and pruning. All decision tree models in 

ALBATROSS are trained be setting the minimum number of cases at leaf nodes 

to 30. This number worked well and achieved a desirable predictive performance 

for the Dutch data, but how about the Flemish data? For this reason the effect of 

increasing or decreasing this number will be analysed to assess the predictive 

performance of the process model. Action assignment rules involve the outcome 

of prediction or providing a decision in a decision tree. ALBATROSS makes use 

of probabilistic action assignment rules, i.e. at leaf nodes the distribution of the 

class variable is considered before supplying a decision. Nevertheless, using 

deterministic (crisp) action assignment rules will help identify the sensitivity of the 

models and assess the predictive performance of the process model. 

  

In chapter 6, the work activity process model is experimented using different 

classifiers. This involves modeling the work activity process model 

simultaneously using a multi-target classifier, non-informed, informed, and the 

fully-informed approaches. Followed by chapter 7 where alternative process 

models are introduced and their performance and validations are explicated. 

Then in chapter 8 a sensitivity analysis of decision tree models used at individual 

decision steps is performed. Finally the thesis concludes with chapter 9 with the 

final discussion, final conclusions and future research.    
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Chapter 6  

Upper and Lower Performance Bounds for 
Process models of Work activity process models 
 
The work activity scheduling process in ALBATROSS is the first component that 

is responsible for generating primary work activities and their start time, duration 

of each work episode if more than one episode is predicted. It is a sequential 

process model that contains six decision steps, where at each decision step the 

system applies a set of rules (if-then rules). In ALBATROSS rules at each 

decision step are derived using a Chi-squared Automatic Interaction Detector 

(CHAID)-based induction method. This method is applied to generate decision 

trees trained from activity-travel diary data. This chapter aims identifying lower and 

upper performance bounds for process models used in rule-based activity-based 

models. The objectives are achieved by training and deploying the models in three 

approaches: (1) modeling the decision steps in one step using a multi-target 

classification method. (2) Training the models at decision steps preserving the 

attributes interdependencies among models (fully-informed approach) while 

including observed rather predicted decision outcomes in subsequent decision 

steps, and (3) training the models at decision steps while eliminating the attributes 

interdependencies (non-informed approach).  

The multi-target classification method is the lower bound because it has the lowest 

fitting capacity. We consider the fully-informed approach as the upper bound 

because it has more information than the non-informed approach and it has the 

same fitting capacity. 

6.1 Introduction 
 
The work activity scheduling process model in FEATALB is an important 

component, because it is the first process model executed in the sequential 

decision process. The schematic diagram of the work activity process model, as 

depicted in Figure 2.1, shows that each numbered rectangle represents a 
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decision step. Each decision step is used to predict a specific model related to 

work activities. Prediction is performed according to a decision tree model that is 

trained and derived from activity-travel diary data. The process starts by deciding 

whether or not the individual’s schedule contains a work activity, further if yes the 

duration of the work activity is then predicted. Followed by the number of work 

activity episodes, subsequently the ratio between work episodes and the break 

time duration is decided, and finally the work activity start time is predicted. 

Decision trees 1 and 3 are discrete choice decisions. On the other hand decision 

trees 2, 4, 5 and 6 are continuous choice decisions.  

As discussed in previous chapters, the process model contains activation 

dependency, in view of the fact that the output of some decision steps branches 

the execution of the process model. In addition, the attributes interdependency 

between decision steps may influence the predictive performance of the model. 

Especially that the output of a decision step is included in the attribute list of 

subsequent decision steps. This may result in achieving better models if this new 

attribute is relevant and correlates to the class attribute.  

Most data mining techniques (decision trees, association rules, naïve Bayes, 

artificial neural networks, etc.) work under the assumption that a classification 

problem has one target objective or class. Such assumption subsumes that an 

instance cannot belong to more than one class at the same time. The 

assumption of most data mining algorithms that a learning task has only one 

class is very restrictive (Caruana, 1997) (Suzuki, 2001). In many real world data 

sets data objects may be concurrently assigned multiple class labels related to 

multiple tasks (Last, 2004). These target objectives or classes may be strongly 

related to each other, weakly related or completely unrelated. Hence, classifying 

multiple classes or labels data sets can be performed using two approaches. The 

first approach is to generate a separate model for each objective/class using any 

single-target classification method. In the second approach we classify all cases 

using a multi-target classification method in one model.  

The performance of activity-based models is usually measured either by 

validating a test set against a training set at various levels of the same model, or 
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by comparing accuracy statistics of different models. However, performance 

boundaries for rule-based activity-based models do not exist. Performance 

boundaries can be determined by identifying a lower (base line) and an upper 

performance bound. The analysis in this chapter aims at identifying performance 

bounds for process models of activity-based models. This is achieved by training 

the decision steps in the work activity process model in three settings. First, the 

decision steps will be trained and modeled simultaneously using the M-IFN 

classification method. Second, the models at individual decision steps are trained 

using the fully-informed approach i.e. including the real values of the decision 

outcomes as attributes for subsequent decision steps. Third, the models are 

trained using the non-informed approach i.e. without including the outcome of 

decision step as attributes in the data sets in subsequent decision steps. 

The remainder of the chapter is structured as follows. In the next section the 

lower performance bound using the M-IFN model is explained. Then the fully-

informed approach is discussed by training and deploying individual models 

using three classification methods (CHAID, C4.5, and Logistic regression) to 

identify the upper performance bound. In the fully-informed approach, the models 

are trained while including actual values of decision outcomes of decision steps 

as attributes in the datasets for subsequent models. Followed by the non-

informed approach analysis, in which the models are trained without the inclusion 

of decision outcomes in subsequent models. The discussion of the validation 

results of the three approaches to identify lower and upper performance bounds 

then takes place. Finally the chapter ends with the conclusions. 

6.2 Lower Bound: Multi-target Classification using Info-Fuzzy 
Network Methods (M-IFN) 
 

A prediction problem for some learning tasks e.g. the work activity process model 

in FEATHER/ALBATROSS, assumes a sequential process of decision steps, 

where each decision step is a model or objective in its own. The basic solution to 

this problem is to use an individual classification method in each decision step in 

the sequence as already implemented in ALBATROSS. Consequently, in rule-
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based activity based models, some components i.e. the work activity process 

model in ALBATROSS, constitute six highly related (attributes 

interdependencies) decision steps. The six decision steps contain models that 

are generated from activity-diary data set, in which they share many attributes. 

Therefore, in the work activity process model, while running the simulation after 

consulting one model in a decision step the output is captured and included in 

the attribute set of the next decision step. The resulting individual classification 

models may be the best for each individual target variable, but adapting a multi-

target classification method in a single model may be intelligible (Last, 2002). 

 The M-IFN classification method utilizes the total conditional entropy to select 

the most relevant attribute(s) to be used in the generated rules for classification. 

Additionally as discussed in Chapter 3, the M-IFN method utilizes the Likelihood-

Ratio Test to evaluate the actual capability of an internal node to decrease the 

conditional entropy of an output by splitting it on the values of a particular input 

variable. The Likelihood-Ratio Test is a general-purpose technique for testing the 

null hypothesis H0 that two random variables are statistically independent. The 

default significance level (pvalue) for rejecting H0 is set to 0.1%. If the likelihood-

ratio statistic is significant for at least one class dimension, the algorithm marks 

the node z as “split” on the values of an input feature Xj.  

The data sets used to train the models in individual decision steps in the work 

activity process model are integrated in one data set with six class (target) 

attributes (Work, Work_Dur, More_Work_Ep, Ratio, Break_time, and 

Begin_Time). The M-IFN model is trained and the rules generated using the IFN 

software developed by Last (2004). After training the model with IFN software, 

the model output is a set of rules (8 rules for the work activity process model) 

where all six variables are predicted according to the model.  

The target variables have the following characteristics: 

 

- Work, which takes the value of 1 if the individuals schedule contain a work 

activity and the value of 0 otherwise.   

- Work_Dur presents the duration of the work activity in minutes. 
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- More_Work_Ep, which takes the value of 1 if the schedule contain two 

work episodes and the value of 0 if the schedule contain only one work 

episode. 

- Ratio represents the ratio of the first work duration to the second work 

duration. 

- Break_time is the duration of the break time (in minutes) between the first 

and second work episodes. 

- Begin_Time, which measures the begin time of the work activity. 

 The model also selected two input variables: 

- wstat (work status of the person), which takes the value of 0 if the person 

is unemployed and the value of 2 is the person is employed. 

- Day, which represents the day of the week (0: Monday, 1: Tuesday …6: 

Sunday). 

The M-IFN model prediction rules are listed below. The name of each discrete 

target attribute is followed by the probabilities of its values or intervals between 

parentheses. 

 
1- IF (wstat = 0) THEN  
      Work = 0 (0.977, 0.023), Work_Dur = 422, More_Work_Ep = 0  
     (0.977, 0.023), Ratio = 41.8, Break_time = 95.8, Begin_Time=514 
 
2- IF (wstat = 2 AND Day = 0 ) THEN  
      Work = 1 (0.35, 0.65), Work_Dur = 309.34, More_Work_Ep = 0  
     (0.893, 0.107), Ratio= 52.38, Break_time = 93.2, Begin_Time = 493.9 
 
3- IF (wstat = 2 AND Day = 1 ) THEN 
     Work = 1 (0.335, 0.665), Work_Dur = 334.5, More_Work_Ep = 0  
    (0.925, 0.075), Ratio= 49.2, Break_time=52.4, Begin_Time=497.2 
 
4- IF (wstat = 2 AND Day = 2 ) THEN 
     Work = 1 (0.355 / 0.645), Work_Dur = 304.6, More_Work_Ep = 0  
    (0.947, 0.053), Ratio= 51.5, Break_time= 63.4, Begin_Time= 482.5 
 
5- IF (wstat = 2 AND Day = 3 ) THEN 
     Work = 1 (0.308 / 0.692), Work_Dur = 334.9, More_Work_Ep = 0  
    (0.89, 0.11), Ratio= 52.3, Break_time= 55.2, Begin_Time= 494.1 
 
6- IF (wstat = 2 AND Day = 4 ) THEN 
     Work = 1 (0.428 / 0.572), Work_Dur = 278.33, More_Work_Ep = 0 
    (0.928, 0.072), Ratio= 50, Break_time= 66.1, Begin_Time= 483.1 
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7- IF (wstat = 2 AND Day = 5 ) THEN 
     Work = 0 (0.867/ 0.133), Work_Dur = 54.35, More_Work_Ep = 0  
    (0.987, 0.013), Ratio= 43, Break_time= 59.5, Begin_Time= 491 
 
8- IF (wstat = 2 AND Day = 6 ) THEN 
     Work = 0 (0.934/ 0.066), Work_Dur = 28.79, More_Work_Ep = 0 
    (0.996, 0.004), Ratio= 30, Break_time= 20, Begin_Time= 475.7 

 

The rules are simple and it is noted that the model is sensible and as will be 

illustrated later that the input variables used in the rule (i.e. wstat and Day) 

correspond to the decision tree models (CHAID and C4.5) up to the second level. 

As revealed by the model rules above, if the person is unemployed then no work 

episode will be predicted. If the person is employed, then the day attribute is 

evaluated. If it is a working day (0 - 4), then the model predicts a work activity 

otherwise no work activity is predicted. Considering the More_Work_Ep it is 

noted that model always predicts one work episode. This occurs because the 

More_Work_Ep is highly skewed (87%) towards the one work episode class (0). 

As for the rest target attributes (Work_Dur, Ratio, Break_time, and Begin_Time), 

which are continuous variables, the predicted values at each rule represents the 

average of the values to which the instances belong.   

 

Since M-IFN provide the probability distribution for discrete choice target 

variables, as shown in the rules above, hence the probabilistic action assignment 

rules is used, as discussed in chapter 3. The probabilistic action assignment rule 

employs a stochastic approach in which the probability distribution is considered 

when predicting a class variable. Similarly, for continuous target variables the 

same approach as the one discussed in chapter 3, for continuous models is 

used. The action assignment rule for continuous variables uses the distribution 

representing the responses on the response variable found in the corresponding 

partition of the training set. For more on action assignment rules for discrete and 

continuous models, refer to the Derivation of Decisions from Classifiers section in 

chapter 3. 
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Individual Classifier Validation 
The validation results of the M-IFN model of individual target variables are 

presented in Tables 6.1 and 6.2 for discrete and continuous variables 

respectively.  
 

Work 
 Brier Score Sensitivity Specificity F-Measure 
Training set  0.2867 0.2852 0.8398 0.2088 
Test set 0.2801 0.3015 0.8539 0.2213 

More_Work_Ep 
 Brier Score Sensitivity Specificity F-Measure 
Training set 0.1135 0.1838 0.8703 0.1894 
Test set 0.1395 0.1231 0.8546 0.1127 

Table 6.1 Discrete target variables accuracy statistics 
 
 

Model Name Training set Test set 

Work_Dur 27% 26% 
Ratio 28% 31% 
Break_Time 78% 79% 
Begin_Time 12% 12% 

Table 6.2 Continuous target variable Relative Absolute Error (RAE) 
 
It is shown that for the work target variable the M-IFN model reported rather a 

high accuracy in predicting the negative class (0) with a specificity of 0.84 for 

training set and 0.85 for the test set. The F-measure reported a weak predictive 

performance for the work target attribute. Furthermore, the Brier Score reported 

0.29 and 0.28 for the training and test sets respectively. Considering the 

More_Work_Ep target attribute, the M-IFN reported higher accuracy in predicting 

the “0” class (one work episode) than the positive class, with a Specificity at 0.87 

for the training set and 0.85. Similarly, looking at the F-Measure and the Brier 

Score it is noted the dropout of the values in test set compared to the training set.   

Considering the continuous target variables the accuracy is measured by 

calculating the Relative Absolute Error (RAE). RAE gives an indication of how 

good a predicted value is relative to the observed value. The M-IFN model 

reported high RAE for the Break_Time variable with 78 and 79 % for training and 
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test sets respectively. In addition, reported 27, 28, and 12 % for Work_Dur, Ratio, 

Break_time target variables respectively for the training set. And 26, 31, and 12 

% for Work_Dur, Ratio, and Break_time target variables for the test set. 
 

Activity Pattern Validation 
The validation at the activity pattern sequence is reported in Table 6.3. As 

discussed in Chapter 4, the average length of the observed sequence for all 

activities is 5.02 symbols and 1.7 symbols for work activities. The average length 

of predicted all activity sequences is 3.3 symbols and 1.2 for work activities. To 

gain more understanding about the work activity sequences lengths, a confusion 

matrix to calculate the observed versus the predicted sequences lengths is 

generated. Table 6.3, shows the confusion matrix for work activity sequences 

lengths for training and test sets. The results reveal that the majority of work 

activity sequences contain one and two symbols. For sequences of length one, 

81 and 83 percent for training and test sets respectively are correctly predicted. 

Additionally, the accuracy of predicting work activity sequences of length of four 

symbols is low at 10 and 4 percent for training and test sets respectively. 

Additionally, more than 60 percent of predicted work activities contain one 

symbol. While more than 30 percent of work activities contain two symbols and 

less than 10% of activities contain four symbols. The confusion matrix results 

show that the length of the work sequences are mainly of lengths one and two 

and this explains that the predicted work activities produced by M-IFN are short 

at an average of 1.2 symbols. 

The SAM distance is not just influenced by the difference in symbols but also by 

the length of the sequence, i.e. the number of symbols (activities) in the activity 

sequence. Thus, to be able to interpret the validation at the activity pattern level, 

a confusion matrix of work activity sequence lengths is created.  

 

Therefore, the SAM distances reported in Table 6.4 shows that the number of 

operations to equalize the predicted with the observed sequences is 4.74 and 4.7 

for the training and test sets respectively. Therefore, given the weak performance 
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of the M-IFN method in predicting work activities, as shown by the individual 

classifier validation, results in shorter and diverse sequences for all activities. For 

example if in an observed activity sequence, a person go for shopping after 

having two work activity episodes (H W B W S H), but in the predicted sequence 

the sequence does not contain a work activity (H S H), this requires inserting 

three symbols to the predicted sequence which results in a higher SAM.  For the 

work activity sequences, the length of predicted sequences is shorter than 

observed sequences. Thus, the SAM distances are 0.59 for the training set and 

0.61 for the test set. Recall that the majority of the observed work activities (87%) 

contain one work episode, therefore, with an observed sequence length of 1.7 

and predicted 1.2 symbols, a SAM distance of 0.6 is explainable. 

