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Abstract: In personalized medicine medical decisions, practices and/or products are tailored to the
individual patient. The idea is to provide the right patient with the right drug at the right dose at the right
time. However, our current lack of ability to predict an individual patient’s treatment success for most
diseases and conditions is a major challenge to achieve the goal of personalized medicine. In the present
work, we argue that many of the techniques often used to evaluate predictors of therapeutic success may
not be able to answer the relevant scientific questions and we propose a new validation strategy based
on causal inference. The methodology is illustrated using data from a clinical trial in opiate/heroin
addiction. The user-friendly R library EffectTreat is provided to carry out the necessary calculations.
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1 Introduction

Advances in medical imaging, biomarkers, genetics and computing sciences are paving
the way for personalized medical treatments that consider a patient’s genetic, anatom-
ical and physiological characteristics. The concept of personalized medicine (PM) is
not new. In fact, clinicians have long observed that patients with similar symptoms
may have different illnesses, with different causes; and similarly, that medical in-
terventions may work well in some patients with a disease but not in others with
apparently the same disease (Abrahams and Silver, 2010).

Personalized medicine may be thought of as tailoring medical treatment to the
individual characteristics, needs and preferences of each patient. Therefore, finding
good pretreatment predictors of therapeutic success is of utmost importance in PM.
Having such a predictor may be particularly relevant when the treatment in question
is expensive, invasive and/or may lead to serious adverse events. Indeed, Spear, Heath-
Chiozzi and Huff (2001) estimated that the response rates of patients to medications
from different therapeutic classes ranged from 80% (analgesics) to 25% (oncology).
In addition, an estimated 2.2 million adverse drug reactions occur each year in the
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United States, including more than 100,000 deaths. As a consequence, one would
like to be able to assess the probability of treatment success, for a given patient, and
weigh it by its risks before a final decision is made.

Banerjee et al. (2010) consider such a problem in in-vitro fertilization (IVF)
treatments. Nearly 75% of IVF treatments do not result in live births; therefore,
providing predictions of success for subsequent IVF treatments should assist a patient
with decisions, given the financial, physical and emotional costs of undergoing
IVF therapy. Similarly, Shin et al. (2013) state that although several psychological
and pharmacological treatment options are available for anxiety disorders, not all
patients respond well to each option. Therefore, both clinicians and patients would
benefit from the identification of objective pretreatment measures that predict which
patients will best respond to a given therapy.

Finding appropriate methodological tools for the evaluation of pretreatment
predictors of therapeutic success is one of the challenges faced in PM. Most of
the currently available validation techniques are based on correlational analysis;
methods like linear and logistic regression, discriminant analysis and boosting
are often combined with measures of association like odds ratios and Pearson
correlations for evaluation purposes (Spielman et al., 1983; van Loendersloot et al.,
1992; Banerjee et al., 2010; Masao et al., 2013; Shin et al., 2013; Zeller et al., 2013).
In the present work, we argue that studying the association between the putative
predictor and the response variable of interest in groups of patients that either receive
or did not receive the treatment is not sufficient to answer the relevant scientific
question. Actually, in PM one wants to gauge, for a given patient and his associated
predictor value, how likely it is that the treatment will be beneficial for him. As
stated before, in the following sections, it will be shown that classical correlational
analysis does not allow to address the aforementioned question and a new validation
strategy, rooted in causal inference, will be proposed for that purpose.

In Section 2, the causal-inference model underlying the validation strategy is
introduced. A new validation metric, the so-called predictive causal association
(PCA), is proposed in Section 3 and its relationship with the frequently used
correlational analysis is discussed in Sections 4 and 6. Some important identifiably
issues are discussed in Section 5 and a sensitivity analysis approach is introduced to
handle the problem. The case study is presented and analyzed in Section 7 and some
final comments are given in Section 8.

