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1
Introduction

In a longitudinal study individuals are measured repeatedly over time. Since obser-
vations gathered on the same subject tend to be more alike than observations from
different subjects, they are correlated. This correlation must be taken into account
when analyzing the collected data in order to draw valid conclusions. Although this
fact has been long recognized, it was not until quite recently that the wide availabil-
ity and advances in computer power have permitted the development of appropriate
statistical techniques for the analysis of correlated measurements.

The prime advantage of a longitudinal study is its effectiveness for studying change
(Diggle et al 1994). Namely, it can distinguish changes over time within individuals
(longitudinal effects) from differences among people at baseline (cross-sectional ef-
fects).

In addition to longitudinal data, other types of correlated data arise naturally in
a broad range of scientific disciplines, such as biological, health or social sciences.
Correlated data is actually a generic term, covering a multitude of data structures,
such as multivariate observations, clustered data, and spatially correlated data.

It is essential to consider the type of outcome when modeling correlated data.
Methods for continuous correlated data are well developed and implemented in soft-
ware, mainly due to the elegant properties of the normal distribution. The general
linear mixed-effects model (Verbeke and Molenberghs 2000) has, arguably, become
the most commonly used tool for analyzing continuous, normally distributed longitu-

1



2 Chapter 1. Introduction

dinal data. This model encompasses three sources of variability: (1) subject-specific
effects, (2) serial correlation, which describes the phenomenon that measurements
taken closer in time will exhibit a larger correlation than when they are further apart,
and (3) measurement error.

When the outcome variable is discrete or categorical, techniques for correlated
data are less standard, because of the lack of a discrete analogue to the normal
distribution. Therefore, complete specification of the joint distribution of the response
vector becomes more problematic and fully likelihood-based methods are generally
awkward.

Another issue raised by this type of (non-Gaussian) outcomes is that we must
distinguish between three different model families: the marginal, random-effects, or
conditional model family (Molenberghs and Verbeke 2005). In a marginal model, the
marginal expectation of a discrete or continuous response, Y , is characterized as a
function of explanatory variables, X. By marginal expectation, we mean the average
response over the the sub-population that shares a common value of X. The corre-
lation among the components of Y can then be captured either by adopting a fully
parametric approach or by modeling a limited number of lower-order moments only.
Alternatively, in random-effect models, the response is assumed to be a function of
explanatory variables with regression coefficients that vary from one individual to the
next. This variability reflects natural heterogeneity due to unmeasured (latent) fac-
tors, often called random effects. Given these so-called subject-specific parameters,
the responses are often assumed independent. This does not preclude that more elab-
orate models are possible if residual dependence is detected. Finally, a conditional
model describes the distribution of the components of Y , conditional on X but also
on (a subset of) the other components of Y . In a longitudinal context, a particu-
lar relevant class of conditional models describes a component of Y given the ones
recorded earlier in time, the so-called autoregressive or transition models.

All three modeling approaches lead to the same class of linear models for Gaus-
sian data. But in the discrete case, different (non-linear) models can lead to different
interpretations for the regression coefficients. The choice of model should therefore
depend on the scientific question being addressed.

Throughout the present work, we will focus mainly on flexible ways to model
both linear and non-linear continuous longitudinal data. In Chapter 2, a general
overview of existing relevant methodology is presented. This includes the linear mixed
model mentioned earlier, but also the non-linear mixed model, fractional polynomials,
splines, and finally a brief section on discrimination, classification, and clustering.
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Chapter 3 covers the analysis of a pilot study on Persistent disturbing behavior
(PDB), which refers to a chronic condition in therapy resistant psychiatric patients.
Since these patients are highly unstable and difficult to maintain in their natural living
environment and even in hospital wards, it is important to properly characterize this
group. Here, using a score calculated from longitudinal psychiatric registration data,
we characterize the difference between PDB patients and a set of control patients.
These differences are studied both at a given point in time, using discriminant analysis,
as well as in terms of the evolution of the score over time, using longitudinal data
analysis methods. Further, using clustering techniques, the group of PDB patients
is split into subgroups. Such findings are useful from a scientific as well as from an
organizational point of view.

While marginal models, random-effects models, and conditional models are rou-
tinely considered to be the three main modeling families for continuous and discrete
repeated measures with linear and generalized linear mean structures, respectively, it
is less common to consider the taxonomy for non-linear models. In the latter situa-
tion, indeed, the focus is often exclusively on random-effects models. In Chapter 4,
we consider all three families and apply them to a simple but illustrative set of data
on tree circumference growth of orange trees.

In Chapter 5 we analyze data on the impact of testosterone on the dynamics
of Mn2+ accumulation measured by magnetic resonance imaging in three songbird
brain areas: the nucleus robustus arcopallii (RA), area X, and the high vocal center
(HVC). Birds with and without testosterone were included in the experiment, and
repeated measurements were available in both a pre and post drug administration
period. We formulate a non-linear modeling strategy, allowing for the incorporation
of (1) within-bird correlation, (2) the non-linearity of the profiles, and (3) the effect
of treatment. For two of the outcomes (RA and area X), biological theory suggests a
parametric form, while for HVC this is not the case. Since the HVC outcome bears
some resemblance with the two-compartment model known from pharmacokinetics,
this model was considered a sensible choice. We use a different model, based on frac-
tional polynomials, as a sensitivity analysis for the latter. All methods used provide
good fits to the data, confirm results from previous, simple analyzes undertaken in
the literature, but were able to detect additional effects of treatment that had so far
gone undetected. The fractional polynomial and two-compartment models provide
similar substantive conclusions, the two together can be seen as a form of sensitivity
analysis.

Flexible estimation of serial correlation when modeling continuous longitudinal
data is the focus of Chapter 6. As mentioned earlier, four structures can be distin-
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guished in the general linear mixed model: fixed effects, random effects, measurement
error and serial correlation. Broadly speaking, serial correlation captures the phe-
nomenon that the correlation structure within a subject depends on the time lag
between two measurements. While the general linear mixed model is rather flexible,
the need has arisen to further increase flexibility. In response, quite some work has
been done to relax the model assumptions and/or to extend the model. For example,
the normality assumption for the random effects has been generalized in several ways.
Comparatively less work has been devoted to more flexible serial correlation struc-
tures. Therefore, we propose the use of spline-based modeling of the serial correlation
function. The approach is applied to data from a pre-clinical experiment in dementia
which studied the eating and drinking behavior in mice.

Chapter 7 deals with viral dynamics, a relatively new field of study that relies on
mathematical models to describe the evolution of virus levels in the blood plasma, the
so-called viral load, over time. Our scientific aim is to model the evolution of HIV-1
viral concentrations over time. More specifically, the goal of the analysis reported in
this chapter is twofold. First, the model building steps and specification of starting
values need to be systematized when fitting the bi-exponential model to viral load
data with SAS procedure NLMIXED. Second, we wanted to find a suitable model for
the rebounders, a special subgroup of patients. The data to be analyzed come from
pooling three clinical trials on Prezista, a new protease inhibitor developed by the
pharmaceutical company Tibotec.

Finally, in Chapter 8 we formulate concluding remarks and also indicate some
topics for further research.



2
Methodology

This chapter provides a general overview of relevant existing methodology to flexibly
model continuous longitudinal data. Section 2.1 introduces the linear mixed model,
while the non-linear mixed model is covered in Section 2.2. Section 2.3 is devoted to
fractional polynomials and Section 2.4 introduces splines. Finally, a brief discussion
on discrimination, classification, and clustering is presented in Section 2.5.

2.1 The Linear Mixed Model

The linear mixed-effects model (Laird and Ware 1982, Verbeke and Molenberghs
2000) is very commonly used with continuous longitudinal data. The model will be
introduced and briefly discussed.

Let Yi denote the ni-dimensional vector of measurements available for subject
i = 1, . . . , N . A general linear mixed model decomposes Yi as:

Yi = Xiβ + Zibi + εi, (2.1)

in which β is a vector of population-average regression coefficients called fixed effects,
and where bi is a vector of subject-specific regression coefficients. The bi describe how
the evolution of the ith subject deviates from the average evolution in the population.
The matrices Xi and Zi are (ni × p) and (ni × q) matrices of known covariates. The
random effects bi and residual components εi are assumed to be independent with

5



6 Chapter 2. Methodology

distributions N(0, D), and N(0, Σi), respectively. Note that Σi depends on i only
dimension-wise, i.e., through the number of measurements available for a particular
subject. In other words, the parameters governing Σi are generally common to all
subjects. Thus, in summary,

Yi|bi ∼ N(Xiβ + Zibi, Σi), bi ∼ N(0, D). (2.2)

Let f(Yi|bi) and f(bi) be the density functions of Yi conditional on bi, and of bi,
respectively. The marginal density function of Yi is then given by

f(Yi) =
∫

f(Yi|bi) f(bi) dbi, (2.3)

the density of the ni-dimensional normal distribution N(Xiβ, ZiDZ ′i + Σi). Further,
let α denote the vector of all variance and covariance parameters (usually called vari-
ance components) found in Vi = ZiDZ ′i + Σi, that is, α consists of the q(q + 1)/2
different elements in D and of all parameters in Σi. Finally, let θ = (β′,α′) be the
s-dimensional vector of all parameters in the marginal model for Yi.

Oftentimes, Σi in model (2.2) is chosen to be equal to σ2Ini where Ini denotes the
identity matrix of dimension ni. We then call this model the conditional independence
model, since it implies that the ni responses on individual i are independent, condi-
tional on bi and β. This model may imply unrealistically simple covariance structures
for the response vector Yi, especially for models with few random effects. The co-
variance assumptions can often be relaxed by allowing an appropriate, more general,
residual covariance structure Σi for the vector εi of subject-specific error components.

Diggle et al (2002), based on Diggle (1988), proposed such a general model. They
assume that εi has constant variance and can be decomposed as εi = ε(1)i + ε(2)i in
which ε(2)i is a component of serial correlation, suggesting that at least part of an in-
dividual’s observed profile is a response to time-varying stochastic processes operating
within that individual. This type of random variation results in a correlation between
serial measurements, which is usually, and quite sensibly, a decreasing function of the
time separation between these measurements. Further, ε(1)i is an extra component of
measurement error reflecting variation added by the measurement process itself, and
assumed to be independent of ε(2)i.
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The resulting linear mixed model can now be written as




Yi = Xiβ + Zibi + ε(1)i + ε(2)i

bi ∼ N(0, D),

ε(1)i ∼ N(0, σ2Ini
),

ε(2)i ∼ N(0, τ2Hi),

b1, . . . , bN, ε(1)1, . . . , ε(1)N, ε(2)1, . . . , ε(2)N independent,

(2.4)

and the model is completed by assuming a specific structure for the (ni × ni) cor-
relation matrix Hi. One usually assumes that the serial effect ε(2)i is a population
phenomenon, independent of the individual. The serial correlation matrix Hi then
only depends on i through the number of ni observations and the time points tij at
which measurements were taken. Further, it is assumed that the (j, k) element hijk

of Hi is modeled as

hijk = g(|tij − tik|) (2.5)

for some decreasing function g(·) with g(0) = 1. This means that the correlation
between the measurements ε(1)ij and ε(2)ik only depends on the time interval between
the measurements yij and yik, and decreases if the length of this interval increases.

Two frequently used g(·) functions are the exponential and Gaussian serial cor-
relation functions defined as g(u) = exp(−φu) and g(u) = exp(−φu2), respectively
(φ > 0).

The marginal covariance matrix is then of the form

Vi = ZiDZ ′i + τ2Hi + σ2Ini . (2.6)

A classical inferential approach is based on maximizing the marginal likelihood func-
tion

LML(θ) =
N∏

i=1

{
(2π)−ni/2 |Vi(α)|−1/2 (2.7)

× exp
(
−1

2
(Yi −Xiβ)′ V −1

i (α) (Yi −Xiβ)
)}



8 Chapter 2. Methodology

with respect to θ. Alternatively, and with an eye on reducing small-sample likelihood-
type bias, restricted maximum likelihood (REML, Harville 1974, 1977, Molenberghs
and Verbeke 2000) can be used, which comes down to the maximization of the so-
called REML likelihood

LREML(θ) =

∣∣∣∣∣
N∑

i=1

X ′
i V −1

i (α) Xi

∣∣∣∣∣

−1/2

LML(θ). (2.8)

2.2 The Non-linear Mixed Model

While Model (2.4) is flexible, the limitation of parameters entering the model lin-
early can become too restrictive. Pinheiro and Bates (2000, Ch. 6.1) mention three
main reasons why one would want to use non-linear models instead of linear models:
interpretability, parsimony, and validity beyond the range of the data.

Linear models are empirical in nature, based only on the observed relationship
between the response and the covariates, and do not include any theoretical consid-
erations about the underlying mechanism producing the data.

Non-linear models, on the other hand, are often mechanistic, i.e., based on a model
for the mechanism producing the response. As a consequence, the model parameters
in a non-linear model generally have a natural physical interpretation. For example,
in pharmacokinetics, the estimated absorption and elimination rate parameters are
of direct interest. Furthermore, a non-linear model generally needs fewer parameters
than a competitor linear model, giving a more parsimonious description of the data.
Lastly, since non-linear models often contain parameters capturing certain typical as-
pects of the data, such as asymptotes and monotonicity, they usually provide more
reliable predictions outside the observed range of the data.

To allow for non-linear effects in the model, we generalize (2.2) to

Yi|bi ∼ N [f(Yi|Xi, Zi,β, bi),Σi], bi ∼ N(0, D). (2.9)

Here, f is a non-linear mean function. Inference usually proceeds by means of max-
imum likelihood (Fahrmeir and Tutz 2001, Ch. 7), unless a fully Bayesian view is
adopted. To this end, the marginal likelihood needs to be calculated from (2.9). In
the linear case, the marginal likelihood function has a closed-form expression, but this
is no longer true in the general case. As a consequence, numerical approximations of
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the likelihood function are needed, leading to more computationally intensive estima-
tion algorithms and to less reliable inference results (Pinheiro and Bates 2000).

The most frequently used approximation methods are either based on Gaussian
quadrature rules (Davidian and Gallant 1992), or Taylor series expansions. The latter
consists of taking a first-order Taylor expansion of the model function f around the
expected value of the random effects (Sheiner and Beal 1980, Vonesh and Carter
1992), or around the conditional mode of the random effects (Lindstrom and Bates
1990). A detailed discussion and comparison of the different approximation methods
can be found in Pinheiro and Bates (1995).

Since Gaussian quadrature approximations have a higher degree of accuracy than
the Taylor expansion methods, though at the cost of increased computational com-
plexity, they are our preferred method of analysis. SAS procedure NLMIXED uses
adaptive Gaussian quadrature by default and is therefore our standard analysis tool
to fit non-linear mixed models. We will now summarize some of the key ideas on
(adaptive) Gaussian quadrature approximation.

Gaussian Quadrature Approximation

The aim of the numerical quadrature methods is to approximate the random-effects
integral itself. This is done by a weighted sum over (fixed) abscissas. Only a brief
description, based on the article of Lesaffre and Spiessens (2001) of this method will
be presented here.

Gaussian quadrature can be used to approximate any integral of the form
∫

f(z) φ(z) dz,

where φ(.) denotes the density function of a standard normal distribution. The ap-
proximation consists of replacing the integral by a weighted sum:

∫
f(z) φ(z) dz ≈

Q∑
q=1

wq f(zq),

where the nodes zq are solutions of the Qth order Hermite polynomial and the wq are
suitably corresponding weights. These quadrature points zq and weights wq can be
found in tables or can be calculated by algorithms. The higher Q the more accurate
the approximation will be.
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In case of univariate integration, the approximation consists of subdividing the
integration region in intervals, and approximating the surface under the integrand
by the sum of surfaces of the so-obtained approximating rectangles. An example
is given in the left window of Figure 2.1. For this integration we have used Q = 10

Figure 2.1: Comparison of the positions of 10 quadrature points obtained from (a)
ordinary Gaussian quadrature and (b) an adaptive Gaussian quadrature for the same
integrand.

quadrature points and these are shown as black triangles at the bottom of the figure. It
is clearly seen that only 2 quadrature points out of 10 give a considerable contribution
to the integral. Adaptive Gaussian quadrature solves this problem by appropriately
centering and scaling the quadrature points zq such that more quadrature points lie
in the region of interest. Typically, adaptive Gaussian quadrature needs much less
quadrature points than classical Gaussian quadrature. On the other hand, adaptive
Gaussian quadrature is computationally much more demanding.
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Empirical Bayes Estimation

Although in practice one is usually primarily interested in estimating the parame-
ters in the marginal distribution of Yi, i.e. β and D, it is often useful to calculate
estimates for the random effects bi as well. They reflect between-subject variability,
which makes them helpful for detecting special profiles (i.e., outlying individuals) or
groups of individuals evolving differently over time. Also, estimates for the random
effects are needed whenever interest is in prediction of subject-specific evolutions. In
turn, these predictions can be plotted against the observed profiles to visually assess
the quality of the model fit. This section is based on Molenberghs and Verbeke 2005,
Section 14.2.4.

Since the random effects in the hierarchical model (2.9) are assumed to be random
variables, it is most natural to estimate them using Bayesian techniques. It was also
noted that the most common assumption for the marginal distribution of bi is the
multivariate normal with mean vector 0 and covariance matrix D. In the Bayesian
literature, this last distribution is usually called the prior distribution of the param-
eters bi since it does not depend on the data Yi. Once the observed values Yi have
been collected, the so-called posterior distribution of bi, defined as the distribution of
bi, conditional on Yi, can be calculated. Using the same notation as in equation (2.3),
we denote the density function of Yi conditional on bi for subject i by fi(Yi|bi), and
the prior density function of bi by f(bi), the posterior density function of bi given Yi

is given by

fi(bi|Yi) =
fi(Yi|bi) f(bi)∫

fi(Yi|bi) f(bi) dbi
. (2.10)

For the sake of notational convenience, we hereby suppressed the dependence of all
above density functions on certain parameters in the marginal model for Yi. Unlike
in the linear case, this posterior density is, in general, not a normal one. Therefore,
the posterior mode, rather than the posterior mean, is used as point estimator for
bi. More specifically, the estimator b̂i is the value for bi that maximizes fi(bi|Yi), in
which the unknown parameters have been replaced by their estimates obtained from
maximum likelihood estimation. As in the linear case, the obtained estimates are
called empirical Bayes (EB) estimates.
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2.3 Fractional Polynomials

Fractional polynomials allow a wide variety of parametric shapes by considering not
only integer powers of a key covariate (e.g., time), but also fractional powers. This is
handy whenever no clear view on the model to be considered exists. As soon as non-
integer powers are allowed for, the number of potential models is effectively endless,
and it is wise to consider, a priori, a sensible model building strategy. This has been
provided by Royston and Altman (1994).

Formally, Royston and Altman (1994) define a fractional polynomial as any func-
tion of the form

f(u) = φ0 +
m∑

k=1

φkx(pk),

where the degree m is a positive integer, where p1 > . . . > pm are real-valued pre-
specified powers, and where φ0 and φ1, . . . , φm are real-valued unknown regression
coefficients. Finally, x(pk) is defined as

x(pk) =





xpk if pk 6= 0

ln(x) if pk = 0.
(2.11)

Not only the conventional powers x, x2,. . . are allowable, also ln(x),
√

x (for pk = 0.5),
1/x (for pk = −1), etc.

In the context of linear and logistic regression analyses, Royston and Altman
(1994) have shown that the family of fractional polynomials is very flexible and that
models with degree m larger than 2 are rarely required. In practice, several values for
the powers p1, . . . , pm can be tried, and the model with the best fit is then selected.

