

2013 | School voor Informatietechnologie
 Kennistechnologie, Informatica, Wiskunde, ICT

D/2013/2451/15

DOCTORAATSPROEFSCHRIFT

Proefschrift voorgelegd tot het behalen van de graad van
doctor in wetenschappen, informatica, te verdedigen door:

Tom Ameloot

Promotor: prof. dr. Jan Van den Bussche
Copromotor: prof. dr. Frank Neven

Declarative Networking:
Models and Conjectures

Acknowledgments
I thank my supervisor Jan Van den Bussche and my co-supervisor Frank Neven for
introducing me to the topics of cloud computing and declarative networking, at a
time when these were hot topics and new interesting conjectures were posed to the
research community.

I like to express special thanks to Jan for the many inspiring discussions, and for
the valuable insights that resulted from them. I additionally thank Jan for giving me
much advice about writing good technical texts and for patiently reading my many
proofs. Jan has also shared with me his interest in nature, and birds in particular,
that I have found very inspiring.

I thank my family for their continuous support and general advice.
I thank my fellow PhD students for the things I have learned from them and

the conversations we have had. I also thank my colleagues in general for creating a
friendly atmosphere, like organizing celebrations for a paper-acceptance.

I thank the Research Foundation Flanders (FWO) for providing this opportunity
for doing a PhD thesis.

1

2

Nederlandstalige Samenvatting (Dutch Summary)
Deze thesis gaat over declarative networking, een onderzoeksgebied waarin men ge-
distribueerde programma’s implementeert met beschrijvende talen zoals Datalog [2],
waarin men voornamelijk specificeert wat de uitvoer is, en niet zozeer hoe deze uitvoer
moet berekend worden. Het voordeel van zulke talen is dat complexe algoritmen kun-
nen beschreven worden met redelijk korte programma’s [45, 37]. Ter vergelijking, om
gegevensbanken te ondervragen gebruikt men standaard de beschrijvende taal SQL
in plaats van een imperatieve programmeertaal zoals Java, omdat men voor deze
toepassing vaak veel kortere en overzichtelijkere programma’s kan schrijven in SQL.

In deze thesis gebruiken we twee bestaande modellen. Het eerste model bestaat uit
relational transducers [7, 28, 29, 30, 54]; deze stellen een abstracte computer voor. Wij
definiëren zelf netwerken van zulke relational transducers. Het tweede model wordt
gevormd door de taal Dedalus [13, 14, 37]; dit is een programmeertaal geïnspireerd
door Datalog. Wij veronderstellen in beide modellen dat een netwerk willekeurige ver-
tragingen kan veroorzaken tussen het versturen en aankomen van boodschappen; dit
is de zogenaamde asynchrone communicatie zoals typisch voorkomt op het Internet.

Hoofdstuk 1 is de Engelstalige inleiding, en Hoofdstuk 2 herhaalt de nodige voor-
kennis, waaronder de hierboven genoemde modellen.

In Hoofdstuk 3 onderzoeken we de CALM conjecture, een probleemstelling ge-
formuleerd door Hellerstein [36, 37]: men stelt de vraag of er een verband is tussen
enerzijds de uitdrukkingskracht van gedistribueerde programma’s en anderzijds hun
vermogen om berekeningen uit te voeren zonder teveel boodschappen te versturen
(coördinatie). We onderzoeken deze probleemstelling in een model met relational
transducers. Ons belangrijkste resultaat is dat gedistribueerde programma’s die geen
coördinatie uitvoeren beperkt zijn tot monotone berekeningen, d.w.z. als de invoer
groeit dan groeit de uitvoer van de berekening. We onderzoeken ook bijkomstig de
uitdrukkingskracht van variaties in het gebruikte model.

In Hoofdstuk 4 onderzoeken we of het mogelijk is om via een computeralgoritme
automatisch te beslissen of een gegeven gedistribueerd programma, voor elke invoer
afzonderlijk, altijd dezelfde uitvoer zal geven. Indien het gedistribueerd programma
deze eigenschap heeft, zal het dus vertragingen van boodschappen kunnen tolereren
die door het netwerk worden veroorzaakt. We onderzoeken deze probleemstelling
in een model met relational transducers. Ons belangrijkste resultaat is dat we dit
inderdaad kunnen beslissen, mits we voldoende syntactische beperkingen opleggen aan
zulke gedistribueerde programma’s. Als bijkomend resultaat tonen we ook aan dat er
nog steeds nuttige berekeningen kunnen uitgevoerd worden onder deze beperkingen.

In Hoofdstuk 5 tonen we aan dat het mogelijk is om de werking van een (gedistri-
bueerd) Dedalus programma volledig te beschrijven via een declaratieve semantiek,
d.w.z. we kunnen met formele regels modellen beschrijven die de volledige werking sa-
menvatten. Dit kan een interessante en alternatieve kijk bieden op de gedistribueerde
werking van een Dedalus programma.

In Hoofdstuk 6 onderzoeken we de CRON conjecture, een tweede probleemstel-
ling geformuleerd door Hellerstein [36, 37]: men stelt de vraag of er een verband is
tussen enerzijds de volgorde waarin boodschappen mogen afgeleverd worden aan een
gedistribueerd programma en anderzijds de aard van de berekeningen (monotoon ver-
sus niet-monotoon) waarin die boodschappen worden gebruikt. We onderzoeken deze

3

probleemstelling voor de taal Dedalus. Ons belangrijkste resultaat is dat de volgorde
inderdaad niet van belang is bij programma’s waarin geen negatieve testen kunnen
uitgevoerd worden, waardoor deze programma’s beperkt zijn tot monotone bereke-
ningen. Zulke programma’s blijven, voor elke input afzonderlijk, dezelfde uitvoer
produceren zelfs als de volgorde van de boodschappen volledig door elkaar gehaald
wordt (door het netwerk of wegens een andere oorzaak).

4

Abstract
Declarative networking is a field in which people implement distributed protocols and
applications in high-level declarative languages like Datalog. Such a declarative for-
malism is believed to help the programmer express complex distributed computations
with relatively few lines of code. In this thesis, we investigate many different aspects
of declarative networking. The model of networked relational transducers is one main
topic, for which we investigate the expressivity; the link between expressivity and
distributed coordination; and, the decidability of eventual consistency. Another im-
portant topic consists of the language Dedalus, a Datalog-inspired language, for which
we define a purely declarative semantics. We also show how this semantics can be
used to reason about distributed message causality.

5

6

Contents

1 Introduction 11
1.1 Relational Transducers for Declarative

Networking . 12
1.2 Deciding Eventual Consistency . 13
1.3 Declarative Semantics for Dedalus . 14
1.4 The CRON Conjecture . 15

2 Preliminaries 17
2.1 Basic Database Notions . 17
2.2 Multisets . 17
2.3 Network and Distributed Data . 18
2.4 Transducers . 18

2.4.1 Epidemic Transducer . 18
2.4.2 Addressing Transducer . 19

2.5 Transducer Networks . 19
2.5.1 Distributed Schemas . 20
2.5.2 Operational Semantics . 20
2.5.3 Fairness . 21
2.5.4 Message Delivery Constraints 22

2.6 Conjunctive Queries . 22
2.7 Datalog . 23

2.7.1 Positive and Semi-positive . 23
2.7.2 Stratified Semantics . 23
2.7.3 Stable Model Semantics . 24

2.8 Dedalus . 24
2.8.1 Syntax . 25
2.8.2 Operational Semantics . 26

3 Relational Transducers for Declarative Networking 31
3.1 Outline . 31
3.2 Related Work . 31
3.3 General Remarks . 32
3.4 Expressing Queries . 33

3.4.1 Transducer Kinds . 33
3.4.2 Input and Output . 33
3.4.3 Consistency . 34

7

3.4.4 Examples . 34
3.4.5 Network-Independence . 35
3.4.6 Preliminary Observations . 36

3.5 The CALM Conjecture . 38
3.5.1 Coordination-free . 38
3.5.2 Main Results . 42
3.5.3 Further Results . 44

3.6 Expressiveness Analysis . 47
3.6.1 While versus FO . 47
3.6.2 Datalog versus NrDatalog . 50
3.6.3 Restrict Delivery . 51
3.6.4 Specialized CALM Properties 52

3.7 Addressing Transducers . 52

4 Deciding Eventual Consistency 55
4.1 Outline . 55
4.2 Related work . 55
4.3 General Remarks . 56
4.4 Additional Definitions . 57

4.4.1 Distributed Queries . 57
4.4.2 Derivation Trees . 57
4.4.3 Encoding . 58

4.5 Confluence . 58
4.5.1 Decision Problem . 60
4.5.2 Syntactical Restrictions . 60
4.5.3 Results on Decidability . 62

4.6 Simulation on Single Node . 64
4.6.1 Syntactical Simplifications . 64
4.6.2 Simulation Concept and Result 64
4.6.3 Transducer Schema . 65
4.6.4 Transducer Rules . 65
4.6.5 Simulation and Confluence Equivalence 67

4.7 Small Model Property . 70
4.7.1 Syntactical Quantities . 71
4.7.2 Proof Outline . 71
4.7.3 Input Selection . 72
4.7.4 Run Projection . 74

4.8 Decidability . 75
4.8.1 Decision Procedure . 75
4.8.2 Complexity Lower Bound . 79

4.9 Expressivity . 81
4.9.1 Lower Bound . 82
4.9.2 Upper Bound . 84

4.10 Model Variations . 88
4.10.1 Diffluence Decidability . 89
4.10.2 Expressivity . 89

8

5 Declarative Semantics for Dedalus 91
5.1 Outline . 91
5.2 Related Work . 91
5.3 General Remarks . 92
5.4 Example Programs . 92
5.5 Declarative Semantics . 93

5.5.1 Timestamps . 93
5.5.2 Extended Schema and Trace 94
5.5.3 Messages and Causality . 95
5.5.4 Additional Relation Names . 97
5.5.5 Network and Time Relations 98
5.5.6 Representing Causality . 98
5.5.7 Rule Transformation . 99
5.5.8 Input and Stable Models . 102

5.6 Main Result . 102
5.7 Run to Model . 102

5.7.1 Construction . 103
5.7.2 Final Steps . 104

5.8 Model to Run . 104
5.8.1 Partial Order . 105
5.8.2 Construction of Run . 108
5.8.3 Fair Run . 110

6 The CRON Conjecture 111
6.1 Outline . 111
6.2 Related Work . 111
6.3 General Remarks . 111
6.4 Output . 112
6.5 CRON Conjecture and Non-Causality 112

6.5.1 Modeling Non-Causality . 112
6.6 Results . 114

6.6.1 Semantical Interpretation . 114
6.6.2 Syntactical Interpretation . 116

6.7 Expressivity . 120
6.7.1 Upper Bound . 120
6.7.2 Lower Bound . 121

7 Conclusion 123

9

10

Chapter 1

Introduction

This work is situated in the field of declarative networking [45, 36, 37], in which
people describe and implement distributed protocols and algorithms in high-level
declarative languages. Such formalisms reduce the technical details exposed to the
programmer, so he can focus on just the distributed algorithm. Interesting questions
can be asked, such as how suitable a formalism is for expressing certain problems,
what runtime properties are exhibited, and how easy it is to automatically verify
semantical properties.

We consider two existing models, around which we develop several results (see
below). The first model is the relational transducer model, introduced by Abiteboul
and Vianu, that is well established in database theory research as a model for data-
centric agents reacting to inputs [7, 28, 29, 30, 54]. Relational transducers are firmly
grounded in the theory of database queries [5, 6] and also have close connections with
Abstract State Machines [25]. It thus seems natural to consider networks of relational
transducers, as we will do.

Declarative networking initially developed around Datalog [45]. For this reason,
our second model (or language) is Dedalus, which is one of the latest Datalog-inspired
languages proposed in declarative networking [13, 14, 37], and has influenced other
recent language designs for distributed and cloud computing such as Webdamlog [1]
and Bloom [12]. In recent years we are also seeing a more general resurgence of
interest in Datalog, e.g., [27, 38]. A notable promising property of Datalog is that it
allows complex distributed algorithms and protocols to be expressed in relatively few
lines of code [39, 37].

A major hurdle in declarative networking is the nondeterminism inherent to such
systems. This nondeterminism is typically due to the asynchronous communication
between the nodes of a network. Accordingly, one of the challenges is to design dis-
tributed programs so that the same outputs can eventually be produced on the same
inputs, no matter how messages between nodes have been delayed or received in dif-
ferent orders. When a program has this property, we say it is “eventually consistent”
[57, 36, 37, 12]. This is actually a fuzzy term, and in our results we will use two dis-
tinct interpretations of this notion: (i) all infinite (fair) computation traces yield the
same output, simply called consistency; and, (ii) every finite computation trace can
be extended to yield the outputs obtained in other finite computation traces, called

11

confluence. We will always make clear which interpretation is used.
We now present the obtained results, divided in four main chapters. First, we

mention that Chapter 2 gives preliminaries on standard database notions and also
formalizes the two mentioned models for declarative networking. Chapter 7 is the
conclusion.

1.1 Relational Transducers for Declarative
Networking

In his keynote speech at PODS 2010 [36, 37], Hellerstein made a number of intriguing
conjectures concerning the expressiveness of declarative networking. In particular,
the CALM conjecture (Consistency And Logical Monotonicity) suggests a strong link
between, on the one hand, “eventually consistent” and “coordination-free” distributed
computations, and on the other hand, expressibility in monotonic Datalog (without
negation or aggregate functions). The conjecture was not fully formalized, however;
indeed, as Hellerstein notes himself, a proper treatment of this conjecture requires
crisp definitions of eventual consistency and coordination, which have been lacking so
far. Moreover, it also requires a formal model of distributed computation.

We formally investigate the CALM conjecture in Chapter 3. First, in order to ad-
dress the expressiveness issues raised by Hellerstein, we present a model for distributed
database querying based on networks of relational transducers and a formalization of
“eventual consistency” for such networks.

It is less clear, however, how to formalize the intuitive notion of “coordination”.
We do not claim to resolve this issue definitively, but we propose a new, non-obvious
definition that appears workable. Distributed algorithms requiring coordination are
viewed as less efficient than coordination-free algorithms. Hellerstein has identified
monotonicity as a fundamental property connected with coordination-freeness. In-
deed, monotonicity enables “embarrassing parallelism” [37]: agents working on parts
of the data in parallel can produce parts of the output independently, without the
need for coordination.

One side of the CALM conjecture now states that any database query expressible
in monotonic Datalog can be computed in a distributed setting in an eventually
consistent, coordination-free manner. This is the easy side of the conjecture, and
indeed we formally confirm it in the following broader sense: any monotone query
can be computed by a network of “oblivious” transducers. Oblivious transducers
are unaware of the network extent (in a sense that we will make precise), and every
oblivious transducer network is coordination-free. Here, we should note that the
transducer model is parameterized by the query language L that the transducer can
use to update its local state. Formally, the monotone query to be computed must be
expressible in the while-closure of L for the above confirmation to hold. If the query
is defined in Datalog, for example, then L can just be unions of conjunctive queries.

The other side of the CALM conjecture, that the query computed by an eventually
consistent, coordination-free distributed program is always expressible in Datalog, is
false when taken literally, as we will point out. Nevertheless, we do give an extended
version of the conjecture that holds. More importantly, we confirm the conjecture
in the following more general form: coordination-free networks of transducers can

12

compute only monotone queries. Note that here we are using our newly proposed
formal definition of coordination-free.

In the last part of Chapter 3, we investigate the expressiveness of the model by
considering different local query languages L to implement the transducers. From
this investigation, we learn that the transducer model is quite natural, in the sense
that it only adds a notion of iteration to each considered language L.

1.2 Deciding Eventual Consistency
As mentioned above, it can be desirable to design systems that are “eventually con-
sistent” [57, 36, 37, 12]. In Chapter 4, we investigate the decidability of this property.
There, we will view eventual consistency as a confluence notion. On any fixed input,
let J be the union of all outputs that can be produced during any possible execution
of the distributed program. Then in our definition of eventual consistency, we require
that for any two different outputs J1 ⊆ J and J2 ⊆ J resulting from two (partial)
executions on the same input, the same output J can be produced in an extension of
either partial execution. So, intuitively, the prior execution of the program will not
prevent outputs from being produced if those outputs can be produced with another
execution (on the same input).

The model used in Chapter 4 is again based on relational transducers, but we
immediately limit attention to transducers whose functionality is implemented with
unions of conjunctive queries with negation, henceforth referred to as “rules”. Given
the affinity between conjunctive queries and Datalog, we expect our results to apply
also to other declarative networking formalisms, although we have not yet worked out
these applications.

Our first main result is the identification of a number of syntactic restrictions
on the rules used in the transducers, not so that eventual consistency always holds,
but so that checking it becomes decidable. Informally, the restrictions comprise the
following.

• The cluster must be recursion-free: the different rules among all local programs
cannot be mutually recursive through positive subgoals. Recursive dependencies
through negative subgoals are still allowed.

• The local programs must be inflationary: deletions from state relations are
forbidden.

• The rules are message-positive: negation on message relations is forbidden.

• The state-update rules must satisfy a known restriction which we call “message-
boundedness”. This restriction is already established in the verification of rela-
tional transducers: it was first identified under the name “input-boundedness”
by Spielmann [54] and was investigated further by Deutsch et al. [29, 30].

• Finally, the message-sending rules must be “static” in the sense that they may
not depend on state relations; they can still depend on input relations and on
received messages.

13

The last two restrictions are the most fundamental; in fact, even if just the last
restriction is dropped and all the others are kept in place, the problem is already
back to undecidable. The first three restrictions can probably be slightly relaxed
without losing decidability, and indeed we just see our work as a step in the right
direction. Eventual consistency is not an easy problem to analyze.

The second result of Chapter 4 is an analysis of the expressive power of clusters
of relational transducers satisfying our above five restrictions; let us call such clusters
“simple”. Specifically, we show that simple clusters can compute exactly all distributed
queries expressible by unions of conjunctive queries with negation, or equivalently, the
existential fragment of first-order logic, without any further restrictions. So, this result
shows that simple clusters form indeed a rather weak computational model, but not
as weak as to be totally useless.

1.3 Declarative Semantics for Dedalus
It is well understood how an operational semantics for declarative networking can be
defined formally [30, 48, 35]. Such a formal semantics is typically defined as a tran-
sition system. The transition system is infinite even if the distributed computation
is working on a finite input database, because computing nodes can run indefinitely;
moreover, they can keep on sending messages so that an unbounded number of mes-
sages can be floating around in the network. In addition, the transition system is
highly nondeterministic, because nodes work concurrently, communication is asyn-
chronous, and messages can be delayed and eventually be delivered out of order by
the network.

On the other hand, it remains unclear how (and if) a purely declarative formal
semantics can be given for the languages used in declarative (!) networking. This
has been lacking so far, and the purpose of Chapter 5 is to contribute towards filling
this gap, specifically for the language Dedalus. Concretely, the following approach is
used.

1. First, in Chapter 2 we give a formal operational semantics for Dedalus. As
mentioned above, this part is quite standard. Our definition leads to the notion
of fair runs of a Dedalus program P on an input distributed database instance
H. Runs represent distributed computations and, due to the nondeterminism
mentioned above, there are typically many fair runs of P on H.

2. We continue in Chapter 5, where we note that each run respects a causal order
(which is a partial order) that relates the local steps of the different compute
nodes through chains of local steps and communicated messages. This order
indicates what events “happened before” which other events [23]. Now, the
computation of each run can be described by a structure which we call a trace,
which includes for each compute node in the network the detailed information
about the local steps it has performed and about the messages it has sent and
received. The trace conforms to the causal order.

3. The main idea now is that the traces of runs can be obtained precisely as the set
of stable models [32] of P on H. A few manipulations are needed before we can
aim for such a result, however, because the Dedalus program P is not really a

14

Datalog¬ program.1 Indeed, the language Dedalus provides special “inductive
rules” and “asynchronous rules” that are used for respectively persisting memory
across local computation steps and sending messages. First, we will transform
these rules into Datalog¬ rules that simulate their effect, where asynchronous
rules will nondeterministically choose the arrival times of messages [40, 52].
Furthermore, P is augmented with a fixed, input- and network-independent
set of rules that express causality on the messages. Applying the stable model
semantics to such transformed Dedalus programs constitutes the declarative
semantics.

We believe that our result is interesting because it shows the equivalence between two
quite different ways to define the semantics of a Dedalus program.

Perhaps most importantly, the result is of interest for grounding a representative
database language for distributed and cloud computing in a well-motivated model-
theoretic semantics. Indeed, our characterization provides a purely declarative ax-
iomatization of fair distributed program behaviors in terms of the stable models of a
logical theory (finite set of Datalog¬ rules). Specifically, we have succeeded in cap-
turing in Datalog¬ the operational notion of causality, which focuses on just the key
features of the distributed computation: the state of each compute node at each lo-
cal time, and at what local times the nodes send and receive messages. Hence our
declarative semantics reasons from the perspective of the local times of each node,
which is a justified approach since there is no common “global clock” in a distributed
environment [23].

It should be noted that the studied declarative semantics can perhaps not directly
be used in practical applications, because in the semantics there is a reference to
an infinite number of local computation steps of the nodes. But we hope our work
can provide insights for the design of a more intuitive declarative semantics, used by
developers of distributed applications. See also Chapter 7 for a discussion.

As mentioned, many Datalog-inspired languages have been proposed to implement
distributed applications [45, 48, 35, 1], and they contain several features such as
aggregation and non-determinism (choice), that result in powerful languages. But
the essential features that all these languages possess, are reasoning about distributed
state and representing message sending. We think of the language Dedalus, as we
define it here, as a minimalistic extension of Datalog to provide just these essential
features. For this reason, we expect that the current work can serve as a theoretical
base that can be extended to more powerful language features as well.

1.4 The CRON Conjecture
In Chapter 6, we use the context of Dedalus to investigate a second conjecture
by Hellerstein [36, 37]: the CRON conjecture (Causality Required Only for Non-
monotonicity).

Causality stands for the physical constraint that an effect can only happen after
its cause. Applied to message delivery, this intuitively means that a sent message
can only be delivered in the future, not in the past. Now, the conjecture relates the
causal delivery of messages to the nature of the computations that those messages

1Datalog¬ stands for “Datalog with negation”.

15

participate in, like monotone versus non-monotone, and asks us to think about the
cases where causality is really needed.

There seem to be interesting real-world applications of the CRON conjecture,
one of which is crash recovery. During crash recovery, a program can read an old
checkpointed state and a log of received messages, which is disjoint from that state.
These messages could appear to come from the “future” when put side-by-side with
the old state because according to the old state, those messages have yet to be sent.
Then, it is not always clear how the program should combine the old state and the
message log, certainly if negation and more generally non-monotone operations are
involved. One can understand the CRON conjecture as saying that during recovery,
for non-monotone operations, messages from the log should be read in causal order,
like the order in which they are received, and they should not be exposed all at once.

From the other direction, if you know that only monotone operations are involved,
the recovery could perhaps become more efficient by reading the messages all at once.
This can be useful for the following reason. Distributed computations happen often
in large clusters of compute nodes, where failure of nodes is not uncommon [58], and
indeed distributed computing software should be robust against failures [23]. We want
to avoid restarting entire computations when only a few nodes fail, and therefore it
seems natural to use some lightweight crash recovery facility for individual nodes that
can still make the computation succeed, although perhaps some partial results might
have to be recomputed. The CRON conjecture could help us better understand how
such recovery facilities can be designed.

In Chapter 6, we formally investigate the CRON conjecture. Continuing on the
results of Chapter 5, it turns out that stable models [32] provide a way to reason
about non-causality, and we use this to formalize the CRON conjecture. A strong
interpretation of the conjecture posits that causality is not needed if and only if the
query computed by a Dedalus program is monotone. Neither the “if” nor the “only if”
direction holds, however, as we will demonstrate. Therefore we have turned attention
to a more syntactic version of the conjecture, and there we indeed find that causal
message ordering is not needed for positive Dedalus programs in order to compute
meaningful results, if these programs already behave correctly in a causal operational
semantics. This is the main result of Chapter 6.

16

Chapter 2

Preliminaries

2.1 Basic Database Notions
We first recall some basic notions from database theory [2]. A database schema D is
a finite set of pairs (R, k) where R is a relation name and k ∈ N its associated arity.
A relation name occurs at most once in a database schema. We often write a pair
(R, k) as R(k). For the cases k = 0, k = 1, and k = 2, we often say relation R is
respectively nullary, unary, and binary.

We assume some infinite universe dom of atomic data values. A fact f is a pair
(R, ā), often denoted as R(ā), where R is a relation name and ā is a tuple of values
over dom. For a fact R(ā), we call R the predicate. We say that a fact R(a1, . . . , ak)
is over database schema D if R(k) ∈ D. A database instance I over D is a set of
facts over D. For a subset D′ ⊆ D, we write I|D′ to denote the subset of facts in I
whose predicate is a relation name in D′. The active domain of I, denoted adom(I),
is the set of data values occurring in facts of I. For a fact f , we also write adom(f)
to denote the set of values occurring in f . For a function h : dom→ dom, we define
h(I) = {R(h(a1), . . . , h(ak)) | R(a1, . . . , ak) ∈ I}.

A query Q over input database schema D and output database schema D′ is a
partial function mapping database instances over D to database instances over D′.
A special but common kind of query are those where the output database schema
contains just one relation. A query Q is called generic if for all input instances I and
all permutations h of dom, the query Q is also defined on the isomorphic instance
h(I) and Q(h(I)) = h(Q(I)). We recall that a generic query Q is domain-preserving,
in the sense that adom(Q(I)) ⊆ adom(I) for all input instances I. We use the word
“query” in this text to mean generic query, unless explicitly specified otherwise.

2.2 Multisets
A multiset m over a universe U is a function that maps each element e ∈ U to a
natural number m(e) that represents the number of times that e occurs in m. The set
operators ∩, ∪, and \ can be defined for multisets in a natural way. For two multisets
m1 and m2, we write m1 v m2 to denote that m1(e) ≤ m2(e) for each e ∈ U . For a

17

multiset m, we define the set set(m) = {e ∈ U | m(e) ≥ 1}, i.e., the collapse of m to
a set. The size of a multiset m is defined as

∑
e∈U m(e).

2.3 Network and Distributed Data
A network N is a finite, connected, and undirected graph whose nodes are all in
dom, and where each edge is between two distinct nodes. We write nodes(N) and
edges(N) to denote the nodes and edges of N respectively. For x ∈ nodes(N), we
write neighbor(x,N) to denote the set {y | (x, y) ∈ edges(N)}. If |nodes(N)| = 1
then we call N a single-node network.

We now formalize how input data is distributed across a network. A distributed
database schema E is a pair (N , η) whereN is a network, and η is a function that maps
each node x of N to an ordinary database schema. A distributed database instance H
over schema E is a function that assigns to each node x of N an ordinary database
instance H(x) over the local schema η(x).

2.4 Transducers
Our first model for declarative networking uses relational transducers [7, 15, 28, 29,
30, 54]. A relational transducer is an abstract computing device, formalized in this
section. The complete network model is presented in Section 2.5.

A transducer schema Υ is a tuple (Υin,Υout,Υmsg,Υmem,Υsys) of database sche-
mas, called respectively “input”, “output”, “message”, “memory” and “system”. A
relation name can occur in at most one database schema of Υ. We fix Υsys to always
contain two unary relations Id and All. A transducer state for Υ is a database
instance over Υin ∪Υout ∪Υmem ∪Υsys.

We make a distinction between two kinds of relational transducers, depending on
how they communicate with their environment. This leads to epidemic and addressing
transducers. If the kind is understood from the context, we will just say “transducer”.

2.4.1 Epidemic Transducer
An epidemic (relational) transducer Π over Υ is a collection of queries:

• for each R(k) ∈ Υout there is a query QRout having output schema {R(k)};

• for each R(k) ∈ Υmem there are queriesQRins andQRdel both having output schema
{R(k)};

• for each R(k) ∈ Υmsg there is a query QRsnd having output schema {R(k)};

where each of these queries has the input schema Υin ∪ Υout ∪ Υmsg ∪ Υmem ∪ Υsys.
These queries will form the internal mechanism that a computing node uses to update
its local storage and to send messages. The transducer model is parameterized by
a generic query language L: this language is used to concretely specify the above
queries, in which case we call Π an L-transducer.

18

A local transition of Π is a 4-tuple (I, Ircv, J, Jsnd), also denoted as I, Ircv → J, Jsnd,
where I and J are transducer states for Υ, and Ircv and Jsnd are instances over Υmsg,
such that (abbreviating I ′ = I ∪ Ircv):

J |Υin,Υsys = I|Υin,Υsys ;

J |Υout = I|Υout ∪
⋃

R(k)∈Υout

QRout(I ′);

J |Υmem =
⋃

R(k)∈Υmem

(I|R ∪R+(I ′)) \R−(I ′)

Jsnd =
⋃

R(k)∈Υmsg

QRsnd(I ′),

where, following the presentation in [59],

R+(I ′) = QRins(I ′) \ QRdel(I ′); and,
R−(I ′) = QRdel(I ′) \ QRins(I ′).

Intuitively, on receipt of the message facts Ircv, a local transition updates the old
transducer state I to new transducer state J and sends the facts in Jsnd. When
compared to I, in J potentially more output facts are produced; and, the update
semantics for each memory relation R adds the facts produced by insertion query
QRins, removes the facts produced by deletion query QRdel, and there is no-op semantics
in case a fact is both added and removed at the same time [54]. Output facts can
not be removed. Note that local transitions are deterministic in the following sense:
if I, Ircv → J, Jsnd and I, Ircv → J ′, J ′snd then J = J ′ and Jsnd = J ′snd.

2.4.2 Addressing Transducer
In the literature on declarative networking, a seemingly common feature seems to
be that nodes send each message to a specifically addressed neighbor [45, 35, 14,
49]. Let Υ be a transducer schema. An addressing (relational) transducer Π over
Υ is defined just like an epidemic transducer, except that for each R(k) ∈ Υmsg
there is a query QRsnd having output schema {R(k+1)} instead of {R(k)}. The extra
component will contain the addressee of each message, which is by convention the
first component. The semantics for local transitions is defined in the same way as for
epidemic transducers, except that now each fact in Jsnd has an extra component.

2.5 Transducer Networks
Here we formalize our first model for declarative networking. Concrete examples of
this model can be found in Chapters 3 and 4. A transducer network N is a triple
(N ,Υ,Π) where N is a network, Υ is a function mapping each x ∈ nodes(N) to a
transducer schema, and Π is a function mapping each x ∈ nodes(N) to a transducer
over schema Υ(x). For technical convenience, we assume that all transducer schemas
use the same message relations (with the same arities). This is not really a restriction
because the transducers are not obliged to use all message relations.

19

2.5.1 Distributed Schemas
Naturally, we can define the distributed input database schema inN for N that maps
each x ∈ nodes(N) to the input subschema of Υ(x). The distributed schemas outN

and memN are defined similarly, but now using the output and memory subschemas.

2.5.2 Operational Semantics
Any distributed database instance H over inN can be given as input to N . A
configuration of N on H is a pair ρ = (s, b) of functions s and b where for each
x ∈ nodes(N),

• letting D1 = Υ(x)in and D2 = Υ(x)sys, function s maps x to a transducer state
s(x) for Υ(x) such that s(x)|D1 = H(x) and s(x)|D2 = {Id(x)} ∪ {All(y) | y ∈
nodes(N)}; and,

• b maps x to a finite multiset of facts over the shared message schema of N .

A configuration describes a snapshot of the network at some moment during its evo-
lution. We call s the state function and b the (message) buffer function. Function s
maps each node x to its state s(x), where instance H provides the local input of x,
and the system relations Id and All provide transducer Π(x) respectively the iden-
tity of x and the identities of all nodes. Next, the function b maps x to its message
buffer b(x), that is a multiset of message facts, with the intuition that these are the
messages sent to x but that are not yet delivered. A multiset allows us to represent
duplicates of the same message (sent at different times).

The start configuration of N on H, denoted start(N , H), is the unique configu-
ration ρ = (s, b) of N on H where for each x ∈ nodes(N), letting D = Υ(x)out ∪
Υ(x)mem, we have s(x)|D = ∅ and b(x) = ∅.

We now describe the actual computation of the transducer network. A global
transition of N on input H is a 4-tuple (ρ1, x,m, ρ2), also denoted as ρ1

x,m−−→ ρ2,
where x ∈ nodes(N), and ρ1 = (s1, b1) and ρ2 = (s2, b2) are configurations of N on
H such that

• m v b1(x) and there exists a Jsnd such that

s1(x), set(m)→ s2(x), Jsnd

is a local transition of transducer Π(x);

• for each y ∈ nodes(N) \ {x} we have s2(y) = s1(y);

• regarding the message buffers, we have

(i) b2(x) = b1(x) \m;
(ii) for each y ∈ neighbor(x,N) we have b2(y) = b1(y) ∪ J→ysnd where J→ysnd =

Jsnd if Π(x) is epidemic and J→ysnd = {R(ā) | R(y, ā) ∈ Jsnd} if Π(x) is
addressing; and,

(iii) for all other nodes y we have b2(y) = b1(y).

20

We call x the active node and m the delivered messages. Intuitively, in a global transi-
tion, we select an arbitrary node x and allow it to receive some arbitrary submultiset
m from its message buffer. The messages in m are then delivered at node x (as a
set, i.e., without duplicates) and x performs a local transition, in which it updates
its memory and output relations, and possibly sends some new messages. If Π(x) is
epidemic, the sent messages are broadcast to all neighbors, and if Π(x) is addressing,
the addressee is used to put the message in the right neighbor buffer.1 If m = ∅, we
call this global transition a heartbeat transition. A heartbeat transition corresponds
to the real life situation in which a node does a computation step when a local timer
goes off and no messages have been received from the network.

A run R of transducer network N on input distributed database instance H
is a sequence of global transitions ρi

xi,mi−−−−→ ρi+1 for i = 1, 2, 3, . . ., where ρ1 =
start(N , H), and the ith transition with i ≥ 2 operates on the resulting configuration
of the previous transition i − 1. Runs can be finite or infinite, but in each of the
chapters we will say which option is taken.

Note, when a node changes its output or memory relations during one global
transition, then these changes are visible to that node only starting from the next
global transition in which that node is active. Also, several facts can be delivered
together during a transition, regardless of whether they were sent during different
earlier transitions or during the same earlier transition.

We have not defined global transitions that are concurrent, i.e., global transitions
in which multiple nodes simultaneously receive messages from their own message
buffer and do a local transition. This can be simulated by multiple sequential global
transitions: let the nodes become active in some arbitrary order, and each active
node just reads its own message buffer. Because local transitions are deterministic,
the nodes will update their state and send messages in the same way as they would
during a concurrent transition.

2.5.3 Fairness

When infinite runs are considered, in the literature on process models it is customary
to require certain “fairness” conditions [31, 22, 41]. Let N = (N ,Υ,Π) be a trans-
ducer network. An infinite run of N on some input distributed database instance is
called fair if (i) every node of N is active in an infinite number of transitions and (ii)
if for some node a fact occurs in its message buffer in an infinite number of configura-
tions, then this fact is delivered to that node during an infinite number of transitions.
Intuitively, the last condition demands that no sent messages are infinitely delayed.
All infinite runs that we consider are assumed to be fair, unless explicitly specified
otherwise.

Note, every transducer network has an infinite fair run for every input because
heartbeat transitions are still possible even when the message buffers have become
empty.

1The first component of each fact in Jsnd is regarded as the addressee, and this component is
projected away during the transfer of the message to the buffer of that addressee. Messages having
an addressee that is not a neighbor are lost.

21

2.5.4 Message Delivery Constraints
We may want to impose a size-constraint on the delivered message multisets. Indeed,
for a transducer network N and a natural number k ≥ 1, we can restrict our attention
to runs of N where the sizes of the delivered message multisets are of size at most k.
This is the k-delivery semantics for N . No such bound is assumed, unless explicitly
mentioned.

2.6 Conjunctive Queries
We now recall the query language unions of conjunctive queries with (safe) negation,
abbreviated UCQ¬. This language is equivalent to the existential fragment of first-
order logic [2]. It will be convenient to use a slightly unconventional formalization of
conjunctive queries.

Let var be a universe of variables, disjoint from dom. An atom is of the form
R(u1, . . . , uk) where R is a relation name and ui ∈ var ∪ dom for i = 1, . . . , k. We
call R the predicate. If an atom contains no data values, then we call it constant-free.
A literal is an atom, or an atom with “¬” prepended; these literals are respectively
called positive and negative.

A conjunctive query (or simply rule) ϕ is a triple

(headϕ, posϕ, negϕ)

where headϕ is an atom, and posϕ and negϕ are sets of atoms. The components
headϕ, posϕ and negϕ are called respectively the head, the positive body atoms and
the negative body atoms. The union of the last two sets is called the body atoms.
Note that in our formalization, the set negϕ contains just atoms, not negative literals.
Every rule ϕ must have a head, whereas posϕ and negϕ may be empty. If negϕ = ∅
then ϕ is called positive. If all atoms comprising ϕ are constant-free, then ϕ is called
constant-free.

A rule ϕ may be written in the conventional syntax. For instance, if headϕ =
T (u, v), posϕ = {R(u, v)} and negϕ = {S(v)}, with u, v ∈ var, then we can write ϕ
as

T (u, v)← R(u, v), ¬S(v).

