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Abstract Generalized estimating equations have been widely used in the analysis of
correlated count data. Solving these equations yields consistent parameter estimates
while the variance of the estimates is obtained from a sandwich estimator, thereby
ensuring that, even with misspecification of the so-called working correlation matrix,
one can draw valid inferences on the marginal mean parameters. That they allow
misspecification of the working correlation structure, though, implies a limitation
of these equations should scientific interest also be in the covariance or correlation
structure. We propose herein an extension of these estimating equations such that, by
incorporating the bivariate Poisson distribution, the variance-covariance matrix of the
response vector can be properly modeled, which would permitinference thereon. A
sandwich estimator is used for the standard errors, ensuring sound inference on the
parameters estimated. Two applications are presented.

Keywords Bivariate Poisson distribution· first four moments· generalized linear
models· longitudinal count data· sandwich estimator· time varying covariates

1 Introduction

Count data, as the name suggests, arises as a result of a counting process in a given
interval of time and therefore takes on non-negative integer values. Examples may
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include: number of doctor visits, number of epileptic seizures, number of accidents,
etc. To draw inferences from such data, a Poisson distribution is usually assumed
as the data generating mechanism and a log-likelihood function is constructed which,
when maximized, yields parameters of scientific interest. The standard Poisson model
implies that the mean and variance are equal (McCullagh and Nelder (1989). How-
ever, in practice, this implication is usually restrictivebecause count data samples
often have the mean either greater than the variance (so-called underdispersion) or
less than the variance (also known as overdispersion). Therefore, using the Poisson
model in its basic form would not account for this feature correctly. To account for
overdispersion, the negative-binomial (NB; Breslow (1984); Lawless (1987)) model
is an option. Also, count data regularly has an incidence of zero counts greater than
expected from the Poisson model. The zero-inflated Poisson (ZIP; Lambert (1992))
or zero-inflated negative binomial (ZINB; Ridout et al (2001)) model account for the
extra zeros.

Further, count data is often collected repeatedly over time. Such studies aim at
describing, for example, the evolution of the subjects’ condition over time, given cer-
tain characteristics of interest. This repetition in the observation of the patients or
cluster or subjects induces the aspect of correlation because responses from the same
subject will be more alike than those between different subjects. Also here, exten-
sions from cross-sectional or univariate data to correlated data have been proposed
in the literature and implemented in statistical software packages. Some of these in-
clude generalized estimating equations (GEE1; Liang and Zeger (1986)), the Poisson-
normal model, which belongs to the generalized linear mixedmodel family (GLMM;
Breslow and Clayton (1993); Wolfinger and O’Connell (1993))or more generally
the combined model (Molenberghs et al (2007), Molenberghs et al (2010)), the mul-
tivariate negative binomial model (Solis-Trapala and Farewell (2005); Winkelmann
(2008)), etc. In this paper, we shall generically refer to all estimating equations as
GEE while GEE1 denotes the method put forward by Liang and Zeger (1986) in
which the correlation structure is calculated using the method of moments. Further-
more, GEE1.5 denotes the extension of GEE1 by replacing the moment-based estima-
tion of the working correlation parameters with a second setof estimating equations
(Prentice (1988); Kim and Shults (2010) and, Lipsitz et al (1991) are some exam-
ples). In GEE1.5, the two sets of estimating equations for the marginal mean and
correlation structure are assumed orthogonal or independent, which simplifies the
computational burden that would be encountered otherwise.Because these methods
aim at obtaining marginal mean parameters that are consistent and asymptotically
normally distributed, they permit inferences on the marginal mean regression param-
eters and standard errors even when the correlation structure is not correctly specified.
As a result, and akin to GEE1, no scientific inference can be made on the correlation
structures in GEE1.5 given that these association structures are allowed to be mis-
specified. On the other hand, allowing the two sets of estimating equations to be cor-
related results in GEE2 (Liang et al 1992; Zhao and Prentice 1990; Prentice and Zhao
1991). This implies that the first and second moments are thenfully modeled while
making working assumptions about the third- and higher-order moments. Research
in marginal models for hierarchical or correlated count data is certainly ongoing. Iddi
and Molenberghs (2013) also contributed to this area of correlated and overdispersed
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count data by proposing a marginalized model for zero-inflated, overdispersed, and
correlated count data. We refer interested readers in the topic of generalized estimat-
ing equations to Molenberghs and Verbeke (2005), Hardin andHilbe (2003), Diggle
et al (2002), Fitzmaurice et al (2004), and Ziegler (2011). Modeling of the covariance
structure simultaneously with the mean is a field of ongoing research and many other
researchers, for example, Ye and Pan (2006), Leng et al (2010), Fan et al (2007), etc.,
have also made contributions to the subject.

Generally, when analyzing correlated data, 3 different modeling frameworks can
be chosen from, depending on the objective of the study. In Section 5.3 of Molen-
berghs and Verbeke (2005), these frameworks or model families (marginal models,
conditionally specified models, and subject-specific models) are presented and char-
acterized. Note that Lee and Nelder (2004) regard the subject-specific models also as
conditional models. For completeness, we in turn briefly define these 3 families but
refer to Molenberghs and Verbeke (2005), Fahrmeir and Tutz (1994), Fahrmeir and
Tutz (2001), Diggle et al (2002), and Lee and Nelder (2004) for detailed discussions
of these families. A marginal model is one where the marginaldistribution of the
response of interest is modeled as a function of covariates.One models the expec-
tation of the response variable conditioning only on the covariates. An example is a
comparison of males and females in terms of the mean responseor a contrast in the
average number of epileptic seizures between patients who received a treatment ver-
sus patients in a control (placebo) group. A random-effectsor subject-specific model
further conditions on unobserved or latent subject-specific random effects in addition
to the covariates of interest. For a conditionally specifiedmodel, typically an auto-
regressive or transition model, the expectation of the response variable is modeled
while conditioning on part or all of the remaining set of responses for a subject as
well as covariates; in a transition model, conditioning is on past measurements.