Using a fractional polynomial within a linear or a non-linear mixed-effects model,
is reasonably straightforward. One is merely required to construct the necessary
covariate powers, logarithms, and interactions thereof, as a set of covariates in the
data set to be analyzed. In our case, fractional polynomials will be applied to the
time covariate. Of course, given the relative complexity of the non-linear mixed effects
model, we propose to keep the degree m of the polynomials relatively small. One can
then fit several models with a variety of powers p1, . . . , pm.

In the context of the linear mixed model, fractional polynomials have been used
both in the fixed-effects structure (Verbeke and Molenberghs 2000, Ch. 24.5) as well
as in the serial correlation structure. We will return to the latter application in
Section 6.3.1.

While the fractional polynomial approach is flexible, it is also empirical in na-
ture, allowing on the one hand a wide variety of parametric shapes, useful for varied
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applications, but not offering immediate biological insight into the meaning of the
parameters and their estimated values. Arguably, their value lies in confirming or
questioning other models, i.e., by way of sensitivity analysis, and to test treatment or
other effects.

2.4 Splines

Another flexible way for obtaining a smooth fit to one’s data is through splines,
which are piecewise polynomials with components smoothly spliced together. The
joining points of the polynomial pieces are called knots, that do not have to be evenly
spaced. A spline is of degree p when the highest degree of the polynomial segments is
p. Ruppert et al (2003) define a pth-degree spline model with knots at κ1, . . . , κK as

f(x) = β0 + β1 x + · · ·+ βp xp +
K∑

k=1

βp+k (x− κk)p
+, (2.12)

where (x − κk)+ is the truncated power basis function, i.e., the positive part of the
function (x−κk). Other possible basis functions include the B-spline (Dierckx 1993),
natural cubic spline (see, for example, Eubank 1988), and radial basis (see, for exam-
ple, Green and Silverman 1994).

A simple and straightforward way to fit splines is by using ordinary least squares
to estimate the (unrestricted) knot point coefficients βp+k. This essentially means
that the coefficient at each knot point is considered a fixed effect and this is usually
referred to as a regression spline. However, this approach usually tends to overfit the
data, leading to too coarse a regression curve, unless the number of knot points is
small and their location carefully chosen (as in adaptive splines, see e.g. Zhang 2004).

Owing to the aforementioned coarseness of the parametric spline, various meth-
ods have been developed to constrain the knots’ influence. Classically, the amount
of smoothing is controlled by adding a term to the likelihood function, penalizing
large coefficients at the knot points, which amounts to counterbalancing such coef-
ficients’ contribution to the raggedness of the curves. A candidate penalty term is
λ

∑K
k=1 β2

p+k, but there are many more. There is a vast amount of literature on
the selection of the optimal smoothing parameter λ. Roughly speaking there are
three (related) ways to determine the smoothing parameter λ. A first option is cross-
validation, where for a grid of λ-values the squared error loss criterion is minimized
in a leave-one-out cross-validation procedure. A second approach is the use of some
model selection criterion, such as Akaike’s Information Criterion (AIC, see e.g. Hur-
vich et al 1998). This method however requires a so-called equivalent number of
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parameters or the effective degrees of freedom (see e.g. Ruppert et al 2003) to define
the AIC appropriately. Thirdly, penalized splines can also be represented in mixed-
model form (Verbyla et al 1999, Ruppert et al 2003), meaning that each knot point
coefficient acts as a random effect. This results in a multivariate normal density en-
tering the marginal likelihood, which then needs to be integrated out. The variance
component governing these additional random effects is usually set equal for all knot
points. This variance component controls and describes the degree of flexibility and
smoothness. The fitted curve can be constructed by means of the empirical Bayes
estimates.

The linear mixed model representation can be set up by considering the following
random-spline design matrix:

Zi =




(x1 − κ1)+ · · · (x1 − κK)+
...

. . .
...

(xn − κ1)+ · · · (xn − κK)+


 .

Of course, such additional random effects can be combined with random effects already
present in (2.1). Other modeling assumptions expressed in conjunction with (2.1) are
left unaltered. Let the sole variance component governing the smoothing process be
σ2

u and assume the residual error structure is of the conditional independence type
with variance component σ2

ε , then the smoothing parameter λ2 can be shown to take
the form λ2 = σ2

ε/σ2
u (Verbyla et al 1999, Ruppert et al 2003).

2.5 Discrimination, Classification, and Clustering

Discriminant analysis and methods for classification are obvious tools to be used
when the focus is on distinguishing between groups in the data. A key tool is Fisher’s
linear discriminant analysis (Fisher 1936), while a large number of methodological
developments have taken place, leaving us with a variety of methods.

There are two very distinct situations. The first one arises when group membership
has been defined explicitly. At the same time, this does not imply that it is easy
to discriminate between these groups, necessitating the use of formal discriminant
analysis methods (Johnson and Wichern 1992). In a second situation, the researcher
has a vague idea about the possibly useful split of a given group in subgroups, without
precise knowledge about the number of such groups, let alone their definition. In such
a case, one resorts to cluster analysis (Johnson and Wichern 1992). We will review
each of these methods in the briefest way, since a vast literature on both subjects is
in existence.
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2.5.1 Discriminant Analysis

Discriminant function analysis is used to determine which variables discriminate be-
tween two or more naturally occurring groups. In linear discriminant analysis, we
are interested in those linear features which reduce the dimensionality and simulta-
neously preserve class separability. Discriminant analysis can be understood as an
exploratory tool to describe the dependence relations of the response variable on the
given set of predictors in the observed sample of cases; the G categories of the re-
sponse variable define a partition of the population Ω into G groups (ω1, ω2, ..., ωG)
and the P predictors are observed to characterize the typologies of cases within each
group (Saporta 1990, McLachlan 1992). At the same time, discriminant analysis can
also be used to define a decision rule for assigning a new case to one class on the basis
of the observations of the given predictors in the so-called learning sample; a method
such as test sample or cross-validation is considered to estimate the accuracy of the
decision rule (Fisher and van Ness 1973, Celeux and Nakache 1994). Parametric,
whether or not normally based, semi-parametric, and non-parametric versions have
been established.

The quality of a so-obtained classification rules depends on three aspects. First,
the parametric assumptions made may or may not hold, and this needs to be assessed.
Second, the discrimination and classification rule obtained will be imprecise, since it
is based on a finite sampling only. Third, the performance of the rule will be driven
by the actual separation of the sub-populations in terms of the characteristics under
study. For example, body height and weight have some discriminative power between
genders in a human population, but very poorly so. It is important to note that
investigators can control the first and second feature, but not the third one, unless a
broader set of potential discriminators would be considered. For all of these reasons,
the classification rule needs to be assessed, not so much in terms of its fit to the
learning data, but rather in terms of its classification power to a test set of data.

For example, a classification rule for two normal populations, with different means
but equal variance-covariance structures, takes the form:

(µ1 − µ2)
T Σ−1x− 1

2
(µ1 − µ2)

T Σ−1(µ1 + µ2) ≥ ln
[
c(1|2)
c(2|1)

p2

p1

]
, (2.13)

where c(1|2) is the relative cost of misclassifying a subject that belongs to the sec-
ond population into the first one and pj (j = 1, 2) is the prior group membership
probability. One assigns a subject with response vector x to the first population
if the inequality is satisfied and to the second one otherwise. A variety of versions
exists, depending on the parametric assumptions made. An obvious extension is to
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normal populations with unequal variances, leading to a quadratic rule rather than
(2.13) which is of a linear type. Also extensions to general G groups rather than just
two are obvious. The derivation of sample versions of population-based rules such
as (2.13) is straightforward. In practice, one might want to assign a set of so-called
posterior probabilities to a study subject, describing its chances of membership to
each of the groups under study.

A number of formal methods have been derived to study the classification error
and to assess it using datasets at hand, including cross-validation, jackknifing, and
the use of learn and test samples (Johnson and Wichern 1992).

The SAS procedures DISCRIM and CANDISC can be used for discriminant anal-
ysis purposes.

2.5.2 Cluster Analysis

When interest lies in exploring whether a population could be usefully divided in sub-
populations, without definite knowledge about group definition or even the number
of groups, the optimal solution seems to be considering all possible partitions, to-
gether with an evaluation following a certain criterion, such as, for example, minimum
variance, minimum distance, and or using a certain distance or similarity measure.
However, unless the set of data at hand is extremely small, such an approach is not
feasible in practice. Therefore, a number of heuristic strategies have been developed
(Johnson and Wichern 1992).

One distinguishes between hierarchical and non-hierarchical clustering methods.
A hierarchical method either starts from the entire datasets and then gradually and
hierarchically splits it up in ever finer subsets, following a particular criterion or, in
reverse, starts from the collection of singletons and groups them following a certain
criterion (agglomerative procedure) until finally the entire dataset is brought together.
In each of these cases, the number of clusters is then chosen following an optimality
criterion. Several criteria can be used in the agglomerative case, such as so-called
single linkage, complete linkage, or average linkage.

A popular non-hierarchical way is the so-called K-means method. One then par-
titions the subjects in K initial clusters or chooses K initial centroids. Next, the
subjects are re-assigned to the cluster with the closest centroid, whereafter the cen-
troids are computed again. This process is then repeated until convergence.

Each methods has advantages and disadvantages and these are relatively well
understood. For example, single linkage tends to generate chain-like clusters which in
many cases do not represent a reality one is looking for. The K-means method can
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produce poorly separated clusters if two or more initial centroids happen to lie in the
same physical cluster.

Overall, it is wise to consider cluster analysis an exploratory and hypothesis gen-
erating technique only. One might put more confidence in a given structure if various
methods happen to produce roughly the same clustered. In any event, a cluster anal-
ysis should be followed up by a scientific discussion as to the relevance of the emerging
clustering and ideally follow up studies would be undertaken to confirm the findings.

A variety of clustering procedures is available in SAS, including the procedures
CLUSTER, FASTCLUS, VARCLUS, TREE, HIER, and IPFPHC.





3
Characterizing Persistent

Disturbing Behavior

3.1 Introduction

Mental health care institutions in Belgium are confronted with a group of chronically
therapy resistant patients. This group is problematic in the sense that no scientific
definitions nor theory exists. Furthermore, there is no legislative framework in place.
These patients cannot be treated satisfactorily with the latest knowledge of therapy
and medication. Their behavior is disturbing in the sense that living together in
their natural environment, or even in a hospital ward, is extremely difficult. Since
their disease systems are unstable, and given that their behavior is persistent over
time, intensive supervision over 24 hours is required. This condition is referred to as
persistent disturbing behavior (PDB).

The current Belgian health care system is clearly not accommodating to this group.
Indeed, from the two residential settings, psychiatric hospitals and psychiatric nursing
homes, the former are defined as non-residential institutions for intensive specialist
care. As the PDB group needs a prolonged stay in such a setting, a psychiatric hospital
is not the optimal environment. In addition, a 1996 law states that a psychiatric
nursing home is intended for patients with stabilized chronic psychiatric conditions.
While the law does not specify the meaning of stabilized condition, it is generally
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understood that PDB patients are not stable. We therefore have to conclude that
mental health care does not explicitly accommodate the PDB group.

The PDB group raises four important questions. First, how can it be distinguished
from related but different groups, such as patients with acute or short-term disturbing
behavior. Second, since a clear definition is emerging only now, the size of the PDB
group is unclear. Third, it is conceivable that the PDB group consists of a number
of subgroups that can be usefully distinguished between. Finally, it is not clear
where such patients should be based, even though this will in all likelihood neither
be the ambulatory setting nor sheltered living. Further, psychiatric wards of general
hospitals are intended for acute problems while PDB patients are clearly a chronic
group.

To rectify this situation, legislative work is necessary. Before this can be done, one
first needs to properly define the PDB group and undertake a quantitative analysis,
formulating an answer to the aforementioned questions.

Since there is no generally accepted definition, we will use the following working
definition. To be classified as PDB, a patient has to be subject to socially inade-
quate behavior, that is persistent and treatment resistant, disruptive for the patient’s
environment, and confronting the therapeutic team with unrealistic demands. The
inadequate behavior can take one or several of many different forms such as multiple
forms of aggression (directed to oneself or to others), sexually uninhibited behavior,
agitation, loss of decorum, and suicidal behavior.

In 1998 a cross-sectional pilot study was set up in the psychiatric hospitals and
the psychiatric nursing homes in the Belgian province of Limburg to (1) estimate
the size of the PDB group and (2) explore factors to discriminate between PDB and
non-PDB patients (Bruckers et al 2000). While these results are very useful, there
are a number of residual issues. First, due to its cross-sectional nature, the focus is
on disturbance rather than on persistence. Second, the working definition presented
earlier did not exist at the time. Third, the group of patients shown for study was cho-
sen for comparison with a non-PDB control group rather than for representativeness.
This design implies that, while conclusions regarding differences between PDB and
non-PDB patients, and conclusions pertaining to subgroups within the PDB group
can be drawn with confidence, caution is necessary when making inferences about the
magnitude of the PDB group. For the latter goal, the study should be seen as being
of a pilot type. Nevertheless, it is important to know whether the group is sufficiently
large so as to warrant specific components of care. Should one want to draw more
refined conclusions, then a follow-up study, less prone to selection bias, would be in
place.
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By making use of longitudinal psychiatric registry data, we will show how the
persistence aspect of the group can be studied and how insight into the PDB patients
can be enhanced further. Furthermore, we will present the results of a cluster analysis,
to initiate identification of subgroups within the PDB group.

The data on which our analyses are based are presented in Section 3.2, while Sec-
tion 3.3 briefly discusses the implemented methods of analysis. Section 3.4 presents
our findings. Precisely, after reviewing and expanding upon the cross-sectional dis-
criminant analysis, the data are analyzed using longitudinal methodology, whereas
cluster analysis provides further insight. These findings are used in Section 3.5 to for-
mulate a perspective on the patient population with persistent disturbing behavior.
Note that the content of this chapter is mainly based on the paper of Serroyen et al
(2007a).

3.2 The Data

For every patient admitted to a residential psychiatric care setting in Belgium specific
data are registered. This registration system was made mandatory in 1996 for psychi-
atric hospitals and in 1998 for the psychiatric nursing homes by the federal Ministry
of Public Health and is called Minimal Psychiatric Data (MPD). The entire set of
data is extensive, organized in a number of modules. A major source for the MPD
instrument, but not the only one, is the so-called Diagnostic and Statistical Manual of
Mental Disorders, known as DSM. The items, relevant for our purposes, are concisely
listed in Table 3.1.

Our data set, previously used by Bruckers et al (2000), contains information on
611 patients from the province of Limburg about more than 200 psychiatric, physical,
and sociological characteristics. The variables in this data set are mostly of a categor-
ical or ordinal type, although some continuous variables are present as well. The four
key continuous variables are the PDB score, which will be discussed in more detail
in Section 3.4.1, with mean 0.62 and standard deviation 1.97, age (mean 47.48 and
standard deviation 15.60), duration (mean 3365.71 and standard deviation 3143.43),
and GAF score (mean 32.28 and standard deviation 80.00). The Global Assessment of
Functioning , or GAF scale, is a numeric scale (1 through 100) used by mental health
clinicians and doctors to rate the social, occupational and psychological functioning
of adults. Incidentally, the GAF scale constitutes the fifth axis of the DSM-IV psy-
chiatric classification system. It is considered a potential explanatory variable in all
subsequent analyses.

To provide the reader with a perspective on the data, individual profiles of 20
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Table 3.1: Logistic regression analysis results, separately for psychiatric hospitals and
psychiatric nursing homes. Odds ratios [95% confidence intervals] are reported. All
items are coded such that an odds ratio greater than 1 corresponds to a less desirable
score. The non-PDB group is the reference group.

Item Hospitals Nursing homes

Psychiatric signs and symptoms:

Auto-aggressive actions 5.62 [1.93; 16.42] 3.52 [1.61; 7.72]

Aggression against people 1.87 [1.21; 2.88]

Aggression against objects 3.17 [1.26; 7.99]

Anti-social attitude 1.92 [1.05; 3.50]

Intensified supervision:

Suicide danger 1.39 [1.19; 1.63]

Separation/isolation 3.34 [1.12; 9.95]

Patient Functioning:

Appearance 1.60 [1.18; 2.17]

Respect for others 1.49 [1.03; 2.16] 1.81 [1.16; 2.82]

Socially unacceptable behavior 2.02 [1.27; 3.19]

Age 0.97 [0.95; 0.99]

Gender 6.10 [2.89; 12.90]

Primary diagnosis at admission:

Mental Retardation 0.43 [0.19; 0.97]

DDAC1 0.22 [0.06; 0.87]

Schizophrenia 1.75 [0.95; 3.21]

V-codes 0.10 [0.01; 0.92]

1 Delirium, Dementia, Amnestic and Cognitive disorders

randomly selected subjects are presented in Figure 3.1. The average profiles and the
group-specific empirical variance functions are displayed in Figure 3.2. Obviously, not
all patients are observed at all times. An overview of the number of measurements
available, for each of the 8 occasions and within each of the four PDB status by
psychiatric sector combinations, is given in Table 3.2. In addition, the range of
measurements per patient is displayed.
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Figure 3.1: Random sample of individual PDB score profiles for 10 PDB and 10
non-PDB patients.

3.3 Method of Analysis

Information available in the MPD registration system was used to construct a discrim-
inant function. Data registered in the second part of 1998 were used to develop this
function. The items which make up the discriminant score have been recorded twice
annually since 1996. After 2000, the legal registration framework changed, whence it
is wise to restrict attention to the 1996–2000 interval.

Thus, the score was calculated at the other registration occasions as well, thus
producing a longitudinal profile per patient. We employed linear mixed models to
study the evolution of the mean discriminant function, for the PDB and non-PDB
groups. Also, the length of stay contains very valuable information to investigate
the persistence dimension. PDB patients cannot be discharged from the institution,
since, due to their behavior, they are incapable of properly functioning in society.

When the focus is on distinguishing between PDB and non-PDB patients, discrim-
inant analysis (see Section 2.5.1) is an obvious tool. Practically, two samples, one of
which is of PDB type while the other consists of control patients, can then be classi-
fied based on a set of potential predictors. Linear and logistic discriminant analysis
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Figure 3.2: Mean PDB score over time (top panel) and empirical variance function
(bottom panel) for PDB and non-PDB group.

are the more popular versions of the technique; the ones considered here (Johnson
and Wichern 1992, Dunn and Everitt 1995, Tsuang, Tohen, and Zahner 1995, Everitt
and Landau 1998, Dunn 2000).

When we further want to explore whether the PDB patient group can be divided
further into subgroups, without definite knowledge about group definition or even the
number of groups, cluster analysis techniques (see Section 2.5.2) can be employed.
We will use the K-means method. We obviously need a distance function, and prefer
the use of Gower’s distance measure (Gower 1971), since it can handle all outcome
types, i.e., asymmetric nominal, ordinal, interval, and ratio variables. The Gower’s
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Table 3.2: Number of measurements available per measurement occasion, PDB group,
and sector.

Measurement year (semester) Range of

Group Sector 96(2) 97(2) 98(1) 98(2) 99(1) 99(2) 00(1) 00(2) # meas.

non-PDB hosp. 128 180 197 202 183 158 116 115 1–8

PDB hosp. 47 112 122 125 120 102 50 86 2–8

non-PDB homes 214 220 211 202 189 186 2–6

PDB homes 64 64 63 52 50 48 2–6

Total 175 292 597 611 577 514 405 435

dissimilarity coefficient is defined as

d(y1, y2) = 1−
∑n

j=1 wj δj
y1,y2

dj
y1,y2∑n

j=1 wj δj
y1,y2

,

where yi (i = 1, 2) is the vector of measurements on subject i, n is the number of
measurements, and yij is the jth measurement on subject i. Further, wj represents
the weight for the jth variable and wj = 0 when either y1j or y2j is missing. For
symmetrically nominal, ordinal, interval, and ratio variables, δj

y1,y2
= 1, while for

asymmetric nominal variables δj
y1,y2

= 0 if both y1j and y2j are absent and 1 otherwise.
Finally, for nominal and asymmetric nominal variables, dj

y1,y2
= 1, if y1j = y2j , and

0 otherwise. For ordinal, interval, and ratio variables, dj
y1,y2

= 1− |y1j − y2j |. In case
of ordinal variables, the data are replaced by their corresponding rank scores. The
hierarchical Ward’s minimum variance method (Ward 1963) was adopted as clustering
algorithm. In Ward’s minimum-variance method, the distance between two clusters
is the ANOVA sum of squares between the two clusters added up over all variables.
At each generation, the within-cluster sum of squares is minimized over all partitions
obtainable by merging two clusters from the previous generation.
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3.4 Application to the Data

We will first undertake a cross-sectional study and thereafter switch to longitudinal
and multivariate methods.

