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Missing data often complicate the analysis of scientific data. Multiple imputation is a general pur-
pose technique for analysis of datasets with missing values. The approach is applicable to a variety
of missing data patterns but often complicated by some restrictions like the type of variables to be
imputed and the mechanism underlying the missing data. In this paper, the authors compare the
performance of two multiple imputation methods, namely: fully conditional specification and multi-
variate normal imputation in the presence of ordinal outcomes with monotone missing data patterns.
Through a simulation study and an empirical example, the authors show that the two methods are
indeed comparable meaning any of the two may be used when faced with scenarios, at least, as the
ones presented here.

Keywords: longitudinal data; ordinal outcome; monotone missing data patterns; fully conditional
specification; multivariate normal imputation; proportional odds model.

1. Introduction

Longitudinal studies are an important source of information in health sciences and other
areas but often have the problem of missing data. Ordinal outcomes are increasingly be-
coming common in these studies. However, analysts are challenged if they need to impute
missing values for such outcomes due to their hierarchical nature [11, 12]. Missing values
in longitudinal studies occur when not all of the planned measurements of a subject
outcome vector are actually observed. This turns the statistical analysis into a missing
data problem. For example, a subject may terminate early from a scheduled sequence of
clinical visits for a number of reasons, both known and unknown. This type of missing
pattern is termed dropout (monotone missing data pattern). Alternatively, a subject may
miss a scheduled visit but appear at the next occasion. This is referred to as an arbitrar-
ily (intermittent) missing data pattern. In this study we focus on the former pattern of
missingness. The reasons that lead to missingness are varied and it is always necessary
to reflect on the nature of missingness and its impact on inferences. In [45] these reasons
are classified into three categories. Data are said to be missing completely at random
(MCAR) if the probability of missingness is independent of both the observed and unob-
served measurements, missing at random (MAR) if, conditional on the observed data the
probability of missingness is independent of the unobserved measurements and missing
not at random (MNAR) for a violation of the above scenarios. Under the unrealistic
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MCAR, simple incomplete data methods like last observation carried forward (LOCF),
complete case analysis and available case analysis may be employed. However, even un-
der the strong MCAR assumption it is not guaranteed that LOCF analysis is valid. In
fact, analysts see it unscientific to use the ad hoc methods when broadly valid likelihood
analyses can be easily implemented with standard software [9]. Generally speaking, the
MAR assumption represents the most general condition under which valid inferences
can be obtained without reference to the missing data mechanism, given inferences are
likelihood-based or Bayesian [9, 27].
Recent advances in computational statistics have produced a new billow of flexible and
formally justifiable procedures with sound statistical basis like multiple imputation. Mul-
tiple imputation (MI), initially proposed by [46] and further detailed in [47] and [49], has
become one of the most popular approaches in handling missing data. MI can be used not
only with continuous variables but also with binary and categorical variables. It provides
a way of accounting for uncertainty associated with imputations. This is a major strength
against a number of existing single imputation methods. MI replaces each of the missing
values with m ≥ 2 plausible values generated under an appropriate imputation model to
obtain m complete datasets. This replication captures the uncertainty about the missing
data. The resulting m multiply imputed datasets are then analysed separately using an
appropriate well-known standard method for complete data. The third stage is to com-
bine the m analysis results into one for inferences, where the standard errors of estimates
take account of the the variation within and between the m imputations [47].
MI is a viable candidate for handling missing data in multivariate analysis. This is be-
cause it introduces appropriate random error into the imputation process and makes it
possible to produce unbiased estimates of all parameters [2, 47]. It can be used with any
kind of data and any kind of analysis with without specialized software [2]. However, one
key feature of MI is that, for correct and valid inferences, the imputation model should
be correctly specified. It is agreed that the analysis and the imputation model should be
congenial in the sense that the imputation model should be able to reproduce the major
features of the analysis model [3, 34, 47]. In this article, the imputation model includes
the same variables that are in the analysis model. Regarding MI it is also important to
note that standard MI procedures assume that the data are MAR. While it is almost
always impossible to test this assumption, including auxiliary variables in the imputation
model that predict the missingness, together with variables that are correlated that will
be included in the analysis model, can minimise bias. It also makes the MAR assump-
tion more viable [14, 52]. On the other hand, it is also possible to use MI procedures to
impute data that are MNAR, but this requires making additional assumptions about the
missingness mechanism.
This paper is concerned primarily with the comparison of two MI methods namely fully
conditional specification (FCS) and multivariate normal imputation (MVNI) as applied
to ordinal outcome variables with a monotone missing data pattern. Moreover, for the
purpose of this paper, we focus on one ordinal outcome variable over time but the ideas
presented here are applicable to other ordinal forms and data settings.
The paper is organised as follows. In Section 2, we give the key definitions and necessary
notation. A description of the imputation methods is given in Section 3 followed by a
simulation study and application in Section 4.
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2. Definitions and notation

2.1 Missing data model

Suppose that for the ith subject in the study, a sequence of measurements Yij is expected
to be measured at occasions j = 1, . . . , ni. Due to some reasons, some values of Yi =
(Yi1, . . . , Yini

)′ are not observed. Then Yi can be partitioned into two subvectors such
that Yi,o contains the observed measurements and Yi,m, the unobserved measurements.
Now, if we let Y to be the complete set of observations, then Y can be partitioned such
that Y = (Yo, Ym). We define a random vector Ri = (Ri1, Ri2, . . . , Rini

