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Abstract 

Activity-based micro-simulation models typically predict 24-hour activity-travel patterns for 

each individual in a study area. These patterns reflect the characteristics of the available 

transportation infrastructure and land-use system as well as individuals’ lifestyles and needs. 

However, the lack of a reliable benchmark to evaluate the generated patterns has been a major 

concern. To address this issue, we explore the possibility of using mobile phone data to build 

such a validation measure.  

Our investigation consists of three steps. First, the daily trajectory of locations, where a user 

performed activities, is constructed from the mobile phone records. To account for the 

discrepancy between the movements revealed by the call data and the real traces that the user 

has made, the daily trajectories are then transformed into travel sequences. Finally, all the 

inferred travel sequences are classified into typical activity-travel patterns which, in 

combination with their relative frequencies, define a profile. The established profile represents 

the activity-travel behavior in the study area, and thus can be used as a benchmark for the 

validation of the activity-based models.  

By comparing the benchmark profiles derived from the call data with statistics that stem from 

activity-travel surveys, the validation potential is demonstrated. In addition, a sensitivity 

analysis is carried out to assess how the results are affected by the different parameter settings 

defined in the profiling process. 

 

1. Introduction 

1.1 Micro-simulation model of travel behavior 

The main premise of activity-based micro-simulation models is the treatment of travel 

behavior as a derived demand of activity participation. In this modeling paradigm, travel is 

generally analyzed through daily patterns of behavior related to and derived from the context 

of the land-use and transportation network in a study region and of the personal characteristics 

such as social-economic background, lifestyles, and needs of the individuals in the area (e.g. 

Axhausen & Gärling, 1992; Bhat & Koppelman, 1999; Davidson et al., 2007; Lemp et al., 

2007). As such, the modeling system is calibrated using land-use and transportation network 

information as well as a dataset stemming from household travel surveys which document the 

full daily activity-travel sequences of individuals during one or a few days. All the input data 

are analyzed and translated into heuristic decision making strategies which represent the 

scheduling of activities and travel by the individuals (e.g.  Arentze & Timmermans, 2004). 

Once established, these strategies are used as the probabilistic basis for a micro-simulation 

process, in which complete daily activity-travel sequences for each individual in the whole 

population of the region are synthesized, using Monte Carlo simulation.  

The synthesized individual activity-travel sequences are afterwards aggregated into origin-

destination (OD) matrix, i.e. a matrix that represents the number of trips between all the 

different locations of the region. This matrix, after being assigned to road network, can 

subsequently serve as input for travel analysis in the region, such as travel demand 

forecasting, emission estimates and evaluation of emerging effects caused by different 

transportation policy scenarios. Figure 1 illustrates the entire process of a micro-simulation 

model. 
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Figure 1. The entire process of a micro-simulation model 

 

1.2. Problem statement 

Despite comprehension and advancement of the activity-based modeling system, the lack of 

reliable data in sufficient size does not enable one to have a decent benchmark and evaluation 

criterion of the model output (e.g. Cools et al., 2010a; Cools et al., 2010b). Typically, for this 

purpose, one examines the results of the model both internally and externally at different 

stages of the simulation process, as indicated in Figure 1 (e.g. Bellemans et al., 2010; Yagi 

and Mohammadian 2007; Yagi & Mohammadian 2010). The internal validation involves the 

comparison of the estimation results with expanded survey data which are not used in the 

training phase of the model but usually collected in the same survey period. However, the 

process involved in the development of the model, from initial data gathering to exploitation 

and validation of the first results, is lengthy and may take years, imposing a time lag between 

the data initially obtained and the data that are required for an objective and up-to-date 

validation measure. In addition to this time limitation, the issue of budgetary constraints 

related to the financial cost associated with travel surveys, make it a challenge to collect 

samples that are sufficiently large to provide a good representation of the activity-travel 

behavior of a population. Moreover, travel surveys usually query information of only one or 

two days, to limit the negative effects associated to the respondent burden that is imposed by 

this type of surveys. This tends to obfuscate the less common activities which occur with a 

lower frequency (e.g. once a week or once a month), such as sports or telecommuting 

activities. These shortcomings have been well reported in the literature (e.g. Asakura & Hato, 

2006; Cools et al., 2009; Wolf et al., 2001). 