3.4.1 A Cross-sectional PDB Score

As mentioned in the introduction, a cross-sectional pilot study was undertaken in
both the psychiatric hospitals and the psychiatric nursing homes in the province of
Limburg to obtain a rough estimate of the size of the PDB group and to determine
factors that can usefully distinguish between PDB and non-PDB patients. This study
is in spirit of the analysis conducted by Bruckers et al (2000), supplemented with a
number of additional analyses. Here, we focus on the ‘disturbance’ aspect, while the
next section brings in the longitudinal ‘persistence’ dimension as well.

In November 1998, a number of wards were screened for PDB behavior, by an in-
terdisciplinary team, and classified by expert opinion as PDB when the team judged
that living together with the patient is hard and that s/he needed continuous super-
vision. The persistence dimension was approached by restricting attention to patients
residing in chronic-patient wards within psychiatric hospitals or in psychiatric nurs-
ing homes. This is relevant, since patients residing in one of these wards in general
already have had an intensive therapy in an acute ward and, in case of a psychiatric
nursing home, also a long stay in a chronic ward.

Based on the screening, supplemented with data from the so-called Minimal Psy-
chiatric Data Registry (MPD), a discriminant function was developed, producing
the probability of dealing with a PDB patient, based on discriminatory MPD items.
When this probability exceeds a threshold value we classify the patient as PDB. The
function turned out to have good discriminative power. The screening status and the
classification status agree for about 80% of the screened patients. Further details of
this study are reported in Bruckers et al (2000).

The functional form of the discriminant function for the patients admitted in a
psychiatric hospital takes the form:

PDBij = −4.81 + 1.73 ·Aggr.Aij + 0.62 ·Aggr.Pij + 0.33 · Suicidij + 0.47 ·Appearij

+0.40 · Respectij − 0.03 ·Agei + 1.81 ·Genderi − 1.50 ·DDACi

+0.56 · Schizoi − 2.32 · Residi + εij , (3.1)

where ’Aggr.A’ stands for aggression towards oneself (auto-aggression), ’Aggr.P’ for
aggression against people, ’Suicid’ for suicide danger, ’Appear’ for appearance, ’Re-
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spect’ for respect for others, ’Age’ for age in 1998, ’DDAC’ for the diagnostic class
Delirium, Dementia, Amnestic and Cognitive disorders, ’Schizo’ for the diagnostic
class schizophrenia, ’Resid’ for the residual diagnostic class (so-called V-codes) and
εij is the residual error term. The functional form for patients in psychiatric nursing
homes

PDBij = −6.39 + 1.26 ·Aggr.Aij + 1.15 ·Aggr.Oij + 0.65 ·Asocij + 1.21 · Separij

+0.70 · Socialij + 0.59 · Respectij − 0.85 · Retari + εij ,

with the same abbreviations as in (3.1) and in addition ’Aggr.O’ standing for aggres-
sion against objects, ’Asoc’ for anti-social attitude, ’Separ’ for need for separation or
isolation, ’Social’ for socially unacceptable behavior, and ’Retar’ for the diagnostic
class mental retardation.

The MPD items contributing significantly to the classification of PDB versus non-
PDB patients, as derived by Bruckers et al (2000), are presented in Table 3.1. Note
that an odds ratio greater than one corresponds to the less desirable outcome. Given
the non-PDB patients are the reference group, PDB patients fare worse on virtually
all items. Note also that there are relatively large differences between the psychiatric
hospitals and psychiatric nursing homes. Historically, and certainly in the late 90s
when the study was conducted, the patient mix in these sectors was quite different.
This situation has been in transition over the last decade, including the sectors’ mis-
sion redefinition; this provides additional motivation for the currently conducted new
study. These authors also quantified the amount of goodness-of-fit; they observed
that the sensitivity and specificity for the psychiatric hospitals (psychiatric nursing
homes) were 77.2% (71.9%) and 78.7% (85.5%), respectively. In addition to this, we
calculated the ROC c statistic (Agresti 2002), which equals 0.85 for the psychiatric
hospitals and 0.88 for the psychiatric nursing homes.

The use of cross-sectional information for a longitudinal goal may seem inherently
contradictory. Nevertheless, it is intentional, since one wants to classify patients as
early on as possible, ideally based on information at intake or right thereafter, so as
to ensure the right type and level of care, as early in the treatment path as possible.
As a sensitivity analysis for the fact that a cross-sectional discrimination is done with
a view on longitudinal characteristics, we repeated the exercise, for one earlier follow-
up occasion, 1998 (first semester), as well as for a later one, the first semester of
1999. The so-obtained results, encompassing three moments in time, are graphically
represented in Figure 3.3, by way of point estimates and confidence intervals for each
of the coefficients, for each one of the two sectors, and for each of the three moments
in time. While there is some variation, as one could expect, the results are relatively
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Figure 3.3: Sensitivity analysis for the odds ratios, originally determined in 1998 (2nd
semester), by re-estimating the parameters from both 1998 (1st semester) and 1999
(1st semester). For each effect, listed in Table 3.1, the odds ratios and their confidence
intervals are presented, for each of the three moments and time and for each of the
two sectors.

stable, confirming that it is sensible to classify patients based on a single moment in
time, even though the psychiatric condition clearly has got a longitudinal component.

A very important conclusion from Bruckers et al (2000) was that, following such
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a discriminant rule, 35.5% of the patient population in a psychiatric hospital might
belong to the PDB group, with a similar figure (32.1%) for the psychiatric nursing
homes. Of course, these findings have to be taken with some caution. As stated
before, the data used for analysis constituted a learning sample of PDB patients and
controls, rather than a random subsample. This could be overcome by applying the
rule, even when based on a learning set, to the entire population. This is likely not
to resolve all issues with the data.

Therefore, as a consequence of the results derived in Bruckers et al (2000) as well
as in this paper, a new study has been designed, with the sole purpose of refining
the discrimination between PDB and non-PDB patients on the one hand, and of
discerning subgroups within the PDB patients on the other hand. In this respect, it
is important to note that the concept of PDB, even though the group is large, is as
such relatively novel and has not received a lot of scientific interest as of yet. This new
study also has got a qualitative part, primarily geared at refining the very definition
of PDB.

Finally, even though the discriminant function appears to be rather stable when
applied to differing moments in time, the focus remains more on the disturbance
aspect than on the persistence component. Using longitudinal methods, we can do
more justice to the latter, as well.

3.4.2 Longitudinal Analysis

The question arises, of course, whether or not the group considered to be PDB in
1998 indeed was chronic in their disturbing behavior. The fact that these patients
are staying at long-stay wards only indicates that we are dealing with chronic disease
statuses, not necessarily that the disturbing behavior is persistent. As stated before,
it would be possible that the patient was going through an acute phase of disturbing
behavior, something hard to disentangle based on information localized in time. This
suggests the use of longitudinal methods.

We will apply the same definition of the PDB score is assumed across time, for
reasons of consistency. This is practically most relevant and can be defended at least
over a relatively short time span, as is the case here. However, when the time span
increases and/or when other internal or external factors, such as the legal framework,
would change, a careful assessment of the score’s optimality across time would be in
place. In principle, more complex models, such as dynamic longitudinal models, could
be envisaged. However, such an approach would be essentially descriptive in nature,
hard to use in practice, and less robust to idiosyncracies of the dataset. To build a
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model that adequately describes the evolution of the value of the discriminant func-
tion over time we need to consider appropriate mean, variance, and covariance models.
It is essential to perform an exploratory data analysis. As shown in Figures 3.1–3.2,
the mean profiles for the discriminant function for the PDB and non-PDB groups
are different and a non-linear structure emerges for the non-PDB group. The indi-
vidual profiles follow more or less the same pattern. The figure with the individual
profiles clearly shows substantial between and within variability. A key feature of the
individual profiles is a vertical shift. This suggests the presence of a random intercept.

The variance functions for the PDB and non-PDB groups (Figure 3.2) display
variance heterogeneity in the data. The variance is not constant over time. Moreover,
the variability in the PDB group is larger than the variability in the non-PDB group.

To select a final model, describing the evolution of the discriminant function over
time, we proceeded as follows. Verbeke and Molenberghs (2000) suggest selecting a
variance-covariance structure based on the most complex mean structure one is pre-
pared to consider. After selecting such a structure, the mean model can be simplified.
A model including the PDB grouping indicator, time, quadratic time and pairwise
interaction effects with PDB grouping was used as the most complex mean structure.

The cross-sectional analysis, based on logistic regression (Table 3.1) already indi-
cated that the important predictors for patients from psychiatric hospitals is rather
different from that of patients from psychiatric nursing homes. Therefore, it was
decided to build separate models for both types of institutions.

The variance model was selected starting from the preliminary model including
three PDB group-specific random effects: an intercept, a linear and a quadratic time
slope. The 3×3 covariance matrix D for the random effects of each group was as-
sumed to be unstructured. For the psychiatric hospitals, the residual error matrix was
modeled using a group specific power-of-mean structure, allowing for the inclusion of
covariates in the variance structure. For the psychiatric nursing homes on the other
hand, a group-specific Gaussian serial correlation structure provided the best fit.

The random-effects structures of both models were simplified considering hierar-
chically ordered models. The significance of the effects was tested using likelihood
ratio test statistics. The p-values were calculated using appropriate mixtures of χ2

distributions as reference distribution (Verbeke and Molenberghs 2000, p. 69–72).
The quadratic random slope was not significant at the 5% level of significance for
both models and therefore removed from the models. However, the random intercept
and linear random slope were kept in both models. These random effects and the
residual matrix structures as discussed in the previous paragraph were found to be
PDB group-specific.
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Finally, the mean model was reduced, using the covariance structure that was just
selected. For both models the mean structure for the PDB group could be simplified
to a linearly increasing function with a common slope for PDB and non-PDB patients.

The reduced final model for psychiatric hospitals can be written as:

PDB-scoreij = β0 + β1 PDBi + β2tij

+(b1i + b2itij) PDBi + (b3i + b4itij) non-PDBi + εij , (3.2)

where β0 is the fixed-effects intercept, β1 the fixed effect of the PDB group versus the
non-PDB group, and β2 is the fixed effects slope over time. The parameters b1i and
b3i are the random intercept terms for the PDB and non-PDB groups, respectively.
The subject-specific slopes are denoted by b2i for the PDB group, b4i for the non-
PDB group, respectively, and εij is the residual error term. The random effects have
covariance matrix

D =




d11 d12 0 0

d21 d22 0 0

0 0 d33 d34

0 0 d43 d44




,

where the upper block refers to the PDB group and the lower block to the non-PDB
group.

Parameter estimates of the model for the psychiatric hospital patients are given
in Table 3.3, while Table 3.4 contains the results for the psychiatric nursing homes.
The intercept is chosen to represent the mean value for the second part of 1998.
The standard errors accompanying the variance components in Tables 3.3 and 3.4
should be interpreted with caution, for reasons reviewed in Verbeke and Molenberghs
(2000). As Figure 3.2 already suggested, the mean value of the discriminant function
for the PDB group is significantly higher than the mean value of the non-PDB group.
For 1998 this is not a surprise since the function was constructed using these data.
The difference between the two groups is maximal around the end of 1998 and the
beginning of 1999. For the non-PDB group we note a steep decrease between 1997
and 1998. This is probably due to the effect of a successful treatment to alter the
behavior of the patients. This effect is less pronounced in the PDB group, which
agrees with the definition of therapy resistant patients.

Apart from an analysis using the raw PDB score as dependent variable, additional
analyses were done, for both sectors, based on the log-transformed score. Parameter
estimates (standard errors) are to be found in the final columns of Tables 3.3 and
Table 3.4, respectively. The score is augmented by 7 prior to taking logarithms,



32 Chapter 3. Characterizing Persistent Disturbing Behavior

Table 3.3: Parameter estimates (standard errors) for the final linear mixed-effects
model for psychiatric hospitals, using restricted maximum likelihood. The model is
fitted to the log-transformed PDB score as well.

Estimate (s.e.)

Effect Parameter score log(score+7)

Mean Structure

Intercept β0 -1.36 (0.10) 1.70 (0.02)

PDB effect β1 2.08 (0.17) 0.32 (0.03)

Time effect β2 -0.10 (0.02) -0.02 (0.003)

Random-Effects Variance Components

Intercept (PDB) d11 2.32 (0.32) 0.05 (0.01)

Intercept (non-PDB) d33 1.96 (0.21) 0.11 (0.01)

Time (PDB) d22 0.05 (0.01) 0.001 (0.0002)

Time (non-PDB) d44 0.02 (0.01) 0.002 (0.0004)

covariance (PDB) d12 -0.05 (0.05) -0.001 (0.001)

covariance (non-PDB) d34 0.09 (0.03) 0.01 (0.002)

Residual Variance Structure

Power (PDB) θ1 0.35 (0.16) 2.19 (1.02)

Power (non-PDB) θ2 -1.13 (0.26) 4.29 (1.31)

Residual variance σ2 1.12 (0.08) 0.003 (0.002)

so as to avoid negative arguments of the logarithmic function. While parameters
between these sensitivity analyses and the original ones are not directly comparable,
it is important to observe that inferences made about the PDB effect would not
qualitatively change when switching from the direct to the logarithmic version of the
analysis.

The PDB-score profile over time is stabler in the PDB group than in the non-PDB
group. Also, the variance-covariance structure contains information on the persistence
dimension of the patient group under investigation. For both models it is clear that,
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Table 3.4: Parameter estimates (standard errors) for the final linear mixed-effects
model for psychiatric nursing homes, using restricted maximum likelihood. The model
is fitted to the log-transformed PDB score as well.

Estimate (s.e.)

Effect Parameter score log(score+7)

Mean Structure

Intercept β0 -2.23 (0.08) 1.52 (0.02)

PDB effect β1 2.92 (0.27) 0.47 (0.04)

Time effect β2 0.03 (0.02) 0.004 (0.004)

Random Effects Variance Components

Intercept (PDB) d11 3.74 (0.79) 0.07 (0.01)

Intercept (non-PDB) d33 1.22 (0.18) 0.05 (0.01)

Time (PDB) d22 0.00 (—) 0.00 (—)

Time (non-PDB) d44 0.01 (0.02) 0.0002 (0.001)

covariance (PDB) d12 0.07 (0.13) 0.0001 (0.003)

covariance (non-PDB) d34 0.07 (0.03) 0.002 (0.001)

Serial Structure

Variance (PDB) τ2
1 1.58 (0.22) 0.02 (0.004)

Variance (non-PDB) τ2
2 0.14 (0.12) 0.01 (0.01)

Rate of Gaussian decrease (PDB) 1
ρ2
1

0.26 (5.32) 0.00 (—)

Rate of Gaussian decrease (non-PDB) 1
ρ2
2

1.63 (1.48) 2.41 (1.13)

Measurement Error Variance σ2 0.65 (0.08) 0.02 (0.002)

when comparing the variance of the random intercept with the measurement error and
in case of the psychiatric nursing homes with the variance of the serial component,
patient-specific characteristics are important. Thus, some patients intrinsically have
high values while others intrinsically have low values. The variance of the random
intercepts is larger in the PDB group than in the non-PDB group, while the variances
for the random slopes are comparable. Furthermore, note that the variance of the
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Table 3.5: Estimated correlation matrix for PDB and non-PDB patients in psychiatric
hospitals.

Time -4 -2 -1 0 1 2 3 4

-4 1.0000 0.7250 0.6911 0.6454 0.5881 0.5208 0.4467 0.3698

-2 0.7250 1.0000 0.7115 0.6883 0.6538 0.6087 0.5552 0.4965

-1 0.6911 0.7115 1.0000 0.7016 0.6810 0.6495 0.6088 0.5616

PDB 0 0.6454 0.6883 0.7016 1.0000 0.7009 0.6845 0.6581 0.6239

1 0.5881 0.6538 0.6810 0.7009 1.0000 0.7109 0.6998 0.6797

2 0.5208 0.6087 0.6495 0.6845 0.7109 1.0000 0.7313 0.7258

3 0.4467 0.5552 0.6088 0.6581 0.6998 0.7313 1.0000 0.7604

4 0.3698 0.4965 0.5616 0.6239 0.6797 0.7258 0.7604 1.0000

-4 1.0000 0.5885 0.5894 0.5855 0.5776 0.5666 0.5533 0.5385

-2 0.5885 1.0000 0.6492 0.6577 0.6612 0.6603 0.6560 0.6491

-1 0.5894 0.6492 1.0000 0.6845 0.6935 0.6977 0.6979 0.6950

non-PDB 0 0.5855 0.6577 0.6845 1.0000 0.7191 0.7282 0.7328 0.7338

1 0.5776 0.6612 0.6935 0.7191 1.0000 0.7521 0.7608 0.7656

2 0.5666 0.6603 0.6977 0.7282 0.7521 1.0000 0.7826 0.7908

3 0.5533 0.6560 0.6979 0.7328 0.7608 0.7826 1.0000 0.8101

4 0.5385 0.6491 0.6950 0.7338 0.7656 0.7908 0.8101 1.0000

serial component for the PDB group (Table 3.4) is much larger than its counterpart
for the non-PDB group. This was already observed in the exploratory data analysis.
Interestingly, the rate of Gaussian decrease is much larger in the non-PDB group than
in the PDB group. This indicates that stronger serial correlation exists between PDB
scores in PDB patients compared to non-PDB patients in psychiatric nursing homes.

Let us also inspect the fitted correlations deriving from the estimated marginal
variance-covariance matrix Vi = ZiDZ ′i + Σi. This matrix is presented in Table 3.5
for the psychiatric hospitals. Table 3.6 contains the results for the psychiatric nurs-
ing homes. Considering Table 3.5, we clearly observe that the correlations between
time points close in time is stronger for PDB patients than for non-PDB patients in
psychiatric hospitals.

It seems logical to consider a direct comparison between the observed and fitted
correlation structure, but unfortunately this is less than straightforward for two main
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Table 3.6: Estimated correlation matrix for PDB and non-PDB patients in psychiatric
nursing homes.

Time -1 0 1 2 3 4

-1 1.0000 0.6220 0.6266 0.6311 0.6356 0.6400

0 0.6220 1.0000 0.6307 0.6351 0.6394 0.6437

PDB 1 0.6266 0.6307 1.0000 0.6391 0.6432 0.6474

2 0.6311 0.6351 0.6391 1.0000 0.6470 0.6510

3 0.6356 0.6394 0.6432 0.6470 1.0000 0.6547

4 0.6400 0.6437 0.6474 0.6510 0.6547 1.0000

-1 1.0000 0.6410 0.6143 0.6053 0.6048 0.6042

0 0.6410 1.0000 0.6664 0.6432 0.6366 0.6377

non-PDB 1 0.6143 0.6664 1.0000 0.6922 0.6720 0.6671

2 0.6053 0.6432 0.6922 1.0000 0.7175 0.6998

3 0.6048 0.6366 0.6720 0.7175 1.0000 0.7416

4 0.6042 0.6377 0.6671 0.6998 0.7416 1.0000

reasons. First, linear mixed models involve three parts: (a) the fixed-effects struc-
ture; (b) the random effects; (c) the residual or serial correlation. Calculating the
empirically observed correlations so as to take this layered structure into account is
not without ambiguity. Even the definition of residuals, needed to calculate empirical
correlations, in such a hierarchical context is a topic of some controversy. Second,
data are incomplete since not all patients have a score available for all times. Unless
the missing data mechanism is missing completely at random (Molenberghs and Ken-
ward 2007), observed and expected features do not have to agree in the same way as
they would if data were complete, even for a well fitting model.

