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Abstract

Finite-mixture models have been used to model population heterogeneity and to relax distri-

butional assumptions. These models are also convenient tools for clustering and classification of

complex data such as, for example, repeated-measurements data. The performance of model-

based clustering algorithms is sensitive to influential and outlying observations. Methods for

identifying outliers in a finite-mixture model have been described in the literature. Approaches

to identify influential observations are less common. In this paper, we apply local-influence di-

agnostics to a finite-mixture model with known number of components. The methodology is

illustrated on real-life data.

Some Keywords: Local Influence; Model-Based Clustering; Finite-Mixture Model.

1 Introduction

Cluster analyses are used to reveal latent groups in data. Observations are grouped in such a way that

observations in the same group or cluster are more similar than observations belonging to different

groups. Various methods can be employed to find clusters in data. For multivariate data, hierarchical

and nonhierarchical algorithms are among the most popular ones ([1]). However, these algorithms

are less appropriate for data exhibiting complex structures, as is the case for repeated-measurements
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and spatial data. For these data types, model-based clustering by means of finite-mixture models is

a flexible alternative.

In general, the performance of a clustering algorithm, and hence also the performance of model-

based clustering, may be impacted by influential observations. Therefore, it is important to carefully

examine the effect an observation has on the cluster result. Identification of influential observations

has been described for hierarchical and nonhierarchical cluster analysis. For hierarchical clustering

algorithms, proposals to measure the influence of a single observation on the clustering process can

be found in Jolliffe et al. [2], Kim et al. [3], and Chen and Milligan [4]. Methods for detecting

influential observations in nonhierarchical cluster analysis have, for example, been studied by Cerioli

[5] and Cuesta-Albertos et al. [6].

Although outlier detection for model-based clustering algorithms has been investigated (see e.g.,

McLachlan and Peel [7], Wang et al. [8]), identification of influential observations has, to our

knowledge, not yet been described.

In this paper, we show how local-influence diagnostics, as introduced by Cook [9], can be used

to identify influential observations when clustering repeated-measurements data by a finite-mixture

model. The influence on the mixture’s mean profiles and also on the posterior probabilities, used

for the classification of an individual subject, will be looked into. The paper is organized as follows.

Model-based clustering and the finite-mixture model are introduced in Section 2. Section 3 briefly

summarizes the outlier detection method proposed by Wang [8] for mixture populations. The con-

cepts of local-influence diagnostics are sketched in Section 4 and applied to real-life data in Section 5.

A targeted simulation study is used to investigate the performance of the local-influence diagnostics

applied on a two-component mixture model. The results are presented in the Appendix (Section 7.4).

2 Finite-Mixture Models as a Tool for Clustering

Finite-mixture models [7] are latent-variable models that express the distribution of variables as a

mixture of a finite number of component distributions. Finite-mixture models have been used to

investigate the performance of estimators in non-normal situations and to develop robust estimators.

Finite-mixture models also provide a framework for clustering
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They have been used for this purpose in a wide range of applications in marketing, social, psychosocial,

medical and related research, where the data could be seen as arising from two or more

populations. York et al., for example, use a finite mixture model to investigate drug-response

heterogeneity in an asthma pharmacogenetic study ([10]). Finite mixture models are also

used in medical image analysis ([11]).

Finite-mixture modeling addresses the population heterogeneity in the observed data by means of

categorical latent classes, that represent homogenous subpopulations. Class membership is latent

and thus needs to be inferred from the data. In its general form the finite-mixture model for a

r-dimensional response vector Y i is written as: fi(yi;π) =
∑K

k=1 πkfik(yi). Here, πk is the

kth mixing proportion or the probability that an observation belongs to the kth subpopulation or

component and fik(yi) its corresponding density. K represents the total number of subpopulations

and π = (π1, . . . , πK)
′
, with 0 < πk < 1, for all k = 1, . . . ,K and

∑K
k=1 πk = 1.

When modeling repeated-measurements data, unobserved individual heterogeneity in the evolution

of an outcome over time is in general captured by continuous latent variables. In the framework

of mixed models, random effects are used to address the correlation between measurements of the

same subject and at the same time they allow for subject-specific evolutions of the response. Let Y i

=(Yi1, . . . , Yini)
′

denote the vector of ni repeated observations for subject i ( i = 1, . . . , N), and let

f(yi|bi) be the corresponding density, conditional on a q-dimensional vector bi of random effects.

The choice of the distribution of Yij given bi is driven by the nature of the response, i.e., generally

normal for continuous data, binomial for binary data, and Poisson for count data.

The mean of outcome Yij is modeled as:

E(Yij |bi,β;xij , zij) = g(xij ,β, zij , bi).

The function g(·) is an arbitrary function. The p-dimensional vector β contains the fixed-effects

parameters at population level, the q-dimensional vector bi are the random effects of the ith subject,

and the vectors xij and zij contain covariate information for the ith subject at measurement j,

corresponding to the fixed and random effects, respectively. The random effects are assumed to

follow a distribution, f(bi), frequently normal. The model assumes that the random effects are
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drawn from one homogeneous population of random effects. However, heterogeneity in the random-

effects population is to be expected when the study population consists of a number of (unlabelled)

subpopulation. Therefore, the mixed model has to be expanded to include categorical as well as

continuous latent variables. The categorical latent variable captures heterogeneity between subjects

arising from the fact that they belong to different subpopulations. When different classes con-

stitute the mixture, and no variation across individuals within classes is allowed (except for

residual variation), the model is referred to as a latent class growth mixture model [12].

When within-class variation of individuals is allowed for, through continuous latent random effects,

the model is termed growth mixture model [13].

We will follow here the approach of Verbeke and Lesaffre [14] and Spiessens et al. [15] to model

heterogeneity in repeated-measurements data by means of continuous and categorical latent variables.

