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Abstract Generalized estimating equations have been widely uséaiantalysis of
correlated count data. Solving these equations yieldsistems parameter estimates
while the variance of the estimates is obtained from a sastdestimator, thereby
ensuring that, even with misspecification of the so-calledkinmg correlation matrix,
one can draw valid inferences on the marginal mean parasi€tbat they allow
misspecification of the working correlation structure,ubb, implies a limitation
of these equations should scientific interest also be in dhar@nce or correlation
structure. We propose herein an extension of these estigratjuations such that, by
incorporating the bivariate Poisson distribution, théarace-covariance matrix of the
response vector can be properly modeled, which would penfeitence thereon. A
sandwich estimator is used for the standard errors, ergsadand inference on the
parameters estimated. Two applications are presented.

Keywords Bivariate Poisson distributionfirst four moments generalized linear
models- longitudinal count datasandwich estimatortime varying covariates
1 Introduction

Count data, as the name suggests, arises as a result of anggoanatcess in a given
interval of time and therefore takes on non-negative integiies. Examples may
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include: number of doctor visits, number of epileptic seé®) number of accidents,
etc. To draw inferences from such data, a Poisson distobusi usually assumed
as the data generating mechanism and a log-likelihoodifamist constructed which,
when maximized, yields parameters of scientific interesé Jtandard Poisson model
implies that the mean and variance are equal (McCullagh aideX (1989). How-
ever, in practice, this implication is usually restrictisecause count data samples
often have the mean either greater than the variance (&daahderdispersion) or
less than the variance (also known as overdispersion) €fdrey, using the Poisson
model in its basic form would not account for this featurereotly. To account for
overdispersion, the negative-binomial (NB; Breslow (19&4wless((1987)) model
is an option. Also, count data regularly has an incidencesod zounts greater than
expected from the Poisson model. The zero-inflated Poisdéh |[Lambert (1992))
or zero-inflated negative binomial (ZINB; Ridout €t ial (2p0hodel account for the
extra zeros.

Further, count data is often collected repeatedly over.titueh studies aim at
describing, for example, the evolution of the subjects'diton over time, given cer-
tain characteristics of interest. This repetition in thesetvation of the patients or
cluster or subjects induces the aspect of correlation Isecasponses from the same
subject will be more alike than those between different esttisj Also here, exten-
sions from cross-sectional or univariate data to corrdlat&ta have been proposed
in the literature and implemented in statistical softwasekages. Some of these in-
clude generalized estimating equations (GEEL; Liang aneé 7@ 986)), the Poisson-
normal model, which belongs to the generalized linear mimedel family (GLMM;
Breslow and Clayton (1993); Wolfinger and O’Connell (1998))more generally
the combined model (Molenberghs etlal (2007), Molenberghs (2010)), the mul-
tivariate negative binomial model (Solis-Trapala and #aiti(2005); Winkelmann
(2008)), etc. In this paper, we shall generically refer foeatimating equations as
GEE while GEE1 denotes the method put forward by Liang andeZ¢bO86) in
which the correlation structure is calculated using thehmétof moments. Further-
more, GEE1.5 denotes the extension of GEE1 by replacing timeent-based estima-
tion of the working correlation parameters with a second$estimating equations
(Prentice (1988); Kim and Shults (2010) and, Lipsitz et &9]) are some exam-
ples). In GEEL.5, the two sets of estimating equations ferrttarginal mean and
correlation structure are assumed orthogonal or indepgnddich simplifies the
computational burden that would be encountered othenBiseause these methods
aim at obtaining marginal mean parameters that are consiatel asymptotically
normally distributed, they permit inferences on the maabimean regression param-
eters and standard errors even when the correlation steuistoot correctly specified.
As a result, and akin to GEEL, no scientific inference can beéenaa the correlation
structures in GEE1.5 given that these association strestare allowed to be mis-
specified. On the other hand, allowing the two sets of esiimga&quations to be cor-
related results in GEE2 (Liang et al 1992; Zhao and Prenfi®@);lPrentice and Zhao
1991). This implies that the first and second moments areftiisnmodeled while
making working assumptions about the third- and higheeordoments. Research
in marginal models for hierarchical or correlated counadsicertainly ongoing. lddi
and Molenberghs (2013) also contributed to this area obtated and overdispersed
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count data by proposing a marginalized model for zero-iflabverdispersed, and
correlated count data. We refer interested readers in flie o6 generalized estimat-
ing equations to Molenberahs and Verbeke (2005), HardinHili (2003), Diggle
et al (2002), Fitzmaurice et al (2004), and Ziegler (20119deling of the covariance
structure simultaneously with the mean is a field of ongo@sgearch and many other
researchers, for example, Ye and|Ran (2006), Leng et alj2Bag et all(2007), etc.,
have also made contributions to the subject.