In summary, a longitudinal analysis refines the perspective and enhances under-
standing of the PDB group, by simultaneously studying the disturbance and persis-
tence characteristics. The analysis suggests that the group is substantial in size. Of
course, given the selection of the data in the pilot study, this conclusion should be
treated with caution. The aforementioned follow-up study will enable us to refine the
conclusion. Nevertheless, in the meantime, it is of interest to explore whether the
contingent of PDB patients can usefully be subdivided into meaningful subgroups,
which could then be treated in tailor-made, high quality, wards.
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3.4.3 Cluster Analysis

To further explore the group of PDB patients, we can perform a cluster analysis to
suggest possible relevant therapeutic or organizational subgroups.

As stated in Section 3.3, Gower’s distance measure was chosen since it can handle
all outcome types, i.e., (asymmetric) nominal, ordinal, interval, and ratio variables.
The hierarchical Ward’s minimum-variance method was applied and two clusters re-
tained. Since the clearest separation between these two clusters can be found in the
ordinal variables, a frequency table of these variables by cluster is presented in Ta-
ble 3.7. Cluster #1 appears to consist of PDB patients with higher scores on the
ordinal variables compared to Cluster #2, indicating that these patients show more
pathological behavior. The χ2 tests underscore highly significant differences in distri-
bution of scores between the two clusters. Further, it appears the mean PDB score
for the first cluster (0.78) is higher than for the second one (0.47). Nevertheless, this
has to be judged against the background of large variability, the standard deviations

Table 3.7: Frequency table of the ordinal variables by cluster.

Variable Cluster Score Total χ2 df p-value

1 2 3 4 5

Mobility 1 36 4 40 6 5 91 43.81 4 <.0001

2 82 4 12 0 0 98

Recognition 1 7 32 33 9 10 91 119.56 4 <.0001

of persons 2 85 8 4 1 0 98

Notion of 1 11 20 25 4 31 91 119.42 4 <.0001

time 2 88 8 0 0 2 98

Initiative 1 7 17 23 44 91 50.91 3 <.0001

2 21 39 34 4 98

Social 1 0 12 22 57 91 29.34 3 <.0001

2 10 37 18 33 98

Respect 1 2 15 24 50 91 42.37 3 <.0001

2 8 36 43 11 98

Conflicts 1 3 31 23 34 91 23.09 3 <.0001

2 13 38 37 10 98
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being 1.80 and 2.11, respectively.

The identification of two clusters requires careful qualification and a number of
comments are in place. First, cluster analysis is a pragmatic, exploratory method.
It is therefore hard to fully formally establish that the number of clusters is equal
to two, rather than three or more, or, perhaps only a single one. Therefore, our
results should be taken as a mere indication that there is some room for entertaining
the concept of more severe versus less severe PDB patients. Second, even then,
one might argue it is likely for severity of PDB, as well as for other characteristics,
to vary continuously across patients, rather than in a dichotomous fashion. Even
then, considering a dichotomized version can be pragmatically helpful, with a view
on efficiently organizing care. Arguably, these features need further study and the
currently conducted follow-up study is well suited for this goal.

3.5 Perspective and Concluding Remarks

Based on discriminant analysis and longitudinal model building, the PDB score is
rather different between the PDB and non-PDB groups. This is true for the mean
profiles, the variance and correlation structure. Comparing PDB with non-PDB pa-
tients, the score is influenced by a different set of covariates, and for the effects in
common, the magnitude of the effects is different. Also note that the different types
of institutions are associated with different sets of covariates. Turning to variability,
it is largest in the PDB group. This implies relatively more heterogeneity among such
patients, opening perspectives for further subdivision. This can be done using cluster
analysis, where discrete groups are found, or rather by considering a patient’s relative
position on the PDB score’s scale, in case a more continuously oriented ranking is
preferred.

Regarding the correlation structure, let us first turn to psychiatric hospitals. The
correlation structure is subtly different between both groups. The PDB group is
roughly of a first-order autoregressive type, showing relatively large correlations be-
tween adjacent measurements (around 0.75), which decreases with increasing time
lag, dropping to about 0.35. Thus, the PDB group exhibits a chronic behavior from
the beginning, with fluctuations happening in the long run rather than immediately.
The non-PDB group correlation structure is closer to compound symmetry, amended
by the fact that the correlations increase towards later times. This may suggest there
is an unstable, acute phase at the beginning of the study.

Turning to psychiatric nursing homes, the picture emerging from the estimated
correlation structures is different. Both are relatively close to compound-symmetry,
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with a common correlation around 0.65. This is plausible from a field work point of
view, because these patients are almost by definition of a chronic type.

Through the longitudinal analysis, we already established the rather heterogeneous
nature of the PDB group, with a relative stability of the score within a patient. The
longitudinal analysis does not allow to easily define subgroups within the PDB group,
but the aforementioned heterogeneity encourages further exploration. By means of
cluster analysis, we were able to suggest the presence of two clusters, characterized
on the basis of the ordinal variables mobility, recognition of persons, notion of time,
initiative, socially unacceptable behavior, respect for others, and conflicts. Classical
contingency table analysis confirmed a significant difference between the two clusters
on each of these variables. A significant difference was not found on the continuous
variables.

In conclusion, the PDB patients are numerous, differ considerably from the control
patients, in the sense that they exhibit a higher score. The group is also heteroge-
neous allowing one to further subdivide the group in clusters, based on the ordinal
components of the score. Obviously, this opens perspectives for further therapeutic
and/or organizational refinement. Most importantly, not only is there a need for spe-
cialized treatment entities, also further sub-specialization between such entities is to
be recommended.

Further work will be directed towards refining the clustering of PDB patients by
means of methods that take the longitudinal structure of the profiles into account.
This might, for example, be achieved by means of latent class models (Skrondal and
Rabe-Hesketh 2004).



4
Non-linear Models for

Longitudinal Data

4.1 Introduction

In practice, data are often measured repeatedly over time on the same subject. Es-
pecially for Gaussian data, quite a number of approaches for analyzing longitudinal
data have been developed and implemented in standard software packages. Most of
the methodological work has been done in the setting of linear models and generalized
linear models. While non-linear models have also been extended in various ways, the
work is not as ‘complete’ as for the linear and generalized linear ones.

With linear models, although the estimation of the regression parameters must
take into account the correlations in the data, their interpretation is essentially inde-
pendent of the correlation structure. With non-linear models, including generalized
linear mixed models, different assumptions about the source of correlation can lead to
regression coefficients with distinct interpretations (Diggle et al 2002, Molenberghs
and Verbeke 2005) and often widely varying magnitudes. The data analyst must
therefore reflect ever so carefully on the objectives of the analysis and the source of
correlation in choosing an approach.

Diggle et al (2002) and Molenberghs and Verbeke (2005), among others, distin-
guish between three different model families for longitudinal data: marginal , random-

39
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Table 4.1: Orange Tree Data. Measurements in mm of trunk circumference.

Trunk circumference

Day Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

118 30 33 30 32 30

484 58 69 51 62 49

664 87 111 75 112 81

1004 115 156 108 167 125

1231 120 172 115 179 142

1372 142 203 139 209 174

1582 145 203 140 214 177

effects, and conditional models, the latter family including so-called transition models.
While this taxonomy has been extensively used for both linear and generalized linear
model settings, it is less commonly employed in a non-linear context. Arguably, it
is common to make use of mixed-effects models in this area, especially in such area
as pharmacokinetic and pharmacodynamic modeling (Davidian and Giltinan 1995,
Molenberghs and Verbeke 2005). While the use of random-effects, or hierarchical,
models is recommendable in many settings, it is sensible to also explore the possibil-
ity of using, and the relative merits of, the marginal and conditional families.

In Section 4.2, a simple set of motivating data, the orange tree data, is intro-
duced. The three model families are surveyed and applied to the data in Section 4.3.
Concluding remarks are offered in Section 4.4.

4.2 Orange Tree Data

Draper and Smith (1998, Exercise 24.N, p. 559) present data of an experiment in which
trunk circumference (in mm) is measured for 5 orange trees, on 7 different occasions,
over roughly a 4-year period of growth. The data are presented in Table 4.1. Profiles
are plotted in Figure 4.1.

4.3 Model Families

As mentioned earlier, we can distinguish between three model families. We will now
give a brief overview of these model families based on Diggle et al (2002) and Verbeke
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Figure 4.1: Orange Tree Data. Growth curves of trunk circumference for each of the
five trees.

and Molenberghs (2005).

Marginal regression methods characterize the marginal expectation of a discrete
or continuous response, Y , as a function of explanatory variables, X. By marginal
expectation, we mean the average response over the sub-population that shares a
common value of X. The methods are designed to permit separate modeling of the
regression of Y on X, and the association among repeated observations of Y on each
individual. Marginal models are appropriate when inferences about the population-
average are the focus.

In addition to modeling the effects of covariates on the marginal expectation, we
must also specify a model for the association among observations from each subject.
This is to be contrasted with the random effects and transitional models where the
covariate effects and the within-subject association are modeled through a single equa-
tion. All three approaches lead to the same class of linear models for Gaussian data.
But in the discrete case, different (non-linear) models can lead to different interpre-
tations for the regression coefficients. The choice of model should therefore depend
on the scientific question being addressed.

In random-effects models, the response is assumed to be a function of explanatory
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variables with regression coefficients that vary from one individual to the next. This
variability reflects natural heterogeneity due to unmeasured (latent) factors. Given
these so-called subject-specific parameters, the responses are often assumed indepen-
dent. This does not preclude that more elaborate models are possible if residual
dependence is detected. A random-effects model is a reasonable description if the set
of coefficients from a population of subjects can be thought of as a sample from a
distribution.

In conditional models, the sequence of repeated measures is modeled conditional
upon (a subset of) the other outcomes. This could be the set of all past measurements
or a subset thereof. In transition models, the subset is defined as the past measure-
ments, often further restricted to the immediately preceding (few) measurements.

Let us now analyze the orange tree data in each of the tree model family settings.
We will start with the random-effects approach, which is the most frequently used
approach in the literature for analyzing the orange tree data. Then we will switch to
the marginal approach, and round off with the conditional approach.

4.3.1 Random-effects Models

In a random-effects model, we focus on the expectation of the response Yij at mea-
surement occasion j for subject i, additionally conditioning upon a random-effects
vector bi:

E(Yij |bi, xij ,zij) = h(xij , β, zij , bi), (4.1)

where zij is the random-effects design matrix. Conventionally, but not always, is the
distribution of the random effects assumed to be of a normal type.

The following non-linear mixed model has been proposed in the statistical litera-
ture (Pinheiro and Bates 2000):

Yij =
β1 + bi

1 + exp[−(tij − β2)/β3]
+ εij ,

bi ∼ N(0, σ2
b ),

εij ∼ N(0, σ2).

Note that this model is non-linear in the fixed-effect parameters, but linear in the
random effect bi, simplifying the calculation of the marginal mean over the random-
effects distribution. Thus, the conditional mean is

E(Yij |bi) =
β1 + bi

1 + exp[−(tij − β2)/β3]
(4.2)
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Figure 4.2: Orange Tree Data. Interpretation of model parameters.

while its marginal counterpart is

E(Yij) =
β1

1 + exp[−(tij − β2)/β3]
. (4.3)

It is not to be taken for granted that this simplifying feature will occur in other appli-
cations. A graphical representation of the model, with the meaning of the parameters
associated to it, is given in Figure 4.2.

To improve numerical stability while fitting the model, both the response values,
trunk circumferences, and the covariate values, age, were divided by 100. The model
was fitted using the SAS procedure NLMIXED.

A plot of the model fit can be found in Figure 4.3. The fitted mean profile is a
smooth curve with a sigmoidal shape, although the curvature is not pronounced. The
fit of the model seems acceptable. Parameter estimates and standard errors are given
in Table 4.2.

Empirical Bayes predictions are graphed in Figure 4.4. The model fit seems ac-
ceptable and a set of three population-level parameters, having a clear interpretable
meaning.
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Figure 4.3: Orange Tree Data. Plot of observed and fitted mean profiles of the random-
effects model.

4.3.2 Marginal Models

A marginal non-linear model for an outcome Yij at measurement occasion j for subject
i, conditional on a vector of covariates xi, would take the form:

E(Yij |xij) = h(xij , β), (4.4)

where β is the vector of regression parameters and h is the non-linear link function.
This expression does not specify the full joint distribution. The association structure
needs to be specified as well and this can be done, in turn, in a linear or non-linear fash-
ion. We can then consider full likelihood approaches, which are in danger of becoming
prohibitive in terms of computation, for example, when measurement sequences are of
moderate to large length, or non-likelihood alternatives, such as generalized estimat-
ing equations (GEE, Liang and Zeger 1986). Such models have been given relatively
little attention in the literature (Molenberghs and Verbeke 2005). One ought to be
aware that this is a sensible method only when the correlation structure is not of
direct interest, since it is treated merely as a nuisance characteristic in GEE.

We consider marginal model (4.3), with the errors allowed to be serially correlated,
where the serial correlation function is assumed to be of an exponential type, as
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Figure 4.4: Orange Tree Data. Plot of observed (solid line) and fitted (dashed line)
individual profiles of the random-effects model.

introduced in Section 2.1.

This marginal model was implemented in the software package R. The marginal
log-likelihood function for the multivariate normal distribution was constructed and
then maximized using a general purpose numerical optimizer based on a quasi-Newton
method. This allowed us to directly model the serial correlation in the logistic growth
model. The exponential serial correlation function was selected, since it is a simple
two-parameter function and nicely converged; also, the fit is acceptable as we will see
below. The orange tree data set is relatively small, forcing us to keep the modeled
correlation function reasonably simple. The parameter estimates of the marginal
model can be found in Table 4.3, while Figure 4.5 shows the observed and fitted
profiles for the marginal model. When comparing Table 4.3 with Table 4.2, we can
see that the parameter estimates are very similar.

The reason is that the random effect bi in (4.3) enters the model in an additive
way. Therefore, the random effect does not have an impact on the estimated fixed
effects. The attenuation of parameter values in the marginal logistic model for binary
data, as described in Diggle et al (2002), does not come into play, while it would,
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Table 4.2: Orange Tree Data. Parameter estimates and standard errors for random-
effects model (4.2).

Effect Parameter Estimate (s.e.)

Asymptote β1 1.9205 (0.1566)

Half-growth β2 7.2791 (0.3525)

Shape parameter β3 3.4807 (0.2708)

Var(bi) d11 0.1001 (0.0650)

Var(εij) σ2 0.0062 (0.0016)

Table 4.3: Orange Tree Data. Parameter estimates (standard errors) for marginal
model (4.3).

Effect Parameter Estimate (s.e.)

Asymptote β1 1.9100 (0.1440)

Half-growth β2 7.2463 (0.6181)

Shape parameter β3 3.4607 (0.4965)

Variance serial component τ2 0.0418 (0.0219)

Rate of exponential decrease φ 24.7221 (17.6473)

Residual variance σ2 0.0049 (0.0023)

once the random effects entered non-linearly. In complex models, with potentially
multiple random effects entering, the effect on the fixed-effects parameters would be
extremely hard to predict and might require tedious computations. Such calculations
would typically be of a relatively ad-hoc type.

4.3.3 Conditional Models

A conditional non-linear model would in addition allow Y ij , the set of all outcomes
except the one modeled, as an argument of h:

E(Yij |Yik,k 6=j , xij) = h(xij , β, Y ij , α), (4.5)

where α is the vector of variance-component parameters. However, whereas a log-
linear model produces a conditional specification, considering (4.5) in general is not
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Figure 4.5: Orange Tree Data. Plot of the observed and fitted mean profiles for the
marginal model.

guaranteed to produce a valid joint model. A non-linear version of a transition model
is easier to handle and, arguably, more meaningful.

One possible conditional model for the orange tree data is a transition model where
the random effect in (4.3) is replaced by the previous measurement Yi,j−1. This model
can be expressed as

Yij =
β1 + γ Yi,j−1

1 + exp[−(tij − β2)/β3]
. (4.6)

In Figure 4.6, we show a plot of the model fit. The fitted mean profile seems to
provide an acceptable fit. This curve is not as smooth as the random effects model,
but seems to follow the data closely. Individual predictions are presented in Figure 4.7.
Table 4.4 provides an overview of the parameter estimates. The γ parameter estimate
is positive, indicating an increment over time, or growth. Parameter estimates for β1,
β2, and β3 are clearly different from the estimates for the random-effects model. This
is to be expected though, since these parameter estimates come from different model
families and have a different interpretation, in the sense that they are conditional
on the value of the prior history. This conditional interpretation makes answering
the substantive question rather difficult (Diggle et al 2002, p. 142-144). On the
other hand, σ2 does not change as dramatically. This implies that the dependence
on previous measurements re-composes the mean function, relative to the marginal
model, leaving the residual component essentially untouched.
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Figure 4.6: Orange Tree Data. Plot of observed and fitted mean profiles for transition
model (4.6).

Another possibility is to add Yi,j−1 as a covariate in the denominator of the model
expression:

Yij =
β1

1 + exp (−[(tij − β2)/β3 + γ Yi,j−1])
. (4.7)

Note that fitting such models is simple since, given the previous outcomes, mea-
sures are further assumed to be univariate. Hence, standard software for univariate
non-linear models can be used. Evidently, also a tool such as the SAS procedure
NLMIXED can be used, too. Figure 4.8 gives a graphical representation of the model
fit. The fitted profile does not follow the observed profile as closely as in the case of
Model (4.6), especially in the first half of the range in age values. Figure 4.7 shows the
individual predictions. Checking the correlation matrix of the the parameter estimates
also revealed signs of multicollinearity; strong correlations were observed between β2

and β3 (0.99), between β3 and γ (0.96), and between β2 and γ (0.92). Thus, issues of
model stability can be raised. The parameter estimate for the asymptote (Table 4.5)
is much more in line with the estimate from the random-effects model (Table 4.2)
compared to the previous transition model (Table 4.4), while the opposite is true for
the half-growth and shape parameter. This underscores that it is very difficult to
make overall statements about the behavior of a particular modeling family in the
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Table 4.4: Orange Tree Data. Parameter estimates (standard errors) for transition
model (4.6).

Effect Parameter Estimate (s.e.)

Asymptote β1 0.4206 (0.0819)

Half-growth β2 -0.4185 (1.7782)

Shape parameter β3 1.7820 (0.9527)

Renewal parameter γ 0.8412 (0.0590)

Residual variance σ2 0.0143 (0.0034)

Table 4.5: Orange Tree Data. Parameter estimates (standard errors) for transition
model (4.7).

Effect Parameter Estimate (s.e.)

Asymptote β1 2.0789 (0.0891)

Half-growth β2 -8.3862 (3.7291)

Shape parameter β3 -6.6679 (2.4019)

Renewal parameter γ 0.0336 (0.0059)

Residual variance σ2 0.0124 (0.0030)

non-linear case (Davidian and Giltinan 1995).

4.4 Concluding Remarks

Exactly like in the linear and generalized linear cases, one can divide non-linear mod-
els for repeated measures and otherwise hierarchical data into marginal, random-
effects, and conditional models. Somehow, this taxonomy has received less consid-
eration, since focus has been, to a large extent spear-headed up by pharmacoki-
netic/pharmacodynamic research, on random-effects models.