They specify a mixture for the distribution of the random effects. More specifically, they extend the

normality assumption of the random effects bi to incorporate mixtures of normal components,

bi ∼
K∑
k=1

πkN(µk, Dk),

where, as before, πk is the proportion of subjects belonging to subpopulation k, described by the

multivariate normal distribution N(µk, Dk). For identifiability we require that, µi 6= µj , π1 ≥ π2 ≥

. . . ≥ πK > 0, and E(bi) =
∑K

k=1 πkµk = 0. Under this assumption, the marginal density function

of Y i turns out to be a mixture of densities fik(yi) with mixture probabilities π1, . . . , πK :

fi(yi) =
K∑
k=1

πkfik(yi). (1)

In this expression fik(yi) is the marginal density function, for the kth subpopulation, corresponding

to a mixed model with random effects that are normally distributed with mean µk and covariance

matrix Dk.

Estimates for all parameters in the model are obtained by maximising the log-likelihood

l(θ|y) =
N∑
i=1

log

[
K∑
k=1

πkfik(yi|Ψ)

]
, (2)
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by means of the Expectation-Maximisation (EM) algorithm [16]: The vector θ in (2) contains all

parameters in the model θ = (Ψ
′
,π
′
)
′

= (β
′
, (µ1

′
, . . . ,µK

′
), (vech(D1)

′
, . . . , vech(DK)

′
),π

′
)
′

with vech(Dk) containing all upper-triangular elements of Dk stacked on top of each other. The

EM algorithm assumes the presence of missing observations, which for a finite-mixture model are the

group memberships.

When the goal of the statistical analysis is not only to obtain parameter estimates but also assignment

of the subjects to the subpopulation they belong to, we term this model-based clustering. A subject’s

posterior probabilities, πkfik(yi)/fi(yi), are used to classify its longitudinal profile into one of the

K components. Spiessens, Verbeke, and Komàrek [15] have developed a SAS macro, based on the

SAS procedure NLMIXED, that implements the EM algorithm for fitting nonlinear and generalised

linear models with finite normal mixtures as random-effects distributions. The macro also classifies

the longitudinal profiles into the different components.

3 Outlier Detection for a Finite-Mixture Model

Wang et al. [8] describe a procedure that looks for outliers from a mixture of normal distributions,

where at least some ground-truth information (labelling) is available and the number of components

in the mixture is known. Sain et al. [17] extended this procedure to the case where no ground-

truth information is available and the number of components is unknown. Specifically, the authors

assume that the training data of size N is a sample from a mixture distribution of K distribu-

tions, fi(yi) =
∑K

k=1 πkfik(yi;µk,Σk), with fik(yi;µk,Σk) a normal distribution. To investigate

if a new observation, yN+1, is obtained from the mixture population or from an outlier population

they use a likelihood ratio test statistic that does not require the distribution of the outlier popu-

lation. The classical likelihood ratio test statistic is the ratio of the maximized likelihood functions

L0(θ0) = [
∏N
i=1 fi(yi;θ0)]f(yN+1θ0) under H0, and L1(θ0,θ1) = [

∏N
i=1 fi(yi;θ0)]h(yN+1;θ1)

under H1, with h(y;θ1) the density associated with the outlier population. When there is only a

single observation from the outlier population, maximizing L1 is hard. Wang et al. [8] noted that

a viable test statistic could be based on the ratio L0/L̃1, with L̃1(θ0) =
∏N
i=1 fi(yi;θ0), eliminat-

ing the need for h(y;θ1). Thus, in essence, the principle of equi-ignorance is employed, and the
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distribution of the outlier is not needed. The resulting modified likelihood ratio test statistic

W (yN+1;y1, . . . ,yN ) =

sup
θ0∈Θ

L0(θ0)

sup
θ0∈Θ

L̃1(θ0)

will take small values when yN+1 departs from f . The null distribution of W is obtained through

nonparametric bootstrap [18]. The authors examined the power of the outlier test based on W via

simulations.

4 Review of General Theory for Local Influence

Local influence was presented by Cook ([21], [9]) and used by several authors since. The impact

of individuals and measurements on the analysis is assessed by comparing standard maximum like-

lihood estimates with those resulting from slightly perturbing the contribution of an individual or a

measurement. The method is to be contrasted with global influence, or case deletion, where impact

is assessed by simply deleting an individual or measurement. While local influence comes with a

certain amount of technicality, it is easy and fast to calculate in practice, and in many cases leads to

interpretable components of influence. Lesaffre and Verbeke [22] introduced an influence assessment

paradigm for the linear mixed model. A review of several diagnostic procedures for the linear mixed

model is given in Mun and Lindstrom [23]. Verbeke et al. [24] used local influence for longitudinal

Gaussian data with dropout, while incomplete binary data were studied by Jansen et al. [25]. Ver-

beke and Molenberghs [26] and Molenberghs and Verbeke [27] study the method and provide ample

references. Ouwens, Tan, and Berger [28] applied local influence to the generalized linear mixed

model for count data, i.e., the Poisson-normal model.

Let the log-likelihood for the chosen model take the form

`(θ) =
N∑
i=1

`i(θ), (3)
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in which `i(θ) is the contribution of the ith individual to the log-likelihood. Let

`(θ|ω) =
N∑
i=1

wi`i(θ), (4)

now denote the perturbed version of `(θ), depending on an N -dimensional vector ω of weights,

assumed to belong to an open subset Ω of IRN . The original log-likelihood (3) follows for ω = ω0 =

(1, 1, . . . , 1)′. The perturbed log-likelihood gives more or less weight to log-likelihood contributions

of single subjects.

Let θ̂ be the maximum likelihood estimator for θ, obtained by maximizing `(θ), and let θ̂ω denote

the estimator for θ under `(θ|ω). Cook [9] proposed to measure the distance between θ̂ω and θ̂ by

the so-called likelihood displacement, defined by

LD(ω) = 2
(
`(θ̂)− `(θ̂ω)

)
.