In contrast to the internal validation, the external validation consists of indirect evaluations of 

the model output at a later phase, i.e. traffic assignment stage (see Figure 1). The traffic 

volumes estimated by the model and assigned to transport network are compared against 

Monte Carlo simulation 

for the whole population 

OD matrix  

Input: land use, transport network and survey data 
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Model building 

Output: Synthetic activity-travel sequences 
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OD matrix validation: mobile 

phone data 

No. 55 Mobility/Transport D4D Challenge



commonly available external information sources, such as traffic counts collected by 

inductive loops detectors deployed on the road network.  

However, this external validation process encompasses an aggregation step to compose the 

OD matrix which is assigned to the road network. Valuable information may be lost in this 

process. A major limitation that results from this loss of information is that positive outcomes 

of the comparison might be artifacts of the validation process itself, and thus provide no real 

guarantee of the accuracy of the model. Moreover, when mismatches are found, there exists 

no clear procedure to identify the causes, thus limiting remedies to improve model 

construction. Despite such limitations, at the present, indirect evaluation is essentially the only 

option for model quality assessment, as no well-established methods are known for operating 

closer to the model itself. This is a problem that seriously hampers further model development 

and model application. Having useful and reliable benchmark and evaluation criteria for 

activity-based micro-simulation models thus is a major concern. Nonetheless, to a large 

extent, this aspect is neglected in currently available benchmarking standards. 

The wide deployment of mobile phone devices provides a very promising source of 

information on measuring people’s transfer phenomenon. Mobile phone data reflect up-to-

date travel patterns on significantly large samples of population – in terms of both spatial 

coverage and temporal extension, making them a natural candidate for the analysis of activity-

travel behavior. The importance of mobile phone data in traffic related researches has been 

manifested by extensive studies on the development and application of the data (e.g. 

Hansapalangkul et al., 2007; Liu et al., 2013; Ratti et al., 2006; Rose 2006; Steenbruggen et 

al., 2011). Especially, OD matrices have been constructed based on mobile phone data in a 

number of regions and countries (e.g. Calabrese et al., 2011; Sohn & Kim, 2008; White & 

Wells, 2002), and they can be used for travel demand analysis after being allocated to a 

specific road network. Besides, these matrices can also be utilized for the examination of ODs 

generated by the simulated travel sequences, as indicated in Figure 1.  The feasibility of the 

benchmarking approach at the ODs level based on mobile phone data has been explored in a 

recent European project ‘DATA science for SIMulating the era of electric vehicles’, namely 

DataSim (http://www.datasim-fp7.eu/).  However, while moving the validation process one 

step closer to the simulated travel sequences, the comparison with ODs still involves an extra 

procedure of the calculation of the OD matrices. Consequently, the validation is unable to 

provide a direct assessment on the simulated sequences themselves, and therefore still does 

not fully address the problems which are related to the external validation measures. 

 

1.3. Research contributions 

Extending the current research on the application of the massive mobile phone data in traffic 

demand analysis, and particularly addressing the above mentioned limitations in having 

reliable evaluation measures for travel behaviour simulation models, our study proposes a 

new approach which is to build a profile of workers’ activity-travel behavior, i.e. the relative 

frequency of each typical pattern which represents a certain class of activity-travel sequences, 

based on the mobile phone data. This profile can be used to directly evaluate the sequences 

yielded from the simulation models by comparing it against the frequencies of the 

corresponding pattern classes obtained from the simulated sequences (see Figure 1). This 

comparison is done at the level of the generated activity-travel sequences, thus capable of 
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detecting problems that are directly caused by the model itself and providing immediate 

feedback for the enhancement of the model.  

Compared with existing validation measures, this approach offers the following advantages.  

(i) It monitors current activity-travel behavior in a large proportion of population and provides 

a more representative and up-to-date validation measure. (ii) Through a long recording period 

of the mobile phone data, inter- and intra- personal variations of travel behavior as well as 

weekday/weekend and seasonal deviations can be more efficiently captured. (iii) It can offer 

immediate response to problems directly linked to the model system, allowing problems to be 

addressed at an earlier stage of the modeling process before they are propagated into further 

analyses. (iv) It aims at generating a novel measure for evaluating and benchmarking activity-

based micro-simulation models, filling in the gap between the development of the 

comprehensive model system and the lack of a good and widely accepted evaluation 

procedure. (V) Apart from the above described technical aspects, the mobile phone data is a 

by-product of phone companies, requiring no extra cost for data collection, thus providing 

another appeal in terms of financial consideration. 

