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1
Introduction

1.1 The History of Missing Data

In applied sciences, data are more and more measured repeatedly over time, resulting

in so-called longitudinal data. However, they typically suffer from incompleteness.

Since incompleteness usually occurs for reasons outside of the control of the inves-

tigators and may be related to the outcome measurement of interest, it is generally

necessary to address the process governing incompleteness. Only in special but impor-

tant cases it is possible to ignore the missingness process. Over the last century, the

focus, when formulating answers to the analysis of such incomplete data, has shifted.

Indeed, early work on missing values was largely concerned with overcoming the lack

of balance or deviations from the intended study design (Afifi and Elashoff, 1966; Hart-

ley and Hocking, 1971). Later, general algorithms such as expectation-maximization

(EM) (Dempster, Laird and Rubin, 1977), and data imputation and augmentation

procedures (Rubin, 1987), combined with powerful computing resources have largely

provided a solution to this aspect of the problem. During the last decade, a multitude

of advanced models, allowing for potentially complicated ways in which missingness

is influenced by observed and unobserved measurements, have been formulated.

In the meantime, practice has put a strong emphasis on methods such as complete

case analysis (CC, Little and Rubin, 1987), restricting the analysis to subjects with

all responses obtained, because it is simple to perform. In many cases, however,

1



2 1. Introduction

researchers do not realize that there is a strong danger for bias. In addition, since

data on incomplete records are deleted, the statistical efficiency is reduced, leading to

larger standard errors. These and other dangers of a CC analysis have been reported in

a number of statistical application areas (Little, 1992, 1995; Molenberghs et al., 2004).

Alternatively, filling-in of incomplete data with techniques such as last observation

carried forward (LOCF), has been popular for a long time. Also here, there is no need

for a full longitudinal model (e.g., when the scientific question is in terms of the last

planned measurement occasion only). These so-called imputation methods are also

described and discussed by Little and Rubin (1987) and carry even more problems

than do CC methods. Especially when data are measured repeatedly, not only means

and differences between groups, but also within-unit correlation and other modeling

aspects tend to be distorted in non-trivial ways. CC and imputation methods require,

at least, that missing data are missing completely at random (MCAR), a term coined

by Rubin (1976) and indicating that the occurrence of missingness is independent

of both observed and unobserved outcomes. This is in contrast to the much weaker

condition of MAR (missing at random), where missingness is allowed to depend on

observed outcomes but, given these, not on unobserved ones. A process that is neither

MCAR nor MAR is termed non-random (MNAR). This taxonomy is valid in the

selection model context (Little and Rubin, 1987), where the joint distribution of the

outcomes and the non-response process is factorized into the marginal distribution

of the outcomes and the conditional distribution of the non-response process given

the outcomes. The reverse factorization is referred to as a pattern-mixture model

(Little, 1993, 1994). When a common set of random-effects is thought to influence

both the outcomes and non-response process, conditional upon which these processes

are independent, then the so introduced model is referred to as a shared-parameter

model. For reviews, see Little (1995) and Kenward and Molenberghs (1998).

A key result of Rubin (1976) is that likelihood-based and Bayesian inferential

methods are valid, as soon as missingness is MAR, without the need for formulating

an explicit missing data model. In other words, under this assumption, one only

requires a method and a corresponding software tool, that allows to use incomplete

records alongside the complete ones. For this reason, such an approach is often called

an ignorable likelihood-based (or Bayesian) analysis.

Within the Gaussian setting, Molenberghs et al. (2004) suggest the use of a

likelihood-based ignorable analysis, based on the linear mixed-effects model, as an

alternative for CC and LOCF. They show that the incomplete sequences contribute

to estimands of interests, even early dropouts when scientific interest is in the last

planned measurement only. They also show that such an analysis is possible, without
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the need of any additional data manipulation, using standard statistical software. Of

course, a longitudinal model has to be specified for the entire vector of responses.

In a clinical trial setting, with relatively short and balanced response sequences, full

multivariate models, encompassing full treatment by group interactions, perhaps cor-

rected for baseline covariates, and an unstructured variance-covariance matrix, are

usually within reach. A model of this type is relatively mild in the restrictions made.

The non-Gaussian setting is different in the sense that there is no generally ac-

cepted counterpart to the linear mixed-effects model. Longitudinal models in this

context include (1) marginal models (Bahadur, 1961; Ashford and Sowden, 1970;

Molenberghs and Lesaffre, 1994, 1999), (2) random-effects (or subject-specific) ap-

proaches (Stiratelli, Laird and Ware, 1984; Breslow and Clayton, 1993; Wolfinger and

O’Connell, 1993), and (3) conditional models where parameters associated with a

particular set of outcomes are interpreted relative to values for (a subset of) the other

outcomes (Cox, 1972; Rosner, 1984; Liang and Zeger, 1989; Molenberghs and Ryan,

1999). Marginal and random-effects models both have their merit in the analysis of

longitudinal clinical trial data. Two important representatives are the generalized

estimating equations (GEE) approach within the marginal family and the general-

ized linear mixed-effects model (GLMM) within the random-effects family. There are

important similarities and differences between these model families. While GLMM

parameters can be fitted using maximum likelihood, the same is not true for the fre-

quentist GEE method. Therefore, Robins, Rotnitzky and Zhao (1995) have devised

so-called weighted generalized estimating equations (WGEE), valid under MAR but

requiring the specification of a dropout model in terms of observed outcomes and/or

covariates, in view of specifying the weights.

It is possible for the assumption of ignorability not to be true and then one might

want to consider more general models. A lot of different modeling strategies have

been developed, depending on the type of outcome and non-response process. A

short overview will be given.

The non-response process can either be monotone, also called dropout, or non-

monotone when there are intermittent missing values. Monotone missingness in con-

tinuous outcomes can be modeled, for example using a linear mixed model for the

measurements, and a logistic regression for the dropout, depending on the previous,

and possibly also the current, measurements (Diggle and Kenward, 1994). Mono-

tone missingness in categorical outcomes is discussed in Molenberghs, Kenward and

Lesaffre (1997) and Van Steen et al. (2001). They use a Dale model for the mea-

surements and a logistic regression for dropout. Also for non-monotone missingness

several modeling strategies exist. For continuous outcomes, Troxel, Harrington and
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Lipsitz (1998) used a multivariate normal distribution for the measurements, together

with the Markov Chain assumption, and a logistic regression, which only depends on

the current measurement, for the missingness process. They encountered problems

with the heavy computational load due to a multi-modal likelihood surface. For 2

binary outcomes Baker, Rosenberger and DerSimonian (1992) proposed a family of

models for dealing with non-monotone missingness. It is based on log-linear models

for the four-way classification of both outcomes, together with their respective miss-

ingness indicators. Baker (1995) proposed a model for three binary outcomes with

non-monotone missingness, based on marginal and association models for the mea-

surements, and a logistic regression for the missingness mechanism, depending on the

last observed and last unobserved measurement.

Pattern-mixture models have gained interest during the last years. Several authors

have contrasted selection models and pattern-mixture models. This is either done to

compare their answer to the same scientific question, such as marginal treatment effect

or time evolution, or to gain additional insight by supplementing the results form a

selection model analysis with those from a pattern-mixture approach. Examples for

continuous outcomes can be found in Verbeke, Lesaffre and Spiessens (2001a) and

Michiels et al. (2002) and, while categorical outcomes have been treated by Michiels,

Molenberghs and Lipsitz (1999a,b).

With the volume of literature on non-random missing data increasing, there has

been growing concern as well (Glynn, Laird and Rubin, 1986). Conclusions based

on such more complex models have often been questioned as unreliable because they

depend on the specific form assumed for the MNAR process, which can, in principle,

not be verified from the data. Also, formal tests for the null hypothesis of random

missingness, while technically possible, should be approached with caution. As a

result, several authors have advocated to investigate the sensitivity of the results with

respect to model assumptions (Little, 1994; Rubin, 1994; Laird, 1994; Molenberghs

et al., 1999a). As a general rule, fitting an MNAR model should be subject to careful

scrutiny. First, the impact of the assumed distributional form and the specific model

choices on the conclusions, when an MNAR model is fitted, has been shown to be much

higher than would be the case if data were complete (Kenward, 1998; Scharfstein,

Rotnizky and Robins, 1999; Kenward, Goetghebeur and Molenberghs, 2001). Second,

one may shift from the classical selection model framework to the pattern-mixture

model framework. The use of pattern-mixture models for sensitivity analysis purposes

has been explored by Thijs et al. (2002). Third, one may want to consider the impact

one or a few influential subjects may have on the model parameters. It is natural,

at first sight, to make use of the specific influence assessment methodology that has
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been developed over the years (Cook, 1986; Chatterjee and Hadi, 1988). Applications

of local influence analysis to the Diggle and Kenward (1994) model can be found in

Verbeke et al. (2001b), Thijs, Molenberghs and Verbeke (2000), and Molenberghs et al.

(2001b). Van Steen et al. (2001) adapted these ideas to the model of Molenberghs,

Kenward and Lesaffre (1997), for monotone repeated ordinal data.

1.2 Overview of Subsequent Chapters

The main objective of this thesis is to develop non-random models to handle missing

data within the non-Gaussian setting, since also categorical outcomes are very promi-

nent in statistical practice, and, as was already mentioned in the previous section,

techniques for this type of data are less standard, because of the lack of a simple

analogue to the normal distribution. Also some other aspects of missing data will be

discussed, such as the advantages of the use of likelihood-based ignorable analyses,

the sensitivity of the developed models, and the behavior of local influence.

In Chapter 2, we will introduce the key example data that will be used through-

out this work. Section 2.1 describes data on marital satisfaction, obtained from

couples on two distinct moments in time. In Section 2.2 data from two clinical trials

on the depression status of patients are considered. A multicenter, postmarketing

study on the use of fluvoxamine is introduced in Section 2.3. Some details about

the first Belgian Health Interview Survey in 1997 are presented in Section 2.4. Fi-

nally, Section 2.5 describes a data set, designed to study the effect of the inhibition

of testosterone production in rats.

Chapter 3 considers some background on missing data. It starts with the in-

troduction of the terminology and the definition of various missing data patterns

in Section 3.1. Afterwards, some simple methods, such as a complete case (CC)

analysis and imputation strategies (among which last observation carried forward,

LOCF), and the method of direct likelihood for continuous outcomes will be reviewed

in Section 3.2. In Section 3.3 an overview of the various modeling frameworks for

the less straightforward non-Gaussian longitudinal data setting is provided. Subse-

quently, focus is on generalized linear mixed effects models on the one hand, of which

the parameters can be estimated using full likelihood, and on generalized estimating

equations on the other hand, which is a non-likelihood method and hence requires

a modification to be valid under MAR. This modification will also be described in

detail.

Molenberghs et al. (2004) argue that, in the context of clinical trials, a likelihood-
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based analysis without modeling the dropout process, is more likely to be valid,

and even easier to implement than CC and LOCF analyses, when the outcomes of

interest are continuous. In Chapter 4, the same arguments will be used to strengthen

similar issues in different settings. Section 4.1 shows that also in the context of

sociology, when analyzing continuous data, there is no need to use CC above direct

likelihood. The possible correlation between the parents’ responses is taken into

account, providing an extra dimension to the analyses. In Section 4.2, attention is

devoted to the analysis of data from two clinical trials with binary outcomes. It is

illustrated that also in this case more general models, such as the earlier introduced

generalized linear mixed models or the (weighted) generalized estimating equations,

are preferable to CC and LOCF.

Baker, Rosenberger and DerSimonian (1992) proposed a family of models for bi-

variate binary data subject to non-random non-response. In Chapter 5, Section 5.1,

the original model family is sketched. In Section 5.2, these models are reformulated

and extended to accommodate for, possibly continuous, covariates. This parameter-

ization avoids the risk of invalid solutions. These BRD models are able to deal with

non-monotone missingness but have some limitations as well, stemming from the con-

ditional interpretation of the model parameters. Section 5.3 shows some insight in

the derivatives of the log-likelihood function. Finally, this methodology is applied to

the fluvoxamine data in Section 5.4.

In Chapter 6, the relatively unexplored domain of non-monotone missingness

with multivariate ordinal responses will be broached. In this context, the multi-

variate Dale model (Molenberghs and Lesaffre, 1994) will be used and introduced in

Section 6.1. Section 6.2 focuses on its bivariate version. To allow for multivariate cat-

egorical outcomes with non-monotone missingness, a multivariate Dale model for the

measurements is combined with the same multivariate Dale model for the missingness

mechanism, into a so-called Dale-Dale model in Section 6.3. Finally, this family of

models is fitted to the Belgian Health Interview Survey in Section 6.4.

Besides the selection models, there is growing interest in pattern-mixture model-

ing. However, they are not yet available for non-monotone missing data. Chapter 7

will focus on these type of models. In Section 7.1, the pattern-mixture context will

be introduced. The strategy of identifying restrictions is the topic in Section 7.2,

while Section 7.3 focuses on the special case of three measurements. Section 7.5 will

discuss the assumptions needed when intermittent missingness is present. Attention

is devoted to the determination of marginal effects across patterns in Section 7.6. In

Section 7.7, the fluvoxamine data are reanalyzed using pattern-mixture models.

Since MNAR models are sensitive to the underlying model assumptions, gener-
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ally performing a sensitivity analysis is strongly advisable. Many different routes

might be followed, either at the level of the models, or at the level of the individuals

(Draper, 1995; Glynn, Laird and Rubin, 1986; Molenberghs, Kenward and Goetghe-

beur, 2001a; Rubin, 1977, 1994; Scharfstein, Rotnizky and Robins, 1999). In Chap-

ter 8, it is shown that also for multivariate and longitudinal binary data, subject to

non-monotone missingness, methods to assess the influence can be developed. The

method of global influence, also known as the case-deletion method (Cook and Weis-

berg, 1982), is reviewed in Section 8.1, and applied to the Dale-Dale model family

in Section 8.2. A local influence strategy (Cook, 1986) for the BRD model family is

developed in Section 8.3, and applied to the fluvoxamine trial in Section 8.4.

The original idea behind the use of local influence methods with an eye on sensi-

tivity analysis was to detect observations that had a high impact on the conclusions

due to their aberrant missingness mechanism. However, local influence tends to pick

up a lot of different anomalies in the data at hand, not just deviations in the MNAR

mechanism. In Chapter 9, the method of local influence is further studied, not only

to better understand its behavior, but also to increase insight in the overall behavior

and impact of MNAR mechanisms. Local influence in the context of the Diggle and

Kenward (1994) model is described in Section 9.1. This methodology is applied to

the rats case study in Section 9.2. Section 9.3 is dedicated to the behavior of local in-

fluence under standard conditions as well as under a number of anomalous scenarios.

This is done using simulations and general modeling considerations.





2
Case Studies

In this chapter, we introduce several longitudinal data sets with missing observations.

Not only clinical trials, but also two surveys are considered. These data sets will be

used throughout the text as key examples to illustrate the techniques developed and

other methods that are becoming more and more frequently used. In some studies, the

continuous outcomes are retained, while other studies had binary outcomes recorded,

or continuous ones were dichotomized.

2.1 Marriage Satisfaction Data

The research sample of the first study consists of married men and women partici-

pating in the longitudinal research project “Child-rearing and family in the Nether-

lands”. In 1990 and 1995 the same family members (wife, husband and target child)

provided information about essentially the same domains. Families were recruited

using a multi-stage sampling method. In a first stage, a sample was taken from all

Dutch municipalities, distinguished by regional zone and degree of urbanization. In

a second stage, a sample of children aged 9 to 16 years was taken in the selected

municipalities. The children were selected in such a way that in each city as many

boys as girls and as many children aged 9 to 12 as in the age range 13–16 were chosen.

In 1990, this procedure resulted in a sample of 1829 families. The response ratio was

43% (N = 788).

9
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Despite the reduction of the number of families, the sample was representative

regarding regional zone and degree of urbanization. Of the 656 families who agreed

in 1990 to participate in the second wave, 627 could be traced five years later. Of

these contacted families, 484 (77%) did actually participate in 1995. This sample

proved to be still representative for regional zone but not for degree of urbanization.

It appeared that primarily participants from the bigger cities refused to participate

for the second time in the research project. More technical details on the database,

and the reasons of refusal to participate, can be found in Gerris et al. (1992, 1993,

1998). The data were gathered by means of structured interviews and questionnaires,

completed by both the child and its parents. To establish a homogeneous research

group for a study on marital quality, only first marriages in which both men and

women with the Dutch nationality were selected. This selection resulted in a research

group of 646 couples in 1990 and 386 couples in 1995.

We consider three continuous responses to measure marital quality: marital sat-

isfaction (satisfaction with the relationship and/or the partner), negative communi-

cation (to what degree certain forms of negative communication are characteristic to

their marital relationship) and open communication (to what degree personal feelings

and experiences are shared). All responses were measured on a 7-point Likert scale,

ranging from 1 = “not at all applicable” to 7 = “very applicable”. The uniqueness and

stability of this concept was demonstrated in Van den Troost et al. (2001). The indi-

vidual profiles for the three responses are shown in Figure 2.1, for males and females

separately. The following covariates will be taken into account because of potential

influence on marital quality: education (ranging from 1 = “elementary school” to 9 =

“university education”), family income in euros (1 = “1100–1600”, 2 = “1600–1800”,

3 = “1800–2100”, 4 = “2100–2500”, 5 = “2500–3250”, 6 = “3250–4500” and 7 =

“more than 4500”), year of birth, year of marriage, number of children, marital sta-

tus of the couple’s parents (whether or not they were married while living with them,

1 = “yes”, 2 = “no” and 3 = “not applicable”).

2.2 Hamilton Depression Rating Scale Data

Secondly we consider two sets of data, coming from two clinical trials, enrolling 167

and 342 patients, respectively. The depression status of the patients is measured

using the Hamilton Depression Rating Scale (HAMD17). Analyses of this continuous

HAMD17 score are performed in Mallinckrodt et al. (2003a,b) and Molenberghs et al.

(2004). Later, interest turned towards the dichotomized version of the HAMD17 score
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Figure 2.1: Marriage Satisfaction Data. Individual profiles for the three outcomes and

males/females separately.

(1 if HAMD17 > 7, 0 otherwise). For each patient, a baseline assessment is available.

Post-baseline visits differ between both studies (visits 4 to 11 for the first study, visits

4 to 8 for the second one).

For blinding purposes, therapies are recoded as A1 for primary dose of the ex-

perimental drug, A2 for secondary dose of experimental drug, and B and C for non-

experimental drugs. The treatment arms across the two studies are as follows: A1, B,

and C for Study 1; A1, A2, B, and C for Study 2. The primary contrast is between A1

and C. Emphasis is on the difference between arms at the end of the study. In both

studies, the dropout at the end of the study lies between 30% and 40% per treatment

arm. A graphical representation of the dropout, per study and per arm, is given in

Figure 2.2.
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Figure 2.2: Hamilton Depression Rating Scale Data. Evolution of dropout per study

and per treatment arm. Treatment arms A1 and C, being the ones of primary interest,

are shown in bolder typeface.

2.3 Fluvoxamine Data

Another example comes from a multicenter, postmarketing study involving 315 pa-

tients that were treated by fluvoxamine for psychiatric symptoms described as possibly

resulting from a dysregulation of serotonine in the brain. The data are discussed in

Molenberghs and Lesaffre (1994), Kenward, Lesaffre and Molenberghs (1994), Molen-

berghs, Kenward and Lesaffre (1997), Michiels and Molenberghs (1997), Molenberghs

et al. (1999b), and Jansen et al. (2003).

After enrollment into the study, a number of baseline characteristics was scored,

and the patient was assessed at four follow-up visits. The therapeutic effect and the

extent of worsening side effects were scored at each visit on an ordinal scale. A side

effect occurs if new symptoms appear while there is therapeutic effect if old symptoms

disappear. We will focus on a dichotomized version (present/absent) of side effects.

In Chapter 5, focus is on the first and the last visit, while in Chapter 7, also the

second visit will be considered.

Accumulated experience with fluvoxamine in controlled clinical trials has shown

that it is effective as a conventional tricyclic antidepressant (Burton, 1991). However,

many patients who suffer from depression have concomitant morbidity with conditions

such as obsessive-compulsive disorder, anxiety disorders and, to some extent, panic

disorders. In most trials, patients with comorbidity are excluded and therefore, it is

of interest to gather evidence as to the importance of such factors, with a view on

improved diagnosis and treatment. A useful, easy to obtain and quantitative covariate,
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Table 2.1: Fluvoxamine Data (315 subjects). ‘Side effects’ (yes/no) at the first and

last visit.

yes 89 13

no 57 65

26

49
2 0 14

Table 2.2: Fluvoxamine Data. ‘Side effects’ (yes/no) at the first and last visit. Infor-

mation for ‘prior duration’ available.

yes 88 13

no 56 65

24

49
2 0 13

strongly related to the history of comorbidity, is duration of the mental illness, prior

to inclusion in the trial (prior duration). Its effect on the clinical outcomes of the

study is therefore of scientific importance (Lesaffre, Molenberghs and Dewulf, 1996)

and will be studied.

The observed data are given in Table 2.1. A small subgroup has missing infor-

mation on the duration covariate. Table 2.2 contains the data that will be used in

the analyses (covariate information available). There are two patients with a non-

monotone pattern of follow-up while 13 subjects have no follow-up data at all.

2.4 Belgian Health Interview Survey Data

The next data set is the first Belgian Health Interview Survey, which took place in

1997. The HIS1997 was conducted to evaluate the usefulness of a periodic health-

related survey, with the idea of collecting information on the subjective health of the

Belgian population, as well as on important predictor variables.

The main goal of the HIS1997 was to give a description of the health status of the

overall population in Belgium as well as of the three regional subpopulations (Flemish,

Walloon and Brussels region), and in addition of the German community. The idea

was to obtain a reflection of how specific groups of people experience their health,

to what extent they utilize health care facilities, and how they look after their own

health by adopting a certain life-style or by relying on preventive and other health

services.
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Table 2.3: Health Interview Survey Data (10786 subjects). ‘Mental health’ versus

‘fixed general practitioner’.

Yes No

Good 5048 522

Bad 2360 252

17

13
1737 266 571

Table 2.4: Health Interview Survey Data. ‘Mental health’ versus ‘fixed general prac-

titioner’. Separate for males (5288) and females (5498), respectively.

Males
2579 320

928 140

5

5
868 138 305

Females
2469 202

1432 112

12

8
869 128 266

The target population was defined as all people residing in Belgium at a particular

point in time. The National Register was used as the sampling frame. The total

number of successful interviews for the sample was set to 10,000 (0.1% of the Belgian

population), 3500 in both the Flemish and Walloon regions, and 3000 in the Brussels

region. Sampling was based on a combination of stratification, multistage sampling,

and clustering. More details on the design of the study, together with a descriptive

analysis of missingness, can be found in Burzykowski et al. (1999) and Renard et al.

(1998).

We will focus on two specific aspects of the HIS1997, namely the status of men-

tal health (0 = good, 1 = bad), and having a fixed general practitioner (0 = yes,

1 = no). Missingness occurred for several reasons: person is not interviewed, no valid

information obtained, an error by the interviewer, question is not applicable, person

does not know, no answer given. In total, information is available for 10786 subjects.

Data are shown in Table 2.3. Covariates of interest are gender (male/female) and

education (no/primary/lower secondary/higher secondary/higher). The distribution

of the subjects over the different covariate levels of gender and education are shown

in Tables 2.4 and 2.5, respectively.



2.5. Rats Data 15

Table 2.5: Health Interview Survey Data. ‘Mental health’ versus ‘fixed general practi-

tioner’. Separate for no education (267), primary education (1486), lower secondary

education (1844), higher secondary education (3265), higher education (3843), and

education information missing (81), respectively.

No
112 13

46 5

0

0
36 9 46

Primary
734 67

374 17

3

3
150 26 112

Lower secondary
899 74

446 47

2

1
255 36 84

Higher secondary
1611 131

699 51

4

3
581 62 123

Higher
1662 235

776 127

8

6
704 128 197

Missing
30 2

19 5

0

0
11 5 9

2.5 Rats Data

The last data set comes from a randomized experiment, designed to study the effect

of the inhibition of testosterone production in rats. The experiment was conducted

at the Department of Orthodontics of the Catholic University of Leuven (K.U.L.) in

Belgium (Verdonck et al., 1998). A total of 50 male Wistar rats has been randomized

to either a control group or one of two treatment groups, consisting of a low and a high

dose of the drug Decapeptyl, which is an inhibitor for the testosterone production in

rats. The treatment started at the age of 45 days, and measurements were taken every
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Figure 2.3: Rats Data. Individual growth curves for the three treatment groups sepa-

rately.

10 days, with the first observation taken at the age of 50 days. The response of interest

is a characterization of the height of the skull (in pixels), taken under anaesthesia.

Unfortunately, many rats do not survive anaesthesia implying that for only 22 (44%)

rats all 7 designed measurements could have been taken. The individual profiles

are shown in Figure 2.3. The data have been analyzed extensively, see for example

Verbeke and Lesaffre (1999), Verbeke et al. (2001b) or Verbeke and Molenberghs

(2003).



3
Fundamental Concepts of

Missing Data

Data from longitudinal studies are generally prone to incompleteness. Since incom-

pleteness usually occurs for reasons outside of the control of the investigators and

may be related to the outcome measurement of interest, it is generally necessary to

address the process governing incompleteness. Only in special but important cases it

is possible to ignore the missingness process.

Commonly used methods to analyze incomplete longitudinal data include complete

case analysis (CC) and last observation carried forward (LOCF) or other simple

forms of imputation. Claimed advantages include computational simplicity, no need

for a full longitudinal model (e.g., when the interest is in terms of the last planned

measurement occasion only) and, for LOCF, compatibility with the intention-to-treat

(ITT) principle.

In this chapter, we first introduce some general concepts regarding incomplete data

(Section 3.1). In Section 3.2 the use of a likelihood-based ignorable analysis, within

the Gaussian setting, based on the linear mixed-effects model is suggested, and its

advantage compared to CC and LOCF is discussed. In Section 3.3, we will focus on the

less straightforward situation of non-Gaussian outcomes, such as binary, categorical,

or count data. We therefore first sketch a general taxonomy for longitudinal models in

17



18 3. Fundamental Concepts of Missing Data

this context, including marginal, random-effects (or subject-specific), and conditional

models. We then argue that marginal and random-effects models both have their

merit in the analysis of longitudinal clinical trial data and focus on two important

representatives, i.e., the generalized estimating equations (GEE, Liang and Zeger,

1986) approach within the marginal family and the generalized linear mixed-effects

model (GLMM, Stiratelli, Laird and Ware, 1984; Wolfinger and O’Connell, 1993;

Breslow and Clayton, 1993) within the random-effects family. We highlight important

similarities and differences between these model families. While GLMM parameters

can be fitted using maximum likelihood, the same is not true for the frequentist

GEE method. Therefore, Robins, Rotnitzky and Zhao (1995) have devised so-called

weighted generalized estimating equations (WGEE), valid under MAR but requiring

the specification of a dropout model in terms of observed outcomes and/or covariates,

in view of specifying the weights.

3.1 General Concepts of Modeling Incompleteness

To incorporate incompleteness into the modeling process, we need to reflect on the na-

ture of the missing value mechanism and its implications for statistical inference. We

will therefore introduce the necessary terminology and notation, together with various

missing data patterns. Also the important case where the missing data mechanism

can be excluded from the statistical analysis will be considered.

3.1.1 Terminology and Notation

Assume that for subject i = 1, . . . , N in the study a sequence of responses Yij is

designed to be measured at a fixed set of occasions j = 1, . . . , n. The outcomes are

grouped into a vector Y i = (Yi1, . . . , Yin)′. In addition, for each occasion j define

Rij =





1 if Yij is observed

0 otherwise

The missing data indicators Rij are grouped into a vector Ri which is of the same

length as Y i. The underlying mechanism generating these Ri is denoted by the

missingness process and it is possible to consider several missing data patterns within

the study. In case the non-response process is restricted to dropout we have that all

measurements for a subject from baseline onwards up to a certain time are recorded,

after which all data are missing. The vector Ri can then be represented as a scalar

Di say, defined as Di = 1 +
∑n

j=1 Rij , representing the occasion at which dropout
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occurs. In terms of missing data patterns we call this a dropout pattern and we can

split this further into monotone dropout patterns where all measurements prior to

the time of dropout are observed and non-monotone dropout patterns where for some

reason it is possible that also measurements prior to the actual dropout are missing.

It is often necessary to split the vector Y i into observed (Y o
i ) and missing (Y m

i )

components respectively. The following terminology is used:

Complete data Y i: the scheduled measurements. This is the hypothetical outcome

vector that would have been recorded if there were no missing data.

Full data (Y i,Ri): the complete data, together with the missing data indicators.

Note that one observes the measurements Y o
i together with the dropout indi-

cators Ri.

Covariates Xi: apart from the outcomes, additional information is measured. This

information can be collected before or during the study. The covariate vector is

allowed to change for different outcome components t and can include contin-

uous as well as discrete variables. We assume no missing values appear in Xi.

Methods for the case of missing covariates have been explored by several authors

(Little, 1992; Robins, Rotnitzky and Zhao, 1994; Zhao, Lipsitz and Lew, 1996).

3.1.2 Missing Data Mechanisms

In principle, one would like to consider a joint model for the measurement process

together with the dropout process. In other words, interest is in the density of the

full data

f(yi, ri|θ,ψ), (3.1)

where the parameter vectors θ and ψ describe the measurement and missingness

processes, respectively. Covariates are assumed to be measured, but have been sup-

pressed from notation for simplicity. We can factorize this density in several ways. In

this and the next chapters we will discuss the factorization

f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (3.2)

The first factor is the marginal density of the measurement process and the second

one is the density of the missingness process, conditional on the outcomes. This

factorization forms the basis of selection modeling and can be explained intuitively by

considering the second factor to correspond to the (self-)selection of individuals into

‘observed’ and ‘missing’ groups. In Chapter 7 we will focus on the reverse factorization

f(yi, ri|θ,ψ) = f(yi|ri,θ)f(ri|ψ), (3.3)
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the so-called pattern-mixture models. This density can be seen as a mixture of different

populations, characterized by the observed pattern of missingness. After initial men-

tion of these models (Glynn, Laird and Rubin, 1986; Little and Rubin, 1987), they

are receiving more attention lately (Little, 1993, 1994, 1995; Ekholm and Skinner,

1998; Hogan and Laird, 1997).

Selection models were used by Rubin (1976) and Little and Rubin (1987) to define

their missing data terminology. This classical taxonomy is based on the second factor

of (3.2)

f(ri|yi,ψ) = f(ri|yo
i ,y

m
i ,ψ) (3.4)

and can be described as follows:

• if (3.4) is independent of the measurements, i.e., when it assumes the form

f(ri|ψ)

then the process is termed missing completely at random (MCAR).

• if (3.4) is independent of the unobserved (missing) measurements Y m
i , but de-

pends on the observed measurements Y o
i , thereby assuming the form

f(ri|yo
i ,ψ)

then the process is referred to as missing at random (MAR).

• if (3.4) depends on the missing values Y m
i , the process is referred to as infor-

mative missingness or missing not at random (MNAR).

Focusing on the selection model (3.2) when analyzing the data, two choices have

to be made.

Model for measurements. A choice has to be made regarding the modeling ap-

proach to the measurements. Several views are possible.

View 1. One can choose to analyze the entire profile of outcomes on a subject,

irrespective of whether interest focuses on the entire profile or rather on a

specific response at a specific time point. In the latter case, the motivation

to model the entire profile is because, for example, earlier responses do

provide statistical information on later ones. Inference is then based on

the appropriate subset of parameters from the full longitudinal model.
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View 2. One defines the scientific question and restrict the corresponding analysis

to the last planned occasion. Of course, as soon as dropout occurs, such a

measurement may not be available. In this case, one can either accept the

dropout as it is or use one or other strategy (e.g. imputation) to incorporate

the missing outcomes.

View 3. One can choose to define the question and the corresponding analysis in

terms of the last observed measurement. While sometimes used as an al-

ternative motivation for so-called last observation carried forward analyses

(Siddiqui and Ali, 1998; Mallinckrodt et al., 2003a,b), a common criticism

is that the last observed measurement amalgamates measurements at real

stopping times (for dropouts) and at a purely design-based time (for com-

pleters).

In all cases, we need to reflect on how to deal with missingness. Under View 1,

both simple methods, like a complete case analysis, as well as the more advanced

direct-likelihood method are possible. Also View 2 necessitates reflection on the

missing data mechanism, although all other outcomes on the sample couple

are ignored, so one is not making use of such additional information. View 3

completely ignores the missing data problem because the question is couched

completely in terms of observed measurements. Under View 3, an LOCF anal-

ysis might be acceptable, provided it matched the scientific goals, but is then

better described as a Last Observation analysis because nothing is carried for-

ward. Such an analysis should properly be combined with an analysis of time

to dropout, perhaps in a survival analysis framework. Of course, an investiga-

tor should reflect very carefully on whether View 3 represents a relevant and

meaningful scientific question (see also Shih and Quan, 1997).

Method for handling missingness. A choice has to be made regarding the mod-

eling approach for the missingness process. Under certain assumptions this

process can be ignored (e.g., a likelihood-based ignorable analysis or direct-

likelihood analysis). Some simple methods, such as a CC analysis or LOCF, do

not explicitly address the missingness process.

The measurement model will depend on whether or not a full longitudinal analysis

is done. When the focus is on the last observed measurement or on the last measure-

ment occasion only, one typically opts for classical two- or multi-group comparisons

(t test, Wilcoxon, etc.). When a longitudinal analysis is deemed necessary, the choice

depends on the nature of the outcome. For continuous outcomes, one often assumes
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a multivariate normal, a special case of the linear mixed-effects model (Verbeke and

Molenberghs, 2000):

Y i = Xiβ + εi, (3.5)

where Y i is the n-dimensional response vector for subject i, 1 ≤ i ≤ N , N is the

number of subjects, Xi is a (n×p) known design matrix, β is the p dimensional vector

containing the fixed effects, εi ∼ N(0, Vi), with Vi a general or structured variance

covariance matrix. If necessary, a fully general linear mixed effects model can be

considered, without any problem.

Assume that incompleteness is due to dropout only, and that the first measurement

Yi1 is obtained for everyone. A possible model for the dropout process is a logistic

regression for the probability of dropout at occasion j, given that the subject is still in

the study. We denote this probability by g(hij , yij) in which hij is a vector containing

all responses observed up to but not including occasion j, as well as relevant covariates.

We then assume that g(hij , yij) satisfies

logit[g(hij , yij)] = logit [pr(Di = j|Di ≥ j,yi)]

= h′
ijψ + ωyij , i = 1, . . . , N (3.6)

(Diggle and Kenward, 1994). When ω equals zero, the dropout model is MAR, and all

parameters can be estimated using standard software since the measurement model,

for which we use a linear mixed model, and the dropout model, assumed to follow a

logistic regression, can then be fitted separately. If ω 6= 0, the posited dropout process

is MNAR (missing not at random), where missingness is allowed to depend on both

observed and unobserved outcomes. Model (3.6) provides the building blocks for the

dropout process f(ri|yi,ψ).

3.1.3 Ignorability

Let us decide to use likelihood based estimation. The full data likelihood contribution

for subject i assumes the form

L∗(θ,ψ|yi, ri) ∝ f(yi, ri|θ,ψ).

Since inference has to be based on what is observed, the full data likelihood L∗ has

to be replaced by the observed data likelihood L:

L(θ,ψ|yo
i , ri) ∝ f(yo

i , ri|θ,ψ) (3.7)
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with

f(yo
i , ri|θ,ψ) =

∫
f(yi, ri|θ,ψ)dym

i

=

∫
f(yo

i ,y
m
i |θ)f(ri|yo

i ,y
m
i ,ψ)dym

i .

Under an MAR process, we obtain

f(yo
i , ri|θ,ψ) =

∫
f(yo

i ,y
m
i |θ)f(ri|yo

i ,ψ)dym
i

= f(yo
i |θ)f(ri|yo

i ,ψ), (3.8)

i.e., the likelihood factorizes into two components of the same functional form as the

general factorization (3.2) of the complete data. If further θ and ψ are disjoint in

the sense that the parameter space of the full vector (θ′,ψ′)′ is the product of the

individual parameter spaces (separability condition) then inference can be based on

the marginal observed data density only.

In conclusion, when the separability condition is satisfied, within the likelihood

framework, ignorability is equivalent to the union of MAR and MCAR. Hence, non-

ignorability and MNAR are synonyms in this context. A formal derivation is given in

Rubin (1976) (where it is also shown that the same requirements hold for Bayesian in-

ference, but that frequentist inference is ignorable only under MCAR) and Little and

Rubin (1987). The practical implication is that a software module with likelihood

estimation facilities and with the ability to handle incompletely observed subjects,

manipulates the correct likelihood, providing valid parameter estimates, standard er-

rors if based on the observed information matrix, and likelihood ratio values (Kenward

and Molenberghs, 1998). Note that the estimands are the parameters of model (3.5),

which is a model for complete data, corresponding to what one would expect to see

in the absence of dropouts. A similar method is the full information maximum likeli-

hood (FIML) method (Wothke, 2000), which casewise maximizes the likelihood of the

observed data. This method has already been used within the sociological research.

A few cautionary remarks are warranted. First, when at least part of the scien-

tific interest is directed towards the nonresponse process (e.g., to study reasons for

non-response), obviously both processes need to be considered. Under MAR, both

processes can be modeled and parameters estimated separately. Second, likelihood

inference is often surrounded with references to the sampling distribution (e.g. to

construct measures of precision for estimators and for statistical hypothesis tests;

Kenward and Molenberghs, 1998). However, the practical implication is that stan-

dard errors and associated tests, when based on the observed rather than the expected
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information matrix and given that the parametric assumptions are correct, are valid.

Thirdly, it may be hard to rule out the operation of an MNAR mechanism, but this

will not yet be discussed in this chapter. Fourthly, such an analysis can proceed only

under View 1, i.e., a full longitudinal analysis is necessary, even when interest lies in a

question concerning one specific occasion. In the latter case, the fitted model can be

used as the basis for inference at that occasion. A common criticism is that a model

needs to be considered, with the risk of model misspecification. However, it should

be noted that in many sociological settings the repeated measures are balanced in the

sense that a common (and often limited) set of measurement times is considered for all

subjects, allowing the a priori specification of a saturated model (e.g., a full group by

time interaction model for the fixed effects and an unstructured variance-covariance

matrix). A model of this type is relatively mild in the restrictions made.

These arguments, supplemented with the availability of software tools within

which such multivariate models can be fitted to incomplete data (such as the MIXED,

NLMIXED, GLIMMIX and GENMOD procedures in SAS), cast down regarding the

usefulness of such simple methods as CC and LOCF. Apart from biases as soon as the

missing data mechanism is not MCAR (Molenberghs et al., 2004), CC can suffer from

severe efficiency losses. Especially since tools have become available to include incom-

plete sequences along with complete ones into the analysis, one should do everything

possible to avoid wasting patient data.

