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Convergence problems often arise when complex linear mixed-effects models are fitted. Previ-
ous simulation studies (see e.g., [1, 2]) have shown that model convergence rates were higher
(i) when the number of available clusters in the data increased, and (ii) when the size of the
between-cluster variability increased (relative to the size of the residual variability).

The aim of the present simulation study is to further extend these findings by examining
the effect of an additional factor that is hypothesized to affect model convergence, i.e., im-
balance in cluster size. The results showed that divergence rates were substantially higher
for datasets with unbalanced cluster sizes — in particular when the model at hand had a
complex hierarchical structure. Further, the use of Multiple Imputation to restore ‘balance’
in unbalanced datasets reduces model convergence problems.

Keywords: simulation study, model convergence, mixed-effects model, multiple
imputation, unbalanced data

AMS Subject Classification: 62J99; 62P10

1. Introduction

Fitting a linear mixed-effects model is typically done using Newton-Raphson or quasi-
Newton based procedures (for details, see [3]). Based on some starting values for the
parameters at hand, these procedures iteratively update the parameter estimates until
sufficient convergence is achieved. Unfortunately, non-converging iteration processes often
occur when complex linear mixed-effects models are considered. This means that the
iterative process does not converge at all, or that it converges to values that are close
to or outside the boundary of the parameter space (i.e., variances that are close to zero
or negative, which may lead to a non-positive definite variance-covariance matrix of the
random effects D). Such problems mainly occur in complex models with many covariance
components [4].

Motivating setting. As an example of a complex model with many covariance compo-
nents where convergence is difficult to attain, consider the so-called surrogate endpoint
evaluation setting. In a clinical trial, a surrogate endpoint is a replacement outcome for
the true endpoint (i.e., the most credible indicator of treatment efficacy) that is use-
ful when the latter endpoint is difficult to measure (e.g., infrequent, expensive, invasive,
and/or distant in time) [1, 5, 6]. Obviously, the surrogate endpoint (S) can only replace
the true endpoint (T') when it has been formally evaluated. Nowadays, the meta-analytic
framework is commonly used to statistically evaluate the appropriateness of a candidate
S [1, 5]. In this approach, it is assumed that information regarding S and T is available
from multiple clinical trials (or from multiple other relevant units in which the patients
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are clustered, such as hospitals or countries; [7]). Based on these data, the following linear
mixed-effects model is fitted:

{ Sz‘j = us +mg; + (a + ai)Zi]‘ + €5ij (1)

Tij = pr +mp; + B+ bi)Zij +erij ]

where Sj;, Tj; refer to the (jointly normally distributed) surrogate and true endpoints
for subject j in cluster ; Z;; is the binary treatment indicator for subject j in cluster
1; g, pr are the fixed intercepts for S and T'; mg;, mp; are the corresponding random
intercepts; «, [ are the fixed treatment effects for S and T’; a;, b; are the corresponding
random effects, and eg;;, e74; are the error terms for S' and 7', respectively. It is assumed
that (mS,', mr;, Qg, bl) ~ N(O, D) and (5Sij, ETij) ~ N(O, E), where D and X are
unstructured variance-covariance matrices.

The appropriateness of a candidate surrogate is quantified by two metrics. First, the
coefficient of trial-level surrogacy (R2,,;), which essentially quantifies the strength of the
association between the random treatment effects on S and T based on the variance-

. . . a2 .
covariance matrix of the random effects D, i.e., RtQTial = 749 Second, the coefficient

of individual-level surrogacy (R? .. ), which quantifies the treatment- and trial-corrected
strength of association between S and 7" based on the variance-covariance matrix of the

. . 2 _ _ O
residuals 3, ie., R; . = ossoTT "

Earlier simulation studies. In a surrogate evaluation context, the (S, T') endpoints (level
1) are nested within patients (level 2), and the patients are nested within clinical trials
(or other relevant clustering units; level 3). Given the relatively complex hierarchical
structure of the data, it is hardly surprising that convergence problems are frequently
encountered in a surrogate evaluation context.

To gain more insight into the factors that affect model convergence, [1] and [2] conducted
a number of simulation studies. Their conclusion was that model convergence rates were
higher when the number of available clusters increased and when the size of the between-
cluster variability D increased relative to the residual variability 3 (in particular the dgq,
dpp components relative to the ogg, opr components). Other factors, such as the number
of patients per cluster, the normality assumption (for S and T'), and the strength of the
correlation between the random treatment effects had no substantial impact on model
convergence.

Aim of the present study. The aim of the present study is to further extend the results of
the earlier simulation studies [1, 2| by evaluating the effect of an additional factor that may
affect model convergence, i.e., imbalance in cluster size. Indeed, in the earlier simulation
studies, balanced datasets were considered, i.e., all clusters had exactly the same number
of observations. However, in real-life datasets, it is nearly always the case that the cluster
sizes are unbalanced. In fact, even when a balanced design was initially planned, the
actually collected data will often be unbalanced due to, for example, missingness.