In this paper, marginal models are of interest, especially motivated by two datasets
presented in Section 3 and analyzed in Section 4. We hence-forth limit our discus-
sion to the marginal-models framework for correlated countdata, highlighting the
(relevant) limitations and then discuss our proposed solution. GEE1 is a common
tool used when modeling correlated count data. Since its introduction by Liang and
Zeger (1986), it has been extensively studied, implementedin statistical software
packages, and applied in research. Its strengths and limitations are very thoroughly
described in the literature. Extensions of GEE1 to allow forthe simultaneous estima-
tion of both the marginal mean and correlation parameters assuming independence
between them have been proposed in literature and are hereinreferred to as GEE1.5.
One strength of GEE1 and GEE1.5 is that the parameter estimates are consistent as
long as the mean structure is correctly specified, even if theworking covariance or
correlation structure is misspecified. They are also computationally easier (faster) to
evaluate than their GEE2 counterparts. A major limitation suffered by both methods
is that, because the estimating equations allow for the misspecification of the corre-
lation/covariance structure, GEE1 and GEE1.5 fall short ifscientific interest is not
only in the marginal mean parameters but also in the association structure. Further
detail about the different GEE methods is presented in Section 2.2, while Section 2.3
presents our extension of the estimating equations to modelthe covariance structure
via covariates simultaneously with the marginal mean parameters by incorporating
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the bivariate Poisson distribution into the estimating equations thereby permitting
inference on both the marginal mean and covariance parameters.

2 Methodology

2.1 Notation

Henceforth, the termsubjectwill be used to mean the independently replicated entity
within which the repetition occurs; for example, patient, subject, cluster, or unit. We
use the random variableYi j to denote thej-th observation of subjecti, i = 1, . . . ,K
and j = 1, . . . ,ni . Because the responses for each subjecti are repeatedly recorded,
subjecti has anni ×1 vectorYi = (Yi1,Yi2, . . . ,Yini )

⊤ of measurements. Further, let
Xi j denote ap× 1 vector of covariates, thusXi j = (Xi j1,Xi j2, . . . ,Xi jp)

⊤, that are
to be investigated for possible association with the response variableYi j . In matrix
notation,

Xi =




X⊤
i1

X⊤
i2
...

X⊤
ini


=




Xi11 Xi12 . . . Xi1p

Xi21 Xi22 . . . Xi2p
...

...
. . .

...
Xini1 Xini2 . . . Xini p


 .

It is important to mention that the covariates contained inXi may be either changing
over time j in which case they would be referred to as time-varying covariates, or
otherwise time-stationary. In Section 2.3, we show how our proposal adapts to both
time-stationary and time-varying covariates.

2.2 Generalized Estimating Equations

Following from the theory of generalized linear models (GLM; Agresti (2002), Nelder
and Wedderburn (1972), McCullagh and Nelder (1989)), the first two moments de-
rived (Molenberghs and Verbeke (2005), ch. 3) from a distribution that belongs to the
exponential family of distributions are the mean and variance, expressed as,

E(Yi j | Xi) = µi j , (1a)

Var(Yi j | Xi) =Vi j = φυ(µi j ), (1b)

respectively, whereφ is a scale parameter for the variance andυ(·) is the vari-
ance function, which describes the dependency of the variance on the mean. Mean
(1a) is related to covariates inXi j via a known link functiong(·) (for example,
log link for counts/Poisson data, logit or probit link for binary/binomial data) as
g(µi j ) = X⊤

i j β , whereβ is a p×1 vector of unknown regression parameters. If we

let Corr(Yi j ,Yik | Xi) = ρi jk , then Cov(Yi | Xi) =Vi(β ,φ ,α) = φCi(β )
1
2 Ri(α)Ci(β )

1
2 ,

whereRi is a correlation matrix,Ci = diag(υ(µi j )) is a diagonal matrix of variances
andα is a vector of correlation parameters. Specific to count data, Yi j is assumed
to follow a Poisson distribution with meanµi j , thusYi j ∼ Poisson(µi j ). The Poisson
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density can be expressed as belonging to the exponential family by letting logµi j to be
the natural parameter,φ = 1 andυ(µi j ) = µi j . The marginal mean (1a) is then mod-
eled in terms of covariates as log(µi j ) = X⊤

i j β , therefore referred to as a log-linear or
Poisson regression model and Var(Yi j | Xi) = µi j . This model, therefore, specifically
implies that the mean is equal to the variance, a phenomenon usually termed equi-
dispersion. In practice though, deviations from this are common, so that the mean
is greater than the variance (under-dispersion) or that themean is less than the vari-
ance (over-dispersion). While it is not this paper’s goal to fully address over(under)-
dispersion, we refer interested readers to, for example, Molenberghs et al (2007),
Molenberghs et al (2010) and references therein for furtherdetails. Indeed, our in-
tention is to model correlated count data such that inference is allowed on both the
marginal parametersβ and the covariance structure Cov(Yi | Xi).

Given(φ ,α), Liang and Zeger (1986) iteratively solve the generalized estimating
equation given by

K

∑
i=1

Ui(β ) =
K

∑
i=1

∂ µ i

∂β

⊤

V−1
i (Yi −µ i) = 0 (2)

to obtain the estimates forβ (β̂ ). The iterative algorithm is as follows:

1. Obtain the starting values ofβ̂ from fitting a GLM (thus assuming independence).

2. Givenβ̂ or β̂
(l)

, calculate(φ̂ , α̂) and thereforêVi = φ̂C
1
2
i

(
β̂
)

Ri (α̂)C
1
2
i

(
β̂
)

us-

ing the method of moments (see Chapter 8 of Molenberghs and Verbeke (2005)).
3. Givenφ̂ , α̂ andV̂i , updatêβ by using modified Fisher’s scoring algorithm:

β̂
(l+1)

= β̂
(l)

−

[
K

∑
i=1

(
∂ µ i

∂β

)⊤

V−1
i

(
∂ µ i

∂β

)]−1[ K

∑
i=1

(
∂ µ i

∂β

)⊤

V−1
i (Yi −µ i)

]
.