LOCF, a so-called imputation strategy (Dempster and Rubin, 1983; Little and

Rubin, 2002), shares with other imputation methods that precision can be inflated

artificially. Further, as Molenberghs et al. (2004) have shown, the method can produce

severely biased treatment comparisons and, perhaps contrary to some common belief,

such biases can be conservative but also liberal. The method rests on the strong

assumption that a patient’s outcome profile remains flat, at the level of the last

observed measurement, throughout the remainder of follow up.

The complete case and LOCF methods, together with the direct-likelihood

method, will be described in the next section and studied further in subsequent sec-

tions.

3.2 Simple Methods and Direct Likelihood

We will briefly review a number of relatively simple methods that still are commonly

used. For the validity of many of these methods, MCAR is required. For others, such

as LOCF, MCAR is necessary but not sufficient. The focus will be on the complete
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case method, for which data are removed, and on imputation strategies, where data

are filled in. Regarding imputation, one distinguishes between single and multiple

imputation. In the first case, a single value is substituted for every “hole” in the

data set and the resulting data set is analyzed as if it represented the true complete

data. Multiple imputation acknowledges the uncertainty stemming from filling in

missing values rather than observing them (Rubin, 1987; Schafer, 1997). LOCF will

be discussed within the context of imputation strategies, although LOCF can be

placed in other frameworks as well.

A complete case analysis includes only those cases for which all measurements

were recorded. This method has obvious advantages. It is simple to describe and

almost any software can be used since there are no missing data. Unfortunately, the

method suffers from severe drawbacks. Firstly, there is nearly always a substantial loss

of information. Small amounts of missingness on each of the measurement occasions

can result in an overal proportion of complete cases which is unacceptably low. Even

though the reduction of the number of complete cases will be less severe in settings

where the missingness indicators are correlated, this loss of information will usually

militate against a complete case analysis. Secondly, severe bias can result when the

missingness mechanism is MAR but not MCAR. Indeed, should an estimator be

consistent in the complete data problem, then the derived complete case analysis is

consistent only if the missingness process is MCAR. A CC analysis can be conducted

when Views 1 and 2 of Section 3.1.2 are adopted. It obviously is not a reasonable

choice with View 3.

An alternative way to obtain a data set on which complete data methods can be

used is to fill in rather than delete (Little and Rubin, 1987). Concern has been raised

regarding imputation strategies. Dempster and Rubin (1983) write: “The idea of

imputation is both seductive and dangerous. It is seductive because it can lull the user

into the pleasurable state of believing that the data are complete after all, and it is

dangerous because it lumps together situations where the problem is sufficiently minor

that it can be legitimately handled in this way and situations where standard esti-

mators applied to the real and imputed data have substantial biases.” For example,

Little and Rubin (1987) show that the application of imputation could be considered

acceptable in a linear model with one fixed effect and one error term, but that it is

generally not acceptable for hierarchical and multivariate models, repeated measures

with a complicated error structure, random-effects, and mixed-effects models.

A method that has received considerable attention (Siddiqui and Ali, 1998;

Mallinckrodt et al., 2003a,b) is last observation carried forward (LOCF). In the

LOCF method, whenever a value is missing, the last observed value is substituted.
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The technique can be applied to both monotone and non-monotone missing data. It

is typically applied in settings where incompleteness is due to attrition.

LOCF can, but not necessarily, be regarded as an imputation strategy, depending

on which of the views of Section 3.1.2 is taken. The choice of viewpoint has a number

of consequences. First, when the problem is approached from a missing data stand-

point, one has to think it plausible that subjects’ measurements do not change from

the moment of dropout onwards (or during the period they are unobserved in the

case of intermittent missingness). In a clinical trial setting, one might believe that

the response profile changes as soon as a patient goes off treatment and even that it

would flatten. However, the constant profile assumption is even stronger. Secondly,

LOCF shares with other single imputation methods that it artificially increases the

amount of information in the data, by treating imputed and actually observed values

on an equal footing. This is especially true if a longitudinal view is taken. Verbeke

and Molenberghs (1997, Ch. 5) have shown that all features of a linear mixed model

(group difference, evolution over time, variance structure, correlation structure, ran-

dom effects structure, . . . ) can be affected.

Thus, scientific questions with which LOCF is compatible will be those that are

phrased in terms of the last obtained measurement (View 3). Whether or not such

questions are sensible should be the subject of scientific debate, which is quite different

from a post hoc rationale behind the use of LOCF. Likewise, it can be of interest to

model the complete cases separately and to make inferences about them. In such cases,

a CC analysis is of course the only reasonable way forward. This is fundamentally

different from treating a CC analysis as one that can answer questions about the

randomized population as a whole.

The user of imputation strategies faces several dangers. First, the imputation

model could be wrong and, hence, the point estimates biased. Second, even for a cor-

rect imputation model, the uncertainty resulting from missingness is ignored. Indeed,

even when one is reasonably sure about the mean value the unknown observation

would have had, the actual stochastic realization, depending on both the mean and

error structures, is still unknown. In addition, most methods require the MCAR as-

sumption to hold while some even require additional and often unrealistically strong

assumptions.

On the other hand, a likelihood-based ignorable analysis or direct-

likelihood method produces expectations for the missing observations but no ex-

plicit imputation takes place, hence the amount of information in the data is not

overestimated and important model elements, such as mean structure and variance

components, are not distorted.
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Historically, an important motivation behind the simpler methods was their very

simplicity. Currently, with the availability of commercial software tools such as, for

example, the SAS procedure MIXED, this motivation no longer applies. Arguably, an

MAR analysis is the preferred choice. Of course, the correctness of an MAR analysis

rests upon the truth of the MAR assumption, which is, in turn, never completely

verifiable. Note that purely resorting to MNAR analyses is not satisfactory either,

since such models are known to be sensitive to unverifiable model assumptions that

necessarily have to be made. These and related issues will be discussed in subsequent

chapters.

3.3 Discrete Repeated Measures

Whereas the linear mixed model, and its special cases, is seen as a unifying parametric

framework for Gaussian repeated measures (Verbeke and Molenberghs, 2000), there

are many more options available in the non-Gaussian setting. In a marginal model,

marginal distributions are used to describe the outcome vector Y , given a set X

of predictor variables. The correlation among the components of Y can then be

captured either by adopting a fully parametric approach or by means of working

assumptions, such as in the semiparametric approach of Liang and Zeger (1986).

Alternatively, in a random-effects model, the predictor variables X are supplemented

with a vector θ of random effects, conditional upon which the components of Y are

usually assumed to be independent. This does not preclude that more elaborate

models are possible if residual dependence is detected (Longford, 1993). Finally, a

conditional model describes the distribution of the components of Y , conditional on

X but also conditional on (a subset of) the other components of Y . Well-known

members of this class of models are log-linear models (Gilula and Haberman, 1994).

Let us give a simple example of each for the case of Gaussian outcomes. A marginal

model starts from specifying:

E(Yij |xij) = x′
ijβ, (3.9)

whereas in a random-effects model we focus on the expectation, conditional upon the

random-effects vector:

E(Yij |bi,xij) = x′
ijβ + z′

ijbi. (3.10)

The conditional model uses expectations of the form

E(Yij |Yi,j−1, . . . , Yi1,xij) = x′
ijβ + αYi,j−1. (3.11)
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In the linear mixed model case, random-effects models imply a simple marginal model.

This is due to the elegant properties of the multivariate normal distribution. In

particular, the expectation (3.9) follows from (3.10) by either (a) marginalizing over

the random effects or by (b) conditioning upon the random-effects vector bi = 0.

Hence, the fixed-effects parameters β have both a marginal as well as a hierarchical

model interpretation.

Since marginal and random-effects models are the most useful ones in many differ-

ent contexts, and given this connection between them, it is clear why the linear mixed

model provides a unified framework in the Gaussian setting. Such a close connection

between the model families does not exist when outcomes are of a non-normal type,

such as binary, categorical, or discrete. We will consider the marginal and random-

effects model families in turn and then point to some particular issues arising within

them or when comparisons are made between them.

3.3.1 Marginal Models

Thorough discussions on marginal modeling can be found in Diggle et al. (2002), and

Fahrmeir and Tutz (2001). The specific context of clustered binary data has received

attention in Aerts et al. (2002). Apart from full likelihood approaches, non-likelihood

approaches, such as generalized estimating equations (GEE, Liang and Zeger, 1986) or

pseudo-likelihood (Geys, Molenberghs and Lipsitz, 1998; le Cessie and van Houwelin-

gen, 1994) have been considered.

Bahadur (1961) proposed a marginal model, accounting for the association via

marginal correlations. Ekholm (1991) proposed a so-called success probabilities ap-

proach. George and Bowman (1995) proposed a model for the particular case of

exchangeable binary data. Ashford and Sowden (1970) considered the multivariate

probit model, for repeated ordinal data, thereby extending univariate probit regres-

sion. Molenberghs and Lesaffre (1994), and Lang and Agresti (1994) have proposed

models which parameterize the association in terms of marginal odds ratios. Dale

(1986) defined the bivariate global odds ratio model, based on a bivariate Plack-

ett distribution (Plackett, 1965). Molenberghs and Lesaffre (1994, 1999), Lang and

Agresti (1994), and Glonek and McCullagh (1995) extended this model to multivari-

ate ordinal outcomes. They generalize the bivariate Plackett distribution in order to

establish the multivariate cell probabilities.

While full likelihood methods are appealing because of their flexible ignorability

properties (Section 3.1.3), their use for non-Gaussian outcomes can be problematic

due to prohibitive computational requirements. Therefore, GEE is a viable alternative
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within this family. Since GEE is frequentist in nature, it is ignorable only under

MCAR and this motivates the proposal of so-called weighted generalized estimating

equations (WGEE). We will discuss these in turn.

Generalized Estimating Equations

GEE, useful to circumvent the computational complexity of full likelihood, can be con-

sidered whenever interest is restricted to the mean parameters (treatment difference,

time evolutions, effect of baseline covariates, etc.). It is rooted in the quasi-likelihood

ideas expressed in McCullagh and Nelder (1989). Modeling is restricted to the correct

specification of the marginal mean function, together with so-called working assump-

tions about the correlation structure of the vector of repeated measures.

Let us now introduce the classical form of GEE. Note that the score equations, to

be solved when computing maximum likelihood estimates under a marginal normal

model yi ∼ N(Xiβ, Vi), are given by

N∑

i=1

X ′
i(A

1/2
i CiA

1/2
i )−1(yi − Xiβ) = 0, (3.12)

in which the marginal covariance matrix Vi has been decomposed in the form

A
1/2
i CiA

1/2
i , with Ai the matrix with the marginal variances on the main diagonal

and zeros elsewhere, and with Ci equal to the marginal correlation matrix. Switching

to the non-Gaussian case, the score equations become

S(β) =

N∑

i=1

∂µi

∂β′ (A
1/2
i CiA

1/2
i )−1(yi − µi) = 0, (3.13)

which are less linear than (3.12) due to the presence of a link function (e.g., the logit

link for binary data), and the mean-variance relationship. Typically the correlation

matrix Ci contains a vector α of unknown parameters which is replaced for practical

purposes by a consistent estimate.

Assuming that the marginal mean µi has been correctly specified as h(µi) = Xiβ,

it can be shown that, under mild regularity conditions, the estimator β̂ obtained from

solving (3.13) is asymptotically normally distributed with mean β and with covariance

matrix

I−1
0 I1I

−1
0 , (3.14)
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where

I0 =

(
N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β′

)
,

I1 =

(
N∑

i=1

∂µi
′

∂β
V −1

i Var(yi)V
−1
i

∂µi

∂β′

)
.

In practice, Var(yi) in (3.14) is replaced by (yi − µi)(yi − µi)
′, which is unbiased

on the sole condition of correct mean specification. One also needs estimates of the

nuisance parameters α. Liang and Zeger (1986) proposed moment-based estimates

for the working correlation. To this end, define deviations

eij =
yij − µij√

v(µij)
.

Some of the more popular choices for the working correlations are independence

(Corr(Yij , Yik) = 0, j 6= k), exchangeability (Corr(Yij , Yik) = α, j 6= k), AR(1)

(Corr(Yij , Yi,j+t) = αt, t = 0, 1, . . . , ni − j), and unstructured (Corr(Yij , Yik) =

αjk, j 6= k). Typically, moment-based estimation methods are used to estimate these

parameters, as part of an integrated iterative estimation procedure. An overdispersion

parameter could be included as well, but we have suppressed it for ease of exposition.

The standard iterative procedure to fit GEE, based on Liang and Zeger (1986), is then

as follows: (1) compute initial estimates for β, using a univariate GLM (i.e., assuming

independence); (2) compute the quantities needed in the estimating equation: µi; (3)

compute Pearson residuals eij ; (4) compute estimates for α; (5) compute Ci(α); (6)

compute Vi(β,α) = A
1/2
i (β)Ci(α)A

1/2
i (β); (7) update the estimate for β:

β(t+1) = β(t) −
[

N∑

i=1

∂µi
′

∂β
V −1

i

∂µi

∂β

]−1 [
N∑

i=1

∂µi
′

∂β
V −1

i (yi − µi)

]
.

Steps (2)–(7) are iterated until convergence.

Weighted Generalized Estimating Equations

As Liang and Zeger (1986) pointed out, GEE-based inferences are valid only under

MCAR. Robins, Rotnitzky and Zhao (1995) proposed a class of weighted estimating

equations to allow for MAR, extending GEE.

The idea is to weight each subject’s contribution in the GEEs by the inverse prob-

ability that a subject drops out at the time he dropped out. This can be calculated,
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for example, as

νidi
≡ P [Di = di] =

di−1∏

k=2

(1 − P [Rik = 0|Ri2 = . . . = Ri,k−1 = 1])

× P [Ridi
= 0|Ri2 = . . . = Ri,di−1 = 1]I{di≤T}. (3.15)

Recall that we partitioned Y i into the unobserved components Y m
i and the observed

components Y o
i . Similarly, we can make the exact same partition of µi into µm

i
and

µo
i
. In the weighted GEE approach, which is proposed to reduce possible bias of β̂,

the score equations to be solved when taking into account the correlation structure

are:

S(β) =
N∑

i=1

1

νidi

∂µi

∂β′

(
A

1/2
i CiA

1/2
i

)−1

(yi − µi) = 0

=

N∑

i=1

n+1∑

d=2

I(Di = d)

νid

∂µi

∂β′ (d)
(
A

1/2
i CiA

1/2
i

)−1

(d) (yi(d) − µi(d)) = 0,

where yi(d) and µi(d) are the first d − 1 elements of yi and µi, respectively. We

define
∂µi

∂β′ (d) and
(
A

1/2
i CiA

1/2
i

)−1

(d) analogously.

3.3.2 Random-effects Models

Unlike for correlated Gaussian outcomes, the parameters of the random-effects and

population-averaged models for correlated binary data describe different types of ef-

fects of the covariates on the response probabilities (Neuhaus, 1992). Therefore,

the choice between population-averaged and random-effects strategies should heav-

ily depend on the scientific goals. Population-averaged models evaluate the success

probability as a function of covariates only. With a subject-specific approach, the re-

sponse is modeled as a function of covariates and parameters, specific to the subject.

In such models, interpretation of fixed-effects parameters is conditional on a constant

level of the random-effects parameter. Population-averaged comparisons, on the other

hand, make no use of within cluster comparisons for cluster varying covariates and are

therefore not useful to assess within-subject effects (Neuhaus, Kalbfleisch and Hauck,

1991). While several non-equivalent random-effects models exist, one of the most

popular ones is the generalized linear mixed model (GLMM, Breslow and Clayton,

1993), implemented in the SAS procedure NLMIXED. We will focus on this one.



32 3. Fundamental Concepts of Missing Data

Generalized Linear Mixed Models

A general formulation of mixed-effects models is as follows. Assume that Yi (possibly

appropriately transformed) satisfies

Yi|bi ∼ Fi(θ, bi), (3.16)

i.e., conditional on bi, Yi follows a pre-specified distribution Fi, possibly depending

on covariates, and parameterized through a vector θ of unknown parameters, common

to all subjects. Further, bi is a q-dimensional vector of subject-specific parameters,

called random effects, assumed to follow a so-called mixing distribution G which may

depend on a vector ψ of unknown parameters, i.e., bi ∼ G(ψ). The bi reflect the

between-unit heterogeneity in the population with respect to the distribution of Yi.

In the presence of random effects, conditional independence is often assumed, under

which the components Yij in Yi are independent, conditional on bi. The distribution

function Fi in (3.16) then becomes a product over the ni independent elements in Yi.

In general, unless a fully Bayesian approach is followed, inference is based on

the marginal model for Yi which is obtained from integrating over the random effects

distribution G(ψ). Let fi(yi|bi) and g(bi) denote the density functions corresponding

to the distributions Fi and G, respectively. We then have that the marginal density

function of Yi equals

fi(yi) =

∫
fi(yi|bi)g(bi)dbi, (3.17)

which depends on the unknown parameters θ and ψ. Assuming independence of

the units, estimates of θ̂ and ψ̂ can be obtained from maximizing the likelihood

function built from (3.17), and inferences immediately follow from classical maximum

likelihood theory.

It is important to realize that the random-effects distribution G is crucial in the

calculation of the marginal model (3.17). One often assumes G to be of a specific

parametric form, such as a (multivariate) normal. Depending on Fi and G, the

integration in (3.17) may or may not be possible analytically. Proposed solutions are

based on Taylor series expansions of fi(yi|bi), or on numerical approximations of the

integral, such as (adaptive) Gaussian quadrature.

Note that there is an important difference with respect to the interpretation of

the fixed effects β. Under the classical linear mixed model (Verbeke and Molen-

berghs, 2000), we have that E(Yi) equals Xiβ, such that the fixed effects have a

subject-specific as well as a population-averaged interpretation. Under non-linear

mixed models, however, this does no longer hold in general. The fixed effects now
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only reflect the conditional effect of covariates, and the marginal effect is not easily

obtained anymore as E(Yi) is given by

E(Yi) =

∫
yi

∫
fi(yi|bi)g(bi)dbidyi.

However, in a biopharmaceutical context, one is often primarily interested in hypoth-

esis testing and the random-effects framework can be used to this effect.

A general formulation of GLMM is as follows. Conditionally on random ef-

fects bi, it assumes that the elements Yij of Yi are independent, with density func-

tion usually based on a classical exponential family formulation, i.e., with mean

E(Yij |bi) = a′(ηij) = µij(bi) and variance Var(Yij |bi) = φa′′(ηij), and where,

apart from a link function h (e.g., the logit link for binary data or the log link for

counts), a linear regression model with parameters β and bi is used for the mean,

i.e., h(µi(bi)) = Xiβ +Zibi. Note that the linear mixed model is a special case, with

identity link function. The random effects bi are again assumed to be sampled from

a (multivariate) normal distribution with mean 0 and covariance matrix D. Usually,

the canonical link function is used, i.e., h = a′−1
, such that ηi = Xiβ + Zibi. When

the link function is chosen to be of the logit form and the random effects are assumed

to be normally distributed, the familiar logistic-linear GLMM follows.

3.3.3 Marginal versus Random-effects Models

It is useful to underscore the difference between both model families, as well as the

nature of this difference. To see the nature of the difference, consider a binary out-

come variable and assume a random-intercept logistic model with linear predictor

logit[P (Yij = 1|tij , bi)] = β0 + bi + β1tij , where tij is the time covariate. The condi-

tional means E(Yij |bi), as functions of tij , are given by

E(Yij |bi) =
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)
, (3.18)

whereas the marginal average evolution is obtained from averaging over the random

effects:

E(Yij) = E[E(Yij |bi)] = E

[
exp(β0 + bi + β1tij)

1 + exp(β0 + bi + β1tij)

]

6= exp(β0 + β1tij)

1 + exp(β0 + β1tij)
. (3.19)

A graphical representation of both (3.18) and (3.19) is given in Figure 3.1. This

implies that the interpretation of the parameters in both types of model is completely

different.
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Figure 3.1: Graphical representation of a random-intercept logistic curve, across a

range of levels of the random intercept, together with the corresponding marginal curve.

A schematic display is given in Figure 3.2. Depending on the model family

(marginal or random-effects), one is led to either marginal or hierarchical inference.

It is important to realize that in the general case the parameter βM resulting from

a marginal model are different from the parameter βRE even when the latter is es-

timated using marginal inference. Some of the confusion surrounding this issue may

result from the equality of these parameters in the very special linear mixed model

case. When a random-effects model is considered, the marginal mean profile can be

derived, but it will generally not produce a simple parametric form. In Figure 3.2

this is indicated by putting the corresponding parameter between quotes.

As an important example, consider our GLMM with logit link function, and where

the only random effects are intercepts bi. It can then be shown that the marginal

mean µi = E(Yij) satisfies h(µi) ≈ Xiβ
M with

βRE

βM
=

√
c2σ2 + 1 > 1, (3.20)

in which c equals 16
√

3/15π. Hence, although the parameters βRE in the generalized

linear mixed model have no marginal interpretation, they do show a strong relation
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model family

marginal model

inference

likelihood

βM

GEE

βM

random-effects model

inference

marginal

βRE

“βM”

hierarchical

(βRE , bi)

“βM”

Figure 3.2: Representation of model families and corresponding inference. A super-

script ‘M’ stands for marginal, ‘RE’ for random effects. A parameter between quotes

indicates that marginal functions but no direct marginal parameters are obtained.

to their marginal counterparts. Note that, as a consequence of this relation, larger

covariate effects are obtained under the random-effects model in comparison to the

marginal model.





4
Likelihood-Based Ignorable

Analyses in Sociology and

Clinical Practice

In Chapter 3, methods to analyze incomplete (non-)Gaussian data were discussed. In

this chapter we will apply the likelihood-based ignorable analyses on two data sets.

Section 4.1 focuses on the analysis of data on marriage satisfaction, being bivariate

longitudinal Gaussian. The results are contrasted with a complete case analysis.

In Section 4.2, the non-Gaussian data on the Hamilton Depression Rating Scale are

analyzed. Those results are compared with a complete case and with a last observation

carried forward analysis. In both cases, the strength of the likelihood-based ignorable

analysis (or direct-likelihood method) is shown. An account of these analyses can be

found in Jansen et al. (2005c) and Jansen et al. (2005a).

4.1 Analysis of the Marriage Satisfaction Data

We analyze the data on marriage satisfaction, obtained from couples at two dis-

tinct moments in time (1990, 1995). The data are of a bivariate longitudinal type.

Moreover, some couples provide incomplete records only, usually because the 1995

37
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follow-up interview has not taken place. This incompleteness is a major challenge,

since oftentimes, researchers opt for the complete case analysis. While simple to per-

form, there is a strong danger for bias, and additionally the statistical efficiency is

reduced, leading to larger standard errors. We will compare the results of such a CC

analysis (restricted to the couples with observations in 1990 as well as in 1995) with

the direct-likelihood (DL) method (data as they are: for some couples both 1990 and

1995 are observed, for others only 1990), which uses all available data. Both concepts

were introduced in Chapter 3. The analyses are performed using the SAS procedure

MIXED, allowing the data to have repeated measures for each partner within a couple,

and specifying a certain covariance structure between those repeated measures.

Only the couples with complete information for ALL covariates were used in the

analyses, to overcome the problem of fitting submodels on different sets of data. First,

we split the data into two separate sets of data, one only containing the information of

the wives, the other with only the information of the husbands. Both data sets were

analyzed separately, ignoring the possible correlation between husband’s and wife’s

responses. Afterwards, the analyses were redone on the partners simultaneously,

allowing us to also model the correlation between the partners’ responses.

All analyses were repeated for the 3 outcomes of interest, namely marital satisfac-

tion, open communication and negative communication.

4.1.1 Separate Analyses for Husband and Wife

To begin with, a separate analysis is performed for husbands and wives, to easily find

gender specific covariates that might influence the outcomes of interest. Since our

interest lies in a lot of covariate effects, and the model would become too extensive if

all effects, together with their interactions with year of questionnaire, are included at

once, we started the analyses with a single covariate selection, including the covariate

itself, year, and the interaction effect, to allow the effect of this covariate to change

over time. After selecting all significant effects from this single covariate approach, we

combined them into a new model, from which we started removing the non-significant

effects again. Finally, when all remaining covariates are (borderline) significant, the

covariance matrix, which is kept unstructured until now, will be reduced. This matrix

contains the covariances between the observations in 1990 and 1995. Therefore, it has

to be a 2 × 2 matrix, for which only a few covariance structures are possible, namely

unstructured (UN), banded main diagonal (UN(1)), compound symmetry (CS), and



4.1. Analysis of the Marriage Satisfaction Data 39

simple (SIMPLE), respectively, as shown below:



 σ2
1 σ12

σ12 σ2
2







σ2
1 0

0 σ2
2







σ2 + σ2
1 σ2

1

σ2
1 σ2 + σ2

1







σ2 0

0 σ2



 (4.1)

Results from the analyses for marital satisfaction, open and negative communica-

tion are shown in Tables 4.1, 4.2 and 4.3, respectively. For the 3 outcomes, we see

that all significant covariate effects in the CC model remain significant in the final

model for the DL analysis, unless they were borderline significant in the CC case, then

they turned out to be non-significant in the DL analysis. In the latter, sometimes

even more covariate effects appeared to be significant, and the significance becomes

stronger for almost all covariates.

Marital satisfaction increases between 1990 and 1995, both for males and females.

For the husbands, education has a borderline significant decreasing effect on marital

satisfaction when only considering the completers. For the wives, year of birth has

a time dependent effect in the CC analysis, while a constant increasing effect in

the DL analysis. There is a positive correlation between the 1990 and 1995 marital

satisfaction of about 0.61, for males as well as for females.

Open communication increases between 1990 and 1995 for the males, but decreases

for the females. For the husbands, in both CC and DL analysis, year of marriage has

a borderline significant decreasing effect on open communication, and year of birth a

time dependent effect over time. In the DL analysis, there is an additional interaction

effect between income and time. For the wives, in both CC and DL analysis, income

has a different effect on open communication in 1990 than in 1995, and year of birth a

constant increasing effect. There is a positive correlation between the 1990 and 1995

open communication of about 0.41 for the males, and about 0.48 for the females.

Negative communication does not change between 1990 and 1995 for the males,

and decreases for the females. For the husbands, there is only a borderline significant

increasing effect of marital status on negative communication, in the CC analysis.

For the wives, in both CC and DL analysis, the number of children and the year

of marriage have a time dependent effect on negative communication. In the DL

analysis, there is an additional interaction effect between income and time. There is

a positive correlation between the 1990 and 1995 negative communication of about

0.61.
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Table 4.1: Marriage Satisfaction Data. Marital satisfaction, husband and wife separately. Remaining (bor-

derline) significant effects. Year equals 1 for 1990, 0 for 1995. Marstat equals 1 if married, 0 if divorced.

HUSBAND WIFE

CC DL CC DL

(294 subj. / 588 obs.) (603 subj. / 893 obs.) (294 subj. / 588 obs.) (608 subj. / 931 obs.)

est s.e. p-value est s.e. p-value est s.e. p-value est s.e. p-value

intercept 6.1826 0.1060 <.0001 6.1982 0.0819 <.0001 6.6832 0.7317 <.0001 4.7177 0.4492 <.0001

year -0.7785 0.0473 <.0001 -0.7870 0.0455 <.0001 -2.1303 0.6116 0.0006 -0.7350 0.0490 <.0001

education -0.0400 0.0230 0.0831 -0.0587 0.0170 0.0006 — — — — — —

birthyear — — — — — — -0.0136 0.0146 0.3524 0.0238 0.0089 0.0078

birthyear × year — — — — — — 0.0270 0.0122 0.0273 — — —

covariance structure UN UN UN UN

covariance matrix



0.6482 0.4652

0.4652 0.9405







0.7204 0.5162

0.5162 0.9881







0.8437 0.5873

0.5873 1.0980







0.8739 0.6290

0.6290 1.2295





−2ℓ 1394.2 2195.8 1509.2 2478.4
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Table 4.2: Marriage Satisfaction Data. Open communication, husband and wife separately. Remaining (bor-

derline) significant effects. Year equals 1 for 1990, 0 for 1995. Marstat equals 1 if married, 0 if divorced.

HUSBAND WIFE

CC DL CC DL

(294 subj. / 588 obs.) (603 subj. / 895 obs.) (294 subj. / 588 obs.) (608 subj. / 934 obs.)

est s.e. p-value est s.e. p-value est s.e. p-value est s.e. p-value

intercept 8.0458 1.2288 <.0001 6.7478 1.0662 <.0001 3.1474 0.7571 <.0001 3.1285 0.5839 <.0001

year -1.6311 0.6665 0.0150 -0.9555 0.7208 0.1860 1.0065 0.3522 0.0046 0.7704 0.2975 0.0100

maryear -0.0371 0.0200 0.0640 -0.0327 0.0156 0.0364 — — — — — —

income — — — 0.0638 0.0470 0.1758 0.1172 0.0488 0.0170 0.1051 0.0412 0.0112

income × year — — — -0.1169 0.0514 0.0238 -0.1721 0.0524 0.0011 -0.1395 0.0444 0.0018

birthyear -0.0035 0.0152 0.8184 0.0074 0.0136 0.5872 0.0347 0.0128 0.0069 0.0364 0.0097 0.0002

birthyear × year 0.0324 0.0140 0.0209 0.0340 0.0127 0.0078 — — — — — —

covariance structure CS CS CS CS

covariance matrix



1.2134 0.5000

0.5000 1.2134







1.2334 0.4957

0.4957 1.2334







1.1212 0.5271

0.5271 1.1212







1.1591 0.5580

0.5580 1.1591





−2ℓ 1727.7 2674.3 1662.5 2478.4
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Table 4.3: Marriage Satisfaction Data. Negative communication, husband and wife separately. Remaining (bor-

derline) significant effects. Year equals 1 for 1990, 0 for 1995. Marstat equals 1 if married, 0 if divorced.

HUSBAND WIFE

CC DL CC DL

(294 subj. / 588 obs.) (608 subj. / 932 obs.) (294 subj. / 588 obs.) (608 subj. / 932 obs.)

est s.e. p-value est s.e. p-value est s.e. p-value est s.e. p-value

intercept 2.4711 0.1307 <.0001 2.7383 0.0401 <.0001 2.6771 1.2950 0.0396 2.4958 1.1744 0.0340

year — — — — — — 3.9312 1.1677 0.0009 3.6186 1.1047 0.0012

children — — — — — — -0.0295 0.0467 0.5289 0.0202 0.0429 0.6385

children × year — — — — — — -0.1113 0.0467 0.0179 -0.1080 0.0426 0.0116

maryear — — — — — — 0.0007 0.0176 0.9675 0.0019 0.0153 0.8990

maryear × year — — — — — — -0.0502 0.0158 0.0016 -0.0402 0.0142 0.0051

marstat 0.2811 0.1443 0.0524 — — — — — — — — —

income — — — — — — — — — 0.0051 0.0372 0.8911

income × year — — — — — — — — — -0.0651 0.0382 0.0897

covariance structure CS CS CS CS

covariance matrix



1.1213 0.6889

0.6889 1.1213







1.1032 0.6706

0.6706 1.1032







1.0313 0.6180

0.6180 1.0313







1.0870 0.6754

0.6754 1.0870





−2ℓ 1596.6 2585.6 1556.0 2702.0
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4.1.2 Joint Analysis for Both Partners

When analyzing both partners at the same time, in one model, we can still allow the

covariates to have a different effect on the outcome for both partners. Therefore not

only the interaction with year, but also with partner will be included into the model,

and even higher order interactions of the form covariate × year × partner will be

considered. Since this results in even more independent variables in the model, we

will explore the variables of interest one by one, together with all relevant interaction

terms. Afterwards, we will again remove the non-significant terms which remained

after combining all significant effects from the single covariate selection, and reduce

the covariance matrix. Since we are now not only interested in possible correlations

between the years of questionnaire, but also in possible correlations between the

partners, the covariance matrices in (4.1) should be extended to 4×4 matrices. These

matrices are of the most general form possible and require in the unstructured case

10 parameters to be estimated. Therefore, we will attempt to reduce the covariance

matrix to the Kronecker product of an unstructured matrix, modeling the covariance

across the multivariate observations (partners) with an additional covariance matrix

(unstructured, compound symmetry, or first-order autoregressive (AR(1))), modeling

the covariance across time. The upper left value in the second matrix is constrained

to be equal to 1, to identify the model. This Kronecker product also results in a

4 × 4 matrix, but with less parameters to estimate. Shown below are the UN@UN

and UN@CS types, respectively (SAS uses @ for the Kronecker product). Since we

only consider 2 measurement occasions, UN@AR(1) is identical to UN@CS.
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σ12 σ2
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To use these structures in the SAS procedure MIXED, it is necessary to specify

two distinct REPEATED effects, e.g. partner and year, both included in the CLASS

statement, and in the same order as they appear in the Kronecker product.
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Table 4.4: Marriage Satisfaction Data. Marital satisfaction, both parents jointly.

Remaining (borderline) significant effects. Parent equals 1 for husband, 0 for wife.

Year equals 1 for 1990, 0 for 1995. Marstat equals 1 if married, 0 if divorced.

COUPLE

CC DL

(294 subj. / 1176 obs.) (647 subj. / 1963 obs.)

est s.e. p-value est s.e. p-value

intercept 6.9913 0.6895 <.0001 5.2928 0.4264 <.0001

partner -0.8399 0.7170 0.2424 1.0007 0.4472 0.0256

year -2.2705 0.6202 0.0003 -0.7562 0.0401 <.0001

partner × year 1.4424 0.6449 0.0261 — — —

education — — — -0.0172 0.0204 0.4004

education × partner — — — -0.0461 0.0225 0.0400

birthyear -0.0197 0.0137 0.1510 0.0138 0.0082 0.0922

birthyear × year 0.0298 0.0123 0.0159 — — —

birthyear × partner 0.0171 0.0145 0.2385 -0.0160 0.0087 0.0656

birthyear × partner

× year
-0.0288 0.0130 0.0276 — — —

covariance structure UN@UN UN@UN

covariance matrix



0.6423 0.2930

0.2930 0.7787



 ⊗



 1 0.6308

0.6308 1.3692







0.7025 0.3374

0.3374 0.8508



 ⊗



 1 0.6368

0.6368 1.3952





−2ℓ 2802.1 4865.4

Results from the analyses for marital satisfaction, open and negative communica-

tion are shown in Tables 4.4, 4.5 and 4.6, respectively.

In general, the same significant covariate effects appear as in the separate analyses

for husband and wife. If a certain covariate was significant for both partners, then this

effect is present in the same way as before, only the main effect, or also the interaction

with year. If, on the other hand, the covariate was only significant for one of both

partners, then now this effect, and a possible interaction with year, is present in

the model, together with its interaction with partner. Some covariates disappear

from the model, but this was restricted to those that were borderline significant when

analyzing the partners separately. So we can say that both ways of analyses give

comparable results. The simultaneous modeling of the partners, however, is easier to
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Table 4.5: Marriage Satisfaction Data. Open communication, both parents jointly.

Remaining (borderline) significant effects. Parent equals 1 for husband, 0 for wife.

Year equals 1 for 1990, 0 for 1995. Marstat equals 1 if married, 0 if divorced.

COUPLE

CC DL

(294 subj. / 1176 obs.) (619 subj. / 1862 obs.)

est s.e. p-value est s.e. p-value

intercept 3.2290 0.6807 <.0001 4.4062 0.9370 <.0001

partner 1.5998 0.6856 0.0203 1.9449 1.0121 0.0551

year 0.7856 0.3054 0.0106 -0.4031 0.5614 0.4732

maryear — — — -0.0014 0.0136 0.9175

maryear × partner — — — -0.0321 0.0139 0.0211

income 0.0886 0.0406 0.0296 0.0698 0.0353 0.0481

income × year -0.1360 0.0455 0.0029 -0.1145 0.0391 0.0034

birthyear 0.0368 0.0119 0.0021 0.0168 0.0107 0.1148

birthyear × year — — — 0.0209 0.0096 0.0296

birthyear × partner -0.0417 0.0139 0.0028 — — —

covariance structure UN@CS UN@CS

covariance matrix



1.2199 0.3553

0.3553 1.0842



 ⊗



 1 0.3983

0.3983 1







1.2644 0.3659

0.3659 1.1468



 ⊗



 1 0.4039

0.4039 1





−2ℓ 3341.2 5427.0

conduct (no separation of the data for males and females necessary). It also allows

us to have an idea about the baseline outcomes, i.e. the outcome without taking any

covariate information into account, for husband and wife, both in 1990 and 1995, and

to decide whether they significantly differ from each other. Finally, we get a handle

on the association between them.

We can draw the following conclusions for the 3 outcomes of interest. The marital

satisfaction for wives is lower than that of the husband in 1990, and both increase in

1995. In the DL analysis, this increase is similar for both partners, while in the CC

analysis, the increase for wives is much higher than for husbands. The open commu-

nication is higher for the husband than for the wife. The evolution over time is the

same for both partners, but is of a decreasing trend in the CC analysis, while of an

increasing trend in the DL analysis. Finally, the conclusions for the last outcome of
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Table 4.6: Marriage Satisfaction Data. Negative communication, both parents jointly.

Remaining (borderline) significant effects. Parent equals 1 for husband, 0 for wife.

Year equals 1 for 1990, 0 for 1995. Marstat equals 1 if married, 0 if divorced.

COUPLE

CC DL

(294 subj. / 1176 obs.) (647 subj. / 1965 obs.)

est s.e. p-value est s.e. p-value

intercept 2.8189 1.2762 0.0280 2.5777 1.0959 0.0190

partner 1.1281 1.4064 0.4231 0.9572 1.2173 0.4319

year 3.7888 1.2004 0.0018 2.6618 1.0481 0.0115

partner × year -3.5734 1.2976 0.0063 -3.0844 1.1604 0.0082

children -0.0101 0.0396 0.7988 0.0106 0.0369 0.7736

children × year -0.0879 0.0413 0.0337 -0.0880 0.0376 0.0195

maryear 0.0004 0.0172 0.9825 0.0021 0.0149 0.8854

maryear × year -0.0490 0.0163 0.0027 -0.0335 0.0142 0.0185

maryear × partner -0.0202 0.0190 0.2884 -0.0161 0.0167 0.3351

maryear × partner

× year
0.0495 0.0178 0.0056 0.0428 0.0159 0.0073

education — — — -0.0118 0.0220 0.5922

education × year — — — 0.0567 0.0253 0.0252

marstat -0.1951 0.1337 0.1492 — — —

marstat × partner 0.4431 0.1793 0.0140 — — —

covariance structure UN@CS UN@CS

covariance matrix



1.0634 0.4269

0.4269 0.9943



 ⊗



 1 0.5549

0.5549 1







1.1741 0.4830

0.4830 1.0814



 ⊗



 1 0.5705

0.5705 1





−2ℓ 3042.5 5337.7

interest (negative communication) are much more complicated. In the CC analysis,

negative communication decreases over time, but only marginally so for the husband,

and much more for the wife, while in the DL analysis, negative communication in-

creases a bit for males, and decreases for females. So in summary, we can say that

negative communication approximately stays the same for the husband, and decreases

considerably for the wife. In both ways of analysis, the wife has a higher value than

the husband in 1990, but a lower in 1995.
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4.1.3 Comparison With Literature Results

Importantly, we have to note that our conclusions differ somewhat from those often

found in the literature. For example, a higher score for males on positive communi-

cation is somewhat counterintuitive (Canary, Stafford and Semic, 2002; Rubin, 1983;

Wood, 1993; Weigel and Ballard-Reisch, 2001), as well as an increase in marital satis-

faction between 1990 and 1995 (Vaillant and Vaillant, 1993; Van Laningham, Johnson

and Amato, 2001). Also, in the literature there is evidence that individuals with a

lower level of education or less material resources report lower marital satisfaction

(Lewis and Spanier, 1979). Johnson, Amoloza and Booth (1992) suggest that marital

satisfaction is lower in longer-term marriages than in those of short duration. Individ-

uals who married at a young age report a lower marital quality (Holman, 2001). In a

similar vein, individuals confronted with the divorce of their parents have a higher risk

to develop less satisfying and unstable marriages themselves (Amato, 1996). Besides,

the more children present, the higher the parental demands are and the more likely

this results in negative marital outcomes (Lavee, Sharlin and Katz, 1996; Rogers and

White, 1998).