Generally, when analyzing correlated data, 3 differentetiod frameworks can
be chosen from, depending on the objective of the study. tti@e5.3 of Molen-
berghs and Verbeke (2005), these frameworks or model &snffharginal models,
conditionally specified models, and subject-specific mg)dmle presented and char-
acterized. Note that Lee and Nelder (2004) regard the subjescific models also as
conditional models. For completeness, we in turn brieflyrdefhese 3 families but
refer to| Molenberahs and Verbéeke (2005), Fahrmeir and T18984), Fahrmeir and
Tutz (2001)| Diggle et al (2002), and Lee and Nelder (2004 )&dailed discussions
of these families. A marginal model is one where the margifistribution of the
response of interest is modeled as a function of covari@as. models the expec-
tation of the response variable conditioning only on theaciates. An example is a
comparison of males and females in terms of the mean resporgseontrast in the
average number of epileptic seizures between patients edeved a treatment ver-
sus patients in a control (placebo) group. A random-effectibject-specific model
further conditions on unobserved or latent subject-spa@fidom effects in addition
to the covariates of interest. For a conditionally specifisatel, typically an auto-
regressive or transition model, the expectation of theawsep variable is modeled
while conditioning on part or all of the remaining set of respes for a subject as
well as covariates; in a transition model, conditioningrigo@ast measurements.

In this paper, marginal models are of interest, especiatitvated by two datasets
presented in Sectidd 3 and analyzed in Sedtion 4. We hemtielimit our discus-
sion to the marginal-models framework for correlated cadath, highlighting the
(relevant) limitations and then discuss our proposed ®wlulGEEL is a common
tool used when modeling correlated count data. Since itedaottion by Liang and
Zeger (1986), it has been extensively studied, implememestatistical software
packages, and applied in research. Its strengths and tiiomsaare very thoroughly
described in the literature. Extensions of GEEL1 to allowtliersimultaneous estima-
tion of both the marginal mean and correlation parametessramg independence
between them have been proposed in literature and are hefeined to as GEE1.5.
One strength of GEE1 and GEEL.5 is that the parameter esraa¢ consistent as
long as the mean structure is correctly specified, even ifsmtwking covariance or
correlation structure is misspecified. They are also coatfmutally easier (faster) to
evaluate than their GEE2 counterparts. A major limitatiofiesed by both methods
is that, because the estimating equations allow for thepa@&cation of the corre-
lation/covariance structure, GEE1 and GEEL.5 fall shostiéntific interest is not
only in the marginal mean parameters but also in the assmiatructure. Further
detail about the different GEE methods is presented in @d2iR2, while Sectioh 213
presents our extension of the estimating equations to nibdalovariance structure
via covariates simultaneously with the marginal mean patars by incorporating
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the bivariate Poisson distribution into the estimatingatuns thereby permitting
inference on both the marginal mean and covariance paresnete

2 Methodology
2.1 Notation

Henceforth, the termubjectwill be used to mean the independently replicated entity
within which the repetition occurs; for example, patienthject, cluster, or unit. We
use the random variablg; to denote thej-th observation of subjeéti =1,...,K
andj =1,...,n;. Because the responses for each subjecé repeatedly recorded,
subjecti has ann; x 1 vectorY; = (Yi1,Yi2,...,Yin;) " of measurements. Further, let
Xij denote ap x 1 vector of covariates, thu¥j; = (>qjl,>qu,...,>qu)T, that are

to be investigated for possible association with the resposariabley;j. In matrix
notation,

Xi1 Xi11 X2 - Xip

Xip Xi21 Xi22 ... Xizp
Xi = . = . }

Xai Xinil Xini2 Xinip

It is important to mention that the covariates containedjimay be either changing
over time j in which case they would be referred to as time-varying dates, or
otherwise time-stationary. In Sectibn 2.3, we show how goppsal adapts to both
time-stationary and time-varying covariates.

2.2 Generalized Estimating Equations

Following from the theory of generalized linear models (GlAdresti (2002), Nelder
and Wedderburn_(19r2), McCullagh and Nelder (1989)), tl& fivo moments de-
rived (Molenberghs and Verbeke (2005), ch. 3) from a digtrdn that belongs to the
exponential family of distributions are the mean and varga®expressed as,

E(Yij | Xi) = i (1a)
Var(Yij | Xi) = Vij = @u (1j), (1b)

respectively, wherap is a scale parameter for the variance and) is the vari-
ance function, which describes the dependency of the \@ian the mean. Mean
(18) is related to covariates X;; via a known link functiong(-) (for example,
log link for counts/Poisson data, logit or probit link fornairy/binomial data) as
o(Hij) = XE[B, wheref3 is a p x 1 vector of unknown regression parameters. If we
let Cor(Yij, Yix | Xi) = piji. then CowY; | Xi) =Vi(B,9,a) = ¢Gi(B) 2R (a)G (B)2,
whereR; is a correlation matrixC; = diag(u(1j)) is a diagonal matrix of variances
anda is a vector of correlation parameters. Specific to count,dégtas assumed
to follow a Poisson distribution with meam;, thusY;; ~ Poissofiy;;). The Poisson
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density can be expressed as belonging to the exponentidy tayretting logpi; to be
the natural parametep,= 1 andu (uij) = ;. The marginal mear_(lLa) is then mod-
eled in terms of covariates as Igg;) = XJB, therefore referred to as a log-linear or
Poisson regression model and W4y | X;) = ;. This model, therefore, specifically
implies that the mean is equal to the variance, a phenomesioally termed equi-
dispersion. In practice though, deviations from this areicmn, so that the mean
is greater than the variance (under-dispersion) or thatrban is less than the vari-
ance (over-dispersion). While it is not this paper’s goaluityfaddress over(under)-
dispersion, we refer interested readers to, for exampldeMerghs et al (2007),
Molenberghs et al (2010) and references therein for furdesails. Indeed, our in-
tention is to model correlated count data such that inferes@llowed on both the
marginal parametei and the covariance structure Gov | X;).

