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Abstract

In this paper, we develop a simple diagnostic test for the random-effects distribution in mixed
models. The test is based on the gradient function, a graphical tool proposed by Verbeke and
Molenberghs1 to check the impact of assumptions about the random-effects distribution in mixed
models on inferences. Inference is conducted through the bootstrap. The proposed test is easy
to implement and applicable in a general class of mixed models. The operating characteristics of
the test are evaluated in a simulation study, and the method is further illustrated using two real
data analyses.
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1 Introduction

Repeated measures data are common in many areas of research, including medicine, economics, and

social sciences. A common modeling approach used for the analysis of such data is mixed models.
The approach is flexible and easy-to-use software implementations are widely available. Reviews of

mixed models can be found in the book by Verbeke and Molenberghs2 for linear mixed models and
the book by Molenberghs and Verbeke3 for generalized (non-)linear mixed models. An important
aspect of mixed models is the assumption that part of the variability observed in the data can be

modeled using so-called random effects, unit-specific parameters that are sampled from some pre-
specified distribution, known as random-effects distribution or mixing distribution. For likelihood

inferences, the marginal distribution of the response is obtained by integrating out the conditional
density over the random effects.

It is common to assume the random effects to follow a normal distribution, independent of the co-

variates in the model. Various authors have studied the impact of these assumptions on marginal
inferences. Neuhaus4 examined the performance of the mixed-effects logistic models with misspec-

ified mixing distribution and reported that the magnitude of the asymptotic bias in the estimated
regression coefficients is typically small. Verbeke and Lesaffre5, showed that, for linear mixed models,

misspecification of the mixing distribution does not affect the consistency of the maximum likelihood
estimators. Recently, McCulloch and Neuhaus6 reported a large degree of robustness of maximum

likelihood methods for fitting a generalized linear mixed model when misspecifying the distribution of
the random effects. On the other hand, Heagerty and Zeger7 observed that regression parameters in
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random-effects models have bias, which is more sensitive to the random-effects assumption than their

counterpart in the corresponding marginal models. Heagerty and Kurland8 showed that substantial
bias occurs from incorrect assumptions about the random-effects distribution. The asymptotic rela-

tive bias in fixed effects arising from incorrectly assuming normality for random intercepts in a logistic
mixed model, while the true random effects are gamma distributed, can easily exceed ten percent
and gets as high as fifty percent in extreme cases. Various examples in which misspecification of the

random-effects distribution reduces efficiency were noted by Agresti, Caffo, and Ohman-Strickland9 .
Moreover, Litière, Alonso, and Molenberghs10 showed, for generalized linear mixed models, that the

maximum likelihood estimators are inconsistent when the random-effects distribution is misspecified
and the problem is more severe as the number of random effects in the model increases.

Checking distributional assumptions about the random effects is far from straightforward, and several

proposals have been made in the statistical literature. Agresti, Caffo, and Ohman-Strickland9 sug-
gested comparing results from parametric and non-parametric approaches. Substantial differences

suggest results from the parametric model should be interpreted with extreme caution. Alternatively,
several efforts have been made in relaxing the parametric assumption about random-effects distribu-

tion. Tsonaka, Verbeke, and Lesaffre11 used semi-parametric maximum likelihood estimation for the
distribution of random shared parameters in dropout models. Subsequently, Ghidey, Lesaffre, and
Verbeke12 reviewed four methods of smoothly estimating the random-effects distribution in linear

mixed models.

As also reviewed in Verbeke and Molenberghs1, tests for misspecification in mixed models have been
available so far. Ritz13 developed goodness-of-fit tests based on comparison between distributions of

the predicted random effects, the standardized estimated best linear unbiased predictors (EBLUPs),
and of its expected values. Similarly, Pan and Lin14 developed methods by comparing the residuals

and the predicted values of the response variable under the assumed model. Another diagnostic
test was developed by Tchetgen and Coull15 by comparing the marginal maximum likelihood and

conditional maximum likelihood estimators of a subset of the fixed effects in the model. Huang16

proposed a diagnostic method by comparing inferences based on the original and on derived outcomes.