Of course, this is at the heart of our proposed methodology, which not only takes

the multivariate and longitudinal nature of the data into account, it also properly

incorporates information from incomplete records. These results underscore that the

traditional modes of analysis, in particular CC, may be too restrictive and even lead

to false intuition, since for it to be valid the completers have to be a perfectly random

subset of the entire set of data. In contrast, our analysis is valid under the much more

flexible MAR assumption, which merely assumes that there is sufficient information

on the missingness process in the (partially) observed data. Thus, it is better to use

linear mixed models in combination with the assumption of MAR. Moreover, such

analyses can be conducted routinely using standard statistical software such as the

SAS procedure MIXED.

Since the covariates in our models are relatively highly correlated, one might be

inclined to center these variables prior to including them into the models. However,

duplication of our analyses with centered covariates led to the same results.

4.2 Analysis of the Hamilton Depression Rating

Scale Data

Let us now analyze the two clinical trials on the Hamilton Depression Rating Scale,

introduced in Section 2.2. The primary null hypothesis (zero difference between the



48 4. Likelihood-Based Ignorable Analyses in Sociology and Clinical Practice

treatments and placebo in terms of proportion of the HAMD17 total score above the

level of 7) will be tested using both marginal models (GEE and WGEE) and random-

effects models (GLMM). According to the study protocol, the models will include

the fixed categorical effects of treatment, visit, and treatment-by-visit interaction, as

well as the continuous, fixed covariates of baseline score and baseline score-by-visit

interaction. A random intercept will be included when considering the random-effects

models. Analyses will be implemented using the SAS procedures GENMOD and

NLMIXED.

Missing data will be handled in three different ways: (1) imputation using LOCF,

(2) deletion of incomplete profiles, leading to a CC analysis, and (3) analyzing the data

as they are, consistent with ignorability (for GLMM and WGEE). A fully longitudi-

nal approach (View 1, see Section 3.1.2) is considered in Section 4.2.1. Section 4.2.2

compares the results of the marginal and random-effects models. Section 4.2.3 fo-

cuses on Views 2 (treatment effect at last planned occasion) and 3 (last measurement

obtained), respectively.

4.2.1 View 1: Longitudinal Analysis

Marginal Models

First, let us consider the GEE approach. Within the SAS procedure GENMOD the

exchangeable working correlation matrix is used. Parameter estimates, together with

empirically-corrected as well as model-based standard errors and p-values, are given

in Tables 4.7 and 4.8 for Studies 1 and 2, respectively.

In both studies, approximately the same conclusions are reached for LOCF, CC,

and the analysis of the data as they are (subsequently abbreviated as MAR). There

are no significant treatment main effects, while a placebo group change over time

is observed in the first study only. Since there is no interaction between visit and

treatment, the time evolution in the active groups is the same as in the placebo

group. The main effect of baseline score is highly significant in the second study, as

well as its interaction with visit from the sixth visit onwards. In contrast, the first

study shows no effects of baseline at all. In line with expectation, the empirically-

corrected standard errors are larger than the model-based ones, except for the effect

of visit (in both studies), and some other effects in the second study.

On the other hand, WGEE is applied to perform an analysis that is correct un-

der MAR, not only under MCAR as in ordinary GEE. This procedure is a bit more

involved in terms of fitting the model to the data. We will outline the main steps. To

compute the necessary weights, we first fit the dropout model, using a logistic regres-
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Table 4.7: Hamilton Depression Rating Scale Data. Study 1, GEE and WGEE: parameter estimates, standard errors

(model-based, empirically-corrected) and p-values (model-based, empirically-corrected) for each approach.

CC (GEE) LOCF (GEE) MAR (GEE) MAR (WGEE)

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept 2.11 (1.87; 1.09) (0.260; 0.0528) 2.15 (1.90; 1.17) (0.258; 0.0659) 2.04 (1.89; 1.10) (0.281; 0.0638) 3.75 (1.33; 1.84) (0.0048; 0.0413)

trt A1 -0.36 (1.19; 1.28) (0.762; 0.779) -0.39 (1.18; 1.32) (0.743; 0.770) -0.46 (1.19; 1.30) (0.701; 0.727) -0.12 (0.70; 1.31) (0.870; 0.930)

trt B -0.059 (1.26; 1.44) (0.963; 0.967) -0.16 (1.24; 1.43) (0.899; 0.912) -0.20 (1.25; 1.42) (0.874; 0.889) 0.17 (0.75; 1.35) (0.823; 0.901)

visit 5 -2.43 (1.86; 1.27) (0.190; 0.0558) -3.20 (1.82; 1.31) (0.0791; 0.0145) -3.16 (1.84; 1.30) (0.0856; 0.0150) -4.94 (1.29; 2.07) (0.0001; 0.0168)

visit 6 -4.30 (1.84; 1.45) (0.0194; 0.0031) -4.80 (1.83; 1.48) (0.0086; 0.0012) -4.66 (1.85; 1.49) (0.0119; 0.0018) -5.98 (1.30; 2.20) (<.0001; 0.0066)

visit 7 -3.84 (1.80; 1.29) (0.0327; 0.0029) -4.25 (1.78; 1.31) (0.0171; 0.0012) -4.05 (1.81; 1.31) (0.0247; 0.0019) -4.99 (1.28; 1.77) (<.0001; 0.0049)

visit 8 -4.64 (1.80; 1.40) (0.0100; 0.0009) -5.15 (1.79; 1.42) (0.0040; 0.0003) -4.98 (1.82; 1.44) (0.0060; 0.0005) -5.90 (1.28; 2.13) (<.0001; 0.0056)

visit 9 -4.28 (1.79; 1.44) (0.0167; 0.0029) -4.55 (1.78; 1.47) (0.0103; 0.0019) -4.33 (1.80; 1.50) (0.0165; 0.0038) -4.72 (1.28; 2.28) (0.0002; 0.0389)

visit 10 -4.92 (1.79; 1.29) (0.0059; 0.0001) -4.71 (1.77; 1.31) (0.0077; 0.0003) -4.58 (1.80; 1.33) (0.0108; 0.0006) -4.87 (1.27; 1.99) (0.0001; 0.0141)

visit 11 -4.74 (1.79; 1.41) (0.0080; 0.0008) -4.58 (1.77; 1.40) (0.0095; 0.0011) -4.75 (1.82; 1.46) (0.0091; 0.0012) -5.79 (1.28; 2.03) (<.0001; 0.0043)

visit 5 * trt A1 -0.55 (1.19; 0.85) (0.643; 0.517) -0.11 (1.12; 0.96) (0.921; 0.908) -0.15 (1.14; 0.97) (0.899; 0.881) -0.84 (0.68; 1.00) (0.218; 0.402)

visit 5 * trt B -0.27 (1.26; 0.94) (0.829; 0.773) -0.012 (1.18; 1.04) (0.992; 0.991) -0.020 (1.20; 1.06) (0.987; 0.985) -1.37 (0.72; 1.19) (0.0574; 0.248)

visit 6 * trt A1 0.29 (1.15; 1.31) (0.801; 0.825) 0.51 (1.11; 1.31) (0.644; 0.695) 0.54 (1.14; 1.36) (0.634; 0.690) 0.27 (0.67; 1.40) (0.691; 0.848)

visit 6 * trt B 0.15 (1.21; 1.40) (0.902; 0.915) 0.26 (1.16; 1.36) (0.821; 0.847) 0.38 (1.19; 1.42) (0.751; 0.790) -0.11 (0.72; 1.46) (0.874; 0.938)

visit 7 * trt A1 0.47 (1.13; 1.15) (0.680; 0.685) 0.48 (1.10; 1.17) (0.662; 0.682) 0.52 (1.12; 1.22) (0.646; 0.672) -0.14 (0.67; 1.26) (0.831; 0.910)

visit 7 * trt B 0.39 (1.19; 1.23) (0.745; 0.753) 0.41 (1.15; 1.23) (0.724; 0.742) 0.53 (1.18; 1.28) (0.656; 0.681) -0.14 (0.72; 1.29) (0.844; 0.913)

visit 8 * trt A1 0.24 (1.13; 1.32) (0.834; 0.857) 0.57 (1.10; 1.30) (0.601; 0.660) 0.59 (1.13; 1.37) (0.602; 0.670) 0.03 (0.67; 1.38) (0.962; 0.982)

visit 8 * trt B 0.24 (1.19; 1.51) (0.841; 0.874) 0.48 (1.15; 1.45) (0.677; 0.741) 0.57 (1.18; 1.54) (0.627; 0.709) -0.28 (0.72; 1.49) (0.692; 0.849)

visit 9 * trt A1 0.37 (1.13; 1.34) (0.742; 0.783) 0.47 (1.09; 1.32) (0.668; 0.722) 0.46 (1.12; 1.40) (0.684; 0.744) -0.12 (0.67; 1.42) (0.859; 0.934)

visit 9 * trt B 0.21 (1.19; 1.48) (0.861; 0.888) 0.23 (1.15; 1.42) (0.842; 0.873) 0.26 (1.18; 1.51) (0.825; 0.863) -0.51 (0.72; 1.52) (0.478; 0.737)

visit 10 * trt A1 0.11 (1.12; 1.19) (0.922; 0.926) 0.30 (1.09; 1.21) (0.783; 0.804) 0.31 (1.13; 1.29) (0.783; 0.810) -0.49 (0.67; 1.35) (0.462; 0.715)

visit 10 * trt B 0.28 (1.18; 1.32) (0.811; 0.830) 0.32 (1.15; 1.31) (0.782; 0.810) 0.43 (1.18; 1.39) (0.718; 0.759) -0.50 (0.72; 1.42) (0.486; 0.724)

visit 11 * trt A1 -0.70 (1.13; 1.17) (0.535; 0.549) -0.27 (1.09; 1.21) (0.801; 0.820) -0.53 (1.14; 1.27) (0.639; 0.674) -1.31 (0.67; 1.35) (0.0528; 0.334)

visit 11 * trt B -0.052 (1.18; 1.35) (0.965; 0.969) 0.071 (1.14; 1.34) (0.951; 0.958) 0.089 (1.19; 1.43) (0.941; 0.950) -0.76 (0.72; 1.43) (0.291; 0.593)

baseline 0.054 (0.096; 0.10) (0.575; 0.598) 0.077 (0.097; 0.11) (0.427; 0.472) 0.085 (0.097; 0.10) (0.380; 0.407) 0.039 (0.069; 0.15) (0.579; 0.795)

baseline * visit 5 0.10 (0.096; 0.076) (0.284; 0.176) 0.12 (0.095; 0.082) (0.193; 0.133) 0.12 (0.096; 0.082) (0.210; 0.142) 0.24 (0.068; 0.13) (0.0006; 0.073)

baseline * visit 6 0.17 (0.096; 0.11) (0.0830; 0.129) 0.18 (0.095; 0.11) (0.0537; 0.104) 0.17 (0.097; 0.12) (0.0815; 0.149) 0.24 (0.070; 0.17) (0.0005; 0.145)

baseline * visit 7 0.10 (0.092; 0.089) (0.268; 0.249) 0.12 (0.092; 0.093) (0.183; 0.188) 0.10 (0.093; 0.095) (0.281; 0.287) 0.16 (0.067; 0.13) (0.0159; 0.221)

baseline * visit 8 0.15 (0.093; 0.11) (0.105; 0.179) 0.16 (0.092; 0.12) (0.0749; 0.154) 0.14 (0.094; 0.12) (0.127; 0.234) 0.21 (0.068; 0.17) (0.0022; 0.217)

baseline * visit 9 0.11 (0.092; 0.12) (0.213; 0.325) 0.13 (0.091; 0.12) (0.158; 0.275) 0.10 (0.093; 0.13) (0.263; 0.404) 0.13 (0.067; 0.18) (0.0575; 0.476)

baseline * visit 10 0.13 (0.091; 0.096) (0.169; 0.189) 0.11 (0.090; 0.10) (0.228; 0.280) 0.083 (0.093; 0.11) (0.371; 0.434) 0.10 (0.067; 0.15) (0.122; 0.504)

baseline * visit 11 0.13 (0.092; 0.099) (0.163; 0.197) 0.11 (0.090; 0.10) (0.222; 0.288) 0.11 (0.094; 0.11) (0.253; 0.318) 0.16 (0.067; 0.15) (0.0181; 0.293)

ℓ -423.1 -533.0 -465.4 -2042.0
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Table 4.8: Hamilton Depression Rating Scale Data. Study 2, GEE and WGEE: parameter estimates, standard errors

(model-based, empirically-corrected) and p-values (model-based, empirically-corrected) for each approach.

CC (GEE) LOCF (GEE) MAR (GEE) MAR (WGEE)

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept -1.39 (0.84;0.85) (0.0978;0.102) -1.25 (0.73;0.74) (0.0848;0.0905) -1.36 (0.74;0.73) (0.0641;0.0622) -1.00 (0.41;0.76) (0.0157;0.190)

trt A1 -0.20 (0.60;0.63) (0.742;0.754) -0.26 (0.53;0.59) (0.628;0.661) -0.33 (0.54;0.58) (0.544;0.573) -0.72 (0.33;0.66) (0.0311;0.275)

trt A2 0.50 (0.67;0.70) (0.459;0.476) 0.20 (0.57;0.61) (0.722;0.737) 0.20 (0.58;0.62) (0.730;0.744) -0.46 (0.34;0.70) (0.181;0.513)

trt B 0.28 (0.62;0.66) (0.656;0.675) 0.44 (0.57;0.61) (0.438;0.467) 0.41 (0.58;0.61) (0.479;0.504) 0.19 (0.35;0.65) (0.578;0.766)

visit 5 -1.04 (0.87;0.74) (0.230;0.161) -0.50 (0.70;0.67) (0.475;0.456) -0.53 (0.75;0.70) (0.480;0.454) -0.24 (0.41;0.92) (0.555;0.791)

visit 6 -0.13 (0.82;0.75) (0.871;0.859) -0.080 (0.69;0.66) (0.907;0.905) -0.078 (0.73;0.68) (0.915;0.909) -0.037 (0.41;0.72) (0.929;0.959)

visit 7 -0.46 (0.83;0.91) (0.581;0.615) -0.32 (0.69;0.78) (0.644;0.684) -0.41 (0.76;0.87) (0.588;0.633) -0.45 (0.44;0.88) (0.306;0.608)

visit 8 -0.35 (0.83;0.93) (0.673;0.707) -0.20 (0.69;0.79) (0.770;0.800) -0.19 (0.77;0.88) (0.807;0.830) -0.26 (0.45;0.92) (0.557;0.776)

visit 5 * trt A1 0.10 (0.59;0.65) (0.866;0.880) 0.086 (0.50;0.60) (0.862;0.885) 0.19 (0.53;0.62) (0.715;0.755) 0.36 (0.32;0.78) (0.260;0.638)

visit 5 * trt A2 -0.49 (0.65;0.64) (0.454;0.450) -0.11 (0.54;0.56) (0.833;0.840) -0.026 (0.57;0.59) (0.964;0.965) 0.33 (0.34;0.75) (0.325;0.662)

visit 5 * trt B 0.24 (0.61;0.55) (0.689;0.659) -0.044 (0.53;0.52) (0.934;0.932) 0.047 (0.56;0.54) (0.934;0.931) 0.012 (0.33;0.71) (0.971;0.986)

visit 6 * trt A1 0.14 (0.57;0.62) (0.803;0.819) 0.30 (0.49;0.58) (0.536;0.602) 0.46 (0.52;0.60) (0.373;0.440) 0.99 (0.32;0.71) (0.0021;0.164)

visit 6 * trt A2 -0.40 (0.63;0.69) (0.521;0.560) 0.040 (0.52;0.59) (0.939;0.946) 0.10 (0.56;0.61) (0.860;0.873) 0.72 (0.33;0.68) (0.0318;0.295)

visit 6 * trt B 0.39 (0.59;0.66) (0.505;0.555) 0.17 (0.52;0.60) (0.744;0.775) 0.27 (0.55;0.62) (0.630;0.670) 0.38 (0.33;0.70) (0.251;0.590)

visit 7 * trt A1 -0.079 (0.57;0.66) (0.889;0.905) -0.13 (0.49;0.60) (0.795;0.834) -0.15 (0.53;0.64) (0.778;0.816) 0.23 (0.33;0.72) (0.482;0.747)

visit 7 * trt A2 -0.011 (0.63;0.70) (0.986;0.987) 0.093 (0.52;0.62) (0.858;0.879) 0.12 (0.57;0.66) (0.839;0.860) 0.66 (0.35;0.72) (0.0595;0.360)

visit 7 * trt B 0.63 (0.59;0.69) (0.280;0.356) 0.19 (0.52;0.62) (0.719;0.764) 0.33 (0.56;0.68) (0.563;0.630) 0.50 (0.34;0.74) (0.144;0.496)

visit 8 * trt A1 -0.54 (0.57;0.68) (0.342;0.424) -0.41 (0.49;0.61) (0.394;0.497) -0.43 (0.54;0.66) (0.429;0.517) -0.11 (0.34;0.75) (0.737;0.880)

visit 8 * trt A2 -0.40 (0.63;0.71) (0.529;0.578) -0.20 (0.52;0.62) (0.702;0.747) -0.10 (0.58;0.66) (0.858;0.876) 0.44 (0.35;0.73) (0.211;0.549)

visit 8 * trt B 0.27 (0.58;0.65) (0.644;0.677) -0.073 (0.52;0.59) (0.889;0.903) 0.095 (0.57;0.64) (0.868;0.882) 0.34 (0.35;0.71) (0.322;0.629)

baseline 0.21 (0.051;0.049) (<.0001;<.0001) 0.23 (0.044;0.042) (<.0001;<.0001) 0.23 (0.045;0.042) (<.0001;<.0001) 0.26 (0.025;0.046) (<.0001;<.0001)

baseline * visit 5 -0.0019 (0.052;0.046) (0.971;0.967) -0.043 (0.042;0.041) (0.309;0.297) -0.052 (0.045;0.042) (0.244;0.219) -0.10 (0.025;0.052) (<.0001;0.0610)

baseline * visit 6 -0.11 (0.049;0.044) (0.0256;0.0127) -0.12 (0.041;0.039) (0.0047;0.0025) -0.13 (0.044;0.039) (0.0026;0.0007) -0.16 (0.025;0.042) (<.0001;<.0001)

baseline * visit 7 -0.11 (0.050;0.049) (0.0337;0.0327) -0.10 (0.041;0.042) (0.0132;0.0149) -0.11 (0.045;0.045) (0.0124;0.0124) -0.14 (0.026;0.047) (<.0001;0.0033)

baseline * visit 8 -0.11 (0.050;0.050) (0.0246;0.0242) -0.11 (0.041;0.042) (0.0082;0.0094) -0.14 (0.046;0.046) (0.0031;0.0030) -0.16 (0.027;0.049) (<.0001;0.0008)

ℓ -591.2 -848.2 -707.1 -2485.5
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sion for the probability that dropout occurs at a given time. The response value at the

previous occasion and treatment are included as covariates. Next, the predicted prob-

abilities of dropout are translated into weights, defined at the individual measurement

level, as in (3.15). After these preparations, we merely need to include the weights by

means of the scwgt statement within the GENMOD procedure. Together with the

use of the repeated statement, WGEE follows. Also here, we use the exchangeable

working correlation matrix. Parameter estimates, together with empirically-corrected

as well as model-based standard errors and p-values, are given in the last columns of

Tables 4.7 and 4.8 for Studies 1 and 2, respectively.

The results under WGEE are similar but not identical to the ones in the classical

GEE setting. In some cases, the evidence, while not changing from significant to

nonsignificant or vice versa, change in strength. This is the case, for example, for the

baseline score-by-visit interaction for the second study.

Random-effects Models

To fit generalized linear mixed models, we use the SAS procedure NLMIXED, which

allows fitting a wide class of linear, generalized linear, and non-linear mixed mod-

els. It relies on numerical integration. Not only different integral approximations

are available, the principal ones being (non-)adaptive Gaussian quadrature, it also

includes a number of optimization algorithms. The difference between non-adaptive

and adaptive Gaussian quadrature is that for the first procedure the quadrature points

are centered at zero for each of the random-effects and the current random-effects co-

variance matrix is used as the scale matrix, while for the latter the quadrature points

will be appropriately centered and scaled, such that more quadrature points lie in

the region of interest (see Figure 4.1). We will use both adaptive and non-adaptive

quadrature, with several choices for the number of quadrature points, to check the

stability of the results over a variety of choices for these numerical integrations.

Precisely, we initiate the model fitting using non-adaptive Gaussian quadrature,

together with the quasi-Newton optimization algorithm. The number of quadrature

points is left to be determined by the procedure, and all starting values are set equal

to 0.5 (step 0). Using the resulting parameter estimates, we keep these choices but

hold the number of quadrature points fixed at the values 2, 3, 5, 10, 20 and 50 (step 1).

Subsequently, we switch to adaptive Gaussian quadrature (step 2). Finally, the quasi-

Newton optimization is replaced by the Newton-Raphson optimization (step 3). Re-

sults for Study 1 are shown in Tables 4.9 to 4.11. While the differences between these

choices are purely numerical, we do notice differences between the results, illustrating
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Figure 4.1: Graphical illustration of non-adaptive Gaussian (left window) and adaptive

Gaussian (right window) quadrature of order Q = 10. The black triangles indicate

the position of the quadrature points, while the rectangles indicate the contribution of

each point to the integral.

that a numerical sensitivity analysis matters. The parameter estimates tend to sta-

bilize with increasing number of quadrature points. However, non-adaptive Gaussian

quadrature needs obviously more quadrature points than adaptive Gaussian quadra-

ture.

Focusing on the results for 50 quadrature points, we observe that the parameter

estimates for step 1 and step 2 are the same. On the other hand, parameter estimates

for step 3 are different (order of 10−3, visible in p-values). In spite of the differences

in parameter estimates, is the noteworthy fact that the likelihood is the same in all

steps, due to a flat likelihood. This was confirmed by running all steps again, but

now using the parameter estimates of step 3 as starting values, at which point the

parameter estimates all coincide. Thus, it may happen that the optimization routine

has only seemingly converged.

The final conclusions reached here (see Tables 4.12 and 4.13), are very similar to

the ones reached with the marginal models, at least in terms of hypothesis testing.

An important exception is that there are now differential conclusions for the baseline
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Table 4.9: Hamilton Depression Rating Scale Data. Study 1, MAR: GLMM using proc NLMIXED with

non-adaptive Gaussian quadrature, quasi-Newton optimization and different number of quadrature points.

Q = 2 Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept 3.30 (1.94) 0.0904 3.50 (2.35) 0.137 3.03 (2.54) 0.234 3.10 (2.56) 0.227 3.37 (2.67) 0.209 3.39 (2.65) 0.203

trt A1 -0.90 (1.29) 0.485 -0.40 (1.27) 0.755 -0.59 (1.44) 0.683 -0.88 (1.41) 0.533 -0.56 (1.53) 0.713 -0.58 (1.51) 0.702

trt B -0.39 (1.35) 0.775 0.28 (1.32) 0.835 -0.57 (1.47) 0.697 -0.17 (1.47) 0.910 -0.20 (1.60) 0.901 -0.16 (1.59) 0.920

visit 5 -3.89 (2.35) 0.0990 -4.80 (2.73) 0.0800 -4.90 (2.84) 0.0862 -4.72 (2.84) 0.0987 -4.65 (2.85) 0.104 -4.65 (2.85) 0.105

visit 6 -6.06 (2.46) 0.0147 -7.40 (2.75) 0.0077 -7.56 (2.83) 0.0083 -7.29 (2.97) 0.0150 -7.26 (2.94) 0.0145 -7.26 (2.94) 0.0146

visit 7 -5.77 (2.37) 0.0157 -6.64 (2.64) 0.0128 -6.66 (2.73) 0.0159 -6.53 (2.87) 0.0240 -6.52 (2.85) 0.0232 -6.52 (2.85) 0.0232

visit 8 -7.56 (2.42) 0.0022 -8.44 (2.72) 0.0023 -8.46 (2.82) 0.0031 -8.52 (2.95) 0.0044 -8.46 (2.93) 0.0044 -8.46 (2.93) 0.0044

visit 9 -6.58 (2.39) 0.0065 -7.30 (2.65) 0.0065 -7.30 (2.75) 0.0086 -7.32 (2.89) 0.0123 -7.29 (2.87) 0.0120 -7.29 (2.87) 0.0119

visit 10 -7.52 (2.39) 0.0020 -7.99 (2.65) 0.0030 -7.89 (2.79) 0.0052 -8.21 (2.89) 0.0050 -8.19 (2.89) 0.0052 -8.19 (2.89) 0.0052

visit 11 -7.43 (2.47) 0.0030 -8.35 (2.70) 0.0024 -8.13 (2.84) 0.0048 -8.47 (2.96) 0.0047 -8.48 (2.97) 0.0048 -8.48 (2.97) 0.0048

visit 5 * trt A1 0.43 (1.58) 0.787 0.26 (1.58) 0.871 0.35 (1.65) 0.833 0.30 (1.70) 0.858 0.26 (1.70) 0.879 0.27 (1.70) 0.874

visit 5 * trt B -0.072 (1.60) 0.964 -0.23 (1.59) 0.887 -0.055 (1.67) 0.974 -0.20 (1.69) 0.908 -0.21 (1.71) 0.900 -0.21 (1.71) 0.902

visit 6 * trt A1 0.93 (1.55) 0.552 0.75 (1.54) 0.626 0.73 (1.64) 0.657 0.72 (1.68) 0.669 0.62 (1.67) 0.711 0.63 (1.68) 0.708

visit 6 * trt B 0.82 (1.54) 0.598 0.63 (1.53) 0.681 0.61 (1.63) 0.708 0.56 (1.66) 0.736 0.50 (1.66) 0.766 0.50 (1.67) 0.764

visit 7 * trt A1 0.89 (1.54) 0.564 0.53 (1.52) 0.727 0.64 (1.66) 0.698 0.50 (1.68) 0.768 0.50 (1.68) 0.766 0.50 (1.69) 0.767

visit 7 * trt B 0.48 (1.55) 0.757 0.17 (1.53) 0.912 0.18 (1.63) 0.912 0.12 (1.67) 0.942 0.065 (1.66) 0.969 0.070 (1.67) 0.967

visit 8 * trt A1 -0.42 (1.54) 0.788 -0.72 (1.51) 0.635 -0.63 (1.62) 0.700 -0.66 (1.61) 0.681 -0.63 (1.62) 0.699 -0.63 (1.62) 0.698

visit 8 * trt B 0.36 (1.58) 0.819 -0.10 (1.54) 0.947 0.024 (1.68) 0.989 -0.18 (1.70) 0.915 -0.15 (1.70) 0.929 -0.15 (1.71) 0.930

visit 9 * trt A1 0.49 (1.49) 0.742 0.35 (1.45) 0.808 0.13 (1.58) 0.933 0.23 (1.58) 0.886 0.30 (1.58) 0.849 0.30 (1.58) 0.850

visit 9 * trt B 0.44 (1.52) 0.774 0.27 (1.50) 0.855 0.29 (1.61) 0.855 0.33 (1.61) 0.840 0.39 (1.61) 0.810 0.38 (1.61) 0.814

visit 10 * trt A1 0.41 (1.49) 0.784 0.31 (1.45) 0.833 0.049 (1.59) 0.976 0.13 (1.58) 0.933 0.23 (1.58) 0.885 0.23 (1.59) 0.885

visit 10 * trt B 0.62 (1.49) 0.680 0.55 (1.46) 0.707 0.30 (1.60) 0.852 0.42 (1.58) 0.793 0.48 (1.59) 0.761 0.48 (1.59) 0.764

visit 11 * trt A1 -1.15 (1.52) 0.451 -1.26 (1.48) 0.396 -1.69 (1.66) 0.310 -1.60 (1.62) 0.324 -1.52 (1.64) 0.354 -1.53 (1.64) 0.354

visit 11 * trt B 0.25 (1.49) 0.868 0.24 (1.45) 0.871 -0.070 (1.62) 0.966 0.011 (1.59) 0.994 0.096 (1.60) 0.952 0.100 (1.61) 0.951

baseline 0.081 (0.10) 0.414 0.089 (0.12) 0.447 0.17 (0.12) 0.158 0.16 (0.13) 0.199 0.14 (0.13) 0.298 0.14 (0.13) 0.295

baseline * visit 5 0.16 (0.12) 0.210 0.21 (0.14) 0.143 0.20 (0.14) 0.160 0.19 (0.14) 0.180 0.19 (0.14) 0.192 0.19 (0.14) 0.193

baseline * visit 6 0.23 (0.13) 0.0810 0.30 (0.14) 0.0362 0.30 (0.14) 0.0344 0.29 (0.15) 0.0568 0.28 (0.15) 0.0588 0.28 (0.15) 0.0597

baseline * visit 7 0.16 (0.12) 0.190 0.20 (0.13) 0.136 0.20 (0.13) 0.138 0.19 (0.14) 0.183 0.19 (0.14) 0.189 0.19 (0.14) 0.190

baseline * visit 8 0.24 (0.13) 0.0548 0.28 (0.14) 0.0415 0.28 (0.14) 0.0405 0.28 (0.15) 0.0559 0.28 (0.14) 0.0584 0.28 (0.15) 0.0591

baseline * visit 9 0.19 (0.12) 0.132 0.22 (0.13) 0.108 0.21 (0.13) 0.110 0.21 (0.14) 0.139 0.21 (0.14) 0.144 0.21 (0.14) 0.145

baseline * visit 10 0.17 (0.12) 0.152 0.18 (0.13) 0.162 0.17 (0.13) 0.196 0.19 (0.14) 0.182 0.19 (0.14) 0.188 0.19 (0.14) 0.191

baseline * visit 11 0.19 (0.12) 0.121 0.23 (0.13) 0.0842 0.21 (0.14) 0.116 0.24 (0.14) 0.105 0.23 (0.14) 0.109 0.23 (0.15) 0.111

σ 1.83 (0.15) <.0001 1.99 (0.17) <.0001 2.35 (0.21) <.0001 2.48 (0.26) <.0001 2.49 (0.30) <.0001 2.52 (0.30) <.0001

−2ℓ 760.0 730.0 717.0 719.5 721.3 720.9
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Table 4.10: Hamilton Depression Rating Scale Data. Study 1, MAR: GLMM using proc NLMIXED with

adaptive Gaussian quadrature, quasi-Newton optimization and different number of quadrature points.

Q = 2 Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept 3.38 (2.58) 0.192 3.40 (2.60) 0.193 3.39 (2.63) 0.199 3.39 (2.65) 0.203 3.39 (2.65) 0.203 3.39 (2.65) 0.203

trt A1 -0.59 (1.47) 0.688 -0.56 (1.48) 0.704 -0.58 (1.49) 0.698 -0.58 (1.51) 0.701 -0.58 (1.51) 0.702 -0.58 (1.51) 0.702

trt B -0.15 (1.54) 0.921 -0.17 (1.56) 0.914 -0.16 (1.57) 0.920 -0.16 (1.59) 0.920 -0.16 (1.59) 0.920 -0.16 (1.59) 0.920

visit 5 -4.65 (2.80) 0.0987 -4.66 (2.81) 0.0994 -4.65 (2.84) 0.103 -4.65 (2.85) 0.105 -4.65 (2.85) 0.105 -4.65 (2.85) 0.105

visit 6 -7.26 (2.89) 0.0131 -7.26 (2.91) 0.0134 -7.26 (2.93) 0.0141 -7.26 (2.94) 0.0146 -7.26 (2.94) 0.0146 -7.26 (2.94) 0.0146

visit 7 -6.52 (2.79) 0.0208 -6.52 (2.81) 0.0215 -6.52 (2.83) 0.0225 -6.52 (2.85) 0.0232 -6.52 (2.85) 0.0232 -6.52 (2.85) 0.0232

visit 8 -8.46 (2.87) 0.0037 -8.46 (2.89) 0.0039 -8.46 (2.91) 0.0041 -8.46 (2.93) 0.0044 -8.46 (2.93) 0.0044 -8.46 (2.93) 0.0043

visit 9 -7.29 (2.81) 0.0104 -7.29 (2.83) 0.0109 -7.29 (2.85) 0.0114 -7.29 (2.87) 0.0119 -7.29 (2.87) 0.0119 -7.29 (2.87) 0.0119

visit 10 -8.19 (2.84) 0.0044 -8.18 (2.85) 0.0047 -8.19 (2.88) 0.0050 -8.19 (2.89) 0.0052 -8.19 (2.89) 0.0052 -8.19 (2.89) 0.0052

visit 11 -8.48 (2.91) 0.0041 -8.47 (2.93) 0.0043 -8.48 (2.95) 0.0046 -8.48 (2.97) 0.0048 -8.48 (2.97) 0.0048 -8.48 (2.97) 0.0048

visit 5 * trt A1 0.27 (1.67) 0.872 0.27 (1.68) 0.873 0.27 (1.69) 0.874 0.27 (1.70) 0.874 0.27 (1.70) 0.874 0.27 (1.70) 0.874

visit 5 * trt B -0.21 (1.68) 0.900 -0.21 (1.69) 0.900 -0.21 (1.70) 0.902 -0.21 (1.71) 0.902 -0.21 (1.71) 0.902 -0.21 (1.71) 0.902

visit 6 * trt A1 0.63 (1.65) 0.702 0.63 (1.66) 0.704 0.63 (1.67) 0.706 0.63 (1.68) 0.708 0.63 (1.68) 0.708 0.63 (1.68) 0.708

visit 6 * trt B 0.50 (1.64) 0.759 0.50 (1.65) 0.760 0.50 (1.66) 0.762 0.50 (1.67) 0.764 0.50 (1.67) 0.764 0.50 (1.67) 0.764

visit 7 * trt A1 0.50 (1.65) 0.762 0.50 (1.67) 0.766 0.50 (1.68) 0.766 0.50 (1.69) 0.767 0.50 (1.69) 0.767 0.50 (1.69) 0.767

visit 7 * trt B 0.070 (1.64) 0.966 0.070 (1.65) 0.966 0.070 (1.66) 0.966 0.070 (1.67) 0.967 0.070 (1.67) 0.967 0.070 (1.67) 0.967

visit 8 * trt A1 -0.63 (1.60) 0.694 -0.63 (1.61) 0.695 -0.63 (1.61) 0.697 -0.63 (1.62) 0.698 -0.63 (1.62) 0.698 -0.63 (1.62) 0.698

visit 8 * trt B -0.15 (1.68) 0.931 -0.16 (1.69) 0.927 -0.15 (1.70) 0.930 -0.15 (1.71) 0.930 -0.15 (1.71) 0.930 -0.15 (1.71) 0.930

visit 9 * trt A1 0.30 (1.55) 0.847 0.30 (1.57) 0.850 0.30 (1.57) 0.850 0.30 (1.58) 0.850 0.30 (1.58) 0.850 0.30 (1.58) 0.850

visit 9 * trt B 0.38 (1.58) 0.810 0.38 (1.60) 0.812 0.38 (1.60) 0.813 0.38 (1.61) 0.814 0.38 (1.61) 0.814 0.38 (1.61) 0.814

visit 10 * trt A1 0.23 (1.56) 0.883 0.23 (1.57) 0.884 0.23 (1.58) 0.885 0.23 (1.59) 0.885 0.23 (1.59) 0.885 0.23 (1.59) 0.885

visit 10 * trt B 0.48 (1.56) 0.759 0.48 (1.58) 0.760 0.48 (1.58) 0.762 0.48 (1.59) 0.763 0.48 (1.59) 0.764 0.48 (1.59) 0.764

visit 11 * trt A1 -1.54 (1.62) 0.342 -1.52 (1.63) 0.353 -1.53 (1.63) 0.350 -1.53 (1.64) 0.354 -1.53 (1.65) 0.354 -1.53 (1.65) 0.354

visit 11 * trt B 0.096 (1.58) 0.952 0.11 (1.59) 0.946 0.10 (1.60) 0.950 0.10 (1.61) 0.951 0.10 (1.61) 0.951 0.10 (1.61) 0.951

baseline 0.13 (0.13) 0.297 0.13 (0.13) 0.302 0.13 (0.13) 0.301 0.14 (0.13) 0.296 0.14 (0.13) 0.295 0.14 (0.13) 0.295

baseline * visit 5 0.19 (0.14) 0.180 0.19 (0.14) 0.184 0.19 (0.14) 0.189 0.19 (0.14) 0.193 0.19 (0.14) 0.193 0.19 (0.14) 0.193

baseline * visit 6 0.29 (0.15) 0.0533 0.28 (0.15) 0.0557 0.28 (0.15) 0.0577 0.28 (0.15) 0.0598 0.28 (0.15) 0.0597 0.28 (0.15) 0.0597

baseline * visit 7 0.19 (0.14) 0.173 0.19 (0.14) 0.181 0.19 (0.14) 0.184 0.19 (0.14) 0.190 0.19 (0.14) 0.190 0.19 (0.14) 0.190

baseline * visit 8 0.28 (0.14) 0.0515 0.28 (0.14) 0.0548 0.28 (0.14) 0.0567 0.28 (0.15) 0.0593 0.28 (0.15) 0.0592 0.28 (0.15) 0.0591

baseline * visit 9 0.21 (0.14) 0.131 0.21 (0.14) 0.138 0.21 (0.14) 0.141 0.21 (0.14) 0.145 0.21 (0.14) 0.146 0.21 (0.14) 0.145

baseline * visit 10 0.19 (0.14) 0.172 0.19 (0.14) 0.183 0.19 (0.14) 0.185 0.19 (0.14) 0.192 0.19 (0.14) 0.191 0.19 (0.14) 0.191

baseline * visit 11 0.24 (0.14) 0.098 0.23 (0.14) 0.104 0.23 (0.14) 0.106 0.23 (0.15) 0.111 0.23 (0.15) 0.111 0.23 (0.15) 0.111

σ 2.40 (0.27) <.0001 2.39 (0.28) <.0001 2.46 (0.28) <.0001 2.52 (0.29) <.0001 2.52 (0.30) <.0001 2.52 (0.30) <.0001

−2ℓ 725.0 725.8 721.8 721.0 720.9 720.9
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Table 4.11: Hamilton Depression Rating Scale Data. Study 1, MAR: GLMM using proc NLMIXED with

adaptive Gaussian quadrature, Newton-Raphson optimization and different number of quadrature points.

