

DOCTORAATSPROEFSCHRIFT

Proefschrift voorgelegd tot het behalen van de graad van
doctor in wetenschappen, informatica, te verdedigen door:

Joris Gillis

Promotor: prof. dr. Jan Van den Bussche

DNA and Databases:
The Sticker Complex Model

2013 | School voor Informatietechnologie
 Kennistechnologie, Informatica, Wiskunde, ICT

D/2013/2451/10

Acknowledgments

At first, being a PhD student is a daunting experience. All those smart people
that used to teach me all kinds of clever things are suddenly colleagues, capable
of small talk during lunch breaks. Instead of asking questions to a TA, I am on
the receiving end of an endless stream of questions. Instead of studying for an
exam, I sweat on formulating clear, funny, and representative questions and
swear while grading poor exams instead of pondering whether the answer to
question three was formulated accurately and eloquently enough. Nonetheless,
I have very much enjoyed doing research, writing papers, visiting conferences,
giving talks, guiding thesis students, discussing various topics at lunch time,
and joking around with my fellow PhD students. I thank all my colleagues,
friends and family for their advice, chats, cheers, support and meals during
the preparation of my PhD.

I especially thank my supervisor Jan Van den Bussche, whom I admire for
his elegant, concise and to-the-point style of writing. Although we have our
disagreements, I have learned many things from him, most importantly, an
ability to abstract.

I thank Jonny Daenen, my roomie, for many fruitful discussions on our
research topics, the latest Apple products and teaching in general.

I thank my brother San Gillis for proofreading my dissertation and asking
challenging questions about computer science. Those questions gave me a
sense of purpose during the dark days of researcher’s block, a variant of writer’s
block. I also enjoyed sharing “war stories” on being a PhD student.

I thank my parents who always supported my in the best possible way,
namely, in their own way. They are always there when I need comfort, advice,
feedback on a text or an idea, or just someone to listen to me, or a hug.

I thank Maya Budo for being there, loving me, caring for me, advising me
on how to handle students, and listening to things that must have sounded
as if I worked at “Hogwarts School of Witchcraft and Wizardry” instead of
Hasselt University.

1

Samenvatting

Desoxyribonuclëınezuur (DNA) is de drager van genetische informatie in grote
en kleine organismen. Een DNA-streng is opgebouwd uit vier verschillende
basisdeeltjes, nucleotiden of basen genoemd: A, C, T, en G (zie Figuur 1).
Bindingen kunnen ontstaan tussen complementaire basen, A-T en C-G. Twee
DNA-strengen die volledig gebonden zijn, vormen de beroemde dubbele helix.
Het vormen van bindingen tussen complementaire basen wordt hybridizatie
genoemd. Afhankelijk van de lengte en de omgevingsfactoren, kunnen twee
niet perfect complementaire DNA-strengen toch binden. Bijvoorbeeld, DNA-
strengen CCCACCC en GGGGGGG zijn niet perfect complementair, want basen A

en G zijn niet complementair. Toch is het mogelijk dat de C-G-bindingen sterk
genoeg zijn om één imperfectie te tolereren. DNA-moleculen worden bewaard
in een waterige oplossing in een proefbuis. Door de oplossing op te warmen
worden bindingen tussen basen gebroken, dit proces heet denaturatie. Hybri-
dizatie en denaturatie zijn de twee belangrijkste operaties op DNA-moleculen.

Recente biotechnoligsche ontwikkelingen maken het mogelijk naar belie-
ven snel, accuraat en goedkoop synthetische DNA-moleculen te creëren en de
base-sequenties van DNA-moleculen in een proefbuis “uit te lezen”. Deze voor-
uitgang maakt het mogelijk om ook andere informatie, bv. een boek, een foto
of een audiofragment, op te slaan met DNA-moleculen. Als informatiedrager

Figuur 1: Een abstracte voorstelling van de basisblokken van een DNA-streng:
de nucleotiden ook wel basen genoemd.

3

4

heeft DNA meerdere voordelen t.o.v. klassieke informatiedragers zoals dvd’s
en harde schijven. De molecule is zeer robuust tegen externe “gevaren” zoals
water, hitte en schokken. Om DNA uit fossielen te extraheren moet al het
andere biologisch materiaal vernietigd worden, tot er alleen DNA overblijft.
Ten tweede, heeft DNA een heel hoge informatiedichtheid. Bijvoorbeeld, mo-
menteel is er een kleine kamer nodig om het archief van het CERN, goed voor
90 petabyte aan data, op te slaan. Datzelfde archief kan opgeslagen in een
proefbuisje met 41 gram DNA.

Informatie opslaan in DNA-moleculen is relatief gemakkelijk. Moeilijker
en interessanter is het manipuleren en ondervragen van opgeslagen data. De
laatste twintig jaar is er het bloeiend onderzoeksgebied “DNA-computing”
ontstaan rond de vraag: hoe berekeningen uitvoeren met DNA-moleculen als
basis? Dit onderzoeksgebied brengt informatici, biologen, chemici en fysici
samen met als doel DNA-computers te ontwerpen. Sinds de publicatie van
de eerste DNA-computer door Leonard Adleman in 1994, zijn vele verschil-
lende types DNA-computers gebouwd. Sommige types zijn enkel gebaseerd op
hybridizatie. Bijvoorbeeld, de bouwblokken van hedendaagse chips, logische
poorten, kunnen gesimuleerd worden met enkele hybridizatie reacties. An-
dere types baseren zich op een verzameling van operaties op DNA-moleculen
geabstraheerd uit de werking van enzymes, de werkpaarden van levende cel-
len. Adlemans DNA-computer hoort thuis in deze tweede categorie. Een
DNA-computer wordt steeds geabstraheerd in een theoretisch model. Een
theoretisch model voorziet in een abstractie van DNA-moleculen en definieert
transformaties op deze abstractie die labo-operaties nabootsen.

De huidige DNA-computers doelen erop alle taken van digitale compu-
ters aan te kunnen. Dit betekent dat de basisoperaties van dergelijke DNA-
computers expressief moeten zijn, om complexe berekeningen uit te kunnen
drukken. Een databank manipuleren en ondervragen vergt echter niet zulke
expressieve operaties. Integendeel, hoe expressiever de operaties van een com-
puter, hoe complexer programma’s worden. Een complex programma opti-
maliseren is moeilijk of zelfs onmogelijk. Omwille van deze reden worden
database-talen, om data te manipuleren en te ondervragen, opzettelijk zo sim-
pel als mogelijk gehouden, zonder triviaal te zijn. Dit biedt een voordeel,
want expressieve operaties ontwerpen op DNA-moleculen vergt ingewikkelde
(tot het randje van onmogelijke) acrobatieën van de DNA-moleculen. Ofwel
wordt de expressiviteit ontleend aan het samenstellen van vele kleine operaties,
zoals in het geval van de lerende DNA-computer, waardoor het programmeren
van zo’n DNA-computer een tijdrovend en uitermate ingewikkeld proces is.
Dus is er een opening voor een type DNA-computer gericht op data mani-
pulatie en ondervraging, programmeerbaarheid en implementeerbaarheid met
DNA-moleculen. Deze dissertatie introduceert zo een model.

Het model, genaamd sticker complex model, is ontworpen met praktische

5

ramificaties steeds in het achterhoofd. De basisbouwblokken van het model
zijn relatief korte (20 basen) DNA-strengen die een DNA-code vormen. Een
DNA-streng in een DNA-code kan alleen binden met zijn perfecte complement
en niet met de andere DNA-strengen in de DNA-code. Een element van een
DNA-code noemen we een codewoord. Een codewoord noemen we positief.
Zijn complement noemen we negatief. Een streng is een sequentie van code-
woorden. Eén streng in het model, representeert duizenden DNA-strengen.
Verschillende restricties zijn van toepassingen op strengen. Ten eerste, moet
een streng homogeen zijn, in de zin dat ofwel alleen positieve ofwel alleen ne-
gatieve codewoorden worden gebruikt. Zo vermijden we dat een streng met
zichzelf kan binden, wat kan leiden tot fysiek onmogelijke constructies. Ten
tweede, de negatieve strengen zijn beperkt tot twee codewoorden. Positieve
strengen modelleren data, terwijl de negatieve strengen, stickers genoemd,
gebruikt worden voor de manipulatie van de data. Een verzameling van stren-
gen die direct of indirect verbonden zijn via bindingen tussen complementaire
codewoorden, noemen we een component. Ten derde, een negatief codewoord
kan “verankerd” worden. In een proefbuis betekent dit dat de overeenkomstige
DNA-strengen chemisch op een oppervlakte gebonden zijn. Een component
is verankerd als er een verankerd codewoord in aanwezig is. De bindingssi-
tes zijn ruimtelijk verspreid zodat twee verankerde componenten niet kunnen
binden. Een component in het sticker complex model kan dus maximaal één
verankerd codewoord bevatten. Een verzameling van strengen en stickers, al
dan niet gebonden, noemen we een sticker complex.

Een sticker complex is een abstractie van DNA-moleculen die slechts een
beperkte klasse van DNA-moleculen modelleert om fysieke implementeerbaar-
heid te garanderen. Op sticker complexen is een verzameling van opera-
ties gedefinieerd, gebaseerd op standaard biotechnologische operaties. Er is
een operatie om strengen te knippen, om strengen aan elkaar te lijmen, om
niet-verankerde componenten weg te spoelen, en om de langste strengen in
een complex te isoleren. Een programmeertaal genaamd DNA Query Langu-
age (DNAQL), bundelt deze operaties tesamen met een test-operatie en een
herhaal-operatie. De test-operatie test of een complex leeg is, zodat een pro-
gramma keuzes kan maken. De herhaal-operatie schuift een teller over een
interval [1, `], want data-elementen worden opgeslagen als een sequentie van
` elementaire data-elementen. Vergelijkbaar met digitale computers die data-
elementen opslaan als sequenties van 0’en en 1’en. De herhaal-operatie maakt
het mogelijk om elementaire data-elementen individueel aan te spreken.

Hybridizatie is een zeer krachtige operatie en moet dus goed in het oog
gehouden worden. Inderdaad, het is mogelijk dat de componenten van een
sticker complex aanleiding geven tot een oneindig aantal mogelijke combina-
ties. DNA in een proefbuis is echter altijd eindig, dus slechts een klein deel
van de mogelijke combinaties kunnen gevormd worden. Welke combinaties dat

6

zijn, is onmogelijk te voorspellen. De andere DNAQL operaties kunnen ook
ongewenste effecten vertonen in bepaalde situaties. Daarom is er een type sys-
teem ingevoerd op de DNAQL programmeertaal die “goede” programma’s kan
onderscheiden van “slechte” programma’s. Verder, wordt een simulatie van de
relationele algebra (RA) voorgesteld. De relationele algebra is de basis van
alle grote database systemen. Er wordt bewezen dat de simulatie zich altijd
goed gedraagt. Dit toont dus aan dat sticker complexen en DNAQL geschikt
zijn voor het manipuleren en ondervragen van data opgeslagen in DNA.

Contents

1 Introduction 9

2 State Of The Art 17

2.1 Self-Assembly . 17

2.2 Strand Displacement . 20

3 Sticker Complexes 23

3.1 Alphabet . 23

3.2 Pre-Complex . 24

3.3 Sticker Complex . 25

3.4 Operations on Sticker Complexes 28

3.4.1 Union . 28

3.4.2 Difference . 29

3.4.3 Hybridize . 29

3.4.4 Ligate . 31

3.4.5 Flush . 32

3.4.6 Split . 32

3.4.7 Block . 33

3.4.8 Block-From . 33

3.4.9 Block-Except . 33

3.4.10 Cleanup . 33

3.5 Implementation in DNA . 33

4 Termination of Hybridization 37

4.1 Deciding termination . 37

4.2 Complexity issues . 48

5 DNAQL 55

6 Sticker Complex Types 61

6.1 Definition . 62

6.2 Saturated . 66

7

8 CONTENTS

6.3 Subtypes . 68
6.4 Least upper bound . 70
6.5 Greatest lower bound . 71
6.6 Operations on Sticker Complex Types 72

7 A Type System for DNAQL 79
7.1 Type System . 79
7.2 Sound . 80
7.3 Maximal . 90
7.4 Tightness . 93

8 Relational Algebra Simulation 101
8.1 Relational Algebra . 101
8.2 Simulation . 102

8.2.1 Abbreviations . 104
8.2.2 Relational Algebra Expressions 117

8.3 Maximality and Tightness for Non-Atomic Expressions 139
8.4 4-Bounded . 140

8.4.1 Abbreviations . 140
8.4.2 Relational Algebra Expressions 141

9 Discussion 145

1
Introduction

The deoxyribonucleic acid molecule, or DNA, is best known as the bearer
of hereditary information and solver of many (television) crimes. The basic
building blocks of a DNA molecule are the nucleotides. A nucleotide consists
roughly speaking of two parts: a “backbone” part and a “base” part, as shown
in Figure 1.1. The backbone part is the same in all nucleotides, the base dis-
tinguishes nucleotides. A nucleotide can be fitted with one of four different
bases: Adenine, Cytosine, Thymine, or Guanine. Customarily a nucleotide is
identified by the first letter of its base, i.e., A, C, T, or G. Five carbon atoms
form the backbone part of a nucleotide. These carbon atoms are numbered 1’
to 5’. The 5’ carbon atom of one nucleotide can bind with the 3’ carbon atom
of another nucleotide. Hence, nucleotides can chain together in long sequences.
A sequence of nucleotides is called a DNA strand. Because a 5’ carbon atom
always binds with a 3’ carbon atom, a DNA strand has a direction. The
nucleotide with the free, i.e., unbonded, 3’ carbon atom indicates the 3’ end
of the strand. By construction, the other end of the strand ends with a nu-
cleotide with a free 5’ atom, hence, it is called the 5’ end. Commonly, a DNA
strand is denoted by its base sequence and the direction of the strand. For
example, 5’-AATCCG-3’ represents a DNA strand with six nucleotides with
bases A, A, T, C, C, and G, such that the first nucleotide has a free 5’ carbon
atom. Bases can also form bonds, yet only between complementary bases: A
and T are complementary and C and G are complementary. This is called
Watson-Crick complementarity after the discoverers of the structure of the
DNA molecule. Occasionally, non-complementary bases can bond, although
they form a less stable connection and are thus likely to occur. The famous

9

10 Introduction

Figure 1.1: An abstraction of the four DNA nucleotides. The gray part is the
backbone. The white parts are the bases: A and T bond and C and G bond.

double helix structure of the DNA molecule consists of two DNA strands that
are complementary and anti-parallel, i.e., reading one strand in 5’-3’ direction
spells the complement of the other strand in 3’-5’ direction. For example,
5’-AATCCG-3’ forms a double helix with 3’-TTAGGC-5’. Constructing the
DNA strand that forms a double helix with a DNA strand s is thus simply
reversing the base sequence of s and replacing each base by its complement.
The constructed DNA strand is called the reverse-complement of DNA strand
s. A DNA strand with a bases bonded is called double-stranded. If no bases
are bonded a DNA strand is said to be single-stranded. A DNA strand can
also be partly double-stranded and partly single-stranded. This process of
forming bonds between bases is called hybridization or annealing. The inverse
process, breaking bonds between bases, is called denaturing.

Rumor has it that the field of DNA computing was invented by Leonard
Adleman, while reading a book on molecular biology in his bed, saying to his
wife: “Yeaz, these things can compute”. Adleman developed an algorithm to
solve the Hamiltonian path problem on directed graphs, a Hamiltonian path
visits every node of the graph exactly once, based on standard biotechnology
operations on DNA molecules. This experiment kicked off DNA computing [2].
Figure 1.2 shows the graph of which Adleman computed a Hamiltonian path.
The Hamiltonian path is indicated with dashed lines. The Hamiltonian path
problem is a NP-complete problem. Nonetheless, Adleman’s algorithm uses
only a polynomial number of wet-lab operations to compute the Hamiltonian
path (if present). Central to the algorithm is the parallel generate-and-test
strategy, i.e., first the exponential number of potential paths through the graph
are constructed in parallel, with a single wet-lab operation, next all generated
paths are subjected, once again in parallel, to a series of tests during which
non-Hamiltonian paths are discarded.

How can one construct an exponential number of paths with just a single
operation? Adleman encoded the graph by assigning to each node a sequence

11

Table 1.1: An example encoding of the nodes in the 7-node graph shown in
Figure 1.2

Node Base Sequence

0 5’-TCTCCGAGTTTCTACGCTGT-3’

1 5’-CGCAAGCGAGTGGGAGACGG-3’

2 5’-CGTTTCCTCGACACCCGAAA-3’

3 5’-CTATGTAATAAAGCTATAAT-3’

4 5’-TGGTTAAAATAGTGGTGACT-3’

5 5’-GTCCTCAATAGGCCCGGGAC-3’

6 5’-GGCAGAGGCACAGCGTTCCA-3’

of 20 DNA bases. Table 1.1 (a) shows an example of such an assignment. A
Hamiltonian path is a sequence of nodes, thus a path is encoded as a con-
catenation of the DNA strands representing the nodes. Hence, an edge from
node u to node v is formed by the reverse-complement of the concatenation
of the last 10 bases of the strand representing u and the first 10 bases of the
strand representing v. Consequently, an edge binds two consecutive nodes.
Note that the first node can still receive an incoming edge because its first
10 bases are still single-stranded and the second node is still available for an
outgoing edge. Also, the direction of edges is preserved in this encoding. All
the paths in a graph are now constructed by collecting surplus quantities of all
node and edge encodings in a test tube. Gradually cooling down the solution
in the test tube initiates the hybridization process. Hybridization will now do
the heavy lifting for us, as illustrated in Figure 1.3 where a path starting with
node 0 and followed by node 1 is being formed.

Can we be absolutely certain that all paths are formed? Put simply, no, we
cannot. Aggravating matters, because the graph is cyclic an infinite number
of paths exists, while there is only a finite amount of DNA to construct paths.
Nonetheless, the length of a path has an inverse correlation to its likelihood
of being formed. Indeed, a test tube is a three dimensional space and strands
need to meet in order to hybridize. As a result, longer strands need more
time to form and are less likely to form than shorter paths. Thus, as Adleman
showed, if enough resources are available, where “enough” depends on the ap-
plication and on experimental conditions, all paths will be formed with high
probability. With high probability is a key notion in DNA computing. Chem-
ical processes are inherently stochastic and error-prone, thus error-correction
and redundancy are essential parts of DNA computers.

Adleman’s experiment took seven days to complete. Compared to modern
digital computers this is slow. Nevertheless this proof-of-concept experiment

12 Introduction

1

0

3

2

5

4

6

Figure 1.2: The graph for which Adleman computed the Hamiltonian path.

Table 1.2: Example encoding of the edges in the 7-node graph shown in Fig-
ure 1.2.

Edge Base Sequence

0 → 1 5’-CTCGCTTGCGACAGCGTAGA-3’

0 → 3 5’-TATTACATAGACAGCGTAGA-3’

0 → 6 5’-TGCCTCTGCCACAGCGTAGA-3’

1 → 2 5’-CGAGGAAACGCCGTCTCCCA-3’

1 → 3 5’-TATTACATAGCCGTCTCCCA-3’

2 → 1 5’-CTCGCTTGCGTTTCGGGTGT-3’

2 → 3 5’-TATTACATAGTTTCGGGTGT-3’

3 → 2 5’-CGAGGAAACGATTATAGCTT-3’

3 → 4 5’-ATTTTAACCAATTATAGCTT-3’

4 → 1 5’-CTCGCTTGCGAGTCACCACT-3’

4 → 5 5’-TATTGAGGACAGTCACCACT-3’

5 → 1 5’-CTCGCTTGCGGTCCCGGGCC-3’

5 → 6 5’-TGCCTCTGCCGTCCCGGGCC-3’

13

Figure 1.3: The formation of a path consisting of nodes 0 and 1 with edges 0
→ 1 and 1 → 2

raised a lot of interest into the field of DNA computing. Shortly afterwards
other experiments were devised to solve other NP-complete problems, e.g.,
SAT and Minimal Set Cover [5, 27, 43]. In the wake of the experiments
came theoretical models, e.g., the parallel filtering model based on Adleman’s
experiment. Early on, two excellent books were written on the theory of DNA
computing [3, 33]. A major problem with the generate-and-test-style DNA
computing is the need to construct an exponential library of potential solutions
at the start of an algorithm. Although this step is “quick”, i.e., just one wet-
lab operation, it trades time for space. A lot of space it appears. A DNA
computer using Adleman’s algorithm to compute the Hamiltonian paths in a
60-node graph uses an amount of DNA weighing roughly the same as planet
Earth [23]. As a result, the focus of the DNA computing community shifted
towards other computing paradigms such as tiling through self-assembly and
strand displacement cascades, which will be discussed in Chapter 2. At the
same time, DNA computing has also high potential for database applications
[4, 11, 55, 41, 12, 21]. Computational models in the DNA computing field
aim to be Turing-complete. As a result, models are either hard to implement
in the wet-lab or they offer such basic primitives that writing a program is
vexing.

The sticker complexes model is a restricted subclass of DNA complexes,
aimed to be both practically viable and theoretically tractable. Special care
has been taken to keep hybridization in check. In the sticker complex model
a clear distinction is made between long data strands and short stickers, used
to manipulate the data strands. Likewise, double-strandedness has a dual
abstraction: a distinction is made between short duplexes formed by the in-
teraction of stickers and longer data strands, and long duplexes initiated to
withhold parts of data strands from participation in future hybridizations.

Sticker complexes represent the structural content of a test tube. We as-
sume that each component of a sticker complex is redundantly present in a
tube. If a DNA complex can hybridize to itself, it can hybridize as well to an
identical copy. Often, the copy can hybridize with yet another copy and so
forth. We identify this undesirable behavior as non-terminating hybridization.

14 Introduction

Non-terminating hybridization leads to infinite sticker complexes. In practice,
when we have termination of hybridization, a test tube prepared with sufficient
quantities of each component of the complex holds, in principle, sufficient ma-
terial to produce all molecular species that can be the result of hybridization.
If sufficient quantities are present, adding even more material will not yield
new results. Of course, in practice, a test tube is always finite and the hy-
bridization reaction will, under normal conditions, always “terminate” (reach
equilibrium). But the point is that, when hybridization does not terminate
for a complex, adding ever more material can, in principle, result in ever more
new molecular species to be produced. In this sense, the potential result of
the hybridization is indeed infinite. Fortunately, it is efficiently decidable for
a sticker complex whether it has terminating hybridization.

The effects of biotechnology operations on test tubes filled with DNA
molecules are mimicked by the DNAQL programming language on sticker com-
plexes. DNAQL is a query language rather than a general-purpose program-
ming language. It includes basic operators on DNA complexes in solution.
Apart from the application of these operators, programs are formed using a
let-construct and an if-then-else construct based on the detection of DNA in
a test tube. Last but not least, the language includes a for-loop construct for
iterating over the bits of a data entry, encoded as a vector of DNA codewords.
Indeed, the number of operations performed during the execution of a DNAQL
program, on any input, is bounded by a polynomial that depends solely on
the dimension of the data, i.e., the number of bits needed to represent a single
data entry. This makes that the execution time of programs scales well with
the size of the input database.

A difficulty with DNAQL, and with DNA computing in general, however,
is that various manipulations of DNA must make certain assumptions on their
input so as to be effectively implementable and produce a well-defined out-
put. Even when these assumptions are well understood for each operation in
isolation, the problem is exacerbated in an applicative programming language
like DNAQL, where the output of one operation serves as input for another.
Indeed the problem of deciding whether a given program will have well-defined
behavior on all possible intended inputs is typically undecidable. While this
undecidability is well known for Turing-complete programming languages, it
remains so for database languages that are typically not Turing-complete [50].

The standard solution to ensure well-definedness of programs is to use a
type system and check programs syntactically so as to allow only well-typed
programs. Well-devised type systems have a soundness property to the effect
that, once a program has been checked to be well-typed for a given input
type, the behavior of the program is then guaranteed to be well defined on
all inputs of the given type [35, 22]. We propose a type system for DNAQL
and establish a soundness theorem. In addition, the type system is maximal

15

and tight. That is, if an operation is defined on all complexes of a certain
type, the operation’s counterpart on types is defined on the considered type.
In other words, the type system only forbids the application of an operation
if there is a reason to. Secondly, the type system might output types that
are too loose, in the sense that the type outputted by an operation can be
slimmed down without jeopardizing the soundness of the type system. We
prove that the types produced by the type system are not too loose, i.e.,
the type system is tight. Moreover, we show that the type system is flexible
enough so that arbitrary relational databases can be represented as typed
DNA complexes, and so that arbitrary relational algebra expressions on these
data can be expressed by well-typed DNAQL programs. The relational algebra
is the applicative language at the core of standard database query languages
such as SQL [15, 19, 1].

Most importantly, a crucial feature of the type system presented here is a
wildcard mechanism to account for the fact that the length (in bits), as well as
the actual values, of data entries are unknown at compile time. This mecha-
nism is integrated in a type-checking algorithm that keeps track of mandatory
components in DNA complexes, as well as their hybridization status. The
result is a type system that allows a natural and flexible representation of
structured data in DNA, in a way so that a significant class of data manipu-
lations can be typed as programs in DNAQL.

2
State Of The Art

Since Adleman’s experiment DNA computing has evolved significantly. This
chapter discusses the theoretical models that form the state of the art of DNA
computing, complemented by experimental results if applicable. The DNA
molecule supports many types of reactions. Many of these reactions can be
utilized to perform some computation. Hybridization is the most important
reaction and lays the foundation for many methods of computing. The next
two sections describe two such methods. The first method employs the hy-
bridization reaction to construct intricate patterns such that the result of the
computation can be derived from the final pattern. In the second method,
computation is performed by DNA strands “fighting” over binding sites.

2.1 Self-Assembly

One of the first successors to Adleman’s filtering model is the Abstract Tile
Assembly Model (aTAM) introduced by Erik Winfree [53] and based on the
concept of Wang Tiles [52]. Doty wrote an excellent overview of theoretical
work on self-assembly with tiles [17]. A tile is conceptually a square. The
sides of the square are denoted by the cardinal directions. Each side of a tile
is labeled with a glue. One tile is designated as the seed tile, i.e., the tile from
which the self-assembling of tiles starts. The seed tile has glues only on the
west and north sides, hence, only the south and east glues of a tile matter
for joining an assembly. Each glue is identified by a symbol and is assigned
a strength. Sides of two tiles are said to match if they are labeled with the
same glue. A tile can join an assembly only if it glues with strength at least

17

18 State Of The Art

(a) (b)

Figure 2.1: (a) A set of tiles forming the discrete Sierpinski triangle pattern.
The number of squares on a side denotes the strength of a glue. (b) An
assembly of the tiles in (a). Based on [17].

two. Consequently, a tile can be glued to the west or north side of another
tile if they share a glue of strength two. Diagonally, a tile can already join an
assembly if it shares a glue of strength one with the tile on its south and a
glue of strength one with the tile of the east. Figure 2.1 shows (a) a set of tiles
forming the discrete Sierpinski triangle pattern and (b) an assembly of these
tiles. The number of squares on a side denotes the strength of a glue. The N
and W glues both have strength 2, whereas the other glues have strength 1.
If we consider the south and east sides of a tile as its input and the north and
west sides as its output, then these tiles compute the XOR function.

Winfree showed in his PhD thesis that the aTAM is computationally uni-
versal in the sense that for each single-tape Turing Machine M and each input
string x, there is a set of tiles to simulate the operation of M and an initial
assembly (a seed tile possibly extended with other tiles), such that there is
one unique terminal assembly representing the run of M on x.

Central to self-assembly is the notion of tile complexity, the number of tile
types need to form a given pattern. One could also call it “shape complexity”,
where a complex shape needs many tiles. The most rudimentary pattern is
the single dot. Obviously, a seed tile is sufficient to construct this pattern.
Constructing a line of n dots in the aTAM requires n tiles. If less than n

2.1. Self-Assembly 19

tiles are used, at least one tile must be repeated. The assembly between the
repetition can be reiterated infinitely. Things start to get interesting in the
two dimensional case. Rothemund and Winfree considered the n × n square
which became the de facto benchmark of tile complexity [42]. They showed

that in the aTAM a n × n square has a tile complexity of Ω(log(n)
log(log(n))), by

using binary counters.

The Abstract Tile Assembly Model does not provide a realistic view of
how DNA tiles behave in a test tube. The model makes two assumptions
known not to hold. Firstly, tiles can attach to an assembly but never detach.
However, a tile attaching to an assembly is essentially a hybridization reaction
which is a reversible chemical reaction. In other words, in a test tube tiles can
detach from an assembly. Secondly, tiles only attach if their gluing strength
exceeds a threshold. However, a tile can briefly attach to an assembly with a
glue strength of one, even is the threshold is set to two. During this brief mo-
ment, the tile can get locked in by other tiles with sufficient binding strength,
keeping the incorrect tile in place. In other words, the aTAM disregards errors
inherent to DNA computing. The Kinetic Tile Assembly Model (kTAM) was
introduced to eliminate these two unrealistic assumptions. The kTAM consid-
ers the concentration of each tile and expects that the rate of attaching and
detaching is set for each glue. The bases C and G bind with greater strength,
thus a glue with many G’s and C’s will bind easier and faster than a glue with
a low GC-concentration. Furthermore, the temperature and salt concentra-
tion have a profound effect on the speed of hybridization reactions. From the
errors modeled in the kTAM arose the need for error-correcting. Proofreading
and self-healing schemes were devised to correct errors in the self-assembly
process [54, 10, 47].

Several extensions of the original aTAM and kTAM were made. The step-
wise assembly introduced by Reif proceeds in stages [39]. Each stage has
its own set of tiles. At the end of a stage all loose tiles are removed before
new tiles are added. For some patterns this significantly lowers the tile com-
plexity. In the aTAM the glue strength needed to attach to an assembly is
fixed. The glue strength threshold is also called the temperature. Glues are
implemented as DNA strands and a tile attaching is a hybridization reaction.
The hybridization reaction is controlled by temperature in the wet-lab. As
the temperature rises, the bond strength must rise accordingly in order to
occur. A modification of the tile assembly model is called temperature pro-
gramming, in which the temperature is raised and lowered in successive stages
of the assembly. As a result, some tiles may be excluded from binding at
some points during the computation. A n × n square can then be realized
by a constant number of tiles and O(log(n)) temperature changes. Chemi-
cal processes are inherently stochastic. A natural extension to the aTAM is

20 State Of The Art

randomized self-assembly. Tiles compete for binding sites and the tile con-
centrations determine the probability that a certain tile type attaches at a
certain site. In this model, a line of dots can be constructed with O(log(n))
tiles and an expected length of n dots. Concentration programming focuses on
the concentration of tiles to compute. Lastly, unequal glues can be allowed to
match with nonzero strength, i.e., hybridizations may occur with mismatches.
This is called the flexible glue model and allows the formation of an n × n
square with O(

√
log(n)) tiles. Clearly, many options are available to program

self-assembly. Last but not least, effectively designing sets of tiles (and glue
types) is also an active research topic [56, 29, 26].

The tiles discussed up till now are “rigid” tiles in the sense that glues of
the same tile cannot come close enough to interact. As a result they can be
conceptualized as squares. Jonoska et al. introduced the flexible tile model in
which glues are attached to bendable antennae. Such tiles are conceptualized
as multisets of glues and glues of the same tiles can interact [24]. Flexible tiles
also have a natural correspondence to nodes in directed graphs. In this context,
one may wonder what types of graphs can be constructed and how many tiles
are required in the construction [25]. We have compared hybridization in the
flexible tile model and the sticker complex model [6]. Although there are
some connections, the models are significantly different, because the order of
symbols is important in the sticker complex model, whereas symbols in flexible
tiles are unordered. Jonoska et al. also consider different problems from the
problems studied in this dissertation.

2.2 Strand Displacement

The strand displacement reaction involves one base strand and two signal
strands. Both the base and signal strands can conceptually be subdivided
into two types of functional domains: (1) a toehold, a short sequence allowing
signals to “dock” on a base strand and (2) a specificity domain, a longer se-
quence over which signals “fight” to bind. Toehold domains are identified by
t1, t2, . . . and specificity domains are identified by A,B,C, The most rudi-
mentary strand displacement reaction consists of a base strand: t1A and two
signal strands t1A and A. Overlining denotes Watson-Crick complement. The
strand displacement starts as depicted in Figure 2.2 (a), with signal strand A
bonded on the base strand and signal strand t1A free. The complementary
domains t1 and t1 can bind. This toehold allows signal strand t1A to tem-
porarily dock on the base strand. At this moment the base of A closest to
t1 is bonded to the second signal strand, however, by a process called branch
migration this base can swap its bond with the second signal strand for a new
bond with the first signal strand. If the bond is swapped, the signal strands

2.2. Strand Displacement 21

(a) (b) (c)

Figure 2.2: (a) Start: signal A bonded on the base strand, signal t1A floating
free. (b) Intermediate: signal t1A and A “fighting” over A on the base strand.
(c) End: signal t1A has displaced signal A on the base strand.

can start “fighting” over the next base. Branch migration behaves as a ran-
dom walk. The toehold domain is short hence only provides a weak binding
between a signal strand and a base strand. If the first signal strand is thus
able to gain a complete binding with A on the base strand, the second signal
strand will detach from the base strand: a strand has been displaced as shown
in Figure 2.2 (c). Likewise, it is possible that the first signal strand docks
on the base strand, but is immediately kicked off again because the toehold
binding is very weak. The displaced strand can be either an output signal or it
can be input to a next strand displacement reaction, much like electric current
runs through a set of connected logic gates in a digital computer. Because the
output of one reaction is the input of the next reaction this style of computing
is called strand displacement cascades.

Strand displacement cascades have been used to implement Boolean logic
gates, chemical reaction networks and neural networks [45, 57, 48, 36, 37, 38].
Next, we describe the implementation of an AND gate. An AND gate takes
as input two boolean values x and y and outputs true if and only if both
values are true. Otherwise, the output is false. The fact that value x is true
is represented by the presence of signal strand t1A. The fact that value y is
true is represented by the presence of signal strand t2B. Furthermore, there
are signal strands At2 and B. The presence of a free signal strand B implies
that the output of the logic gate is true. If this signal strand is not present,
then the output is false. Signal strand At2 is an intermediate signal, i.e., it
is used during the computation but is not used as output signal. The base
strand implementing the AND gate is t1At2B, with signal strand At2 and B
bonded. If value x is true, the signal strand t1A is present and can displace
signal strand At2, thereby freeing toehold t2. At this point, if value y is true,
signal strand t2B can displace the output signal B from the base strand. This
strand displacement cascade is shown in Figure 2.3.

22 State Of The Art

Figure 2.3: Implementation of an AND-gate with strand displacement. If both
signals t1A and t2B are present, then the output signal B can be displaced or
released from the base strand.

The speed of the strand displacement reaction depends on the length of
the toehold and specificity domain. A short toehold, for example 3 bases,
makes it difficult for the strand to displace another strand, because the toehold
binding is so weak the strand has a very limited time before it is kicked off the
base strand. The displacement reaction is modeled as a random walk, thus
the length of the specificity domain has a clear effect on the time needed to
displace a strand. Because a toehold is required to be short, the set of toehold
domains is fairly small. Recycling domains is thus important in large-scale
computations [13].

The strand displacement reaction is well understood, enabling the creation
of the simulation tool VisualDSD [7, 34, 8, 9], in which strand displacement
can be programmed and easily simulated. This simulation tool makes it easy
for everyone to experiment with new types of strand displacement cascades.

3
Sticker Complexes

This chapter introduces the sticker complex model, a theoretical model of a
restricted subclass of DNA molecules aiming to be the relational algebra of
DNA computing, i.e., not Turing-complete yet highly efficient. The presented
model differs slightly from the initial proposal [20]: the labels have been shifted
from the edges to the nodes.

3.1 Alphabet

From the outset we assume a finite alphabet Σ. As customary in formal models
of DNA computing [3, 33], each letter represents a DNA strand. Crucial
in such a set of DNA strands is that each strand will only hybridize with
its complement. Any hybridization between a strand and another strand, a
strand and the complement of another strand, a strand and the concatenation
of other strands, and a strand and the concatenation of complements of other
strands is deemed undesirable and must be avoided at all times. Designing
such sets of DNA codewords is a research topic on its own [30, 44, 46]. It
should always be kept in mind that a symbol in the sticker complex model
represents a DNA strand. The alphabet Σ is matched with its negative version
Σ = {a | a ∈ Σ}, disjoint from Σ. Thus there is a bijection between Σ and
Σ, which is called complementarity and is denoted by overlining. Obviously,
a stands for the Watson-Crick complement of the DNA sequence represented
by a. The elements of Σ are called positive symbols and the elements of Σ are
called negative symbols.

For the purpose of data formatting we further assume that Σ = Λ∪Ω∪Θ

23

24 Sticker Complexes

is composed of three disjoint parts: the set Λ of atomic value symbols; the set
Ω of attribute names; and the set Θ = {#1,#2,#3,#4,#5,#6,#7,#8,#9} of
tags.