) compatible with
the vector of observations Yi such that Rij = 1 if the outcome Yij is observed and 0
otherwise. Using [24], the joint distribution of the full data Y and the indicator vector
variable R can be factorized as

f(Y,R|θ, ψ) = f(Y |θ)P (R|Y, ψ), (1)

where ψ denotes a vector of parameters governing the missingness mechanism and θ
denotes the measurement process model parameters. The conditional distribution of the
missing data mechanism can be equivalently expressed as f(R|Yo, Ym, ψ). Diggle and Ken-
ward, [21] propose modelling the probability of missingness at a particular measurement
occasion as a linear function of the response values at previous occasions. For simplicity
we assume that this dropout depends only on the observed response just before the time
it fails to be recorded and the unobserved response at the missing point. However this
model can be extended to include measured or observed covariates. If we denote by Yij ,
the response at measurement occasion j, the missing data model can be written as

logit[Pj(Rij = 0|yi1, yi2, . . . , yi(j−1), yij)] = ψ0 + ψ1yi(j−1) + ψ2yij , (2)

where Pj(Rij = 0|yi1, yi2, . . . , yi(j−1), yij) is the conditional probability of missingness at
occasion j, given the history of responses, yi1, yi2, . . . , yi(j−1), yij , the response subject to
missingness, yij and ψ0, ψ1 and ψ2 are the model parameters to be estimated. The model
reduces to a MAR model if ψ2 = 0. MCAR if ψ1 = ψ2 = 0. If ψ2 6= 0, then we cannot
rule out MNAR but note that the test for ψ2 = 0 versus ψ2 6= 0 (MAR versus MNAR)
relies on untestable assumptions such as the distributional form [26, 36, 38, 42]. In fact
[37] show that a formal distinction between MAR and MNAR is not possible because for
any MNAR model there exists a MAR counterpart that fits the data equally well.

2.2 Ordinal responses

There are cases where the outcome variable can be polytomous. While the typical logis-
tic regression analysis models a binary response, logistic regression can also be applied
to multilevel cases. If the response variable takes on values that have no inherent order
(e.g., voting party A, B, C, or D) then the response is nominal. If it takes on intrinsic
values like the levels of agreement (e.g., strongly agree to strongly disagree) then the
response is ordinal. Then, for ordered categorical variables, the binary logistic regres-
sion extends to polytomous logistic regression. A number of logistic regression models
have been studied for ordinal response variables [1, 6, 15, 31, 33]. When there is need
to consider several factors, special multivariate analysis for ordinal data is the natural
alternative [17], although other methods, like mixed models may be used. However, or-
dinal logistic regression models have been most useful [5, 33]. Several ordinal logistic
regression models exist, namely: the proportional odds model, partial proportional odds
model, continuous ratio model and the stereotype regression model. The most popular
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among them is [33] proportional odds model [8]. The proportional odds model (a specific
form of cumulative odds model), is a logit model that allows ordered data to be modelled
by analysing it as a number of dichotomies. A binary logistic regression model compares
one dichotomy (yes/no) whereas the proportional odds model compares a number of di-
chotomies by arranging the ordered categories into a series of binary comparisons. Here,
the assumption is made that the effect of each explanatory variable is the same for each
binary comparison (logit). This is the proportional odds assumption, also referred to as
the parallel lines assumption (or equal slopes assumption). It leads to parsimony of the
model, because it means that the effect of a predictor variable on the ordinal response is
explained by one parameter. However, it may pose a restriction on the flexibility of the
model, which may or may not be adequate for the data. Then before any model statistics
are interpreted, it is important to test the assumption, a violation of which may lead
to incorrect interpretation of results [5]. The assumption is commonly used with the cu-
mulative logit link. On the other hand, mixed effects models have also been found very
useful for longitudinal categorical (nominal or ordinal response) data. The main reason
why random effects are used is to take account of correlated data due to clustering as as
result of repeated measure from the same individual.
In medical and clinical research, it is not easy to get a continuous outcome for that kind
of information you need. More often, the variable of interest has a natural ordering, say
no disease, mild, and severe. In this case using an ordinal outcome for the disease model
may make sense other than “no disease” and “diseased”, i.e., collapsing the ordinal levels
to binary ones. If this is done, one has to find an appropriate correlation structure of
the dichotomized data, and then inflate the correlations intentionally in order to make
them what they should have been. This means one follows the ordinal-binary-Gaussian-
ordinal-binary conversion scheme. This strategy, however, may not be applicable in every
scenario [18]. The polytomous logistic regression model may be employed for the ordered
categorical variable, but fails to make proper use of the information about the ordering.
One way of taking advantage of the ordering is the use of “cumulative odds”, “cumulative
probabilities” and “cumulative logits”.
Now, suppose that our data comprises of a set of i = 1, . . . , N independent clusters (sub-
jects in our longitudinal data context) where the ith subject consists of ni observations.
As before, let Yij denote the jth (j = 1 . . . , ni) response in subject i. This response may
fall in any of c = 1, . . . , C distinct ordered categories for C ≥ 2. Further, let xij denote a
vector of predictor variables for the jth observation in the ith subject. Then Yij will have
a multinomial distribution with parameter vector π. In this case, πjc is the probability of
the jth measurement falling into category c so that we have our cumulative probabilities
given as

P (Yij ≤ c) = P (Yij ≤ c|xij) = πi1 + · · ·+ πic. (3)

Now using a logit link, we will have a cumulative logit model defined as

logit(P (Yij ≤ c)) = log

[
P (Yij ≤ c)

1− P (Yij ≤ c)

]
= αc − x′ijβ, (4)

where P (Yij ≤ c) is the probability of being at or below category c, given a set of
predictors. Here, c = 1, . . . , C−1 for the C categories of the ordinal outcome, αc gives the
threshold parameters (intercept terms that depend on the categories). These parameters,
however, are seldom of practical importance except for computing response probabilities.
The regression parameters, β, reflect the association between the predictor variables and
the outcome variable. Notice that, while the regression coefficients do not vary (i.e., β
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has the same effect for each of the C− 1 cumulative logits, implying x′ijβ is independent
of c), a different intercept exists for each level of the cumulative model. Given that the
regression parameters (β) are subtracted (model (4)), this means that a unit increase
in the predictor variable will increase the log-odds of being in category greater than c.
In other words, it means that the higher the value of X ′ijβ, the higher the probability
of response falling in a category at the upper end of the response scale. But note that
β itself can be estimated as negative which will give an increasing effect of the odds
in categories less than or equal to c. The model describes the cumulative logits across
c − 1 response categories. One can transform the cumulative logits to obtain estimated
cumulative odds and also the cumulative probabilities of being at or below category c.