Additionally, Alonso, Litière, and Molenberghs17,18 developed diagnostic tools by comparing model-
based and robust inferences. Apart from some advantages of the aforementioned methods, there are

limitations, for example, they are restricted to specific forms of mixed models, such as generalized
linear mixed models for binary data and linear mixed models for continuous data. Besides, they
require considerable implementation efforts (e.g., Monte Carlo simulation), or test overall goodness-

of-fit rather than focusing on misspecification of the random-effects distribution.

Verbeke and Molenberghs1 recently proposed to use the gradient function as a simple exploratory
graphical tool to check goodness-of-fit of the random-effects distribution in mixed models. Their

technique does not require any calculations in addition to the computations needed to fit the model,
and can be applied in various families of mixed models, including linear and generalized linear mixed

models. And in case of any evidence for misspecification, their method indicates how the parametric
model can be improved to better describe the observed data. An additional advantage of their

method is that it indicates how a parametric model can be improved in case of misspecification. On
the other hand, the tool is informal, and should not be interpreted as a formal testing procedure for

the random-effects distributional assumptions in mixed models. In this paper, the gradient function
will serve as basis for the construction of a formal test. Throughout, it will be assumed that the

conditional distribution of the data given the random effects has been correctly specified, i.e., we
assume that the only possible misspecification is the shape of the random-effects distribution.
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(b) Continuous outcomes

Figure 1: Toenail Data. Evolution of the percentage of severe toenail infections and the average
unaffected naillength for both treatment groups separately.

In Section 2, we present two motivating case studies where a goodness-of-fit test for the random
effects would be extremely helpful in formulating an appropriate mixed model. A brief overview of

mixed models is given in Section 3. Section 4 describes the gradient function and how Verbeke and
Molenberghs1 advocates to use it as a diagnostic tool. In Section 5, a formal testing procedure will

be developed based on the gradient function. In Section 6, the proposed test will be evaluated and
illustrated using simulations. We analyze the two real data examples using our method in Section 7

and compare our results with the diagnostic tests proposed by Alonso, Litière, and Molenberghs17,18.
Finally, a general discussion will be presented in Section 8.

2 Case Studies

2.1 Toenail Dermatophyte Onychomyosis

This data set results from a randomized, doubled-blind, parallel group, multicenter study for the com-

parison of two oral treatments (coded as A and B) for toenail dermatophyte onychomycosis (TDO).
TDO is a common toenail infection, difficult to treat, affecting more than 2% of the population19.
The aim of the present study was to compare the efficacy and safety of 12 weeks of continuous ther-

apy with one of two treatments (A and B). In total, 2 x 189 patients were randomized, distributed
over 36 centers. Subjects were followed during 12 weeks (3 months) of treatment and followed

further, up to a total of 48 weeks (12 months). Measurements were taken at baseline, every month
during treatment, and every 3 months afterwards, resulting in a maximum of 7 measurements per

subject. At the first occasion, the treating physician indicates one of the affected toenails as the
target nail, the nail that is followed over time. We will restrict our analysis to only those patients

for which the target nail was one of the two big nails. This reduces our sample under consideration
to 146 and 148 subjects, in group A and group B, respectively. The outcomes considered here are

the binary infection severity (0: not severe, 1: severe), and the continuous unaffected naillength (ex-
pressed in mm). Interest is in studying the evolution over time and differences in evolution between
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Figure 2: Epilepsy Data. Frequency plot and individual profiles.

both treatments. More details about the study can be found in the work by De Backer et al.20,

and the extensive analyses using linear and generalized linear mixed models have been reported by
Verbeke and Molenberghs2 and Molenberghs and Verbeke3. A graphical representation of the data

considered here is given in Figure 1.