2 A causal inference model

In the following, T will denote the most credible outcome to assess therapeutic
success, the so-called true endpoint, Z the treatment indicator and S the potential
pretreatment predictor. Rubin’s model for causal inference assumes the existence,
for each patient j, of two potential outcomes for the true endpoint: an outcome T0j
that would be observed under the control condition Zj = 0 and an outcome T1j that
would be observed under the treatment condition Zj = 1. T0j and T1j are potential
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outcomes in that they represent the outcomes of the patient had he received the
treatment or control, respectively. The so-called fundamental problem of causal-
inference is that, often in practice, only one of T0j and T1j is observed (Holland,
1986). Actually, if we denote by Tj the observed outcome for patient j then, under
the Stable Unit Treatment Value Assumption (SUTVA), Tj = ZjT1j + (1 − Zj)T0j.
SUTVA basically states that the potential outcomes of an individual are independent
of the treatments received by other individuals in the study and that the observed
outcome under treatment Z equals the corresponding potential outcome TZ. Based
on the vector of potential outcomes (T0j, T1j), the individual causal effect of the
treatment on a patient can be defined as �Tj = T1j − T0j and the expected causal
effect of Z in the population under study as ˇ = E(T1j − T0j).

Let us now consider for each patient the response vector Y j = (T0j, T1j, Sj)′. In the
following, attention will be restricted to continuous outcomes and it will be further
assumed that Y j ∼ N (�,�), where � = (�T0, �T1, �S)′ and

� =
⎛⎝�T0T0 �T0T1 �T0S

�T0T1 �T1T1 �T1S

�T0S1 �T1S1 �SS

⎞⎠ .

Extensions to other outcome types are possible but algebraically more challenging;
they will resort to a numerical approach.

The individual causal treatment effect �Tj is the key variable to assess the impact
of the treatment on the patient and, hence, its relationship with the pretreatment
predictor Sj will be at the centre of our validation strategy. It is important to point
out that when deciding on the appropriateness of treatment for a given patient one
always, implicitly or explicitly, needs to consider an alternative intervention. For
instance, one may consider if treating a patient with a certain drug may result in a
substantial improvement of his condition as compared with leaving him untreated.
In such a scenario, the control condition (Zj = 0) would be lack of therapy. The
aforementioned distributional assumption leads to

 j =
(
�Tj
Sj

)
= A Y j =

(
T1j − T0j

Sj

)
∼ N

(
� ,� 

)
, (2.1)

where � = (ˇ,�S), � = A �A′
 and

A =
(−1 1 0 0

0 0 1 0

)
, � =

(
�T0T0 + �T1T1 − 2�T0T1 �T1S0 − �T0S0

�T1S0 − �T0S0 �SS

)
. (2.2)

In the next section, a validation method will be introduced based on the stated causal
inference model.
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3 Predictive causal association

In PM, one is primarily interested in finding a pretreatment predictor Sj that conveys a
substantial amount of information about the individual causal treatment effect �Tj.
In addition, for the normal distribution, the concepts of mutual information and
correlation are equivalent and, therefore, it seems logical to assess the adequacy of Sj
using the so-called PCA defined as � = corr

(
�Tj, Sj

)
. It can be easily shown that

� =
√
�T1T1 �T1S0 − √

�T0T0 �T0S0√
�T0T0 + �T1T1 − 2

√
�T0T0�T1T1 �T0T1

, (3.1)

where �XY denotes the correlation between the variables X and Y. Note further that
PCA is also a measure of prediction accuracy, i.e., a measure of how accurately one
can predict the individual causal treatment effect on the true endpoint for a given
patient, using his pretreatment predictor outcome Sj. In fact, from (2.1) one has

�Tj|Sj ∼ N
[
g

(
Sj

)
, ��T (1 − �2

 )
]
,

g
(
Sj

) = ˇ +
√
��T
�SS

� (Sj − �S),

��T = �T0T0 + �T1T1 − 2
√
�T0T0�T1T1 �T0T1.