3. Imputation methods

When the data set has a monotone missingness pattern, variables with missing val-
ues are imputed sequentially with covariates obtained from their corresponding sets of
preceding variables. To impute continuous variables, a regression method, a predictive
mean matching method or a propensity score method may be used. A logistic regres-
sion method may be used for a binary or ordinal variable. Alternatively, a discriminant
function for nominal or binary variables can be used. For real and simulated incomplete
ordinal datasets, we contrast two multiple imputation procedures; the fully conditional
specification (FCS) via chained equations [57, 59] and the multivariate normal imputa-
tion (MVNI) [49]. These approaches are based on different theoretical assumptions and
involve very different computational methods [28].

3.1 Multivariate normal imputation

Approaches to imputing multivariate data have been developed. For example, [48] pro-
vided procedures for generating multivariate multiple imputation. This Bayesian sim-
ulation algorithm draws imputations from the posterior predictive distribution of the
unobserved data given the observed data. The method assumes that the data are mul-
tivariate normally distributed and missing at random. Schafer [49] used this underlying
approach and derived imputation algorithms for multivariate numerical, categorical and
mixed data. The methodology describes the data by encompassing a multivariate model
and derive a posterior distribution and then draw imputations from these by Gibbs sam-
pling (here after referred to as data augmentation rather than Gibbs sampling). It uses
the Markov chain Monte Carlo (MCMC) approach to draw imputed values from the
estimated multivariate normal distribution.
Given our ordinal response variable Y ∼ MVN(µ,Σ), data augmentation [55] in Bayesian
inference with missing data is based on iterating between an imputation step (I-step) and
a Posterior step (P-step).
• The imputation step - With some estimated initial values for the mean vector µ and
covariance matrix Σ, the I-step simulates a value for missing data Ym by randomly draw-
ing it from the conditional predictive distribution of Ym, i.e., from a current estimate
(rth iteration) θ(r), of the parameter, a value Y r+1

m of the missing data is drawn from
the conditional distribution of Ym given Yo:

Y (r+1)
m ∼ P (Ym|Yo, θr), θ = (µ,Σ). (5)
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• The posterior step - This step draws a value of the parameter θ from a complete-data
posterior distribution:

θ(r+1) ∼ P (θ|Yo, Y (r+1)
m ). (6)

The updated estimates are then used in the imputation step.
Iterating (5) and (6) from initial value θ(0) will yield a stochastic sequence

{(θ(r), Y
(r)
m ); r = 1, 2, . . . }. The two steps are iterated sufficiently long until the distri-

bution of the estimates becomes stationary [49]. Each step depends on the previous one,
meaning that there is dependency across the steps. This approach is theoretically sound
but based on distributional assumptions that may not always be realistic (e.g., assum-
ing normality for binary, ordinal variables). For categorical variables, the MVNI method
draws imputations under the MVN model and so we need to round off the imputations
to the nearest integer to accommodate the categorical nature of the data. Allison[4] how-
ever, cautions about rounding (he cites the binary case) because the rounded imputed
values may lead to biased parameter estimates. Nonetheless, [49] still argues that infer-
ence from MVNI may be reasonable even if multivariate normality does not hold, e.g.,
in the cases of binary and categorical variables. We refer the reader to [49] for a detailed
account of this procedure.

3.2 Fully conditional specification

An alternative option, applicable to multivariate data, is the fully conditional specifi-
cation (FCS) approach. FCS is a flexible method that specifies the multivariate model
by a series of conditional models for each of the incomplete variables. Unlike MVNI, it
does not necessarily rely on the multivariate normality assumption and thus univariate
regression models can be appropriately tailored to be used for ordered logistic regression
for ordinal variables. Using a Bayesian approach, imputations are done stepwise starting
with the variable with the least amount of missing values and progressing like that un-
til the variable with the most missing data is finally handled. It involves two phases in
each imputation: the filled-in stage and the imputation stage. During every stage, draws
are randomly done from both the posterior distribution of the parameters and posterior
distribution of the missing values. At the filled-in stage, the missing values are filled in
sequentially over the variables, one after the other with preceding variables serving as
covariates. The filled-in values are then used as starting values for the imputation stage.
At the imputation stage, the filled-in values are replaced with imputed values for each
variable sequentially at each iteration.
Let the ordinal response variable Y be characterized by a vector of unknown parameters
θ = (µ,Σ); µ is a mean vector while Σ is a covariance matrix. As before, Y = (Yo, Ym).
Following [58] and also in [10], multiple imputation via FCS proceeds as follows:
• calculate the posterior distribution of θ given the observed data, i.e., P (θ|yo);
• draw a value θ∗ from P (θ|yo);
• draw a value y∗ from the conditional posterior distribution of ym given θ = θ∗:

y∗ ∼ P (ym|yo, θ = θ∗). (7)

Repeat the second and third steps depending on the number of imputations. The steps are
repeated long enough for the results to reliably simulate an approximately independent
draw of the missing values for an imputed dataset.
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3.3 Software considerations