 

 Training set Predicted 
M-IFN Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.81 0.16 0.03 0.53 

2 0.38 0.58 0.04 0.36 

4 0.43 0.47 0.10 0.12 
 Total 0.61 0.35 0.04 589.00 
 Test set Predicted 
M-IFN Sequence Length 1 2 4 Total 

O
bs

er
ve

d 

1 0.83 0.16 0.01 0.52 

2 0.45 0.50 0.05 0.32 

4 0.42 0.54 0.04 0.16 
 Total 0.64 0.33 0.03 298.00 

Table 6.3 M-IFN work activity sequence lengths confusion matrices 
 
 

SAM distance all activities pattern 
Dataset M-IFN 
Training  4.74 
Test 4.7 

SAM distance Work activity pattern  
Dataset M-IFN 
Training  0.592 
Test 0.61 

Table 6.4 M-IFN SAM distance for all and work activities 
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Work Activity Trip Matrix and Trips Start Time Level Accuracy Analysis 
(Spatial and Temporal Resolutions) 
 
At the work activity trip matrix level (spatial resolution), the observed and 

predicted OD matrices were compared. An activity OD matrix contains the 

frequency of work activity trips for each combination of origins (rows) and 

destinations (columns). The frequency of trips at each zone in Flanders was 

aggregated forming a one dimensional array with work activity trip counts at each 

zone marginal, i.e. originating and arriving trips. The correlation is calculated 

between observed and predicted array entries ρ(observed, predicted).  Table 6.5 

shows that correlation coefficient for the work trips OD matrices are almost 0.83 

for both the training and test sets. On the other hand, the work activity start time 

(temporal resolution) reveals a correlation coefficient of 0.84 and 0.82 between 

observed and predicted start times. 

 
Work activity trip matrix level 

Dataset M-IFN 
Training 0.83 
Test 0.83 

Work activity start time per hour of the day 
Dataset M-IFN 
Training 0.84 
Test 0.82 

Table 6.5 M-IFN work activity trip matrix and work activity start time per hour of the day 
correlation coefficients 
 

6.3 Upper bound: fully-informed set of classifiers 
 
Comparisons of rule-based models and utility-maximizing models on activity 

travel patterns have been conducted (Arentze et al., 2000) and the rule-based 

system proved to be a very flexible approach. The rule-based system also 

performs well in predicting transport choice behaviour if an induction method is 

utilized (Wets et al., 2000 and Doherty, 2001). However, even if these induction 

models perform well at each decision step, they also show some limitations. The 

Performance of rule-based models using sequential scheduling process models 
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are affected by many factors. If the execution of a process model contains 

activation dependency, this results in prediction error propagation variation. 

Depending on the branching of decisions, the prediction error may lead to higher 

error rate for consequent decision steps. And thus, dramatically deprive model 

performance. On the other hand, the same prediction error may insignificantly 

worsen model performance. Another factor is the order of decision steps within 

the process model. There is no clear argument in the literature, except that the 

logical execution for the specific problem, why such decision steps order is used. 

However, and taking into account the activation dependency issue, there are 

decision steps that significantly influence model performance. Furthermore, 

interdependencies among decision steps in the process model may also 

influence model performance. The work activity process model in ALBATROSS 

is no exception.  

Therefore, to solve the above mentioned issues, in the fully-informed approach 

the actual decision values are included as an input attributes in subsequent 

decision steps. Because we are using the actual values it is a non realistic 

scenario, but we consider it as an upper bound for the results. Continuous 

variables such as duration, Ratio, Inter (break time duration) and start time are 

discretized using Equal Frequency Interval (EFI) method, before being added. 

The datasets used in this approach are the same as shown in Table 4.1 in 

Chapter 4. 

 

The analysis is performed on the work activity process model, which consists of 

six decision steps. Hence, to be able to analyze and assess the performance of 

the work activity process model only decision steps 1 and 3 are replaced by 

alternative classification methods. Because these decision steps branches the 

execution of the process model. Whereas the continuous decision steps (2, 4, 5 

and 6) are kept unchanged using the original CHAID based tree induction. The 

analysis is conducted using three induction methods that are appropriate for 

analyzing the work activity process model. The first method is the original CHAID 

tree method. The second technique is the C4.5 decision tree method for two 
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reasons, (a) C4.5 is a benchmarking method in the data-mining community, (b) in 

a case study by Wets et al. (2000), and it has been found that the performance of 

CHAID and C4.5 decision tree algorithms are approximately equal in terms of 

goodness of fit. And this means that at the process model level, CHAID and C4.5 

are expected to have approximately similar performance as well. The 

performance similarity between CHAID and C4.5 decision trees will support 

further analysis, especially when conducting experiments with the non-informed 

approach. Given that, CHAID is hard coded in ALBATROSS.  And this is tailored 

with the inclusion of previous decision outcomes as input variables for 

subsequent decision steps. Thus, performing the analysis with new work process 

models using CHAID entails re-coding the entire module. The third technique is 

the Logistic Regression classification method, which will be referred to as Logit 

throughout this thesis. The Logit method was selected because it generally 

outperforms decision tree methods in terms of classification accuracy, especially 

for small size data sets, as shown by (Cox 1958). Moreover, Logit can produce 

probability estimates.  

 

The C4.5 decision tree of the work (decision step 1) is illustrated in Figure 6.1. As 

mentioned in the previous section the rules generated by the M-IFN model 

represents the same rules of the decision tree up top the second level. The wstat 

variable at the root node of the tree and the Day attribute at the second level, 

where the model predicts a work (1) activity if it is a working day and no work 

activity if the day is a weekend. 

 

The experiments were setup by running and deploying the model and generating 

schedules for both the training and test sets for 7 days and 5 times per day.  

In the next subsections the model comparison criterion and validation results are 

discussed.   
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Figure  0.1 Work activity (decision step 1) C4.5 decision tree model 
 

Classifier Level Accuracy Analysis  
Table 6.6 provides the results of the analysis to assess model performance. The 

results suggest that for decision step 1, the Logit model outperforms all other 

methods specially in predicting the positive class value (1).  As expected, CHAID 

and C4.5 show similar performance with a slight increase in performance in favor 

of C4.5, as illustrated by the BS and F-Measure. The predictive performance 

(sensitivity) for the (1) class variable, which is the minority class, is notably higher 

in the Logit approach. This can be explained by the fact that Logit is known to 

often outperform decision tree approaches for small size datasets (King and 

Zeng 2001). Results also show that the drop in the accuracy in the test set was 

not significant, while there was a slight increase in accuracy for the CHAID 

approach.  
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Considering the performance of decision step 3 (Table 6.7), again CHAID and 

C4.5 confirmed similar performance and outperform the Logit approach. The 

reason for the weaker performance of the Logit approach is that the data set at 

decision step 3 is highly skewed (87%). This leads to an underestimation of the 

rare class calculated by Equation 3.8 as reported by King and Zeng (2001).  

 
Decision step - 1 
Work Training set 

Model Brier Score Sensitivity Specificity F-Measure 
CHAID 0.11766 0.54065 0.841026 0.554455 
Logit 0.113781 0.813008 0.839448 0.73026 
C4.5 0.114957 0.59248 0.84497 0.594898 
Decision step - 1 
Work Test set 

Model Brier Score Sensitivity Specificity F-Measure 
CHAID 0.112366 0.554371 0.851653 0.563991 
Logit 0.115959 0.791045 0.83628 0.704653 
C4.5 0.115108 0.556503 0.825519 0.545455 

Table 6.6 Fully-informed accuracy statistics for the Work model (classifier level) 
 

Decision step - 3 
More_Work_Ep Training set 

Model Brier Score Sensitivity Specificity F-Measure 
CHAID 0.106202 0.1875 0.890315 0.195122 
Logit 0.0979974 0.125 0.985998 0.205128 
C4.5 0.108202 0.242188 0.866978 0.227106 
Decision step - 3 
More_Work_Ep Test set 

Model Brier Score Sensitivity Specificity F-Measure 
CHAID 0.136115 0.155844 0.885496 0.179104 
Logit 0.144773 0.0649351 0.959288 0.102041 
C4.5 0.134237 0.194805 0.903308 0.230769 

Table  0.7 Fully-informed accuracy statistics for More_Work_Ep (Nep) model (classifier level) 
 

The continuous choice models which were trained using only the CHAID tree 

induction method used originally in ALBATROSS were kept the same for the 

analyses performed using alternative discrete choice models.  

The performance of continuous choice models (Table 6.8) was assessed by 

means of the RAE. As depicted in Table 6.8 results showed fairly good results 

with 21, 18 and 8 % for decision steps 2, 4 and 6, respectively, for training sets, 
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and 20, 18 and 10 % for test sets, while for decision step 5 the RAE reported 

64% for training and 61% for test set. 
 

 

 

 
 

 

Table 6.8 Fully-informed RAE for continuous choice classifiers (decision steps) 
 
Activity Pattern Level 

Since experiments are conducted on the work process model, the SAM distance 

is calculated for both, all activities and for work activities in the schedule. The 

work activity patterns are expected to contain sequences of one, two or four 

symbols. It contains one symbol when no work activity is predicted (e.g. H).  

Furthermore, the sequence contains two symbols when the schedule includes 

one work episode (e.g. H W). On the other hand, work activity patterns contain 

sequences of four symbols when the schedule contains two work episodes with a 

break time in between (e.g. H W B W).  
 

The average length of observed activity patterns is 5.025 (2.095) with standard 

deviation between brackets, whereas activity sequences average lengths for 

CHAID, C4.5, and Logit models are 3.61 (1.73), 3.92 (1.9), and 3.74 (1.51) 

respectively. For the work activity sequences, the average length of observed 

sequences is 1.7. While for CHAID, C4.5 and Logit models the average lengths 

are 1.45 (0.72), 1.5 (0.75), and 1.32 (0.8) respectively. The confusion matrices, 

for training and test sets, between observed and predicted activity pattern lengths 

for all models are reported in Tables 6.9, 6.10, and 6.11. The results show that 

CHAID and C4.5 reported comparable results. For sequences of lengths one and 

four symbols, decision tree models outperformed the Logit model however, for 

sequences of lengths two, Logit model reported higher accuracy. This can be 

explained by the fact that the Logit model outperformed decision tree models in 

decision step 1 (Work model), which means more accurate work activities are 

Decision Step Name Training set Test set 

2 Work_Dur 21% 20% 

4 Ratio 18% 18% 

5 Break_Time 64% 61% 

6 Begin_Time 8% 10% 
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predicted. In addition, for decision step 3 (More_Work_Ep), the Logit model 

reported weaker performance than decision tree models. This means that the 

majority of the work activity sequences contain two work episodes (e.g. W H). 

And therefore, the work activity sequence contains two symbols.  

The confusion matrix results also explain that decision tree models reported 

higher work activity sequences lengths.  

  

 Training set Predicted 
CHAID Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.81 0.16 0.03 0.52 

2 0.42 0.54 0.04 0.36 

4 0.40 0.50 0.10 0.12 
 Total 0.64 0.32 0.05 589.00 
 Test set Predicted 
CHAID Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.83 0.14 0.03 0.52 

2 0.41 0.56 0.03 0.32 
4 0.50 0.44 0.06 0.16 

 Total 0.64 0.33 0.03 298.00 
Table  0.9 Fully-informed CHAID model work activity sequence lengths confusion matrices    
 

 Training set Predicted 
C4.5 Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.81 0.15 0.04 0.52 

2 0.37 0.55 0.07 0.36 

4 0.45 0.45 0.10 0.12 
 Total 0.61 0.33 0.05 589.00 
 Test set Predicted 

C4.5 Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.82 0.16 0.02 0.52 

2 0.40 0.51 0.09 0.32 

4 0.34 0.53 0.13 0.16 
 Total 0.61 0.33 0.06 298.00 

Table 6.10 Fully-informed C4.5 model work activity sequence lengths confusion matrices    
 

 

 



 124 

 

 Training set Predicted 
Logit Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.75 0.22 0.03 0.52 

2 0.10 0.87 0.03 0.36 

4 0.10 0.83 0.07 0.12 
 Total 0.44 0.54 0.02 589.00 
 Test set Predicted 

Logit Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.72 0.28 0.00 0.52 

2 0.09 0.90 0.01 0.32 

4 0.10 0.85 0.05 0.16 
 Total 0.42 0.57 0.01 298.00 

Table  0.11Fully-informed Logit model work activity sequence lengths confusion matrices    
 

The SAM distances, for training and test sets, between observed and predicted 

activity pattern for all models are reported in Table 6.12. As expected CHAID 

reported approximately similar SAM distance with C4.5, where Logit reported 

higher SAM distance than C4.5 and CHAID. By means of SAM distance the Logit 

model reported higher distance than decision tree models. And the C4.5 decision 

tree model predicted longer activity patterns than all other models and thus, 

reported lower SAM distance. 
 

 

Table 6.12 Fully-informed All activities SAM distance 
 

Table 6.13 shows the SAM distance for work activities sequences. Again 

decision tree models (CHAID and C4.5) reported comparable results, with a 

slightly lower SAM in favour of CHAID. The Logit model reported higher SAM 

than both CHAID and C4.5. As shown in the confusion matrices of the Logit 

model (Table 6.11) the majority of the work sequences are predicted with length 

of two symbols. This indicates that more operations (deletion, insertion, or 

substitution) are required to equalize the predicted to observed sequences 
 

SAM distance all activities pattern  
 CHAID Logit C4.5 
Training 4.18 4.511 4.12 
Test 3.87 4.351 3.94 
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SAM distance work activity pattern  
 CHAID Logit C4.5 
Training 0.497524 0.590391 0.529965 
Test 0.480931 0.593363 0.521545 

Table 6.13 Fully-informed Work activities SAM distance 
 

Work Activity Trip Matrix and Trips Start Time Level Accuracy Analysis 
(Spatial and Temporal Resolutions) 
 

In Table 6.14 the training and test sets correlation coefficient between observed 

and predicted work trips OD matrices for all models is reported. The correlation 

coefficients for decision tree models (CHAID and C4.5) are similar, while the 

Logit model reported quite lower correlation.  
 

 Work activity trip matrix level 
Dataset CHAID Logit C4.5 
Training 0.832 0.81 0.84 
Test 0.816 0.8 0.82 

Table 6.14 Fully-informed Work activity trip matrix correlation coefficients  
 

The work activity start time level (temporal resolution) was also evaluated by 

calculating the correlation between the observed and predicted work activity start 

times for each hour of the day. The results in Table 6.15 indicate that the 

correlation coefficients are similar with the Logit approach having a slightly lower 

correlation coefficient than the CHAID and C4.5 approaches.  
 
 Work activity start time per hour of the day 
Dataset CHAID Logit C4.5 
Training 0.896 0.873 0.9 
Test 0.827 0.771 0.85 

Table 6.15 Fully-informed Work activity start time per hour of the day correlation coefficients 

6.4 Non-informed set of classifiers 
 

In the fully-informed approach actual values of decision outcomes are included 

as an input attributes in subsequent decision steps. However, the non-informed 

approach suggests that models, at individual decision steps, are trained without 
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the inclusion of previous decision outcomes as attributes in the next decision 

step. The outcomes of previous decision models are already included in the data 

sets of successive decision models. However, in this approach these decision 

outcomes are eliminated, and the same set of attributes are used to train the 

models at decision steps. The datasets used to train all models in the work 

activity process model for the non-informed approach is shown in Table 4.1. As 

explained in chapter 4, the datasets contain situational and socio-demographic 

variables that are used as prediction variables in FEATALB.  

In the FEATALB framework, the CHAID decision trees are trained and 

constructed as part of the system. And thus, the training attribute lists and names 

are hard coded within the model. For this reason, the training and deployment of 

the CHAID decision trees requires re-coding of the whole approach. Hence, the 

DecisionMaker PMML implementation in the system can be used. And 

considering the fact that decision tree models obtain similar performance (as 

shown in the results of the analysis in the previous section), the CHAID decision 

trees can be replaced by other decision tree models.   