The specific ordering of literals to the right of the arrow is arbitrary. We will often
refer to the body literals more directly, by prepending the symbol “¬” to the negative
body atoms. For the previous example, the body literals are R(u, v) and ¬S(v).

We call ϕ safe if the variables occurring in headϕ and negϕ also occur in posϕ.
The set of variables of ϕ is denoted vars(ϕ). If vars(ϕ) = ∅ then ϕ is called ground,
in which case we will consider {headϕ} ∪ posϕ ∪ negϕ to be a set of facts.

Let D be a database schema. A rule ϕ is said to be over schema D if for each
atom R(u1, . . . , uk) ∈ {headϕ} ∪ posϕ ∪ negϕ we have R(k) ∈ D. Suppose ϕ is over
D. A valuation for ϕ is a total function V : vars(ϕ)→ dom. Note, there is only one
valuation for ground rules, namely, the one having an empty domain. Now, we define
the application of V to an atom R(u1, . . . , uk) of ϕ, denoted V (R(u1, . . . , uk)), as the
fact R(a1, . . . , ak) where for i = 1, . . . , k we have ai = V (ui) if ui ∈ var and ai = ui
otherwise. In words: the application of valuation V replaces the variables by data

22

values and leaves the old data values unchanged. This notation is naturally extended
to a set of atoms, which results in a set of facts. Now, let I be an instance over D. The
valuation V is said to be satisfying for ϕ on I if V (posϕ) ⊆ I and V (negϕ) ∩ I = ∅.
If this is so, then ϕ is said to derive the fact V (headϕ). The result of ϕ applied to I,
denoted ϕ(I), is the set of facts derived by all satisfying valuations for ϕ on I.

A union of conjunctive queries with negation over a database schema D is a finite
set Φ of rules over D that all have the same head predicate. The resulting language
is denoted UCQ¬, and Φ will also be called a UCQ¬-program. Let I be a database
instance. The result of Φ applied to I, denoted Φ(I), is defined as

⋃
ϕ∈Φ ϕ(I). Note,

if Φ = ∅ then Φ(I) = ∅.
The language UCQ is the sublanguage of UCQ¬ where only positive rules can be

used.

2.7 Datalog
We recall the language Datalog with negation [2], which we abbreviate as Datalog¬.

Let D be a database schema. A Datalog¬ program P over D is a set of safe rules
over D (defined in Section 2.6). We call P constant-free if all rules in P are constant-
free. We will write sch(P) to denote the database schema that P is over. We define
idb(P) ⊆ sch(P) to be the database schema consisting of all relations occurring in
rule-heads of P . We abbreviate edb(P) = sch(P) \ idb(P).2

An input for P is a database instance over sch(P). Note, we allow inputs to
already contain facts over idb(P), and the reason for this slightly unconventional
input definition will become clear in Section 2.8.2.

2.7.1 Positive and Semi-positive
Let P be a Datalog¬ program. We say that P is positive if it has only positive rules.
Positive Datalog¬ is commonly referred to as simply Datalog [2]. We say that P is
semi-positive if for each rule ϕ ∈ P , all predicates used in atoms of negϕ are contained
in edb(P). Naturally, positive programs are semi-positive.

Let P be a semi-positive Datalog¬ program. We now give the semantics of P [2].
We define the immediate consequence operator TP that maps each instance J over
sch(P) to the instance J ′ = J ∪ A where A is the set of facts derived by all possible
satisfying valuations for the rules of P on J . Note that adom(J ′) ⊆ adom(J).

Let I be an instance over sch(P). Consider the infinite sequence I0, I1, I2, etc,
that is inductively defined as follows: I0 = I and Ii = TP (Ii−1) for each i ≥ 1. We
define the output of P on input I, denoted P (I), as

⋃
j Ij ; this is the minimal fixpoint

of the TP operator. Note, I ⊆ P (I). When I is finite, the fixpoint is finite and can
be computed in polynomial time (under data complexity [56]).

2.7.2 Stratified Semantics
We now recall the stratified semantics of a Datalog¬ program P [2]. To improve
readability, as a slight abuse of notation, here we will treat idb(P) as a set of only

2The abbreviation “idb” stands for “intensional database schema” and “edb” stands for “exten-
sional database schema” [2].

23

relation names (without associated arities). The program P is called syntactically
stratifiable if there is a function σ : idb(P)→ {1, . . . , |idb(P)|} such that for each rule
ϕ ∈ P , having some head predicate T , the following conditions are satisfied:

• σ(R) ≤ σ(T) for each R(v̄) ∈ posϕ|idb(P);

• σ(R) < σ(T) for each R(v̄) ∈ negϕ|idb(P).

For R ∈ idb(P), we call σ(R) the stratum number of R. For technical convenience, we
may assume that if there is an R ∈ idb(P) with σ(R) > 1 then there is an S ∈ idb(P)
with σ(S) = σ(R)− 1.

Intuitively, the function σ partitions P into a sequence of semi-positive Datalog¬
programs P1, . . . , Pk with k ≤ |idb(P)| such that for each i = 1, . . . , k, the program
Pi is the set of rules of P whose head predicate has stratum number i. Rules with the
same head predicate are always in the same semi-positive program. This sequence of
semi-positive programs is called a syntactic stratification of P . We can now apply the
stratified semantics to P : for an input I over sch(P), we first compute the fixpoint
P1(I), then the fixpoint P2(P1(I)), etc. The output of P on input I, denoted P (I),
is then defined as Pk(Pk−1(. . . P1(I) . . .)). It is well known that the output of P does
not depend on the chosen syntactic stratification (in the case that more than one
exists).

Not all Datalog¬ programs are syntactically stratifiable.

2.7.3 Stable Model Semantics
We now recall the stable model semantics of a Datalog¬ program P [32, 52]. Let I
be a database instance over sch(P). Let ϕ ∈ P . Let V be a valuation for ϕ whose
image is contained in adom(I). Valuation V does not have to be satisfying for ϕ on
I. Together, V and ϕ give rise to a ground rule ψ, that is precisely ϕ except that
each u ∈ vars(ϕ) is replaced by V (u). We call ψ a ground rule of ϕ with respect to
I. Let ground(ϕ, I) denote the set of all ground rules of ϕ that we can make with
respect to I. The ground program of P on input I, denoted ground(P, I), is defined
as
⋃
ϕ∈P ground(ϕ, I).

LetM be a set of facts over the schema sch(P). We write groundM (P, I) to denote
the program obtained from ground(P, I) as follows:

1. remove every rule ψ ∈ ground(P, I) for which negψ ∩M 6= ∅;

2. remove the negative (ground) body atoms from all remaining rules.

Note that groundM (P, I) is a positive program. We say that M is a stable model of
P on input I if M is the output of groundM (P, I) on input I. Hence, I ⊆ M and
adom(M) ⊆ adom(I) by the semantics of positive Datalog¬ programs.

Not all Datalog¬ programs have stable models on every input.

2.8 Dedalus
We now recall the language Dedalus [13, 14, 37], that can be used to describe dis-
tributed computations. This constitutes our second model for declarative networking.

24

Essentially, Dedalus is an extension of Datalog¬ to represent updatable memory for
the nodes of a network and to provide a mechanism for communication between these
nodes, similar to transducer networks. Concrete example programs are given in Chap-
ters 5 and 6.

In the context of Dedalus, a (computer) network is a just nonempty finite set N
of nodes, which are again values in dom. Communication channels (edges) are not
explicitly represented because we allow a node x to send a message to any node y,
as long as x knows about y by means of input relations or received messages. When
using Dedalus for general distributed or cluster computing, the delivery of messages
is handled by the network layer, which is abstracted away. But Dedalus programs
can also describe the network layer itself [45, 37], in which case we would restrict
attention to programs where nodes only send messages to nodes to which they are
explicitly linked; these nodes would again be provided as input.

Also, each node is running the same program. Consequently, a distributed database
instance H is over a network N and one database schema D: H is a function mapping
every node of N to an ordinary finite database instance over D. This represents how
data over the same schema D is spread over the nodes of a network.

2.8.1 Syntax
We present Dedalus as Datalog¬ extended with a simple annotation mechanism, which
keeps the notations simpler.3 Let D be a database schema. We write B{v̄}, where v̄
is a tuple of variables, to denote any sequence β of literals over database schema D,
such that the variables in β are precisely those in the tuple v̄. Let R(ū) denote any
atom over D. There are three types of Dedalus rules over D:

• A deductive rule is a normal Datalog¬ rule over D.

• An inductive rule is of the form

R(ū)• ← B{ū, v̄}.

• An asynchronous rule is of the form

R(ū) | y← B{ū, v̄, y}.

For inductive rules, the annotation ‘•’ can be likened to the transfer of “tokens”
in a Petri net from the old state to the new state. For asynchronous rules, the
annotation ‘| y’ with y ∈ var means that the derived head facts are transferred
(“piped”) to the node represented by y. Deductive, inductive and asynchronous rules
will express respectively local computation, updatable memory, and message sending
(cf. Section 2.8.2). Like for Datalog¬, a Dedalus rule is called safe if all its variables
occur in at least one positive body atom.

To illustrate, if D = {R(2), S(1), T (2)}, then the following three rules are examples
of, respectively, deductive, inductive and asynchronous rules over D:

T (u, v)← R(u, v), ¬S(v).
3These annotations correspond to syntactic sugar in the previous presentations of Dedalus.

25

T (u, v)• ← R(u, v).

T (u, v) | y← R(u, v), S(y).

Now consider the following definition:

Definition 2.1. A Dedalus program over a schema D is a set of deductive, inductive
and asynchronous Dedalus rules over D, such that all rules are safe, and the set of
deductive rules is syntactically stratifiable.

We will additionally assume that Dedalus programs are constant-free, as is com-
mon in the theory of database query languages, and which is not really a limitation,
since constants that are important for the program can always be indicated by unary
relations in the input.

Let P be a Dedalus program. We write sch(P) to denote the schema that P is
over. The definitions of idb(P) and edb(P) are like for Datalog¬ programs.

An input for P is a distributed database instance H over some network N and the
schema edb(P). The next section gives the operational semantics for Dedalus.

2.8.2 Operational Semantics
In this section we define our operational semantics for Dedalus. We describe how a
network executes a Dedalus program P when an input distributed database is given.
This operational semantics is in line with earlier work on declarative networking [30,
48, 35, 1], and also the operational semantics for transducer networks (Section 2.5.2).

The essence of the operational semantics is as follows. By definition, the input
distributed database is over a certain network. Every node of the network runs the
same Dedalus program, and a node has access only to its own local state and any
received messages. The nodes are made active one by one in some arbitrary order,
and this continues an infinite number of times. During each active moment of a
node x, called a local (computation) step, node x receives message facts and applies
its deductive, inductive and asynchronous rules. Concretely, the deductive rules,
forming a stratified Datalog¬ subprogram, are applied to the incoming messages and
the previous state of x. Next, the inductive rules are applied to the output of the
deductive subprogram, and these allow x to store facts in its memory: these facts
become visible in the next local step of x. Finally, the asynchronous rules are also
applied to the output of the deductive subprogram, and these allow x to send facts
to the other nodes or to itself. These facts become visible at the addressee after some
arbitrary delay, which represents asynchronous communication. We will refer to local
steps simply as “steps”.

In the next subsections, we make the above sketch more concrete. Fix some
Dedalus program P.

2.8.2.1 Configurations

A configuration describes the network at a certain point in its evolution. Let H
be an input distributed database instance for P, over a network N . We define a
configuration ρ of P on H to be a pair (s, b) where

• s is a function that maps each node of N to a set of facts over sch(P);

26

• b is a function that maps each node of N to a set of pairs of the form (i,f),
where i ∈ N and f is a fact over idb(P).

We call s the state function and b the (message) buffer function respectively. They
have the same meaning as in the operational semantics for transducer networks. The
reason for having numbers i, called send-tags, attached to facts in the image of b is
merely a technical convenience: these numbers help separate multiple instances of
the same fact when it is sent at different moments (to the same addressee), and these
send-tags will not be visible to the Dedalus program.4

The start configuration of P on input H, denoted start(P, H), is the configuration
ρ = (s, b) of P on H defined by

• s(x) = H(x) for each x ∈ N ;

• b(x) = ∅ for each x ∈ N .

In words: for every node, the state is initialized with its local input fragment in H,
and there are no sent messages.

2.8.2.2 Subprograms

We look at the operations that are executed locally during each step of a node. We
have mentioned above that the three types of Dedalus rules each have their own pur-
pose in the operational semantics. For this reason, we split the program P into three
subprograms, that contain respectively the deductive, inductive and asynchronous
rules. In Section 2.8.2.3, we describe how these subprograms are used in the opera-
tional semantics.

• First, we define deducP to be the Datalog¬ program consisting of precisely all
deductive rules of P.

• Secondly, we define inducP to be the Datalog¬ program consisting of all induc-
tive rules of P after the annotation ‘•’ in their head is removed.

• Thirdly, we define asyncP to be the Datalog¬ program consisting of precisely
all rules

T (y, ū)← B{ū, y}

where
T (ū) | y← B{ū, y}

is an asynchronous rule of P. So, we basically put the variable y as the first
component in the (extended) head atom. The intuition for the generated head
facts is that the first component will represent the addressee.

Note, the programs deducP , inducP and asyncP are just Datalog¬ programs over the
schema sch(P). Moreover, deducP is syntactically stratifiable because the deductive
rules in every Dedalus program must be syntactically stratifiable. It is possible how-
ever that inducP and asyncP are not syntactically stratifiable. Now we define the
semantics of each of these three subprograms.

4We could have equivalently modeled message buffers with multisets, where messages are not
tagged. The tags however are technically more convenient in showing our results about Dedalus.

27

Let I be a database instance over sch(P). During each step of a node, the intuition
of the deductive rules is that they “complete” the available facts by adding all new
facts that can be logically derived from them. This calls for a fixpoint semantics, and
for this reason, we define the output of deducP on input I, denoted as deducP(I),
to be given by the stratified semantics. This implies I ⊆ deducP(I). Importantly,
I is allowed to contain facts over idb(P), and the intuition is that these facts were
derived during a previous step (by inductive rules) or received as messages (as sent
by asynchronous rules). This will become more explicit in Section 2.8.2.3.

During each step of a node, the intuition behind the inductive rules is that they
store facts in the memory of the node, and these stored facts will become visible
during the next step. There is no notion of a fixpoint here because facts that will
become visible in the next step are not available in the current step to derive more
facts. For this reason, we define the output of inducP on input I to be the set of facts
derived by the rules of inducP for all possible satisfying valuations in I, in just one
derivation step. This output is denoted as inducP〈I〉. Possibly I ∩ inducP〈I〉 = ∅.

During each step of a node, the intuition behind the asynchronous rules is that
they generate “message” facts that are to be sent around the network. The output
for asyncP on input I is defined in the same way as for inducP , except that we now
use the rules of asyncP instead of inducP . This output is denoted as asyncP〈I〉. The
intuition for not requiring a fixpoint for asyncP is that a message fact will arrive at
another node, or at a later step of the sender node, and can therefore not be read
during sending.

Regarding data complexity [56], for each subprogram the output can be computed
in PTIME with respect to the size of its input.

2.8.2.3 Transitions and Runs

Let H be as above. We define how to go from one configuration ρ1 to another
configuration ρ2. This is quite similar to the operational semantics for transducer
networks (cf. Section 2.5.2). Again, a transition describes how one active node does a
local computation step to update its state and to send messages around the network.
Such transitions are chained in a run to describe a full execution of the Dedalus
program on the given input.

As a small notational aid, for a set m of pairs of the form (i,f), we define
untag(m) = {f | ∃i ∈ N : (i,f) ∈ m}.

A transition with send-tag i ∈ N is a five-tuple (ρ1, x,m, i, ρ2), also denoted as

ρ1
x,m−−−→
i

ρ2,

where ρ1 = (s1, b1) and ρ2 = (s2, b2) are configurations of P on input H, x ∈ N ,
m ⊆ b1(x), and, letting

I = s1(x) ∪ untag(m),
D = deducP(I),
δi→y = {(i, R(ā)) | R(y, ā) ∈ asyncP〈D〉} for each y ∈ N ,

28

for x we have

s2(x) = H(x) ∪ inducP〈D〉,
b2(x) = (b1(x) \m) ∪ δi→x,

and for each y ∈ N \ {x} we have

s2(y) = s1(y)
b2(y) = b1(y) ∪ δi→y.

We say this transition is of the active node x. Intuitively, the transition expresses
how the active node x reads its old state s1(x) together with the received facts in
untag(m) (thus without the tags), and then completes this information with sub-
program deducP . Next, the state of x is changed to s2(x), which always contains
the input facts of x, over schema edb(P), and it also includes all facts derived by
subprogram inducP , which is applied to the deductive fixpoint. So, input facts are
never lost, and relations in idb(P) have mutable state, where only the facts that are
explicitly derived by inducP are remembered. Only the state of the active node x
changes. Lastly, the subprogram asyncP is also applied to the deductive fixpoint. The
generated facts are messages, and by the syntax of asyncP , these have an additional
location specifier as their first component to indicate the addressee. For each y ∈ N ,
the set δi→y contains all messages addressed to y: we drop the addressee-component
because all facts are destined for y, and we attach the send-tag i. The set δi→y is then
added to the buffer of y. Messages with an addressee outside the network are ignored.
This transition semantics closely corresponds to that of the language Webdamlog [1].

A run R of P on input H is an infinite sequence of transitions, such that (i) the
very first configuration is start(P, H), (ii) the target configuration of each transition
is the source configuration of the next transition, and (iii) the transition at ordinal i
of the run uses send-tag i. The resulting transition system is highly non-deterministic
because in each transition we can choose the active node and also what messages from
its buffer we want to deliver. An infinite number of transitions is always possible
because the set of delivered messages may be empty.

A nice aspect of the operational semantics given here is that every message is
just a fact over idb(P). This allows the local Dedalus rules of a recipient node to
treat received message facts in the same way as facts in its old state, i.e., there
is no noticeable difference. From this viewpoint, communication is in some sense
transparent to the nodes, which is one of the design principles of Dedalus.

As a final remark, transitions as they are defined here can also simulate concurrent
transitions, in which multiple nodes are active at the same time and receive messages
from their respective buffers (cf. Section 2.5.2).

2.8.2.4 Fairness and Arrival Function

Note, Dedalus runs are by definition always infinite. We impose on Dedalus runs the
same fairness conditions as in Section 2.5.3. This is formalized next. Let H be an
input distributed database instance for P, over a network N . Let R be a run of P
on H. For each transition ordinal i, let ρi = (si, bi) denote the source configuration
of transition i. Now, run R is called fair if:

29

• every node is the active node in an infinite number of transitions; and,

• for every transition ordinal i, for every y ∈ N , for every pair (j,f) ∈ bi(y), there
is a transition having ordinal k with i ≤ k in which (j,f) is delivered to y.

In this second condition, possibly k = i, and in that case (j,f) is delivered in the
transition immediately following configuration ρi. Because the pair (j,f) can be in
the message buffer of multiple nodes, this k is not unique for the pair (j,f) by itself.
But, when we also consider the addressee y, it follows from the operational semantics
that this k is unique for the triple (j, y,f). This reasoning gives rise to a function αR,
called the arrival function for R, that is defined as follows: for every transition i, for
every node y, for every fact (i,f) ∈ δi→y (i.e., f is sent to addressee y during i), the
function αR maps (i, y,f) to the transition ordinal k in which (i,f) is delivered to y.
We always have αR(i, y,f) > i. Indeed, the delivery of a message can only happen
after it was sent. So, when the delivery of one message causes another to be sent,
then the second one is delivered in a later transition. This is related to the topic of
“causality”, discussed in Section 5.5.3.

30

Chapter 3

Relational Transducers for
Declarative Networking

3.1 Outline
In this chapter we investigate the CALM conjecture in the model of transducer net-
works, and we investigate the expressiveness of such networks. First, Section 3.2
gives related work. Section 3.3 gives technical remarks specific to this chapter.
Section 3.4 investigates the use of transducer networks for expressing conventional
database queries in a distributed fashion. Section 3.5 discusses the issue of coor-
dination, and looks into the CALM conjecture. Section 3.6 gives results about the
expressiveness of transducer networks. Section 3.7 discusses a variation of the used
transducer model.

3.2 Related Work
The desire to better understand coordination in the field of declarative networking is
evidenced by the steadily growing literature on this subject. First, Alvaro et al. [12]
look at coordination as a quantitative property that can be minimized. They describe
a program analysis technique to identify syntactical locations in the code where coor-
dination is not needed. The goal then, is to help the programmer iteratively reduce
the number of locations where coordination is used.

Our conference paper [15] has also inspired follow-up work by others. In particular,
Zinn et al. [59] have generalized our results to also include a “partitioning policy”,
which is a strategy to initialize every node of a network with input data before the
computation starts. The basic idea is that each node is given local relations that
provide information about how data is distributed, and in particular what data each
node can autonomously reason about, i.e., without coordination with other nodes.
This allows a node to sometimes perform nonmonotone operations without the need
for communication. It turns out that in some variations of the model considered, all
database queries can be implemented in a “coordination-free” manner. However, such
a partitioning policy might be expensive in terms of how much additional data each

31

node needs.
One of our results is that a monotone query can in principle be computed without

coordination, but it remains open in what exact way the best performance can be
achieved in a practical scenario. The work of Loo et al. [44] and Nigam et al. [49],
however, provides concrete algorithms for the case of distributed Datalog programs.
They want to efficiently update the state (i.e., the derivations) on nodes of the network
whenever some input facts change. It would be too costly to completely recompute
the state of every node when an update happens. Instead, they propose a technique
that propagates only the incremental changes that have to be distributedly applied.
This allows for sending less messages around the network, and does not require need-
less recomputations of data. Their algorithms require no coordination, can handle
recursive Datalog rules, and can tolerate messages that are delivered out of order by
the network.

This chapter is the extended version of our conference paper [15]. Some proof
details are not included in this chapter, but can be found in the technical report [16].

3.3 General Remarks
In this chapter we restrict attention to so-called homogeneous transducer networks
in which each node is running the same transducer (over the same schema). This
model appears the most natural when considering standard database queries in the
distributed setting, as we will do in this chapter. A homogeneous transducer network
is denoted N = (N ,Υ,Π), showing the network N , the single transducer schema Υ
and the single transducer Π over Υ. Importantly, to allow for a simpler presentation,
we build up the definitions and results with epidemic transducers only. Homogeneous-
epidemic transducer networks seem a basic but good model to reason about cloud
computing. For completeness, in Section 3.7, we also relate the results to addressing
transducers.

We will use infinite (fair) runs in this chapter, to express that the transducer
networks run indefinitely.

For a homogeneous transducer network N = (N ,Υ,Π), an input distributed
database instance H is now also simplified because each node uses the same input
schema Υin: instance H is a total function mapping each node of N to an ordinary
database instance over Υin.

We recall some database query languages. First, the rule-based languages UCQ,
UCQ¬, Datalog, and Datalog¬, are formalized in Chapter 2. Also recall the following
languages [2]:

• FO: first order logic (relational calculus),

• While: FO with iteration,

• NrDatalog: Datalog with no recursion,

• NrDatalog¬: Datalog¬ with no recursion.1

Among all these query languages, UCQ has the least expressive power.
1We assume that the stratified semantics is used for NrDatalog¬.

32

3.4 Expressing Queries
What does it take for a transducer network to compute some global query? Here we
propose a formal definition based on the two properties of consistency and network-
independence. This is discussed in the following subsections.

3.4.1 Transducer Kinds
We will use the following terminology for transducers. We call a transducer oblivious
if it does not read the relations Id and All in its queries. Intuitively, this means
that the transducer is unaware of the network context, because it does not know
about the node it is running on, and it does not know about the other nodes. A
transducer is called inflationary if it never deletes facts from its memory relations,
i.e., deletion queries for memory relations always return the empty set. A transducer
is called monotone if all its queries are monotone. The later Example 3.4 describes a
transducer that is at the same time oblivious, inflationary, and monotone.

3.4.2 Input and Output
To relate better to standard database queries, we frame the input and output of a
transducer network in the context of ordinary (non-distributed) database instances.
Let N = (N ,Υ,Π) be a transducer network. Let I be an instance over Υin. This
instance can be given as input to N by partitioning it across the nodes, where the
same fact can be given to multiple nodes. Formally, a distributed database instance
H over N and Υin is said to be a horizontal partition of I if I =

⋃
x∈nodes(N)H(x).

Let ρ = (s, b) be a configuration of N on input H. Naturally, ρ defines an output
database instance out(ρ) over the schema Υout as follows:

out(ρ) =
⋃

x∈nodes(N)

s(x)|Υout .

Let R be a run of N on H. Let ρ1, ρ2, etc, denote the sequence of configurations
of R. If there is a number i ≥ 1 such that out(ρi) = out(ρj) for all j > i, then
we call i a quiescence point for R. We call a configuration ρi of R a quiescence
configuration if i is a quiescence point. Only quiescence configurations can follow
a quiescence configuration, and all quiescence configurations define the same output
database instance. Because the input is finite and the transducer queries are generic,
only a finite number of distinct output facts are possible. The following property is
now clear:

Proposition 3.1. For every transducer network, on every input, every run contains
a quiescence configuration.

The output of R is now defined as out(ρi) where ρi is a quiescence configuration
of R. Note, our notion of output does not specify what node is responsible for what
piece of the output, as is common in cloud computing. Also, nodes are still allowed
to send messages once a quiescence point is reached.

33

3.4.3 Consistency
We say that a transducer network N = (N ,Υ,Π) is consistent if individually for all
database instances I over Υin, on all horizontal partitions of I over N , all runs of N
produce the same output, denoted N (I).

When N is consistent, this function N (.) has the characteristic of a query, except
that it need not be generic. For example, the “query” that asks for all data elements
in the input that are not node identifiers, can be computed by a consistent transducer
network. We mainly focus on the computation of generic queries. Naturally, N is
said to compute a query Q over input schema Υin and output schema Υout if N is
consistent and N (I) = Q(I) for every instance I over Υin on which Q is defined.

Because the individual queries that make up a transducer are generic, we can make
the following observation:

Proposition 3.2. The function N (.) is generic for each consistent transducer net-
work N in which the transducer is oblivious.

3.4.4 Examples
First, we explain our notational conventions for specifiying concrete transducers. Be-
cause FO is equivalent to NrDatalog¬ [2], we will frequently use the more readable
rule-based syntax of NrDatalog¬ to specify FO-transducers. The answer relations of
NrDatalog¬ programs will be clearly marked. For example, for a memory-insertion
query QRins, the answer relation of the corresponding NrDatalog¬ program is Rins;
for an output query QTout, the answer relation is Tout; for a message-sending query
QSsnd, the answer relation is Ssnd. We leave a blank line between the NrDatalog¬ rules
that belong to different queries. Unmentioned queries of a transducer are assumed to
always return the empty set.

We now give some examples of transducer networks.

Example 3.3. For a simple example of a consistent transducer network, let the input
be a binary relation R. Each node outputs the identical pairs from its part of the
input. No messages are sent. This network computes the equality selection σ$1=$2(R).
This is easily programmed on an FO-transducer, which is specified as follows. The
transducer schema is Υin = {R(2)}, Υout = {T (2)}, Υmsg = ∅, Υmem = ∅, and the
single transducer rule is:

Tout(u, u)← R(u, u).

�

Example 3.4. To give an example of a consistent transducer network involving
communication, we compute the transitive closure of a binary relation R in a well-
known distributed manner [45]. We present here a naive, unoptimized version. Each
node sends its part of the input to its neighbors. Specifically, each node also forwards
all messages it receives to its neighbors. This way, the input is flooded to all nodes.
Each node accumulates the input facts it receives in a binary memory relation S.
Finally, each node has an output relation T in which we repeatedly insert R ∪ S ∪
(T ◦T), where ◦ stands for relational composition. Thanks to the monotonicity of the
transitive closure, this transducer network is consistent. We can implement this idea

34

with just an UCQ-transducer. The transducer schema is Υin = {R(2)}, Υout = {T (2)},
Υmsg = {U (2)}, Υmem = {S(2)}, and the transducer rules are:

Usnd(u, v)← R(u, v).
Usnd(u, v)← U(u, v).

Sins(u, v)← U(u, v).

Tout(u, v)← R(u, v).
Tout(u, v)← S(u, v).
Tout(u, v)← T (u, w), T (w, v).

Note, the transducer is oblivious. There is no need to reason explicitly about
node identifiers, because we only let the nodes steadily accumulate all input facts
across the network and incrementally produce chunks of output. The transducer is
also inflationary and monotone, reflecting the essential nature of the transitive closure
computation. �

Example 3.5. Let us see a simple example of a transducer network that is not
consistent. Consider a network with at least two nodes. The input is a unary relation
R. Each node sends its part of R to its neighbors. Next, each node outputs the
received messages on condition that the output is still empty. When there are at
least two nodes and at least two different R-facts, different runs may deliver the
messages in different orders, so different outputs can be produced, even for the same
input distributed database instance. We can write an FO-transducer Π to implement
this idea. The transducer schema is Υin = {R(1)}, Υout = {T (1)}, Υmsg = {U (1)},
Υmem = ∅, and the transducer rules are:

Usnd(u)← R(u).

block()← T (u).
Tout(u)← ¬block(), U(u).

�

Undecidability for testing consistency of a transducer network readily follows from
undecidability of satisfiability of FO (see [16] for the proof).

3.4.5 Network-Independence
We are mainly interested in the case where a query can be correctly computed by a
transducer regardless of the network.

Let Π be a transducer over a schema Υ. We say that Π is network-independent
if for all networks N , the homogeneous transducer networks (N ,Υ,Π) are consistent
and compute the same query Q. We say that Q is the query distributedly computed
by Π. The transducer from Example 3.4 is network-independent. Now consider the
following example.

35

Example 3.6. We give a simple example of a transducer that gives rise to consistent
transducer networks but that is not network-independent. Suppose we have a unary
input relation R. Each node sends its own identifier to its neighbors. This way the
edges of the network can be discovered. The discovered edges are forwarded to every
node, and when a node detects that the collected edges together form a complete
graph, then the node outputs its local input for relation R. If the network is indeed
a complete graph, by fairness eventually all nodes will detect this, and then the
transducer network computes the identity query. But on other network topologies
the empty query is computed.

For completeness, we specify an FO-transducer Π to implement this idea. We
define the transducer schema Υ as Υin = {R(1)}, Υout = {T (1)}, Υmsg = {A(1), B(2)},
Υmem = {S(2)}. The rules of the transducer are:

Asnd(u)← Id(u).

Bsnd(u, v)← A(u), Id(v).
Bsnd(u, v)← B(u, v).

Sins(u, v)← B(u, v).

missing()← All(u), All(v), u 6= v, ¬S(u, v).
Tout(u)← R(u), ¬missing().

�

Testing network-independence for FO-transducers is undecidable (see [16] for the
proof).

3.4.6 Preliminary Observations
We now give several preliminary results about expressing queries with transducers,
that are important for deriving later results.

First, we present two lemmas which show that at each node a transducer can
always assemble a local copy of all input facts available on the network.

Lemma 3.7. Let D be a database schema. There is a transducer schema Υ with
Υin = D and an oblivious, inflationary, monotone UCQ-transducer Π over Υ such that
for every transducer network for Π, for every instance I over D, on every horizontal
partition of I, every fair run reaches a configuration where every node has a local
copy of the entire instance I in its memory.

Proof. Because the construction is straightforward, we only provide a sketch. The
idea is to let all nodes send out their local input facts and forward any message they
receive. The local inputs, together with the received inputs, are accumulated in local
memory relations. In any fair run, eventually all nodes will have received all input
facts. Relations Id and All are not needed. We also do not need deletions on the
memory relations. This technique has already been illustrated by Example 3.4. �

36

We can refine the technique of Lemma 3.7 to let a node know when it has collected
every input fact in memory:

Lemma 3.8. Let D be a database schema. There is a transducer schema Υ with
Υin = D and an UCQ¬-transducer Π over Υ such that for every transducer network
for Π, for every instance I over D, on every horizontal partition of I, every fair run
reaches a configuration where every node has a local copy of the entire instance I in
its memory, and an additional flag ‘ready’ is true (implemented by a nullary memory
relation). Moreover, the flag ‘ready’ does not become true at a node before that node
has the entire instance I in its memory.

The transducer Π is not oblivious, but can be made inflationary when using locally
the language NrDatalog¬ instead of UCQ¬.2

Proof. We provide a sketch; see [16] for the full construction. The idea is that a node
x will send its local input facts over relation R(k) ∈ D to every other node, with an
additional last component that contains the identifier of x, to indicate the origin of
the fact. We call this last component the “tag”. Next, when a node y receives a
tagged input fact, it removes the tag and stores the fact in its memory. This already
lets each node incrementally accumulate all inputs across the network. Now, for each
fact that y receives from x, node y also sends an acknowledgment back to x. The
node x checks whether y has (eventually) acknowledged all the input facts of x. If
yes, then x sends out done(x, y). From the viewpoint of y, if y has received done(x, y)
from all other nodes x then it knows that it has accumulated all the input facts on
the network, and the ready-flag is created at y. The relations Id and All are used
heavily in this protocol. �

The following theorem indicates that our transducer model has enough expressive
power to study queries in the distributed context:

Theorem 3.9. Let L be a language containing UCQ¬. Then every query expressible
in L can be distributedly computed by an L-transducer. In particular, if L is a
computationally complete query language, every partial computable query can be
distributedly computed by an L-transducer.

Proof. Let Q be a query expressible in L. Let D and D′ be respectively the input and
output schema of Q. We construct an L-transducer Π to compute Q in two steps.
In the first step, we use the partial specification of Π from Lemma 3.8 to obtain
the entire input instance at every node. The language UCQ¬ suffices for this. This
transducer has input schema Υin = D but does not produce any output yet. Now, in
the second step, we set Υout = D′. And because Q is expressible in L, once the flag
ready becomes true, we can output Q in the next local transition, by implementing
for each output relation an L-query that reads only the collected input facts. �

In the context of the CALM conjecture, monotone queries will play an important
role. For now, we observe that oblivious transducers are sufficient to compute them:

Theorem 3.10. Let L be a query language containing UCQ. Then every monotone
query expressible in L can be distributedly computed by an oblivious L-transducer.

2This is because a NrDatalog¬ program allows auxiliary relations to be declared, to which negation
can be applied.

37

In particular, if L is computationally complete, every partial computable monotone
query can be distributedly computed by an oblivious L-transducer. Moreover, these
oblivious transducers can be made inflationary and monotone.

Proof. Let Q be a monotone query expressible in L. The idea is the same as in the
proof of Theorem 3.9, but we now use the oblivious, inflationary, monotone transducer
from Lemma 3.7, to let every node gradually collect all inputs facts available on the
network. Now, because Q is expressible in L, in every local transition we can execute
L-queries for the output relations that read the part of the input already accumulated
in memory. Since Q is monotone, no incorrect tuples are output this way. Eventually,
all nodes have accumulated all the input across the network, and no new outputs will
be produced. �

3.5 The CALM Conjecture
The following was conjectured by Hellerstein:

Conjecture 3.11 (CALM Conjecture [37]). A program has an eventually consistent,
coordination-free execution strategy if and only if it is expressible in (monotonic)
Datalog.

Before we can rigorously investigate this conjecture, we want to formalize the
notion of “coordination-freeness”. This is presented in Section 3.5.1. Next, we will
present our formal CALM conjecture and its associated results in Section 3.5.2. Ad-
ditional results are in Section 3.5.3.

3.5.1 Coordination-free
The CALM conjecture hinges on an intuitive notion of “coordination” of certain
distributed computations. We illustrate this notion with a few examples.

In the well-known two-phase commit protocol [33], each node is responsible for
executing some part of a distributed transaction. To keep the distributed database
consistent in the face of runtime crashes, either all parts should be committed or
none is. To this purpose, after executing its part of the distributed transaction, but
before actually committing the results, a node checks that every node can commit its
results. This way, the distributed commit can proceed only if all individual nodes can
commit. Naturally, the nodes have to exchange messages to determine if they can
commit or not.

As another example, the multicast protocol of Lemma 3.8 also relies on heavy
coordination: the nodes exchange many messages, including acknowledgments, before
they all obtain the flag ‘ready’.

Generalizing both examples, the main idea behind coordination is that a large set
of nodes needs to obtain a consensus. For two-phase commit this is the global decision
whether all nodes should commit or not, and for Lemma 3.8 the consensus is that
all nodes have the same data. Reaching a consensus is known to be difficult in the
distributed context [23]. Because of the complexity of consensus, the involved nodes
sometimes have to wait relatively long before continuing with the actual computation.
This is also called “global barrier” [37].

38

It should be clear that coordination typically decreases the efficiency of distributed
computations, because while the coordination is under way, the nodes are just wait-
ing. So, it seems useful to understand precisely when coordination can be avoided, for
which we will use the term “coordination-freeness”. This is what the CALM conjecture
is all about. It seems hard to give a definitive formalization of coordination-freeness.
Still, we offer here a nontrivial definition that appears interesting. A very drastic,
too drastic, definition of coordination-free would be that the full output can always
be computed without communication, regardless of the input partition. Our defini-
tion is much less severe and only requires that the computation can succeed without
communication on “suitable” horizontal partitions. It actually does not matter what
a suitable partition is, as long as it exists.