The remainder of this paper is organized as follows. Section 2 describes the typical patterns 

which characterize workers’ activity-travel sequences. Section 3 introduces the mobile phone 

data and Section 4 details the construction process of location trajectories based on the data. 

The call location trajectories are then transformed into complete travel sequences by a method 

proposed in Section 5. Section 6 classifies both the call location trajectories and the travel 

sequences into the typical patterns which have been established in Section 2, and the profiles 

which describe the relative frequency of each pattern class are drawn. A case study is 

subsequently conducted in Section 7, and a comparison of the results against the outcome of 

real travel surveys is carried out in Section 8. An in-depth analysis on the sensitivity of this 

approach is further performed in Section 9. Finally, Section 10 ends this paper with major 

conclusions and discussions for future research. 

 

2. Activity-travel sequence classification  

Individuals make choices about the different activities being pursued, and travel may be 

required to participate in these activities. Traditionally, all activities performed at home are 

considered as home activities; while the remaining ones conducted outside home are 

categorized into mandatory activities e.g. working or studying, and non-mandatory activities 

that include maintenance activities e.g. shopping, banking or visiting doctors as well as 

discretionary activities e.g. social visit, sports or going to restaurant (e.g. Arentze & 

Timmermans, 2004; Bradley and Vovsha, 2005). The home, mandatory and non-mandatory 

activities are represented as ‘H’, ‘W’ and ‘O’, respectively.  

The sequence of activities and travel that a person undertakes during a day is referred as the 

individual’s activity-travel sequence for that day. A critical difference is imbedded in activity-

travel sequences between workers and non-workers: the sequences of workers mostly rely on 

the regularity and the fixity of the work activity. In contrast, no such obvious periodicity is 

present in the case of non-workers (Spissu et al., 2009). This motivates the development of 

separate representations for these two types of individuals’ behavior. In this study, only the 

activity-travel behavior of workers is analyzed. The representation of their daily sequences is 

described in Figure 2. In this representation, an activity-travel sequence is divided into four 
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different parts, including: (i) before-work sub-sequences which represent the activities and 

travel undertaken before leaving home to work as indicated in arrows ‘a’, e.g. HOH; (ii) 

commute sub-sequences which account for the activities and travel pursued during the home-

to-work and work-to-home commutes (in arrows ‘b’ and ‘d’), e.g. HOW or WOH; (iii) work-

based sub-sequences which accommodate all activities and travel undertaken from work (in 

arrows ‘c’), e.g. WOW; (iv) after-work sub-sequence which comprises the activities and 

travel engaged after arriving home from work (in arrows ‘e’), e.g. HOH. 

 

 
Figure 2. The representation of workers’ activity-travel sequences 

Note: Each ‘rectangular’ indicates the home or work location, while the ‘diamond’ represents a non-mandatory 

activity location. Each ‘arrow’ from a home, work or non-mandatory activity location to the other represents the 

related travel, and the ‘arrow’ from a non-mandatory activity location to itself indicates the chain of consecutive 

visits to different non-mandatory activity locations. 

 

According to the above characterization, a home-based tour, comprised of a chain of trips 

(locations) that start and end at home and accommodates at most two work location visits, can 

be classified into the following patterns: HWH, HOWH, HWOH, HWOWH, HOWOH, 

HOWOWH, HWOWOH, HOWOWOH, where each H or W stands for a home or work 

location while each O represents one or a chain of visits to several non-mandatory activity 

locations. The days when an individual does not go to work, can be characterized with 2 

additional patterns, namely H and HOH. In total, 10 classes are formed to identify each home-

based tour in a worker’s daily activity-travel sequence, and they are defined as home-based-

tour-classification.  

All the above pattern classes (excluding H) are then merged in pair, leading to 81 

combinations which represent daily sequences accommodating maximum 2 home-based 

tours. For instance, the combination of HWH and HOWH results in the sequence HWHOWH. 