To understand why balance in cluster size may be a relevant factor to consider, recall
that the key computational difficulty in fitting mixed-effects models is in the estimation
of the covariance parameters [4]. Iterative numerical optimization of the log-likelihood
functions using (RE)ML estimation is conducted, subject to constraints that are imposed
on the model parameters to ensure positive definiteness of the D and V; = ZiDZ; +
¥, matrices (where Z; are matrices of known covariates associated with the random

URL: http:/mc.manuscriptcentral.com/gscs

Page 3 of 30



September 22, 2015
Page 4 of 30

©CoO~NOUTA,WNPE

8:5 Journal of Statistical Computation and Simulation Revision 2 paper

Journal of Statistical Computation and Simulation

effects). Notice that positive definiteness of both D and V; is not needed when one is
merely interested in the marginal model. In the latter case, the only requirement for
valid inference based on the marginal model is that the overall V matrix is positive
definite (see Discussion). To maximize complicated likelihoods or to find good starting
values that can subsequently be used in the Newton-Raphson algorithm, the Expectation
Maximization (EM) algorithm is often used [8]. When unbalanced data are considered, the
E-step involves, at least conceptually, the creation of a ‘balanced’ dataset (or a ‘complete’
dataset in a missing data context [9]) based on a hypothetical scenario where it is assumed
that data have been obtained from a balanced design (or from a study in which there
were no missing values in a missing data context [4, 10]). Based on the ‘balanced’ data,
an objective function is constructed and maximized in the M-step, and the parameter
estimates are subsequently iteratively updated. In essence, the underlying assumption
behind the EM algorithm is that the optimization of the balanced (complete) data log-
likelihood function is easier than the optimization of the unbalanced (observed) data
log-likelihood [10]. In the same spirit, it can be expected that model convergence issues
will occur more frequently when the actually observed data are unbalanced in cluster size,
compared to the setting where the actually observed data are balanced. The first aim of
the present study is to examine this hypothesis.

The second aim of the present study is to examine whether the convergence rates of
unbalanced data could be increased by using Multiple Imputation (MI) prior to fitting the
mixed-effects model. Based on the reasoning in the previous paragraph, it was expected
that the use of MI (to make an unbalanced dataset ‘balanced’) would lead to higher
convergence rates.

Organization of the paper. The remainder of this paper is organized as follows. In Section
2, the impact of imbalance in cluster size on the convergence rates of mixed-effects models
is evaluated. In Section 3, the impact of using MI to introduce balance in unbalanced
datasets on model convergence rates is examined and the statistical properties of the
estimators are evaluated. In Section 4, a case study (the age-related macular degeneration
trial) is analyzed. Finally, Section 5 summarizes the results and discusses some of the
limitations of the present paper.

2. Unbalanced data and model convergence

Three mixed-effects models with an increasing level of complexity were considered: (i) a
random-intercept model, (ii) a reduced surrogate evaluation model (i.e., a simplification
of Model (1) where the fixed- and random-treatment effects are discarded), and (iii) a
surrogate evaluation model (Model (1)). The idea is to gradually build-up the (hierarchi-
cal) complexity of the model, so that it can be examined at which level of complexity the
impact of an imbalance in cluster size on model convergence becomes apparent.

2.1. Owutcomes of interest

The key outcome of interest in the simulations was model convergence. Three model con-
vergence categories were distinguished: (i) proper convergence, i.e., the model converged
and the variance-covariance matrix of the random effects (D) and the final Hessian (H),
used to compute the standard errors of the covariance parameters, were positive definite
(PD); (ii) the model converged but D or H was not PD; and finally, (iii) divergence.
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In addition, the number of required iterations to achieve convergence was recorded and
analyzed.

2.2. Simulation design

2.2.1. Random-intercept model

Consider the following random-intercept model:
Sij = ps +ms; + €545, (2)

where S;; is a (normally distributed) endpoint for patient j in cluster 4, pg is the fixed
intercept, mg; is the corresponding random intercept, and eg;; is the error term. It is
assumed that mg; ~ N(0, d) and €g;; ~ N(0, 0gg).

In all simulations, ug = 450, ogs = 300, and the mean sample size per cluster M (n;) =
20. Three conditions were varied. First, the number of clusters ¢« = 1, 2, ..., N, with
N = {5, 10, 20, 50}. Second, the level of imbalance in cluster size (n;). In the balanced
scenario, all cluster sizes were equal, i.e., n; = n = 20. In the two unbalanced scenarios,
n; was determined based on a draw from a normal distribution and rounded to the
nearest integer (i.e., n; = round (7;)). In the low imbalance scenario, 7; ~ N (20, 2.5%).
In the high imbalance scenario, n; ~ N (20, 52). Third, the between-cluster variability
(d = ~(1000)), which is either large (y = 1) or small (v = 0.1) relative to the residual
variability (ogs = 300). There were thus a total of 24 possible scenarios, for each of which
1000 datasets were generated. These dataset were subsequently analyzed by fitting Model
(2) using the mixed procedure in SAS, and model convergence and the required number
of iterations were recorded (see Section 2.1).

2.2.2.  Reduced surrogate evaluation model

Consider the following linear mixed-effects model:

Sij = ps +msi + £ 3)
Tij = pr +mp; + ey

where S;; and Tj; are (normally distributed) endpoints for patient j in cluster i (e.g., a
surrogate and true endpoint); pg, pr are the fixed intercepts for S and T'; mg;, mp; are
the corresponding random intercepts; and £g;;, €75 are the error terms. It is assumed that
(msi, mp;) ~ N (0, D) and (esi5, e4j) ~ N (0, ), where D and X are unstructured 2
by 2 variance-covariance matrices. As can be seen, Model (3) is a simplification of Model
(1), where the fixed- and random- treatment effects are omitted.