2.2 Epileptic Seizures

The epileptic seizure data are obtained from a randomized, double-blind, parallel group multi-center
study for the comparison of placebo with a new anti-epileptic drug (AED), in combination with

one or two other AED’s. The study is described in full detail in the work by Faught et al.21.
The randomization of epilepsy patents took place after a 12-week baseline period that served as a

stabilization period for the use of AED’s, and during which the number of seizures were counted.
After that period, 45 patients were assigned to the placebo group, 44 to the active (new) treatment

group. Patients were measured weekly, and followed (double-blind) during 16 weeks, after which
they were entered into a long-term open-extension study. The outcome of interest is the number

of epileptic seizures experienced during the last week, i.e., since the last time the outcome was
measured. Of interest is to compared the evolution over time between the two treatment groups. A

frequency plot as well as the individual profiles are shown in Figure 2.

3 The general mixed model

Let Yij be the jth measurement for subject i, i = 1, . . . , N , j = 1, . . . , ni, and let Yi represent the
vector of ni repeated measurements for subject i. Throughout this paper, the elements in Yi can

be of any type (continuous, binary, count, etc.). When repeated measures are analyzed using mixed
models, it is assumed that the association between the observations Yij of subject i is modeled by a

q-dimensional vector bi of random effects, shared by all measurements of the subject. Let fi(yi|bi)
denote the density function of yi, conditional on bi, possibly depending on a vector of unknown
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parameters θ. Likelihood-based inference for θ is usually based on the marginal distribution

fi(yi|G) =

∫
fi(yi|b)dG(b) (1)

of Yi, obtained from integrating out the random effects bi over a pre-specified distribution G, often

called the mixing distribution. Assuming subjects to be independent of each other, the corresponding
log-likelihood function equals

`(G) =

N∑

i=1

ln[fi(yi|G)]. (2)

The mixing distribution G is often assumed to belong to a specific parametric family, characterized

by a vector ψ of unknown parameters, and likelihood-based inference for θ and ψ jointly follows from
(2). Linear and generalized linear mixed models with normal mixing distribution are discussed in full

detail by Verbeke and Molenberghs2 and Molenberghs and Verbeke3, respectively. It immediately
follows from (2) that the choice of G potentially affects inference for the parameters of interest.

Verbeke and Molenberghs1 have proposed the gradient function to graphically check whether the
log-likelihood can be increased substantially by replacing the assumed mixing distribution by another
one, indicating that the model has been misspecified.

4 The gradient function

Without loss of generality, it will be assumed from now on that the mixing distribution is continuous.
Also, in order to simplify notation, we will assume q = 1. Let Ĝ denote the fitted mixing distribution

obtained from maximizing (2). Note that, if G is assumed to belong to some parametric family,
estimation of G is equivalent to estimating the unknown parameter vector ψ which characterizes G.
Verbeke and Molenberghs1 suggested the gradient function as

∆(Ĝ, b) =
1

N

N∑

i=1

fi(yi|b)

fi(yi|Ĝ)
,

and showed that in case the likelihood cannot be maximized further by replacing the fitted random-
effects distribution by any other mixing distribution H , the gradient as a function of b does not

exceed 1 and reaches 1 in all support points of the fitted random-effects distribution Ĝ. Under
normality for the random effects, this implies that the gradient function equals one on the entire

real line. Therefore, severe deviations from one can be used as evidence against the assumed mixing
distribution. Moreover, it can be shown that ∆(Ĝ, b) does not need to be studied over the entire real
line1, but that attention can be restricted to any closed interval I that contains all values b for which

fi(yi|b) is maximized, i = 1, . . . , N . Hence, once a mixed model has been fitted, goodness-of-fit
of the random-effects distribution can easily be assessed by quantifying the deviation of the implied

gradient function ∆(Ĝ, b) from one. In the next section, this will serve as basis for the construction
of a formal testing procedure.