In addition these pairwise combinations, sequences that contain more than 2 home-based 

tours, e.g. HWHWHWH, or those that have more than 2 work activity locations in a home-

based tour, e.g. HWOWOWH, are each assigned into one additional category. By contrast, a 

daily sequence can also accommodate only a single home-based tour, e.g. HWH. All these 

scenarios lead to a total of 93 patterns which underlie workers’ activity-travel behavior, and 

which are denoted as the workers’ daily-sequence-classification. Given a group of 

individuals, their activity-travel sequences can be attributed to the corresponding pattern 

classes. The relative frequency of each of the pattern classes over the total number of activity-

travel sequences forms the profile of activity-travel behavior among these people.  

 

3. Mobile phone data description 
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The mobile phone data was collected by a mobile phone company for billing and operational 

purposes. The dataset consists of full mobile communication patterns of around 5 million 

users in Ivory Coast over a period of 5 months between December 1, 2011 and April 28, 2012 

(Vincent et al., 2012). The data contain the location and time when each user conducts a call 

activity, including initiating or receiving a voice call or message, enabling us to reconstruct 

the user’s time-resolved call location trajectories. The locations are represented with the 

identifications of base stations (cells) in a GSM network; the radius of each of the stations 

ranges from a few hundred meters in metropolitan to a few thousand in rural areas, controlling 

our uncertainty about the user’s precise location. Despite the low accuracy of users’ exact 

locations, the massive mobile phone data represents a significant percentage (i.e. 25%) of this 

country’s population, providing a valuable source and opportunity for the analysis of human 

travel behavior and for the drawing of relevant inferences that can be statistically sound and 

representative.  

In order to address privacy concerns, the original dataset has been split into consecutive two-

week periods. In each period, 50,000 of all the users are randomly selected and assigned to 

anonymized identifiers. New random identifiers are chosen for re-sampled users in different 

time periods. The data process results in totally 10 randomly sampled datasets, each of which 

contains communication records of 50,000 users over two weeks. One of the datasets is 

selected for this study. Table 1 illustrates typical call records of an individual identified as 

User2 on Monday, December 12
th

, 2011. 

  

Table 1. The typical call data of an individual
a 

Time
 

11:57:00
 

13:40:00
 

16:59:00
 

17:43:00
 

21:28:00
 

Antenna_id
 

898
 

1020
 

972
 

926
 

926
 

 
a
 The ‘time’ represents the moment when this individual was connecting to the GSM network and the 

‘Antenna_id’ as the cell area where he/she is located. 

 

4. Construction of call location trajectories  

A raw_call_location_trajectory from a mobile phone user during a day is defined as a series 

of locations where the user makes calls when traveling or doing activities, as the day unfolds. 

It can be formulated as a sequence of l...ll n 21 , where n  is the length of the 

sequence, i.e. the total number of locations that the user has reached when using his/her phone  

on that day, and )1( nili   is the identification of the locations, e.g. cell IDs in this study. 

At each l i
, there could be multiple calls, referred as call_frequency, denoted as )1( kk ii ; 

the time for each of the calls is as ),(),...2,(),1,( klTlTlT iiii
, respectively. The time interval 

between the first and the last call time in the set of consecutive calls, i.e. )1,(),( lTklT iii  , 

is defined as call_location_duration. Accommodating the time signatures of the multiple 

calls, a raw_call_location_trajectory can be represented as  

)),(),...,2,(),1,((...)),(),...,2,(),1,(( 11111 klTlTlTlklTlTlTl nnnnn , simplified as 

))k),...,T(),T((T(l...))k),...,T(),T((T(l nn 2121 11  . 

Given the raw_call_location_trajectories constructed from the mobile phone data, the home 

and work locations are first predicted. This is followed by the identification of stop locations 

where activities are being carried out.  
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4.1 Prediction of home and work locations 

Various methods have been proposed to derive home and work locations from mobile phone 

data (e.g. Becker et al., 2011; Calabrese et al., 2011), mainly based on the visited frequency of 

a location during a particular time period. However, different time windows have been 

specified in these studies, depending on the context of the study area. In this paper, a similar 

approach is adopted, but the time windows are empirically estimated from the mobile phone 

data as follows. The time period when call activities start to increase considerably in the 

morning during weekdays is chosen as the work start time, denoted as work_start_time. 