Formally, let Π be a transducer over a schema Υ. Let N be a transducer network
for Π. We call N coordination-free if individually for every database instance I over
Υin, there exists a horizontal partition H of I and a run of N on H in which a
quiescence configuration is already reached by performing only heartbeat transitions
(zero or more). Intuitively, if the horizontal partition is right, then no communication
is required to correctly compute the query. The property of coordination-freeness is
mainly interesting for consistent transducer networks, because then at the quiescence
configuration that was reached with only heartbeat transitions, the produced output
is the same as produced by any other fair run. We call transducer Π coordination-free
if for every network its corresponding transducer network is coordination-free.

Example 3.12. Consider again the transitive closure computation from Example 3.4.
When every node has the full input, they can each individually compute the transitive
closure with only heartbeats. Hence, this transducer is coordination-free. �

The transitive closure query is monotone and this example can actually be gen-
eralized in the following proposition. This proposition is implicit in the literature on
embarrasingly parallel computation [37, 44, 49], and our main result (Theorem 3.21)
will provide a converse to it.

Proposition 3.13. Let L be a query language containing UCQ. Every monotone
query Q expressible in L can be distributedly computed by a coordination-free L-
transducer.

Proof. Recall from the proof of Theorem 3.10 that there is an oblivious L-transducer
that distributedly computes Q. Using the same intuition as in Example 3.12, this
transducer is coordination-free. �

Note, this proposition would not hold under the drastic definition of coordination-
freeness from above.

The reader should not be lulled into believing that with a coordination-free pro-
gram it is always sufficient to give the full input at all nodes, as the following example
shows:

Example 3.14. Consider the following queryQ, having as input two nullary relations
A and B, and a nullary output relation T : create the non-empty output (representing
“true”) if at least one of A and B is nonempty. This query is monotone. Consider
the following (contrived) transducer Π to compute Q. If the network has only one
node (which can be tested by looking at the relation All), the transducer simply

39

outputs the answer to the query. Otherwise, it first tests if its local input fragments
of A and B are both nonempty. If this is the case, nothing is output locally yet, but
a nullary fact C is sent out. Any node that receives the message C will output it.
When precisely one of A and B is nonempty locally, the transducer simply outputs the
correct output directly. The transducer is network-independent. Also, the transducer
is coordination-free, because on networks with at least two nodes there always is a
partition of the data under which no node has both A and B locally nonempty, and
the query can be computed without communication. Moreover, when A and B are
both nonempty, and every node has the entire input, no run will reach a quiescence
configuration without communication. �

The following two examples show that network-independence for a transducer does
not guarantee coordination-freeness, and vice versa.

Example 3.15. We provide an example of a transducer that is network-indepen-
dent but not coordination-free, i.e., requires communication. Let Q be the following
“emptiness” query, having a nullary input relation R, and a nullary output relation
T : create the non-empty output (representing “true”) iff R is empty. This query is
nonmonotone. We now describe a transducer to distributedly compute Q. Since every
node can have a part of the input, the nodes coordinate with each other to be certain
that R is empty at every node. Every node sends out its identifier (using the relation
Id) on condition that its local relation R is empty. Received messages are forwarded,
so that if R is globally empty, eventually all nodes will have received the identifiers
of all nodes, which can be checked using the relation All. When this happens, the
transducer at each node outputs a nullary fact.

For completeness, we specify an FO-transducer Π to implement this idea. The
transducer schema Υ is as follows: Υin = {R(0)}, Υout = {T (0)}, Υmsg = {U (1)} and
Υmem = {S(0)}. The rules are:

Usnd(u)← Id(u), ¬R().
Usnd(u)← U(u).

Sins(u)← Id(u), ¬R().
Sins(u)← U(u).

missing()← All(u), ¬S(u).
Tout()← ¬missing().

�

Example 3.16. We give a transducer that is coordination-free, and that is consistent
on every network, but is not network-independent. The transducer has two unary
input relations R and S, and it has a unary output relation T . Using relations Id and
All, the transducer can detect if there is only one node, or if there are more nodes.
If there is just one node, the single node outputs the union of R and S. If there
are at least two nodes, then all nodes will copy their local inputs into their memory;
they also broadcast their input facts to each other, so that all nodes accumulate all

40

inputs of the network; and, the nodes will continuously output the intersection of the
accumulated R-facts with the accumulated S-facts.

First, we see that on each network this transducer is consistent. Indeed, on a
single-node network the union of R and S is output, and on a multi-node network
the intersection of R and S is output. This different output behavior prevents the
transducer from being network-independent. Finally, the transducer is coordination-
free because on a single-node network the output is computed with only heartbeats,
and on a multi-node network we can consider the partition where each node has the
entire input, and then the intersection of R and S can already be computed with only
heartbeats. �

Coordination-freeness seems a useful property for a transducer to have. However,
it cannot be decided automatically in general:

Proposition 3.17. Coordination-freeness is undecidable for FO-transducers.

Proof. We reduce the finite satisfiability problem for FO to deciding coordination-
freeness for FO-transducers. Let ϕ be an FO-sentence over a database schema D. We
construct an FO-transducer Π that is coordination-free iff ϕ is not finitely satisfiable.

Consider the transducer Π in Example 3.15, that is over schema Υ. We may
assume without loss of generality that the relation names of Υ do not occur in D.
We obtain a new transducer schema Υ′ from Υ by adding D to Υin; by adding new
message relations {(Cmsg, k) | C(k) ∈ D}; and, by adding new memory relations
{(Cmem, k) | C(k) ∈ D}. We obtain a new transducer Π′ over Υ′ by modifying Π to
let all nodes gradually accumulate all input facts by means of message forwarding.
Moreover, besides keeping the old output condition “¬missing”, we will only produce
an output if additionally ϕ is satisfied on the accumulated D-facts so far (in memory).

For the first direction, suppose that ϕ is finitely satisfiable on a database instance
I over D. We show that Π′ is not coordination-free. We can regard I as a database
instance over Υ′in, where relation R is empty. Let N be a network containing two
nodes x and y. Let N denote the transducer network based on N and Π′. Suppose
there is some horizontal partitionH of I overN and a runR of N on inputH in which
a first quiescence configuration is already reached by doing only heartbeat transitions.
Because I does not contain R(), the nodes send the messages U(x) and U(y). Because
of fairness, these messages must be delivered to y and x respectively, which can happen
only after the first quiescence point because before the quiescence point there are only
heartbeat transitions. Eventually, every node will find ¬missing() to be true. The
same reasoning can be applied to the relations of D: whether I is empty or not,
there must be a configuration after the first quiescence point, in which all nodes have
accumulated I in the memory relations. Then ϕ also becomes true, and thus we
know that every node eventually outputs T (). Note that this fact cannot be in the
first quiescence configuration because it requires the delivery of at least one of the
messages U(x) or U(y). So, the initial quiescence configuration that was reachable
by only heartbeat transitions cannot exist. Thus, the network N and input I are a
proof that Π′ is not coordination-free.

For the other direction, suppose that ϕ is not finitely satisfiable. Then no trans-
ducer network based on Π′ can produce output, no matter what the input instance
over Υ′in or horizontal partition of that instance is. Hence, the start configuration of
every run is already a quiescence configuration, and Π′ is coordination-free. �

41

Although coordination-freeness is undecidable for FO-transducers (and by exten-
sion more powerful transducers), we can identify a syntactic class of transducers that
is guaranteed to be coordination-free, and that will prove to have the same expres-
sive power as the class of coordination-free transducers. Importantly, the syntactic
restriction does not guarantee network-independence. Recall from Section 3.4.1 that
an oblivious transducer does not read the system relations Id and All. For now we
observe:

Proposition 3.18. Let L be a query language. Every network-independent, oblivious
L-transducer is coordination-free.

Proof. Let Π be a network-independent, oblivious L-transducer over a schema Υ. Let
Q be the query distributedly computed by Π.

First, on a single-node network, the single node is always given the entire input
and there can only be heartbeat transitions. Then, for an input instance I over Υin,
a quiescence configuration containing Q(I) is always reached by doing only heartbeat
transitions.

Now consider any other network N , any instance I over Υin, and the horizontal
partition H that places the entire instance I at every node. Since Π is oblivious, nodes
cannot detect that they are on a network with multiple nodes unless they receive a
message. So, by doing only heartbeat transitions initially, every node will act the
same as if in a single-node network and will already output the entire Q(I). Because
Π is network-independent, the nodes cannot output more than Q(I) when they receive
messages afterwards. �

3.5.2 Main Results
Now we can formalize the original Conjecture 3.11. We will take the terms “pro-
gram” and “to have an execution strategy” to mean “query” and “to be distributedly
computed by a transducer”, respectively. The term “eventually consistent” is then
formalized by our notions of consistency and network-independence. Under this in-
terpretation, the conjecture becomes:

Conjecture 3.19. A query can be distributedly computed by a coordination-free
transducer if and only if it is expressible in Datalog.

Let us immediately get the if-side of this conjecture out of the way. It holds,
because a query in Datalog is monotone, and then by Theorem 3.10 there exists an
oblivious transducer to compute the query, but we have seen in Proposition 3.18 that
oblivious transducers are coordination-free.

As to the only-if side, the explicit mention of Datalog is a bit of a nuisance because
Datalog is limited to polynomial time whereas there certainly are monotone queries
outside PTIME. We also mention the celebrated paper [8] where Afrati, Cosmadakis
and Yannakakis show that even within PTIME there exist queries that are monotone
but not expressible in Datalog.

But Datalog aside, however, the true emphasis of the CALM Conjecture clearly
lies in the monotonicity aspect. Indeed, we confirm it in this sense:

Theorem 3.20. Let L be a query language. Every query that is distributedly com-
puted by a coordination-free L-transducer is monotone.

42

Proof. Let Π be a coordination-free L-transducer over a schema Υ that distributedly
computes a query Q. Let I and J be two database instances over the schema Υin such
that I ⊆ J . We must show that Q(I) ⊆ Q(J). Consider a fact f ∈ Q(I). Consider
a network N with at least two nodes. Let N denote the transducer network based
on N and Π. Since Π is coordination-free and network-independent, there exists a
horizontal partition H of I and a run R of N on input H in which a quiescence
configuration, containing the facts Q(I), is already reached by letting the nodes do
only heartbeat transitions. Let x be a node where f is output in the quiescence
configuration. Let y be a node different from x and consider a horizontal partition H ′
of J where H ′(x) = H(x) and H ′(y) = J . Let n be the number of initial heartbeat
transitions of x in run R that were needed to output f at x. Consider a prefix of
a run of N on input H ′ in which we initially do n heartbeat transitions, all with
active node x. Because local transitions are deterministic, the node x goes through
the same state changes as in run R before f is output and therefore f is output again
in this prefix. The prefix can be extended to a full fair run R′ of N on input H ′.
Since N is consistent, the fact f will be output on any partition of J , during any fair
run. Hence, f belongs to the query computed by N applied to J . Moreover, Π is
network-independent, so f belongs to Q(J). �

We can now obtain the following result:

Theorem 3.21. Let L be a query language containing UCQ. For every query Q that
is expressible in L, the following are equivalent:

1. Q can be distributedly computed by a coordination-free L-transducer;

2. Q can be distributedly computed by an oblivious L-transducer; and,

3. Q is monotone.

Proof. Theorem 3.10 yields (3) ⇒ (2); Proposition 3.18 yields (2) ⇒ (1); Theorem
3.20 yields (1)⇒ (3). �

In particular, if L is computationally complete, then the previous equivalences
hold for any computable query. As a small remark, now it is of no surprise that
Example 3.15 required coordination; indeed, there we distributedly compute a non-
monotone query.

3.5.2.1 Discussion

In practice, Theorem 3.21 can be used as follows. Essentially, by restricting a lan-
guage, its execution can in general be optimized more thoroughly than the unrestricted
language. A well-known example is SQL versus a Turing-complete programming lan-
guage. For our situation, the programmer of a distributed (query) algorithm can
write a program in a high-level declarative formalism, like our transducer model, or
a Datalog-variant like e.g. [44, 14, 1]. Suppose the query is monotone. Then by
Theorem 3.21, the query can be implemented in a coordination-free manner. More-
over, we can prevent the programmer from abusing coordination using the syntactic
restriction of obliviousness. The main idea is that the programmer is given only a
few communication primitives, like sending a message to neighboring nodes, and a

43

syntactic restriction is imposed to prevent the programmer from using network rela-
tions like Id or All (or equivalent information). Next, the programmer, or a software
tool, needs to assert that the program is network-independent, i.e., on every network,
all fair runs produce the desired outcome. Then, using Theorem 3.21, if the runtime
is told that the program is oblivious and network-independent, the runtime can exe-
cute the program without any coordination. By contrast, if the programmer uses Id
and All, then this semantic property is no longer guaranteed, and one would have
to resort to a general execution strategy that has built-in coordination, which seems
a waste if the program expresses a monotone computation. This way, obliviousness
could be a useful guiding principle for distributed query evaluation. The works of
Loo et al. [44] and Nigam et al. [49] provide coordination-free distributed execution
engines for Datalog.

3.5.3 Further Results
It is natural to wonder about variations of our model. One question may be about
the system relations Id and All. Without them (the oblivious case), we know that
we are always coordination-free and thus monotone.

What if we would read precisely one system relation; only Id or only All? As
to coordination-freeness, the argument given in the proof of Proposition 3.18 still
works when the transducer reads only Id, because then nodes still cannot detect that
they are on a network with multiple nodes. However, the argument fails when the
transducer reads only All, and indeed we have the following counterexample.

Example 3.22. We describe a transducer that is network-independent, reads only
All, but that is not coordination-free. The query expressed is simply the identity
query on a unary relation R. The transducer can observe the difference between
a single-node and a multi-node network by looking at the relation All. If it is a
single-node network, the node simply outputs the result directly. If it is a multi-node
network, every node sends out a message. Only upon receiving a message will a node
then output the result. Thus on a multi-node network, regardless of the horizontal
partition, communication is needed for the transducer network to produce the required
output. �

So, coordination-freeness is not guaranteed when reading only All, but yet, mono-
tonicity is not lost.

Theorem 3.23. Let L be a query language. Every query distributedly computed by
an L-transducer that reads only relation All, is monotone.

Proof. Let Π be a network-independent transducer that reads only All. As a technical
convenience, we assume that runs can use concurrent global transitions, in which
multiple nodes can be active at the same time, each receiving messages from their
own message buffer. At the end of such a concurrent global transition, for each node,
its message buffer is extended with the multiset union of all messages sent to it by its
neighbors. These concurrent transitions can be simulated by a sequence of ordinary
single-node transitions, as remarked at the end of Section 2.5.2.

Let Υ be the schema of Π. Let Q be the query distributedly computed by Π. Let
I and J be two database instances over Υin such that I ⊆ J . Let f ∈ Q(I). We

44

have to show that f ∈ Q(J). The main trick used in this proof is that although Π
can count the number of nodes of a network (using relation All), it cannot directly
observe the edges of the network. So, when f is output on input I in one network,
we can fool the transducer to output f on input J in another network that has only
slightly different edges.

Run on I Consider a network N1 in the form of a ring, containing at least four
nodes. See Figure 3.1 for an example. Let N denote the transducer network based
on N1 and Π. Let H1 be the horizontal partition of I that places I on every node of
N1.

We show now that there exists a run R1 of N on input H1 with sequence of
configurations ρ1 = (s1, b1), ρ2 = (s2, b2), . . ., such that for each i ≥ 1 and each
x, y ∈ nodes(N1) we have si(x) = si(y) and bi(x) = bi(y). In words: in every
configuration, all nodes have the same transducer state and the same message buffer.
We inductively construct R1. For the base case (i = 1), configuration ρ1 satisfies
the property because it is the start configuration: all nodes are given the entire
input I, and all message buffers are empty. For the induction hypothesis, assume
that the property holds for i. For the inductive step, we show how to continue the
partially constructed run R1 so that the property holds for i+ 1. Denote m = bi(x)
for some node x. Possibly m = ∅. We next do a concurrent global transition in
which each node is the recipient of delivered message multiset m. This is possible
by using the induction hypothesis. So, we are delivering the entire message buffer at
once to each node. Again by the induction hypothesis, all nodes have the same state
in configuration ρi, and since local transitions are deterministic, all nodes will have
the same state in configuration ρi+1. Also, if one node sends a message set Jsnd on
delivery of m, then all nodes will send this set on delivery of m. Hence, because N1 is
a ring, for each node, the messages of Jsnd will have been added twice to its message
buffer at the end of the concurrent global transition. Since all nodes emptied their
message buffer at the beginning of the concurrent transition, we see that in ρi+1 the
nodes again have the same message buffer.

The run R1 can be converted to a fair run R′1 with only non-concurrent global
transitions and that produces the same output asR1. Moreover, because Π is network-
independent, we know that R′1 outputs Q(I), and thus R1 outputs Q(I). Therefore,
we can consider a node u of N1 and an index k ≥ 1 such that u outputs f during the
kth concurrent global transition of R1.

Run on J Let u be the node as previously defined. Let z be a node of N1 that is
not a neighbor of u. We obtain a new network N2 from N1 by adding an edge between
the two neighbors of z. Because N1 is a ring with at least four nodes, we know that
this edge was not previously there and thus N2 contains a smaller ring without node
z. Let N ′ denote the transducer network based on N2 and Π. Importantly, note that
N1 and N2 have precisely the same nodes. Let H2 be the horizontal partition of J
that places I on every node except z and that places J \ I on z.

Let us abbreviate N = nodes(N2) \ {z}. Recall the sequence of configurations ρ1,
ρ2, . . ., of runR1 from above. We now show that there exists an (unfair) runR2 of N ′

on input H2 with sequence of configurations ρ′1 = (s′1, b′1), ρ′2 = (s′2, b′2), . . ., such that
for each i ≥ 1 and each y ∈ N we have s′i(y) = si(y) and b′i(y) = bi(y). In words: the

45

Figure 3.1: Ring network topology

smaller ring of nodes N follows exactly the states and message buffers of run R1. We
inductively construct R2. For the base case (i = 1), the property is satisfied because
input partition H2 initializes the nodes of N in the same way as input partition H1.
For the induction hypothesis, we assume that the property holds for index i. For the
inductive step, we show that the property holds for index i+1. As in the construction
of R1, we next do a concurrent global transition in which we deliver to every node
of N the contents of its entire message buffer. Using the induction hypothesis, this
causes each node of N to send the same message instance Jsnd to their neighbors. This
message instance was also sent during the corresponding global transition of R1. Let
y1 and y2 denote the two neighbors of node z in N1. We have {y1, y2} ⊆ N . Because
we have added the extra edge between y1 and y2 in N2, node y1 sends Jsnd to z and
to y2. This is similar for y2. Node z does not send anything because it is ignored. So,
like in R1, both y1 and y2 have Jsnd added precisely twice to their message buffer at
the end of the concurrent global transition. The rest of the reasoning is the same as
in the inductive step for constructing R1. We obtain that the nodes of N have the
same state and message buffers in configuration ρ′i+1 as in configuration ρi+1.

Consider again the run R2. Because u ∈ N , the fact f is eventually output at
u during R2, during some global transition k. But R2 is clearly not fair because
the node z is ignored. However, we can make a new run R′2 by copying only the
first k global transitions of R2, converting each of them to a sequence of ordinary
(non-concurrent) global transitions and then extending this prefix arbitrarily to a full
fair run. Thus, we obtain that f is output in a fair run of N ′ on input H2. Since Π
is network-independent, we obtain that f ∈ Q(J), as desired. �

As a corollary, we can add two more statements to the three equivalent statements
of Theorem 3.21:

Corollary 3.24. Let L be a query language containing UCQ. The following state-
ments are equivalent for any query Q expressible in L:

1. Q can be distributedly computed by an oblivious L-transducer;

2. Q can be distributedly computed by an L-transducer that is given only Id; and,

3. Q can be distributedly computed by an L-transducer that is given only All.

Proof. The directions (1) ⇒ (2) and (1) ⇒ (3) are immediate because an oblivious
transducer is given neither of Id or All. For (2) ⇒ (1), when only Id is read, the

46

query Q is monotone as argued above. Then, by also using that Q is expressible
in L, we can apply Theorem 3.10 to know that Q is computable by an oblivious
L-transducer. The direction (3)⇒ (1) is similar, but now we use Theorem 3.23. �

To conclude this section, we note that distributed algorithms involving a form of
coordination typically require the participating nodes to have some knowledge about
the other participating nodes [23]. This justifies our modeling of this knowledge
in the form of the system relations Id and All. Importantly, we have shown that
these relations are only necessary if one wants to compute a nonmonotone query in a
distributed fashion.

3.6 Expressiveness Analysis
In this section we want to better understand the transducer model itself. The main
question we would like to address is how the transducer model can be combined with
a local query language to express a global query. It is not obvious what peculiarities of
the model can be exploited in the local queries, and how. It will turn out actually that
the global query language expressed by the transducer is the while-closure of its local
query language. Intuitively, this is because each node can do multiple local transitions
in a run, which can be seen as iterations of an implicit while-loop. This is very natural,
and we believe this shows that our (distributed) transducer model is relatively elegant,
because it respects previous results about well-known query languages [2].

Table 3.1 summarizes the expressiveness results.

Queries expressible in While
= queries computable by FO-transducers
= queries computable by UCQ¬-transducers

Monotone queries expressible in While
= queries computable by oblivious FO-transducers

Queries expressible in Datalog
= queries computable by inflationary NrDatalog-transducers

Queries in PSPACE
= queries computable by multi-node FO-transducer networks

under 1-delivery semantics (cf. Section 2.5.4)

Table 3.1: Expressiveness summary

3.6.1 While versus FO
We first show the following property, and although the result might not sound very
surprising, writing out the details turned out to be rather intricate.

Lemma 3.25. A query is expressible in While if and only if it is computable by an
FO-transducer on a single-node network.

47

proof (sketch). We sketch the main ideas of the proof (see [16] for the full details).
For the only-if direction, we have to simulate a While-program on a single-node FO-
transducer network. A While-program can be simulated by iterated heartbeats using
well-known techniques [4]. The main idea is that the loops in the while-program are
rewritten with explicit “goto” statements. The statements of this rewritten program
can then be simulated by an FO-transducer that keeps track of which statement is
to be executed next, and goto-statements can make the simulation jump back to a
previous statement (simulating a loop).

For the if-direction, let Π be an FO-transducer over a schema Υ that computes
a query Q on a single-node network N . A While-program that computes the query
Q has to use exactly the same input and output schema as Π, namely, Υin and
Υout respectively. The While-program is however allowed to declare any number of
temporary relations. We may assume that Π does not read message relations in its
internal queries, because no messages can be received on a single-node network. As
a first case, let us additionally assume that the internal FO-queries of Π do not read
relations Id and All (the oblivious case). Now, because the memory relations of Π
start empty, and temporary relations declared in the While-program also start empty,
we can easily construct a While-program P that consists of one big loop, of which one
iteration performs the same state changes as Π during one heartbeat transition. In
order to terminate, P must detect repetition of transducer states, because this implies
that Π has repeated a state and will output no new output facts. Detecting such a
repetition is possible by using the technique of Abiteboul and Simon [3].

Let us now consider the second case where Π reads Id or All (or both) in its
internal queries. These relations can not be simulated by the While-program. Indeed,
these relations are always non-empty from the perspective of Π, and a While-program
can not create temporary relations to represent them: indeed, when the input is
empty, the While-program can not invent a value to store in Id and All, and when
the input is nonempty, the While-program can in general not choose one value to
store in Id and All. Therefore, we will first eliminate the use of Id and All from the
queries of Π. Once this is done, we can apply the above translation for the oblivious
case.

Remove relation All Note that in the FO-queries of Π we can replace the use of
relation All by Id because, on a single-node network, both relations have the same
contents. Formally, in a transducer state there is a fact Id(a) iff there is a fact All(a).

Remove relation Id Assume that relation All is not used in Π. Next, we remove
the use of relation Id from Π. We use the work of Van den Bussche and Cabibbo [55],
who have shown how to convert an ordinary (untyped) FO-formula to a typed formula
that computes the same query. In typed formulas, each variable is of a specific sort,
meaning that it ranges over an isolated domain of values. In our case, we distinguish
between two sorts: (i) values in the active domain of an input database instance over
Υin; and, (ii) the identifier x of the single node in N (with N as defined above).3
We will denote these sorts as respectively adom and id. A type τ is a tuple of sort
symbols, like (adom, id, id).

3By genericity of the queries in Π, we may assume that the node-identifier does not occur in the
input, giving rise to these separated sorts.

48

Based on Π, we construct a second transducer Π2 as follows. For each relation
R(k) ∈ Υout ∪ Υmem of Π and each type τ of arity k, transducer Π2 has a relation
R

(k)
τ . Transducer Π2 also has a memory relation Adom in which it stores all values

from its input. We now describe how Π2 updates such a relation R(k)
τ . Let ϕ denote

the FO-formula used by Π to insert tuples in relation R (deletion is similar). If
τ = (adom, adom, . . . , id) for instance, then transducer Π2 will use a formula of the
form

ψ(u1, . . . , uk) ∧ Adom(u1) ∧ Adom(u2) ∧ . . . ∧ Id(uk)

to insert into Rτ the tuples of type τ that are computed by ϕ. The formula ψ is
basically the formula ϕ, but modified to cope with the separation of tuples by their
type: each time ϕ reads a tuple from a relation S(l), formula ψ reads a tuple from
the union

⋃
τ∈α S

(l)
τ , where α is all types of arity l. This way, Π2 also computes the

same query as Π.
Now, we can apply Proposition 1 of [55] to the formulas in Π2 to obtain new

formulas in which there is no explicit reference to relations Adom and Id. Instead,
the converted formulas use variables of two sorts (the adom and id sorts). In a last
step, we can syntactically eliminate any reference to id variables, and obtain back
normal FO-formulas. These can be used in a new transducer Π3, which is oblivious,
to compute the same query as Π. �

Now we can obtain the following result:

Theorem 3.26. A query is expressible in While if and only if it can be distributedly
computed by an FO-transducer.

Proof. For the if-direction, let Π be an FO-transducer that distributedly computes
a query Q. Because Π is network-independent, the query Q must also be computed
when executing Π on a single-node network. Then, by using Lemma 3.25, there is a
While-program that computes Q.

For the only-if direction, let Q be a query that can be computed by a While-
program. We specify an FO-transducer to compute Q in two steps. First we use
Lemma 3.8 to obtain the entire input instance at every node. Every node can then
act as if it was alone, ignoring any further messages, and simulate the While-program
again using Lemma 3.25. �

For monotone queries we have the following, more specific result:

Theorem 3.27. Every monotone query expressible in While can be distributedly
computed by an oblivious FO-transducer.

Proof. Let Q be a monotone query expressible in While. We construct an oblivious
FO-transducer to compute Q. Note, Theorem 3.10 is not applicable, because it would
give us an oblivious While-transducer, and not an oblivious FO-transducer. But the
proof idea of the theorem can still be used.

First, we use the simple UCQ-protocol of Lemma 3.7 to let all nodes accumulate
all input facts in memory. This does not require Id or All. Next, every time a node
receives a new input fact, it starts or restarts a simulation of the While-program for
Q. The simulation uses the techniques of the proof of Lemma 3.25 (only-if direction),
where specifically the output facts are first computed in temporary memory relations

49

before being officially output. Checking whether a new input fact is received is done
by comparing a received input fact with the previously accumulated input facts in
memory. The restarting of the simulation of the While-program is done by emptying
all memory relations, and restarting the program counter. The restart can happen at
the moment a simulation is busy, in which case the temporary output is discarded.
The restart can also happen after a simulation was already successfully ended. Since
the query Q is monotone, no incorrect facts were output by previous simulations.

Eventually, every node will have accumulated all input facts, so the simulation
can surely run to completion on all input facts. We also do not need relations Id and
All to simulate the While-program. Hence, the transducer is oblivious. �

Note that the converse of Theorem 3.27, to the effect that every query distributedly
computed by an oblivious FO-transducer is monotone and expressible in While, holds
by combining Theorems 3.21 and 3.26 that give respectively the monotonicity of the
query and the expressibility in While.

For our next result, we will use that FO is equivalent to NrDatalog¬ [2]. Ba-
sically, a program in NrDatalog¬ is a sequence of UCQ¬ statements. The following
proposition shows that transducers can simulate this sequential composition of simpler
statements:

Proposition 3.28.

(i) Every query that can be distributedly computed by an FO-transducer can be
distributedly computed by an UCQ¬-transducer.

(ii) Every monotone query that can be distributedly computed by an FO-transducer
can be distributedly computed by an oblivious UCQ¬-transducer.

Proof. First, we make a general observation. For every query Q that is distribut-
edly computed by an FO-transducer, we can apply Theorem 3.26 to know that Q
is expressible with a While-program P . Moreover, since the language FO is equiv-
alent to NrDatalog¬ [2], every FO-statement in P can be replaced by a sequence of
UCQ¬-statements, to obtain a new program P ′. Then, it is clear that program P ′

can be simulated by an UCQ¬-transducer on a single-node network using iterated
heartbeats, very similar to the proof of the only-if direction for Lemma 3.25.

For result (i), we let each node first collect a local copy of the entire input by
using the protocol of Lemma 3.8, which can be done with a UCQ¬-transducer. After
collecting the input, each node can simulate the program P ′ is isolation.

For result (ii), where Q is monotone, we use instead Lemma 3.7 to let each node
gradually accumulate all input, and we restart the simulation of P ′ when new inputs
arrive. �

3.6.2 Datalog versus NrDatalog
What if we are only interested in Datalog? Between the languages Datalog and
NrDatalog, a similar relation exists as between While and FO:

Theorem 3.29. A query is expressible in Datalog if and only if it can be distributedly
computed by an inflationary NrDatalog-transducer.

50

Proof. First we consider the only-if direction. We construct an oblivious, inflationary
transducer to simulate a Datalog program. The basic idea is the same as in the
proof of Theorem 3.10. The input tuples are sent out and accumulated on every
node. During every transition, we apply the immediate consequence operator of the
Datalog program [2], that can be expressed by NrDatalog. The relations Id and All
are not needed, and the transducer can be made oblivious. Also, by the monotone
nature of Datalog evaluation, deletions are never needed, and the transducer can be
made inflationary.

Now we consider the if-direction. Let Q be a query distributedly computed by
an inflationary NrDatalog-transducer Π over a schema Υ. We show that Q can be
expressed in Datalog. Because of network-independence, it is sufficient to look at the
behavior of Π on a single-node network. We simulate this behavior with a Datalog
program P as follows. We assume that the logical “and” and the universal quantifier
are not core primitives of FO, since these can be simulated by negation together
with respectively the logical “or” and the existential quantifier. We call an FO-
formula positive if each atom and existential quantifier occurs under an even number
of negation symbols. Under this interpretation, the language NrDatalog is equivalent
to positive FO. So, Π is just an inflationary FO-transducer, in which the internal FO-
queries are positive. Now, the same transformation as in the proof of the if-direction
for Lemma 3.25 can be applied to transform Π into a new FO-transducer Π′ that
computes Q without reading relations Id and All. Moreover, this transformation
preserves the positivity of the formula. Hence, Π′ can be immediately seen as an
inflationary NrDatalog transducer that does not read Id and All. Next, we unite all
NrDatalog rules of Π′ in a Datalog program P . Because P by the nature of Datalog
can only accumulate its generated facts, P has at least the opportunities of Π′ to join
facts, and P outputs at least the output of Π′. Moreover, because Π′ is inflationary
itself, Π′ eventually has the same opportunities to join facts as P . In conclusion, P
computes exactly the original query Q. �

It remains open if we can drop the word “inflationary” from Theorem 3.29.

3.6.3 Restrict Delivery
It is well-known that providing an order on the active domain increases the expres-
siveness of a query language [2]. This result transfers nicely to our transducer model.
By guaranteeing that only one message is delivered during every global transition,
referred to as 1-delivery semantics (cf. Section 2.5.4), an order can be established on
each node:

Proposition 3.30. Under 1-delivery semantics, every PSPACE query can be com-
puted by an FO-transducer network with at least two nodes.

Proof. In a network with at least two nodes, under 1-delivery semantics, each node
can establish a linear order on the active domain by cooperating with the other
nodes as follows. When a node has collected all inputs of the network (by means of
Lemma 3.8), it sends out the elements of the active domain, that get forwarded by
other nodes. Eventually, all these elements arrive back at the node, and the order
can be established because at most one value is received at once. Then, each node
can simulate a While-program on the collected input, that uses the established order.

51

The transducer involved is not truly network-independent, as this only works when
there are at least two nodes. �

3.6.4 Specialized CALM Properties
Using our previous results about expressivity, we obtain the following variants of
Theorem 3.21. Especially, the second variant, which deals with Datalog, may come
closest to the CALM conjecture as originally imagined by Hellerstein [37].

Corollary 3.31. Within each of the following two groups, the statements are equiv-
alent, for any query Q:

1. (a) Q can be distributedly computed by a coordination-free FO-transducer.

(b) Q can be distributedly computed by an oblivious FO-transducer.

(c) Q is monotone and expressible in the language While.

2. (a) Q can be distributedly computed by a coordination-free, inflationary
NrDatalog-transducer.

(b) Q can be distributedly computed by an oblivious, inflationary NrDatalog-
transducer.

(c) Q is expressible in Datalog.

Proof. Regarding (1), for (c)⇒ (b) use Theorem 3.27; for (b)⇒ (a) use Proposition
3.18; for (a) ⇒ (c) use Theorems 3.20 and 3.26 to obtain respectively the properties
of “Q is monotone” and “expressible in the language While”.

Regarding (2), for (c)⇒ (b) use (proof of if-direction in) Theorem 3.29; for (b)⇒
(a) use Proposition 3.18; for (a)⇒ (c) use Theorem 3.29. �

3.7 Addressing Transducers
Recall the addressing transducer model, defined in Section 2.4.2. For a homogeneous
transducer network N = (N ,Υ,Π) where Π is an addressing transducer, the op-
erational semantics is also given by Section 2.5.2. As a special case, if N forms a
complete graph, every node can send a message to every individual other node.

We now indicate which results obtained for epidemic transducers are transferable
to addressing transducers, and which results are not. First, our previous results that
do not explicitly restrict the use of Id or All still hold for addressing transducers be-
cause then addressing transducers and epidemic transducers are equivalent in terms
of what queries they can compute. Indeed, the epidemic model can simulate the ad-
dressing model by manually adding an addressee-component to every message relation
in the transducer schema, and by comparing for each received message the addressee
component with the value in the local relation Id. The other direction is also possible,
namely, that an addressing transducer can simulate an epidemic one: it suffices for
the addressing transducer to send each message explicitly to every neighbor.

52

Interestingly, a notion of obliviousness can also be defined for addressing trans-
ducers. Formally, we say that an addressing transducer is oblivious if the relations Id
and All are only used in the message sending queries.4

Now, most of our results involving oblivious epidemic transducers also hold for
oblivious addressing transducers, because of the following reasons. First, the proof
techniques frequently use that every node sends out its local input facts, and these are
forwarded so that eventually all nodes accumulate all inputs. This can be done with
an oblivious addressing transducer as well. Second, these results are mostly about
network-independent transducers, and a frequently occurring idea in those proofs is
that we only focus on the behavior of a single node: an oblivious epidemic transducer
can not distinguish between a single-node network and a multi-node network unless it
receives a message, so on a single-node network it should exhibit predictable behavior
if it wants to be network-independent. This trick is also applicable to oblivious ad-
dressing transducers, because they too can not distinguish between single-node and
multi-node networks unless they receive a message. We now explicitly give the results
that are not transferable to addressing transducers, and why this is the case.

First, Proposition 3.2 does not hold for oblivious addressing transducer networks,
because of the following reasons. The result talks about a concrete transducer net-
work, in which the transducer may know how many nodes there are. If there are
multiple nodes, the transducer may assume messages are eventually delivered. So, it
is possible to construct a multi-node transducer network in which the oblivious ad-
dressing transducer smuggles node identifiers in the sent messages (by reading All),
and when these arrive, it is possible to only output the input facts whose active do-
main is contained in the set of node identifiers. This would prevent the transducer
network from computing a generic query.

Although not purely about obliviousness, the result of Theorem 3.23 is also not
transferable to addressing transducers, as illustrated by the following example, where
relation All is used to make the nodes dependent on message arrival.

Example 3.32. We give an addressing transducer that reads only relation All and
that computes the nonmonotone emptiness query on a nullary input relation R (see
also Example 3.15). Reading relation All in output or memory queries, a node
can know from the start if it is alone or not. If the node is alone, then it can
immediately output the desired result by looking at the local relation R. But if there
are multiple nodes, every node x sends each local fact All(y) as a message A(y)
to node y. Although the operational semantics drops the message when y is not a
neighbor of x, because each network is connected, y has at least one neighbor from
which it will receive A(y). This way, each node can establish its own identity. Next,
the same protocol as in Example 3.15 is followed. �

4Note, we can not completely forbid the use of relations Id or All because we need to somehow
indicate addressees.