The solution is obtained by iterating between steps 2 and 3 above until convergence
meaning that the change in the parameter estimates satisfies(e.g., is less than) a pre-
specified criterion. Assuming the marginal mean (µ i) is correctly specified, consis-

tent and asymptotically normally distributed parameter estimatesβ̂ with meanβ and
variance-covariance matrix

Var(β̂ ) = I−1
0 I1I−1

0 , (3)

where

I0 =
K

∑
i=1

(
∂ µ i

∂β

)⊤

V−1
i

(
∂ µ i

∂β

)
and

I1 =
K

∑
i=1

(
∂ µ i

∂β

)⊤

V−1
i Var(Yi)V

−1
i

(
∂ µ i

∂β

)
,

are obtained. The variance estimator in (3) is commonly referred to as the sandwich
estimator and results in the so-called empirically corrected standard errors. The pa-
rameter estimates and standard errors are asymptotically correct whether or not the
working correlation structure is correctly specified.
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Much as GEE1 has been found appealing to many data analysts and researchers,
it has quite a number of issues associated with it. It is not our intention to exhaus-
tively list them herein but refer to, for example, Lee and Nelder (2004), Lindsey and
Lambert (1998), Crowder (1995), Sun et al (2009), Wang and Carey (2004), among
others, for further discussion of these issues. Specifically, GEE1 allowing the mis-
specification of the working correlation structure, thereby rendering it a nuisance,
implies that the response vector (Yi) is given an arbitrary distribution and hampers
checking assumptions about the covariance structure (Lee and Nelder (2004)). Spec-
ifying a covariance structure based on a model straightforwardly allows for inference
on this covariance structure. Further and more importantly, although consistent pa-
rameter estimates and standard errors can be obtained even with a misspecification of
the working correlation assumption, careful estimation ofthe covariance/correlation
is needed since it may affect the iterative updating ofβ andα, leading to a breakdown
of the iterative procedure (Sun et al (2009)). As an alternative estimation approach to
the method of moments used by Liang and Zeger (1986) for the correlation structure,
Kim and Shults (2010) use a two-stage approach to estimate the regression param-
etersβ̂ and the correlation parametersα̂. At stage 1, they iterate between (2), with

V−1
i =C

− 1
2

i (β )R−1
i (α)C

− 1
2

i (β ), and the estimating equation forα, namely:

∂
∂α

{
K

∑
i=1

Z⊤
i (β )R−1

i Zi(β )

}
= 0, (5)

whereZi(β ) = (zi1, . . . ,zini )
⊤ are the j-th Pearson residuals for subjecti given by

zi j = (yi j − µ̂i j )/
√

υ(µ̂i j ) and evaluated at the currentβ̂ , until convergence. At stage
2, they plugα̂ from stage 1 into

K

∑
i=1

trace

{
∂R−1

i (δ )
∂α

Ri(α)

}∣∣∣∣∣
δ=α̂

= 0, (6)

and updatêα. The finalβ̂ is obtained by solving (2) at the final̂α from (6).
Yet another alternative to the method of moments for the correlation parameters is

the proposal by Prentice (1988) in which estimating equations (2) are simultaneously
solved with those of pairwise correlations (α) given by;

K

∑
i=1

(
∂ζ i

∂α

)⊤

H−1
i (Wi −ζ i) = 0, (7)

whereWi =(zi1zi2,zi1zi3, . . . ,zi,ni−1zi,ni ,z
2
i1,z

2
i2, . . . ,z

2
ini
)⊤ contains the products of sub-

ject i’s pairs and squares of Pearson residualsziszit where 1≤ s< t ≤ ni , Hi =Var(Wi)
andζ i = E(Wi). It is common for binary responses that the lastni components ofWi ,
i.e., the squared residuals, are left out due to the mean-variance relationship. Calcu-
lating Var(Wi) = Var(ziszit ) = E({ziszit}

2)−E(ziszit )
2 requires

E({ziszit}
2) =

[
E(Y2

isY
2
it )−2µ̂it E(Y

2
isYit )+ µ̂2

it E(Y
2
is)−2µ̂isE(YisY

2
it )+

4µ̂isµ̂it E(YisYit )−3µ̂2
isµ̂2

it + µ̂2
isE(Y

2
it )
]
[υ(µ̂is)υ(µ̂it )]

−1 .
(8)
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For binary response data, for example, and unlike the countscase, (8) simplifies (as
Y2

i j =Yi j ) such that

Var(ziszit ) = 1+(1−2µ̂is)(1−2µ̂it )(υ(µ̂is)υ(µ̂it ))
−1/2 ψist −ψ2

ist,

whereψist = E(ziszit ) are entries inζ i . The binary response case, thus, turns out
to be special sinceζ i and Hi are then fully determined by the mean and corre-
lation models without necessitating additional assumptions about higher-order mo-
ments. Generally though, obtaining matrixHi involves the third and fourth moments
of Yi , which are usually assumed to be equal to zero. Alternativesto this assump-
tion may be sought depending on the type of response variableunder consideration.
In the context of binary response data, for example, Diggle et al (2002) suggest
Hi = diag[Var(zi1zi2), . . . ,Var(zi,ni−1,zi,ni )], which only depends on̂α and β̂ while
they propose the use of the identity matrix for count responses. By using the identity
matrix for the counts, there is a loss of efficiency in estimating α. They, however, ar-
gue that this efficiency loss has very little impact, in practice, on the estimation ofβ
and yet simplifies computation by avoiding the estimation ofadditional higher-order
parameters. Note that whileHi is a working variance-covariance matrix (meaning that
it contains working assumptions usually being that the third- and fourth-order corre-
lations are equal to zero, matters not whether it is correctly specified or not, only
aides the estimation of the regression parametersβ and cannot be used for formal
inferences) forWi ; Vi in (2), on the other hand, is not a working covariance matrix
because the second moments are specified by (7).