LD(ω) will be large if `(θ) is strongly curved at θ̂ (which means that θ is estimated with high

precision) and small otherwise. A graph of LD(ω) versus ω brings out information on the influence

of case-weight perturbations. The graph is the geometric surface formed by the values of the (N+1)-

dimensional vector

ξ(ω) =

 ω

LD(ω)


as ω varies throughout Ω. Following Cook [9] and Verbeke and Molenberghs [26], we will refer

to ξ(ω) as an influence graph. It is unfeasible to evaluate LD(ω) for all ω. Cook [9] describes

the sensitivity of `(θ̂) by looking at small perturbations for case weights around ω0, i.e., the local

behaviour of LD(ω) around ω0. The normal curvature Ch of LD(ω) at ω0, in the direction of

a unit vector h in Ω, was used to quantify the local behaviour of LD(ω) around ω0. Cook [9]

derived a convenient computational scheme. Let ∆i be the s-dimensional vector of second-

order derivatives of `(θ|ω), with respect to ωi and all s components of θ = (θ1, . . . , θs)
′
, and

evaluated at θ = θ̂ and at ω = ω0. For the log-likelihood in (4), the pth element of ∆i is
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equal to ∂li(θ)
∂θp

(p = 1, . . . , s), evaluated at θ = θ̂ and at ω = ω0.

Also, write ∆ for the s × N matrix with ∆i in the ith column. Let L̈ denote the s × s matrix of

second-order derivatives of `(θ), evaluated at θ = θ̂. For any unit vector h in Ω, it follows that:

Ch = 2
∣∣∣ h′∆′L̈−1∆h

∣∣∣ . (5)

Various choices for h have received specific attention. First, one can focus on a single subject i only,

by choosing h = hi, the zero vector with a sole value 1 in the ith position. The normal curvature

is then called the total local influence and is given by

Ci ≡ Chi = 2
∣∣∣ ∆′iL̈

−1∆i

∣∣∣ . (6)

Large values of Ci are obtained for subjects for which small perturbations in case weight result locally

in a large log-likelihood displacement.

Second, h = hmax can be chosen as the direction of maximal normal curvature Cmax. It was shown

that hmax is the eigenvector of −∆′L̈−1∆ corresponding to the largest eigenvalue ([29] , [30], [26],

[31]). hmax permits detection of individuals that are simultaneously influential.

The total local influence of individual i can be expressed in terms of the nonzero eigenvalues, λ1 ≥

. . . ≥ λs > 0 and normalized orthogonal eigenvectors hmax ≡ ν1, . . . ,νs of −∆′L̈−1∆:

Ci = 2

s∑
j=1

λjν
2
ij ,

with νij the ith component of νj . Cmax is twice the largest eigenvalue, Cmax = 2 · λ1. This holds a

warning: it is possible for Ci to be large without the same holding for the ith component in hmax,

provided the corresponding components are large for some of the secondary eigenvectors. It is thus

recommended to examine both the Ci and hmax.

Lesaffre and Verbeke [22] proposed a threshold for Ci above which an individual is defined as “remark-

able”. They state that the ith subject is influential if Ci is larger than the cutoff value 2
∑

N

i=1Ci/N .

The methodology still applies when interest is in a subset θ1 of θ = (θ′1,θ
′
2)′. It follows that (Verbeke
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and Molenberghs [26]) the influence on the estimation of the subset θ1 is given by:

Ch(θ1) = 2

∣∣∣∣∣∣∣∣h
′∆′

L̈−1 −

 0 0

0 L̈−1
22


∆h

∣∣∣∣∣∣∣∣ ≤ Ch, (7)

L̈22 is defined by the partition of L̈ =

 L̈11 L̈12

L̈21 L̈22

 according to the dimensions of θ1 and θ2.

Should L̈12 = 0, then Ch = Ch(θ1) + Ch(θ2). For weakly correlated sub-vectors, this decomposition

holds approximately.

To obtain local-influence diagnostics for a finite-mixture model with K components (see Section 2),

first and second derivatives of l(θ|ω) with respect to ωi and all components of θ, have to be obtained.

Under the finite-mixture model, θ contains the fixed- and random-effects parameters describing the

profiles for the K components and the mixture probabilities. Further, the contribution li(θ) of the

ith subject to the log-likelihood is li(θ) = log
[∑K

k=1 πkfik(yi|θ)
]
. Expressions for the derivatives

involved in Ci, for a finite-mixture model, can be found in the Appendix (Section 7.1).

Often, interest is not only in the stability of the components’ mean profiles but also on the influ-

ence on the posterior probabilities. The theory of local influence, as described above, allows, in

an elegant way, quantification of the influence of subject i on the posterior probability of sub-

ject j. To this end, log-likelihood (4) has to be parameterized as a function of the posterior

probabilities. Given the relation between the posterior probabilities and the mixture probabilities,

πjk = πkfjk(yj)/
∑K

k=1 πkfjk(yj), it is possible to express the contribution of the ith individual to

the log-likelihood as a function of the posterior probability of the jth individual. The log-likelihood

then takes the form l(Ψ
′
,π
′
j) =

∑N
i=1 li(Ψ

′
,π
′
j), with πj = (πj1, . . . , πjK)

′
the vector of posterior

probabilities for subject j. The likelihood as a function of the posterior probabilities, li(Ψ
′
,π
′
j), is

presented in the Appendix (Section 7.2). The local influence of subject i, on the posterior probabilities

of subject j can be obtained via (7).
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5 Data Applications

5.1 Pharmacokinetic Data

Nonlinear mixed models are often used in pharmacokinetics to study how a drug disperses through

subjects. To illustrate the local influence approach on a nonlinear model we will use data presented

by Pinheiro and Bates [34]. Serum concentrations of the drug theophylline was measured in 12

subjects over a 25-hour period after oral administration. Pinheiro and Bates considered a first-order

compartment model, allowing for random variability between subjects. Let Yij denote the observed

concentration of the ith subject at time tij , D the dose of theophylline, kei the elimination rate

constant for subject i, kai the absorption rate constant for subject i, Cli the clearance for subject i,

and εij normal errors. The model for the observed concentration is specified as:

Yij =
Dkeikai

Cli(kai − kei)
[exp(−keitij)− exp(−kaitij)] + εij . (8)

The clearance, elimination, and absorption rates for subject i were functions of fixed and random

effects:

Cli = exp(β1 + bi1), (9)

kai = exp(β2 + bi2), (10)

kei = exp(β3). (11)

The random effects allow for heterogeneity between subjects. The bi = (bi1, bi2)
′

are assumed to

follow a multivariate normal distribution with mean zero and an unknown covariance matrix.