Q = 2 Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept 3.31 (2.57) 0.200 3.24 (2.58) 0.211 3.36 (2.62) 0.202 3.39 (2.65) 0.203 3.39 (2.65) 0.203 3.39 (2.65) 0.203

trt A1 -0.56 (1.47) 0.703 -0.57 (1.48) 0.702 -0.58 (1.49) 0.700 -0.58 (1.51) 0.700 -0.59 (1.51) 0.699 -0.58 (1.51) 0.699

trt B -0.12 (1.54) 0.936 -0.14 (1.55) 0.926 -0.15 (1.57) 0.922 -0.16 (1.59) 0.920 -0.16 (1.59) 0.920 -0.16 (1.59) 0.920

visit 5 -4.57 (2.79) 0.103 -4.53 (2.79) 0.107 -4.63 (2.83) 0.104 -4.64 (2.85) 0.105 -4.65 (2.85) 0.105 -4.65 (2.85) 0.105

visit 6 -7.20 (2.88) 0.0135 -7.09 (2.89) 0.0151 -7.22 (2.92) 0.0144 -7.26 (2.94) 0.0145 -7.26 (2.94) 0.0145 -7.26 (2.94) 0.0145

visit 7 -6.47 (2.79) 0.0213 -6.34 (2.79) 0.0242 -6.49 (2.83) 0.0229 -6.51 (2.84) 0.0232 -6.52 (2.84) 0.0232 -6.52 (2.84) 0.0232

visit 8 -8.38 (2.86) 0.0039 -8.25 (2.87) 0.0046 -8.41 (2.90) 0.0043 -8.45 (2.92) 0.0044 -8.46 (2.93) 0.0044 -8.46 (2.93) 0.0044

visit 9 -7.24 (2.80) 0.0107 -7.08 (2.81) 0.0126 -7.24 (2.85) 0.0118 -7.28 (2.86) 0.0119 -7.29 (2.87) 0.0119 -7.29 (2.87) 0.0119

visit 10 -8.13 (2.83) 0.0046 -7.92 (2.83) 0.0058 -8.12 (2.87) 0.0052 -8.17 (2.89) 0.0053 -8.18 (2.89) 0.0053 -8.18 (2.89) 0.0053

visit 11 -8.41 (2.90) 0.0043 -8.20 (2.90) 0.0053 -8.40 (2.94) 0.0049 -8.46 (2.96) 0.0049 -8.47 (2.97) 0.0049 -8.47 (2.97) 0.0049

visit 5 * trt A1 0.25 (1.67) 0.879 0.26 (1.68) 0.877 0.27 (1.69) 0.873 0.26 (1.70) 0.876 0.26 (1.70) 0.877 0.26 (1.70) 0.877

visit 5 * trt B -0.24 (1.68) 0.885 -0.22 (1.69) 0.896 -0.21 (1.70) 0.904 -0.21 (1.71) 0.902 -0.21 (1.71) 0.902 -0.21 (1.71) 0.902

visit 6 * trt A1 0.62 (1.64) 0.706 0.63 (1.66) 0.706 0.64 (1.67) 0.702 0.63 (1.68) 0.707 0.63 (1.68) 0.707 0.63 (1.68) 0.707

visit 6 * trt B 0.50 (1.63) 0.760 0.50 (1.64) 0.762 0.51 (1.66) 0.757 0.51 (1.66) 0.762 0.50 (1.67) 0.763 0.50 (1.67) 0.763

visit 7 * trt A1 0.48 (1.65) 0.770 0.48 (1.66) 0.773 0.50 (1.67) 0.764 0.50 (1.68) 0.768 0.50 (1.69) 0.769 0.50 (1.69) 0.769

visit 7 * trt B 0.059 (1.63) 0.971 0.060 (1.64) 0.971 0.074 (1.66) 0.964 0.066 (1.67) 0.969 0.064 (1.67) 0.969 0.064 (1.67) 0.969

visit 8 * trt A1 -0.64 (1.59) 0.689 -0.63 (1.60) 0.696 -0.62 (1.61) 0.702 -0.63 (1.62) 0.699 -0.63 (1.62) 0.698 -0.63 (1.62) 0.698

visit 8 * trt B -0.16 (1.67) 0.922 -0.16 (1.69) 0.923 -0.15 (1.70) 0.931 -0.15 (1.71) 0.929 -0.15 (1.71) 0.928 -0.15 (1.71) 0.928

visit 9 * trt A1 0.30 (1.55) 0.847 0.30 (1.56) 0.847 0.31 (1.57) 0.845 0.30 (1.58) 0.850 0.30 (1.58) 0.850 0.30 (1.58) 0.850

visit 9 * trt B 0.37 (1.58) 0.814 0.38 (1.59) 0.811 0.39 (1.60) 0.809 0.38 (1.61) 0.812 0.38 (1.61) 0.813 0.38 (1.61) 0.813

visit 10 * trt A1 0.22 (1.55) 0.889 0.23 (1.56) 0.883 0.23 (1.57) 0.882 0.23 (1.58) 0.887 0.23 (1.59) 0.887 0.23 (1.59) 0.887

visit 10 * trt B 0.47 (1.56) 0.763 0.49 (1.57) 0.757 0.49 (1.58) 0.756 0.48 (1.59) 0.761 0.48 (1.59) 0.762 0.48 (1.59) 0.762

visit 11 * trt A1 -1.56 (1.61) 0.336 -1.51 (1.62) 0.353 -1.51 (1.63) 0.355 -1.53 (1.64) 0.354 -1.53 (1.64) 0.354 -1.53 (1.64) 0.354

visit 11 * trt B 0.076 (1.58) 0.962 0.099 (1.59) 0.950 0.11 (1.60) 0.945 0.099 (1.61) 0.951 0.096 (1.61) 0.953 0.096 (1.61) 0.953

baseline 0.14 (0.13) 0.288 0.14 (0.13) 0.274 0.14 (0.13) 0.297 0.14 (0.13) 0.296 0.14 (0.13) 0.295 0.14 (0.13) 0.295

baseline * visit 5 0.19 (0.14) 0.187 0.18 (0.14) 0.199 0.19 (0.14) 0.192 0.19 (0.14) 0.193 0.19 (0.14) 0.194 0.19 (0.14) 0.194

baseline * visit 6 0.28 (0.15) 0.0555 0.27 (0.15) 0.0636 0.28 (0.15) 0.0593 0.28 (0.15) 0.0596 0.28 (0.15) 0.0596 0.28 (0.15) 0.0596

baseline * visit 7 0.19 (0.14) 0.179 0.18 (0.14) 0.203 0.19 (0.14) 0.189 0.19 (0.14) 0.190 0.19 (0.14) 0.190 0.19 (0.14) 0.190

baseline * visit 8 0.28 (0.14) 0.0546 0.27 (0.14) 0.0648 0.27 (0.14) 0.0592 0.28 (0.15) 0.0595 0.28 (0.15) 0.0595 0.28 (0.15) 0.0594

baseline * visit 9 0.21 (0.14) 0.135 0.20 (0.14) 0.158 0.21 (0.14) 0.145 0.21 (0.14) 0.145 0.21 (0.14) 0.145 0.21 (0.14) 0.145

baseline * visit 10 0.19 (0.14) 0.178 0.17 (0.14) 0.216 0.18 (0.14) 0.194 0.19 (0.14) 0.193 0.19 (0.14) 0.193 0.19 (0.14) 0.192

baseline * visit 11 0.23 (0.14) 0.102 0.22 (0.14) 0.126 0.23 (0.14) 0.113 0.23 (0.14) 0.112 0.23 (0.15) 0.112 0.23 (0.15) 0.112

σ 2.40 (0.27) <.0001 2.38 (0.28) <.0001 2.45 (0.28) <.0001 2.51 (0.29) <.0001 2.52 (0.30) <.0001 2.52 (0.30) <.0001

−2ℓ 725.0 725.8 721.8 721.0 720.9 720.9
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Table 4.12: Hamilton Depression Rating Scale Data. Study 1, GLMM using proc

NLMIXED with adaptive Gaussian quadrature, Newton-Raphson optimization and 50

quadrature points, for CC, LOCF and MAR.

CC LOCF MAR

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept 3.56 (2.77) 0.202 3.68 (2.90) 0.207 3.39 (2.65) 0.203

trt A1 -0.60 (1.61) 0.711 -0.71 (1.64) 0.664 -0.58 (1.51) 0.699

trt B -0.13 (1.68) 0.937 -0.27 (1.72) 0.876 -0.16 (1.59) 0.920

visit 5 -3.69 (2.93) 0.211 -4.96 (2.97) 0.0975 -4.65 (2.85) 0.105

visit 6 -6.91 (3.00) 0.0232 -7.93 (3.06) 0.0104 -7.26 (2.94) 0.0145

visit 7 -6.30 (2.92) 0.0332 -7.26 (2.98) 0.0158 -6.52 (2.84) 0.0232

visit 8 -8.02 (3.00) 0.0086 -9.33 (3.06) 0.0027 -8.46 (2.93) 0.0044

visit 9 -7.42 (2.95) 0.0135 -8.19 (3.00) 0.0070 -7.29 (2.87) 0.0119

visit 10 -9.03 (3.01) 0.0034 -9.11 (3.02) 0.0030 -8.18 (2.89) 0.0053

visit 11 -8.61 (3.01) 0.0050 -8.84 (3.01) 0.0038 -8.47 (2.97) 0.0049

visit 5 * trt A1 0.052 (1.77) 0.977 0.099 (1.76) 0.955 0.26 (1.70) 0.877

visit 5 * trt B -0.47 (1.82) 0.798 -0.19 (1.78) 0.914 -0.21 (1.71) 0.902

visit 6 * trt A1 0.23 (1.74) 0.897 0.54 (1.74) 0.758 0.63 (1.68) 0.707

visit 6 * trt B 0.46 (1.73) 0.791 0.35 (1.73) 0.838 0.50 (1.67) 0.763

visit 7 * trt A1 0.45 (1.74) 0.796 0.37 (1.74) 0.832 0.50 (1.69) 0.769

visit 7 * trt B 0.18 (1.73) 0.918 0.008 (1.73) 0.996 0.064 (1.67) 0.969

visit 8 * trt A1 -1.16 (1.74) 0.505 -0.62 (1.68) 0.712 -0.63 (1.62) 0.698

visit 8 * trt B -0.24 (1.74) 0.893 -0.23 (1.73) 0.895 -0.15 (1.71) 0.928

visit 9 * trt A1 0.38 (1.65) 0.819 0.29 (1.64) 0.861 0.30 (1.58) 0.850

visit 9 * trt B 0.10 (1.69) 0.952 0.38 (1.67) 0.819 0.38 (1.61) 0.813

visit 10 * trt A1 0.25 (1.66) 0.882 0.30 (1.64) 0.854 0.23 (1.59) 0.887

visit 10 * trt B 0.006 (1.67) 0.997 0.54 (1.65) 0.742 0.48 (1.59) 0.762

visit 11 * trt A1 -1.63 (1.68) 0.333 -1.14 (1.65) 0.491 -1.53 (1.64) 0.354

visit 11 * trt B -0.092 (1.67) 0.956 0.15 (1.65) 0.929 0.096 (1.61) 0.953

baseline 0.098 (0.13) 0.469 0.17 (0.14) 0.231 0.14 (0.13) 0.295

baseline * visit 5 0.16 (0.15) 0.269 0.20 (0.15) 0.180 0.19 (0.14) 0.194

baseline * visit 6 0.28 (0.15) 0.0628 0.32 (0.15) 0.0386 0.28 (0.15) 0.0596

baseline * visit 7 0.18 (0.14) 0.201 0.23 (0.15) 0.122 0.19 (0.14) 0.190

baseline * visit 8 0.28 (0.15) 0.0559 0.32 (0.15) 0.0329 0.28 (0.15) 0.0594

baseline * visit 9 0.22 (0.14) 0.127 0.26 (0.15) 0.0805 0.21 (0.14) 0.145

baseline * visit 10 0.26 (0.14) 0.0781 0.24 (0.15) 0.101 0.19 (0.14) 0.192

baseline * visit 11 0.26 (0.15) 0.0755 0.25 (0.15) 0.0912 0.23 (0.15) 0.112

σ 2.54 (0.32) <.0001 3.12 (0.37) <.0001 2.52 (0.30) <.0001

−2ℓ 654.8 769.7 720.9
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Table 4.13: Hamilton Depression Rating Scale Data. Study 2, GLMM using proc

NLMIXED with adaptive Gaussian quadrature, Newton-Raphson optimization and 50

quadrature points, for CC, LOCF and MAR.

CC LOCF MAR

est.(s.e.) p-value est.(s.e.) p-value est.(s.e.) p-value

intercept -3.45 (1.78) 0.0536 -3.54 (1.55) 0.0233 -3.12 (1.40) 0.0268

trt A1 -0.44 (1.14) 0.700 -0.91 (1.04) 0.380 -0.78 (0.93) 0.400

trt A2 1.49 (1.31) 0.258 0.76 (1.17) 0.515 0.65 (1.04) 0.530

trt B 1.14 (1.19) 0.339 1.61 (1.13) 0.156 1.29 (1.01) 0.202

visit 5 -2.34 (1.74) 0.179 -1.25 (1.44) 0.388 -1.26 (1.40) 0.370

visit 6 -0.15 (1.70) 0.928 0.03 (1.45) 0.982 -0.05 (1.41) 0.969

visit 7 -0.82 (1.71) 0.631 -0.45 (1.46) 0.758 -0.37 (1.45) 0.799

visit 8 -0.55 (1.72) 0.748 -0.074 (1.46) 0.960 -0.49 (1.49) 0.744

visit 5 * trt A1 0.24 (1.10) 0.830 0.41 (0.97) 0.670 0.48 (0.93) 0.609

visit 5 * trt A2 -1.43 (1.32) 0.279 -0.58 (1.13) 0.611 -0.35 (1.07) 0.744

visit 5 * trt B 0.40 (1.16) 0.732 -0.22 (1.08) 0.838 -0.019 (1.03) 0.985

visit 6 * trt A1 0.59 (1.12) 0.602 1.13 (0.99) 0.254 1.21 (0.96) 0.208

visit 6 * trt A2 -1.33 (1.34) 0.322 -0.26 (1.15) 0.822 -0.051 (1.08) 0.962

visit 6 * trt B 0.71 (1.16) 0.541 0.19 (1.09) 0.860 0.40 (1.03) 0.701

visit 7 * trt A1 0.11 (1.15) 0.924 0.12 (1.00) 0.906 -0.014 (0.99) 0.989

visit 7 * trt A2 -0.39 (1.33) 0.772 -0.12 (1.15) 0.920 0.21 (1.10) 0.852

visit 7 * trt B 1.26 (1.17) 0.283 0.23 (1.10) 0.836 0.47 (1.06) 0.662

visit 8 * trt A1 -0.92 (1.17) 0.434 -0.59 (1.01) 0.557 -0.65 (1.04) 0.536

visit 8 * trt A2 -1.35 (1.35) 0.318 -0.91 (1.16) 0.433 -0.60 (1.13) 0.600

visit 8 * trt B 0.36 (1.18) 0.763 -0.51 (1.10) 0.645 -0.053 (1.10) 0.962

baseline 0.48 (0.11) <.0001 0.56 (0.10) <.0001 0.49 (0.090) <.0001

baseline * visit 5 0.019 (0.11) 0.862 -0.073 (0.089) 0.411 -0.07 (0.086) 0.391

baseline * visit 6 -0.24 (0.11) 0.0246 -0.27 (0.090) 0.0025 -0.26 (0.087) 0.0028

baseline * visit 7 -0.23 (0.11) 0.0301 -0.24 (0.090) 0.0073 -0.25 (0.090) 0.0064

baseline * visit 8 -0.25 (0.11) 0.0214 -0.27 (0.091) 0.0036 -0.26 (0.091) 0.0046

σ 3.34 (0.36) <.0001 3.75 (0.35) <.0001 3.06 (0.30) <.0001

−2ℓ 897 1226.7 1114.1

score-by-visit interaction, in both studies. In the first study, we obtain a borderline

significant interaction for some visits under LOCF, while the corresponding p-values

under CC and MAR are borderline insignificant. The difference is more pronounced
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in the second study in the sense that for several visits a highly significant effect is

found under both LOCF and MAR, while the corresponding effects under CC are

borderline significant only.

4.2.2 Marginal versus Random-effects Models

In all cases, the random-intercept variability (standard deviation parameter σ) is

highly significant. This implies that the GEE parameters and the random-effects

parameters cannot be compared directly. If the conversion factor (3.20) is computed,

then one roughly finds a factor of about 2.5. We note that this factor is not reproduced

when directly comparing the two sets of estimates. This is due to the fact that

(3.20) operates at the true population parameter level, while we only have parameter

estimates at our disposition. Since many of the estimates are not or only marginally

significant, it is not unexpected, therefore, to observe deviations from this relationship,

even though the general tendency is preserved in most cases.

4.2.3 Views 2 and 3: Single Time Point Analysis

When emphasis is on the last measurement occasion, LOCF and CC are straightfor-

ward to use. When the last observed measurement is of interest, while a different

scientific question, the analysis is not different from the one obtained under LOCF

but, of course, in this case CC is not an option.

Since the outcome is a dichotomous response, the data can be summarized in a 2×k

table, where k represents the number of treatments. The analysis essentially consists

of comparing the proportions of succes or failure in all groups. For this purpose,

both Pearson’s chi-squared test (Agresti, 2002) and Fisher’s Exact test (Freeman and

Halton, 1951) will be used. Nevertheless, it is still possible to obtain inferences from

a full longitudinal model in this context. We add these for the sake of reference, but

it should be understood that the analysis using a simple model for the last time point

only is more in line with practice.

When an ignorable analysis is considered, one has to explicitly consider all incom-

plete profiles, in order to correctly incorporate all information available. Thus, one

has to consider a longitudinal model.

For both studies, non-experimental drug C is considered as reference treatment.

Let αi be the effect of treatment arm i at the last measurement occasion, where i = A1,

A2, B or C. We wish to test whether at the last measurement occasion all treatment

effects are equal. For Study 1, this translates into αA1 = αB = αC , or equivalently

into αA1−αC = αB−αC = 0, whereas for Study 2 this means αA1 = αA2 = αB = αC ,
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Table 4.14: Hamilton Depression Rating Scale Data. Views 2 and 3. p-values are

reported (‘mixed’ refers to the assessment of treatment at the last visit based on a

generalized linear mixed model).

Method Model Study 1 Study 2

CC mixed 0.0463 0.0614

Pearson’s Chi-squared Test 0.0357 0.0350

Fisher’s Exact Test 0.0336 0.0350

LOCF mixed 0.1393 0.1067

Pearson’s Chi-squared Test 0.1553 0.0384

Fisher’s Exact Test 0.1553 0.0405

MAR mixed 0.0500 0.0677

or similarly αA1 − αC = αA2 − αC = αB − αC = 0. Such contrasts can be obtained

very easily using the SAS procedure NLMIXED. Table 4.14 shows a summary of the

results in terms of p-values.

For Study 1, we have the following conclusions. The GLMMs lead to a small dif-

ference between CC and MAR: both are borderline. On the other hand, the GLMM

for LOCF leads to a non-significant result. An endpoint analysis (i.e., using the last

available measurement) shows the same result for LOCF (non-significant), whereas

the result for CC becomes significant. For Study 2, the GLMM again lead to a small

difference between CC and MAR, both with non-significant results. The GLMM for

LOCF clearly gives a non-significant result. An endpoint analysis leads to a com-

pletely different picture, with results that are strongly different (significant) from the

GLMM model. This illustrates that the choice between modeling technique is far from

an academic question, but can have profound impact on the study conclusions, rang-

ing from highly significant over borderline (non-)significant to highly non-significant.

4.3 Conclusions

In this chapter, we have indicated that a variety of approaches is possible, when

analyzing incomplete longitudinal data. In the continuous case the linear mixed

model (LMM) is the main mode of analysis. For binary outcomes, one has the choice
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between a marginal model (generalized estimating equations, GEE) and a random-

effects approach (generalized linear mixed models, GLMM). While GLMM and GEE

may provide similar results in terms of hypothesis testing, things are different when the

models are used for estimation purposes, because the parameters have quite different

meanings. All of the methods LMM, GLMM and GEE can be used when data are

incomplete. For both LMM and GLMM this holds under the fairly general assumption

of an MAR mechanism to operate, while for GEE the stronger MCAR is required.

However, GEE can be extended to weighted GEE, making it also valid under MAR.

Current statistical computing power has brought LMM, GLMM and WGEE within

reach. This underscores that simple but potentially highly restrictive modes of analy-

ses, such as CC or LOCF, should no longer be seen as the preferred mode of analysis,

neither in sociology, nor in clinical practice or related fields.

While in the studies considered here there are no extreme differences between the

various analyses conducted, one cannot be sure that such a conclusion would hold in

all settings (Molenberghs et al., 2004). Although in Section 4.1, the results from CC

and direct-likelihood do not differ regarding the importance of the predictor variables,

the significance as well as non-significance of the effects are much more pronounced

in the DL analysis.

Whether our more generally valid analysis would consistently provide differences

with those found in the literature (see Section 4.1.3) is an interesting subject of fur-

ther study. However, the type of direct-likelihood analysis proposed here often still

provides sensible assessments of important aspects of the data, even if the assump-

tion of MAR is violated in favor of MNAR. Indeed, an ignorable analysis takes all

information into account, not only from complete observations, but also from incom-

plete ones, through the conditional expectation of the missing measurements given

the observed ones.

By definition, MNAR missingness cannot be fully ruled out based on the observed

data. Nevertheless, ignorable analyses may provide reasonably stable results, even

when the assumption of MAR is violated, in the sense that such analyses constrain

the behavior of the unseen data to be similar to that of the observed data. A discussion

of this phenomenon in the survey context has been given in Rubin, Stern and Vehovar

(1995). These authors firstly argue that, in well conducted experiments (some surveys

and many confirmatory clinical trials), the assumption of MAR is often to be regarded

as a realistic one. Secondly, and very important for confirmatory trials, an MAR

analysis can be specified a priori without additional work relative to a situation

with complete data. Thirdly, when there is residual doubt about the plausibility of

MAR, a number of MNAR models, which are more general and explicitly incorporate
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the dropout mechanism, can be fitted, provided one is prepared to approach formal

aspects of model comparison with due caution, since the inferences they produce are

typically highly dependent on the untestable and often implicit assumptions built in

regarding the distribution of the unobserved measurements given the observed ones.

The quality of the fit to the observed data need not reflect at all the appropriateness of

the implied structure governing the unobserved data. Based on these considerations,

we recommend, for primary analysis purposes, the use of ignorable likelihood-based

methods or appropriately modified frequentist methods. To explore the impact of

deviations from the MAR assumption on the conclusions, one should ideally conduct

a sensitivity analysis (Verbeke and Molenberghs, 2000, Ch. 18–20).

In the next chapters, several MNAR models for non-continuous longitudinal data

with non-monotone missingness are proposed. Afterwards, the MNAR analyses can

be complemented with appropriate (global and/or local) influence analyses, as will be

shown in Chapter 8.





5
An Extension and

Reparameterization of the

Baker, Rosenberger and

DerSimonian (1992) Model

In previous chapters, focus was on the advantage of MAR models above simple meth-

ods such as CC and LOCF, and more specific for data with dropout. In this chapter,

we switch attention to several MNAR models, since they are more general and ex-

plicitly incorporate the dropout mechanism. We will propose several models that can

handle non-monotone missing data. We start with the model family proposed by

Baker, Rosenberger and DerSimonian (1992) (further denoted as BRD). A number

of contributions are made. First, the model is reformulated such that its member-

ship of the selection model family is unambiguously clear. Second, the original model

is extended to accommodate for, possibly continuous, covariates, turning the model

into a regression tool for several categorical outcomes. Third, a parameterization is

proposed that avoids the risk of invalid solutions. In other words, all combinations

of the natural parameters produce probabilities between 0 and 1. As a consequence,

63
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Table 5.1: Theoretical distribution over complete and observed cells of a bivariate

binary outcome. Tables correspond to completely observed subjects and subjects with

the second, the first, and both measurements missing, respectively.

π11,11 π11,12

π11,21 π11,22

π10,11 π10,12

π10,21 π10,22

π01,11 π01,12

π01,21 π01,22

π00,11 π00,12

π00,21 π00,22

π11,11 π11,12

π11,21 π11,22

π10,1+

π10,2+

π01,+1 π01,+2 π00,++

the closed-form solutions of BRD no longer apply; given the focus on continuous

covariates, the derivation of closed-form solutions should not be of primary concern.

In Section 5.1 we sketch the original BRD models, which are extended to incor-

porate covariate effects in Section 5.2. Section 5.3 shows detailed calculations of the

derivatives of the log-likelihood function. An application to the fluvoxamine data is

presented in Section 5.4.

5.1 The Original BRD Model Family

Baker, Rosenberger and DerSimonian (1992) considered a log-linear type of model

for two possibly binary outcomes, subject to non-monotone missingness. They use a

four-way classification of both outcomes, together with their respective missingness

indicators. Denote the counts and corresponding probabilities by Yr1r2,jk and πr1r2,jk

where r1, r2 = 0, 1 indicate whether a measurement is either missing or taken at

occasions 1 and 2 respectively, and j, k = 1, 2 indicate the response categories for

both outcomes. The complete data and observed data cell probabilities are presented

in Table 5.1.

The models can be written as:

E(Y11,jk) = mjk, E(Y10,jk) = mjkβ̃jk,

E(Y01,jk) = mjkα̃jk, E(Y00,jk) = mjkα̃jkβ̃jkγ̃,

with mjk = Y++++π11,jk and

α̃jk =
q01|jk

q11|jk
, β̃jk =

q10|jk

q11|jk
, γ̃ =

q11|jkq00|jk

q10|jkq01|jk
,
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BRD6 BRD9 BRD7 BRD9 BRD7 BRD8 BRD6 BRD8
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Figure 5.1: Graphical representation of the BRD model nesting structure.

such that α̃jk models the non-response for the first variable, β̃jk the non-response

for the second variable, and γ̃ the interaction between both non-response indicators.

The subscripts are missing from γ̃ since Baker, Rosenberger and DerSimonian (1992)

have shown that this quantity is independent of j and k in every identifiable model.

From the expressions for α̃jk, β̃jk and γ̃, we see that selection model quantities are

employed. However, π11,jk has a pattern-mixture flavor, and the typical selection

model probabilities µjk are a combination of all other parameters:

µjk = π11,jk(1 + α̃jk + β̃jk + α̃jkβ̃jkγ̃).

These authors consider nine identifiable models, based on setting α̃jk and β̃jk

constant in one or more indices:

BRD1 : (α̃.., β̃..) BRD4 : (α̃.., β̃.k) BRD7 : (α̃.k, β̃.k)

BRD2 : (α̃.., β̃j.) BRD5 : (α̃j., β̃..) BRD8 : (α̃j., β̃.k)

BRD3 : (α̃.k, β̃..) BRD6 : (α̃j., β̃j.) BRD9 : (α̃.k, β̃j.).

(5.1)

The nesting structure of these models is schematically represented in Figure 5.1.

Interpretation is straightforward. For example, BRD1 is MCAR, in BRD4 missingness

in the first variable is constant, while missingness in the second variable depends on

the, possibly unobserved, value of this variable.
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5.2 The Extended BRD Model Family

Now we will extend the original BRD models to accommodate (possibly continuous)

covariates. Let i = 1, . . . , n index distinct covariate levels, but this index i will be

suppressed from notation in the rest of the section. We will use a selection model

parameterization, differing from and extending the original one:

πr1r2,jk = pjkqr1r2|jk, (5.2)

where pjk parameterizes the measurement process and qr1r2|jk describes the missing-

ness mechanism, conditional on the measurements. In particular, we will assume

pjk =
exp(ηjk)

∑2
j,k=1 exp(ηjk)

, (5.3)

qr1r2|jk =
exp[αjk(1 − r1) + βjk(1 − r2) + γ(1 − r1)(1 − r2)]

1 + exp(αjk) + exp(βjk) + exp(αjk + βjk + γ)
, (5.4)

where αjk, βjk and γ have the same interpretation as α̃jk, β̃jk and γ̃ in Section 5.1.

No a priori ordering is imposed on the outcomes. The advantage is that genuine

multivariate settings (e.g., several questions in a survey) can be handled as well. When

deemed necessary, the implications of ordering can be imposed by considering specific

models and leaving out others. For example, one may want to avoid missingness

on future observations. In the current bivariate case, the index k would have to be

removed from α in the above model. To identify the model, we set η22 = 0 and

further ηjk = Xjkθ. This allows inclusion of covariate effects which, together with

(5.3), is related to the multigroup logistic model (Albert and Lesaffre, 1986). Even

though the parameters θ are conditional in nature and therefore somewhat difficult

to directly interpret in case planned sequences are of unequal length, (5.3) allows easy

calculation of the joint probabilities. Note that observed sequences could be of unequal

length. The conditional interpretation of the parameters will be a major obstacle in

the presence of time-varying covariates, as is often the case in longitudinal studies with

longer measurement sequences. Arguably, in such a case, a different model may be

more suitable. Generally, computational advantages become increasingly important

as the length of the response vector grows. If necessary, specific functions of interest,

such as a marginal treatment effect, can be derived. They will typically take the form

of non-linear functions. Arguably, a model of the type here can be most useful as

a component of a sensitivity analysis, in conjunction with the use of different (e.g.,

marginal) models.
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In many examples, the design matrices Xjk will be equal. Stacking all parameters

leads to η = Xθ and similarly to δ = Zψ, where the vector δ stacks the αjk, βjk

and γ and Z is a design matrix. The vector ψ groups the parameters of interest. For

example, if MCAR would be considered, the α and β parameters do not depend on

neither j nor k and hence ψ′ = (α, β, γ). Both designs can be combined into one,

using ξ = (η′, δ′)′,

W =



 X 0

0 Z



 and φ = (θ′,ψ′)′. (5.5)

The corresponding log-likelihood function can be written as:

ℓ =
2∑

j,k=1

Y11,jklnπ11,jk +
2∑

j=1

Y10,j+ln(π10,j1 + π10,j2)

+

2∑

k=1

Y01,+kln(π01,1k + π01,2k) + Y00,++ln(π00,11 + π00,12 + π00,21 + π00,22)

=
2∑

j,k=1

Y11,jk∑

s=1

lnπ11,jk +
2∑

j=1

Y10,j+∑

s=1

lnπ10,j+

+
2∑

k=1

Y01,+k∑

s=1

lnπ01,+k +

Y00,++∑

s=1

lnπ00,++. (5.6)

Computation of derivatives, needed for optimization and for the calculation of in-

fluence measures, will be described in Section 5.3. To include individual-specific

covariates, a subscript i has to be introduced to the vector ξi and the matrix Wi and

hence to their constituent components.

Similarly as in Section 5.1, nine identifiable models can be considered, by simply

replacing α̃jk, β̃jk and γ̃ by αjk, βjk and γ in (5.1). The nesting structure in Fig-

ure 5.1 was considered by BRD using the original parameterization, but carry over

to parameterization (5.4) is immediate.

5.3 Derivatives of the Log-Likelihood Function

We can write the joint probabilities as

πr1r2,jk =
eηjk

∑2
v,w=1 eηvw

eαjk(1−r1)+βjk(1−r2)+γ(1−r1)(1−r2)

∑1
t,u=0 eαjk(1−t)+βjk(1−u)+γ(1−t)(1−u)

pjk︸︷︷︸
η-parameters

. q(1−r1)(1−r2)|jk︸ ︷︷ ︸
δ-parameters
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From this we can calculate the log-likelihood function (5.6) and its derivatives. The

first order derivative with respect to ω, the local influence parameter which will be

introduced in Section 8.3 (only π∗∗∗∗ contains ω), for the missingness patterns are

(11) :
∂ℓ

∂ω
=

2∑

j,k=1

1

π11,jk

∂π11,jk

∂ω
,

(10) :
∂ℓ

∂ω
=

2∑

j=1

1

π10,j+

∂π10,j+

∂ω
,

(01) :
∂ℓ

∂ω
=

2∑

k=1

1

π01,+k

∂π01,+k

∂ω
,

(00) :
∂ℓ

∂ω
=

1

π00,++

∂π00,++

∂ω
,

respectively. The second order derivative to ω and an arbitrary parameter ζ from η

or δ (6= ω), for a patient in category (11):

∂2ℓ

∂ω∂ζ
=

2∑

j,k=1

π11jk
∂2π11,jk

∂ω∂ζ
− ∂π11,jk

∂ω

∂π11,jk

∂ζ

π2
11,jk

with similar expressions for the other categories.

We will use the following conventions. Since t, u = 0, 1 they obey t2 = t and

u2 = u. We will also, for the ease of notation, replace eαjkt+βjku+γtu by e.... All

summations that appear are for t, u = 0, 1.

It follows that

q11|jk =
1∑
e...

, q10|jk =
eβjk

∑
e...

, q01|jk =
eαjk

∑
e...

and q00|jk =
eαjk+βjk+γ

∑
e...

.

Further, it is easy to show that
∑

te...

∑
e...

= q0+|jk,

∑
ue...

∑
e...

= q+0|jk,

∑
tue...

∑
e...

= q00|jk,

∑
t2e...

∑
e...

= q0+|jk,

∑
u2e...

∑
e...

= q+0|jk,

∑
t2ue...

∑
e...

= q00|jk and

∑
tu2e...

∑
e...

= q00|jk.

Let us now study the pattern of completers r1 = r2 = 1. To calculate (A) :

∂π11,jk/∂ζ we use

(A1) :
∂π11,jk

∂η
=

∂pjk

∂η
.q11|jk,

(A2) :
∂π11,jk

∂δ
= pjk.

∂q11|jk

∂δ
,

(A3) :
∂π11,jk

∂θ
=

∂π11,jk

∂η
.
∂η

∂θ
= X.

∂π11,jk

∂η
.
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Calculation of (B) : ∂π11,jk/∂ω is straightforward:

(B) :
∂π11,jk

∂ω
= pjk.

[
∂q11|jk

∂αjk
.
∂αjk

∂ω
+

∂q11|jk

∂βjk
.
∂βjk

∂ω

]
,

because only αjk and βjk can depend on ω (γ does not). The terms
∂αjk

∂ω and
∂βjk

∂ω

depend on the model, and can be equal to j − 1, k − 1, or 0. At least one of them

will be zero.

To calculate (C) : ∂2π11,jk/∂ω∂ζ we use

(C1) :
∂

∂η

(
∂π11,jk

∂ω

)
=

∂pjk

∂η
.

[
∂q11|jk

∂αjk
.
∂αjk

∂ω
+

∂q11|jk

∂βjk
.
∂βjk

∂ω

]

(C2) :
∂

∂δ

(
∂π11,jk

∂ω

)
= pjk.

[
∂2q11|jk

∂δ∂αjk
.
∂αjk

∂ω
+

∂2q11|jk

∂δ∂βjk
.
∂βjk

∂ω

]
.

In addition, we need the following relations:

(a) :
∂pjk

∂ηjk
= pjk(1 − pjk),

[(j′, k′) 6= (j, k)]
∂pjk

∂ηj′k′

= −pjkpj′k′ ,

(b) :
∂q11|jk

∂αjk
= −q11|jk.q0+|jk,

[(j′, k′) 6= (j, k)]
∂q11|jk

∂αj′k′

= 0,

(c) :
∂q11|jk

∂βjk
= −q11|jk.q+0|jk,

[(j′, k′) 6= (j, k)]
∂q11|jk

∂βj′k′

= 0,

(d) :
∂q11|jk

∂γ
= −q11|jk.q00|jk,

(e) :
∂2q11|jk

∂α2
jk

= q11|jk.q0+|jk

(
2q0+|jk − 1

)
,

(f) :
∂2q11|jk

∂βjk∂αjk
= q11|jk

(
2q0+|jk.q+0|jk − q00|jk

)
,

(g) :
∂2q11|jk

∂γ∂αjk
= q11|jk.q00|jk

(
2q0+|jk − 1

)
,

(h) :
∂2q11|jk

∂β2
jk

= q11|jk.q+0|jk

(
2q+0|jk − 1

)
,

(i) :
∂2q11|jk

∂γ∂βjk
= q11|jk.q00|jk

(
2q+0|jk − 1

)
.
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These calculations have to be redone for each of the three incomplete patterns as

well. We will indicate here only how they are done when the first outcome is observed

and the second one is not (i.e., r1 = 1 and r2 = 0).

Now,

(A) :
∂π10,j+

∂ζ
=

∂(π10,j1 + π10,j2)

∂ζ
=

2∑

k=1

∂π10,jk

∂ζ

(A1) :
∂π10,j+

∂η
=

2∑

k=1

∂pjk

∂η
.q10|jk,

(A2) :
∂π10,j+

∂δ
=

2∑

k=1

pjk.
∂q10|jk

∂δ
,

(A3) :
∂π10,j+

∂θ
=

∂π10,j+

∂η
.
∂η

∂θ
= X.

∂π10,j+

∂η
,

(B) :
∂π10,j+

∂ω
=

2∑

k=1

pjk.

[
∂q10|jk

∂αjk
.
∂αjk

∂ω
+

∂q10|jk

∂βjk
.
∂βjk

∂ω

]
,

(C) :
∂2π10,j+

∂ω∂ζ
=

∂

∂ζ

(
∂π10,j+

∂ω

)
,

(C1) :
∂

∂η

(
∂π10,j+

∂ω

)
=

2∑

k=1

∂pjk

∂η
.

[
∂q10|jk

∂αjk
.
∂αjk

∂ω
+

∂q10|jk

∂βjk
.
∂βjk

∂ω

]
,

(C2) :
∂

∂δ

(
∂π10,j+

∂ω

)
=

2∑

k=1

pjk.

[
∂2q10|jk

∂δ∂αjk
.
∂αjk

∂ω
+

∂2q10|jk

∂δ∂βjk
.
∂βjk

∂ω

]
.

Further (we only show those that are different from the completers’ expressions),

(b) :
∂q10|jk

∂αjk
= −q10|jk.q0+|jk,

(c) :
∂q10|jk

∂βjk
= q10|jk

(
1 − q+0|jk

)
,

(d) :
∂q10|jk

∂γ
= −q10|jk.q00|jk,

(e) :
∂2q10|jk

∂α2
jk

= q10|jk.q0+|jk

(
2q0+|jk − 1

)
,

(f) :
∂2q10|jk

∂βjk∂αjk
= −q10|jk

(
q0+|jk − 2q+0|jk.q0+|jk + q00|jk

)
,

(g) :
∂2q10|jk

∂γ∂αjk
= q10|jk.q00|jk

(
2q0+|jk − 1

)
,

(h) :
∂2q10|jk

∂β2
jk

= q10|jk

(
1 − 3q+0|jk + 2q2

+0|jk

)
,
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(i) :
∂2q10|jk

∂γ∂βjk
= −2q10|jk.q00|jk

(
1 − q+0|jk

)
.