Using Model (3), data were simulated. In all simulations, ug = 450, pur = 500, and

> ( 300 212.132 )
212.132 300 ’
yielding corr (e, eTij)Q = 0.5. Three conditions were varied in the simulations. First,
the number of clusters N = {5, 10, 20, 50}. Second, the level of imbalance in n; (see
Section 2.2.1). Third, the between-cluster variability (D), which is either large (y = 1)
or small (y = 0.1) relative to the residual variability (X):
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D— 1000 400
~7\ 400 1000 )
For each of the 24 settings a total of 1000 datasets were generated, and model convergence
and the required number of iterations were recorded (see Section 2.1).

2.2.3.  Surrogate evaluation model

Using the linear mixed-effects Model (1) detailed above, data were simulated. Notice that
Zij was coded as —1 = control treatment and 1 = experimental treatment (rather than
as 0 = control treatment and 1 = experimental treatment), and thus the fixed treatment
effects on S and T' are 2« and 203, respectively. This was done because a 0/1 coding, for
a positive-definite D matrix, forces the variability in the experimental arm to be greater
than or equal to the variability in the control arm. A —1/1 coding on the other hand
ensures that the same components of variability operate in both treatment arms [5].
In all simulations, pg = 450, ur = 500, = 300, § = 500, and

s _( 300 212132
—\ 212132 300 )°

yielding R?n div = COIT (€545, ETZ'j)Z = 0.5. Again, three conditions were varied in the simu-
lations. First, the number of clusters N = {5, 10, 20, 50}. Second, the level of imbalance
in n; (see Section 2.2.1). Third, the between-cluster variability (D), which is either large

(v =1) or small (y = 0.1) relative to the residual variability (3):

1000 400 0 0

400 1000 0 0
0 0 1000  707.107 |’
0 0 707.107 1000

D=~

yielding R? ., = corr (a;, b;)2 = 0.5. Further, in the balanced scenario, treatment (Z)
is also balanced within a cluster. In the unbalanced scenarios, treatment allocation is
determined based on a binomial distribution with success probability 0.50. A total of
1000 datasets were generated for each of the 24 settings. The generated data were subse-
quently analyzed by fitting Model (1) in SAS. Two different parametrizations for the D
matrix were considered. First, a completely general (unstructured; UN) D matrix that
is parameterized directly in terms of variances and covariances. Second, a non-diagonal
factor-analytic structure with 4 factors (FA0(4)). The latter structure specifies a Cholesky
root parametrization for the 4 x 4 unstructured blocks in D. This leads to a substantial
simplification of the optimization problem, i.e., the problem now changes from a con-
strained one to an unconstrained one. The FA0(4) structure has (2t — g 4 1) covariance
parameters, where ¢ refers to the number of factors and ¢ is the dimension of the matrix.
In the present setting, the FAO(4) structure thus has a total of 10 parameters. These
parameters are used to compute the components in D, i.e., the (i, 5)* element of D is
computed as Ezn;nl(l’]’k)/\ik)\jk. The Cholesky root parametrization ensures that D (and
V) is positive definite during the entire estimation process [10]. Model convergence and
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the required number of iterations were recorded (see Section 2.1).

2.3. Results

As shown in Table 1, the rates of proper convergence exceeded 0.960 and 0.841 in the
various scenarios for the random-intercept and reduced surrogate models, respectively.
Overall convergence (i.e., proper convergence or convergence but non-PD D or H matrix)
was 100% for the random-intercept model and > 97.8% for the reduced surrogate model.
The rates of proper and overall convergence were similar in all scenarios, irrespective
of the level of imbalance in cluster size (n;). However, a larger level of imbalance in
cluster size was associated with a higher mean number of iterations that were required
to achieve proper convergence for both the random-intercept and the reduced surrogate
models (see Table 2). This suggests that the optimization of the log-likelihood function is
more difficult in the unbalanced scenarios, even when relatively simple (in terms of their
hierarchical structure) mixed-effects models are considered.

When an unstructured (UN) D matrix was used in the surrogate evaluation models,
overall convergence exceeded 99.7% when cluster sizes were balanced (see Table 1). The
overall convergence rates were, however, substantially lower in the unbalanced scenarios,
in particular when N and + were small. For example, when N = 5 and v = 0.1, the
model divergence rates were as high as 65.5% and 77.3% in the small and large imbalance
scenarios, respectively (compared to only 0.3% in the balanced scenario). At the same
time, the impact of level of imbalance on proper convergence was small, i.e., proper
convergence rates were quite similar in all scenarios irrespective of the level of imbalance
in the data. When a non-diagonal factor analytic structure with 4 factors (FA0(4))
was used for the D matrix in the surrogate evaluation models, the rates of proper
convergence exceeded 71.0% in all scenarios (see Table 1) and were thus substantially
higher compared to those that were observed in the UN scenario. Further, divergence
rates were substantially lower in the unbalanced FA0(4) scenarios compared to those
in the unbalanced UN scenarios. As was also observed for the random-intercept and
the reduced surrogate models, a higher level of imbalance in cluster size was associated
with a larger mean number of required iterations to achieve proper convergence for
both the UN and FAO(4) surrogate evaluation models (see Table 2). A noteworthy
observation is that proper convergence was always achieved after 1 iteration when
the cluster size was balanced for the random-intercept, reduced surrogate, and UN
surrogate evaluation models (Table 2). The reverse also holds approximately, i.e., when
a model converged after 1 iteration, in more than 99.9% of the cases there was proper
convergence. In contrast to what was the case for the UN surrogate evaluation models,
proper convergence was not always achieved after 1 iteration for the FA0(4) surrogate
evaluation models. Nonetheless, the number of required iterations to achieve proper
convergence was also substantially lower in the balanced FA0O(4) surrogate evaluation
models compared to what was the case in the unbalanced FAO(4) surrogate evaluation
models.
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Table 3. Hypothetical dataset. Number of observations per cluster as a function of treatment (Z), before and
after imputation.