5 The testing procedure

As explained above, severe deviations of ∆(Ĝ, b) from one, within the interval I provide evidence
against the assumed mixing distribution. We therefore propose the following formal testing procedure.
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Let {bk, k = 1, . . . , K} be a sufficiently fine grid in I , and define the test statistic

T =
1

K

K∑

k=1

∣∣∣∆̂(Ĝ, bk) − 1
∣∣∣ . (3)

Note that our notation ∆̂ explicitly acknowledges the fact that the unknown parameters θ in fi(yi|bi)

have been replaced by their estimators θ̂. Obviously, T quantifies the deviation of ∆(Ĝ, b) from one,
within the interval I . The null-distribution of T , needed to formally test whether the assumed mixing

distribution G is appropriate, can be obtained using parametric bootstrap. The following steps are
then required in order to perform the bootstrap test:

1. Based on the observed data, fit the mixed model under consideration, with a particular assump-

tion for the mixing distribution G, i.e., maximize `(G) with respect to the vector ω′ = (θ′,ψ′)
of unknown parameters which completely characterizes the marginal density fi(yi|G).

2. Construct the gradient function and compute the resulting observed value Ta for the test
statistic T .

3. For s = 1, . . . , S, repeat the following steps:

(a) Sample a new vector ωs of parameter values from a multivariate normal distribution with

mean ω̂ and covariance matrix equal to the inverse Fisher information matrix for the
fitted model.

(b) Sample random effects bi
s, i = 1, . . . , N , from G in which ψ has been replaced by ψs.

(c) Sample new observations Yi
s , i = 1, . . . , N , from fi(yi|bi

s) in which θ has been replaced

by θs. Note that the data set should have the same structure as the original data set
(covariates, number of measurements, etc.)

(d) Fit the mixed model under consideration based on the sampled data Yi
s, i = 1, . . . , N .

(e) Construct the gradient function and compute the resulting observed value T s for the test

statistic T

4. Calculate the p-value as the proportion of values T s exceeding Ta.

Note that, in our bootstrap procedure, the interval I changes with each bootstrap sample because

the construction of interval I depends on the observations. In fact, the interval is determined from
knowing the minimum and maximum of the unique modes of all fi(yi|b) as functions of b. The

unique modes are calculated through maximizing each fi(yi|b) (model fitting by subject/cluster)
with parameter estimates from maximizing f(y|b) set as offsets except the one related to b. Note

also that, in case of binary data, subjects with all observations equal to zero or to one lead to modes
equal to minus or plus infinity, respectively. In order to be able to study the gradient function on a
closed finite interval, those subjects are excluded from the calculation of the interval I, as suggested

by Verbeke and Molenberghs1.

6 Simulation

We conducted a small-scale simulation study to evaluate the operating characteristics of the proposed
bootstrap test. The models considered are the linear mixed model for continuous data, the logistic
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Table 1: Parameterization and selected parameter values for the models used in the simulation study

Model Distribution Parameterization Parameter values

Linear Yij|bi ∼ Normal(µij , σ
2
e) µij = β0 + β1tij + bi β0 = 0, β1 = 0.05, σe = 1

Logistic Yij|bi ∼ Bernoulli(πij) ln
(

πij

1−πij

)
= β0 + β1tij + bi β0 = 0, β1 = 0.05

Count Yij|bi ∼ Poisson(λij) ln(λij) = β0 + β1tij + bi β0 = 0, β1 = 0.05

Table 2: Random-intercepts distributions used in the simulation study.

Model Distribution

Normal bi ∼ N (0, 22)

Symmetric mixture of normals bi ∼
1

2
N (−1.9, 0.62452) + 1

2
N (1.9, 0.62452)

Asymmetric mixture of normals bi ∼
3

10
N (−3, 0.37792) + 7

10
N ( 9

7
, 0.37792)

Shifted log-normal distribution bi ∼ 2[expN (3, 1)− 33.1154]/43.40881

mixed model for binary data, and the Poisson mixed model for count data. All models were random-

intercepts models. The formal parameterization of the various models, as well as the parameter
values used in the simulations, are shown in Table 1. The four distributions considered for the
random intercepts bi are presented in Table 2, and the densities are shown in Figure 3, and they have

been selected such that they all have mean 0 and variance 4.