When we assume MAR, valid inferences can be obtained through likelihood-based anal-
ysis without modelling the dropout process. Consequently, the generalized linear mixed
model - as the analysis model is used. This approach may be implemented by using SAS
procedures NLMIXED and GLIMMIX. If we need to impute missing values, both the
description of missing data patterns and multiple imputation is performed using the pro-
cedure PROC MI. It may be used for all types of variables. The procedure offers several
methods for imputation depending on whether the variable is continuous or categorical.
Here we are interested in comparing MVNI and FCS as implemented in PROC MI. For
MVNI, it uses the Markov Chain Monte Carlo (MCMC) approach to draw imputed val-
ues from the estimated multivariate normal distribution. To use it, the user calls it by
specifying the mcmc statement in the MI procedure. To run FCS, the fcs statement is
specified in PROC MI. In PROC MI, the imputation model to be used and the number
of imputed datasets to be created are specified. After imputation, statistical procedures
run the analytic model of interest separately for each imputation using Imputation as a
BY variable, and the results are stored in an output file. Finally, a procedure call, PROC
MIANALYZE combines the estimates obtained from the analyses for multiply imputed
data to produce valid statistical inferences. However, for some complete data analyses,
like those for categorical data, additional manipulations are needed before PROC MI-
ANALYZE is used [41]. This is because Rubin rules [47] for combining results assume
that the statistics estimated are normally distributed. Such estimates, like regression co-
efficients and means, are approximately normally distributed, while others like the odds
ratios, correlation coefficients, relative risks etc., are nonnormal. If interest is on the lat-
ter group of estimates, they can first be normalized before applying Rubin’s combination
rules to the transformed estimates. In [60] some transformations to various types of es-
timated statistics are suggested.
By default, the SAS procedure LOGISTIC fits the proportional odds model combined
with the cumulative logit link. When the assumption of the common slopes is valid for
some variables but not for others, PROC GENMOD may be used to fit the partial pro-
portional odds model (PPOM). Alternatively, PROC LOGISTIC may also be used but
with a specification of the UNEQUALSLOPES option in the model. PROC CATMOD
can be used in case of a nonproportional odds model.

4. Simulation study

4.1 Data generation, simulation designs and analysis of the simulated data

We conducted a simulation study to examine the performance of FCS and MVNI. The
datasets were generated using a scenario that mimics common longitudinal studies. The
simulated data sets are based on an ordinal outcome with C categories which are gen-
erated at four study occasions, j = 1, . . . , 4. The setting was repeated for three differ-
ent settings where C = 3, 4, 5. For each of the different scenarios, we simulated 1000
datasets based on a generalised linear mixed model scheme of the form (8) for sam-
ple sizes N = 100, 250, 500. Consequently, longitudinal ordinal variables were generated
following a model with a linear predictor:

logit[P (Y ∗ij ≤ c)] = αc + x′β + bi, bi ∼ N(0, d). (8)

An ordinal regression model was motivated by assuming an underlying latent variable
(y∗) which is related to the actual response through the “threshold concept”. The re-
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sponse is defined based on some underlying unobserved continuous endpoint that follows
a linear regression model incorporating random effects and a prespecified set of cut-off
values (threshold values) αc. The data was generated by assuming a vector of predictor
variables x′ = (x1, x2, x3, x4), which is a combination of both continuous and binary
variables. Here, x1 and x3 are binary group effects (i.e., x = 0, 1) representing a treat-
ment group indicator and gender respectively, x2 is a continuous variable representing
exposure period and x4 is a four-point assessment time. For the simulations we used the
parameters, β1 = 0.9, β2 = 0.2, β3 = 0.5 and β4 = 0.8. For simplicity of the simulations
in this paper, we did not assume any interaction of terms. In this case, our simulation
model is explicitly written as:

logit[P (Y ∗ij ≤ c)] = αc + 0.9x1 + 0.2x2 + 0.5x3 + 0.8x4 + bi. bi ∼ N(0, 1.82) (9)

By the inverting the logit link function, it leads to the conditional ordinal logistic
regression model, noting that equation (8) can be equivalently written as:

P (Y ∗ij ≤ c) =
exp(αc + x′β + bi)

1 + exp(αc + x′β + bi)
. (10)

Let φijc = P (Y ∗ij ≤ c), we obtain the ordinal response Yij (e.g., for C = 4) by setting an
observation rule defined as:

Y =


1 if φij ≤ τ1,

2 if τ1 < φij ≤ τ2,

3 if τ2 < φij ≤ τ3,

4 if φij > τ3.

(11)