Before imputation After imputation
Cluster Z=-1 Z=1 Z=-1 Z=1
1 5 11 18 18
2 13 8 18 18
3 10 18 18 18
4 9 5 18 18
5 9 11 18 18

3. Multiple imputation

3.1. Swmulation design

The same unbalanced datasets that were generated in the surrogate evaluation model
scenario described above (see Section 2.2.3) were considered here. In these unbalanced
datasets, multiple imputation (MI) was used to introduce balance in terms of cluster
size and treatment allocation (Z). As an example of what is meant by this, consider the
hypothetical dataset with 5 clusters shown in Table 3. As can be seen, the maximum
number of patients for each of the cluster by treatment (Z) groups is 18. Thus for all
cluster x treatment groups having less than 18 observations, MI is used to restore balance.
For example, in cluster 1 there were 5 observations for S and 7" in treatment group Z = —1
and 11 observations in treatment group Z = 1. Thus, the data of 13 and 7 patients are
imputed in cluster 1 for Z = —1 and Z = 1, respectively.

Proper multivariate imputations were conducted using the default Markov chain Monte
Carlo method [11] in SAS with a non-informative prior (Jeffreys). The imputation model
included S, T', and Z. The imputation model was run ‘by cluster’. This is a valid approach
here, provided that the number of clusters increases sufficiently slowly relative to the
number of subjects per cluster. A total of 200 burn-in iterations were used (i.e., the
number of initial iterations before the first iteration for a chain), and the number of
iterations between the imputations in a chain equalled 100. A total of 3 imputations
were conducted for each dataset. Thus in total, 24000 datasets were considered in the
analyses (i.e., 4 (number of N) - 2 (number of v) - 1000 (number of runs) - 3 (number of
imputations)) for both the small imbalance and the large imbalance scenarios.

The ‘balanced’ data were subsequently analyzed by fitting Model (1) using the UN and
FAO(4) parametrizations for the D matrix (see Section 2.2.3). The outcomes of interest
were model convergence and the number of required iterations to achieve convergence
(see Section 2.1). In addition, the bias, efficiency (standard deviation of the estimate)
and Mean Squared Errors of the estimates of the R? ., and R? ,. metrics were evaluated
for the surrogate evaluation models with MI using an unstructured (UN MI) and non-
diagonal factor analytic structure with 4 factors (MI FAO(4)) for the D matrix. The
focus was on RtQTial and andw rather than on the fixed-effects and variance components
because the coefficients of determination are the main quantities of interest in a surrogate
evaluation context.
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3.2. Results

Table 4 shows the convergence rates for the MI UN and MI FA0(4) models. Compared
to what was the case for the surrogate evaluation models in the unbalanced non-MI
scenarios, the rates of proper and overall convergence were substantially higher in both
the MI UN and MI FAO(4) scenarios — and this was particularly so when N was small.
The use of MI to make the unbalanced data balanced was thus a successful strategy to
improve convergence and reduce divergence. In line with the results discussed in Section
2.3, proper convergence was always achieved after 1 iteration in the MI UN scenario
but not in the MI FA0(4) scenario (sece Table 5). Nonetheless, the number of required
iterations to achieve convergence was substantially reduced in the unbalanced MI FA0(4)
scenarios compared to what was the case in the non-MI unbalanced scenarios (compare
Tables 2 and 5).

Tables 6 and 7 show the bias, efficiency, and MSE of the estimates of R?ndw and RtQMalv
respectively, in the non-MI and MI settings that properly converged. As expected, the
bias, efficiency and MSE in the estimation of both R? ,. and R?., improved when the
number of clusters increased. With respect to the estimation of R?ndw, the bias was low
in all scenarios but the efficiency and MSE were poorer in the MI scenarios compared
to the non-MI scenarios. In contrast to andiv, the bias, efficiency and MSE were of
similar magnitude in the MI and non-MI scenarios. Only when N = 5 did the bias in
the estimation of RtZrial tend to be substantially higher in the MI scenario compared to
the non-MI scenario. Note that the bias was negative in all scenarios, indicating that the
true R?”-al tends to be somewhat underestimated.

Further, the bias and MSE in the estimation of andw was smaller compared to what
was observed for thm 41> and the efficiency somewhat lower, because there is less replication

than for the individual level quantity.

4. Case study

The results in Section 3 indicated that the use of MI to balance an unbalanced dataset
(prior to fitting the mixed-effects model) reduces model convergence issues. In this section,
this method is applied to a real-life dataset, the age-related macular degeneration trial.