Given(g,a),\Liang and Zeger (1986) iteratively solve the generaliztdreting
equation given by

K

ZU Zd“' V(Y- ) =0 @)

to obtain the estimates fgt (ﬁ). The iterative algorithm is as follows:

1. Obtain the starting values Eﬁrom fitting a GLM (thus assuming independence).

2. Givenﬁ or [AB(I), calculate(¢, @) and thereford/; = C2 (B) R (o )C2 ([3) us-
ing the method of moments (see Chapter 8 of Molenberghs arimékéz (2005)).

3. Giveng,d andV;, update[AB by using modified Fisher’s scoring algorithm:

- [ (35) e ()] %) ]

The solution is obtained by iterating between steps 2 and8eabntil convergence
meaning that the change in the parameter estimates safisfiesis less than) a pre-
specified criterion. Assuming the marginal mea) (is correctly specified, consis-
tent and asymptotically normally distributed parameteinMesﬁ with meanB and
variance-covariance matrix

var(B) = 151157, A3)

(%) (%)

are obtained. The variance estimator{ih (3) is commonlyrrefeto as the sandwich

estimator and results in the so-called empirically coeédtandard errors. The pa-
rameter estimates and standard errors are asymptoticaligat whether or not the

working correlation structure is correctly specified.

where
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Much as GEEL1 has been found appealing to many data analgstesearchers,
it has quite a number of issues associated with it. It is notimention to exhaus-
tively list them herein but refer to, for example, Lee anddéel(2004), Lindsey and
Lambert (1998), Crowder (1995%), Sun etlal (2009), Wang ané\Cg@004), among
others, for further discussion of these issues. SpecificalEE1 allowing the mis-
specification of the working correlation structure, thgreendering it a nuisance,
implies that the response vectof;] is given an arbitrary distribution and hampers
checking assumptions about the covariance structure (hedlalder(2004)). Spec-
ifying a covariance structure based on a model straightiadly allows for inference
on this covariance structure. Further and more importaattilough consistent pa-
rameter estimates and standard errors can be obtained éhemmisspecification of
the working correlation assumption, careful estimatiothef covariance/correlation
is needed since it may affect the iterative updatinf ahda, leading to a breakdown
of the iterative procedure (Sun et al (2009)). As an altéraastimation approach to
the method of moments used|by Liang and Zeger (1986) for tirelation structure,
Kim_and Shults|(2010) use a two-stage approach to estimateetiression param-

eters[AZ and the correlation parameters At stage 1, they iterate betwedd (2), with
_1 _1
V1 =C 2(B)RY(a)C 2(B), and the estimating equation far namely:

K
- {_gzr<ﬁ>alzi<ﬁ>} -0 ®

whereZ;() = (zil,...,zini)T are thej-th Pearson residuals for subjeagiven by

zj = (Yij — [hj)/+/v(fj) and evaluated at the currefﬁltuntil convergence. At stage
2, they pluga from stage 1 into

litrace{ai:é)a(a)}

and updater. The finaIB is obtained by solvind{2) at the final from ().

Yet another alternative to the method of moments for thestation parameters is
the proposal by Prentice (1988) in which estimating equat(@) are simultaneously
solved with those of pairwise correlatiorss)(given by;

=0, (6)

o=a

ii (‘;Zi)THil(vvl—zi) o %

whereW = (z122,2123, - - -, Z 170y, 23, 2, - - - ,;%i )" contains the products of sub-
jecti’s pairs and squares of Pearson residasts where 1< s<t < nj, Hj = Var(W)
and{; = E(W). It is common for binary responses that the lgstomponents of\i,
i.e., the squared residuals, are left out due to the medangar relationship. Calcu-
lating VarW) = Var(zsz) = E({zsz }?) — E(zsz)? requires

E({zsze }2) = [E(Y2YP) — 20 E(Y2Yi) + PEE(YZ) — 2[isE(YisYR)+

8
Afis P E(YisYi ) — 30202 + FRE(YA)] [v(fis) v (P )]~ ®
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For binary response data, for example, and unlike the caass, [(B) simplifies (as
\(ij2 =Y;j) such that

Var(zszi) = 1+ (1 - 2fis) (1 2{1) (0 (Pis) U (D)) % Gist — W,

where Yist = E(zszt) are entries in{;. The binary response case, thus, turns out
to be special sinc&; and H; are then fully determined by the mean and corre-
lation models without necessitating additional assunmgtiabout higher-order mo-
ments. Generally though, obtaining matkxinvolves the third and fourth moments
of Y;, which are usually assumed to be equal to zero. Alternativeékis assump-
tion may be sought depending on the type of response vauoler consideration.

In the context of binary response data, for example, Digglal 2002) suggest
H; = diag[Var(z1z2),...,Var(z n—1.7Z n )], which only depends oo and 8 while
they propose the use of the identity matrix for count respenBy using the identity
matrix for the counts, there is a loss of efficiency in estingatr. They, however, ar-
gue that this efficiency loss has very little impact, in pi@gton the estimation g3

and yet simplifies computation by avoiding the estimatioadditional higher-order
parameters. Note that whil is a working variance-covariance matrix (meaning that
it contains working assumptions usually being that thedthénd fourth-order corre-
lations are equal to zero, matters not whether it is correxiecified or not, only
aides the estimation of the regression parameieasd cannot be used for formal
inferences) fotM; V; in (@), on the other hand, is not a working covariance matrix
because the second moments are specifiedl by (7).