First from the full data sets without imposing any missing values, parameters and
standard errors were estimated by a likelihood based approach. Each estimate is an
average of 1000 estimates from the different simulated datasets. Then, we assumed a
rather simple MAR model of missingness, where subjects whose outcome was greater
than some cut-off probability would miss at post baseline time points 3 and 4, i.e.,
let drp = yij − yij−1, j = 2, 3, 4, yielding values between −2 and 2; −3 and 3; and
−4 and 4 for the different choices of the categories of the ordinal outcome, i.e., for
C = 3, 4 and 5 categories respectively. Then we normalized these values by defining
ndrp = (drp + (C − 1))/2C in order to confine them to the range [0, 1]. Finally, if
ndrp > γ + 0.6u (where u ∼ [0, 1] is a uniformly distributed random number) then
yi(j+1) misses. We held (for the C = 3, 4, 5 categories, respectively) γ = 0.4 so as to
ensure that about 30% of the response data were missing. The probability of a value
dropping depended merely on the immediate history.
Then the missing entries were imputed using FCS and MVNI as carried out in PROC
MI. We used the expectation-maximization (EM) algorithm [20] to obtain the starting
values for our imputations. MVNI was performed using the SAS PROC MI with a spec-
ification of the MCMC statement. The ordinal values were imputed on the continuous
scale and rounded off to the required categories. Maximum and minimum values were
specified based on the scale of the response options of the dataset. These specifications
were necessary so as to ensure that imputations were not created outside the range of
the response values. FCS was carried out using fcs statement in PROC MI. The ordinal
response was imputed using the ordinal logistic regression model as incorporated in the
FCS procedure. For all cases in the study, default values for MCMC and FCS specifica-
tions were used in the simulations. We realized that the algorithms still converged to the
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correct posterior distributions and were confident that the imputed values in the differ-
ent datasets were statistically independent. All the other predictor variables were used
to ensure that our imputation model was rich enough to try and satisfy the congeniality
requirement under the MAR assumption. For simplicity, throughout the analyses in this
paper the categorical time was treated as continuous.
For comparison of methods, a larger number of imputations is necessary [62]. We per-
formed m = 20 imputations. This relatively high value was chosen to account for the
relatively large fraction of missing data and to limit the loss of power for testing any
associations of interest. Nonetheless, researchers argue that m can be set to 3 ≤ m ≤ 5
and still get sufficient accuracy. However, [49] cautions that pegging on this range might
be risky. On the other hand, [35] showed that efficiency increments diminishes rapidly
after the first m = 2 imputations for a small fraction of missing information and after
the first m = 5 imputations for larger fractions of missing information. However, a rule
of thumb for choosing m is suggested (see [61]). They suggest that m should be at least
equal to the percentage of incomplete cases. Nevertheless, we caution the reader that
still discretion is necessary, based on the problem at hand.
To compare the performance, we used bias and mean squared error (MSE) of the param-
eter estimates. We defined bias as the absolute difference between the average parameter
estimate from the analysis procedures (based on the 1000 data replications) and the true

value (i.e., Bias = | ¯̂β − β|).

4.2 Simulation results

Results of the simulation study (based on 1000 simulated datasets and 20 imputations)
are presented. We present three tables, where Table 1 represents results when the ordinal
outcome variable has 3 categories/levels, Table 2, the variable has 4 levels and Table 3
when the variable has 5 levels. The results are presented for MVNI, FCS, direct likelihood
(DL) and full data analysis (FDA). In this paper, full data refers to the simulated dataset
that has no missing values. Although the original idea of the paper was to contrast the
performance MVNI and FCS, DL is presented as an additional approach because of its
known ability to handle incomplete data. Rather than imputing missing measurements,
[32] suggested the use of a direct likelihood approach to deal with incomplete correlated
data under the ignorable assumption. Here, the observed cases are analysed without any
analyst’s adjustments i.e., without imputation nor deletion, by the use of models that
provide a framework where clustered data can be analysed by including both fixed and
random effects in the model (in case of GLMMs for non-Gaussian data) [25]. The authors
in [25] further showed that DL analysis of incomplete datasets produced unbiased param-
eter estimates that were comparable to those from a full data analysis. These arguments
were echoed by [35], who also pointed out cases where MI is justified.
For clarity results are presented here for regression coefficients only and not the inter-
cepts. In all tables, larger values depicting worst cases are in bold.
In Table 1, considering bias, we notice that the largest values are obtained for MVNI.
These are followed by FDA in all cases except β4 where FCS produces larger values than
FDA. The trend is the same for all sample sizes. The FCS and DL values are very close to
each other with one case (β3, N = 500) where they are the same. Looking at MSE, we ob-
serve a similar situation as for bias, i.e., bigger values for MVNI followed by FDA except
β4 where FCS produce larger values than FDA. Comparing DL and FCS, we see equal
values for all cases save for β1, β3, β4 for N = 100, and β4 in N = 250. However, these
values are very close such that in 3−decimal places, they are equal. Looking at standard
errors, largest values are observed for DL consistently except β4. MVNI produces the
smallest values in all the other cases except β4, for N = 100, 250.
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Table 1. Standard errors (Std Err), Bias and mean squared error (MSE) estimates from fully conditional

specification (FCS) and multivariate normal imputation methods (MVNI). Also estimates from full data analysis
(FDA) and direct likelihood (DL) method. Missing values, approximately (30%) on the response variable; MAR

mechanism. A case where ordinal variable has C = 3 levels.

Std Err Bias MSE

Sample Par FDA DL FCS MVNI FDA DL FCS MVNI FDA DL FCS MVNI

β1 0.0114 0.0130 0.0111 0.0106 0.0614 0.0154 0.0144 0.0965 0.0039 0.0004 0.0003 0.0093
β2 0.0007 0.0008 0.0007 0.0007 0.0108 0.0042 0.0043 0.0212 0.0001 0.0000 0.0000 0.0004

N=100 β3 0.0128 0.0158 0.0125 0.0120 0.0269 0.0100 0.0074 0.0556 0.0009 0.0003 0.0002 0.0032
β4 0.0030 0.0035 0.0040 0.0040 0.0559 0.1820 0.1826 0.2354 0.0031 0.0331 0.0334 0.0554

β1 0.0076 0.0091 0.0077 0.0075 0.0540 0.0191 0.0193 0.1004 0.0030 0.0004 0.0004 0.0101
β2 0.0004 0.0006 0.0005 0.0004 0.0113 0.0048 0.0049 0.0217 0.0001 0.0000 0.0000 0.0005

N=250 β3 0.0082 0.0094 0.0077 0.0074 0.0356 0.0157 0.0167 0.0620 0.0013 0.0003 0.0003 0.0039
β4 0.0018 0.0022 0.0024 0.0028 0.0547 0.1821 0.1824 0.2350 0.0030 0.0332 0.0333 0.0552