53

54

Chapter 4

Deciding Eventual
Consistency

4.1 Outline
In this chapter we investigate the decidability of eventual consistency for transducer
networks. First, Section 4.2 presents related work, and Section 4.3 gives technical
remarks specific to this chapter. Section 4.4 provides some additional definitions.
Section 4.5 formalizes eventual consistency for networks as confluence, along with
syntactic restrictions leading to so-called “simple” networks; related (un)decidability
results are also presented. Section 4.6 shows that confluence of a simple network with
multiple nodes can be reduced to confluence of a simple single-node network. Next,
Section 4.7 establishes a small model property for simple single-node networks. This
is used in Section 4.8 to give a procedure for deciding whether a simple single-node
network is confluent, along with a NEXPTIME-completeness result for the complexity.
The expressiveness of simple networks, not necessarily single-node, is analyzed in
Section 4.9. Variations of the transducer network model are discussed in Section 4.10.

4.2 Related work
The work most closely related to ours is that by Deutsch et al. on verification of
communicating data-driven Web services [30]. The main differences between our
works are the following. (i) In their setting, message buffers are ordered queues; in
our setting, message buffers are unordered multisets. Unordered buffers model the
asynchronous communication typical in cloud computing [37] where messages can be
delivered out of order. (ii) In their setting, to obtain decidability, message buffers
are bounded and lossy; in our setting, they are unbounded and not lossy. (iii) In
their setting, transducers are less severely restricted than in our setting. (iv) In
their setting, clusters of transducers are verified for properties expressed in (first-
order) linear temporal logic;1 in our setting, we are really focusing on the property of

1Deutsch et al. can also verify branching-time temporal properties, but only when transducer
states are propositional.

55

eventual consistency. It is actually not obvious whether eventual consistency (in the
way we define it formally) is a linear-time temporal property, and if it is, whether it
is expressible in first-order linear temporal logic.

This chapter is the extended version of our conference paper [17]. Some proof
details are not included in this chapter, but can be found in the technical report [19].

4.3 General Remarks
The transducer model of Chapter 3 was more narrowly focused on the CALM con-
jecture: transducer programs are considered to be network-independent, and nodes
communicate in an epidemic manner by spreading messages to their neighbors. In
this chapter, we will use a more general model [1, 37], where different nodes can run
different programs (non-homogeneous transducer networks), and nodes can directly
address their messages to specified nodes (addressing transducers). So, we will again
use the general transducer network model presented in Section 2.5, and additionally
assume each transducer is addressing. Other differences with Chapter 3 are high-
lighted below. See also Section 4.10 for a discussion.

Distributed queries In Chapter 3, we did not consider the problem of decid-
ing eventual consistency; we simply assumed eventual consistency and were focus-
ing on expressiveness issues. In particular, we were focusing on standard queries to
databases, computed in a distributed fashion by distributing the database in an ar-
bitrary way over the nodes of the network. This only seems useful when each node
uses the same input schema, which is an assumption we no longer make in this chap-
ter. Therefore, in the present model, we directly consider distributed queries, i.e.,
the input to the query is a distributed database, and different distributions of the
same dataset (only applicable if nodes have compatible schemas) may yield different
answers to the query.

Sending To make some constructions technically less involved, we assume the se-
mantics of Section 2.5.2 also allows a node to send messages to itself, instead of only
to its neighbors. We also assume for convenience that each network N is a complete
graph, i.e., each node can send to any other node. For this reason, we regard N as
simply a set of nodes.

Rule-based We immediately restrict attention to transducers whose queries are
specified with UCQ¬.2 This results in a rule-based formalism to express the com-
putations, following the idea behind declarative networking [45]. Also, rules appear
quite suitable for imposing syntactic restrictions, as we will do here. For simplicity,
we assume all rules are constant-free.

Besides positive and negative body atoms, we allow rules to additionally contain
a set of nonequalities of the form (u 6= v) where u, v ∈ var. A satisfying valuation
has to assign different values to the variables u and v.

2The language UCQ¬ is formalized in Section 2.6.

56

Runs In this chapter, a runR is just a finite sequence of global transitions. We write
last(R) to denote the last configuration reached by R. The reason for considering
finite runs is to simplify the problem setting. See also Chapter 7 for a discussion.

4.4 Additional Definitions
4.4.1 Distributed Queries
Let E be a distributed database schema, as defined in Section 2.3. Let F be another
distributed database schema over the same network as E . A distributed query Q over
input schema E and output schema F is a function that maps distributed database
instances over E to distributed database instances over F .

Like before, we will refer to ordinary database queries (as defined in Section 2.1)
just as “queries”.

4.4.2 Derivation Trees
We want to formally describe how a fact is derived by a transducer, i.e., we want to
make visible what rules and valuations are used. To explain a fact, in some cases it
suffices to give a so-called derivation pair (ϕ, V), consisting of a rule ϕ and a satisfying
valuation V . In other cases, we want to explain all facts that are recursively needed
by the satisfying valuation, i.e., the facts V (posϕ). For this purpose, we use derivation
trees, and this is formalized below.

Let Π be a transducer over a schema Υ. A (full) derivation tree T of Π is a tuple
(nodesT , edgesT , ruleT , valT , litT) where

• nodesT and edgesT are respectively the nodes and parent-child edges that to-
gether form a tree;

• ruleT is a function that maps each internal node x ∈ nodesT to a rule ruleT (x)
of Π;

• valT is a function that maps each internal node x ∈ nodesT to a valuation
valT (x) for ruleT (x) such that the nonequalities are satisfied; and,

• litT is a function that maps each non-root node x ∈ nodesT to a literal litT (x)
in the body of ruleT (y) where y is the parent of x,

subject to these additional constraints:

• for each internal node x ∈ nodesT , for each literal l in the body of rule ruleT (x),
there is precisely one child y of x such that litT (y) = l;

• for each non-root node x ∈ nodesT , if litT (x) is a database literal, or if litT (x)
is negative, then x must be a leaf; and,

• for all non-root internal nodes x ∈ nodesT , having a parent y, applying valuation
valT (x) to the head of rule ruleT (x) results in the same fact as applying the
parent valuation valT (y) to the (positive) atom inside literal litT (x).

57

For each internal node x of T , we write factT (x) to denote the fact valT (x)(a), where
a is the head of ruleT (x). For a leaf node y with parent x, we write factT (y) to
denote the fact valT (x)(a), where a is the atom inside the literal litT (y). We write
intT to denote the set of internal nodes of T .

From nodesT and edgesT we can always uniquely identify the root node of T ,
which we denote as rootT . Let f be a fact over a relation R(k) ∈ Υout∪Υmsg∪Υmem.
A derivation tree T is said to be for fact f if applying valuation valT (rootT) to the
head of rule ruleT (rootT) results in the fact f .

4.4.2.1 Schedulings

We now relate derivation trees to runs. Formally, a scheduling for a derivation tree
T is a function κ that assigns to each internal node x of T a nonzero natural number
κ(x), subject to the constraint that nodes always get strictly lower numbers than
their ancestors. Intuitively, κ(x) represents the transition number of a run in which
ruleT (x) should fire under valuation valT (x).

The canonical scheduling of T , denoted κT , is the (unique) scheduling for which
there is at least one internal node x such that κT (x) = 1, and for all parent-child
edges (x, y) we have κT (x) = κT (y)+1. Intuitively, the canonical scheduling executes
the derivations of T as tightly as possible at the beginning of a run.

4.4.3 Encoding
We specify how a transducer network can be given as input to a decision procedure.
The encoding of a transducer network N is a sequence of transducers (and their
schemas), one for each node of N , as follows. For each node, (i) the transducer schema
is represented by a sequence of (relname,type)-pairs, where relname is a relation
name and the type indicates whether the relation is input, output, etc; and, (ii) the
transducer itself is given by a sequence of rules that are written in full, like in the
later Example 4.1.3 We assume that the transducer schema only mentions relations
effectively used by the rules. To represent the relation names and variables, binary
numbers must be used, so that the number of bits is logarithmic in the total number of
relations and variables respectively. Moreover, some small fixed alphabet of auxiliary
characters needs to be used, to represent the type of relations in the transducer
schema, and to separate the different components (schemas, transducers, rules, etc).

We write |N | to denote the size of the encoding of N .

4.5 Confluence
In this chapter, we formalize “eventual consistency” [57, 37] as a confluence notion.
Let N = (N ,Υ,Π) be a transducer network. Let H be an input distributed database
instance for N . By the asynchronous nature of message delivery, different (finite) runs
of N on H can deliver messages in different orders. So, in some run R, it is possible
that the transducer at some node x ∈ N applies negation too quickly, without having
seen some crucial messages. This could accidentally prevent some outputs obtained in

3It is reasonable to write the components of body atoms in full, because we need to describe
which variables are used, and how they are potentially shared between atoms.

58

other runs from ever being produced in any extension of R. By contrast, transducer
networks where such problems are not possible are called confluent.

Formally, we call N confluent on H if for any two runs R1 and R2 of N on H,
for every node x ∈ N , for every output fact f available at x in the last configuration
of R1, there exists an extension R′2 of R2 such that f is available at x in the last
configuration of R′2. To rephrase, if during one run some node can produce an output
fact, then for any run there exists an extension in which that fact can be produced
on that node too. Naturally, we call N confluent if N is confluent on all input
distributed database instances. If N is not confluent, we say that N is diffluent.
Confluence is one way of formalizing eventual consistency; but see also Chapter 7 for
a discussion.

Consider now the following example of a confluent transducer network:

Example 4.1. Let N = {x, y} be a network of two nodes. We define a transducer
network N = (N ,Υ,Π). There are no memory relations in this example.

First, define Υ(x)in = {A(1)}, Υ(x)out = {T (1)}, Υ(x)msg = {A(1)
msg, B

(2)
msg}, and

Υ(x)mem = ∅. Transducer Π(x) is given as

Amsg(y, u)← A(u), All(y), ¬Id(y).
T (u)← Bmsg(x, u), Id(x).

Next, define Υ(y)in = {B(2)}, Υ(y)out = {T (1)}, Υ(y)msg = Υ(x)msg (shared
messages), and Υ(y)mem = ∅. Transducer Π(y) is given as

Bmsg(y, u, v)← B(u, v), All(y), ¬Id(y).
T (u)← Amsg(u).

On any input distributed database instance H for N , node x sends its local A-
facts as Amsg-facts to y. Similarly, y sends its local B-facts as Bmsg-facts to x. For
a received Bmsg-fact, node x outputs the second component in relation T if the first
component is its identifier. Node y simply outputs all received Amsg-facts.

The above transducer network is confluent. Indeed, say, node x outputs a fact
T (a) during a run. This means that x has received Bmsg(x, a), which was sent by
node y based on an input fact B(x, a). On the same input distributed database
instance, consider now any run where x has not yet output T (a). We can extend this
run as follows. We do a global transition with active node y, so that y sends its input
B-facts as Bmsg-facts to x. One of these messages is Bmsg(x, a). Then, in a following
global transition, we deliver Bmsg(x, a) to x, and x again outputs T (a). Similarly, we
can argue that if the node y outputs a T -fact in one run, then any other run on the
same input can be extended to make y output this fact. �

By contrast, consider the following example of a transducer network that is dif-
fluent.

Example 4.2. Let N = {x, y} be a network. We define a transducer network N =
(N ,Υ,Π) as follows. In this example, we do no deletions on memory relations, and
we will only explicitly specify the insertions.

59

First, define Υ(x)in = {A(1), B(1)}, Υ(x)out = ∅, Υ(x)msg = {A(1)
msg, B

(1)
msg}, and

Υ(x)mem = ∅. The node x sends its local A- and B-facts to the other node y.
Transducer Π(x) is given as

Amsg(y, u)← A(u), All(y), ¬Id(y).
Bmsg(y, u)← B(u), All(y), ¬Id(y).

Next, define Υ(y)in = ∅, Υ(y)out = {T (1)}, Υ(y)msg = Υ(x)msg (shared mes-
sages), and Υ(y)mem = {B(1)}. Transducer Π(y) is given as:

B(u)← Bmsg(u).
T (u)← Amsg(u), ¬B(u).

Now we show why N is diffluent. Let H be the following instance over inN :
H(x) = {A(1), B(1)} and H(y) = ∅. There are two quite different runs possible, that
we describe next. Suppose that both runs start with a global transition with active
node x. This causes x to send both Amsg(1) and Bmsg(1) to y. For the first run, in the
second transition we deliver only Amsg(1) to y, which causes y to output T (1). For
the second run, in the second transition we deliver only Bmsg(1) to y, which causes y
to only create the memory fact B(1). Now, the output fact T (1) can not be created
in any extension of the second run because each time we deliver Amsg(1) to y, the
presence of B(1) prevents T (1) from being created. �

4.5.1 Decision Problem
In a diffluent transducer network, the output can vary strongly depending on how
messages are delivered. It thus seems useful to know if a transducer network could
be diffluent. Formally, we have the following diffluence decision problem: given a
transducer network N , decide if N is diffluent (for some input). One can expect
this problem to be undecidable in general. For this reason, we consider possible
syntactical restrictions on transducer networks in Section 4.5.2, and Section 4.5.3
investigates their effect on decidability.

4.5.2 Syntactical Restrictions
We introduce several syntactical restrictions on individual transducers and on trans-
ducer networks as a whole. Let Π be a transducer over a schema Υ. For an individual
rule ϕ of Π, we consider the following possible restrictions:

• We say that ϕ is message-positive if there are no message atoms in negϕ. Note,
this seems to be a natural constraint in our model because message delivery is
asynchronous.

• We say that ϕ is static if posϕ and negϕ do not contain output or memory
atoms, i.e., ϕ does not use output or memory relations in its body.

60

• We say that ϕ is message-bounded if V ⊆ A and V ∩B = ∅, where V is the set
of bound variables of ϕ (i.e., not occurring in the head); A is the set of variables
of ϕ occurring in positive message atoms; and, B is the set of variables of ϕ
occurring in output or memory atoms. In words: every bound variable occurs
in a positive message atom, and does not occur in output or memory atoms
(positive or negative). This is an application of the more general notion of
“input-boundedness” [54, 30, 29].4

We consider the following restrictions for transducer Π:

• We say that Π is recursion-free if there are no cycles in the positive dependency
graph of Π, which is the graph having as vertices the relations of Υout ∪Υmsg ∪
Υmem and there is an edge from relation R to relation S if S occurs positively
in a rule for R in Π.

• We say that Π is inflationary if there are no rules for the deletion queries of
memory relations. This means that Π can not delete memory facts once they
are produced.

We call Π simple (for lack of a better name) if

• Π is recursion-free and inflationary;

• all send rules are message-positive and static;5 and,

• all insertion rules for output and memory relations are message-positive and
message-bounded.

Because input facts are never changed, note that static send rules always produce the
same result on receipt of the same messages, independently of what output or memory
facts might have been derived. Also, if Π is inflationary, memory and output relations
basically behave in the same way. However, we preserve the difference between these
two kinds of relations to retain the connection to the unrestricted transducer model
and because memory relations are useful as a separate construct, namely, as relations
used for computation but that don’t belong to the final result.

Let N be a transducer network. We present a restriction that we can impose on N
as a whole. Note that messages are the only way to introduce a dependency between
different nodes of N . Now, we say that N is globally recursion-free if there are no
cycles in the positive message dependency graph of N , which is the graph having as
vertices the (shared) message relations of N and there is an edge from relation R to
relation S if S occurs positively in a rule for R in some transducer of N .

We call N simple if

• all transducers of N are simple; and,

• N is globally recursion-free.

The Examples 4.1 and 4.2 are simple transducer networks.
4We have replaced the term “input-boundedness” by “message-boundedness” because the word

“input” has a different meaning in our text, namely, as the input that a transducer is locally initialized
with.

5The restrictions considered by Deutsch et al. [29] for “input-rules”, which are closely related to
our send rules, are a bit less restrictive. Roughly speaking, they still allow the use of nullary output
and memory facts. It seems plausible that our results can be similarly extended.

61

4.5.3 Results on Decidability
One of the difficulties of the diffluence decision problem is that we need to verify
a property of an infinite state system. Intuitively, there are infinitely many inputs
and even for a fixed input there are infinitely many configurations because there is
no bound on the size of the message buffer. As the following two propositions show,
diffluence for transducer networks is undecidable, even under several restrictions:

Proposition 4.3. Diffluence is undecidable for transducer networks that are simple,
except that send rules do not have to be static.

Proof. Inspired by the proof technique of Deutsch et al. [30], we reduce the the finite
implication problem for functional and inclusion dependencies [26] to the diffluence
decision problem. We sketch the proof; the full details are in [19]. An instance of the
finite implication problem is a triple (D,Σ, σ), where D is a database schema, Σ is a
set of functional and inclusion dependencies over D, and σ is a functional or inclusion
dependency over D. We call (D,Σ, σ) valid if I |= Σ implies I |= σ for each instance
I over D.6 We have to check validity of (D,Σ, σ).

For the instance (D,Σ, σ), we construct a single-node transducer network N that
is simple except that send rules are not static, and so that N is diffluent iff (D,Σ, σ)
is not valid. Let Π denote the single transducer of N . We let the input schema
of Π contain D. Transducer Π sends a special marker message to itself, and when
the marker is received, Π checks whether the input over D satisfies Σ and σ. Non-
static send rules are needed for checking the inclusion dependencies. For each violated
dependency τ ∈ Σ ∪ {σ}, transducer Π sends a violτ ()-message to itself.

Upon receiving violσ(), the transducer does something diffluent, by blocking a
rule for output relation T as was done in Example 4.2, so that an incoming Amsg(a)-
fact is ignored when memory fact B(a) was previously created. But when some
violτ () message with τ ∈ Σ is received, we repair the diffluent behavior: we fill a
nullary memory relation repair, that is tested positively in another output rule for
relation T . This second rule for T can henceforth output all received Amsg-facts.

Now, if (D,Σ, σ) is not valid, there is an instance I over D such that I |= Σ
and I 6|= σ. Instance I can be extended to an input J for N , and we make two
runs as follows. In the first run, an output T (a) is produced by first delivering some
fact Amsg(a) and by postponing the marker message (to postpone the dependency
checking). In the second run, we do the converse, i.e., we deliver the marker first.
Then, dependency σ turns out to be violated, and upon delivery of violσ(), we can
block the output. No repairs are possible because only σ is violated.

Conversely, if N is diffluent on an input J , this can only be explained by σ being
violated and no dependency of Σ, so that the input of N gives rise to an instance I
over D for which I |= Σ and I 6|= σ. Hence, (D,Σ, σ) is not valid. �

Proposition 4.4. Diffluence is undecidable for transducer networks that are simple,
except that messages may participate in cycles in the local positive dependency graphs
of individual transducers.

6We write I |= σ to denote that σ holds in I. We write I |= Σ to denote that I |= σ for each
σ ∈ Σ.

62

Proof. Inspired by the proof technique of Deutsch et al. [30], we reduce the Post
correspondence problem [51] to the diffluence decision problem. We sketch the proof;
the full details are in [19]. An instance of the Post correspondence problem is a
pair (U, V) where U = u1, . . . , un and V = v1, . . . , vn are two nonempty equal-length
sequences of nonempty words over some alphabet with at least two symbols. A match
for U and V is a finite sequence E = e1, . . . , em of indices in {1, . . . , n} such that the
words ue1 . . . uem and ve1 . . . vem are equal. Sequence E may contain the same index
multiple times. The problem is to check whether a match exists.

For the instance (U, V), we construct a single-node transducer network N that
is simple except that messages can have recursive dependencies, and so that N is
diffluent iff (U, V) has a match. Let Π denote the single transducer of N . First,
we provide Π with input relations to encode a word-structure: a binary relation R
represents a chain, and a binary relation L assigns a label to each element of the
chain.

The idea is to use messages to align the words of U and V to the input word-
structure, to discover a match for (U, V). Concretely, we use messages of the form
align[i, k, l](a, b), with i ∈ {1, . . . , n}, k ∈ {1, . . . , |ui|} and l ∈ {1, . . . , |vi|}, ex-
pressing that we have already successfully aligned a sequence of (uj , vj)-pairs with
j ∈ {1, . . . , n} to the word-structure, where (ui, vi) is the last pair tried, and the
alignment of ui and vi has progressed partially up to respectively symbols k and
l, arriving at respectively elements a and b of the word-structure. After a message
align[i, |ui|, |vi|](a, b) is sent, indicating that (ui, vi) is fully aligned, we have sending
rules to align a next pair (uj , vj), by sending message align[j, 1, 1](a′, b′), where a′ and
b′ are the successor-elements of respectively a and b on the word-structure. Adding un-
restricted message recursion adds some notion of “iteration” to the transducer model:
because message relations are allowed to participate in cycles, the alignment to the
word-structure can repeatedly use the same pair (ui, vi), allowing us to consider all
candidate sequences E like above (but restricted to the input word structure).

If there is indeed a match for (U, V) then we can encode the resulting word as an
input word-structure for N . So, the above alignment process can eventually send a
message of the form align[j, |uj |, |vj |](a, a), i.e., we can align a sequence of (ui, vi)-
pairs fully to the word-structure, where the implied concatenation of U -words ends
at the same element of the word-structure as the implied concatenation of V -words.
Then we do something diffluent, like in Example 4.2.

For the other direction, when N is diffluent on some input, we can attribute that
to the sending of a message align[j, |uj |, |vj |](a, a), whose derivation history reveals
a match for (U, V) against a valid word-structure contained in the input of N . �

By disallowing the syntactical liberties of the previous two propositions, we obtain
decidability:

Theorem 4.5. Diffluence for simple transducer networks is decidable in NEXPTIME;
in fact, the problem is NEXPTIME-complete.

Theorem 4.5 is proven in Sections 4.6, 4.7, and 4.8.

63

4.6 Simulation on Single Node
Let N be a simple transducer network. We construct a simple single-node transducer
network M that simulates N , and so that M is confluent iff N is confluent. This will
be made more precise below. The transformation can be done in PTIME for reasonable
encodings of a transducer network, and so |M| is polynomial in |N | (cf. Section 4.4.3).
The merit of this section lies in reducing the technical complexity for the decidability
result (Sections 4.7 and 4.8) and the expressivity analysis (Section 4.9).

First, Section 4.6.1 gives syntactical simplifications for single-node networks. Next,
Section 4.6.2 formalizes the notion of simulation and formulates the result. The
sections thereafter show the result: Sections 4.6.3 and 4.6.4 respectively define the
transducer schema and transducer of M, and Section 4.6.5 shows that M satisfies
the desired properties.

4.6.1 Syntactical Simplifications
For a single-node transducer network M, we use the following syntactical simplifi-
cations. It will be sufficient to view M as consisting of only a transducer schema
Υ and a transducer Π over Υ; the actual node of M is immaterial. The schemas
inM, outM and memM (Section 2.5.1) are regarded as ordinary (non-distributed)
database schemas. Accordingly, an input for M is an ordinary database instance I.
A configuration of M on I is a pair (s, b) where s is a transducer state of Π and b is
a multiset of facts over Υmsg. Because there is only a single node, sending rules of Π
have no explicit addressee variable in the head. Hence, schema Υsys will not be used.

4.6.2 Simulation Concept and Result
To formalize the notion of “simulation”, we introduce some auxiliary notations. Let
N denote the network of N . For a distributed database schema E over N , we view
each node x ∈ N as a namespace containing the relations E(x): we use symbol “x.R”
to denote relation R at x. Let 〈E〉 denote the (ordinary) database schema

{x.R(k) | x ∈ N , R(k) ∈ E(x)}.

For each distributed database instance H over E , let 〈H〉 be the following ordinary
database instance over 〈E〉:

{x.R(ā) | x ∈ N , R(ā) ∈ H(x)}.

Let schN denote the database schema {x.Id(1) | x ∈ N} ∪ {Node(1)}. Let instN be
the following instance over schN :

{x.Id(x), Node(x) | x ∈ N}.

We abbreviate 〈E〉N = 〈E〉∪schN and 〈H〉N = 〈H〉∪instN . We say that an instance
I over 〈E〉N is well-formed if I is isomorphic to an instance J over 〈E〉N for which
J |schN = instN .7 An instance that is not well-formed is called ill-formed.

7I is isomorphic to J if there is an injective function f : dom→ dom such that f(I) = J .

64

For a configuration ρ = (s, b) of N , we write out(ρ) to denote the following
distributed instance H ′ over outN : for each x ∈ N , instance H ′(x) consists of all
output facts in s(x). If N is a single-node network, we consider out(ρ) to be an
ordinary database instance.

Now, we say that a single-node transducer network M simulates N if (i) inM =
〈inN 〉N ; (ii) outM = 〈outN 〉; and, (iii) for each input H for N , the following holds:

• for every run R of N on H, there is a run S of M on 〈H〉N such that
〈out(last(R))〉 = out(last(S)),

• for every run S of M on 〈H〉N , there is a run R of N on H such that
〈out(last(R))〉 = out(last(S)).

We set inM = 〈inN 〉N instead of inM = 〈inN 〉 because M needs the identifiers of
the nodes to simulate message sending and the nodes’ comparisons of their identifier
to input values, and because we disallow constants in rules (Section 4.3).

Now we are ready to present the result:

Proposition 4.6. For each simple transducer network N , there exists a simple single-
node transducer network M such that (i) M simulates N , and (ii) M is confluent
iff N is confluent.

Note, the simulation property says nothing about confluence and vice versa. The
following subsections define M so that the desired properties are satisfied.

4.6.3 Transducer Schema
We define the single transducer schema Υ of M. Denote N = (N ,Υ,Π). Let DN

msg
denote the shared message schema of N . We define Υ as follows:

• Υin = 〈inN 〉N ; Υout = 〈outN 〉; Υmem = 〈memN 〉; and,

• Υmsg consists of (i) the relations R(k+1)
→x for which x ∈ N and R(k) ∈ DN

msg, (ii)
a relation do(0)

x for each x ∈ N , (iii) relation error(0), and (iv) relation adom(1).

Relations of the form dox allow us to explicitly simulate a transition of node x. Next,
a relation R→x is used to send R-facts specifically to node x. The latter relations
have an incremented arity when compared to DN

msg, for the following reason. Each
transition of the transducer Π in M can simulate multiple nodes simultaneously, and
these simulated nodes could send the same message to the same addressee. But the
transition of Π can only send a set of messages. So, by letting Π additionally put the
simulated sender node in each simulated message, we can avoid that these distinct
simulated sending events would all be collapsed. Lastly, the relations error and adom
allow Π to be confluent on ill-formed inputs; see below.

4.6.4 Transducer Rules
We now describe the single transducer Π of M. Essentially, the UCQ¬ queries of Π
are unions of modified UCQ¬ queries of the original transducers in N . Some extra
rules deal with ill-formed inputs.

65

4.6.4.1 Output and Memory

We do the following for each node x ∈ N . Let T (k) be an output or memory relation
in Υ(x). All rules for relation T in Π(x) are message-positive and message-bounded.
An insertion rule ϕ for relation T in transducer Π(x) is modified to insertion rule ϕ′
for relation x.T in Π as follows:

• input, output and memory atoms R(ū) in ϕ become x.R(ū) in ϕ′, including the
head;

• atoms of the form Id(u) and All(u) in ϕ become respectively x.Id(u) and
Node(u) in ϕ′;

• (positive) message atoms R(ū) in ϕ become R→x(z, ū) in ϕ′ where z is a new
variable that is unique per message atom;

• the nonequalities in ϕ are the nonequalities in ϕ′;

• ϕ′ additionally contains the positive body atom dox().

Intuitively, because relation All always contains N on every node of N , it is replaced
by the shared relation Node in M. For a message atom R→x(z, ū), the new variable
z represents the extra sender-component (cf. Section 4.6.3). This component is not
used elsewhere in the rule and is basically projected away.

The resulting output and memory insertion rules are message-positive and message-
bounded. Because Π(x) is simple, there are no deletion rules for memory relations,
so we don’t have to translate these.

4.6.4.2 Messages

We do the following for each node x ∈ N . Let T (k) be a shared message relation of N .
All rules for relation T in Π(x) are message-positive and static. To let simulated node
x send messages in M, we add to Π all rules ϕ′y obtained by combining a sending
rule ϕ for T in Π(x) and a node y ∈ N . Intuitively, rule ϕ′y models the sending of
T -messages by x to the specific addressee y. Denote headϕ = T (n0, ū), where n0 is
the addressee variable. Let n1 be a new variable. Rule ϕ′y is obtained as follows:

• the head T (n0, ū) of ϕ becomes the head T→y(n1, ū) in ϕ′y;

• ϕ′y contains positive body atoms y.Id(n0) and x.Id(n1);

• input atoms R(ū) in ϕ become x.R(ū) in ϕ′y;

• atoms of the form Id(u) and All(u), and message atoms, are transformed as in
the output and memory rules above;

• the nonequalities of ϕ are the nonequalities of ϕ′y;

• ϕ′y additionally contains the positive body atom dox().

66

Variable n0 is not removed because it might occur on several places in ϕ, and by
adding the atom y.Id(n0), we fix the addressee y. Variable n1 represents the sender
x by addition of the body atom x.Id(n1), and n1 replaces n0 in the head.

Denote N = {x1, . . . , xn}. For each x ∈ N , we also add the following rule to Π,
to send simulation messages for x:

dox()← x1.Id(u1), . . . , xn.Id(un).

The above rule has the effect that a message doy() for any y ∈ N can only be sent
if all relations z.Id with z ∈ N are nonempty. And because the simulated output,
memory, and sending rules are guarded by message atoms of the form doy(), the
entire simulation requires that these relations z.Id are nonempty.

The above message rules of Π are all message-positive and static.

4.6.4.3 Ill-formed Inputs

We indicate how M can be made confluent on ill-formed input instances. First, using
message-positive and static send rules, it is possible to send a message error() if the
following constraints are violated: (i) some relation x.Id contains two different values;
(ii) two relations x.Id and y.Id with x 6= y share a value; and, (iii) relation Node is
not the union of all x.Id relations.

We also add new output rules that on receipt of error() can produce all possible
output facts in Υout. Technically, this is done by adding rules to send all values a
from the input active domain as an adom(a)-message, and the additional output rules
combine these values upon delivery when error() is also jointly delivered.

4.6.4.4 Check Simple

We verify that Π is simple: (i) Π is inflationary by construction; (ii) Π is recursion-
free because the transducers of N are recursion-free and because there are no cycles
in the positive message dependency graph of N (global recursion-freeness); and, (iii)
the desired constraints on output, memory and sending rules hold, as remarked above.
Moreover, because Π is the only transducer of M and Π is recursion-free, there are
no cycles in the positive message dependency graph of M, and thus M is simple.

4.6.5 Simulation and Confluence Equivalence
We now show that (i) M simulates N and (ii) M is confluent iff N is confluent. First
we need some additional concepts and notations. Let ρ = (s, b) be a configuration of
N on input H and let σ = (s′, b′) be a configuration of M on input 〈H〉N . We say
that σ and ρ are output-equivalent if for each x ∈ N and each output relation R at
x, we have R(ā) ∈ s(x) iff x.R(ā) ∈ s′. The notions of input-, memory-, and system-
equivalence can be similarly defined, where the latter demands that the relations Id
and All of each original node in N are represented exactly by the relations x.Id with
x ∈ N and Node in M. The definition of 〈H〉N implies that configurations σ and ρ
are always input- and system-equivalent.

We say that σ and ρ are message-equivalent if for each x ∈ N , for each fact R(ā),
the cardinality of R(ā) in b(x) equals the number of messages of the form R→x(z, ā)

67

in b′ (each may have a different sender component). Similarly, we say that σ has its
messages included in ρ when for each x ∈ N the number of messages of the form
R→x(z, ā) in b′ is less than or equal to the cardinality of R(ā) in b(x).

Claims 4.7 and 4.8 show that M simulates N , but they are phrased slightly more
general for later use in the confluence equivalence:

Claim 4.7. Every run R of N on an input H can be converted to a run S of M on
〈H〉N such that last(R) and last(S) are output-, memory-, and message-equivalent.

Proof. Let n be the number of transitions in R, and let x1, . . ., xn be the active nodes
in order. Run S will consist of n + 1 transitions: for each i = 1, . . . , n, we deliver
doxi() in transition i + 1 of S (and no other doy-messages). We start S by doing
one heartbeat transition, so that at least dox1() is sent. This message is delivered
in the second transition of S, to simulate the behavior of node x1. By input- and
system-equivalence of the second configuration of S and the first configuration of R,
the third configuration of S and the second configuration of R are output-, memory-,
and message-equivalent. We can now repeat the same for nodes x2, x3, etc. Moreover,
the message-equivalence allows us to deliver k messages of the form R→x(z, ā) in a
transition of S when the corresponding transition in R would deliver k instances of
(the same) message R(ā) to an active node x. �

Claim 4.8. LetH be an input for N . Every run S of M on 〈H〉N can be converted to
a run R of N on H such that last(R) and last(S) are output- and memory-equivalent,
and last(S) has its messages included in last(R).

Proof. First, some transitions of S might deliver a message of the form R→x(z, ā)
without jointly delivering dox(). Because node x is only simulated when dox() is
delivered, message R→x(z, ā) is effectively lost. So, we can refrain from delivering
R→x(z, ā) in this case, without compromising future message deliveries. After doing
this modification for all deliveries of S, we also drop any resulting (or preexisting)
heartbeat transitions except the first transition, because they do not simulate nodes.8
This results in a new run S ′ such that last(S) and last(S ′) have the same output and
memory facts, and such that the buffer of last(S) is included in the buffer of last(S ′)
when ignoring the dox-messages.

Next, some transitions i of S ′ might deliver two messages dox() and doy() with
x 6= y. Such a transition i simulates multiple nodes in parallel. But in M, the
simulated rules of each node x are guarded by dox(), and these rules can only access
relations of x itself. Hence, transition i can be converted to a sequence of transitions
in which only one node is simulated at a time (in some arbitrary order), and in which
each node receives the same messages that it received in i. This results in a new run
S ′′, where last(S ′) and last(S ′′) are exactly the same when ignoring the dox-messages.

Starting from the second transition, run S ′′ simulates precisely one node in each
transition. In the opposite fashion as in Claim 4.7, we can now convert S ′′ to a
run R of N on input H so that last(S ′′) and last(R) are output-, memory-, and
message-equivalent. Note, last(S) and last(R) are output- and memory-equivalent,
and last(S) has its messages included in last(R). �

8This does not compromise the supply of dox-messages because they are sent in each transition.

68

Now we are ready for the actual confluence equivalence between N and M, where
each direction is shown in a separate claim:

Claim 4.9. If M is confluent then N is confluent.

Proof. Let H be an input for N . Let R1 and R2 be two runs of N on H, where
last(R1) contains an output fact R(ā) at some node x ∈ N . We have to show that R2
can be extended to a run R′2 such that last(R′2) also contains fact R(ā) at x. Using
Claim 4.7, we can make two runs S1 and S2 of M on 〈H〉N such that for i ∈ {1, 2},
configurations last(Si) and last(Ri) are output-, memory-, and message-equivalent.
In particular, last(S1) contains output fact x.R(ā). By confluence of M, run S2 can
be extended to a run S ′2 such that last(S2) also contains x.R(ā). Lastly, extension
S ′2 gives rise to an extension R′2 of R2 such that last(R′2) is output- and memory-
equivalent to last(S ′2), and so last(R′2) contains R(ā) at x: the proof is similar to that
of Claim 4.8, with the exception that the configurations in S ′2 have their messages
included in the corresponding configurations of R′2. This is sufficient to guarantee
that R′2 can mimic the behavior of S ′2. �

Claim 4.10. If N is confluent then M is confluent.

Proof. Let I be an input for M. We have to show that M is confluent on I.
First, suppose that I is ill-formed. If I does not contain a value for each relation

x.Id with x ∈ N then no output can ever be produced. Indeed, no message dox() for
any x ∈ N can be sent (and delivered), so no diffluence could arise because the nodes
are not simulated. Otherwise, if I contains a value for each relation x.Id, because I is
still ill-formed, it will be possible to send error() (see Section 4.6.4.3). Then any run
can be extended to produce all possible output facts, so potential diffluent behavior
can always be corrected.

Now suppose that I is well-formed, which means there is an instance J isomorphic
to I with J |schN = instN (see Section 4.6.2). Because transducer rules of M only
express generic queries, it is sufficient to show that M is confluent on J . Let H be
the (unique) input for N for which 〈H〉N = J . Let S1 and S2 be two runs of M on
J , where last(S1) contains an output fact x.R(ā). We have to show that there is an
extension of S2 for which the last configuration also contains x.R(ā).

First, applying Claim 4.8 to run S1, we can construct a run R1 of N on input H
such that last(S1) and last(R1) are output- and memory-equivalent. In particular,
output fact R(ā) is at node x in last(R1).

Next, suppose we can construct an extension S ′′2 of S2 and a run R′′2 of N on input
H such that last(S ′′2) and last(R′′2) are output-, memory-, and message-equivalent. If
by chance last(S ′′2) already contains x.R(ā) then we are ready. Otherwise, by output-
equivalence of last(S ′′2) and last(R′′2), fact R(ā) will not be at x in last(R′′2). But,
by confluence of N , because R(ā) can be derived at x in R1 (see above), there is an
extension ofR′′2 to derive R(ā) at x. By message-equivalence of last(S ′′2) and last(R′′2),
this extension can be simulated at the end of S ′′2 to derive x.R(ā), in a similar vein
as in the proof of Claim 4.7.

We are left to construct the runs S ′′2 and R′′2 .