Secondly, the moment when the second peak of call activities start to appear in late afternoon 

is considered as the work end time, referred as work_end_time. Around this time, it is 

assumed that people start to communicate for off-work activity engagement. 

Based on these two temporal points, a location is defined as the home location if it is the most 

frequent stop throughout the weekend period as well as during the night-time interval on 

weekdays between work_end_time and work_start_time. On the contrary, a location is 

considered as a work place if it satisfies the following  criteria. (i) It is the most common 

place for call activities in the perceived work period between work_start_time and 

work_end_time on weekdays. (ii) It is not identical to the previously identified home location 

for the user. (iii) The calls at the location are not limited in only one day, they should occur at 

least 2 days a week.  

With the identification criteria, we assume that people have only one home location and at 

most one work location. The additional occasionally accessed places for home or work 

activities are regarded as a stop for non-mandatory activities. In addition, only individuals 

who work at different locations than their home location areas and who work at least two days 

per week are included for the analysis of workers’ travel behavior.  

 

4.2 Identification of stop locations 

After the identification of the distinct home and work locations for each worker, the 

remaining locations in the raw_call_location_trajectories are either stop locations where 

people pursue activities, i.e. non-mandatory activities, or non-stop ones.  Each of these non-

stop locations could be either a trip location where the user is traveling, or a location that is 

wrongly documented due to location update errors. The location update errors normally occur 

when call traffic is busy in the user’s real location area, and consequently this location is 

shifted to less crowded cells for short time periods, causing location area updates, without the 

users’ actual moving (e.g. Calabrese et al., 2011; Schlaich et al., 2010).  

In addition to the locations which are neither home nor work locations in the 

raw_call_location_trajectories and which need to be differentiated between stop and non-stop 

visits, the identified home or work locations are also not constantly reached for activity 

purposes, some occurrences of these locations could be caused by the non-stop reasons. The 

necessity to identify stop location from non-stop ones can be illustrated with the call records 

of two typical users.   

The trajectory from the first user identified as User265 on a Friday is 

)55:21()41:19,56:17()51:17()43:17,06:17( 4321 pmlpmpmlpmlpmpml  , where 4 

locations are observed, with each lasting 37, 0, 105 and 0 minutes respectively. From this 

trajectory, a distinction needs to be made to identify stop visits from possible trip visits. 

No. 55 Mobility/Transport D4D Challenge



The location update errors can be demonstrated using the call location trajectory of a second 

user of User72, which is  

)12:23,21:22()06:22()02:22()00:22()11:20,21:13( 24321 pmpmlpmlpmlpmlpmpml  . 

This user has 5 location updates, with the call_location_duration as 410, 0, 0, 0 and 51 

minutes respectively.  However, the time interval between the first visit and the second one to 

location l2
 is only 21 minutes. The temporary interruption of l2

by the extra locations l3
 and 

l4
 in such a short interval most likely resulted from the location update errors. Consequently,  

locations l3
 and l4

 are falsely connected to the user’s mobile phone at 22:02pm and 22:06pm 

although he/she had been actually remaining at location l2  during this period.  

 

4.2.1 Identification process 

Schlaich et al. (2010) have proposed a method to distinguish a stop visit from a momentary 

access due to traveling or due to location update errors. In their approach, the interval between 

the first login of the location l i  under investigation and that of the next one li 1 , i.e. 

)1,()1,( 1 lTlT ii 
, is examined. If this interval is longer than a time limit, e.g. 60 minutes in 

their experiment, l i  is considered as a stop location. However, this method is likely to 

overlook stop locations where calls are made just before the departure of the locations. In this 

situation, the time interval can be very short, despite the possibility that users may spend a 

considerable time period at the locations. This can be further illustrated with the case of 

User265. The interval between the two first time signatures of locations l1
 and l2

  is 45 

minutes, shorter than this 60-minute limit, suggesting that the location l1
 would be for trip 

purposes. This may be true if this individual has made a long trip of at least 37 minutes within 

l1 
and made calls at the start and end of this travel. However, if this individual has stayed 

there doing activities for a long time, e.g. a few hours, and he/she made calls later in this 

sojourn period, the location l1
 is misclassified by the existing method.  