The function g
(
Sj

)
can be used to predict the individual causal treatment effect �Tj

using the pretreatment predictor Sj and the associated prediction mean squared error
(PMSE) can be quantified as

E
[{
�Tj − g

(
Sj

)}2
]

= (1 − �2
 )��T. (3.2)

Interestingly, (3.2) also illustrates that the search for a good pretreatment predictor
may not be viable in some situations. In fact, the right-hand side of the PMSE is the
product of two factors: the first one is a function of the PCA and, hence, it depends on
the predictor; the second one, however, can be interpreted as an intrinsic characteristic
of the treatment-true-endpoint pair and may have a substantial impact on the PMSE.
For instance, if one fixes a value for PMSE, say ı, then ı = (1 − �2

 )��T and, therefore,

�2
 ≥ �2

min = 1 − ı

��T
,

to achieve the pre-specified level of accuracy. In practice, �2
min could be used to assess

the plausibility of finding a good predictor. Indeed, if �2
min = 0.9, then one would need

to search for a pretreatment predictor that produces a �2
 of at least 90% in order to

keep the PMSE smaller than ı. Arguably, such a predictor may be difficult to find.
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Let us further assume that �T0T0 = �T1T1 = �T , i.e., the variability of the true
endpoint is constant across the two treatment conditions, then (3.1) takes the simpler
form

� = �T1S − �T0S√
2 (1 − �T0T1)

. (3.3)

The previous assumption of homoscedasticity underlies many statistical models like
linear regression and analysis of variance. It is also testable using the observable
data. In the rest of the manuscript, the homoscedasticity assumption will be used
to simplify the algebraic calculations but all conclusions derived will be valid in the
most general setting as well.

Some comments are in order. First, note that �T1S and �T0S are the correlations
between the potential outcomes for the true endpoint T and the pretreatment
predictor S. Under SUTVA, these correlations can be estimated using information
from patients who received and did not receive the treatment respectively. As stated
in Section 1, these measures or similar ones have been at the core of many evaluation
strategies. Second, as (3.3) unequivocally shows, the presence of correlation does
not guarantee the validity of the pretreatment predictor. In fact, let us assume,
for instance, that �T1S = �T0S = � > 0. In such a scenario, and even though the
pretreatment predictor is positively correlated with the true endpoint T in groups
of patients that received and did not receive the treatment, the PCA equals zero and,
consequently, Sj does not convey any information about �Tj. Basically, the outcome
of the pretreatment predictor is of no help when assessing if the treatment will have
a beneficial effect on a given patient. In general, �T1S and �T0S are not sufficient to
assess the amount of information the pretreatment predictor conveys on the variable
of interest, namely �Tj, unless one is willing to assume that the potential outcomes
of the true endpoint are uncorrelated, i.e., �T0T1 = 0.

4 PCA versus correlation

In the following, we will study in more detail the relationship between the correlation
between both endpoints and PCA. To that effect, let us conceptually think of a
population of patients prior to the intervention, i.e, prior to the use of the treatment.
We will further assume that the correlation between the pretreatment predictor
S and the true endpoint T is non-zero, i.e., �T0S /= 0. The question of interest is
whether one can use the outcome Sj to gain information about the potential effect
of treatment on a given patient. In other words, one wants to know if a correlate
can be considered a good predictor of treatment success. The following lemma
characterizes the relationship between �T0S and PCA.

Lemma 1. Let  j = (�Tj, Sj)′ denote the vector containing the individual causal tre-
atment effect on T and the pretreatment predictor S with  j ∼ N

(
� ,� 

)
and � 
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as given in (2.2). If it is further assumed that �T0S0 = �T1S1 = �T , then

|� − a�T0S| ≤ b
√(

1 − �2
T0S

)
, (4.1)

where a = −
√

1 − �T0T1

2
and b =

√
1 + �T0T1

2
.