Note that Prentice (1988) assumes independence betlleand £]). Again, this
assumption implies a loss of efficiency but is defendablebse the consistency and
asymptotic normality of the marginal mean regression patars is not hampered
by the misspecification of the correlation structure. Alsportant to mention is that
the sets of parameters and 8 both come with precision estimates and formal in-
ference can be made on these parameters as long as the esgjgatidoe believed to
have been correctly specified (Molenberghs and Verbhekesj200may be desirable,
however, to relax the independence assumption betiéenddyda This may be the
case if interest lies in the efficient estimation of bftanda. One may then be inter-
ested in minimizing the loss of efficiency accruing to thénogonality assumption in
GEEL1.5. This leads us to the so-called second-order GEE 255ZEao and Prentice
(1990) proposed an alternative to GEE1 or GEEL.5 in termsookations while
Liang et €l1(1992) used odds ratios, with both proposals diatenodeling mutivari-
ate binary responses. Prentice and Zhao (1991) extendexdjtiaions of Zhao and
Prentice(1990) to the general case of discrete or contmtggponse vectors. They
combine the response vectér and the pairwise crossprodudtsinto one outcome
vectorT;" = (Y;",W ) and solve the equations:

Y U@ =3 b/ (@)% (@)i(0)

(Cc\n/\?((/(\;.(,i\)m) C(\)/\;(rYi’,\;V')> ) (\7\},_?9 ~0,

I
U
HE
DV Q|
RN

o
Q|
N

—
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where@ = (BT,aT)T. Since solving[() is computationally unattractive, Pieat
and Zhaol(1991) suggested specifying working varianceicestin2; such that the
third and fourth moments are expressed as functions; @nd {;. We show in the
next section how we incorporate the bivariate Poissonidigion, rather than the
multivariate Poisson distribution, into score equatldnt¢2allow scientific inference
on the covariance as well as the mean parameters while mgdek covariance of
Y; at pair level. Use of the multivariate Poisson distributiwould result in a full
likelihood approach, which would maximize efficiency. Hasg it is hampered by
the complexity of the probability function due to summasiamhich may increase
the computational burden with increase in the number of oreasents per subject
and/or sample size (Kailis (2003)), the very reason esiigatquations are being
sought after. By using the bivariate Poisson distribut@dosed form expressions for
the third and fourth moments inl(8) are easily obtainablearecould go ahead with
the suggestion of Prent|ce (1988) but for correlated coatd.dA somewhat different
route is taken here in that estimating equations are prajpatsthe level of subjedts
pair of responsesyg, Yit). The use of pairs rather than the whole vector of responses
(Yi) would lead to loss of efficiency in estimating the paranmsetdéinterest but would
simplify the computational unattractiveness of having ldtain the third and fourth
moments that is evident as long as scientific interest lidmth the marginal mean
parametersff) and the association structure.

2.3 Extension of GEE Using the Bivariate Poisson Distritnuti

To put matters into perspective, consider the followingahiate Poisson distribution
which_is derived using the trivariate reduction method (Kertakota and Kocher-
lakota (1992), Kocherlakota and Kocherlakata (2001)) dasea convolution of in-
dependent Poisson variables. Note that there are sevenatins of the bivariate
Poisson distribution in the literature. For example, Lakatarayana et al (1999) de-
rive their bivariate Poisson distribution based on a potgiad factor. Assume that
W are independent Poisson random variables such Vet E= nic, ¢ = s;t or st.
The random variable¥s = (Ws +Wst) andYi = (W; +Wis;) then follow a bivariate
Poisson distribution. ThusYis, Y ) ~ BP(nis, Nit, Nist) characterized by

Yis Vit Min(Yis,Yit) 7y, , ) '
f (Vis, Vi :e—(nis+nit+nist)ninit <y's> <y't>|!< Mist > ) 10
ie: i) Yis! Vit! go | | NisNit (10)

Marginally, EYis) = nis + Nist, E(Yit) = Nit + Nist and Co\Yis, Yit ) = Nist. We propose
the score equatiofV; st) to be computed at each pds,t} of responses from subject
i such that the estimates for tferegression parameters are obtained by solving

K K K OU; & 1
dYU=> > UsB)=) Z dB’T Vist (Yist—Hig) =0, (11)

T 1<s<t<n;

where
Yis E(Yis)
Yiss=| Yt |,Hisg=| EM) | and
YisYit E(YisYit)
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Cov(Yi,Yis) Var(Ye)  Cow(Yi,YisYi)
Cov(YisYit, Yis) Cov(YisYit,Yit) Var(YisYi)
with E(YisYit) = E(Yis)E(Yit) + Cov(Yis, Yit ), Var(Yis) = E(Yis) and VarY;) = E(Yi).
To derive the covariance terms Gd, YisYit), Cov(Ye, YisYii) and Va(YisYi) in
Vist in (1), we need to calculate the following four moments & Broisson distri-
bution that turn out to be essential. Xf~ PoissoriA) with probability mass func-

KA
tion f(X;A) = whereA >0 andx’=0,1,2,..., then thent" moment EX"),
n=1,2,3,4is as follows;

( Var(Ys)  Cow(Ys,Yi) COV(Yis,YisYn))
Vist

i > & 211) —rete =), (12a)

' 3% gf(xAj e [A > <;j11>!] 12
_ ai( ) =re L+ =A(L+A),

o5 T e iﬂ”f o303 ]
:“e;P$<w X)] A% ;O%]ﬂw
—re? a(i\ ()\(1+A)ef\) —AePA(1+A)+1+21)e)