Message saturation Because transducer Π of M is recursion-free (Π is simple),
we can consider the maximum height n amongst derivation trees of Π, where the

69

height is the largest number of edges on any path from a leaf to the root. Now,
we extend S2 to a run S ′2 by doing n additional transitions: each transition delivers
the entire message buffer, and thus simulates all nodes in parallel where each node
receives its entire (simulated) message buffer.9 Because the sending rules of Π are
message-positive and static, the message buffer of M — degenerated to a set — will
monotonously grow. Because n is the maximum height of a derivation tree, last(S ′2)
contains all messages that could possibly be sent on input J .

Run of N Applying Claim 4.8 to S ′2 (not to S2), we can construct a run R′2 of
N on input H such that last(S ′2) and last(R′2) are output- and memory-equivalent,
and such that the messages of last(S ′2) are included in last(R′2). We now show that
actually all messages in the buffers of last(R′2) are simulated in the (single) buffer of
last(S ′2), except for maybe their precise cardinalities.

Let S(b̄) be a message in the buffer of some node y in last(R′2). We can extract
from R′2 a “global” derivation tree T to explain how S(b̄) was sent to y: this is
like a normal derivation tree, except that we also say at which node a message was
derived. Letting Π be the single transducer of M, and letting x be the node in the
root of T (i.e., x sends S(b̄) to y), the natural correspondence between Π and N
allows us to convert T into a derivation tree T ′ of Π, to explain how to send the
message S→y(x, b̄). Because sending rules are message-positive and static, this tree
T ′ is successfully executed in the last n transitions of S ′2, so that S→y(x, b̄) is in the
message buffer of last(S ′2), as desired.

Obtain message-equivalence Consider the extension R′′2 of R′2 that is obtained
by letting each node, in some arbitrary order, receive its entire message buffer from
configuration last(R′2). Similarly, consider the extension S ′′2 of S ′2 obtained by letting
each simulated node, in the same order as in R′′2 , receive its entire message buffer as
it is simulated by configuration last(S ′2).

As we have seen above, last(R′2) and last(S ′2) essentially represent the same mes-
sages in the buffer of each node, except that the cardinalities might be different. But
since duplicate messages are collapsed upon delivery, the nodes do not observe the
difference in cardinalities when the above two extensions are performed. Hence, con-
figurations last(R′′2) and last(S ′′2) are output- and memory-equivalent. But they are
also message-equivalent as we now explain. First, for a node y ∈ N , the extensions
deliver equivalent message sets to y. Hence, in both extensions, node y in turn sends
equivalent message sets. And because node y has its entire message buffer (of con-
figurations last(R′2) and last(S ′2)) emptied during the delivery, the cardinalities of
messages in last(R′′2) and last(S ′′2) are the same. �

4.7 Small Model Property
Let N be a simple single-node transducer network. We establish a small model
property: if N is diffluent, then N is diffluent on an input whose active domain size

9We assume run S2 contains at least one transition, so that all dox-messages are available in the
buffer of last(S2).

70

is upper bounded by an expression purely over syntactical properties of N . For this
result, we use all syntactical restrictions of simple transducer networks.

Let Π and Υ denote respectively the single transducer and its schema in N . Like
in Section 4.6.1, an input for N is an instance I over Υin, and a configuration of N
is a pair (s, b) where s is a transducer state and b is a multiset of facts over Υmsg.
Moreover, the sending rules have no explicit addressee variable in their head, and Υsys
will not be used in any rule. Such a network can always be obtained by applying the
simulation in Section 4.6.

4.7.1 Syntactical Quantities
Consider the following syntactically defined quantities about N :

• the length P of the longest path in the positive dependency graph of Π (defined
in Section 4.5.2), where the length of a path is measured as the number of edges
on this path;

• the largest number B of positive body atoms in any rule of Π;

• the largest arity I among input relations;

• the largest arity O among output relations;

• the number C of different output and memory facts that can be made with
values in A, where A ⊆ dom is an arbitrary set with |A| = O.

Now, let sizeDom(N) abbreviate the expression 2ICBP. We have the following small
model property:

Proposition 4.11. If N is diffluent, then N is diffluent on an instance J over Υin
for which |adom(J)| ≤ sizeDom(N).

The rest of this section is devoted to showing this result.

4.7.2 Proof Outline
Here we sketch the proof of Proposition 4.11. The details are provided by the following
subsections. The proof technique is inspired by pseudoruns from Deutsch et al. [29],
although it was adapted to deal with the diffluence problem and to deal with message
buffers (multisets). Let N , Π and Υ be as above, and recall the syntactical quantities
of N from Section 4.7.1.

First we give some additional terminology and notations. Let A ⊆ dom. We call
a fact g an A-fact if the values in g are a subset of A. For a set of facts H, we write
H [A] to denote the subset of all A-facts in H. Note, nullary facts of H are always in
H [A].

Let I be an input for N . Suppose N is diffluent on I, i.e., there are two runs R1
and R2 of N on I such that last(R1) contains an output fact f that is not in last(R2),
and there is no extension R′2 of R2 such that last(R′2) contains f . Abbreviate C =
adom(f), the set of values in f . Note, |C| ≤ O.

In Section 4.7.3, for i = 1, 2, we will select a subset of input facts Ki ⊆ I that
are needed to make all output and memory C-facts of run Ri, with the property

71

|Ki| ≤ CBP. This gives the instances K1 and K2. Note, C ⊆ adom(K1) because f is
created in R1. Define

J = I [adom(K1)∪adom(K2)].

Note, |adom(J)| ≤ 2ICBP = sizeDom(N).
Next, in Section 4.7.4, for i = 1, 2, we will construct a run Si on input J with the

following properties:

• last(Si) and last(Ri) contain precisely the same output and memory C-facts;

• every extension S ′i of Si gives rise to an extension R′i of Ri such that last(S ′i)
and last(R′i) again contain precisely the same output and memory C-facts.

This gives the runs S1 and S2 on J . The focus on output and memory C-facts is
mainly the result of the message-boundedness constraint. Since f is an output C-
fact, the first property above tells us that last(S1) contains f and last(S2) does not.
Moreover, if S2 can be extended to a run S ′2 such that last(S ′2) contains f , then the
second property above would tell us that R2 can be extended to a run R′2 such that
last(R′2) also contains f . But the latter is not possible by assumption on R2. Hence,
S ′2 does not exist, and N is diffluent on the instance J , whose active domain size is
upper bounded by sizeDom(N), as desired.

4.7.3 Input Selection
Consider the symbols defined in Sections 4.7.1 and 4.7.2. Let R be either R1 or R2.
In this section, we select an instance K ⊆ I that is needed to make all output and
memory C-facts of R, and such that |K| ≤ CBP.

We construct a derivation history of each output and memory C-fact in R: this
includes the rules and valuations that derive the C-facts, and it also includes the
derivation histories of messages recursively needed to make those C-facts.

4.7.3.1 Derivation History

Let g be an output or memory C-fact derived during R. By inflationarity of Π, the
derivation of g happens in some unique transition i. We choose one pair (ϕ, V) of a
rule ϕ and satisfying valuation V such that g is derived during transition i by applying
V to ϕ. Let us call (ϕ, V) a derivation pair. If ϕ contains a (positive) body message
atom a, the message h = V (a) is required by (ϕ, V) to derive g. Similarly as we did
for g, we can go to a transition in which h was derived and select there also one pair
(ϕ′, V ′) to derive h. We can again recursively repeat the selection of derivation pairs
for any message facts needed by (ϕ′, V ′).

Formally, after the selection of derivation pairs, we obtain a function histR that
maps each pair (i, g) to a derivation pair for g, where g is an output or memory
C-fact or a recursively needed message derived in transition i. We also have a set
msgR containing triples (k,h, l) to indicate that a valuation in transition l needs the
message h to arrive, and that h itself is sent in (an earlier) transition k. These triples
indicate the timing of the needed messages.

Now, let K denote the subset of all input facts h ∈ I for which there exists a pair
(i, g) in the domain of histR, denoting histR(i, g) = (ϕ, V), such that h ∈ V (posϕ).

72

In words: K contains the (positive) input facts needed by the derivation history of
all output and memory C-facts in R (and any needed messages). We now show
|K| ≤ CBP. First, let us fix one output or memory C-fact g. Any chain of messages
recursively needed by g has length at most P by recursion-freeness of Π. Moreover,
in the worst case, each message recursively requires B other messages. Therefore, the
number of input facts needed by g alone is bounded by BP. And since at most C

different output and memory C-facts are created in R, we overall have that |K| ≤
CBP, as desired.

4.7.3.2 Natural Properties

Section 4.7.3.1 allows much liberty in which histR and msgR may be chosen. We now
demand that some natural properties hold on msgR, upon which the construction in
Section 4.7.4 crucially depends.

First, based on msgR, for each transition i of R, we define the message multisets
βi, γi, and Ei as follows, with the intuition provided below:

• the multiplicity of a message h in βi is the number of triples (k,h, l) ∈ msgR
for which l = i;

• the multiplicity of a message h in γi is the number of triples (k,h, l) ∈ msgR
for which k < i and i ≤ l;

• the multiplicity of a message h in Ei is the number of triples (k,h, l) ∈ msgR
for which k = i.

Let ρ1, . . ., ρn, ρn+1 denote the sequence of configurations ofR, where n is the number
of transitions. Intuitively, βi contains the messages needed in transition i; γi contains
the needed messages that are sent before configuration ρi and that travel through
configuration ρi to be delivered in transition i (when l = i) or later (when i < l); and,
Ei contains the needed messages that should be sent in transition i.

In the technical report [19], we show that histR and msgR can be chosen so that
the following properties are satisfied, with the intuition provided below:

1. γi v bRi for each transition i of R, where ρi = (sRi , bRi);

2. βi is a set for each transition i of R, i.e., for each (k,h, i) and (k′,h, i) in msgR,
we have k = k′;

3. Ei = γi+1 ∩ δRi , where δRi is the set of messages sent in transition i of R.

Intuitively, property 1 means that all needed messages whose transmission overlaps
in time, also jointly occur in the message buffer, with the correct cardinalities. Prop-
erty 2 means that if multiple derivation pairs in the same transition need the same
message, the same origin of this message is used. Lastly, property 3 implies that
for each needed message, its origin transition is chosen as late as possible: whenever
for some needed message h ∈ γi+1 we have the opportunity to explain its origin in
transition i (i.e., h ∈ δRi), we take this opportunity (i.e., h ∈ Ei).

73

4.7.4 Run Projection
Consider the symbols defined in Section 4.7.2. LetR be eitherR1 orR2. We construct
a run S on input J with the following properties:

• last(S) and last(R) contain the same output and memory C-facts;

• every extension S ′ of S gives rise to an extension R′ of R such that last(S ′) and
last(R′) again contain precisely the same output and memory C-facts.

To reduce the technical complexity of this section, we sketch the important ideas; the
full details are in [19]. First, it can be shown that the second property above holds
when the first property holds and when the message buffer of last(S) is included in
the message buffer of last(R). Intuitively, this inclusion allows every extension S ′ of
S to be converted to an extension R′ of R so that the buffer of S ′ remains included
in the buffer of R′, allowing R′ to make precisely the same message deliveries as S ′.

Now we sketch the main idea in the construction of S. For run R, let histR,
msgR, βi, γi, and Ei be as defined in Section 4.7.3. We assume that msgR satisfies
the properties given in Section 4.7.3.2. Run S will be a projected version of R: we do
the same number of transitions as R, and perform the message deliveries selected by
msgR, so that the output and memory C-facts ofR are faithfully created. One caveat,
however, is that some transitions of S should sometimes deliver more messages than
just those of msgR because we want the message buffer of S to be included in the
corresponding message buffer of R (see above). Let n be the number of transitions in
R. For each i ∈ {1, . . . , n+1}, we denote the ith configuration of R and S respectively
as ρi = (sRi , bRi) and σi = (sSi , bSi). We want to inductively specify the message
deliveries of S so that the following properties are satisfied for each i ∈ {1, . . . , n+1}:

1. sSi and sRi have the same output and memory C-facts;

2. message buffer bSi a submultiset of message buffer bRi ; and,

3. γi is a submultiset of the message buffer bSi .

The need for the first two properties was already explained above, and property 3
intuitively says that all messages required by msgR are in flight when they should
be. For the base case (i = 1), properties 1 and 2 are satisfied because ρ1 and σ1 are
start configurations, in which there are no output or memory facts and the message
buffers are empty; and, property 3 is satisfied because γ1 = ∅ (no needed messages
can be sent before transition 1). For the induction hypothesis, we assume that the
properties are satisfied for ρi and σi. For the inductive step, we have to satisfy them
for ρi+1 and σi+1. In transition i of S, which transforms σi into σi+1, we deliver the
following message multiset:

mSi =
(
bSi \ (γi \ βi)

)
∩mRi ,

where mRi denotes the message multiset delivered in transition i of R, and where we
use multiset difference and intersection. Intuitively, the set βi of messages needed
in transition i, is delivered, but we have to protect the messages in γi \ βi, because
they are needed after transition i. All remaining facts can be delivered, on condition
that they are delivered in R. It can be shown that under this definition of mSi , the
properties 1, 2, and 3 are satisfied [19].

74

4.8 Decidability
Note, Proposition 4.11 does not immediately give decidability of diffluence for simple
transducer networks because even on a fixed input instance, we still have an infinite
state system since the message buffers have no size limit. In this section we show that
diffluence of simple single-node transducer networks is decidable. In Section 4.8.1,
we give a nondeterministic exponential time (NEXPTIME) decision procedure. In Sec-
tion 4.8.2, we give a NEXPTIME lower bound, thus making the problem NEXPTIME-
complete. This also makes diffluence for multi-node networks NEXPTIME-complete:
(i) the NEXPTIME upper bound follows from the PTIME reduction to a single-node
network (Section 4.6), and (ii) the NEXPTIME lower bound is because single-node
networks are a special case of multi-node networks.

4.8.1 Decision Procedure
In Section 4.8.1.1 we give the description of the decision procedure. Next, Sec-
tions 4.8.1.2 and 4.8.1.3 show the correctness, and Section 4.8.1.4 investigates the
complexity.

Let N be a simple single-node transducer network. Let Π and Υ respectively
denote the transducer and transducer schema of N . We use the syntactical simplifi-
cations for single-node networks from Section 4.6.1.

4.8.1.1 Procedure

We give a nondeterministic procedure for checking whether N is diffluent. We say
that the procedure accepts N if at least one computation branch has found evidence
that N is diffluent, in which case that branch executes the accept-statement. A
branch can also stop early by executing reject.

Let P, B, C, and sizeDom(N) be as defined in Section 4.7.1. Consider the ex-
pression runLen = CBP + C. For A ⊆ dom, we say that a fact f is an A-fact if
adom(f) ⊆ A. The procedure does the following steps, in order:

1. [Input] Guess an input instance I for N with |adom(I)| ≤ sizeDom(N).

2. [Two runs] Guess two runs S1 and S2 of N on input I, such that both runs do
at most runLen transitions. Concretely, such a run is guessed by first choosing
how much transitions are done (≤ runLen), and by choosing for each transition
which submultiset of the message buffer should be delivered. For simulating
these runs, it is sufficient to continuously store only the last configuration, and
not all previous configurations.

3. [Output] Choose an output fact f in last(S1) that is not in last(S2). If no such
fact can be chosen, then reject.

4. [Extension] Denote C = adom(f). We extend S2 by doing P+1 more transitions,
and in each transition we deliver the entire message buffer. If no output or
memory C-fact is created in this extension, then accept and else reject.

75

4.8.1.2 Correctness Part 1

Suppose N is diffluent. We show that the procedure accepts. First, by the small
model property (Proposition 4.11), there is an input I for N such that |adom(I)| ≤
sizeDom(N) and N is diffluent on input I. Thus, there are two runs R1 and R2 of
N on input I such that last(R1) contains an output fact f that is not in last(R2),
and there is no extension of R2 in which f can be output. The procedure can guess
an instance I ′ that is isomorphic to I, but for notational simplicity we may assume
that simply I ′ = I.

Denote C = adom(f). By inflationarity of Π, we can always extend R2 to a run
R′2 such that no more output or memory C-facts can be created in any extension of
R′2. By assumption on R2, configuration last(R′2) does not contain f . Now, there
exists two runs S1 and S2 of N on input I with at most runLen transitions such
that last(S1) and last(S2) contain exactly the same output and memory C-facts as
respectively last(R1) and last(R′2); these details are in [19].10 So, the procedure can
guess S1 and S2, and can choose f as an output that is in last(S1) but not in last(S2).

Next, let S ′2 denote the extension of S2 as performed by the procedure: we do P+1
additional transitions, in each of which we deliver the entire message buffer. We show
that no more output or memory C-facts are created in this extension, so that the
procedure accepts, as desired. Towards a proof by contradiction, suppose that there
is some new transition i ∈ {1, . . . ,P + 1} that derives an output or memory C-fact g,
with the assumption that i is the first such transition. Let (ϕ, V) be a derivation pair
for g in transition i. We show that R′2 can be extended to output g as well, giving
the desired contradiction.

Extend R′2 to a run R′′2 by doing P + 1 more transitions in each of which we
also deliver the entire message buffer. We show that V is satisfying for ϕ in the last
transition of R′′2 . We consider the different body components of ϕ:

• The input literals of ϕ are satisfied under V in the last transition of R′′2 because
S ′2 and R′′2 have the same input I.

• Let h ∈ V (posϕ)|Υmsg . Because V is satisfying for ϕ in S ′2, message h can be
sent. Then a derivation tree for h can be extracted from S ′2, and by using that
sending rules are message-positive and static, it can be shown [19] that this tree
also sends h in the second-to-last transition of R′′2 , causing h to be delivered in
the last transition.

• Let h ∈ V (posϕ)|Υout∪Υmem . We have to show that h is available in the last
transition of R′′2 . First, because g is a C-fact, the message-boundedness of ϕ
implies that h is a C-fact. Because g is assumed to be the first output or
memory C-fact to be created in the extension of S2, fact h is in last(S2). Thus
h is in last(R′2) by construction of S2, so h can be read in the last transition of
R′′2 .

• Let h ∈ V (negϕ)|Υout∪Υmem . We have to show that h is not read in the last
transition of R′′2 . Like in the previous case, h is a C-fact. It is sufficient to show

10For i = 1, 2, the intuition about Si is again to mark in Ri all messages recursively needed
to create the C-facts (like in Section 4.7.3.1), and then to simply omit all transitions that do not
contribute C-facts nor needed messages, leaving at most runLen transitions behind.

76

that h is not in last(R′2) because no output or memory C-fact can be created
in an extension of R′2, including R′′2 . Now, because V is satisfying for ϕ in S ′2,
the inflationarity of transducer Π implies that h is not in last(S2). Thus h is
not in last(R′2) by construction of S2.

• Also, the nonequalities of ϕ are satisfied under V inR′′2 because they are satisfied
in S ′2.

4.8.1.3 Correctness Part 2

Suppose that the procedure accepts. We show that N is diffluent. Because the
procedure accepts, there is a computation branch that has done the following. The
branch has guessed an input instance I for N such that |adom(I)| ≤ sizeDom(N).
Next, the branch has guessed two runs S1 and S2 of N on input I, and has been able
to choose an output fact f in last(S1) that is not in last(S2). Denote C = adom(f).
Lastly, the branch has extended S2 to a run S ′2 by doing P+1 additional transitions in
which the entire message buffer is delivered each time, and the procedure has observed
that no output or memory C-facts were created in this extension, including f .

To show that N is diffluent, it is sufficient to show that no output or memory
C-facts (including f) can be created in any extension of S ′2. Towards a proof by
contradiction, suppose that an output or memory C-fact g can be created in an
extension S ′′2 of S ′2, by means of a derivation pair (ϕ, V). Let us assume that g is the
first such output or memory C-fact. We show that V is satisfying for ϕ in the last
transition of S ′2 itself, so that g would already have been created in S ′2, which is the
desired contradiction. To show that V is satisfying in S ′2, we proceed similarly as in
the first correctness proof above. We note the differences:

• Let h ∈ V (posϕ)|Υout∪Υmem . We have to show that h is available in the last
transition of S ′2. Like before, h is a C-fact by message-boundedness. Because
g is assumed to be the first output or memory C-fact to be created in the
extension of S ′2, it must be that h is in last(S ′2). Moreover, because the decision
procedure has not observed the creation of an output or memory C-fact in the
transitions of S ′2 after last(S2), fact h is in last(S2). Hence, h can be read in
the last transition of S ′2.

• Let h ∈ V (negϕ)|Υout∪Υmem . We have to show that h is not present in the last
transition of S ′2. Because V is satisfying for ϕ in S ′′2 , fact h must be absent
there. Hence, by inflationarity, h is not in last(S2), and thus h is not read in
the last transition of S ′2.

4.8.1.4 Time Complexity

Here we analyze the time complexity of each computation branch of the decision
procedure. We sketch how the procedure might be implemented in an imperative
programming language where blocks of code can be guarded by a nondeterministic
choice, that could either execute the corresponding block or skip it. In this framework,
we show that each branch uses at most single-exponential time, making the decision
procedure be in NEXPTIME.

77

Encoding First we make some remarks about the encoding. We use the encoding of
transducer neworks from Section 4.4.3. Let |N | denote the input size. Now, consider
the syntactical quantities defined in Section 4.7.1. The quantities I and O are upper
bounded by |N | because all input and output relations are used in rules (whose atoms
are written in full). The quantities B and P are also upper bounded by |N |. Letting
n denote the number of different transducer relations, again upper bounded by |N |,
the number C is upper bounded by nOO = n2O log O, which is single-exponential in
|N |. Hence, sizeDom(N) is single-exponential in |N |.

Over all relations of N , let numFc denote the total number of different facts
that can be made with sizeDom(N) unique domain values. Note, numFc is single-
exponential in |N |.

Input For each input instance I ′ for N with |adom(I ′)| ≤ sizeDom(N), the proce-
dure can guess an isomorphic instance I. Because sizeDom(N) is single-exponential
in |N |, an active domain value of I can be represented as a number encoded by p
bits, where p is polynomial in |N |. We omit the algorithmic details to guess I.

Two runs Next, the procedure needs to guess two runs S1 and S2 of N on I, such
that each run does at most runLen transitions. We describe how to guess one run
S ∈ {S1,S2}; the other run can be guessed similarly after the first one.

To guess S, we do a for-loop with runLen iterations in which we incrementally
modify a configuration, starting with the start configuration. Note that runLen
is single-exponential in |N |. In each iteration, we choose whether or not we do a
transition. To do a transition, we select a submultiset m of the message buffer to
deliver. The size of the message buffer is at most runLen · numFc, so this selection
can be done in single-exponential time. We are left to show that simulating the
subsequent local transition can be done in single-exponential time. Let J denote the
transducer state in the last configuration obtained. Now, for all transducer rules ϕ,
for all valuations V for ϕ, if V is satisfying for ϕ with respect to J ∪ set(m) then
derive g = V (headϕ). The number of rules is linear in |N |. For one rule, the number
of variables is also linear in |N |. Hence, the number of valuations for one rule, using
values in adom(I), is single-exponential in |N |. Finally, checking whether a valuation
V is satisfying for a rule ϕ is done by (i) checking that the nonequalities are satisfied,
which can be done in polynomial time; and, (ii) going over all body literals l of ϕ,
applying V , and checking whether J ∪ set(m) |= V (l), which can be done in single-
exponential time because |J ∪ set(m)| ≤ numFc.

Output The procedure then selects an output fact f in last(S1) that is not in
last(S2). Because the number of output facts in either configuration is at most
numFc, we can select f in single-exponential time. Possibly last(S2) has at least
the output facts of last(S1), in which case the procedure does reject. Otherwise, we
continue.

Extension In the last step, the procedure extends S2 with P+1 transitions, in each
of which we deliver the entire message buffer. The message buffer in last(S2) contains
at most runLen·numFc facts, and all the subsequent buffers in the extension contain

78

at most numFc facts because the buffer has degenerated to a set. Hence, we can apply
the same time complexity analysis for simulating the local transitions as above.

Letting C = adom(f), checking whether a newly derived output or memory fact
is a C-fact can be done in polynomial time. Overall, simulating the additional P + 1
transitions can be done in single-exponential time.

4.8.2 Complexity Lower Bound
In Section 4.8.1 we gave a NEXPTIME upper bound on the time complexity for deciding
diffluence for simple single-node transducer networks. In this section, we complement
this result by giving a NEXPTIME lower bound, making the decision problem NEXPTIME-
complete. Concretely, we show that any problem in NEXPTIME is polynomial time
reducible to this decision problem.

Let A be a problem from NEXPTIME. Formally, A is a set of words over some
alphabet Σ, and there exists a nondeterministic Turing machine M such that (i) for
each word w over Σ, M accepts w iff w ∈ A; and, (ii) every computation trace of M
on an input w over Σ eventually halts and uses at most O(2|w|k) steps, where k is a
constant specific to M [53].

Fix some word w over Σ. We construct a simple single-node transducer network N
for w such that N is diffluent iff M accepts w. We use the syntactical simplifications
of single-node networks (Section 4.6.1).

4.8.2.1 Turing Machine

First, following the conventions in Sipser [53], the Turing machine M is given as a
tuple

(Q,Σ,Γ, δ, q0, qaccept, qreject),

where Q is the set of states, Σ is the alphabet of the language A, Γ is the tape-alphabet
(satisfying Σ ⊆ Γ), δ is the transition function, q0 ∈ Q is the start state, qaccept ∈ Q
is the accept state, and qreject ∈ Q is the reject state. Function δ has the signature
Q × Γ → P(Q × Γ × {L,R}), where L and R indicate whether the tape head moves
left or right after performing a transition.

4.8.2.2 Construction

We now define the single transducer schema Υ and transducer Π of N . The main idea
is as follows. We provide Υ with input relations to encode a computation trace of the
Turing machine M on input w. By simulating the Turing machine M , transducer Π
checks that the input contains a valid and accepting computation trace. If so, Π sends
a special message accept() to itself, whose delivery is a trigger for diffluent behavior.
On a more technical note, the sending rules might sometimes send accept() when
the trace is actually partially incorrect. To solve this, like in Section 4.6, we also
check explicitly for errors in the input: when an error is detected, a message error()
is sent, and this acts as a signal to correct any diffluent behavior.

Diffluence Independently of w or M , we add the following relations to Υ: input
relation A(1); memory relation B(1); output relation T (1); and, message relations

79

Relation Purpose

state(2) configuration state
head(1+nk) configuration head position
tape(1+nk+1) configuration tape cell contents

Table 4.1: Relations for computation trace

A
(1)
msg, B(1)

msg, accept(0) and error(0). The following rules implement the basic idea of
making Π diffluent when accept() is received. Indeed, we can vary the delivery order
of Amsg-facts and Bmsg-facts. The purpose of relation error was explained above.

Amsg(u)← A(u), accept().
Bmsg(u)← A(u), accept().
B(u)← Bmsg(u).
T (u)← Amsg(u), ¬B(u).
T (u)← Amsg(u), error().

Computation trace We represent a computation trace of M on w with new input
relations. Henceforth we write n to denote the length of w. We can select a k ∈ N such
that for each string w′ over Σ, if M accepts w′ then M has an accepting computation
trace on w′ with at most 2nk transitions. Note, k is a constant in the construction of
transducer Π.

A number a in the interval [0, 2nk] indicates a (zero-based) configuration ordinal
in the trace. Moreover, since time usage upper bounds space usage, a can also be
used to indicate an individual tape cell. The number a has a binary representation
with nk bits, which is polynomial in n. Now, Table 4.1 gives the input relations,
with their precise arities, to represent a computation trace. The first component in
relations state, head, and tape, is an identifier of a Turing machine configuration.
This identifier only serves to join the different aspects of one configuration across all
three relations: relation state gives the current state symbol; relation head gives the
head position; and, relation tape gives the contents of each tape cell.

Sending accept We now provide rules to send accept(). Newly mentioned rela-
tions are assumed to be added to Υmsg. The idea is as follows: in the relations of
Table 4.1, we look for a path of length at most 2nk configurations that connects the
start configuration to an accepting configuration, and such that each pair of subse-
quent configurations is allowed by a valid transition of M .

Suppose we could send a message of the form reach0(i, j) to say that configuration
j can be reached from configuration i by a valid transition of M . The subscript 0
indicates that the distance between i and j is 20 = 1. Since the desired path is of
length at most 2nk , the following recursion-free rules can consider all such paths:11

11We use that any length between 0 and 2nk can be represented by a sum of unique powers of two.

80

reachm(i, j)← reachm−1(i, l), reachp(l, j)

for each m = 1, . . ., nk, and each p = 0, . . ., m− 1.

Suppose too we could send a message of the form start(i) to say that configuration
i satisfies the properties of the start configuration ofM on w. We send accept() with
these rules:

accept()← start(i), reachm(i, j), state(j, q), qaccept(q)

for each m = 0, . . ., nk.

Here, q(1)
accept is an extra input relation containing the symbol of the start state.

Note, the number and size of the above sending rules is polynomial in n. The
remaining details, regarding the messages reach0, start, error, and the proof of
correctness, can be found in [19].

4.9 Expressivity
We investigate the expressivity of simple transducer networks. These networks may
consist of multiple nodes.

First we define how a transducer network can compute a distributed query. We
consider only confluent transducer networks because otherwise the output might vary
depending on the run. Let N = (N ,Υ,Π) be a confluent transducer network, not
necessarily simple. Let inN and outN be the distributed schemas for N as defined
in Section 2.5.1. We say that N computes the following distributed query Q, that
is over input schema inN and output schema outN : Q maps each instance H over
inN to the instance Q(H) = J over outN such that J(x) for each x ∈ N is the set of
all output facts that can be produced at x during any run of N on H. The instance
Q(H) is well-defined even if N is diffluent, but when N is confluent, all runs on H
can be extended to obtain Q(H). We call Q(H) the output of N on input H.

We now define how UCQ¬ can express distributed queries in a more direct way, i.e.,
without transducer networks. This will provide insight in the expressivity of simple
transducer networks. Let E be a distributed database schema over a network N , and
let H be an instance over E . Let 〈E〉N and 〈H〉N be as defined in Section 4.6.2.
Intuitively, a UCQ¬-program over 〈E〉N can directly access all relations of all nodes.
To make such a program generic, node identifiers are provided in the relations x.Id
with x ∈ N and Node. Let Q be a distributed query over input schema E and an
output schema F (also over N). We say that Q is expressible in UCQ¬ if for each
pair x ∈ N and R(k) ∈ F(x) we can give a UCQ¬-program Φx,R over input schema
〈E〉N and output schema {R(k)} such that for all instances H over E we have

Q(H)(x)|R = Φx,R(〈H〉N).

Now we can present the expressivity result:

Theorem 4.12. Confluent simple transducer networks capture the distributed queries
expressible in UCQ¬.

81

This result requires showing a lower and upper bound on the expressivity of simple
transducer networks, given in respectively Section 4.9.1 and Section 4.9.2. Currently,
this result depends on our addition of nonequalities to UCQ¬ (Section 4.3). In partic-
ular, for showing the upper bound, we do a nontrivial simulation of runs of transducer
networks with UCQ¬, and there we depend on the availability of nonequalities. It
remains open whether the result really needs this feature.

4.9.1 Lower Bound
Let Q be a distributed query over input distributed schema E and output distributed
schema F , that is expressible in UCQ¬. Let N be the network of E and F . Over N ,
we define a simple transducer network N = (N ,Υ,Π) to compute Q. For technical
convenience, we assume for each x ∈ N that E(x) and F(x) have disjoint relation
names and that E(x) and F(x) do not contain Id or All. Any conflicts can always
be resolved with appropriate renamings.

4.9.1.1 Transducer Schemas

First, we give the shared message relations of N , where relation names containing
“¬” are meant to indicate the absence of a fact:

• the relations x.R(k) and x.R(k)
¬ for each x ∈ N and R(k) ∈ E(x), to broadcast

local inputs;

• the relations x.Id(1) and x.Id(k)
¬ for each x ∈ N , to broadcast identifiers;

• the relations x.T (k) for each x ∈ N and T (k) ∈ F(x), to compute local outputs;
and,

• the relation Adom(1), to share active domain values.

For each x ∈ N , we define Υ(x)in = E(x); Υ(x)out = F(x); Υ(x)mem = ∅; and,
Υ(x)msg is the above set of message relations.

4.9.1.2 Transducer Rules

Let x ∈ N . We incrementally specify the rules of Π(x). First, to broadcast all active
domain values, for each R(k) ∈ Υ(x)in ∪ {Id(1)} and each i ∈ {1, . . . , k}, we add the
following rule:

Adom(n, ui)← All(n), R(u1, . . . , ui, . . . , uk).

Also, for each R(k) ∈ Υ(x)in∪{Id(1)}, we add the following rules to send the presence
or absence of local R-facts at x:

x.R(n, u1, . . . , uk)← All(n), R(u1, . . . , uk).

x.R¬(n, u1, . . . , uk)← All(n), Adom(u1), . . . , Adom(uk), ¬R(u1, . . . , uk).

Now we let Π(x) produce output. Let T (k) ∈ Υ(x)out. To satisfy the message-
boundedness restriction for the output rules, we add sending rules for message relation

82

x.T (k) and copy any received x.T -messages to output relation T at x. Because Q is
expressible in UCQ¬, there is a UCQ¬ program Φ over 〈E〉N that expresses the T -
facts at x. For each ϕ ∈ Φ, we transform ϕ into a sending rule ϕ′ for relation x.T (k),
as follows:

• the head T (u1, . . . , uk) of ϕ becomes the head x.T (n, u1, . . . , uk) of ϕ′, where n
is a new variable;

• the positive body atoms of ϕ′ are (i) Id(n), with n as defined previously; (ii) the
atoms All(m) for which Node(m) ∈ posϕ; (iii) the atoms y.R(v1, . . . , vl) ∈ posϕ,
which are now messages; (iv) the (positive) message atoms y.R¬(v1, . . . , vl) for
which y.R(v1, . . . , vl) ∈ negϕ;

• the negative body atoms of ϕ′ are the atoms All(m) for which Node(m) ∈ negϕ;
and,

• the nonequalities of ϕ′ are those of ϕ.

The positive body atom Id(n) has the effect that x.T -messages are sent only to x.
Now, the final output for T (k) is created by adding this rule:

T (u1, . . . , uk)← x.T (u1, . . . , uk).

This completes the specification of Π(x). Note that transducer Π(x) is simple: all
message rules are message-positive and static; all output rules are message-positive
and message-bounded; Π(x) is inflationary (there are no memory relations); and,
Π(x) is recursion-free.

Following the above instructions, we can build the transducer at each node of N .
There are also no cycles through message relations in N . Hence, N is simple.

4.9.1.3 Example

The following example illustrates the construction of the transducer network.

Example 4.13. Let N = {x, y}. Consider the following distributed schemas E and
F , both over N : E(x) = {A(2)}, E(y) = {B(1)}, F(x) = {S(1)} and F(y) = {T (1)}.
Consider the following distributed query Q with input schema E and output schema
F , expressed in UCQ¬:

S(u)← x.A(u, v), ¬y.B(u), u 6= v.

T (u)← x.A(u, v), x.Id(u).

Each rule corresponds to one of the output relations.
We construct a transducer network N = (N ,Υ,Π) to compute Q. To save space,

we will not literally follow the general construction from above, but instead restrict
attention to the relations and rules that affect the output.

First, the shared message relations of N are: x.A(2), x.Id(1), y.B(1)
¬ and Adom(1).

The sending rules for Adom are clear, so we do not explicitly give them.
For node x, we define Υ(x)in = {A(2)}, Υ(x)out = {S(1)}, and Υ(x)mem = ∅.

Transducer Π(x) contains the rules:

83

x.A(n, u, v)← All(n), A(u, v).
x.Id(n, u)← All(n), Id(u).
x.S(n, u)← Id(n), x.A(u, v), y.B¬(u), u 6= v.

S(u)← x.S(u).

For node y, we define Υ(y)in = {B(1)}, Υ(y)out = {T (1)}, and Υ(y)mem = ∅.
Transducer y contains the rules:

y.B¬(n, u)← All(n), Adom(u), ¬B(u).
y.T (n, u)← x.A(u, v), x.Id(u).
T (u)← y.T (u).

This completes the network N . �

4.9.2 Upper Bound
Let N = (N ,Υ,Π) be a confluent simple transducer network. Let Q denote the
distributed query computed by N . Let x ∈ N and let R(k) be a local output relation
of x. We have to construct a UCQ¬-program Φ over input schema 〈inN 〉N and output
schema {R(k)}, such that Q(H)(x)|R = Φ(〈H〉N) for each input distributed database
instance H over inN .

The basic idea is to describe the computation of N with UCQ¬-program Φ, for
output relation R at x. To make this technically easier, we first convert N to a
single-node network in Section 4.9.2.1. Some common notations are introduced in
Section 4.9.2.2, and program Φ is described in Section 4.9.2.3. The correctness is
shown in [19].

4.9.2.1 Reduction to Single-node

Consider the concepts from Section 4.6.2. Using Proposition 4.6, let M be the simple
single-node transducer network that simulates N , and that is confluent because N is
confluent. We regard the query Q′ computed by M as an ordinary database query
over input schema 〈inN 〉N and output schema 〈outN 〉. If for every input H for N
we would know that Q′(〈H〉N) = 〈Q(H)〉, because relation x.R is in 〈outN 〉, it will
be sufficient to construct the UCQ¬-program Φ as a description of the computation
of M for relation x.R. To keep the notation simpler, we may assume without loss of
generality that output relation R only occurs at x. So, we will write “R” instead of
“x.R”.