3.2 Pre-Complex

We define pre-complexes to contain the overall structure of sticker complexes.
A pre-complex is a finite, node-labeled, directed graph where the nodes repre-
sent bases in strands and edges indicate direction. Moreover, a pre-complex is
equipped with a matching, representing base pairing, and two predicates. One
predicate indicates which bases are “immobilized”, i.e., do not float freely and
can be separated from solution in a controlled manner; the other predicate
indicates which bases are “blocked”, i.e., cannot participate in base pairing.
Formally, a pre-complex is a 6-tuple (V,L, λ, µ, ι, β), where:

− V is a finite set of nodes;

− L ⊆ V × V is a set of directed edges without self-loops;

− λ : V → Σ ∪ Σ is a total function labeling the nodes with positive and
negative alphabet symbols;

− µ ⊆ [V]2 = {{u, v} | u, v ∈ V ∧ u 6= v} is a partial matching on the
nodes, i.e., each node occurs in at most one pair;

− ι ⊆ V is the set of immobilized nodes; and

− β ⊆ V is the set of blocked nodes.

A connected component induced by the edges of L is called a strand. The
length of a strand s, denoted by |s|, is the number of edges of L that belongs
to s. By strands(S) we denote the set of positive strands of pre-complex C.

Both the partial matching µ as the predicate β serve to abstract the no-
tion of double-strandedness. The matchings make explicit where the negative
strands are bonded to the positive strands. The predicate β represents longer
stretches of double strands.

Components

Two strands s and s′ are bonded if there is a node v in s and some node v′ in s′

with {v, v′} ∈ µ. When two strands are connected (possibly indirectly) by this
bonding relation, we say they belong to the same component. Thus a compo-
nent of a pre-complex is a substructure formed by a maximal set of strands
connected by the bonding relation. Note that a component of a pre-complex

3.3. Sticker Complex 25

a b a b a b

(a) (b)

Figure 3.1: An example of two pre-complexes that are non-isomorphic but
that are equivalent. These pre-complexes are not isomorphic, as (b) contains
twice the number of nodes of (a).

is in itself a pre-complex. We use comp(C) to denote the set of components of
pre-complex C. Conversely, we can view a set of pre-complex components as
a single pre-complex, basically by taking the union. For convenience, when-
ever it is clear from the context we write D ∈ C for a component D and a
pre-complex C to denote that D is a component of C, i.e., D ∈ comp(C).

Subsumption and redundancy

The intention of the model is that a complex defines the structural content of
a test tube. A test tube will, however, hold copies in surplus quantity of each
component. Thus, each component of a complex stands for multiple occur-
rences. Two identical components in a pre-complex are thus meaningless. We
formalize this using the notions of subsumption, equivalence, and minimality.

A pre-complex C1 is subsumed by pre-complex C2, denoted by C1 v C2, if
for each component D1 in C1 there is an isomorphic component D2 in C2. Two
pre-complexes are equivalent if they subsume each other, denoted C1 ≡ C2.
A component D in pre-complex C is redundant if there exists a component
D′ in C such that D and D′ are isomorphic. Note that removing D from C
yields an equivalent sticker complex. A pre-complex is minimal if there are
no redundant components.

Note that the notions of isomorphism and equivalence are not equal. In-
deed, some pre-complexes can be simultaneously non-isomorphic and equiva-
lent, as shown in Figure 3.1. If two pre-complexes are minimal the notions of
isomorphism and equivalence collapse.

3.3 Sticker Complex

A sticker complex is a pre-complex abiding the following requirements:

1. Each node has at most one incoming and one outgoing edge. Thus each
strand has the form of a chain or a cycle.

2. The labels on a chain are “homogeneous”, in the sense that either all
nodes are labeled with positive symbols or all nodes are labeled with

26 Sticker Complexes

negative symbols. Naturally, a strand with positive (negative) symbols
is called a positive (negative) strand.

3. Negative strands are severely restricted: every negative strand must be
a chain of one or two nodes.

4. Matchings by µ only occur between nodes with complementary labels.

5. Nodes in β do not occur in µ.

6. A node can be immobilized only if it is the sole node of a negative strand.

7. Each component can contain at most one immobilized node.

Each requirement is introduced with a specific reason in mind:

1. The back bone of a nucleotide has two binding sites, the 3’ and 5’ carbon
atom. Hence, a DNA strand is always a linear sequence of nucleotides
without junctions. Therefore, we restrict the strands in a sticker complex
to chains and cycles.

2. Previous theoretical models allowed strands to hybridized with them-
selves. This can easily lead to intricate conformations. It is difficult to
predict which conformations are physically possible. We aim to avoid
this issue by separating the positive and negative symbols.

3. Restricting the length of stickers is second restriction aimed keeping the
model simple in order to avoid intricate conformations.

4. The partial matching µ is one of the abstraction of hybridization bonds.
The alphabet is designed such that a strand can only hybridize with its
complement, hence matching only occur between complementary sym-
bols as the represent a strand and its complement.

5. Predicate β indicates longer stretches of double-strandedness. A base
can only bond to one other base. Hence, if a symbol is double-stranded
it cannot form yet another bond.

6. This restriction also aims at simplifying the model.

7. An immobilized node is the abstraction of a DNA strand chemically
attached to a surface. We assume that attachment sites on such a surface
are sufficiently separated to bar hybridizations between two immobilized
DNA molecules.

3.3. Sticker Complex 27

A node u is called free if u neither occurs in β nor in µ, and is called closed
if it is not free. Nodes u and v are called mutually interacting if (1) they are
both free, (2) u and v are complementary labeled, and (3) u and v do not
belong to different immobilized components (i.e., components containing an
immobilized node).

Isomorphism

Isomorphism of sticker complexes can be decided in polynomial time by depth-
first search. Indeed, if complexes C and C ′ both consist of a single component,
v is a node of C, and v′ is a node of C ′, then there is at most one isomor-
phism from C to C ′ mapping v to v′, and this isomorphism can be traced
out by depth-first search, following the chain or cycle shape of strands, and
the partial matching µ. Depth-first search is in linear time, which yields an
isomorphism check for single components in cubic time (try all combinations
of v and v′). This algorithm then easily extends to complexes C and C ′ with
multiple components, by matching the components of C to the components of
C ′. This efficient isomorphism check is in contrast to the problem of general
graph isomorphism, which is not known to be decidable in polynomial time.
We thus see that sticker complexes form a restricted family of graphs. As a
consequence of the efficient isomorphism checking algorithm, the algorithm for
minimizing a sticker complex also has polynomial time complexity.

Dimension

Atomic value symbols fulfill the same function as bits in a digital computer.
A sequence of atomic value symbols represent a value, much like 100 is the
binary representation of the number 8 on a computer. Similar to the word size
(number of bits) used in a digital computer to represent single data elements
(such as integers), we will use sequences of atomic value symbols of a fixed
length `, called the dimension. Let s = s1 . . . s` be a sequence of ` consecutive
nodes of a strand of a sticker complex. If all nodes are labeled with atomic
value symbols, s is called an `-core. Let s = s0 . . . s`+1 be a sequence of `+ 2
consecutive nodes of a strand of a sticker complex. Such a sequence is called
an `-vector if s0 is labeled with #3, s`+1 is labeled with #4 and s1 . . . s` is an
`-core.

The notion of dimension is now defined as follows. For a fixed value of
` ≥ 2, we say that sticker complex C has dimension `, if all nodes labeled with
an atomic value symbol occur in an `-vector. Note that we do not consider
the one-dimensional case.

From now on, we will refer to sticker complexes simply as complexes, and
to sticker complexes of dimension ` as `-complexes.

28 Sticker Complexes

c

b a

#3

A
#2#4

#4 #2

d

Figure 3.2: A sticker complex with one component. The long positive strand
is being circularized by the short sticker #4#2.

Example 3.1. Figure 3.2 shows a sticker complex with one component. The
arrowed edges represent L. The dashed edges represent matchings in µ. The
long positive strand is being circularized by the short sticker complex #4#2.
This is a 4-complex, as there are four atomic value symbols in the 4-vector
#3abcd#4.

3.4 Operations on Sticker Complexes

In this section, we define a set of operations on complexes that are rather
standard in the DNA computing literature, except perhaps the difference.
But what is interesting, however, is that we have defined sticker complexes
in such a way that each operation always results in a sticker complex when
applied to sticker complexes. Moreover, several operations impose additional
restrictions on the input, so as to guarantee effective implementability in real
DNA.

As a general proviso, in the following definitions, a final minimization
step should always be applied to the result so as to obtain a mathematically
deterministic operation. In the following definitions we keep this implicit so
as not to clutter up the presentation. Also, it is understood that the result of
each operation is defined up to isomorphism.

3.4.1 Union

Let C1 = (V1, L1, λ1, µ1, ι1, β1) and C2 = (V2, L2, λ2, µ2, ι2, β2) be two com-
plexes. Without loss of generality we assume that V1 and V2 are disjoint. Then
the union C1 ∪ C2 equals (V1 ∪ V2, L1 ∪ L2, λ1 ∪ λ2, µ1 ∪ µ2, ι1 ∪ ι2, β1 ∪ β2).

3.4. Operations on Sticker Complexes 29

3.4.2 Difference

Let C1 and C2 be two complexes that satisfy the following conditions:

1. µ1 = ι1 = β1 = ∅ = µ2 = ι2 = β2, i.e., all components in C1 and C2 are
single strands.

2. All strands of C1 and C2 are positive, non circular, and all have the same
length.

3. Each strand of C2 ends with #4 and does not contain #5.

Then the difference C1 − C2 equals the union of all strands in C1 that do
not have an isomorphic copy in C2. If C1 and C2 do not satisfy the above
conditions then C1 − C2 is undefined.

Example 3.2. Consider a 3-complex C1 with strands #3abc#4, #3cba#4,
and #3bac#4; consider complex C2 with strands #3abc#4, #3cab#4, and
#3bca#4. The difference of complexes C1 and C2, i.e., C1 − C2, is equivalent
to the complex with the two strands #3cba#4 and #3bac#4.

3.4.3 Hybridize

Let C = (V,L, λ, µ, ι, β) and C ′ = (V ′, L′, λ′, µ′, ι′, β′) be two complexes. We
say that C ′ is a hybridization extension of C if V = V ′, L = L′, λ = λ′, ι = ι′,
β = β′ and µ′ is an extension of µ. Beware that a hybridization extension
must satisfy all conditions from the definition of sticker complex. A complex
C ′ is said to be saturated if the only hybridization extension of C ′ is C ′ itself.
This notion captures the hypothesis that everything that can stick in a test
tube will stick, i.e., if two substrands can hybridize then they will become
hybridized.

The notion of hybridization extension is not sufficient, however, since we
want to allow duplicate copies of components in C to participate in hybridiza-
tion. (This important issue is glossed over in Reif’s formalization [40].)

Let C and C ′ again be complexes. We call C ′ a redundant variation of C,
simply if C subsumes C ′. Note that C ′ may contain redundant components.
Hence, the recipe to produce a redundant variation is simply to take, for every
component of C, zero, one, or more copies.

Hybridization is now defined in terms of multiplying hybridization exten-
sions (MHEs), which, by applying redundant variations, account for the pres-
ence of surplus copies of components participating in the hybridization. Let
C and C ′ again be two complexes. We call C ′ an MHE of C if C ′ is a hy-
bridization extension of some redundant variation C ′′ of C.

The notion of MHEs is invariant under equivalence, both on the input side
as on the output side:

30 Sticker Complexes

B A

a b a b a b

B A B A

Figure 3.3: Illustration for Example 3.4.

Proposition 3.3. Let C1 and C2 be two equivalent complexes.

1. A complex C ′ is an MHE of C1 if and only if C ′ is an MHE of C2.

2. C1 is an MHE of a complex C if and only if C2 is an MHE of C.

We are not quite finished with the notion of MHE, however. Indeed, an
MHE may have “unfinished” components. Formally, we call a component
D of an MHE unfinished if there exists another MHE in which D occurs
bonded within a larger component; otherwise it is called finished. An MHE
of a complex C, without any unfinished components is called saturated with
respect to complex C. Note that if C is saturated, all MHEs are equivalent to
C.

A fundamental issue is that the result of hybridization may be infinite, as
shown next.

Example 3.4. Consider the simple complex consisting of two strands ab and
ba and no matchings. For any number n, using n copies of ab and n copies of
ba, we can produce the MHE component shown in Fig. 3.3 for n = 3. This
component could also be finished, by matching the remaining a shown on the
left with the remaining a on the right, effectively creating a ring structure.
(As always, in the figure, a and b are shown as A and B.) Different numbers
n yield nonequivalent (non-isomorphic) MHE components, thus the number
of potential MHE components is infinite.

Mother Nature computes the result of hybridization by composing MHEs
using the available material in the test tube. When, for a given complex
C, there are actually infinitely many nonequivalent MHEs, we say that hy-
bridization does not terminate for C, or shorter, that C is non-terminating ;
otherwise, we say that hybridization terminates, or shorter, that C is termi-
nating.

In practice, when we have termination of hybridization, a test tube pre-
pared with sufficient quantities of each component of the complex holds, in
principle, sufficient material to produce all molecular species that can be the
result of hybridization. If sufficient quantities are present, adding even more
material will not yield new results. Of course, in practice, a test tube is always
finite and the hybridization reaction will, under normal conditions, always

3.4. Operations on Sticker Complexes 31

Figure 3.4: The smaller “choice components” can attach to any of the n nodes
labeled A of the long “base strand”. Hence, they form a binary code with 2n

possible MHE components.

“terminate” (reach equilibrium). But the point is that, when hybridization
does not terminate for a complex, adding ever more material can, in principle,
result in ever more new molecular species (MHE components) to be produced.
In this sense, the potential result of the hybridization is indeed infinite.

Let C be a sticker complex. If C has terminating hybridization, then
hybridize(C) is defined as the disjoint union of all finished MHE components.
Otherwise, the hybridization of C, i.e., hybridize(C), is undefined.

Example 3.5. Excluding non-terminating behavior may seem to restrict the
construction of complexes. Nonetheless, large complexes can be constructed
without non-termination. Consider the parameterized complex Cn, with n a
natural number, composed of the components depicted in Figure 3.4. The
smaller “choice components” can attach to any of the n nodes labeled A of
the long “base strand”. Hence, they form a binary code with 2n possible MHE
components.

3.4.4 Ligate

The ligate operator concatenates strands that are held together by a sticker.
Formally, define a gap as a set of four nodes {n1, n2, n3, n4} such that {n1, n4}
∈ µ; {n2, n3} ∈ µ; n1 and n2 (in that order) are consecutive nodes on a
negative strand; n3 is the last node on its (positive) strand; and n4 is the first
node on its (positive) strand. By filling a gap we mean modifying the complex
so that the (n3, n4) is added to L. We now define ligate(C) as the complex
obtained from C by filling all gaps.

Example 3.6. Not every sticker introduces a gap. Figure 3.5 shows two
situations. The left component has a gap, because the last node of a strand and
the first node of another strand are brought together by a sticker. The right
component on the other hand involves a node that already has an incoming
and outgoing edge, i.e., is not at an end of its backbone, hence no edge can be
added between the node labeled C and the node labeled D. Otherwise, the
node labeled C would have to outgoing edges.

32 Sticker Complexes

Figure 3.5: On the left a component with a gap. On the right a construction
that may be confused for a gap, but is not a gap.

Table 3.1: The allowed split points.

Label Free Place

#2 true before
#3 true before
#4 true after
#6 false after
#8 false before

3.4.5 Flush

Quite simply flush(C) equals the complex obtained from C by removing all
components that do not contain an immobilized node.

3.4.6 Split

Consider a node n in some complex C. By splitting before (resp. after) n, we
mean the following.

− If n has a predecessor (resp. successor) in its strand, denote it by m.

− Remove (m,n) (resp. (n,m)) from L.

− Furthermore, if there exists a node n′, such that {n, n′} ∈ µ, then n′ is
split in an analogous manner.

Now, consider the set of triples shown in Table 3.1. Each triple is called
a splitpoint and has the form (label , free, place). By splitting C at such a
splitpoint, we mean splitting C at all nodes labeled label (be it before or after,
based on the value of place), on condition that the node is free (or closed,
depending on the boolean value free). The result is denoted by split(C, label).

3.5. Implementation in DNA 33

3.4.7 Block

Here we assume that C is saturated; if C is not saturated then the block
operation on C is considered to be undefined. The operation block(C, σ), for
any σ ∈ Ω ∪Θ, equals the complex obtained from C by adding all free nodes
labeled σ to β.

3.4.8 Block-From

Here we again assume that C is saturated, otherwise the block-from operation
is considered to be undefined.

Let again σ ∈ Σ, and consider any contiguous substrand s in C. We call
s a σ-blocking range if it satisfies two conditions. Firstly, all nodes of the
substrand are free. Secondly, the last node of the substrand is labeled with σ.
Now we define blockfrom(C, σ) to be the complex obtained from C by adding
to β all nodes appearing in some σ-blocking range.

3.4.9 Block-Except

Let n be a natural number and let C be a complex satisfying the following
conditions:

1. C is an `-complex with ` ≥ n;

2. in every `-vector in C, either all nodes are free or all nodes are closed;
and

3. C is saturated.

Then blockexcept(C, n) equals the complex obtained from C by blocking,
within each `-vector (e0, e1, . . . , e`, e`+1) that is not yet blocked, all nodes
except en. If (C, n) does not satisfy the conditions above, then the operation
blockexcept(C, n) is undefined.

3.4.10 Cleanup

The cleanup operator undoes matchings and blockings and removes all strands
except for the longest positive strands. This operation is always defined.

3.5 Implementation in DNA

In this section, we argue that the abstract sticker complexes and the opera-
tions on them presented above can be implemented by real DNA complexes.
The discussion remains theoretical as we have not performed laboratory ex-
periments. On the one hand, the main purpose is to make the abstract model

34 Sticker Complexes

plausible as a theoretical framework to explore the possibilities and limitations
of DNA computing as a database model; on the other hand, we use only rather
standard biotechnological techniques.

Each component of an abstract complex is represented by a large surplus
of duplicate copies in DNA. Each positive alphabet symbol from Σ is imple-
mented by a strand of (single-stranded) DNA, such that the resulting set of
DNA strands forms a set of DNA codewords. Designing a set of DNA code-
words is ongoing research in the DNA computing community, with clear ties
to constraint satisfaction problems [30, 44, 46]. If the DNA strand for sym-
bol a ∈ Σ is w, then the DNA strand for the complementary symbol a, is,
naturally, the Watson-Crick complementary strand to w. Then, matching of
nodes by µ in an abstract complex is implemented by base pairing in the DNA
complex. We will see below how blocking is implemented. Immobilization is
implemented as is standard in DNA computing by attachment to surfaces [28]
or magnetic beads.

The union operation amounts to mixing two test tubes together.

The difference C1 −C2 of complexes can be implemented by a subtractive
hybridization technique [16]. Let C1 (C2) be stored in test tube t1 (t2). Be-
cause all strands in t2 end in #4, we can easily append #5 to them. Next
we add to t2 an abundance of immobilized short primers #5. Polymerase is
an enzyme that constructs a DNA strand based on a template strand. More
specifically, consider two DNA strands, one is longer than the other. The
longer strand is called the template strand, the shorter strand is called the
primer. The primer is situated at the 5′-end of the template. As shown in
Figure 3.6, the template strand extends over the primer strand in the 5′-3′

direction of the primer. The polymerase enzyme attaches to the 3′-end of
the primer and adds to the primer the complements of the template strand
until it reaches the end of the template (or it reaches another DNA strand
bonded to the template strand), effectively creating a copy of the complement
of the template strand. Typically, the primer strand is only tens of bases
long, whereas the template strand can be thousands of bases. This enzyme
is, literally, of vital importance in the living cells, because it plays a key role
in the transformation of a gene into its operational form, the protein. Using
polymerase we obtain complements to all strands in t2, still immobilized, so
that it is now easy to separate them. It remains to use these complements
to remove all strands from t1 that occurred in t2. Since all strands have the
same length, partial hybridization, leading to false removals, can be avoided
by using a very precise melting temperature based on the precise length of the
strands.

Hybridization happens naturally and is merely controlled by temperature.
Still, we must argue that the result still satisfies the definition of sticker com-
plex. The only peculiarity in this respect is the requirement that each compo-

3.5. Implementation in DNA 35

Figure 3.6: The polymerase enzyme (the black droplet) slides over the tem-
plate strand and extends the primer strand with the complementary bases of
the template.

nent can contain at most one immobilized node. Since immobilized nodes are
implemented by strands affixed to surfaces, implying some minimal distance
between such strands, it seems reasonable to assume that the large majority
of hybridization reactions will occur among freely floating strands, or between
freely floating and immobilized ones.

Splitting is achieved as usual by restriction enzymes. A restriction enzyme
cuts the backbone of a DNA strand whenever it detects a certain base sequence.
The base sequence is specific to each enzyme. Furthermore, some enzymes only
cut single-stranded DNA molecules, whereas others only cut double-stranded
DNA molecules. A feature of the abstract model is that we require only five
recognition sites (Table 3.1). Of course, these recognition sites will have to be
integrated in the DNA codeword design.

Joining two strands held together by a sticker is implemented by the ligase
enzyme. The ligase enzyme mends broken backbones if the ends are close
enough.

The flush operation removes all the free floating components. The im-
mobilized components are either attached to a surface, or they are marked
by magnetic beads. A surface is large enough to extract mechanically, after
which it is washed to remove any free floating components whilst keeping the
immobilized components on the surface. Immobilized components marked by
magnetic beads can be separated easily by applying a magnetic field on the
test tube. For example, an electro-magnet inserted into the test tube will
collect all marked components.

Blocking is implemented by making strands double-stranded, so that they
cannot be involved in later hybridizations. The ordinary block operation can
be implemented by adding the appropriate primer which will hybridized to the
desired substrands thus blocking the corresponding nodes. As in the Sanger
sequencing method, however, the base at the 3′ end of the primer is modified
to its dideoxy-variant. In this way unwanted interaction with polymerase
from possible later blockfrom operations is avoided. Indeed, blockfrom is
implemented using the polymerase enzyme.

For the blockexcept operation to work, we need to adapt the implemen-

36 Sticker Complexes

tation of `-vector strands #3v1 . . . v`#4, with vi ∈ Λ for i = 1, . . . , `, by
introducing additional markers φi, so that we get #3φ1v1 . . . φ`v`#4. These `
additional markers must be part of the set of codewords. We can then imple-
ment blockexcept(., n) by the composition block(.,#3); blockfrom(., φn−1);
block(., φn+1); blockfrom(.,#4). In other words, both the left-hand side of
the `-vector and the marker following the ith atomic value are blocked to stop
the polymerase enzyme which starts from the right-hand side of the `-vector
and from the marker proceeding the ith atomic value.

The cleanup operation starts by denaturing (warming up) the tube. Im-
mobilized strands are removed from the tube, either by removing the surface
to which strands are attached or by means of a magnetic field. Next, a gel
electrophoresis is carried out to separate the longest DNA molecules from the
other molecules. Gel electrophoresis is based on the fact that DNA molecules
have a negative electrical charge. A special type of gel is spread over a sur-
face. Such a gel is a porous substance, i.e., one can think of such a gel as a
tight maze through which smaller objects move quicker than larger objects.
DNA molecules are placed at one end of the gel and an electromagnetic field
attracts the DNA molecules on the other end of the gel. After some time has
passed, DNA molecules will have separated based on length, i.e., bands of DNA
molecules have been formed, such that each band contains DNA molecules of
roughly same size. The resolution of the separation increases with the length of
the gel and time. Finally, the positive strands are separated from the negative
strands (for example, in the case that a positive strand is complete blocked in
a sticker complex), by attaching all the negative alphabet symbols to a surface,
thus immobilizing positive strands.

In connection with gel electrophoresis, a complication may arise when
shorter circular strands may travel at approximately the same speed as longer
linear strands. In the main application of DNAQL, namely the simulation of
the relational algebra, presented in Chapter 8, this will not be an issue. Fur-
thermore, in this paper we introduce a static type system which can be used to
predict which species of strands can potentially occur in the test tube. Then
for each species a separate gel experiment can be run to predict the different
positions of the bands corresponding to the different species. In this way, the
complication with circular strands may in many cases be avoided.

4
Termination of Hybridization

A sticker complex with non-terminating hybridization yields an infinite sticker
complex. This is undesirable, as a sticker complex is conceived as an abstrac-
tion of DNA in test tubes. Clearly, a infinite sticker complex is no abstraction
of any test tube. A natural question thus arises: can we efficiently decide,
based solely on the sticker complex itself, whether hybridization is terminat-
ing?

4.1 Deciding termination

When designing a programming language of DNA complexes, it is of course
highly desirable to recognize easily whether or not a given complex is termi-
nating. Our main result is the following.

Theorem 4.1. A complex is terminating if and only if its hybridization graph
does not contain a free alternating cycle.

Corollary 4.2. Termination of hybridization is decidable in polynomial time.

Before a formal proof of our theorem can be given, we will formalize the
hybridization process with the following notions: hybridization graph, free or
immobilized alternating path and cycle, semi-strong homomorphism, and hy-
bridization template. The Corollary will follow since the hybridization graph
has the same number of nodes as the given complex, and checking for the
presence of an alternating cycle can be done in polynomial time.

The hybridization graph of a complex is an instance of a “partitioned
graph”. A partitioned graph in general is a triple (V, π,E) where (V,E) is

37

38 Termination of Hybridization

Figure 4.1: Example of a sticker complex. The dotted lines denote the match-
ing µ.

an undirected graph and π is a partition of the node set V . Recall that an
undirected graph (V,E) consists of a set V of nodes and a set E ⊆ {{v, w} |
v, w ∈ V and v 6= w} of unordered pairs of nodes (undirected edges). Recall
that a partition of a set V is a set of nonempty, pairwise disjoint subsets of
V , called blocks, such that their union equals V .

Now given a complex C, the hybridization graph for C is the partitioned
graph H = (V, π,E) defined as follows:

− V equals the set of nodes of C;

− π contains, for each component D of C, the set of nodes belonging to D
as a block;

− Let F ⊆ V be the set of “free” nodes of C; recall a node is called free
if it is not matched nor blocked. Then E equals {{v, w} | v, w ∈ F
and λ(w) = λ(v) and v and w do not belong to different immobilized
components }.

Thus, whereas the matching µ in C represents the pairs of nodes that are
already hybridized, the set E contains the pairs of nodes that may still be
hybridized (typically, in an MHE of C). Note that a complex is saturated if
its hybridization graph does not contain any edges.

Example 4.3. The hybridization graph for the complex of Fig. 4.1 is shown
in Fig. 4.2. The blocks are depicted as hyperedges (closed curves enclosing
the nodes belonging to the same block). The undirected edges are shown as
dashed lines.

The notion of alternating cycle can be defined in general in any partitioned
graph G = (V, π,E). A path in G is a sequence of nodes v1, . . . , vn such that
for each i with 1 ≤ i < n, we have either an

edge move: {vi, vi+1} ∈ E, or a

4.1. Deciding termination 39

Figure 4.2: The hybridization graph of the complex shown in Figure 4.1. The
nodes have been labeled to easily identify paths.

block move: vi 6= vi+1 and they belong to a common block.

The path is said to be alternating if edge moves happen for each odd i, and
block moves happen for each even i (always for 1 ≤ i < n). An alternating path
is called a free alternating path if none of the traversed blocks is immobilized. If
an alternating path traverses an immobilized block, it is called an immobilized
alternating path. When the path is alternating, it is said to be an alternating
cycle when n is odd and at least 3, and vn = v1. An alternating cycle is also
either free or immobilized.

Example 4.4. Consider the hybridization graph for the complex of Fig. 4.1,
as shown in Fig. 4.2. Two examples of free alternating paths are p1 = 3, 9, 1, 3
and p2 = 3, 1, 10, 3, 6, 7. Note that p1 is not an alternating cycle; although it
satisfies vn = v1, its length, 4, is not odd. Indeed, this hybridization graph
does not admit an alternating cycle, since the only free node with a negative
label, a, is in a component by itself.

Example 4.5. Consider the complex discussed in Example 3.4. Its hybridiza-
tion graph, shown in Figure 4.3, has four nodes partitioned in two blocks. One
block, corresponding to the component ab, consists of two nodes 1 and 2 la-
beled a and b, respectively; the second block, corresponding to the component
ba, consists of two nodes 3 and 4 labeled b and a, respectively. There are two
undirected edges, namely, {1, 4} and {2, 3}. This hybridization graph admits
a free alternating cycle in the form of 1, 4, 3, 2, 1.

Example 4.6. Figure 4.4 shows a complex with an immobilized node (immo-
bilized nodes are decorated with the symbol) consists of a sticker and an
immobilized component. Figure 4.5 shows the hybridization graph of this com-
plex. Clearly, there is an immobilized alternating cycle in the hybridization
graph, i.e., the nodes #4,#4,#2,#2,#4. Despite the cycles in the hybridiza-
tion graph, this complex has terminating hybridization, because all cycles run

40 Termination of Hybridization

Figure 4.3: The hybridization graph of the complex discussed in Example 3.4.

Figure 4.4: A sticker complex with two components. The larger compo-
nent contains an immobilized node, thus, the component is immobilized. The
sticker can make the strand circular.

through the bigger, immobilized component. Two copies of an immobilized
component cannot be bonded together, as the resulting component would have
two immobilized nodes. Figure 4.6 shows the result of hybridization on this
complex. One component forms a cycle, the other has two “arms” spreading
from the immobilized component.

The above three examples are in line with Theorem 4.1. Indeed, the com-
plex of Fig. 4.1 is terminating, and indeed its hybridization graph does not
have an alternating cycle; the complex of Example 3.4 is non-terminating,

Figure 4.5: The hybridization graph of the complex shown in Figure 4.4.

4.1. Deciding termination 41

Figure 4.6: The hybridization of the complex shown in Figure 4.4 is terminat-
ing despite the alternating cycle in its hybridization graph and consists of two
components.

and indeed its hybridization graph has a free alternating cycle; the complex of
Example 4.6 is terminating, and indeed although it has an alternating cycle,
it is an immobilized alternating cycle.

Next, we present a constructive characterization of MHE components in
the form of hybridization templates. But first we need the auxiliary notion
of semi-strong homomorphism. Let G = (V,E) and G′ = (V ′, E′) be two
undirected graphs, and let f : V → V ′ be a mapping. Then f is called a
semi-strong homomorphism from G to G′ if, for all u, v ∈ V , we have the
following:

− if {u, v} ∈ E then {f(u), f(v)} ∈ E′; and

− if {f(u), f(v)} ∈ E′ then {u,w} ∈ E for some w ∈ V , or {v, w} ∈ E for
some w ∈ V .

The first condition is the standard requirement for homomorphisms; the con-
verse of that condition would state the standard requirement for what is known
in universal algebra as a “strong” homomorphism. The second condition, how-
ever, states only a weak converse (hence the name “semi-strong”), in the sense
that if there is an edge between f(u) and f(v), then either u or v have to be
involved in an edge, but not necessarily with each other.

Now let C = (V,L, λ, µ, ι, β) be a complex with hybridization graph H =
(V, π,E). A hybridization template for C is a pair T = (t, f) where t =
(V t, πt, Et) is a partitioned graph and f is a semi-strong homomorphism from
(V t, Et) to (V,E), such that:

1. t is connected, i.e., there is a path between any two distinct nodes (using
the notion of path in partitioned graphs as defined earlier);

2. Et is a partial matching, i.e., each node of V t occurs in at most one edge
in Et; and

42 Termination of Hybridization

3. for each block q of πt there is a block q′ of π such that the restriction f |q
of f to q is a bijection from q to q′, i.e., f |q is injective and the image of
f |q equals q′.

From a hybridization template T = (t, f) for C, and C = (V,L, λ, µ, ι, β)
itself, we can construct a sticker complex comp(T) = (V T , LT , λT , µT , ιT , βT)
as follows:

− V T = V t;

− LT = {(x, y) | x and y belong to a common block and (f(x), f(y)) ∈ L},
note that (f(x), f(y)) ∈ L is not a sufficient condition as multiple blocks
of a hybridization template may map on the same component of C, yet
we do not wish to connect all these copies through LT ;

− λT (x) = λ(f(x));

− µT = Et∪{{x, y} | x and y belong to a common block and {f(x), f(y)} ∈
µ}, similar to the case of LT , {f(x), f(y)} ∈ µ is not a sufficient condi-
tion;

− ιT = {x ∈ V T | f(x) ∈ ι};

− βT = {x ∈ V T | f(x) ∈ β}.

Example 4.7. Recall the three example complexes shown in Figures 4.1, 3.3,
and 4.4. Example hybridization templates are shown in Figures 4.7, 4.8, and
4.9. The dashed-dotted line indicates the semi-strong homomorphism f . To
keep the exposition clear, blocks are connected instead of nodes. It is clear
that f is actually the bijection between both blocks.

Proof of Theorem 4.1

The only-if implication of Theorem 4.1 is relatively easy to prove:

Lemma 4.8. If the hybridization graph of C has a free alternating cycle, then
C is non-terminating.

Proof. From any alternating cycle p = v1, . . . , vn we can construct an MHE
component Cp as follows. For each even i with 1 ≤ i < n, we have a block
move in the path: let Di be the common component of C to which vi and vi+1

both belong. Take distinct copies D′i of all components Di; there are bn/2c of
them in total. We use D′0 as a synonym for D′n−1. Then Cp consists of all the
copies D′i, to which we perform the following hybridization extension in two
phases. In the first, connection phase, we match, for each edge move {vi, vi+1}

4.1. Deciding termination 43

Figure 4.7: An example hybridization template of the complex in Figure 4.1.
On the left is the hybridization graph of the complex, on the right is the
template. Note that the A component has been duplicated whereas the AB
strand is dropped. Two pairs of nodes are connected in the template.

Figure 4.8: An example hybridization template of the complex in Figure 3.3.
On the left is the hybridization graph of the complex, on the right is the
template. This template forms a circle consisting of two strands and two
stickers.

Figure 4.9: An example hybridization template of the complex in Figure 4.4.
On the left is the hybridization graph of the complex, on the right is the
template. This is a maximal hybridization template.

44 Termination of Hybridization

in the path, the corresponding nodes: the node corresponding to vi belongs
to D′i−1 and the node corresponding to vi+1 belongs to D′i. In this way the
separate components are connected into a single component. In the second,
completion phase, we perform additional hybridization extension arbitrarily
so as to obtain maximal matching. The result is an MHE component Cp.

Now for any natural number k, we can form the alternating cycle pk ob-
tained by repeating p, k times. Formally, p1 is just p, and if pk is the sequence
x1, . . . , xN , then pk+1 is defined as the sequence x1, . . . , xN−1, v1, . . . , vn. Now
as above we can construct, for any natural number k, the MHE component
Cpk . These components grow strictly larger for increasing values of k and are
thus non-isomorphic.

MHE component Cpk may not be finished. Some nodes of p may even
be part of other alternating cycles. Nonetheless, the chain of components
corresponding to an alternating path can always be closed. Component Cpk

can thus always become finished. Hence, hybridization does not terminate.

The construction explained in the proof of Lemma 4.8 does not work if C
has an immobilized alternating cycle, because two immobilized components
cannot be connected as there may be at most one immobilized node in any
component of a sticker complex.

Proposition 4.9. The MHE components are exactly the complexes of the form
comp(T) with T a hybridization template.

Proof. Let T = (t, f) be a hybridization template with t = (V t, πt, Et). We
show that comp(T) is an MHE component. Each block q of t represents a
component Dq of C, as determined by f . In comp(T), all directed edges from
L, all labels, all matchings, all immobilizations and all blockings are inherited
from Dq. Additional matchings are present in comp(T) in the form of the set
Et. Since t is connected, comp(T) consists of a single component.

To show that comp(T) is an MHE component it remains to show that
comp(T) has maximal matching. Thereto, let x and y be nodes of comp(T)
with complementary labels; we must show that x and y cannot both be free.
So, assume x is free; we will show that y is matched in µT .

First, note that f(x) is free in C. Indeed, suppose {f(x), v} ∈ µ for some
v ∈ V . Then f(x) and v belong to the same block of π. Let z be the node in
the same block as x such that f(z) = v. Then {x, z} ∈ µT , which is impossible
because x is free in comp(T). Now there are two possibilities:

− f(y) is also free in C. Then {f(x), f(y)} ∈ E. Hence, since f is a
semi-strong homomorphism from (V t, Et) to (V,E), at least one of x or
y must be matched in Et. This must be y, since x is free in comp(T).
Hence y is matched in Et ⊆ µT as desired.

4.1. Deciding termination 45

− f(y) is matched in µ, so {f(y), v} ∈ µ for some v ∈ V . Analogously to
the reasoning used above for f(x), this implies that y is matched in µT

as desired.