=A(1+3X +A?),and

20 2
E(XY) =Ae™ = [/\(1+3A+/\ )eﬁ} 120
=A[A(1+3A +A%)+1+6) +3A] =A(A3+6A%+7A +1).
Generally, if EX") = f,(A), then
)
-2
fri1(A) = Ae 0/\[ (A)eﬂ 3

=2e? () +h)] e =2 [0 + fu(2)]

wheref,(-) is the first derivative ofy(-). Now, from Var(X) = E (X2) — [E (X)]?, it
follows that Var(YisYi) = E [(YisYi)2] — [E(YisY¢)]? such that E(YisYi)?] or E(Y2Y?)
is to be replaced with

E(Y2YE) = (W -+ Wet)? (W -+ Wist)°|

= E (W2 + 2WMsWst + W) (W + 2We Wt + W) | (14)

_E [WZVVZ + 2\/\/,vatvvSt + W2vv,§t + 2W W2 Wst+
AW WEZ; -+ 2M WG, + WP, + 2Whe W, -+ Wiy
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where further simplification is possible by applying the estation to the indepen-
dent Poisson variabla&s, W, Ws; and using the moments in{12). This leads to the
solution

E(YEYE) = E(Ye) E()? + EMOE(Y)®) + ECOEMR)* 4 205 (o
E(VYis)E(Yit) (14 4nist) + 2nist (E(Vis) + E(Yit)) + Nist-
The covariances C@¥, YisYii) and Co\Ys, YisYit ) are calculated as
Cov(Yis, YisYit) = E(YisYis¥it) — E(Yis)E(Yis¥it) = E(Y5Yi) — E(Yis) E(Yis¥it)
and
Cov(Yi, YisYi) = E(YiYisYi) — E(Yi )E(YisYit) = E(YisY) — E(Yit )E(YisYi),

respectively, where similar algebra as[inl(14) leads todHewing quantities:

E(Y2) = E(Yis) + E(Yis)%,
E(Y) = E(Yt) +E(Ya)?,
E(Y2Yi) = E(Y2)E(Ye) + 2MistE(Yis) + Mist,
E(YisY7) = E(Yis) E(Y{) + 2mistE(Yit) + Nist-

The means B\ ), are related to covariates as [&\W.)] = X,. 3, where

Xt 100 X1 Xis2 --. Xisp
Xi | =010 X1 Xz ... Xip | - (16)
X;ls—t 00 1Xst1 Xist2 - - - Xistp

The vector of unknown regression paramef@es (Bos, Bot, Bost, B1, B2, - - - » Bp)T, al-
lowing for an intercepf3y specific to time poins, t and their producst in addition

to the regression parametéf3, ..., Bp) shared for the rest of the variables. Further-
more, the model-based standard errors are obtained asuhreggot of the diagonal
entries of

-1
Ui, ,_1OM;, st)

K
U*:<IZS; dB Vlst aﬁ

while the sandwich standard errors are calculated as trereqaot of the diagonal
of

K
U™ =U*.1".U*=U". UistUi - U™
.ZSZ\ st

As mentioned in Sectiop 2.1, covariates under consideratiq18) may be either
time-stationary or time-varying. When time-stationargheaf the columns 2,.... p
would contain the same values. On the other hand, when tangng, Xis; can be
derived as a function oXis and X;;, for example, a difference, lag, sum, product,
ratio, etc. The correlation between two measureméggendY; is then calculated as
pi.st = Cov(Yis, Yit)/+/Var(Yis)Var(Yi ).
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3 Datasets

Two real-life longitudinal datasets are analyzed hereamaly, the Epilepsy data and
the Jimma Infant Growth (or Survival) Study. We describesthevo datasets in turn.

3.1 Epilepsy Data

This dataset is presented and analyzed by Leppik et al (19886 Thall and V4l
(1990), among others. The data were obtained from a placebtelled clinical
trial of 59 patients with epilepsy. These patients, sufigrirom simple or complex
partial seizures, were enrolled in a randomized clinidal that aimed at studying
the effect of the anti-epileptic drug known as progabidet@riumber of epileptic
seizures over time. In the study, 31 epileptic patients wanelomized to the group
that received progabide while 28 patients received a pacab an adjuvant to the
standard anti-epileptic chemotherapy. Progabide is d@regileptic drug whose pri-
mary mechanism of action is to enhance gamma-aminobutyidg @ABA) content.
GABA is the primary inhibitory neurotransmitter in the bwaPrior to receiving treat-
ment, baseline data on the number of epileptic seizuresgltine preceding 8-week
interval were recorded. Counts of epileptic seizures dugirweek intervals before
each of four successive post-randomization clinic visigsemecorded. The dataset
also contains information on the patient identificatioaatment (O=Placebo, 1=Pro-
gabide), age, baseline 8 week seizure count, and the saiaurd during the first,
second, third, and fourth 2-week time interval. Figure lvehthe evolution of the
number of seizures for each epileptic patient over the spatiod, while Figuré 2
shows the distribution of the seizure counts over all weegrirals and both treat-
ment groups. The evolution of the average and median nunilepileptic seizures
between the consecutive two-weeks period by treatmenhawersin Figure§13 and 4,
respectively. There are differences in the seizure couittsnpatients but also be-
tween patients over time. Specifically, one patient seerhave an extreme number
of seizure counts at all time points relative to the othefif®while another patient
registered a rather distant number (76) of seizures at the\tlsit. We also observe
from Figure2 that the distribution of the seizure countsuieyskewed and that the
majority of the counts were between 0 and about 20, althoigretwas a count of
up to 102 seizures in the first two-week interval (see Figré-dom Figure§13 and
[, it can be seen that the progabide group has lower (meandiam)eseizure counts
except at the second two-weeks interval. The seizure caaais to reduce, on av-
erage, over the study period for both treatment arms. Itimsngon for longitudinal
studies to have cases that at some point in the study droproutss some of the
visits. For this dataset, however, all patients were oleskat all the visits.