For each combination of model and random-effects distribution, 500 data sets were simulated for
N = 50, N = 100, and N = 200 clusters, respectively, with 10 repeated measurements per cluster.

Each time the gradient test for normality of the random effects was performed, as discussed in
Section 5. The number of bootstrap runs B was set equal to 200, and the test statistic (3) was

based on K grid points that is obtained from the range I divided by a small value h, i.e. h = 0.1.

The scenarios where the true random-effects distribution is normal is used to evaluate the Type I
error rate, estimated as the proportion of times, out of the 500 simulated data sets, that the test

leads to a rejection of the normality assumption at the 5% level of significance. The results for all
three mixed models considered, and for the three sample sizes, are summarized in Table 3. The

simulated Type I error rates are relatively close and get closer to 5% as the sample sizes increase.
The same phenomenon is observed for all types of outcomes.

The scenarios where the true random-effects distribution is not normal is used to evaluate the power

of the test, estimated as the proportion of times, out of the 500 simulated data sets, that the test
leads to a rejection of the normality assumption at the 5% level of significance. The results for all

the models considered, for all three alternatives, and for the three sample sizes, are summarized in
Table 4. The simulated power of the proposed test is reasonably large and increases with the sample

size, as expected. Moreover, the power to detect skewness (asymmetric mixture and log-normal) is
higher than to detect multi-modality (symmetric mixture).
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(b) Symmetric normal mixture
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(d) Log-normal

Figure 3: True random-intercepts distributions, used in the simulation study.

7 Applications

In this section, we apply our methodology to test normality of random effects in mixed models for
the analysis of the two real data sets introduced in Section 2.

7.1 Toenail Dermatophyte Onychomyosis

We first analyze the binary outcome, i.e., infection severity. Let Yij be the binary outcome indicating
the severity of the toenail infection for patient i at measurement j. The model used by Verbeke and

Molenberghs1 is given by

Yij |bi ∼ Bernoulli(πij),

logit(πij) = β0 + bi + β1treati + β2tij + β3treatitij, (4)

where treati is the treatment indicator for patient i, tij is the time-point (in months) at which the
jth measurement is taken for the ith patient, and bi is a random subject-specific intercept. Verbeke

and Molenberghs1 provided evidence that the random-effects distribution is multi-modal and hence
not normal. We will check if this is confirmed by the testing procedure developed here.
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Table 3: Simulated Type I error rates to test normality of random intercepts in three different mixed
models and for three sample sizes.

Model N = 50 N = 100 N = 200

Linear 0.041 0.042 0.045

Logistic 0.011 0.032 0.060

Count 0.036 0.048 0.047

Table 4: Simulated power values to detect deviations from normality for random intercepts in three

different mixed models, for three different alternative distributions, and for three sample sizes.

Model Random-intercepts distribution N = 50 N = 100 N = 200

Linear Symmetric Mixture 0.021 0.096 0.217

Asymmetric Mixture 0.494 0.546 0.669

Log-normal 0.824 0.996 1.000

Logistic Symmetric Mixture 0.083 0.484 0.801

Asymmetric Mixture 0.765 0.992 1.000

Log-normal 0.365 0.784 0.993

Count Symmetric Mixture 0.024 0.061 0.213

Asymmetric Mixture 0.736 0.964 0.990

Log-normal 0.768 0.995 1.000

Maximum likelihood estimates and associate standard errors, assuming normality for the random

effects, are presented in Table 5, and the implied gradient function for this model is shown in panel
(a) of Figure 4. The gradient suggests non-normality of the random-intercepts distribution, which

has been confirmed by our testing procedure. The test-statistic, based on K = 69 grid points
equals Ta = 0.1962, which is significant with p = 0.001, based on B = 200 bootstrap samples.