Conversely, let D be an MHE component. We show that D equals comp(T)
for some hybridization template T . By definition, D = (V ′, L′, λ′, µ′′, ι′, β′) is a
hybridization extension with maximal matching of some redundant variation
C ′ = (V ′, L′, λ′, µ′, ι′, β′) of C. So we can form the partitioned graph t =
(V t, πt, Et) where V t equals V ′; πt is formed by the components of C ′; and
Et equals µ′′ \ µ′. Since D forms a single component, t is connected. Since
each component of C ′ is isomorphic to some component of C, we can define
f : V ′ → V such that, for every block q of t, the restriction f |q is equal
to the corresponding isomorphism. Since D has maximal matching, f is a
semi-strong homomorphism. Now clearly comp((t, f)) equals D.

A hybridization template (t, f) is called maximal if there is no other
hybridization template (t′, f ′), other than (t, f) itself, such that V t ⊆ V t′ ;
πt ⊆ πt′ ; Et ⊆ Et′ ; and f ⊆ f ′. From the previous proposition we obtain:

Corollary 4.10. The finished MHE components are exactly the complexes of
the form comp(T) with T a maximal hybridization template.

Remark 4.11. One can characterize the maximal hybridization templates as
follows. They are exactly the hybridization templates that satisfy the stronger
definition obtained by replacing, in the definition of semi-strong homomor-
phism, the second condition by the following:

− if {f(u), v′} ∈ E′ for some v′ ∈ V ′, then {u,w} ∈ E for some w ∈ V .

The proof of Theorem 4.1 also invokes the following lemma which may be
interesting in its own right:

Lemma 4.12. Let H be a partitioned graph with c distinct blocks. If H admits
no alternating cycle, then the length of any alternating path in H is at most
4c+ 2.

Proof. Let p = v1, . . . , vn be an alternating path in H = (V, π,E) and let
q be a block of π. For even i with 1 ≤ i < n, we say that q occurs in p
at i if vi and vi+1 belong to q (block move). Now assume the same block q
would occur at three different i, say, i1 < i2 < i3. If vi2+1 = vi1+1, then the
subpath of p starting at i1 + 1 and ending in i2 + 1 is an alternating cycle,
which is impossible. The construction of this alternating cycle is illustrated
in Figure 4.10. Hence vi2+1 6= vi1+1. Because vi3 is a single node, it cannot
be equal to both vi1 and vi2 , thus either vi3 6= vi1+1 or vi3 6= vi2+1. In the
first case, {vi3 , vi1+1} is a legal block move and by replacing vi3+1 by vi1+1

46 Termination of Hybridization

Figure 4.10: Illustration of how an alternating cycle can be formed if vi1+1 =
vi3+1 in Lemma 4.12. Path p is split into four parts by the three simplified
occurrences of block q. At the bottom, block q is depicted again, with arrows
indicating the position of the nodes in the path.

in p, we obtain an alternating cycle starting at i1 + 1 and ending at i3 + 1.
The construction of this alternating cycle is illustrated in Figure 4.11, where
vi3 = vi2+1. In the second case, we similarly obtain an alternating cycle. We
conclude that no block can occur more than twice in p. In other words, the
number of block moves in an alternating path is at most 2c. The number of
block moves in an alternating path of length n is b(n− 1)/2c. Hence, we have
b(n− 1)/2c ≤ 2c which yields n ≤ 4c+ 2.

We are finally ready to prove the remaining direction of Theorem 4.1:

Lemma 4.13. If the hybridization graph of C has no free alternating cycle,
then C is terminating.

Proof. Assume there are also no immobilized alternating cycles. To prove
that there are only a finite number of non-isomorphic MHE components, we
use Proposition 4.9 and prove that there are only a finite number of non-
isomorphic hybridization templates. Here, we define an isomorphism between
two hybridization templates (t, f) and (t′, f ′) as an isomorphism ϕ from t to
t′ such that f ′(ϕ(x)) = f(x).

Let H = (V, π,E) be the hybridization graph of C. For any hybridization
template T = (t, f) we can consider the blocks tree of t. The nodes of this
tree are the blocks of πt; the undirected edges are the pairs {q, q′} such that
{v, v′} ∈ Et for some v ∈ q and some v′ ∈ q′. Note that it is impossible for
some {v, v′} to be in Et with v and v′ belonging to the same block q, as this
would imply the alternating cycle v, v′, v in H. This “blocks tree” is really a

4.1. Deciding termination 47

Figure 4.11: Illustration of how an alternating cycle can be formed if vi3 =
vi2+1 6= vi1+1 in Lemma 4.12. Path p is split into four parts by the three
simplified occurrences of block q. At the bottom, block q is depicted again,
with arrows indicating the position of the nodes in the path. The cycle pass
through vi1+1, takes p1 to vi2 , does a block move to vi2+1, traverses p2 to arrive
in vi3+, and finishes with a block move back to vi1+1.

tree (undirected graph without cycles); since Et is a partial matching, a cycle
in the blocks tree would imply an alternating cycle in H, which does not exist.

If we know f , then we can reconstruct t from its blocks tree. Also, for
a given t, there are only a finite number of possible hybridization templates
(t, f); the number of possibilities for f is finite since H is finite. Hence, we are
done if we can show that there are only finitely many non-isomorphic blocks
trees. This is ensured by the following two properties:

1. The diameter of any blocks tree is at most 4c + 2. Indeed, since Et

is a partial matching, any simple path in the blocks tree implies an
alternating path in H, of the same length. Hence, by Lemma 4.12, the
length of any simple path in the blocks tree is at most 4c+ 2.

2. The fan-out of any node in any blocks tree is at most n, where n is the
number of nodes of C. Indeed, let q be a block of t. Then q has at
most n nodes; by the definition of the edges of the blocks tree, taking
into account that Et is a partial matching, this gives a maximum of n
neighbors of q in the blocks tree.

An immobilized alternating cycle will never make a complex non-terminating,
as two immobilized components can never be bonded. Hence, an immobilized
alternating cycle results in two types of components: (1) the cycle is closed
after one iteration or (2) the immobilized component has two arms for each

48 Termination of Hybridization

cycle, each arm is a traversal of the cycle without reentering the immobilized
component.

4.2 Complexity issues

Assume hybridization terminates for a given sticker complex C. Then two
follow-up questions come up related to the complexity of the result of hy-
bridization. How many finished MHE components can there be? And, how
large can a single finished MHE component become?

Example 4.14. In Example 3.5 we saw that even without alternating cycles
exponentially many non-isomorphic MHE components can be formed. When
constructing large MHE components, compared to the size of the input com-
plex, the alphabet becomes a limiting factor (as will be formally shown in
Lemma 4.16). However, if we assume that the alphabet may grow with the
size of the complex, exponentially large MHE components can be formed. A
simple example constructs a binary tree. For each level of the tree one alpha-
bet symbol is needed, while the size of the tree grows exponentially with the
number of levels. Figure 4.12 shows complex Cn, for n = 3, and the resulting
MHE component.

Clearly, one can combine the exponential number of MHE components
of Example 3.5 with the exponential size MHE component of this example.
Assume three alphabet symbols A, B, and C, that are not used in constructing
the tree. Instead of a single node component to terminate as leaves of the tree,
a strand of n nodes labeled A can be used as leaves. As a result, 2n nodes
labeled A are present at the bottom level of the tree. Adding the stickers
AB and AC, results in double-exponentially (22n) many MHE components of
exponential size, albeit with a growing alphabet.

As we have already seen in Example 3.5, the number of finished MHE
components may well grow exponentially in the size of the complex. Also the
size of MHE components can grow exponentially, as seen in Example 4.14.
Unlike Example 3.5, however, the latter can only happen when the alphabet
is allowed to grow with the size of the complex. Usually, however, the alphabet
is fixed by the application setting. Indeed we show:

Proposition 4.15. Over the class of terminating complexes over any fixed
alphabet, the size of the largest MHE component for a complex C grows only
polynomially in the size of C.

Proof. We reason as in the proof of Lemma 4.13. A rooted tree with fan-out
n and depth d has at most

∑d
i=0 n

i = (nd+1 − 1)/(d − 1) nodes. The blocks
tree of a hybridization template (where an arbitrary block is chosen as root)

4.2. Complexity issues 49

Figure 4.12: Top: Complex C3 has an MHE component of exponential size.
Bottom: The tree constructed from the components of C3.

has fan-out at most n, and has depth at most d = 8s + 2, by Lemma 4.16.
Since s is fixed, we obtain a number of blocks that is polynomial in n. Since
each block itself has size at most n, the result follows.

Interestingly, the proof of this proposition relies on the following counter-
part to Lemma 4.12. The two lemmas are complementary as Lemma 4.12
does not assume anything about the alphabet, whereas Lemma 4.16 does not
assume anything about the complex.

Lemma 4.16. Let H be the hybridization graph of a complex over positive
alphabet Σ. Let s be the number of symbols in Σ. If H admits no alternating
cycle, then the length of any alternating path in H is at most 8s+ 2.

Proof. Let p = v1 . . . vm be an alternating path in H and let a ∈ Σ ∪ Σ. For
even i with 1 ≤ i < m (block move), we say that a occurs in p at i if λ(vi) = a
or λ(vi+1) = a; in the first case we say that a occurs in first place, in the
second case we say that a occurs in second place. It is well possible that a
occurs at some i both in first and second place. Now assume a would occur

50 Termination of Hybridization

at three different i (always even). Then it must either occur at least twice in
first place, or twice in second place:

− a occurs in first place at some i and at some j > i. Note that λ(vj−1) = a.
Then vj−1, vi, . . . , vj−1 is an alternating cycle; a contradiction.

− a occurs in second place at some i and some j > i. Note that λ(vi+2) = a.
Then vj+1, vi+2, . . . , vj+1 is an alternating cycle; a contradiction.

We conclude that no symbol from Σ ∪ Σ can occur in more than two block
moves of p. Hence, the number of block moves in an alternating path cannot
be greater than 4s. The number of block moves in an alternating path of
length m equals b(m− 1)/2c, which yields m ≤ 8s+ 2.

Remark 4.17. Since the number of possible graphs on a polynomial number
of nodes is singly-exponential, as a corollary to Proposition 4.15, we obtain
that over the class of terminating complexes over a fixed alphabet, the number
of MHE components for a complex C is bounded from above by 2n

O(1)
, where

n is the size of C. Hence, Example 3.5 essentially illustrates the worst that can
happen, i.e., double-exponential or worse is impossible, with a fixed alphabet.

Our final result presents a restriction on classes of complexes, which we call
“c-bounded choice” (for a natural number c), so that hybridization is polyno-
mial on the class of c-bounded complexes. It remains to be investigated further
how practicable this restriction is, i.e., how many applications can be modeled
using sticker complexes that are c-bounded for some c. A positive indication is
that only 4-bounded complexes are needed to simulate the relational algebra.

To define the notion of c-boundedness, we first need the notion of a “choice
node” of a complex. This is a free node having at least two neighbors in the
hybridization graph. Since the edges of the hybridization graph are solely
defined in terms of free nodes and their labels being complementary, we see
the following, for any label a ∈ Σ∪Σ: a node v labeled a is a choice node if and
only if it is free and there exist at least two free nodes labeled a. Consequently,
if there are at least two free nodes labeled a, then all free nodes labeled a are
choice nodes; in the other case, no node labeled a is a choice node.

Now for any natural number c, we say that a complex C has c-bounded
choice, or shorter, is c-bounded, if for each component D of C, the number of
nodes in D that can reach a choice node by an odd alternating path is at most
c. Here, naturally, we say that a node w is reachable by an odd alternating
path from a node v, if there is an alternating path v1, . . . , vn, with n odd,
v1 = v and vn = w. In particular, taking n = 1, any node is reachable from
itself by an odd alternating path. As a consequence, in a c-bounded complex,
every component has at most c choice nodes.

4.2. Complexity issues 51

Figure 4.13: Modification C ′′n of the complex shown in Figure 3.4 in which the
two bottom components are immobilized.

Example 4.18. Recall the complexes Cn discussed in Example 3.5. Recall
that the number of finished MHE components for Cn is 2n. Since there are
two free A-nodes, the n nodes labeled A are all choice nodes. As these n nodes
all belong to a common component, the smallest c such that Cn is c-bounded
is n. Hence, there is no fixed c such that all Cn are c-bounded.

Suppose now, we modify Cn to C ′n by removing the sticker AC. Then the
A-nodes are no longer choice nodes. The only remaining choice node C ′n is
the A-labeled node. Hence, each C ′n is 1-bounded. Now note that each C ′n
has only one finished component, obtained by annealing each a-node to the
A-node of a fresh copy of the sticker AB. In particular, hybridization is not
exponential on the class of C ′n complexes for all n.

Consider another modification of Cn by immobilizing the smaller “choice”
components, called C ′′n, as shown in Figure 4.13. Although there are n choice
nodes reachable through an alternating path from the two nodes labeled A,
there is no exponential blowup. Indeed, the choice components cannot be
combined, as this would result in a component with two immobilized nodes.
Hence, complexes that are not c-bounded but with some immobilizations can
still have a polynomial-sized hybridization.

The above example illustrates our result:

Theorem 4.19. Let c be a natural number. Over the class of terminating,
c-bounded complexes over a fixed alphabet, the hybridization of any complex C
has size polynomial in the size of C.

Proof. Since the size of each MHE component is polynomial by Proposi-
tion 4.15, we must only show that the number of non-isomorphic finished
MHE components is polynomial. Using Corollary 4.10, we can focus on the
number of non-isomorphic maximal hybridization templates.

We use blocks trees as introduced in the proof of Lemma 4.13. Let C be
a c-bounded, terminating complex with n nodes, and let H = (V, π,E) be

52 Termination of Hybridization

its hybridization graph. Up to isomorphism, a hybridization template (t, f)
of C can be represented by the blocks tree of t, viewed as an abstract tree,
augmented with a labeling (i) of each tree node (block q of πt) with the
component of C (block q′ of π to which f maps q) it represents; and (ii) of each
tree edge {q1, q2} with {(q1, f(v1)), (q2, f(v2))} where v1 ∈ q1 and v2 ∈ q2 such
that {v1, v2} ∈ Et (this pair {v1, v2} is unique, since a second such pair would
imply an alternating cycle in the hybridization graph). If the hybridization
template is maximal, each tree node labeled with a component D has an edge
for each node of D that has an edge in the hybridization graph.

We must show that, over c-bounded complexes, there are only polynomially
many such maximal augmented blocks trees. We can construct all possible
augmented blocks trees using a recursive non-deterministic procedure which
we describe next. The recursive step of the procedure takes as parameter a
tree node q labeled by some component D. Initially, it is called on a newly
created root node, labeled with a non-deterministically chosen D. There are
at most n choices for D, where n is the number of nodes of C.

To describe the recursive step, we need the notion of “port”. A “port” is
a pair (q, u) where q is a tree node and u is a node in the component D that
labels q, such that u occurs in E, i.e., has an edge in the hybridization graph.
When q has an edge for u (formally, q has an edge such that the label contains
(q, u)) we say that the port is “closed”. Finally, note that if u is a choice node
in D, then (q, u) is a port. If (q, u) is a port but u is not a choice node, then
the port is called “one-way”.

The recursive step is divided in two phases: the deterministic phase, fol-
lowed by the choice phase. In the deterministic phase, we close all open
one-way ports for q. For each such port (q, u), we take the unique node w
in C such that {u,w} ∈ E, and let Du be the component of C that contains
this w. We create a child node r of q, label it with Du, and label the child
edge with {(q, u), (r, w)}. We say we have “closed” the open port. Note that
r may have additional one-way open ports. We close those as well, and we
iteratively close all open one-way ports in newly created nodes until there are
no longer any open one-way ports. (This iteration must terminate since C is
terminating.)

We now have a subtree rooted at q, in which there are no open one-way
ports, but in which there can still be open choice ports. Since C is terminating,
by Lemma 4.16, the subtree has depth at most d = 8s+ 2. By the c-bounded
restriction, the subtree has at most

∑d
i=0 c

i nodes of the block tree that contain
choice nodes. Hence, in total the number of open ports is at most r = c ·∑d

i=0 c
i. Note that r = c · (cd+1 − 1)/(d − 1) = O(1). Each choice port is of

the form (q′, u), with q′ equal to q or to a descendant of q in the tree, created
during the deterministic phase. To close the choice port, there may be many
possibilities. Each possibility consists of a node w in C such that {u,w} ∈ E;

4.2. Complexity issues 53

we call w a “candidate” for u. There are at most n possible candidates. The
procedure chooses a candidate w for each open choice port (q′, u) and closes
the port as described above for one-way ports. Then the procedure recurses
on every newly created node.

Let us examine the recursion tree of this recursive procedure. Since C is
terminating, by Lemma 4.16, the recursion is at most a constant d = 8s + 2
deep. The fan-out of the recursion tree is bounded by the constant r. Hence,
each possible recursion tree arising from a non-deterministic execution of the
algorithm embeds in the full tree of depth d and fan-out r, which has

∑d
i=0 r

i =
(rd+1 − 1)/(d − 1) = O(1) nodes. For each node of the recursion tree, there
are at most n choices for the non-deterministic algorithm. Hence, there are
nO(1) possible outcomes of the algorithm, which is polynomial as desired.

Remark 4.20. Theorem 4.19 states that for c-bounded terminating com-
plexes over a fixed alphabet, the result of hybridization has polynomial size.
By the definition of hybridization, i.e., disjoint union of all finished MHE com-
ponents, and Proposition 4.15, this is the same as saying that the number of
finished MHE components is polynomial. Note that it is not true that the
number of unfinished MHE components is polynomial. For example, for each
number n, consider a complex Un with two components: one is the strand
A . . . A (n times), and the other is the sticker A. There are 2n − 1 unfinished
MHE components, by choosing a strict subset of the n positive nodes, and
hybridizing to each of them a copy of the sticker. There is, however, a unique
finished MHE component, obtaining by hybridizing a copy of the sticker to all
positive nodes.

Remark 4.21. There is no converse to Theorem 4.19 in the sense that, if the
result of hybridization has polynomial size over some class K of complexes
over some fixed alphabet, then the complexes in K must be c-bounded for
some fixed c. Take, for example, the class K consisting of all complexes Ln,
for every number n, where Ln consists of four components: a strand D . . .D of
length 2n; a strand A . . . A of length n; and two stickers AB and AC. The size
of Ln is 2n + n+ 4, and there are 2n finished MHE components for Ln, which
is a number polynomial in the size of Ln. Yet, the class K is not c-bounded
for any fixed c, since Ln contains a strand with n choice nodes.

5
DNAQL

DNAQL is an applicative programming language for expressing functions from
`-complexes to `-complexes [20]. A crucial feature of DNAQL is that the same
program can be applied uniformly to complexes of any dimension `. DNAQL
is not computationally complete, as it is meant as a query language and not a
general-purpose programming language. The language is based on a basic set
of operations on complexes, some distinguished constants, an emptiness test
(if-then-else), let-variable binding, counters that can count from one up to the
dimension of the complex, and a limited for-loop for iterating over a counter.
The syntax of DNAQL is given in Figure 5.1. Note that expressions can contain
two kinds of variables: variables standing for complexes, and counters, ranging
from 1 to the dimension. Complex variables can be bound by let-constructs,
and counters can be bound by for-constructs. The free (unbound) complex
variables of a DNAQL expression stand for its inputs. A DNAQL program is
a DNAQL expression without free counters. So, in a program, all counters are
introduced by for-loops.

The constant expressions provide particular complexes as constants. A
word w ∈ (Σ− Λ)+ stands for a single, linear, positive strand that spells the
word w. A two-letter word AB, for a, b ∈ Σ − Λ, stands for a single, linear,
negative strand of length two of the 1→ 2 with λ(1) = B and λ(2) = A. The
expression immob(A), for A ∈ Σ, stands for a single, negative, immobilized
node labeled A. If a ∈ Λ we call such a node a probe. The expression empty

stands for the empty complex.

The semantics of a DNAQL expression e is defined relative to a context
consisting of a dimension `, an `-complex assignment ν, and an `-counter as-

55

56 DNAQL

〈expr〉 ::= 〈complexvar〉 | 〈foreach〉 | 〈if 〉
| 〈let〉 | 〈operator〉 | 〈constant〉

〈foreach〉 ::= for 〈complexvar〉 := 〈expr〉 iter 〈counter〉 do 〈expr〉
〈if 〉 ::= if empty(〈complexvar〉) then 〈expr〉 else 〈expr〉
〈let〉 ::= let x := 〈expr〉 in 〈expr〉

〈operator〉 ::= ((〈expr〉) ∪ (〈expr〉)) | ((〈expr〉)− (〈expr〉))
| hybridize(〈expr〉) | ligate(〈expr〉)
| flush(〈expr〉) | split(〈expr〉, 〈splitpoint〉)
| block(〈expr〉,Σ− Λ) | blockfrom(〈expr〉,Σ− Λ)
| blockexcept(〈expr〉, 〈counter〉) | cleanup(〈expr〉)

〈constant〉 ::= (Σ− Λ)+ |
(
Σ− Λ

) (
Σ− Λ

)
| immob(Σ) | empty

〈splitpoint〉 ::= #2 | #3 | #4 | #6 | #8

Figure 5.1: Syntax of DNAQL.

signment γ. An `-complex assignment is a mapping from complex variables to
`-complexes; an `-counter assignment is a mapping from counters to {1, . . . , `}.
Naturally, ν must be defined on all free variables of e, and γ must be defined
on all free counters of e. Within such a context, the expression can evaluate
to an `-complex, denoted by [[e]]`(ν, γ).

The semantic rules that define this evaluation are shown in Figures 5.2
and 5.3. The superscript ` has been omitted in the figure to reduce clutter.
The rules for let and for use the oft-used notation f [x := u] to denote the
mapping f updated so that x is mapped to u. Because the operations on
complexes are not always defined, the evaluation may fail, so [[e]]`(ν, γ) may
be undefined. When e is a program, we denote [[e]]`(ν, ∅) simply by [[e]]`(ν).

Example 5.1. We give an example of a DNAQL program, over the input
variables x1 and x2, with a behavior similar to the selection operator and the
cartesian product operator from the relational algebra. Below, a and b are
assumed to be atomic value symbols.

let y1 := cleanup(flush(hybridize(x1 ∪ immob(a)))) in

let y2 := cleanup(flush(hybridize(x2 ∪ immob(b)))) in

if empty(y1) then empty else

if empty(y2) then empty else

cleanup(ligate(hybridize(y1 ∪ y2 ∪#5#1)))

Assume complex C1 holds a set of strands of the form #3∗#4#5, where ∗
stands for a data entry in the form of an `-core, and C2 similarly holds a set of
strands of the form #1#3∗#4. Then the program applied to C1 and C2 filters

57

x is a complex variable

[[x]](ν, γ) = ν(x)

[[e1]](ν, γ) = C1 [[e2]](ν, γ) = C2

[[e1 ∪ e2]](ν, γ) = C1 ∪ C2

[[e1]](ν, γ) = C1 [[e2]](ν, γ) = C2 C1 − C2 is well defined

[[e1 − e2]](ν, γ) = C1 − C2

[[e′]](ν, γ) = C ′ C ′ has terminating hybridization

[[hybridize(e′)]](ν, γ) = hybridize(C ′)

[[e′]](ν, γ) = C ′

[[ligate(e′)]](ν, γ) = ligate(C ′)

[[e′]](ν, γ) = C ′

[[flush(e′)]](ν, γ) = flush(C ′)

[[e′]](ν, γ) = C ′ σ ∈ {#2,#3,#4,#6,#8}
[[split(e′, σ)]](ν, γ) = split(C ′, σ)

[[e′]](ν, γ) = C ′ block(C ′, σ) is well defined

[[block(e′, σ)]](ν, γ) = block(C ′, σ)

[[e′]](ν, γ) = C ′ blockfrom(C ′, σ) is well defined

[[blockfrom(e′, σ)]](ν, γ) = blockfrom(C ′, σ)

[[e′]](ν, γ) = C ′ i is a counter blockexcept(C ′, γ(i)) is well defined

[[blockexcept(e′, i)]](ν, γ) = blockexcept(C ′, γ(i))

[[e′]](ν, γ) = C ′ cleanup(C ′) is well defined

[[cleanup(e′)]](ν, γ) = cleanup(C ′)

Figure 5.2: DNAQL semantics Part 1

58 DNAQL

[[e1]](ν, γ) = C1 [[e2]](ν[x := C1], γ) = C2

[[let x := e1 in e2]](ν, γ) = C2

[[e1]](ν, γ) = C0 [[e2]](ν[x := Cn−1], γ[i := n]) = Cn for n = 1, . . . , `

[[for x := e1 iter i do e2]](ν, γ) = C`

[[e1]](ν, γ) = C1 ν(x) is the empty complex

[[if empty(x) then e1 else e2]](ν, γ) = C1

[[e2]](ν, γ) = C2 ν(x) is not the empty complex

[[if empty(x) then e1 else e2]](ν, γ) = C2

Figure 5.3: DNAQL Semantics Part 2

from C1 (C2) the strands whose data entry contains the letter a (b); if both
intermediate results are nonempty, the program then uses the stickers #5#1

to concatenate each remaining strand from C1 with each remaining strand
from C2.

Example 5.2. Assume a DNAQL expression e resulting in a complex C con-
sisting of strands representing tuples with a single attributes A. Concretely,
each strand in C is of the general form #2A#3t(A)#4. We assume two atomic
value symbols in this example, viz., 0 and 1, hence the values t(A) on the
strands are in a binary code. The following program computes whether there
is a strand in complex C such that the value of attribute A is a sequence of
0’s.

for x := e iter i do

cleanup(flush(hybridize(blockexcept(x, i) ∪ immob(0))))

Essential to this computation is the for-loop iterating counter variable i from
1 to `. Indeed, eliminating the for-loop from this program, implies dropping
the blockexcept operator, as the counter variable would no longer be bound.
Consequently, the program has a significantly altered semantics. Without
the blockexcept operator, the probe labeled 0 can attach to any atomic value
symbol in the value of attribute A. Hence, the program would then compute
whether there is a strand with a 0 in its value for attribute A.

The combination of a for-loop and the blockexcept operator ensure that
only the ith atomic value symbol is free, whereas all other atomic value symbols
are blocked. As a result, each atomic value symbol is probed in turn, from the

59

first to the last value. After blocking all atomic value symbols except the ith ,
a probe labeled 0 is added to the complex. Hybridization is performed so that
the probe attaches to strands with 0 as ith atomic value symbol. Next, the
flush operator removes all non-immobilized components, i.e., the strands with
a 1 as ith atomic value symbol. Finally, the cleanup operator removes the
probe and unblocks any remaining strands. The remaining strands forms the
input to the next iteration. At the end of each iteration of the for-loop, the
current complex contains zero or more strands. Only if there is a strand with
all 0’s, the last iteration will retain a single strand. Otherwise, the output is
empty.

6
Sticker Complex Types

Chapter 3 we introduced the sticker complexes and defined a number of op-
erations on them. Some operations can be applied on any sticker complex,
for example, flush, ligate, or union. Other operations place restrictions on the
sticker complexes they act on, for example, hybridization is only defined on
terminating complexes and the block operations are only defined on saturated
complexes. Most of the conditions posed by operations can be checked easily
and efficiently. Determining termination of hybridization is more complex,
yet still efficient as we discussed in Chapter 4. An applicative programming
language allows us to string multiple operations together. Hence, the question
arises whether a given DNAQL program applied on given types of inputs re-
sults in a defined result? Determining whether a program is “safe” to execute
is a problem encountered all but trivial programming languages. The standard
approach to dealing with this issue is introducing a type system. A type sys-
tem strips the values handled by a programming language to their barest form
to distinguish defined from undefined without performing the computation ex-
pressed by a program. For example, the type system of the Java programming
language will abstract any natural number to the type int. This is enough
information to detect errors that make the output of programs undefined. We
take a similar approach in defining types for sticker complexes, called sticker
complex types. A good overview of programming languages and type systems
can be found in [35, 22].

Intuitively, a sticker complex type is an `-complex where all data entries
have been replaced by wildcards. What remains is a structural description of
the components that may appear in the complex, with attribute names and

61

62 Sticker Complex Types

tags explicit, but the dimension and actual values of data entries hidden. In
order to obtain a powerful type-checking algorithm for DNAQL, these “weak”
types S are augmented to “strong” types that have an indication � of the
mandatory components, which must occur, and a bit h indicating that all
the complexes of a strong type are saturated. The former is needed to type
common DNAQL programs that use hybridization, and the latter is needed to
type blocking operators in a DNAQL program.

6.1 Definition

We begin by introducing four symbols assumed not present in Σ ∪ Σ:

1. ∗ (free) represents an `-core with none of the nodes blocked;

2. ∗ (blocked) represents an `-core with all nodes blocked; and

3. ∗̂ (open) represents an `-core with all nodes except one blocked.

Let N denote the set {∗, ∗, ∗̂}. The positive alphabet without atomic value
symbols, but with the above new symbols is denoted ΣN = Ω ∪Θ ∪N .

The fourth new symbol, denoted by ‘?’ will be used to represent a single
negative atomic value symbol that has been immobilized, i.e., a probe. The
negative alphabet without the negative atomic value symbols, but with ? is
denoted ΣN = Ω ∪ Θ ∪ {?}. Note that ? is considered to be a negative
symbol. We extend the complementarity relation for sticker complex types,
by defining ∗ =?, ∗̂ =? and ? is undefined, i.e., the immobilized negative
atomic value symbol (?) can match with a free or an open `-core. As a result,
the complementarity relation is no longer a bijection. Note that ∗ has no
complementary symbol.

A sticker complex type is very similar to a sticker complex; it is a struc-
ture S = (V,L, λ, µ, ι, β) that satisfies the same definition as that of a sticker
complex with the following exceptions:

− the range of the node labeling function λ is now ΣN ∪ ΣN instead of
Σ ∪ Σ;

− β ⊆ V is not allowed to contain nodes labeled with a symbol from N ;

− there are no redundant components (recall the definition of redundancy
from Chapter 3).

Next, we define the important notion of when a sticker complex C =
(V,L, λ, µ, ι, β) of some dimension ` is said to be well typed. Thereto, recall
the intuitive meaning of the new symbols {∗, ∗, ∗̂, ?}. Formally, consider an
`-core r occurring in C. We say that

6.1. Definition 63

a

a b b #4#3

#4#3 a b b

(a) (b)

Figure 6.1: Two ill-typed complexes. Blocking is shown by underlining a
symbol. The complex in (a) has a negative atomic value symbol that is not
immobilized. This is prohibited by the definition of sticker complexes. The
complex in (b) has one blocked and two non-blocked symbols, this corresponds
neither to ∗, ∗̂ nor ∗.

− r is of type ∗ if no node of r belongs to β, and at most one node of r is
involved in µ;

− r is of type ∗ if all nodes of r belong to β;

− r is of type ∗̂ if all nodes of r but one belong to β.

Now we say that C is well typed if

− every `-core in C is of type ∗, ∗ or ∗̂;

− negative atomic value symbols can only occur on immobilized nodes (i.e.,
probes); and

− every immobilized node is labeled with a negative symbol.

Example 6.1. Figure 6.1 shows two ill-typed complexes. The first complex
is ill typed because it contains a negative atomic value symbol (a) that is not
immobilized. The is prohibited by the definition of sticker complexes. The
second complex is ill typed because the node labeled a in a 3-core is blocked
(shown by underlining the symbol a). This 3-core is thus not of type ∗, as one
node is blocked, and it is not of type ∗̂ or ∗ as two nodes are not blocked.

Moreover, if C is well typed, we define stype(C) as the sticker complex
type obtained by:

− contracting every `-core occurring in C to a single node labeled by the
type of the `-core (∗, ∗ or ∗̂);

− replacing the label of a node labeled with an immobilized negative atomic
value by ?;

64 Sticker Complex Types

− when a node from an `-core r in C is matched by µ to a node u, then
in stype(C) the single node representing r is matched to u. Note that,
by the previous item, in stype(C) node u has label ?. Furthermore, the
node representing r is labeled ∗ or ∗̂.

Note that the subsumption relation among sticker complexes, defined in
Chapter 3, can be adopted naturally to sticker complex types. We have the
following lemma.

Lemma 6.2. Let C1 and C2 be well-typed complexes. If C1 v C2, then
stype(C1) v stype(C2). If stype(C1) v stype(C2) and stype(C1) does not
contain nodes labeled by symbols of N = {∗, ∗̂, ∗, ?}, then C1 v C2.

Proof. If C1 v C2, then for each component c of C1 there is a component c′ of
C2 isomorphic to c. Hence stype(c) is isomorphic to stype(c′). If stype(C1) v
stype(C2) and stype(C1) does not contain nodes labeled by symbols of N ,
then C1 ≡ stype(C1) v stype(C2). Let c ∈ comp(C1), then there is a c′ ∈
comp(stype(C2)) such that c′ ≡ c. Hence c′ does not contain nodes labeled by
symbols of N . Thus a component isomorphic to c′ belongs to C2.

We will often use these properties without mention. For a well-typed
complex C and a complex type S, we now say that C has type S, denoted by
C : S, if stype(C) is subsumed by S. For complex C, stype(C) is the “smallest”
type, in the sense that there is no complex type S′ such that C : S′ and S′ is
strictly subsumed by S.

Example 6.3. Figure 6.2 shows a sticker complex C of dimension 2, and a
sticker complex type S. Structurally, C and S are very alike. There are two
differences: (i) 2-cores are contracted to one node labeled ∗, and (ii) as the
second and third strand of C only differ in their respective 2-cores, only one
strand (the bottom strand of S) is needed to represent both. Sticker complex
type S is stype(C) and is thus the smallest type for C.

A sticker complex type S is “weak”, in the sense that any well-typed
sticker complex having as type a subset of the components of S has type
S. In particular, the empty sticker complex is of every sticker complex type.
This is too weak to type common DNAQL programs involving hybridization,
where we need to know about components that are sure to be present. We
now introduce the notion of a “strong” sticker complex type which can place
further restrictions on sticker complexes. A strong sticker complex type τ is
a triple (S,�, h), where S is a sticker complex type, � is a sticker complex
type subsumed by S, h is a boolean, and moreover if h = true, then C ∪ � is
saturated for all C ∈ comp(S). Sticker complex type S is called the weak type
of τ , � is called the mandatory type of τ , and h is called the h-bit or hyb-bit
of τ .

6.1. Definition 65

a

b #4#2 A #3 a

#2 #3 #4A b c

#2 #3 #4A b b ?

#2 #3A ∗ #4

#2 A #3 ∗ #4

C S

Figure 6.2: A sticker complex C and a sticker complex type S such that C
has type S.

A A

Figure 6.3: A sticker complex type with two single-node components.

For a well-typed sticker complex C and a strong sticker complex type
τ = (S,�, h), we now say that C has type τ , denoted C : τ , if � is subsumed
by stype(C), stype(C) is subsumed by S (i.e., C has type S), and C is saturated
if h = true. A strong sticker complex type τ is called saturated if all complexes
having type τ are saturated. From now on, we will refer to sticker complex
types as weak types and to strong sticker complex types as types. Let τ =
(S,�, h) be a type. With [[τ]] we denote the set of complexes (of any dimension)
having type τ .

Example 6.4. Consider the sticker complex type τ with the weak type shown
in Figure 6.3. Assume that the component on the left is the only mandatory
component and that h = true. Then the component on the right is “garbage”,
in the sense that any complex having type τ cannot contain a node labeled
with A, because such a complex will not be saturated. Indeed, because the
component on the left is mandatory, each complex having type τ must contain
a node labeled A. This is the raison d’être for the condition that for all
C ∈ comp(S), C ∪ � has to be saturated if h = true.

Example 6.5. The h-bit in types is essential for typing the block operations,
i.e., block, blockfrom, and blockexcept. As will become clear in proofs

66 Sticker Complex Types

?

#2 A #3 ∗ #4

#2 A #3 ∗ #4�

#2 A #3 ∗ #4�?

?

Figure 6.4: A type with two mandatory components on the left. On the right
is the hybridization of the type on the left. Despite the fact that all com-
ponents start as mandatory, the hybridization contains only non-mandatory
components.

about types, the h-bit introduces some subtle modeling options. For example,
recall the weak type S shown in Figure 6.3. Suppose a type τ , with weak type
S, � = empty and h = true. There are three complexes having type τ : the
empty complex, the complex consisting of the component on the left and the
complex consisting of the component on the right. The complex consisting of
both components is not saturated and thus prohibited by the h-bit.

Example 6.6. Consider the complex in Figure 6.4, on the left. Although
both components are mandatory (indicated by the �), we will see that the
hybridization of this type consists of three non-mandatory components (Fig-
ure 6.4 on the right). Let us call this type τ = (S,�, h). The h-bit of the
resulting type is true. This has important repercussions on the set of com-
plexes having this type. Indeed, consider the complex in Figure 6.5. This
complex does not have type τ , but it has type τ ′ = (S,�, false).

6.2 Saturated

The definition of a saturated type is semantic. Can we decide, based on the
syntax of a type, whether the type is saturated?

Lemma 6.7. Type τ = (S,�, h) is saturated if and only if S is saturated or
h = true.