β1 0.0056 0.0067 0.0053 0.0059 0.0611 0.0274 0.0272 0.1086 0.0038 0.0008 0.0008 0.0118
β2 0.0003 0.0004 0.0003 0.0003 0.0111 0.0048 0.0049 0.0218 0.0001 0.0000 0.0000 0.0005

N=500 β3 0.0052 0.0065 0.0053 0.0052 0.0440 0.0246 0.0246 0.0693 0.0020 0.0006 0.0006 0.0048
β4 0.0013 0.0016 0.0018 0.0017 0.0554 0.1843 0.1844 0.2369 0.0031 0.0340 0.0340 0.0561

Now shifting focus to Table 2, the scenario we observed in Table 1 changes. We notice
that largest bias are recorded for FDA for all β’s except β4 which are taken by MVNI.
Exactly the same trend is produced under MSE. Looking at standard errors, here the
same scenario as in Table 1 is reproduced. Again, DL and FCS produce same or very
close values.
In Table 3, the previous trends observed for standard errors are replicated here. For bias

and MSE the trends change slightly. Now, the largest biases are recorded for MVNI in
all cases except β2 for all sample sizes, and β3 for N = 250. The same set up is produced
under MSE. Like before very close or equal values are observed for FCS and DL.
In terms of bias MVNI seems to be more biased than FCS. If one is interested in smaller
standard errors then MVNI has mostly smaller values than FCS or at times they are
equal. Generally, FCS may seem slightly better than MVNI, but both methods seem
to perform equally well. DL is another favourable alternative in case one is not well
conversant with the imputation methods. Faster and easily implemented in standard
statistical software.

Table 2. Standard errors (Std Err), Bias and mean squared error (MSE) estimates from fully conditional

specification (FCS) and multivariate normal imputation methods (MVNI). Also estimates from full data analysis
(FDA) and direct likelihood (DL) method. Missing values, approximately (30%) on the response variable; MAR

mechanism. A case where ordinal variable has C = 4 levels.

Std Err Bias MSE

Sample Par FDA DL FCS MVNI FDA DL FCS MVNI FDA DL FCS MVNI

β1 0.0100 0.0118 0.0100 0.0099 0.2382 0.1598 0.1595 0.1933 0.0568 0.0257 0.0255 0.0375
β2 0.0006 0.0007 0.0006 0.0006 0.0517 0.0314 0.0315 0.0358 0.0027 0.0010 0.0010 0.0013

N=100 β3 0.0102 0.0123 0.0106 0.0097 0.1214 0.0879 0.0894 0.1082 0.0148 0.0079 0.0081 0.0118
β4 0.0023 0.0033 0.0036 0.0036 0.2141 0.3929 0.3930 0.4007 0.0458 0.1544 0.1545 0.1606

β1 0.0063 0.0079 0.0065 0.0064 0.2329 0.1556 0.1563 0.1914 0.0543 0.0243 0.0245 0.0367
β2 0.0003 0.0004 0.0004 0.0003 0.0520 0.0316 0.0316 0.0359 0.0027 0.0010 0.0010 0.0013

N=250 β3 0.0066 0.0082 0.0066 0.0066 0.1290 0.0868 0.0871 0.1082 0.0167 0.0076 0.0076 0.0118
β4 0.0015 0.0020 0.0021 0.0022 0.2123 0.3884 0.3885 0.3972 0.0451 0.1509 0.1509 0.1578

β1 0.0044 0.0056 0.0047 0.0045 0.2384 0.1611 0.1614 0.1958 0.0569 0.0260 0.0261 0.0384
β2 0.0002 0.0003 0.0003 0.0002 0.0521 0.0316 0.0317 0.0360 0.0027 0.0010 0.0010 0.0012

N=500 β3 0.0042 0.0054 0.0047 0.0045 0.1385 0.0952 0.0951 0.1164 0.0192 0.0091 0.0091 0.0136
β4 0.0010 0.0015 0.0017 0.0014 0.2131 0.3910 0.3913 0.3989 0.0454 0.1529 0.1531 0.1591
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Table 3. Standard errors (Std Err), Bias and mean squared error (MSE) estimates from fully conditional

specification (FCS) and multivariate normal imputation methods (MVNI). Also estimates from full data analysis
(FDA) and direct likelihood (DL) method. Missing values, approximately (30%) on the response variable; MAR

mechanism. A case where ordinal variable has C = 5 levels.

Std Err Bias MSE

Sample Par FDA DL FCS MVNI FDA DL FCS MVNI FDA DL FCS MVNI

β1 0.0103 0.0114 0.0093 0.0096 0.2500 0.2295 0.2294 0.2565 0.0626 0.0528 0.0527 0.0659
β2 0.0005 0.0006 0.0005 0.0005 0.0546 0.0499 0.0499 0.0514 0.0030 0.0025 0.0025 0.0026

N=100 β3 0.0106 0.0115 0.0097 0.0094 0.1354 0.1253 0.1247 0.1415 0.0184 0.0158 0.0156 0.0201
β4 0.0024 0.0030 0.0034 0.0033 0.2228 0.2908 0.2904 0.3221 0.0496 0.0846 0.0843 0.1038

β1 0.0061 0.0069 0.0059 0.0056 0.2433 0.2279 0.2304 0.2562 0.0592 0.0520 0.0531 0.0657
β2 0.0003 0.0003 0.0003 0.0003 0.0549 0.0502 0.0503 0.0518 0.0030 0.0025 0.0025 0.0027

N=250 β3 0.0068 0.0076 0.0060 0.0064 0.1409 0.1255 0.1255 0.1408 0.0199 0.0158 0.0158 0.0199
β4 0.0013 0.0018 0.0018 0.0019 0.2230 0.2903 0.2904 0.3228 0.0497 0.0843 0.0843 0.1042