We are left to show Q′(〈H〉N) = 〈Q(H)〉 for every input H over inN . Let the
output of a configuration ρ, denoted out(ρ), be as defined in Section 4.6.2. Abbreviate
J = Q′(〈H〉N). We show J ⊆ 〈Q(H)〉. By confluence of M, there is a run S of M on
〈H〉N such that out(last(S)) = J . Next, because M simulates N , there is a run R of
N on H such that 〈out(last(R))〉 = out(last(S)). So, J = 〈out(last(R))〉 ⊆ 〈Q(H)〉.

Now we show 〈Q(H)〉 ⊆ J . By confluence of N , there exists a run R of N on H
such that Q(H) = out(last(R)). Because M simulates N , there exists a run S of M

84

on 〈H〉N such that out(last(S)) = 〈out(last(R))〉. Hence, 〈Q(H)〉 = out(last(S)) ⊆
J .

4.9.2.2 Common Concepts and Notations

A ground literal is a fact or a fact with “¬” prepended. For a database instance I
and a ground literal l, we write I |= l to mean l ∈ I if l is a fact and otherwise we
mean f /∈ I, where l = ¬f . For a derivation tree T , for each internal node x, we
write bodyT (x) to denote the set of ground literals obtained by applying valT (x) to
the body literals of ruleT (x).

Two derivation trees T and S are said to be structurally equivalent if (i) the
trees (nodesT , edgesT) and (nodesS , edgesS) are isomorphic under a node bijection
b : nodesT → nodesS ; and, (ii) for every edge (x, y) ∈ edgesT , we have ruleT (x) =
ruleS(b(x)) and litT (y) = litS(b(y)). We call b the structural bijection.

4.9.2.3 Building the UCQ¬-Program

In this section, we construct the required UCQ¬-program Φ. We gradually build
up the different parts of this program, and introduce auxiliary definitions and nota-
tions along the way. Using the equivalence between UCQ¬ and existential FO with
nonequalities, abbreviated ∃FO, some parts are specified in ∃FO for technical conve-
nience.

Let M be the simple single-node network from above, and let Υ and Π respectively
denote the transducer schema and transducer of M.

General derivation trees Let T be a derivation tree of Π. We define the active
domain of T to be the set of all values assigned by valuations in T . We say that T
is general if there is no structurally equivalent derivation tree S with a strictly larger
active domain. Intuitively, a general derivation tree assigns a different value to each
variable of a rule if possible.

All output strategies Let forestR be a maximal set of general derivation trees of
transducer Π for output relation R, such that no two trees are structurally equivalent,
and such that no two trees have an overlap of their active domains. Because Π is
recursion-free, there are only a finite number of structurally different trees, and thus
forestR is finite. Intuitively, forestR represents all possible strategies of Π to derive
facts over R, using as much different values as possible. For each subset G ⊆ forestR,
we write adom(G) to denote the union of all active domains of trees in G.

Canonical runs Intuitively, for any particular input for Π, we can make a selection
G ⊆ forestR of all trees that “work” on that input, i.e., for all trees T ∈ G there is a
substitution of the values in T by values in the input so that the new valuations are
true. If we regard values in adom(G) as variables (as we will do later), this substitution
of values looks very much like a valuation. Next, for G, we can formally define a
canonical run RG. The idea is that in RG we execute all trees of G concurrently,
with as few transitions as possible, i.e., by using their canonical schedulings. The run

85

RG will do n transitions, where n is the largest height of a tree in G.12 Hence, the
length of RG is bounded by the syntactical properties of Π.

Note, for an internal node x of a derivation tree T , by message-positivity, the
set bodyT (x)|Υmsg of ground literals contains only facts. Now, for each transition
i ∈ {1, . . . , n} of RG, we (want to) deliver the following message set

MG
i =

⋃
T ∈G

⋃
x ∈ intT ,
κT (x) = i

bodyT (x)|Υmsg .

In words: for each transition i, setMG
i is the union across all trees ofG of the messages

needed by rules scheduled at transition i. We now make an ∃FO-formula sndMsgG to
express that these message sets can be sent. For notational simplicity, the symbols of
adom(G) represent variables. For a derivation tree T ∈ G, let msgT ⊆ intT denote
the set of internal nodes x where litT (x) is over a message relation. Because sending
rules are message-positive and static, it suffices to demand that all involved input
literals are satisfied (both positive and negative):

sndMsgG :=
∧
T ∈G

∧
x∈msgT

bodyT (x)|Υin .

This is a quantifier-free formula, where we write sets of literals in the conjunction,
with the understanding that such a set is written using some arbitrary ordering on
its elements.

Canonical runs: output succeeds Let G be as above. Fix some T ∈ G. In the
following, we specify an ∃FO-formula to express that T succeeds in deriving its root
fact in RG. Here, a possible “danger”, is that the concurrent execution of T with
another tree S might make certain valuations in T become unsatisfying. This could
for instance happen when S derives a memory fact that T later tests for absence. We
formalize this below.

The alpha nodes of T , denoted αT , are all internal nodes x of T for which litT (x)
is a (positive) output or memory literal.13 Note, rootT ∈ αT . The valuations of these
alpha nodes have to be satisfiable to make T succeed. For each x ∈ αT , the beta
nodes of x, denoted βT (x), are the child-nodes y of x for which litT (y) is a negative
output or memory literal. By definition of derivation tree, βT (x) contains only leafs.
For each x ∈ αT , a node y ∈ βT (x) is a potential danger: if the fact inside the
ground literal valT (x)(litT (y)), henceforth referred to as “beta fact”, is accidentally
derived before transition κT (x), then valT (x) is not satisfying in transition κT (x)
(by inflationarity of Π). The derivation of beta facts could happen when the message
deliveries of RG accidentally trigger some rules of Π.

To represent these unwanted derivations, we consider truncated derivation trees
that are like normal derivation trees, except that message nodes are also leafs. We
only consider truncated derivation trees for deriving output and memory facts. We

12The height of a derivation tree is the largest number of edges on any path from a leaf to the
root.

13This literal is always positive because x is an internal node.

86

say that a truncated derivation tree S can be aligned to RG if there is a scheduling
λ : intS → {1, . . . , n} such that for each x ∈ intS , message set MG

λ(x) contains
bodyS(x)|Υmsg , i.e., for each valuation in S, the necessary messages occur in some
well-chosen transitions. Possibly multiple alignments exist for S. For an output or
memory fact f , we write alignG(f) to denote the set of all pairs (S, λ) where S is a
truncated derivation tree for f having alignment λ to RG, and such that no two pairs
in alignG(f) differ only in the values for representing tree-nodes. This set is finite,
as we now argue. First, because Π is recursion-free, there are only a finite number of
structurally different (truncated) derivation trees for f . Second, only a finite number
of valuations can be used in the rules of such trees: because these rules are output or
memory rules, by message-boundedness, assigned values must either be in f or must
occur in a message, and RG contains only a finite number of messages.

Now we specify the formula to express that a derivation tree T derives its root
fact in RG. To obtain a general construction for later use, we take T to be a truncated
derivation tree for an output or memory relation, that has an alignment κ to RG.
Note, αT = intT . The formula is as follows:

succeedG,T ,κ := succeed in
G,T ,κ ∧ succeeddeny

G,T ,κ

with
succeed in

G,T ,κ :=
∧
x∈αT

bodyT (x)|Υin ; and,

succeeddeny
G,T ,κ :=

∧
x∈αT

∧
y ∈ βT (x),

let f = factT (y)

∧
(S, λ) ∈ alignG(f),
λ(rootS) < κ(x)

¬succeedG,S,λ.

Intuitively, for each x ∈ αT , we express (i) that the input literals in bodyT (x) are
satisfied; and, (ii) we consider all possible truncated derivation trees for beta facts,
and demand that their alignments fail to derive the root (beta) fact. The second
requirement is expressed with a recursive construction through negation: intuitively,
to protect the alpha facts, we must deny the beta facts, which in turn (recursively)
requires letting the alpha facts of trees for these beta facts fail, and so on. This
recursion ends because each time we pass a truncated derivation tree to the recursive
step, the root of this tree is scheduled strictly closer to the beginning of RG. The
final formula succeedG,T ,κ is quantifier-free, with variables in adom(G).

Combining everything Let G ⊆ forestR and T ∈ G be as above. We write T ↓ to
denote the truncated version of T , by making the nodes that derive messages into leaf
nodes. Note, the canonical scheduling κT , when restricted to the internal nodes of
T ↓, is an alignment of T ↓ to RG. We can combine our previous formulas to express
that the messages of RG can be sent and that T ↓ successfully derives its root fact
when its internal nodes are scheduled by κT :

deriveG,T := ∃z̄
(
diffValG ∧ sndMsgG ∧ succeedG,T ↓,κT

)
,

87

where z̄ is an arbitrary ordering of the values in adom(G) that do not occur in the
root fact of T , and where

diffValG =
∧

a, b ∈ adom(G),
a 6= b

(a 6= b).

The subformula diffValG demands that a valuation for the quantifier-free part of the
above formula is injective, which we need in the correctness proof to convert concrete
derivation trees to abstract ones (i.e., to features of formula deriveG,T). By the
equivalence of ∃FO and UCQ¬, we may consider deriveG,T to be a UCQ¬-program,
having as free variables the tuple x̄ in the root fact of T .14 We can create such a
UCQ¬-program for every G ⊆ forestR and T ∈ G.

Before we can give the final UCQ¬-program Φ, we need to consider the following.
Although deriveG,T considers alignments of beta facts, an input for Π possibly has
not as many different values as adom(G). For this reason, we might overlook some
alignments that could occur on a real input. For example, an undesirable beta fact
might be derivable by a rule S(x, x)← Amsg(x, x) where A(2)

msg ∈ Υmsg. But because G
contains general trees, in runRG we might deliver only (abstract) Amsg-facts with two
different components, preventing an alignment of this rule. To solve this problem, we
consider equivalence relations E on adom(G). Assuming a total order on dom, we can
replace each value a ∈ adom(G) by the smallest value in its equivalence class under
E, giving a set of derivation trees E(G) with a smaller active domain. Using E(G)
instead of G, and a tree T ∈ E(G), the variables in UCQ¬-program deriveE(G),T can
represent more specific inputs. We write Eq(G) to denote all equivalence relations of
adom(G) under which the nonequalities of rules in G are still satisfied.

Now, we define the final program Φ as

Φ :=
⋃

G⊆forestR

⋃
E∈Eq(G)

⋃
T ∈E(G)

deriveE(G),T .

The correctness of Φ is shown in [19].

4.10 Model Variations
We now relate the obtained results to the two transducer network models of Chap-
ter 3. First we recall these models. In the first model, (i) we allow incomplete network
graphs, i.e., not every two nodes are directly connected; (ii) the network is homoge-
neous, i.e. each node runs the same transducer; and, (iii) the (single) transducer
is epidemic. The second model is basically the same, except it uses an addressing
transducer. Let us refer to these models as A and B respectively.

To better establish the connection to this chapter, we will only apply these models
to fixed networks, and we allow nodes to send messages to themselves.15 Note that

14A variable may occur multiple times in x̄.
15We assume that self-sending happens automatically for epidemic transducers whenever they send

something, but that self-sending requires explicit self-addressing from addressing transducers.

88

the definition of simple transducer networks of Section 4.5.2 can be applied without
change to transducer networks under models A and B.

As a small remark, under model A and B, the encoding of a transducer network
from Section 4.4.3 has to be extended to also incorporate the edges of the network
graph.

4.10.1 Diffluence Decidability
We discuss how the diffluence decidability result of Section 4.8 relates to simple trans-
ducer networks under models A and B. We will be reducing to and from the diffluence
decision problem for simple single-node networks.

Model B Consider first model B. First we establish a NEXPTIME upper bound on
diffluence decidability. Using a technique very similar to Section 4.6, a simple trans-
ducer network under model B can be transformed into a simple single-node network,
with one difference: for a simulated sender node x, we only allow sending rules for an
addressee y if y is a neighbor of x in the now incomplete network graph. The notion
of homogeneousness does not require additional modifications. This transformation
can be done in PTIME, so diffluence of simple transducer networks under model B can
be decided in NEXPTIME (Section 4.8).

To establish the NEXPTIME lower bound, we note that a simple single-node trans-
ducer network as defined in Section 4.6 is a special case of a simple transducer network
under model B; indeed, the notions of incomplete networks and homogeneousness do
not manifest themselves on single-node networks.

Model A Now consider model A. To establish a NEXPTIME upper bound on dif-
fluence decidability, we observe that an epidemic transducer can be replaced by an
addressing transducer, by sending each message explicitly to every neighbor; this can
be done with a PTIME syntactical translation.16 Hence, each simple transducer net-
work under model A can be translated to a simple transducer network under model
B. So diffluence of simple transducer networks under model A can be decided in
NEXPTIME.

For the NEXPTIME lower bound, we can again see that simple single-node trans-
ducer networks are a special case of simple transducer networks under model A.

4.10.2 Expressivity
We now discuss how the expressivity result of Section 4.9 relates to simple transducer
networks under models A and B. We only consider confluent transducer networks.

Model B Consider first model B. To establish the upper bound on expressivity, the
technique from Section 4.9.2 first does a translation of a multi-node network to single-
node, which, as we have seen above, can also be done in PTIME for simple transducer
networks under model B. After this step, the technique for the upper bound can be

16To do this, the addressee-variable is grounded in relation All. As before, messages addressed to
non-neighbors are lost by the operational semantics.

89

applied unmodified, to describe the canonical runs of the single-node network with
UCQ¬.

For the lower bound, some modifications to the technique in Section 4.9.1 are
required. First, the specification of the distributed query in UCQ¬ can refer to spe-
cific nodes and their input relations, and it is allowed to specify different outputs for
each node (although the same output relations occur on each node). By the homo-
geneousness of model B, we may only construct one transducer that is replicated on
each node. Specifying different behavior for each node seems only achievable when
constants are allowed in the transducer rules, to specify which rules should be exe-
cuted by which node. Specifically, we add a guard Id(x), where x is a node identifier,
to each rule that should only be executable on node x. Secondly, the technique of
Section 4.9.1 relies on nodes sending active domain values to each other, and the pres-
ence and absence of input facts. But because model B allows incomplete networks,
we need message forwarding. To do the message forwarding with only recursion-free
rules, each message relation used in Section 4.9.1 can be given additional “versions”,
to indicate how many times it was forwarded. To illustrate, for the Adom-relation and
an input relation R(k), one would have the following rules, where d is the diameter of
the network that the distributed query is over:

Adom1(n, ui)← All(n), R(u1, . . . , ui, . . . , uk) ∀i ∈ {1, . . . , k}
Adom2(n, u)← All(n), Adom1(u).
...
Adomd(n, u)← All(n), Adomd−1(u).

Rules that need relation Adom, possibly in multiple body atoms, are translated into
multiple rules where the different combinations of these version numbers are consid-
ered. This is similar for the other message relations.

Model A For model A, the expressivity upper bound can be transferred from model
B, by first doing a PTIME translation of a simple transducer network under model A
to an equivalent simple transducer network under model B (see above).

For the lower bound, if again constants are permitted in the transducer rules, we
can follow the same idea as for model B above, where message relations get different
versions. But because now we use an epidemic transducer, and hence a message arrives
at all neighbors automatically, we add to each output message (see Section 4.9.1) an
additional component to explicitly say which node is responsible for outputting it.

90

Chapter 5

Declarative Semantics for
Dedalus

5.1 Outline

In this chapter we present a declarative semantics for Dedalus. First, Section 5.2 gives
related work, and Section 5.3 gives technical remarks specific to this chapter. Sec-
tion 5.4 gives some example Dedalus programs. Next, Section 5.5 gives the declarative
semantics. Section 5.6 states the main result relating the operational and declarative
semantics, the proof of which is given in two parts, namely, in Sections 5.7 and 5.8.

5.2 Related Work

An area of artificial intelligence that is closely related to declarative networking is
that of programming multi-agent systems in declarative languages. The knowledge
of an agent can be expressed by a logic program, which also allows for non-monotone
reasoning, and agents update their knowledge by modifying the rules in these logic
programs [43, 50, 42]. The language LUPS [9] was designed to specify such dynamic
updates to logic programs, and LUPS is also a declarative language itself. After
applying a sequence of updates specified in LUPS, the semantics of the resulting
logic program can be defined in an inductive way. But an interesting connection
to this current work, is that the semantics can also be given by first syntactically
translating the original program and its updates into a single normal logic program,
after which the stable model semantics is applied [9]. This has also lead to a practical
implementation of LUPS. It should be noted however that in this second semantics,
there is no modeling of causality or the sending of messages.

This chapter is based on joint work with Alvaro, Hellerstein, and Marczak [10].
Some proof details are not included in this chapter, but can be found in the technical
report [11].

91

5.3 General Remarks
Recall the language Dedalus and its operational semantics from Section 2.8. If a run of
a Dedalus program is clear from the context, we will typically refer to the transitions
of this run by their ordinal, and these ordinals start at 0 for technical convenience.

5.4 Example Programs
In this section we give some example Dedalus programs that help illustrate the lan-
guage. In this section, we assume that every node always has at least the local unary
input relations Id and Node, that contain respectively the identifier of the local node
and the identifiers of all nodes (including the local node). Additional input relations
will use a different name, and for the sake of simplicity, we will assume that the re-
lations Id and Node are automatically initialized correctly when we define the inputs
for the Dedalus programs below.

We also briefly mention that it is possible to define the output of Dedalus programs
based on so-called ultimate facts [46], which are the facts on every node that are
eventually derived during every step (by the deductive subprogram). The examples
below follow this principle, and this will also be used in Chapter 6.

Example 5.1. Suppose that each node has a binary input relation R that represents
a graph. We want to compute at each node the transitive closure of the global graph
that is obtained by uniting the local input graphs of all nodes. This output should
be stored in a relation T (2) at each node.

For any network N , for any distributed database instance over N and relation
R(2), the following Dedalus program computes the required output at each node, in
a well-known way [45]:

T (u, v) | y← R(u, v), Node(y).
T (u, v) | y← R(u, w), T (w, v), Node(y).
T (u, v)• ← T (u, v).

The first asynchronous rule lets each node broadcast all of its local input R-facts
as T -facts to every node, including itself. The second asynchronous rule lets each
node take an incoming T -fact, join it with local R-facts, and broadcast the resulting
transitive edges again to every node. The last rule is inductive, and it continuously
persists all received T -facts to the next step, so that the relation T steadily grows at
each node. After a while, every node will have accumulated all original graph edges
and the transitive edges in relation T . �

The previous example showed how a recursive, monotone computation can be
expressed. The next example illustrates how Dedalus can also be used to do a non-
monotone computation in a distributed setting.

Example 5.2. In this example, nullary relations are used as booleans: true is repre-
sented by the nonempty relation and false by the empty relation. Suppose that each
node has a nullary input relation R. We want to compute at each node a nullary fact
T () if and only if the relation R is empty at all nodes (cf. Example 3.15). This is

92

a nonmonotone computation. Indeed, if all nodes have an empty relation R then we
produce T () on all nodes, and if at least one node has a nonempty relation R then
we should not output T () on any node.

For every network N , the following Dedalus program computes the desired output
at each node:

empty(x) | y← ¬R(), Id(x), Node(y).
empty(x)• ← empty(x).
missing()← Node(x), ¬empty(x).
T ()← ¬missing().

The first asynchronous rule lets a node broadcast its own identifier to every node
(including itself) if its local input relation R is empty. The second rule is inductive
and it persists the received node identifiers. The third rule is deductive, and it
checks whether the identifiers of all nodes have been received (missing is false) or not
(missing is true). Because the rule is deductive, the relation missing is recomputed
during every local step of a node. The last rule, which is also deductive, produces a
T ()-fact at every node that has received all node identifiers.

If indeed every node has an empty R-relation, after a while, all nodes have received
all node identifiers, and from that moment onwards, all nodes produce T () in every
step. In the other case, when at least one of the nodes does not have an empty R-
relation, no node will receive the identifier of that node and thus no node will ever
produce T (). �

5.5 Declarative Semantics
Let P be a Dedalus program. Throughout this section, we fix P and give a declarative
semantics for this program. In this semantics, we want to abstract away details that
are specific to the operational semantics. First, Sections 5.5.1 and 5.5.2 will provide
additional notations and definitions about runs. These will be used in Section 5.5.3
to investigate an abstraction of the operational semantics and some of the properties
involved. Next, the declarative semantics is given by the stable model semantics ap-
plied to a pure Datalog¬ program pure(P) that is obtained from Dedalus program
P. In Sections 5.5.4 up to 5.5.8, we describe how to construct pure(P) and we define
its semantics. Intuitively, this new program will simulate the entire distributed com-
putation (of all nodes together) and its construction is centered around the insights
obtained in Section 5.5.3.

5.5.1 Timestamps
We will assign local time values to the steps of a node in the operational semantics.
Let R be a run of P on some input H, over a network N . For each transition i ∈ N
of R, having active node xi, we define locR(i) to be the number of transitions in R
also with active node xi that come strictly before transition i. Note, locR(i) is the
(zero-based) ordinal of the local step of xi during transition i. We call such step
ordinals the timestamps of that node, and these can be regarded as local clock values.
We would like to stress that timestamps are relative to each node. For instance,

93

timestamp 0 for a node x indicates the first step of x, and timestamp 0 for another
node y indicates the first step of y.

As a counterpart to function locR(·), for each (x, s) ∈ N ×N we define globR(x, s)
to be the transition ordinal i of R such that xi = x and locR(i) = s. In words: we
find the transition i in which node x does its local computation step with timestamp
s. It follows from the definition of locR(·) that globR(x, s) is uniquely defined.

5.5.2 Extended Schema and Trace
We want to associate a location specifier and a timestamp to facts over sch(P). Let
R(k) ∈ sch(P). The intuition of a fact R(x, s, a1, . . . , ak) with location specifier x and
timestamp s will be that the factR(a1, . . . , ak) is present at node x during its local step
with timestamp s, after the program deducP is executed (defined in Section 2.8.2.3).
For using timestamps in facts, we require that N ⊆ dom.

Formally, we write sch(P)LT to denote the database schema obtained from sch(P)
by incrementing the arity of every relation by two. The two extra components will
contain the location specifier and timestamp, which are by convention the first and
second components of a fact.1

For a database instance I over sch(P), x ∈ dom and s ∈ N, we write I⇑x,s to
denote the facts over sch(P)LT that are obtained by prepending location specifier x
and timestamp s to every fact of I. For the reverse operation, for an instance J
over sch(P)LT, we write J⇓ to denote the facts over sch(P) obtained by removing the
location specifier and timestamp from every fact of J . Lastly, we write J |x,s to denote
the facts of J that have location specifier x and timestamp s, without removing the
location specifier and timestamp.

When I and J are sets of atoms over schemas sch(P) and sch(P)LT respectively,
and x, s ∈ var, we will also apply the notations I⇑x,s and J⇓, with the same meaning
as for facts (except that now the location specifiers and timestamps are variables).
Also, if L is a sequence of literals over schema sch(P), and x, s ∈ var, we write
L⇑x,s to denote the sequence of literals over schema sch(P)LT that is obtained by
adding location specifier x and timestamp s to the literals in L (negative literals stay
negative).

We will now capture the computed data during a run as a set of facts that we call
the trace. LetR be a run of P on some inputH, over a networkN . For each transition
i ∈ N, let xi denote the active node, and let Di denote the output of subprogram
deducP during i. Let locR(i) be as defined in Section 5.5.1. The operational semantics
implies that Di consists of (i) the input edb-facts at xi; (ii) the inductively derived
facts during the previous step of xi (if locR(i) ≥ 1); (iii) the messages delivered during
transition i; and, (iv) all facts deductively derived from the previous ones. Intuitively,
Di contains all local facts over sch(P) that xi has during transition i. Now, the trace
of R is the following instance over sch(P)LT:

trace(R) =
⋃
i∈N

D
⇑xi, locR(i)
i .

In words: the trace represents all locally computed facts during each transition, addi-
tionally carrying the location specifier and timestamp of the active node. The trace

1The abbreviation “LT” stands for “location specifier and timestamp”.

94

shows in detail what happens in the run, in terms of what facts are available on the
nodes during which of their steps.

5.5.3 Messages and Causality
In the declarative semantics, we want to represent the same computations as in the
operational semantics. We believe the trace of a run represents in detail the computa-
tion of that run (see Section 5.5.2). So, our goal will be to represent in the declarative
semantics exactly the traces of runs. In the operational semantics, we order the ac-
tions of the nodes on a fine-grained global time axis, by ordering the transitions in
the runs. For representing the trace, we will see below that it is actually sufficient
to focus on the direct and indirect relationships between just the local steps of the
nodes, ignoring the global ordering of the transitions. This forms the main ingredient
for the declarative semantics.

Let R be a run of P, and let αR be the arrival function of R, as defined in
Section 2.8.2.4. From R, we extract the message sending and receiving events, or
simply called the “message events”. Formally, we define mesg(R) to be the set of
all tuples (x, s, y, t,f), with f = R(ā) a fact, and abbreviating i = globR(x, s) and
j = globR(y, t), such that αR(i, y,f) = j, i.e., node x during step s sends message f
to y that arrives at the step t of y, with possibly x = y. Note that in mesg(R) there
is no mention of transitions since it only contains relationships between local steps.
The following lemma says mesg(R) is sufficient for representing the trace:

Lemma 5.3. Let H be an input for P. For any two runs R1 and R2 of P on H, if
mesg(R1) = mesg(R2) then trace(R1) = trace(R2).

Proof. This result is perhaps not really surprising, and we will only give a proof
sketch. Let x be a node of the network that H is over. We will see by inductive
reasoning on the local steps of x that x will produce during each step exactly the
same deductive facts in R1 as in R2. In the first step of x, the previous state of x
in both R1 and R2 consists of just the local input H(x), since there was no previous
step of x to derive inductive facts. Also, the given assumption mesg(R1) = mesg(R2)
implies that x receives exactly the same messages during its first step in R1 and R2.
Once the previous state and the received messages are known, the execution of the
subprograms deducP and inducP during the first step of x is completely determined.
Hence, in runs R1 and R2 the node x produces exactly the same deductive and
inductive facts during the first step. This implies that also the second stored state of
x is the same in both runs. Our reasoning can now be repeated for the second step
of x, the third step, etc. Generalized to all nodes, we see trace(R1) = trace(R2). �

Consider now the following example, that illustrates how the pairs in N ×N might
be related by a run.

Example 5.4. Suppose we have a run R, in which the following events take place,
where we assume that x, y and z are three distinct nodes:

1. Node x during step s sends a message A to node z.

2. This message A arrives at node z during step u.

95

3. The node z during step u+ 5 sends a message B to node y.

4. This message B arrives at node y during step t.

There is a chain of events that connects (x, s) to (y, t):

(x, s) send A−−−−−→ (z, u) step−−−→ (z, u+ 1) . . . step−−−→ (z, u+ 5) send B−−−−−→ (y, t).

We say that the step s of node x (causally) happens before the step t of node y because
we can follow a forward chain of local steps and sent messages to connect step s of
x to step t of y. And such a path can make a “detour” to other nodes and some of
their steps as well; in this case node z and its steps u up to u+ 5. �

For a run R, the intuition of Example 5.4 can be formalized with the happens-
before relation [23] on the set N ×N, which is defined as the smallest relation ≺R on
N × N that satisfies the following three conditions:

• for each (x, s) ∈ N × N, we have (x, s) ≺R (x, s+ 1);

• (x, s) ≺R (y, t) whenever for some fact f we have (x, s, y, t,f) ∈ mesg(R);

• ≺R is transitive, i.e., (x, s) ≺R (z, u) ≺R (y, t) implies (x, s) ≺R (y, t).

We call these three cases respectively local edges, message edges and transitive edges.
Naturally, the first two cases express a direct relationship, whereas the third case is
more indirect. Note that the relation ≺R does not say how the messages are used.
For instance, in Example 5.4, we cannot say for sure if z at step u reads the data
in message A, or that it is “necessary” for z to first receive A before it can send B.
Also, even if two runs on the same input have the same happens-before relation, it
is not guaranteed that they have the same trace. This is because the happens-before
relation does not talk about the specific messages that arrive at the nodes (whereas
Lemma 5.3 does).

Consider the following property:

Lemma 5.5. For every run R, the happens-before relation ≺R contains no cycles.

Proof. If there would be a cycle in ≺R that contains transitive edges, then we can
substitute each transitive edge in this cycle with a path consisting of non-transitive
edges. Therefore it is sufficient to show the absence of cycles consisting of only non-
transitive edges. We show this with a proof by contradiction. So, suppose that there
is a chain in N × N without transitive edges

(x1, s1) ≺R (x2, s2) ≺R . . . ≺R (xn, sn)

with n ≥ 2 and (x1, s1) = (xn, sn). Because there are no transitive edges, for each
i ∈ {1, . . . , n− 1}, the edge (xi, si) ≺R (xi+1, si+1) falls into one of the following two
cases:

• xi = xi+1 and si+1 = si + 1 (local edge);

• xi during step si sends a message to xi+1 that arrives in step si+1 of xi+1
(message edge).

96

In the first case, it follows from the definition of locR(·) that

globR(xi, si) < globR(xi+1, si+1).

For the second case, by our operational semantics, every message is always delivered
in a later transition than the one in which it was sent. So, again we have

globR(xi, si) < globR(xi+1, si+1).

Since this property holds for all above edges, by transitivity we have globR(x1, s1) <
globR(xn, sn). But this is a contradiction because (x1, s1) = (xn, sn) and thus
globR(x1, s1) = globR(xn, sn). �

Corollary 5.6. For every run R, the relation ≺R is a strict partial order on N ×N.

Proof. From its definition, we immediately have that ≺R is transitive. Secondly,
irreflexivity for ≺R follows from Lemma 5.5. �

In Example 5.4, the happens-before relation is indeed partial because (x, s) does
not happen before (y, t−1) and (y, t−1) does not happen before (x, s). So, (x, s) and
(y, t− 1) are incomparable with ≺R. On a similar note, it is in general possible that
the directed graph with vertices N × N and edges ≺R is not even weakly connected.
This occurs for instance when there are no message edges, in which case the graph
consists of only isolated chains of local edges (and their transitive closure).

Consider the following property:

Corollary 5.7. For every run R, for each (x, s, y, t,f) ∈ mesg(R) we have (y, t) 6≺R
(x, s).

Proof. First, (x, s, y, t,f) ∈ mesg(R) implies (x, s) ≺R (y, t) by definition of ≺R. So,
if (y, t) ≺R (x, s) then ≺R contains a cycle, which not possible by Lemma 5.5. �

This last property is equivalent to saying that if (y, t) 6≺R (x, s) then it is possible
that x during step s sends a message to y that arrives in step t of y. We will concretely
use this in our declarative semantics: we only allow x during step s to send a message
to y at step t if (y, t) 6≺R (x, s) (cf. Section 5.5.7.3).

5.5.4 Additional Relation Names

In the following subsections, we will start with the construction of the pure Datalog¬
program obtained from P, denoted pure(P). For this purpose, we need some new
relation names not yet used in sch(P).2 These are listed in Table 5.1. The concrete
purpose of these relations will become clear in the following subsections.

2In practice, this can always be arranged through a namespace mechanism.

97

New relation names Represents
all network
time, tsucc, <, 6= timestamps
before happens-before relation
candR, chosenR, otherR, for
each relation name R in idb(P)

messages

hasSender, isSmaller, hasMax,
rcvInf

delivery of only a finite number of
messages to each step of a node

Table 5.1: Relation names not in sch(P).

5.5.5 Network and Time Relations
In pure(P), we will use unary relation all to represent the whole network of interest.
For example, a fact all(x) will express that x is a node of the network. A small
remark: if the original rules of P need access to node identifiers, then those identifiers
must be explicitly provided in extra input relations different from all (like relation
Node in Section 5.4) or they must be received from other nodes by means of messages.

In pure(P), we will also explicitly reason about timestamps, using the relations of
the following database schema:

Dtime = {time(1), tsucc(2), <(2), 6=(2)}.

The relations ‘<’ and ‘6=’ will be written in infix notation in rules. We consider only
the following instance over Dtime:

Itime = {time(s), tsucc(s, s+ 1) | s ∈ N}
∪ {(s < t) | s, t ∈ N : s < t}
∪ {(s 6= t) | s, t ∈ N : s 6= t}.

Intuitively, the instance Itime provides timestamps together with relations to compare
them.

5.5.6 Representing Causality
We now explain how causality will be represented in pure(P). To express that
(x, s) ∈ N × N causally happens before (y, t) ∈ N × N, we use a fact of the form
before(x, s, y, t). We add to pure(P) the following rules:

before(x, s, x, t)← all(x), tsucc(s, t). (5.1)

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t). (5.2)

The rule (5.1) expresses that on every node, a step causally comes before the next
step. The rule (5.2) computes the transitive closure on the before relation.

The above rules are added to pure(P) independently of what rules P contains.
But in the following subsection we will add rules to pure(P) that are obtained by
transforming the original rules of P. In particular, the sending of messages will also
have an impact on the happens-before relation.

98

5.5.7 Rule Transformation
For each type of rule in P we specify what corresponding rules should be added to
pure(P). Because P is constant-free, all rules we add are constant-free. For technical
convenience, we will assume that rules of P always contain at least one positive body
atom. This assumption allows us to enforce more elegantly that the variables in the
head atoms of pure(P) also occur in at least one positive body atom. This assumption
is not really a restriction, since a nullary positive body atom is already sufficient.

First, let x, s, t, t′ ∈ var be distinct variables that do not yet occur in the rules of
P. In pure(P), the variables x and s will be used as location specifier and timestamp
respectively. The variables t and t′ will also be used for timestamps. We write B{v̄},
where v̄ is a tuple of variables, to denote any sequence β of literals over database
schema sch(P), such that the variables in β are precisely those in the tuple v̄.

5.5.7.1 Deductive Rules

For each deductive rule
R(ū)← B{ū, v̄}

in P, we add to pure(P) the following rule:

R(x, s, ū)← B{ū, v̄}⇑x,s. (5.3)

This rule expresses that the facts deductively derived at some node x during step s
are (immediately) visible within step s of x.

5.5.7.2 Inductive Rules

For each inductive rule
R(ū)• ← B{ū, v̄}

in P, we add to pure(P) the following rule:

R(x, t, ū)← B{ū, v̄}⇑x,s, tsucc(s, t). (5.4)

Intuitively, this rule derives a fact that becomes visible in the next step of the same
node.

5.5.7.3 Asynchronous Rules

For the situation in which a node x at its step s sends a message R(ā) to a node y,
we use a fact candR(x, s, y, t, ā) to say that t could be the arrival timestamp of this
message at y.3 We use a fact chosenR(x, s, y, t, ā) to say that t is the effective arrival
timestamp of this message at y. Lastly, a fact otherR(x, s, y, t, ā) means that t is not
the arrival timestamp of the message.

Now, for each asynchronous rule

R(ū) | y← B{ū, v̄, y}
3Here, ‘cand’ abbreviates “candidate”.

99

in P, letting w̄ be a tuple of new and distinct variables with |w̄| = |ū|, we add to
pure(P) the following rules, for which the intuition is given below:

candR(x, s, y, t, ū)←B{ū, v̄, y}⇑x,s, all(y), time(t),
¬before(y, t, x, s).

(5.5)

chosenR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), ¬otherR(x, s, y, t, w̄). (5.6)

otherR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), chosenR(x, s, y, t′, w̄), t 6= t′. (5.7)

R(y, t, w̄)← chosenR(x, s, y, t, w̄). (5.8)

before(x, s, y, t)← chosenR(x, s, y, t, w̄). (5.9)

Rule (5.5) represents the messages that are sent. It evaluates the body of the original
asynchronous rule, verifies that the addressee is within the network by using relation
all, and it generates all possible candidate arrival timestamps that are not restricted
by relation before. This last restriction comes from Corollary 5.7, and it will prevent
cycles from occurring in relation before.

Now remains the matter of actually choosing one arrival timestamp amongst all
these candidates. Intuitively, rule (5.6) selects an arrival timestamp for a message
with the condition that this timestamp is not yet ignored, as expressed with relation
otherR. Also, looking at rule (5.7), a possible arrival timestamp t becomes ignored if
there is already a chosen arrival timestamp t′ with t 6= t′. Together, both rules have
the effect that exactly one arrival timestamp will be chosen under the stable model
semantics. This technical construction is due to Saccà and Zaniolo [52], who show
how to express dynamic choice under the stable model semantics.

Rule (5.8) represents the actual arrival of an R-message with the chosen arrival
timestamp: the data-tuple in the message becomes part of the addressee’s state for
relation R. When the addressee reads relation R, it thus transparently reads the
arrived R-messages.

The rule (5.9) adds the causal restriction that the local step of the sender happens
before the arrival step of the addressee. Together with the previously introduced rules
(5.1) and (5.2), this will make sure that when the addressee later causally replies to
the sender, the reply — as generated by a rule of the form (5.5) — will arrive after
this first send-step of the sender.

Note, if multiple asynchronous rules in P have the same head predicate R, only
new candR-rules have to be added because the rules (5.6)–(5.9) are general for all
R-messages.