In this approach, discrete choice models, i.e. decision steps 1 and 3 are 

experimented using C4.5 and Logit models. Nevertheless, for continuous models 

the CART decision trees is used. In ALBATROSS the derivation of decision rules 

employs a probability distribution among classes for discrete models. For 

continuous decision trees utilized in FEATALB, the distributions at each leaf node 

specifying m-1 cutoff points and the minimum and maximum of the range. For 

this reason the simulation is run 10 times for each day of the week seven days a 

week. 

The results of the non-informed approach are validated at three levels. First, at 

each decision steps level, second, on the activity pattern level and thirdly, at the 

spatial and temporal network level. This validation is performed to confirm that 

the model is applicable on the study area from which the data was collected. 
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Classifier Level Accuracy Analysis 
 
As discussed in chapter 3, the evaluation criteria for discrete choice models are 

presented using two accuracy measures, the confusion matrix accuracy 

measures. And the Brier score (Brier 1950) because of the probabilistic action 

assignment rule used in scoring the models.  

 

The results for discrete choice decision steps are reported in Tables 6.16, and 

6.17. Table 6.16 shows accuracy statistics for decision step 1 (include work). The 

results illustrates that the Logit model outperforms the C4.5 decision tree model. 

The sensitivity measure for the Logit model indicates that its performance in 

predicting the positive class (1) is high. Such good performance can be also 

detected in the F-measure and the Brier score. The predictive performance of the 

logit model can be explained because of the fact that logit is known to perform 

well for small size data sets as reported by King and Zeng (2001). 
 

Decision step - 1 
Work Training set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.113781 0.813008 0.839448 0.73026 
C4.5 0.114957 0.59248 0.84497 0.594898 
Decision step - 1 
Work Test set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.115959 0.791045 0.83628 0.704653 
C4.5 0.115108 0.556503 0.825519 0.545455 

Table 6.16 Non-informed approach accuracy statistics for include work activity (decision step 1)  
 

For decision step 3 (More_Work_Ep) accuracy statistics for the non-informed 

approach, indicates that the C4.5 decision tree model outperforms the Logit 

model as shown in Table 6.17. The reason for the weak performance of the Logit 

approach is that the data set for the number of wok episodes is highly skewed 

(87%). This leads to an underestimation of the rare class calculated by Equation 

3.8 as reported by King and Zeng (2001).  
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It is also noted that the models in fully-informed approach outperforms the 

models in the non-informed approach. This implies that on the single classifier 

level, the attributes interdependencies have an added-value.  

The continuous choice models which were trained using the CART decision tree 

were kept the same for C4.5 and Logit models. However, in the full approach, the 

CART trees were trained using actual values from previous decision outcomes 

i.e. using the attribute dependency feature. On the other hand, in the 

independent approach, the CART trees were trained without inclusion of decision 

outcomes from previous decision steps. 
Decision step - 3 
More_Work_Ep Training set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.113867 0.0625 0.994166 0.111475 
C4.5 0.11308 0.109375 0.873979 0.112 
Decision step - 3 
More_Work_Ep Test set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.146908 0.012987 0.982188 0.0235294 
C4.5 0.138436 0.142857 0.882952 0.164179 

Table 6.17 Non-informed accuracy statistics for Number of work episodes (decision step 3) 
 
The performance for continuous choice models were evaluated by means of the 

Relative Absolute Error (RAE). The reason for choosing this measure is that it is 

provided as percent error measure for numeric predictions. The results are 

shown in Tables 6.18. Results show that RAE for decision steps 2, 4 and 6 (work 

duration, Ratio, and work start time) are 21, 22, and 9 % respectively for training 

sets, and 20, 22 and 11 % for test sets. While for decision step 5 (break time) 

reported 65 and 67 % for training and test sets respectively. Considering the 

results of continuous models for the fully-informed approach, the RAE is lower 

than the models in the non-informed approach. Except for the Work_Dur decision 

model, because no decision outcomes are added to this model. 
 

 
 
 
 
 

Table 6.18 Non-informed approach RAE for CART continuous choice classifiers 
 

Decision Step Name Training set Test set 
2 Work_Dur 21 %  20% 
4 Ratio 22 % 22 % 
5 Break_Time 65 % 67 % 
6 Begin_Time 9 % 11 % 
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Activity Pattern Level 
 
For the non-informed approach, the SAM distance between observed and 

predicted activity sequences are calculated for all activities in the schedule and 

for work activities. As discussed in Chapter 4, the average length of observed 

activity patterns is 5.025, whereas work activity average lengths for C4.5, and 

Logit models are 3.50, 3.35 respectively. The C4.5 decision tree model predicted 

longer activity patterns than the Logit model. The observed work activity pattern 

average length is 1.7. While for the C4.5 and Logit work activity pattern lengths 

reported 1.45 and 1.3 respectively. The confusion matrices for work activity 

sequences lengths for both models are shown in Tables 6.19 and 6.20. The 

results show that the accuracies of predicting the correct lengths are lower than 

the fully-informed approach for all sequences lengths. For the training and test 

sets, the C4.5 model’s accuracy in correctly predicting work activity sequences 

lengths are lower than the fully-informed approach. The Logit model reported 

comparable results with those of the fully-informed approach. However, it is poor 

in predicting work activities with four symbols.  

As shown in Table 6.21, the C4.5 model obtained lower SAM distances than 

Logit models at both the all activities and the work activities sequences. 

Considering the fully-informed approach, the length of all and work activities is 

higher than the length of the work activities in the non-informed approach, which 

closer to the length of the observed lengths. It is also noted that on the activity 

pattern level the fully-informed approach performed better than the non-informed 

approach.  

 
 

Work Activity Trip Matrix and Trips Start Time Level Accuracy Analysis 
(Spatial and Temporal Resolutions) 
 

At the work activity trip matrix level (spatial resolution), the observed and 

predicted OD matrices are compared using a correlation coefficient. Similarly the 

observed and the predicted work activity start times (temporal resolution) are 
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compared via a correlation coefficient. The correlation coefficient measures the 

relation between observed and predicted values. 

 

 Training set Predicted 
C4.5 Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.79 0.20 0.02 0.52 

2 0.39 0.54 0.07 0.36 

4 0.44 0.47 0.09 0.12 
 Total 0.60 0.35 0.04 589.00 
 Test set Predicted 

C4.5 Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.76 0.21 0.03 0.52 

2 0.35 0.56 0.08 0.32 
4 0.50 0.42 0.08 0.16 

 Total 0.59 0.36 0.05 298.00 
Table  0.19 Non-informed C4.5 model work activity sequence lengths confusion matrices    
 

 Training set Predicted 
Logit Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.73 0.26 0.00 0.52 

2 0.12 0.88 0.00 0.36 

4 0.10 0.88 0.01 0.12 
 Total 0.44 0.56 0.00 589.00 
 Test set Predicted 

Logit Sequence Length 1 2 4 Total 

O
bs

er
ve

d 1 0.72 0.28 0.00 0.52 

2 0.09 0.90 0.01 0.32 

4 0.08 0.92 0.00 0.16 
 Total 0.42 0.58 0.00 298.00 

Table  0.20 Non-informed Logit model work activity sequence lengths confusion matrices 
 

 SAM distance all activities  SAM distance work activities  
 Logit C4.5 Logit C4.5 
Training 4.68 4.37 0.63 0.57 
Test 4.66 4.51 0.62 0.55 

Table  0.21 Non-informed all activities and work activity sequences SAM distances 
 

As mentioned in chapter 4, work trip frequencies at each zone in Flanders are 

aggregated to form a one dimensional vector. This is done to eliminate low trip 



 131 

counts at each cell.  Table 6.22 illustrates the correlation coefficients for work 

activity trip matrices and work activity start times. Results show that the C4.5 

decision tree models reported higher correlation than the Logit models for the 

training and test sets.  

It is also noted that in the non-informed approach obtained less correlation 

coefficients than the fully-informed approach. 
 

 Work activity trip matrix level 
Dataset Logit C4.5 
Training 0.8 0.84 
Test 0.79 0.82 
 Work activity start time per hour of the day 
Dataset Logit C4.5 
Training 0.86 0.88 
Test 0.78 0.85 

Table  0.22 Non-informed approach work activity trip matrix and start time per hour of the day 
correlation coefficients 

6.5 Discussions 
 

In this chapter the work activity process model in the FEATALB framework is 

experimented by running the model in three different settings: 

1- Modeling the decision steps in the work activity process model using a multi-

target classification method (M-IFN), where all models are predicted 

simultaneously. 

2- Fully-informed approach, where three classification methods (CHAID, C4.5, 

and Logit) are used in discrete choice decision steps (Work, More_Work_Ep) and 

CHAID decision trees for continuous models. The models are trained preserving 

the attributes interdependencies among decision models. Further while the 

simulation is running the actual decision outcomes are included as attributes to 

subsequent decision steps rather than using the predicted decision outcomes. 

3- Non-informed approach, using C4.5 and Logit models for discrete choice 

models and CART decision trees for continuous models. In this approach the 

models are trained while eliminating the attributes interdependencies. 
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Base Line 
 
Both M-IFN and the non-informed approaches are designed such that the 

attributes interdependencies feature is eliminated. Therefore, they are process 

independent and can be considered as lower bound models. The validation 

results for the test set of decision step 1 (Table 6.23) shows that the M-IFN is 

inferior, in terms of performance, to the non-informed approach. The C4.5 model 

was represented because its performance is weaker than Logit. On the other 

hand, for decision step 3 the validation results are represented in Table 6.24. 

Due to the fact that the Logit technique fails for decision step 3, we choose the 

C4.5 model as technique in the non-informed approach. The results show that 

the C4.5 model in the non-informed approach outperformed the M-IFN approach.  

 

Approach 1-Brier Score Sensitivity Specificity F-Measure 
M-IFN 0.72 0.30 0.85 0.22 
Non informed – C4.5 0.88 0.56 0.83 0.56 

Table  0.23 Decision step 1 (Work) model accuracy statistics 
  

Model 1-Brier Score Sensitivity Specificity F-Measure 
M-IFN 0.86 0.12 0.85 0.11 
C4.5 0.86 0.14 0.88 0.16 

 Table 6.24 Decision step 3 (More_Work_Ep) model accuracy statistics 
 
Table 6.25 shows the RAE for continuous models of both approaches (M-IFN 

and non-informed). The M-IFN reported higher RAE than the decision tree 

models in continuous models. 
 

 

 

 
Table 6.25 RAE for continuous models 
 

The results at the activity pattern level (Table 6.26), the observed 

mean activity all activities length is 5.02 symbols and 1.7 for work 

activities. The M-IFN approach obtained smaller activities than the 

Decision Step Name M-IFN Non-informed 
2 Work_Dur 26 % 20% 
4 Ratio 31 % 22 % 
5 Break_Time 79 % 67 % 
6 Begin_Time 12 % 11 % 
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C4.5 model in the non-informed approach. Therefore, reported a 

higher SAM distance. 

 

 Observed  M-IFN Non-informed 

All activities 5.02 3.3 3.5 (C4.5) 

Work Activities 1.7 1.2 1.45 (C4.5) 

Table 6.26 Mean length of all and work activities for M-IFN and on-informed approaches 
 

At the spatial and temporal dimensions the validation results (Table 6.27) shows 

that at the work activity both approaches reported comparable results. However, 

at the work activity start time, the non-informed approach obtained higher 

correlation coefficient than the M-IFN approach.   

 

 M-IFN Non-informed 

OD Work activity trips 0.83 0.82 

Work activity start time 0.82 0.85 

Table 6.27 Spatial and temporal correlation coefficients 
 

Based on the discussion above, we can conclude that there is a clear difference 

between both approaches, specifically for the sensitivity criterion for discrete 

decision steps and for continuous decision steps. Moreover, the validations at all 

levels suggest that the non-informed approach outperformed M-IFN. The results 

of the M-IFN approach indicate that this approach serves as the base line model. 

Hence, the results of this approach will be used as the base line figures.  

 

Target value and Range 
 

In the fully-informed approach, the actual values are included as attributes to 

subsequent decision steps. Therefore, it is expected to give us the target 

performance values. We have however to remember that the fully-informed 

approach is process model dependent.  

As target values for the work model (decision step 1) we take the maximum 

accuracies of table 6.6 i.e. the C4.5 method (Table 6.28). For decision step 3 the 
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Logit model again we exclude the Logit model (Table 6.29).  In addition, target 

and base line values (RAE) for continuous models are shown in Table 6.30. The 

results show that the fully-informed approach provides a performance 

improvement range for them models. Therefore, comparing baseline and target 

values shows the different ranges and the possibilities to improve the model.  

Table 6.31 illustrates the results at the SAM validation level, and it is obvious that 

the fully-informed approach predicted longer all and work activity sequences. 

Thus, reported lower SAM distance. The figures at this level suggest that the M-

IFN approach is considered as the lower bound.  
 

Approach 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.72 0.30 0.85 0.22 
Target 0.88 0.81 0.84 0.73 

Table  0.28 Baseline and target decision step 1 (Work) model accuracy statistics 
  

 

Model 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.86 0.12 0.85 0.11 
Target 0.87 0.19 0.90 0.23 

Table  0.29 Baseline and target decision step 3 (More_Work_Ep) model accuracy statistics 
 
 

 

 

 

 
Table 6.30 Baseline and target RAE for continuous models 
 

 

 Baseline Target 

All activities 3.3 3.94 (C4.5) 

Work Activities 1.2 1.5 (C4.5) 

Table  0.31 Baseline and target Mean activities (All and Work) sequences lengths 
 
 
Table 6.32 shows the baseline and target value at the spatial and temporal 

aggregated level. The results indicate that the range between the baseline and 

target values is too small to be useful as a performance boundary measure. This 

Decision Step Name Baseline Target 
2 Work_Dur 26 % 20% 
4 Ratio 31 % 20 % 
5 Break_Time 79 % 61 % 
6 Begin_Time 12 % 10 % 
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concludes that the validation at the spatial and temporal levels is not sensitive to 

local changes of the process model. 
 

 Baseline Target 

OD Work activity trips 0.83 0.82 

Work activity start time 0.82 0.85 

Table  0.32  Baseline and target spatial and temporal correlation coefficients 
 
Attributes interdependencies (process model dependent) feature added 
value 
 
The analyses in this chapter suggest that the generated M-IFN model is a set of 

rules that are similar to those generated by the decision tree models (specifically 

the decision tree for decision step 1 - Work) up to the second level (Figure 6.1).  

In addition, the M-IFN classification method has the lowest fitting capacity. Hence, 

the M-IFN model can be thought of as the baseline performance (Lower bound) 

model. Furthermore, the models in the Fully-informed approach, which is a 

process model dependent, outperformed models in both M-IFN and non-informed 

approaches. Similarly in terms of performance boundaries, the fully-informed 

approach can be seen as the upper performance boundary. While training the 

models in the non-informed approach, it is noted that the performance dropped. 

However, the models in this approach still outperformed the M-IFN model.  

Regarding the performance of the M-IFN model compared to the individual 

classifier approaches conform to results obtained in the literature. As presented 

by Caruana (1993) and Piccart (2008), that the combination of several single-

target classifiers may increase the overall predictive performance.  

The validation results of the fully-informed and non-informed approaches, 

illustrated that attributes interdependencies among models in the work activity 

process model in ALBATROSS increase the predictive performance. At the 

individual classifier level running the fully-informed approach improves the quality 

of the predicted schedules, although it is a non-realistic scenario. This is also 

reflected at the activity pattern level as the full approach proved to have more 

similar patterns than the non-informed approach. However, the validation at the 

spatial and temporal resolutions was not sensitive to capture local changes in the 
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process model. Thus, to be able explain the effect of including decision 

outcomes, which are used as attributes in subsequent decision steps, the Relief-

F feature selection technique is used. The Relief-F technique reports the most 

relevant attributes in descending order that are important in predicting the class 

variable.  
 