4.1. An age-related macular degeneration trial

Age-related macular degeneration (ARMD) is a condition in which patients progressively
lose vision [12]. In the ARMD trial, patients were randomly allocated to two treatment
conditions: placebo and the experimental treatment (interferon-a). Treatment efficacy
was evaluated using changes in visual acuity over time. Visual acuity was measured as
the total number of letters that were correctly read using standardized vision charts.

The ARMD trial was analyzed earlier in a surrogate evaluation context [5, 13]. The
idea is to examine whether the change in visual acuity after 24 weeks is an appropriate
surrogate for the change in visual acuity after 52 weeks. The ARMD data are included
in the R library Surrogate, which can be downloaded at http://cran.r-project.org/
web/packages/Surrogate/index.html.

10
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4.2. Sample descriptives

The ARMD trial enrolled a total of 181 patients from 36 centers. Here, the unit of
analysis (i.e., the clustering variable) is center. Centers that enrolled less than 5 patients
(19 centers in total) were discarded from the analyses to avoid problems during the MI
phase (recall that the imputations are conducted for each center separately).

The data of 119 patients from 17 centers were analyzed. On average, there were 7
patients per center. A total of 6, 2, 4, 1, 2, and 1 centers had 5, 6, 4, 7, 8, 9, and 18
patients, respectively. In the center with 18 patients, 9 patients received placebo and 9
patients received interferon-a.

4.3. Analysis

The same procedure that was described in Section 3 to obtain balanced datasets (using
MI) was employed here. Thus, in all center by treatment groups that had less than 9
patients, data were imputed to achieve balance. The imputations were conducted for
each of the centers separately, using S, T', and Z in the imputation model.

A total of 1000 imputations were conducted. For each of the balanced datasets, Model
(1) was fitted using S = change in visual acuity after 24 weeks and 7" = change in visual
acuity after 52 weeks. Both the FA0(4) and UN covariance parametrizations for D were
used.

The key outcome of interest was model convergence (using the same convergence cate-
gories as were defined in Section 2). In addition, the trial- and individual-level coefficients

of surrogacy (R, and R? ,. ) were computed for all datasets.

4.4. Results

4.4.1.  Convergence rates

When Model (1) was fitted to the non-imputed data of the case study (both the entire
ARMD dataset and the dataset that only included centers that enrolled at least 5 patients
were considered), convergence issues occurred. In particular, the models that used the UN
parametrization for the D matrix did not converge and the models that used the FA0(4)
parametrization converged to a non-PD D/H matrix.

Table 8 shows the convergence rates that were obtained when the MI-based approaches
were used. Overall convergence was high and equaled 100% and 96.9% in the MI UN
and MI FAQ(4) scenarios, respectively. Further, the use of the MI FAO(4) strategy led to
higher rates of proper convergence compared to the MI UN strategy (94.4% versus 70.1%,
respectively), whereas the MI UN strategy led to lower divergence rates compared to the
MI FAO(4) scenario (0% versus 4.1%, respectively). These results are fully in line with
the results that were obtained in the simulation studies detailed above.

4.4.2.  Coefficients of surrogacy

The densities of the trial- and individual-level surrogacy estimates (E?Mal and ]%?ndw,

respectively) using the MI UN and MI FAO(4) strategies are shown in Figure 1.

The mean ﬁ?rml and E?ndiv equalled 0.573 and 0.453 for the MI UN models, and 0.597
and 0.431 for the MI FA0(4) models, respectively. To establish a frame of reference against
which these estimates can be compared, the two-stage equivalent of Model (1) was fitted

to the non-imputed ARMD data (a simplified approach was used because Model (1) did
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Table 8. Convergence rates for the ARMD data (using MI UN and MI FA0(4) to restore ‘balance’ in cluster size).
MI UN  MI FA0(4)

Proper convergence 0.701 0.944

Convergence but
non-PD D/H matrix

0.299 0.015

Divergence 0 0.041

Note. UN = unstructured; FAO(4) = factor analytic.

not converge). In particular, in the first stage the following bivariate model is fitted:

Sij = s + aiZij + esij
Tyj = pr + BiZij + erij’

where pg, pur are the common intercepts for S and T, «;, §; are the fixed trial-specific
treatment effects for S and 7', and the other parameters are the same as defined above.
In the second stage, f3; is regressed on ;. The classical coefficient of determination of

the fitted stage 2 model provides an estimate of R? ., and R? ,. = corr (g}, 5Tz'j)2 (for

details on simplifying model-fitting strategies, see [14]). This analysis yielded ﬁfm.al =
0.729 with Clysy, = [0.487; 0.972] and R2 . = 0.512 with Clgsy, = [0.384; 0.639]. The

vertical solid and dashed lines in Figure 1 indicate these point estimates and their 95%
confidence intervals, respectively.