3.2 Jimma Infant Growth Study

This dataset, also referred to as the Jimma Infant Surviifgiential Longitudinal
Growth Study, has been analyzed by Lesaffrelet al (1999 )ititiear mixed models
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context, while_Kassahun et al (2012) have used it in the pidata framework in
which they sought to identify risk factors for children bgioverweight, based on
a dichotomization of the Body Mass Index (BMI). It is an Efhien study, set up
to establish risk factors affecting infant survival and rtedstigate socio-economic,
maternal, and infant-rearing factors that contribute nbmsthildren’s early survival.
Children born in Jimma, Keffa and Illubabor, located in $Sougstern Ethiopia were
examined for their first year growth characteristics. Atdbae (birth), there were a
total of 7969 infants enrolled in the study, both singletod &win live births inclu-
sive. However, only singleton live births (7872 infants)baiseline are considered.
The children were followed-up every two months, until thes aif one year, thus
age= 0,2,4,6,8,10 and 12 months. Herein, we are interested in modeling the to
tal number of days of diarrheal illness as a function of gerftleMale, 0=Female),
whether mother continued breastfeeding (1=Yes, 0=No)Herl2 months, whether
mother sought medical help (1=Yes, 0=No), and place of essid (1=rural, 2=urban,
3=semi-urban). Figurel 5 shows the evolution of the numbetay of illness over
the 12-month period for 399 (5%) randomly sampled infantdeMRigure[6 depicts
the average number of days of illness over the 12 months byegeRrom Figuréls,
we observe a tendency of the number of days of diarrheakslne increase as the
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infant grows older. There are also a lot of variability olvséale within an infant, and
likewise between infants as they evolve. Figure 6 furthemshan increasing trend
in the average number of days of diarrheal illness as thatsfget older, with the
females always having lower average counts than the mabtT shows the num-

| [Gender = Female B2 wale

Number of days of diarrheal illness
Average number of days of diarrheal illness

Age (months) Age (months)

Fig. 5 Jimma Data: Infant-specific profiles of theFig. 6 Jimma Data: Average number of days of di-
number of days of diarrheal illness over age. arrheal iliness by gender over age.

ber of infants whose responses were recorded over the 18ameriod, by gender.
As is typical of longitudinal studies, there is a reductimeotime in the number of
infants. As mentioned in Sectidn 8.1, longitudinal studiesy often have missing

Table 1 Jimma data: Number of infants with observations by genderage.

Age (months)
Gender 0 2 4 6 8 10 12
Female 3865 3706 3570 3488 3401 3351 2920
Male 4007 3798 3656 3536 3455 3388 2972
Total 7872 7504 7226 7024 6856 6739 5892

data. The Jimma study is no exception. Figure 7 shows someuR6f 59) of the

missingness patterns present in the dataset. In genetlalintermittent missingness
and dropout as well as the first infant visit not having beesrgat=02,4 or 6 months

are present. Because it is not our intention to deal with imisdata in this paper,
we have assumed that the missingness mechanism is nodrétatee number of
days of diarrheal illness observed and have excluded 52btmfwith intermittent

missingness.
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4 Data Analysis

To analyze the epilepsy dataset presented in Settidn & Iollowing covariates
are considered: baseline (the 8-week pre-randomizatiaargecount), age (years),
treatment and time (visit), denoted BS A*, T* t*, respectively. As mentioned in
Sectior 3.1L, one patient is observed in Figure 1 to have aieggmoutlying profile.
However| Thall and Vail (1990) find no clinical basis to tag fhatient as an extreme
case. The following analyses of the Epilepsy data therafseedata for all the 59
patients in the study.

Considering no time-varying covariates for the covariaB@&s;) = njst, we fit-
ted the model

log(nis) = Bos+ Butis + BTy + Ba (i X i) + BBy + BsAY,
log(nit) = Bot + Patiy + BT + Ba (tis < T¥) + PaBf + BsAY, a7
log(Nist) = Bost+ BT, + BsAY