Note, if there are asynchronous rules in P, the program pure(P) will not be syn-
tactically stratifiable because relation before negatively depends on itself through
rules of the following forms, in order: (5.5), (5.6) and (5.9). Moreover, pure(P) is not
locally stratifiable [21] because on a network with a least two nodes x and y, the fact
before(x, s, y, t) with s, t ∈ N can negatively depend on itself by means of ground
versions of these same rules.

5.5.7.4 Fairness and Finite Messages

We now relate the fairness conditions of Section 2.8.2.4 to pure(P). The fairness
condition that every node does an infinite number of transitions does not require

100

explicit modeling, because our previous transformations of deductive, inductive and
asynchronous rules implicitly look at all possible pairs in N × N, i.e., all possible
steps for all nodes. The other fairness condition demands that every sent message
is eventually delivered. This too is already satisfied by our transformation of the
asynchronous rules, because for every sent message we choose precisely one arrival
timestamp.

But there is one more thing that requires special attention. Our program pure(P)
so far allows an infinite number of messages to arrive at any step of a node. This does
not happen in our operational semantics, or in any real-world distributed system for
that matter: indeed, no node has to process an infinite number of messages at any
given moment. We consider this to be an additional fairness restriction that must be
explicitly enforced in pure(P).

We will approach this problem as follows. Suppose there are an infinite number
of messages that arrive at some node y during its step t. Since in a network there are
only a finite number of nodes and a node can only send a finite number of messages
during each step (the active domain is finite), there must be at least one node x that
sends messages to step t of y during an infinite number of steps of x. Hence there is no
maximum value amongst the corresponding send-timestamps of x. Thus, in order to
prevent the arrival of an infinite number of messages at step t of y, it will be sufficient
to demand that there always is such a maximum send-timestamp for every sender.
Below, we will implement this strategy with some concrete rules in pure(P).

We use a fact rcvInf(y, t) to express that node y receives an infinite number of
messages during its step t. Below we add new rules, and their intuition is that they
are relative to an addressee and a step of this addressee, represented by the variables
y and t respectively. First, we add the following rule to pure(P) for each relation
chosenR that results from the transformation of asynchronous rules, where x, s, y,
and t are variables and w̄ is a tuple of distinct variables disjoint from the previous
ones with |w̄| the arity of relation R in sch(P):

hasSender(y, t, x, s)← chosenR(x, s, y, t, w̄), ¬rcvInf(y, t). (5.10)

This rule intuitively means that as long as addressee y has not received an infi-
nite number of messages during its step t, we register the senders and their send-
timestamps. Recall that <(2)∈ Dtime. Next, we add to pure(P) the following rules,
for which the intuition is provided below:

isSmaller(y, t, x, s)← hasSender(y, t, x, s), hasSender(y, t, x, s′),
s < s′.

(5.11)

hasMax(y, t, x)← hasSender(y, t, x, s), ¬isSmaller(y, t, x, s). (5.12)

rcvInf(y, t)← hasSender(y, t, x, s), ¬hasMax(y, t, x). (5.13)

The rule (5.11) checks for each sender and each of its send-timestamps whether there
is a later send-timestamp of that same sender. The rule (5.12) tries to find a maximum
send-timestamp. Finally, the rule (5.13) derives a rcvInf-fact if no maximum send-
timestamp was found for at least one sender.

We will show in Section 5.8.1 that in any stable model, the above rules make sure
that every node receives only a finite number of messages at every step.

101

5.5.8 Input and Stable Models
Now we define the actual declarative semantics for P. Let H be an input distributed
database instance for P, over a network N . Let pure(P) be as previously constructed.
We define decl(H) to be the following database instance over the schema edb(P)LT ∪
{all(1)} ∪ Dtime:

decl(H) = {R(x, s, ā) | x ∈ N , s ∈ N, R(ā) ∈ H(x)}
∪ {all(x) | x ∈ N} ∪ Itime.

In words: we make for each node its input facts available at all timestamps; we provide
the set of all nodes; and, Itime provides the timestamps with comparison relations (see
Section 5.5.5). Note, instance decl(H) is infinite because N is infinite.

Recall the stable model semantics for Datalog¬ programs, as reviewed in Sec-
tion 2.7.3. We now define the declarative semantics for P on input H:

Definition 5.8. Any stable model of pure(P) on input decl(H) is called a model of
P on input H.

Importantly, we are using stable models of pure(P), not of P.

5.6 Main Result
Recall from Section 5.5.2 the definition of the trace of a run, representing in detail
the computation of that run. Our main result shows that our declarative semantics
of Dedalus expresses exactly the same computations as our operational semantics:

Theorem 5.9. Let P be a Dedalus program and let H be an input distributed
database instance for P. On input H,

(i) for every fair run R of P there is a model M of P such that trace(R) =
M |sch(P)LT , and

(ii) for every model M of P there is a fair run R of P such that trace(R) =
M |sch(P)LT .

�

The proof of item (i) of the theorem is described in Section 5.7. The proof of
item (ii), which is the most difficult, is described in Section 5.8. We only describe
the crucial reasoning steps of the proofs; the intricate technical details can be found
in [11].

5.7 Run to Model
Let P be a Dedalus program and let H be an input for P, over some network N . Let
R be a fair run of P input H. In this section, we show that there is a model M of P
on input H such that trace(R) = M |sch(P)LT . The main idea is that we translate the
transitions of R to facts over the schema of pure(P).

102

5.7.1 Construction
In this section we construct M . We define

M = decl(H) ∪
⋃
i∈N

trans[i]
R ,

where trans[i]
R for each i ∈ N is an instance over the schema of pure(P) that describes

the transition i, which is detailed below. First, the reason for including decl(H) is
because if we want M to be a stable model, it must always contain the input decl(H)
(see Section 2.7.3). Let i ∈ N. We define trans[i]

R as

trans[i]
R = caus[i]R ∪ fin[i]

R ∪ duc[i]
R ∪ snd[i]

R ,

where each of these new sets focuses on different aspects of transition i, and they are
defined next, together with their intuition with respect to pure(P).

Before we continue, we recall and define some symbols. Let αR denote the arrival
function of R, as defined in Section 2.8.2.4. For the run R, let locR(·) and globR(·)
be as defined in Section 5.5.1, and let ≺R be the happens-before relation as defined
in Section 5.5.3. Let xi denote the active node of transition i, and abbreviate si =
locR(i).

Causality The set caus[i]R represents the pairs (x, s) ∈ N ×N that causally happen
before (xi, si). We define caus[i]R to consist of all facts before(x, s, xi, si) for which
(x, s) ∈ N × N and (x, s) ≺R (xi, si). This represents the joint result of rules (5.1),
(5.2), and (5.9), corresponding to respectively the local edges, transitive edges, and
message edges of ≺R.

Finite Messages The set fin[i]
R represents that only a finite number of messages

are delivered in transition i, thus at step si of node xi. First, let senders[i]R denote
all pairs (x, s) ∈ N × N such that, denoting j = globR(x, s), for some fact f we have
αR(j, xi,f) = i, i.e., the node x during its step s sends a message to xi with arrival
timestamp si. It follows from the operational semantics that for each (x, s) ∈ senders[i]R
we have globR(x, s) < i.

We define fin[i]
R to consist of the following facts:

• the fact hasSender(xi, si, x, s) for each (x, s) ∈ senders[i]R , representing the result
of rule (5.10);

• the fact isSmaller(xi, si, x, s) for each (x, s) ∈ senders[i]R and (x, s′) ∈ senders[i]R
with s < s′, representing the result of rule (5.11);

• the fact hasMax(xi, si, x) for each sender-node x mentioned in senders[i]R , repre-
senting the result of rule (5.12).

We know that in R only a finite number of messages arrive at step si of xi. Hence
we add no fact rcvInf(xi, si) to fin[i]

R . This also explains why the specification of the
hasMax-facts above is relatively simple: there is always a maximum send-timestamp
for each sender-node.

103

Deductive The set duc[i]
R represents all facts over sch(P) that are available at xi

during transition i, thus during step si of xi. Let Di denote the output of subprogram
deducP during transition i. We define duc[i]

R to consist of the facts D⇑xi,si

i . This
represents the result of rules in pure(P) of the form (5.3), (5.4) and (5.8).

Sending The set snd[i]
R represents the sending of messages during transition i. Let

asyncP be the subprogram of P as defined in Section 2.8.2.2, and let mesg[i]
R denote

the output of asyncP during transition i, restricted to the facts having their addressee-
component in the network.

We define snd[i]
R to consist of the following facts:

• the fact candR(xi, si, y, t, ā) for each R(y, ā) ∈ mesg[i]
R and t ∈ N such that

(y, t) 6≺R (xi, si), representing the result of rule (5.5);

• all facts chosenR(xi, si, y, t, ā) and otherR(xi, si, y, u, ā) for which R(y, ā) ∈
mesg[i]

R , t = locR(j) with j = αR(i, y, R(ā)), u ∈ N, (y, u) 6≺R (xi, si) and
u 6= t. This represents the choice of an arrival timestamp for the messages, as
performed by rules (5.6) and (5.7).

5.7.2 Final Steps
It can be shown that M is a model of P on input H [11]. By construction of M , we
have, as desired:

M |sch(P)LT =
⋃
i∈N

duc[i]
R =

⋃
i∈N

D⇑xi,si

i = trace(R).

5.8 Model to Run
Let P be a Dedalus program and let H be an input for P, over some network N . Let
M be a model of P on input H. In this section we show there is a fair run R of P on
H such that trace(R) = M |sch(P)LT .

The direction shown in Section 5.7 is perhaps the most intuitive direction because
we only have to show that a concrete set of facts is actually a stable model. In this
section we do not yet understand what M contains. So, a first important step is to
show that M has some desirable properties which allow us to construct a run from it.

First, it is important to know that inM we find location specifiers where we expect
location specifiers and we find timestamps where we expect timestamps. Formally,
we call M well-formed if:

• for each R(x, s, ā) ∈M |sch(P)LT we have x ∈ N and s ∈ N;

• for each before(x, s, y, t) ∈M , we have x, y ∈ N and s, t ∈ N;

• for each fact candR(x, s, y, t, ā), chosenR(x, s, y, t, ā) and otherR(x, s, y, t, ā) in
M , we have x, y ∈ N and s, t ∈ N;

• for each fact hasSender(x, s, y, t), isSmaller(x, s, y, t), hasMax(x, s, y) and
rcvInf(x, s) in M , we have x, y ∈ N and s, t ∈ N.

104

Using the notation from Section 2.7.3, let grP,HM abbreviate the ground program

groundM (pure(P), decl(H)).

By definition of M as a stable model, we have M = grP,HM (decl(H)). It can be shown
by induction on the fixpoint computation of grP,HM on input decl(H) thatM is always
well-formed. We omit the details.

5.8.1 Partial Order
Based on the relation before in M , in this subsection we define a strict partial order
≺M on N × N. This forms a crucial insight in the causality information represented
by M . In the following subsection, we use this partial order to establish a total order
on N ×N, around which we can build a run. The idea is that this total order tells us
which are the active nodes in the transitions of the constructed run.

We define ≺M as follows. For each (x, s) ∈ N × N and (y, t) ∈ N × N, we write
(x, s) ≺M (y, t) if and only if before(x, s, y, t) ∈M .

Let grP,HM be as above. A ground rule ψ ∈ grP,HM is called active if posψ ⊆ M ,
which implies that headψ ∈M because M is stable. Now, an edge (x, s) ≺M (y, t) is
called a local edge, a message edge or a transitive edge if the fact before(x, s, y, t) ∈M
is the head of an active ground rule in grP,HM that is of respectively the form (5.1),
the form (5.9), or the form (5.2). It is possible that an edge is of two or even three
types at the same time.

The rest of this section is dedicated to showing that ≺M has certain desirable
properties, so that we can later derive a total order with desirable properties. First,
consider the following claim:

Claim 5.10. Relation ≺M is a strict partial order on N × N.

Proof. We show that ≺M is transitive and irreflexive.

Transitive First, we show that ≺M is transitive. Suppose we have (x, s) ≺M (z, u)
and (z, u) ≺M (y, t). We have to show that (x, s) ≺M (y, t). By definition of ≺M ,
we have before(x, s, z, u) ∈ M and before(z, u, y, t) ∈ M . Because the rule (5.2) is
positive, we have the following ground rule in grP,HM :

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t).

Because M is a stable model and the body of the previous ground rule is in M , we
obtain before(x, s, y, t) ∈M . Hence, (x, s) ≺M (y, t), as desired.

Irreflexive Because an edge (x, s) ≺M (x, s) for any (x, s) ∈ N × N would form a
cycle of length one, it is sufficient to show that there are no cycles in ≺M at all. This
gives us irreflexivity, as desired.

First, let ≺′M denote the restriction of ≺M to the edges that are local or message
edges. Note that this definition allows some edges in ≺′M to also be transitive. The
edges that are missing from ≺′M with respect to ≺M are only derivable by ground
rules of the form (5.2); we call these the pure transitive edges. We start by showing

105

that ≺′M contains no cycles. We show this with a proof by contradiction. So, suppose
that there is a cycle in N × N through the edges of ≺′M :

(x1, s1) ≺M (x2, s2) ≺M . . . ≺M (xn, sn)

with n ≥ 2 and (x1, s1) = (xn, sn). We have before(xi, si, xi+1, si+1) ∈ M for
each i ∈ {1, . . . , n − 1}. Moreover, based on these previous before-facts, ground
rules in grP,HM of the form (5.2) will have derived before(xi, si, xj , sj) ∈ M for each
i, j ∈ {1, . . . , n}. If each edge on the above cycle would be only local, then for each
i, j ∈ {1, . . . , n} with i < j we have xi = xj and si < sj , and hence s1 6= sn, which is
false. So, there has to be some k ∈ {1, . . . , n− 1} such that (xk, sk) ≺M (xk+1, sk+1)
is a message edge, derived by a ground rule of the form (5.9):

before(xk, sk, xk+1, sk+1)← chosenR(xk, sk, xk+1, sk+1, ā).

Therefore chosenR(xk, sk, xk+1, sk+1, ā) ∈M . This chosenR-fact must be derived by
a ground rule of the form (5.6) in grP,HM , which implies that

candR(xk, sk, xk+1, sk+1, ā) ∈M.

This candR-fact must in turn be derived by a ground rule ψ of the form (5.5). Because
rules of the form (5.5) in pure(P) contain a negative before-atom in their body, the
presence of ψ in grP,HM requires that before(xk+1, sk+1, xk, sk) /∈ M . But that is a
contradiction, because before(xi, si, xj , sj) ∈M for each i, j ∈ {1, . . . , n} (see above).

Now we show there are no cycles in the entire relation ≺M . Using that M =
grP,HM (decl(H)), we have M =

⋃
i∈NMi where M0 = decl(H) and Mi = T (Mi−1) for

each i ≥ 1 where T is the immediate consequence operator of grP,HM . By induction on
i, we show that an edge before(x, s, y, t) ∈ Mi either is a local or message edge, or
it can be replaced by a path of local or message edges in Mi. Then any cycle in ≺M
would imply there is a cycle in ≺′M , which is impossible (shown above). So, ≺M can
not contain cycles. Now, this induction property is satisfied for the base case because
M0 does not contain before-facts. For the induction hypothesis, assume the property
holds forMi−1, where i ≥ 1. For the inductive step, let before(x, s, y, t) ∈Mi\Mi−1.
If this fact is derived by a ground rule of the form (5.1) or (5.9) then the property is
satisfied. Now suppose the fact is derived by a ground rule of the form (5.2):

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t).

Both body facts are in Mi−1, so the induction hypothesis implies that Mi−1 contains
a path of local or message edges from (x, s) to (z, u) and from (z, u) to (y, t). Hence,
using Mi−1 ⊆Mi, the edge before(x, s, y, t) ∈Mi can be replaced by a path of local
or message edges in Mi. �

In Section 5.5.7.4 we have added extra rules to pure(P) to enforce that every node
only receives a finite number of messages during each step. We now verify that this
works correctly:

Claim 5.11. For each (y, t) ∈ N ×N there are only a finite number of pairs (x, s) ∈
N × N such that (x, s) ≺M (y, t) is a message edge.

106

Proof. We start by noting that M does not contain the fact rcvInf(y, t). Indeed, in
order to derive this fact, we need a ground rule in grP,HM of the form (5.13), which
has a body fact of the form hasSender(y, t, x, s). Such hasSender-facts must be
generated by ground rules in grP,HM of the form (5.10). The rule (5.10) negatively
depends on relation rcvInf. Thus, specifically, if we want a ground rule in grP,HM

that can derive hasSender(y, t, x, s), we should require the absence of rcvInf(y, t)
from M . So rcvInf(y, t) ∈M requires rcvInf(y, t) /∈M , which is impossible.

The rest of the proof works towards a contradiction. So, suppose that (y, t)
has an infinite number of incoming message edges. Because there are only a fi-
nite number of nodes in N , there has to be a node x that has an infinite number
of timestamps s for which there exists some relation R in idb(P) and a tuple ā such
that chosenR(x, s, y, t, ā) ∈ M . Because rcvInf(y, t) /∈ M (see above), for each of
these chosenR-facts, there is a ground rule of the form (5.10) in M that derives
hasSender(y, t, x, s) ∈M .

Rule (5.13) has a negative hasMax-atom in its body. If we can show hasMax(y, t, x) /∈
M , then there is a ground rule in grP,HM of the form (5.13), where hasSender(y, t, x, s) ∈
M :

rcvInf(y, t)← hasSender(y, t, x, s).

This then causes rcvInf(y, t) ∈M , giving the desired contradiction.
Also towards a proof by contradiction, suppose that hasMax(y, t, x) ∈ M . This

means that there is a ground rule ψ in grP,HM of the form (5.12):

hasMax(y, t, x)← hasSender(y, t, x, s).

Because the rule (5.12) contains a negative isSmaller-atom in the body, and be-
cause ψ ∈ grP,HM , we know that isSmaller(y, t, x, s) /∈ M . But because there are
infinitely many facts of the form hasSender(y, t, x, s′) ∈M , there is at least one fact
hasSender(y, t, x, s′) ∈ M with s < s′. Moreover, the rule (5.11) is positive, and
therefore the following ground rule is always in grP,HM :

isSmaller(y, t, x, s)← hasSender(y, t, x, s), hasSender(y, t, x, s′), s < s′.

Since the body of this ground rule is inM , the rule derives isSmaller(y, t, x, s) ∈M ,
which gives the desired contradiction. �

An ordering ≺ on a set A is called well-founded if for each a ∈ A, there are only
a finite number of elements b ∈ A such that b ≺ a. We now use Claim 5.11 to show:

Claim 5.12. Relation ≺M on N × N is well-founded.

Proof. Let (x, s) ∈ N × N. We have to show that there are only a finite number of
pairs (y, t) ∈ N ×N such that (y, t) ≺M (x, s). Technically, we can limit our attention
to paths in ≺M consisting of local edges and message edges, because if we can show
that there are only a finite number of predecessors of (x, s) on such paths, then there
are only a finite number of predecessors when we include the transitive edges as well.

First we show that every pair (y, t) ∈ N ×N has only a finite number of incoming
local and message edges. If t > 0, we can immediately see that (y, t) has precisely one
incoming local edge, as created by a ground rule of the form (5.1), and if t = 0 then

107

(y, t) has no incoming local edge. Also, Claim 5.11 tells us that (y, t) has only a finite
number of incoming message edges. So, the number of incoming local and message
edges in (y, t) is finite.

Let (y, t) ∈ N ×N be a pair such that (y, t) ≺M (x, s) is a local edge or a message
edge. Starting in (x, s), we can follow this edge backwards so that we reach (y, t). If
(y, t) itself has incoming local or message edges, from (y, t) we can again follow an edge
backwards. This way we can incrementally construct backward paths starting from
(x, s). Because at each pair ofN×N there are only a finite number of incoming local or
message edges (shown above), if (x, s) would have an infinite number of predecessors,
we must be able to construct a backward path of infinite length. We now show that
the existence of such an infinite path leads to a contradiction. So, suppose that there
is a backward path of infinite length. Because there are only a finite number of nodes
in the network N , there must be a node y that occurs infinitely often on this path.
We will now show that, as we progress further along the backward path, we must
see the local timestamps of y strictly decrease. Hence, we must eventually reach
timestamp 0 of y, after which we cannot decrement the timestamps of y anymore,
and thus it is impossible that y occurs infinitely often along the path. Suppose that
the timestamps of y do not strictly decrease. There are two cases. First, if the same
pair (y, t) would occur twice on the path, we would have a cycle in ≺M , which is not
possible by Claim 5.10. Secondly, suppose that there are two timestamps t and t′ of
y such that t < t′ and (y, t) occurs before (y, t′) on the backward path, meaning that
(y, t) lies closer to (x, s). Because the edges were followed in reverse, we have

(y, t′) ≺M . . . ≺M (y, t).

But since t < t′, by means of local edges, we always have

(y, t) ≺M (y, t+ 1) ≺M . . . ≺M (y, t′).

Combining these two sets of edges leads to a cycle in ≺M , which is impossible by
Claim 5.10. �

5.8.2 Construction of Run
Let ≺M be the well-founded strict partial order on N ×N as defined in the preceding
subsection. The relation ≺M has the intuition of a happens-before relation of a run
(see Section 5.5.3), but the novelty is that it comes from a purely declarative model
M . We will now use ≺M to construct a run R such that trace(R) = M |sch(P)LT .

Total order It is well-known that a well-founded strict partial order can be ex-
tended to a well-founded strict total order. So, let <M be a well-founded strict total
order on N ×N that extends ≺M , i.e., for each (x, s) ∈ N ×N and (y, t) ∈ N ×N, if
(x, s) ≺M (y, t) then (x, s) <M (y, t), but the reverse does not have to hold.

Intuitively, ordering the set N × N according to <M gives us a sequence of pairs
that will form the transitions in the constructed run R. Concretely, we obtain a
sequence of nodes by taking the node-component from each pair. This will form our
sequence of active nodes. Similarly, by taking the timestamp-component from each
pair of N ×N, we obtain a sequence of timestamps. These are the local clocks of the
active nodes during their transitions.

108

We introduce some extra notations to help us reason about the ordering of time
that is implied by <M . For each (x, s) ∈ N × N, let globM (x, s) ∈ N denote the
ordinal of (x, s) as implied by <M , which is well-defined because <M is well-founded.
For technical convenience, we let ordinals start at 0. Note, globM (·) is an injective
function. For any i ∈ N, we define (xi, si) to be the unique pair in N × N such that
globM (xi, si) = i.

As a counterpart to function globM (·), for i ∈ N and x ∈ N , let locM (i, x) denote
the size of the set

{s ∈ N | globM (x, s) < i}.

Intuitively, if i is regarded to be the ordinal of a transition in a run, locM (i, x) is
the number of local steps of x that came before transition i, i.e., the number of
transitions before i in which x was the active node. If x = xi (the active node) then
locM (i, x) is effectively the timestamp of x during transition i, and if x 6= xi then
locM (i, x) is the next timestamp of x that still has to come after transition i. Note,
the functions globM (·) and locM (·) closely resemble the functions globR(·) and locR(·)
of Section 5.5.1.

Configurations We will now define the desired run R of P on H. First we define
the (infinite) sequence of configurations ρ0, ρ1, ρ2, etc. In a second step we will
connect each pair of subsequent configurations by a transition.

Recall from Section 2.8.2.1 that a configuration describes for each node what facts
it has stored locally (state), and also what messages have been sent to this node but
that are not yet received (message buffer). The facts that are stored on a node are
either input edb-facts, or facts derived by inductive rules in a previous step of the
node. The first kind of facts can be easily obtained from M by keeping only the
facts over schema edb(P)LT, which gives a subset of decl(H). For the second kind
of facts, we look at the inductively derived facts in M , which is detailed next. The
rules in pure(P) that represent inductive rules of P are easily recognizable: they are
of the form (5.4), meaning that they have a head atom over sch(P)LT and they have
a positive body tsucc-atom. No other kind of rule in pure(P) has this form. Hence,
the ground rules in grP,HM that are based on rules of the form (5.4) are also easily
recognizable, and we will call these inductive ground rules. A ground rule ψ ∈ grP,HM

is called active on M if posψ ⊆ M , which implies that headψ ∈ M because M is
stable. Let M ind denote all head atoms of inductive ground rules in grP,HM that are
active on M . Note, M ind ⊆ M . Now, for each i ∈ N, for each node x ∈ N , in
configuration ρi = (si, bi), the state si(x) is defined as

(
(M |edb(P)LT)|x,s ∪M ind|x,s

)⇓
,

where s = locM (i, x), and where we use notations from Section 5.5.2. Note, we remove
the location specifier and timestamp because we have to obtain facts over the schema
of P, not over the schema of pure(P).

Now we define the message buffers in the configurations. Recall that the message
buffer of a node always contains pairs of the form (j,f), where j ∈ N is the transition
in which the fact f over idb(P) was sent. For each i ∈ N, for each node x ∈ N , in

109

configuration ρi = (si, bi), the message buffer bi(x) is defined as

{(globM (y, t), R(ā)) |
∃u : chosenR(y, t, x, u, ā) ∈M, globM (y, t) < i ≤ globM (x, u)}.

Note the use of addressee x in the definition of bi(x). The definition of bi(x) reflects
the operational semantics, in that the messages in the buffer of node x must be sent
in a previous transition, as expressed by the constraint globM (y, t) < i. Moreover,
the constraint i ≤ globM (x, u) says that bi(x) contains only messages that will be
delivered in transitions of x that come after configuration ρi. Possibly i = globM (x, u),
and in that case the message will be delivered in the transition immediately after
configuration ρi (see also below).

Transitions So far we have obtained a sequence of configurations ρ0, ρ1, ρ2, etc.
Now we define a sequence of tuples, one tuple per ordinal i ∈ N, that represents the
transition i. Let i ∈ N. The tuple τi is defined as (ρi, xi,mi, i, ρi+1), also denoted as
ρi

xi,mi−−−−→
i

ρi+1, where

mi = {(globM (y, t), R(ā)) | chosenR(y, t, z, u, ā) ∈M, globM (z, u) = i}.

Intuitively, in mi, we select all messages that arrive in transition i. And since
globM (z, u) = i implies z = xi and u = si, we thus select all messages destined
for step si of node xi.

It can be shown that the sequence R is indeed a legal run of P on input H such
that trace(R) = M |sch(P)LT [11]. In the following subsection we show that R is also
fair.

5.8.3 Fair Run
In this subsection we show that run R is fair. For each i ∈ N, let ρi = (si, bi) denote
the source configuration of transition i. Recall from Section 2.8.2.4 that we have to
check two fairness conditions:

1. every node is the active node in an infinite number of transitions; and,

2. for every transition i ∈ N, for every node y ∈ N , for every (j,f) ∈ bi(y), there
is a transition k with i ≤ k in which (j,f) is delivered (to y).

We show that the first fairness condition is satisfied by R. Let x ∈ N be a node, and
let s ∈ N be a timestamp of x. Consider transition i = globM (x, s). This transition
has active node xi = x. We can find such a transition with active node x for every
timestamp s ∈ N of x, and these transitions are all unique because function globM (·)
is injective. So, there are an infinite number of transitions in R with active node x,
and the first fairness condition is satisfied.

Now we show that the second fairness condition is satisfied. Let i ∈ N, y ∈ N ,
and (j,f) ∈ bi(y). Denote f = R(ā). By definition of bi(y), pair (j,f) implies
that there are values x ∈ N , s ∈ N and t ∈ N such that chosenR(x, s, y, t, ā) ∈ M
and j = globM (x, s) < i ≤ globM (y, t). Denote k = globM (y, t). Hence, i ≤ k and
(j,f) ∈ mk by definition of mk. Thus (j,f) is delivered to xk = y in transition k, as
desired.

110

Chapter 6

The CRON Conjecture

6.1 Outline

In this chapter we use Dedalus to investigate the CRON conjecture by Hellerstein.
First, Section 6.2 gives related work, and Section 6.3 gives technical remarks spe-
cific to this chapter. Next, Section 6.4 formalizes the output of a Dedalus program.
Section 6.5 states the CRON conjecture and gives a formalization of non-causality.
Section 6.6 contains the results. Because the output of a Dedalus program plays an
important role in this chapter, Section 6.7 also shortly discusses the expressivity of
Dedalus.

6.2 Related Work

This chapter is the extended version of our conference paper [18]. Some proof details
are not included in this chapter, but can be found in the technical report [20].

6.3 General Remarks

Recall the language Dedalus and its operational semantics from Section 2.8. In this
chapter, ordinals of transitions and configurations in a run start at 0 for technical
convenience.

Also recall from Section 5.5.1 the definition of timestamps in the operational se-
mantics. For example, suppose we have the following sequence of active nodes in a
run: x, y, y, x, x, etc. If we would write the timestamps next to the nodes, we get
this sequence: (x, 0), (y, 0), (y, 1), (x, 1), (x, 2), etc.

Some constructions of Chapter 5 are reused in this chapter. For this reason, we
will sometimes refer to Datalog¬ rules from Chapter 5.

111

6.4 Output

Let P be a Dedalus program. We formalize the output of a run. Assume a subset
out(P) ⊆ idb(P), called the output schema, is selected: the relation names in out(P)
designate the intended output of the program. Following Marczak et al. [46], we define
this output based on ultimate facts. In a run R of P, we say that a fact f over schema
out(P) is ultimate at some node x if there is some transition of R after which f is
output by deducP during every transition of x. Thus, f is eventually always present
at x. The output of R, denoted output(R), is the union of the ultimate facts across
all nodes. Note, we ignore what node is responsible for what piece of the output,
following the intuition of cloud computing.

Because the operational semantics is nondeterministic, different runs can produce
different outputs. Now, program P is called consistent if individually for every input
H, every run produces the same output, which we denote as outInst(P, H). Guar-
anteeing or deciding consistency in special cases is an important research topic; see
e.g. [1, 46], and Chapter 4.

6.5 CRON Conjecture and Non-Causality

We recall the CRON conjecture (Causality Required Only for Non-monotonicity),
which was informally stated as follows [37]:

CRON Conjecture (Informal). Program semantics require causal message order-
ing if and only if the messages participate in non-monotonic derivations.

The CRON conjecture talks about an intuitive notion of “causality” on messages.
As mentioned in Section 1.4, causality here stands for the physical constraint that an
effect can only happen after its cause. Our operational semantics respects causality
because a message can only be delivered after it was sent. When the delivery of one
message causes another one to be sent, the second message is delivered in a later
transition.

In order to obtain a conjecture that can be formally proved or disproved, we
need a formal definition of “requiring causal message ordering”. To this end, we next
introduce an alternative semantics for Dedalus that allows non-causality (sending
messages “into the past”). This is then used in Section 6.6 to formally investigate the
CRON conjecture.

6.5.1 Modeling Non-Causality

In Chapter 5, we have shown that the operational semantics of Dedalus is equivalent
to a declarative semantics based on stable models. In Section 5.5, we have described a
transformation to convert a Dedalus program P to a pure Datalog¬ program pure(P)
that contains extra rules to enforce causality on message sending in every stable model.
In this chapter, we remove these causality rules and explain how stable models can
now represent non-causal message sending.

112

6.5.1.1 Transformation

Let P be a Dedalus program. To model non-causality, we describe the SZ-transfor-
mation to transform P into pureSZ(P), which is obtained exactly like pure(P), with
the only difference that the use of relation before is completely removed (including
its rules). This is detailed below.

Again assuming that each rule of P has at least one positive body atom, the deduc-
tive and inductive rules of P are translated just as in pure(P). For each asynchronous
rule ‘R(ū) | y← B{ū, v̄, y}’ in P, letting x, s and t be variables not yet used in this
rule and letting w̄ be a tuple of new and distinct variables with |w̄| = |ū|, the previous
rule transformation (5.5) is modified to become:

candR(x, s, y, t, ū)← B{ū, v̄, y}⇑x,s, all(y), time(t). (6.1)

Note, we simply omit relation before. The rule transformations (5.6) to (5.8) are
retained, and rule transformation (5.9) is omitted. As in pure(P), a fact of the form
all(x) means that x is a node of the network. Also, if multiple asynchronous rules in
P have the same head predicate R, only new candR-rules have to be added because
the rules (5.6)–(5.8) are sufficiently general.

After transforming the rules of P, we also include in pureSZ(P) the rules of pure(P)
that enforce finite message delivery (see Section 5.5.7.4). This concludes the specifi-
cation of program pureSZ(P).

6.5.1.2 Semantics

The semantics for pureSZ(P) is the same as for pure(P), but we repeat this for clarity.
Let H be an input for P, over a network N . We give pureSZ(P) the input decl(H),
as defined in Section 5.5.8. We call any stable model M of pureSZ(P) on decl(H) an
SZ-model of P on input H.

Note, program pureSZ(P) does not enforce causality on the messages inM because
the arrival timestamps can be chosen arbitrarily, even into the past. But causality
could be respected in some models. In fact, P has at least one such “causal” SZ-model
on every input. This is because P has at least one run on every input (possibly with
only heartbeats), and because each run can be naturally encoded into an SZ-model
(see Section 5.7, but omitting relation before).

Again, using the definition of stable model, it can be shown that M is always
well-formed (cf. Section 5.8).

6.5.1.3 Output and Tolerating Non-Causality

The output of an SZ-modelM , denoted output(M), is defined with ultimate facts like
in the operational semantics (Section 6.4):

output(M) =
⋃

R(k)∈out(P)

{R(ā) | ∃x ∈ N , ∃s ∈ N, ∀t ∈ N : t ≥ s⇒ R(x, t, ā) ∈M}.

Now, we say that an already consistent Dedalus program P tolerates non-causality
if individually for every input H, every SZ-model M yields the output outInst(P, H).
Intuitively, if a consistent program tolerates non-causality, then it also computes the
same result when messages can be sent into the past.

113

Algorithm 6.1 Program for emptiness query

empty(x) | y← ¬R(), Id(x), Node(y).
empty(x)• ← empty(x).
missing()← Node(x), ¬empty(x).
T ()← Id(x), ¬missing().

6.6 Results
We have considered a semantical and syntactical interpretation of the CRON conjec-
ture, for which we present the results below.

6.6.1 Semantical Interpretation
We have first formalized the CRON conjecture purely on the semantical level, by
relating causality to the monotonicity of the queries computed by Dedalus programs.

Like in Section 2.1, a query Q is a function from database instances over an input
schema D1 to database instances over an output schema D2. Query Q is monotone
if for all instances I and J over D1, I ⊆ J implies Q(I) ⊆ Q(J). Relating to the
distributed setting, an instance I over a database schema D can be partitioned over
a network N by putting each fact of I on at least one node, resulting in a distributed
database instance over N and D. Now, we say that a Dedalus program P, for which
edb(P) is the input schema of Q, (distributedly) computes Q if P is consistent and
for every input instance I for Q, for every network N , for every partition H of I
over N , we have outInst(P, H) = Q(I). To compute non-monotone queries, every
node needs its own identifier and the identifiers of the other nodes, or equivalent
information (cf. Chapter 3). Therefore, we restrict attention to Dedalus programs P
for which {Id(1), Node(1)} ⊆ edb(P), and each input H over a network N includes for
each x ∈ N the facts {Id(x)} ∪ {Node(y) | y ∈ N}, which are treated just like any
other edb-fact.

In this context, we have looked at the following formalization of the CRON con-
jecture:

CRON Conjecture (Semantical). A Dedalus program computes a monotone
query if and only if it tolerates non-causality.

Both directions of this conjecture can be refuted by counterexamples, as we do in
the following two subsections. So, contrary to the CALM conjecture (Chapter 3), a
formalization of the CRON conjecture that is situated purely on the semantical level
does not seem promising.

6.6.1.1 If Direction

To refute the if-direction of the semantical CRON conjecture, we give a Dedalus
program tolerating non-causality that computes a non-monotone query.

114

Algorithm 6.2 Program for non-emptiness query

A() | x← R(), Id(x).
A()• ← A().
B() | x← A(), ¬sentB(), Id(x).
sentB()• ← A().
T ()← A(), B().
T ()• ← T ().

Algorithm 6.1 repeats Example 5.2.1 This Dedalus program computes the non-
monotone emptiness query on a nullary relation R, that is, output “true” (encoded by
a nullary relation T) if and only if R is empty (at all nodes). The asynchronous rule
lets each node broadcast its own identifier if its relation R is empty. The inductive
rule lets a node remember all received node identifiers. The deductive rules let a node
output T () starting at the moment that it has all identifiers (including its own). This
program is consistent.

Now we consider the tolerance to non-causality. Intuitively, in an SZ-model for
this program, even if messages are sent into the past, the inductive rule persists any
received identifier towards the future. If S is empty on all nodes, each node still
has a timestamp after which it has all node identifiers. Thus every SZ-model yields
the output T () if and only if all nodes have an empty relation S. So, the program
tolerates non-causality. The proof details can be found in [20].

6.6.1.2 Only-If Direction

To refute the only-if direction of the semantical CRON conjecture, we give a Dedalus
program computing a monotone query and that does not tolerate non-causality.

Algorithm 6.2 gives a (contrived) Dedalus program to compute the monotone non-
emptiness query on a nullary relation R, that is, output “true” if and only if R is not
empty (on at least one node). In the program, a node with nonempty relation R
sends A() to itself. On receipt of A(), the node stores A() and sends B() to itself if
it has not previously done so. Thus, if a node sends A() then it sends B() precisely
once. When the B() is later received, it is paired with the stored A(), producing the
fact T () that is stored by the inductive rule. This program is consistent.