Table 6.33 depicts the result of running the Relief method implemented in WEKA 

(Hall et al., 2009). The Work_Dur attribute, which is the duration of the work 

activity, and the decision outcome of decision step 2, is the first ranked attribute 

that is relevant in identifying the More_Work_Ep class (decision step 3), and the 

Ratio (decision step 4). 
   

Decision step Name Relief weight Ranked attributes 

3 Number of work episodes 
(More_Work_Ep) 

0.12439 Work_Dur 
0.09553 Xdag 
0.09106 Xarb 
0.09035 Ddag 
0.08801 Xn_dag 

4 Ratio 

0.040334 Work_Dur 
0.016735 Urb 
0.015106 Xn_dag 
0.013993 wstat 
0.008867 Comp 

5 Break Time 

0.032438 pAge 
0.030761 Day 
0.027669 Ncar 
0.025479 Work_Dur 
0.023602 Ddag 

6 Start time 

0.0238621 Day 
0.0128535 More_Work_Ep 
0.0112649 wstat 
0.0088725 Driver 
0.0064544 Work_Dur 
0.0000178 Break_time 

Table 6.33 Relief feature selection results for datasets used in decision steps in the work activity 
process model. 
 
 
In addition the Work_Dur attribute ranks the fourth in the list of important 

attributes to correlate to the break time variable (decision steps 4). For Start time 

variable (decision step 6), again the Work_Dur attribute, the More_Work_Ep 
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(decision outcome of decision step 3) and the Break_time (decision outcome of 

decision step 5) are among the list of the first six relevant attributes.   

The results of the Relief feature selection analysis verify that including decision 

outcomes of decision steps as attributes in successive decision will improve the 

performance of models in rule-based activity based models. 

Finally in this chapter, performance boundaries have been identified. These 

performance boundaries can be used to asses the performance of other models 

or other decision sequences, as will be presented in the next chapter. To 

illustrate this, let us consider the individual classifier level validation results for 

the three approaches (M-IFN, fully-informed, and non-informed). Figure 6.2 

depicts the Brier Score (BS) of the three approaches for discrete choice models, 

recall that a lower BS values indicates a better model. The similar BS value of 

the work model (decision step 1) in the fully-informed and non-informed 

approaches is because it is the same model used in both approaches as it is the 

first step in the process model. 

 

 
Figure  0.2 Brier Score of the M-IFN, Fully-informed, and Non-informed approaches 
 

As for the continuous models, Figure 6.3 shows the RAE obtained by the three 

approaches. The RAE of continuous models obtained by the M-IFN model 

reported higher error, while the fully-informed approach reported the lowest error 
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rates. The Work_Dur model reported similar RAE value since no decision 

outcome is added to this decision step. 

 
Figure 6.3 RAE for the M-IFN, Fully-informed, and Non-informed approaches 
 
At the activity pattern level, the SAM distances for both all activities and work 

activities for the three approaches conforms also to the classifier level accuracy 

results. Figure 6.5 illustrates the comparison of SAM distances having the M-IFN 

with the highest SAM distances and the fully-informed approach with the lowest 

SAM distances. 
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Figure 6.4 SAM distances for the M-IFN, Fully-informed, and Non-informed approaches 
 

6.6 Conclusions 
 

Process models in rule-based activity-based models contain decision steps 

where each decision step utilizes a classification model to predict relevant 

attributes. The work activity process model in ALBATROSS consists of six 

decision steps. At each decision step a CHAID based decision tree model is 

used. The analyses in this chapter aimed at identifying performance bounds for 

process models. The six decision steps in the process model was trained and 

deployed in three settings or approaches. Firstly, the decision steps are modeled 

in one model using a multi-target classification method (M-IFN). Secondly, using 

the fully-informed approach where decision outcomes are added as attributes in 

the data sets of consequent decision steps. Thirdly, with the non-informed 

approach where the models at decision steps are trained without the inclusion of 

decision outcomes i.e. without the attributes interdependencies between decision 

steps. The validation results showed that, as suggested in the literature, several 

single-target classification methods outperform multi-classification methods. In 

addition, decision tree models obtained comparable performance. The results 

also revealed that the model achieved by the M-IFN is similar to that obtained by 

the decision tree model up to the second level. Therefore, the M-IFN model can 

be used as a lower performance bound (base line model) for all other models. On 

the other hand, using the fully-informed approach, where the observed values 

are added as attributes instead of the predicted outcomes, outperformed the M-

IFN and the non-informed approach can be thought of as the upper performance 

abound. Since, no other models are expected to reach this performance. Finally, 

the results suggest that the attributes interdependencies among models in the 

decision steps increase the performance. This is further confirmed by 

investigating the datasets using a feature selection method. As the results 

verified that the decision outcomes as attributes in the data sets for consecutive 
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decision steps are listed among the most relevant attributes in identifying the 

class variable. 
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Chapter 7     

Experimenting Process Model Sequences (Data 
Representation) for Work activity process Models 
 

In ALBATROSS, which is a rule-based activity based model, a sequential 

scheduling process model is assumed to generate a schedule. However, the 

current process model is based on the researcher’s experience in activity-based 

models. The aim of this chapter is to study the effect of rearranging decision 

steps on the performance of rule-based activity-based models. In other words, 

finding a better data representation introduced in process models. This goal is 

achieved by introducing new scheduling process models. Two alternative work 

activity scheduling process models, other than the original process model, are 

developed, integrated, and utilized in FEATHERS. Furthermore, for discrete 

choice models in each process model, two classification methods are used, 

namely C4.5 decision trees and logistic regression. While CART decision trees 

are trained and deployed for continuous models. The process models are 

executed for simulation using the Flanders data. Consequently, the performance 

of each process model is validated at three levels, as presented in previous 

chapters: Firstly, at each decision steps level, secondly on the activity pattern 

level and thirdly, at the spatial and temporal network level. Introducing other work 

activity process models allows for gaining more understanding of the scheduling 

engine in ALBATROSS. And further elucidate the impact of changing the order of 

decision steps (activation dependency) within the process models on the 

predictive performance of the model.  

The chapter begins by the introduction which includes an explanation about the 

scheduling engine of rule-based activity-based models, specifically 

ALBATROSS. Alternative work activity process models are introduced and 

explained in details. In addition, experiments design and induction methods used 

to analyse all proposed process models are elaborated. Then the validation 
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results are presented and discussed. Finally the chapter ends with the discussion 

and conclusions. 

7.1 Introduction 
 
Computational process models constitute a powerful theoretical approach that 

conceptualizes choices as outcomes of using context-dependent heuristics. 

ALBATROSS, as a rule-based computational process activity-based model, 

consists of a series of agents that together handle the consistency of the data. 

The core of the ALBATROSS framework is the scheduling engine which controls 

the scheduling processes as a sequence of decision steps. At each decision step 

the scheduling engine classifies the condition information for making a key 

decision.  Hence, computational process rule-based models are based on a set 

of models (26 models in ALBATROSS) that represent transport choice 

behaviour. Alternatively, defining interdependence among decision outcomes 

within the scheduling engine depends on the ordering of decision steps. As a 

result, such models generate a feeling of a black box (Timmermans et. al., 2002). 

One of the aims of the analysis in this chapter is to eliminate the black box 

complication of the system. This is achieved by conducting experiments on the 

work activity process model in ALBATROSS. In addition to the originally used 

process model, two work activity process models are developed, and plugged-in 

to the scheduling engine in the framework. Moreover, for each process model, 

two induction methods are utilized at each decision step. This allows for gaining 

more understanding about the process model. And whether changing the order 

of decision steps in the work process significantly affects the predictive 

performance of the model.   

In the next section, the process model sequences are explained in details. In 

addition, the rationale behind finding better data representation is discussed. 

Followed by the illustration of the three process models developed in the context 

of alternative data representation.  
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7.2 Work Activity Process Model Sequences 
 
As discussed in previous chapters, the work activity process model in 

ALBATROSS is the first component in the scheduling process model. This 

makes it an important component, because, based on the decision outcome of 

this process model it is decided that the person’s schedule will contain a work 

activity or not. Furthermore, if the schedule contains a work activity, other 

schedule related attributes will be decided, such as, the duration of the work 

activity, break time duration (if two work episodes are predicted), and the start 

time of the work activity. Thus, an empty schedule’s time scale is filled with an 

activity type and its related information, which will influence the duration of other 

activities further as the execution of the scheduling process proceeds. Other 

issues that influence the predictive performance of the process model are the 

activation dependency feature and the attributes interdependencies between 

decision models in the work activity process model.  

As discussed in chapter 6, the including of previous decision outcomes as 

attributes to subsequent decision steps enhances the predictive performance of 

the model, under the condition that such attributes are indicated as relevant in 

predicting the class attribute.  Therefore, changing the order of the decision steps 

is expected to influence the predictive performance of the model. To this end, 

and to achieve a better understanding of the work activity process model, two 

process models, other than the original, are developed by changing the order of 

decision steps. The occurrence of the activation dependency feature is shifted 

either up or down in the process model. Additionally, the attribute dependency 

feature will vary depending on the disposition of decision steps in each process 

model. The original work activity process model and the proposed alternative 

process models are shown in Figures 7.1, 7.2 and 7.3 respectively.  

For ease of reference, the original work activity process model will be referred to 

as process model 1. While the alternative process models will be referred to as 

process model 2 and process model 3.  

For each process model, the simulation is run using two different induction 

methods for discrete choice decision steps. The first induction method is C4.5 
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decision tree models, and the second using Logit models. The continuous choice 

decision steps are trained and utilized using Classification and Regression Trees 

(CART) models. The C4.5 decision tree and the logit models were trained and 

generated using the Rattle package for R (Williams 2009). The models were then 

exported to PMML using the decisionMaker class implemented in the 

FEATHERS framework to deploy PMML decision trees and Logistic regression. 

To avoid over fitting, the minimum number of cases is set to 30 in the C4.5 

decision tree models. This number was also set in the original CHAID decision 

trees used in the ALBATROSS model developed by Arentze and Timmermans 

(2005).  

Conceptually the number alternative process models for a process model with six 

decision steps can be 6! = 640 process models (data representation). However, 

logical process models that can be adapted to predict work activities in the sense 

of rule-based activity-based models are few, since the order of decision steps 

(type of model) to predict is important. For example, one cannot predict the 

duration of a work activity or number of work episodes if the no work activity has 

been predicted. Similarly, the ratio between work episodes and the break time 

duration could not be specified if only one work episode is predicted. 

Nevertheless, other decision steps can be reordered, e.g. the number of work 

episodes or the work activity start time can be predicted before the work duration. 

This rationale will be used in determining alternative process models. Hence, for 

any process model to make sense, the work activity model (decision step 1) must 

be consulted first. 

The stochastic approach to derive decision rules from decision trees and Logit 

models, as discussed in Chapter 3, is also used in this chapter. The models for 

each process model are validated at three levels: (1) The individual classifier 

level, using confusion matrix accuracy statistics, (2) the Activity pattern level 

using the SAM distance measure, and (3) the spatial-temporal resolution, by 

calculating the correlation coefficient between observed and predicted work trips 

at each zone, and work activity start times. The validation results of The C4.5 

decision trees and Logit models for Process model (1). As illustrated by figures 
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7.1, 7.2, and 7.3, decision step 1 (include work activity choice) for all process 

models is the same and hence, at the individual classifier level the accuracy and 

validation results are the same for both C4.5 and Logit models. Finally, in 

process model 3, the decision step 2 (number of work episodes) contains no 

attribute inclusion from previous decision step and so it is the same as the non-

informed approach model analysed in chapter 6.  

7.2.1 Process Model 1 
 

Figure 7.1 depicts process model 1 (the original work activity process model) 

adapted in ALBATROSS. It is shown that the activation dependency feature in 

process model 1 occurs at decision steps 1 and 3.  

The process model begins by evaluating the work activity model according to the 

classifier utilized in this decision step. If no work (0) activity is predicted, then the 

process terminates. If a work activity (1) is predicted, then the work activity 

duration is predicted. Followed by decision step 3 (More_Work_Ep) which is 

responsible for determining the number of work episodes (0: one work episode, 

1: two work episodes). If one work episode is predicted then the execution 

proceeds to decision step 3 (work activity start time) hereafter the process 

terminates. On the other hand, if two work episodes are predicted then execution 

continues to decision steps 4, 5, and 6 (Ratio between the two work episodes, 

break time duration, and work start time) then the process terminates.  

7.3.2 Process Model 2 
 

As shown in Figure 7.2, process model 2 is another representation of the 

decision steps that constitute the work activity process model. As an essential 

model (decision step), the work activity model is the first model in the process 

model. The process then executes the work activity duration if a work activity is 

predicted. Unlike process model 1, in process model 2 the work duration start 

time is then executed. Where the number of work episodes is then consulted. 

This shifts down the activation dependency at decision step 3 in process model 1 
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down. In addition, attributes interdependencies are modified, as the work start 

time model now contains less attributes (as indicated by the dashed arrow line). 

Further, if two work episodes are predicted, the decision steps 5 and 6 are 

executed, otherwise the process terminates.  
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1 Process models 1: The original work activity process model attribute inclusion diagram 
in ALBATROSS 
 

This sequence is developed and adapted because shifting the more work 

episodes down and executing the work activity start time before it, implies that 

the work start time attribute will be added to the attribute list of the model. And 

this may enhance the predictive performance of the more work episodes. As 

concluded in the Chapter 6, given that the added attribute is relevant in predicting 

the class attribute. 
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Figure 7.2 Process models 2: work activity process model attribute inclusion diagram in 
FEATALB 
 

7.3.3 Process Model 3 
 
In process model 3 (Figure 7.3), the number of work episodes is shifted upwards 

as decision step 2. After executing decision step 1 (work activity model), the 

number of work episodes are specified. If two work episodes are specified, then 

the ratio and break time models are consulted. Otherwise, if one work episode is 

predicted, the duration and start time models are executed consecutively. As 

indicated by the dashed arrow lines in Figure 7.3 the decision outcomes that are 

included in the duration model (decision step 5) is more in process model 3. The 

data set for the model in decision step 2 (more work episodes) contains less 

attributes than in the other decision processes.  
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Figure 7.3 Process models 3: work activity process model attribute inclusion diagram in 
FEATALB 

 
7.3 Analysis and Results 
 

The ALBATROSS system applies a set of rules (if-then rules), which forms the 

scheduling process model. (Arentze and Timmermans 2004). These rules are 

accommodated in the rule-based scheduling engine to infer individuals’ activity 

schedules at the household level. In ALBATROSS, the work activity process 

model contains six decision steps that are used to predict work activity related 

information such as, work activity duration, start time, break time if two work 

activity episodes are predicted. At each decision step, the decision models are 

extracted from activity diary data. Moreover, the process model contains the 
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attribute dependency feature, which denotes the inclusion of decision outcomes 

as attributes in subsequent decision steps. Hence, for each proposed process 

model, i.e. process model 2 and process model 3, the data sets are modified 

according to their order in the sequence. Modification of the data sets involved 

adding/deleting attributes to comply with the sequence of decisions in each 

process model. The results are presented separately for each process model, the 

original work activity process model which will be referred to as process model 1, 

process model 2 and process model 3. 

The discrete choice decision steps are critical decision steps, because at these 

decision steps the activation dependency feature is enforced. It is noteworthy 

that for all work activity process models presented in this chapter decision step 1 

is the same (include work activity), since it is the first in the sequence. Therefore, 

at the individual classifier accuracy validation level decision step 1 is the same. 

The second discrete choice decision step is the number of work episodes 

(decision step 3 in process model 1, decision step 4 in process model 2, and 

decision step 2 in process model 3) affects the execution of decisions in the work 

activity process models.  

To serve the purpose of the analysis, two induction methods are used for 

discrete choice models, namely C4.5 decision trees and Logit models. While for 

continuous choice decision steps CART models are trained and employed. This 

implies that for each process model the results for C4.5 with CART decision trees 

and Logit with CART are presented separately. 

In the next subsections, the validations of models of each process model are 

presented at the three validation levels. Firstly, the individual classifier level, then 

the activity pattern level and thirdly, at the work activity OD matrix and work start 

time (spatial and temporal) level. 