β1 0.0044 0.0052 0.0043 0.0041 0.2497 0.2320 0.2317 0.2597 0.0624 0.0539 0.0537 0.0675
β2 0.0002 0.0003 0.0002 0.0002 0.0549 0.0503 0.0503 0.0519 0.0030 0.0025 0.0025 0.0027

N=500 β3 0.0041 0.0049 0.0039 0.0041 0.1465 0.1328 0.1323 0.1482 0.0215 0.0177 0.0175 0.0220
β4 0.0010 0.0013 0.0014 0.0014 0.2244 0.2918 0.2922 0.3241 0.0504 0.0851 0.0854 0.1050

4.3 Example: Arthritis data

4.3.1 Data

The dataset used is from a homoeopathic clinic in Dublin, made available in [40]. The
data is on 60 patients (12 males and 48 females) between the ages of 18 and 88 who were
under treatment for arthritis. The patients were followed up for a month (in 12 visits)
and their pain scores assessed. Only two patients had all the scores for the twelve visits.
The score was graded from 1− 6, with high indicating worse. Only those with a baseline
score greater than 3 and a minimum of six visits are reported. About 36% of the pain
score data were missing. Of the 60 patients 27 had RA type arthritis where 5 were males
and 22 were females, while 33 had type OA. Seven of these were males. Some descriptive
statistics of the data set are summarized in Table 4 and Figure 1.

Table 4. Descriptive statistics of the incomplete arthritis data. Data missing on the dependent variable.

Arthritis data:
Variable Description Range % miss Mean Mode Std Dev.

Baseline variables
sex 1= Male, 0=Female 1/0 0
age Age of the patient 18 - 88 0 59.5 57 12.6
time Number of patient visits 1 - 12 0
type Arthritis type* (RA =1, OA = 0) 1/0 0
years Number of years with symptom 0 - 57 0 10.7 1 12.2

Response variable
pain scores Scores on the arthritis pain 1 - 6 35.56% 4

∗ Arthritis type (RA = rheumathoid arthritis, OA = ostheo-arthritis). Std Dev = standard deviation.

Looking at Figure 1, it is apparent that many patients missed their visits towards the
end of the follow up. After the sixth visit the missing data was more than 30% on every
visit.

4.3.2 The proportional odds assumption

Before the model statistics can be interpreted, it is very important to test the proportional
odds assumption. The assumption was examined using the Brant test in STATA. A non-
significant omnibus test provides informal evidence that the assumption is not violated.
Table 5 gives part of the assumption results. The assumption was upheld for age, type
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Figure 1. The proportion of missing data per scheduled visit to the clinic.

and years. The same cannot be said for sex and time.

Table 5. Brant test of propor-

tional odds assumption.

Variable chi2 p>chi2 df

All 73.87 0.000 20

sex 34.88 0.000 4
age 7.59 0.108 4
time 30.55 0.000 4
type 8.35 0.079 4
years 6.00 0.199 4.

A model of interest for the study was the main effects model. Only the dependent
variable had missing values. At first, the data were analysed without any alterations
or attempts to impute the missing values. This was under the direct likelihood (DL)
approach. We chose the DL parameter estimates as reference for the real application
dataset against which we can check the relative performance of MVNI versus FCS when
considering MI. Because direct likelihood is valid under the same properties as multi-
ple imputation, we expect the two approaches to produce similar parameter estimates
or somehow close to each other. After the direct likelihood analysis we conducted the
multiple imputations under FCS and MVNI where upon imputation, a similar marginal
model as the direct likelihood analysis was fitted in the analysis task. Finally, the SAS
procedure MIANALYZE was employed to pool the results from multiple datasets.

Table 6. Parameter estimates, standard errors (StdErr) and confidence limits (C. L.) obtained from the arthritis

data under the methods of direct likelihood (DL), fully conditional specification (FCS) and multivariate normal

imputation (MVNI). Missing values about (36%) on the response variable.

DL MVNI FCS

Param Est StdErr 95% C. L. Est StdErr 95% C. L. Est StdErr 95% C. L.

sex 0.2130 0.1543 (-0.0895, 0.5154) 0.2192 0.2273 (-0.2282, 0.6667) 0.1991 0.2212 (-0.2361, 0.6342)
age 0.0262 0.0062 (0.0140, 0.0383) 0.0260 0.0070 (0.0127, 0.0393) 0.0255 0.0072 (0.0114, 0.0396)
time -0.2218 0.0610 (-0.3414, -0.1023) -0.2004 0.0284 (-0.2565, -0.1444) -0.2212 0.0304 (-0.2812, -0.1612)
type 0.9868 0.1275 (0.7369, 1.2366) 0.9620 0.1677 (0.6326, 1.2914) 0.9799 0.1770 (0.6319, 1.3280)
years 0.0107 0.0045 (0.0018, 0.0195) 0.0106 0.0070 (-0.0032, 0.0243) 0.0099 0.0070 (-0.0038, 0.0236)

4.3.3 Results

Table 6 shows the parameter estimates, standard errors and 95% confidence limits of
fixed effect estimates by the imputation methods and direct likelihood analysis. These
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analyses results showed similar trends to those from the simulated data for most cases.
The results indicate that the parameter estimates by MVNI were comparable to those
of direct likelihood in more cases than FCS. In three cases, MVNI values were closer to
those from the direct likelihood method compared to two FCS cases. Moreover, MVNI
resulted in smaller standard errors than the FCS method for age, time and type. Equal
values are observed for years. MVNI gives a larger standard error than FCS for sex. This
may be attributed to the fact that both sex and years were highly insignificant predictors
by both MVNI and FCS, as is evidenced in the confidence limits. Both methods seem to
perform fairly well in general. Looking at the direct likelihood method, it gives smaller
standard errors than the imputation methods for all parameters except time. It is equally
a favourable alternative method when faced with incomplete ordinal data and may be
used whenever one is not sure about what imputation method to use or not having
necessary know how on imputation methods.