5.4 Models Fitted to the Fluvoxamine Data

In the analysis all patients with known duration level are considered, leaving a total

of 310 out of 315 subjects in the study. In the measurement model, the effect of

duration is held constant over both visits. Regarding the missingness model, an effect

of duration is assumed in both the α and the β parameters. Each of the 9 models

is represented by a specific choice for the design matrices and the corresponding

parameter vector. For example, for BRD1, without any effect of duration, we obtain

φ1, X1
i and Z1

i , while for BRD8, with a constant duration effect on the measurement

model as well as on the missingness model, we obtain φ8, X8
i and Z8

i , which are

constructed as follows:

φ1 = (θ1, θ2, θ3, α, β, γ)′, φ8 = (θ1, θ2, θ3, θ4, α1., α2., αcov, β.1, β.2, βcov, γ)′,

X1
i =





1 0 0

0 1 0

0 0 1




, X8

i =





1 0 0 covi

0 1 0 covi

0 0 1 covi




,

Z1
i =





1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

0 0 1





and Z8
i =





1 0 covi 0 0 0 0

1 0 covi 0 0 0 0

0 1 covi 0 0 0 0

0 1 covi 0 0 0 0

0 0 0 1 0 covi 0

0 0 0 0 1 covi 0

0 0 0 1 0 covi 0

0 0 0 0 1 covi 0

0 0 0 0 0 0 1





.

We will consider three sets of BRD models in detail. Table 5.2 presents models

(estimates, s.e., negative loglikelihoods) without duration. In Table 5.3, duration

is added as a covariate to the measurement model only, whereas in the final set

(Table 5.4) the effect of duration is included in both measurement and missingness
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Table 5.2: Fluvoxamine Data. Maximum likelihood estimates and standard errors of BRD models.

All observations included. No covariates.

Effect BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRD8 BRD9

Measurement model

Int.11 0.22(0.15) 0.20(0.15) 0.28(0.15) 0.03(0.17) 0.32(0.15) 0.32(0.15) 0.14(0.16) 0.16(0.17) 0.27(0.15)

Int.12 -1.72(0.30) -1.74(0.30) -1.72(0.30) -1.61(0.30) -1.62(0.30) -1.62(0.30) -1.61(0.30) -1.44(0.32) -1.72(0.30)

Int.21 -0.12(0.18) -0.12(0.18) -0.05(0.18) -0.42(0.23) -0.13(0.18) -0.13(0.18) -0.31(0.21) -0.39(0.22) -0.04(0.17)

Dropout model

α -4.72(0.71) -4.72(0.71) -4.72(0.71)

α1.

-3.87(0.71) -3.93(0.71) -3.93(0.71)

α2.

-∞ -∞ -∞

α
.1 -4.27(0.71) -4.29(0.71) -4.29(0.71)

α
.2 -∞ -∞ -∞

β -1.09(0.13) -1.09(0.13) -1.09(0.13)

β1.

-1.37(0.22) -1.37(0.22) -1.37(0.22)

β2.

-0.91(0.17) -0.91(0.17) -0.91(0.17)

β
.1 -1.57(0.38) -1.57(0.38) -1.56(0.37)

β
.2 -0.55(0.29) -0.56(0.29) -0.56(0.29)

γ 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.31(0.79) 3.51(0.84) 3.31(0.79) 3.11(0.77)

- loglik 565.96 564.55 565.07 564.55 565.34 563.97 563.70 563.97 563.70
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Table 5.3: Fluvoxamine Data. Maximum likelihood estimates and standard errors of BRD models.

All observations included. Duration as covariate in the measurement model.

Effect BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRD8 BRD9

Measurement model

Int.11 0.46(0.17) 0.45(0.17) 0.53(0.17) 0.23(0.20) 0.57(0.17) 0.57(0.17) 0.35(0.18) 0.36(0.19) 0.52(0.18)

Int.12 -1.46(0.31) -1.48(0.31) -1.46(0.31) -1.26(0.32) -1.37(0.31) -1.37(0.31) -1.26(0.32) -1.06(0.33) -1.46(0.31)

Int.21 0.10(0.20) 0.10(0.19) 0.17(0.20) -0.25(0.23) 0.09(0.21) 0.09(0.20) -0.13(0.21) -0.21(0.22) 0.18(0.20)

Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)

Dropout model

α -4.71(0.71) -4.71(0.71) -4.71(0.71)

α1.

-3.85(0.71) -3.92(0.71) -3.94(0.71)

α2.

-∞ -∞ -∞

α
.1 -4.24(0.71) -4.28(0.71) -4.26(0.71)

α
.2 -∞ -∞ -∞

β -1.11(0.13) -1.11(0.13) -1.11(0.13)

β1.

-1.44(0.23) -1.44(0.23) -1.44(0.23)

β2.

-0.90(0.17) -0.90(0.17) -0.90(0.17)

β
.1 -1.86(0.45) -1.87(0.46) -1.86(0.45)

β
.2 -0.43(0.25) -0.43(0.25) -0.43(0.25)

γ 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77) 3.31(0.79) 3.74(0.89) 3.39(0.79) 3.07(0.77)

- loglik 550.15 548.31 549.12 546.60 549.39 547.57 545.55 545.84 547.30
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Table 5.4: Fluvoxamine Data. Maximum likelihood estimates and standard errors of BRD models.

All observations included. Duration as covariate in both measurement and missingness model.

Effect BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRD8 BRD9

Measurement model

Int.11 0.46(0.18) 0.45(0.17) 0.53(0.18) 0.30 (0.20) 0.57(0.17) 0.57(0.17) 0.41(0.18) 0.43(0.19) 0.52(0.18)

Int.12 -1.46(0.31) -1.48(0.31) -1.46(0.31) -1.37 (0.31) -1.37(0.31) -1.37(0.31) -1.37(0.31) -1.22(0.33) -1.46(0.31)

Int.21 0.10(0.20) 0.10(0.20) 0.17(0.20) -0.15 (0.24) 0.09(0.20) 0.09(0.21) -0.04(0.22) -0.13(0.23) 0.18(0.20)

Duration -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)

Dropout model

α
..

-4.57(0.72) -4.57(0.72) -4.57(0.72)

α1.

-3.82(0.73) -3.87(0.73) -3.88(0.73)

α2.

-∞ -∞ -∞

α
.1 -4.20(0.72) -4.23(0.73) -4.22(0.72)

α
.2 -∞ -∞ -∞

αdur -0.02(0.02) -0.02(0.02) -0.01(0.02) -0.02(0.02) -0.01(0.02) -0.01(0.02) -0.01(0.02) -0.00 (0.02) -0.01(0.02)

β
..

-1.40(0.16) -1.40(0.16) -1.40(0.16)

β1.

-1.63(0.24) -1.63(0.24) -1.63(0.24)

β2.

-1.22(0.20) -1.22(0.20) -1.22(0.20)

β
.1 -1.79(0.36) -1.79(0.36) -1.77(0.35)

β
.2 -0.87(0.33) -0.88(0.33) -0.88(0.33)

βdur 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02 (0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01)

γ 3.10(0.78) 3.10(0.78) 3.10(0.77) 3.10(0.78) 3.09 (0.78) 3.33(0.79) 3.50(0.84) 3.32(0.79) 3.16 (0.78)

- loglik 543.78 542.74 542.86 542.63 543.14 542.14 541.77 542.05 541.86

p† 0.0017 0.0038 0.0019 0.0189 0.0019 0.0044 0.0228 0.0226 0.0043

† p-value for the comparison with the corresponding BRD model in Table 5.3, to test the null

hypothesis of no effect of duration in the missingness model.
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parts. Sampling zeroes in some of the cells force certain parameters to lie on the

boundary of their corresponding parameter space which, due to the parameterization,

is equal to ∞. This should not be seen as a disadvantage of our model, since boundary

solutions are a well known feature of MNAR models (Rubin, 1996). The advantage

of our parameterization is that either an interior or a boundary solution is obtained,

and never an invalid solution.

From Table 5.2, the likelihood ratio tests fails to reject BRD1 in favor of a

more complex model, implying MCAR would be adequate. However, this conclu-

sion changes when duration is included in the measurement model (Table 5.3). The

effect of duration is highly significant, whichever of the BRD models is chosen to con-

duct a likelihood ratio test. Further, within Table 5.3, not BRD1 but rather BRD4

provides the most adequate description. The likelihood ratio test statistic for com-

paring BRD1–4 equals 7.10, while those for BRD4–7 and BRD4–8 are 2.10 and 1.52,

respectively. Thus, from this set of models, one observes that duration improves the

fit and apparently duration, included in the measurement model, has the effect of

changing the nature of the missingness mechanism, by making it more complex, even

though it is often believed that including explanatory variables may help explaining

structure in the missingness mechanism. BRD4 states that missingness at the sec-

ond occasion depends on the (possibly unobserved) value at that same occasion, a

so-called type I model, in the typology of Baker (2000), in contrast to type II models,

where missingness in a variable depends at least also on other, possibly incomplete,

assessments. Obviously, such models are particularly vulnerable to assumptions. Up

to this point, no covariate effects have been considered on the missingness parame-

ters. When switching to Table 5.4, including duration in the missingness part, the

conclusions change drastically. First, all evidence for non-MCAR missingness disap-

pears and BRD1 comes out as the most adequate description. Second, comparing

corresponding BRD models between Tables 5.3 and 5.4 (p-values in bottom line of

Table 5.4), it is clear that the effect of duration on the missingness model cannot be

neglected.

Important modeling and data analytic conclusions can be drawn. First, it clearly

does not suffice to consider covariate effects on the measurement model, but one has

to carefully contemplate such effects on the missingness model as well. Therefore, the

models in Table 5.4, should be regarded as the ones of primary interest. Second, it is

found that a longer duration implies a less favorable side effects outcome, as well as an

increased change of missing visits. Obviously, duration acts as a confounding variable

which, unless included in both parts of the model, may suggest a relationship between

the measurement and missingness models and thus one may erroneously be led to
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believe that the missing data are MNAR. Third, it should be noted that the parameter

estimates of duration in the measurement part are remarkably stable. This implies

that, in case one is primarily interested in the effect of duration on the occurrence of

side effects all 18 models containing this effect (in Tables 5.3 and 5.4) provide very

similar evidence. While this need not be the case in general, it is a comforting aspect

of this particular data analysis. However, while we have reached plausible conclusions,

one should still exercise caution, since non-random missingness models heavily rely on

untestable assumptions (Verbeke and Molenberghs, 2000). Therefore, it is important

to search for observations which may drive these conclusions (Verbeke et al., 2001b).

This naturally leads to sensitivity analysis, which will be undertaken in Chapter 8.

5.5 Conclusions

In this chapter, we have presented a set of analyses for incomplete binary data. Several

plausible model strategies were considered, depending on the inclusion of duration as a

covariate in the measurement and/or missingness models. To this end, a joint model

for outcomes and non-response has been proposed in which (possibly continuous)

covariates are allowed. The model is based on an extension of Baker, Rosenberger and

DerSimonian (1992) towards the inclusion of covariates. While we focus on bivariate

binary outcomes, the model can be extended to more than two assessments. To this

end, extensions of (5.3) and (5.4) would have to be entertained. For both, log-linear

type as well as marginal models can be considered. This model would be particularly

attractive in the case of ordered missingness. This is an important feature since the

particular model considered in this chapter suffers from interpretational problems

when planned sequences are of unequal length and/or time-varying covariates are

included.

In our case study, it turned out that the inclusion of a key covariate in both

the measurement model and the missingness model, has the ability to substantially

improve the fit of the model and to explain missingness in the sense that an otherwise

seemingly MNAR mechanism is brought back to MCAR. The latter implies a number

of methodological and interpretational advantages. The development of the extended

BRD model family was published in Jansen et al. (2003).



6
A Dale-Dale Model for

Categorical Outcomes with

Non-Monotone Missingness

In Chapter 5, an extension of the Baker, Rosenberger and DerSimonian (1992) model

for 2 binary outcomes with non-monotone missingness was proposed. Baker (1995)

proposed a model for three binary outcomes with non-monotone missingness. Never-

theless, the domain of non-monotone missingness with multivariate ordinal responses

is still relatively unexplored, and will be broached in this chapter as well as in Jansen

and Molenberghs (2005). We propose a set of models based on the multivariate Dale

model (Molenberghs and Lesaffre, 1994) for the measurements, as well as for the

missingness mechanism. Since the data we will use only contain two responses of

interest, the multivariate Dale model will be replaced by the bivariate Dale model in

the application.

This chapter is organized as follows. In Section 6.1 we sketch the multivariate

Dale model. This model will be reduced to the bivariate Dale model in Section 6.2,

and in Section 6.3 it is shown how two copies of it can be combined, describing the

measurement and missingness part of the model, respectively. Its application to the

Health Interview Survey data is presented in Section 6.4.

77
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6.1 The Multivariate Dale Model

The multivariate Dale model (Molenberghs and Lesaffre, 1994) extends the bivari-

ate global cross-ratio model described by Dale (1986). This model accounts for the

dependence between multiple ordinal responses, as well as for their dependence on co-

variate vector(s), which may be time-varying, continuous and/or discrete. The model

arises from a decomposition of the joint probabilities into main effects (described

by marginal probabilities) and interactions (described by cross-ratios of second and

higher orders).

Let i = 1, . . . , N indicate the covariate level, containing ni subjects. Every subject

v at the ith level is evaluated at T distinct time points and at each visit the subject

is scored using a categorical outcome variable. Hence, the outcome for subject v in

the ith level is a series of measurements Yivt (t = 1, . . . , T ), where Yivt can take on

ct distinct (possibly ordered) values jt. Without loss of generality, we denote the

category levels by 1, . . . , ct. Along with the outcomes, a vector of covariates x is

recorded, possibly time-dependent. For convenience, we assume that the first element

of this covariate vector x equals 1, necessary for the intercept of the logistic regression.

Both the marginal distributions and the cross-ratios can depend on these covariates.

Categorical data are typically presented in the form of frequency counts of obser-

vations. It is therefore convenient to summarize the categorical outcomes, measured

for subjects with covariate vector xi, in a cross-classification of the outcomes Yivt into

a c1× . . .×cT dimensional contingency table with cell counts Z∗
i (j1, . . . , jT ), denoting

the number of subjects with outcome (j1, . . . , jT ).

At every T -dimensional cutpoint k = (k1, . . . , kT ), the data table is collapsed into

a 2 × 2 × . . . × 2 table, each of which is assumed to arise as a discretization of a

multivariate Plackett distribution (Plackett, 1965). In harmony with the desire to

use cumulative measures, given the outcomes are ordinal, a data table of cumulative

counts can be constructed:

Zi(k) =
∑

ℓ≤k

Z∗
i (ℓ). (6.1)

Thus, Zi(k) is just the number of individuals in group i whose observed response

vector is ℓ, with ℓ ≤ k. The corresponding probabilities are

pi(k) = P (Y iv ≤ k|xi,θ) (6.2)

and p∗i (k) = P (Y iv = k|xi,θ), with θ a vector of parameters of interest. Note that

Zi(c1, . . . , cT ) = ni and pi(c1, . . . , cT ) = 1.
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In addition, the marginal counts are given by all counts for which all but one

index are equal to their maximal value: Zitjt
≡ Zi(c1, . . . , ct−1, jt, ct+1, . . . , cT ). Bi-

variate cell counts, i.e., cell counts of a cross-classification of a pair of outcomes,

follow from setting all but two indices ju equal to cu, etc. Similarly, for exam-

ple, bivariate probabilities pertaining to the tth and sth outcomes, are denoted

by pi,ts,jtjs
= pi(c1, . . . , ct−1, jt, ct+1, . . . , cs−1, js, cs+1, . . . , cT ). Generalizations to

higher orders are straightforward. The order of the components is not important, but

should be carried through the computations in a consistent fashion.

The multivariate Dale model involves describing T marginal distributions, T (T −
1)/2 pairs of two-way interactions and three or higher order associations. The de-

scription is completed by specifying link functions and linear predictors for both the

univariate margins and the association parameters. The latter are often assumed to

be constant modeled on a log-odds ratio scale. For the univariate marginal links, a

convenient choice is the logistic link function:

ηitjt
= logit(pitjt

|xi) = θ′
itjt

xi, (1 ≤ t ≤ T, 1 ≤ jt < ct). (6.3)

Full specification of the association is done in terms of marginal global odds ratios:

ϕi,ts,jtjs
=

(pi,ts,jtjs
)(1 − pitjt

− pisjs
+ pi,ts,jtjs

)

(pisjs
− pi,ts,jtjs

)(pitjt
− pi,ts,jtjs

)
. (6.4)

They are usefully modeled on the log scale as

ηi,ts,jtjs
= lnϕi,ts,jtjs

= θ′
i,ts,jtjs

xi, (1 ≤ t, s ≤ T, 1 ≤ jt < ct, 1 ≤ js < cs).

Higher order global odds ratios are easily introduced using ratios of conditional odds

(ratios).

6.2 The Bivariate Dale Model

Since in the application we only have two responses of interest (mental health and

fixed general practitioner), the multivariate Dale model can be replaced by its bi-

variate version (Dale, 1986). Both responses also only have two possible outcomes

(good/bad and yes/no), such that it is not necessary to construct tables with cumu-

lative counts and probabilities, and therefore the ∗ is omitted from the notation. The

joint probabilities

pi,12,j1j2 = pi(j1, j2) = P (Yiv1 = j1, Yiv2 = j2|xi), (j1, j2 = 1, 2)
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can be decomposed into two marginal distributions for the main effects, and one log

cross-ratio for the association between both responses (indices i and 1, 2 are omitted):

h1(p1+(x)) = θ′
1x,

h2(p+1(x)) = θ′
2x, (6.5)

h3

(
p11(x)p22(x)

p12(x)p21(x)

)
= θ′

3x,

where h1, h2, and h3 are link functions in the generalized linear model terminology,

and p1+(x) and p+1(x) are the marginal probabilities for observing Yv1 = 1 and

Yv2 = 1 respectively. The most popular choice for h1 ≡ h2 is the logit function,

while for h3 the natural logarithmic function is commonly used. This results in two

marginal logistic regression models and the log cross-ratio

lnϕ = ln
p11(x)p22(x)

p12(x)p21(x)
, (6.6)

which is linear in the covariates. Solving equations (6.5) yields the probabilities

pj1j2(x) (the dependence on x is omitted for the ease of notation):

p11 =






1 + (p1+ + p+1)(ϕ − 1) − S(p1+, p+1, ϕ)

2(ϕ − 1)
if ϕ 6= 1,

p1+p+1 if ϕ = 1,

(6.7)

and

p12 = p1+ − p11,

p21 = p+1 − p11, (6.8)

p22 = 1 − p12 − p21 − p11,

with

S(λ1, λ2, ϕ) =
√

[1 + (λ1 + λ2)(ϕ − 1)]2 + 4ϕ(1 − ϕ)λ1λ2. (6.9)

Several extensions or variations to the model are possible, e.g., assume the associations

to be constant, keep the intercepts and/or covariate parameters constant over time,

include relations between the covariate parameters over time, etc.

6.3 Joint Model for the Measurement and Missing-

ness Process

The bivariate Dale model, as introduced in Section 6.2, will be used for the measure-

ment model and for the missingness model given the measurements, such that again
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a selection model is obtained, as for the extended BRD model. Both discrete and

continuous covariates can be included in both models.

Let i = 1, . . . , N index distinct covariate levels. In this section, the index i will

be suppressed from notation. Let j1, j2 = 1, 2 correspond to the outcome categories

of the first and second measurement, respectively and let r1, r2 = 0, 1 correspond

to the missingness indicators (1 for an observed and 0 for a missing measurement).

The complete data and observed data cell probabilities πr1r2,j1j2 for this setting are

identical to the ones for the BRD model in Table 5.1, and can be factorized as:

πr1r2,j1j2 = pj1j2qr1r2|j1j2 , (6.10)

where pj1j2 parameterizes the measurement process and qr1r2|j1j2 describes the miss-

ingness mechanism, conditional on the measurements, resulting in a selection model.

In particular, we will assume

η1 = logit p1+ = X1θ,

η2 = logit p+1 = X2θ, (6.11)

η3 = ln ϕp = X3θ,

δ4|j1j2 = logit q1+|j1j2 = Z1|j1j2ψ,

δ5|j1j2 = logit q+1|j1j2 = Z2|j1j2ψ, (6.12)

δ6|j1j2 = ln ϕq = Z3|j1j2ψ.

As in Baker, Rosenberger and DerSimonian (1992) and Jansen et al. (2003), we

will consider nine identifiable models:

Model 1 : (ψ(1)
.. , ψ(2)

.. ) Model 4 : (ψ(1)
.. , ψ

(2)
.j2

) Model 7 : (ψ
(1)
.j2

, ψ
(2)
.j2

)

Model 2 : (ψ(1)
.. , ψ

(2)
j1. ) Model 5 : (ψ

(1)
j1. , ψ

(2)
.. ) Model 8 : (ψ

(1)
j1. , ψ

(2)
.j2

)

Model 3 : (ψ
(1)
.j2

, ψ(2)
.. ) Model 6 : (ψ

(1)
j1. , ψ

(2)
j1. ) Model 9 : (ψ

(1)
.j2

, ψ
(2)
j1. ),

where ψ
(1)
j1j2

models the non-response for the first outcome and ψ
(2)
j1j2

models the non-

response for the second outcome. Index j1 indicates the dependence on the first

outcome, index j2 on the second outcome. The nesting structure of these models is

schematically represented in Figure 6.1. Interpretation is similar to the BRD mod-

els. For example, Model 1 is MCAR, in Model 4 missingness in the first variable is

constant, while missingness in the second variable depends on its value.

No a priori ordering is imposed on the outcomes. The advantage is that genuine

multivariate settings (e.g., several questions in a survey) can be handled as well as



82 6. A Dale-Dale Model for Categorical Outcomes
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Figure 6.1: Graphical representation of the Dale-Dale model nesting structure.

longitudinal studies. When deemed necessary, the implications of ordering can be

imposed by considering specific models and leaving out others. For example, one may

want to avoid missingness on future observations. In the current bivariate case, the

index j2 would have to be removed from ψ(1) in the above model.

Models (6.11) and (6.12) can be combined into the model

ξ = Wφ, (6.13)

where

ξ =
(
η1, η2, η3, δ4|11, δ5|11, δ6|11, δ4|12, δ5|12, δ6|12, δ4|21, δ5|21, δ6|21, δ4|22, δ5|22, δ6|22

)′
,

W =



 X 0

0 Z



 ,

and φ =
(
θ′,ψ′)′. This model will be referred to as the Dale-Dale model, a Dale

model being used for both the measurement and missingness processes.

The design matrices X and Z, and the parameter vectors θ and ψ depend on the

number of covariates that are taken into account, and whether or not their influence

can be different on both outcomes. Let us assume that we include one covariate that

is constant, and one that has a different influence on both outcomes. Then θ, ψ, X

and Z can be specified as follows:

θ = (θ1, θ2, θ3, θ4, θ5, θ6)
′
,
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ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8)
′
,

X =





X1

X2

X3




=





1 0 0 cov1 cov2 0

0 1 0 cov1 0 cov2

0 0 1 0 0 0




,

and

Z =





Z1|11

Z2|11

Z3|11

Z1|12

Z2|12

Z3|12

Z1|21

Z2|21

Z3|21

Z1|22

Z2|22

Z3|22





=





1 0 0 cov1 cov2 0 0 0

0 1 0 cov1 0 cov2 0 0

0 0 1 0 0 0 0 0

1 0 0 cov1 cov2 0 I1 0

0 1 0 cov1 0 cov2 0 J1

0 0 1 0 0 0 0 0

1 0 0 cov1 cov2 0 I2 0

0 1 0 cov1 0 cov2 0 J2

0 0 1 0 0 0 0 0

1 0 0 cov1 cov2 0 I3 0

0 1 0 cov1 0 cov2 0 J3

0 0 1 0 0 0 0 0





,

where I1 = 1 in Models 3, 7 and 9, I2 = 1 in Models 5, 6 and 8, I3 = 1 if I1 = 1 or

I2 = 1, J1 = 1 in Models 4, 7 and 8, J2 = 1 in Models 2, 6 and 9, J3 = 1 if J1 = 1 or

J2 = 1. These indicators are equal to 0 in all other models.

To include individual-specific covariates, a subscript i has to be introduced to the

vector ξ and the matrix W and hence to their constituent components. θ, ψ, X, and

Z can easily be changed to increase or reduce the number of covariates.

6.4 Models Fitted to the Health Interview Survey

Data

In the reported analysis all patients with known covariate information are consid-

ered. The effect of the covariate on the marginal probabilities can either be constant,

or different for both probabilities. We assume that this choice is identical for the

measurement model and the missingness model. So either θ4 and ψ4 in (6.13) are
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included in the model, or θ5, θ6 and ψ5, ψ6, for parsimony. The association between

both outcomes is assumed to be constant in all settings.

We will consider five different sets of Dale-Dale models in detail. First, models

are considered without covariates. Results (estimates, standard errors, and negative

loglikelihoods) are presented in Table 6.1. Second, a constant effect of gender is added

(Table 6.2), with distribution of the data over males and females shown in Table 2.4.

In Table 6.3 the effect of gender is allowed to differ for both marginal probabilities.

Next, education is included. Table 6.4 shows the results of the models with constant

effect of education, while in Table 6.5 this effect changes over the marginal proba-

bilities. Table 2.5 contains the distribution of the data over the different categories

of education. Several other ways to include covariate information are possible (only

including a covariate effect in the measurement or missingness model, a constant co-

variate effect in one part of the model and a varying effect in the other part, more

than one covariate effect, . . . ), but will not be presented here for conciseness.

Sampling zeroes or small counts in some of the cells forces certain parameters

to lie on the boundary of their corresponding parameter space which, due to the

parameterization, is equal to ∞. This should not be seen as a disadvantage of our

model, since boundary solutions are a well known feature of MNAR models in general

(Rubin, 1996). The advantage of our parameterization (see also Chapter 5) is that

either an interior or a boundary solution is obtained, but never an invalid solution.

From Table 6.1, the likelihood ratio tests reject Model 1 in favor of Model 3

(likelihood ratio test = 24.14) and Model 4 (LRT = 22.28). Since these models make

different assumptions about the missingness mechanism (in Model 3 a missing value

for mental health depends on the (un)observed value for fixed general practitioner, in

Model 4 a missing value for fixed general practitioner depends on the (un)observed

value for fixed general practitioner), both have to be considered. The extension to

Model 7, which combines the missingness mechanism assumptions from Model 3 and

Model 4, is not significant (Models 3 and 7: LRT = 0.00, meaning they are equivalent

at the observed data level, Models 4 and 7: LRT = 1.86). We also notice that in

Model 4 the estimate for ψ8, the MNAR parameter, lies on the boundary of the

parameter space, which makes Model 4 less favorable than Model 3. Nevertheless, a

more careful study is necessary to get insight into why two models with completely

different assumptions about the missingness mechanism are significant. But first we

will discuss the results of the analyses where covariates are included into the model.

The effect of gender, assumed to be equal for both marginal probabilities, on the

measurement and missingness model simultaneously, is highly significant, whichever

of the models is chosen to conduct a likelihood ratio test (with 2 degrees of freedom).
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Table 6.1: Health Interview Survey Data. Maximum likelihood estimates and standard errors of the

Dale-Dale models. All observations included. No covariates.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.76(0.02) 0.76(0.02) 0.76(0.02) 0.76(0.02) 0.87(0.08) 1.13(0.02) 0.76(0.02) 0.86(0.07) 0.76(0.02)

θ2 2.17(0.03) 2.17(0.03) 2.17(0.03) 2.24(0.03) 2.17(0.03) 2.17(0.03) 2.16(0.03) 2.24(0.03) 2.17(0.03)

θ3 0.03(0.08) 0.02(0.08) 0.03(0.08) 0.03(0.07) -0.02(0.08) -0.08(0.08) 0.03(0.08) 0.02(0.07) 0.03(0.08)

θ4

θ5

θ6

Missingness model

ψ1 1.16(0.02) 1.16(0.02) 1.20(0.02) 1.16(0.02) 1.02(0.08) 0.77(0.02) 1.20(0.02) 1.03(0.07) 1.20(0.02)

ψ2 2.83(0.04) 2.97(0.13) 2.83(0.04) 2.71(0.04) 2.83(0.04) 2.56(0.04) 2.86(0.04) 2.71(0.04) 2.97(0.13)

ψ3 4.35(0.17) 4.37(0.18) 4.36(0.17) 4.40(0.16) 4.43(0.20) 4.54(0.19) 4.35(0.17) 4.46(0.19) 4.38(0.18)

ψ4

ψ5

ψ6

ψ7 -0.33(0.06) 0.55(0.38) +∞ -0.38(0.06) 0.50(0.31) -0.33(0.06)

ψ8 -0.40(0.30) +∞ 2.75(0.30) -0.29(0.02) +∞ -0.40(0.30)

-loglik 15991.13 15990.32 15979.06 15979.99 15990.33 15989.74 15979.06 15979.17 15978.21
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Table 6.2: Health Interview Survey Data. Maximum likelihood estimates and standard errors of the

Dale-Dale models. All observations included. Constant effect of gender.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 1.00(0.06) 1.00(0.06) 1.00(0.06) 1.00(0.06) 0.73(0.16) 0.20(0.05) 1.00(0.06) 1.03(0.14) 1.00(0.06)

θ2 2.42(0.06) 2.42(0.06) 2.42(0.06) 2.49(0.06) 2.40(0.07) 2.30(0.05) 2.49(0.06) 2.49(0.06) 2.42(0.06)

θ3 0.04(0.07) 0.03(0.07) 0.04(0.08) 0.04(0.07) 0.14(0.09) 0.21(0.07) 0.04(0.07) 0.04(0.07) 0.04(0.07)

θ4 -0.16(0.04) -0.16(0.04) -0.16(0.04) -0.16(0.04) -0.14(0.04) -0.09(0.03) -0.16(0.04) -0.16(0.04) -0.16(0.04)

θ5

θ6

Missingness model

ψ1 1.00(0.07) 1.00(0.07) 1.06(0.07) 1.00(0.05) 1.30(0.24) +∞ 1.02(0.07) 0.99(0.11) 1.05(0.07)

ψ2 2.67(0.08) 2.79(0.14) 2.69(0.08) 2.56(0.07) 2.55(0.10) 5.25(0.26) 2.57(0.07) 2.57(0.09) 2.81(0.14)

ψ3 4.35(0.18) 4.36(0.18) 4.36(0.18) 4.39(0.16) 4.56(0.30) 4.04(0.24) 4.39(0.17) 4.40(0.18) 4.37(0.18)

ψ4 0.10(0.04) 0.10(0.04) 0.09(0.04) 0.10(0.04) 0.19(0.06) 0.38(0.05) 0.10(0.04) 0.10(0.06) 0.09(0.04)

ψ5

ψ6

ψ7 -0.32(0.06) -0.97(0.54) –∞ -0.09(0.07) 0.09(0.50) -0.32(0.05)

ψ8 -0.34(0.30) +∞ -3.75(0.26) +∞ +∞ -0.35(0.31)

-loglik 15979.79 15979.17 15968.29 15968.30 15979.34 15957.23 15967.55 15968.29 15967.63
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Table 6.3: Health Interview Survey Data. Maximum likelihood estimates and standard errors of the

Dale-Dale models. All observations included. Effect of gender different on both marginal probabilities.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 1.44(0.07) 1.44(0.07) 1.44(0.07) 1.44(0.07) 1.53(0.12) 0.52(0.12) 1.44(0.07) 1.55(0.11) 1.44(0.07)

θ2 1.60(0.10) 1.60(0.10) 1.60(0.09) 1.68(0.08) 1.60(0.10) 1.59(0.09) 1.47(0.16) 1.68(0.08) 1.60(0.10)

θ3 0.09(0.08) 0.08(0.08) 0.09(0.08) 0.09(0.07) 0.05(0.09) 0.23(0.07) 0.09(0.08) 0.07(0.08) 0.09(0.08)

θ4

θ5 -0.45(0.04) -0.45(0.04) -0.45(0.04) -0.45(0.04) -0.45(0.04) -0.27(0.05) -0.45(0.04) -0.45(0.05) -0.45(0.04)

θ6 0.39(0.06) 0.39(0.06) 0.39(0.06) 0.38(0.05) 0.39(0.06) 0.39(0.06) 0.40(0.06) 0.38(0.05) 0.39(0.06)

Missingness model

ψ1 1.01(0.06) 1.01(0.06) 1.06(0.07) 1.01(0.06) 0.95(0.09) 3.29(1.32) 1.14(0.11) 0.95(0.08) 1.06(0.07)

ψ2 2.62(0.13) 2.68(0.14) 2.63(0.12) 2.49(0.11) 2.62(0.13) 4.65(0.76) 2.95(0.45) 2.49(0.12) 2.70(0.14)

ψ3 4.35(0.18) 4.36(0.18) 4.36(0.17) 4.39(0.16) 4.39(0.19) 4.09(0.25) 4.29(0.19) 4.44(0.19) 4.37(0.18)

ψ4

ψ5 0.10(0.04) 0.10(0.04) 0.09(0.04) 0.10(0.04) 0.07(0.06) 0.39(0.05) 0.07(0.05) 0.06(0.05) 0.09(0.04)

ψ6 0.14(0.08) 0.18(0.08) 0.14(0.08) 0.15(0.08) 0.14(0.08) 0.29(0.08) 0.10(0.10) 0.15(0.08) 0.17(0.09)

ψ7 -0.32(0.06) 0.38(0.47) -3.82(1.42) -0.68(0.37) 0.44(0.38) -0.32(0.06)

ψ8 -0.33(0.30) +∞ -3.01(0.77) -1.36(1.13) +∞ -0.36(0.30)

-loglik 15926.04 15925.49 15914.42 15915.71 15925.78 15920.05 15914.04 15915.14 15913.76
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Further, within Table 6.2, Model 3 and Model 4 still provide the most adequate

description. The likelihood ratio test statistics for comparing Models 1 and 3 and

Models 1 and 4 equal 23.00 and 22.98, respectively, while those for extending Model 3

and Model 4 further along the edges of Figure 6.1, are all smaller than 1.50, and

therefore not significant. Thus, from this set of models, one observes that gender

improves the fit but the nature of the missingness mechanism does not change. In

Chapter 5 a similar result was found. Without covariates a MCAR model was found

to be the most adequate one. Including the effect of duration in the measurement

model changed the nature of the missingness mechanism, by making it more complex.

When further including duration in the missingness part, all evidence for non-MCAR

missingness disappeared and again the same MCAR model was found to be best.

It was also clear that the effect of duration on the missingness model could not be

neglected.

Including a varying gender effect instead of a constant one, again improves the

fit a lot (in all models LRT > 100 with 2df). Here too, Models 3 and 4 are to be

preferred, although the extension of Model 4 to Model 7 is borderline non-significant

(LRT = 3.34), and in Model 7 the estimate of ψ8 no longer lies on the boundary of

the parameter space. Also worthwhile to mention is that in the measurement model,

gender has an opposite effect on both marginal probabilities (negative for mental

health, positive for fixed general practitioner), while in the missingness model there

is a borderline significant positive effect. The negative effect of gender on mental

health can be interpreted as men having a higher probability of bad mental health

than women, while the positive effect of gender on fixed general practitioner means

that men are having a higher probability of having a fixed general practitioner than

women.

For the covariate education the same conclusions can be drawn concerning the

model selection. Models 3 and 4, with a varying education effect, provide the most

adequate description from all models in Tables 6.4–6.5, although the extension to

Model 7 is again borderline non-significant, and will be considered as well. In the mea-

surement model, the effect of education seems to be significant only for the marginal

probability of fixed general practitioner, not for the marginal probability of mental

health, with the interpretation that the higher the education, the higher the proba-

bility of having a fixed general practitioner. In the missingness model, the influence

of education is opposite for both marginal probabilities (negative for missingness in

mental health, positive for missingness in fixed general practitioner).

Important modeling and data analytic conclusions can be drawn. It is clear that

covariate effects need not be the same on all marginal probabilities, in the measure-
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Table 6.4: Health Interview Survey Data. Maximum likelihood estimates and standard errors of the

Dale-Dale models. 81 observations not included. Constant effect of education.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.94(0.07) 0.94(0.07) 0.94(0.07) 0.96(0.06) 0.84(0.11) 0.34(0.06) 0.96(0.07) 0.90(0.09) 0.93(0.07)

θ2 2.37(0.07) 2.36(0.07) 2.37(0.07) 2.45(0.06) 2.43(0.09) 2.44(0.07) 2.45(0.07) 2.48(0.08) 2.36(0.07)

θ3 0.01(0.08) 0.01(0.08) 0.01(0.08) 0.01(0.07) 0.07(0.09) 0.17(0.08) 0.01(0.08) 0.01(0.08) 0.01(0.08)

θ4 -0.05(0.02) -0.05(0.02) -0.05(0.02) -0.05(0.01) -0.06(0.02) -0.07(0.02) -0.05(0.02) -0.06(0.02) -0.05(0.02)

θ5

θ6

Missingness model

ψ1 1.43(0.08) 1.43(0.08) 1.44(0.08) 1.43(0.07) 1.67(0.26) +∞ 1.43(0.07) 1.57(0.16) 1.44(0.08)

ψ2 3.10(0.09) 3.15(0.15) 3.09(0.09) 2.99(0.08) 3.09(0.09) 5.91(0.24) 2.99(0.08) 2.99(0.09) 3.14(0.14)

ψ3 4.36(0.18) 4.37(0.18) 4.37(0.18) 4.41(0.16) 4.46(0.24) 4.04(0.25) 4.41(0.18) 4.44(0.19) 4.37(0.18)

ψ4 -0.07(0.02) -0.07(0.02) -0.06(0.02) -0.07(0.02) -0.07(0.02) -0.03(0.02) -0.07(0.02) -0.07(0.02) -0.06(0.02)

ψ5

ψ6

ψ7 -0.31(0.06) -0.65(0.56) -∞ -0.08(0.08) -0.39(0.36) -0.31(0.06)

ψ8 0.15(0.33) +∞ -3.71(0.24) +∞ +∞ -0.16(0.33)

-loglik 15839.06 15838.95 15828.54 15827.65 15838.57 15832.29 15827.09 15827.36 15828.42
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Table 6.5: Health Interview Survey Data. Maximum likelihood estimates and standard errors of the Dale-

Dale models. 81 observations not included. Effect of education different on both marginal probabilities.