7.3.1 Classifier Level Accuracy Analysis 
 

The evaluation criteria of the discrete choice models are presented using two 

accuracy measures, the confusion matrix (also called contingency table) 

accuracy measure, since both discrete choice classifiers are binary. And the 
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Brier score (Brier 1950) because of the probabilistic action assignment rule used 

in scoring the models. The continuous choice models are validated using the 

Relative Absolute Error (RAE). RAE provides a measure of how good a predicted 

value is relative to the observed value. The reason for selecting this measure is 

that it can be reported as a percent error measure for numeric or continuous 

predictions. The RAE is calculated by dividing the sum of the absolute difference 

between the predicted and observed values by the observed cases. 
 
Discrete choice models 

For all process models, decision step 1 (include work activity) was set to be the 

first step, since the remaining decision steps models are related to the work 

activity. Therefore, the accuracy statistics for decision step 1 and for the C4.5 

and Logit models is the same for all work activity process models introduced in 

this chapter. Table 7.1 summarizes the results of the analysis to assess model 

performance of decision step 1 for the three process models.  

The results suggest that the Logit model outperforms the C4.5 specially in 

predicting the positive class value (1). The predictive performance (sensitivity) for 

the (1) class variable, which is the minority class, is notably higher in the Logit 

method. This can be explained by the fact that Logit is known to often outperform 

decision tree approaches for small size datasets (King and Zeng 2001). The F-

measure, which is the measure of the dropout class taking into consideration 

sensitivity and precision, the Logit model is significantly higher than the C4.5 

model.  
 

 Decision step - 1 Work Training set 
Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.113781 0.813008 0.839448 0.73026 
C4.5 0.114957 0.59248 0.84497 0.594898 
Decision step - 1 Work Test set 
Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.115959 0.791045 0.83628 0.704653 
C4.5 0.115108 0.556503 0.825519 0.545455 

Table 7.1 Accuracy statistics for decision step 1 (classifier level) for process models 1, 2 & 3 
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In Table 7.2 the accuracy statistics for the baseline, target, C4.5, and Logit 

models are reported. The results show that the M-IFN and the fully-informed 

approaches represent the baseline and target predictive performance measures 

respectively. The sensitivity and F-Measure of the target approach is the highest 

among all approaches. The Logit model reported performance because this is 

the first model (decision step 1) in the process model and no attributes are added 

to this model. While the M-IFN approach reported the lowest accuracy measures.  
 

Approach 1-Brier Score Sensitivity Specificity F-Measure 
Baseline 0.72 0.30 0.85 0.22 
Logit 0.88 0.81 0.84 0.73 
C4.5 0.88 0.56 0.83 0.54 
Target 0.88 0.81 0.84 0.73 

Table  0.2 Baseline, C4.5, Logit and target accuracy statistics for decision step 1 (classifier level) 
for process models 1, 2 & 3 
 
Table 7.3 shows the accuracy statistics for decision step 3 (number of work 

episodes). For this model the C4.5 model also outperform the Logit model. The 

reason for the weaker performance of the Logit approach is that the data set at 

decision step 3 is highly skewed (87%). This leads to an underestimation of the 

rare class calculated by Equation 3.8 as reported by King and Zeng (2001).  
 
Decision step - 3 
More_Work_Ep Training set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.116217 0.078125 0.967328 0.120482 
C4.5 0.11485 0.171875 0.872812 0.169884 
Decision step - 3 
More_Work_Ep Test set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.156222 0.038961 0.961832 0.0631579 
C4.5 0.145401 0.181818 0.862595 0.193103 

Table 7.3 Accuracy statistics for decision step 3 for process models 1 
 

The results reported in tables 7.1 and 7.3 conform to those proposed in the 

literature. For small size datasets Logit outperforms decision tree induction 

methods. Furthermore, Logit models perform poor for highly unbalanced datasets 

(Lim et. al., 2000).  
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Table 7.4 shows a comparison between baseline and target approaches with 

C4.5 model for process model 1. The Logit model is rejected because it fails to 

compete with C4.5 model for decision step 3. The results reveal that the 

predictive performance of the C4.5 method, in process model 1, is better than the 

baseline approach. And it did not reach the upper performance bound of the 

target approach discussed in Chapter 6.  

 

Model 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.86 0.12 0.85 0.11 
C4.5 0.85 0.18 0.86 0.19 
Target 0.87 0.19 0.90 0.23 

Table 7.4 Baseline, C4.5, and target accuracy statistics for decision step 3 for process models 1 
 
 

For process model 2, the accuracy statistics and predictive performance of 

decision step 4 (number of work episodes) is shown in Table 7.5. The results 

show that as expected the predictive performance of the C4.5 model is better 

than the Logit model, since the dataset for this model is highly unbalanced.  

The C4.5 model in process model 2 performs better than C4.5 model in process 

model 1, as reported by the F-Measure. In addition, considering the Sensitivity of 

the C4.5 model in process model 2 reveals an increase in the accuracy of 

predicting the positive class (the minority class). 
 
Decision step - 4 
More_Work_Ep Training set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.234876 0.189063 0.784131 0.211429 
C4.5 0.101803 0.203125 0.908985 0.224138 
Decision step - 4 
More_Work_Ep Test set 
Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.268773 0.289063 0.755725 0.188482 
C4.5 0.147368 0.202857 0.882952 0.224179 

Table 7.5 Accuracy statistics for decision step 4 (classifier level) - process models 2 
 

This increase in accuracy can be explained by the attribute interdependency 

feature in the process model. As shown in figure 7.2 (the dashed lines arriving at 

decision step 4), the number of work episodes model in process model 2 



 155 

contains an additional attribute (work start time) in the data set. Further to justify 

that this additional attribute increase the learning ability of the model, the data set 

is analysed using the Relief feature selection technique. The results from the 

Relief method is shown in table 7.6, which demonstrates that the new attribute 

(work start time) ranks the third relevant attribute in identifying the class variable. 

 
 
 

Table 7.6 Relief feature selection results for the number of work episodes in process model 2. 
 

These results conform also with the results obtained in chapter 6, which 

concluded that attributes interdependencies between decision steps improves 

the performance of models in activity-based models.  

Positioning the performance of the C4.5 method of process model 2 on the 

ranked performance scale (Table 7.7), the results show that the performance is 

approaching the target approach performance. Moreover, considering the 

sensitivity of the C4.5 – Process model 2 indicate that it slightly performs better 

than the target approach in predicting the positive class. But overall (the F-

Measure and Brier Score) the target approach performs best. 

 

Model 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.86 0.12 0.85 0.11 
C4.5 – Process model 1 0.85 0.18 0.86 0.19 
C4.5 – Process model 2 0.85 0.20 0.88 0.22 
Target 0.87 0.19 0.90 0.23 

Table  0.7 Baseline, C4.5, and target accuracy statistics for decision step 3 for process models 1 
and 2 
 
 
Tables 7.8 show the accuracy statistics for the number of work episodes model 

(decision step 2) in process model 3. The More_Work_Ep decision model in 

process model 3 is the second decision step, where no additional attributes are 

added when the execution is reached. This indicates that the More_Work_Ep 

Relief weight Ranked attributes 
0.12439 Dur 
0.09553 Xdag 
0.09502 Start_time 
0.08923    Xarb 
0.08811    Xn_dag 
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model is the same as the More_Work_Ep model in the non-informed approach 

presented in Chapter 6. Therefore, it is expected to have similar performance. 

The accuracy statistics (Table 7.8) show that the C4.5 performs better than the 

Logit model. Moreover, comparing this with the accuracy results of process 

models 1 and 2 show that both models outperform the model in process model 3 

(Table 7.9). Although process model 3 is process model dependent approach but 

the attribute interdependency feature has proven to enhance the predictive 

performance of individual models. 
 
Decision step - 2 
More_Work_Ep Training set 

Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.113867 0.0625 0.994166 0.111475 
C4.5 0.11308 0.109375 0.873979 0.112 
Decision step - 2 
More_Work_Ep Test set 
Model Brier Score Sensitivity Specificity F-Measure 
Logit 0.146908 0.012987 0.982188 0.0235294 
C4.5 0.138436 0.142857 0.882952 0.164179 

Table 7.8 Accuracy statistics for decision step 2 (classifier level) for process models 3 
 

Model 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.86 0.12 0.85 0.11 
C4.5 – Process model 3 0.86 0.14 0.88 0.16 
C4.5 – Process model 1 0.85 0.18 0.86 0.19 
C4.5 – Process model 2 0.85 0.20 0.88 0.22 
Target 0.87 0.19 0.90 0.23 

Table  0.9 Baseline, C4.5, and target accuracy statistics for decision step 3 for process models 1, 
2, and 3 
 
The reason for this behavior is that for process model 1 the duration model is 

added as attribute to the More_Work_Ep model. And for process model 2 the 

duration and start time attributes are added. In addition, running the Relief 

feature selection method on this decision model shows that both attributes are 

relevant in predicting the class attribute. The results also show that for decision 

tree models when more attributes are added to the model the probability of 

predicting the positive class (minority class) increases, i.e. the Sensitivity 

measure. Table 7.10 summarizes the Sensitivity measure for the test set for all 

three process models. 
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More_Work_Ep Process Model 1 Process Model 2 Process Model 3 
Logit 0.04 0.29 0.01 
C4.5 0.18 0.20 0.14 

Table 7.10 Sensitivity accuracy measure for all process models 
 

The sensitivity measure approximates the probability of the positive class being 

correctly classified. In the case of the More_Work_Ep model the positive class 

(two work episode) is the rare class. As discussed above, the results (Table 7.10) 

show that in general C4.5 performed better than Logit models in predicting the 

positive class (yWo) except for process model 2. The Logit model in process 

model 2 obtained better More_Work_Ep model than all other models in all 

process models with sensitivity at 0.289 against 0.039 and 0.013 for process 

models 1 and 2 respectively. Although the dataset for this model is highly 

unbalanced, adding an extra attribute (Start time) enhances the predictive 

performance of the rare class for the Logit model. This means that, in the Logit 

model, the start time attribute has a high effect on the predictor (More_Work_Ep).  

In conclusion for discrete choice models, it is recommended to use Logit model 

for decision model 1 in all process models. In addition, considering process 

model 1, it is recommended to use the C4.5 model for decision model 3. Process 

model 2, in predicting the rare class (2 work episodes) performs best when using 

the Logit method for all discrete choice models. However, when considering the 

overall performance, it is also recommended to use the C4.5 model for decision 

model 3. For decision model 3, the Logit model does not perform well at decision 

model 3 and thus, the C4.5 model is preferable.  
 

Continuous choice models 
CART decision trees are used in all continuous decision models for all process 

models. The models are evaluated using the RAE measure. The results of the 

models are shown in Tables 7.11, 7.12 and 7.13 for process models 1, 2 and 3 

respectively. Considering the results, we notices that all models in all decision 

steps and for all process models reported approximately similar RAE. This can 

be explained by the numeric nature of the models and the derivation of rules of 
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continuous models adapted in ALBATROSS, which assumes a normal 

distribution at each leaf node in continuous choice decision trees.  
 

Decision Step Name Training set Test set 

2 Work_Dur 19% 20% 
4 Ratio 20% 19% 
5 Break_Time 52% 65% 
6 Begin_Time 8% 10% 

Table 7.11 RAE for CART continuous choice classifiers for process model 1 
 

Decision Step Name Training set Test set 

2 Work_Dur 19% 20% 
5 Ratio 18% 22% 
6 Break_Time 52% 66% 
3 Begin_Time 10% 11% 

Table 7.12 RAE for CART continuous choice classifiers for process model 2 
 

Decision Step Name Training set Test set 

5 Work_Dur 20% 20% 
3 Ratio 19% 23% 
4 Break_Time 52% 71% 
6 Begin_Time 8% 10% 

Table 7.13 RAE for CART continuous choice classifiers for process model 3 
 

The RAE for all continuous models for process models 1, 2, and 3 and for the 

baseline and target approaches are shown in Table 7.14. It is noted that an 

increase in the RAE is reported for the work duration model (decision step 5) in 

process model 3. Although additional attributers are added to this model 

(attribute interdependency feature), which proved to improve the predictive 

performance of individual decision step models. But the work duration model in 

process model 3 reported about the same RAE. To further understand this plight, 

the dataset for this model is analysed using the Relief feature selection 

technique. The results reveal that none of the added attributes ranked among the 

first 10 most relevant attributes. In addition, the CART decision tree for this 

model is analysed by investigating the attributes that are selected for splitting of 
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nodes. And it was revealed (Figure 7.4) that additional attributes, which result 

from changing the order of this decision step, are not active (not used for splitting 

of the decision tree).  

 

Model Baseline Process 
Model 1 

Process 
Model 2 

Process 
Model 3 Target 

Work_Dur 26% 20% 20% 20% 20% 
Ratio 31% 19% 22% 23% 20% 
Break_Time 79% 65% 66% 71% 61% 
Begin_Time 12% 10% 11% 10% 10% 

Table  0.14 Continuous models test sets RAE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 7.4 Mining schema for the work duration model (decision step 5) PMML CART decision 
tree in process model 3. 
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Figure 7.4 illustrates a snapshot from the decision tree PMML model’s 

MiningSchema section, which describes the attributes names and usage types 

(usageType). According to the PMML XML schema, the usageType field can 

contain three values (Guazelli et al. 2009): 

-   “active”: field used as input (independent field). 

-   “predicted”: field whose value is predicted by the model. 

- “supplementary”: field holding additional descriptive information. 

Supplementary fields are not required to apply a model. They are provided as 

additional information for explanatory purpose, though. When some field has 

gone through preprocessing transformations before a model is built, then an 

additional supplementary field is typically used to describe the statistics for the 

original field values. 

The Start time model reported approximately similar RAE in all process models, 

with a slight increase in favour of process model 2. Since it has moved up in the 

process model, which implies that its data set contained less attributes (decision 

outcomes).  

Considering the Break time model, the RAE reported lowest in process model 1, 

and around the same RAE in process models 2. The slight increase in the RAE 

in process model 3 is because its data set contains less attributes. 

Finally the Ratio model obtained less RAE in process model 1 and highest in 

process model 3. The reason for the RAE increase in process model 3 is 

because no decision outcomes are added. Furthermore, in process model 2, 

where the RAE is expected to decrease since an extra attribute (Start time) is 

added to the data set, but it is noted that the RAE has increased. Assessing the 

PMML model for this model, the extra is marked as supplementary and so it is 

not used in the splitting of the decision tree model.  

7.3.2 Activity Pattern Level 
 

The second validation level for the three process models is assessed by 

measuring how similar are observed with predicted activity pattern sequences. 

The SAM measure is used for this purpose since it works by calculating the effort 
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(distance) needed to equalize two sequences. It is important to note that the 

analysis in this thesis is performed on the work process model only. Hence, the 

SAM distance is calculated for all activities sequences and for work activity 

sequences for each process model’s schedule outcome. The lower the SAM 

distance the closer the predicted activity patterns to the observed ones. The 

confusion matrices for observed versus predicted sequences lengths for process 

models 1, 2, and 3 are presented in Tables 7.15, 7.16, and 7.17 respectively. 

The confusion matrices for process model 1 show that the C4.5 model is able to 

predict work activity sequences lengths that are closer to the observed ones. 

Except for sequences with two symbols, the Logit model is more accurate. For 

process models 2 and 3, the confusion matrices show that for work activities with 

one symbol (no work activity) are comparable. However, the Logit model is more 

accurate in predicting work sequences with two and four symbols.  