5. Discussion

The idea behind MI is to draw valid and efficient inferences by fitting analysis models
to multiply imputed data. We ensured that the imputed values bear the structure of the
data, and uncertainty about the structure and included any knowledge about the process
that led to the missing data [59]. The method of choice to create the imputed datasets
depends on the missing data pattern. For monotone missing patterns a parametric re-
gression method that assumes multivariate normality or a nonparametric method that
employs propensity scores maybe be used [35]. Alternatively, one may generate impu-
tations by performing a series of univariate regressions, rather than just a single large
model (making it somewhat easier to estimate), and without assuming normality of the
variables.
When faced with a discrete variable (e.g., ordinal), an appealing approach at first sight
may be to treat ordinal variables as continuous for the purpose of imputation, and then
round the imputed data values to the nearest valid discrete value before continuing to
fit the substantive model [11]. However, researchers caution the analyst from analysing
ordinal outcome as a continuous or dichotomized variable for a number of reasons. First,
comparing an ordinal to a continuous outcome or dichotomizing it to run a binary lo-
gistic regression may lead to efficiency loss due to information loss, reduced statistical
power and decreased generality of the analytic conclusions [23]. Logically, continuous
models can yield predicted values outside the range of the ordinal variable and finally, a
continuous model may produce correlated residuals and regressors when used for ordinal
outcomes and does not account for the ceiling and floor effects of the ordinal outcome.
This may lead to biased estimates of the regression coefficients [7]. This issue has created
a lot of debate among researchers. Schafer[49] argues that methods assuming multivariate
normality may be used in cases where the normality assumption does not hold. Further-
more, these methods have also been successfully used by [13, 19, 54]. This is therefore
still an active area of further research. However, apart from imputing the ordinal variable
directly as a continuous variable, another option is to use a set of indicators. The val-
ues are imputed as continuous, and then assign imputed values into categories based on
the mean indicators imputed in a separate round of imputation. In [29] this strategy of
comparing methods for imputing ordinal data using methods that assume multivariate
normality is discussed.
More often analysts are faced with datasets with both dropouts and nonmonotone miss-
ingness, like the arthritis data where the amount of dropout was considerable, while that
of nonmonotone missingness is much smaller. It is heedful to include all in the analyses as
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noted by [35]. One can undisputedly opt for direct likelihood analysis or standard gener-
alized estimating equation (GEE; [22, 30, 35]). Weighted generalized estimating equation
(WGEE; [43]) is possible but one has to find appropriate weights. Alternatively, one may
make the missing patterns monotone by multiple imputation and go ahead to do the
WGEE.

The primary goal for this study was to investigate the performance of MVNI and
FCS as MI methods. These two approaches follow different theoretical assumptions and
thus involve different computational methods. Each of the methods comes with its own
specifications. MVNI is appealing because of its ease of specification of the imputation
model. Conversely, FCS requires an added effort in model specification, and separate
regression models must be fitted for each variable in the imputation model [59]. But in
our problem these conditional regressions were automatically specified because of our
small number of variables and only one variable had missing values. On the other hand,
an added advantage of FCS again is the natural handling of ordinal variables. For MVNI
we had to handle the ordinal variables under a continuous scale in order to take advantage
of the well-established imputation procedures for Gaussian outcomes, and then rounded
to the required categories post-estimation. Basically, this assumption has been the major
stumbling block in the working of MVNI and a number of researchers have reported FCS
being better than MVNI, e.g., [59, 63]. In this study we did not find a strong reason
to support this. Specifically speaking, MVNI approach is equally appropriate as is FCS
when faced with missingness in ordinal variables, at least of the type presented. Similarly,
[28] are in support of the findings. However, without doubt, further comparisons on these
two methods, where more settings will be considered is incumbent.
In this article we focussed on MAR mechanisms for monotone missing data patterns. The
methods of FCS and MVNI can be extended to non-monotone missing data patterns [56].
Although the authors doubt the suitability of the MAR assumption for non-monotone
missing data, [44] present a new strategy of ignorable non-monotone missing data models,
called the randomised monotone missingness (RMM), which is a subset of MAR. They
argue that the RMM is the only plausible non-monotone MAR mechanism that is not
MCAR, but they caution the user not to analyse non-monotone missing data assuming
that the missingness is ignorable if a statistical test has rejected the hypothesis that the
missingness process can be represented as RMM. We recommend interested readers to
[44] for further details on RMM and [16] who reiterate the RMM idea and extend it
to a Markov randomised monotone missingness (MRMM). MRMM is a specific subset
of RMM. The authors present a clear theoretical framework and applicability in non-
monotone missingness patterns. We therefore state that the methods employed in our
article can further be extended to non-monotone cases. These methods are valid under
MAR. When faced with non-monotone missingness, one may take the [16, 44] routes as
one of the options that exist in literature. If under any circumstances, it happens that
the MAR is not a sensible assumption for non-monotone missing cases, as an outset,
sensitivity analyses are advised. However, a shift from MAR to possibly MNAR is not a
worry, because as pointed out by [37] the price to pay is minimal as no formal distinction
exists between MAR and MNAR. This is because for any MNAR model there exists a
MAR counterpart that fits the data very well.
In this article, missingness was only on the outcome variable. This does not limit the
applicability of FCS and MVNI to that case only. The methods can be extended to
situations where data are missing for oucomes and covariates. A lot of work has been
done on this. In the papers, [39, 57] MICE alias FCS was used to fill missing values
in incomplete covariates. The assumption of multivariate normality has been used to
impute in covariates and responses. We cite [49, 51, 53] among many works in literature.
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