For the proof we refer to the Appendix. Lemma 1 reveals some interesting aspects
of the relationship between PCA and �T0S. First, note that both concepts are intercon-
nected. Actually, the function a�T0S can be interpreted as an approximation of PCA,
with the approximation improving as the correlation �T0S increases. Interestingly, in
the limit, when �T0S = 1, � = a and even a perfect correlate may not convey a lot
of information about the individual causal treatment effect. The problem underlying
this counterintuitive result is that the relationship between PCA and �T0S may be
largely determined by the correlation between the potential outcomes for the true
endpoint (�T0T1). Unfortunately, �T0T1 is unidentifiable from the data and, therefore,
it is impossible to characterize PCA using solely the identified correlations �T1S
and �T0S.

5 PCA: Some indentifiability issues

As already hinted at the end of the previous section, the practical use of PCA is
hindered by some important identifiability issues. Indeed, the correlations �T0S and
�T1S in (3.3) are identifiable from the data and could be estimated using, for instance,
the information from patients assigned to a placebo and experimental group in a
clinical trial context. However, the correlation between the potential outcomes for
the true endpoint �T0T1 is not identifiable from the data. The reason for this lack of
identifiability is the fundamental problem of causal inference, i.e., the fact that the
vector (T0, T1) is almost never observed in practice.

Two strategies are possible to deal with this identifiability issue. First, one can try
to define plausible identifiability conditions based on biological or subject-specific
knowledge. For instance, in some settings biological knowledge may suggest that the
assumption of independent potential outcomes (T0⊥T1) is a sensible one. Although
widely applied, such an approach suffers from some serious drawbacks. For instance,
such subject-specific knowledge may not always be available and/or, as the fundamen-
tal problem of causal inference states, these biologically plausible assumptions can
neither be proved nor disproved using data.

A second approach is to implement a sensitivity analysis in which � is estimated
across a set of plausible values for the unidentifiable correlation �T0T1. To this end,
in a first step, a grid of values G = {

g1, g2, ..., gk
}

is considered for the unidentified
correlation between the potential outcomes. Next, several�matrices are constructed
fixing the identifiable correlations �T0S, �T1S and variances �T0T0, �T1T1, �SS at their
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estimated values and considering all the values in G for �T0T1. From all the previous
�matrices only those that are positive-definite are used in the subsequent step. Finally,
� is estimated based on these positive-definite matrices. Intuitively, the so-obtained
vector � quantifies PCA across all plausible ‘realities’, i.e., across those scenarios
where the assumptions made for the unidentified correlation are compatible with the
observed data. The general behaviour of � can subsequently be examined, e.g., by
quantifying the variability and the range of its estimates and in this way the sensitivity
of the results with respect to the unverifiable assumptions can be assessed.

It is important to point out that the aforementioned strategies are not mutually
exclusive. Actually, the sensitivity analysis previously described is flexible enough
to allow for a straightforward incorporation of subject-specific knowledge in case
it exists. For example, if it is reasonable to assume, based on biological knowledge,
that the correlation between the potential outcomes should be positive then the grid
G = {0, 0.01, 0.02, ..., 1} could be used for this correlation when carrying out
the sensitivity analysis. In the present work, the sensitivity analysis strategy will be
adopted for the analysis of the case study.

6 Regression approach

As previously stated, pretreatment predictors of therapeutic success are often
evaluated using regression models. In the present setting, where both the true
endpoint T and the putative predictor S are continuous and normally distributed,
linear regression models are the natural choice. A fundamental difference between
the methodology introduced in Section 3 and the regression approach is that, while
the former uses individual causal treatment effects as the main building block for the
analysis, in the latter the focus is set on the expected causal treatment effects (ECE).
Given that the very nature of personalized medicine is to carry out predictions at
the level of the individual patient, one may argue that individual causal treatment
effects are more fundamental in this area than ECE. However, both approaches are
intimately connected and in the following this relationship will be studied in detailed.