In order to accommodate all the possible stop locations, we propose a new approach 

consisting of the following steps. (1) For each location visit l i , the call_location_duration is 

first examined. If it is longer than a certain time limit, denoted as T on ion_duraticall_locat
, this 

location is considered as a stop location. (ii) Otherwise, if the condition does not hold e.g. 

when only a single call being made at the location, and if the location occurs in the middle of 

a daily sequence of n  , i.e. ni 1  , a second parameter, namely maximum_time_boundary, 

defined as the time interval between the last call time at the previous location and the first call 

time of its next location, i.e. ),()1,( 111 klTlT iii   , is computed. If this time period is longer 

than a threshold value, defined as T boundary imum_time_max
, the location l i  is perceived as a 

stop visit. (iii) When the location is in the first or last position of a trajectory and the 

call_location_duration is shorter than T on ion_duraticall_locat
, there is no sufficient 

information to estimate the maximum possible time for this visit. Thus, all the distinct 

locations where the user has stayed at least once for carrying an activity, are collected. These 

locations are considered as potential stop locations that are on the individual’s daily activity 

agenda and that are visited routinely or once in a while. If the first or last visit of a day is to 
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these locations, it is assumed to be a stop for activity purposes. On the contrary, if this visit is 

to the place where the individual has not been observed doing activities, it is considered as a 

passing-by place or being recorded as a localization error and therefore removed.  

To exemplify the procedure, we return to the examples of User265 and User72. For User265, 

based on the parameters of T on ion_duraticall_locat
 and T boundary imum_time_max

which are set 

up as 30 and 60 minutes respectively in our experiment, l1 
and

 l3
 are predicted as stop 

locations, while l2
 is as a trip location due to the short call_location_duration (0 min) and 

maximum_time_boundary (13 min).  Although only a single call is made at the last location 

l4 , knowledge gathered from other days has shown that this location has been a regular 

activity place for this individual. Consequently, this location is labeled as a stop visit. The 

finally obtained trajectory of stop locations for this user is lll 431  . For User72 this 

would imply that the locations l3  and l4  are deleted as a result of the identification process, 

and that the divided parts of location  l2  are merged together into a stop location. In 

comparison, using the existing method which only considers the first temporal logins of two 

consecutive locations (Schlaich et al., 2010), only one single location would be derived for 

each of these users,  which is l3
 for User265 and l1

 for User72. 

After the removal of locations that are either trips or stemming from localization errors,   all 

the remaining locations reached by an individual on a day are formed into a 

call_stop_location_trajectory. Each location l i  
in these trajectories is complemented with its 

function, categorized into home, work and non-mandatory activities, denoted as )(lactivity i
. 

Travel is implicit in between each two consecutive locations of these sequences. 

 

5. Transformation of call location trajectories 

The considered mobile phone dataset is event driven, in which location measurements are 

only available when the devices make GSM network connections. Consequently, users’ call 

behavior can affect the possibility of capturing a larger or smaller number of trips and/or 

activity locations. In general, the more active a user is in communicating electronically with 

others, the better his/her activity-travel behavior is revealed by his/her call records. The call 

locations can be seen as the observed behavior at certain temporal sampling moments during a 

day, and the characteristics of the real travel behavior must be deduced. A transformation 

therefore should be made from the previously derived call_stop_location_trajectories into the 

sequences that mirror the real picture of people’s activity-travel behavior. 

During this transformation, we first derive for all the users the actual activity duration as well 

as the call rate at each minute. These two variables are then translated into the call probability 

at each location, which describes how likely the individuals make at least one call when they 

visit the location and which thus indicates to what extent their call records reveal their actual 

movement. Given a real daily activity-travel sequence, various 

call_stop_location_trajectories could be possibly observed from call data. Next, the 

probability under which a certain call_stop_location_trajectory is generated from the original 

travel sequence is calculated based on the call probabilities at these locations in the travel 
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sequence. Finally, given the observed frequencies of the call_stop_location_trajectories, a 

linear equation is built and the frequencies of the original travel sequences are inferred.  