 
 

 
Training 

set Predicted  Test set Predicted 

C4.5 Sequence 
Length 1 2 4 Total C4.5 Sequence 

Length 1 2 4 Total 

O
bs

er
ve

d 1 0.80 0.17 0.04 0.52 

O
bs

er
ve

d 1 0.82 0.17 0.01 0.52 

2 0.39 0.54 0.07 0.36 2 0.41 0.49 0.10 0.32 

4 0.46 0.46 0.09 0.12 4 0.35 0.52 0.13 0.16 
 Total 0.61 0.33 0.05 589.00  Total 0.61 0.33 0.06 298.00 

 
Training 

set Predicted 
 

Test set Predicted 

Logit Sequence 
Length 1 2 4 Total Logit Sequence 

Length 1 2 4 Total 

O
bs

er
ve

d 1 0.73 0.25 0.02 0.52 

O
bs

er
ve

d 1 0.72 0.28 0.00 0.52 

2 0.12 0.86 0.02 0.36 2 0.09 0.90 0.01 0.32 

4 0.10 0.84 0.06 0.12 4 0.08 0.88 0.04 0.16 
 Total 0.44 0.54 0.02 589.00  Total 0.42 0.57 0.01 298.00 
Table 7.15 Process model 1 confusion matrix for work activity sequences length 
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Training 

set Predicted 
 

Test set Predicted 

C4.5 Sequence 
Length 1 2 4 Total C4.5 Sequence 

Length 1 2 4 Total 

O
bs

er
ve

d 1 0.78 0.19 0.03 0.52 

O
bs

er
ve

d 1 0.79 0.18 0.03 0.52 

2 0.43 0.52 0.05 0.36 2 0.36 0.56 0.07 0.32 

4 0.47 0.44 0.09 0.12 4 0.29 0.65 0.06 0.16 
 Total 0.62 0.34 0.04 589.00  Total 0.57 0.38 0.05 298.00 

 
Training 

set Predicted 
 

Test set Predicted 

Logit Sequence 
Length 1 2 4 Total Logit Sequence 

Length 1 2 4 Total 

O
bs

er
ve

d 1 0.73 0.18 0.09 0.52 
O

bs
er

ve
d 1 0.72 0.23 0.05 0.52 

2 0.12 0.67 0.21 0.36 2 0.09 0.69 0.22 0.32 

4 0.10 0.68 0.22 0.12 4 0.08 0.79 0.13 0.16 
 Total 0.44 0.41 0.15 589.00  Total 0.42 0.47 0.11 298.00 
Table 7.16 Process model 2 confusion matrix for work activity sequences length 
 
 

 
Training 

set Predicted  Test set Predicted 

C4.5 Sequence 
Length 1 2 4 Total C4.5 Sequence 

Length 1 2 4 Total 

O
bs

er
ve

d 1 0.79 0.19 0.02 0.52 

O
bs

er
ve

d 1 0.79 0.21 0.01 0.52 

2 0.40 0.54 0.06 0.36 2 0.34 0.60 0.05 0.32 

4 0.41 0.56 0.03 0.12 4 0.35 0.56 0.08 0.16 
 Total 0.60 0.36 0.03 589.00  Total 0.57 0.39 0.03 298.00 

 
Training 

set Predicted  Test set Predicted 

Logit Sequence 
Length 1 2 4 Total Logit Sequence 

Length 1 2 4 Total 

O
bs

er
ve

d 1 0.73 0.17 0.09 0.52 

O
bs

er
ve

d 1 0.72 0.23 0.05 0.52 

2 0.12 0.66 0.23 0.36 2 0.09 0.67 0.24 0.32 

4 0.10 0.68 0.22 0.12 4 0.08 0.75 0.17 0.16 
 Total 0.44 0.40 0.16 589.00  Total 0.42 0.46 0.13 298.00 
Table 7.17 Process model 3 confusion matrix for work activity sequences length 
 

The SAM distances between observed and predicted activity pattern sequences 

are shown in Tables 7.18, 7.19 and 7.20. As discussed in chapter 6, for process 

model 1 (the original process model) the C4.5 model obtained lower SAM 

distances for all activities and work activity patterns. The results also reveal that 
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the SAM measure for process model 1 for all activities and work activity patters 

are lower than the SAM measure for the other two process models.  

Considering the SAM distances for all activity patterns, the SAM distances are 

approximately the same for process models 2 and 3. And in general the C4.5 

models reported lower SAM distances than the Logit models.  
 

 SAM distance all activities  SAM distance work activities  
 Logit C4.5 Logit C4.5 
Training 4.51 4.12 0.59 0.53 
Test 4.35 3.94 0.59 0.52 

Table  0.18 All activities and work activity sequences SAM distances - process model 1 
 

 SAM distance all activities  SAM distance work activities  
 Logit C4.5 Logit C4.5 
Training 4.68 4.64 0.58 0.59 
Test 4.61 4.65 0.58 0.59 

Table 7.19 All activities and work activity sequences SAM distances - process model 2 
 

 SAM distance all activities  SAM distance work activities  
 Logit C4.5 Logit C4.5 
Training 4.64 4.54 0.82 0.55 
Test 4.81 4.63 0.81 0.57 

Table 7.20 All activities and work activity sequences SAM distances - process model 3 
 

For the work activity pattern, the SAM distances of the C4.5 models are lower 

than those of the Logit models for all process models. Process model 1 obtained 

better SAM distance at 0.53, than process models 2 and 3 at 0.59 and 0.55 

respectively for training sets. And 0.52 against 0.59 and 0.57 for test sets. The 

SAM distance for the Logit models of process models 1 and 2 are almost similar 

(0.59 and 0.58) and lower than the SAM distance reported in process model 3 at 

0.81 for the training set. This can be explained because the number of work 

episodes (decision step 2) in process model 3 is trained without the extra 

features (attribute dependency feature) and so, mainly predicts one work activity. 

This means, on average more effort is needed to equalize the predicted and 

observed work activity sequences.  
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 Observed Baseline Process 
model 1 

Process 
model 2 

Process 
model 3 Target 

All 
activities 5.02 3.3 3.8 (C4.5) 3.7 (C4.5) 3.5 (C4.5) 3.94 (C4.5) 

Work 
Activities 1.7 1.2 1.5 (C4.5) 1.4 (C4.5) 1.55 (C4.5) 1.5 (C4.5) 

Table 7.21 Mean length of all and work activities 
 
Table 7.12 shows the lengths of sequences for the baseline and target 

approaches compared to sequences lengths of process models 1, 2, and 3. The 

results reveal that sequences lengths are comparable, having the M-IFN 

approach as the baseline model. Finally, the validation at the activity patterns 

shows that changing the order of decision steps, while maintaining attributes 

interdependencies, does not affect the predictive performance. In conclusion, as 

measured by SAM, the validation at the activity pattern level, the SAM distance 

cannot detect local changes (changing the order of decision models) in the 

process model. 

7.3.3 Work Activity Trip Matrix and Trips Start Time Level Accuracy 
Analysis (Spatial and Temporal Resolutions) 
 
At this validation level, the observed and predicted work trip origin-destination 

(OD) matrices are compared via a correlation coefficient. In addition, a 

correlation coefficient is evaluated between observed and predicted work trips 

start times. The correlation coefficient measures the correspondence between 

the observed and predicted number of trips. Tables 7.22, 7.23 and 7.24 illustrate 

the performance of the training and test sets of process models 1, 2 and 3 

respectively.  

The results at the work activity trip matrix level, the three process models 

reported comparable correlation coefficients. As reported in previous chapters, 

C4.5 models outperformed Logit models, and this applies for all process models. 

C4.5 models obtained 0.84, 0.83, and 0.82 correlation coefficients in the training 

sets against 0.81, 0.81, and 0.82 in Logit models for process models 1, 2, and 3 

respectively.  
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 Work activity trip matrix level Work activity start time per hour of the day 
Dataset Logit C4.5 Logit C4.5 
Training 0.81 0.84 0.87 0.90 
Test 0.80 0.82 0.77 0.80 

Table 7.22 Work activity trip matrix and start time per hour of the day correlation coefficients for 
process model 1 
 

 Work activity trip matrix level Work activity start time per hour of the day 
Dataset Logit C4.5 Logit C4.5 
Training 0.81 0.83 0.87 0.90 
Test 0.80 0.84 0.83 0.92 

Table  0.23 Work activity trip matrix and start time per hour of the day correlation coefficients for 
process model 2 
 
 Work activity trip matrix level Work activity start time per hour of the day 
Dataset Logit C4.5 Logit C4.5 
Training 0.82 0.82 0.85 0.90 
Test 0.80 0.83 0.81 0.91 

Table  0.24 Work activity trip matrix and start time per hour of the day correlation coefficients for 
process model 3 
 

The work activity start times were extracted from predicted output schedules for 

each process model. Then the correlation coefficients between observed and 

predicted work activity start times were calculated. The results shown in Tables 

7.12, 7.13 and 7.14 illustrates that the three process models reported about the 

same performance for the two techniques (C4.5 and Logit). The C4.5 

outperformed the Logit model in all process models with 0.9, opposed to around 

0.87 for Logit models in the training sets. While for the test sets C4.5 reported 

0.8, 0.92, and 0.91 and 0.77, 0.83, and 0.81 in Logit models for process models 

1, 2 and 3 respectively.  

Table 7.25 summarises the correlation coefficient for baseline, target, process 

model 1, process model 2, and process model 3 for work activity trips and work 

activity start time. All approaches reported approximately similar results for the 

work activity trips. The validation of the models at this level, reveal that at this 

aggregated level is not able to detect local changes i.e. changing the order of 

decision steps or training the models independently.  
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 Baseline Process 
model 2 

Process 
model 2 

Process 
model 3 Target 

OD Work activity trips 0.83 0.82 0.84 0.83 0.82 
Work activity start time 0.82 0.8 0.92 0.91 0.85 

Table 7.25  Spatial and temporal correlation coefficients 
 

7.4 Conclusions 
 

Computational process rule-based activity-based models are based on a set of 

rules which constitute the scheduling process of the simulation model. In 

ALBATROSS as a computational rule-based approach to modeling activity-travel 

patterns use 26 decision steps. This sequence of decision rules forms the 

scheduling engine which is the core of the ALBATROSS system. Each decision 

rule, might utilize an induction method, such as, a decision tree, Logit models, or 

any other induction method that is capable of predicting values as rules. As a 

result, the scheduling process model together with the decision rules models 

generate a feeling of a black box. In which the system is viewed solely in terms of 

its input, output, and individual decision rules (steps).  

To gain full understanding of the ALBATROSS scheduling engine and its 

processes, the work activity process model is investigated. In addition to the 

original work activity process model in ALBATROSS, two work activity process 

models are developed in the context of the FEATALB framework. The newly 

developed process models (data representation) are implemented through the 

disposition of decision steps or rules within the process model. Moreover, two 

induction methods are utilized for discrete choice decision rules, namely C4.5 

and Logit models. While the Classification and Regression Trees (CART) was 

employed for continuous choice decision rules.  

The analysis was conducted by running simulations using each process model 

and for each induction method. Furthermore, validation of models for all process 

models is performed at the individual decision rule level, at the activity pattern 

sequence level, and at the work trip OD and work activity start times level. 

Developing other process models resulted in shifting the occurrence of the 
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activation dependency feature within process models.  Additionally, the datasets 

used for training the models in decision steps’ models were modified due to the 

attribute dependency feature.  

 

The results of the analysis conclude that using the original process model 

(process model 1) it is recommended to use the Logit model for the first decision 

step (Work). At the individual classifier level validation it was revealed that the 

Logit model obtained the highest sensitivity and F-Measure. While for the third 

decision model (More_Work_Ep) the Logit model proved to be an outcast. In 

addition, using the C4.5 decision tree method, results in improving the predictive 

performance of the model. Consequently, for decision step 1 (Work) in process 

model 2, validation results at the individual classifier level, show that it is also 

preferable to use the Logit method.  However, the Logit method is also an 

outcast for the More_Work_Ep model. Therefore, using the C4.5 method, results 

in better predictive performance. Process model 3 reported slightly weaker 

performance than other process models.  

 

The validation results of the models were consistent to the results reported in 

previous chapters with regard to the attribute interdependencies between 

decision steps. However, another factor that affects the predictive performance of 

process models is the relevance of the decision outcome that is added in 

subsequent decision models in predicting the class variable. In general process 

models with C4.5 models outperformed process models simulated with Logit 

models. The results also suggest that the disposition of decision steps or 

experiment other data representations within the work activity process model 

does not lead to significantly improve the predictive performance of the model. 

This is confirmed by the validation at the aggregated levels (activity pattern and 

Spatial and temporal levels). Hence, using the currently implemented work 

activity process model can achieve satisfactory work activity schedules. 
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Chapter 8    

Sensitivity Analysis of process models in 
FEATALB framework 
 
In previous chapters, the work activity process model was experimented and 

analysed in an attempt to obtain better performance. This was performed using 

two approaches, acquiring better classification models and by obtaining better 

data representation. In both approaches, the decision tree models trained at 

each decision steps were generated by setting up the minimum cases at leaf 

nodes at 30 cases. This minimum number of cases was chosen to avoid over-

fitting. In addition, the stochastic approach for the action assignment rule used in 

ALBATROSS was also adapted throughout the experiments and analyses 

conducted. The results obtained revealed that for some steps decision tree 

models outperformed Logit models. In this chapter, a sensitivity analysis of the 

decision tree models will be performed to assess the performance of the 

FEATHERS / ALBATROSS model. First, the simulation model is run using a 

deterministic action assignment rules at leaf nodes rather than the stochastic 

approach. Second, the decision tree models will be trained while setting the 

minimum number of cases at leaf nodes to lower than 30 cases. This allows for 

evaluating the predictive performance of the model and test whether the model is 

sensitive to changing such parameters or not for the Flemish data. 

This chapter is structured as follows. In the next section, the main concepts of 

deterministic and probabilistic action assignment rules are discussed. In addition, 

issues related to decision tree learning, such as setting the minimum number of 

cases at leaf nodes and its effect on model performance, over-fitting and under-

fitting are explained. Followed by experimenting the deterministic action 

assignment rules in the models and validation results are discussed. Then the 

analysis of how sensitive the models of the work activity process model are to the 

minimum number of cases at leaf nodes. Finally the chapter ends with conclusion 

and discussion. 
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8.1 Introduction 
 

The statistical literature on decision tree classification focuses on data 

segmentation and recognition of interactions between variables prior to modeling. 

In addition, attention has been paid to methods of validation of resulting 

classification models. However, deriving rules from decision trees (also called 

action-assignment rules) that are used for deriving predictions from a decision 

tree model is usually deterministic. The deterministic action assignment rules use 

the plurality rule. The plurality rule records for each leaf node the modal action in 

the training set and classify this action to each new case at that node (Rasouli et. 

al, 2011). In their study, Arentze and Timmermans (2003) argued that 

deterministic action assignment rules do not meet the requirements of activity-

based travel behavior. Deterministic rules do not reproduce residual variances 

after fitting the data, and as a result tend to generate biased choice distributions 

at the aggregate level, especially for skewed data sets. Therefore, they 

developed a probabilistic action assignment rules for discrete choice and 

continuous decision tree models (Arentze and Timmermans, 2003). However, the 

proposed probabilistic action assignment rules did not solve the problem of 

producing bias free predictions. The analyses in previous chapters were 

conducted using the probabilistic action assignment rules developed for 

ALBATROSS using the Flemish data i.e. using the FEATALB framework. To this 

end, the sensitivity of the model is appraised by applying a deterministic action 

assignment rule for decision tree (discrete choice and continuous) models.  The 

analysis is performed using C4.5 decision tree models at the six decision steps in 

the process model. All models are trained with pruning and setting the minimum 

cases at leaf nodes to 30 cases, i.e. using the same C4.5 decision tree models 

used in Chapter 6. 

Another issue of concern to perform a sensitivity analysis is the minimum number 

of case at leaf nodes (30 in ALBATROSS). However, there is no clear argument, 

why it was set to 30, except to avoid over-fitting as argued by Arentze and 

Timmermans (2005). The minimum number of cases per leaf node is an 
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important option in decision tree training. This option allows forcing the lowest 

number of instances that can constitute a leaf node. The higher this number the 

more general the tree. So lowering this number will produce a more specific tree 

that fits the cases in the training set. On the other hand, increasing the minimum 

number of cases per leaf node produces more generalized trees. Nevertheless, 

obtaining a preferred number is hard to achieve and usually depends on the 

distribution of the class variable.  

Therefore, in this chapter the decision tree parameters i.e. the minimum number 

of instances at leaf nodes is experimented to attempt to fine tune the models to 

obtain a preferred value. It is noteworthy that by increasing the minimum number 

of cases up to a certain level results in model under-fitting. Under-fitting 

generates models that are too simple so both training and test errors are large. 