In general, the covariates used for modeling(lpg) may be the same or different
from those used fonis andnj;. Table[2 shows the parameter estimates and standard
errors corresponding to Modell17. The model with time-vagytovariatevisit is

log(nis) = Bos+ Patis + BoTi" + Ba (tis x i) + BaB + BsAY,
log(nit) = Bot + Batiy + B2Ti" + Bz (tis x ™) + BB + BsAY, (18)
log(nist) = Bost + 1P (tis, tiy) + BTy + BsAY,

where¢ (t%,t7) denotes a function applied to the time-varying covariates, in this
case, a difference betwetime at points andt (t — t;). Other possibilities fogp(-)
may include, for example, the lag, ratio, sum, product,fetem Tablé P, the interac-
tion between the visits and treatments is not significant 0.7977) despite the fact
that the mean profiles in Figuké 3 suggest otherwise. Theatiaacy between the
observation in Sectidn 3.1 and this finding is related to ¢mat patient whose profile
seems more extreme relative to the others. Mean profilesllmasdata without this
potentially outlying patient (not shown) also suggestednieraction between the
treatments and visits. Considering age as a time-varyingri@e when modeling
the covariance (Modé€[18) changed the results slightly beitconclusions remained
similar to when only time stationary covariates are usedddehthe covariance. Ta-
ble[3 shows the intervals of the minimum and maximum coriaiat for the placebo
and progabide groups, obtained from fittilgl(17) aind (18} €hrrelations range
over a wide interval with the progabide group having evenewidnges. By model-
ing the covariance between two measurements using visitim&avarying covariate
and a difference as the time-varying function seems to hawénar impact on the
parameter estimates but also on correlations.

To analyze the Jimma study, denote the covariates age, m@astfeeding, help
and place ag*, s*, b*, h* and p*, respectively. The model fitted consideriage as
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the time-varying covariate is
log [E IS)] - BOS + Blai*s + BZSi* + B?:bl* + B4h|* + B5 p:rura| + BG pitsemi_urban
|Og [E Wit )] = BOt + Blai); + BZSi* + B3br + B4h|* + B5 p:rura| + BG pisemi_urban
log[E(Wist)] = Bost+ B1¢ (855, 8¢ ) + oS’ + Babf + Bah,

(
(
(19)

where¢ (aj,a; ) = a — a;. Table[4 confirms the observations made in Seg¢fioh 3.2,
namely, that that the average number of days of diarrheedsf increases as the in-
fants grow older with the female infants having lower cowftdays compared to the
males. We also find that not breastfeeding is positivelyteel#o the number of days
of diarrheal illness§ = 0.0150) while not seeking medical help is also highly statis-
tically signicant in increasing the number of days of haviligrrhea in the infants.
Table[® shows the minimum and maximum estimates of the eiwal by gender
obtained from fitting[(19). The ranges of the correlationakgét narrower than those
from the epilepsy but there are minor differences in theatation estimates between
males and females. Unlike the Epilepsy data case where thienonin and maximum
estimates of the correlation seem not to change much ovet time Jimma dataset
reflects a decreasing trend in the correlations as the mgtitolder, in the sense that
measurements close together are more correlated thanfthitiser apart.

5 Concluding Remarks

In this paper, we have worked on estimating equations thabeaused for model-
ing longitudinal data with the goal of making inference ouk(populations. These
estimating equations model the dependence of the meanngspn covariates of
interest, without specifying the joint distribution of tector of responses from a
subject. Should scientific interest lie only in the estimanf the so-called population
averaged parameters, the approach of Liang and [Zeger (i986ite sufficient and
one need not worry about more involved methods. Becausedatipe, the method of
Liang and Zeger (1986) is limited should interest lie alsthimassociation structure,
alternatives have been proposed. For example, Prenti@&®)®oposed simultane-
ous estimation of the marginal mean and association steigiermitting inference
also on the parameters characterizing the associatiohgindntext of binary data.
As has been shown in this paper, the binary case is specibkanddel for the as-
sociation is fully determined by the mean and covariance cbant data, however,
this issue is a bit more involved and proposed solutions agdh Prentice and Zhao
(1991) come to the rescue. They estimate the parameters ofidinginal mean and
association simultaneously without making the orthogonalssumption made by
Zhao and Prentice (1990). This, however, is computatignalbecoming since it
involves third- and higher-order moments.

We have presented estimating equations at pair level of éator of responses
for each subject in the context of correlated count data.pfbposal incorporates the
bivariate Poisson distribution which allows the modelirigh® covariance between
two measurements. It is formulated such that the variapgerance matrix of the
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outcome variable is not a nuisance but one on which infereacebe made while
the standard errors are estimated using a sandwich estifiitomethod allows for
time-stationary as well as time-varying covariates aneégjihe user the flexibility to
determine which function to use for the time-varying coates. Possibilities may be
a lag, ratio, difference, sum, product, etc. A SAS macro leashbvritten to implement
this method and is available Attp://ibiostat.be/software/longitudinal
orhttp://ibiostat.be/software/count. Using a 64-bit Windows 8 operat-
ing system computer with 8GB RAM and8)GHz processor, ModEI L7 converged,
based on a dataset of 236 observations, after 14 iteratiingweal time of 0.45 sec-
onds. Similarly,[(IB) took 38 seconds (real time) and converged after 14 iterations.
Finally, Mode[19 was fitted on a dataset of about@@® observations and converged
after 13 iterations and 539 seconds.

Note that while the standard errors are estimated usingahévdch estimator,
the SAS macro reports both the model-based and sandwichqaitsetimes known
as robust or empirical) standard errors. In the results shtwere is a considerable
discrepancy between these two types of standard errorofoe parameters. This
routinely implies that there are discrepancies betweernrtleeand assumed higher-
order moments. Fortunately, in such cases, the sandwiahatst provides valid
inferences nevertheless.


http://ibiostat.be/software/longitudinal
http://ibiostat.be/software/count
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Table 2 Epilepsy data: Parameter estimates and standard errorsnwédadime stationary covariate is
considered (Modél17).