When interest is in the validation of predictors of therapeutic success, it is natural
to allow for an interaction between S and the treatment indicator, thus, typically, the
following model is considered

Tj = ˇ0 + ˇ1Zj + ˇ2Sj + ˇ3ZjSj + εi. (6.1)

Model (6.1) implies that the expected causal treatment effect varies as a function of the
pretreatment predictor Sj, more specifically, ECE(Sj) = ˇ1 + ˇ3Sj (Gelman and Hill,
2006). Obviously, under model (6.1), the coefficient ˇ3 fully captures the relationship
between ECE and the pretreatment predictor. The following lemma summarizes the
relationship between ˇ3 and PCA (the proof is rather straightforward).
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Lemma 2. Let us assume that the causal inference model introduced in Section 2 and
the linear regression model given in (6.1) are both valid. If one further assumes that

Zj⊥Sj, then ˇ3 =
√
��T

�SS
� .

Notice that, due to randomization, the assumption of independence Zj⊥Sj will
be often valid for any pretreatment predictor in a clinical trial context. Furthermore,
� = 0 implies that ˇ3 = 0 and, therefore, if the predictor is not valid at the
individual level it will not be valid at the population level either. Similarly, if the
variances �SS and ��T are strictly positive, then ˇ3 = 0 implies that � = 0; and,
consequently, if the predictor is not valid at the population level it will not be valid
at the individual level. Actually, ˇ3 and � will always have the same sign and, there-
fore, the identifiable parameter ˇ3 can indicate whether the association between the
unidentifiable individual causal treatment effect�T and the pretreatment predictor S
is positive or negative. However, when one moves away from these extreme scenarios
(ˇ3 = 0 and � = 0) important differences between both parameters can emerge.
For instance, large values of ˇ3 may occur when PCA is small if ��T is large relative
to �SS. Consequently, ˇ3 may not always provide a reliable idea about the magnitude
of � .

Note further that model (6.1) impliesE
(
Tj|Zj

) = ˇ0 + ˇ1Zj + ˇ2�S + ˇ3Zj�S and,
using obvious notation, �T0 = ˇ0 + ˇ2�S and �T1 = ˇ0 + ˇ1 + (ˇ2 + ˇ3)�S. Under
SUTVA, and using lemma 2, one gets

ECE(Sj) = ˇ +
√
��T
�SS

� (Sj − �S) = g
(
Sj

)
.

Thus, both methods provide the same point prediction for�T. This is to be expected
given that g(S) = E(�T|S), i.e., g describes how the expected causal treatment effect
varies as a function of S. However, unlike the regression approach, the causal inference
approach allows quantifying the uncertainty of the prediction and offers a direct
quantification of the predictive capacity of the pretreatment predictor.

In the following section, the regression and causal inference approaches will be
used to evaluate a pretreatment predictor of therapeutic success in patients with
opiate/heroin addiction.

7 Case study

A clinical trial in opiate/heroin addiction. The data come from a randomized clinical
trial in which the clinical utility of buprenorphine/naloxone (experimental treat-
ment) was compared to clonidine (control treatment) for a short-term (13-day)
opiate/heroin detoxification treatment. Before and after the treatment, patients were
assessed for relapse, withdrawal symptoms and treatment satisfaction.
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Given the emotional, psychological and economical cost of a therapeutic failure,
one would like to assess which treatment would likely be more appropriate for a
given patient. Along these lines, the Clinical Opiate Withdrawal Scale (COWS) score
at screening was evaluated as potential pretreatment predictor of therapeutic suc-
cess (S). The COWS is an 11-item interviewer-administered questionnaire designed
to provide a description of signs and symptoms of opiate withdrawal (e.g., sweating,
runny nose, etc). A higher COWS score is indicative for more withdrawal symp-
toms. The number of days that heroin was used in the 30 days prior to the second
follow-up (the second follow-up took place 3 months after the start of the treat-
ment) was used as the true endpoint (T). Data were available for 335 patients, of
whom n = 106 received the control treatment and n = 229 received the experimental
treatment.