Overall, the results indicate that there was an acceptable agreement between the trial-
and individual-level surrogacy estimates that were obtained in the MI-based and non-
MI based approaches, though it should be noted that the variability of the MI-based
R?. . and R? .. values was large (see also Figure 1). For example, the 2.5th and 97.5th

tria indiv

percentile values of j%tzrial equalled Pcos = 0.078, Pcgy5 = 0.941 and Pcss = 0.069,
Peg75 = 0.985 in the MI UN and MI FAO(4) scenarios, respectively. The large variability
of these estimates should be evaluated in light of the relatively small number of clusters
and patients in the ARMD dataset. In addition, there were large imbalances in the cluster
sizes in the ARMD dataset. For example, 7 out of the 17 centers that were available for
analysis had only 5 patients and thus the ratio of the available data relative to the
data that had to be imputed in these centers was small (5 versus 13 patients). It seems
reasonable to assume that the variability of }A%fndiv and }Aﬁf”al will be smaller when this
ratio is higher, though additional analyses are needed to substantiate this claim. Further,
the results showed that the use of the MI UN and MI FAQ(4) strategies yielded nearly
identical estimates for both coefficients of surrogacy.

5. Discussion
In line with earlier research [1, 2|, the convergence rates of the mixed-effects models
were found to be substantially higher when the number of available clusters increased

and when the size of the between-cluster variability D was large relative to the residual
variability X. The present simulation study further extend these findings by showing that
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an imbalance in cluster size was associated with more model convergence issues. This was
particularly the case when the model at hand had a complex hierarchical structure. The
divergence rates were higher when the imbalance in cluster size was larger, and the use
of MI to make the unbalanced datasets balanced reduced model convergence issues. Bias
in the estimation of R? was similar in the non-MI and MI scenarios, but the use of

indiv
MI led to a decreased efficiency and increased MSE. With respect to the estimation of
RtQM'al’ bias, efficiency, and MSE were comparable in all scenarios where there were more

than 5 clusters available.

The combination of good convergence properties and satisfactory statistical properties
of the estimators, as follows from our simulation study, also suggests that there is little
risk of convergence to local optima. In addition, our experience from past data analyses
and simulations (see, for example, [5]) is in line with this finding.

With due caution, in scenarios where the convergence properties of the maximum like-
lihood estimator are poor (e.g., when N and +y are small), a forthright recommendation is
to use multiple imputation with the Cholesky decomposition formulation of the variance-
covariance matrix. Of course, there are secondary issues pertaining to e.g., the target of
inference, which may or may not place emphasis on the variance components. For example,
in the present simulations, three model convergence categories were distinguished, i.e., (i)
proper convergence, (ii) convergence but a non-PD D or H matrix, and (iii) divergence.
The relevance of distinguishing between categories (i)—(ii) depends on the substantive
research question at hand. In a surrogate validation context, the distinction is important
because one is mainly interested in the variance components (e.g., D should be PD to
guarantee that E?”-al is within the unit interval). If one is merely interested in the fixed-
effects (the marginal model), this distinction is unimportant because the marginal model
can be used to make valid inferences regarding the fixed-effect parameters as long as the
overall V matrix is PD [4, 10]. Thus, in practice, a researcher who is mainly interested in
making inferences regarding the random effects may opt for the strategy that leads to the
highest rates of proper convergence (e.g., MI with FAO(4) for the D matrix), whereas a
researcher who is mainly interested in the marginal model may opt for the strategy that
leads to the highest rates of overall convergence (e.g., MI with UN for the D matrix).

Several alternative imputation models are potentially of use here — though any feasible
model needs to be compatible with the analysis model. For example, hierarchical versions
could be considered that take into account all three levels [16]. In our specific context,
where typically there is a relatively small number of trials, with a good amount of repli-
cation per trial, also a trial-specific strategy is viable. The method we have proposed is
both computationally convenient and has good convergence and statistical properties.

Some comments and suggestions for future research are in place. First, the convergence
rates were relatively high for all models in all scenarios. For example, the proper conver-
gence rates were close to 100% when the number of clusters exceeded 20 for all models in
all scenarios (see Tables 1 and 4). Obviously, the convergence rates that are obtained in
a simulation study depend on the choice of the parameters that are used to generate the
data. For example, in the present simulations the variance components in the D matrix
that were used to generate the data were all relatively large. This choice was made to
avoid model convergence problems that arise by hitting the boundary of the parameter
space. When lower-valued D matrices were used (keeping all other parameters constant),
the convergence rates substantially decreased but the global pattern of the results in
terms of the impact of an imbalance in cluster size on model divergence rates and the
effect of the use of MI remained the same. This is further illustrated in Table A1l in the
Appendix (which shows the convergence rates for a scenario where v = 0.01, keeping all
other parameters that were used to generate the data identical to the ones provided in
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Section 2) and in the Supplementary Materials.

In the Supplementary Materials, lower-valued D matrices were used and a number of
additional scenarios to introduce imbalance in cluster size and/or treatment allocation
were considered. Further, the (mean) cluster size that was used in the analyses in the
Supplementary Materials was substantially lower and closer to the mean cluster size in
the ARMD dataset (i.e., mean n = 10 instead of n = 20). The results that were obtained
in these additional scenarios were similar to the main results discussed above.

Note also that the focus of the current study was on linear mixed effects models only.
Further simulation studies would be needed to examine this issue in non-linear mixed-
effects models.

Second, missing data frequently arise in a surrogate evaluation setting (i.e., the measure-
ment of 7" is by definition cumbersome, otherwise there would be no need for a surrogate)
and in many other research settings. An advantage of the MI-based strategy proposed
above is that it provides a natural framework to deal with unbalanced cluster sizes and
missingness at the same time. This can be done in a flexible way, e.g., it is straight-
forward to include covariates, such as the age of the patient or a post-randomization
non-compliance measure in the imputation model whilst at the same time keeping the
standard substantive Model (1) [9].