Model-based Sandwich or empirical

Effect Est. s.e. X2 p s.e. X2 p

Intercept Bos) —1.1904 02157 3045 <.0001 12655 088 03468
Intercept Bot) —1.2119 02474 2400 <.0001 12563 093 03347
Intercept Bost) 1.3148 00929 20017 <.0001 04836 739 00066
visit (B1) -0.1724 00396 1895  <.0001 00500 1187 00006
trt(Placebo) ;) 0.2782 00452 3789 <.0001 02490 125 02638
trt*visit () 0.0404 00390 107 03004 01576 Q07 07977
Baseline 34) 0.0379 00015 62929 <.0001 00088 1846 <.0001
Age (Bs) 0.0082 00027 893 00028 00129 040 05257

Table 3 Epilepsy data: Parameter estimates and standard errorsménéme-varying covariate is con-
sidered (Mod€[18).

Model-based Sandwich or empirical

Effect Est. s.e. X2 p s.e. X2 p

Intercept Bos) —1.3907 02221 3920 <.0001 13798 102 03135
Intercept o) -1.6024 02518 4050  <.0001 14621 120 02731
Intercept Bost) 1.2180 00992 15064 <.0001 05099 571 00169
visit (B1) —0.0457 00246 345 00633 00468 095 03289
trt(Placebo) ;) 0.3037 00448 4604 <.0001 02456 153 02163
trt*visit (B3) 0.0066 00375 Q03 08603 01550 000 09660
Baseline (34) 0.0378 00015 61946 <.0001 00091 1727 <.0001

Age (Bs) 0.0085 00027 972 00018 00129 044 05094
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Table 4 Jimma data: Parameter estimates and standard errors whémex-varying covariate is consid-

ered (ModelID).
Model-based Sandwich or empirical

Effect Est. s.e. X2 p s.e. X2 p
Intercept Bos) —1.3373 00090 2196871 <.0001 02232 3589 <.0001
Intercept Bot) —0.9529 00098 100683 <.0001 01791 2831 <.0001
Intercept Bost) —0.3984 00091 300632 <.0001 01775 504 00248
age (1) 0.1260 00007 2872574 <.0001 00083 22811 <.0001
sex(Female)) —0.1732 00034 255679 <.0001 00307 3193 <.0001
bf(No) (Bs) 0.2379 00099 57510 <.0001 00978 592 00150
help(No) Bs) 2.0924 000383083520 <.0001 00380303468 <.0001
place(Rural) 8s) —0.0448 00064 4882 <.0001 01060 018 06729
place(Semi-urbanfjg) —0.2088 Q0077 74455 <.0001 01095 363 00566

Table 5 Epilepsy data: Minimum and maximum correlations from fijtiModel[IT (top panel) and
ModelI8 (bottom panel) for the two treatments.

Placebo Progabide
Visit 1 2 3 4 1 2 3 4
1 [1.00,1.00] [1.00,1.00]
2 [0.18,0.92] [1.00,1.00] [0.05,0.92] [1.00,1.00]
3 [0.19,0.93] [0.20,0.93] [1.00,1.00] [0.05,0.93] [0.084] [1.00,1.00]
4 [0.20,0.93] [0.22,0.94] [0.23,0.94] [1.00,1.00] [0.083] [0.06,0.94] [0.07,0.95] [1.00,1.00]
1 [1.00,1.00] [1.00,1.00]
2 [0.20,0.93] [1.00,1.00] [0.05,0.93] [1.00,1.00]
3 [0.21,0.93] [0.21,0.93] [1.00,1.00] [0.06,0.93] [0.083] [1.00,1.00]
4 [0.22,0.94] [0.22,0.94] [0.21,0.93] [1.00,1.00] [0.084] [0.06,0.94] [0.06,0.93] [1.00,1.00]
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Table 6 Jimma data: Minimum and maximum correlations from fittingddIigI9 by gender.

Gender Age N 0 2 4 6 8 10 12
Female 0 3453 [1.00,1.00]

2 3453 [0.27,0.81] [1.00,1.00]

4 3336 [0.18,0.76] [0.21,0.77] [1.00,1.00]

6 3255 [0.14,0.69] [0.16,0.71] [0.18,0.72] [1.00,1.00]

8 3174 [0.11,0.62] [0.12,0.64] [0.15,0.66] [0.17,0.69]0Q,1.00]

10 3102 [0.08,0.53] [0.09,0.56] [0.10,0.58] [0.12,0.60]1[3,0.62] [1.00,1.00]

12 2667 [0.06,0.40] [0.06,0.47] [0.07,0.50] [0.08,0.5@]09,0.54] [0.10,0.56] [1.00,1.00]
Male 0 3549 [1.00,1.00]

2 3549 [0.27,0.81] [1.00,1.00]

4 3411 [0.19,0.76] [0.21,0.77] [1.00,1.00]

6 3303 [0.14,0.69] [0.16,0.71] [0.20,0.72] [1.00,1.00]

8 3219 [0.10,0.62] [0.12,0.64] [0.13,0.66] [0.15,0.67]0Q,1.00]

10 3135 [0.08,0.53] [0.09,0.56] [0.10,0.60] [0.11,0.60]1[3,0.62] [1.00,1.00]

12 2721 [0.06,0.40] [0.07,0.47] [0.08,0.50] [0.09,0.5@]10,0.54] [0.11,0.56] [1.00,1.00]
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Fig. 7 20 of the 59 missing patterns in the Jimma dataset (N is the nunbbéants with the pattern under

consideration).
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