Missing data. There was a substantial missing data problem in the case study,
especially for the true endpoint. Indeed, 231 patients had a missing response for
the true endpoint and 6 did not have the score for the pretreatment predictor.
Multiple imputation (MI) was used to handle the missing data in all the analyses
and 5 imputed datasets were used. In the linear regression approach, models were
fitted to each imputed dataset and the results were combined using Rubin’s rule.
For the causal inference approach, the identifiable variances and covariances were
estimated using MI and later passed to the algorithm that carries out the sensitivity
analysis.

It is important to point out that MI is valid when the missing generating mechanism
is missing at random (MAR) and, hence, the following analyses are based on the MAR
assumption.

Data description. The overall treatment effect (treatment difference) on T waŝ̌ = −0.9314 (s.e. = 1.8820, p = 0.632). The negative ̂̌ indicates that the average
number of days that heroin was used post-treatment is smaller in the experimental
treatment group (�̂E = 11.6437) than in the control treatment group (�̂C = 12.5751)
– albeit the difference was not significant (2-sided p = 0.709).

The correlations between S and T in the experimental and active control treatment
groups were both significant with �̂T1S = −0.3367 (p = 0.001) and �̂T0S = −0.3699
(p = 0.001). The negative correlations indicate that patients who have higher S =
COWS scores tend to use less heroin in the 30-day interval after the treatment in
both treatment conditions. Importantly, �T1S and �T0S are not significantly different,
p = 0.750.

Linear regression approach. Table 1 summarizes the results obtained when model
(6.1) is fitted to the data (R2 = 0.1271). As it can be seen, the estimated average causal
treatment effect is ECE(Sj) = −1.5504 + 0.0066Sj. Notice that the point estimate for
ˇ3 was nearly zero and it was not statistically significant. These results together with
Lemma 2 hint on a probably small PCA. In the following analysis this unidentifiable
parameter will be studied in more detail.
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Table 1 Parameter estimates for model (6.1).

ˇ s.e. p

Intercept 26.6627 4.2312 0.001
Z −1.5504 6.1829 0.8047
S −0.1677 0.0454 0.0002
Z by S interaction 0.0066 0.0661 0.9208

Source: Authors’ own.

Predictive causal association. The sensitivity analysis introduced in Section 5 was
carried out using the newly developed R package EffectTreat (freely available at
http://cran.r-project.org/). For conciseness, in the present section no reference to the
software is made but in the Supplementary Materials Web Appendix a more compre-
hensive analysis of the data is provided and the use of the R package EffectTreat is
explained.

As noted in Sections 3 and 4, the presence of a correlation between the predictor
S and the outcome T in both treatment conditions does not necessarily imply that
S conveys much information about the individual causal effect �T, i.e., it does not
necessarily imply that S is a reliable predictor of therapeutic success.

The PCA allows to quantify the predictive capability of S but the identifiably
problems discussed in Section 5 hindered its estimation. Essentially, the correlation
between the potential outcomes �T0T1 is unidentifiable and, consequently, � cannot
be directly assessed from the data. To handle this problem, the sensitivity analysis
introduced in Section 5 was used to estimate � across a set of plausible values for
�T0T1, i.e., the values in the grid G = {−1, −0.99, −0.98, ..., 1}.

Using the values in G for �T0T1, �̂T0T0, �̂T1T1, �̂SS, �̂T0S and �̂T1S, a total of 201
� matrices were formed of which 175 were positive-definite. Based on the valid
matrices, � was estimated. Figure 1 displays the frequency distribution of � . The
mean � = 0.0088, mode � = 0.0057 and median � = 0.0066. Further, 95% of the
� values were below 0.0198 and � was at most 0.0561. Clearly, the results indicate
that in all ‘realities’ that are compatible with the observed data, � is very small.
It can thus be concluded that COWS at screening conveys little information on the
individual causal treatment effect and, therefore, the accuracy with which a patient’s
individual causal treatment effect on T can be predicted based on COWS is small.
The results of this analysis are in full agreement with the earlier claim (Section 4) that
correlation is not evidence of predictive validity.