The expected concentration level in the body as a function of time, for a typical patient (i.e., random

effects equal to zero) is displayed in Figure 1. The model fit criteria for this homogeneity model are

as follows: log-likehlihood -178.2, AIC 368.5, and BIC 371.4. When carrying out a two-component

heterogeneity model the fit criteria are: log-likelihood -162.9, AIC 343.9, and BIC 348.3; indicating

a better fit. The mixing probabilities are .53 and .47. Based on their posterior probability, 6 subjects

were classified into the first component and 6 in the second. The expected concentration for both
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Figure 1: Evolution of the concentrations - Theophylline data. For each component in the mixture
distribution, the evolution for a typical patient is displayed (full line: one-component model, −.− .
: two-component model).

components, for a typical subject, can be found in Figure 1. The two components distinguish in terms

of the maximum concentration level attained and the time after adminstration that the maximum

concentration is reached. The first component reaches its maximum concentration level faster, and

the maximum level attained is higher than compared to the maximum level of the second component.

An influence analysis for the two-component heterogeneity model does not reveal cases being locally

influential (see Figure 2). All subjects’ Ci are below the cut-off value of 2.14. The components

of hmax indicate that subjects 1, 2 , 5, 10, and 12 exhibit larger contributions in the direction of

maximal curvature; Cmax equals 12.76. When looking into the plots of the total local influence for a

specific fixed or random parameter, these subjects have value of Ci exceeding the cut-off (data not

shown).

To evaluate the likelihood function of the nonlinear model for the pharmacokinetic data numerical

integration was used. The accuracy of the likelihood evaluation, and as such also of the local influence

diagnostics, is a function of the number of quadrature points used in the numerical integration.

Increasing the number of quadrature points will result in more accurate diagnostics.
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5.2 EEG Data

The aim of EEG studies is to characterize the effects of psychotropic drugs on cortical brain activ-

ity, on the basis of spectral electro-encephalograms. An EEG study in rats, conducted at Janssen

Pharmaceutica (Belgium), is used. Although the brain waves of rats and humans are observed in com-

parable frequency bands, not all functionalities are the same. There are, however, more similarities

than differences, making experiments measuring the electrical brain activity in rats very interesting

to study the effect of psychoactive agents on the activity of human brains.

Depending on the frequency measurements range, the brain activity is referred to as delta

activity (below 4 Hz per second), theta activity (4–7.5 Hz per second), alpha activity (8-12.5

Hz per second), beta activity (13–30 Hz per second), and gamma activity (above 30 Hz

per second). Except for the delta activity, activities are refined in low and high activity

(e.g., α1, α2, . . .). So the EEG results in a multivariate outcome vector (i.e. 9 outcomes:

α1, α2, β1, β2, θ1, θ2, γ1, γ2, δ) to describe brain activity. These outcomes can be measured

over time and at different positions in the brain.

The EEG study includes 10 psychoactive compounds at 4 different doses, including a placebo

dose. To each compound, 32 rats were randomly assigned, 8 per dose group. The brain

signals of the rats in active wake state are monitored over time. For this purpose the 9-
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variate response is measured over time. A baseline measurement is taken at adminstration

of the drug. A total of 8 follow-up (post drug administration) measurements are taken. The

first follow-up measurement is forty-five minutes after administration of the psychoactive

agent, whereafter a measurement is obtained every 15 minutes. Furthermore, the brain

signal is monitored at six different positions in the brain (left and right frontal, left and

right parietal, left and right occipital). For each rat this results in a 9-variate longitudinal

response (α1, α2, . . .), for each of the 6 different positions in the brains. We will focus on

the γ2 frequencies obtained at the left prefrontal cortex for two psychoactive compounds,

PCP and Donepezil, administered at the highest dose. This reduces the data set to 16 rats,

8 rats administered the highest dose of PCP and 8 rats administered the highest dose of

Donepezil. Gamma waves are related to strong mental activity like solving problems, fear, and

awareness. PCP in low to moderate doses acts as a stimulant, whilst at higher doses it has a sedative

effect. Donepezil is a cholinesterase inhibitor and is used to treat moderate to severe dementia of

the Alzheimer’s type.

To visualize the data, the individual γ2 longitudinal profiles are given in Figure 3. The response of

interest is the percentage change with respect to the measurement at baseline Yib (administration

of the drug): Y
′
ij = 100(Yij − Yib)/Yib. At baseline all percentage changes are by definition equal

to zero. The graphical display therefore excludes the baseline data. In graphical displays and in the

statistical models, time zero refers to the first measurement obtained after administering the drug

(i.e., after 45 minutes).

Heterogeneity is seen in the γ2 waves; some rats have a decrease in the frequency while for others an

increase is obtained as an effect of the drug. This heterogeneity is of course caused by administrating

2 different drugs.

The heterogeneity model will be assumed, with a quadratic evolution of the relative γ2 ratio over time

and a random intercept that is a mixture of 2 normal distributions. So for component k (k = 1, 2)

in the mixture we have:

Y k
ij = βk0 + βk1 tij + βk2 t

2
ij + bi + εij , (12)

where βk0 , βk1 , and βk2 are component-specific fixed parameters describing the mean γ2 profiles, bi
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EEG data. The origin of the time axis is at the first measurement after adminstration of the drug.

are rat specific intercepts sampled from a 2-component model, and εij ∼ N(0, σε).