We have shown here, in a simple but instructive tree growth data example, that
one can insightfully construct models within every family. For the aforementioned
ubiquity of random-effects models, fitting is less of a problem and dedicated tools have
been made available, such as the SAS procedure NLMIXED and the nlme library in
S-Plus. Conditional models are usually of a transition type in longitudinal designs, in
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Figure 4.7: Orange Tree Data. Plot of observed (solid line) and fitted (dashed line)
individual profiles of transition model (4.6).

the sense that measurements are independent of each other, apart from a dependence
on a usually small number of previous measurements. This implies that one can fit
such models using software for non-linear models, fitted to cross-sectional data.

Marginal models are a bit more challenging, since they require explicitly addressing
the covariance structure. When the association is not of direct interest, generalized
estimating equations type ideas can be used (Liang and Zeger 1986, Vonesh et al
2002). This would be possible for continuous and non-continuous data alike. At any
rate, specific parametric functions for the variance and correlation structure need to
be considered, such as spatial Gaussian and spatial exponential structures. Practi-
cally, the methods were implemented using a user-written function in R. In principle,
it is possible to write user-defined programs in any sufficiently generic statistical pro-
gramming packages with decent matrix manipulation facilities.
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Figure 4.8: Orange Tree Data. Plot of observed and fitted mean profiles for transition
model (4.7).
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Figure 4.9: Orange Tree Data. Plot of observed (solid line) and fitted (dashed line)
individual profiles of transition model (4.7).





5
MRI Signal Intensity

Processing Based on

Non-linear Mixed Modeling

to Study Changes in

Neuronal Activity

5.1 Introduction

This research is motivated by a study in song birds (Serroyen et al 2005). Earlier,
Van der Linden et al (2002) and Van Meir et al (2004) established a novel in-vivo
magnetic resonance imaging (MRI) approach to discern the functional characteristics
of specific neuronal populations in a strongly connected brain circuitry, the so-called
song control system in the songbird brain. The high vocal center (HVC), one of the
major nuclei in this circuit, contains interneurons and two distinct types of neurons
projecting respectively to the so-called nucleus robustus arcopallii (RA) or to area X.
This is graphically represented in Figure 5.1.

53
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Figure 5.1: Schematic representation of song control nuclei in the songbird brain.

These authors analyzed the effect of testosterone on the dynamics of Mn2+ ac-
cumulation in RA and area X of female starling in individual birds injected with
manganese in their HVC. The authors used relatively straightforward curve fitting
techniques, combined with analysis of variance ideas. While simple in nature, such
techniques ignore dependencies in measurements in the same bird and may be sub-
optimal. To improve upon this approach, we introduce a novel data processing pro-
cedure in which flexible linear and non-linear mixed-effects models are fitted to the
MRI signal intensities (SI). The proposed model form allows for both bird-specific
effects, as well as important parameters describing the effect of testosterone applica-
tion. Using this more refined way of analysis we are able to detect testosterone effects
that previously have gone unnoticed.

The outcomes analyzed are SI of RA, area X, and HVC. The former two responses
could be fitted to obvious non-linear functional (sigmoidal) forms, but these have been
used without taking the within-bird correlation into account. (Van der Linden et al
2002, Van Meir et al 2004). The same is not true for HVC. From graphically inspect-
ing the data, it is clear that conventional linear models may be insufficient. We use
a particular pharmacokinetic model,—the two-compartment model,—to which the
HVC problem is related (Davidian and Giltinan 1995, Ch. 2) and employ fractional
polynomials which extend the collection of classical polynomial shapes (Royston and
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Altman 1994, Verbeke and Molenberghs 2000, Ch. 24) by way of sensitivity analysis.

The motivating study for this chapter is introduced in Section 5.2. Section 5.3 is
devoted to the non-linear mixed-effects model strategy for RA and area X. Section 5.4
presents the analysis of SI of RA, while the analysis of SI at area X is discussed in
Section 5.5. Further methodology, needed to tackle the HVC problem, is presented
in Section 5.6. Finally, Section 5.7 is devoted to the analysis of SI of HVC.

5.2 Motivating Study

Ten first-year female starlings were caught in the wild during the winter before Febru-
ary and housed in two indoor cages on a stable 10–14 h light-dark light cycle, selected
to maintain birds in a durable state of photosensitivity. All birds were studied by
MRI for the first time between March 15 and April 30, 2001. One or two days after
the first MRI measurement, the five treated birds were implanted subcutaneously in
the neck region with a capsule of crystalline testosterone. The capsule was left empty
for the five control birds. Birds were studied by MRI again five to six weeks after the
treatment.

Previously, Van der Linden et al (2002) have employed the following parametric
shape for a bird’s profile:

SIij(RA) =
(φ0i + φ1iGi)T

η0i+ηi1Gi

ij

(τ0i + τ1iGi)η0i+η1iGi + T η0i+η1iGi

ij

+ γ0i + γ1G1i + εij . (5.1)

Here, SIij(RA) is the measurement of MRI signal intensity for a region of interest
(RA) at occasion j for bird i, Gi is an indicator for group membership (1 for testos-
terone treated birds and 0 otherwise), and Tij is the measurement time, referring to
the before versus after treatment epoch. The maximal signal intensity, SImax, is de-
noted by φ0i for an untreated bird and φ0i +φ1i for a treated one. The time required
to reach 50% of this maximum (T50) is τ0i and τ0i +τ1i, respectively. The shape of the
curve is governed by the parameters η0i and η0i + η1i. Finally, εij is a measurement
error term, typically assumed to follow a normal distribution. Van der Linden et al
(2002) fitted Model (5.1) to each of the birds under study, and then applied ANOVA
to the estimated parameters. Such an approach rests upon the assumption that the
measurements within a bird are uncorrelated.

The genesis of this model is rooted in knowledge about Mn axonal transport and
changes induced in the bird’s brain caused by testosterone treatment. More details
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can be found in Brenowitz et al (1997), Van der Linden et al (2002), Van Meir et al
(2004).

To properly account for such correlation, we place this model within a mixed-
effects framework, where the parameters of the above model are split into fixed and
random effects. This will put us in a position to analyze both the SI in RA and SI in
area X outcomes. We will need additional development for SI in HVC since for this
outcome no generally accepted model form exists.

5.3 A Non-linear Mixed-effects Model

Based on the idea to consider a mixed-effects approach, we will now show how (5.1)
can be fitted within this framework.

Let us illustrate this modeling framework by introducing random effects into model
(5.1). In this model, all parameters (φ0i, φ1i,. . . ) were assumed to be different from
songbird to songbird, since the non-linear model was fitted to each bird separately.
We now are able to analyze all data together, separating out averaged (fixed) effects
from bird-specific (random) effects, using the following replacements:

φ0i + φ1iGi → φ0 + φ1Gi + fi, (5.2)

η0i + η1iGi → η0 + η1Gi + ni, (5.3)

τ0i + τ1iGi → τ0 + τ1Gi + ti. (5.4)

The φ, η, and τ parameters are fixed effects, while the vector (fi, ni, ti) is a bird-
specific vector of random effects, assumed to follow a trivariate normal distribution
with mean 0 and variance D. Combining model (5.1) with replacements (5.2)–(5.4),
we obtain:

SIij(RA) =
(φ0 + φ1Gi + fi)T

η0+η1Gi+ni

ij

(τ0 + τ1Gi + ti)η0+η1Gi+ni + T η0+η1Gi+ni

ij

+ γ0 + γ1Gi + εij . (5.5)

The parameters retain the meaning they had in (5.1).
Regarding the residual error terms εij , we assume them to be mutually indepen-

dent and independent from the random effects, and to be drawn from a N(0, σ2)
distribution.

5.4 Analysis of SI at RA

We will start with a model for the second period, where treatment has been applied.
Next, we will switch to the first period, where measurements are taken prior to the
application of treatment and consequently no treatment effect would be expected.
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Table 5.1: Parameter estimates (standard errors) for the final model, fitted to
SIij(RA) at the first and second period.

Estimate (s.e.)

Effect Parameter First Second

φ0 0.4749 (0.0451) 0.4526 (0.0478)

η0 2.5608 (0.1375) 2.1826 (0.0802)

η1 0.4285 (0.1060)

τ0 3.1737 (0.1658) 2.8480 (0.1761)

Var(fi) d11 0.0198 (0.0091) 0.0225 (0.0101)

Var(ti) d22 0.2438 (0.1179) 0.2881 (0.1338)

Var(ni) d33 0.1457 (0.0787)

Cov(fi, ti) d12 0.0587 (0.0306)

Var(εij) σ2 2.2E-04(2.0E-05) 1.9E-04(1.7E-05)

5.4.1 A Model for SIij(RA) at the Second Period

We will use model (5.5) to analyze these data. The general form of this model has 8
fixed-effects parameters, and 7 variance components (3 variances in D, 3 covariances
in D, and σ2). However, due to numerical reasons, the initial, most complex model
that was fitted to this data consisted of independent random effects. The model is
fitted using the SAS procedure NLMIXED, using adaptive Gaussian quadrature.

Backward selection was conducted, using likelihood ratio tests, so as to provide a
model which is both parsimonious and at the same time does not exclude important
effects. First, the variance d33 of ni was removed. The corresponding test statistic
has a χ2

0:1 (denoting a 50:50 mixture of a χ2
0 and a χ2

1 distribution, Verbeke and
Molenberghs 2000, Sec. 6.3) null distribution (p = 0.4387). The reason for using such
a mixture is that the null hypothesis lies at the boundary of the parameter space
(Stram and Lee 1994). Next, fixed-effect parameters γ0, γ1, τ1, and φ1 are removed.
The final model is:

SIij(RA) =
(φ0 + fi)T

η0+η1Gi

ij

(τ0 + ti)η0+η1Gi + T η0+η1Gi

ij

+ εij . (5.6)

Parameter estimates and standard errors of this final model are presented in Ta-
ble 5.1. Fitted curves, for each bird separately, are displayed in Figure 5.2, while
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Figure 5.2: Fitted curves for SIij(RA) at the second period, for each individual bird
separately.

individual and marginal fitted curves are given in Figure 5.3. These curves support
our model selection procedure and confirm the final model is a parsimonious and
adequate description of the data.

It is important to note that, in contrast to previous analyzes, we do find a difference
between both groups, in the sense that the shape parameter η is different between
them (χ2

1 = 15.44, p < 0.0001). The main reason is that there is substantial between-
bird variability: there is a bird-specific component in the maximum change in relative
signal intensity as well as in the time required to reach 50% of the maximum. By
properly accounting for this, we gain power to assess the effect of treatment, explaining
why our analysis establishes a treatment effect that went undetected in previous
analyzes.

5.4.2 A Model for SIij(RA) at the First Period

Since testosterone was applied only for the second period, in principle one would not
expect a difference during the first period. It is cautious to fit a model for the first



5.4. Analysis of SI at RA 59

0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time

S
I.R

A

Group 0
Group 1
Marg. Group 0
Marg. Goup 1

Figure 5.3: Individual and marginal fitted curves for SIij(RA) at the second period.

period as well and to empirically verify whether this is the case indeed. Model (5.5)
is used to this effect as well. The results of this model fitting are presented in Table 5.1.

Using the likelihood ratio test statistic, the initial model can be simplified. No
random effect can be deleted from the model: the random effects ni (χ2

2:3 = 17.24,
p = 0.0004), ti (χ2

2:3 = 56.55, p < 0.0001) and fi (χ2
2:3 = 127.51, p < 0.0001) are all

highly significant. However, the covariances between the random ni and ti effects,
and between the random ni and fi effects can be removed (χ2

2 = 1.34, p = 0.5105).
Independence between random effects is not attained, because the covariance between
fi and ti is significantly different from zero (χ2

1 = 10.78, p = 0.0010). In a next step,
the fixed effect γ0 as well as all group specific fixed effects γ1, φ1, τ1 and η1 are found
to be nonsignificant and removed from the model. This indicates that there are no
group differences in SIij(RA) before administration of the testosterone treatment.
This leads to the following final model for SIij(RA) at the first period:

SIij(RA) =
(φ0 + fi)T

η0+ni

ij

(τ0 + ti)η0+ni + T η0+ni

ij

+ εij . (5.7)

Note that, while some of the random effects are significant and indicate between-bird
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variability, there are no group effects which is to be expected since no testosterone
had been applied in the first period.

5.5 Analysis of SI at area X

In line with Section 5.4, we will first fit a model for the second period, where treatment
has been applied. Next, we will switch to the first period, where measurements are
taken prior to the application of treatment and consequently no treatment effect would
be expected.

5.5.1 A Model for SIij(area.X) at the Second Period

Similarly, Model (5.5) can be fitted to SIij(area.X). Let us now describe subsequent
model simplifications. First, the random ni effect is removed (implying the removal
of d33, d13, and d23), using a likelihood ratio test statistic with value 4.08 and null
distribution χ2

2:3 (p = 0.1914). Removal of the random ti effect is not possible since
the likelihood ratio equals 54.95 on 1:2 degrees of freedom (p < 0.0001). In addition,
removal of the covariance between the random ti and fi effects is not possible (χ2 =
4.35 on 1 d.f., p = 0.0371). In a next step, the following fixed-effect parameters were
removed: γ0, γ1, η1 and τ1. The fixed-effect φ1 was found to be highly significant and
therefore could not be removed from the model (χ2 = 10.58 on 1 d.f., p = 0.0011).
This indicates a significant difference between the two groups. The resulting final
model is:

SIij(area.X) =
(φ0 + φ1Gi + fi)T

η0
ij

(τ0 + ti)η0 + T η0
ij

+ εij . (5.8)

Parameter estimates and standard errors of this final model are presented in Ta-
ble 5.2.

Looking at Figure 5.4, we can observe that the individually fitted sigmoidal curves
describe the data quite well for all birds. Figure 5.5 plots all individual as well as
marginal average fitted curves per group. This marginal effect was obtained using
sampling based methods. It is clear that SIij(area.X) is higher for most treated
birds (group 1) compared to the untreated birds (group 0), which is confirmed by the
significance of the φ1 parameter, the group component of the maximum change in the
relative signal intensity.
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Table 5.2: Parameter estimates (standard errors) for the final model, fitted to
SIij(area.X) at the first and second period.

Estimate (s.e.)

Effect Parameter First Second

φ0 0.1864 (0.0346) 0.1035 (0.0261)

φ1 0.1331 (0.0312)

η0 2.2167 (0.2578) 2.3462 (0.1498)

η1 -0.2925 (0.1566)

τ0 5.5328 (0.8420) 3.7264 (0.3262)

Var(fi) d11 0.0039 (0.0021) 0.0043 (0.0022)

Var(ti) d22 0.5054 (0.2881)

Cov(fi, ti) d12 0.0344 (0.0229)

Var(εij) σ2 2.0E-04 (1.8E-05) 1.6E-04 (1.4E-05)

5.5.2 A Model for SIij(area.X) at the First Period

Model (5.5) can also be fitted to SIij(area.X) at the first period. The initial, most
complex model that was fitted to this data consisted of independent random effects.
This means that the covariances in the D matrix were set equal to zero initial due to
numerical reasons.
Some effects in the initial model may not be necessary. This leads us to model
simplifications, which will be discussed next. First, the random ni effect is removed
(χ2

2:3 = 0.005, p = 0.997). Secondly, also the random ti effect can be removed from
the model (χ2

1:2 = 0.44, p = 0.656). Removal of the random fi effect is not possible
(χ2

0:1 = 247.86, p < 0.0001). In a next step, the following fixed-effect parameters
are removed: γ0, γ1, φ1 and τ1. The fixed-effect η1 was found to be significant
and therefore was not removed from the model (χ2 = 4.54 on 1 d.f., p = 0.0332).
This indicates a significant difference between the two groups before the testosterone
treatment was administered. The resulting final model is:

SIij(area.X) =
(φ0 + fi)T

η0+η1Gi

ij

(τ0)η0+η1Gi + T η0+η1Gi

ij

+ εij . (5.9)

Parameter estimates and standard errors of this final model can be found in Table 5.2.
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Figure 5.4: Fitted curves for SIij(area.X) at the second period, for each individual
bird separately.

In contrast to Model (5.7) for Sij(RA) at the first period, Model (5.9) does contain
a significant treatment difference in the shape parameter. While a priori perhaps not
expected, one should notice that the corresponding p value is sufficiently borderline
and hence the effect is likely due to the occurrence of multiple comparisons.

5.6 Model Strategies for HVC

As stated before, there is a clear view on the hierarchical model needed to analyze
RA and area X, rooted in the non-linear model used in the literature and previewed
in the previous section. This is less the case for HVC. Therefore, it seems prudent
to consider at least two different modeling strategies: (1) fractional polynomials, a
pragmatic approach and introduced in Section 2.3, and (2) a plausible, scientifically
based modeling strategy, namely a bi-exponential model, which we will introduce now.

The HVC problem is strongly connected to pharmacokinetic theory, which studies
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Figure 5.5: Individual and Marginal fitted curves for SIij(area.X) at the second period.

the dispersion of a compound through a living organism. Since the HVC region can be
regarded as the central compartment from which manganese is dispersed to area X and
RA, a two-compartment model seems a reasonable choice. Such model is described by
a differential equation with unknown parameters, solution of which yield the so-called
two-compartment or bi-exponential model (Davidian and Giltinan 1995, Ch. 2):

Yij = βi1 exp(−βi2 tij)− βi3 exp(−βi4 tij) + εij , (5.10)

with bird-specific parameters βi1, βi2, βi3, βi4 > 0 and where Yij is the response (SI)
at HVC for bird i at time point j. The β’s are the parameters to be estimated and,
in what follows, they can be split into fixed and random effects. The parameters βi2

and βi4 describe the rate of exponential decay in concentration, while βi1 and βi3 are
intercept parameters.

An at first sight odd feature of this model is the functional equality of both system-
atic terms. The model is identified by virtue of its non-linearity, and problems occur
only in very specific and data-analytically unrealistic settings (e.g., when β2 ≡ β4).
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More details can be found in Davidian and Giltinan (1995, Ch. 2).
To guarantee positive β’s, the following reparametrization can be used:

Yij = exp(β̃i1) exp[−exp(−β̃i2 tij)]− exp(β̃i3) exp[−exp(−β̃i4 tij)] + εij . (5.11)

In the next section, we will implement this model, together with the fractional poly-
nomial model.

5.7 Analysis of SI at HVC

As mentioned in the previous section, there is no clear view on the parametric shape
for a model for the high vocal center (HVC). In this section, we will implement the
two proposed forms for such a model. First, the two-compartment model will be
applied. Second, we will make use of fractional polynomials, which is a general and
flexible family of parametric shapes.

5.7.1 A Model for SIij(HVC) at the Second Period

Let us first turn to the pharmacokinetic two-compartment model (5.11). Decomposing
the β̃’s into fixed and random effects, thereby including a group effect as well, we
obtain:

Yij = e(β1+γ1Gi+b1i) exp[−e(−β2+γ2Gi+b2i) tij ]

−e(β3+γ3Gi+b3i) exp[−e(−β4+γ4Gi+b4i) tij ] + εij . (5.12)

The initial, most complex model consisted of independent random effects. This means
that the covariances in the D matrix were assumed to be zero. Parameter estimates
and standard errors of this model are presented in Table 5.3. All random effects are
needed: the random b3i effect is associated with a χ2

0:1 of 7.83 (p = 0.0026), while the
other random effects b1i, b2i and b4i are all highly significant (p < 0.0001). Deleting
all four treatment parameters γ from the model does not lead to a significant decrease
in likelihood (χ2

4 = 5.54, p = 0.2362). The resulting final model equals:

Yij = e(β1+b1i) exp[−e(−β2+b2i) tij ]− e(β3+b3i) exp[−e(−β4+b4i) tij ] + εij . (5.13)

A plot of the individual fitted curves (not shown) indicates that the two-compartment
model fits the data adequately. The bottom right graph in Figure 5.6 plots all indi-
vidual as well as marginal average fitted curves per group based on the initial model.
As before, this marginal effect was obtained using sampling based methods. Although
the marginal SIij(HVC) profile of the treated birds (group 1) appears to be positioned
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Table 5.3: Parameter estimates (standard errors) for the final two-compartment
model, fitted to SIij(HVC) at the first and second periods.