Note that Prentice (1988) assumes independence between (2)and (7). Again, this
assumption implies a loss of efficiency but is defendable because the consistency and
asymptotic normality of the marginal mean regression parameters is not hampered
by the misspecification of the correlation structure. Also important to mention is that
the sets of parametersα andβ both come with precision estimates and formal in-
ference can be made on these parameters as long as the equations can be believed to
have been correctly specified (Molenberghs and Verbeke (2005)). It may be desirable,
however, to relax the independence assumption between (2) and (7). This may be the
case if interest lies in the efficient estimation of bothβ andα. One may then be inter-
ested in minimizing the loss of efficiency accruing to the orthogonality assumption in
GEE1.5. This leads us to the so-called second-order GEE (GEE2). Zhao and Prentice
(1990) proposed an alternative to GEE1 or GEE1.5 in terms of correlations while
Liang et al (1992) used odds ratios, with both proposals aimed at modeling mutivari-
ate binary responses. Prentice and Zhao (1991) extended theequations of Zhao and
Prentice (1990) to the general case of discrete or continuous response vectors. They
combine the response vectorYi and the pairwise crossproductsWi into one outcome
vectorT⊤

i = (Y⊤
i ,W

⊤
i ) and solve the equations:

K

∑
i=1

Ui(Θ) =
K

∑
i=1

D⊤
i (Θ)Σ−1

i (Θ)fi(Θ)

=




∂ µ i

∂β
∂ζ i

∂β
0 ∂ζ i

∂α



(

Var(Yi) Cov(Yi ,Wi)
Cov(Wi ,Yi) Var(Wi)

)−1(Yi −µ i
Wi −ζ i

)
= 0,

(9)
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whereΘ = (β⊤,α⊤)⊤. Since solving (9) is computationally unattractive, Prentice
and Zhao (1991) suggested specifying working variance matrices inΣi such that the
third and fourth moments are expressed as functions ofµ i andζ i . We show in the
next section how we incorporate the bivariate Poisson distribution, rather than the
multivariate Poisson distribution, into score equation (2) to allow scientific inference
on the covariance as well as the mean parameters while modeling the covariance of
Yi at pair level. Use of the multivariate Poisson distributionwould result in a full
likelihood approach, which would maximize efficiency. However, it is hampered by
the complexity of the probability function due to summations which may increase
the computational burden with increase in the number of measurements per subject
and/or sample size (Karlis (2003)), the very reason estimating equations are being
sought after. By using the bivariate Poisson distribution,closed form expressions for
the third and fourth moments in (8) are easily obtainable andone could go ahead with
the suggestion of Prentice (1988) but for correlated count data. A somewhat different
route is taken here in that estimating equations are proposed at the level of subjecti’s
pair of responses (Yis,Yit ). The use of pairs rather than the whole vector of responses
(Yi) would lead to loss of efficiency in estimating the parameters of interest but would
simplify the computational unattractiveness of having to obtain the third and fourth
moments that is evident as long as scientific interest lies inboth the marginal mean
parameters (β ) and the association structure.

2.3 Extension of GEE Using the Bivariate Poisson Distribution

To put matters into perspective, consider the following bivariate Poisson distribution
which is derived using the trivariate reduction method (Kocherlakota and Kocher-
lakota (1992), Kocherlakota and Kocherlakota (2001)) based on a convolution of in-
dependent Poisson variables. Note that there are several derivations of the bivariate
Poisson distribution in the literature. For example, Lakshminarayana et al (1999) de-
rive their bivariate Poisson distribution based on a polynomial factor. Assume that
Wic are independent Poisson random variables such that E(Wic) = ηic, c= s, t or st.
The random variablesYis = (Wis+Wist) andYit = (Wit +Wist) then follow a bivariate
Poisson distribution. Thus,(Yis,Yit )∼ BP(ηis,ηit ,ηist) characterized by

f (yis,yit ) = e−(ηis+ηit+ηist)
ηyis

is

yis!
ηyit

it

yit !

min(yis,yit )

∑
l=0

(
yis

l

)(
yit

l

)
l !

(
ηist

ηisηit

)l

. (10)

Marginally, E(Yis) = ηis+ηist, E(Yit ) = ηit +ηist and Cov(Yis,Yit ) =ηist. We propose
the score equation(Ui,st) to be computed at each pair{s, t} of responses from subject
i such that the estimates for theβ regression parameters are obtained by solving

K

∑
i

Ui =
K

∑
i

∑
1≤s<t≤ni

Ui,st(β ) =
K

∑
i

∑
s<t

∂ µ i,st

∂β⊤
V−1

i,st

(
Yi,st−µ i,st

)
= 0, (11)

where

Yi,st =




Yis

Yit

YisYit


 , µ i,st =




E(Yis)
E(Yit )

E(YisYit )


 and
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Vi,st =




Var(Yis) Cov(Yis,Yit ) Cov(Yis,YisYit )
Cov(Yit ,Yis) Var(Yit ) Cov(Yit ,YisYit )

Cov(YisYit ,Yis) Cov(YisYit ,Yit ) Var(YisYit )


,

with E(YisYit ) = E(Yis)E(Yit )+Cov(Yis,Yit ), Var(Yis) = E(Yis) and Var(Yit ) = E(Yit ).
To derive the covariance terms Cov(Yis,YisYit ), Cov(Yit ,YisYit ) and Var(YisYit ) in

Vist in (11), we need to calculate the following four moments of the Poisson distri-
bution that turn out to be essential. IfX̃ ∼ Poisson(λ ) with probability mass func-

tion f (X̃;λ ) =
λ x̃e−λ

x̃!
whereλ > 0 andx̃= 0,1,2, . . ., then thenth moment E(X̃n),

n= 1,2,3,4 is as follows;

E(X̃) = e−λ
∞

∑̃
x=0

x̃
λ x̃

x!
= λe−λ

∞

∑̃
x=1

λ x̃−1

(x̃−1)!
= λe−λ eλ = λ , (12a)

E(X̃2) = e−λ
∞

∑̃
x=0

x̃2 λ x̃

x̃!
= λe−λ

∞

∑̃
x=1

x̃
λ x̃−1

(x̃−1)!
= λe−λ ∂

∂λ

[
λ

∞

∑̃
x=1

λ x̃−1

(x̃−1)!

]

= λe−λ ∂
∂λ

(
λeλ

)
= λe−λ (1+λ )eλ = λ (1+λ ),

(12b)

E(X̃3) = e−λ
∞

∑̃
x=0

x̃3 λ x̃

x̃!
= λe−λ

∞

∑̃
x=1

x̃2 λ x̃−1

(x̃−1)!
= λe−λ ∂

∂λ

[
λ

∞

∑̃
x=1

x̃λ x̃−1

(x̃−1)!

]

= λe−λ ∂
∂λ

[
λ

∂
∂λ

(
λ

∞

∑̃
x=1

λ x̃−1

(x̃−1)!