When applying the cluster algorithm, information about the drug a rat was given, was not taken

into account. The log-likelihoods (BIC) for the one and two-component model were respectively

-571.1 (1156.1) and -531.7 (1088.4). The model hypothesizing a mixture is outperforming the one-

component model. Classification of the rats into the two components, based on their posterior

probabilities, perfectly coincides with the two drug groups included in the analysis. The 8 rats on

PCP (ids 9–16) are classified together into cluster 1, and the 8 rats on Donepezil (ids 1–8) into

cluster 2.

The results of a local-influence analysis for the two-component model are displayed in Figure 4.

Three rats (ids 9, 12, and 16) of the PCP group are locally influential, based on their Ci value. The

observed profiles of these rats are highlighted in Figure 3. These rats also have a large component

in the direction of maximal curvature hmax. The maximal curvature equals 10.63.

The contribution to hmax is largest for rats 16, 14 and 9. Rats 16 and 14 were also characterized by

a high Ci. However, for rat 14 the Ci was not rated as exceptionally high.

To study the influence on subsets of parameters of model (12), expression (7) was used. The local-

influence diagnostics were obtained for the cluster specific average profiles, the random components,
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Figure 4: Total local influence, likelihood displacement, and direction of maximal curvature versus
rat identification numbers - EEG data. The horizontal line in the total local influence graph represents
the cut-off value for Ci.

and the mixture probability. The results are presented in Figure 5.

The influence of rats 9, 12, and 16 is visible in the set of fixed parameters characterizing the average
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Figure 5: Plot of local-influence diagnostics for the cluster specific average profiles, the random
components and the mixture probability - EEG data. The horizontal lines represent the cut-off
values for the displayed influences.

evolution of the cluster they belong too (cluster 1), their influence on the average profile of cluster 2 is

negligible. Rats 12 and 16 are also influential for the random effects (σb) and residual error (σε), their

diagnostics exceed the cutoff value. The mixture probability is not subject to small perturbations in

the case-weights. This is not a surprise, the influence on cluster size can not be extremely different

for different observations, with only a small set of observations to be clustered.

Local-influence diagnostics for the posterior probabilities are presented in a heatmap (Figure 6),

summarizing the local influence that rat i has on the posterior probability of rat j, in the crossing of

ith column with the jth row. The values in the graph are standardized, a value of one corresponds

to a Ci(πj1) equal to the cutoff value above which rat i is considered to be influential for the

posterior probability of rat j to belong to component 1. The influence on the posterior probabilities
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of rats 7, 12, and 14 could not be investigated. The hessian of the log-likelihood is singular

when parameterizing it as a function of the posterior probabilities of these rats. While it is

hard to list all situations in which a singular hessian can occur, it is well understood that

a non continuously differentiable likelihood, e.g. as a result of quasi complete separation

([35], [36]), or reduced sample size may result in a singular hessian. For rats 7, 12 and 14,

the posterior probability to belong to the first cluster is either extremely close to 1 or 0,

indicating separation.

It can be seen that a perturbation in the case-weight of rat 16 influences the posterior probabilities

of the other rats. Rat 9 influences the posterior probability of rats 11 and 16, rat 12 influences the

posterior probabilities of rats 9, 10, 11, 13 and 15. The other influence diagnostics did not exceed

the cutoff values.

Figure 6: Local-influence diagnostics for the posterior probabilities to belong to the first component
of the mixture - EEG data. The crossing of ith column with the jth row displays the local influence
that rat i has on the posterior probability of rat j to belong to the first component of the mixture.
Values above 1 are considered to be influential.

Classical diagnostics are generally based on case deletion. The likelihood displacements obtained by

deletion of one rat at a time from the analysis is given in Figure 4. This likelihood displacement

is corresponds to the vector ω with ωi = 0 and ωj = 1 for all j 6= i. The largest likelihood

displacements are seen for rats 9, 12, 14 and 16. It is reassuring that these are also the rats that stand

out in the local-influence analysis. The influence measures do however not agree for the ranking of
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rats 12 and 14.

To investigate if rat 16 is to be considered an outlier, the detection procedure described by Sain

et al. (1999) was employed. The profiles of the first 15 rats are assumed to be sampled from a

two-component mixture population, and the modified likelihood ratio test is used to see whether

the profile of rat 16 belongs to an outlier population or not. The value of the modified likelihood

ratio test statistic W equals 0.46. Applying this procedures for rats 9 and 12, the value of the

modified likelihood ratio statistic equals 0.74 and 0.84, respectively. The null distribution of the

test statistic was obtained via 999 nonparametric bootstrap samples. The 1st (5th) percentile of

the distribution equals 0.52 (0.68). Thus, the profile of rat 16 is an outlying observation at the

1% level of significance. On the other hand, the profiles of rat 9 and 12, also flagged in the local-

influence analysis, are considered to belong to the two-component mixture population, according to

this approach.

The solution of a three component mixture model for the EEG data and the results of a local influence

analysis for this model are presented in the Appendix (Section 7.3).

6 Discussion

This article elucidates the usefulness of local influence in model-based cluster analysis.

Local influence quantifies the impact of observations on the analysis. This can, for instance, be

done by introducing case-weights in the log-likelihood, such that the contribution of an individual

is slightly perturbed. Focus can be put on the effect of individual i only, by choosing the vector of

case-weights to be the zero vector with one value of 1 in the ith position. The total local influence

is then defined as the normal curvature of the likelihood displacement in the direction of the ith

individual.

In this paper, we demonstrated the usefulness of local-influence diagnostics when clustering lon-

gitudinal profiles by means of a finite-mixture model, with a priori given number of components.