Estimate (s.e.)

Effect Parameter First Second

β1 0.8306 (0.0921) 0.7964 (0.1330)

γ1 -0.3596 (0.1305)

β2 -2.7425 (0.1974) -2.7088 (0.0627)

γ2 0.2500 (0.2879)

β3 1.2516 (0.6802) -0.5711 (0.6436)

γ3 -2.5839 (1.0243)

β4 0.9094 (0.1846) 1.2311 (0.4906)

γ4 0.0051 (0.4076)

Var(b1i) d11 0.0416 (0.0191) 0.1744 (0.0792)

Var(b2i) d22 0.1810 (0.1045) 0.0241 (0.0157)

Var(b3i) d33 2.0659 (1.2933) 1.5106 (1.1534)

Var(b4i) d44 0.0690 (0.1086) 1.3865 (1.1047)

Var(εij) σ2 0.0050 (4.7E-04) 1.4E-03 (1.4E-04)

higher than the untreated birds (group 0), the model simplification showed that this
difference is not significant.

Let us now apply the fractional polynomial approach to the HVC data. These
were fitted with a range of power combinations. The combination associated with the
highest likelihood value consists of ln(time) and

√
time. This leads to the following

initial model:

SIij(HVC) = (α0 + α1Gi + ai) + (λ0 + λ1Gi + li) ln(tij)

+ (δ0 + δ1Gi + di) t0.5
ij + εij . (5.14)

Parameter estimates and standard errors for the final model are presented in
Table 5.4. No significant group differences were found: λ1 (χ2

1=1.03, p = 0.3093), α1

(χ2
1=1.78, p = 0.1816), δ1 (χ2

1=2.22, p = 0.1362). All random effects are needed (all
p < 0.0001), but the covariance between ai and li can be removed from the model
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Figure 5.6: Individual and marginal fitted curves for SIij(HVC). The first row cor-
responds to the first period and the second row to the second period. The fractional
polynomial model can be found on the left-hand side, the two-compartment model on
the right-hand side.

(χ2
1=1.14, p = 0.2857). The final model equals:

SIij(HVC) = (α0 + ai) + (λ0 + li) ln(tij) + (δ0 + di)t0.5
ij + εij . (5.15)

We note from inspecting the fitted curves (figure not shown), that the individually
fitted curves describe the data reasonably well for all birds. The bottom left graph
in Figure 5.6 plots all individual as well as marginal average fitted curves per group
based on the initial model. As before, this marginal effect was obtained using sam-
pling based methods. Although the marginal SIij(HVC) profile of the treated birds
(group 1) appears to be positioned higher than the untreated birds (group 0), the
model simplification showed that this difference is not significant.
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Table 5.4: Parameter estimates (standard errors) for the final fractional polynomial
model, fitted to SIij(HVC) at the first and second period.

Estimate (s.e.)

Effect Parameter First Second

α0 3.4277 (0.2190) 2.9382 (0.3732)

α1 -1.3765 (0.3080)

λ0 1.3278 (0.2354) 0.4140 (0.1277)

λ1 -1.0455 (0.3286)

δ0 -1.7436 (0.1897) -0.8395 (0.1247)

δ1 1.1783 (0.2631)

Var(ai) d11 0.2091 (0.1052) 1.3857 (0.6227)

Var(li) d22 0.2502 (0.1205) 0.1597 (0.0748)

Var(di) d33 0.1432 (0.0633) 0.1493 (0.0532)

Cov(ai, di) d13 -0.0632 (0.0351) -0.2675 (0.1271)

Cov(li, di) d23 -0.1743 (0.0858) -0.1192 (0.0583)

Var(εij) σ2 0.0076 (0.0007) 0.0022 (0.0002)

It is important to note that, while the two-compartment and fractional polynomial
modeling strategies are rather different in nature, both coincide in the conclusions
that (1) there is no treatment effect at the second period and (2) there is a strong
indication, by way of random effects, for between-bird variability.

5.7.2 A Model for SIij(HVC) at the First Period

Table 5.3 shows the parameter estimates and standard errors for the pharmacokinetic
two-compartment model (5.11). Due to numerical reasons the covariances in the D

matrix were assumed to be zero. The random effects b1i (χ2
0:1 = 4.35, p = 0.0185),

b2i (χ2
0:1 = 32.47, p < 0.0001), b3i (χ2

0:1 = 26.50, p < 0.0001), b4i (χ2
0:1 = 3.64,

p = 0.0282) are needed in the model. Since no convergence could be achieved when
removing either γ2 or γ4 from the model, the overall treatment effect was tested
by removing all four γ parameters simultaneously. This test indicated a significant
difference between the two treatment groups (χ2

4 = 11.70, p = 0.0197). Since no
model simplification was possible, the final two-compartment model is identical to
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the initial model (5.12). A graph (not shown) shows that this model fits the data
adequately for all birds. The marginalized and individually fitted curves can be found
in top right graph in Figure 5.6.

As for the second period, fractional polynomials were fitted with the same range of
power combinations for the first period. The power combination associated with the
highest likelihood is exactly the same as for the second period. Parameter estimates
and standard errors of this model are presented in Table 5.4. All random effects are
needed in the model: the random effects ai (χ2

2:3 = 61.14, p < 0.0001), li (χ2
2:3 = 94.03,

p < 0.0001) and di (χ2
2:3 = 47.90, p < 0.0001) are all highly significant. However,

the covariance between the random ai and li effects can be removed (χ2
1 = 1.20,

p = 0.2726). The fixed-effects α1 (χ2
1 = 11.06, p = 0.0009), λ1 (χ2

1 = 7.25, p = 0.0071)
and δ1 (χ2

1 = 12.34, p = 0.0004) all appear highly statistically significant. The model
formulation for the final fractional polynomial model for SIij(HVC) at the first period
is equal to the initial model (5.14). The individually fitted curves for this model are
not shown but the fit is excellent. The marginalized fitted curves can be found in
the top left graph in Figure 5.6. Although no treatment was administered, it is clear
that the untreated birds (group 0) have higher response values then the treated birds
(group 1).

5.8 Concluding Remarks

In this chapter, we have analyzed data to study the impact of testosterone in songbird
brains. Precisely, the impact of Manganese enhanced MRI deduced signal intensity is
studied in three areas within the brain: the nucleus robustus arcopallii (RA), area X,
and the high vocal center (HVC). Birds with and without testosterone were included
in the experiment, and repeated measurements were available in both a pre and post
drug administration period. Since the birds’ profiles are obviously highly non-linear,
an appropriate modeling strategy had to be formulated, taking three aspects into
account: (1) within-bird correlation, due to the repeated measures nature of the
experiment, (2) the non-linearity of the profiles, and (3) the effect of treatment.

We successfully utilized the non-linear mixed-effects modeling framework to this
task. It allows to elegantly incorporate these three aspects within a single modeling
paradigm. The framework was able to cope with the different situation arising for
RA and area X on the one hand and HVC on the other hand. Indeed, from analogous
biological processes, one already deduced a particular parametric form for the profiles
in the RA and area X cases. This functional form was incorporated within the mod-
eling framework. We were able to confirm previously established treatment effects,
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while additional effects were found with our model which had not been detected with
the simpler modes of analyzes, underscoring the strength of the non-linear modeling
framework. While Van der Linden et al (2002) and Van Meir et al (2004) did not find
significant differences due to testosterone for SI at RA during the second period, we
were able to establish the nature of the bird-specific effects: these are due to strong
bird-specific components in the maximum change in relative signal intensity and in
the time required to reach 50% of the maximum.

For HVC, the a priori situation was less clear and a more exploratory route had
to be adopted. First, a fully pragmatic route was considered in the form of frac-
tional polynomials. Second, the similarity between the problem at hand and the
two-compartment model in pharmacokinetics was exploited to formulate an alter-
native model. While the former method is entirely flexible, the second one typically
leads to parameters with a clearer interpretation. Further, since no formal theory was
available, it is cautious to use two rather different approaches, and one method can
be seen as a sensitivity analysis for the other. Having said this, the two-compartment
model arguably has a plausible basis as a model generating mechanism. At any rate,
for HVC, the results from both fits were perfectly in agreement with each other; they
provided a good fit to the empirically observed curves, found no treatment effects at
the second period together with strong evidence for the presence of random effects,
pointing to considerable bird-specific components, i.e., considerable between-bird vari-
ability.





6
Flexible Estimation of Serial

Correlation in Linear Mixed

Models

6.1 Introduction

Arguably, the linear mixed effects model, as introduced in Section 2.1, has become the
most commonly used tool for analyzing continuous, normally distributed longitudinal
data. In its general formulation, based on Diggle’s (1988) model, four structures can
be distinguished: fixed effects, random effects, measurement error and serial correla-
tion. Broadly speaking, serial correlation captures the phenomenon that the correla-
tion structure within a subject depends on the time lag between two measurements.
Often, indeed, measurements taken closer in time will exhibit a larger correlation
than when they are further apart. Diggle (1988) proposed the semi-variogram as a
convenient graphical tool to study the overall variance-covariance structure and to
separate it into its three constituents. For this tool to be applicable, one has to
assume a constant variance over time and restrict the random-effects structure to a
random intercept only.

While the above model is oftentimes sufficiently flexible, the need has arisen for

71
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further flexibility. In response, quite some work has been done to relax the model as-
sumptions and/or to extend the model. One strand of research is directed towards flex-
ible covariance-structure modeling (Pan and Mackenzie 2003), while another strand
of research has considered spline-based formulations for the random-effects structure
(Verbyla et al 1999, Ruppert et al 2003). Such spline-based models can be imple-
mented, on a routine basis, in the SAS procedure GLIMMIX. Ruppert et al (2003)
present the necessary S-Plus code to fit their model.

Comparatively less work has been devoted to more flexible serial correlation struc-
tures. Diggle and Verbyla (1998) proposed kernel smoothing to provide a nonpara-
metric estimator for the covariance structure without assuming stationarity. As men-
tioned by these authors, in practice it often becomes essential to impose structural
restrictions on the covariance matrix either by smoothing or by fitting a parametric
model. In their approach they clearly opt for (nonparametric) smoothing, while we
believe that the spline-based approach, which we will introduce further on, strikes a
good balance between the parametric and smoothing ideas. This methods combines
flexibility with a broad range of potential uses, such as estimation, inference, and
prediction over ranges of covariate values; the latter is less straightforward with local
methods.

Verbeke, Lesaffre, and Brant (1998) presented an extension of the semi-variogram,
allowing for random effects other than merely a random intercept. While elegant in
concept, the method is not invariant to the choice of transformation on which it is
based. Lesaffre et al (2000) used fractional polynomials (Royston and Altman 1994) to
obtain a flexible yet still fully parametric description of the serial correlation function.
This is an appealing idea, worth of further refinement. Consequently, it is taken up
in this paper. Next to this, we also propose the use of spline-based modeling of the
serial correlation function.

When one is not directly interested in the correlation structure as such, but merely
needs to correct for it, the generalized estimating equations (GEE) approach of Liang
and Zeger (1986) can be adopted. Even in this situation, however, there are reasons to
prefer a mixed model approach. First, this is the case when subject-specific predictions
are needed. Second, the full likelihood-based mixed models are preferable when one
is confronted with missing data and the assumption of missing completely at random
(MCAR, Little and Rubin 2002) is considered too restrictive and one needs to revert
to missing at random (MAR).

Section 6.2 introduces the motivating case study for this chapter, of which the
analysis is taken up in Section 6.4. Our proposals for flexible serial correlation method-
ology are described in Section 6.3. Note that the content of this chapter is mainly
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Figure 6.1: Schematic representation of a Skinner box.

based on the paper of Serroyen et al (2007b).

6.2 Motivating Case Study

Alzheimer’s disease (AD) and other dementias have been defined by cognitive and
non-cognitive symptomatology. These neuropsychological characteristics are referred
to as Behavioral and Psychological Signs and symptoms of Dementia (BPSD). Besides
these behavioral disturbances and psychological symptoms described by Reisberg et
al (1987), demented patients develop changes in eating and drinking behavior. The
data introduced in this section were obtained from a study which was set up to
investigate behavioral changes in genetically modified mice. These so-called transgenic
APP23 mice were genetically engineered based on an animal model for dementia
(Vloeberghs et al 2004). The specific aim of the study was to investigate whether this
valuable mouse model develops eating and drinking disturbances. The APP23 mice
were compared with wild-type (WT) control littermates. The total sample size was
85, of which 44 were transgenic mice and 41 were controls.

Eating and drinking behavior were simultaneously recorded for one week by em-
ploying so-called Skinner boxes (see Figure 6.1) placed inside ventilated isolation
compartments. Each mouse cubicle was equipped with a pellet feeder and a water
bottle (optical lickometer) to provide 20mg dustless precision pellets of the rodent
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Figure 6.2: Average evolutions for log-transformed number of licks and pellets over
time.

grain-based formula and tap water. Photocell sensors were used to detect pellet re-
moval, i.e., the number of pellets taken, and the number of licks at the drinking tube.
Registration periods typically started Wednesday at 10 am and ended exactly 167
hours later on Wednesday at 9 am. During this 1-week recording period, the 12-hour
light—12-hour dark cycle was continued in the same way as in the facility where mice
were previously housed (i.e., lights off at 8 pm).

The response variables were defined as the total number of licks and pellets per
hour. Since these responses showed severe right-tailed skewness, they were trans-
formed to log(response + 1). Figure 6.2 presents the average evolutions in the log-
transformed number of licks and pellets over time for the WT and APP23 group. A
circadian pattern can clearly be observed: the mice show more activity at night (e.g.,
after 12 hours) compared to during the day (e.g., after 24 hours). Let log(lij + 1)
be the log-transformed number of licks for mouse i at time point j. The observed
individual profiles for log(lij + 1) of 5 randomly selected mice are shown in Fig-
ure 6.3, while the corresponding observed variance function is portrayed in the left
hand panel of Figure 6.4. The variability is not constant and the circadian pattern
also seems to be present in the variance structure. The circadian rhythm thus ap-
pears to be a dominant biological factor in this experiment. The right hand panel of
Figure 6.4 presents the semi-variogram for log(lij + 1), based on a random-intercept
model with an unstructured model for the mean. However, we should be careful in
interpreting this semi-variogram, since the non-constant variance is a clear indication
of non-stationarity, thereby rendering the semi-variogram less than trustworthy. It is
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Figure 6.3: Observed profiles for log(lij + 1) of 5 randomly selected mice.

therefore prudent to consider the semi-variogram for exploratory purposes only. Nev-
ertheless, there appears to be signs of a circadian trend in this graph as well. This
was also the direct motivation for studying if the circadian pattern was also present
on the level of serial correlation.

6.3 Flexible Serial Correlation Structures

In analogy with choosing flexible functions and modeling concepts for the fixed and
random effects structures, it would also be desirable to dispose of flexible tools for
the serial structure. Lesaffre et al (2000) proposed fractional polynomials to flexibly
model this structure, which, together with some issues surrounding it, will be reviewed
briefly in Section 6.3.1. The subsequent section deals with using penalized spline
ideas, the concept of which was introduced in Section 2.4, when describing the serial
association. All of these methods are rooted in studying the function g(·) in (2.5).



76 Chapter 6. Flexible Estimation of Serial Correlation

0 50 100 150

1
2

3
4

5
6

7

Time (hours)

V
ar

ia
nc

e

0 20 40 60 80

0.
8

0.
9

1.
0

1.
1

Distance

S
em

iv
ar

io
gr

am
Figure 6.4: Left hand panel: observed variance function for log(lij + 1). Right hand
panel: Semi-variogram for log(lij + 1).

6.3.1 Fractional Polynomials

Lesaffre et al (2000) applied fractional polynomials to model the serial correlation
function g(·). Their model is of the form

τ2g(u) = exp



φ0 +

m∑

j=1

φj u(pj)



 . (6.1)

This parametrization does not a priori ensure that g(·) is a decreasing function, nor
that it is has an upper bound of 1. Furthermore, these authors construct a fractional
polynomial of degree 4, using the power set {0, 0.5, 1, 2}. This is in clear contrast
with the recommended degree of m = 2. As a result, concerns of multicollinearity
and model stability can be raised.

The fractional polynomial approach, using the recommended degree of m = 2, will
be applied to the case study data and the results will be presented in Section 6.4.

6.3.2 Splines

Returning to the smoothing spline ideas laid out in Section 2.4, we are now in a
position to formulate a spline model for the serial process:

τ2g(u) =
exp(φ0)

1 + exp{φ1 + φ2 log(u) +
∑K

k=1 φk+2[log(u)− log(κk)]+}
. (6.2)

This means that φ0 acts as a (strictly positive) intercept, capturing the variance
of the serial correlation component, τ2. Further, φ1 acts as an intercept, φ2 is the
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linear slope and φ3, . . . , φK+2 are the spline coefficients associated with the serial
correlation function g(·). The logistic link ensures that the estimated g(·) function
stays within the [0, 1] interval. Defining the spline on the log-scale (using argument
log(u)) and constraining φ2 to be strictly positive, the serial correlation function
satisfies the natural assumption that limu→0 g(u) = 1. Additionally, the use of the
log-scale improved convergence considerably.

For a particular rich enough set of knots, a penalty term is added to (2.7) to obtain
a smooth fit, leading to the following marginal likelihood function:

l(θ) = LML(θ) + λ

K∑

k=1

φ2
k+2, (6.3)

where again the smoothing parameter λ controls the amount of smoothing. In prin-
ciple, it is conceivable to develop methods for an optimal, data-driven selection of λ,
as those briefly discussed in Section 2.4. The main difficulty however is that criteria
such as cross-validation and the effective degrees of freedom (being the trace of the
so-called smoother matrix in the classical setting) are defined on the scale of the data,
and it is no means clear how to translate these concepts to serial correlation. The
same holds for the mixed model representation. The aforementioned integration can
be done analytically in case of normal random spline effects, but this is no longer
true for spline effects in the serial correlation function. In this case the integration
can be carried out using conventional numerical integration (e.g., Gaussian quadra-
ture, Laplace approximation) or sampling based (e.g., Monte Carlo Markov chain)
methods.

A data-driven optimal selection of the smoothing parameter falls outside of the
scope of this paper. Instead, we limit the number of (well-chosen) knots and try out
some fixes values for the smoothing parameter. The number and position of knot
points for the spline function has to be chosen wisely. This is generally the case in
smoothing when using only a limited number of knots, but maybe even more so when
modeling the covariance matrix, where parsimonious modeling is very important. Co-
variance modeling can in general be considered as computationally heavy, and this is
particularly true for our case study, where we have 167 measurement occasions. Fur-
ther, the semi-variogram might help in choosing the location of knot points when the
data is balanced and stationarity can be assumed. In practice, splines with different
sets of knot points can be fitted to the data. This then gradually gives an idea of the
shape of the serial correlation function. Since most pairs of data can be formed for
shorter time lags, it is also most sensible to focus at least some knot points in this
range.
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All analyzes were performed using the statistical software package R (R Devel-
opment Core Team 2007). The marginal log-likelihood expression for (6.3) was con-
structed and then maximized using a general purpose numerical optimizer based on
a quasi-Newton method. The R code used for fitting the final model can be found in
the Appendix at the end of this chapter.