Effect Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Measurement model

θ1 0.72(0.08) 0.72(0.08) 0.72(0.08) 0.72(0.07) 0.79(0.09) 0.99(0.07) 0.72(0.08) 0.78(0.09) 0.72(0.08)

θ2 2.85(0.12) 2.85(0.12) 2.85(0.12) 2.95(0.11) 2.85(0.12) 2.85(0.12) 2.95(0.12) 2.95(0.12) 2.85(0.12)

θ3 0.02(0.08) 0.02(0.08) 0.02(0.08) 0.02(0.07) -0.02(0.08) -0.08(0.07) 0.02(0.08) 0.01(0.08) 0.02(0.08)

θ4

θ5 0.01(0.02) 0.01(0.02) 0.01(0.02) 0.01(0.02) 0.02(0.02) 0.04(0.02) 0.01(0.02) 0.02(0.02) 0.01(0.02)

θ6 -0.17(0.03) -0.17(0.03) -0.17(0.03) -0.18(0.03) -0.17(0.03) -0.17(0.03) -0.18(0.03) -0.18(0.03) -0.17(0.03)

Missingness model

ψ1 1.53(0.07) 1.53(0.08) 1.54(0.08) 1.53(0.07) 1.40(0.11) 1.14(0.08) 1.53(0.08) 1.42(0.11) 1.54(0.08)

ψ2 2.14(0.12) 2.27(0.16) 2.13(0.12) 2.05(0.11) 2.15(0.13) 1.83(0.12) 2.06(0.11) 2.05(0.11) 2.26(0.17)

ψ3 4.42(0.18) 4.43(0.18) 4.43(0.18) 4.47(0.17) 4.47(0.20) 4.61(0.20) 4.47(0.16) 4.51(0.19) 4.44(0.18)

ψ4

ψ5 -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02) -0.09(0.02)

ψ6 0.19(0.03) 0.19(0.03) 0.19(0.03) 0.18(0.03) 0.19(0.03) 0.20(0.03) 0.18(0.03) 0.18(0.03) 0.19(0.03)

ψ7 -0.30(0.06) 0.44(0.33) +∞ -0.07(0.07) 0.38(0.29) -0.30(0.06)

ψ8 -0.35(0.28) +∞ 2.74(0.32) +∞ +∞ -0.35(0.27)

-loglik 15789.46 15788.71 15779.33 15778.05 15788.78 15787.34 15777.57 15777.41 15778.58
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ment model as well as in the missingness model. Thus, a varying covariate effect needs

to be investigated. It should also be noted that the parameter estimates of the covari-

ates in the measurement part are remarkably stable among the 9 Dale-Dale models.

This implies that, in case one is primarily interested in a specific covariate effect on

mental health and fixed general practitioner, all models containing this effect pro-

vide very similar evidence. This need not be the case in general. However, attention

is more and more devoted to the nature of the missingness mechanism. Therefore,

one should still exercise caution, since non-random missingness models heavily rely on

untestable assumptions (Verbeke and Molenberghs, 2000). In our analyses, more than

one model, with completely different assumptions, turned out to describe the data

well. So it is important to search for observations which may drive these conclusions

(Verbeke et al., 2001b).

6.5 Conclusions

We have presented a set of models for multivariate ordinal data, based on the mul-

tivariate Dale model (Molenberghs and Lesaffre, 1994). A natural hierarchy between

the models exist. We considered two binary outcomes, and therefore a bivariate Dale

model for the outcomes is combined with the same bivariate Dale model for the non-

response, resulting in the so-called Dale-Dale model. Several plausible model strate-

gies (the inclusion of constant or varying covariate effects in both the measurement

and missingness model) have been considered. While we focus on bivariate binary

outcomes, the model formulation to incorporate more than two assessments and/or

possibly ordinal outcomes, is straightforward, using the multivariate Dale model. The

Dale-Dale model is particularly attractive when a varying covariate effect is deemed

necessary. In our case study, the models allowing for this varying covariate effect in

both the measurement and the missingness model, provided the best fit.

In our data analysis, the estimates of the measurement model parameters are

remarkably stable, no matter which assumptions are made regarding the reasons for

non-response. When interest lies only in the effect of a specific covariate on the

measurement model, all models containing this effect provide very similar evidence.

The model selection (independent of the included covariate effects) pointed out that

a missing value for either mental health or fixed general practitioner depends on the

value of fixed general practitioner. The model that combines both assumptions is

(borderline) non-significant. To strengthen the data analytic findings, it is best to

conduct a sensitivity analysis, which will be the topic of Chapter 8.





7
Pattern-Mixture Models for

Categorical Outcomes with

Non-Monotone Missingness

Whereas most models for incomplete longitudinal data are formulated within the

selection model framework, pattern-mixture models have gained considerable interest

in recent years (Little, 1993, 1994), since it is often argued that selection models,

although identifiable, should be approached with caution, especially in the context of

MNAR models (Glynn, Laird and Rubin, 1986).

In this chapter, focus is on several strategies to fit pattern-mixture models for non-

monotone categorical outcomes. Also in this setting the issue of under-identification

in pattern-mixture models is present. Little (1993, 1994) solves this problem through

the use of identifying restrictions: inestimable parameters of the incomplete patterns

are set equal to (functions of) the parameters describing the distribution of the com-

pleters. In this way, the conditional distribution of the unobserved measurements,

given the observed ones in a specific pattern, is specified. While several authors per-

ceive this under-identification as a drawback, we believe it is an asset since it forces

one to reflect on the assumptions made.

Generally, interest is not only in the pattern-specific effect of included covariates

93
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(e.g., treatment effect), but also in the overall effect of this covariate. However, this

cannot be obtained by simply averaging the pattern-specific effects, as is the case when

using linear mixed models. Therefore, attention will also be given to the derivation of

the marginal covariate effect in pattern-mixture models for non-monotone categorical

data.

In Section 7.1, the general context of pattern-mixture models will be sketched. The

strategy of identifying restrictions is the topic in Section 7.2, while Section 7.3 focuses

on the special case of three measurements. Section 7.4 gives attention to the use of

the multivariate Dale model, introduced in Section 6.1, to fit pattern-mixture models

for categorical outcomes, while Section 7.5 will discuss the assumptions needed when

intermittent missingness is present. Section 7.6 focuses on the derivation of marginal

effects in pattern-mixture models. Finally, in Section 7.7, the developed techniques

will be used to reanalyze the fluvoxamine data.

7.1 General Form of Pattern-Mixture Models

The family of pattern-mixture models is based on the factorization

f(yi, ri|θ,ψ) = f(yi|ri,θ)f(ri|ψ),

where dependence on covariates is suppressed from notation. When restricting atten-

tion to dropout only, we obtain

f(yi, di|θ,ψ) = f(yi|di,θ)f(di|ψ).

Thus, the conditional density of the measurements given the dropout pattern is com-

bined with the marginal density describing the dropout mechanism. Note that the

second factor can depend on covariates, but not on outcomes. It is, of course, possible

to have different covariate dependencies in both components of the factorization.

The measurement model has to reflect dependence on dropout. We will illustrate

this idea on a simple setting. Consider a continuous response at three measurement

occasions, modeled using a trivariate Gaussian distribution. Assume that dropout

may occur at time points 2 or 3, and let the dropout indicator ti take value 1 or 2

indicating that the last observation occurred at this time point, and 3 indicating there

is no dropout. Then, in a first instance, the model assumes a different distribution

for each dropout pattern. We can write

yi | ti ∼ N(µ(ti),Σ(ti)), (7.1)
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where

µ(t) =





µ1(t)

µ2(t)

µ3(t)




and Σ(t) =





σ11(t) σ21(t) σ31(t)

σ21(t) σ22(t) σ32(t)

σ31(t) σ32(t) σ33(t)




,

for t = 1, 2, 3. Recall that t indicates the length of a sequence. Let P (t) = πt =

f(ti|ψ), then the marginal distribution of the response is a mixture of normals with,

for example, mean

µ =
3∑

t=1

πtµ(t).

Its variance can be derived by application of the delta method. Suppose that, for

large n, Tn is normally distributed around θ with standard error σ√
n
, and let g be a

function that is at least twice differentiable at θ, then g(Tn) will be approximately

normal around g(θ) with variance
[g′(θ)]2σ2

n
(Agresti, 2002).

However, although the πt can be simply estimated from the observed proportions

in each dropout group, only 16 of the 27 response parameters can be identified from

the data without making further assumptions. These 16 parameters comprise all those

from the completers plus those from the following two submodels:

N







 µ1(2)

µ2(2)



;



 σ11(2) σ21(2)

σ21(2) σ22(2)







 and N (µ1(1);σ11(1)) .

This is a saturated pattern-mixture model and the representation makes it clear

which information is provided by each dropout group and, consequently, which as-

sumptions are needed in order to predict the behavior of the unobserved responses,

and to obtain marginal models for the response. However, this model contains under-

identified members since it describes the full set of measurements in pattern ti, even

though there are no measurements after occasion ti. At first sight, this leaves them

open to the same criticism as selection models, but Little (1993) claims that the

pattern-mixture approach is more honest, because parameters for which the data

provide information are clearly distinguished from parameters for which there is no

information at all. Several strategies can be followed to solve this problem of under-

identification. A first one is based on Little (1993, 1994), who advocated the use of

identifying restrictions which works well in relatively simple settings. Molenberghs

et al. (1998) proposed a particular set of restrictions for the monotone case which

corresponds to MAR and in Thijs et al. (2002) a formal way how to deal with these
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kind of restrictions is introduced. Section 7.2 will focus on these identifying restric-

tions. Alternatively, several types of simplified (identified) models can be considered.

The advantage is that the number of parameters decreases, which is generally an issue

with pattern-mixture models. Hogan and Laird (1997) noted that in order to estimate

the large number of parameters in general pattern-mixture models, one has to make

the awkward requirement that each dropout pattern is sufficiently “filled”, in other

words, one has to require large numbers of dropouts. This problem is less prominent

in simplified models. Note however that simplified models, qualified as “assumption

rich” by Sheiner, Beal and Dunne (1997), are also making untestable assumptions

and therefore illustrate that even pattern-mixture models do not provide a free lunch.

A main advantage however is that the need of assumptions and their implications is

more obvious.

7.2 Identifying Restrictions

For the time being, we restrict attention to monotone patterns. In general, let us

assume that we have patterns t (t = 1, . . . , n, but not necessary all of them are

present), where the dropout indicator is d = t + 1. For pattern t, the complete data

density is given by

ft(y1, . . . , yn) = ft(y1, . . . , yt)ft(yt+1, . . . , yn|y1, . . . , yt). (7.2)

The first factor is clearly identified from the observed data, while the second factor is

not. It is assumed that the first factor is known or, more realistically, can be modeled

using the observed data. Then, identifying restrictions are applied in order to identify

the second component.

While, in principle, completely arbitrary restrictions can be used by means of

any valid density function over the appropriate support, strategies which relate back

to the observed data deserve privileged interest. One can base identification on all

patterns for which a given component ys is identified. A general expression for this is

ft(ys|y1, . . . ys−1) =

n∑

j=s

ωsjfj(ys|y1, . . . ys−1), s = t + 1, . . . , n. (7.3)

Let ωs = (ωss, . . . , ωsn)′. Every ωs with components summing to one, provides a

valid identification scheme. Let us incorporate (7.3) into (7.2):

ft(y1, . . . , yn) = ft(y1, . . . , yt)

n−t−1∏

k=0




n∑

j=n−k

ωn−k,jfj(yn−k|y1, ..., yn−k−1)



 . (7.4)
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Expression (7.4) clearly shows which information is used to complement the observed

data density in pattern t in order to establish the complete data density.

Let us consider three special but important cases. Little (1993) proposed complete

case missing value (CCMV), which uses the following identification:

ft(ys|y1, . . . ys−1) = fn(ys|y1, . . . ys−1), s = t + 1, . . . , n.

In other words, the conditional distribution beyond time t is always borrowed from the

conditional distribution from the completers. This strategy can be defended in cases

where the bulk of the subjects are complete and only small proportions are assigned

to the various dropout patterns. Also, extension of this approach to non-monotone

patterns is particularly easy.

Alternatively, the nearest identified pattern can be used:

ft(ys|y1, . . . ys−1) = fs(ys|y1, . . . ys−1), s = t + 1, . . . , n.

We will refer to these restrictions as neighboring case missing value (NCMV).

The third special case of (7.3) will be available case missing value (ACMV). It has

been shown in Molenberghs et al. (1998), that for monotone missing data ACMV in

the pattern-mixture context is equivalent with MAR in the selection model framework.

Let us derive the corresponding ωs vectors. Expression (7.3) can be restated as

ft(ys|y1, . . . , ys−1) = f(≥s)(ys|y1, . . . , ys−1), (7.5)

for s = t + 1, . . . , n. Here, f(≥s)(.|.) ≡ f(.|., d > s), with d an indicator for time of

dropout, which is one more than the length of the observed sequence. Now, we can

transform (7.5) as follows:

ft(ys|y1, . . . , ys−1) = f(≥s)(ys|y1, . . . , ys−1)

=
f(≥s)(y1, . . . , ys)

f(≥s)(y1, . . . , ys−1)

=

∑n
j=s πjfj(y1, . . . , ys)∑n

ℓ=s πℓfℓ(y1, . . . , ys−1)

=
n∑

j=s

πjfj(y1, . . . , ys−1)∑n
ℓ=s πℓfℓ(y1, . . . , ys−1)

fj(ys|y1, . . . , ys−1). (7.6)

Next, comparing (7.6) to (7.3) yields:

ωsj =
πjfj(y1, ..., ys−1)∑n
ℓ=s πℓfℓ(y1, ..., ys−1)

, (7.7)
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where πj is the fraction of observations in pattern j (Molenberghs et al., 1998).

Clearly, ωs defined by (7.7) consists of components which are nonnegative and sum

to one. In other words, a valid density function is defined. Note that the number of

parameters in ωs increases rapidly. There are several ways to deal with this. First,

special but important restrictions such as CCMV, NCMV and ACMV do not suffer

from this problem since each of the ω’s involved is then determined by the choice of re-

striction. Second, one may set all ω’s equal to the same constant, chosen from a small

set, for example spanning the unit interval. Third, one could put prior distributions

on the ω’s. The first solution is followed in the remainder of this chapter.

Since there exists a link between MAR in the selection and ACMV in the pattern-

mixture families, it is also of interest to consider pattern-mixture alternatives for

the MNAR family. The class of models where dropout may depend on the current,

possibly unobserved, measurement, but not on future measurements, will be termed

missing non-future dependent (MNFD). While they are natural and easy to consider

in a selection model context, there exist important examples of mechanisms that do

not satisfy MNFD, such as shared-parameter models (Wu and Bailey, 1989; Little,

1995). Kenward, Molenberghs and Thijs (2003) have shown there is a counterpart to

MNFD in the pattern-mixture context. They defined non-future dependent missing

value restrictions (NFMV), which exclude mechanisms such as CCMV and NCMV.

Kenward, Molenberghs and Thijs (2003) have shown that, for longitudinal data with

dropouts, MNFD and NFMV are equivalent.

Restrictions (7.3), with the CCMV, NCMV, and ACMV forms as special cases,

can be incorporated in a comprehensive strategy to fit pattern-mixture models. We

will briefly sketch the strategy to fit those models.

1. Fit a model to the pattern-specific identifiable densities: ft(y1, . . . , yt). This

results in a parameter estimate, φt.

2. Select an identification method of choice.

3. Using this identification method, determine the conditional distributions of the

unobserved outcomes, given the observed ones:

ft(yt+1, . . . , yn|y1, . . . , yt). (7.8)

4. Draw multiple imputations for the unobserved components, given the observed

outcomes and the correct pattern-specific density (7.8).

5. Analyze the multiply-imputed sets of data using the method of choice. This
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can be another pattern-mixture model, but also a selection model or any other

desired model.

6. Inferences can be conducted in the standard multiple imputation way (Rubin,

1987; Schafer, 1997; Verbeke and Molenberghs, 2000): the M within-imputation

estimates for φ are pooled to give the multiple imputation estimate

φ̂
∗

=
1

M

M∑

m=1

φ̂
m

.

The variance is obtained as a weighted sum of the within-imputation variance

and the between-imputations variance:

V = W +

(
M + 1

M

)
B (7.9)

where

W =
1

M

M∑

m=1

Var(φ̂
m

)

is the average within imputation variance, and

B =
1

M − 1

M∑

m=1

(φ̂
m − φ̂

∗
)(φ̂

m − φ̂
∗
)′

is the between imputation variance.

7.3 A Special Case: Three Measurements

In this section, we consider the special but insightful case of three measurements.

Identification (7.4) then takes the following form:

f3(y1, y2, y3) = f3(y1, y2, y3), (7.10)

f2(y1, y2, y3) = f2(y1, y2)f3(y3|y1, y2), (7.11)

f1(y1, y2, y3) = f1(y1) [ωf2(y2|y1) + (1 − ω)f3(y2|y1)] f3(y3|y1, y2). (7.12)

Since f3(y1, y2, y3) is completely identifiable from the data, and for f2(y1, y2, y3) there

is only one possible identification, given (7.3), the only place where a choice has to be

made is pattern 1. Setting ω = 1 corresponds to NCMV, while ω = 0 implies CCMV.

Using (7.7) in this particular case, ACMV corresponds to

ω =
π2f2(y1)

π2f2(y1) + π3f3(y1)
. (7.13)
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The conditional density f1(y2|y1) in (7.12) can be rewritten as

f1(y2|y1) = ωf2(y2|y1) + (1 − ω)f3(y2|y1)

=
π2f2(y1, y2) + π3f3(y1, y2)

π2f2(y1) + π3f3(y1)
.

Let us now show which steps are required to draw from the conditional densities,

without specifying any parametric form for these densities.

1. Estimate the parameters of the identifiable densities: f3(y1, y2, y3) from pat-

tern 3, f2(y1, y2) from pattern 2, and f1(y1) from pattern 1.

2. To properly account for the uncertainty with which the parameters are esti-

mated, we need to draw from them as is customarily done in multiple imputa-

tion. More precisely, we will draw a parameter vector of its distribution and

assume that in all densities from which we draw, this parameter vector is used.

3. For pattern 2. Given an observation in this pattern, with observed values

(y1, y2), calculate the conditional density f3(y3|y1, y2) and draw from it.

4. For pattern 1. We now have to distinguish three substeps.

(a) There is now only one ω involved: for pattern 1, in order to determine

f1(y2|y1), as a combination of f2(y2|y1) and f3(y2|y1). Every ω in the unit

interval is valid. Specific cases are:

• ω = 0: CCMV,

• ω = 1: NCMV,

• ω calculated from (7.13), and identifies a linear combination across

patterns: ACMV. Note that, given y1, this is a constant, depending

on π2 and π3.

To pick one of the two components f2 or f3, we need to generate a random

uniform variate, U say, except in the boundary NCMV and CCMV cases.

(b) If U ≤ ω, calculate f2(y2|y1) and draw from it. Otherwise, do the same

based on f3(y2|y1).

(c) Given the observed y1 and given y2 which has just been drawn, calculate

the conditional density f3(y3|y1, y2) and draw from it.

All steps but the first one have to be repeated M times.

In case the observed densities are assumed to be normal, the corresponding con-

ditional densities are particularly straightforward. However, in several cases, the
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conditional density is a mixture of normal densities. Then an additional and straight-

forward draw from the components of the mixture is necessary. Similar developments

are possible with categorical data, ensuring that draws from the proper conditional

multinomial distributions are made. In the next sections, attention will be devoted

to this last feature.

7.4 Pattern-Mixture Models for Categorical Out-

comes

In the remainder of this chapter, we will restrict attention to the special case of

three binary measurements. Extension to more than three outcomes, or to more than

two outcome categories, is straightforward. The multivariate Dale model, introduced

in Section 6.1, will be used to estimate the parameters of the identifiable densities.

For the completers (pattern 3), a trivariate Dale model will be used, for pattern 2 a

bivariate Dale model, and a univariate Dale model for pattern 1. We will term this the

minimal approach. The multivariate Dale model combines logistic regression for each

of the measurements with marginal global odds ratios to describe the association

between outcomes. For three measurements, this results in the following logistic

regressions and odds ratios (subject-specific indices i are removed for the ease of

notation):

η1 = ln

(
p1++

1 − p1++

)
= X1θ,

η2 = ln

(
p+1+

1 − p+1+

)
= X2θ,

η3 = ln

(
p++1

1 − p++1

)
= X3θ,

η4 = ln ϕ12 = ln

(
p11+(1 − p1++ − p+1+ + p11+)

(p1++ − p11+)(p+1+ − p11+)

)
= X4θ,

η5 = ln ϕ13 = ln

(
p1+1(1 − p1++ − p++1 + p1+1)

(p1++ − p1+1)(p++1 − p1+1)

)
= X5θ,

η6 = ln ϕ23 = ln

(
p+11(1 − p++1 − p+1+ + p+11)

(p++1 − p+11)(p+1+ − p+11)

)
= X6θ,

η7 = ln ϕ123 = ln

(
p111p122p212p221

p112p121p211p222

)
= X7θ.

Therefore, the incomplete patterns provide information neither about the unobserved

outcomes, nor about the associations involving those unobserved outcomes. Thus, for
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pattern 2, only η1, η2 and η4 can be obtained from the data, while for pattern 1 only

η1 will be available.

Also in this setting, one is interested in model parameters for the full set of re-

peated outcomes, and thus identifying restrictions are necessary to determine the

unknown probabilities by equating them to functions of known probabilities. In the

normal case, restrictions are very natural to apply, because marginal as well as condi-

tional distributions can be expressed as simple functions of the mean vector and the

covariance matrix components. For categorical data however, and the Dale model in

particular, there is no easy transition from marginal to conditional distributions in

terms of the model parameters.

First, the minimal approach is followed in the sense that a trivariate Dale model

for the complete pattern is combined with a bivariate and univariate Dale model for

the incomplete patterns. From this approach the underlying probabilities py1y2y3|3,

py1y2|2 and py1|1 can be estimated. For pattern 2, there is only one possibility to

impute the missing cell counts, since information on the third measurement can only

be borrowed from pattern 3. So, the partial counts Zy1y2|2 and the conditional prob-

abilities py3|y1y2,3 have to be used to identify Z∗
y1y2y3|2 from Zy1y2|2py3|y1y2,3. For

pattern 1, we have several possibilities to impute the missing cell counts, since infor-

mation on the second measurement can be borrowed from pattern 2 as well as from

pattern 3. The joint probability of y1, y2 and y3 in pattern 1 can be written as

py1y2y3|1 = py1|1
[
ωpy2|y1,2 + (1 − ω)py2|y1,3

]
py3|y1y2,3,

where specific choices of ω lead to the previously defined identifying restrictions

CCMV, NCMV and ACMV:

CCMV : py1|1py2|y1,3py3|y1y2,3,

NCMV : py1|1py2|y1,2py3|y1y2,3,

ACMV : ω =
π2py1|2

π2py1|2 + π3py1|3
,

such that the missing cell counts can be identified as follows:

CCMV : Z∗
y1y2y3|1 = Zy1|1py2|y1,3py3|y1y2,3,

NCMV : Z∗
y1y2y3|1 = Zy1|1py2|y1,2py3|y1y2,3,

ACMV : Z∗
y1y2y3|1 = Zy1|1

[
π2py1y2|2 + π3py1y2|3

π2py1|2 + π3py1|3

]
py3|y1y2,3.

To perform the corresponding imputations, we use a uniform random number

generator. Suppose the count Z is to be distributed over the cells Zk, k = 1, . . . , c.
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Figure 7.1: Three-dimensional representation of all possible patterns for three binary

outcomes with intermittent missingness. The horizontal axis displays the first mea-

surement, the vertical axis corresponds to the second measurement, and the third axis

with the last measurement.

Then, the cumulative probabilities λ0, . . . , λc are calculated and Z draws Ut from a

uniform U [0, 1] distribution are made. Next, Zk is set equal to
∑

t(λk−1 < Ut ≤ λk).

From the completed counts Z∗
y1y2y3|1 and Z∗

y1y2y3|2, and from Zy1y2y3|3, one can

estimate the parameters of interest, for example a trivariate Dale model for the three

patterns separately, or a trivariate Dale model where pattern is included as a covariate.

Also other possible models can be fitted to the completed counts.

Although parameter estimation is very elegant and computationally simple with

the above two-step procedure, precision estimation is less straightforward. Indeed,

treating the filled-in table as if it represented observed data fails to reflect random

variability in the unobserved counts. Therefore, multiple imputation will be used to

construct an asymptotic covariance matrix of the form (7.9).

7.5 Specific Assumptions for Intermittent Missing-

ness

Since this thesis is mainly devoted to the analysis of non-monotone missing data, we

will also consider this case in the setting of pattern-mixture models.
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Figure 7.2: Two-dimensional representation of all possible patterns for three outcomes

with intermittent missingness, in the same order as in Figure 7.1. A solid square

represents an observed measurement. From left to right, and from top to bottom, we

have patterns 3, 2 and 1 as defined before, and further the non-monotone patterns 4,

5, 6, 7 and 8.

In Figure 7.1, a three-dimensional graphical representation is given of all possible

patterns for three binary outcomes when intermittent missingness is allowed. Fig-

ure 7.2 gives an equivalent two-dimensional representation. The first three patterns

are the monotone patterns, which have already been discussed in Section 7.4. Pat-

tern 3 is the fully observed pattern, and does not need any imputation. Patterns 1

and 2 will be considered again in this section, since many more possibilities will be

available now to impute the unobserved data.

Let us first consider the patterns for which only one measurement is missing,

namely patterns 2, 4 and 5, where the third, the second and the first outcome, re-

spectively, are not observed. A bivariate Dale model can be used to fit the observed

data densities f1(y1, y2), f4(y1, y3) and f5(y2, y3). Since it is recommended to use

as much of the available data as possible to impute the conditional distributions of

the unobserved outcomes, given the observed ones, we can only use information from

pattern 3 to impute the unobserved data. This results in the following complete data

densities:

f2(y1, y2, y3) = f2(y1, y2)f3(y3|y1, y2),

f4(y1, y2, y3) = f4(y1, y3)f3(y2|y1, y3),

f5(y1, y2, y3) = f5(y2, y3)f3(y1|y2, y3).

Next, patterns 1, 6 and 7 will be discussed. Here, only one out of the three

outcomes is measured, and a univariate Dale model can be used to obtain f1(y1),

f6(y3) and f7(y2). First, we have to decide which of the two unobserved outcomes will

be imputed first. In the case of monotone missingness, the obvious choice for pattern 1

was to impute first y2 and then y3. In the case of non-monotone missingness, there is
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no such obvious choice. Therefore, we will look at both possibilities. For pattern 6, for

example, we can first consider the conditional density of y1, given y3. Information on

this density can be borrowed from either the completers (pattern 3) or the neighbors

(pattern 4), or a combination of both densities. Thus, we obtain the previously

defined identifying restrictions CCMV, NCMV and ACMV. The conditional density

of y2, given y1 and y3, can only be borrowed from pattern 3. Similarly, the conditional

density of y2, given y3, can be obtained first, using one of the available identifying

restrictions, and afterwards the conditional density of y1, given y2 and y3. Thus, the

complete data densities for patterns 1, 6 and 7 can be written as:

f1(y1, y2, y3) =





f1(y1) [ωf2(y2|y1) + (1 − ω)f3(y2|y1)] f3(y3|y1, y2),

f1(y1) [ωf4(y3|y1) + (1 − ω)f3(y3|y1)] f3(y2|y1, y3),

f6(y1, y2, y3) =





f6(y3) [ωf4(y1|y3) + (1 − ω)f3(y1|y3)] f3(y2|y1, y3),

f6(y3) [ωf5(y2|y3) + (1 − ω)f3(y2|y3)] f3(y1|y2, y3),

f7(y1, y2, y3) =





f7(y2) [ωf2(y1|y2) + (1 − ω)f3(y1|y2)] f3(y3|y1, y2),

f7(y2) [ωf5(y3|y2) + (1 − ω)f3(y3|y2)] f3(y1|y2, y3),

where, in all cases, ω = 0 corresponds to CCMV, ω = 1 to NCMV, and ω as in (7.13),

with the corresponding densities and pattern probabilities, corresponds to ACMV.

So, we can either choose one of the two possibilities to determine the complete data

density, or use a linear combination of both expressions. This combination is topic of

further research.

Finally, pattern 8 does not contain any observed data, such that it is not possible

to impute the unobserved data conditional on the observed data. This pattern will

therefore be ignored.

7.6 Marginal Effects Across Patterns

We already mentioned that several strategies can be followed to analyze the imputed

data sets. When a selection model is used, an overall effect of the covariates of interest

(e.g., treatment effect) is obtained immediately from the model. When, however, a

pattern-mixture model is used to analyze the multiply imputed sets of data, the

overall covariate effect cannot be obtained directly, since the effect is modeled for

each pattern separately. In the case of continuous data, where linear models are used,

the overall effect is simply a weighted average of the pattern-specific effects. We will

show that this is not true for categorical data. We therefore assume that the logistic
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regression

P (Yij = 1|pattern k) =
eαk+βkTi

1 + eαk+βkTi

is used to model the data from pattern k (as in the multivariate Dale model). α and

β can depend on j, but we suppress this index from notation.

Assume interest is in one particular effect T , e.g., treatment effect at the last

occasion, and assume πk to be the pattern probability as defined before. The marginal

success probability is then equal to

K∑

k=1

πk
eαk+βkT

1 + eαk+βkT
. (7.14)

There are three ways to calculate from this the marginal treatment effect at the

last occasion. First, the direct linear approach (Park and Lee, 1999) can be used,

where

β ≃
∑

k

πkβk (7.15)

but this is clearly wrong. Second, the marginal probability can be approximated via

a logistic regression, a probit model or fully using the longitudinal nature, through

a Dale model, a generalized linear mixed model (GLMM), . . . . And third, classical

averaging can be performed. To this effect, keep function (7.14) as is and compute

and graph, or sample. Note that averaging in this way will be similar to the marginal-

ization of random effects models (e.g., GLMM to GEE). Here, the marginalization

is over pattern, rather than over random effects. When a GLMM is used in each

pattern, then there is a double marginalization, one over the random effects and one

over the patterns. We will focus on the second approach, using a marginal logistic

model.

Let us approximate (7.14) by a logistic regression:

f(T ) =
∑

k

πk
eαk+βkT

1 + eαk+βkT
∼= eA+BT

1 + eA+BT
. (7.16)

Then, the logit of f(T ) can be approximated by

F (T ) = logit (f(T )) ∼= A + BT.

Using the first order Taylor expansion, results in

F (0) +
∂F

∂T

∣∣∣∣
T=0

T ∼= A + BT,
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such that

A ≃ F (T = 0) = logit

(
∑

k

πk
eαk

1 + eαk

)
.

It is easily shown that
∂logit(x)

∂x
=

1

x(1 − x)

and
∂f

∂T
=

∑

k

πk

(
eαk+βkT

)
βk

(1 + eαk+βkT )
2 ,

such that

∂F

∂T

∣∣∣∣
T=0

=
1

∑
k πk

eαk

1 + eαk

1
∑

k πk
1

1 + eαk

∑

k

βkπk
eαk

(1 + eαk)
2 ,

and equivalently

B ≃

∑
k βkπk

eαk

1 + eαk

1

1 + eαk(∑
k πk

eαk

1 + eαk

)(∑
k πk

1

1 + eαk

) .

Let Pk =
eαk

1 + eαk
, then the approximate marginalized treatment effect can be esti-

mated using

B ≃
∑

k βkπkPk(1 − Pk)

(
∑

k πkPk) [
∑

k πk(1 − Pk)]
. (7.17)

Note that direct expansion of (7.16), without taking the logit first, leads to exactly

the same expression.

Let us now consider the special case where the treatment effect is the same in each

pattern (βk = β,∀k), then

B ≃ β

∑
k πkPk(1 − Pk)

(
∑

k πkPk) (
∑

k πk(1 − Pk))
,

such that

|B| ≤ |β|. (7.18)

This means that the marginal treatment effect at the last occasion, obtained through

approximation (7.16), will not be larger in absolute value than the marginal treatment

effect, obtained from the direct linear approach (7.15), when the treatment effects are

equal across patterns.
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Proof of Equation (7.18)

Let

g =

(
∑

k

πkPk

) (
∑

k

πk(1 − Pk)

)
−

∑

k

πkPk(1 − Pk)

and

H =
∑

k

πkPk.

To find the extrema of g, we calculate

∂g

∂Pℓ
= πℓ(1 − H) − πℓH − πℓ(1 − 2Pℓ)

= 2πℓ(Pℓ − H)

= 2πℓ

(
Pℓ −

∑

k

πkPk

)
.

g then reaches an extremum if
∂g

∂Pℓ
= 0 for all ℓ. Thus,

πℓ

(
Pℓ −

∑

k

πkPk

)
= 0.

We can exclude πℓ = 0, since such a pattern would vanish. Thus, g reaches an

extremum if

Pℓ =
∑

k

πkPk ∀ℓ ⇔ P1 = . . . = PK ≡ P

and hence ∑

k

πkPk = P
∑

k

πk = P.

At this extremum, g = P (1−P )−P (1−P ) = 0. Now we still have to check whether

this extremum is a minimum or a maximum. Therefore we calculate the second order

derivatives of g.

∂2g

∂P 2
ℓ

= 2πℓ(1 − πℓ)

∂2g

∂Pℓ∂Pm
= 2πℓ (−πm) = −2πℓπm





⇒ ∂2g

∂P ∂P ′ = 2 [diagπ − ππ′]

which is a positive definite matrix. We can conclude that this extremum is a minimum,

and thus g ≥ 0, which means 0 ≤
∑

k πkPk(1 − Pk)

(
∑

k πkPk) (
∑

k πk(1 − Pk))
≤ 1, and |B| ≤ |β|. ¥
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Marginalization when the βk’s are different, may both increase and decrease the

effect, in absolute value. Let us consider the example of two patterns (K = 2). Set

π1 = π, π2 = 1 − π, β1 = 1 and β2 = ρ. Expressions (7.15) and (7.17) then reduce to

π + (1 − π)ρ and
πP1(1 − P1) + ρ(1 − π)P2(1 − P2)

[πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)]
. (7.19)

Let N = [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)]. Choose ρ such that the

equality between both expressions in (7.19) holds:

Nπ + N(1 − π)ρ = πP1(1 − P1) + (1 − π)P2(1 − P2)ρ

(1 − π) [P2(1 − P2) − N ] ρ = π [N − P1(1 − P1)]

⇒ ρ =
π [N − P1(1 − P1)]

(1 − π) [P2(1 − P2) − N ]
. (7.20)

Since ρ ∈ R, setting ρ equal to this value is sufficient to have both equations equal.

ρ + ε and ρ − ε will then make the inequality go both ways.

If P1 = P2 = P then the right expression in (7.19) reduces to

πP (1 − P ) + ρ(1 − π)P (1 − P )

[πP + (1 − π)P ] [π(1 − P ) + (1 − π)(1 − P )]
=

πP (1 − P ) + ρ(1 − π)P (1 − P )

P [π + (1 − π)] (1 − P ) [π + (1 − π)]
,

which is equal to π + (1− π)ρ, and hence, for all ρ, both expressions in (7.19) are the

same. Thus, the difference emerges from a difference in background success probability

Pk. Note also that then in (7.20) the numerator and denominator are both equal to

zero, confirming that the result applies to every ρ.

Now we will determine the sign of ρ for P1 6= P2. Denote the coefficient of π in

the numerator of ρ by f1, and in the denominator by f2. Then

f1 = N − P1(1 − P1)

= [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)] − P1(1 − P1)

and

f2 = − N + P2(1 − P2)

= − [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)] + P2(1 − P2).

Since for π = 0, f1 = P2(1 − P2)− P1(1− P1) = Q and f2 = 0, and for π = 1, f1 = 0

and f2 = P2(1 − P2) − P1(1 − P1) = Q, both functions evolve in the interval [0, Q].

To determine whether there are internal extrema in f1 and f2, we calculate

∂f1

∂π
= (P1 − P2) [π(1 − 2P1) + (1 − π)(1 − 2P2)] ,
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which, since P1 6= P2 by assumption, equals 0 for π equal to

π∗ =
2P2 − 1

2(P2 − P1)
.

∂f2

∂π
equals zero at the same point π∗. By calculating the second order derivatives of

f1 and f2 to π,

∂2f1

∂π2
= − 2(P1 − P2)

2 < 0,

∂2f2

∂π2
= 2(P1 − P2)

2 > 0,

we see that f1 reaches a maximum in π∗, while f2 is minimal in π∗. For example,

suppose P1 = 0.2 and P2 = 0.7, then π∗ = 0.4. At π∗, f1 = 1
2 .12 −P1(1−P1) ≥ 0 and

f2 = − 1
2 .12 +P2(1−P2) ≤ 0. Note that π∗ is a valid extremum in [0, 1] if for P1 < P2,

P1 ≤ 1
2 ≤ P2, and for P1 > P2, P2 ≤ 1

2 ≤ P1.

Let us consider the following situations. When π∗ ∈ [0, 1], and for example P1 ≤
1
2 ≤ P2, or even P1 < 1

2 < P2 since P1 6= P2 (P2 ≤ 1
2 ≤ P1 is similar), then f1 > 0

and f2 < 0, and hence ρ < 0 in a neighborhood of π∗. When π∗ 6∈ [0, 1], then f1 and

f2 are monotonic and both of the same sign, such that ρ is nonnegative. Then there

exist treatment effects (1, ρ) such that there is no dilution of effect, but equality or

inflation. Figure 7.3 shows the curves of f1 and f2 for several values of P1 and P2.

We will study two of those examples in further detail.

Example 1

Assume P1 = 0.2 and P2 = 0.7. Set π equal to π∗ = 0.4. Then f1 = 0.09 and

f2 = −0.04, such that

ρ =
π

1 − π
.
f1

f2
= −0.4

0.6
.
0.09

0.04
= −1.5.

In this case, the treatment effects, (1;−1.5) are in the opposite direction. Since

πP1(1 − P1) = 0.064, (1 − π)P2(1 − P2) = 0.126, πP1 + (1 − π)P2 = 0.5 and π(1 −
P1) + (1 − π)(1 − P2) = 0.5, the marginal treatment effect, calculated by (7.15) and

(7.17) can be summarized as follows, for several values of ρ:

|B| versus |β|
|0.256 + 0.504ρ| |0.4 + 0.6ρ|

ρ = −2 | − 0.752| < | − 0.8|
ρ = −1.5 | − 0.5| = | − 0.5|
ρ = −1 | − 0.248| > | − 0.2|
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Figure 7.3: Graphical representation of the f1 (solid line) and f2 (dotted line) curves

for several values of P1 and P2. In the top panels, π∗ ∈ [0, 1], in the bottom panels,

π∗ 6∈ [0, 1].

Example 2

Assume now P1 = 0.2 and P2 = 0.3. Then π∗ = −2 6∈ [0, 1]. We choose π = 0.5. Now

f1 = 0.0275 and f2 = 0.0225, such that

ρ =
π

1 − π
.
f1

f2
=

0.5

0.5
.
0.0275

0.0225
=

11

9
.