Proof. First, we prove the only-if-direction. Suppose τ is not saturated. Then
there is a sticker complex C such that C ∈ [[τ]] and C is not saturated. Clearly,
h cannot be true, because an unsaturated complex has type τ . Secondly, by

6.2. Saturated 67

b

A d#2 #3 #4

#2 aA #4#3

#2 A #3 #4c

c d

Figure 6.5: A complex with five components. This complex does not have the
type on the right of Figure 6.4.

C ∈ [[τ]] we know that stype(C) v S. If a complex subsumed in S is not
saturated, S itself cannot be saturated.

Secondly, we prove the if-direction. Suppose that S is not saturated and
h = false. We show that there is a complex C having type τ that is not satu-
rated. Because S is not saturated, there are (at least) two nodes u and v such
that adding {u, v} to µ still results in a valid weak type. Nodes u and v are
thus free, λ(u) = λ(v) and the nodes do not connect two (different) immobi-
lized components (note that u and v may be part of the same (immobilized)
component). Let Cu resp. Cv be the component of node u resp. v. We define
stype(C) as the union of �, Cu and Cv. We split the construction into two
cases (without loss of generality we assume that node u has the positive label):

1. λ(u) /∈ N : node u is not labeled with ∗, ∗, or ∗̂. Replacing the `-cores
in stype(C) by any sequence of atomic value symbols, and replacing all
the probes by an arbitrary negative atomic value symbols, results in a
complex C that is not saturated.

2. λ(u) ∈ N : node u is labeled either with ∗ or with ∗̂. Consequently, v is
labeled with ?. Fix an atomic value symbol, say a ∈ Λ. We let complex
C be the complex in which all `-cores are replaced by a` and all probes,
i.e., ?, are replaced by a.

Note that, as a consequence of Lemma 6.7, saturatedness of a type is
decidable in polynomial time. Indeed, simply iterating over all pairs of nodes
is sufficient to find out whether a complex is saturated or not.

68 Sticker Complex Types

6.3 Subtypes

A desirable property of types is that they are inhabited, i.e., for every type τ ,
the set [[τ]] is nonempty. Indeed, any complex C with stype(C) ≡ � belongs to
[[τ]]. Indeed, if the h-bit is set to false, any complex D with � v stype(D) v S
is of type τ , and thus in particular complex C. On the other hand, if the h-bit
is set to true, by the definition of a strong sticker complex type the weak type
� is saturated, consequently, C is saturated.

Let τ and τ ′ be two types. We denote [[τ]] ⊆ [[τ ′]] by τ � τ ′. A type τ is
subsumed in, or equivalently is a subtype of, another type τ ′ if all complexes
having type τ also have type τ ′. Two types τ and τ ′ are called equivalent if
τ � τ ′ and τ ′ � τ .

Example 6.8. Recall the type τ = (S,�, true) on the right of Figure 6.4.
Let type τ ′ = (S,�, false). Notwithstanding the fact that both τ and τ ′ have
the same weak type and the same set of mandatory components, we have that
τ � τ ′ but not τ ′ � τ , because the complex shown in Figure 6.5 has type τ ′

but does not have type τ .

The notion of subtyping is defined semantically. However, a type can have
an infinite number of complexes. An efficiently decidable syntactic charac-
terization of subtyping is thus called for. Proposition 6.9 provides such a
characterization.

Proposition 6.9. Let τ = (S,�, h) and τ ′ = (S′,�′, h′) be types. Type τ is a
subtype of τ ′ if and only if (i) S v S′; (ii) �′ v �; and (iii) if h′ = true then
τ is saturated.

Proof. First, we prove the ⇒-direction. We know that τ � τ ′, and we assume
that one of the three conditions is false, to arrive at a contradiction.

(i) Suppose that S = S′ holds. Let D be a component in comp(S) \
comp(S′). Let C be a complex with stype(C) = � ∪ D. Complex C
has type τ , even if h = true. But complex C clearly does not have type
τ ′, because D is not a component of S′.

(ii) Suppose that �′ = � holds. Let C be a complex with stype(C) = �.
By definition, C has type τ . Complex C does not have type τ ′, because
stype(C) = � < �′.

(iii) Suppose that h′ = true and τ is not saturated. If type τ is not saturated,
then h = false and S is not saturated. Let complex C be a complex with
stype(C) = S, in which all `-cores are replaced by a sequence of a labeled
nodes, with a ∈ Σ, and all probes are labeled with a. Complex C has
type τ and is not saturated. Consequently, C does not have type τ ′.

6.3. Subtypes 69

b � a b � a

τ τ ′

Figure 6.6: Types τ = (S,�, false) and τ ′ = (S′,�′, true) with τ � τ ′.

The ⇐-direction is easier to prove. Let C be a complex having type τ , we
show that C also has type τ ′: (i) stype(C) v S v S′; (ii) �′ v � v stype(C);
and (iii) if h′ = true, then τ is saturated and thus C is saturated.

Lemma 6.7 implies that the notion of saturated for types is decidable in
polynomial time, and therefore the notion of subtype is decidable in polyno-
mial time.

We have the following corollary to Proposition 6.9.

Corollary 6.10. Let τ = (S,�, h) and τ ′ = (S′,�′, h′) be types. Types τ and
τ ′ are equivalent if and only if (i) S ≡ S′; (ii) � ≡ �′; and (iii) if S ≡ S′ is
not saturated, then h = h′.

Proof. Recall that S v S′ and S′ v S iff S ≡ S′ (and similarly for � and �′).
Hence τ and τ ′ are equivalent iff (i) S ≡ S′; (ii) � ≡ �′; (iii) if h′ = true then
τ is saturated; and (iv) if h = true then τ ′ is saturated.

By Lemma 6.7, τ = (S,�, h) is saturated iff S is saturated or h = true
(and similarly for τ ′). Hence, if S ≡ S′ is saturated, then conditions (iii)
and (iv) hold trivially. If S ≡ S′ is not saturated, then condition (iii) says if
h′ = true, then h = true, and condition (iv) says if h = true, then h′ = true.
Consequently, h = h′ in this case.

Obviously, type τ = (S,�, true) is a subtype of the type τ ′ = (S,�, false).
On the other hand, by Corollary 6.10, τ ′ = (S,�, false) may also be a subtype
of τ when S is saturated.

Example 6.11. Figure 6.6 shows types τ = (S,�, false) and τ ′ = (S′,
�′, true) with τ � τ ′. Since S is saturated, setting h = true in τ yields a
type equivalent to τ .

The next lemma specifies the “tightest” type (up to equivalence) for a
given complex.

Lemma 6.12. Let C be a complex and τ a type. Then C : τ iff (stype(C),
stype(C), hC) � τ with hC = true iff C is saturated.

Proof. Let τ = (S,�, h). Suppose C : τ , then we show that (stype(C),
stype(C), hC) � τ . By C : τ we know that (i) stype(C) v S, (ii) � v stype(C),

70 Sticker Complex Types

and (iii) if h = true, then C is saturated. Because, hC is defined as true if C
is saturated, these are also the conditions for (stype(C), stype(C), hC) � τ as
shown in Proposition 6.9.

Next, we show that if (stype(C), stype(C), hC) � τ , then C : τ . By
Proposition 6.9 we know that (stype(C), stype(C), hC) � τ implies that (i)
S v stype(C), (ii) � v stype(C), and (iii) if h = true, then (stype(C),
stype(C), hC) is saturated. Items (i) and (ii) are the first condition for C : τ .
From Lemma 6.7 we know that if (stype(C), stype(C), hC) is saturated, then
stype(C) is saturated or hC = true. If stype(C) is saturated, then C is satu-
rated. If hC = true, then by definition C is saturated. Hence, we may conclude
C : τ .

6.4 Least upper bound

Let τ1 and τ2 be types. A type τ is called an upper bound of τ1 and τ2 if τ1 � τ
and τ2 � τ . A type τ is called the least upper bound of τ1 and τ2 if τ is an
upper bound of τ1 and τ2 and for all upper bounds τ ′ of τ1 and τ2, τ � τ ′.
Note that if τ and τ ′ are least upper bounds of τ1 and τ2, then τ and τ ′ are
equivalent. We denote the (up to equivalence unique) least upper bound of τ1

and τ2 (if it exists) by τ1 ∨ τ2.
Let S1 and S2 be two weak types. The intersection of S1 and S2 is the

weak type formed by the components of S1 having an isomorphic companion
in the set of components of S2. We denote the intersection of S1 and S2 by
S1 ∩ S2.

Proposition 6.13. Let τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) be types.
The least upper bound of τ1 and τ2 exists and is equivalent to (S1 ∪ S2,�1 ∩
�2, τ1 saturated ∧ τ2 saturated).

Proof. First, note that (S1 ∪ S2,�1 ∩ �2, τ1 saturated ∧ τ2 saturated) is a
type. Indeed, as τ1 and τ2 are types, S1 ∪ S2 and �1 ∩ �2 are weak types,
and �1 ∩ �2 v �1 v S1 v S1 ∪ S2. Denote the weak type �1 ∩ �2 with �.
If h = true, we must show that for all C ∈ comp(S) it holds that � ∪ C is
saturated. The fact that h = true indicates that both τ1 and τ2 are saturated.
Type τi, for i ∈ {1, 2} is saturated iff Si is saturated or hi = true. If C ∈ Si,
then �i ∪ C is saturated, because �1 ∩ �2 v �i, � ∪ C is saturated.

Now we must show that τ = (S1∪S2,�1∩�2, τ1 saturated ∧τ2 saturated)
is the least upper bound. Let τ ′ = (S′,�′, h′) be a type. Type τ ′ is an upper
bound of τ1 and τ2 if τi � τ ′ for i ∈ {1, 2}. By Proposition 6.9, τi � τ ′

iff Si v S′, �′ v �i and if h′ = true, then τi is saturated. Hence, τ ′ is an
upperbound iff S1∪S2 v S′, �′ v �1∩�2, and if h = true, then τ1 is saturated
and τ2 is saturated. Hence, by Proposition 6.9, τ ′ is an upper bound of τ1 and
τ2 iff τ � τ ′.

6.5. Greatest lower bound 71

b � �b

τ1 τ2

Figure 6.7: Types τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2), having no mandatory
components in common. As a result, τ1 ∨ τ2 = (S1 ∪ S2, empty, true) allows
the empty complex, whereas the empty complex is not part of [[τ1]] or [[τ2]].

In some cases, we will have [[τ1]]∪ [[τ2]] ≡ [[τ1 ∨ τ2]], however, not in all cases
will this be true. Indeed, consider the two types τ1 and τ2 shown in Figure 6.7.
The empty complex is in [[τ1 ∨ τ2]], whereas the empty complex is not in [[τ1]]
or [[τ2]], because these types have a nonempty mandatory type.

6.5 Greatest lower bound

Let τ1 and τ2 be types. A type τ is called a lower bound of τ1 and τ2 if τ � τi
for all i ∈ {1, 2}. A type τ is called a greatest lower bound of τ1 and τ2 if τ is
a lower bound of τ1 and τ2, and for all lower bounds τ ′ of τ1 and τ2, τ ′ � τ .
Notice that if τ and τ ′ are greatest lower bounds, then τ and τ ′ are equivalent.
The (up to equivalence unique) greatest lower bound of τ1 and τ2 (if it exists)
is denoted by τ1 ∧ τ2.

Proposition 6.14. Let τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) be types. Then
a lower bound of τ1 and τ2 exists iff both �1 ∪ �2 v S1 ∩ S2 and if either τ1

or τ2 is saturated, then �1 ∪ �2 is saturated. If a lower bound of τ1 and τ2

exists, then there is a greatest lower bound τ , and τ is equivalent to τg = (S1∩
S2−Z,�1 ∪�2, τ1 saturated ∨ τ2 saturated), where Z = {C ∈ comp(S1 ∩S2) |
C ∪�1 ∪�2 is saturated} if either τ1 or τ2 is saturated, and Z = ∅ otherwise.

Proof. First note that τg is a type iff both �1 ∪ �2 v S1 ∩ S2 and if either τ1

or τ2 is saturated, then �1 ∪ �2 is saturated.

Let τ = (S,�, h) be a type. Then, by Proposition 6.9, τ � τi iff S v Si,
�i v �, and if hi = true, then τ is saturated. Hence, τ is a lower bound of
τ1 and τ2 iff S v S1 ∩ S2, (�1 ∪ �2) v �, and if h1 = true or h2 = true, then
τ is saturated. By Corollary 6.10, if τi is saturated and hi = false, then the
type τ ′i obtained from τi by setting hi to true is equivalent to τi. Thus, τ is
a lower bound of τ1 and τ2 iff S v S1 ∩ S2, (�1 ∪ �2) v �, and if τ1 or τ2

is saturated, then τ is saturated. Hence, τ is a lower bound of τ1 and τ2 iff
both (1) �1 ∪ �2 v S1 ∩ S2, (2) if either τ1 or τ2 is saturated, then �1 ∪ �2

is saturated, and (3) τ � τg, where the h-bit τ1 saturated ∨ τ2 saturated of τg
follows from Proposition 6.9.

72 Sticker Complex Types

Example 6.15. Types τ1 and τ2 from Figure 6.7 do not have a greatest lower
bound. Indeed, S1 ∩ S2 is the empty complex, while the weak type �1 ∪ �2

contains two components.

6.6 Operations on Sticker Complex Types

We have defined a set of operations on complexes. The type system will
mimic the structural changes, effected by the operations on complexes, on
types. Therefore we define the set of operations, introduced in Section 3.4, on
types.

As a general proviso, in the following definitions, a final minimization step
should always be applied to the weak types of the resulting type, so as to
obtain a mathematically deterministic operation. In the following definitions
we keep this implicit so as not to clutter up the presentation. Also, it is
understood that the result of each operation is defined up to isomorphism.

Union

Let τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) be two types. We let τ1 ∪ τ2 =
(S1 ∪ S2,�1 ∪ �2, h), where h = true iff both (1) S1 and S2 are mutually
non-interacting, i.e., there is no vertex u in a component C1 of S1 and vertex
v in a component C2 of S2 such that (a) u and v are free and complementary
labeled, and (b) C1 and C2 are not both immobilized, and (2) Si is saturated
or hi = true for all i = 1, 2.

Note that τ1 ∪ τ2 is a type as for all C ∈ comp(S1), C ∪ �1 is saturated,
and thus C ∪ �1 ∪ �2 is saturated by condition (1) when h = true (the case
C ∈ comp(S2) is analogous).

Difference

Let τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) be two types, with Si = (Vi, Li, λi,
µi, ιi, βi) for i = 1, 2, satisfying:

1. µ1 = ι1 = β1 = ∅ = µ2 = ι2 = β2 and there are no nodes labeled with ∗
or ∗̂, i.e., all components in S1 and S2 are single strands.

2. All strands of S1 and S2 are positive, non-circular. Furthermore, all
strands have the same length and the same number of ∗-labeled nodes.

3. Each strand of S2 ends with #4 and does not contain #5.

If these conditions are not satisfied, the operation is undefined.

6.6. Operations on Sticker Complex Types 73

A#2 #3 #4∗

�

Figure 6.8: A hybridized, strong type with a single mandatory component.

Table 6.1: Two complexes having the type depicted in Figure 6.8.
C1

#2A#3a#4

#2A#3b#4

C3

#2A#3b#4

#2A#3c#4

Let T1 be the set of all strands in S1 that do not have an isomorphic copy
in S2:

T1 = {D ∈ comp(S1) | ∀E ∈ comp(S2), E 6∼= D}
Let T2 be the set of all strands in S1 that do not have an isomorphic copy in
S2 that is mandatory:

T2 = {D ∈ comp(S1) | ∀E ∈ �2, E 6∼= D}

We denote the set of components in a sticker complex type S with a ∗-
labeled node by data(S). The difference τ1 − τ2 equals

(
data(S1) ∪ T2,�1 ∩

T1, true
)
. Note that τ1 − τ2 is a type, because all components are positive,

non-circular strands. Hence, every subset of data(S1) ∪ T2 is saturated.

Example 6.16. Figure 6.8 shows a type τ with a single mandatory compo-
nent. The h-bit is true. There are no matching, blockings nor immobilizations
and the strand ends on a #4 and does not contain a #5. Consequently, the
difference between τ and itself is defined. All complexes having type τ consist
of linear strands, differing solely on the atomic value symbols. Let C1 and C2

be complexes of dimension 1 having type τ . The content of the complexes is
listed in Table 6.1. On the type-level, the cases C1 − C1 and C1 − C2 are in-
distinguishable, however, the resulting complexes are definitely different. The
output of C1 − C1 is the empty complex, whereas the output of C1 − C2 is
the complex containing the strand #2A#3a#4. In other words, the values of
data strands (strands with a node labeled ∗) are unknown on the type-level,
consequently, they are preserved in the output type.

Hybridize

The hybridize operator on sticker complexes can naturally be adapted to weak
types by incorporating the extended complementarity relation, i.e., with ∗ =?

74 Sticker Complex Types

�

#2 #3 #4∗

�

A

?

Figure 6.9: A type τ with two mandatory components.

and ∗̂ =? as legal matchings. Denote this adjusted version by hybridizet.

Let τ = (S,�, h) be a type. If h = true, then the hybridization of τ ,
denoted hybridize(τ), equals τ .

Assume h = false. If hybridization does not terminate for S, then the
hybridization of τ is not defined.

We call a component D a necessary component of τ if D ∈ comp(�) and
D is not isomorphic to immob(?). Let NC be the set of necessary components
of τ . The hybridization of τ , denoted hybridize(τ), equals (Cs,�h, true),
where

Cs =

(⋃
NCvXvS

hybridizet(X)

)
∪ {immob(?) | immob(?) v S},

and �h consists of all components D of Cs such that either (1) D is a compo-
nent of both hybridizet(NC) and hybridizet(S) or (2) D = immob(?) ∈ �
and there is no component in S with an free node labeled with ∗ or ∗̂.

Note that hybridize(τ) is well defined as D ∪ �h not saturated for some
D ∈ Cs would imply that some D′ ∈ �h is unfinished with respect to Cs — a
contradiction.

Example 6.17. Consider type τ displayed in Figure 6.9. Type τ ′ equals
hybridize(τ) and is shown in Figure 6.10 (except for the h-bit which is always
true). Note that the weak type of τ ′ consists of three components, all of which
are not mandatory.

Ligate & Flush

The definition of ligate and flush on sticker complexes is naturally adapted
to weak types. Let τ = (S,�, h) be a type. Then the ligation of τ , denoted
by ligate(τ), equals (ligate(S), ligate(�), h). Similarly, flush(τ) equals
(flush(S), flush(�), h).

6.6. Operations on Sticker Complex Types 75

∗

#2 #3 #4∗A

#2 #3 #4A

?

?

Figure 6.10: Type hybridize(τ), where τ is from Figure 6.9.

Split

The definition of split on sticker complexes is naturally adapted to weak
types. Let τ = (S,�, h) be a type. Let label be the label of a split point, recall
Table 3.1. Then the split of τ , denoted split(τ, label), equals (split(S, label),
split(�, label), h).

Block

The definition of the block operator on sticker complexes is naturally adapted
to weak types. Let τ = (S,�, h) be a type and let σ ∈ (Ω ∪ Θ) be a tag
or an attribute symbol. For block(τ, σ) to be defined, it is required that τ
is saturated, otherwise, the operation is undefined. We define block(τ, σ) =
(block(S, σ), block(�, σ), true).

Block-From

Except for a slightly altered definition of a σ-blocking range, the definition
of the block-from operator on sticker complexes is naturally adapted to weak
types, as we show next. Let τ = (S,�, h) be a type and let σ ∈ (Ω ∪Θ) be a
symbol. Again, τ must be saturated. Otherwise, the operation is undefined.

Consider a substrand s of S. We call s a σ-blocking range, in the context
of weak types, if it satisfies two conditions. Firstly, all nodes of the substrand
are free and none of them is labeled with ∗ or with ∗̂. Secondly, the last node
of the substrand is labeled with σ. We define for any weak type W with set
β of blocked nodes, blockfrom(W,σ) to be the weak type obtained from W
by adding to β all nodes x appearing in some σ-blocking range, except if x is
labeled ∗, in that case x is relabeled with ∗.

76 Sticker Complex Types

Block-Except

Operation blockexcept is defined on a weak type S iff each of the following
conditions hold:

1. every node labeled with ∗,∗̂, or ∗ is preceded by a node labeled #3 and
be followed by a node labeled #4;

2. every node labeled with ∗ is not matched, and the preceding node and
following node (labeled by #3 and #4, resp.) are both free;

3. every node labeled with ∗̂ is matched;

4. every node labeled ∗̂, or ∗ is is preceded and followed by a closed node
labeled by #3 and #4;

5. S is saturated.

If these conditions are satisfied, then blockexcept(S) is obtained from S by,
looking for any triple of consecutive, unmatched nodes (n1, n2, n3) on a strand
where n1 is labeled #3, n2 is labeled ∗, and n3 is labeled #4. For any such
triple, we relabel n2 to ∗̂, and we add n1 and n3 to β.

Let τ = (S,�, h) be a type. We define the operation blockexcept(τ) by
(blockexcept(S), blockexcept(�), true).

Note that blockexcept for types no longer requires a natural number n
as parameter. Indeed, the dimension of sticker complexes is abstracted away
in sticker complex types.

Cleanup

Let τ = (S,�, h) be a type. Recall that strands(S) denotes the set of positive
strands of S. For any set X, we denote the powerset of X, i.e., the set of all
subsets, by P(X). Let us use the function ω : strands(S)→ P(comp(S)) that
maps each positive strand of S to the set of components of S containing the
strand. For any t ∈ strands(S), let n(t) be the length of t and let a(t) be the
number of nodes labeled ∗, ∗̂ or ∗.

First, we define the weak type of cleanup(τ) which we will denote by
Sclean . For any s ∈ strands(S), we say that s qualifies for Sclean if there exists a
component D ∈ ω(s) such that the system of inequalities {n(s)+(`−1)a(s) ≥
n(t) + (` − 1)a(t) | t ∈

(
strands(�) ∪ strands(D)

)
} has a positive integer

solution in the variable `. Note that n(t) + (`−1)a(t) equals the actual length
of a strand represented by t in a complex of dimension `. So, intuitively, s
qualifies if and only if for some dimension ` and some `-complex of type τ , s
has maximal length. The weak type Sclean consists of all qualified strands, in

6.6. Operations on Sticker Complex Types 77

which all blockings have been cleared and ∗̂- and ∗-labeled nodes are relabeled
to ∗.

Furthermore, we say that a strand s ∈ Sclean qualifies for mandatory, if for
each strand t ∈ Sclean , the strict inequality n(s)+(`−1)a(s) < n(t)+(`−1)a(t)
has no positive integer solution in `. Denote with �clean the mandatory weak
type of cleanup(τ). A strand s ∈ Sclean belongs to �clean , if s originates from
a mandatory component, i.e., ∃D ∈ ω(s) : D ∈ comp(�), and s qualifies for
mandatory.

The cleaning of τ , denoted cleanup(τ), equals (Sclean ,�clean , true).
Note that it is easy to decide whether a particular strand s qualifies for

Sclean . Indeed, for any D as above, it suffices to consider the inequalities
n(s) + (`− 1)a(s) ≥ n(t) + (l− 1)a(t) for t ∈ strands(�) ∪ strands(D) (one of
these inequalities is trivial). Each inequality yields a lower bound (if a(s) >
a(t)) or an upper bound (if a(s) < a(t)) of (n(t)−n(s))/(a(s)−a(t)) + 1 on `;
if a(s) = a(t) the inequality amounts to the simple condition n(s) ≥ n(t). All
inequalities are simultaneously satisfied by some ` if and only if the greatest
lower bound does not exceed the least upper bound (which must be positive)
and all simple conditions are satisfied.

Lemma 6.18. Let τ = (S,�, h) be a type; let ` be a natural number; let C
be an `-complex of type τ ; let d be a strand belonging to cleanup(C); and let
s = stype(d). Then s qualifies for Sclean .

Proof. Strand d originates from a component D of complex C. Let E =
stype(D). Since complex C has type τ , we know that � v stype(C). Since d
belongs to cleanup(C), the length of d is greater than or equal to the length of
any strand d′ in C. In particular, strand d is at least as long as every strand in
component D and strand d is at least as long as every strand in a mandatory
component of C. Recall that the length of d equals n(s)+(`−1)a(s). In other
words: n(s) + (`− 1)a(s) ≥ n(t) + (`− 1)a(t) for any strand t ∈ strands(�) ∪
strands(D). Hence, s qualifies for Sclean .

7
A Type System for DNAQL

In this chapter we introduce a type system for DNAQL and we show that
it enjoys the desirable properties of soundness, maximality, and tightness.
Intuitively, a safe type system ensures that if a program type checks, then
the program will not exhibit predefined erroneous behavior. A maximal type
system only refuses programs if there is a reason to, i.e., there a situation in
which the program crashes. A tight type system returns a type that cannot
be made more precise, i.e., represent less values.

7.1 Type System

A DNAQL expression e has a set of free variables, denoted FV (e). If a type
is fixed for each free variable, all the complexvar -subexpressions of e are well
typed and their types are known. The constant-subexpressions of e are always
well typed, and their types are known (cf. Figures 7.1 and 7.2). In the previous
chapter we defined for each DNAQL operator, its counterpart operating on
types. In this chapter we extend these rules to incorporate the for, if, and
let expressions. By applying these rules, we can derive, from the types of the
free variables and constants, for each subexpression of e, and ultimately for e
itself, whether it is well typed.

More formally, a type assignment Γ is a mapping from a finite set of
complex variables, dom(Γ), to types. Let e be a DNAQL expression. If
dom(Γ) ⊇ FV (e), then we say that Γ is a type assignment on e.

The typing relation for DNAQL is defined in Figures 7.1 and 7.2. Here we
write Γ ` e : τ to indicate that expression e is assigned type τ under type

79

80 A Type System for DNAQL

assignment Γ on e. If Γ ` e : τ , then we call (Γ, τ) a typing of e. The domain
of Γ is extended from variables to expressions as specified in Figures 7.1 and
7.2. The typing relation given in Figure 7.1 and 7.2 is clearly unambiguous,
i.e., if Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2. Note that conditions of the
typing-rules of the if statement are mutual exclusive.

Recall the formal semantics of DNAQL in Chapter 5. When ` is not im-
portant, we refer to an `-complex assignment simply as a complex assignment.
Let Γ a type assignment, and let ν be a complex assignment. We naturally
say that ν has type Γ if dom(ν) = dom(Γ) and for all x ∈ dom(ν), we have
ν(x) : Γ(x), i.e., complex ν(x) has type Γ(x). The set of all complex assign-
ments of Γ is denoted by [[Γ]].

7.2 Sound

Given a DNAQL expression e and given a type assignment Γ on e, e is called
`-safe, for a fixed dimension `, if for any `-complex assignment ν and any
`-counter assignment γ on e, with ν ∈ [[Γ]], the result [[e]]`(ν, γ) is well defined.
If e is `-safe for every `, then we say that e is safe.

If e is safe under Γ and, moreover, for every dimension `, every `-complex
assignment ν and every `-counter assignment γ, if ν ∈ [[Γ]] then [[e]]`(ν, γ) has
type τ , then we say that e is safe under Γ with output type τ . We denote this
by Γ |= e : τ .

Since types do not restrict the dimension of complexes, if a type involves
wildcards, there are infinitely many complexes of that type. Hence safety
is not easy to guarantee, indeed safety is undecidable: this will follow from
Theorem 8.2 and an easy reduction from satisfiability of well-typed relational
algebra expressions, which is undecidable [1].

The best we can do is to come up with a type system that tries to infer
output types from the given input types. The type-checking algorithm induced
by Figures 7.1 and 7.2, given e and Γ as above, judges whether e is well typed
under Γ, and, if so, infers its output type τ . This is denoted by Γ ` e : τ .

Let ` denote a typing relation. We say that typing relation ` is sound,
if for every expression e, type assignment Γ on e and type τ , it holds that if
Γ ` e : τ , then Γ |= e : τ , i.e., e safe is under Γ with output type τ .

Theorem 7.1. The DNAQL typing relation is sound.

Proof. Let Γ ` e : τ . By induction on e we show that e is safe under Γ with
output type τ . Below we let ` be an arbitrary dimension, ν be an `-complex
assignment on e with ν ∈ [[Γ]], and γ an arbitrary `-counter assignment on e.
To reduce clutter, the dimension ` is often not explicitly mentioned.

7.2. Sound 81

x ∈ dom(Γ)

Γ ` x : Γ(x)

e is a 〈constant〉 expression

Γ ` e : (S, S, true) S = stype(e)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1 ∪ e2 : τ1 ∪ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 − τ2 is well defined

Γ ` e1 − e2 : τ1 − τ2

Γ ` e : τ
hybridize(τ) is well defined and has terminating hybridization

Γ ` hybridize(e) : hybridizet(τ)

Γ ` e : τ

Γ ` ligate(e) : ligate(τ)

Γ ` e : τ

Γ ` flush(e) : flush(τ)

Γ ` e : τ σ ∈ {#2,#3,#4,#6,#8}
Γ ` split(e, σ) : split(τ, σ)

Γ ` e : τ σ ∈ (Ω ∪Θ) block(τ, σ) is well defined

Γ ` block(e, σ) : block(τ, σ)

Γ ` e : τ σ ∈ (Ω ∪Θ) blockfrom(τ, σ) is well defined

Γ ` blockfrom(e, σ) : blockfrom(τ, σ)

Γ ` e : τ blockexcept(τ) is well defined

Γ ` blockexcept(e, i) : blockexcept(τ)

Γ ` e : τ

Γ ` cleanup(e) : cleanup(τ)

Figure 7.1: Typing relation of DNAQL part 1

82 A Type System for DNAQL

Γ ` e1 : τ1 Γ[x := τ1] ` e2 : τ2

Γ ` let x := e1 in e2 : τ2

Γ ` e1 : τ1 Γ[x := τ1] ` e2 : τ1

Γ ` for x := e1 iter i do e2 : τ1

Γ ` x : (Sx, ∅, hx) Sx = (∅, ∅, ∅, ∅, ∅, ∅) Γ ` e1 : τ1

Γ ` if empty(x) then e1 else e2 : τ1

Γ ` x : (Sx,�x, hx) �x 6= ∅ Γ ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ2

Γ ` x : (Sx,�x, hx) �x = ∅
|comp(Sx)| = 1 Γ ` e1 : τ1 Γ[x := (Sx, comp(Sx), hx)] ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ1 ∨ τ2 h = (S1 ∪ S2 is saturated)

Γ ` x : (Sx,�x, hx)
�x = ∅ |comp(Sx)| > 1 Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ1 ∨ τ2 h = (S1 ∪ S2 is saturated)

Figure 7.2: Typing relation of DNAQL part 2.

Variable. Let e = x ∈ dom(ν) be a variable. By Figure 7.1, Γ ` x : Γ(x).
Hence ν(x) : Γ(x) = τ . Consequently, [[e]](ν, γ) = ν(x) : τ as required.

Constant. If e is a constant, the soundness property holds by definition,
noting that every constant in the DNAQL language is saturated.

Union. Let e = e1 ∪ e2. By induction, we assume that C1 = [[e1]](ν, γ) and
C2 = [[e2]](ν, γ) are defined and they are of types τ1 = (S1,�1, h1) and
τ2 = (S2,�2, h2). By definition the union of two sticker complexes is
defined and so C = C1∪C2 = [[e]](ν, γ) is defined. We have τ = τ1∪τ2 =
(S1 ∪ S2,�1 ∪ �2, h).

It suffices to show that C is of type τ . We verify the three conditions in
the definition a complex having a particular type.

Let D ∈ comp(C). Hence D ∈ comp(C1) or D ∈ comp(C2). Conse-
quently, stype(D) is subsumed by S1 or by S2, and thus by S1 ∪ S2.

Let s ∈ comp(�1 ∪ �2). If s ∈ comp(�1), then s is subsumed by
stype(C1), and if s ∈ comp(�2), then s is subsumed by stype(C2). Hence
s is subsumed by stype(C).

If h = true, then by definition of union on types, both (1) S1 and S2

are mutually non-interacting, and (2) Si is saturated or hi = true for

7.2. Sound 83

all i ∈ {1, 2}. Assume to the contrary that C is not saturated. Let u
and v be mutually interacting nodes of C. In stype(C), nodes u and
v are represented by nodes u′ and v′ respectively, which are mutually
interacting nodes of stype(C). Since stype(C) is subsumed by S, nodes
u′ and v′ in stype(C) correspond to nodes u′′ and v′′ in S1 ∪ S2. By (1),
u′′ and v′′ belong both to S1 or both to S2. In particular, nodes u and
v must both belong to C1 or both to C2. Without loss of generality, we
may assume that u and v both belong to C1 (and thus u′′ and v′′ both
belong to S1). But then S1 would not be saturated, whence h1 = true
by (2). Hence C1 is saturated, which is in contradiction with u and v
being mutually interacting nodes of C1.

Difference. Let e = e1 − e2. By induction, we assume that C1 = [[e1]](ν, γ)
and C2 = [[e2]](ν, γ) are defined and they have types τ1 = (S1,�1, h1)
resp. τ2 = (S2,�2, h2). It is given that τ1 and τ2 fulfill the restrictions
posed by the definition of difference on types and that e is of type τ =
τ1 − τ2 = (S,�, h).

First we prove that C = [[e]](ν, γ) is defined. The definition of difference
on sticker complexes imposes three restrictions on the sticker complexes
C1 and C2. We prove that each restriction is met.

1. There are no matchings, no immobilizations, no blockings, no nodes
labeled ∗ and no nodes labeled ∗̂ in S1 and S2. Thus, there can be
no immobilizations, matchings or blockings in C1 or C2.

2. The components of τ1 and τ2 are all positive, non-circular, of equal
length and with the same number of nodes labeled ∗. Thus, C1 and
C2 consist of positive, non-circular and equal length strands.

3. All the strands in τ2 end on #4 and do not contain #5. Thus, all
strands in C2 end on #4 and do not contain #5.

We may thus conclude that C is well defined. Next, we prove that C is
of type τ .

By the definition of difference on complexes, D ∈ comp(C) implies that
D is subsumed by C1, but not subsumed by C2. Consequently, stype(D)
is subsumed by S1 and (1) stype(D) is not subsumed by �2 or (2)
stype(D) contains ∗, ∗̂, or ∗ (or both). Thus stype(D) ∈ comp(data(S1)∪
T2) where T2 is the complex containing all components of S1 that are
not subsumed by �2 — as required.

Let s ∈ comp(�). By definition of �, s ∈ comp(�1) and is not sub-
sumed by S2. Moreover, since s ∼= stype(D) is not subsumed by S2,
but stype(C2) is subsumed by S2, we have by Lemma 6.2 that D is not

84 A Type System for DNAQL

subsumed by C2. Thus D ∈ comp(C) whence s is subsumed by stype(C)
as desired.

By definition h = true, and indeed the result of the difference operation
is a set of positive strands, and therefore trivially saturated.

Hybridize. Let e = hybridize(e′). By induction, we assume that [[e′]](ν, γ)
= C ′ is defined and is of type τ ′ = (S′,�′, h′). Moreover, the operation
τ = hybridize(τ ′) = (S,�, h) is defined.

If h′ = true, then τ = τ ′ and C ′ is saturated. Hence hybridize(C ′) = C ′

and so hybridize(C ′) is clearly of type τ .

Assume now that h′ = false. Since τ is defined, hybridization terminates
for weak type S′ (i.e., hybridizet(S

′) is defined). By Theorem 4.1 there
is no alternating cycle in the hybridization graph of S′ (the definition
of hybridization graph is straightforwardly extended to sticker complex
types by using the extended complementarity relation). Consequently,
there is no alternating cycle in the hybridization graph of C ′, and there-
fore C ′ has terminating hybridization (`-cores and ?-labeled probes can
never engage in an alternating cycle). Hence [[e]](ν, γ) is well defined.

It remains to show now that [[e]](ν, γ) = C is of type τ . LetD ∈ comp(C).
We show that stype(D) is subsumed by S; recall that

S =

(⋃
NCvXvS′

hybridizet(X)

)
∪ {immob(?) | immob(?) v S′},

Recall that D (as a component of C) is a finished saturated hybridization
extension of the disjoint union of some multiset D of components of C ′.
We distinguish three cases:

1. D contains no probe. Note that D may contain nodes labeled from
Λ̄, but then these are already matched in C ′. In this case stype(D) ∈
comp(hybridizet(stype(C ′)\{immob(?)})). Since �′ v stype(C ′) v
S′, we can view stype(C ′) \ immob(?) as an X such that NC v X v
S′. Hence stype(D) is clearly subsumed by S in this case.

2. D consists of a probe. In this case stype(D) ≡ immob(?). In partic-
ular, immob(?) occurs as a separate component in stype(C ′) which
is in turn subsumed by S′. Hence, again stype(D) is subsumed by
S in this case.