8.2 Deterministic Action Assignment Rules 
 

As discussed in Chapter 3 (section 3.4) the action assignment rules, for discrete 

and continuous models, developed in ALBATROSS suggest probability 

distribution between classes. This probabilistic action assignment rule was 

developed by Arentze and Timmermans (2003) to serve the purposes of 

generating bias free predictions and consider the effects of space-time 

constraints of activity-based models. Hence, the developed probabilistic action 

assignment rule takes the space-time decision constraints into account but do 

not solve generating bias free predictions (Arentze and Timmermans, 2003). The 

same approach (probabilistic action assignment rules) is used in the FEATALB 

framework to predict schedules for the Flemish population. For the purpose of 

the sensitivity analysis of the work activity process model a deterministic action 

assignment rules for discrete and continuous models is applied. The models are 

compared with the models generated using the probabilistic approach. This 

allows for assessing the predictive performance of models at individual classifiers 

level and at aggregated level. And how sensitive are rule-based activity-based 

models to deterministic action assignment rules. 
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As discussed in the Introduction of this chapter, the deterministic action 

assignment rules approach use the plurality rule. The plurality rule implies that 

the group with the highest representation determines the class assignment at leaf 

nodes. To illustrate this, consider the C4.5 decision tree model for the work 

decision step (Figure 8.1). If a new case is to be classified with the wstat variable 

values is set to 0. The model evaluates this variable at the root node going down 

to reach a leaf node (encircled in red) where a decision is made.  

The information provided by this leaf node (0 (1535.0 / 36.0)), is read as follows, 

0 is the predicted class, 1535.0 is the number of cases belonging to class 0 (no 

work) and 36.0 is the number of cases belonging to the opposite class (1: work). 

Hence, instead of using the probabilistic action assignment rule which calculates 

0.98 as the probability of predicting class 0 and 0.02 for predicting class 1, the 

predicted value will always be 0. 

Similarly for continuous decision trees, to predict a numeric value at a leaf node, 

the average value of the class variables at this leaf node is predicted. 

The analysis is performed using C4.5 decision trees for discrete choice models 

and CART decision trees for continuous models.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1 Work activity (decision step 1) C4.5 decision tree model. 
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The experiments were setup by running FEATHERS utilizing a decision tree 

model (C4.5 for discrete and CART for continuous models) at relevant decision 

steps. The model is validated at three levels, the individual classifier level, the 

activity pattern level, and the work activity trip matrix and work activity start time 

level. In the next subsections the model comparison criterion and validation 

results are discussed.   
 

Classifier level validation 
The validation results for discrete choice models are reported in Table 8.1. The 

results show that, for the Work model (decision step 1) using the deterministic 

approach, the predictive performance of predicting the positive class (1), which is 

the minority class has increased. This is detected by considering the Sensitivity 

measure. Sensitivity approximates the probability of the positive class being 

correctly classified. As reported in Chapter 7 (Table 7.1), the sensitivity of the 

training set for the work model, using the probabilistic approach, reported at 0.60 

compared with 0.65 for the deterministic approach. As for the test set, the 

deterministic approach obtained 0.62 against 0.56 for the probabilistic action 

assignment rule. In addition, considering the F-Measure reveals that using the 

deterministic action assignment rules enhance the overall performance of the 

Work model. As shown in Table 8.1 the F-measure reported 0.75 and 0.73 for 

training and test sets respectively, compared to 0.60 for training set and 0.55 for 

the test set. 

With regard to the more work episodes (More_Work_Ep) at decision step 3, it is 

noted that adapting the deterministic action assignment rules in the C4.5 model 

always predicts a one work episode (0). This can be explained because the data 

set for this model is highly skewed (87%) towards the one work episode class 

(0). Therefore, at leaf nodes the plurality rule dictates that the model always 

predict 0. This can spotted in the sensitivity statistic at 0 for both the training and 

test sets, while in the probabilistic action assignment rules the sensitivity of the 

model was at 0.24 and 0.19 for training and test sets respectively. The NA (Not 

Available) in the F-Measure indicates that the values cannot be computed since 
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the TP and FP values used to calculate the precision (Equation3.16) for this 

approach is zero.  
 

Decision step - 1 Work Brier Score Sensitivity Specificity F-Measure 
Training set 0.114957 0.646405 0.811834 0.747535 
Test Set 0.115108 0.618976 0.805534 0.724508 
Decision step - 3 
More_Wrok_Ep Brier Score Sensitivity Specificity F-Measure 

Training set 0.108202 0 1 NA 
Test Set 0.134237 0 1 NA 

Table 8.1 Deterministic discrete choice classifiers accuracy statistics for Work and 
More_Work_Ep models 
 

Table (8.2) shows the accuracy of decision step 1 (Work) in the deterministic 

approach compared to the baseline and target approaches. We notice that the 

performance of the deterministic approach is better than the baseline approach. 

But the target approach still outperforms the deterministic approach. Fro decision 

step 3 the results (Table 8.3) show that adapting a deterministic action 

assignment rule results in an outcast. The results show that using a probabilistic 

action assignment rule for simulating activity-based models increase the 

predictive performance.  This confirms the findings obtained by Arentze and 

Timmermans (2003).  
 

Approach 1-Brier Score Sensitivity Specificity F-Measure 
Baseline 0.72 0.30 0.85 0.22 
C4.5 0.88 0.62 0.81 0.72 
Target 0.88 0.81 0.84 0.73 

Table  0.2 Baseline, deterministic-C4.5, and target accuracy statistics for decision step 1  
 

Model 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.86 0.12 0.85 0.11 
C4.5  0.86 0 1 NA 
Target 0.87 0.19 0.90 0.23 

Table  0.3 Baseline, deterministic-C4.5, and target accuracy statistics for decision step 3  
 
For continuous models, the validation results are shown in Table 8.4. The 

performance of continuous choice models was assessed by means of the RAE. 

As depicted in Table 8.4 results shows that for decision steps 2, 4 and 6, the 

RAE is 21, 22 and 10 % respectively, for training sets, and 22, 22 and 10 % for 
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test sets, while for decision step 5 the RAE reported 55% for training and 70% for 

test set. It is noted that these results are comparable with the RAE reported by 

the CHAID continuous decision trees for the stochastic approach as reported in 

Table 7.11. Furthermore, the deterministic approach outperformed the M-IFN 

approach for continuous models (Table 6.2), while in the target approach the 

RAE is still smaller. As shown in Table 8.5, the Baseline, deterministic and 

Target (stochastic)approaches are reported. 

 

Decision 
Step Name Training set Test set 

2 Work_Dur 21% 22% 
4 Ratio 22% 22% 
5 Break_Time 55% 70% 
6 Begin_Time 10% 10% 

Table 8.4 RAE for deterministic continuous classifiers  
 
 

Model Baseline Deterministic Target 
Work_Dur 26% 22% 20% 
Ratio 31% 22% 20% 
Break_Time 79% 70% 61% 
Begin_Time 12% 10% 10% 

Table  0.5 RAE for Baseline, Deterministic and target approaches. 
 
Activity pattern level 
The average length of all activities is 3.43 symbols and 1.42 symbols for work 

activities for the training set. While the average length of all activities is 3.45 and 

1.44 for work activities for the test set. Using the deterministic action assignment 

rules, the C4.5 models predicted shorter activity patterns. Compared to 3.9 

symbols for all work activities and 1.5 for work activities with the probabilistic 

rules. Recall that the average observed activity pattern length is 5.16 and the 

average observed work activity length is 1.7 symbols. In general, the 

deterministic approach predicted shorter activity patterns. This can be explained 

by the fact that at decision step 3 (More_Work_Ep) always predicted one work 

episode.  
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Table 8.6 shows the confusion matrices for the work activity sequences lengths 

of the deterministic approach. The results indicate that for the training set, the 

deterministic model predicted work sequences with one and two symbols only. 

This means that either no work activities are predicted or work activities with only 

one episode are predicted. And this explains the shorter work activity lengths. 

The SAM distance (Table 8.7) for all activities is 4.5 and 4.68 for training and test 

sets respectively. As for the work activity pattern the SAM distance is 0.52 for the 

training set and 0.58 for the test set.  
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Table 8.6 Deterministic confusion matrix for work activity sequences length 
 

 All Activities Work Activities 
Training 4.51 0.52 
Test 4.7 0.58 

Table  0.7 Deterministic SAM distance for all and work activities 
 
Table 8.8 summarises the sequences lengths of the baseline, deterministic, and 

the target approaches. The results indicate that the deterministic approach 

generates activities (all and work) that are longer than the M-IFN and shorter 

than activities generated by the target approach. 
 
 Baseline Deterministic Target 

All activities 3.3 3.45 3.94 (C4.5) 

Work Activities 1.2 1.44 1.5 (C4.5) 

Table 8.8 Mean Length of all and work activity sequences lengths 
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The validation at the activity pattern level further confirms that using a 

probabilistic action assignment rule for rule-based activity-based models 

enhances the predictive performance of models.  
 
 
Work Activity Trip Matrix and Trips Start Time Level Accuracy Analysis 
(Spatial and Temporal Resolutions) 
 

Table 8.9 shows the correlation coefficient between observed and predicted work 

trip OD matrices for the model using the deterministic action assignment rules. 

The correlation coefficient for the work trips OD matrices is calculated at 0.81 for 

the training set and 0.83 for the test set. While for the work activity start time per 

hour of the day the correlation coefficient reported quite high correlation 

coefficient with 0.93 and 0.91 for training and test sets respectively. The results 

obtained at this level are comparable to those obtained using the probabilistic 

action assignment rules. 
 

 
Work activity trip matrix 

level 
Work activity Start time 

level 
Training 0.81 0.94 
Test 0.83 0.91 

Table  0.9 Correlation Coefficients for work activity trips OD matrices and work activity start time 
per hour of the day 
 
 
 Baseline Deterministic Target 

OD Work activity trips 0.83 0.81 0.82 

Work activity start time 0.82 0.91 0.85 

Table  0.10 Spatial and temporal correlation coefficients 
 
 

8.3 Decision Trees Classification methods parameters (pruning, 
minimum cases at leaf nodes) 
 

All models in the FEATHERS / ALBATROSS models are trained by setting the 

minimum number of training cases at leaf nodes to 30. This number was 

obtained from original work done by the developers of ALBATROSS. 
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Nevertheless, it worked fine for the Dutch data. The analyses performed in 

previous chapters involved also training all decision tree models by setting the 

minimum number of cases at leaf nodes to 30. However, increasing or 

decreasing this number might result in better predictive performance, especially 

when using the Flemish data using ALBATROSS model. 

In decision tree learning, the minimum number of cases at leaf nodes is a 

stopping criterion for decision tree growing. It is an important parameter, as it 

dictates the lowest number of training cases in a leaf node. If this number is low 

the resulting decision tree model is more specific to the training cases and this 

might lead to over-fitting. Over-fitting occurs when the induction algorithm 

generates a decision tree that perfectly fits the data in the training data set but 

lacks the capability of generalization of instances not present in the training set 

(Witten and Frank, 2005). Over-fitting is considered a problem in decision tree 

learning, because it results generating large rule sets and/or rules with very low 

predictive accuracy for unseen data (Witten and Frank, 2005). One solution to 

this problem is pruning, and so all decision tree models used in the analyses are 

trained with the pruning option turned on. Moreover, increasing the minimum 

number of cases at leaf nodes results in generating more generalized decision 

tree models and hence, helps to avoid over-fitting. However, there is no preferred 

method to achieve the best value for this parameter. For the purpose of the 

analysis in this chapter the minimum number of cases at leaf nodes will be 

experimented. The models are trained by increasing/decreasing this number to 

more/less than 30 cases and then investigate the resulting models. Furthermore, 

validate the models against test sets in an attempt to assess how sensitive the 

work activity process model to this parameter.  

At first the models are trained by increasing the minimum number of instances at 

leaf nodes to 40. For decision steps (Work model), this results in under-fitting as 

the resulting model is similar to the M-IFN model explained in Chapter 6, with a 

decision tree model of two levels. And the validation results presented in Chapter 

6 suggests that the C4.5 model with 30 as the minimum number of cases 

outperformed the M-IFN. Thus, increasing this number for this model is not 
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expected to enhance the performance. Considering the model at decision step 3 

(More_Work_Ep) when training the model with a minimum number of cases at 

40, results in a decision tree model with only one node, which always predict 0 

class (one work episode). This model is similar to the deterministic action 

assignment rules model discussed above. Hence, increasing this number for this 

model will not increase the predictive performance as well. 

Given that increasing the minimum number of case results in models that are not 

expected to increase the performance, the models are trained by decreasing the 

number of cases to 20 and 5 cases.  For ease of reference the models trained 

with a minimum number of cases of 30, 20, and 5 cases will be referred to as 

C4.5 M-30 (model generated in Chapter 6), C4.5 M-20 and C4.5 M-5 

respectively. In the next subsections the validation of both models are discussed 

in more details. 
 

Classifier level validation 
 

At individual classifier level, considering the Work model at decision step 1 

(Table 8.11) it is shown that both models reported approximately similar 

performance with a slight increase in favour of the C4.5 M-20 model. It is also 

noteworthy that drop in the accuracy in the test set is not significant especially in 

the C4.5 M-20. And this implies that generating a more generalized decision tree 

model, enhance model’s performance. In addition, comparing the validation 

results with those obtained for the C4.5 M-30 model is also comparable with the 

C4.5 M-20 model. As the F-Measure and Brier Score for the C4.5 M-30 reported 

0.60 and 0.115 respectively for the training set and an F-measure of 0.55 and 

0.115 Brier Score for the test set.   

With regard to the More_Work_Ep model at decision step 3 (Table 8.12), one 

can note that again both models obtained comparable results with a slight 

increase in performance for the C4.5 M-20 model. However, the C4.5 M-30 

model, obtained in Chapter 7 (Tables 7.1 & 7.2), outperformed both the C4.5 M-



 180 

20 and C4.5 M-5 models. Hence, for such highly unbalanced data set it seems 

30 is the preferred number of minimum cases at leaf nodes.   

 
Decision step - 1 
Work Training set 

Model Brier Score Sensitivity Specificity F-Measure 
C4.5 M-20 0.111059 0.602726 0.839053 0.615614 
C4.5 M-5 0.113725 0.609533 0.848126 0.610152 
Decision step - 1 
Work Test set 

Model Brier Score Sensitivity Specificity F-Measure 
C4.5 M-20 0.116325 0.562753 0.833974 0.577362 
C4.5 M-5 0.122238 0.557734 0.843966 0.551724 

Table 8.11 C4.5 M-20 and M-5 Discrete choice classifiers accuracy statistics for the Work model 
 

Decision step - 3 
More_Work_Ep Training set 

Model Brier Score Sensitivity Specificity F-Measure 
C4.5 M-20 0.0825478 0.155738 0.879813 0.152 
C4.5 M-5 0.108202 0.147368 0.905484 0.125561 
Decision step - 3 
More_Work_Ep Test set 

Model Brier Score Sensitivity Specificity F-Measure 
C4.5 M-20 0.111752 0.152542 0.872774 0.132353 
C4.5 M-5 0.134237 0.169811 0.888041 0.138462 

Table  0.12 C4.5 M-20 and M-5 Discrete choice classifiers accuracy statistics for the 
More_Work_Ep model 
 

The baseline and target approaches accuracies (Table 8.13) for decision step 1 

shows that they still serve as the lower and upper performance boundaries. 

Similarly for decision step 3 (Table 8.14) the accuracy measures, specifically the 

sensitivity and the F-Measure suggest that the M-IFN approach is the baseline 

performance model and the target approach outperforms the C4.5 M-5 and C4.5 

M-20 models. 