Finally, MI was used to augment the data and Newton-Raphson was used to conduct
the optimization of the log-likelihood functions, but other choices are viable as well. For
example, future studies may consider the use of EM to augment the data and/or Fisher
scoring for the optimization. Further, all simulation results discussed in the present
paper were obtained using SAS, and it would be useful to evaluate whether similar
results are obtained when other software tools (e.g., R, Stata, MLwiN) are used.
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1.1.

The same model that was described in Section 2.2.3 of [1] was used to generate the
data, using different parameter values for the fixed and random effects. In line with the
simulation setting of [2], the following model was used to simulate the data (see also [3],

00, No. 00, Month 20XX, 1-8

Supplementary Materials: Unbalanced cluster sizes and rates of
convergence in mized-effects models for clustered data

(Recetved 00 Month 20XX; final version received 00 Month 20XX)

The results in [1] showed (i) that divergence rates of mixed-effects models were substan-
tially higher for unbalanced datasets, and (ii) that the use of Multiple Imputation to restore
‘balance’ in unbalanced datasets reduces model convergence problems.

In these Supplementary Materials, the results of some additional simulation studies are
discussed. In particular, lower-valued D matrices were used to generate the data and a number
of additional scenarios to intoduce imbalance in cluster size and/or treatment allocation were
considered. The global pattern of results of these analyses is in line with the results of [1].

Keywords: simulation study, model convergence, mixed-effects model, multiple
imputation, unbalanced data

AMS Subject Classification: 62J99; 62P10

Surrogate model

Notation and model

pp. 104-106):

Sij =45+ mg; + (3 + ai) Zij + €514
Ej =50+ mp; + (5 + bl) Zij + e1ij ’

where (mg;, mp;, a;, b;) ~ N(0, D) with

and (Egij7 5Tij) ~ N(O, 2) with

For the total number of clusters (i.e., N), the grid of values G; = {10, 20, 50} was

3 24
2_<2.4 3 )
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considered. The number of subjects per cluster was fixed to 10. The v parameter was set
to 0.1 (small between-trial variability) or 1 (large between-trial variability).
Eight scenarios were used to generate the data:

e First, a balanced scenario in which each of the clusters contain the same number of
observations (i.e., 10 observations per cluster). Furthermore, treatment (2) is balanced
within a cluster (i.e., out of the 10 patients per cluster, 5 patients receive the control
and 5 patients receive the experimental treatment).

e Second, an unbalanced scenario where m; (the number of observations in a par-
ticular cluster) was determined based on a draw from a normal distribution, i.e.,
n; ~ N (10, 52). All obtained n; values were rounded to the nearest integer (i.e.,
n; = round (7;)) and when 77; < 2 it is automatically rounded up to 2 (i.e., each cluster
should contain at least two observations). Furthermore, treatment is balanced within
a cluster (when n; is an odd number, (n; — 1) /2 patients receive the control and the
experimental treatment, and the remaining patient is randomly allocated to the control
or the experimental treatment).

e Third, another unbalanced scenario where n; was determined based on a normal dis-
tribution with a smaller SD (i.e., n; ~ N (10, 2.52)) and treatment is balanced within
a cluster.

e Fourth, another unbalanced scenario where n; was determined based on a draw from
a discrete uniform distribution (i.e., n; ~ uniform (1, 19)) and treatment is balanced
within a cluster.

e Scenarios 5-8 are identical to scenarios 1-4, but treatment (Z) is no longer balanced
within a cluster (i.e., Z is drawn from a binomial distribution with success probability
0.50).

A total of M = 1,000 runs were conducted for each setting. A completely general (un-
structured; UN) D matrix that is parameterized directly in terms of variances and co-
variances was used. The generated datasets were analyzed using the mixed procedure in
SAS.

The key outcome of interest in all simulations was model convergence. The same model
convergence categories as were used in [1] were considered, i.e., (i) proper convergence
(the model converged and the variance-covariance matrix of the random effects (D) and
the final Hessian (H) were positive definite); (ii) the model converged but D or H was
not positive definite; and finally, (iii) divergence. In addition, the number of required
iterations to achieve convergence was recorded and analyzed.

1.2. Results

Tables 1-3 show the convergence rates. The rates of overall convergence (i.e., proper
convergence or convergence but non-PD D or H matrix) were 100% in all scenarios where
the cluster size and Z (treatment) were balanced (see Table 3). In contrast, the overall
convergence rates decreased substantially in the unbalanced scenarios — in particular when
~v and the number of clusters were small. For example, the divergence rate was as high
as 90.6% in the scenario where the cluster size is highly unbalanced (n; ~ unif(1, 19)),
v = 0.1, Z is unbalanced, and N = 10.

Overall, the same pattern of results that was described in [1] is observed: models for
which proper convergence could not be achieved tended to diverge when the cluster sizes
and/or Z were unbalanced, whereas these models tended to converge to a solution with
a non-PD D or H matrix when the cluster sizes and Z were balanced. Further, proper
convergence was always achieved after 1 iteration when the cluster size and Z were
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Table 1. Proportion of runs for which proper convergence was achieved (the model converged and the variance-

Revision 2 Supplementary Materials

covariance matrix of the random effects (D) and the final Hessian (H) were positive definite).