For comparison, other diagnostic tests proposed by Alonso, Litière, and Molenberghs17,18 provide
similar results, the determinant test with a test statistic of 4425.83 produces p < 0.001, and the

determinant-trace test with a test statistic of 4100.39 gives p < 0.001.

The advantage of our test is that, in case of misspecification, the shape of the gradient function gives
additional insight about the nature of the model misspecification. More specifically, Verbeke and

Molenberghs1 have shown that the random-effects distribution can be improved by replacing it by
another one with more probability mass in regions where the gradient function exceeds one and less

probability mass in regions where the gradient function takes values less than one. They suggested
replacing the normal distribution by the finite mixture model

bi ∼ π1N (µ1, σ
2

b) + π2N (µ2, σ
2

b) + π3N (µ3, σ
2

b ),

with π1 + π2 + π3 = 1, and with the additional restriction of π1µ1 + π2µ2 + π3µ3 = 0 in order
for the random effects to have mean zero. Finite mixtures of normals are very flexible since they

can handle symmetry as well as skewness but also unimodality as well as multimodality. Parameter
estimates and associated standard errors under this extended model are also included in Table 5. The
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Table 5: Toenail Data: Estimates and associated standard errors for the generalized linear and linear
mixed models fitted to the binary and continuous outcome, respectively.

Generalized linear Linear

Normal bi Mixture bi Normal bi

Effect Parameter Estimate(s.e.) Estimate(s.e.) Estimate(s.e.)

Intercept β0 -1.6306(0.4345) -1.5160(0.4854) 2.5165(0.2465)

Treat β1 -0.1146(0.5852) 0.4479(0.4306) 0.2488(0.3463)

Time β2 -0.4041(0.0459) -0.3992(0.0466) 0.5608(0.0226)

Treat×Time β3 -0.1613(0.0718) -0.1562(0.0758) 0.0474(0.0314)

s.d. bi σb 4.0133(0.3763) 0.8561(0.1889) 2.5467(0.1233)

s.d. error σe 2.6343(0.0471)

Prob-1 π1 0.5770(0.0422)

Prob-2 π2 0.3779(0.0426)

Prob-3 π3 0.0451(0.0129)

Mean-1 µ1 -2.5617(0.4831)

Mean-2 µ2 2.7744(0.3146)

Mean-3 µ3 9.5282(1.2788)

-2 log-likelihood 1247.8 1219.5 9414.8

corresponding gradient function is shown in panel (b) of Figure 4. It no longer provides evidence for

misspecification of the random-intercepts distribution, and this is confirmed by our testing procedure
(Ta = 0.0975, p = 0.345, based on K = 66 grid points and B = 200 bootstrap samples). Note

that the second mixture component, located at µ2 = 2.77 with weight π2 = 0.38, now accounts for
the additional probabilty mass between 3 and 4, which the original gradient function (Panel (a) of
Figure 4) indicated to be lacking under the normality assumption.

For the continuous outcome, let Yij be the unaffected naillength (in mm), for patient i at measure-
ment j. The linear mixed model considered is

Yij |bi ∼ Normal(µij , σ
2

e)

µij = β0 + bi + β1treati + β2tij + β3treatitij , (5)

with treati and tij as before. Table 5 shows parameter estimates and associated standard errors
assuming bi ∼ N (0, σ2). The implied gradient function is shown in Figure 5 and does not reveal

any evidence against normality for the random effects. Our formal test confirms this (Ta = 0.3387,
p = 0.155, based on K = 148 grid points and B = 200 bootstrap samples). On the other hand,

the determinant test as well as the determinant-trace test of Alonso, Litière, and Molenberghs17,18

reject the assumed model with the same p-value of p < 0.001. As pointed out by these authors, a

significant result with their tests does not necessarily imply that there is a problem with the random-
effects distribution. For example, a covariate or random effect may not have been included in the

model. To explore this, we extended the original model (5) with random slopes for the time effect
tij , which turned out to be a significant improvement of the model, in terms of likelihood increase.
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(a) Normal RE (b) Mixture Normals RE

Figure 4: Toenail data: Gradient function and 95% pointwise confidence bands for the generalized

linear mixed model (4) for two different random-intercepts distributions. The region I is indicated
by two vertical lines.