3. D contains a probe in addition to other components of C ′. Since
D is a component, the probe is involved in the matching that
creates D. Note also that D contains exactly one probe, since
probes are immobilized and components of sticker complexes can

7.2. Sound 85

contain at most one immobilized node. The stype of the probe is
immob(?), and the stype of the component containing the core r
having the atomic value node that is matched to the probe has a
node representing r that is labeled by ∗ or ∗̂. Since both (∗, ?)
and (∗̂, ?) are complementary pairs of symbols, we conclude that
stype(D) ∈ comp(hybridizet(stype(C ′))). As in Case 1, we can
see stype(C ′) as an X such that NC v X v S′. Hence stype(D) is
subsumed by S.

Let s ∈ comp(�). We show that s is subsumed by stype(C). By defini-
tion, either (1) component s ∈ comp(hybridizet(NC)) and component
s ∈ comp(hybridizet(S

′)) or (2) s = immob(?) ∈ comp(�′) and there is
no component in S′ with an free node labeled with ∗ or ∗̂.

1. Assume case (1) holds. Since s ∈ comp(hybridizet(NC)), and NC
consists of the mandatory components except immob(?), we have
s = stype(D) for some MHE component D w.r.t. C ′ that is a satu-
rated hybridization extension of the disjoint union of some multiset
D of components from C ′. Since immob(?) is not in NC, the match-
ings used to make D do not involve pairs of complementary atomic
value nodes. Moreover, since s also belongs to hybridizet(S

′), D
is finished w.r.t. C ′. Hence s = stype(D) is subsumed by stype(C).

2. Assume now that case (2) holds. Since �′ is subsumed by stype(C ′),
there is a component D′ of C ′ that is a probe. By the given, this
probe cannot be involved in the hybridization of C ′, so D′ also
occurs as a separate component of C. It follows that s = stype(D′)
is subsumed by stype(C).

By definition, h = true and indeed C, being the result of a hybridization,
is saturated.

Ligate. Let e = ligate(e′). By induction, we assume that [[e′]](ν, γ) is defined
and it is of type τ ′ = (S′,�′, h′).
The operation ligate is defined on all complexes, thus [[e]](ν, γ) is defined.

On types, operation ligate is defined as performing ligate on the weak
type S and on the mandatory weak type. Ligate does not change the
state of h′. From this it is clear that [[e]](ν, γ) is of type τ .

Flush. Let e = flush(e′). By induction, we assume that C ′ = [[e′]](ν, γ) is
defined and C ′ is of type τ ′ = (S′,�′, h′). Let τ = (S,�, h).

The flush operation is defined on any complex. As a result, C =
flush(C ′) = [[e]](ν, γ) is defined.

86 A Type System for DNAQL

Let D ∈ comp(C). Then D ∈ comp(C ′) and ιD 6= ∅, where ιD is the set
of immobilized nodes of D. Since C ′ is of type τ ′, there is a t ∈ comp(S′)
with ιt 6= ∅ such that t ≡ stype(D). Hence stype(D) is subsumed by S.

Let s ∈ comp(�). Then s ∈ comp(�′) and ιs 6= ∅. Since �′ is subsumed
by stype(C ′), there is a D ∈ comp(C ′) such that s ∼= stype(D). Since
ιs 6= ∅, also ιD 6= ∅, whence D ∈ comp(C) and thus s is subsumed by
stype(C) as desired.

The flush operation does not change the state of h′, as required.

Split. Let e = split(e′, label), with label the label of a split point. By induc-
tion, we assume that [[e′]](ν, γ) is defined and it is of type τ ′.

The split operation is defined on any complex, thus [[e]](ν, γ) is defined.

The split operation on types is defined as the split operation on the weak
type, and making components mandatory if they stem from a mandatory
component. Clearly, [[e(ν, γ)]] is of type τ .

Block. Let e = block(e′, σ) with σ a symbol in Ω ∪ Θ. By induction, we
assume that C ′ = [[e′]](ν, γ) is defined and has type τ ′.

By the fact that Γ ` e : τ , it is known that τ ′ is saturated, and [[e]](ν, γ)
is defined. Hence C ′ is saturated.

The block operation on types is defined as the block operation on com-
plexes, and mandatory components remain mandatory. Note that the
h-bit of τ is true by definition, hence we must verify that C is saturated.
Since C ′ is saturated and the block operation on complexes preserves
saturation, C is indeed saturated. As a result, [[e]](ν, γ) is of type τ .

Block-From. Let e = blockfrom(e′, σ) with σ ∈ Ω ∪Θ. By induction, C ′ =
[[e′]](ν, γ) is well-defined and of type τ ′.

As in the previous case, C = [[e]](ν, γ) is well-defined since C ′ is saturated.
Again the h-bit of τ is true and indeed C is saturated. To verify that
C is of weak type S = blockfrom(S′, σ), let D ∈ comp(C). Then D is
obtained from a component D′ ∈ comp(C ′). Any node x in an `-core
r occurring in a σ-blocking range of D′ is free, so that in stype(D) r
is represented by an free node r′ labeled ∗. In D, all nodes x of r are
blocked, yielding an `-core of type ∗. In S, the node r′ is relabeled with
∗. Hence, stype(D) is subsumed by S as desired. The reasoning that
� = blockfrom(�′, σ) is subsumed by stype(C) is similar.

Block-Except. Let e = blockexcept(e′, i). By induction, we assume that
C ′ = [[e′]](ν, γ) is defined and has type τ ′ = (S′,�′, h′).

7.2. Sound 87

First, we show that C = [[e]]`(ν, γ) = blockexcept(C ′, γ(i)) is defined.
Three conditions constrain the well-definedness of the block-except op-
eration. First, the natural number must be smaller than the dimension
`. By definition, 1 ≤ γ(i) ≤ `. Secondly, for every `-vector of C ′ either
all nodes are free or all nodes are closed. Let v′ be an `-vector in C ′,
with `-core r′, let v be the representation of v′ in stype(C ′) and let r be
the node in stype(C ′) representing r′. Node r can be of three different
types:

1. Node r is of type ∗: none of the nodes of v′ are blocked, and none
of the nodes are matched, due to Conditions 1 and 2 of the block-
except operation on types.

2. Node r is of type ∗̂: a single node x of r′ is not blocked. Node x
has to be matched, due to Conditions 1 and 3 of the block-except
operation on types. Moreover, the #3 and #4 of v′ are closed.

3. Node r is of type ∗: all nodes of r′ are closed. Due to Conditions
1 and 3 of the definition of the block-except operation on types, all
nodes of v′ are closed.

Thirdly, C ′ is saturated, due to condition 4 of the block-except operation
on types.

On types, operation blockexcept is defined as performing block-except
on the weak type and the mandatory weak type. Since C ′ is saturated
and the block-except operation on complexes preserves saturation, C is
indeed saturated.

Cleanup. Let e = cleanup(e′). By induction, we assume that C ′ = [[e′]](ν, γ)
is defined and has type τ ′ = (S′,�′, true). Let τ = cleanup(τ ′) =
(S,�, true).

The cleanup operation is defined on all complexes, so we must only verify
that C = cleanup(C ′) is of type τ .

Let D be a component of C. Then D is a strand of length m with m
the length of the longest positive strand in C ′. By Lemma 6.18 (applied
to C ′) we obtain that stype(D) qualifies for S = S′clean . Hence stype(D)
belongs to S whence stype(D) is subsumed by S as desired.

Let s ∈ comp(�). Consequently, from the definition of cleanup on
types, it is known that there is a component D ∈ ω(s) such that D ∈
comp(�′), s qualifies for S′clean and s qualifies for mandatory. By D ∈
comp(�′) there is a component E ∈ comp(C ′) such that D ≡ stype(E).
In particular, there is a strand d ∈ strands(E) such that s ≡ stype(d).
It remains to be shown that d ∈ comp(C). Thereto, we must show

88 A Type System for DNAQL

that the length of d is greater than or equal to the length of d′ for any
d′ ∈ strands(C ′). Note that the length of d′ is smaller than or equal
to the length of dmax for any dmax ∈ strands(C). By Lemma 6.18,
stype(dmax) qualifies for S, whence n(s)+(`−1)a(s) ≥ n(stype(dmax))+
(`− 1)a(stype(dmax)). Since the number on the left-hand side equals the
length of d, and the number on the right-hand side equals the length of
dmax, we are done.

The result of the cleanup operation is a set of positive strands, and
therefore trivially saturated.

Let. Let e = let x := e1 in e2. By induction, we assume that C1 = [[e1]](ν, γ)
and C2 = [[e2]](ν[x := C1], γ) are defined and of type τ1 and τ2, respec-
tively. Hence, [[e]](ν, γ) = C2 is defined and of type τ2.

For. Let e = for x := e1 iter i do e2. By induction, we assume that C0 =
[[e1]](ν, γ) and [[e2]](ν[x := Cn−1], γ[i := n]) = Cn for all n ∈ {1, . . . , `}
are defined, and C0 is of type τ1. Moreover, by the let part above, if
Cn−1 is of type τ1, then Cn is of type τ1 for all n ∈ {1, . . . , `}. Hence
C` = [[e]](ν, γ) is defined and of type τ1.

If. Let e = if empty(x) then e1 else e2. There are four possible ways
of typing this expression. By induction, we assume that [[e1]](ν, γ) and
[[e2]](ν, γ) are defined and have type τ1 = (S1,�, h1) and τ2 = (S2,�, h2),
respectively. Also, the variable x is defined and typed. Hence [[e]](ν, γ)
is also defined.

1. Only the empty complex can have the type with no components.
Thus, the then-part of the test is evaluated. By induction, [[e]](ν, γ)
is defined and of type τ1, whence the same holds for [[e]](ν, γ) =
[[e1]](ν, γ).

2. If �x is not the empty complex, then the empty complex cannot
have type Γ(x). Thus, the else-part of the test is evaluated. By
induction, [[e2]](ν, γ) is defined and has type τ2, whence the same
holds for [[e]](ν, γ) = [[e2]](ν, γ).

3. If there is exactly one non-mandatory component in Γ(x), then ef-
fectively, if ν(x) is nonempty, it is not just of type Γ(x) but actually
of type (Sx, Sx, hx) as used in the typing rule to type check the else-
part. Since the type for e inferred by the rule is the minimal upper
bound of the types inferred for the then- and else-parts, soundness
follows immediately.

4. The fourth inference rule is proven similar to the third rule.

7.2. Sound 89

Example 7.2. Recall the program from Example 5.1 in Chapter 5:

let y1 := cleanup(flush(hybridize(x1 ∪ immob(a)))) in

let y2 := cleanup(flush(hybridize(x2 ∪ immob(b)))) in

if empty(y1) then empty else

if empty(y2) then empty else

cleanup(ligate(hybridize(y1 ∪ y2 ∪#5#1)))

Consider the weak types S1 = #3∗#4#5 and S2 = #1#3∗#4. The
program is well-typed under the types τ1 = (S1, S1, false) for x1 and τ2 =
(S2, ∅, false) for x2. Since S1 is mandatory in τ1, we know that input x1 will
be nonempty. Note also that the h-bit in τ1 is false, although complexes of
type S1 are necessarily saturated; so we are making it hard on the type checker.
The subexpression e1 = hybridize(x1 ∪ immob(ā)) is typed as (S?

1, ∅, true),
where S?

1 consists of the following components: (i) S1 itself; (ii) immob(?); and
(iii) the complex formed by the union of (i) and (ii) and matching the node
∗ with the node ?. Note that there are no mandatory components, since on
inputs without an a, only (i) and (ii) will occur, whereas on inputs where all
strands have an a, only (iii) will occur. The h-bit is now true since a complex
resulting from hybridization is always saturated.

Applying flush to e1 yields output type (S?
1
′
, ∅, true), where S?

1
′

consists
of components (ii) and (iii) above. Finally the variable y1 in the let-construct
is assigned the type (S1, ∅, true). Similarly, y2 gets the type (S2, ∅, true). Yet,
by the design of the if-then-else typing rules, the subexpression on the last
line of the program will be typed under the strong types (S1, S1, true) for y1

and (S2, S2, true) for y2. Because all components are now mandatory, the type
inferred for subexpression hybridize(y1 ∪ y2 ∪#5#1) will be (S12, S12, true),
where S12 is the weak type obtained from the union of S1, S2 and #5#1 by
matching the #5 and #5 and the #1 and #1 nodes, respectively. After ligate
and cleanup the output type is (S, S, true) where S consists of the single strand
#3∗#4#5#1#3∗#4. The final output type of the entire program, combining
the then- and else-branches, is (S, ∅, true).

Example 7.3. For another example, consider the program

hybridize(hybridize(x ∪
⋃
a∈Λ

immob(a)) ∪#3#4).

This program is ill-typed under the type τ = (S, S, true) for x with S =
#3∗#4. Indeed, the nested hybridize subexpression is still well-typed, yielding
the output type (S?, ∅, true) without any mandatory components. Adding

90 A Type System for DNAQL

the component #3#4 to S?, however, yields a complex with non-terminating
hybridization, so the type checker will reject the top-level hybridize.

Yet, this program will have a well-defined output on every input C of type
τ . Indeed, every strand in C contains some a ∈ Λ, so the minimal type of the
result of the nested hybridize will actually have a single complex component
formed by the union of S and immob(?) with ∗ and ? matched. Then the
top-level hybridize will terminate since each complex can have at most one
immobilized node.

This example shows that well-defined programs may be ill typed; this is
unavoidable in general since safety is undecidable.

7.3 Maximal

Let e be a DNAQL expression and let Γ be a type assignment on e. We say
that a typing relation ` for DNAQL is u-maximal (u is short for uniform) for e
if Γ ` e : τ for some τ whenever e is safe under Γ. We say that typing relation
` is d-maximal (d is short for dimension) if Γ ` e : τ for some τ whenever there
exists some dimension ` for which e is `-safe under Γ. Note that d-maximality
requires safety only for some fixed dimension, whereas u-maximality requires
safety uniformly for all dimensions.

A DNAQL expression consisting of a single operation is called an atomic
expression. In particular, if, for, and let expressions are not considered to
be atomic.

Theorem 7.4. For every atomic expression e, the DNAQL type relation is
u-maximal for e. In addition, unless e invokes the difference operator, the
typing relation is d-maximal for e.

Proof. We will show that if atomic expression e is ill-typed under Γ, then e is
not safe under Γ, i.e., there exists a specific input complex assignment of type
Γ on which the evaluation of e is undefined.

Union The union operation is always defined on the type level. The theorem
thus holds trivially.

Difference The difference of types τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) is
not defined if one of its three conditions is not satisfied. Suppose the
types do not adhere to one of these conditions. Next, we construct (for
each condition) two complexes having type τ1 resp. τ2 such that the
difference of these complexes is not defined.

1. Suppose there is a node x that is matched, immobilized, blocked or
labeled with ∗ or ∗̂ in τ1 or τ2. Recall that a node labeled with ∗

7.3. Maximal 91

or ∗̂ represents a (possibly partially) blocked `-core, and so every
complex having such a type will have a blocked node (as ` ≥ 2 by
definition, there will also be blocked node in case of ∗̂). Suppose
x is present in τ1 (the proof is similar if x is in τ2). Let D be
the component of S1 containing x. Let C be a complex such that
stype(C) = D ∪ �1. Complex C has type τ1 and therefore has a
matching, blocking, or immobilization. So difference is not defined.

2. This case will be split into two sub cases: (a) there is a negative
or circular strand in strands(S1) or strands(S2), and (b) assuming
that there are only positive non-circular strands, two strands s1

and s2 in strands(S1) ∪ strands(S2) are of different length or have
a different number of ∗-labeled nodes.

(a) Let d be a strand in S1 (S2) that is negative or circular, and
let D be the component in which d occurs. Let C1 (C2) be
a complex with stype(C1) ≡ �1 ∪ D (stype(C2) ≡ �2 ∪ D).
Hence, complex Ci is of type τi, for i ∈ {1, 2}. Moreover, C1

(C2) has a negative or circular strand, whence the difference
C1 − C2 is undefined.

(b) Let s1 and s2 in strands(S1) ∪ strands(S2), having a different
length or a different number of ∗-labeled nodes. Denote with
n(s1) resp. n(s2) the length of s1 resp. s2 and denote with a(s1)
resp. a(s2) the number of ∗-labeled nodes in s1 resp. s2. The
length of any strand of weak type s1 resp. s2 is expressed by
n(s1)+(`−1)a(s1) resp. n(s2)+(`−1)a(s2) (` is the dimension).
For the difference operation to be u-maximal, we must show
that any two strands having respective types s1 and s2 should
be of equal length for all values of `. We distinguish three cases,
and prove for each case that all strands having respective types
s1 and s2 have a different length:

i. Suppose that n(s1) = n(s2) and a(s1) 6= a(s2). Now,
n(s1) + (` − 1)a(s1) = n(s2) + (` − 1)a(s2) implies (` −
1)(a(s1) − a(s2)) = 0 — a contradiction as ` − 1 and
a(s1)− a(s2) are both nonzero.

ii. Suppose that n(s1) 6= n(s2) and a(s1) = a(s2). Now,
n(s1) + (`− 1)a(s1) = n(s2) + (`− 1)a(s2) implies n(s1) =
n(s2) — a contradiction.

iii. n(s1) 6= n(s2) and a(s1) 6= a(s2): s1 and s2 are of equal
length if `− 1 = (n(s2)− n(s1))/(a(s1)− a(s2)). Without
loss of generality we may assume that a(s1) > a(s2). If `−1
has a value strictly larger than max{n(s2)−n(s1)}, then the
above condition cannot be satisfied, i.e., two strands having

92 A Type System for DNAQL

respective types s1 and s2 will have different lengths.

3. Let D be a strand of S2 not ending with a node labeled #4. Let C1

be a complex having type τ1. Let C2 be a complex with stype(C2) ≡
�2 ∪D. By definition, C2 has type τ2 and has a strand that does
not end with a node labeled with #4. Hence, C1−C2 is undefined.

Let D be a strand of S2 containing a node labeled #5. Let C1 be
a complex having type τ1. Let C2 be a complex with stype(C2) ≡
�2∪D. By definition, C2 has type τ2 and has a strand with a node
labeled with #5. Hence, C1 − C2 is undefined.

Hybridize Let τ = (S,�, h). Assume the hybridize operation is undefined on
type τ . Hence both h = false and S has non-terminating hybridization.
Let C be a complex with stype(C) ≡ S and with an alternating cycle
in its hybridization graph. Note that such C can always be constructed
by replacing ∗-nodes in S by `-cores using always the same atomic value
symbol and replacing ?-nodes by the complement of the chosen atomic
value symbol. Consequently, hybridize is not defined for C, and C is
of type τ because h = false.

Ligate, Flush, Split These operations are always defined on the type level.

Block The block operation is undefined on type τ if τ is not saturated. By
the definition of saturated, there is a complex C having type τ such
that the complex is not saturated. The block operation is undefined on
unsaturated complexes.

Block-From Similar to the proof for block.

Block-Except The block-except operation is not defined if one of its four
conditions is violated:

1. If there is a node x labeled with ∗, ∗̂, or ∗ that is not preceded by a
node labeled #3 or not followed by a node labeled #4, then x corre-
sponds to a `-core that is not part of a `-vector for each complex C
of type S. Hence C is not an `-complex, and so blockexcept(C, i)
is undefined for any natural number 1 ≤ i ≤ `.

2. Let D be a component of S with a ∗-labeled node x such that (1)
x is not free, (2) x is not preceded by a free node (labeled #3),
or (3) x is not followed by a free node (labeled #4). Let C be a
complex with stype(C) ≡ � ∪D. Complex C contains an `-vector
with both free and closed nodes. By definition, blockexcept(C, i)
is undefined for any natural number 1 ≤ i ≤ `.

7.4. Tightness 93

3. Let D be a component of S with a ∗̂ or ∗-labeled node x such that
(1) x is free, (2) x is not preceded by a closed node (labeled #3),
or (3) x is not followed by a closed node (labeled #4). Let C be a
complex with stype(C) ≡ � ∪D. Complex C contains an `-vector
with both free and closed nodes. By definition, blockexcept(C, i)
is undefined for any natural number 1 ≤ i ≤ `.

4. If S is not saturated, by the definition of saturatedness, there is a
complex having type S that is not saturated. Consequently, block-
except is undefined on this complex.

Cleanup This operation is always defined on the type level.

7.4 Tightness

Let e be a DNAQL expression. A typing relation ` for DNAQL is called tight
for e if for all type assignments Γ on e, whenever Γ ` e : τ and Γ |= e : τ ′ for
some types τ and τ ′, then τ � τ ′. The notion of tightness was introduced by
Papakonstaninou and Velikhov [32].

Theorem 7.5. For every atomic expression, the DNAQL type relation is tight.

Proof. Let e be an atomic expression, and let Γ be a type assignment on e.
Let Γ ` e : τ and Γ |= e : τ ′′. We show that τ � τ ′′. Let τ = (S,�, h), and
τ ′′ = (S′′,�′′, h′′). Let a, b ∈ Λ with a 6= b. With a` (b`) we denote a sequence
of ` nodes labeled a (b).

Atomic expression e is of one of the following forms.

Union We have e = x1 ∪ x2. Let Γ(x1) = τ1 = (S1,�1, h1) and Γ(x1) =
τ2 = (S2,�2, h2). Then τ = τ1 ∪ τ2. To show τ � τ ′′ we verify the three
conditions of Proposition 6.9.

1. Proof of S v S′′. Let D ∈ comp(S). If D ∈ comp(S1), let C1 be
such that stype(C1) ≡ (�1∪D), and let C2 be such that stype(C2) ≡
�2. Complex C1 has type τ1 (recall that by the definition of type,
C1 is saturated if h1 = true), and complex C2 has type τ2. Hence,
we may consider input assignment ν ∈ [[Γ]] with ν(x1) = C1 and
ν(x2) = C2. As Γ |= e : τ ′′, C1 ∪ C2 : τ ′′, and so D ∈ comp(S′′).

2. Proof of �′′ v �. We show that if D /∈ comp(�), then D /∈
comp(�′′). Let D ∈ comp(S) and D /∈ comp(�). Let complex
C1 be such that stype(C1) ≡ �1 and let complex C2 be such that
stype(C2) ≡ �2. Complexes C1 and C2 are of types τ1 and τ2,

94 A Type System for DNAQL

respectively. Hence, we may consider input assignment ν ∈ [[Γ]]
with ν(x1) = C1 and ν(x2) = C2. As Γ |= e : τ ′′, C1 ∪ C2 : τ ′′.
Because D /∈ comp(�), D /∈ comp(�1) and D /∈ comp(�2). Hence
complex C1 ∪ C2 does not contain a component of type D. Thus,
D /∈ comp(�′′).

3. Proof of h′′ = true implies that τ is saturated. Assume that τ is
not saturated. We show that h′′ = false. Since τ is not saturated,
h = false. Thus, by definition of τ = τ1 ∪ τ2, (a) S1 and S2 are
mutually interacting, or (b) Si is not saturated and hi = false for
some i ∈ {1, 2}.
(a) Suppose that S1 and S2 are mutually interacting, i.e., there is a

component D1 in S1 with a node u and a component D2 in S2

with a node v, such that u and v are free and complementary
labeled and D1 and D2 are not both immobilized. Let C1 and
C2 be such that stype(C1) ≡ (�1 ∪D1) and stype(C2) ≡ (�2 ∪
D2), respectively. Thus C1 ∪ C2 is not saturated. Complexes
C1 and C2 are of types τ1 and τ2, respectively. Hence, we
may consider input assignment ν ∈ [[Γ]] with ν(x1) = C1 and
ν(x2) = C2. As Γ |= e : τ ′′, C1 ∪ C2 : τ ′′. Since C1 ∪ C2 is not
saturated, h′′ = false

(b) Suppose that Si is not saturated and hi = false for some i ∈
{1, 2}. According to Lemma 6.7, τi is not saturated. Hence
there is a unsaturated complex C of type τi. Without loss
of generality we assume i = 1. Let C ′ be a complex of type
τ2. Hence, we may consider input assignment ν ∈ [[Γ]] with
ν(x1) = C and ν(x2) = C ′. As Γ |= e : τ ′′, C ∪ C ′ : τ ′′. Since
C ∪ C ′ is not saturated, h′′ = false.

Difference We have e = x1 − x2. Let Γ(x1) = τ1 = (S1,�1, h1) and Γ(x2) =
τ2 = (S2,�2, h2). Then τ = τ1 − τ2. To show τ � τ ′′ we verify the three
conditions of Proposition 6.9.

1. Proof of S v S′′. Since τ1− τ2 is defined, neither S1 nor S2 contain
nodes labeled with ∗, ∗̂ or ?. Recall from the definition of τ1 − τ2

that data(S1) consists of the components of S1 that have a ∗-labeled
node. Let D ∈ comp(S). Let complex C1 be obtained from �1 ∪D
by replacing each ∗ by a`. Let complex C2 be obtained from �2 by
replacing each ∗ by b`. Hence, we may consider input assignment
ν ∈ [[Γ]] with ν(x1) = C1 and ν(x2) = C2. As Γ |= e : τ ′′, C1 − C2 :
τ ′′. Since D ∈ comp(S) we have D ∈ data(S1), or D /∈ data(S1)
and D does not have an isomorphic copy in �2. In the first case, D
itself appears as a component in C1 −C2, because C1 and C2 have

7.4. Tightness 95

different `-cores. In the second case, there is, by definition of C2, a
component C in C1 − C2 with stype(C) ≡ D. Since, C1 − C2 : τ ′′,
we conclude in both cases that D ∈ comp(S′′).

2. Proof of �′′ v �. Let D ∈ comp(S) and D /∈ comp(�). We
show that D /∈ comp(�′′). Let complex C1 be obtained from �1

by replacing all ∗-labeled nodes by a`. Complex C1 has type τ1.
Let complex C2 be obtained from �2 ∪ (�1 − T1) by replacing all
∗-labeled nodes by a`. Recall that T1 consists of all components
in S1 that have no isomorphic copy in S2. Consequently, �1 − T1

consists of the components in �1 having an isomorphic copy in S2.
As a result, C2 has type τ2 (note that by the nature of S1 and S2

(since τ1 − τ2 is defined), C2 is always saturated). Hence, we may
consider input assignment ν ∈ [[Γ]] with ν(x1) = C1 and ν(x2) = C2.
As Γ |= e : τ ′′, C1 − C2 : τ ′′. Complex C1 − C2 consists solely of
components of type �1 ∩ T1, whence C1 − C2 does not contain a
component of type D, because D /∈ comp(�) and D /∈ �1 ∩ T1.
Thus, D /∈ comp(�′′).

3. Proof of h′′ = true implies that τ is saturated. As h = true, τ is
trivially saturated.

Hybridize We have e = hybridize(x). Let Γ(x) = τ ′ = (S′,�′, h′). Then
τ = hybridize(τ ′).

We first treat the case h′ = true. Let C be a complex of type τ . We
must show that C is also of type τ ′′. Since τ = τ ′, C is of type τ ′.
Since h = true, C is saturated. Hence, hybridize(C) equals C. Since
Γ |= e : τ ′′, hybridize(C) is of type τ ′′. Hence C is of type τ ′′ as desired.

We now assume h′ = false. To show τ � τ ′′ we verify the three conditions
of Proposition 6.9.

1. Proof of S v S′′. Let D ∈ comp(S). By definition of S, either (a)
D is immob(?) or (b) D is a component in hybridizet(X) for some
weak type X, with NC v X v S′.

(a) By the definition of the hybridization operation and the fact
that immob(?) is in hybridize(τ ′), we know that immob(?) is
part of τ ′. Let C be a complex obtained from �′ ∪ immob(?)
by replacing all ∗-, ∗̂-, ∗-labeled nodes by a`, replacing closed
?-labeled nodes by a and replacing all free ?-labeled nodes by b.
Complex C has type τ ′. We may consider input assignment ν ∈
[[Γ]] with ν(x) = C. As Γ |= e : τ ′′, hybridize(C) : τ ′′. Since
all `-cores of C are equivalent to a`, and all free immobilized

96 A Type System for DNAQL

nodes are labeled with b, there is a free probe in hybridize(C).
Thus, D ∈ comp(S′′).

(b) Let C be the complex obtained fromX by replacing all ∗, ∗̂, and
∗-labeled nodes by a` and the ?-labeled nodes by a. Moreover,
if immob(?) ∈ �′ but immob(?) /∈ X, then we add to C a compo-
nent immob(b). Then C has type τ ′, so we may consider input
assignment ν ∈ [[Γ]] with ν(x) = C. Now, hybridize(C) has a
component of weak type D. Since Γ |= e : τ ′′, hybridize(C) :
τ ′′′, so D ∈ comp(S′′).

2. Proof of �′′ v �. Let D ∈ comp(S) and D /∈ comp(�). We show
that D /∈ comp(�′′). As before, the argument is split into two
cases: (a) D = immob? or (b) D ∈ comp(hybridizet(X)) for some
NC v X v S.

(a) By the fact that D ≡ immob(?) and D /∈ comp(�), either D /∈
comp(�′), or there is a component E ∈ comp(S′) with a free
node labeled with ∗ or ∗̂.

i. Assume D /∈ comp(�′). Let C be a complex such that
stype(C) ≡ �′. Complex C has type τ ′, thus we may con-
sider the input assignment ν ∈ [[Γ]] with ν(x) = C. As
Γ |= e : τ ′′, hybridize(C) : τ ′′. By definition, there is no
component in C of type immob(?). Hence, D /∈ comp(�′′).

ii. Assume that D ∈ comp(�′) and there is a component E ∈
comp(S′) with a free node labeled with ∗ or ∗̂. Let C be
a complex with stype(C) ≡ �′ ∪ E in which all `-cores are
of the form a` and all probes are labeled with a. Complex
C has type τ ′. Hence, we may consider the assignment
ν ∈ [[Γ]] with ν(x) = C. Complex C contains a free probe
labeled a and an `-core with a free node labeled a. Hence,
hybridize(C) does not contain a free probe. As Γ |= e : τ ′′,
hybridize(C) : τ ′′. Thus, D /∈ comp(�′′).

(b) By the fact that D /∈ comp(�), and by the definition of �,
we know that component D /∈ comp(hybridizet(NC)) or D /∈
comp(hybridizet(S

′)).

i. D /∈ comp(hybridizet(NC)): Let C be a complex such
that stype(C) ≡ �′, all `-cores are of the form a`, all
closed probes are labeled a, and all free probes are labeled
b. By definition NC ≡ �′ − immob(?), component D is
not in comp(hybridizet(NC)), and free probes cannot in-
teract with `-cores in C, whence there is no component
in hybridize(C) having type D. Complex C has type
τ ′. Hence, we may consider the assignment ν ∈ [[Γ]] with

7.4. Tightness 97

ν(x) = C. As Γ |= e : τ ′′, hybridize(C) : τ ′′. Thus,
D /∈ comp(�′′).

ii. D /∈ comp(hybridizet(S
′)): Let C be a complex such that

stype(C) ≡ S′, all `-cores are of the form a`, and all probes
are labeled a. Complex C has type τ ′, indeed, recall that
h′ = false. Hence, we may consider the assignment ν ∈ [[Γ]]
with ν(x) = C. As Γ |= e : τ ′′, hybridize(C) : τ ′′. By
our assumption, D /∈ comp(hybridizet(S

′)), so there is
no component in hybridize(C) having type D. Hence,
D /∈ comp(�′′).

3. Proof of h′′ = true implies that τ is saturated. As h = true, τ is
trivially saturated.

Ligate We have e = ligate(x). Let Γ(x) = τ ′ = (S′,�′, h′). Then τ =
ligate(τ ′). To show τ � τ ′′ we verify the three conditions of Proposi-
tion 6.9.

1. Proof of S v S′′. Let D ∈ comp(S). Let E be a component
of S′ such that ligate(E) ≡ D. Let C be a complex such that
stype(C) ≡ �′∪E. Complex C has type τ ′. Hence, we may consider
input assignment ν ∈ [[Γ]] with ν(x) = C. By definition, ligate(C)
contains a component of type D. As Γ |= e : τ ′′, ligate(C) : τ ′′,
and so D ∈ comp(S′′).

2. Proof of �′′ v �. Let D ∈ comp(S) and D /∈ comp(�). We show
that D /∈ comp(�′′). Let E be the set of components of S′ such that
for every component F ∈ E we have ligate(F) ≡ D. By definition
of � and D /∈ comp(�), we know that ∀F ∈ E : F /∈ comp(�′). Let
C be a complex such that stype(C) ≡ �′. Complex C has type τ ′.
Hence, we may consider the assignment ν ∈ [[Γ]] with ν(x) = C. By
construction of C, there is no component of type D in ligate(C).
As Γ |= e : τ ′′, ligate(C) : τ ′′. Thus, D /∈ comp(�′′).

3. Proof of h′′ = true implies τ is saturated. Assume that h = false,
otherwise the proof is trivial. If h = false, so is h′. The fact
h′′ = true implies that τ ′′ is saturated. Let C be a complex such
that stype(C) ≡ S′ with all `-cores equal to a` and all probes la-
beled a. Since h′ = false, complex C has type τ ′. As Γ |= e : τ ′′,
ligate(C) : τ ′′. Because h′′ = true, ligate(C) must be saturated.
The ligate operator only introduces new edges between nodes, in
particular, no new nodes are introduced and no closed nodes are
made open. Thus, ligate(C) is saturated, implies C is saturated.
Hence, S′ is saturated, because all probes and `-cores are labeled

98 A Type System for DNAQL

complementary. The ligate operator on types also does not intro-
duce new nodes and it does not make closed nodes free. As a result,
S is saturated, whence τ is saturated — a contradiction.

Split, Flush Similar to the case of Ligate.

Block, Block-From, Block-Except Similar to the case of Ligate, except
that item 3. becomes trivial, because h and h′ are always true.

Cleanup We have e = cleanup(x). Let Γ(x) = τ ′ = (S′,�′, h′). Then
τ = cleanup(τ ′). To show τ � τ ′′ we verify the three conditions of
Proposition 6.9.

1. Proof of S v S′′. Let s ∈ comp(S). By definition, component s is
a strand and s qualifies for S, i.e., there is a component D ∈ ω(s)
such that there is a positive integer solution x in the variable ` to
the system of inequalities {n(s)+(`−1)a(s) ≥ n(t)+(`−1)a(t) | t ∈(
strands(�′) ∪ strands(D)

)
}. Let C be a complex with dimension

x such that stype(C) ≡ �′∪D. As a result, any strand in C having
type s is at least as long as all other positive strands in C, whence
cleanup(C) contains a component having type s. Complex C has
type τ ′. Hence, we may consider the assignment ν ∈ [[Γ]] with
ν(x) = C. As Γ |= e : τ ′′, cleanup(C) : τ ′′. Thus, s ∈ comp(S′′).

2. Proof of �′′ v �. Let s ∈ comp(S) and s /∈ comp(�). We show
that s /∈ comp(�′′). A strand must fulfill two conditions to be
mandatory in τ . First of all, there must be a component D ∈ ω(s)
such that D ∈ �′. Secondly, it must qualify for mandatory.

(a) If there is no component D ∈ ω(s) such that D ∈ �′, then let C
be a complex such that stype(C) ≡ �′. There is no component
in C having a type from the set ω(s), whence there is no strand
having type s in C, thus there is no strand having type s in
cleanup(C). Complex C has type τ ′. Hence, we may consider
the input assignment ν ∈ [[Γ]] with ν(x) = C. As Γ |= e : τ ′′,
cleanup(C) : τ ′′. Thus, s /∈ comp(�′′).

(b) There is a component E ∈ ω(s) such that E ∈ comp(�′).
Strand s does not qualify for mandatory, whence there is a
strand t ∈ S for which the strict inequality n(s)+(`−1)a(s) <
n(t) + (`− 1)a(t) has a positive integer solution in `. Let x be
the positive integer solution to this strict inequality. Let D be
a component from ω(t). Let C be a complex with dimension
x such that stype(C) ≡ �′ ∪D. In complex C strands having
type t are strictly longer than strands having type s, whence

7.4. Tightness 99

cleanup(C) does not contain a strand having type s. Complex
C has type τ ′. Hence, we may consider the input assignment
ν ∈ [[Γ]] with ν(x) = C. As Γ |= e : τ ′′, cleanup(C) : τ ′′. Thus,
s /∈ comp(�′′).

3. Proof of h′′ = true implies that τ is saturated. By definition h =
true, thus τ is always saturated.

8
Relational Algebra Simulation

In this section we show that relational algebra expressions can be simulated by
DNAQL programs: we show that the simulation is already possible by well-
typed programs. This illustrates the power of the type checking algorithm.

8.1 Relational Algebra

Let us first recall some definitions concerning the relational data model [1].
We assume a universe U of data elements. A relation schema R is a finite set
of attributes. A tuple t over R is a mapping from R to U . The domain of t
is called the type of t. A relation over R is a finite set of tuples over R. A
relation schema R is the type of the relations over R, since all tuples in such
relations have type R. A database schema is a mapping D on some finite set of
relation variables that assigns a relation schema to each relation variable. A
database schema is thus a type assignment for relation variables. An instance
of D is a mapping I on the same set of relation variables that assigns to each
relation variable x a relation over D(x).