)]
= λe−λ ∂

∂λ

[
λ

∂
∂λ

(
λeλ

)]

= λe−λ ∂
∂λ

(
λ (1+λ )eλ

)
= λe−λ (λ (1+λ )+1+2λ )eλ )

= λ (1+3λ +λ 2), and

(12c)

E(X̃4) = λe−λ ∂
∂λ

[
λ (1+3λ +λ 2)eλ

]

= λ
[
λ (1+3λ +λ 2)+1+6λ +3λ 2]= λ (λ 3+6λ 2+7λ +1).

(12d)

Generally, if E(X̃n) = fn(λ ), then

fn+1(λ ) = λe−λ ∂
∂λ

[
fn(λ )eλ

]

= λe−λ
[

f
′

n(λ )+ fn(λ )
]

eλ = λ
[

f
′

n(λ )+ fn(λ )
]
,

(13)

where f
′

n(·) is the first derivative offn(·). Now, from Var
(
X̃
)
= E

(
X̃2
)
−
[
E
(
X̃
)]2

, it

follows that Var(YisYit ) = E
[
(YisYit )

2
]
− [E(YisYit )]

2 such that E
[
(YisYit )

2
]

or E(Y2
isY

2
it )

is to be replaced with

E(Y2
isY

2
it ) = E

[
(Wis+Wist)

2 (Wit +Wist)
2
]

= E
[(

W2
is +2WisWist +W2

ist

)(
W2

it +2WitWist +W2
ist

)]

= E

[
W2

isW
2
it +2W2

isWitWist +W2
isW

2
ist +2WisW2

it Wist+
4WisWitW2

ist +2WisW3
ist +W2

it W
2
ist +2WitW3

ist +W4
ist

]
,

(14)
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where further simplification is possible by applying the expectation to the indepen-
dent Poisson variablesWs, Wt , Wst and using the moments in (12). This leads to the
solution

E(Y2
isY

2
it ) = E(Yis)

2E(Yit )
2+E(Yit )E(Yis)

2)+E(Yis)E(Yit )
2+2η2

ist+

E(Yis)E(Yit )(1+4ηist)+2ηist(E(Yis)+E(Yit ))+ηist.
(15)

The covariances Cov(Yis,YisYit ) and Cov(Yis,YisYit ) are calculated as

Cov(Yis,YisYit ) = E(YisYisYit )−E(Yis)E(YisYit ) = E(Y2
isYit )−E(Yis)E(YisYit )

and

Cov(Yit ,YisYit ) = E(YitYisYit )−E(Yit )E(YisYit ) = E(YisY
2
it )−E(Yit )E(YisYit ),

respectively, where similar algebra as in (14) leads to the following quantities:

E(Y2
is) = E(Yis)+E(Yis)

2,

E(Y2
it ) = E(Yit )+E(Yit )

2,

E(Y2
isYit ) = E(Y2

is)E(Yit )+2ηistE(Yis)+ηist,

E(YisY
2
it ) = E(Yis)E(Y

2
it )+2ηistE(Yit )+ηist.

The means E(Wic), are related to covariates as log[E(Wic)] = X⊤
icβ , where




X⊤
is

X⊤
it

X⊤
ist


=




1 0 0 Xis1 Xis2 . . . Xisp

0 1 0 Xit1 Xit2 . . . Xit p

0 0 1Xist1 Xist2 . . . Xist p


 . (16)

The vector of unknown regression parametersβ = (β0s,β0t ,β0st,β1,β2, . . . ,βp)
⊤, al-

lowing for an interceptβ0 specific to time points, t and their productst in addition
to the regression parameters(β1, . . . ,βp) shared for the rest of the variables. Further-
more, the model-based standard errors are obtained as the square root of the diagonal
entries of

U∗ =

(
K

∑
i

∑
s<t

∂ µ i,st

∂β⊤
V−1

i,st

∂ µ i,st

∂β

)−1

,

while the sandwich standard errors are calculated as the square root of the diagonal
of

U∗∗ =U∗ · I∗ ·U∗ =U∗ ·
K

∑
i

∑
s<t

Ui,stU
⊤
i,st ·U

∗.

As mentioned in Section 2.1, covariates under consideration in (16) may be either
time-stationary or time-varying. When time-stationary, each of the columns 1,2, . . . , p
would contain the same values. On the other hand, when time-varying, Xist can be
derived as a function ofXis and Xit , for example, a difference, lag, sum, product,
ratio, etc. The correlation between two measurementsYis andYit is then calculated as
ρi,st = Cov(Yis,Yit )/

√
Var(Yis)Var(Yit ).
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3 Datasets

Two real-life longitudinal datasets are analyzed herein, namely, the Epilepsy data and
the Jimma Infant Growth (or Survival) Study. We describe these two datasets in turn.

3.1 Epilepsy Data

This dataset is presented and analyzed by Leppik et al (1985), and Thall and Vail
(1990), among others. The data were obtained from a placebo-controlled clinical
trial of 59 patients with epilepsy. These patients, suffering from simple or complex
partial seizures, were enrolled in a randomized clinical trial that aimed at studying
the effect of the anti-epileptic drug known as progabide on the number of epileptic
seizures over time. In the study, 31 epileptic patients wererandomized to the group
that received progabide while 28 patients received a placebo, as an adjuvant to the
standard anti-epileptic chemotherapy. Progabide is an anti-epileptic drug whose pri-
mary mechanism of action is to enhance gamma-aminobutyric acid (GABA) content.
GABA is the primary inhibitory neurotransmitter in the brain. Prior to receiving treat-
ment, baseline data on the number of epileptic seizures during the preceding 8-week
interval were recorded. Counts of epileptic seizures during 2-week intervals before
each of four successive post-randomization clinic visits were recorded. The dataset
also contains information on the patient identification, treatment (0=Placebo, 1=Pro-
gabide), age, baseline 8 week seizure count, and the seizurecount during the first,
second, third, and fourth 2-week time interval. Figure 1 shows the evolution of the
number of seizures for each epileptic patient over the studyperiod, while Figure 2
shows the distribution of the seizure counts over all week intervals and both treat-
ment groups. The evolution of the average and median number of epileptic seizures
between the consecutive two-weeks period by treatment are shown in Figures 3 and 4,
respectively. There are differences in the seizure counts within patients but also be-
tween patients over time. Specifically, one patient seems tohave an extreme number
of seizure counts at all time points relative to the other profiles while another patient
registered a rather distant number (76) of seizures at the third visit. We also observe
from Figure 2 that the distribution of the seizure counts is quite skewed and that the
majority of the counts were between 0 and about 20, although there was a count of
up to 102 seizures in the first two-week interval (see Figure 1). From Figures 3 and
4, it can be seen that the progabide group has lower (mean or median) seizure counts
except at the second two-weeks interval. The seizure countsseem to reduce, on av-
erage, over the study period for both treatment arms. It is common for longitudinal
studies to have cases that at some point in the study drop out or miss some of the
visits. For this dataset, however, all patients were observed at all the visits.