So, in this case, both treatment effects, (1; 1.22) are quite close to each other. Since

πP1(1 − P1) = 0.08, (1 − π)P2(1 − P2) = 0.105, πP1 + (1 − π)P2 = 0.25 and π(1 −
P1) + (1− π)(1− P2) = 0.75, the marginal treatment effect, calculated by (7.15) and

(7.17) can be summarized as follows, for several values of ρ:
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|B| versus |β|
|128/300 + 0.56ρ| |0.5 + 0.5ρ|

ρ = 10/9 |18.88/18| < |19/18|
ρ = 11/9 |10/9| = |10/9|
ρ = 12/9 |21.12/18| > |21/18|

After making all of these considerations, it is clear that determining a marginal

effect across patterns in the case of non-Gaussian data, is less straightforward than

in the Gaussian case. One should bear in mind that the direct linear approach (Park

and Lee, 1999) is not correct in the case of categorical data, and that this method

can neither be considered to be conservative nor liberal, in the sense that there is not

always a dilution of effect, but equality or inflation is also possible.

7.7 Models Fitted to the Fluvoxamine Data

In this section, we will reanalyze the fluvoxamine data. This time, we will consider the

first, second and last side effects measurement, and take into account the gender of the

patient (0 = males, 1 = females). For all patients, the gender is known, leaving 315

patients in the analyses. There are 224 completers (pattern 3), 44 patients missed

the last visit (pattern 2), 31 only appeared at the first visit (pattern 1), 1 person

belongs to pattern 5, 1 to pattern 6, and the remaining 14 patients do not have any

observations at all (pattern 8). For those 14 patients, there is no solution to impute

the missing outcomes, and therefore, they will not be considered in the analyses.

Pattern 5 and pattern 6 both only contain 1 patient (0.33% of the total number of

subjects in the study), so their effect on the results can be ignored. This leaves 299

patients in the study. The data are summarized in Table 7.1.

As described in Section 7.4, we start the analyses with fitting a trivariate Dale

model to the completers, a bivariate Dale model to pattern 2, and a logistic regression

to pattern 1. Then, an identifying restriction is chosen to define the conditional

distributions of the unobserved outcomes, given the observed ones. Afterwards, we

draw multiple imputations (M = 10). We thus obtain for each choice of identifying

restrictions ten multiply-imputed sets of data, which then can be analyzed, using

several possible models.

Let us first discuss the results reported in Table 7.2. A single trivariate Dale

model is fitted, with a constant log odds ratio for each of the possible associations

between outcomes, and a possible effect of gender on the marginal probabilities. We
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Table 7.1: Fluvoxamine Data. ‘Side effects’ (yes/no) at the first (horizontal), second

(vertical) and last visit. Top table for males, bottom table for females.

33 8

1 4

2 2

4

18
4 1

2 13

4 9

53 20

2 25

4 5

3

40
9 3

2 10

5 13

notice that the estimates for the association parameters are very close under the

three possible identifying restrictions. The associations ϕ12, ϕ13 and ϕ23 are highly

significant (p < 0.0001), while ϕ123 is borderline significant (p ≈ 0.045). Also, the

estimates for the first marginal probability are almost equal under CCMV, NCMV and

ACMV. This was to be expected, since the first outcome was observed for all subjects

that were used in the analysis. The parameter estimates for the logistic regression of

the third marginal probability are also quite similar. This is due to the fact that all

identifying restrictions implied the same conditional density for the third outcome,

given the first and second ones, namely borrow it from the completers. The small

difference that is nevertheless observed, results from a difference in imputation for

the second outcome, since the imputation of the third outcome is conditional on the

second one. And as we can see, the estimates for the second marginal probability differ

much between the three identifying restrictions. The CCMV and NCMV estimates,

for the intercept as well as for gender, are lying furthest apart. ACMV estimates are

closer to CCMV estimates, since many more completers are available than neighbors,

thus ω will be smaller than 0.5. Finally, we will contemplate the effect of gender. We

observe that the estimate is negative for the first marginal probability, approximately

zero for the second one, and positive for the third one, meaning that the probability

of no side effects is larger, equal or smaller for males than for females, for the first,
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Table 7.2: Fluvoxamine Data. Multiple imputation estimates and standard errors

for CCMV, NCMV and ACMV. A trivariate Dale model, with marginal probabilities

depending on gender, and constant associations.

CCMV NCMV ACMV

intercept1 -0.1259(0.1949) -0.1266(0.1951) -0.1230(0.1949)

gender1 -0.2528(0.2423) -0.2516(0.2429) -0.2574(0.2424)

intercept2 0.1180(0.1995) 0.0385(0.1984) 0.1060(0.2005)

gender2 -0.0022(0.2536) 0.0375(0.2435) 0.0020(0.2531)

intercept3 0.3245(0.2134) 0.2901(0.2139) 0.3120(0.2166)

gender3 0.2816(0.2675) 0.3159(0.2700) 0.2968(0.2703)

ϕ12 3.1051(0.3433) 3.1218(0.3284) 3.1178(0.3386)

ϕ13 2.0288(0.3072) 2.0047(0.3077) 2.0220(0.3121)

ϕ23 2.8687(0.3583) 2.9588(0.3521) 2.8639(0.3548)

ϕ123 1.8446(0.9272) 1.9283(0.9269) 1.8524(0.9386)

second and last measurement occasion, respectively. However, the effect of gender on

the marginal probabilities is not significant.

Next, a more extended trivariate Dale model is presented in Table 7.3. Now,

pattern-specific intercepts are allowed in the logistic regressions for the marginal

probabilities. The gender effect is assumed to be the same for all patterns, and

the associations between outcomes are still constant. The parameter intercepti is

the intercept in the logistic regression for the ith marginal probability for pattern 3.

pattern1i and pattern2i are dummy variables, such that they correspond to the

difference in intercept between pattern 3 and pattern 1 or pattern 2, respectively. For

the first marginal probability there is no significant difference between the pattern-

specific intercepts. Only in the NCMV case, a borderline non-significant difference

(p ≈ 0.077) is observed between pattern 1 and pattern 3. We notice that the intercept

for pattern 3 is higher than for the other patterns, resulting in a higher probability

of no side effects at the first measurement occasion for the completers. Similar con-

clusions can be found for the second and last occasions. Taking a closer look at the

results for the second marginal probability, we notice that the intercepts for pattern 2

and 3 are significantly different (p ≈ 0.035), while patterns 1 and 3 are only border-

line significantly different (p ≈ 0.05) when NCMV is used, and not significant when
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Table 7.3: Fluvoxamine Data. Multiple imputation estimates and standard errors

for CCMV, NCMV and ACMV. A trivariate Dale model, with marginal probabili-

ties depending on a pattern-specific intercept and a fixed gender effect, and constant

associations.

CCMV NCMV ACMV

intercept1 0.0215(0.2134) 0.0266(0.2131) 0.0238(0.2133)

pattern11 -0.6731(0.4209) -0.7339(0.4151) -0.6736(0.4205)

pattern21 -0.3418(0.3379) -0.3429(0.3376) -0.3426(0.3379)

gender1 -0.3027(0.2458) -0.3013(0.2459) -0.3060(0.2457)

intercept2 0.3164(0.2250) 0.2935(0.2187) 0.3172(0.2240)

pattern12 -0.4485(0.4777) -0.9597(0.4906) -0.5451(0.4927)

pattern22 -0.6989(0.3324) -0.6914(0.3323) -0.7004(0.3325)

gender2 -0.0709(0.2629) -0.0424(0.2514) -0.0725(0.2608)

intercept3 0.4713(0.2326) 0.4503(0.2346) 0.4607(0.2321)

pattern13 -0.2846(0.5761) -0.4108(0.5997) -0.3162(0.5311)

pattern23 -0.5498(0.4615) -0.5469(0.4639) -0.5457(0.4620)

gender3 0.2309(0.2778) 0.2654(0.2812) 0.2476(0.2779)

ϕ12 3.1343(0.3469) 3.1410(0.3361) 3.1406(0.3444)

ϕ13 2.0304(0.3084) 2.0168(0.3134) 2.0208(0.3112)

ϕ23 2.8706(0.3589) 2.9654(0.3573) 2.8624(0.3561)

ϕ123 1.7910(0.9649) 1.9351(0.9666) 1.8100(0.9778)

CCMV or ACMV is used. This can be explained by the fact that for NCMV, pat-

tern 1 borrows all information from pattern 2 and thus takes distance from pattern 3,

while under CCMV and ACMV all or most of the information is borrowed from pat-

tern 3, and therefore there is only little distance between pattern 1 and 3. For the

third marginal probability, there is no significant difference between the three pat-

terns for all identifying restrictions, since the missing information is always identified

from pattern 3. CCMV, NCMV and ACMV lead to almost the same estimates for

all parameters concerning the third marginal probability. Finally, the effect of gender

changes over the different measurement occasions as before, and again its effect on

the marginal probabilities is not significant. The associations ϕ12, ϕ13 and ϕ23 are

highly significant (p < 0.0001), while ϕ123 is now borderline significant (p ≈ 0.045)
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Table 7.4: Fluvoxamine Data. Multiple imputation estimates and standard errors

for CCMV, NCMV and ACMV. A trivariate Dale model, with marginal probabili-

ties depending on a pattern-specific intercept and a pattern-specific gender effect, and

constant associations.

CCMV NCMV ACMV

intercept1 0.1878(0.2364) 0.1933(0.2356) 0.1882(0.2361)

pattern11 -0.9785(0.6495) -1.0467(0.6485) -0.9689(0.6510)

pattern21 -1.0648(0.5433) -1.0659(0.5424) -1.0664(0.5431)

gender1 -0.5432(0.2866) -0.5438(0.2862) -0.5434(0.2865)

pattern1×gender1 0.4447(0.8463) 0.4748(0.8506) 0.4224(0.8521)

pattern2×gender1 1.2278(0.6989) 1.2271(0.6981) 1.2297(0.6991)

intercept2 0.5089(0.2448) 0.5067(0.2456) 0.5087(0.2448)

pattern12 -0.8513(0.7509) -1.5285(0.7823) -0.9168(0.7770)

pattern22 -1.4699(0.5386) -1.4657(0.5382) -1.4711(0.5390)

gender2 -0.3519(0.2937) -0.3517(0.2943) -0.3519(0.2938)

pattern1×gender2 0.6298(1.1582) 0.8790(0.9177) 0.5870(1.1482)

pattern2×gender2 1.3098(0.6927) 1.3032(0.6929) 1.3095(0.6934)

intercept3 0.5916(0.2445) 0.5942(0.2446) 0.5922(0.2446)

pattern13 -0.5736(0.7847) -0.8706(0.8602) -0.6826(0.8516)

pattern23 -0.9877(0.6146) -0.9937(0.6158) -0.9868(0.6134)

gender3 0.0561(0.2979) 0.0542(0.2978) 0.0559(0.2979)

pattern1×gender3 0.4706(0.9388) 0.7796(1.0740) 0.5907(0.9538)

pattern2×gender3 0.7610(0.8722) 0.7683(0.8693) 0.7612(0.8700)

ϕ12 3.1328(0.3456) 3.1271(0.3359) 3.1412(0.3424)

ϕ13 2.0235(0.3102) 2.0092(0.3140) 2.0143(0.3139)

ϕ23 2.9035(0.3702) 2.9732(0.3564) 2.8943(0.3669)

ϕ123 1.7912(0.9537) 1.9162(0.9506) 1.8026(0.9504)

only for NCMV, and borderline non-significant (p ≈ 0.064) for CCMV and ACMV.

Third, Table 7.4 contains parameter estimates of a trivariate Dale model where

now not only the intercept, but also the gender effect is allowed to be different in the

three patterns. Also here intercepti corresponds to the effect of pattern 3, while the
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dummy variables pattern1i and pattern2i model the difference in success probability

between pattern 3 and pattern 1 or 2, respectively. genderi represents the gender

effect in pattern 3, while the interactions between the dummies and gender refer to

the difference in gender effect between pattern 3 and pattern 1 or 2, respectively. The

parameter estimates for the logistic regression of p1++ reveal the following results. The

probability of no side effects is borderline significantly different (p ≈ 0.05) between

pattern 2 and 3, but not significantly different between pattern 1 and 3. Gender is

borderline non-significant (p ≈ 0.058) in pattern 3, and a borderline non-significant

different gender effect occurred between pattern 2 and 3. For p+1+, similar conclusions

are reached, but now the difference in probability of no side effects is highly significant

(p ≈ 0.006) between pattern 2 and 3, and under NCMV borderline significant (p ≈
0.05) between pattern 1 and 3. The gender effect in pattern 3 is not significant

anymore. Finally, the success probability p++1 is not different in the three patterns,

and the gender effect is not significant. The associations ϕ12, ϕ13 and ϕ23 are again

highly significant (p < 0.0001), while ϕ123 is borderline significant (p ≈ 0.044) only

for NCMV, and borderline non-significant (p ≈ 0.059) for CCMV and ACMV.

Finally, a trivariate Dale model is fitted to each of the patterns separately, with

marginal probabilities depending on gender, and constant associations between out-

comes. These results are summarized in Table 7.5. If the previous model was further

extended, with, for the three patterns, different associations between outcomes, the

same estimates would have been obtained, as in Table 7.5. We will now discuss the

estimates that were obtained by fitting a separate trivariate Dale model to each pat-

tern. For pattern 3, of course, there is no difference between the initial estimates

and the multiple imputation estimates, since no imputation was necessary in this

pattern. For patterns 1 and 2, several estimates are tending to infinity, since a lot of

sparse or empty cells were present in the multiply-imputed sets of data, because the

13 males and 18 females in pattern 1, and the 20 males and 24 females in pattern 2,

had to be distributed over 8 cells, with one more likely to be filled than the other.

Especially the association parameters suffer from those empty cells. Therefore, it is

hard to draw conclusions for patterns 1 and 2. Also, it leads to no avail to try to

find the marginal effects of the covariate gender, using the technique of Section 7.6.

If, however, the proportion of subjects was equal in each pattern, then the marginal

gender effects, obtained by using those techniques, would correspond to the gender

effects that resulted from the first model that was fitted.

From all the analyses that are performed here, we can conclude that the first model

is too simple, since all patterns are treated equally, and from more complex models,

we could conclude that there exists some difference in success probability between the
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Table 7.5: Fluvoxamine Data. Estimates from the initial Dale models for the in-

complete data, together with multiple imputation estimates and standard errors for

CCMV, NCMV and ACMV. A trivariate Dale model, with marginal probabilities de-

pending on gender, and constant associations, fitted for each pattern separately.

initial CCMV NCMV ACMV

Pattern 1

intercept1 -0.8109 (0.6009) -0.8329 (0.4665) -1.1210 (14.110) -0.7455 (0.5671)

gender1 -0.1446 (0.7988) -0.0794 (0.6389) 6.0180 (21.981) -0.3621 (0.9958)

intercept2 -0.4042 (0.5910) -13.062 (40.395) -0.5381 (0.7385)

gender2 0.2961 (0.9318) 0.5644 (0.8026) 0.3274 (0.9198)

intercept3 0.0394 (0.7034) -4.3260 (13.075) -0.0734 (0.7340)

gender3 0.5328 (0.8321) 12.117 (37.712) 0.6421 (0.8248)

ϕ12 6.7429 (979.38) -4010.0 (13044) 3.9641 (49.283)

ϕ13 20.529 (2.86E6) 13.581 (2462i) 4.8504 (115.91)

ϕ23 2.6890 (2.0828) 62.209 (205.04) 3.3699 (217.70)

ϕ123 -4.5287 (7.69E43) 226.80 (45980) -1.3710 (707.5i)

Pattern 2

intercept1 -0.8473 (0.4880) 1.4118 (7.2243) 1.4118 (7.2202) 1.4118 (7.2269)

gender1 0.6802 (0.6371) -1.9439 (8.2479) -1.9439 (8.2396) -1.9439 (8.2498)

intercept2 -1.0986 (0.5164) -4.4028 (12.501) -4.4028 (12.497) -4.4028 (12.500)

gender2 1.0986 (0.6583) 4.1350 (12.071) 4.1350 (12.064) 4.1350 (12.070)

intercept3 13.651 (46.566) 13.651 (46.555) 13.651 (46.566)

gender3 -13.221 (46.112) -13.221 (46.107) -13.221 (46.111)

ϕ12 2.9199 (0.8145) 3.9217 (28.152) 3.9217 (62.726) 3.9217 (48.873)

ϕ13 2596.9 (2.86E6) 2596.9 (8249.1) 2596.9 (8609.7)

ϕ23 -9.8258 (54.313) -9.8258 (73.867) -9.8258 (224.30)

ϕ123 2581.9 (7.69E43) 2581.9 (2.62E22) 2581.9 (2.62E22)

Pattern 3

intercept1 0.1956 (0.2376) 0.1956 (0.2376) 0.1956 (0.2376) 0.1956 (0.2376)

gender1 -0.5525 (0.2886) -0.5525 (0.2886) -0.5525 (0.2886) -0.5525 (0.2886)

intercept2 0.5107 (0.2437) 0.5107 (0.2437) 0.5107 (0.2437) 0.5107 (0.2437)

gender2 -0.3522 (0.2929) -0.3522 (0.2929) -0.3522 (0.2929) -0.3522 (0.2929)

intercept3 0.5824 (0.2447) 0.5824 (0.2447) 0.5824 (0.2447) 0.5824 (0.2447)

gender3 0.0679 (0.2987) 0.0679 (0.2987) 0.0679 (0.2987) 0.0679 (0.2987)

ϕ12 3.1325 (0.3889) 3.1325 (0.3889) 3.1325 (0.3889) 3.1325 (0.3889)

ϕ13 2.1026 (0.3533) 2.1026 (0.3533) 2.1026 (0.3533) 2.1026 (0.3533)

ϕ23 2.9471 (0.3726) 2.9471 (0.3726) 2.9471 (0.3726) 2.9471 (0.3726)

ϕ123 1.2110 (0.9510) 1.2110 (0.9510) 1.2110 (0.9510) 1.2110 (0.9510)
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patterns. Thus, this should at least be taken into account. The last model, however,

is too complex, and it was hard to reach convergence, due to a lot of sparse or even

empty cells for the originally incomplete patterns. A golden mean has to be chosen

between the simplest and most complex model. Also non-significant covariate effects

should be removed from the model.

7.8 Conclusions

In this chapter, we reviewed the general concepts of pattern-mixture models and the

technique of identifying restrictions to specify the conditional distribution of the un-

observed measurements, given the observed ones. Then, these concepts were extended

to categorical outcomes. Also, a solution is suggested to handle the intermittent miss-

ing data. They can be identified using the same identifying restrictions as were used

for monotone missingness.

Since interest is often in an overall covariate effect, and not in the pattern-specific

effects only, and since this overall effect cannot be obtained as simple as in the case

of Gaussian data by averaging the pattern-specific effects, a complete section was

devoted to the derivation of a marginal effect of interest. It was also shown that the

method of averaging does not lead to a diluted effect, but likewise can lead to an

equal or increased effect, and thus should not be used as a conservative estimate.

The fluvoxamine data were reanalyzed, using the method of pattern-mixture mod-

els, including identifying restrictions. Several models were fitted to the multiply-

imputed sets of data. Some were too simple, others too complex, leading to sparse or

even empty cells for the originally incomplete patterns, and resulted in convergence

problems. Nevertheless, the different ways in which the data were analyzed, can be

seen as a sensitivity analysis. Especially the use of different identifying restrictions is

a first step in assessing the sensitivity of the assumptions made.

Further research can be devoted to the analysis of other data sets with more

intermittent missingness, such that the suggestions made in this chapter to identify

those missing values, can be explored.





8
Sensitivity Analysis Tools for

Categorical Data

We already indicated in previous chapters that models for incomplete longitudinal

data, especially the parametric MNAR models, are vulnerable to model-assumption

related sensitivity, and therefore it is imperative to study this phenomenon. It turns

out in practice that there are numerous subtle issues not encountered with complete

tables. Some of these issues are purely technical (nonunique, invalid, or boundary

estimates), others are of a more interpretational and philosophical nature (e.g., models

that yield the same or similar fits to the observed data can produce qualitatively

different predictions for the unobserved data; Molenberghs et al., 1999a). With the

growing volume of MNAR based selection models the need for a careful understanding

of such sensitivities, and the development of tools to discern their impact, has been

growing as well (Glynn, Laird and Rubin, 1986). Early, important contributions to

sensitivity analysis have been made by Draper (1995) and Copas and Li (1997).

We could define a sensitivity analysis as one in which several statistical models are

considered simultaneously and/or where a statistical model is further scrutinized using

specialized tools (such as diagnostic measures). This rather loose and very general

definition encompasses a wide variety of useful approaches. The simplest procedure

is to fit a selected number of (non-random) models which are all deemed plausible

121
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or one in which a preferred (primary) analysis is supplemented with a number of

variations. The extent to which conclusions (inferences) are stable across such ranges

provides an indication about the belief that can be put into them. Variations to a

basic model can be constructed in different ways. The most obvious strategy is to

consider various dependencies of the missing data process on the outcomes and/or

on covariates. Alternatively, the distributional assumptions of the models can be

changed.

However, a sensitivity analysis can also be performed on the level of individual

observations instead of on the level of the models. In that case, interest is directed to-

wards finding those individuals who drive the conclusions towards one or more MNAR

models. Therefore, the influence of every individual separately will be explored. Two

techniques exist, i.e., global influence and local influence (Cook, 1986). The global

influence methodology, also known as the case-deletion method (Cook and Weisberg,

1982) is introduced by Cook (1979, 1986) in linear regression, and by Molenberghs

et al. (2003) and Thijs, Molenberghs and Verbeke (2000) in linear mixed models.

Verbeke et al. (2001b) and Thijs, Molenberghs and Verbeke (2000) already used local

influence on the Diggle and Kenward (1994), which is based on a selection model,

integrating a linear mixed model for continuous outcomes with logistic regression for

dropout. Later, Van Steen et al. (2001) adapted these ideas to the model of Molen-

berghs, Kenward and Lesaffre (1997), for monotone repeated ordinal data.

In Section 8.1 we focus on the global influence for the Dale-Dale models from

Chapter 6, and an application on the Health Interview Survey data is considered in

Section 8.2. In Section 8.3 the idea of local influence is developed for the extension

of the Baker, Rosenberger and DerSimonian (1992) model (Chapter 5), and applied

to the fluvoxamine data in Section 8.4.

8.1 Global Influence

One of the tools to perform a sensitivity analysis is global influence, starting from

case-deletion. This methodology is based on the difference in log-likelihood between

the model fitted to the data set as a whole on the one hand, and the data set minus

one subject on the other hand. We will apply these global influence ideas to the Dale-

Dale models from Section 6.3. Denote the log-likelihood function, corresponding to

model (6.13), as

ℓ(φ) =

N∑

i=1

ℓi(φ), (8.1)
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in which ℓi(φ) is the contribution of the ith individual to the log-likelihood, and where

φ is the s-dimensional vector as defined in Section 6.3. Further, we denote by

ℓ(−i)(φ), (8.2)

the log-likelihood function, where the contribution of the ith subject has been re-

moved. Cook’s distances (CD) are based on measuring the discrepancy between

either the maximized log-likelihoods (8.1) and (8.2) or (subsets of) the estimated

parameter vectors φ̂ and φ̂(−i), with obvious notation. Precisely, we will consider

both

CD1i = 2(ℓ̂(φ) − ℓ̂(−i)(φ)), (8.3)

as well as

CD2i(φ) = 2 (φ̂ − φ̂(−i))
′L̈−1 (φ̂ − φ̂(−i)). (8.4)

Formulation (8.4) easily allows to consider the global influence in a subvector of φ,

such as the measurement model parameters θ, or missingness model parameters ψ.

This will be indicated using notation of the form CD2i(θ) and CD2i(ψ).

Performing a global influence analysis on data with categorical outcomes is less

time consuming than on data with continuous outcomes, since the data can be sum-

marized in cells such as in Table 2.3. Thus, instead of removing every subject one by

one, we only need to remove one subject per cell and per covariate level.

8.2 Global Influence Analysis of the Health Inter-

view Survey Data

We will apply the global influence ideas to the HIS data, which were analyzed using

the Dale-Dale models, in order to investigate the conclusions that were reached in

Section 6.4. Whereas all 9 models, we focus on Model 3 and Model 4, since those

were the most adequate ones when, on the one hand, a varying gender effect and, on

the other hand, a varying education effect is included in both parts of the model. In

addition, we will consider Model 7, a supermodel of both Model 3 and 4, which was,

in both settings, borderline non-significant.

It was already mentioned in Section 8.1 that for categorical outcomes a global

influence analysis is reduced to removing one subject per respons combination and

per covariate level. In the HIS data, this means that, when including gender, only

2 × 9 subjects need to be removed, and when including education, 5 × 9 subjects.

Results of the global influence analyses are shown in Figures 8.1–8.6.
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Figure 8.1: Health Interview Survey Data. Global influence for Model 3 with varying

gender effect. Solid line for males, dotted for females.

When gender is included in the model, the influence graphs for the Cook’s distances

on the log-likelihood scale (CD1i), for the complete parameter vector (CD2i(φ)), and

for the parameter vector of the missingness model (CD2i(ψ)) look similar in all models

considered. The influence graphs for the Cook’s distances for the parameter vector of

the measurement model (CD2i(θ)) are similar for Models 3 and 4, but different for

Model 7. We will discuss these in turn.

The largest CD1i, CD2i(φ), and CD2i(ψ) were measured for subjects with a miss-

ing value for fixed general practitioner. This can be explained as follows. Models 3, 4,

and 7 all assume that a missing value for a specific outcome depends on the value of

fixed general practitioner. Since the value of fixed general practitioner is not available,

these assumptions heavily rely on the value such an individual would have had had the

measurements been made, thus a strong sensitivity. Males having no measurements

at all (for mental health and fixed general practitioner) have a non-negligible effect

on the missingness model parameters, while females do not. In all other cases, the

influence for males and females is comparable. Varying parameterization invariably
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Figure 8.2: Health Interview Survey Data. Global influence for Model 4 with varying

gender effect. Solid line for males, dotted for females.

produces the same result.

In Models 3 and 4, CD2i(θ) is largest for subjects without fixed general prac-

titioner, but this influence is negligible. In Model 7 subjects without fixed general

practitioner are also influential, but they are not the only ones. Males with no mea-

surement for fixed general practitioner have a relatively high influence, compared with

females, while in all other cases their influence on the measurement model parame-

ters is comparable, or higher for females than for males. Nevertheless, the Cook’s

distances for the measurement model parameters are much smaller than those for the

missingness model parameters, which shows that the measurement model parameters

are remarkably stable. This conclusion has also been drawn in Section 6.4.

When education is included in the model, the influence graphs look similar for all

models considered. For CD1i, CD2i(φ) and CD2i(ψ) the largest Cook’s distances

were measured for subjects with a missing value for fixed general practitioner. This

result is similar to the one for gender, and can be explained in the same way. The

Cook’s distances CD2i(θ) are largest for subjects without fixed general practitioner,
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Figure 8.3: Health Interview Survey Data. Global influence for Model 7 with varying

gender effect. Solid line for males, dotted for females.

for all levels of education, but this influence is negligible. Again, the Cook’s distances

for the measurement model parameters are much smaller than those for the missing-

ness model parameters. Some more conclusions have to be drawn. Subjects having

no measurements at all (for mental health and fixed general practitioner) have no

influence on the measurement model parameters, but a non-negligible effect on the

missingness model parameters, since the “empty” observations are explicitly modeled

in the Dale-Dale models. Subjects without education (solid line) have the highest

influence on all parameters of the model, possibly due to their low presence (267 out

of 10705) in the data.

8.3 Local Influence

A drawback of global influence is that the specific cause of the influence cannot be

retrieved, since by deleting a subject all types of influence stemming from it are

lumped together. Local influence however, studies the effect of infinitesimally small
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Figure 8.4: Health Interview Survey Data. Global influence for Model 3 with varying

education effect. Solid line for no education, dotted for primary education, dashed for

low secondary education, short dashes for high secondary education, dots and dashes

for higher education.

model perturbations around a given null model.

Verbeke et al. (2001b), Thijs, Molenberghs and Verbeke (2000), and Molenberghs

et al. (2001b) studied local influence in the context of the Diggle and Kenward (1994)

model where a linear mixed measurement model is combined with logistic models for

dropout. To this end, they considered the following perturbed version of dropout

model (3.6):

logit(g(hij , yij)) = logit [pr(Di = j|Di ≥ j,yi)]

= h′
ijψ + ωiyij i = 1, . . . , N, (8.5)

where the ωi are local, individual-specific perturbations around a null model. They

should not be confused with subject-specific parameters. Their null model was the

MAR model, corresponding to setting ω = 0 in (3.6). When small perturbations in

a specific ωi lead to relatively large differences in the model parameters, then this
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Figure 8.5: Health Interview Survey Data. Global influence for Model 4 with varying

education effect. Solid line for no education, dotted for primary education, dashed for

low secondary education, short dashes for high secondary education, dots and dashes

for higher education.

suggests that these subjects may have a large impact on the final analysis.

We will consider perturbations of a given BRD model in the direction of a model

with one more parameter in which the original model is nested, implying that pertur-

bations lie along the edges of Figure 5.1: for each of the nested pairs in Figure 5.1, the

simpler of the two models equates two parameters from the more complex one. For

example, BRD4 includes β.k, (k = 1, 2), whereas in BRD1 only β.. is included. For

the influence analysis, ωi is then included as a contrast between two such parameters;

for the perturbation of BRD1 in the direction of BRD4, one considers β.. and β.. +ωi.

The vector of all ωi’s defines the direction in which such a perturbation is considered.

The BRD family provides a versatile environment for sensitivity analysis, as opposed

to the Diggle and Kenward model where, in its basic form, only a few missingness

parameters are present. This is due in part to the ability to handle non-monotone

missingness. Note that the influence analysis focuses on the missingness model, rather
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Figure 8.6: Health Interview Survey Data. Global influence for Model 7 with varying

education effect. Solid line for no education, dotted for primary education, dashed for

low secondary education, short dashes for high secondary education, dots and dashes

for higher education.

than on the measurement model parameters. This may be seen as slightly odd since

often scientific interest focuses on the measurement model parameters. However, it

has been documented (Rubin, 1994; Kenward, 1998; Verbeke et al., 2001b) that the

missingness model parameters are often the most sensitive ones to take up all kinds

of misspecification and influential features. These may then, in turn, impact con-

clusions coming from the measurement model parameters (e.g., time evolution) or

combinations from both (e.g., covariate effects for certain groups of responders).

Let us now introduce the key concepts of local influence (Cook, 1986; Verbeke

et al., 2001b). Since the resulting influence diagnostics can in many cases be expressed

analytically, they often can be decomposed in interpretable components, which yields

additional insight. We denote the log-likelihood corresponding to model (5.3)–(5.4) by

ℓ(φ|ω) =
∑

N

i=1 ℓi(φ|ωi), in which ℓi(φ|ωi) is the contribution of the ith individual,

and where φ = (θ,ψ) is the s-dimensional vector, grouping the parameters of the
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measurement model and the dropout model as in (5.5), not including the N × 1

vector ω = (ω1, ω2, . . . , ωN)′ of weights defining the perturbation. Assume that ω

belongs to an open subset Ω of IRN . For ω equal to ω0 = (0, 0, . . . , 0)′, ℓ(φ|ω0) is the

log-likelihood corresponding to the simpler of the two BRD models.

Let φ̂ be the maximum likelihood estimator for φ, obtained by maximizing

ℓ(φ|ω0), and let φ̂ω denote the maximum likelihood estimator for φ under ℓ(φ|ω).

The local influence approach compares φ̂ω with φ̂. Similar estimates indicate that

the parameter estimates are robust w.r.t. perturbations in the direction of the ex-

tended model. Cook (1986) proposed to measure the distance between φ̂ω and φ̂ by

the likelihood displacement, defined by LD(ω) = 2[ℓ(φ̂|ω0) − ℓ(φ̂ω|ω0)]. This takes

into account the variability of φ̂. Indeed, LD(ω) will be large if ℓ(φ|ω0) is strongly

curved at φ̂, which means that φ is estimated with high precision, and small oth-

erwise. Therefore, a graph of LD(ω) versus ω contains essential information on the

influence of perturbations. It is useful to view this graph as the geometric surface

formed by the values of the N +1 dimensional vector ζ(ω) = (ω′, LD(ω))′ as ω varies

throughout Ω. Since this so-called influence graph, as shown in Figure 8.7 (Lesaffre

and Verbeke, 1998), can only be depicted when N = 2, Cook (1986) proposed to con-

sider local influence, i.e., at the normal curvatures Ch of ζ(ω) in ω0, in the direction

of some N dimensional vector h of unit length. Let ∆i be the s-dimensional vector

defined by

∆i =
∂2ℓi(φ|ωi)

∂ωi∂φ

∣∣∣∣
φ=φ̂, ωi = 0

(8.6)

and define ∆ as the (s × N) matrix with ∆i as its ith column. Let L̈ denote the

(s×s) matrix of second order derivatives of ℓ(φ|ω0) with respect to φ, also evaluated

at φ = φ̂. Cook (1986) has then shown that Ch can be easily calculated by Ch =

2|h′∆′L̈−1∆h|.
Ch can be calculated for any direction h. One choice is the vector hi containing

one in the ith position and zero elsewhere, corresponding to the perturbation of the

ith subject only, reflecting the influence of allowing the ith subject to drop out in

a more general fashion than the others. The corresponding local influence measure,

denoted by Ci, then becomes Ci = 2|∆′
iL̈

−1∆i|. Another important direction is the

direction hmax of maximal normal curvature Cmax. It shows how to perturb the model

to obtain the largest local changes in the likelihood displacement. It is readily seen

that Cmax is the largest eigenvalue of −2 ∆′ L̈−1 ∆, with hmax the corresponding

eigenvector. Calculation of local influence measures reduces to evaluation of ∆ and L̈

and a convenient computational scheme can be used whenever a program is available
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Figure 8.7: Graphical representation of the influence graph and the local influence

approach.

to fit the full alternative model, i.e., the model at the end of edge in Figure 5.1 since

it then suffices to compute the second derivative at (φ̂, ωi = 0), for each observation

separately, from which the ∆i = (φ, ω) subvector is selected.

8.4 Local Influence Analysis of the Fluvoxamine

Data

We will apply the local influence ideas to the fluvoxamine data, which were analyzed

using the BRD models, in order to contradict or strengthen the conclusions of Sec-

tion 5.4. Whereas all comparisons along the edges of Figure 5.1 are possible, we focus

on the comparison BRD1–4 (Figure 8.8), since the first one was the most adequate

model when no duration effect is included and when duration is included in both
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Figure 8.8: Fluvoxamine Data. Index plots of Ci (left panels) and the components

of the direction hmax of maximal curvature (right panels) for comparison BRD1–4,

without (top panels) or with (bottom panels) duration as a covariate in the missingness

models.

parts of the model, while the second one was the model of choice when duration is

included in the measurement model only. In addition, we will consider the compar-

isons BRD4–7 (Figure 8.9) and BRD4–8 (Figure 8.10), the supermodels of BRD4.

The symbols used in these figures are: +: both observations are available, (1,1) type;

N: only the first observation is available, (1,0) type; ¥: only the second observation

is available, (0,1) type; •: both measurements are missing, (0,0) type.

We consider Ci and hmax. The top right panel in Figure 8.8 essentially shows

no structure, while in the top left there are two important observations. First, a

layering effect is present. This is not surprising, since there are quite a number of

discrete features in the model: the responses and the missingness patterns. On the

other hand, the continuous covariate duration is included in the measurement model.

In this case, mainly the missingness patterns are noticeable, although the top layer

shows a good deal of variability.
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Figure 8.9: Fluvoxamine Data. Index plots of Ci (left panels) and the components

of the direction hmax of maximal curvature (right panels) for comparison BRD4–7,

without (top panels) or with (bottom panels) duration as a covariate in the missingness

models.

Two views can be taken. Either, focus is on two observations, #184 and #185, that

stand out. These subjects have no measurements at all for side effects. Alternatively,

the entire pattern without follow up measurements can be studied. We will return

to this issue later in this section. This phenomenon is in contrast to the analyses

made by Verbeke et al. (2001b) and Molenberghs, Kenward and Goetghebeur (2001a)

who found that the influential observations are invariably completers. In this case,

the situation is different since the “empty” observations are explicitly modeled in

the BRD models. An equivalent conclusion was reached in Section 8.2, where the

subjects with the largest global influence value for the missingness model parameters,

were also empty observations. Therefore, assumptions about the perturbations in

the direction of such observations have an impact on the values such an individual

would have had had the measurements been made; hence a strong sensitivity. This

illustrates that studying influence by means of perturbations in the missingness model
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Figure 8.10: Fluvoxamine Data. Index plots of Ci (left panels) and the components

of the direction hmax of maximal curvature (right panels) for comparison BRD4–8,

without (top panels) or with (bottom panels) duration as a covariate in the missingness

models.

may lead to important conclusions regarding the measurement model parameters.

Indeed, the measurement model conclusions depend, not only on the observations

actually made, but also on the expectation of the missing measurements. In an MNAR

model, such expectations depend on the missingness model as well, since they are

made conditional on an observation being missing. A high level of sensitivity means

that the expectations of the missing outcomes and the resulting measurement model

parameters strongly depend on the missingness model. Based on this consideration,

Verbeke et al. (2001b) showed that, in spite of the fact that completers cannot have a

direct influence on the measurement model parameters, they still can do so implicitly.

Given the strong level of dependence of missingness models on assumptions, it is

crucial to investigate the sensitivity of the measurement model conclusions, using local

influence that targets the missingness model. As stated earlier, the only continuous

characteristics of the observations are the levels for duration. These are 38 and 41 for
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observations #184 and #185, respectively, the largest values within the group without

observations and the 91st and 92nd percentile values within the entire sample. Thus,

the conclusions are driven by a very high value of duration.

Consider the bottom panels of Figure 8.8. The right hand panel still shows little

or no structure. On the left hand side, the layering has been blurred due to the

occurrence of duration as a continuous feature into the missingness model. The fact

that no sets of observations stand out as such, confirms the impression that a good

fit has been obtained by including duration in both parts of the model. Consider

Figure 8.9. A qualitative difference with Figure 8.8 (top left panels) is that the entire

group with no follow-up measurements shows more influential than all other subjects.

In this case, hmax displays the same group of subjects with no follow-up. In the top

left panel of Figure 8.10 also the entire group with no follow-up measurements shows

more influential, but now also the two non-monotone subjects have a large value for

the Ci measure. The top right panel (hmax) shows no structure. However, all of

this disappears when one turns to the bottom panels of Figures 8.9 and 8.10, again

underscoring the importance of duration in the missingness model. The consequence

of these findings is that, as soon as duration is included in the missingness model,

reasonable confidence can be put into the conclusions. Nevertheless, based on the

comparison BRD1–4, it seems wise to further study the effect of subjects #184 and

#185, as well as from the group without follow up. To this effect, three additional

analyses are considered: two sets pertain to removal of subjects #184 and #185:

without (I) and with (II) duration as a covariate in the measurement model. We do

not consider removal in case duration is included in the missingness model since, in

this case, these two subjects did not show up as locally influential. Finally, removing

all subjects without follow-up measurements and using duration as covariate in the

measurement model is reported as family III. Results are presented in Table 8.1.