The syntax of the relational algebra is generated by the following grammar:

e ::= x | (e ∪ e) | (e− e) | (e× e) | σA=B(e) | π̂A(e) | ρA/B(e) .

Here, x stands for a relation variable, and A and B stand for attributes. Our
version of the relational algebra is slightly nonstandard in that our version of
projection (π̂) projects away some given attribute, as opposed to the standard
projection which projects on some given subset of the attributes.

101

102 Relational Algebra Simulation

Let us recall the typing rules for the relational algebra [51, 50]. Let
relvars(e) be the set of relation variables in a relational algebra expression
e. Let D be a database schema such that relvars(e) ⊆ dom(D), i.e., every
relation variable in e is assigned a type. Let R be a relation schema. The
rules for when e has type R given D, denoted D ` e : R, are the following:

D(x) = R

D ` x : R

D ` e1 : R D ` e2 : R

D ` (e1 ∪ e2) : R

D ` e1 : R D ` e2 : R

D ` (e1 − e2) : R

D ` e1 : R D ` e2 : R R1 ∩R2 = ∅
D ` (e1 × e2) : R1 ∪R2

D ` e : R A,B ∈ R
D ` σA=B(e) : R

D ` e : R A ∈ R
D ` π̂A(e) : R \ {A}

D ` e : R A ∈ R B /∈ R
D ` ρA/B(e) : (R− {A}) ∪ {B}

The semantics of the well-typed relational algebra is well known; we repeat
it here for the sake of completeness. Let D ` e : R and let I be an instance of
D. Then the evaluation of e on I, denoted by [[e]](I), yields a relation over R
defined as follows:

[[x]](I) = I(x)

[[e1 ∪ e2]](I) = {t | t ∈ [[e1]](I) or t ∈ [[e2]](I)}
[[e1 − e2]](I) = {t | t ∈ [[e1]](I) and t /∈ [[e2]](I)}
[[e1 × e2]](I) = {t1 ∪ t2 | t1 ∈ [[e1]](I) and t2 ∈ [[e2]](I)}

[[σA=B(e)]](I) = {t | t ∈ [[e]](I) and t(A) = t(B)}
[[π̂A(e)]](I) = {t− {(A, t(A))} | t ∈ [[e]](I)}

[[ρA/B(e)]](I) = {(t− {(A, t(A))}) ∪ {(B, t(A))} | t ∈ [[e]](I)}

8.2 Simulation

We want now to represent relations by complexes. We will store data elements
as vectors of atomic value symbols. So formally, we use Λ∗, the set of string
over Λ, as universe U . Then a tuple t (relation r, instance I) is said to be
of dimension ` if all data elements appearing in t (r, I) are strings of length
`. Let t be a tuple of dimension ` over relation schema R. We may assume a
fixed order on the attributes of R, say, A, . . . , B. We denote the order by ⊕.
If the order is clear from the context, it is left implicit. We then represent t
by the following `-complex: (using the constant notation of DNAQL)

complex (t) = #2A#3t(A)#4 . . .#2B#3t(B)#4 .

8.2. Simulation 103

Example 8.1. Let R = {A,B,C} be a relation schema with three attributes,
and order A⊕B ⊕C. Let ` = 3 and let Λ = {0, 1}. Consider the tuple t over
R with t(A) = 000, t(B) = 010, and t(C) = 111. Then

complex (t) = #2A#3000#4#2B#3010#4#2C#3111#4 .

A relation r of dimension ` is then represented by the `-complex⋃
{complex (t) | t ∈ r}

which we denote by complex (r). Under order ⊕, this complex has type:

τ⊕R = (#2A#3 ∗#4 . . .#2B#3 ∗#4, ∅, true) .

Indeed, the type has no mandatory components, as a relation may be empty.
If the order is clear from the context, we simply write τR to denote the type of
a complex representing a relation over relation schema R. A substrand of the
form #2A#3 ∗#4 consists of an attribute and a value, whence it is called an
attribute-value block. Moreover, a database instance I over database schema
D can be represented by the complex assignment complex (I) that maps each
relation variable x (used as a complex variable) to complex (I(x)). The type
assignment corresponding to a database instance I of dimension `, denoted
ΓD, maps each relation variable x to the type corresponding to its relation
schema R, i.e., τR.

Theorem 8.2. Let e be an arbitrary well-typed relational algebra expression
over database schema D, with output relation schema R, i.e., D : e ` R. Then
e can be translated into a DNAQL expression eDNA, such that the following
holds:

1. eDNA is well-typed, specifically, ΓD : eDNA ` τR; and

2. eDNA simulates e uniformly over all dimensions `, i.e., for each natural
number ` and for any `-dimensional database instance I over D:

[[eDNA]](complex (I)) ≡ complex ([[e]](I)).

The proof is by induction on the structure of expression e, i.e., a simulating
DNAQL expression is computed for each RA operator. For each construction,
we show that the simulating DNAQL expression is well-typed and has the
desired output type.

104 Relational Algebra Simulation

8.2.1 Abbreviations

For the proof we introduce a few useful abbreviations.

Blockfromto

For a, b ∈ Σ, we use blockfromto(x, a, b) to abbreviate

blockfrom(block(x, b), a)

Remember that the blockfrom operator operates in the inverse direction of a
strand.

Connect

A frequently reoccurring pattern in DNAQL programs is adding several com-
plexes together, by means of unions, and then applying hybridize, ligate
and cleanup consecutively. We abbreviate the last part of this pattern as
connect(x) with x a complex variable:

cleanup(ligate(hybridize(x)))

Circularization

Let x be a complex variable and let A and B be attributes. We use the
shortcut circularize(x,A,B) to abbreviate

let f2 := hybridize(blockfromto(x,B,A) ∪ immob(#3)) in

let f1 := connect(f2 ∪#2#4) in

cleanup(split(blockfrom(f1, A),#3))

Schemas & Types

Let R be a relation schema, then we call SR, the weak type of τR, a relation-
schema-type. A pseudo-relation-schema-type of a relation schema R, resem-
bles the relation-schema-type of R, except that some additional tags outside
{#2,#3,#4} may be present between attribute-value blocks, furthermore, no
additional tags are present at the beginning and end of the strand. More for-
mally, a pseudo-relation-schema-type is of the form #2A1#3 ∗#4S1#2A2#3 ∗
#4S2 . . . Sk−1#2Ak#3 ∗#4, where A1, . . . , Ak are attributes and S1, . . . , Sk−1

are (possibly empty) sequences of tags, different from #2, #3, and #4. Hence,
a relation-schema-type is a special case of a pseudo-relation-schema-type: the
sequences of additional nodes are all empty.

The circularization, or circular version, of a linear strand s is isomorphic
to s, except that the last and first node of s form a directed edge.

8.2. Simulation 105

Lemma 8.3. Let S be a pseudo-relation-schema-type with k attributes denoted
A1 to Ak. In the following we write A1 as A and Ak as B. Let Sc be the
circularization of S. Let τ = (S,�, h), and let τc be a strong type (Sc,�c, true).
Let �c ≡ empty if � ≡ empty, otherwise �c ≡ Sc. Let Γ be a type assignment
such that Γ(x) = τ . Then Γ : circularize(x,A,B) ` τc.

Thus, circularize(x,A,B) will equal the complex obtained from x by cir-
cularizing every strand [40, 4].

Proof. We call the positive linear strand of type τ based on weak type S,
strand s. Next, we derive the output type of circularize(x,A,B) under type
assignment Γ.

1. Γ : blockfromto(x,B,A) ` τ1. The weak type of τ is a pseudo-relation-
schema-type, hence, type τ is saturated regardless of the value of h.
Type τ1 = ((V1, L1, λ1, µ1, ι1, β1),�1, h1) resembles type τ , in the sense
that it has a strand t1 that is isomorphic to strand s, except that all
nodes from the node labeled A up to and including the node labeled
B are blocked, i.e., are members of β1. The bit h1 is set to true, and
�1 is empty. Note that the node labeled #3 directly following the node
labeled B is the only free #3-labeled node in this type. Also note that
there is only one free node labeled #2 resp. #4, at the beginning resp.
end of the strand.

2. Γ : blockfromto(x,B,A)∪immob(#3) ` τ2. Type τ2 = (S2,�2, h2) resem-
bles type τ1. A new node n is introduced, labeled #3. Node n is in �2,
and is immobilized in both S2 and �2. The strand in S2, isomorphic to
strand t1, is called t2. Strand t2 is non-mandatory and largely blocked
(with a single free #3), whereas probe n is mandatory and free. The
h-bit of τ2 is set to false, because n and t2 have nodes that can interact.

3. Γ : hybridize(blockfromto(x,B,A) ∪ immob(#3)) ` τ3. The set of nec-
essary components consists of probe n, thus there are two sets of com-
ponents on which we will apply hybridizet, i.e., just n and the combi-
nation of strand t2 and n. The first set results in an isomorphic copy of
n. The second set results in a new component C3 consisting of a probe
isomorphic to n and an isomorphic copy of strand t2, connected by a
matching between the the free nodes labeled #3 and #3. As neither of
the components occurs both in hybridizet(NC) and hybridizet(S2),
neither of the components is mandatory. The h-bit of τ3 is set to true.

From this point on, we regard type assignment Γ2 = Γ ∪ {(f2, τ3)}.

106 Relational Algebra Simulation

4. Γ2 : f2∪#2#4 ` τ4. Type τ4 resembles type τ3, except that a mandatory
sticker labeled #2#4 is present. Call this sticker u. The h-bit of τ4 is
set to false, as the the sticker and the strand are mutually interacting.

5. Γ2 : connect(f2 ∪ #2#4) ` τ5. The h-bit of τ4 is set to false, thus hy-
bridization takes place. The sticker u is the only mandatory component.
Thus, there are four different sets to apply hybridizet on:

(a) X = NC = {u}: as there is only one sticker, the result of hybridiza-
tion is isomorphic to u;

(b) X = {u, n}: the sticker u and the probe n have no complementary
labels, thus the output is isomorphic to the input;

(c) X = {u,C3}: hybridizing the sticker u and the immobilized com-
ponent C3 results in two new components. The first component
consists of an isomorphic copy of C3 with a single isomorphic copy
of sticker u. The sticker connects the end and beginning of the
positive strand in the immobilized component. As a result, the
strand is bent into a circle. However, there is still a gap between
the beginning and end of the strand. The second component is
based on an isomorphic copy of C3 and two isomorphic copies of
the sticker u. One copy of u will match to the beginning of the
copy of C3. The other copy will match to the end of the copy of
C3. This component has maximal matching because the only free
nodes are labeled ∗,#2, and #4. Clearly, these free nodes have no
complementary labeled nodes; and

(d) X = {u, n,C3}: the result is isomorphic to the previous case, except
that a probe isomorphic to n is also present.

Let Γ2 : hybridize(f2∪#2#4) ` τh. The weak type of τh, denoted with
Sh, consists of four components:

(a) Component Ch
1 is isomorphic to sticker u;

(b) Component Ch
2 is isomorphic to probe n;

(c) Component Ch
3 is isomorphic to the component formed by one copy

of C3 and one copy of u; and

(d) Component Ch
4 is isomorphic to the component formed by one copy

of C3 and two copies of u.

The mandatory weak type of type τh is equivalent to the empty complex,
because none of the components in hybridizet(NC) is isomorphic to a
component in hybridizet(S4), where S4 is the weak type of type τ4.

8.2. Simulation 107

The h-bit of τ5 is set to true, in accordance with the definition of the
hybridization operation on complex types.

In weak type Sh component Ch
3 has one gap. Recall that component Ch

3

is bent into a circle, but is not circular because it has a gap. The ligate
operation fills this gap, creating a new component Ch′

3 which is circular,
i.e., removing the isomorphic copy of the sticker u, would result in a
circular strand.

To conclude, the weak type of type τ5 consists of isomorphic copies of s
and the circularization of s, denoted c. There are no blockings, match-
ings nor immobilizations in the weak type of type τ5. The mandatory
weak type of type τ5 is isomorphic to the empty complex type. The h-bit
of type τ5 is set to true.

From this point on, we regard type assignment Γ1 = Γ2 ∪ {(f1, τ5)}.

6. Γ1 : blockfrom(f1, A) ` τ6. Let us examine both strands of type τ5 sep-
arately. In the linear strand s, there is one σ-blocking range, consisting
of the first two nodes, because the second one is labeled with A and the
first node is the beginning of the strand. In the circular strand c, there
is one σ-blocking range, consisting of all nodes in c. Consequently, type
τ6 consists of two strands, denoted c′ and s′, which are isomorphic copies
of respectively strand c and s, except that all nodes of c′ are blocked and
the first two nodes of s′ are blocked. The h-bit of type τ6 is set to true,
because the h-bit of type τ5 is true.

7. Γ1 : split(blockfrom(f1, A),#3) ` τ7. The split point identified by
#3 splits only at free #3. The linear strand s′ contains k free nodes
labeled #3, because only the first two nodes are blocked and there are
k attributes in s′, with a #3 labeled node following each attribute. The
circular strand c′ is completely blocked and thus has no free nodes labeled
#3.

The weak type of type τ7 thus consists of k + 1 linear strands, obtained
by splitting the linear strand s′ at each of the k free #3-labeled nodes.
Note that each of the linear strands consists of a maximum of three
nodes plus the length of the longest Si for i ∈ {1, . . . , k− 1}, of which at
most one is labeled ∗. Furthermore, the weak type of type τ7 contains
circular strand c′.

The mandatory weak type of type τ7 is equivalent to the empty complex
type. The h-bit of type τ7 is set to true because the h-bit of type τ6 is
true.

8. Γ1 : circularize(x,A,B) ` τ8. Let m be a linear strand in the weak
type of τ7. From the previous item, it is known that n(m) ≤ 5 +

108 Relational Algebra Simulation

maxi∈{1,...,k−1} |Si| and a(m) ≤ 1. In contrast, 5k + Σk−1
i=1 |Si| = n(c′)

and a(c′) = k. Thus

n(m) + (`− 1)a(m) ≤ 5 + max
i∈{1,...,k−1}

|Si|+ (`− 1)

< 5k + Σk−1
i=1 |Si|+ (`− 1)k

= n(c′) + (`− 1)a(c′)

Consequently, linear strand m will never qualify for type τc.

The only strand that qualifies is c′. The cleanup operation, furthermore,
removes all matchings, blockings and immobilizations. As a result, the
weak type of type τ8 consists of strand c. The mandatory weak type of
type τ8 is equivalent to the empty complex type. The h-bit of type τ8 is
set to true.

It is clear that τ8 ≡ τc = (Sc,�c, true), with �c ≡ empty. This proves
that Γ : circularize(x,A,B) ` τc if � ≡ empty, i.e., circularize(x,A,B) has
the desired type.

Next, we prove that Γ : circularize(x,A,B) ` τc with �c ≡ Sc if � ≡ S.

1. Γ : blockfromto(x,B,A) ` τ1. Type τ1 = (S1,�1, h1), with S1 =
(V1, L1, λ1, µ1, ι1, β1), resembles type τ , in the sense that it has a strand
t1 that is isomorphic to strand s, except that all nodes from the node
labeled A up to and including the node labeled B are blocked, i.e., are
members of β1. The bit h1 is set to true, �1 is equivalent to weak type
S1. Note that the node labeled #3 directly following the node labeled
B is the only free #3-labeled node in this type. Also note that there is
only one free node labeled #2 resp. #4, at the beginning resp. end of
the strand.

2. Γ : blockfromto(x,B,A)∪immob(#3) ` τ2. Type τ2 = (S2,�2, h2) resem-
bles type τ1. A new node n is introduced, labeled #3. Node n is in �2,
and in ι of both S2 and �2. The h-bit of τ2 is set to false. The strand
in S2, isomorphic to strand t1, is called t2. Strand t2 is mandatory and
largely blocked (with a single free #3). Probe n is mandatory and free.

3. Γ : hybridize(blockfromto(x,B,A)∪immob(#3)) ` τ3. The set of neces-
sary components consists of strand s and probe n, thus there is one set of
components on which we will apply hybridizet, i.e., strand s and probe
n. This results in a new component C3 consisting of a probe isomorphic
to n and an isomorphic copy of strand t2, connected by a matching be-
tween the free nodes labeled #3 and #3. Component C3 is mandatory.
The h-bit of τ3 is set to true.

From this point on, we regard type assignment Γ2 = Γ ∪ {(f2, τ3)}.

8.2. Simulation 109

4. Γ2 : f2∪#2#4 ` τ4. Type τ4 resembles type τ3, except that a mandatory
sticker labeled #2#4 is present. Call this sticker u. The h-bit of τ4 is
set to false, as sticker u and the strand of component C3 are mutually
interacting.

5. Γ2 : connect(f2 ∪ #2#4) ` τ5. The h-bit of τ4 is set to false, thus
hybridization takes place. Both component C3 and the sticker u are
mandatory and necessary components. Thus, there is one set to apply
hybridizet on, i.e., {u,C3}. Hybridizing the sticker u and the immobi-
lized component C3 results in two new components. The first component,
denoted with Ch

1 consists of an isomorphic copy of C3 with a single iso-
morphic copy of sticker u. The sticker connects the end and beginning
of the positive strand in the immobilized component. As a result, the
strand is bent into a circle. However, there is still a gap between the
beginning and end of the strand. The second component, denoted with
Ch

2 , is based on an isomorphic copy of C3 and two isomorphic copies of
the sticker u. One copy of u will match to the beginning of the copy of
C3. The other copy will match to the end of the copy of C3. This com-
ponent has maximal matching because the only free nodes are labeled
∗,#2, and #4. Clearly, these free nodes have no complementary labeled
nodes. Both components Ch

1 and Ch
2 are mandatory.

Recall that component Ch
1 is bent into a circle, but is not circular because

it has a gap. The ligate operation fills this gap, creating a new component
Ch′

1 which is circular, i.e., removing the isomorphic copy of the sticker
u, would result in a circular strand.

Finally, the weak type after the cleanup operation consists of the circular
strand, denoted c, isomorphic to circularization of strand s.

To conclude, the weak type of type τ5 consists of components c and s.
There are no blockings, matchings nor immobilizations in the weak type
of type τ5. The mandatory weak type of type τ5 is isomorphic to the
weak type. The h-bit of type τ5 is set to true.

From this point on, we regard type assignment Γ1 = Γ2 ∪ {(f1, τ5)}.

6. Γ1 : blockfrom(f1, A) ` τ6. Let us examine both strands of type τ5 sep-
arately. In the linear strand s, there is one σ-blocking range, consisting
of the first two nodes, because the second one is labeled with A and the
first node is the beginning of the strand. In the circular strand c, there
is one σ-blocking range, consisting of all nodes in c. Consequently, type
τ6 consists of two strands, denoted c′ and s′, which are isomorphic copies
of respectively strand c and s, except that all nodes of c′ are blocked and
the first two nodes of s′ are blocked. The h-bit of type τ6 is set to true,

110 Relational Algebra Simulation

because the h-bit of type τ5 is true.

7. Γ1 : split(blockfrom(f1, A),#3) ` τ7. The split point identified by
#3 splits only at free #3. The linear strand s′ contains k free nodes
labeled #3, because only the first two nodes are blocked and there are
k attributes in s′, with a #3 labeled node following each attribute. The
circular strand c′ is completely blocked and thus has no free nodes labeled
#3.

The weak type of type τ7 thus consists of k + 1 linear strands, obtained
by splitting the linear strand s′ at each of the k free #3-labeled nodes.
Note that each of the linear strands consists of a maximum of three
nodes plus the length of the longest Si for i ∈ {1, . . . , k− 1}, of which at
most one is labeled ∗. Furthermore, the weak type of type τ7 contains
circular strand c′.

The mandatory weak type of type τ7 is equivalent the weak type. The
h-bit of type τ7 is set to true because the h-bit of type τ6 is true.

8. Γ1 : circularize(x,A,B) ` τ8. Let m be a linear strand in the weak
type of type. From the previous item, it is known that n(m) ≤ 5 +
maxi∈{1,...,k−1} |Si| and a(m) ≤ 1. In contrast, 5k+Σk−1

i=1 |Si| = n(c′) and
a(c′) = k. Thus

n(m) + (`− 1)a(m) ≤ 5 + max
i∈{1,...,k−1}

|Si|+ (`− 1)

< 5k + Σk−1
i=1 |Si|+ (`− 1)k

= n(c′) + (`− 1)a(c′)

Consequently, linear strand m will never qualify for type τc.

The only strand that qualifies is c. The cleanup operation, furthermore,
removes all matchings, blockings and immobilizations.

Strand c qualifies for mandatory. Indeed, let m be a linear strand in the
weak type of type τ7, then there may not be a positive integer solution
to

n(c) + (`− 1)a(c) < n(m) + (`− 1)a(m)

We know that n(c)+(`−1)a(c) > n(m)+(`−1)a(m). Hence, c qualifies
for mandatory.

As a result, the weak type of type τ8 consists of strand c. The mandatory
weak type of type τ8 consists of strand c. The h-bit of type τ8 is set to
true.

It is clear that τ8 ≡ τc = (Sc,�c, true), with �c ≡ Sc. This proves that
Γ : circularize(x,A,B) ` τc if � ≡ S, i.e., circularize(x,A,B) has the desired
type.

8.2. Simulation 111

Inserting into a Circle

Let x be a complex variable and let A and B be attributes. We use the
shortcut insertcirc(x,A,B, s) to abbreviate

let y1 := split(blockfromto(x,A,B),#4) in

let y2 := hybridize(hybridize(y ∪ immob(#3)) ∪#4σ1 ∪ s) ∪ σ2#2 in

cleanup(split(blockfrom(connect(y2), B),#3))

Lemma 8.4. Let S be the circularization of a pseudo-relation-schema-type
with k attributes denoted A1, . . . , Ak. Let 1 ≤ i ≤ k. We denote attribute Ai

with A and the attribute following attribute A on the circular strand of S is
denoted B. Let Si be the empty sequence of additional tags between attributes
A and B. Let s be a linear strand of length at least two such that no node is
labeled with #2 or #4. Denote with σ1, respectively σ2, the first, respectively
last, symbol, of s. We assume that the symbols σ1 and σ2 are unique with
respect to the circular strand and strand s. Let weak type S′ resemble S,
except that sequence Si = s.

Let τ = (S, S, h) be a type. Let τ ′ = (S′, S′, true) be a type. Let Γ be a type
assignment such that Γ(x) = τ . Then Γ : insertcirc(x,A,B, s) ` τ ′.

Proof. We call the positive circular strand of type τ based on weak type S,
strand c. Next, we derive the output type of insertcirc(x,A,B, s) under type
assignment Γ.

1. Γ : blockfromto(x,A,B) ` τ1. Because type τ is a pseudo-relation-
schema-type, we know that it is saturated regardless of the value of
h. Type τ1 resembles type τ , in the sense that it has a strand t that is
isomorphic to strand c, except that for the four nodes labeled #3, ∗, #4

and #2 directly following the node labeled A, are the only non-blocked
nodes. Strand t is mandatory and the h-bit of type τ1 is set to true.
Consequently, the only free node labeled #4 in strand t is the last node
of the attribute-value block of A.

2. Γ : split(blockfromto(x,A,B),#4) ` τy1 . Type τy1 consists of a single,
linear, mandatory strand t1. Strand t1 resembles strand t except it is
linear. The first attribute of t2 is B and A is the last attribute. All the
nodes, beginning from the node labeled B up to and including the node
labeled A, are blocked. The h-bit is set to true.

From this point on, we regard type assignment Γ1 = Γ ∪ {(y1, τy1)}.

3. Γ1 : y∪immob(#3) ` τ2. Type τ2 consists of two mandatory components.
The first component, denoted t2, is a strand isomorphic to t1. The

112 Relational Algebra Simulation

second component consists of a single node n, which is immobilized and
is labeled #3. The h2-bit is set to false, because node n can match with
the free node labeled #3 in strand t2, following directly behind the node
labeled A.

4. Γ1 : hybridize(y ∪ immob(#3)) ` τ3. Because h2 = false, hybridization
takes place. Type τ2 consists of two mandatory components. One of
the mandatory components is a probe, but the probe is not labeled with
a negative atomic value symbol, thus both components are necessary
components. Hence, hybridizet is applied on just one set X, consisting
of the strand t2 and the probe n. Strand t2 has one free node labeled #3

and probe n is labeled #3. The result is a component C1 consisting of a
strand isomorphic to t2, a probe isomorphic to n and a matching between
the probe and the only free node labeled #3 in the strand. Component
C1 is mandatory, as all components in X are necessary and mandatory
in τ2. The h-bit of type τ3 is set to true.

5. Γ1 : hybridize(y∪immob(#3))∪#4σ1∪s ` τ4. Type τ4 consists of three
components:

(a) component C1;

(b) sticker s1, labeled #4σ1; and

(c) strand s

All three components are mandatory. The h-bit of type τ4 is set to false,
as the sticker can match with component C1 and with strand s.

6. Γ1 : hybridize(hybridize(y ∪ immob(#3)) ∪#4σ1 ∪ s) ` τ5. We know
that the h-bit of τ4 equals false, thus hybridization takes place. As all
components are mandatory and there are no (free) probes, all compo-
nents are necessary components. Hence, there is one set X = {C1, s1, s}.
Note that there is only one free node in C1 labeled #4, namely, the last
node of the linear strand in C1 isomorphic to t2. Thus, strand s can
attach to the end of the linear strand, in component C1, through sticker
s1, because symbol σ1 is unique in strand t2 and s. The hybridization
binds the three components of τ4 into one new component, called C2.
Component C2 is immobilized. The h-bit of type τ5 is set to true.

7. Γ1 : hybridize(hybridize(y∪immob(#3))∪#4σ1∪s)∪σ2#2 ` τy2 . Type
τy2 consists of the mandatory component C2 and a mandatory sticker
s2, labeled σ2#2. The h-bit of type τy2 is set to false, because sticker s2

can interact with the first node of the linear strand in component C2,
isomorphic to t2. Moreover, sticker s2 can interact with the last node of
strand isomorphic to s in component C2.

8.2. Simulation 113

From this point on, we use the type assignment Γ2 = Γ1 ∪ {(y2, τy2)}

8. Γ2 : connect(y2) ` τ6. The connect abbreviation consists of (a) a hy-
bridization, (b) a ligation and (c) a cleanup.

(a) Type τy2 consists of the immobilized, mandatory component C2 and
mandatory sticker s2, labeled σ2#2. Component C2 consists of an
immobilized, largely blocked, linear strand isomorphic to t2 and the
strand s, attached to the former by means of sticker s1. Component
C2 thus starts with the only free node labeled #2. Strand s ends
with the only free node labeled σ2. As h6 is set to false, hybridiza-
tion takes place. Because both components in τy2 are mandatory
and do not contain a node labeled ?, both are necessary compo-
nents. Consequently, there is one set X to hybridize, consisting of
both components. The hybridization results in two components.

i. The first component, call it D1, consists of one isomorphic copy
of C2 and one isomorphic copy of s2. The sticker binds to the
front and end of the immobilized component, bending it into a
circle, yet there are still gaps.

ii. The second component, call it D2, consists of one isomorphic
copy of C2 and two isomorphic copies of s2. One of the sticker
binds to the front of the isomorphic copy of C2. The other
sticker binds to the end of the isomorphic copy of C2. More
formally, the second sticker binds with the last node of the
strand isomorphic to s.

Because the set of necessary components is equivalent to the weak
type of type τy2 , both D1 and D2 are mandatory in the output of
the hybridize operation.

(b) Component D1 has two gaps: one between the end of the strand
isomorphic to t2 and the beginning of the strand isomorphic to
strand s, and one between the end of the strand isomorphic to
strand s and the beginning of the strand isomorphic to t2. The
ligate operation closes both gaps, creating a new circular strand,
denoted t3, which is the concatenation of strands isomorphic to t1
and s.

Component D2 also has one gap between the end of the strand
isomorphic to strand s and the beginning of the strand isomorphic
to t2. The ligate operation closes this gap, creating a new linear
strand, denoted t4, which is the concatenation of strands isomorphic
to t1 and s.

114 Relational Algebra Simulation

(c) The cleanup operator removes all blockings, matchings and immo-
bilizations and retains only the longest strands. In components D1

and D2 there are two positive strands: t3 and t4. Both strands are
concatenations of strands t1 and s and thus have the same length,
regardless of the value of `. Consequently, both qualify and both
qualify for mandatory.

Type τ6 consists of the strands t3 and t4, both are mandatory, and h6,
the h-bit of type τ6, is set to true.

Strand t3 equals the insertion of s between the attribute-value blocks of
attributes A and B. It remains to get rid of the linear strand t4.

9. Γ2 : blockfrom(connect(y2), B) ` τ7. Type τ6 consists of two strands:
t3 is a circular strand and t4 is a linear strand. In strand t3 all nodes will
be blocked when starting to block from the node labeled B. In strand
t4, the node labeled B is the second node of the strand. Hence, only two
nodes will become blocked in the linear strand. Type τ7 thus consists
of two strands: a circular strand resembling t3, except that all nodes
are blocked, and a linear strand resembling t4, except that the first two
nodes are blocked. Both strands are mandatory and the h-bit of type τ7

is set to true.

10. Γ2 : split(blockfrom(connect(y2), B),#3) ` τ8. Type τ7 consists of
two mandatory strands: one is circular, the other linear. The circular
strand has no free nodes, in particular there is no free node labeled #3,
whence no splitting can be performed on the circular strand. The linear
strand, on the other hand, has at least two free nodes labeled #3 (there
is one located directly after the node labeled A and another directly
after the node labeled B). The linear strand is thus split in at least
three parts. All components are mandatory and the h-bit of type τ8 is
set to true.

11. Γ2 : cleanup(split(blockfrom(connect(y2), A),#3)) ` τ ′. All compo-
nents in type τ8 are mandatory. Strand t3 has k attributes, k−1 possibly
empty sequences of additional tags, and strand s. Any part of strand t4
has at most 5 + |s| + maxi∈{1,...,k−1} |Si| nodes, of which at most one is

labeled with ∗. The length of t3 is at least 5k+ (`− 1)k+ |s|+ Σk−1
i=0 |Si|.

As a result, the cleanup operator retains only the circular strand t3,
with strand s inserted between A and B. Strand t3 is mandatory and
the h-bit is set to true. Thus, the output type equals τ ′.

8.2. Simulation 115

Removing from a Circle

Let x be a complex variable and A and B attributes. We use the shortcut
removeBetweenCirc(x,A,B) to abbreviate

cleanup(split(split(blockfromto(x,A,B),#4),#2))

Lemma 8.5. Let S be a circularization of a pseudo-relation-schema-type with
k attributes, denoted A1, . . . , Ak. We denote with c the circular strand in
S. Let A and B be two attributes in S. Let cA→B be the substrand of c
situated between the end of the attribute-value block of A and the beginning
of the attribute-value block of B. Let cA←B be the substrand of c starting
from the attribute-value block of B up to and including the attribute-value
block of A. Let τ = (S, S, true) be a type. Let Sr be a weak type with a
single component isomorphic to cA←B. Let τr = (Sr, Sr, true) be a type. Let
Γ be a type assignment such that Γ(x) = τ . If n(cA→B) < n(cA←B) and
a(cA→B) < a(cA←B), then Γ : removeBetweenCirc(x,A,B) ` τr.

Proof. We derive the output type of removeBetweenCirc(x,A,B) under type
assignment Γ.

1. Γ : blockfromto(x,A,B) ` τ1. Type τ is saturated. Type τ1 consists of
a strand t1 that is isomorphic to t, except that all nodes that are not
between attribute A and B are blocked. As a result, at least one #4-
labeled node is free (the last one of the attribute-value block of attribute
A) and at least one #2-labeled node is free (the first one of the attribute-
value block of attribute B). Strand t1 is mandatory and the h-bit of type
τ1 is set to true.

2. Γ : split(split(blockfromto(x,A,B),#4),#2) ` τ2. Circular strand t1
is cut at least behind the attribute-value block of attribute A and before
the attribute-value block of attribute B. Type τ2 contains at least two
strands. The first strand, t3 is isomorphic to cA←B, except all nodes are
blocked except for the first node (labeled #2, just in front of the node
labeled B) and the last three nodes (labeled #3, ∗ and #4, just after
the node labeled A). The other strands, resulting from the double split,
bundled in a set called T , are at most as long as cA→B. All strands are
mandatory. The h-bit of type τ2 is set to true.

3. Γ : cleanup(split(split(blockfromto(x,A,B),#4),#2)) ` τr. Next,
we show that strand cA←B is longer than any strand in T , for any value
of `. Let u be a strand in set T , then the length of u is at most equal to
the length of cA→B, which is n(cA→B) + (`− 1)a(cA→B). The length of
cA←B is n(cA←B)+(`−1)a(cA←B). We need to show that n(cA→B)+(`−

116 Relational Algebra Simulation

1)a(cA→B) < n(cA←B) + (`− 1)a(cA←B), or, 0 < n(cA←B)− n(cA→B) +
(`− 1)(a(cA←B)− a(cA→B)). This is true, because a(cA→B) < a(cA←B)
and n(cA→B) < n(cA←B). As a result, strand cA←B is the only strand in
the output type and the strand also qualifies for mandatory. The h-bit
of the output type is set to true.

Block Selecting

Let x be a complex variable. Let A and B be attributes. Let a be an atomic
value symbol and let i be a counter variable. We use blockselect(x,A,B, a, i)
to abbreviate

let y := blockexcept(blockfromto(x,A,B), i) ∪ immob(a) in

cleanup(flush(hybridize(y)))

Lemma 8.6. Let S be a circularization of a relation-schema type with k at-
tributes, denoted A1, . . . , Ak. Let A and B be two consecutive attributes on the
circular strand of S. Let τ = (S, S, true) be a type. Let τs = (S, empty, true)
be a type. Let Γ be a type assignment such that Γ(x) = τ . Then

Γ : blockselect(x,A,B, a, i) ` τs .

Proof. With c we denote the circular strand in S. We derive the output type
of blockselect(x,A,B, a, i) under type assignment Γ.

1. Γ : blockfromto(x,A,B) ` τ1. Type τ is saturated. Type τ1 contains
a single, circular, mandatory strand t isomorphic to c, except that the
nodes between the two nodes labeled A and B are the only free nodes.
In particular, the only node labeled ∗ is the `-core of attribute A. The
h-bit of type τ1 is set to true.

2. Γ : blockexcept(blockfromto(x,A,B), i) ` τ2. Type τ2 consists of a
single, circular, mandatory strand u, isomorphic to strand t, except that
the only node labeled ∗ in t is relabeled to ∗̂ in u and the nodes labeled
#3 and #4 (respectively before and after the `-core of attribute A) are
blocked. The h-bit of type τ2 is set to true.

3. Γ : blockexcept(blockfromto(x,A,B), i) ∪ immob(a) ` τy. Type τy con-
sists of two mandatory complexes: strand u and a probe n labeled ?. As
probe n and the ∗̂ labeled node of strand u are free and can match, the
h-bit of type τy is set to false.

From this point on, we use the type assignment Γ′ = Γ ∪ {(y, τy)}.

8.2. Simulation 117

4. Γ′ : hybridize(y) ` τ3. Type τy consists of two mandatory components,
however, probe n is labeled with ?, hence the probe is not a neces-
sary component. As a result, there are two sets X to consider in the
hybridization process. The first set X consists solely of the strand u.
Strand u is a positive strand, thus no matchings can be added. The
second set X consists of strand u and probe n. The hybridization of X
results in a single, immobilized component called C1, built up from a
strand isomorphic to u and a probe isomorphic to n, with a matching
between the only ∗̂-labeled node of the strand and the probe. Because
neither u or C1 is present in both invocations of hybridizet, both are
non-mandatory components. The h-bit of type τy is set to true.

5. Γ′ : flush(hybridize(y)) ` τ4. Component C1 is the only immobilized
component in type τ3. Type τ4 thus consists solely of component C1.
The component is non-mandatory. The h-bit of type τ4 is set to true.

6. Γ′ : cleanup(flush(hybridize(y))) ` τs. The cleanup operation re-
moves blockings, matchings and probes. What is left, is a strand iso-
morphic to strand c. The strand is non-mandatory. The h-bit of the
output type is set to true.

8.2.2 Relational Algebra Expressions

The proof of Theorem 8.2 now goes by induction on the structure of e. By
induction, we know that subexpressions e1 and e2 of expression e are simulated
by the respective well-typed (under type assignment ΓD) DNAQL expressions
eDNA

1 and eDNA
2 . Subexpression e1 (e2) is over relation schema R (S). Type

τR (τS) is a relation-schema-type of relation schema R (S). Type τ ′R (τ ′S) has
a weak type isomorphic to τR (τS), but in contrast to τR (τS), which has the
empty complex as mandatory weak type, the mandatory weak type of τ ′R (τ ′S)
is isomorphic to the weak type of τ ′R (τ ′S).

Union

Lemma 8.7. Let e = e1 ∪ e2, with D : e ` R. If expression eDNA is defined
as eDNA

1 ∪ eDNA
2 , then ΓD : eDNA ` τR.