3.2 Jimma Infant Growth Study

This dataset, also referred to as the Jimma Infant Survival Differential Longitudinal
Growth Study, has been analyzed by Lesaffre et al (1999) in the linear mixed models
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Fig. 1 Epilepsy Data: Subject-specific profiles of
the number of epileptic seizures over study weeks.
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Fig. 2 Epilepsy Data: Distribution of the number
of epileptic seizures.
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Fig. 3 Epilepsy Data: Average evolution of the
number of epileptic seizures over study weeks by
treatment.
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Fig. 4 Epilepsy Data: Median evolution of the
number of epileptic seizures over study weeks by
treatment.

context, while Kassahun et al (2012) have used it in the binary data framework in
which they sought to identify risk factors for children being overweight, based on
a dichotomization of the Body Mass Index (BMI). It is an Ethiopian study, set up
to establish risk factors affecting infant survival and to investigate socio-economic,
maternal, and infant-rearing factors that contribute mostto children’s early survival.
Children born in Jimma, Keffa and Illubabor, located in Southwestern Ethiopia were
examined for their first year growth characteristics. At baseline (birth), there were a
total of 7969 infants enrolled in the study, both singleton and twin live births inclu-
sive. However, only singleton live births (7872 infants) atbaseline are considered.
The children were followed-up every two months, until the age of one year, thus
age= 0,2,4,6,8,10 and 12 months. Herein, we are interested in modeling the to-
tal number of days of diarrheal illness as a function of gender (1=Male, 0=Female),
whether mother continued breastfeeding (1=Yes, 0=No) for the 12 months, whether
mother sought medical help (1=Yes, 0=No), and place of residence (1=rural, 2=urban,
3=semi-urban). Figure 5 shows the evolution of the number ofdays of illness over
the 12-month period for 399 (5%) randomly sampled infants while Figure 6 depicts
the average number of days of illness over the 12 months by gender. From Figure 5,
we observe a tendency of the number of days of diarrheal illness to increase as the
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infant grows older. There are also a lot of variability observable within an infant, and
likewise between infants as they evolve. Figure 6 further shows an increasing trend
in the average number of days of diarrheal illness as the infants get older, with the
females always having lower average counts than the males. Table 1 shows the num-
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Fig. 5 Jimma Data: Infant-specific profiles of the
number of days of diarrheal illness over age.
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Fig. 6 Jimma Data: Average number of days of di-
arrheal illness by gender over age.

ber of infants whose responses were recorded over the 12-month period, by gender.
As is typical of longitudinal studies, there is a reduction over time in the number of
infants. As mentioned in Section 3.1, longitudinal studiesvery often have missing

Table 1 Jimma data: Number of infants with observations by gender and age.

Age (months)

Gender 0 2 4 6 8 10 12

Female 3865 3706 3570 3488 3401 3351 2920

Male 4007 3798 3656 3536 3455 3388 2972

Total 7872 7504 7226 7024 6856 6739 5892

data. The Jimma study is no exception. Figure 7 shows some (20out of 59) of the
missingness patterns present in the dataset. In general, both intermittent missingness
and dropout as well as the first infant visit not having been atage=0,2,4 or 6 months
are present. Because it is not our intention to deal with missing data in this paper,
we have assumed that the missingness mechanism is not related to the number of
days of diarrheal illness observed and have excluded 525 infants with intermittent
missingness.
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4 Data Analysis

To analyze the epilepsy dataset presented in Section 3.1, the following covariates
are considered: baseline (the 8-week pre-randomization seizure count), age (years),
treatment and time (visit), denoted asB⋆ A⋆, T⋆ t⋆, respectively. As mentioned in
Section 3.1, one patient is observed in Figure 1 to have a seemingly outlying profile.
However, Thall and Vail (1990) find no clinical basis to tag the patient as an extreme
case. The following analyses of the Epilepsy data thereforeuse data for all the 59
patients in the study.

Considering no time-varying covariates for the covarianceE(Wist) = ηist, we fit-
ted the model

log(ηis) = β0s+β1t
⋆
is+β2T⋆

i +β3 (t
⋆
is×T⋆

i )+β4B⋆
i +β5A⋆

i ,

log(ηit ) = β0t +β1t
⋆
it +β2T⋆

i +β3 (t
⋆
is×T⋆

i )+β4B⋆
i +β5A⋆

i ,

log(ηist) = β0st+β2T⋆
i +β5A⋆

i .

(17)

In general, the covariates used for modeling log(ηist) may be the same or different
from those used forηis andηit . Table 2 shows the parameter estimates and standard
errors corresponding to Model 17. The model with time-varying covariatevisit is

log(ηis) = β0s+β1t
⋆
is+β2T⋆

i +β3 (t
⋆
is×T⋆

i )+β4B⋆
i +β5A⋆

i ,

log(ηit ) = β0t +β1t
⋆
it +β2T⋆

i +β3 (t
⋆
is×T⋆

i )+β4B⋆
i +β5A⋆

i ,

log(ηist) = β0st+β1Φ(t⋆is, t
⋆
it )+β2T⋆

i +β5A⋆
i ,

(18)

whereϕ(t⋆is, t⋆it ) denotes a function applied to the time-varying covariatetime, in this
case, a difference betweentimeat points andt (t⋆is− t⋆it ). Other possibilities forϕ(·)
may include, for example, the lag, ratio, sum, product, etc.From Table 2, the interac-
tion between the visits and treatments is not significant (p= 0.7977) despite the fact
that the mean profiles in Figure 3 suggest otherwise. The discrepancy between the
observation in Section 3.1 and this finding is related to thatone patient whose profile
seems more extreme relative to the others. Mean profiles based on data without this
potentially outlying patient (not shown) also suggested nointeraction between the
treatments and visits. Considering age as a time-varying covariate when modeling
the covariance (Model 18) changed the results slightly but the conclusions remained
similar to when only time stationary covariates are used to model the covariance. Ta-
ble 5 shows the intervals of the minimum and maximum correlations, for the placebo
and progabide groups, obtained from fitting (17) and (18). The correlations range
over a wide interval with the progabide group having even wider ranges. By model-
ing the covariance between two measurements using visit as atime-varying covariate
and a difference as the time-varying function seems to have aminor impact on the
parameter estimates but also on correlations.