7Z balanced 7 unbalanced

Number of clusters Number of clusters

v 10 20 50 10 20 50
n; =n =10 0.1 0.003 0.023 0.098 0.004 0.017 0.095

1 0.409 0.912 1 0.327 0.877 1

0% 10 20 50 10 20 50
n; ~N (10, 2.52) 0.1 0.001 0.019 0.099 0.004 0.014 0.088
1 0.381 0.888 0.999 0.325 0.848 0.999

v 10 20 50 10 20 50
n; ~ N (10, 5%) 0.1 0.002 0.012 0.087  0.001 0.014 0.101
1 0.241 0.831 0.998 0.213 0.788 0.997

v 10 20 50 10 20 50
n; ~unif(1, 19) 0.1 0.005 0.021 0.106 0.002 0.018 0.114
1 0.258 0.835 1 0.228 0.791 0.998

Table 2. Proportion of runs for which the model converged but D or H was not positive definite.

7 balanced 7 unbalanced

Number of clusters Number of clusters

~ 10 20 50 10 20 50
n; =n =10 0.1 0.997 0.977 0.902 0.567 0.919 0.902

1 0.591 0.088 0 0.598 0.122 0

~ 10 20 50 10 20 50
n; ~N (10, 2.52) 0.1 0.394 0.830 0.899 0.246 0.742 0.898
1 0445 0.111 0.001 0.399 0.139 0.001

~ 10 20 50 10 20 50
n; ~ N (10,5%) 0.1 0.160 0.547 0.871  0.097 0.444 0.839
1 0317 0.146 0.002 0.263 0.181 0.002

~y 10 20 50 10 20 50
n; ~unif(1, 19) 0.1 0.175 0.637 0.888 0.092 0.542 0.866
1 0.300 0.154 0 0.251 0.172 0.002

balanced (Table 4).

2. Surrogate model with multiple imputation

2.1. Simulations

2.1.1. Scenarios

The same model and scenarios that were described in Section 1 were considered, with the

exception of the following issues:
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1

2

3 Table 3. Proportion of runs for which the model diverged.

4 7 balanced 7 unbalanced

5 Number of clusters Number of clusters

6 vy 10 20 50 10 20 50

7 n;=n=10 0.1 0 0 0 0.429 0.064 0.003

8 1 0 0 0 0.075 0.001 0

9

10 5y 10 20 50 10 20 50

11 n; ~ N (10, 25%) 0.1 0.605 0.151 0.002  0.750 0.244 0.014

ig 1 0174 0.001 0 0.276  0.013 0

14 v 10 20 50 10 20 50

15 mi~N(10,5%) 0.1 0.838 0441 0.042 0902 0542 0.060

i? 10442 0023 0 0.524 0.031 0.001

ig ~ 10 20 50 0 20 50

20 n; ~ unif(1, 19) 0.1 0.820 0.342 0.006 0.906 0.440 0.020

21 1 0.442 0.011 0 0.521 0.037 0

22

23

24

25

26

27

28 e Only one unbalanced scenario was considered. In particular, only the scenario where
29 n; (the cluster size) was determined based on a draw from a normal distribution (n; ~
32 N (10, 5%)) and where Z (treatment) was unbalanced within a cluster was considered.
o e The same datasets that were used in Section 1 were used in the current analyses, though
33 multiple imputation (MI) was used to ‘fill in’ the ‘missing’ data to restore balancedness
34 for both n; and Z. The imputation model included cluster, Z, S, and T. A total of 3
35 imputations were used for each dataset.

36 e Two different variance-covariance matrices were used for the random effect structure
37 of the mixed model. First, a completely general (unstructured; UN) D matrix. Second,
38 a non-diagonal factor-analytic structure with 4 factors (FA0(4)). The latter structure
39 specifies a Cholesky root parametrization for the 4 x 4 unstructured blocks in D.

40

41

42

43

44

45

46 2.1.2.  Results

47 Table 5 shows the convergence rates in the MI UN and MI FAQ(4) scenarios. The rates
48 of proper convergence were substantially higher in the MI FA0(4) scenario (> 78.0%)
49 compared to what was the case in the MI UN scenario (> 0.2%). With respect to overall
0 convergence, the results were reversed as overall convergence rates were higher in the MI
g; UN scenario (> 99.9%) compared to what was the case in the MI FA0(4) scenario (>
53 88.9%). In line with [1], it can be concluded that the use of MI reduces model divergence
54 issues. Further, proper convergence was always achieved after 1 iteration in the MI UN
55 scenario (see Table 6).

56

57 4

58

59

60
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Table 5. Convergence rates in the MI UN (left column) and MI FA0(4) (right column) scenarios.

MI, UN MI, FAO(4)
Number of clusters Number of clusters
o 10 20 50 10 20 50
Proper 0.1 0.002 0.007 0.023 0.788 0.789 0.780
Convergence 1 0.077 0.308 0.764 0.864 0.937 0.990
o 10 20 50 10 20 50
Convergence but 0.1 0.997 0.993 0.977 0 0 0
non-PD D/H matrix 1 0923 0.692 0.236 0 0 0
o 10 20 50 10 20 50
Divergence 0.1 0.001 0 0 0.212 0.211 0.202
1 0 0 0 0.136 0.063 0.010
6
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