 

Approach 1-Brier Score Sensitivity Specificity F-Measure 
Baseline 0.72 0.30 0.85 0.22 
C4.5 M-5 0.88 0.55 0.83 0.55 
C4.5 M-20 0.88 0.56 0.84 0.58 
Target 0.88 0.81 0.84 0.73 

Table  0.13 Baseline, deterministic-C4.5, and target accuracy statistics for decision step 1  
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Model 1-Brier Score Sensitivity Specificity F-Measure 
Base line 0.86 0.12 0.85 0.11 
C4.5 M-5 0.87 0.17 0.88 0.13 
C4.5 M-20 0.89 0.15 0.87 0.14 
Target 0.87 0.19 0.90 0.23 

Table 8.14 Baseline, deterministic-C4.5, and target accuracy statistics for decision step 3  
 

Activity pattern level 
 
Tables 8.15 and 8.16 show the confusion matrices for work activity sequences 

lengths. The results show that both models (C4.5 M-20 and C4.5 M-5) 

approximately obtained similar results, with the C4.5 M-5 model being more 

accurate in predicting work sequences with two and four symbols. 
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Table 8.15 C4.5 M-20 confusion matrix for work activity sequences length 
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Table 8.16 C4.5 M-5 confusion matrix for work activity sequences length 
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At the Activity pattern level (Tables 8.17 and 8.18) the SAM distances for all 

activities and work activities are calculated. The results suggest that the C4.5 M-

20 model outperformed the C4.5 M-5 model. The results at this level conform to 

those obtained at the individual classifier level. However, the C4.5 M-20 model 

reported smaller SAM distance than both models. The C4.5 M-20 reported a 

SAM distances at 4.53 and 4.77 for Training and test sets respectively for all 

activities, while for work activities a SAM distance at 0.59 for training set and 

0.65 for the test set. 

M-5 All Activities Work Activities 
Training 4.66 0.61 
Test 4.96 0.69 

Table 8.17  SAM distance for C4.5 M-5 activity pattern  
 

M-20 All Activities Work Activities 
Training 4.53 0.59 
Test 4.77 0.65 

Table  0.18 SAM distance for C4.5 M-20 activity pattern  
 

Comparing the C4.5 M-20 and M-5 models with the baseline and target 

approaches, the models generated shorter activity sequences than the target 

approach and longer activity sequences than the M-IFN approach (Table 8.19). 

 
 Baseline C4.5 M-5 C4.5 M-20 Target 

All activities 3.3 3.17 3.4 3.94 (C4.5) 

Work Activities 1.2 1.5 1.5 1.5 (C4.5) 

Table  0.19 Mean Length of all and work activity sequences lengths (C4.5 M-20 and M-5) 
 
 
Work Activity Trip Matrix and Trips Start Time Level Accuracy Analysis 
(Spatial and Temporal Resolutions) 
 

In Table 8.20 the training and test sets correlation coefficient between observed 

and predicted work trips OD matrices for the C4.5 M-20 and C4.5 M-5 models is 

reported. As reported at previous validation results both models reported about 

similar performance. On the other hand, the C4.5 M-30 model reported higher 

correlation coefficient than both models. 
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The validation at the temporal resolution (the work activity start time per hour of 

the day) is shown in Table 8.21. Both models obtained similar performance.  
 

  Work activity trip matrix level 
Dataset C4.5 M-20 C4.5 M-5 
Training 0.81 0.80 
Test 0.79 0.79 

Table 8.20 C4.5 M-20 and C4.5 M-5 Work activity trip matrix correlation coefficients 
 

 

  Work activity Start time level 
Dataset C4.5 M-20 C4.5 M-5 
Training 0.92 0.91 
Test 0.92 0.92 

Table 8.21 C4.5 M-20 and C4.5 M-5 Work activity trip matrix correlation coefficients 
 
As shown in Table 8.22 the correlation coefficients are comparable. As shown in 

previous analysis the validation at this level cannot detect local changes. 
 
 Baseline C4.5 M-5 C4.5 M-20 Target 

OD Work activity trips 0.83 0.79 0.79 0.82 

Work activity start time 0.82 0.92 0.92 0.85 

Table  0.22 Spatial and temporal correlation coefficients 
 

8.4 Conclusion and Discussion 
 

In this chapter a sensitivity analysis on individual classifiers’ action is conducted. 

First by experimenting the effect of replacing the probabilistic action assignment 

rules with a deterministic action assignment rules used for predicting values of 

cases under study. Second by assessing the performance of decision tree 

models by attempting to fine tune the minimum number of cases at leaf nodes. 

The experimental results reveal that adapting a deterministic action assignment 

rule for the decision tree models trained with the Flemish data did not increase 

the overall performance of the model. Although for some models (the Work 

model at decision step 1) the performance using the deterministic action 

assignment rules has increased. Hence, considering the highly unbalanced 

nature of some data sets (More_Work_Ep at decision step3) resulted in an 
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insensible model. Therefore, for the Flemish data adapting probabilistic action 

assignment rules, as already adapted in the original ALBATROSS model for the 

Dutch data, is still the best approach.  

The results of the sensitivity analysis of the decision tree parameters suggested 

that increasing the minimum number of cases at leaf nodes will result in model 

under-fitting and hence, the predictive performance is decreased. Therefore, the 

models are trained by decreasing the minimum number of instances at leaf 

nodes to 20 and 5. The experimental results show that by decreasing the number 

to 20 cases at leaf nodes has no significant effect on the predictive performance 

of the model. In addition, decreasing the number to 5 results in increase over-

fitting and thus, decreases the predictive performance of the models. 
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Chapter 9  

Final Discussion and Conclusions 
 

9.1 Introduction 
 

The current version of ALBATROSS employs 26 decision steps that are 

necessary to predict activity schedules for each person under study. In addition, 

in the current version of ALBATROSS, the scheduling process model contains 

two interesting features, the activation dependency feature and the attributes 

interdependency feature. The activation dependency feature affects the 

execution path of the process model depending on decision models (steps) 

outcome. While the attributes interdependency feature suggests adding decision 

outcomes of decision steps as attributes in the data set of subsequent decision 

steps. These two features and other factors such as, the quality of the data that 

are used to train the models, the classification method that is used at decision 

models, and the data representation inside the process mode, are important 

factors that influence the predictive performance of the process model.  

 

This thesis discussed three contributions related to computational process 

activity-based models in the context of the ALBATROSS model. The first 

contribution was to examine the factors that improve the predictive performance 

of the scheduling process models integrated into the FEATALB framework. This 

goal was achieved by training the decision models in three different approaches. 

First by modeling all the decision models in the process model simultaneously, 

using a multi-target classification method. Using a multi-target classification 

method eliminates the activation dependency and attributes interdependencies 

features and it has the lowest fitting capacity. Second by training the decision 

models without the attributes interdependencies. This allowed investigating the 

added value of this feature in the model. Third by training the models at decision 

steps preserving the attributes interdependencies among models (fully-informed 
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approach) while including observed rather predicted decision outcomes in 

subsequent decision steps. To investigate the classification method factor, the non-

informed and fully-informed approaches are examined using three classification 

methods, CHAID, C4.5, and Logistic regression methods.  

The second contribution was related to investigating the data representation 

factor to improve the predictive performance of process models used in activity-

based models. This was achieved by presenting three different process models, 

i.e. the activation dependency feature by changing the order of decision models 

in the process model. 

 

The third contribution was related to studying the sensitivity of the models at 

each decision step (decision tree models). The sensitivity analysis was 

performed by experimenting two important factors used in the decision tree 

models in FEATALB. The first sensitivity factor involved identifying the ideal 

number of minimum cases per leaf node while training the decision tree models.  

In ALBATROSS this number was set to 30, however, this number was set to be 

used in the Dutch data. For the Flemish data, a different number might improve 

the performance. The second sensitivity factor is the action assignment rule used 

in predicting values at decision steps. ALBATROSS suggests a probabilistic 

action assignment rule which considers the probability of predicting a specific 

class. Rather than predicting a class variable according to the plurality rule. The 

work reported in this thesis was conducted in within the FEATALB framework. 

The FEATALB framework is based on the FEATHERS framework, which 

currently integrates the ALBATROSS model as its core scheduling system. 

9.2 The FEATALB framework 
 

The FEATALB framework is based on the FEATHERS framework. The 

FEATHERS framework is developed to facilitate the development of a modular 

activity-based model for transportation demand in Flanders (Belgium). At first the 

framework adopted a four-stage development trajectory, for a smooth transition 

from the four-step models towards static activity-based models in the short term 
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and dynamic activity-based models in the longer. In this study, Flanders 

(Belgium) is used as the study area. 

To include ALBATROSS in FEATHERS, the model parameters were modified to fit 

the Flemish data. The ALBATROSS model and its components have been studied 

in details. However, some practical limitations were determined that restrained 

further experimentations and there was a need for new implementations. Some 

parts of the model were re-implemented. The implementation involved using 

technologies to boost the design of experiments conducted in this thesis.  

New functionalities were added. First, in ALBATROSS, at each decision step in 

the process model is controlled by a CHAID decision tree. The process model 

contains 26 decision trees which are hard coded in the system. This approach 

makes experimenting with other induction or classification methods inapplicable. 

Therefore, the platform was extended to employ other induction methods. The 

extension involved the implementation of a library (DecisionMaker) that deploys 

data mining classification methods. The additional functionality allowed us to train 

models outside FEATALB, using data mining packages that can export Predictive 

Model Markup Language (PMML).  

Second, a database was incorporated with the system to capture the output 

(predicted) schedules of persons. This functionality allowed to generate different 

generate several statistics and ODs with many dimensions from the database 

version of the schedule without needing to run the simulation each time. Third, 

the validation of the models at the individual classifier, the activity pattern, and 

the spatial and temporal levels are also implemented.  The models at the 

individual classifier level are validated using Confusion Matrix statistics and the 

Brier Score. Where at the activity pattern level, the models are validated using 

the Sequence Alignment Method (SAM). And at the spatial temporal level, OD 

matrices and other statistics are calculated.  

9.3 Predictive performance 
 

The predictive performance of the approaches and models experimented was 

assessed at three levels. The models at the individual classifier level are validated 
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using Confusion Matrix statistics and the Brier Score. Where at the activity 

pattern level, the models are validated using the Sequence Alignment Method 

(SAM). And at the spatial and temporal level, OD matrices and work activity start 

times statistics are calculated using the correlation coefficient.  

 

Let us consider the predictive performance (or the predictive accuracy) 

boundaries of the models at each decision model (individual classifier) level. The 

accuracy measure selected is the F-Measure, since it the weighted average of 

the sensitivity and precision of a classifier. Sensitivity approximates the 

probability of the positive class being correctly classified. While precision 

or positive predictive value is defined as the proportion of the true positives 

against all the positive results.  The F-measure focuses more on the dropout 

class. An F-measure value reaches its best value at 1 and its worst value at 0. 

Figure 9.1 shows the performance for discrete choice models i.e. the Work 

(decision step 1) and Nep models, for all the settings and approaches used the 

thesis.  

 
Figure  0.1 Test set performance of discrete choice models for all approaches 
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above all approaches. The work model reported the same performance for all 

approaches except the M-IFN because it is the first decision model and thus, no 

additional attributes are added. For the Nep model in the non-informed approach 

and the model used in process model 3 obtained similar performance because 

the Nep model’s order in this process model is the second and so no additional 

attributes are added. The model in process model 2 achieved better accuracy 

below the model in the fully-informed approach.  

Figure 9.2 show the RAE of continuous models for all approaches. The results 

show again that M-IFN approach reported the highest RAE and the fully-informed 

approach reported the Lowest. This confirms the performance bounds set by 

these two approaches.  

 
Figure  0.2 Test set performance of continuous models for all approaches 
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is an important factor that enhances the predictive performance of rule-based 

activity-based models. Furthermore, as expressed in the literature, different 

decision tree models achieved similar performance. For highly unbalanced data 

sets Logit models did not compete, in terms of predictive behaviour with decision 

tree models. 

 

Considering the aggregate validation levels (i.e. the sequence alignment 

measures (SAM) and the correlation coefficients of the OD matrices and work 

activity start times), apparently the results somewhat differ, especially at the 

spatial and temporal levels. The SAM measures determine the dissimilarity 

between the observed and predicted sequences of activities and should be as 

low as possible. Figure 9.3 show the SAM measure for all approaches. The M-

IFN and the fully-informed approaches set the lower and higher performance 

bounds respectively.  

 
Figure  0.3 Test set SAM distance of work activities for all approaches 
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The validation at the spatial and temporal dimensions, the results showed that at 

this aggregate level, the local changes are not detected. As shown in Figure 9.4 

the correlation coefficient for the fully-informed is the highest (upper bound). 

However, the M-IFN approach obtained higher correlation coefficient between 

observed and predicted work activity ODs than the non-informed approach and 

the model produced by process model 1.  

 

 
Figure  0.4 Test set correlation coefficient for work activity ODs 
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class variable. On the other hand the results also suggest that the disposition of 

decision steps (activation dependency feature) or experiment other data 

representations within the work activity process model does not lead to 

significantly improve the predictive performance of the model. This is confirmed 

by the validation at the aggregated levels (activity pattern and Spatial and 
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temporal levels). Hence, using the currently implemented work activity process 

model can achieve satisfactory work activity schedules. 

 

9.4 Model sensitivity 
 
The action assignment rules, for discrete and continuous models, developed in 

ALBATROSS suggest probability distribution between classes. This probabilistic 

action assignment rule was developed by the authors to serve the purposes of 

generating bias free predictions and consider the effects of space-time 

constraints of activity-based models. In addition, decision tree models were 

trained setting the minimum number of leaf nodes to 30 cases. The same 

approaches are used in the FEATALB framework to predict schedules for the 

Flemish population. However, these approaches were developed and deployed 

for the Dutch data. To further confirm if they are also fit for the Flemish data, a 

deterministic action assignment rule was adapted. In addition, the decision tree 

models were trained setting the minimum number of cases at leaf nodes to 5 and 

20 cases.   

The results show that using a deterministic action assignment rule for decision 

trees decrease the predictive performance of activity-based models. Therefore, 

for the Flemish data adapting probabilistic action assignment rules, as already 

adapted in the original ALBATROSS model for the Dutch data, is still the best 

approach. 

Considering the results of experiment the decision tree parameters (modifying 

the minimum number of cases at leaf nodes) suggested that increasing the 

minimum number of cases at leaf nodes to more than 30 cases will result in 

model under-fitting. And hence, the predictive performance is decreased. 

Therefore, the models are trained by decreasing the minimum number of cases 

at leaf nodes to 20 and 5. The experimental results show that by decreasing the 

number to 20 cases at leaf nodes has no significant effect on the predictive 

performance of the model. In addition, decreasing the number to 5 results in 
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increase over-fitting and thus, decreases the predictive performance of the 

models. 

9.4 Future Research 
 

Extending the FEATHERS framework, as an experimentation system to 

implement and deploy different classification methods accomplished in this PhD 

research was a first step towards further analyse the predictive performance of 

the scheduler process model. In addition, the ability to experiment the 

ALBATROSS system using classification methods other than CHAID was 

important to eliminate the black-box effect of the scheduler. However, to continue 

the research in this direction extra validation levels, and calculating descriptive 

statistics as the scheduler executes will provide more information. Hence, these 

methods need to be performed incrementally as the execution of the process 

model evolves, given the evolving nature of the scheduler. In addition implement 

more complex classification methods such as neural networks, Support Vector 

Machines (SVM) … etc.  

 

The development of a new validation level other than the three validation levels 

used in this dissertation. The proposed validation level will be used as an 

evolving validation criterion given the evolving nature of the scheduler of the 

process model. Efforts already started to build such validation method using the 

SAM measure to measure how close are predicted decisions to the observed 

values incrementally as the execution of the process model evolves. This 

validation method mimics the scheduler activities as the prediction at decision 

steps is performed. Consequently, validating the models as the scheduling 

evolves will allow for further understand the process model and identify critical 

decision models that influence the predictive performance. Further be able to 

measure the inflation of errors as the process executes and how this affects the 

predictive performance of the process model. The inflation of errors is the 

fluctuation of taking a wrong decision at a specific decision step.  
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Analysing the predicative performance of rule-based process models using 

descriptive statistics at decision models as the scheduler evolves. Such 

descriptive statistics might be used specifically at continuous decision models, 

such as duration, ratio, break time and start time of work activities. These 

descriptive statistics will provide information to further understand the scheduler 

and identify critical decision steps. Furthermore, be able to determine how errors 

are inflated as the process model executes. 

Furthermore, the predictive performance of the models presented in this research 

will further be validated at the new validation level to further confirm and 

performance bounds that were presented in chapter 6.  
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