To analyze the Jimma study, denote the covariates age, sex, breastfeeding, help
and place asa⋆, s⋆, b⋆, h⋆ and p⋆, respectively. The model fitted consideringageas
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the time-varying covariate is

log[E(Wis)] = β0s+β1a⋆is+β2s⋆i +β3b⋆i +β4h⋆i +β5p⋆
i,rural+β6p⋆

i,semi-urban,

log[E(Wit )] = β0t +β1a⋆it +β2s⋆i +β3b⋆i +β4h⋆i +β5p⋆
i,rural+β6p⋆

i,semi-urban,

log[E(Wist)] = β0st+β1ϕ(a⋆is,a⋆it )+β2s⋆i +β3b⋆i +β4h⋆i ,
(19)

whereϕ(a⋆is,a⋆it ) = a⋆is−a⋆it . Table 4 confirms the observations made in Section 3.2,
namely, that that the average number of days of diarrheal illness increases as the in-
fants grow older with the female infants having lower countsof days compared to the
males. We also find that not breastfeeding is positively related to the number of days
of diarrheal illness (p= 0.0150) while not seeking medical help is also highly statis-
tically signicant in increasing the number of days of havingdiarrhea in the infants.
Table 6 shows the minimum and maximum estimates of the correlation by gender
obtained from fitting (19). The ranges of the correlation area bit narrower than those
from the epilepsy but there are minor differences in the correlation estimates between
males and females. Unlike the Epilepsy data case where the minimum and maximum
estimates of the correlation seem not to change much over time, the Jimma dataset
reflects a decreasing trend in the correlations as the infants get older, in the sense that
measurements close together are more correlated than thosefurther apart.

5 Concluding Remarks

In this paper, we have worked on estimating equations that can be used for model-
ing longitudinal data with the goal of making inference on (sub)populations. These
estimating equations model the dependence of the mean response on covariates of
interest, without specifying the joint distribution of thevector of responses from a
subject. Should scientific interest lie only in the estimation of the so-called population
averaged parameters, the approach of Liang and Zeger (1986)is quite sufficient and
one need not worry about more involved methods. Because in practice, the method of
Liang and Zeger (1986) is limited should interest lie also inthe association structure,
alternatives have been proposed. For example, Prentice (1988) proposed simultane-
ous estimation of the marginal mean and association structure permitting inference
also on the parameters characterizing the association, in the context of binary data.
As has been shown in this paper, the binary case is special as the model for the as-
sociation is fully determined by the mean and covariance. For count data, however,
this issue is a bit more involved and proposed solutions suchas in Prentice and Zhao
(1991) come to the rescue. They estimate the parameters of the marginal mean and
association simultaneously without making the orthogonality assumption made by
Zhao and Prentice (1990). This, however, is computationally unbecoming since it
involves third- and higher-order moments.

We have presented estimating equations at pair level of the vector of responses
for each subject in the context of correlated count data. Theproposal incorporates the
bivariate Poisson distribution which allows the modeling of the covariance between
two measurements. It is formulated such that the variance-covariance matrix of the
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outcome variable is not a nuisance but one on which inferencecan be made while
the standard errors are estimated using a sandwich estimator. The method allows for
time-stationary as well as time-varying covariates and gives the user the flexibility to
determine which function to use for the time-varying covariates. Possibilities may be
a lag, ratio, difference, sum, product, etc. A SAS macro has been written to implement
this method and is available athttp://ibiostat.be/software/longitudinal
or http://ibiostat.be/software/count. Using a 64-bit Windows 8.1 operat-
ing system computer with 8GB RAM and 2.80GHz processor, Model 17 converged,
based on a dataset of 236 observations, after 14 iterations with a real time of 0.45 sec-
onds. Similarly, (18) took 0.38 seconds (real time) and converged after 14 iterations.
Finally, Model 19 was fitted on a dataset of about 46,000 observations and converged
after 13 iterations and 59.39 seconds.

Note that while the standard errors are estimated using the sandwich estimator,
the SAS macro reports both the model-based and sandwich (also sometimes known
as robust or empirical) standard errors. In the results shown, there is a considerable
discrepancy between these two types of standard errors for some parameters. This
routinely implies that there are discrepancies between thetrue and assumed higher-
order moments. Fortunately, in such cases, the sandwich estimator provides valid
inferences nevertheless.

http://ibiostat.be/software/longitudinal
http://ibiostat.be/software/count
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Table 2 Epilepsy data: Parameter estimates and standard errors when a time stationary covariate is
considered (Model 17).

Model-based Sandwich or empirical

Effect Est. s.e. χ2 p s.e. χ2 p

Intercept (β0s) −1.1904 0.2157 30.45 <.0001 1.2655 0.88 0.3468

Intercept (β0t ) −1.2119 0.2474 24.00 <.0001 1.2563 0.93 0.3347

Intercept (β0st) 1.3148 0.0929 200.17 <.0001 0.4836 7.39 0.0066

visit (β1) −0.1724 0.0396 18.95 <.0001 0.0500 11.87 0.0006

trt(Placebo) (β2) 0.2782 0.0452 37.89 <.0001 0.2490 1.25 0.2638

trt*visit (β3) 0.0404 0.0390 1.07 0.3004 0.1576 0.07 0.7977

Baseline (β4) 0.0379 0.0015 629.29 <.0001 0.0088 18.46 <.0001

Age (β5) 0.0082 0.0027 8.93 0.0028 0.0129 0.40 0.5257

Table 3 Epilepsy data: Parameter estimates and standard errors when a time-varying covariate is con-
sidered (Model 18).