Notice that these findings are also in agreement with the results of the regression
analysis previously presented. Indeed, the small point estimate and large p value
obtained for ˇ3 were already indicative of a small PCA.

Is there a good pretreatment predictor? The forgoing analysis showed that COWS is
not a good pretreatment predictor of the individual causal treatment effect. More
generally, given a clinically relevant outcome T and a treatment of interest, one
would like to know whether there exists a good pretreatment predictor in the first
place.
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Figure 1 Relative frequencies of � in the opiate/heroin study.
Source: Authors’ own.

For instance, let us suppose that one wants to examine the plausibility of find-
ing a pretreatment predictor S that allows for the prediction of �T with an aver-
age PMSE = 50, i.e., with an average prediction error of about 7 days. Figure 2
shows the distribution of �2

min in such a scenario. About 80% of the �2
min values

were above 0.1088, indicating that a candidate S should produce a � of at least√
0.1088 = 0.3298 to achieve the desired level of prediction accuracy. Whether this

is a realistic endeavour or not could then be discussed with experts in the field and
this information could also help to select potential predictors for future validation
studies.
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Figure 2 Relative frequencies of �2
min in the opiate/heroin study using PMSE = 50.

Source: Authors’ own.

Predicting �T based on S in an individual patient j. In practice, clinicians are interes-
ted in the prediction of a patient’s individual causal treatment effect (�Tj) given
the observed Sj. For illustrative purposes, let us assume that a patient scores 60
on COWS, i.e., the patient has a low level of opiate withdrawal symptoms. Using
the methodology detailed in Section 3, it is obtained that the expected value of
�Tj|Sj = 60 equals −1.0409. Therefore, the patient is expected to have about 1
more heroin-free day in the post-treatment interval with the experimental treatment
than with the control.
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Figure 3 The distributions (and 95% confidence intervals) for �Tj |Sj = 60 assuming �T 0T 1 = 0.120 and
�T 0T 1 = 0.800 in the opiate/heroin study.
Source: Authors’ own.

Importantly, the expected value of �Tj|Sj remains constant no matter what
assumption is made regarding �T0T1 and, therefore, the point prediction will be the
same across all plausible values of �T0T1. However, the variance and 95% support
interval obtained from the distribution is actually affected by the value assumed for
�T0T1. For example, the 95% support interval around the point prediction −1.0409
is rather wide [−25.6368; 23.5550] when it is assumed that �T0T1 equals its median
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value 0.120, whereas it is substantially more narrow [−12.8194; 10.7376] when it
is assumed that �T0T1 = 0.800. Figure 3 displays the distributions for �Tj|Sj = 60
assuming �T0T1 = 0.120 and �T0T1 = 0.800. Notice that for both �T0T1 the 95%
support intervals include 0 and thus no difference between both treatments is to be
expected for the patient. Basically, as the low PCA shows, COWS scores do not lead
to precise predictions of the individual causal treatment effect. In principle, medical
considerations could be used to establish a range of medically plausible values for
�T0T1 and carry out the prediction only considering the values in this range.

8 Discussion

Predicting individual causal treatment effects based on pretreatment outcomes is
fundamental in PM. It may be argued that the future impact of PM on medical prac-
tice largely will depend on our capacity to find and properly validate pretreatment
predictors of therapeutic success across different conditions. In the present work, we
have argued that classical correlational analysis cannot answer the relevant scientific
questions in this area and may be rather misleading. In response, we introduce a new
validation strategy to address this problem. The methodology is based on causal
inference and allows answering several clinically relevant questions. In addition, an
R library is provided to carry out the necessary calculations. There are, however,
some important limitations that need to be pointed out. For instance, the current
methodology only considers continuous and normally distributed pretreatment
predictors and true endpoints. Other type of variables, like binary, are often
encountered in medical applications and future research efforts will be directed to
generalizing this methodology to other outcome types.