However, the program does not tolerate non-causality, which we now explain. Let
H be the input over singleton network {z} with H(z) = {R()}. On input H, we can
exhibit an SZ-model M in which A()-facts arrive at node z starting at timestamp 1,
which implies that sentB() will exist starting at timestamp 2. This implies that B()
is sent precisely once in M , namely, at timestamp 1. Now, the trick is to violate the
causal dependency between relations A and B, by letting B() arrive in the past, at
timestamp 0 of z, which is before any A() is received. Then the arriving B() cannot
pair with any stored or arriving A(). Since B() itself is not stored, we have thus

1With the only difference that we have now added the atom Id(x) in the last rule to have at least
one positive body atom (see the assumption in Section 6.5.1.1).

115

Algorithm 6.3 Positive but not consistent

A() | x← Id(x).
B() | x← Id(x).
T ()← A(), B().
T ()• ← T ().

erased the single chance of producing T (). Hence output(M) = ∅, and the program
does not tolerate non-causality. The proof details can be found in [20].

6.6.2 Syntactical Interpretation
Now we look at the CRON conjecture from a syntactical point of view. A Dedalus
program without negation is called positive. Our main result now is that the following
does hold:

Theorem 6.1. Every positive consistent Dedalus program tolerates non-causality.

The converse direction of Theorem 6.1, to the effect that every consistent Dedalus
program tolerating non-causality is equivalent to a positive program, cannot hold
by our counterexample for the if-direction of the semantical CRON conjecture (see
Section 6.6.1.1).

The following subsections prove Theorem 6.1. In particular, we have to show
for each positive consistent Dedalus program P, and each input H, that every SZ-
model of P on H produces (i) at least outInst(P, H) and (ii) at most outInst(P, H),
respectively shown in Sections 6.6.2.1 and 6.6.2.2.

We remark that a positive program is not automatically consistent; Algorithm 6.3
gives a simple example, where the output T () can only be created when A() and B()
are delivered simultaneously, which does not happen in every fair run.

6.6.2.1 At Least All Operational Outputs

Let P be a positive and consistent Dedalus program. Let H be an input for P, over a
network N , and let M be an SZ-model of P on H. We have to show outInst(P, H) ⊆
output(M). We construct a fair run R of P on H such that output(R) ⊆ output(M).
Then, since output(R) = outInst(P, H) by consistency of P, we have outInst(P, H) ⊆
output(M), as desired.

Notations We need some auxiliary notations. For each (x, s) ∈ N×N, let allM (x, s)
be the set of all facts R(ā) for which R(x, s, ā) ∈ M |sch(P), i.e., the set of all facts
over sch(P) in M at node x on timestamp s.

For each (x, s) ∈ N×N, let rcvM (x, s) be the set of all facts R(ā) for which there is
some y and t such that chosenR(y, t, x, s, ā) ∈M , i.e., the set of all messages arriving
at (x, s) in M . Note, rcvM (x, s) ⊆ allM (x, s) by rules of the form (5.8) in pureSZ(P).

116

For each x ∈ N , let sndM (x) be the set of all pairs (y,R(ā)) for which there is
some s and t such that chosenR(x, s, y, t, ā) ∈ M , i.e., the set of all messages (with
addressee) that x ever sends in M .

We define sndFinM (x) ⊆ sndM (x) to be the subset of pairs (y,R(ā)) for which
there are only a finite number of times s such that chosenR(x, s, y, t, ā) ∈M for some
t ∈ N, i.e., there are only a finite number of times s on which x sends R(ā) to y in
M . Now, for each x ∈ N , we define startM (x) = 0 if sndFinM (x) = ∅ and otherwise
we define startM (x) to be 1 plus the largest timestamp on which x sends a pair of
sndFinM (x) in M . Intuitively, startM (x) is the first local timestamp of x at which x
no longer sends messages in sndFinM (x), so the messages that x sends starting from
startM (x) are sent infinitely often.

Main idea We inductively define the transitions of R. More specifically, for each
i = 0, 1, . . ., we define the (partial) arrival function α

(i)
R that contains for each

transition j ≤ i mappings of the form (j, y, R(ā)) 7→ k, where R(ā) is a message with
addressee y sent in transition j, to say that R(ā) is delivered to y in transition k
(with j < k).2 The arrival function is merely a technical aid; it helps us make explicit
how messages are delivered. We also write a mapping (j, y, R(ā)) 7→ k simply as
(j, y, R(ā), k).

Assuming some arbitrary order on N , consider the following (co-lexical) total
order ≤ on N × N:

(x, s) ≤ (y, t) ⇐⇒ s < t or (s = t and x ≤ y).

For each (x, s) ∈ N × N, let ord(x, s) denote the ordinal of (x, s) in this total order.
We define the active node in transition i of R to be the unique x ∈ N satisfying
ord(x, s) = i for some s ∈ N. For each i ∈ N, we write Di, xi and si to denote
respectively the deductive fixpoint, active node and timestamp (of the active node)
during transition i. For each i ∈ N, we want the following induction properties to be
satisfied, for which the intuition is provided below:

Di ⊆ allM (xi, si) (6.2)

∀(j, y,f , k) ∈ α(i)
R : f ∈ rcvM (xk, sk) (6.3)

∀(j, y,f , k) ∈ α(i)
R : sk ≥ startM (y) (6.4)

Property (6.2) ensures that all ultimate facts of R are ultimate facts of M , resulting
in output(R) ⊆ output(M), as desired. Property (6.3) ensures we do not have more
opportunities in R for messages to arrive “together” when compared to M , so that
induction property (6.2) can be satisfied. To explain property (6.4), note that some
messages in M are sent only a finite number of times, even into the past. Such
messages are the result of a coincidence, like the coincident arrival of messages, and
because such messages can not be sent into the past in R, we would have to deliver
them somewhere in the future, risking a violation of induction property (6.3). Now,
induction property (6.4) will ensure that we only send messages in R that are sent an
infinite number of times inM , and this can be used to satisfy induction property (6.3).

2To make sure that each message is eventually delivered, all messages sent in transitions j ≤ i

will get a mapping in α(i)
R .

117

Inductive construction For uniformity, we start with i = −1, and define α(−1)
R =

∅ andD−1 = ∅. So, properties (6.2) through (6.4) are trivially satisfied for i = −1. For
the induction hypothesis, assumeR has been partially constructed up to and including
transition i−1, where i ≥ 0, and assume the properties hold for all transitions j = −1,
0, . . ., i− 1. For the inductive step, we show that property (6.2) is satisfied for i, and
we show how to extend α(i−1)

R to α(i)
R such that properties (6.3) and (6.4) are satisfied.

The set mi of (tagged) messages to be delivered in transition i consists of all pairs
(j,f) for which α(i−1)

R contains (j, y,f , i).3 Henceforth, we will omit technical details
and give only the most important steps of the proof; the omitted details are in [20].

Property (6.2) We have to show Di ⊆ allM (xi, si). Using the definition Di =
deducP(si(xi) ∪ untag(mi)) with ρi = (si, bi) the source-configuration of transition
i, the problem can be reduced to showing si(xi) ∪ untag(mi) ⊆ allM (xi, si) [20].
First, by applying the induction hypothesis for property (6.3) to α

(i−1)
R , we know

untag(mi) ⊆ rcvM (xi, si) ⊆ allM (xi, si).
We are left to show si(xi) ⊆ allM (xi, si). We distinguish between facts over edb(P)

and idb(P). We have si(xi)|edb(P) ⊆ allM (xi, si) because si(xi)|edb(P) = H(xi) by the
operational semantics and H(xi)⇑xi,si ⊆ decl(H) ⊆ M by definition of M . Next, if
i is the first transition of xi, we have si(xi)|idb(P) = ∅ ⊆ allM (xi, si). Otherwise, we
consider the last transition j before i in which xi was also the active node. By the
operational semantics, si(xi)|idb(P) = inducP〈Dj〉. Using Dj ⊆ allM (xi, sj) by the
induction hypothesis for property (6.2), we can show that inducP〈Dj〉 ⊆ allM (xi, sj+
1) = allM (xi, si), as desired [20].

Properties (6.3) and (6.4) We have to extend α(i−1)
R to α(i)

R so that proper-
ties (6.3) and (6.4) are satisfied. Suppose transition i sends a message R(ā) to an
addressee y ∈ N . We have to choose a transition k with i < k in which to deliver R(ā)
to y. We start by showing there are an infinite number of timestamps s on which xi
sends R(ā) to y in M . We differentiate between two cases.

First, suppose si < startM (xi). The induction hypothesis for property (6.4) im-
plies xi has only done heartbeats up to and including transition i, i.e., no messages
have been delivered to xi yet. Then it is intuitively clear that node xi sends R(ā)
to y on an infinite number of timestamps in M ; indeed, by positivity of P, if xi can
start sending messages by using just local facts, then after a while these messages are
generated continuously [20].

Now suppose si ≥ startM (xi). Using Di ⊆ allM (xi, si) (see above), R(y, ā) ∈
asyncP〈Di〉, and y ∈ N , we can show there is a local timestamp t of y for which
chosenR(xi, si, y, t, ā) ∈ M [20]. So, in M , node xi sends R(ā) to y on a timestamp
at least startM (xi), which by definition of startM (xi) implies that node xi sends R(ā)
to y on an infinite number of timestamps in M .

Now, because xi sends R(ā) to y on an infinite number of timestamps in M ,
and y receives only a finite number of messages on each timestamp (enforced in Sec-
tion 6.5.1.1), there must be an infinite number of timestamps t ∈ N on which y receives
R(ā) in M . Among these, we can surely choose some arrival timestamp t ∈ N for

3This implies y = xi.

118

which ord(y, t) > i and t ≥ startM (y). Then we extend α(i−1)
R by adding the mapping

(i, y, R(ā), k) where k = ord(y, t). Note, this mapping satisfies properties (6.3) and
(6.4).

6.6.2.2 No Wrong Outputs

Let P be a positive and consistent Dedalus program. Let H be an input for P, and
let M be an SZ-model of P on H. We have to show output(M) ⊆ outInst(P, H). We
construct a fair run R such that output(M) ⊆ output(R). Then, using output(R) =
outInst(P, H) by consistency of P, we get output(M) ⊆ outInst(P, H), as desired.

Run R proceeds in rounds: in each round we let each node become active precisely
once to receive its entire buffer at the beginning of the round. Messages sent in each
round are accumulated and are delivered only during the next round. The number of
rounds is infinite. Because P is positive, the programs deducP , inducP , and asyncP
are monotone. Then, since always the entire buffer is delivered to each node, the sets
of deductively derived facts monotonically increase on each node.

For each transition i of R, let Di denote the output of deducP during i. For each
fact R(x, s, ā) ∈ M |sch(P) we show there is a transition i of x in R with R(ā) ∈ Di.
This gives output(M) ⊆ output(R) because for each ultimate fact R(ā) in M at some
node x, surely R(x, s, ā) ∈M for some s ∈ N, and so if R(ā) ∈ Di for some transition
i of x then R(ā) ∈ Dj for all subsequent transitions j of x by the monotonous nature
of R.

Abbreviate GM (P) = groundM (P ′, I) where P ′ = pureSZ(P) and I = decl(H).
Because M = GM (P)(I) by definition of stable model, we can consider the infinite
sequence M0, M1, M2, . . ., such that M =

⋃
lMl; M0 = I; and, for each l ≥ 1 the

instance Ml is obtained from Ml−1 by applying the immediate consequence operator
of GM (P). This implies Ml−1 ⊆ Ml for each l ≥ 1. By induction on l, we show that
for each R(x, s, ā) ∈Ml|sch(P) there is a transition i of x in R with R(ā) ∈ Di.

For the base case, R(x, s, ā) ∈ M0|sch(P) implies R(ā) ∈ H(x). Then R(ā) ∈ Di

for any transition i of x because each state of x contains H(x) by the operational
semantics. For the induction hypothesis, assume the property holds for Ml−1 where
l ≥ 1. Now, let R(x, s, ā) ∈ Ml|sch(P) \Ml−1. Let ψ ∈ GM (P) be a ground rule
responsible for deriving this fact, i.e., posψ ⊆ Ml−1 and headψ = R(x, s, ā). Rule ψ
must have one of the following three forms: the deductive form (5.3), the inductive
form (5.4), or the delivery form (5.8). We handle each case in turn.

Deductive Let ϕ ∈ pureSZ(P) be the rule corresponding to ψ, so ϕ is of the form
(5.3). Let V be the valuation for ϕ such that ψ results from applying V to ϕ. In
turn, let ϕ′ ∈ P be the original deductive rule on which ϕ is based. Note, ϕ′ ∈
deducP . By the syntactical correspondence between ϕ and ϕ′, we can apply V to
ϕ′. Now, it suffices to show V (posϕ′) ⊆ Di for some transition i of x in R, resulting
in V (headϕ′) = R(ā) ∈ Di by the fixpoint semantics of deducP , as desired. So,
let S(b̄) ∈ V (posϕ′). By the syntactical correspondence between ϕ′ and ϕ, we have
S(x, s, b̄) ∈ V (posϕ) = posψ. Using posψ ⊆Ml−1 gives S(x, s, b̄) ∈Ml−1|sch(P). Then
the induction hypothesis implies there is a transition j of x in R satisfying S(b̄) ∈ Dj .
And because deductive facts monotonously grow at x in R, there is a transition i of
x such that S(b̄) ∈ Di for each S(b̄) ∈ V (posϕ′).

119

Inductive Let ϕ and V be like in the deductive case, but now ϕ is of the form
(5.4). Let ϕ′ ∈ inducP be the rule corresponding to ϕ. Again, we can apply V to
ϕ′. Again, it suffices to show V (posϕ′) ⊆ Di for some transition i of x in R, causing
V (headϕ′) = R(ā) to be stored in the next state of x. Then, with j being the first
transition of x after i, we get R(ā) ∈ Dj by the operational semantics, as desired.
The existence of i is established like in the deductive case.

Delivery Rule ψ is of the form (5.8), with body fact chosenR(y, t, x, s, ā) ∈ Ml−1.
We show there is a transition i of y in R, in which y sends R(ā) to x. Then, in
the next round of R following i, we deliver R(ā) to x in some transition j. Then
R(ā) ∈ Dj by the operational semantics, as desired.

Now, chosenR(y, t, x, s, ā) ∈ Ml−1 implies candR(y, t, x, s, ā) ∈ Ml−1. There is
some k ∈ N with 0 < k < l − 1 such that candR(y, t, x, s, ā) ∈ Mk \Mk−1. Let ψ′ ∈
GM (P) be a rule responsible for deriving the candR-fact. Let ϕ′ ∈ pureSZ(P) be the
rule corresponding to ψ′, and let V ′ be the valuation for ϕ′ giving rise to ψ′. In turn,
let ϕ′′ ∈ asyncP be the rule corresponding to ϕ′. By the syntactical correspondence
between ϕ′ and ϕ′′, we can apply V ′ to ϕ′′. Note, V ′(headϕ′′) = R(x, ā). To make
y send R(ā) to x in some transition i, we need V ′(posϕ′′) ⊆ Di. The existence of
transition i is again established like in the deductive case.

6.7 Expressivity
We now discuss the expressivity of Dedalus. Let Q be a query. Like in Section 6.6.1,
we say that a Dedalus program P, with edb(P) the input schema of Q, computes Q if
P is consistent and for every input instance I for Q, for every network N , for every
partition H of I over N , we have outInst(P, H) = Q(I). We now argue that Dedalus
captures the queries expressible in the language While [2].

6.7.1 Upper Bound
First we argue the upper bound. Let P be a Dedalus program that computes a query
Q. We immediately focus on a single-node network N , where, by assumption, P also
correctly computes Q. Let I be an input for Q. The single node of N is given the
entire instance I. Now, consider the run R in which we deliver the entire message
buffer in each transition. By consistency of P, run R produces Q(I). Note, because
only a set of messages is sent in each transition, the message buffer degenerates to a
set in R. So, the message buffer could just be simulated with inductive rules, giving
a modified program P ′ that only works correctly on single-node networks.

Next, we can simulate the behavior of P ′ by a single-node transducer network,
whose single transducer Π has its queries implemented with Datalog¬ under the strat-
ified semantics: each inductively computed relation R of P ′ becomes a memory re-
lation of Π, whose insertion query contains deducP′ and the inductive rules for R
(these determine the answer), and whose deletion query always deletes the previous
contents of R.4 There are no message relations. Note, a stratified Datalog¬ program
can be simulated by a sequence of fixpoint-loops in the language While (one fixpoint

4This strategy always keeps precisely the inductively derived facts.

120

for each stratum), and hence by a single While-program. So, Π can be regarded as a
While-transducer. Then, using the technique for the only-if direction in Lemma 3.25,
transducer Π can be simulated by a transducer Π′ whose queries are implemented in
FO, still on a single-node network. Lastly, applying the if-direction of Lemma 3.25 to
Π′ gives that Q is in While, as desired.

6.7.2 Lower Bound
Now we argue the lower bound. Let Q be a query expressible with a While-program
P . We may assume that P consists of a single while-loop (with no nested while-
loops) after which a final sequence of FO-statements sets the contents of the output
relations; P can always be rewritten into this form. We construct a Dedalus program
P to compute Q as follows. First, we implement in P the protocol from Lemma 3.8
to let each node accumulate all inputs across the network. At each node, the end of
this protocol is signaled by the derivation of a nullary fact ready(), that we persist
by inductive rules. After obtaining ready(), every node acts as if it was alone on
the network, and it simulates program P as follows. One iteration of the while-
loop is simulated with one local step of P, where the deductive rules simulate the
FO-expressions of P , and the inductive rules simulate the changes to the temporary
relations of P . Once the (simulated) condition of the while-loop in P becomes false,
P follows the specification of P to set the final contents of the output relations, that
are persisted with inductive rules.

121

122

Chapter 7

Conclusion

Below, we give conclusions for our work and mention possible future work.

Relational transducers for declarative networking In Chapter 3, we have
tried to formalize and prove the CALM Conjecture of Hellerstein [36, 37]. Although
we could not confirm the original formulation that mentions Datalog, we have shown
a more general correspondence between coordination-freeness and monotonicity of
distributed computations. We have also identified a more syntactical counterpart to
these notions, namely, obliviousness. Our approach uses the relational transducer
model, grounding the results firmly in previous database theory practice. An expres-
sivity analysis also demonstrates that the transducer model is quite natural: basically,
it only introduces a notion of iteration to the local query language of the transducers.

In future work, it might be interesting to consider other notions of coordina-
tion-freeness, like a variant where little communication is still allowed before out-
putting the result. It might also be interesting to quantify the amount of coordina-
tion (see e.g. [12]). Lastly, it might be useful to design data initialization strategies
for a network to reduce the need for communication, and hence more easily obtain
coordination-freeness in the way we have defined it (see e.g. [59]).

Deciding eventual consistency In Chapter 4, we have formalized eventual con-
sistency as confluence (with the opposite being diffluence). We have shown decidabil-
ity in NEXPTIME of diffluence for relational transducer networks implemented with
unions of conjunctive queries with negation and that are “simple” (for lack of a better
name). The problem turns out to be complete for NEXPTIME. These simple transducer
networks satisfy five restrictions: recursion-freeness, inflationarity, message-positivity,
static message sending, and message-boundedness. We have also shown that simple
transducer networks capture a natural class of distributed queries based on unions of
conjunctive queries with negation.

As already mentioned in the Introduction (Section 1.2), a topic for further work
is to investigate whether decidability can be retained while (slightly) relaxing the
restrictions of recursion-freeness, inflationarity, and message-positivity. Also, we have
only considered concrete transducer networks, i.e., networks with a particular set of
nodes. It might be interesting to decide if for a given transducer Π, all transducer

123

networks are confluent where Π is replicated on all nodes. This is related to the notion
of network-independence from Chapter 3. It might also be interesting to transfer the
restrictions proposed in Chapter 4 to other rule-based languages, like Dedalus, and
also try to transfer the decidability result.

Regarding expressivity, the techniques of the upper bound can transform a given
confluent simple transducer network to a query-description in UCQ¬. When the
techniques of the lower bound are applied to this query-description, we obtain a
simple transducer network that does not use memory relations anymore, but still
expresses the same query as the original network. This could be considered as some
normal form. It might be interesting to describe the smallest size that the normal form
could have in relationship to the original network. Perhaps in some situations this
could demonstrate a pragmatic benefit in using memory relations, namely, because
otherwise there is an exponential blowup in the transducer descriptions.

There seem to be several reasonable ways to formalize the intuitive notion of
eventual consistency. In contrast to the confluence formalization of Chapter 4 (with
finite runs), a stronger view of eventual consistency is to require that on every input,
all infinite “fair” runs produce the same set of output facts, as in Chapter 3 and
[1]. When a transducer network is eventually consistent in this stronger sense, it is
also in the confluence sense, but the other implication is not obvious. Indeed, our
confluence interpretation of eventual consistency only guarantees that outputs can still
be produced when messages are delivered in the “right” way. For example, we might
have to deliver two messages simultaneously. But this might never happen in some
particular fair run. It deserves further research to better understand the relationship
between eventual consistency and fairness requirements. In this context, it might be
possible to consider other fairness conditions, besides the ones we considered.

There also seems to be a pragmatic lesson in Chapter 4: although eventual consis-
tency is an interesting property to guarantee for a network, the cost of automatically
deciding it might be too high. Indeed, we have to severely restrict the expressive-
ness of the language and still the resulting decision problem has high intrinsic com-
plexity. For this reason, other approaches might be more viable, such as providing
sufficient syntactic guarantees on eventual consistency without unduly limiting the ex-
pressive power (e.g. [47]) and without strongly increasing the distributed coordination
(e.g. [59], and the notion of “obliviousness” from Chapter 3).

Declarative semantics for Dedalus In Chapter 5, we have shown for the lan-
guage Dedalus that distributed computations expressed in an operational way can
also be described purely declaratively, using stable models. We believe this could
provide an interesting alternative viewpoint on distributed computations.

Regarding future work, we have probably not yet explored the full power of stable
models. We therefore expect that our result can be extended to languages incorpo-
rating more powerful constructs, such as dynamic choice [40], aggregation [45], or
constructs that allow for reasoning about different time-scales on which events occur
[34]. It might also be possible to remove the syntactic stratification condition on the
deductive rules of Dedalus.

More related to multi-agent systems [43, 50, 42], it might be interesting to allow
logic programs used in declarative networking to dynamically modify their rules. The
question would be how (and if) this can be represented in a declarative semantics.

124

Lastly, we can think about the output of Dedalus programs. Marczak et al. [46]
define the output of Dedalus programs with ultimate facts, which are facts that will
eventually always be present on the network. This was also used in Chapter 6, where
the output of the Dedalus operational semantics (and stable models) was defined.
Then, a consistent Dedalus program is required to produce, for each input individ-
ually, the same output in every run. For consistent programs, for each input, the
corresponding output can thus be defined as the output of any run. Then it might
be interesting to find finite representations of the stable models for each input, for
example by only keeping the ultimate facts.1 This could serve as a more intuitive
programmer abstraction, or it could perhaps be used to more efficiently simulate the
behavior of the network for testing purposes.

Finding the ultimate facts of a program for a certain input can be reduced to
the following output decision problem: for a consistent Dedalus program, an input
for that program, and a fact, decide if this fact is output by the program on that
input. But because there is no bound on the message buffers of Dedalus programs
(Section 2.8.2), we are dealing with an infinite state system like in Chapter 4. So, we
expect that this problem can not be solved in general. But it might be interesting to
find solutions in particular (syntactically defined) cases.

The CRON conjecture In Chapter 6, we have tried to formalize and prove the
CRON conjecture of Hellerstein [36, 37] in the context of Dedalus. We have explored
a semantical formalization with database queries, as we did for the CALM conjecture
in Chapter 3, but it was refuted by counterexamples. Yet, we have been able to
rescue some intuition of the original conjecture, and have shown that positive Dedalus
programs do not require causal message delivery.

In future work, the spectrum of causality needs to be better understood. Gen-
eralizing positive programs, perhaps richer classes of programs can tolerate some
relaxations of causality as well. Conversely, perhaps for some classes of programs (or
problems) causality is always strictly needed. Lastly, the CRON conjecture could
be more concretely linked to crash recovery applications, and the design of recovery
mechanisms.

1This gives a finite set because the input-domain is finite and Dedalus programs do not create
new values.

125

126

Bibliography

[1] S. Abiteboul, M. Bienvenu, A. Galland, et al. A rule-based language for Web data
management. In Proceedings 30th ACM Symposium on Principles of Database
Systems, pages 293–304. ACM Press, 2011.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[3] S. Abiteboul and E. Simon. Fundamental properties of deterministic and non-
deterministic extensions of Datalog. Theoretical Computer Science, 78:137–158,
1991.

[4] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43(1):62–124, 1991.

[5] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Pro-
ceedings 23rd ACM Symposium on the Theory of Computing, pages 209–219,
1991.

[6] S. Abiteboul and V. Vianu. Computing with first-order logic. Journal of Com-
puter and System Sciences, 50(2):309–335, 1995.

[7] S. Abiteboul, V. Vianu, et al. Relational transducers for electronic commerce.
Journal of Computer and System Sciences, 61(2):236–269, 2000.

[8] F.N. Afrati, S.C. Cosmadakis, and M. Yannakakis. On Datalog vs polynomial
time. Journal of Computer and System Sciences, 51(2):177–196, 1995.

[9] J.J. Alferes, L.M. Pereira, H. Przymusinska, and T.C. Przymusinski. LUPS—a
language for updating logic programs. Artificial Intelligence, 138(1–2):87–116,
2002.

[10] P. Alvaro, T.J. Ameloot, J.M. Hellerstein, W.R. Marczak, and J. Van den Buss-
che. A declarative semantics for Dedalus. Technical Report UCB/EECS-2011-
120, EECS Department, University of California, Berkeley, Nov 2011.

[11] P. Alvaro, T.J. Ameloot, J.M. Hellerstein, W.R. Marczak, and J. Van den Buss-
che. A declarative semantics for Dedalus. Hasselt University, Technical report,
http://hdl.handle.net/1942/14572, 2013.

127

http://hdl.handle.net/1942/14572

[12] P. Alvaro, N. Conway, J. Hellerstein, and W.R. Marczak. Consistency analysis in
Bloom: A CALM and collected approach. In Proceedings 5th Biennial Conference
on Innovative Data Systems Research, pages 249–260. www.cidrdb.org, 2011.

[13] P. Alvaro, W.R. Marczak, et al. Dedalus: Datalog in time and space. Technical
Report EECS-2009-173, University of California, Berkeley, 2009.

[14] P. Alvaro, W.R. Marczak, et al. Dedalus: Datalog in time and space. In de Moor
et al. [27], pages 262–281.

[15] T.J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for
declarative networking. In Proceedings 30th ACM Symposium on Principles of
Database Systems, pages 283–292. ACM Press, 2011.

[16] T.J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers
for declarative networking. Hasselt University, Technical report, http://hdl.
handle.net/1942/14570, 2013.

[17] T.J. Ameloot and J. Van den Bussche. Deciding eventual consistency for a simple
class of relational transducer networks. In Proceedings of the 15th International
Conference on Database Theory, pages 86–98. ACM Press, 2012.

[18] T.J. Ameloot and J. Van den Bussche. On the CRON conjecture. In Barceló
and Pichler [24], pages 44–55.

[19] T.J. Ameloot and J. Van den Bussche. Deciding eventual consistency for a simple
class of relational transducer networks. Hasselt University, Technical report,
http://hdl.handle.net/1942/14571, 2013.

[20] T.J. Ameloot and J. Van den Bussche. On the CRON conjecture. Hasselt Uni-
versity, Technical report, http://hdl.handle.net/1942/14567, 2013.

[21] K.R. Apt and R.N. Bol. Logic programming and negation: A survey. The Journal
of Logic Programming, 19-20, Supplement 1(0):9–71, 1994.

[22] K.R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for dis-
tributed programming. Distributed Computing, 2:226–241, 1988.

[23] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations,
and Advanced Topics. Wiley, 2004.

[24] P. Barceló and R. Pichler, editors. Datalog in Academia and Industry, volume
7494 of Lecture Notes in Computer Science. Springer, 2012.

[25] A. Blass, Y. Gurevich, and J. Van den Bussche. Abstract state machines
and computationally complete query languages. Information and Computation,
174(1):20–36, 2002.

[26] A.K. Chandra and M.Y. Vardi. The implication problem for functional and
inclusion dependencies is undecidable. SIAM Journal on Computing, 14(3):671–
677, 1985.

128

http://hdl.handle.net/1942/14570
http://hdl.handle.net/1942/14570
http://hdl.handle.net/1942/14571
http://hdl.handle.net/1942/14567

[27] O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors. Datalog Reloaded:
First International Workshop, Datalog 2010, volume 6702 of Lecture Notes in
Computer Science, 2011.

[28] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-
centric business processes. In Proceedings 12th International Conference on
Database Theory, 2009.

[29] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven
Web applications. Journal of Computer and System Sciences, 73(3):442–474,
2007.

[30] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-
driven Web services. In Proceedings 25th ACM Symposium on Principles of
Database Systems, pages 90–99. ACM Press, 2006.

[31] N. Francez. Fairness. Springer-Verlag New York, Inc., New York, NY, USA,
1986.

[32] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference on Logic Program-
ming, pages 1070–1080. MIT Press, 1988.

[33] J. Gray. Notes on data base operating systems. In M.J. Flynn et al., editors, Op-
erating Systems—An Advanced Course, volume 60 of Lecture Notes in Computer
Science, pages 393–481. Springer-Verlag, 1978.

[34] G. Greco, A. Guzzo, D. Saccà, and F. Scarcello. Event choice datalog: a logic
programming language for reasoning in multiple dimensions. In Proceedings of
the 6th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, PPDP, pages 238–249. ACM Press, 2004.

[35] S. Grumbach and F. Wang. Netlog, a rule-based language for distributed pro-
gramming. In M. Carro and R. Peña, editors, Proceedings 12th International
Symposium on Practical Aspects of Declarative Languages, volume 5937 of Lec-
ture Notes in Computer Science, pages 88–103, 2010.

[36] J.M. Hellerstein. Datalog redux: experience and conjecture. Video available
(under the title “The Declarative Imperative”) from http://db.cs.berkeley.
edu/jmh/, 2010. PODS 2010 keynote.

[37] J.M. Hellerstein. The declarative imperative: experiences and conjectures in
distributed logic. SIGMOD Record, 39(1):5–19, 2010.

[38] S.S. Huang, T.J. Green, and B.T. Loo. Datalog and emerging applications: an
interactive tutorial. In Proceedings of the 2011 ACM SIGMOD International
Conference on the Management of Data, SIGMOD ’11, pages 1213–1216. ACM,
2011.

[39] T. Jim. SD3: A trust management system with certified evaluation. In Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy, SP, pages 106–115.
IEEE Computer Society, 2001.

129

http://db.cs.berkeley.edu/jmh/
http://db.cs.berkeley.edu/jmh/

[40] R Krishnamurthy and S.A. Naqvi. Non-deterministic choice in Datalog. In
Proceedings of the Third International Conference on Data and Knowledge Bases,
pages 416–424, 1988.

[41] L. Lamport. Fairness and hyperfairness. Distributed Computing, 13:239–245,
November 2000.

[42] J. Leite and L. Soares. Adding evolving abilities to a multi-agent system. In
Proceedings of the 7th International Conference on Computational Logic in Multi-
agent Systems, CLIMA VII’06, pages 246–265. Springer-Verlag, 2007.

[43] J.A. Leite, J.J. Alferes, and L.M. Pereira. Minerva – a dynamic logic program-
ming agent architecture. In Revised Papers from the 8th International Workshop
on Intelligent Agents VIII, ATAL, pages 141–157. Springer-Verlag, 2002.

[44] B.T. Loo, T. Condie, et al. Declarative networking: language, execution and
optimization. In S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors, SIGMOD
Conference, pages 97–108. ACM, 2006.

[45] B.T. Loo et al. Declarative networking. Communications of the ACM, 52(11):87–
95, 2009.

[46] W.R. Marczak, P. Alvaro, N. Conway, J.M. Hellerstein, and D. Maier. Con-
fluence analysis for distributed programs: A model-theoretic approach. Techni-
cal Report UCB/EECS-2011-154, EECS Department, University of California,
Berkeley, Dec 2011.

[47] W.R. Marczak, P. Alvaro, N. Conway, J.M. Hellerstein, and D. Maier. Confluence
analysis for distributed programs: A model-theoretic approach. In Barceló and
Pichler [24], pages 135–147.

[48] J.A. Navarro and A. Rybalchenko. Operational semantics for declarative network-
ing. In A. Gill and T. Swift, editors, Proceedings 11th International Symposium
on Practical Aspects of Declarative Languages, volume 5419 of Lecture Notes in
Computer Science, pages 76–90, 2009.

[49] V. Nigam, L. Jia, B.T. Loo, and A. Scedrov. Maintaining distributed logic
programs incrementally. Computer Languages, Systems & Structures, 38(2):158–
180, 2012.

[50] V. Nigam and J. Leite. A dynamic logic programming based system for agents
with declarative goals. In Proceedings of the 4th International Conference on
Declarative Agent Languages and Technologies, DALT, pages 174–190. Springer-
Verlag, 2006.

[51] E.L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52(4):264–268, 1946.

[52] D. Saccà and C. Zaniolo. Stable models and non-determinism in logic programs
with negation. In Proceedings of the Ninth ACM Symposium on Principles of
Database Systems, pages 205–217. ACM Press, 1990.

130

[53] M. Sipser. Introduction to the Theory of Computation, Second Edition, Inter-
national Edition. Thomson Course Technology, Boston, Massachusetss, USA,
2006.

[54] M. Spielmann. Verification of relational transducers for electronic commerce.
Journal of Computer and System Sciences, 66(1):40–65, 2003.

[55] J. Van den Bussche and L. Cabibbo. Converting untyped formulas into typed
ones. Acta Informatica, 35(8):637–643, 1998.

[56] M. Vardi. The complexity of relational query languages. In Proceedings 14th
ACM Symposium on the Theory of Computing, pages 137–146, 1982.

[57] W. Vogels. Eventual consistency. Communications of the ACM, 52(1):40–44,
2009.

[58] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1:7–18, 2010.

[59] D. Zinn, T.J. Green, and B. Ludaescher. Win-move is coordination-free. In
Proceedings of the 15th International Conference on Database Theory, pages 99–
113. ACM Press, 2012.

131

	Introduction
	Relational Transducers for Declarative Networking
	Deciding Eventual Consistency
	Declarative Semantics for Dedalus
	The CRON Conjecture

	Preliminaries
	Basic Database Notions
	Multisets
	Network and Distributed Data
	Transducers
	Epidemic Transducer
	Addressing Transducer

	Transducer Networks
	Distributed Schemas
	Operational Semantics
	Fairness
	Message Delivery Constraints

	Conjunctive Queries
	Datalog
	Positive and Semi-positive
	Stratified Semantics
	Stable Model Semantics

	Dedalus
	Syntax
	Operational Semantics

	Relational Transducers for Declarative Networking
	Outline
	Related Work
	General Remarks
	Expressing Queries
	Transducer Kinds
	Input and Output
	Consistency
	Examples
	Network-Independence
	Preliminary Observations

	The CALM Conjecture
	Coordination-free
	Main Results
	Further Results

	Expressiveness Analysis
	While versus FO
	Datalog versus NrDatalog
	Restrict Delivery
	Specialized CALM Properties

	Addressing Transducers

	Deciding Eventual Consistency
	Outline
	Related work
	General Remarks
	Additional Definitions
	Distributed Queries
	Derivation Trees
	Encoding

	Confluence
	Decision Problem
	Syntactical Restrictions
	Results on Decidability

	Simulation on Single Node
	Syntactical Simplifications
	Simulation Concept and Result
	Transducer Schema
	Transducer Rules
	Simulation and Confluence Equivalence

	Small Model Property
	Syntactical Quantities
	Proof Outline
	Input Selection
	Run Projection

	Decidability
	Decision Procedure
	Complexity Lower Bound

	Expressivity
	Lower Bound
	Upper Bound

	Model Variations
	Diffluence Decidability
	Expressivity

	Declarative Semantics for Dedalus
	Outline
	Related Work
	General Remarks
	Example Programs
	Declarative Semantics
	Timestamps
	Extended Schema and Trace
	Messages and Causality
	Additional Relation Names
	Network and Time Relations
	Representing Causality
	Rule Transformation
	Input and Stable Models

	Main Result
	Run to Model
	Construction
	Final Steps

	Model to Run
	Partial Order
	Construction of Run
	Fair Run

	The CRON Conjecture
	Outline
	Related Work
	General Remarks
	Output
	CRON Conjecture and Non-Causality
	Modeling Non-Causality

	Results
	Semantical Interpretation
	Syntactical Interpretation

	Expressivity
	Upper Bound
	Lower Bound

	Conclusion

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130410093844
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 644
 281
 None
 Down
 5.6693
 0.0000

 Both
 89
 AllDoc
 100

 CurrentAVDoc

 Uniform
 28.3465
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 127
 131
 130
 131

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130410094606
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 644
 281
 None
 Down
 5.6693
 0.0000

 Both
 89
 AllDoc
 100

 CurrentAVDoc

 Uniform
 28.3465
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 132
 131
 132

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 same as current

 2
 1
 1
 769
 263

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