The total local influence measures an individual’s influence on the vector of all parameters in the

model. Generally, this parameter vector contains (1) a number of fixed-effect parameters to describe
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the average evolution of each component in the mixture, (2) random-effect parameters reflecting

heterogeneity in the population, and (3) the mixture probabilities. The influence on a subset of the

vector of all parameters – for example the influence on the average profile of a specific cluster, or on

the mixture probabilities – can also be obtained.

When interest is not only in the stability of the parameters describing the components in the popula-

tion, but also in the stability of an individual’s classification the influence on the posterior probabilities

is to be investigated. Local influence is an elegant approach for this. The stability of the posterior

probabilities of individual j, can easily be inspected by re-parameterizing the log-likelihood in terms

the fixed effects, random effects and the posterior probability of individual j. For the two-component

mixtures carried out in this article, the i× j influence measures were displayed in a heatmap. Local-

influence diagnostics were obtained for two real-life datasets subjected to a finite mixture model.

For the EEG data, the results were compared with an outlier detection procedure for finite-mixture

models and a method quantifying the impact of individual data points on the cluster partition when

the correct classification is available. Local-influence diagnostics highlighted influential observations,

that were not revealed by the traditional case-deletion methods.

7 Appendices : Derivatives

7.1 Derivates of the log-likelihood for a finite-mixture model

This section presents the first and second-order derivatives of the log-likelihood for a finite-mixture

model with K components. Let fi(yi|θ) =
∑K

k=1 πkfik(yi|Ψ), with θ,π, and Ψ as defined in (2).

Individual i (i= 1 . . . , N) contributes li(θ) = log
[∑K

k=1 πkfik(yi|Ψ)
]

to the log-likelihood. First

and second derivatives with respect to the components of π = (π1, . . . , πK)′ and Ψ = (Ψ1, . . . ,ΨP )′

are (l,m = 1, . . . ,K; p, q = 1 . . . , P ):
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∂li
∂πl

=
1

fi(yi)
[fil(yi)− fiK(yi)] ,

∂li
∂Ψp

=
1

fi(yi)

[
K∑
k=1

πk
∂fik(yi)

∂Ψp

]
,

∂2li
∂πm∂πl

=
−1

f2
i (yi)

[(fim(yi)− fiK(yi))(fil(yi)− fiK(yi))] ,

∂2li
∂Ψp∂Ψq

=
−1

f2
i (yi)

[
K∑
k=1

πk
∂fik(yi)

∂Ψp

][
K∑
k=1

πk
∂fik(yi)

∂Ψq

]
+

1

fi(yi)

[
K∑
k=1

πk
∂2fik(yi)

∂Ψp∂Ψq

]
,

∂2li
∂πl∂Ψp

=
−1

f2
i (yi)

[
K∑
k=1

πk
∂fik(yi)

∂Ψp

]
[fil − fiK ] +

1

fi(yi)

[
∂fil(yi)

∂Ψp
− ∂fiK(yi)

∂Ψp

]
,

7.2 Likelihood for a finite-mixture model as a function of the posterior probabilities

This section sketches the calculation of the likelihood for a finite-mixture model with K components

as a function of the posterior probabilities.

We will use the following shortened notation fik = fik(yi|Ψ) (k = 1, . . . ,K) and fi = fi(yi|Ψ).

Let πi = (πi1, . . . , πiK)
′

be the vector of posterior probabilities for observation i. The mixture

probabilities π = (π1, . . . , πK)
′

and the contribution fj(yj) of observation j to the likelihood for the

finite-mixture model are obtained as follows.

First express the mixture probabilities as a function of the posterior probabilities and the component

specific density functions. Given the relation between the posterior probabilities and the mixture

probabilities, πik = πkfik∑K−1
l=1 πlfil+(1−

∑K−1
l=1 πl)fiK

, one obtains that πk =
πik[

∑K−1
l=1,l 6=k πl(fil−fiK)+fiK ]
fik−πik(fik−fiK)

(1). This expression gives the following equations, πkγikπik
−πs(fis−fiK) =

∑K−1
l 6=k,s πl(fil−fiK)+fiK

and πsγis
πis
− πk(fik − fiK) =

∑K−1
l 6=k,s πl(fil − fiK) + fiK with γik = fik − πik(fik − fiK). Equating

them results in the following expression for the mixture probability, πs =
πk

(
γik
πik

+(fik−fiK)
)

γis
πis

+(fis−fiK)
, which

20



simplifies to πl = πkπilfik
πikfil

. Substituting this expression for the mixture probability into (1) results in

πk =
πikfiK

fik −
∑K

l=1
fik
fil

(fil − fiK)

=
πikfiK

∏K−1
l=1 fil

fik

[∏K−1
l=1 fil −

∑K−1
l=1

(
πil(fil − fiK)

∏K−1
m 6=l fim

)]
=

πik
∏K
l 6=k fil[∏K−1

l=1 fil −
∑K−1

l=1

(
πil(fil − fiK)

∏K−1
m 6=l fim

)]
.

The kth mixture probability is thus specified as a function of the posterior probabilities and component

specific density functions of observation i.

The density function of observation j, fj =
∑K−1

k=1 πkfjk + (1−
∑K−1

k=1 πk)fjK , can now be attained

as a function of the posterior probabilities of observation i. Given that 1 −
∑K−1

k=1 πk simplifies to∏K−1
k=1 filπiK

D , with D =
∏K−1
l=1 fil −

∑K−1
l=1

(
πil(fil − fiK)

∏K−1
m 6=l fim

)
one can show that

fj =

∑K
k=1(πik

∏K
l 6=k fil)fjk∏K−1

l=1 fil −
∑K−1

l=1

(
πil(fil − fiK)

∏K−1
m 6=l fim

) .