Proof. Because the RA expression is defined, expressions e1 and e2 are over
the same relation schema R = S. As a result, ΓD : eDNA

1 ` τR and ΓD :
eDNA

2 ` τR. The union of two isomorphic types is trivially isomorphic to the
input types.

118 Relational Algebra Simulation

Difference.

Lemma 8.8. Let e = e1 − e2, with D : e ` R. If expression eDNA is defined
as eDNA

1 − eDNA
2 , then ΓD : eDNA

1 − eDNA
2 ` τR.

Proof. Because the RA expression e is well typed, expressions e1 and e2 are
over the same relation schema R = S. As a result, ΓD : eDNA

1 ` τR and
ΓD : eDNA

2 ` τR.

If relation schema R is empty, i.e., no attributes, then type τR = (empty,
empty, true). The difference operation applied to two empty complex types,
results in the empty complex type. Hence, the output is also of type τR.

If R is nonempty, the sole strand of SR is also the sole member of data(SR).
Thus, the weak type of the output is SR. Furthermore, �R is empty, thus the
mandatory weak type of the output is also empty. The h-bit of the output is
set to true. Because, τR consists solely of nodes labeled with positive symbols,
any complex having type τR is hybridized.

Cartesian product.

The cartesian product simulation consists of two parts. First, the strands of
e1 and e2 are concatenated. In a second step, the attributes are shuffled, to
restore the fixed order on the attributes.

Let R and S be relation schemas with respective orders ⊕R and ⊕S . If
R ∩ S = ∅, we define relation schema T as R ∪ S. We define the combined
order ⊕ of orders ⊕R and ⊕S , such that for any pair of attributes X,Y ∈ T ,
X ⊕ Y if and only if:

1. X ∈ S and Y ∈ R; or

2. X,Y ∈ R and X ⊕R Y ; or

3. X,Y ∈ S and X ⊕S Y .

In other words, the combined order ⊕ on relation schema T puts attributes of
S in front of attributes of R and respects orders ⊕R and ⊕S .

Lemma 8.9. Let e = e1 × e2, with D : e ` T , where T = R ∪ S and R ∩ S =
∅. Let τR (τS) be the relation-schema-type of relation schema R (S) with k
attributes, denoted A1, . . . , Ak (B1, . . . , Bm). Let A = A1 (C = B1) be the
first and B = Ak (D = Bm) be the last attribute of relation schema R under
order ⊕R. Let ⊕ be the combined order of ⊕R and ⊕S. Let τ⊕T be a relation-

8.2. Simulation 119

schema-type with order ⊕. If expression eDNA is defined as

let x := eDNA
1 in

let y := eDNA
2 in

if empty(x) then empty else

if empty(y) then empty else

let r := hybridize(#4#5 ∪#5) in

let l := hybridize(#1#2 ∪#1) in

let ea2 := connect(x ∪ r) in

let eb2 := connect(y ∪ l) in

let e2 := connect(ea2 ∪ eb2 ∪#5#1) in

let e1 := circularize(e2, A,D) in

cleanup(split(split(blockfromto(e1, B,C),#2),#4))

then ΓD : eDNA ` τ⊕T .

Parts ea2 and eb2 attach a unique ending (beginning) to the tuples in r (s).
The new tuples are added together, in e2, along with a sticky bridge (#5#1),
resulting in all possible joins of tuples of eDNA

1 and eDNA
2 . The rest of the

expression is concerned with cutting out the #5#1 piece in the middle of the
new chains.

Proof. By the well-typedness of e we know that τR and τS do not share at-
tributes. We derive the output type of eDNA under type assignment ΓD.

1. We extend and augment the type assignment ΓD with {(x, τ ′R); (y, τ ′S)}.
Type checking the first two let-statements, adds the types for complex
variables x and y. The main body of the expression resides inside the
else-part of two if-statements. Because τR and τS both consist of a single,
non-mandatory strand, the main body of the expression is type checked
with the augmented types τ ′R and τ ′S for x respectively y. We denote the
extended and augmented type assignment by Γ′.

2. Γ′ : #4#5 ∪#5 ` τ0. Type τ0 consists of a single-node strand t0 labeled
#5 and a sticker s0 labeled #4#5. Both components are mandatory.
The h-bit of type τ0 is set to false, because the node of t0 can match
with the node labeled #5 of sticker s0.

3. Γ′ : hybridize(#4#5 ∪ #5) ` τ1. Type τ0 consists of two mandatory
components and none of the nodes is labeled ?, thus both components are
necessary. Type τ1 consists of a single, mandatory component, formed
by binding strand t0 on sticker s0. The h-bit is set to true.

From this point on, we use type assignment Γ1 = Γ′ ∪ {(r, τ1)}.

120 Relational Algebra Simulation

4. Γ1 : #1#2 ∪#1 ` τ ′2. Type τ ′2 consists of a single-node strand t2 labeled
#1 and a sticker s2 labeled #1#2. Both components are mandatory.
The h-bit of type τ ′2 is set to false, because the node of t2 can match
with the node labeled #1 of sticker s2.

5. Γ1 : hybridize(#1#2 ∪ #1) ` τ2. Type τ ′2 consists of two mandatory
components and none of the nodes is labeled ?, thus both components are
necessary. Type τ2 consists of a single, mandatory component, formed
by binding strand s2 on sticker s2. The h-bit is set to true.

From this point on, we use the type assignment Γ2 = Γ1 ∪ {(l, τ2)}.

6. Γ2 : connect(x ∪ r) ` τ3. Firstly, τ ′R consists of a single component,
denoted tR. Type τ1 consists of a single component, denoted CR. Both
components are mandatory within their respective types. Strand tR
has at least one free node labeled #4 and component CR has one free
node labeled #4. As a result, the union results in a type called τ ′ with
components tR and CR that are both mandatory. The h-bit is set to
false.

The connect abbreviation consists of (a) a hybridization, (b) a ligation,
and (c) a cleanup:

(a) As both components in τ ′ are mandatory and no node is labeled ?,
both are necessary components. Hence, there is only one hybridiza-
tion set X containing both components. The hybridization results
in a component C2

R by matching an isomorphic copy of CR to every
free #4-labeled node on one isomorphic copy of tR.

(b) Component C2
R has one gap, namely between the strand isomorphic

to strand tR and the isomorphic copy of strand t0 attached to the
last node of tR. All other copies of component CR do not create a
gap. The ligate operation constructs a new component C3

R in which
this gap is filled.

(c) There are essentially two strands in the C3
R, the concatenation of

tR and t0, called t′R, and t0. The length of t′R is 5k + 1 + (`− 1)k.
The length of isomorphic copies of t0 is 1.

Type τ3 thus consists of strand t′R. The strand is mandatory. The h-bit
of type τ3 is set to true.

From this point on, we use the type assignment Γ3 = Γ2 ∪ {(ea2, τ3)}.

7. Γ3 : connect(y ∪ l) ` τ4. An analogous reasoning to the above point
reveals that type τ4 consists of a single strand, called t′S , which is a

8.2. Simulation 121

concatenation of strand t2 and tS , i.e., t′S is equivalent to tS except that
a node labeled #1 is attached to the front of it.

From this point on, we use the type assignment Γ4 = Γ3 ∪ {(eb2, τ4)}.

8. Γ4 : connect(ea2 ∪ eb2 ∪#5#1) ` τ5. Firstly, we combine the mandatory
strands t′R and t′S with sticker s3, labeled #5#1. The h-bit of this combi-
nation is set to false, because strand t′R (t′S) contains a free node labeled
#5 (#1) which can match with sticker s3.

The connect abbreviation consists of (a) a hybridization, (b) a ligation,
and (c) a cleanup.

(a) Because all components are mandatory and there is no ?-labeled
node, there is only one set X to hybridize. The result is a com-
ponent C1 consisting of one isomorphic copy of t′R, one isomorphic
copy of t′S and one isomorphic copy of s3. The sticker concatenates
the positive strands. Component C1 is mandatory and the h-bit is
set to true.

(b) The last node of the isomorphic copy of t′R and the first node of the
isomorphic copy of t′S form a gap. The ligate operation fills this gap.
Hence, component C ′1 consists of one positive strand, called tRS ,
which is the concatenation of t′R and t′S and one sticker isomorphic
to s3. Component C ′1 is mandatory and the h-bit remains set to
true.

(c) As strand tRS is the only strand in component C ′1, the result of the
cleanup operation is tRS . Strand tRS also qualifies for mandatory,
because it is the only strand and component C ′1 is mandatory. The
h-bit of type τ5 is set to true.

From this point on, we use the type assignment Γ5 = Γ4 ∪ {(e2, τ5)}.

9. Γ5 : circularize(e2, A,D) ` τ6. Type τ5 consists of strand tRS , which is
a pseudo-relation-schema-type at this point, because of the two nodes
labeled #1 and #5 between attributes B and C. Moreover, strand tRS

is also mandatory in τ5. The h-bit of type τ5 is set to true. The first
(last) attribute of strand tRS is A (D). Hence, by Lemma 8.3 we know
that type τ6 consists of the circular version of strand tRS , called cRS .
Moreover, cRS is mandatory in type τ6 and the h-bit of type τ6 is set to
true.

From this point on, we use the type assignment Γ6 = Γ5 ∪ {(e1, τ6)}.

10. Γ6 : blockfromto(e1, B,C) ` τ7. Type τ7 consists of an isomorphic copy
of cRS , except that the nodes starting from the node labeled #3 directly

122 Relational Algebra Simulation

following the B-labeled node, up to but not including the C-labeled
node are the only free nodes. All other nodes are blocked. The strand
is mandatory and the h-bit of type τ7 is set to true.

11. Γ6 : cleanup(split(split(blockfromto(e1, B,C),#2),#4)) ` τ8. In the
strand of type τ7 there is only one free #2-labeled node and only one
free #4-labeled node, namely, the first node of the attribute-value block
of C and the last node of the attribute-value block of B. Between these
nodes, there are two nodes, labeled #5 and #1. The two split operations
cut these two nodes from the strand, forming a new short strand called
t15. As a result, the circular strand becomes linear and attribute C is
the first attribute. Call this strand tSR. Note that strand tSR is the
concatenation of strands tS and tR.

The length of strand tSR equals (4 + `)(k + m), whereas the length of
strand t15 equals 2. Hence, the cleanup operation removes the blockings
from strand tSR and disposes of strand t15. Strand tSR is mandatory in
type τ8 and the h-bit is set to true.

12.

Γ′′ : if empty(y) then empty else

let r := hybridize(#4#5 ∪#5) in

let l := hybridize(#1#2 ∪#1) in
let ea2 := connect(x ∪ r) in
let eb2 := connect(y ∪ l) in
let e2 := connect(ea2 ∪ eb2 ∪#5#1) in
let e1 := circularize(e2, A,D) in
cleanup(split(split(blockfromto(e1, B,C),#2),#4)) ` τ⊕T

By the previous steps, we know that the else-part of the if-statement has
type τ8. By definition we know that Γ′′ : empty ` (empty, empty, true).
Hence, combining both types results in τ⊕T as strand tSR in type τ8

becomes non-mandatory.

13. Γ′ : if empty(x) then empty else if empty(y) then empty else ey ` τ⊕T .
The else-part of the if-test has type τ⊕T . The then-part of the if-test has
the empty type. Hence, it does not add components to nor does it make
components non-mandatory, thus the output type is τ⊕T .

Reordering is performed by repeated shuffling of attribute-value pairs.
Shuffling attribute-value pairs in a tuple is done using a new technique we
call double bridging. Instead of using a single sticky bridge, two sticky bridges

8.2. Simulation 123

are hybridized onto one strand. A careful placement of the bridges allows us
to cut twice in the strand whilst keeping the strand connected. Moreover, the
two bridges guide the strand into its new conformation.

Next we describe (in outline) a DNAQL program for shuffling some at-
tribute C to the end of a chain. Assume that A is the first attribute, attribute
B occurs just in front of C, C is the attribute that we want to move, D occurs
exactly after C and E is the last attribute of the chain. The general outline
of the program is:

1. Insert the first marker (#6#7) between attributes B and C.

2. Insert the second marker (#8#9) between attributes C and D.

3. Insert the third marker (#9#1) at the end of the chain.

4. Add the two bridges to the mix: #6#8 and #1#7.

5. Split after #6 and before #8 and ligate the resulting complex.

6. Remove the markers from the chains.

The double bridging will result in non-terminating hybridizations, if the pos-
itive strands are not immobilized.

Lemma 8.10. Let R be a relation schema with order ⊕ on the attributes.
Let C be an attribute in R, and let ⊗ be the order derived from ⊕ by making
attribute C the last attribute, i.e., for any attribute X ∈ R, if X 6= C then
X ⊗ C and for any pair of attributes (X,Y) in R, with X 6= C and Y 6= C,
X ⊕ Y ⇔ X ⊗ Y . Let τ⊕R be a relation-schema-type for relation schema R
with order ⊕. Let A be the first attribute, B be the attribute just in front
of attribute C, D be the attribute appearing just after C and E be the last
attribute of R under order ⊕. Let x be a complex variable. Let eDNA be the
following DNAQL expression:

let f1 := insertcirc(circularize(x,A,E), B,C,#6#7) in

let f2 := insertcirc(f1, C,D,#8#9) in

let f3 := split(blockfromto(f2, E,A),#4) in

let f4 := connect(blockfromto(f3, E,A) ∪#9#1 ∪#4#9) in

let f5 := hybridize(f4 ∪ immob(A)) ∪#6#8 ∪#1#7 in

let f6 := cleanup(ligate(split(split(f5,#6),#8))) in

let f7 := removeBetweenCirc(circularize(f6, A,C), B,D) in

let f8 := removeBetweenCirc(circularize(f7, D,B), E, C) in

removeBetweenCirc(circularize(f8, C,E), C,A)

Let Γ be a type assignment such that Γ(x) = τ⊕R . Then Γ : eDNA ` τ⊗R .

124 Relational Algebra Simulation

Proof. The strand in type τ⊕R is denoted tR. For the sake of brevity, we have
omitted an emptiness-test on complex variable x. Hence, type τ⊕R replaced by
its augmented version, in which strand tR is mandatory.

We derive the output type of eDNA under type assignment Γ.

1. Γ : circularize(x,A,E) ` τ1. Strand tR in type τ⊕R is a positive, linear,
and mandatory strand. It does not contain matchings, blockings, or
immobilizations. The first attribute occurring on strand tR is A and the
last attribute is E. Hence, by Lemma 8.3 we know that type τ1 consists
of the circular version of strand tR, called cR. Strand cR is mandatory
in type τ1 and the h-bit is set to true.

2. Γ : insertcirc(circularize(x,A,E), B,C,#6#7) ` τ2. Strand cR is circu-
lar and it is mandatory in type τ1. As strand cR is derived from strand
tR and tR is a relation-schema-type, there are no nodes between the
attribute-value block of B and C. The labels #6 and #7 are unique
with respect to the strand #6#7 and the cR. Hence, by Lemma 8.4 we
know that type τ2 consist of a mandatory, circular strand, isomorphic to
cR except that two nodes, labeled #6 resp. #7, are added between the
attribute-value blocks of attributes B and C. Call this strand c1

R. The
h-bit of type τ2 is set to true.

From this point on, we use the type assignment Γf1 = Γ ∪ {(f1, τ2)}.

3. Γf1 : insertcirc(f1, C,D,#8#9) ` τ3. Strand c1
R is circular and it is

mandatory in type τ2. As strand cR is derived from strand tR and tR is
a relation-schema-type, there are no nodes between the attribute-value
block of C and D. The labels #8 and #9 are unique with respect to the
strand #8#9 and strand c1

R. Hence, by Lemma 8.4, we know that type
τ3 consists of a mandatory, circular strand, isomorphic to c1

R except that
two nodes, labeled #8 resp. #9, are inserted between the attribute-value
blocks of attributes C and D. Call this strand c2

R. The h-bit of type τ3

is set to true.

From this point on, we use the type assignment Γf2 = Γf1 ∪ {(f2, τ3)}.

4. Γf2 : split(blockfromto(f2, E,A),#4) ` τ4. Type τ4 consists of a strand,
called c3

R, isomorphic to strand c2
R, except that all the nodes from the

first attribute to the last attribute are blocked. Hence, the only free
node labeled #4 is the last node of the attribute-value block of E. The
split operation results in a linear version of c3

R in which A as the first
attribute. Call this strand t4R. Strand t4R is mandatory in type τ4. The
h-bit of type τ4 is set to true.

From this point on, we use the type assignment Γf3 = Γf2 ∪ {(f3, τ4)}.

8.2. Simulation 125

5. Γf3 : blockfromto(f3, E,A) ∪ #9#1 ∪ #4#9 ` τ5. Type τ5 consists of
strand t4R, a strand t1 labeled with #9#1, and a sticker s1 labeled #4#9.
All components are mandatory. The h-bit of type τ5 is set to false,
because strand t4R has a free #4-labeled node, strand t1 has a free #9-
labeled node and the sticker has a free node labeled #4 and a free node
labeled #9.

6. Γf3 : connect(blockfromto(f3, E,A) ∪#9#1 ∪#4#9) ` τ6. The connect
abbreviation consists of (a) a hybridization, (b) a ligation and (c) a
cleanup.

(a) All components are mandatory and no node is labeled with ?.
Hence, all components are necessary. Strands t4R and t1 can be
connected by means of sticker s1. Thus, hybridization forms a new
component C1 consisting of one isomorphic copy of strand t4R, one
isomorphic copy of t1 and one isomorphic copy of s1. There is a gap
between the last node of the strand isomorphic to t4R and the first
node of the strand isomorphic to t1. Component C1 is mandatory.
The h-bit is set to true.

(b) The ligate operation will fill the gap between the two positive
strands in component C1. Let component C ′1 be the result of the
ligate operation on component C1. Then there is a single posi-
tive strand in component C ′1, namely the concatenation of strands
isomorphic to t4R respectively t1.

(c) There is only one positive strand in component C ′1. Hence, type τ6

consists of a single strand (with blockings), call it t5R. Strand t5R is
mandatory. The h-bit of type τ6 is set to true.

From this point on, we use the type assignment Γf4 = Γf3 ∪ {(f4, τ6)}.

7. Γf4 : hybridize(f4 ∪ immob(A)) ` τ7. Firstly, a probe n labeled A and
strand t5R are combined. Both components are mandatory. The h-bit is
set to false, because strand t5R and probe n can match.

Because both components are mandatory and no node is labeled with ?,
there is only one set X to hybridize. Hybridization forms a new com-
ponent C2 consisting of one isomorphic copy of t5R and one isomorphic
copy of n. Node n and the node labeled A in the isomorphic copy of
strand t5R are matched. Component C2 is mandatory and immobilized.
The h-bit of type τ7 is set to true.

8. Γf4 : hybridize(f4∪immob(A))∪#6#8∪#1#7 ` τ8. Type τ8 consists of
component C2, a sticker b1 labeled #6#8 and a sticker b2 labeled #1#7.

126 Relational Algebra Simulation

Stickers b1 and b2 are called “bridges”. All components are mandatory.
The h-bit of type τ8 is set to false.

9. Γf4 : hybridize(hybridize(f4 ∪ immob(A)) ∪#6#8 ∪#1#7) ` τ9. Be-
cause the h-bit of type τ8 is false, hybridization takes place. All compo-
nents are mandatory and there is no ?-labeled probe. Hence, all com-
ponents are necessary components. Component C2 is immobilized and
has one free node labeled #6, one free node labeled #8, one free node
labeled #7, and one free node labeled #1. Each node of the bridges b1
and b2 can thus match to exactly one node in one copy of component
C2.

Hybridization is performed on components C2, b1, and b2. Four new
components are formed.

(a) The first component, call it C1
b consists of one isomorphic copy of

C2, one isomorphic copy of b1, and one isomorphic copy of b2.

(b) The second component, call it C2
b , consists of one isomorphic copy

of C2, one isomorphic copy of b1, and two isomorphic copies of b2
(one binding with the free #1-labeled node in C2, the other binding
with the free #7-labeled node in C2). In this case, only bridge b1
is successfully placed.

(c) The third component, call it C3
b , consists of one isomorphic copy

of C2, two isomorphic copies of b1 (one binding with the free #6-
labeled node in C2, the other binding with the free #8-labeled node
in C2), and one isomorphic copy of b2. In this case, only bridge b2
is successfully placed.

(d) The fourth component, call it C4
b , consists of one isomorphic copy

of C2, two isomorphic copies of b1, and two isomorphic copies of b2.
Each bridge matches with one free node. In this case, no bridge is
placed successfully.

Each component Ci
b, for 1 ≤ i ≤ 4, is mandatory. The h-bit of type τ9

is set to true.

From this point on, we use the type assignment Γf5 = Γf4 ∪ {(f5, τ9)}.
Type τ9 is depicted in Figure 8.1.

10. Γf5 : split(split(f5,#6),#8) ` τ10. Type τ9 consists of four manda-
tory, immobilized components. Each component has one closed node
labeled #6 and one closed node labeled #8.

(a) Component C1
b has two successfully placed bridges. Cutting at

the nodes labeled #6 and #8 results in a component C1
c in which

8.2. Simulation 127

Figure 8.1: Type τ9: two bridges attached to the data strand.

128 Relational Algebra Simulation

the attribute-value block of C is pulled to position just after the
attribute-value block of E. The attribute-value block of D is pulled
against the attribute-value block of B. This situation is depicted in
Figure 8.2. The component consists of three positive strand with
gaps between the first and second substrand and the second and
third substrand. Note that some additional nodes are still present
between some attribute-value blocks.

(b) In component C2
b , two copies of b2 are present. As a result, two

new components C2
c and C3

c are created by the split operations.
Component C2

c consists of two substrands held together by a copy
of bridge b1. A copy of bridge b2 is also present in this compo-
nent. The attribute-value block C has been cut from this compo-
nent. Component C3

c consists of a strand labeled with #7 and the
attribute-value block of C and a copy of bridge b2.

(c) In component C3
b , two copies of b1 are present. As a result, two

new components C4
c and C5

c are created by the split operations.
Component C4

c consists of the attribute-value blocks of attributes
A to B, with an additional node labeled #6. Bridge b1 is matched to
this strand. Component C5

c also consists of linear strand, starting
with two nodes labeled #8 and #9, followed by the attribute-value
blocks of attributes D to E, three nodes labeled #9, #1 and #7,
and the attribute-value block of attribute C.

(d) The bridges in component C4
b do not connect any part of the com-

ponent isomorphic to C2. Consequently, three new components C6
c ,

C7
c and C8

c are created by the split operations. Component C6
c con-

sists of a linear strand of the attribute-value blocks of attributes A
to B followed by a node labeled #6. Furthermore, a copy of bridge
b1 is matched to the strand. Component C7

c consists of a linear
strand labeled with #7 and the attribute-value block of attribute
C. A copy of bridge b2 is matched to the strand. Component C8

c

consists of a linear strand labeled #8#9, followed by the attribute-
value blocks of the attributes D to E, and two nodes labeled #9#1.
One copy of bridge b1 and one copy of bridge b2 is matched to the
strand.

Type τ10 consists of eight mandatory components C1
c to C8

c . The h-bit
of type τ10 is set to true.

11. Γf5 : cleanup(ligate(split(split(f5,#6),#8))) ` τ11. There are four
gaps in the components of type τ10. In component C1

c the ligate oper-
ation glues the three linear strand together in their new conformation,
creating a new component called D1. Component D1 is depicted in

8.2. Simulation 129

Figure 8.2: Type τ10: the two bridges have guided the strand into its new
conformation. Note there are still gaps in the data strand.

Figure 8.2. Component D1 contains a one positive strand with the all
attribute-value blocks. Call thus strand t2. In component C2

c the ligate
operation glues the two positive strands together, creating a new com-
ponent called D2. Component D2 contains the attribute-value blocks of
all attributes except attribute C. In component C5

c the ligate operation
glues the two linear strands together, creating a new component called
D3. Component D3 contains the attribute-value blocks of attributes D
to E and C.

The cleanup operation is applied to eight mandatory components: D1,
D2, C3

c , C4
c , D3, C5

c , C6
c , C7

c , and C8
c . All of these components contain a

single positive strand and one or more sticker. The lengths of the strands
in the components are:

(a) D1: |R|(4 + `) + 6

(b) D2: (|R| − 1)(4 + `) + 5

(c) C3
c : 5 + `

(d) C4
c : |{A, . . . , B}|(4 + `) + 1

(e) D3: |{D, . . . , E,C}|(4 + `) + 5

(f) C6
c : |{A, . . . , B}|(4 + `) + 1

(g) C7
c : 5 + `

(h) C8
c : |{D, . . . , E}|(4 + `) + 4

Clearly, strand t2 in component D1 is always the longest strand. More-
over, strand t2 qualifies for mandatory. The h-bit of type τ11 is set to
true.

From this point on, we use the type assignment Γf6 = Γf5 ∪ {(f6, τ11)}.

12. Γf6 : removeBetweenCirc(circularize(f6, A,C), B,D) ` τ12. Strand t2 is
a pseudo-relation-schema type that is mandatory in type τ11, moreover
it is the only component of type τ11. Hence, by Lemma 8.3, we know
that the output type of circularize(f6, A,C) contains the circular version
of t2. Call this strand c2. Strand c2 is mandatory, it is a pseudo-relation-
schema type and between the attribute-value blocks of attributes B and

130 Relational Algebra Simulation

D there are only three nodes. Hence, by Lemma 8.5, we know that type
τ12 consists of a linear strand t3 starting with attribute D and ending
with attribute B. Strand t3 is mandatory in type τ12. The h-bit of type
τ12 is set to true.

From this point on, we use the type assignment Γf7 = Γf6 ∪ {(f6, τ12)}.

13. Γf7 : removeBetweenCirc(circularize(f7, D,B), E, C) ` τ13. In a reason-
ing similar to the previous item, we derive that τ13 consists of a strand,
call it t4, that is isomorphic to strand t3, except that the three nodes
labeled #9#1#7 between the attribute-value blocks of attributes E and
C have been removed. Strand t4 starts with attribute C and ends with
attribute E. It is mandatory in type τ14, and the h-bit of τ13 is set to
true.

From this point on, we use the type assignment Γf8 = Γf7 ∪ {(f8, τ13)}.

14. Γf8 : removeBetweenCirc(circularize(f8, C,E), C,A) ` τ⊗R . Strand t4 in
type τ13 is mandatory and a relation-schema-type. Hence, by Lemma 8.3,
we know that the output type of circularize(f8, C,E) consists of a cir-
cular version of strand t4. Call this strand c4. Strand c4 is mandatory
and circular. There are no nodes between the attribute-value blocks of
attributes C and A. Hence, by Lemma 8.5, we know that the output
type consists of a linear strand, starting with attribute A and ending
with attribute C that is a relation-schema type. Hence, the output type
is τ⊗R .

Projection

Computing the simulating expression for π̂C(e1), is split into two cases: (1)
relation schema R has three or more attributes, and (2) relation schema R has
two attributes.

Three or More Attributes.

Lemma 8.11. Let e = π̂C(e1), with D : e1 ` R, C ∈ R and D : e ` S, where
S = R\{C}. Let τR be a relation-schema-type of relation schema R with k ≥ 3
attributes, and let S = {A1, . . . Ai−1, Ai+1, . . . , Ak} be a relation-schema-type
with k−1 attributes. Denote attribute Ai with C, let A = A1, and let B = Ak.
Consider R to be circular, then let X be the attribute just in front of C and
Y be the attribute directly following C. Let A′ be the first attribute of S and

8.2. Simulation 131

let B′ be the last attribute of S. If expression eDNA is defined as

let x := eDNA
1 in if empty(x) then empty else

let y := split(blockfromto(circularize(x,A,B), X, Y),#2) in

removeBetweenCirc(circularize(cleanup(y), Y,X), B′, A′)

then ΓD : eDNA ` τS.

Proof. Let tR be the strand in τR. We derive the output type of eDNA under
type assignment ΓD.

1. Firstly, we extend and augment the type assignment ΓD with {(x, τ ′R)}
and denote the extended and augmented type assignment Γ′. This pair
may be added to Γ, because the let-statement introduces variable x with
type τR. Strand tR is non-mandatory in type τR and the main body of
the program is situated in the else-part of the if-statement. By definition,
we may thus augment the type of variable x to τ ′R in which strand tR is
mandatory.

2. Γ′ : circularize(x,A,B) ` τ1. Strand tR is linear and without block-
ings, matchings and immobilizations. Furthermore tR is mandatory in
type τ ′R. The first attribute of tR is A and the last attribute is B. By
Lemma 8.3, we know that type τ1 consists of a circular version of tR.
Denote this circular strand cR. Strand cR is mandatory. The h-bit of
type τ1 is set to true.

3. Γ′ : blockfromto(circularize(x,A,B), X, Y) ` τ2. Strand cR of type τ1

is circular, and attribute X is just in front of attribute C and attribute
Y is just behind attribute C. The blockfromto abbreviation creates a
new circular strand, call it c2

R, in which all nodes, except those in the
substrand between attribute X and Y , are blocked. Consequently, only
two nodes labeled #2 are free. The first node of the attribute-value
block of C and the first node of the attribute-value block of attribute
Y , i.e., the first node after the attribute-value block of C. Strand C2

r is
mandatory in type τ2 and the h-bit of type τ2 is set to true.

4. Γ′ : split(blockfromto(circularize(x,A,B), X, Y),#2) ` τ3. The split
operation introduces two new strands. The first one, called t′S , contains
the attribute-value blocks of relation schema S. The first attribute of
t′S is Y , the last attribute is X. The nodes from attribute Y up to
and including attribute X are blocked. The second strand, called tC ,
contains the attribute-value block of attribute C. No nodes are blocked
in this strand. Both components are mandatory. The h-bit of type τ3 is
set to true.

132 Relational Algebra Simulation

From this point on, we use the type assignment Γ1 = Γ′ ∪ {(y, τ3)}.

5. Γ1 : cleanup(y) ` τ4. Type τ3 contains two strands, namely, t′S and
tC . The length of these strands is (k − 1)(4 + `) respectively 4 + `. As
k > 1, strand t′S qualifies. Because t′S is mandatory in τ3, it qualifies
for mandatory. Strand t′S without blockings is called t′′S . Hence, type τ4

consists of t′′S as a mandatory strand. The h-bit of type τ4 is set to true.

6.

Γ1 : removeBetweenCirc(circularize(cleanup(y), Y,X), B′, A′) ` τ5

Strand t′′S is mandatory, linear and without blockings and matchings. Its
first attribute is X and its last attribute is Y . By Lemma 8.3, we know
that cS is the circular version of t′′S . Strand cS is mandatory in the out-
put type of the circularize abbreviation. Next, the removeBetweenCirc
abbreviation cuts open the circle between attributes B′ and A′. Type
τ5 thus consists of a linear version of cS with first attribute A′ and last
attribute B′. Call this strand tS . Strand tS is mandatory in type τ5.
The h-bit of type τ5 is set to true.

7.

Γ′ : if empty(x) then empty else

let y := split(blockfromto(circularize(x,A,B), X, Y),#2) in

removeBetweenCirc(circularize(cleanup(y), Y,X), B′, A′) ` τT

The then-part of the if-statement has the empty type, and the else-part
of the if-statement has type τ5. The union of the weak types and the
intersection of the mandatory weak types results in τS . As the weak
type only contains positively labeled nodes, the h-bit can be set to true.

Two attributes.

Lemma 8.12. Let e = π̂C(e1), with D : e1 ` R, R = {A,C}, and D : e ` S,
where S = {A}. Let τR be a relation-schema-type of relation schema R, and
let τS be a relation-schema-type of relation schema S. If expression eDNA is
defined as

let x := eDNA
1 in if empty(x) then empty else

cleanup(flush(hybridize(split(x,#4) ∪ immob(A))))

then ΓD : eDNA ` τS.

8.2. Simulation 133

Proof. Let tR be the linear strand in type τR. We derive the output type of
eDNA under type assignment ΓD.

1. Firstly, we extend and augment the type assignment ΓD with {(x, τ ′R)}
and denote the extended and augmented type assignment Γ′. This pair
may be added to Γ, because the let-statement introduces variable x with
type τR. Strand tR is non-mandatory in type τR and the main body of
the program is situated in the else-part of the if-statement. By definition,
we may thus augment the type of variable x to τ ′R in which strand tR is
mandatory.

2. Γ′ : split(x,#4) ` τ1. Strand tR in type τ ′R, has two nodes labeled
#4, namely, the last nodes of the attribute-value blocks of A and C.
Consequently, the split operation splits tR into two linear strands tA
(the attribute-value block of attribute A) and tC (the attribute-value
block of attribute C). Both strands are mandatory in type τ1. The h-bit
of type τ1 is set to true.

3. Γ′ : split(x,#4) ∪ immob(A) ` τ2. Type τ2 consists of strands tA, tC
and a probe n labeled A. Because probe n can match with a node of
strand tA, the h-bit of type τ2 is set to false. All three components are
mandatory.

4. Γ′ : hybridize(split(x,#4) ∪ immob(A)) ` τ3. All components in type
τ2 are mandatory and no node is labeled with ?. Hence, all three compo-
nents are necessary. The hybridization produces two mandatory compo-
nents: the first is formed by the attribute-value block of attribute A and
the probe, call it C1, the second component is isomorphic to tC . The
h-bit of type τ3 is set to true.

5. Γ′ : cleanup(flush(hybridize(split(x,#4) ∪ immob(A)))) ` τ4. The
flush operation retains component C1 because it is immobilized. The
cleanup operation removes the probe from component C1, whence ex-
tracting strand tA from C1. Strand tA is mandatory in type τ4. The
h-bit of type τ4 is set to true.

6.

Γ′ : if empty(x) then empty else

cleanup(flush(hybridize(split(x,#4) ∪ immob(A)))) ` τT
The then-part of the if-statement has the empty type. The else-part of
the if-statement has type τ4. Taking the union of the weak types and
the intersection of the mandatories, result in type τS .

134 Relational Algebra Simulation

Renaming

Lemma 8.13. Let D : e1 ` R with R a relation schema containing at least
two attributes and C ∈ R and F /∈ R. Let e = ρC/F (e1), with D : e ` T ,
where T = (R \ {C}) ∪ {F} is a relation schema. Let A be the first attribute
and let E be the last attribute of R. Consider R to be circular, then let B
be the attribute just in front of C and let D be the attribute just after C. If
expression eDNA is defined as

let x := eDNA
1 in if empty(x) then empty else

let f1 := cleanup(split(blockfromto(circularize(x,A,E), C,D),#3)) in

let f2 := connect(blockfromto(f1, C,D) ∪#2F ∪ F#3) in

let f3 := cleanup(split(blockfrom(f2, B),#2)) in

cleanup(split(blockfromto(circularize(f3, F,B), E,A),#4))

then Γ : eDNA ` τT .

Proof. Let tR be the strand in type τR. We derive the output type of eDNA

under type assignment ΓD.

1. Firstly, we extend and augment the type assignment ΓD with {(x, τ ′R)}
and denote the extended and augmented type assignment Γ′. This pair
may be added to Γ, because the let-statement introduces variable x with
type τR. Strand tR is non-mandatory in type τR and the main body of
the program is situated in the else-part of the if-statement. By definition,
we may thus augment the type of variable x to τ ′R in which strand tR is
mandatory.

2. Γ′ : circularize(x,A,E) ` τ1. Strand tR is linear, without blockings and
matching and mandatory in type τ ′R. By Lemma 8.3, we know that type
τ1 consists of a circular version of strand tR. Call this circular strand
cR. Strand cR is mandatory in type τ1. The h-bit of type τ1 is set to
true.

3. Γ′ : blockfromto(circularize(x,A,E), C,D) ` τ2. The blockfromto ab-
breviation constructs a new strand, call it c2

R, that is isomorphic with
cR, except that starting from the node labeled D up to and including
the node labeled C, all nodes are blocked. The only nodes that are not
blocked are the ones labeled #3, ∗,#4, and #2, following the node la-
beled C. Strand c2

R is mandatory in type τ2. The h-bit of type τ2 is set
to true.

4. Γ′ : cleanup(split(blockfromto(circularize(x,A,E), C,D),#3)) ` τ3.
The only free node labeled #3 in strand c2

R of type τ2, is the node

8.2. Simulation 135

directly following the node labeled C. The split operation makes the
circular strand linear again, however, this time the first node is labeled
#3 and the last node is labeled C. Call this strand t1. There is only one
strand in the output of the split operation, whence the cleanup operation
removes all blockings from t1. We call the resulting strand t2. The h-bit
of type τ3 is set to true.

From this point on, we use the type assignment Γf1 = Γ′ ∪ {(f1, τ3)}.

5. Γf1 : blockfromto(f1, C,D) ` τ4. The blockfromto abbreviation con-
structs a new strand, call it t3, from strand t2 in type τ3. Strands t2 and
t3 are isomorphic, except that all nodes in t3 are blocked, except for the
first four nodes, labeled #3 ∗#4#2. Strand t3 is mandatory in type τ4.
The h-bit of type τ4 is set to true.