Even though it may seem natural, imputing missing potential outcomes to get
direct estimates of �T0T1 is of little value in the present context. In fact, T0 and T1 are
never simultaneously observed and, consequently, the data at hand do not contain
any information about the correlation between the potential outcomes. Therefore,
any information about this parameter in the imputed datasets has to come necessarily
from the imputation model. So basically, one would need to impute the data using
several imputation models that assume different values for �T0T1 in order to avoid
bias. Although more laborious, this approach would be equivalent to the sensitivity
analysis used in the manuscript and, therefore, MI does not seem to be a better strategy
in this scenario.

It is important to point out that the causal inference model used to compute
PCA is essentially unidentifiable. However, the distributional assumptions for some
marginals, like the bivariate normality of (S0, T0) and (S1, T1), can be assessed using
the data at hand (details in the Web Appendix). Clearly, the findings of the previous
sections are predicated on the assumption that the potential outcomes are contin-
uous and normally distributed. However, many of these results will still be valid
for non-normal continuous potential outcomes, although their interpretation will
change if the normality assumption is questioned. For instance, the correlation be-
tween the individual causal treatment effect and the pretreatment predictor could still
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be quantified using � , but these expressions could not be interpreted any longer as
the PCA. Indeed, even though � will still be a valid measure of causal correlation,
the equivalence between association and correlation will be broken if the normality
assumption is dropped. In general, departures from normality will only have a mild
effect on the estimation of the parameters of interest but, as already pointed out, the
interpretation of the results will become more restricted and limited.
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Appendix

Let us first consider the following diagram describing the association structure
between the elements of the vector Y ′ = (x, y, z).

y

ρxy

ρxz

ρyz

X Z

In what follows it will be assumed that

Y =
⎛⎝xy
z

⎞⎠ ∼ N
(
0,��

)
, where �� =

⎛⎝ 1 �xy �xz
�xy 1 �yz
�xz �yz 1

⎞⎠ .
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Notice that, without loss of generality, it has been assumed that the components of
Y have mean zero and variance one. This can be achieved by standardization and will
have no impact on statements regarding the association between these components.
The question of interest is, given �xy and �xz, what can be said about the value of �yz.
The previous distributional assumptions imply that

y = �xyx+ εy, εy ∼ N
(
0,1 − �2

xy

)
,

z = �xzx+ εz, εz ∼ N
(
0,1 − �2

xz

)
,

with εy, εz ⊥ x. Moreover, �yz = cov(y, z) = cov(�xyx+ εy, �xzx+ εz) = �xy�xz +
cov(εy, εz).

Note further that cov(εy, εz) = �(εy, εz)
√

(1 − �2
xy)(1 − �2

xz) and, therefore,

−
√

(1 − �2
xy)(1 − �2

xz) ≤ cov(εy, εz) ≤
√

(1 − �2
xy)(1 − �2

xz) ,

and the previous inequality leads to

�xy�xz −
√

(1 − �2
xy)(1 − �2

xz) ≤ �yz ≤ �xy�xz +
√

(1 − �2
xy)(1 − �2

xz) . (A-1)

Proof of Lemma 1

Based on the result introduced in Appendix and the next diagram one has

T1

ρT1S ρ

ρTOS

TOT1

T T0
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�ST0�T0T1 −
√(

1 − �2
ST0

) (
1 − �2

T0T1

) ≤ �T1S ≤ �ST0�T0T1

+
√(

1 − �2
ST0

) (
1 − �2

T0T1

)
,

−�T0S(1 − �T0T1) −
√(

1 − �2
ST0

) (
1 − �2

T0T1

) ≤ �T1S − �T0S ≤ −�T0S(1 − �T0T1)

+
√(

1 − �2
ST0

) (
1 − �2

T0T1

)
−�T0S

√
1 − �T0T1

2
−

√(
1 − �2

ST0

) (
1 + �T0T1

2

)
≤ � ≤ −�T0S

√
1 − �T0T1

2

+
√(

1 − �2
ST0

) (
1 + �T0T1

2

)
.
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