The local influence analysis presented in Section 5.2 of the manuscript considered a two-component

mixture model. For K=2, the expression for the prior probability to belong to cluster 1 and the

density function are given by:

π1 =
πi1f2i

fi1 − πi1(f1i − f2i)

fj =
πi1fi2fj1 + (1− πi1)fi1fj2

fi1 − πi1(f1i − f2i)

Thus, the contribution of observation j to the likelihood lj = log(fj) is now expressed in terms

of the parameters πi1 and Ψ = (Ψ1, . . . ,ΨP )′ (p, q : 1 . . . , P ). The local-influence diagnostics

need the first and second-order derivatives with respect to these parameters. These derivatives can

be obtained by means of the chain rule or direct derivation of the likelihood. Using the following
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notation, A = πi1(fi1 − fj2) − fi1fi2 and B = πi1(fi1 − fi2 − fi1) the following expressions are

obtained for the first and second derivatives of lj :

∂lj
∂πi1

=
∂A
∂πi1

B −A ∂B
∂πi1

AB

∂lj
∂Ψp

=

∂A
∂Ψp

B −A ∂B
∂Ψp

AB

∂2lj
∂2πi1

=
(A ∂B

∂πi1
)2 − (B ∂A

∂πi1
)2

(AB)2

∂2lj
∂Ψq∂πi1

=

[
∂2A

∂Ψp∂πi1
B + ∂A

∂Ψp
∂B
∂πi1
− ∂A

∂πi1
∂B
∂Ψp
−A ∂2B

∂Ψp∂πi1

]
(AB)− ( ∂A

∂Ψp
B −A ∂B

∂Ψp
)( ∂A
∂πi1

B +A ∂B
∂πi1

)

(AB)2

∂2lj
∂Ψq∂Ψp

=

[
∂2A

∂Ψp∂Ψq
B + ∂A

∂Ψp
∂B
∂Ψq
− ∂A

∂Ψq
∂B
∂Ψp
−A ∂2B

∂Ψp∂Ψq

]
(AB)− ( ∂A

∂Ψp
B −A ∂B

∂Ψp
)( ∂A∂Ψq

B +A ∂B
∂Ψq

)

(AB)2

with

∂A

∂πi1

= fi1fj2 − fj1fi2

∂B

∂πi1

= fi1 − fi2

∂A

∂Ψp
= πi1(

∂fi1

∂Ψp
fj2 + fi1

∂fj2

∂Ψp
−
∂fi2

∂Ψp
fj1 − fi2

∂fj1

∂Ψp
)−

∂fi1

∂Ψp
fi2 − fi1

∂fi2

∂Ψp

∂B

∂Ψp
= πi1(

∂fi1

∂Ψp
−
∂fi2

∂Ψp
)−

∂fi1

∂Ψp

∂2A

∂Ψp∂πi1

=
∂fi1

∂Ψp
fj2 + fi1

∂fj2

∂Ψp
−
∂fi2

∂Ψp
fj1 − fi2

∂fj1

∂Ψp

∂2A

∂Ψp∂Ψq
= πi1

[
∂2fi1

∂Ψp∂Ψq
fj2 +

∂fi1

∂Ψp

∂fj2

∂Ψq
+
∂fi1

∂Ψq

∂fj2

∂Ψp
+ fi1

∂2fj2

∂Ψp∂Ψq
−

∂2fi2

∂Ψp∂Ψq
fj1 −

∂fi2

∂Ψp

∂fj1

∂Ψq
− +

∂fi2

∂Ψp

∂fj1

∂Ψq
− fi2

∂2fj1

∂Ψp∂Ψq

]

−
∂fi1

∂Ψp

∂fi2

∂Ψq
−
∂fi1

∂Ψq

∂fi2

∂Ψp
− fi1

∂2fi2

∂Ψp∂Ψq

∂2B

∂Ψp∂Ψq
= πi1(

∂2fi1

∂Ψp∂Ψq
−

∂2fi2

∂Ψp∂Ψq
)−

∂2fi1

∂Ψp∂Ψq
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∂Ψp∂πi1
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∂fi1

∂Ψp
−
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∂Ψp

7.3 Three component mixture model for the EEG Data

This section presents the local-influence diagnostics for a three-component mixture model applied to

the EEG data. When applying the cluster algorithm, information about the drug a rat was given, was
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Figure 7: Smoothed observed %change for γ2 profiles (full lines: PCP, dotted lines: Donepezil) -
EEG data. The origin of the time axis is at the first measurement after adminstration of the drug.

not taken into account. The log-likelihood (BIC) for the three-component model was -516.2 (1068.5).

The model hypothesizing a mixture of three components is outperforming the two-component model;

but it results in a small cluster of size two. The 8 rats on Donepezil (ids 1–8) are classified together

in cluster 2. The 8 rats on PCP are distributed over two clusters; cluster 3 (ids 14 and 16) and

cluster 1 (ids 9–13 and 15). So the three-component mixture splits the PCP cluster revealed in the

two-component solution into two clusters. The rat turning out to be most influential (i.e., rat 16),

according to local-influence analysis for the two component solution, is a member of the cluster of

size two in the three component solution.

The results of a local-influence analysis for the three-component model are displayed in Figure 8.
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Figure 8: Total local influence and direction of maximal curvature versus rat identification numbers
- EEG data. The horizontal line in the total local influence graph represents the cut-off value for Ci.

Three rats (ids 9, 11, and 12) of cluster 2 and both rats (ids 14 and 16) of cluster 3 are locally
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influential, based on their Ci value. The observed profiles of these rats are highlighted in Figure 7.

It is not a surprise that both rats of cluster 3 are highly influential. The influence that an individual

rat can effectuate on the average evolution of the cluster it belongs too, becomes more substantial

for smaller clusters.

The influence of rats 14 and 16 is visible in the set of fixed parameters characterizing the average

evolution of the cluster they belong too (cluster 3), their influence on the average profile of the other

clusters is negligible. Rats 14 and 16 are also influential for the mixture probabilities.
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7.4 Simulation Study

To investigate the performance of the local-influence diagnostics in the mixture context a simulation

study was set up. The simulation study is inspired on the finite-mixture model obtained for the EEG

data, and by no means attempts to be comprehensive.