Model-based Sandwich or empirical

Effect Est. s.e. χ2 p s.e. χ2 p

Intercept (β0s) −1.3907 0.2221 39.20 <.0001 1.3798 1.02 0.3135

Intercept (β0t ) −1.6024 0.2518 40.50 <.0001 1.4621 1.20 0.2731

Intercept (β0st) 1.2180 0.0992 150.64 <.0001 0.5099 5.71 0.0169

visit (β1) −0.0457 0.0246 3.45 0.0633 0.0468 0.95 0.3289

trt(Placebo) (β2) 0.3037 0.0448 46.04 <.0001 0.2456 1.53 0.2163

trt*visit (β3) 0.0066 0.0375 0.03 0.8603 0.1550 0.00 0.9660

Baseline (β4) 0.0378 0.0015 619.46 <.0001 0.0091 17.27 <.0001

Age (β5) 0.0085 0.0027 9.72 0.0018 0.0129 0.44 0.5094
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Table 4 Jimma data: Parameter estimates and standard errors when a time-varying covariate is consid-
ered (Model 19).

Model-based Sandwich or empirical

Effect Est. s.e. χ2 p s.e. χ2 p

Intercept (β0s) −1.3373 0.0090 21968.71 <.0001 0.2232 35.89 <.0001

Intercept (β0t ) −0.9529 0.0098 10068.03 <.0001 0.1791 28.31 <.0001

Intercept (β0st) −0.3984 0.0091 3006.32 <.0001 0.1775 5.04 0.0248

age (β1) 0.1260 0.0007 28725.74 <.0001 0.0083 228.11 <.0001

sex(Female) (β2) −0.1732 0.0034 2556.79 <.0001 0.0307 31.93 <.0001

bf(No) (β3) 0.2379 0.0099 575.10 <.0001 0.0978 5.92 0.0150

help(No) (β4) 2.0924 0.0038308352.00 <.0001 0.03803034.68 <.0001

place(Rural) (β5) −0.0448 0.0064 48.82 <.0001 0.1060 0.18 0.6729

place(Semi-urban)(β6) −0.2088 0.0077 744.55 <.0001 0.1095 3.63 0.0566

Table 5 Epilepsy data: Minimum and maximum correlations from fitting Model 17 (top panel) and
Model 18 (bottom panel) for the two treatments.

Placebo Progabide

Visit 1 2 3 4 1 2 3 4

1 [1.00,1.00] [1.00,1.00]

2 [0.18,0.92] [1.00,1.00] [0.05,0.92] [1.00,1.00]

3 [0.19,0.93] [0.20,0.93] [1.00,1.00] [0.05,0.93] [0.06,0.94] [1.00,1.00]

4 [0.20,0.93] [0.22,0.94] [0.23,0.94] [1.00,1.00] [0.06,0.93] [0.06,0.94] [0.07,0.95] [1.00,1.00]

1 [1.00,1.00] [1.00,1.00]

2 [0.20,0.93] [1.00,1.00] [0.05,0.93] [1.00,1.00]

3 [0.21,0.93] [0.21,0.93] [1.00,1.00] [0.06,0.93] [0.06,0.93] [1.00,1.00]

4 [0.22,0.94] [0.22,0.94] [0.21,0.93] [1.00,1.00] [0.06,0.94] [0.06,0.94] [0.06,0.93] [1.00,1.00]
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Table 6 Jimma data: Minimum and maximum correlations from fitting Model 19 by gender.

Gender Age N 0 2 4 6 8 10 12

Female 0 3453 [1.00,1.00]

2 3453 [0.27,0.81] [1.00,1.00]

4 3336 [0.18,0.76] [0.21,0.77] [1.00,1.00]

6 3255 [0.14,0.69] [0.16,0.71] [0.18,0.72] [1.00,1.00]

8 3174 [0.11,0.62] [0.12,0.64] [0.15,0.66] [0.17,0.69] [1.00,1.00]

10 3102 [0.08,0.53] [0.09,0.56] [0.10,0.58] [0.12,0.60] [0.13,0.62] [1.00,1.00]

12 2667 [0.06,0.40] [0.06,0.47] [0.07,0.50] [0.08,0.52] [0.09,0.54] [0.10,0.56] [1.00,1.00]

Male 0 3549 [1.00,1.00]

2 3549 [0.27,0.81] [1.00,1.00]

4 3411 [0.19,0.76] [0.21,0.77] [1.00,1.00]

6 3303 [0.14,0.69] [0.16,0.71] [0.20,0.72] [1.00,1.00]

8 3219 [0.10,0.62] [0.12,0.64] [0.13,0.66] [0.15,0.67] [1.00,1.00]

10 3135 [0.08,0.53] [0.09,0.56] [0.10,0.60] [0.11,0.60] [0.13,0.62] [1.00,1.00]

12 2721 [0.06,0.40] [0.07,0.47] [0.08,0.50] [0.09,0.52] [0.10,0.54] [0.11,0.56] [1.00,1.00]



20 George KALEMA et al.

Age (months)

Pattern  20: N = 6 ( 0.08% )Pattern  19: N = 6 ( 0.08% )Pattern  18: N = 7 ( 0.09% )Pattern  17: N = 11 ( 0.14% )

Pattern  16: N = 11 ( 0.14% )Pattern  15: N = 21 ( 0.26% )Pattern  14: N = 23 ( 0.29% )Pattern  13: N = 64 ( 0.80% )

Pattern  12: N = 65 ( 0.82% )Pattern  11: N = 69 ( 0.87% )Pattern  10: N = 82 ( 1.03% )Pattern  9: N = 84 ( 1.05% )

Pattern  8: N = 86 ( 1.08% )Pattern  7: N = 156 ( 1.96% )Pattern  6: N = 165 ( 2.07% )Pattern  5: N = 189 ( 2.37% )

Pattern  4: N = 255 ( 3.20% )Pattern  3: N = 351 ( 4.40% )Pattern  2: N = 849 ( 10.65% )Pattern  1: N = 5388 ( 67.61% )

0 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 120 2 4 6 8 10 12

Missing

Observed

Missing

Observed

Missing

Observed

Missing

Observed

Missing

Observed

Fig. 7 20 of the 59 missing patterns in the Jimma dataset (N is the number of infants with the pattern under
consideration).
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