6.4 Analysis of Case Study

First, a model for the mean number of licks will be presented. Then, the approaches
as described above in Section 6.3 will be applied to the case study data introduced in
Section 6.2.

The mean structure was modeled using the six-parameter function:

log(lij + 1) = β0 + β1 tij + β2 t2ij + β3 log(tij)2 + β4 sin(β5 tij). (6.4)

Note that this model includes one non-linear parameter, i.e., the sine frequency pa-
rameter β5. However, since we opted for a fully marginal approach, capturing the
within-subject association through the serial correlation function, no random effect
enters the likelihood in a non-linear way. This means that no random effect needs
to be numerically or approximately integrated out from the likelihood function and
therefore, we can still use the marginal likelihood expression (2.7) to fit (6.4). The
resulting model fit for the mean number of licks is shown in Figure 6.5.

Let us now turn to the main topic of interest, namely the modeling of the serial
correlation function. After fitting models over a range of smoothing parameter values,
a small value (λ = 0.01) was chosen since this improved convergency, while it only
had a small impact on the actual fit. A classical exponential function, a fractional
polynomial fit, together with spline fits at two different sets of knot points of the serial
correlation function g(.) for number of licks is shown in Figure 6.6. The combination
of fractional powers that provided the best fit was {0.5, 1}, i.e.

√
u and u. The choice

of knot point locations did not seem to have a large impact on convergence, as long
as they were not positioned too close to each other. For this reason, we chose to set
the knot points at 6 hourly intervals. The results obtained with different sets of knot
points were all consistent.

The spline fits indicate that the serial correlation function is non-monotone. The
(point-wise) 95% confidence bands for this model fit is presented in the left hand
graph in Figure 6.7. The non-monotone trend is indeed confirmed by this graph.
This fact would go entirely unnoticed with a conventional serial correlation approach
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Figure 6.5: Observed mean profile (solid) and fitted mean model (dashed) for log(lij +
1).

and is also missed by the fractional polynomial fit. For example, we now see that
the serial correlation is substantially lower for a 12-hour time lag than for one of
24 hours. Very likely, this can be ascribed to the circadian rhythm. This 24-hours
pattern could also be observed in Figure 6.2 and Figure 6.3. It therefore plays a role in
the mean structure, variance structure and the correlation structure simultaneously.
Since a classical serial correlation model would not allow for this, it is conceivable
that in such a model the mean structure fit would be distorted, rendering associated
inferences less reliable. To check if the estimation of the serial correlation function
was not distorted by the non-constant variance, the variance itself was modeled with
a sine function. The right hand graph in Figure 6.7 shows the observed and fitted
variance function. Although modeling the variance function improved the likelihood
considerably, the estimated serial correlation function remained virtually unchanged.

The fact that the one-parameter exponential function cannot detect this type
of serial correlation also shows through the difference in log-likelihood between the
exponential, and the spline model with knots located at u = 6, 12, 18, 24, 36. Precisely,
the test statistic equals 2(27395.0− 27306.9) = 176.2, which under the null follows a
χ2

6. This represents a considerable improvement in fit of the spline model compared
to the exponential model.
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Figure 6.6: Exponential, fractional polynomial and spline fit of the serial correlation
function g(.) for number of licks. Left hand graph: knot points at u = 6, 12, 18, 24, 36.
Right hand graph: knot points at u = 8, 14, 20, 26, 36.

Note that all knot points were positioned for time lags below 36 hours, confirming
that this is the time frame were quite a lot is happening, in contrast to larger lags. Of
course, as mentioned before, there is more information in a set of data about shorter
lags, since relatively more pairs corresponding to such lags can be formed.

6.5 Concluding Remarks

Flexible serial correlation structures, in agreement with flexible random-effects model-
ing, are necessary when modeling complex longitudinal profiles, especially with a long
period of follow up and/or a large number of measurements within subjects. To this
end, we have proposed a spline-based approach. Such a parametric spline approach
works acceptably well, as long as the number of knot points is chosen to be relatively
small compared to the number of time points. In our case study, we essentially used 5
knot points for 167 follow-up occasions. The choice of the knot points’ position, too,
is important, both for the quality of the fit as well as for convergence of the updating
algorithm.

Convergency can be problematic when fitting an elaborate covariance structure.
However, in the analysis of the case study the proposed spline approach actually
performed better than some of the simpler serial correlation based models, such as
one featuring Gaussian serial correlation. Arguably, the specific parameterization in
combination with the added flexibility allows for a better fit and ultimately therefore
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Figure 6.7: Spline model with knot points at u = 6, 12, 18, 24, 36. Left hand graph:
spline fit with 95% confidence bands. Right hand graph: observed and fitted variance
function.

better convergence.

Since model (6.4) includes a non-linear parameter, i.e., frequency of the sine wave,
we opted for a fully marginal approach, thus omitting random effects. Although it is
possible to include both random effects and serial correlation in a linear mixed-effects
model, this is usually not advisable. Diggle et al (1994) and Verbeke and Molenberghs
(2000) argue that, in applications, the effect of serial correlation is often dominated by
the combination of random effects and measurement error. In practice, this is often
reflected by way of estimation problems. Therefore, restricting the model’s covariance
structure to serial correlation and measurement error will often be a sensible choice.

The presented spline approach provides a flexible alternative to the simple classical
models (e.g., the exponential model), which is useful when interest lies directly in the
shape of the serial correlation function. The approach can also be used for sensitivity
analysis purposes, i.e., checking if an assumed simple serial correlation function is
adequate.

For the case study data, the standard errors of the fixed-effects parameter esti-
mates did not change substantially when comparing the relatively simple exponential
serial correlation model with the more elaborate spline model. Thus, this particular
analysis could not provide evidence for a gain in efficiency related to inference about
the fixed-effects parameters. However, a simulation study might shed some light on
the fact if this conclusion is true in general.
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The choice of the smoothing parameter λ is rather subjective by nature. In our
analysis, we chose a small value since this improved convergence, without smoothing
out the non-monotone trend in the fitted serial correlation function and without
adversely impacting the model’s fit.

Admittedly, observations made in a case study are always a bit ad hoc. Therefore,
we performed a small simulation study (details not reported), which largely confirmed
the finding that adding knot points can improve the fit, while at the same time causing
rapid variance increases and having a detrimental influence on convergence.
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Appendix

The R code used for fitting model (6.4):

#########################

# Data Manipulation #

#########################

vloeb <- read.table("c:/temp/data/serial/vloeberghs/pred_licks.txt",header=T)

yi <- as.data.frame(matrix(NA,nrow=length(vloeb[,1]),ncol=3))

schaal <- 100 # scaling factor

yi[,2] <- vloeb$time / schaal # time point indicator

yi[,1] <- vloeb$subject # subject indicator

N <- length(unique(yi[,1])) # number of subjects

ni <- length(unique(yi[,2])) # number of repeated measurements

ti <- matrix(yi[,2][yi[,1]==1],ncol=ni,nrow=ni)/schaal

tij <- ti[,1]

######################

# Adding Gradient #

######################

# this function computes the central difference approximation for ’f’

cd <- function (x, f, ..., eps = 1e-04) {

n <- length(x)

res <- numeric(n)

ex <- pmax(abs(x), 1)

for (i in 1:n) {

x1 <- x2 <- x

x1[i] <- x[i] + eps * ex[i]

x2[i] <- x[i] - eps * ex[i]

diff.f <- c(f(x1, ...) - f(x2, ...))

diff.x <- 2 * max(abs(c(x1[i] - x[i], x2[i] - x[i])))

res[i] <- diff.f / diff.x

}

res

}
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##########################

# Loglikelihood Function #

##########################

loglik71 <- function(theta) {

beta <- theta[1:6]

sigma <- theta[7:10]

alpha <- theta[11:(13+nkn)]

# Spline-based serial correlation function:

U <- rep(list(matrix(NA,nrow=ni,ncol=ni)),nkn)

for (i in 1:nkn) U[[i]] <- (log(abs(ti-t(ti))) - log(kn[i]))*

(log(abs(ti-t(ti))) - log(kn[i])>0)

cv <- alpha[3]*log(abs(ti-t(ti)))

for (j in 1:nkn) cv <- cv+alpha[3+j]*U[[j]]

diag(cv) <- -Inf

covi <- (exp(alpha[1]))/(1+exp(-(alpha[2]+cv)))

# Mean function:

Mu <- beta[1] + beta[2]*tij + beta[3]*tij^2 + beta[4]*log(tij)^2

+ beta[5]*sin(beta[6]*tij)

# Variance function:

sigma2 <- sigma[1]^2 + sigma[2]*tij + sigma[3]*sin(sigma[4]*tij)

# Inverted marginal covariance matrix:

Wi <- solve(covi + sigma2*diag(ni))

ll <- 0

# Marginal LogLikelihood function for multivariate normal distr.

lli <- function(x) -(log((2*pi)^(-ni/2)) + log(sqrt(det(Wi)))

+ (diag(-(t(x-Mu)%*%Wi%*%(x-Mu)/2)))

+ lambda*sum(alpha[4:(3+nkn)]^2) )

ll <- sum(tapply(vloeb$loglicks, yi[,1], FUN=lli))

ll

}

grad.loglik71 <- function(thetas) cd(thetas, loglik71)

# Knot point locations:

kn <- c(6,12,18,24,36)/schaal

nkn=length(kn)
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# Smoothing parameter:

lambda <- 0.01

# Starting values:

Start71 <- c(4.55,-0.042,-0.196,-0.144,-1.24,26.6,

1.877,-0.172,1.51,26.9,

-0.5,-7,-4, rep(0,nkn))

loglik71(Start71)

# Using numerical optimizer to minimize negative loglikelihood:

fit71 <- optim(Start71, loglik71, grad.loglik71, hessian=T,method="L-BFGS-B",

lower=c(0,rep(-Inf,4),0, 0, rep(-Inf,nkn+6)),

control=list(trace=1,maxit=750,REPORT=5))





7
Flexible Modeling of Viral

Dynamics in HIV-1-infected

Patients

7.1 Introduction

The human immunodeficiency virus (HIV) is a retrovirus that can lead to acquired
immunodeficiency syndrome (AIDS), a condition in humans in which the immune
system begins to fail, leading to life-threatening opportunistic infections. HIV infec-
tion in humans is now considered a global pandemic with infection rates as high as
25% in southern and eastern Africa. As of January 2006, the Joint United Nations
Programme on HIV/AIDS (UNAIDS) and the World Health Organization (WHO) es-
timate that AIDS has killed more than 25 million people since it was first recognized
on December 1, 1981, making it one of the most destructive pandemics in recorded
history (UNAIDS 2006).

The high mutation rate of HIV is the main reason why the human immune system
cannot gain control over an HIV infection and why it is so difficult to develop a cure
or vaccine against HIV.

There are two species of HIV that infect humans: HIV-1 and HIV-2. HIV-1 is

87
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more virulent and it is the cause of the majority of HIV infections globally. HIV-2 is
less transmittable and is largely confined to West Africa.

Current treatment for HIV infection consists of highly active antiretroviral therapy
(HAART), consisting of a combination of protease and reverse transcriptase inhibitors.
HAART allows the stabilization of the patients symptoms and viremia, but it neither
cures the patient, nor alleviates the symptoms, and high levels of HIV-1, often HAART
resistant, return once treatment is stopped.

Our scientific aim is to model the evolution of HIV-1 viral concentrations over time.
More specifically, the goal of the analysis reported in this chapter is twofold. First, the
model building steps and specification of starting values need to be systematized when
fitting the bi-exponential model to viral load data with SAS procedure NLMIXED.
Second, we wanted to find a suitable model for the rebounders, a special subgroup of
patients that will be described later.

The motivating case study is presented in Section 7.2, while some fundamental
concepts from the field of viral dynamics are reviewed in Section 7.3. A model building
strategy to fit the bi-exponential model on viral load data will be introduced in
Section 7.4. Finally, the results of applying the model building strategy to the case
study data are shown in Section 7.5.

7.2 Motivating Case Study

The data to be analyzed come from pooling three clinical trials on Prezista, also
known as darunavir, previously TMC114, a new protease inhibitor (PI) developed
by Tibotec (Spinosa-Guzman et al 2007). The first two trials, TMC114-C202 and
TMC114-C213, are randomized, controlled, partially-blinded Phase II trials aimed
at determining the dosing, antiviral activity, safety, and tolerability of darunavir,
formulated as an oral tablet, and administered with a low dose of ritonavir (RTV).
Participants were required to have a baseline HIV RNA (viral load) of greater than
1000 copies/ml, had previous treatment with PIs, non-nucleoside reverse transcriptase
inhibitors (NNRTIs), and nucleoside reverse transcriptase inhibitors (NRTIs), and
have at least one primary PI mutation at screening, and to be currently taking a
stable PI-containing regimen at screening for at least 8 weeks prior to study entry.
After completion and approval of the 24 week dose finding analysis, all subjects on
darunavir were instructed to switch to the recommended dose of 600mg BID1. The
subjects in the control group continued their therapy unchanged until the end of the

1twice daily
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trial.

Subjects who did still benefit from their assigned antiretroviral regimen beyond
96 weeks of treatment were offered the possibility to extend their treatment with an
additional 48 weeks. Subjects had to provide their explicit informed consent for this
extension. Original analyzes included 319 patients in TMC114-C202 and 318 patients
in TMC114-C213.

The third trial (TMC114-C215) is an open-label trial in HIV-1 infected subjects
who failed trial treatment in the TMC114-C202 or TMC114-C213 trial and who may
derive benefit from TMC114 therapy, as judged by the investigator. The trial eval-
uates the safety and tolerability of TMC114/RTV, in addition to an individually
optimized background antiretroviral therapy. Additionally, the antiviral activity is
evaluated. 452 subjects were accrued in trial TMC114-C215.

As mentioned before, a large number of patients underwent a dose switch during
the study and switched to the recommended dose of 600 mg BID. Therefore, to reduce
the heterogeneity in the data, only the patients who received the recommended dose
from the start and control patients were retained for analysis. The control patients
received an investigator selected PI on top of an optimised background regimen. This
brings the final sample size to 591 patients. The number of available measurements
per subject ranged from 1 to 24, with a median of 14.

Before presenting the general model building strategy for analyzing viral load data,
we will now review some fundamental concepts from the field of viral dynamics.

7.3 Viral Dynamics

Viral dynamics is a relatively new field of study that relies on mathematical models to
describe the evolution of virus levels in the blood plasma, the so-called viral load, over
time (Nowak and May 2000). Basic models of viral dynamics describe the interaction
between (1) cells susceptible to infection (target cells), (2) different classes of infected
cells, and (3) virus.

Within a few months of HIV infection, patients typically attain a constant or
set-point viral load, which is roughly maintained for years. The patients enter a
steady state of chronic infection (Di Mascio et al 2004). When this steady state is
perturbed with potent HAART therapies, the concentration of HIV-1 in blood plasma
shows an initial rapid exponential decay, usually followed by a slower second phase
of exponential decay (Perelson et al 1997). The first phase stems from the emptying
of the pool of actively virus-producing infected T-cells, the replenishment of which
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is downsized by the treatment, while the second phase can be attributed to gradual
release of the virus from secondary sources that have a longer half-life, such as infected
tissue macrophages, dendritic cells or activation of latently infected lymphocytes.

The biphasic decay in viral load can be described by a bi-exponential model:

Vij = V0 [A e−α tij + B e−β tij ] + εij , (7.1)

where Vij is the viral load for subject i at measurement occasion j, V0 is the baseline
viral load and tij is the time indicator. The parameters α and β describe the rate of
exponential decay, while A and B are intercept parameters. Finally, εij is the resid-
ual error term. This model is very similar to the two-compartment model used in
Section 5.6, only with the addition of V0, which is basically a scaling factor. Because
the data are of longitudinal form, we will embed this model in a mixed-effects setting.

After the biphasic decrease in viral load levels, some subjects show a rebound , i.e.,
a sudden rise in viral load levels during treatment. This rebound is generally caused by
the emergence of a drug-resistant virus strain. Non-adherence to the therapy may also
come into play, with partial adherence a possible factor of the faster accumulation of
drug-resistant mutations (Sethi et al 2003). We propose to extend the bi-exponential
model by adding a third phase, allowing us to capture the rebound: a logistic growth
process (Pinheiro and Bates 2000, p. 274). The three-parameter logistic growth model
can be formulated as

y(x) =
θ1

1 + eθ2 + θ3 x
, (7.2)

where θ1 is the upper asymptote, θ2 plays the role of an intercept and θ3 is the slope
parameter. Combining the bi-exponential and logistic growth model leads to the
following rebound model:

Vij = V0

[
A e−α tij + B e−β tij +

θ1

1 + eθ2 + θ3 tij

]
+ εij . (7.3)

All analyses were performed using the NLMIXED procedure in SAS 9.1.

7.4 Model Building Strategy

The first goal of the reported analysis is to develop a general model building strategy
to fit the bi-exponential model on viral load data, including the selection of proper
starting values.

We will now present this model building strategy, based on a two-stage model
building approach. The developments are made so as to facilitate implementation in
the SAS procedure NLMIXED. Precisely, the following steps are taken.
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1. Individual bi-exponential model fit per patient (with grid search for starting
values)

2. Summarize parameter estimates from individual fits:

(a) Fixed effects: median

(b) Random effects (standard deviation): interquartile range

(c) Treatment effect: summarize individual parameters by treatment group

3. Overall bi-exponential model fit (ignoring longitudinal nature of the data):

(a) Use the median of individual parameter estimates as starting values

(b) Inflate the residual variance, to accommodate the impact resulting from
between-subject variability

4. Introduce random effects:

(a) Use interquartile distance of individual parameter estimates as starting
values

(b) Add random effects one-by-one in decreasing order of interquartile distance
value

(c) Likelihood ratio tests to check whether random effects are needed

(d) If the model becomes unstable or otherwise does not converge:

i. Switch the numerical integration method to non-adaptive Gaussian
quadrature, as opposed to SAS’ default method, which is adaptive
Gaussian quadrature

ii. Switch the numerical integration method to first order optimization
(FIRO) and use the estimates obtained as starting values for Gaussian
quadrature

iii. Reparameterize the model or rescale the parameters to ensure that all
estimates are approximately of same order of magnitude

iv. Use a grid of starting values for covariances and random effect vari-
ances

v. Omit the last added random effect from model and try adding random
effect elsewhere in the model (for example, random β instead of B)

5. Introduce (fixed) treatment effects: use likelihood ratio tests to check if treat-
ment effects are significant
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Let us now apply this strategy to the case study introduced in Section 7.2.

7.5 Application to TMC114 data

Since viral loads generally evolve exponentially over time, they are most commonly
expressed on a logarithmic scale. The observed mean log-transformed (base 10) viral
load profile and the individual profiles of 20 patients randomly selected from the
pooled trials are presented in Figure 7.1. The mean profile exhibits the biphasic
pattern, as discussed in the previous section. During the first few weeks of treatment,
there is a clear, sharp decrease in mean log(viral load), followed by a slower phase.
The individual profiles plot indicates that there is substantial variability, both within
and between subjects. The viral load of most patients drops below the detection limit
within the first few weeks of treatment. Some patients have highly irregular profiles
and do not show the typical biphasic pattern. However, this is not uncommon for
the type of patients selected for these trials, i.e., patients who did not respond well
to previous treatments (salvage patients). Another important aspect of the data is
that there is a detection limit at 50 HIV RNA copies/ml, corresponding to a log(viral
load) value of 1.7. This means that the data are left censored. Nevertheless, in our
analysis we will ignore this aspect, since it is less than straightforward to extend the
bi-exponential mixed-effects model to account for censoring.

7.5.1 Bi-exponential Model

The model building strategy of Section 7.4 will now be applied to the TMC114 data.
The patients who show a rebound are excluded in this part of the analysis, since
this behavior is believed to be caused by another underlying biological mechanism.
Section 7.5.2 deals with finding a suitable model for these patients.