Figure 5: Toenail data: Gradient function and 95% pointwise confidence bands for linear mixed

model (5) model with normal random intercepts. The region I is indicated by two vertical lines.

Table 6: Epilepsy data: Estimates and associated standard errors for parameters in Poisson mixed
model (6) assuming normal random intercepts.

Effect Parameter Estimate (s.e)

Intercept Placebo β00 0.8182(0.1677)

Slope Placebo β10 -0.0143(0.0044)

Intercept Treatment β01 0.6475(0.1701)

Slope Treatment β11 -0.0120(0.0043)

Variance bi σ2

b 1.1564(0.1843)

-2 log-likelihood 6271.9

7.2 Epileptic Seizures

Let Yij be the number of epileptic seizures patient i experienced during week j. Furthermore, let

tij denote the time-point at which Yij has been measured. The following Poisson mixed model is
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Figure 6: Epilepsy data: Gradient function and 95% pointwise confidence bands for Poisson mixed

model (6) assuming normal random intercepts. The region I is indicated by two vertical lines.

considered:

Yij|bi ∼ Poisson(λij)

ln(λij) =

{
β00 + β10tij + bi if placebo,

β01 + β11tij + bi if active treatment.
(6)

Table 6 shows parameter estimates and associated standard errors assuming the random intercepts

bi to be normally distributed with mean zero and variance σ2

b . The corresponding gradient function
presented in Figure 6 does not suggest any misspecification in the random-intercepts distribution.
This has been confirmed by our test (Ta = 0.3824, p = 0.615, based on K = 63 grid points and

B = 200 bootstrap samples). Again, both the determinant test and the determinant-trace test of
Alonso, Litière, and Molenberghs17,18 reject the model with a p-value of p < 0.001. Similar to what

we observed in the analysis of the toenail data, this may be the indication of a misspecification of
the model other than the assumed random effects distribution. For example, Molenberghs, Verbeke,

Demétrio, and Vieira23 have reported severe overdispersion in the epilepsy data set, not accounted
for in model (6).

8 Concluding Remarks

In this paper, a formal test procedure for checking the appropriateness of random-effects assumptions
in mixed models has been developed based on the graphical tool proposed by Verbeke and Molen-

berghs1. A bootstrap method is used to assess the null-distribution of the proposed test statistic. A
small-scale simulation study with some promising results has been performed to study the operating

characteristics of the new test in a number of scenarios. The proposed test has several advantages.
First, computations are relatively straightforward once the mixed model under consideration has been

fitted. Calculation of the test-statistic only requires evaluation of the gradient function in a dense
grid. Second, the test can be used to assess the random-effects distribution in a very wide class of

mixed models, including linear mixed models, generalized linear mixed models, and non-linear mixed
models. The SAS code used for one of the test implementation in Section 7 is available on the

website www.ibiostat.be/software. Third, while most emphasis has been on detecting non-normality
of random effects, the procedure can be used to check appropriateness of any mixing distribution,
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as has been illustrated in Section 7.1. Fourth, while all examples have been in the context of mixed

models with a single random effect, the procedure can be generalized to multivariate random effects
in a straightforward way.

Finally, we emphasize that in our bootstrap procedure the interval I changes with each bootstrap

sample because it is constructed using the observations. In a small simulation study, not reported
here, we found that the size of the test would be highly inflated, if the intervals I were fixed in
bootstrap samples.
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