Analysis I prefers BRD1 and analysis II prefers BRD4, although slightly less ex-

treme than before: likelihood ratio test statistics for BRD1–4, BRD4–7, and BRD4–8

are 6.60, 3.64, and 3.08, respectively, compared with 7.10, 2.10, and 1.52 obtained

initially. However, while the two subjects deleted in I and II cannot explain the ap-

parent non-random missingness, the same conclusions are reached when all subject in

pattern (0,0) are deleted (analysis III), since then a few likelihood ratios are significant

(7.17, attained for BRD3–7 and for BRD5–8; and 7.32 for BRD1–4). Thus, removing

these subjects does not change the conclusions about the non-random nature of the

data. This is useful supplemental information: it confirms that the largest impact

on the conclusion regarding the nature of missingness is coming from the inclusion

of duration, and neither from isolated individuals, nor from a specific missingness
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Table 8.1: Fluvoxamine Data. Negative log-likelihood values for three additional sets

of analysis. I: #184 and #185 removed, no covariates; II: #184 and #185 removed,

duration as covariate in the measurement model; III: all observations in the (0,0)

group removed, duration as covariate in the measurement model.

Set BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRD8 BRD9

I 559.59 558.18 558.70 558.18 558.97 557.59 557.32 557.59 557.32

II 543.65 541.87 542.16 540.35 542.43 540.61 538.53 538.81 540.34

III 496.19 494.33 495.26 492.53 495.53 493.71 491.67 491.95 493.43

pattern. It is pleasing that the final analysis encompasses all subjects and therefore

avoids the need of subject deletion.

Subjects in an influence graph are displayed without a particular order. Several

alternatives are possible. For example, one could order the subjects by covariate level,

but this method cannot be considered when there are several covariates. Alternatively,

the subjects could be ordered by Ci or hi level, but then different orderings would

exist on different plots.

8.5 Conclusions

A number of sensitivity tools have been proposed and used to strengthen the data

analytic findings from Chapters 5 and 6. The already existing methods of global and

local influence have been adjusted to assess the influence in the case of selection models

for bivariate binary outcomes subject to non-monotone missingness. The results are

also discussed in Jansen et al. (2003) and Jansen and Molenberghs (2005).

Global influence has the advantage that it is very easy to conduct (remove the

subjects one by one) and that the influence of removing a subject can be studied

on several aspects separately (e.g., likelihood, measurement and missingness model

parameters). Local influence on the other hand has the advantage that no subjects

have to be removed, and therefore it is still possible to investigate and interpret the

nature of the influence.

In our influence analyses, it turned out that different subsets of patients may be

influential for different sets of parameters or for different model extensions or, as

was the case here, several analyses may point to the same pair of influential obser-
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vations. Second, especially in the local influence graphs, some subgroups of patients

almost lay on a straight line, while others formed a cloud. This is due to the com-

bination of categorical aspects (outcomes, non-response patterns) with continuous

aspects (covariates). These can lead to different actions, ranging from design and

protocol changes in future studies to removal of observations or groups of observa-

tions from the analysis of the current study. However, the latter seemed unnecessary,

since apparently very stable conclusions were reached.

Clearly, the influence analyses performed here are not the only ones possible.

For example, in local influence other perturbation schemes are possible as well, or one

could consider a different route of sensitivity analysis altogether. Ideally, several could

be considered within an integrated sensitivity analysis. However, the ones considered

here already give a lot of insight in the data. The remaining question stays when a

subject or a group of subjects can be considered as influential, or what reasons might

be related to high influence values. This topic will be studied in the next chapter.





9
The Behavior of Local

Influence

The original idea behind the use of local influence methods with an eye on sensitiv-

ity analysis was to detect observations that had a high impact on the conclusions

due to their aberrant missingness mechanism. For example, most missing measure-

ments might be MAR, while a few could be MNAR following one or a few deviating

mechanisms. However, in most successful applications, where a seemingly MNAR

mechanism turned out to be MAR or even MCAR after removing the influential sub-

jects identified upon the use of local influence, the situation turned out to be more

complex than anticipated. Indeed, the influential subjects often are influential for

other than missingness related features. So, local influence tends to pick up a lot of

different anomalies in the data at hand, not just deviations in the MNAR mechanism.

In this chapter, we aim to further study the method of local influence, not only to

better understand its behavior, but also to increase insight in the overall behavior and

impact of MNAR mechanisms. This is done using simulations and general modeling

considerations.

In Section 9.1, we first repeat some general aspects of local influence and we work

out some details for its use with the Diggle and Kenward (1994) model. Then, the

rats data are reanalyzed (see also Verbeke et al., 2001b) and a local influence analysis

139
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is performed in Section 9.2. Section 9.3 is dedicated to the behavior of local influence

under standard conditions as well as under a number of anomalous scenarios.

9.1 Local Influence Method Applied to the Model

of Diggle and Kenward (1994)

Local influence was already introduced in Section 8.3 and applied to a data set of

bivariate binary outcomes with non-monotone missingness in Section 8.4. In this

chapter, we will focus on the local influence method applied to the Diggle and Kenward

(1994) model, which is suitable for continuous outcomes subject to dropout only.

Details about this model were already described in Section 3.1.2, more specifically in

(3.5) and (3.6).

Verbeke et al. (2001b), Thijs, Molenberghs and Verbeke (2000), and Molenberghs

et al. (2001b) investigated sensitivity of estimation of quantities of interest, w.r.t.

assumptions regarding the dropout model. To this end, they considered the following

perturbed version of dropout model (3.6):

logit(g(hij , yij)) = logit [pr(Di = j|Di ≥ j,yi)]

= h′
ijψ + ωiyij i = 1, . . . , N, (9.1)

where the ωi are local, individual-specific perturbations around a null model. They

should not be confused with subject-specific parameters. Our null model will be the

MAR model, corresponding to setting ω = 0 in (3.6). Thus, the ωi are perturbations

that will be used only to derive influence measures (Cook, 1986).

Using this proposal, one can study the impact on key model features, induced by

small perturbations in the direction, or seemingly so, of MNAR. We are interested in

the influence exerted by the dropout model on the parameters of interest. This can

be done, for example, by considering (9.1) as the dropout model. When small pertur-

bations in a specific ωi lead to relatively large differences in the model parameters,

then this suggests that these subjects may have a large impact on the final analysis.

However, even though we may be tempted to conclude that such subjects drop out

non-randomly, this conclusion is misguided since we are not aiming to detect (groups

of) subjects that drop out non-randomly but rather subjects that have a considerable

impact on the dropout and measurement model parameters. Indeed, a key observa-

tion is that a subject that drives the conclusions towards MNAR may be doing so,

not only because its true data generating mechanism is of an MNAR type, but also

for a wide variety of other reasons, such as an unusual mean profile or autocorrelation
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structure. Likewise, it is possible that subjects, deviating from the bulk of the data

because they are generated under MNAR, go undetected by this technique. This begs

the question that one needs to reflect carefully upon which anomalous features are

typically detected and which ones typically go unnoticed. This will be investigated

in Section 9.3. But first, we will consider some more details about how to apply

local influence to the model of Diggle and Kenward (1994). The key concepts of local

influence were already introduced in Section 8.3, and will not be reviewed anymore.

First note that the dropout mechanism is described by

f(di|yi,ψ) =






ni∏

j=2

[1 − g(hij , yij)] for a completer (di = ni + 1),

d−1∏

j=2

[1 − g(hij , yij)]g(hid, yid) for a dropout (di = d ≤ ni),

where the g-factors follow from (9.1). The log-likelihood contribution for a complete

sequence then is

ℓiω = ln f(yi) + ln f(di|yi,ψ),

where the parameter dependencies are suppressed for notational ease. The density

f(yi) is multivariate normal, following from the linear mixed model (3.5). The con-

tribution from an incomplete sequence is more complicated. Its log-likelihood term

is

ℓiω = ln f(yi1, . . . , yi,d−1) +
d−1∑

j=2

ln[1 − g(hij , yij)]

+ ln

∫
f(yid|yi1, . . . , yi,d−1)g(hid, yid)dyid.

Further details can be found in Verbeke et al. (2001b). We need expressions for ∆

and L̈. Straightforward derivation shows that the columns ∆i of ∆ are given by

∂2ℓiω

∂θ∂ωi

∣∣∣∣
ωi=0

= 0, (9.2)

∂2ℓiω

∂ψ∂ωi

∣∣∣∣
ωi=0

= −
ni∑

j=2

hijyijg(hij)[1 − g(hij)], (9.3)
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for complete sequences (no drop out) and by

∂2ℓiω

∂θ∂ωi

∣∣∣∣
ωi=0

= [1 − g(hid)]
∂λ(yid|hid)

∂θ
, (9.4)

∂2ℓiω

∂ψ∂ωi

∣∣∣∣
ωi=0

= −
d−1∑

j=2

hijyijg(hij)[1 − g(hij)]

−hidλ(yid|hid)g(hid)[1 − g(hid)], (9.5)

for incomplete sequences. All above expressions are evaluated at γ̂, and g(hij) =

g(hij , yij)|ωi=0, is the MAR version of the dropout model. In (9.4), we make use of

the conditional mean

λ(yid|hid) = λ(yid) + Vi,21V
−1
i,11[hid − λ(hid)]. (9.6)

The variance matrices follow from partitioning the responses as (yi1, . . . , yi,d−1|yid)
′.

The derivatives of (9.6) w.r.t. the measurement model parameters are

∂λ(yid|hid)

∂β
= xid − Vi,21V

−1
i,11Xi,(d−1),

∂λ(yid|hid)

∂α
=

[
∂Vi,21

∂α
− Vi,21V

−1
i,11

∂Vi,11

∂α

]
V −1

i,11[hid − λ(hid)]

where x′
id is the dth row of Xi, and where Xi,(d−1) indicates the first (d − 1) rows of

Xi. Further, α indicates the subvector of covariance parameters within the vector θ.

In practice, the parameter θ in the measurement model is often of primary interest.

Since L̈ is block-diagonal with blocks L̈(θ) and L̈(ψ), we have that for any unit vector

h, Ch equals Ch(θ) + Ch(ψ), with

Ch(θ) = −2h′
[

∂2ℓiω

∂θ∂ωi

∣∣∣∣
ωi=0

]′

L̈−1(θ)

[
∂2ℓiω

∂θ∂ωi

∣∣∣∣
ωi=0

]
h (9.7)

Ch(ψ) = −2h′
[

∂2ℓiω

∂ψ∂ωi

∣∣∣∣
ωi=0

]′

L̈−1(ψ)

[
∂2ℓiω

∂ψ∂ωi

∣∣∣∣
ωi=0

]
h, (9.8)

evaluated at γ = γ̂. It now immediately follows from (9.2) and (9.4) that direct

influence on θ only arises from those measurement occasions at which dropout occurs.

In particular, from (9.4) it is clear that the corresponding contribution is large only

if (1) the dropout probability was small but the subject disappeared nevertheless and

(2) the conditional mean ‘strongly depends’ on the parameter of interest. This implies

that complete sequences cannot be influential in the strict sense (Ci(θ) = 0) and that

incomplete sequences only contribute, in a direct fashion, at the actual dropout time.
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However, we make an important distinction between direct and indirect influence. It

was shown that complete sequences can have an impact by changing the conditional

expectation of the unobserved measurements given the observed ones and given the

dropout mechanism. Thus, a complete observation which has a strong impact on

the dropout model parameters, can still drastically change the measurement model

parameters and functions thereof.

Expressions (9.7)–(9.8) can be simplified further in specific cases. For example,

Verbeke et al. (2001b) considered the compound-symmetric situation. Precisely, they

were able to split the overal influence in the approximate sum of three components,

describing the mean model parameter β, the variance components σ2 and τ2, and the

dropout model parameters ψ, respectively:

C
ap
i (β) = 2[1 − g(hid)]

2(ξidxid + (1 − ξid)ρid)
′

× σ2

[
N∑

i=1

(
ξidX

′

i(d−1)Xi(d−1) + (1 − ξid)R
′

i(d−1)Ri(d−1)

)]−1

× (ξidxid + (1 − ξid)ρid), (9.9)

C
ap
i (σ2, τ2) = 2[1 − g(hid)]

2ξ2
id(1 − ξid)

2[hid − λ(hid)]
2

×
(
−1,

1

τ2

)
L̈−1(σ2, τ2)



 −1

1
τ2



 , (9.10)

where Ri,d−1 = Xi(d−1) − 1d−1Xi(d−1), Xi(d−1) = 1
d−11

′
d−1Xi(d−1),

hid − λ(hid) =
1

d − 1
1′

d−1[hid − λ(hid)],

and

L̈(σ2, τ2) =
N∑

i=1

d − 1

2(σ2 + (d − 1)τ2)2

×



 [σ2 + (d − 1)τ2]2 − τ2[2σ2 + (d − 1)τ2] 1

1 (d − 1)



 ,

For the dropout model parameters, there are no approximations involved, and we

have that

Ci(ψ) = 2




d∑

j=2

hijyijvij




′ 


N∑

i=1

d∑

j=2

vijhijh
′
ij




−1 


d∑

j=2

hijyijvij



 , (9.11)

in which d = ni for a complete case and where yid needs to be replaced with

λ(yid|hid) = λ(yid) + (1 − ξid)[hid − λ(hid)]
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for incomplete sequences. Further, vij equals g(hij)[1 − g(hij)] which is the variance

of the estimated dropout probability under MAR.

9.2 Local Influence Analysis of the Rats Data

The rats data, which are introduced in Section 2.5, are first linearized, using the

logarithmic transformation t = ln(1 + (age − 45)/10) for the time scale, as proposed

by Verbeke and Lesaffre (1999). The transformation was chosen such that t = 0

corresponds to the start of the treatment. Let yij denote the jth measurement for

the ith rat, taken at t = tij , j = 1, . . . , ni, i = 1, . . . , N . A simple statistical model,

as considered by Verbeke et al. (2001b), then assumes that yij satisfies a model of

the form (3.5) with common average intercept β0 for all three groups, average slopes

β1, β2 and β3 for the three treatment groups, respectively, and assuming a so-called

compound symmetry covariance structure, i.e., with common variance σ2 + τ2 and

common covariance τ2. τ2 denotes the random intercept, while σ2 is the measurement

error. The following specific version of dropout model (3.6) will be assumed:

logit [pr(Di = j|Di ≥ j,yi)] = ψ0 + ψ1yi,j−1 + ψ2yij . (9.12)

Parameter estimates are shown in Table 9.1. More details about these estimates

and the performance of a local influence analysis can be found in Verbeke et al.

(2001b). This section will focus on specific details of this local influence analysis.

Figure 9.1 displays overall Ci and influences for subvectors θ, β, α, and ψ. In

addition, the direction hmax corresponding to maximal local influence is given. Apart

from the last one of these graphs, the scales are not unitless and therefore it would be

hard to use a common one for all of the panels. This implies that the main emphasis

should be on relative magnitudes.

The largest Ci are observed for rats #10, #16, #35, and #41, all belonging to the

low dose group, and virtually the same picture holds for Ci(ψ). They are highlighted

in the second panel of Figure 9.2. All four belong to the low dose group. Arguably,

their relatively large influence is caused by an interplay of three facts. First, the

profiles are relatively high, and hence yij and hij in (9.11) are large. Second, since

all four profiles are complete, the first factor in (9.11) contains a maximal number of

large terms. Third, the computed vij are relatively large.

Turning attention to Ci(α) reveals peaks for rats #5 and #23. Both belong to the

control group and drop out after a single measurement occasion. They are highlighted

in the first panel of Figure 9.2. To explain this, observe that the relative magnitude
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Table 9.1: Rats Data. Maximum likelihood estimates (standard errors) of completely

random, random and non-random dropout models, fitted to the rats data set, with and

without modification.

Original Data Modified Data

Effect MCAR MAR MNAR MCAR MAR MNAR

Measurement model

β0 68.61 (0.33) 68.61 (0.33) 68.60 (0.33) 70.20 (0.92) 70.20 (0.92) 70.25 (0.92)

β1 7.51 (0.22) 7.51 (0.22) 7.53 (0.24) 7.52 (0.25) 7.52 (0.25) 7.42 (0.26)

β2 6.87 (0.23) 6.87 (0.23) 6.89 (0.23) 6.97 (0.25) 6.97 (0.25) 6.90 (0.25)

β3 7.31 (0.28) 7.31 (0.28) 7.35 (0.30) 7.21 (0.31) 7.21 (0.31) 7.04 (0.33)

τ2 3.44 (0.77) 3.44 (0.77) 3.43 (0.77) 40.38 (0.18) 40.38 (0.18) 40.71 (8.25)

σ2 1.43 (0.14) 1.43 (0.14) 1.43 (0.14) 1.42 (0.14) 1.42 (0.14) 1.44 (0.15)

Dropout model

ψ0 -1.98 (0.20) -8.48 (4.00) -10.30 (6.88) -1.98 (0.20) -0.79 (1.99) 2.08 (3.08)

ψ1 0.08 (0.05) 0.03 (0.16) -0.015 (0.03) 0.23 (0.15)

ψ2 0.07 (0.22) -0.28 (0.17)

-loglik 550.20 548.80 548.75 609.00 608.85 607.40

of Ci(α), approximately given by (9.10), is determined by 1−g(hid) and hid−λ(hid).

The first term is large when the probability of dropout is small. Now, when dropout

occurs early in the sequence, the measurements are still relatively low, implying that

the dropout probability is rather small (cf. Table 9.1). This feature is built into

the model by writing the dropout probability in terms of the raw measurements with

time-independent coefficients rather than, for example, in terms of residuals. Further,

the residual hid − λ(hid) is large since these two rats are somewhat distant from the

group by time mean. A practical implication of this is that the time-constant nature

of the dropout model may be unlikely to hold.

Since all deviations are rather moderate, we further explore our approach by con-

sidering a second analysis where all responses for rats #10, #16, #35, and #41 have

been increased with 20 units. The effect of this distortion will primarily be seen in

the variance structure. Precisely, such a change is likely to inflate the random inter-

cept variance, at the expense of the other variance components. In doing so, we will

illustrate that (1) such a change is likely to show up in the assessment of the dropout
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Figure 9.1: Rats Data. Index plots of Ci, Ci(θ), Ci(β), Ci(α), Ci(ψ), and the

components of the direction hmax of maximal curvature.

model, underscoring the sensitivity and that (2) the local influence approach is able

to detect such an effect. The parameter estimates for all three models are also shown

in Table 9.1. Clearly, while the fixed-effect parameters remain virtually unchanged,

the random intercept parameter has, of course, drastically increased. Likewise, the

dropout parameters are affected. In addition, the likelihood ratio statistic for MAR

versus MCAR changes from 2.8 to 0.3 and for MNAR versus MAR changes from 0.1

to 2.9. Thus, the evidence has shifted from the first to the second test. While all

of these statistics seem to be non-significant, there is an important qualitative effect.

Moreover, as discussed in Jansen et al. (2005b), the use of the classical χ2-distribution

is very questionable for testing MNAR.

In order to check whether these findings are recovered by the local influence ap-

proach, let us study Figure 9.3. In line with the changes in parameter estimates,

Ci(β) shows no peaks in these observations but peaks in Ci and Ci(ψ) indicate a

relatively strong influence from the four extreme profiles.

It will be clear from the above that subjects may turn out to be influential, for
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Figure 9.2: Rats Data. Individual growth curves for the three treatment groups sepa-

rately. Influential subjects are highlighted.

reasons different from the nature of the dropout model. Indeed, increasing the profile

by 20 units primarily changes the level of the random intercept and ultimately changes

the form of the random-effects distribution. Nevertheless, this feature shows in our

local influence analysis, where the perturbation is put into the dropout model and

not, for example, in the measurement model. This feature requires careful study and

will be addressed in the next section.

9.3 The Behavior of Local Influence Methods

A number of concerns have been raised, not only about sensitivity, but also about

the tools used to assess sensitivity themselves. For example, Verbeke et al. (2001b)

noted, based on a case study, that the local influence tool, as defined and implemented

in Section 9.2, is able to pick up anomalous features of study subjects that are not

necessarily related to the missingness mechanism. In particular, they found that

subjects with an unusually high profile, or a somewhat atypical serial correlation
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Figure 9.3: Rats Data. Index plots of Ci, Ci(θ), Ci(β), Ci(α), Ci(ψ), and the

components of the direction hmax of maximal curvature, where 4 profiles have been

shifted upward.

behavior, are detected with the local influence tool. At first sight, this is a little

disconcerting, since the ωi parameter in (9.1) is placed in the dropout model and not

in the measurement model, necessitating further investigation regarding which effects

are easy or difficult to detect with these local influence methods.

We aim to gain more insight into this phenomenon in a number of ways. To

this effect, we undertake a targeted simulation study to explore various sources of

influence. First, we took interest in the relative magnitudes of the influence measures

to assess how feasible it is to separate influence values that are in line with regular

behavior from those that are unduly large. This can be done by proposing a rule

of thumb as well as by constructing sampling-based confidence limits and bounds.

Second, the impact of one or a few subjects with an anomalous dropout mechanism

was explored. Such anomalies are of the type one would intuitively expect to be picked

up by the proposed tool. We illustrate that great care is needed. Third, impact due

to anomalies in the measurement model was studied. We will show that precisely
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such anomalies are relatively easily picked up by the tool, in spite of its conception

for anomalies in the missingness mechanism. We offer an explanation for why such

behavior is seen.

9.3.1 The Effect of Sample Size

Lesaffre and Verbeke (1998) applied local influence methods to the classical linear

mixed-effects model. They introduced ωi parameters as follows: ℓ =
∑

i ωiℓi where ℓi

is the log-likelihood contribution for subject i. They were able to show that the sum

of the influences is approximately equal to 2s with s the total number of parameters

in β and Vi, when the sample size N is large enough. Their result is based on the

fact that, in their local influence contributions, ∆i in (8.6) becomes

∆i =
∂ℓi

∂θ
,

so that the entire expression has the flavor of a contribution to the score test. In

our case, as can be seen from (9.4) and (9.5), ∆i is a second order rather than a

first order derivative of the log-likelihood contributions, implying that a, perhaps

linear, dependence on the sample size could be envisaged, instead of a constant sum

of influence measures. Such a calibration would be beneficial since it would allow to

determine critical values, or at least rules of thumb, to determine what is large enough

for a subject’s influence to undergo further scrutiny.

To this end, we generated a number of data sets, all under the assumption of MAR

and with parameters equal to the ones from the rats example. The only difference

between these simulations was the sample size. Selected quantiles for sample sizes

50, 500, and 1000 are shown in Table 9.2. Studying even larger sample sizes would

be faced with increasing computation times. This also is the reason for considering

a single run at size 1000. While the relationship is less clear, as is to be expected,

for the maximum value, an obvious trend is seen in the median values and in the

95th percentile. We indeed notice that the influence for a subject decreases linearly

with sample size, and hence the total influence for a data set is roughly constant.

This is confirmed by a simple multiplicative regression model, which yields that the

product of the median and the sample size is constant and equal to 7500. Similarly,

the product of the 95th percentile and the sample size to the power 0.96 equals 15,367.

To ensure calibration at the individual level, one could then multiply all influences

by the sample size. This calibration result implies that the rescaled local influence

can be used as a rough measure to determine whether large values are present. For

example, one could investigate subjects for which the influence exceeds 1/N of the



150 9. The Behavior of Local Influence

Table 9.2: Simulation Study. Selected quantiles of the local influence measures for

data sets of different sample sizes, as obtained from simulations and after fitting a

simple empirical model.

Simulated results Empirical model

sample size 50 50 50 500 500 1000 50 500 1000

median 176.7 138.7 146.8 16.5 15.6 7.6 150.0 15.0 7.5

95 percentile 384.5 359.9 317.3 40.6 39.5 18.7 359.4 39.4 20.3

maximum 683.7 674.1 950.7 138.0 137.8 53.6 — — —

calibrated total with a certain amount. However, while useful in its own right, we

still do not learn anything about the actual distribution of a local influence profile

under the null hypothesis. To gain further insight into this problem, we will derive

confidence limits and simultaneous confidence bounds in the next section.

9.3.2 Pointwise Confidence Limits and Simultaneous Confi-

dence Bounds for the Local Influence Measure

Since for practical purposes only high values of the influence measures are of interest,

we will focus on one-sided (upper) limits and bounds. To this end, we simulated 1000

data sets of 50 rats, using the parameters of the MAR model in Table 9.1. To have

a consistent ordering of the Ci values, not based on the arbitrary order of the rats

within the set of data, we sorted them from large to small.

This can be seen as, say, 1000 repetitions of a bootstrap experiment with 50 grid

points. At each grid point, the 95% pointwise upper confidence limit then simply is

the 95% quantile of the Ci,j values at that particular grid point. Construction of the

simultaneous confidence bounds is based on Besag et al. (1995). For each grid point

j, order the Ci,j values to obtain order statistics C
[t]
i,j and their corresponding ranks

r
(t)
j , t = 1, ..., 1000. Next, for fixed k, define tk as the k-th order statistic of the set

{
max

(
max

1≤j≤50
r
(t)
j ; 1001 − min

1≤j≤50
r
(t)
j

)
; t = 1, ..., 1000

}
.

Then, by construction, the intervals

{[
C

[1001−tk]
i,j ;C

[tk]
i,j

]
; j = 1, ..., 50

}
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Figure 9.4: Simulation Study. 95% pointwise upper confidence limit (dotted) and 95%

simultaneous upper confidence bound (solid).

have a global confidence level of at least 100(k/1000)%. To obtain the 95% simulta-

neous upper confidence bound, simply take k = 900, and restrict consideration to the

upper bound C
[tk]
i,j . A graphical representation of this result is given in Figure 9.4.

9.3.3 The Effect of Anomalies in the Missingness Mechanism

To get an idea of the effect of anomalies in the dropout mechanism, a general procedure

was followed, as described next. Generate an MNAR data set, fit these data assuming

an MAR mechanism in model (9.12), and use the estimates of those model parameters

to generate 1000 data sets, which are then used to construct the pointwise confidence

limits and simultaneous confidence bounds as outlined in Section 9.3.2. Afterwards,

add the profile of ordered Ci values from the original MNAR data set on the graph

with the pointwise confidence limits and simultaneous confidence bounds. Several

different settings to generate the MNAR data set were explored, and will be discussed

in the remainder of this section.

First, attention is paid to the creation of MNAR based on the model parameters.

This was done in the following ways: (1) a set of 50 rats were generated using the

MNAR parameters from the original rats data, as presented in the upper part of

Table 9.1; (2) the same parameters were used, except for ψ2, which was increased to

0.5. (3) only 10% of the data (equivalent to 5 rats) were generated taking ψ2 = 0.2,
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Figure 9.5: Simulation Study. Graphical representation of the profiles of different

parameter-based MNAR settings (dotted), compared with the 95% pointwise upper

confidence limit and 95% simultaneous upper confidence bound (solid).

while for the remaining 90% of the data (45 rats) ψ2 = 0; (4) using the incremental

parameterization introduced in Thijs, Molenberghs and Verbeke (2000), 10% of the

rats were generated with λ2 = 0.2, and the other 90% with λ2 = 0.

All different settings of these simulations were repeated several times, but, since

they all gave similar results, for each setting only one result is discussed and presented

in Figure 9.5.

A general trend is observed in all settings. The Ci profile of the MNAR data set

crosses neither the 95% pointwise upper confidence limit nor the simultaneous upper

confidence bound for large values of Ci. On the other hand, in some settings they

cross the 95% pointwise upper confidence limit for small values of Ci (near the end of

the profile), but since we are only interested in highly influential subjects, this result

is irrelevant for our purposes. Taking a closer look at the rats for whom ψ2 6= 0

(settings 3 and 4) we note that their Ci values are very small (all within the 10 lowest

values). We can therefore conclude that this type of MNAR is not detectable using
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Figure 9.6: Simulation Study. Individual growth curves (left panel) and Ci profile

(right panel) of the generated MAR data set.

local influence. Note that the limit and bound for setting (2) is more ragged than for

the others. The reason is that convergence is quite difficult to obtain for this setting,

in line with general convergence problems for situations where ψ2 is substantially

different from zero. The scale for setting (4) is completely different from the scale in

the other settings, which is due to the fact that setting (4) considers the effect of the

difference between the current and the previous measurement on the dropout process,

rather than the raw effect of the current measurement in the other three settings.

Alternatively, in a second round of settings, MNAR was created in a deterministic

way. Therefore a data set is generated using the MAR parameters of the original rats

data in Table 9.1 (the Ci profile of this data set is shown in Figure 9.6). Afterwards,

the MNAR part was created by manually deleting values from some profiles as follows:

(5) all values of skull height from the moment that one of them exceeded 86 mm,

resulting in shortened profiles for rats 7, 8, 25, 42 and 50; (6) all values of skull height

from the moment that one of them exceeded 85 mm, giving shortened profiles for rats

4, 7, 8, 16, 24, 25, 37, 39, 42 and 50; (7) second to last values of skull height if the

value at age 60 days (2nd value) exceeded 78.83 mm (95th percentile), rats 7, 8 and

25 are shortened; (8) third to last values of skull height if the value at age 70 days

(3rd value) exceeded 80.82 mm (95th percentile), values deleted for rats 8, 42 and 50.

Results of the local influence analyses are shown in Figure 9.7.

Our interest is now in seeing how such sets of data give qualitatively different

influence graphs than under the original rats data set. Therefore, we have to proceed

somewhat differently from the simulation study done for settings (1)–(4). We now

rather directly compare the influence graphs from the four settings (5)–(8) with the

original one. Under setting (5), we see that the peaks for rats #7 and #25, seen
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Figure 9.7: Simulation Study. Graphical representation of the unordered Ci profiles

of different settings with manually created anomalies in the missingness model.

in the original analysis, are removed, while all other Ci values become larger (some

moderate peaks now become the largest ones). This result can be ascribed to the result

in Section 9.3.1, where it was shown that the total influence of a data set is roughly

constant. Thus, the reduction in Ci for rats #7 and #25 of about 400 units each,

will be counterbalanced by an increased Ci for all other rats. It is also noteworthy

that the peaks for the other rats with shortened profiles (#8, #42 and #50) are

still present. A similar phenomenon has been observed in Section 8.4 for categorical

outcomes, where incomplete observations turned out to be the most influential ones.

Settings (6)–(8) are similar in qualitative terms, even though the phenomena are tiny

bit more extreme in setting (6) than in setting (5). Also, in setting (7) and (8), the

influence of all rats with shortened profiles drop to almost 0.
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Figure 9.8: Simulation Study. Graphical representation of the unordered Ci profiles

of different settings with anomalies in the measurement model.

9.3.4 The Effect of Anomalies in the Measurement Model

In this section, we shift attention to anomalies in the measurement model. We gen-

erated 4 MAR data sets, each of them with its specific changes to the measurement

model for 3 randomly selected rats (#3, #21 and #26), namely (1) an increased mean

profile by 20 units after the dropout probability was calculated, (2) an increased mean

profile by 20 units before the dropout probability was calculated, (3) an increased vari-

ance component by 20 units, and (4) an increased τ2 (covariance for the compound

symmetry) by 20 units. The starting data set without any changes to the measure-

ment model is the same as was used in Section 9.3.3, shown in Figure 9.6. Results of

the local influence analyses after manipulating the original data set in several ways,

are shown in Figure 9.8.

While settings (3) and (4), focusing on the variance-covariance structure, show

virtually no impact, settings (1) and (2) exhibit a dramatic effect. The impact is

larger in setting (2) because there also the dropout model is affected. In both settings,
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Figure 9.9: Simulation Study. Individual growth curves for settings 1 and 2, where

the mean profile is increased, before or after the dropout probability was calculated.

Rats #3, #21 and #26 are highlighted.

rats #3 and #26 clearly stick out, while with differing relative magnitudes. The effect

of rat #21 is negligible. These results can be explained by taking a closer look at

the individual profiles of those rats. Figure 9.9 shows that in setting (1) rat #21 has

only 2 observations, while rats #3 and #26 have complete profiles. In setting (2),

the profile of rat #21 reduces to only one observation, which explains the negligible

influence, and the profiles of rats #3 and #26 reduce to 6 and 3 measurements,

respectively. Previous conclusions again indicate that shortened profiles tend to give

smaller influence values.

9.4 Conclusions

Over the last couple of decades, models for MNAR missingness have gained in popu-

larity. However, as already noted in the discussion to Diggle and Kenward (1994), it

has been made clear at various occasions that caution should be used when interpret-

ing such models, due to the great sensitivity the results exhibit with respect to the

model assumptions made. This has led to quite a bit of work on sensitivity analysis.

One such tool is local influence, but this particular tool itself tends to behave in an,

at first sight, non-intuitive fashion.

The results in this chapter indicate that there is little or no local influence stem-

ming from having a few subjects that drop out in a non-random way, by setting ψ2

for these equal to a nonzero value, while there is considerable influence in a number

of settings where the measurement model is changed in the sense that a few profiles

follow a deviating mean-model structure. This indicates that the non-random pa-
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rameter ψ2, rather than capturing true MNAR missingness, has a strong tendency to

pick up other deviations, primarily in the measurement model. Many authors have

noted that there is very little information in many sets of data for the parameter ψ2,

in addition to the information available for all other parameters. If this were to be

true, this ought to show in the behavior of the likelihood ratio test statistic for ψ2, as

well as in the structure of the information matrix for the vector of model parameters.

This particular behavior of the likelihood ratio test statistic for MAR missingness

versus MNAR missingness, together with the analyses of this chapter, are published

in Jansen et al. (2005b).

The bottom line of our simulation studies is that local influence tools in the incom-

plete data context are useful, not to detect individuals that drop out non-randomly,

but rather to detect anomalous subjects that lead to a seemingly MNAR mechanism.

A careful study of such subjects, combined with appropriate treatment (e.g., correc-

tion of errors, removal, . . . ), can lead to a final MAR model, in which more confidence

can be put by the researchers, which ultimately is the goal of every sensitivity analysis.

Based on the simulation studies, it was also demonstrated that the local influence

measure for a subject decreases linearly with the sample size of the data set, and hence

the total influence for a data set is roughly constant. This might also explain a result

that was obtained in Section 8.2, namely when including education as a covariate into

the model, the group with the fewest observations led to the largest global influence

measures. Thus, when the influence is measured for a group of subjects with identical

characteristics, this influence has to be rescaled according to the number of subjects in

that group. However, further investigation of this feature within the global influence

context will be necessary.





10
General Conclusions and

Future Research

Throughout this thesis, it has become evident that a variety of approaches is possible,

when analyzing incomplete longitudinal data. First and foremost, an alternative

was given for the frequently used but highly restrictive complete case analysis and

last observation carried forward analysis. While the latter assume the data to be

missing completely at random, the assumption of missing at random is sufficient for

the linear mixed models, when the data are continuous, and for the generalized linear

mixed models in the random-effects approach, or the weighted generalized estimating

equations in the marginal model context, when the data are of the binary type.

All methods can be easily performed with the currently available statistical analysis

software. With the analyses of data in different scientific fields, we hope these methods

will achieve more popularity in the near future. Within the fast growing field of

statistical genetics, where missing data are very common, much simpler methods are

used more frequently (Jansen et al., 2002, 2005d). However, although these data

are not necessarily of the longitudinal type, the GEE method has already been used

(Van Steen et al., 2005).

While in current statistical practice, still al lot of effort is needed before people

come to recognize the necessity of those missing at random modeling approaches as

159
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the main mode of analysis, research is, already for many years, directed towards the

development of missing not at random models for all types of data and missingness

mechanisms, since not at random missingness cannot be fully ruled out based on the

observed data. In this thesis, several missing not at random models for non-continuous

longitudinal data with non-monotone missingness were proposed.

First, a family of joint models for outcomes and non-response, based on an ex-

tension of Baker, Rosenberger and DerSimonian (1992), has been proposed in which

(possibly continuous) covariates are allowed, in the measurement model as well as in

the missingness model. Focus was on bivariate binary outcomes. Second, a set of

models for multivariate ordinal data, based on the multivariate Dale model (Molen-

berghs and Lesaffre, 1994) was developed. A (bivariate or multivariate) Dale model

for the outcomes was combined with the same Dale model for the non-response. In

this hierarchy of models, the inclusion of constant or varying covariate effects was also

possible in both the measurement and missingness model. In the data analyses, using

either the extended BRD models or the Dale-Dale models, the estimates of the mea-

surement model parameters were remarkably stable, no matter which assumptions

were made regarding the reasons for non-response.

Based on the proposed models, and the already existing models by Diggle and

Kenward (1994) for monotone continuous outcomes, and by Molenberghs, Kenward

and Lesaffre (1997) for monotone discrete outcomes, it is possible to develop many

more flexible models. For example, when combining a linear mixed model for the mea-

surements with a Dale model for the non-response process, non-monotone continuous

outcomes can be modeled. Or combining a Dale model for the measurements with the

multinomial logit model from our extended BRD model family for the non-respons,

is another possibility to model non-monotone discrete data.

All previous models were based on the selection model factorization of the joint

model for the outcomes and non-response process. Also within the pattern-mixture

models, a distinction can be made between continuous or discrete data, and monotone

or non-monotone missingness. In this thesis, we developed a pattern-mixture model

framework for non-monotone discrete outcomes, using the multivariate Dale model

to analyze the data per pattern. Identifying restrictions were used to specify the

conditional distribution of the unobserved measurements, given the observed ones in

a specific pattern. Similar models can be developed, using for example our extended

BRD models, or the generalized linear mixed models, instead of the multivariate Dale

model. Insight was also given into the non-trivial way of determining a marginal effect

across patterns in the case of non-Gaussian data.

Contrasting several models within one of the families proposed here (extended
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BRD, Dale-Dale or pattern-mixture), is in itself a way to perform a sensitivity anal-

ysis. Also comparing the results from selection models and pattern-mixture models

can be fruitful to assess the sensitivity of such models. On the other hand, a sensitiv-

ity analysis can also be conducted at the level of the individuals. Therefore, in this

thesis, the already existing methods of global and local influence have been adjusted

to assess the influence in the case of selection models for bivariate binary outcomes

subject to non-monotone missingness. Clearly, it is advisable to combine several of

those methods within an integrated sensitivity analysis.

Until now, local influence was mainly used to detect observations that had a high

impact on the conclusions due to their aberrant missingness mechanism. However,

in many applications, the situation turned out to be more complex than anticipated.

Indeed, the influential subjects often are influential for other than missingness related

features. For example, in Molenberghs et al. (2001b), the three influential cows were

identified by an extreme increase between the measurements at two subsequent years.

Thijs, Molenberghs and Verbeke (2000) observed a similar behavior. The questions

that arose from those findings were (1) when can a subject or a group of subjects

be considered as influential, and (2) what reasons might be related to high influence

values. In the last chapter, an attempt was made to answer those questions. A similar

feature may be present within the global influence context, so further investigation

will be necessary.
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