Before the model building strategy was put into practice, the bi-exponential model
was reparameterized. To start, both sides of the model equation in (7.1) are trans-
formed to a logarithmic scale with base 10, to improve numerical stability. In the
classical bi-exponential model, the parameters A, B, α, and β are considered to be
strictly positive (Davidian and Giltinan 1995). However, since a number of patients
have irregular profiles and do not show a monotonically decreasing biphasic pat-
tern, the α and β are not parameterized to be strictly positive, ensuring sufficient
model flexibility. Finally, the residual variance is estimated using the parameteriza-
tion V ar(εij) ≡ σ2

ε = exp(2 · ξ), where ξ represents the log-transformed standard
deviation of the residual error term.
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Figure 7.1: Left hand panel: observed mean log(viral load) profile. Right hand panel:
individual profiles of 20 patients randomly selected from the pooled trials. Note that
about one-third of the patients do not show the typical bi-phasic pattern. Dashed grey
line represents detection limit.

The first model building step is to fit a bi-exponential model to each patient
separately (by subject approach). The corresponding model is given by

log10(Vij) = log10

(
V0 [eAi e−αi tij + eBi e−βi tij ]

)
+ εij . (7.4)

Table 7.1 provides an overview of the summarized parameter estimates for model (7.4).
To facilitate interpretation, this table also includes back-transformed median esti-
mates, consistent with the parameterization of model (7.1). After fitting the overall
bi-exponential regression model, the next step in the model building process is to
introduce random effects into the model. Adding four random effects leads to the
following model expression:

log10(Vij) = log10

(
V0 [e(A+a1i) e−(α+a2i) tij + e(B+b1i) e−(β+b2i) tij ]

)
+ εij . (7.5)

To further improve numerical stability, the random-effect covariance parameters are
expressed in terms of inverse Fisher’s Z transformed correlations. For example, the
covariance between the first and second random effect is parameterized as

d12 = r12 · (σ11 · σ22),
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Table 7.1: Bi-exponential model. Summary statistics for estimates obtained in by
subject approach. Medians are also back-transformed.

Parameter Median IQR1 Mean Std2 Transformation
Transformed

Estimate

A -0.1649 0.4939 -0.5035 1.7482 eA 0.8480

α 1.6193 1.7730 2.3500 3.0524 α 1.6193

B -5.0229 4.1073 -6.7810 13.9849 eB 0.0066

β 0.0008 0.0208 -0.1627 0.7823 β 0.0008

σ2
ε 0.0284 0.0510 0.0610 0.1034

1
Interquartile Range

2
Standard Deviation

where

r12 =
exp(c12)− 1
exp(c12) + 1

.

Also, σ11 and σ22 are the random-effect standard deviation parameters, and c12 is
the transformed covariance parameter to be optimized. Parameter estimates and
standard errors for model (7.5) are provided in Table 7.2. The correlations between
the random-effect parameters are relatively weak. The strongest correlation, i.e.,
r13 = −0.8189, is negative and occurs between the intercepts of the two exponential
phases. This means that a high (low) intercept in one phase is compensated by a low
(high) intercept in the other phase.

Comparing Table 7.1 and Table 7.2, it can be concluded that the median and
interquartile range can be adequately used as starting values for fixed- and random-
effect parameters of model (7.5), respectively. The estimated random effect standard
deviations are consistently smaller than the interquartile range, which is probably
due to shrinkage (Verbeke and Molenberghs 2000, p. 80). This phenomenon is most
apparent for standard deviations (Table 7.1), which are even considerably larger than
the corresponding interquartile ranges. The standard deviations are inflated, owing
to an unstable model fit for some individual patients, resulting in outlying parameter
estimates for these patients.

The last model building step involves introducing treatment effects into the bi-
exponential model. As mentioned earlier, only patients who did not undergo a dose
switch were retained in the analysis. This means that two treatment groups can be
identified: patients receiving the recommended dose from the start (treatment group)
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Table 7.2: Bi-exponential model. Parameter estimates and standard errors for random
effects model. Fixed-effect parameter estimates are also back-transformed.

Effect Parameter Estimate (s.e.) Transformation
Transformed

Estimate

A -0.3836 (0.0366) eA 0.6814

α 1.7037 (0.0546) α 1.7037

B -4.0841 (0.0328) eB 0.0168

β 0.0030 (0.0007) β 0.0030

Std(b1i) σ11 1.7304 (0.0228)

Std(b2i) σ22 0.0112 (0.0006)

Std(a1i) σ33 0.1426 (0.0309)

Std(a2i) σ44 0.7906 (0.0267)

Cor(b1i, b2i) r12 -0.2898 (0.0402)

Cor(b1i, a1i) r13 -0.8189 (0.1459)

Cor(b1i, a2i) r14 0.0233 (0.0057)

Cor(b2i, a1i) r23 0.2212 (0.2651)

Cor(b2i, a2i) r24 0.0350 (0.0030)

Cor(a1i, a2i) r34 -0.1086 (0.0284)

Var(εij) σ2
ε 0.1006 (0.0021)

and the patients receiving an investigator selected PI (control group). Therefore, the
model was extended by adding a treatment indicator to all four fixed effects, which
takes on the value 0 for the control group and 1 for the treatment group. The random
a1i effect was estimated close to zero and therefore deleted from the model. The
estimates and standard errors of the resulting model fit are presented in Table 7.3.
The parameters At, αt, Bt, and βt represent the treatment effect, i.e., the difference
in parameter estimate for the treatment group compared to the control group.

7.5.2 Rebound Model

As mentioned in Section 7.3, some subjects show a rebound after the biphasic decrease
in viral load levels. To capture this rebound, the bi-exponential model is extended by
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Table 7.3: Bi-exponential model. Parameter estimates and standard errors for random
effects model including treatment effects. Fixed-effect parameter estimates are also
back-transformed.

Effect Parameter Estimate (s.e.) Transformation
Transformed

Estimate

A -0.5198 (0.0890) eA 0.5946

At 0.3340 (0.0929) eA+At 0.8304

α 1.7712 (0.0490) α 1.7712

αt -0.2028 (0.0150) α + αt 1.5684

B -2.9034 (0.0578) eB 0.0548

Bt -1.6907 (0.0706) eB+Bt 0.0101

β -0.0079 (0.0013) β -0.0079

βt 0.0093 (0.0015) β + βt 0.0014

Std(b1i) σ11 1.4069 (0.0195)

Std(b2i) σ22 0.0108 (0.0005)

Std(a2i) σ44 0.7719 (0.0209)

Cor(b1i, b2i) r12 -0.3709 (0.0354)

Cor(b1i, a2i) r14 0.0269 (0.0019)

Cor(b2i, a2i) r24 0.1132 (0.0045)

Var(εij) σ2
ε 0.0950 (0.0020)

adding a logistic growth phase.

The case study data contained a variable indicating whether a patient is a re-
bounder or not, based on certain clinical criteria. After visual inspection of the
individual viral load profiles, some additional patients were identified as being a re-
bounder. This brings the total number of rebounders to 228.

In line with Section 7.5.1, both sides of the model equation in (7.3) were trans-
formed to a logarithmic scale with base 10. Opposed to the implementation of the
bi-exponential model, β was exponentiated in the rebound model, forcing the second
phase to decrease over time. Not imposing this restriction can lead to an unstable
model, since the logistic part of the model and the second phase can both try to
capture the observed rebound. This happens mainly when the patient rebounds early
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Table 7.4: Rebound model. Summary statistics for estimates obtained in by subject
approach. Medians are also back-transformed.

Parameter Median IQR1 Mean Std2 Transformation
Transformed

Estimate

A -0.0757 0.3449 -0.2971 1.5569 eA 0.9271

α 2.1388 1.8559 3.1153 3.1414 α 2.1388

B -3.8732 2.6865 -5.2699 5.4575 eB 0.0208

β -2.7069 2.2474 -4.2403 5.3995 eβ 0.0667

θ1 4.4987 1.2285 5.3890 9.9694

θ2 25.0648 25.6249 36.4454 37.4573

θ3 -1.4920 4.1498 -3.8585 6.4588

σ2
ε 0.0558 0.1158 0.1418 0.2440

1
Interquartile Range

2
Standard Deviation

during therapy, meaning before or shortly after the start of the second phase, im-
plying a lack of data on this second phase. Furthermore, θ1 was parameterized as
10θ1 to obtain estimates for the asymptote on the log(viral load) scale and to increase
numerical stability. This leads to the following model parametrization:

log10(Vij) = log10

(
V0

[
eA e−α tij + eB e− exp(β) tij +

10θ1i

1 + eθ2i + θ3i tij

])
+ εij . (7.6)

Using the model building strategy described earlier, the rebound model is first fitted
separately for each rebounding patient. Table 7.4 provides an overview of estimates
from this step. A typical rebound profile and predicted curve for one selected patient
is displayed in the left hand panel of Figure 7.2. The right hand panel shows the pre-
dicted curve with underlying bi-exponential and logistic curves for the same patient.
The model prediction captures the rebound pattern reasonably well.

The mixed-model approach, using random effects to capture the between-subject
variability in the logistic growth curve parameters (θ1, θ2, and θ3) did not lead to
acceptable model fits on the level of the individual subjects. This can probably
be attributed to the restrictive normality assumption on the empirical Bayes (EB)
estimates and the resulting shrinkage effect. Therefore, it was decided to treat the
θ-parameters as covariates in the final model, fixing their values at the estimates
obtained in the individual fit per patient. The repeated nature of the data was taken
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Figure 7.2: Left hand panel: Observed profile (solid) and predicted curve (dashed) for
one selected patient. Right hand panel: Predicted curve, and underlying bi-exponential
and logistic curves. Dashed grey line represents detection limit.

into account by including random effects in the bi-exponential part of the model.

Three random effects were found to be statistically significant, i.e., a random
intercept, b1i, and slope, b2i, in the second phase of the bi-exponential part of the
model, and a random slope, a2i, in the first phase. The final model thus becomes

log10(Vij) = log10

(
V0

[
eA e−(α+a2i) tij + e(B+b1i) e−(exp(β+b2i)) tij

+
10θ1i

1 + eθ2i + θ3i tij

])
+ εij . (7.7)

The inclusion of the random effects b1i and b2i also appeared to have a stabilizing
effect on the standard error estimation of the B and β parameters. The parameter
estimates and standard errors for model (7.7) can be found in Table 7.5.

Of clinical importance is also the time point at which the rebound phase starts, the
so-called point of rebound. This information cannot be derived directly from a model
parameter. Therefore, it was decided to define the point of rebound as the time point
where the logistic growth curve exceeds the bi-exponential curve. By applying this
rule to model (7.7), a subject-specific estimated point of rebound can be obtained.
For the viral load profile in Figure 7.2, this would be around week 20.
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Table 7.5: Rebound model. Parameter estimates and standard errors for random
effects model. Fixed-effect parameter estimates are also back-transformed.

Effect Parameter Estimate (s.e.) Transformation
Transformed

Estimate

A -0.1349 (0.0482) eA 0.8738

α 2.1614 (0.1044) α 2.1614

B -4.1652 (0.1787) eB 0.0155

β -2.8413 (0.1891) eβ 0.0583

Std(b1i) σ11 1.7342 (0.1266)

Std(b2i) σ22 1.0750 (0.1196)

Std(a2i) σ44 0.6500 (0.0535)

Cor(b1i, b2i) r12 0.2801 (0.1097)

Cor(b1i, a2i) r14 -0.4058 (0.1197)

Cor(b2i, a2i) r24 0.1870 (0.1064)

Var(εij) σ2
ε 0.1033 (0.0034)

7.5.3 Biological interpretation

The essential viral dynamics models are typically a set of ordinary differential equa-
tions (ODE) describing a predator-prey like behavior between virus and cells. When
therapy is started, the solution to these ODE’s has the form of equation (7.1). The
parameters A and B can be interpreted as proportions of different infected cell types
that contribute to the production of new virions. The slopes α and β represent a com-
bination of the effectiveness of the used therapy and the respective half-lives of the
different types of infected cells. Assuming a 100% inhibition of the viral replication,
these half-lives would correspond to ln(2)/α and ln(2)/β.

Conform the literature, we find half-lives between 2 and 3 days for infected and
activated CD4+ T-cells (the pool that contributes to the typical high levels of viral
load). However, the results for the half-lives (and proportion) of longer lived cells are
influenced by the detection limit of the assay.
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7.6 Concluding Remarks

The model building strategy gave good results for the TMC114 dataset and also for
another Tibotec dataset on viral loads (results not shown here). Manual tweaking of
the starting values and the numerical integration methods was only needed for the
most complex models. However, complete automation of this type of NLME models
is probably unrealistic. Pinheiro and Bates (2000) even described the determination
of reasonable starting values for the parameters in a non-linear model as somewhat of
an art. Hand tweaking will most likely be a necessity for the most complex models.

The proposed model building strategy can be extended even further by, for exam-
ple, modeling of the variance function, random effects by treatment group, etc. How-
ever, this is beyond the scope of this chapter, since convergence can be problematic
for these type of complex models, even when carefully fitted by hand. Additionally,
the TMC114 study comprised so-called salvage patients, which almost by definition
have more irregular viral load profiles.

These types of mechanistic models are generally sensitive to the quality of the
data. This means that the data should roughly show the pattern assumed by the
fitted model. In contrast, linear models are much more stable. This is also the
reason why a new model was developed specifically for rebounding patients, since the
rebound is assumed to be caused by a fundamentally different biological mechanism.



8
Concluding Remarks and

Further Research

In this dissertation we have focussed on methods for modeling continuous, i.e., Gaus-
sian, longitudinal data. We have shown that a flexible, rich set of tools is available
for analyzing this type of data.

In the repeated measures setting, each of the three model families, which were
compared in detail in Chapter 4, model both the dependence of the response on the
explanatory variables and the autocorrelation among the responses. Ignoring this
correlation leads to incorrect inferences about the fixed-effect regression coefficients,
and to a loss of efficiency, that is, less precise estimates. This point was illustrated
in Chapter 5, where we were able to establish an additional treatment effect that
had gone undetected in previous, simpler analyzes. By properly accounting for bird-
specific effects, we gained power to assess the effect of treatment, underscoring the
strength of the non-linear mixed modeling framework.

In addition to a gain in efficiency, the modeling of within-subject correlation can
also be of direct scientific interest. In Chapter 3, the correlation structure was exam-
ined to describe the persistence dimension of patients exhibiting persistent disturbing
behavior (PDB). In Chapter 6, we focused on serial correlation and we proposed a
spline-based approach to flexibly model the serial correlation function. Applying this
method to data from a pre-clinical experiment in dementia, enabled us to show that a

101
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circadian pattern played a role in the mean structure, variance structure and the cor-
relation structure simultaneously. However, as Davidian and Giltinan (1995, p. 330)
mentioned, second moment behavior is inherently difficult to characterize, and this is
especially true for correlation parameters. This also means that a substantial amount
of information, i.e., a large dataset, is needed when drawing conclusions about the
nature of the correlation structure.

In contrast, when one is not directly interested in the correlation structure as such,
but merely needs to correct for it, the generalized estimating equations (GEE) ap-
proach of Liang and Zeger (1986) can be adopted. However, this method is not really
appealing when one is confronted with missing data, since it requires the missingness
mechanism to be missing completely at random (MCAR, Little and Rubin 2002),
which is often unrealistic. Therefore, alternatives have been proposed such as weighted
generalized estimating equations (WGEE, Robins, Rotnitzky, and Zhao 1994) and
multiple imputation based generalized estimating equations (MI-GEE, Schafer 2003),
to obtain valid inferences under the missing at random (MAR) assumption.

In Chapter 3, we took up the issue of discriminating between PDB and non-PDB
patients, using longitudinal data analysis techniques. Conventional cluster analysis
methods were also employed to study the important issue of subgroups within the
data and hence in the PDB group. However, further research will be directed towards
refining the clustering of PDB patients by means of methods that take the longitudi-
nal structure of the profiles into account. In this respect, a first attempt was made
by Bruckers, Serroyen, and Molenberghs (2007), who performed an analysis based on
conventional linear mixed models, and on so-called growth-mixture and latent class
growth models (Nagin 1999, Nagin and Tremblay 2001, Erosheva, Fienberg, and Laf-
ferty 2004).

Non-linear models, especially in the field of pharmacokinetics, are often mecha-
nistic in nature, and therefore are rooted in specific theoretical considerations about
the underlying mechanism producing the data. As a consequence, these models usu-
ally do not leave much freedom for model adaptations, compared to linear models,
since every parameter generally has a natural physical interpretation, which we do
not want to distort. This notwithstanding, in Chapter 7 we were able to extend the
basic bi-exponential viral dynamic model to incorporate a possible rebound in viral
load levels. Another important aspect of the data analyzed in this chapter, is the de-
tection limit at 50 HIV RNA copies/ml, which means that the data are left censored.
However, it is less than straightforward to extend the bi-exponential mixed-effects
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model to account for censoring. This is therefore a possible topic for further research.

We were able to perform all analyzes within the likelihood framework by relying
on the elegant properties of the (multivariate) normal distribution. This assumption
of normality, however, brings us to an important step in the process of data model-
ing, namely checking the various features of the fitted model. This usually involves
verifying goodness-of-fit of the model, checking model assumptions, and detecting pos-
sibly influential observations. More than a decade ago, Davidian and Giltinan (1995,
p. 328) already indicated that there is an urgent need for diagnostics to complement
all of the methods discussed in their book. Surprisingly, little work has been done
on model checking and model diagnostics in non-linear mixed models and this topic
alone would definitely deserve further research. One of the most common approaches
to assessing the quality of the fit for these types of models are based on informal,
graphical techniques, e.g., plotting the observed versus the predicted values per sub-
ject. However, even in the linear mixed model setting a seemingly simple concept
such as residuals can be defined in several ways (Verbeke and Molenberghs, Ch. 11).
For example, the marginal residual Yi − Xiβ̂ reflects how a specific profile deviates
from the overall population means and can therefore be interpreted as a residual.
Alternatively, the subject-specific residual Yi − Xiβ̂ − Zib̂i measures how much the
observed values deviate from the subject’s own predicted line. Finally, the estimated
random effects b̂i can also be seen as residuals since they reflect how much specific
profiles deviate from the population average. In non-linear case, there is an additional
level of complication in fitting, and this complexity may obscure key features of the
data (Davidian and Giltinan 1995).

Another model diagnostic approach, besides residual analysis, is to use influence
measures. In general, influence measures aim at determining whether some observa-
tions have undue influence on the estimates of the model parameters and hence how
sensitive is the fitting of the model to such observations. With longitudinal data we
actually need to distinguish between influential subjects (influence of the observa-
tions from a particular subject) and influential observations (a particular observation
from a particular subject). One approach to detecting influential observations is local
influence (Cook 1986). Using a case-weight perturbation scheme where it is investi-
gated how much the parameter estimates are affected by changes in the weights of the
log-likelihood contributions of specific subjects, Lesaffre and Verbeke (1998) derive
local influence measures in linear mixed models. Ouwens, Tan, and Berger (2001)
extended these local influence measures in generalized linear mixed models, while Lee
and Xu (2004) adapted them to the setting of non-linear mixed models. Although it



104 Chapter 8. Concluding Remarks and Further Research

is clear that basic methodological work has been done, more research needs to take
place before these methods can be applied on a routine basis and implemented in
standard statistical software packages.

This dissertation has demonstrated that a rich toolkit is available in the setting
of continuous longitudinal data, enabling us to answer a broad range of questions.
However, to round off with a quote from Davidian and Giltinan (1995, p. 331), ‘mod-
eling of nonlinear repeated measures data, although useful, is not an enterprise that
should be undertaken lightly.’
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