6. Γf1 : blockfromto(f1, C,D) ∪ #2F ∪ F#3) ` τ5. Type τ5 consists of
strand t3, strand t4 labeled #2F and sticker s1 labeled F#3. All three
components are mandatory in type τ5. The h-bit of type τ5 is set to
false, because matchings are possibly between t3 and s1 and between t4
and s1.

7. Γf1 : connect(blockfromto(f1, C,D) ∪ #2F ∪ F#3) ` τ6. The h-bit of
type τ5 is false, whence hybridization takes place. As all components in
type τ5 are mandatory and no node is labeled ?, there is only one set X
to hybridize. The only free node labeled F is the second node of t4. The
only free node labeled #3 is the first node of t3. Hence, the result of the
hybridization is a new component, consisting of one isomorphic copy of
strand t3, one isomorphic copy of strand t4, and one isomorphic copy
of sticker s1. The sticker isomorphic to s1 binds the strand isomorphic
to t4 to the front of the strand isomorphic to strand t3. Consequently,
there is a gap between the positive strands.

The ligate operation fills the gap between the positive strands, uniting
them in a single strand. The cleanup operator constructs a new strand,
call it t6, which is the concatenation of strands t4 and t3. Strand t6 is
mandatory in type τ6. The h-bit of type τ6 is set tot true.

From this point on, we use the type assignment Γf2 = Γf1 ∪ {(f2, τ6)}.

8. Γf2 : blockfrom(f2, B) ` τ7. The blockfrom operation constructs a
new strand, call it t7, isomorphic to t6, except that all nodes starting
from the first node of the strand up to the node labeled B are blocked.
Consequently, the only free node labeled #2 is the second to last node,
just in front of the node labeled C. Strand t7 is mandatory in type τ7

and the h-bit of type τ7 is set to true.

136 Relational Algebra Simulation

9. Γf2 : cleanup(split(blockfrom(f2, B),#2)) ` τ8. The split operation
constructs two new strands, call them t8 and t9. Strand t8 is isomorphic
to strand t7, except that the last two nodes of t7 are removed. Strand
t9 consists of two nodes labeled #2C. Both strands are mandatory. The
length of strand t8 is |R|(4+`). The length of strand t9 is 2. Hence, type
τ8 consists of strand t8, which is mandatory in τ8. The h-bit of type τ8

is set to true.

From this point on, we use the type assignment Γf3 = Γf2 ∪ {(f3, τ8)}.

10. Γf3 : circularize(f3, F,B) ` τ9. Strand t8 is mandatory in type τ8. It
starts with attribute F and ends with attribute B. Hence, by Lemma 8.3,
we know that type τ9 consists of the circular version of t8. Call this
circular strand c′T . The h-bit of type τ9 is set to true.

11. Γf3 : blockfromto(circularize(f3, F,B), E,A) ` τ10. Attributes A and E
are adjacent on the circle. The blockfromto abbreviation constructs a
new strand, call it c′′T , which is isomorphic to c′T , except that all nodes
from E up to and including A are blocked. There is a single free node
labeled #2 in c′′T , namely, the node between the attribute-value blocks
of attributes A and E. Strand c′′T is mandatory in type τ10. The h-bit
of type τ10 is set to true.

12.

Γf3 : cleanup(split(blockfromto(circularize(f3, F,B), E,A),#4)) ` τ11

The split operation splits strand c′′T between attributes E and A. Call
the resulting strand t′T . Attribute A is the first on strand t′T , attribute
E is the last on strand t′T . There is only one strand, namely, t′T . Hence,
the cleanup operation constructs a new strands tT isomorphic to strand
t′T except that it has no blockings.

13.

Γ′ : if empty(x) then empty else

let f1 := cleanup(split(blockfromto(
circularize(x,A,E), C,D),#3)) in

let f2 := connect(blockfromto(f1, C,D) ∪#2F ∪ F#3) in
let f3 := cleanup(split(blockfrom(f2, B),#2)) in
cleanup(split(blockfromto(circularize(f3, F,B), E,A),#4))
` τT

The then-part of the if-statement has the empty type. The else-part of
the if-statement has type τ11. Combining both types, results in type τT .

8.2. Simulation 137

This program is not yet fully correct as attribute F may need to be shuffled
into the right place. This can be done by rotating and applying the shuffle
procedure described in the case of cartesian product.

Selection

Lemma 8.14. Let e = σB=D(e1), with D : e1 ` R and D : e ` R. Let A
be the first attribute of R and let F be the last attribute of R. Let C be the
attribute directly following attribute B. Let E be the attribute directly following
attribute D. If expression eDNA is defined as

let x := eDNA
1 in for xs := x iter i do

if empty(xs) then empty else

let f :=

let xc := circularize(xs, A, F) in⋃
a∈Λ

let y := blockselect(xc, B,C, a) in

if empty(y) then empty else blockselect(y,D,E, a) in

cleanup(split(blockfromto(f, F,A),#4))

then ΓD : eDNA ` τR.

The alphabet Λ is fixed. The number of atomic value symbols is thus a
constant. Hence, the union over all atomic value symbols (

⋃
a∈Λ) is merely

“syntactic sugar” to abbreviate an expression of constant size. Note A = B,
or C = D or D = E = F is possible; the program will still function correctly.

Proof. Let tR be the strand in type τR. We derive the output type of eDNA

under type assignment ΓD.

1. Firstly, we extend and augment the type assignment ΓD with {(x, τ ′R)}
and denote the extended and augmented type assignment Γ′. This pair
may be added to Γ, because the let-statement introduces variable x with
type τR. Strand tR is non-mandatory in type τR and the main body of
the program is situated in the else-part of the if-statement. By definition,
we may thus augment the type of variable x to τ ′R in which strand tR is
mandatory.

2. Γ′ : circularize(xs, A, F) ` τc. Strand tR in τ ′R is mandatory, has first
attribute A and last attribute F . Let cR be the circularized version of

138 Relational Algebra Simulation

the tR. Type τc consists of strand cR. Strand cR is mandatory in type
τc. The h-bit of type τc is set to true.

From this point on, we use the type assignment Γc = Γ′ ∪ {(xc, τc)}.

3. Γc : blockselect(xc, B,C, a) ` τy. Type τc consists of a mandatory circu-
lar strand, strand cR. On strand cR attribute B is followed by attribute
C. By Lemma 8.6, we know that type τy thus consists of strand cR.
Strand cR is non-mandatory in type τy.

From this point on, we use the type assignment Γy = Γc ∪ {(y, τy)}.

4. Γy : if empty(y) then empty else blockselect(y,D,E, a) ` τy. Strand
cR in type τy is non-mandatory and circular. To type check the else-part
of the if-statement, we may assign complex variable y type τc. Hence,
by Lemma 8.6 we know that the output type of blockselect(y,D,E, a)
equals τy. Combining the empty type of the then-part with τy of the
else-part, results again in τy.

5. Γc :
⋃

a∈Λ let y := blockselect(xc, B,C, a) in
if empty(y) then empty else blockselect(y,D,E, a) ` τy. All parts of
the union over all atomic value symbols have the same type, namely, τy.
Hence, the union has type τy.

From this point on, we use the type assignment Γf = Γ′ ∪ {(f, τy)}.

6. Γf : cleanup(split(blockfromto(f, F,A),#4)) ` τR. The blockfromto
abbreviation constructs a new circular strand, call it c′R, isomorphic to
cR except all nodes the nodes from A to F are blocked. Consequently,
The only free node labeled #4 is the last node of the attribute-value
block of attribute F . Hence, the split operation constructs a strand
t′R which is isomorphic to tR except that all nodes from A to F are
blocked. Because there is only one strand, the cleanup operation results
in a strand isomorphic to tR. Strand tR is not mandatory in type τR.

7.

Γ′ : if empty(xs) then empty else

let f :=
let xc := circularize(xs, A, F) in⋃

a∈Λ let y := blockselect(xc, B,C, a) in
if empty(y) then empty else blockselect(y,D,E, a) in

cleanup(split(blockfromto(f, F,A),#4))
` τR

Combining the empty type with type τR results in type τR.

8.3. Maximality and Tightness for Non-Atomic Expressions 139

8.

Γ′ : for xs := x iter i do

if empty(xs) then empty else

let f :=
let xc := circularize(xs, A, F) in⋃

a∈Λ let y := blockselect(xc, B,C, a) in
if empty(y) then empty else blockselect(y,D,E, a) in

cleanup(split(blockfromto(f, F,A),#4))
` τR

Complex variable xs has type τR. The body of the for-statement has
type τR. Hence, the for-statement has type τR.

8.3 Maximality and Tightness for Non-Atomic Ex-
pressions

We introduced the notions of maximality and tightness on arbitrary DNAQL
expressions. However, Theorems 7.4 and 7.5 apply to atomic expressions only.
In this section, we show that a maximal typing relation on DNAQL is unde-
cidable, and that the typing relation is not tight for arbitrary expressions due
to the interplay between union and the h-bit. An interesting future direction
of research is to come up with a tight type relation or proving that a tight
type relation is undecidable.

Let us first examine the maximality of a DNAQL typing relation. It is
undecidable whether a relational algebra expression always outputs the empty
relation [1]. Let e be a relational algebra expression. Expression e can be
translated to an equivalent DNAQL expression eDNA (as proven in this chap-
ter). Let ed be a DNAQL expression that is always defined, and let eu be
an expression that is undefined. For example, for ed we can use the constant
expression #2 and for eu we can use block(#2 ∪#2,#2). We construct the
expression

e′ := if empty(eDNA) then ed else eu

If the DNAQL type system is maximal on arbitrary expressions, expression e′

would type check whenever expression e always outputs the empty relation.
This is a contradiction as the emptiness problem is undecidable.

Secondly, we show by counterexample that the DNAQL typing relation is
not tight on expressions. Consider the types shown in Figure 8.3. Both types
have their h-bit, h1 resp. h2, equal to true. This implies that the nodes labeled
a and a, in τ1, cannot be both present in a complex having type τ1.

140 Relational Algebra Simulation

a

b
�

a

b
�

τ1 τ2

Figure 8.3: Two types τ1 and τ2. The types consist of one-node components.
Both types have their h-bit, h1 resp. h2, set to true.

Now consider the expression e = hybridize(τ1 ∪ τ2). The type of τ1 ∪ τ2

consists of the four components of τ1 and τ2. The components with the nodes
labeled b and b are the mandatory components. Pivotal to this example is
the h-bit of the union. The h-bit is set to false, as the respective weak types
of τ1 and τ2 are mutually interacting (the node labeled b can match with the
node labeled b). Concretely, the output type of e consists of four components.
The first component is mandatory and consists of two nodes, one labeled b,
the other labeled b. The nodes are matched. The second component is a node
labeled a. The third component is a node labeled a. The fourth component is
the hybridization of two nodes, one labeled a, the other labeled a. The h-bit
of the output type is true.

Note however, that any two complexes C1 and C2 having type τ1 resp. τ2

can never produce a component having the fourth component as its type.
Indeed, any complex C1 having type τ1 cannot have both the a- and a-
component. On the other hand, any complex having type τ2 cannot have
a node labeled a or a node labeled a.

8.4 4-Bounded

In Chapter 4 we defined c-bounded hybridization which is guaranteed to pro-
duce only a polynomial-sized output. Here we show that the relational algebra
simulation is 4-bounded, by a careful analysis of the simulation programs.

8.4.1 Abbreviations

Circularize

The abbreviation circularize(x,A,B) is defined as:

let f2 := hybridize(blockfromto(x,B,A) ∪ immob(#3)) in

let f1 := connect(f2 ∪#2#4) in

cleanup(split(blockfrom(f1, A),#3))

8.4. 4-Bounded 141

We assume that the complex variable x has a pseudo-relation-schema-type,
with first attribute A and last attribute B. The first hybridization of has only
two nodes that can interact because all #3 in the strands of x are blocked
except for one. Hence, there are no choice nodes. In the second hybridization,
part of the connect abbreviation, there are again no choice nodes because
there is only one free #2 and only one free #4. Hence, the abbreviation is
4-bounded.

Inserting into a Circle

The abbreviation insertcirc(x,A,B, s) is defined as:

let y1 := split(blockfromto(x,A,B),#4) in

let y2 := hybridize(hybridize(y ∪ immob(#3)) ∪#4σ1 ∪ s) ∪ σ2#2 in

cleanup(split(blockfrom(connect(y2), B),#3))

Because of the blocking in the first line, there is only one free #3, meaning
there are no choice nodes in the complex. In the second hybridization, there
are also no choice nodes because of blockings. Finally, the hybridization in
the connect abbreviation has no choice nodes either, because there is only one
free node labeled #4 and only one free node labeled σ2.

Removing from a Circle

There are no hybridizations in this abbreviation.

Block Selecting

The abbreviation blockselect(x,A,B, a, i) is defined as:

let y := blockexcept(blockfromto(x,A,B), i) ∪ immob(a) in

cleanup(flush(hybridize(y)))

All `-vectors except one is blocked. That `-vector is block-excepted, i.e., only
one atomic value symbol is free when hybridization is applied, hence there is
no choice node.

8.4.2 Relational Algebra Expressions

Union

There is no hybridization.

142 Relational Algebra Simulation

Difference

There is no hybridization.

Cartesian Product

The first part of the simulation of the cartesian product consists of concate-
nating the strands representing the tuples in eDNA

1 and eDNA
2 . Concatenating

is defined as follows:

let x := eDNA
1 in

let y := eDNA
2 in

if empty(x) then empty else

if empty(y) then empty else

let r := hybridize(#4#5 ∪#5) in

let l := hybridize(#1#2 ∪#1) in

let ea2 := connect(x ∪ r) in
let eb2 := connect(y ∪ l) in
let e2 := connect(ea2 ∪ eb2 ∪#5#1) in

let e1 := circularize(e2, A,D) in

cleanup(split(split(blockfromto(e1, B,C),#2),#4))

Constructing variables r and l is 0-bounded, because there is only one possible
interaction. Attaching r to the strands in x encounters one choice node, viz.,
#4 in the component of r. Hence, the hybridization is 1-bounded. A similar
reasoning shows that combining y and l is also a 1-bounded hybridization.
Next, strands are concatenated in e2. There are two choice nodes, viz., the
two nodes of the sticker #5#1. The are both reachable from the sticker by an
alternating path of length 1. Hence, this hybridization is 2-bounded. We have
already shown that circularize is 4-bounded.

The second part of the cartesian product simulation consists of shuffling

8.4. 4-Bounded 143

attributes. Recall the definition of shuffling:

let f1 := insertcirc(circularize(x,A,E), B,C,#6#7) in

let f2 := insertcirc(f1, C,D,#8#9) in

let f3 := split(blockfromto(f2, E,A),#4) in

let f4 := connect(blockfromto(f3, E,A) ∪#9#1 ∪#4#9) in

let f5 := hybridize(f4 ∪ immob(A)) ∪#6#8 ∪#1#7 in

let f6 := cleanup(ligate(split(split(f5,#6),#8))) in

let f7 := removeBetweenCirc(circularize(f6, A,C), B,D) in

let f8 := removeBetweenCirc(circularize(f7, D,B), E, C) in

removeBetweenCirc(circularize(f8, C,E), C,A)

We only need to analyze the hybridizations in f4 and f5. In f4 all #4 nodes
are blocked, hence there is no choice node. In variable f5 each node of the
stickers #6#8 and #1#7 is a choice node. As each tuple is immobilized,
hybridization is terminating. Nonetheless, 4 choice nodes are accessible from
each component of the complex. Hence, hybridization is 4-bounded.

Projection

Three or More Attributes. This program only contains the circularize
and removebetweencirc abbreviations. Hence, this program is 2-bounded.

Two Attributes. If there are just two attributes, then we need to analyze
one hybridization.

let x := eDNA
1 in if empty(x) then empty else

cleanup(flush(hybridize(split(x,#4) ∪ immob(A))))

Complex variable X has type #2A#3 ∗ #4#2C#3 ∗ #4. The hybridization
has exactly no choice nodes, because there is only one node labeled A and one
node labeled A.

Renaming

This program only contains the circularize abbreviation, which is 2-bounded.

Selection

The heavy lifting is done by the blockselect abbreviation, which is 2-bounded.
All other operations and abbreviations perform no hybridization.

144 Relational Algebra Simulation

Conclusion

The double bridging scheme is the “heaviest” hybridization utilized in the
simulation of the relational algebra. This hybridization is 4-bounded. Hence,
we may concluded that the simulation of the relation algebra is 4-bounded.

9
Discussion

We have developed an abstract model of the DNA molecule, called the sticker
complex model, aimed at data storage and data manipulation on the appli-
cation level and aimed at practical viability on the implementation level. On
the sticker complex model an applicative programming language is defined
with an emptiness-test, a for-loop and a let statement, called DNAQL. The
sticker complex model and its programming language DNAQL is a descendant
of Adleman-style DNA computing, with a set of operators implemented by en-
zymes alongside the omnipresent hybridization. Nonetheless, its focus on data
manipulation makes it substantially different from previous computing models.
Turing completeness is sacrificed for efficiency and optimizability, as is conven-
tional in database research. Indeed, databases need to handle vast amounts of
data and quickly answer a continuous stream of queries. Hence, queries need
to be efficiently answerable. One issue in the sticker complex mode, is that the
DNAQL operator hybridization can result in infinite complexes. A thorough
analysis of this issue resulted in a characterization of terminating hybridiza-
tion. This laid the foundation of a type system that identifies well behaving
programs. The usefulness of the model and the programming language with
regards to data storage and manipulation are demonstrated by a simulation
of the relational algebra, a corner stone of current database systems. More-
over, the simulation proves to be well typed establishing the power of the type
system.

That being said, there are still many open research questions. First of all,
the simulation of the relational algebra defines a lower bound on the expressive
power of the sticker complex model with DNAQL. But, exactly which types

145

146 Discussion

of programs can be programmed within this model? Is it possible to simulate
sticker complexes and DNAQL with relational databases and the relational
algebra? A positive answer implies a strict bound on the expressiveness of
sticker complexes and DNAQL. The hybridization operation seems to be ex-
tremely powerful and beyond the scope of first order logic. Be that as it may,
the emphasis lays on the data carried by a complex, and it might just be that
the information processing capabilities of sticker complexes and DNAQL are
on par with relational databases, the relational algebra and the sticker com-
plex type system. In other words, if we would concentrate on the data, an
algorithm may be devised to translate arbitrary DNAQL expressions to rela-
tional algebra expressions if typing information is present. Secondly, we have
shown that the DNAQL type relation is sound for programs and it is maximal
and tight for operators. A type relation that is maximal on programs is im-
possible because it is undecidable whether a query will evaluate to an empty
relation on any well-typed database. Nonetheless, more powerful types may
allow for a type system that is tight on programs as well. The main hurdle
is the subtle nuances introduced by the hyb-bit of a sticker complex type. A
possible track is maintaining “union types”, in which case a set of types is
considered and a complex has a certain union type if it has one of its types in
the sense described in this dissertation. On the other hand, such an approach
might make types prohibitively large.

Chemical reactions are quantitative and stochastic by nature. In contrast,
the sticker complex model and DNAQL are qualitative and deterministic. In
the sticker complex model, we have assumed that replicating data and error-
correction techniques can counter undesirable effects of chemical reactions on
DNA molecules. Although we believe that the sticker complex model is a
valuable tool for designing DNA computers and researching their properties,
a model incorporating the quantitative and stochastic nature of DNA com-
puting is called for. The situation is analogue to the Abstract Tile Assembly
Model (aTAM) and Kinetic Tile Assembly Model (kTAM). A quantitative and
stochastic (QS) model of sticker complexes should not be confused with the
theoretical models in vogue in chemistry. A QS model compares to chemistry
models as Newtonian mechanics compares to quantum mechanics. Although
Newtonian mechanics is not correct on the atomic scale, it is accurate enough
for any object observable with the naked eye. Furthermore, the mathematics
involved in Newtonian mechanics are easier to compute than the mathemat-
ics underlying quantum mechanics. Hence for many applications Newtonian
mechanics is preferred over quantum mechanics because its error is negligible.
Likewise, a QS model operates on DNA molecules of 100 or more bases, this
is several orders of magnitude larger than the atoms on which the chemistry
models operate. Consequently, we can trade some accuracy for simplicity.

The merit of a QS model is judged on four criteria: (1) the expressiveness

147

of the representation, (2) the efficiency of the programming language, (3)
the expressive power of computations in the model, and (4) the predictive
accuracy with regards to the actual sticker DNA computer. The expressiveness
of a representation relates to its ability to distinguish between different states
of a sticker DNA computer. Equally important, the transformations of the
representation, mimicking the state transitions of the sticker DNA computer,
should be efficiently computable, preferably in polynomial time. Otherwise,
the model becomes useless for simulations. Thirdly, the model should support
the expression of powerful computations. In particular, the relational algebra
should be expressible, under certain conditions, e.g., return the correct answer
with high probability. Finally, if a model predicts that a sticker DNA computer
produces a certain output, concrete runs of the sticker DNA computer should
fall within the prediction.

In moving from a qualitative model to a quantitative and stochastic (QS)
model more is involved than assigning quantities to the components of a sticker
complex, where a component is a maximal set of strands and stickers con-
nected, possibly indirectly, by hybridization bonds. At the start of a compu-
tation in a sticker DNA computer, there is almost absolute certainty about
the state of the DNA computer. Tight intervals on the quantities of the DNA
strands initiating the computation can be measured. Each step in the compu-
tation introduces uncertainty into the state of the DNA computer, due to the
stochastic nature of chemical processes and the possibility of errors. Indeed,
although for each concrete run of the DNA computer the exact quantities of all
involved components can be measured at any given point in the computation,
the state kept by a QS model must account for each possible run. Moreover, at
a given point in the execution of a sticker DNA computer, some assignments
of quantities to components are more likely than other assignments. For ex-
ample, if strand X and strand Y can bond, then after a hybridization it is very
likely that X and Y occur less than their product XY.

The problem of defining a suitable representation is not unique to DNA
computing, it is also encountered in the context of probabilistic databases [14].
A probabilistic database manages uncertain data, i.e., the database may con-
tain conflicting information and each piece of information is, with some prob-
ability, correct or wrong. An example of uncertain data is a sensor network in
which some sensors may occasionally produce wrong measurements. Notwith-
standing the link with probabilistic databases, the representation problem for
QS models is worthwhile to pursue because several crucial differences exist be-
tween probabilistic databases and QS models for sticker DNA computers that
affect the design of a suitable representation. Firstly, probabilistic databases
and QS models are geared towards on different types of computations: proba-
bilistic databases are focused on querying data, whereas a QS model is focused
on transformations. Computing a query may be intractable in a representa-

148 Discussion

tion, yet computing a transformation of the representation could be tractable.
Secondly, a probabilistic database manages relational data, whereas a QS
model manages quantities of a set of objects, hence a QS model deals with
inherently simpler and unstructured data. Thirdly, probabilistic databases are
qualitative, whereas a QS model is quantitative. Fourthly, a QS model can
take advantage of knowledge about the behavior of DNA molecules. A QS
model representation can assume a certain type of probability distribution,
whereas the more general probabilistic database must be prepared for any
type of probability distribution.

A joint probability distribution on the quantities of all the possible compo-
nents maximizes the representational expressiveness: every possible situation
is represented and is assigned a probability of occurring. However, due to the
stochastic nature of DNA computing and the presence of errors, the number
of possible combinations rapidly explodes, making the storage of and compu-
tations on such a distribution potentially hard. One way of alleviating this
drawback is switching to a probabilistic graphical model, e.g., a Bayesian net-
work. Probabilistic graphical models allow, under certain conditions, a more
compact representation of an otherwise huge joint probability distribution, by
decomposing the joint probability distribution into smaller conditional distri-
butions over subsets of correlated components. Nonetheless, in the worst case
all components are correlated, then a Bayesian network looses its edge. To
avoid such a situation, the number of components allowed in any conditional
distribution of a Bayesian network can be restricted. This results in a hierar-
chy of representations. On one side of the hierarchy is the Bayesian network,
with no restrictions on the size of its distributions. On the other side of the
hierarchy, only one component per distribution is allowed, thus the representa-
tion defines a separate probability distribution on each quantity. Maintaining
separate probability distributions prohibits modeling correlations between the
quantities of components. Let X and Y be strands that can bond, the quanti-
ties of X, Y and their product XY will be highly correlated. The hypothesis is
that allowing more components results in greater expressiveness and a greater
computational cost. Finding the tipping point, at which the computational
cost becomes excessive, is an interesting research question.

Up till now, the merit of QS models is judged on purely theoretical stan-
dards. Desirably, a concrete instantiation of a QS model is an accurate predic-
tor of real life DNA computations. Instantiating a QS model of sticker DNA
computers demands estimating numerous parameters involving the stochastic
processes underlying the operations and errors. For example, recall the strand
ab and the sticker AB, to accurately model the behavior of the hybridization
operation, it is essential to know the probability distribution over all the pos-
sible conformations that can be formed by combining one or more copies of
the strand and sticker. Concretely, if there are x copies of strand ab and y

149

copies of sticker AB, how many copies will there be in which one copy of the
strand is bent into a circle by one copy of the sticker?

To estimate the parameters, data on the behavior of the DNA molecule
must be available. Most DNA computing research groups are equipped with
a staffed wet-lab. However, smaller or theoretical groups do not have the
funds or knowledge to operate a wet-lab, hence such groups need to fall back
on simulations. Nonetheless, theoretical results validated by simulations are
still rare. I intend to use simulation software to collect the necessary data to
instantiate the proposed models. Concretely, the oxDNA simulation software
appears to be the best option, because it is an open source implementation of a
course-grained model of the DNA molecule that has proven to be both fast and
accurate on larger DNA molecules, i.e., more than one hundred bases [31, 49].
Because simulation backed publications are rare, the first step in collecting
the necessary data with simulation software is setting up a protocol to work
in a uniform and systematic manner. Questions that need to be addressed
are for example: how many repetitions are needed, what is the correct size
of the bounding box constraining the movement of DNA molecules, how to
store results, and what about post-processing of results? Once the simulation
protocol is established, concrete simulations can be run. For example, for
estimating the probability distribution on the hybridization of strand ab and
sticker AB, many simulations can be run with different initial quantities of
the strand and the sticker. The output of these simulations is post- processed
to count, for each distinct conformation, the number of occurrences. These
numbers form the basis for estimating the probability distribution.

Analyzing the data collected from simulations will draw on the extensive
research on inferring probabilistic graphical models [18]. This is a natural fit
to the discussed hierarchy of quantitative and stochastic models.

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley Publishing Company Inc., 1995.

[2] L. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 226:1021–1024, Nov. 1994.

[3] M. Amos. Theoretical and Experimental DNA Computation. Springer,
2005.

[4] M. Arita, M. Hagiya, and A. Suyama. Joining and Rotating Data with
Molecules. In International Conference on Evolutionary Computation,
pages 243–248, 1997.

[5] R. Braich, N. Chelyapov, C. Johnson, P. Rothemund, and L. Adleman.
Solution of a 20-variable 3-SAT problem on a DNA computer. Science,
296:499–502, 2002.

[6] R. Brijder, J. Gillis, and J. Van den Bussche. A comparison of graph-
theoretic DNA hybridization models. Theoretical Computer Science,
429:46–53, 2011.

[7] L. Cardelli. Strand Algebras for DNA Computing. In R. Deaton and
A. Suyama, editors, 15th International Meeting on DNA Computing and
Molecular Programming, volume 5877 of Lecture Notes in Computer Sci-
ence, pages 12–24, Fayetteville, 2009. Springer.

[8] L. Cardelli. Two-Domain DNA Strand Displacement. In S. Cooper,
P. Kashefi, and P. Panangaden, editors, Developments in Computational
Models, pages 47–61, 2010.

[9] L. Cardelli. Two-Domain DNA Strand Displacement. Mathematical
Structures in Computer Science, In print, 2012.

[10] H. Chen and A. Goel. Error Free Self-assembly Using Error Prone Tiles
DNA Computing. In C. Ferretti, G. Mauri, and C. Zandron, editors, 10th

151

152 BIBLIOGRAPHY

International Conference on DNA Computing, volume 3384 of Lecture
Notes in Computer Science, pages 702–707. Springer Berlin / Heidelberg,
2005.

[11] J. Chen, R. Deaton, and Y.-Z. Wang. A DNA-based memory with in vitro
learning and associative recall. Natural Computing, 4(2):83–101, 2005.

[12] G. M. Church, Y. Gao, and S. Kosuri. Next-Generation Digital Informa-
tion Storage in DNA. Science, 337(6102):1628, 2012.

[13] A. Condon, A. J. Hu, J. Manuch, and C. Thachuk. Less haste, less waste:
on recycling and its limits in strand displacement systems. Interface
Focus, 2(4):512–21, 2012.

[14] N. Dalvi, C. R, and D. Suciu. Probabilistic databases: diamonds in the
dirt. Commun. ACM, 52(7):86–94, 2009.

[15] C. Date. An Introduction to Database Systems. Addison-Wesley, 2004.

[16] L. Diatchenko, Y. Lau, A. Campbell, A. Chenchik, F. Moqadam,
B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. Sverdlov, and
P. Siebert. Suppression subtractive hybridization: a method for generat-
ing differentially regulated or tissue-specific cDNA probes and libraries.
Proceedings of the National Academy of Sciences, 93(12):6025–6030, 1996.

[17] D. Doty. Theory of algorithmic self-assembly. Communications of the
ACM, 55(12):78–88, 2012.

[18] N. Friedman. Inferring cellular networks using probabilistic graphical
models. Science, 303(5659):799–805, 2004.

[19] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The
Complete Book. Prentice Hall, 2009.

[20] J. Gillis and J. Van den Bussche. A Formal Model for Databases in
DNA. In K. Horimoto, M. Nakatsui, and N. Popov, editors, Algebraic
and Numeric Biology, volume 6479 of Lecture Notes in Computer Science,
pages 18–37. Springer, 2010.

[21] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. LeProust, B. Sipos,
and E. Birney. Towards practical, high-capacity, low-maintenance infor-
mation storage in synthesized DNA. Nature, 2013.

[22] C. Gunter and J. Mitchell, editors. Theoretical Aspects of Object-Oriented
Programming. MIT Press, 1994.

BIBLIOGRAPHY 153

[23] J. Hartmanis. On the Weight of Computations. Bulletin of the EATCS,
55, 1995.

[24] N. Jonoska and G. L. McColm. Complexity classes for self-assembling
flexible tiles. Theoretical Computer Science, 410(45):332–346, 2009.

[25] N. Jonoska, G. L. McColm, and A. Staniska. On stiochiometry for the
assembly of flexible tile DNA complexes. Natural Computing, 10(3):1121–
1141, 2011.

[26] T. Lempiinen, E. Czeizler, and P. Orponen. Synthesizing Small and Re-
liable Tile Sets for Patterned DNA Self-Assembly. In L. Cardelli and
W. Shih, editors, 17th International Conference on DNA Computing and
Molecular Programming, Lecture Notes in Computer Science, Pasadena,
CA, USA, 2011. Springer.

[27] R. Lipton. DNA solution of hard computational problems. Science,
268(5120):542–545, 1995.

[28] Q. Liu, L. Wang, A. Frutos, A. Condon, R. Corn, and L. Smith. DNA
computing on surfaces. Nature, 403:175–179, 2000.

[29] U. Majumder and J. Reif. A Framework for Designing Novel Magnetic
Tiles Capable of Complex Self-assemblies. In C. Calude, J. Costa, R. Fre-
und, M. Oswald, and G. Rozenberg, editors, Unconventional Comput-
ing, volume 5204 of Lecture Notes in Computer Science, pages 129–145.
Springer Berlin / Heidelberg, 2008.

[30] A. Marathe, A. Condon, and R. Corn. On combinatorial dna word design.
Journal of Computational Biology, 8(3):201–220, 2001.

[31] T. Ouldridge. Coarse-grained modelling of DNA and DNA self-assembly.
PhD thesis, University of Oxford, 2011.

[32] Y. Papakonstaninou and P. Velikhov. Enhancing semistructured data
mediators with document type definitions. In Proceedings 15th Interna-
tional Conference on Data Engineering, pages 136–145. IEEE Computer
Society, 1999.

[33] G. Paun, G. Rozenberg, and A. Salomaa. DNA Computing. Springer,
1998.

[34] A. Phillips and L. Cardelli. A programming language for composable
DNA circuits. Journal of the Royal Society Interface, 6:419–436, 2009.

[35] B. Pierce. Types and Programming Languages. MIT Press, 2002.

154 BIBLIOGRAPHY

[36] L. Qian and E. Winfree. A simple DNA gate motif for synthesizing large-
scale circuits. Journal of the Royal Society Interface, 2011.

[37] L. Qian and E. Winfree. Scaling Up Digital Circuit Computation with
DNA Strand Displacement Cascades. Science, 332:1196–1201, 2011.

[38] L. Qian, E. Winfree, and J. Bruck. Neural Network computation with
DNA strand displacement cascades. Nature, 475:368–372, 2011.

[39] J. Reif. Local Parallel Biomolecular Computation. In DNA Based Com-
puters III, volume 48, pages 217–254. DIMACS, 1997.

[40] J. Reif. Parallel Biomolecular Computation: Models and Simulations.
Algorithmica, 25:142–175, 1999.

[41] J. Reif, T. LaBean, M. Pirrung, V. Rana, B. Guo, C. Kingsford, and
G. Wickham. Experimental construction of very large scale dna databases
with associative search capability. In Revised Papers from the 7th Inter-
national Workshop on DNA-Based Computers: DNA Computing, Lecture
Notes in Computer Science, pages 231–247, London, UK, 2002. Springer-
Verlag.

[42] P. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares. In Thirty-Second Annual ACM Symposium on Theory
of Computing, pages 459–468. ACM Press, 1999.

[43] S. Roweis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman,
P. Rothemund, and L. Adleman. A Sticker-Based Model for DNA Com-
putation. Journal of Computational Biology, 5(4):615–629, 1998.

[44] J. Sager and D. Stefanovic. Designing nucleotide sequences for computa-
tion: A survey of constraints. In A. Carbone and N. Pierce, editors, DNA
Computing, volume 3892 of Lecture Notes in Computer Science, pages
275–289. Springer Berlin / Heidelberg, 2006.

[45] G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree. Enzyme-Free Nucleic
Acid Logic Circuits. Science, 314(1585–1588), 2006.

[46] M. Shortreed, S. Chang, D. Hong, M. Phillips, B. Campion, D. Tulpan,
M. Andronescu, A. Condon, H. Hoos, and L. Smith. A thermodynamic
approach to designing structure-free combinatorial dna word sets. Nucleic
Acids Research, 33(15):4965 – 4977, 2005.

[47] D. Soloveichik, M. Cook, and E. Winfree. Combining self-healing and
proofreading in self-assembly. Natural Computing, 7(2):203–218, 2008.

BIBLIOGRAPHY 155

[48] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a Universal Substrate
for Chemical Kinetics. LNCS, 5347:57 – 69, 2009.

[49] P. Sulc, F. Romano, T. Ouldridge, L. Rovigatti, J. Doye, and A. Louis.
Sequence-dependent thermodynamics of a coarse-grained DNA model.
Journal of Chemical Physics, 137, 2012.

[50] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. A crash course
in database queries. In Proceedings 26th ACM Symposium on Principles
of Database Systems, pages 143–154. ACM Press, 2007.

[51] J. Van den Bussche and E. Waller. Polymorphic type inference of the
relational algebra. Journal of Computer and System Sciences, 64:694–
718, 2002.

[52] H. Wang. Proving theorems by pattern recognition. Bell System Technical
Journal, 40:1–42, 1961.

[53] E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California
Institute of Technology, 1998.

[54] E. Winfree and R. Bekbolatov. Proofreading Tile Sets: Error Correction
for Algorithmic Self-Assembly. In 10th International Workshop on DNA
Computing, volume 2943 of Lecture Notes in Computer Science, pages
126–144. Springer, 2003.

[55] M. Yamamoto et al. Development of DNA relational databases and data
manipulation experiments. In C. Mao and T. Yokomori, editors, Pro-
ceedings 12th International Meeting on DNA Computing, volume 4287 of
Lecture Notes in Computer Science, pages 418–427. Springer, 2006.

[56] P. Yin, B. Guo, C. Belmore, W. Palmeri, E. Winfree, T. LaBean, and
J. Reif. TileSoft: Sequence Optimization Software for Designing DNA
Secondary Structure. In 10th International Workshop on DNA Comput-
ing, volume 3384 of Lecture Notes in Computer Science, 2004.

[57] D. Zhang, A. Turberfield, B. Yurke, and E. Winfree. Engineering Entropy-
Driven Reactions and Networks Catalyzed by DNA. Science, 318:1121–
1125, 2007.

 HistoryItem_V1
 InsertBlanks

 Where: before first page
 Number of pages: 3
 same as current

 3
 1
 1
 769
 263

 CurrentAVDoc

 SameAsCur
 AtStart

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20130318104602
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 644
 281

 None
 Right
 28.3465
 0.0000

 Both
 143
 AllDoc
 145

 CurrentAVDoc

 Uniform
 28.3465
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 158
 159
 158
 159

 1

 HistoryList_V1
 qi2base