Data were generated for different settings, each consisting of a mixture with two components and

with equal class probability. Repeated measurements at eight time points were generated assuming

quadratic individual profiles. Residual variances were normally distributed, homoscedastic, uncor-

related and mixture component invariant. Also the residual variances of the random intercept and

random slope were specified to be normally distributed, invariant across the mixture components, and

with a zero covariance between them. The values specified for the fixed parameters, the variances

of the random intercept and slope, and the residual variance are presented in Table 1. The values

are inspired on the average profiles seen in the EEG data, for a two-component mixture model. The

sample size per component, for each simulated data set, was fixed to be either 10, 20 or 30. For

each setting, 1000 data sets were generated.

In order to evaluate the performance of a local-influence analyses, one individual profile deviating

in terms of it’s intercept, slope and residual error was subjoined to the generated data sets. The

deviation was specified as a deviation from the average profile of the first component (Table 2).

Two degrees of deviation were considered, referred to as scheme 1 and scheme 2 with the degree

of deviation being largest for scheme 2. The effect of the number of deviating observations was

only investigated for the setting with a deviating intercept. Hereto, five deviating observations were

added to the generated data.

The results of a local-influence analysis, obtained when applying a two-component model to the

simulated data, are presented in Tables 3 and 4.

Each observation’s Ci is compared to the cutoff equal to 2×
∑
Ci/N . The proportion of deviating

observations that was identified as influential and the proportion of observations generated according

to component 1 or 2 that are identified as not influential are given in Table 3 and 4. The influence

was also studied on subsets of the parameters of the model, i.e. on the cluster specific average
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Table 1: Setting for the Simulation Study: Two-component Mixture Model: Fixed and Random-
effects Factors.

Component 1 Component 2

Intercept 13 -4.1

Slope 40.8 5.9

Quadratic term -80.9 -60.6

Random intercept variability 15 15

Random error variability 11 11

Table 2: Setting for the Simulation Study: Profiles for the Deviating Observation. The deviation is
specified as a deviation from the average profile of the first component (Table 1). Two degrees of
deviation were considered, referred to as scheme 1 and scheme 2 with the degree of deviation being
largest for scheme 2.

Deviating in terms of:

Intercept Slope Random Error

Scheme 1 Scheme 2 Scheme 1 Scheme 2 Scheme 1 Scheme 2

Intercept 43 58 13 13 13 13

Slope 40.8 40.8 81.6 122.4 40.8 40.8

Quadratic term -80.9 -80.9 -80.9 -80.9 -80.9 -80.9

Random intercept variability 15 15 15 15 15 15

Random error variability 11 11 11 11 22 33

profiles, the random component, residual variability and the mixture probability.

The probability that the deviating observation is identified as being influential increases with the

extent in which the case deviates from cluster 1 and with the cluster size. Comparing the results for

cluster sizes equal to 10 and 30, for scheme 1 for the intercept, shows that the probability to identify

the deviating subject as an influential case increases from 0.56 to 0.69. For a cluster size of 20, the

probability of identifying an influential case increases from 0.67 for scheme 1 to a probability of 1

for scheme 2. It is seen that the influence of a subject becomes smaller when more observations are

deviating. When, for example, looking at scheme 1 and cluster sizes equal to 20, the probability that

the deviating case will be identified as influential is 0.67 if there is only one deviating case and this
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Table 3: Simulation Study: Probability that an observation is identified as influential, for
the cluster components and for the deviating observation(s) in terms of the intercept. The
deviating subjects are specified as a deviation from the average profile of the first component
(Table 1). Two degrees of deviation were considered, referred to as scheme 1 and scheme
2 with the degree of deviation being largest for scheme 2 (Table 2).

Deviating Cluster Deviating intercept: 1 observation Deviating intercept: 5 observations

Scheme Size observations one subject observations five subjects

clusters 1+2 deviating cluster 1+2 deviating

1 10 0.10 0.56 0.12 0.08

20 0.10 0.67 0.10 0.21

30 0.10 0.69 0.10 0.32

2 10 0.06 0.96 0.10 0.19

20 0.07 1.00 0.07 0.73

30 0.08 1.00 0.06 0.92

probability decreases to 0.21 when there are five deviating observations.

About 10% of the observations generated according to cluster 1 or cluster 2, are also identified as

being influential. This proportion stays more or less constant as a function of the cluster size and

only slightly decreases with increasing distance between cluster 1 and the deviating observation.

When the deviating observation differs in terms of the intercept, an influence can be seen on the

average profile of cluster 1 (most strongly in the intercept), on the variance of the random intercept

and on the residual variance. A deviation in terms of the slope is reflected in an influence on the

average profile of cluster 1 and on the residual variance. When the extra observation deviates in

terms of its residual error, this is seen in the influence measures for the average profile of cluster 1

and on the residual variance (data not shown).

Table 4 contains the results when the extra observation deviates in terms of the slope or the residual

error of the profile. Only the situation where one deviating observation was added is considered.

Although this simulation study should not be over-generalized, the results indicate that

observations that were generated as deviating from the average profile of one of the cluster

components, are more likely to be identified as influential, as compared to observations

generated to belong to the cluster components.
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Table 4: Simulation Study: Probability that an observation is identified as influential, for
the cluster components and for the deviating observation(s) in terms of the slope or residual
error. The deviating subjects are specified as a deviation from the average profile of the first
component (Table 1). Two degrees of deviation were considered, referred to as scheme 1
and scheme 2 with the degree of deviation being largest for scheme 2 (Table 2).

Deviating Cluster Deviating Slope Deviating random error

Scheme Size observations one subjects observiations one subjects

clusters 1+2 deviating cluster 1+2 deviating

1 10 0.12 0.13 0.10 0.64

20 0.11 0.14 0.10 0.68

30 0.10 0.15 0.10 0.68

2 10 0.11 0.23 0.07 0.91

20 0.11 0.25 0.07 0.93

30 0.10 0.25 0.07 0.96
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