 

5.1 Call rate and actual location duration 

Call_intervene for an individual measures the time interval between each two calls, and it is 

calculated as the ratio between the total number of calls each day, denoted as 

total_number_calls(individual, day), and the time span of the day (measured in minutes), 

denoted as time_span(day), as follows. 

 

day)l(individuaer_callstotal_numb

day)time_span(

individualervenecall

day

day

,
)(int_






 

The average call intervene across all the users is obtained as 

 

sindividualer_oftotal_numb

individualervenecall

ervenellaverage_ca individual

_

)(int_

int_




. 

 

Based on the average_call_intervene, the variable of call_rate which describes the probability 

that the individuals makes calls each minute, can be calculated as 

ervenellaverage_ca
ratellaverage_ca

int_

1
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The other important variable, defined as )lidualtion(indivation_duraactual_loc i, , 

specifies the actual activity duration (in minutes) at a location l i  for an individual. This 

variable is simplified by the average duration over all individuals across all locations with the 

same activity purposes as follows.  
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Where the total_number_visit(individual,activity) represents the total number of actual visits 

by the individual to the locations with the particular activity purposes, such as home, work or 

non-mandatory activities.  

 

5.2 Call probability at a location 

Given a user’s call rate and the duration of a location l i  where the individual has actual spent, 

the probability of making at least a call during the entire period of the visit to the location, 

defined as )(lCallP i
, can be estimated in the following manner. The location duration is first 

divided into episodes with an equal interval referred as episode_length, e.g. 5 min, each of 

which can be regarded as an experiment. Under the assumption that the user makes calls 

(including both initiating and receiving voice calls and messages) independently in each 
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episode, and that the probability of making calls across different episodes at the location is 

identical, )(lCallP i
 can then be modeled as Binomial distribution. The actual location 

duration delimits the total number of episodes, i.e. the number of independent experiments.  

While the call rate provides the probability of success for each experiment result, that is the 

probability of making a call in each episode. This leads to the final estimation of the  

probability )(lCallP i
 as the probability of having at least one success (making calls) over the 

total number of experiments, in this case, over the total location duration.  

In this study, the previously derived two variables including the average_call_rate and the 

average_actual_location_duration(activity) are used as the approximation of the call rate for 

each individual and the duration for a location with a particular activity purpose, respectively. 

The probability )(lCallP i
 is then obtained as follows. 

}__1{1
_/_

call_rateaveragelengthepisode

vity)CallP(acti)lCallP(

h

i

lengtepisodetivity)uration(aclocation_dtualaverage_ac


  

 

5.3 Sequence conversion probability 

After the probability of making calls at a location of home, work or non-mandatory activities 

is known, the likelihood that a call location trajectory is generated from an actual activity-

travel sequence can be derived. In addition to the assumption that users make calls 

independently in each episode during a location visit, we also hypothesize that they make 

calls independently across each location visit. The sequence lll n ...21
 is defined 

as the actual_travel_sequence, and the call probability at each location l i
 as )lCallP( i

. In 

constrast, )lCallP( i
 is used to denote the probability that no calls are made at location l i  

, 

)lCallP()lCallP( ii 1 . Based on these probabilities, the likelihood of various 

call_stop_location_trajectories, that could be observed from the actual_travel_sequence, 

defined as ConversionP, can be calculated as follows. The probability that the original full 

travel sequence can be revealed by the call records is  
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Where we assume that locations from xi  to x j  (
ji 

) are missing since no phone 

communications have been made during the visits to these locations. 

Suppose that the probabilities to make at least one call at the locations of home, work and 

non-mandatory activities are 0.805, 0.903 and 0.424, respectively. For the sequence of 

HWOH which represents the actual activity-travel behavior of a user identified as User121, 

there could be various location traces generated by this original travel sequence under certain 
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probabilities. For instance, the possibilities to emanate trajectories HWOH, HWH and H are 

as follows: 

05402

082.0

2480

.CallP(H)CallP(O)CallP(W)CallP(H)

CallP(H)CallP(O)CallP(W)CallP(H)P(HWOH,H)Conversion

CallP(H)CallP(O)CallP(W)CallP(H)P(HWOH,WH)Conversion

.CallP(H)CallP(O)CallP(W)CallP(H)H)P(HWOH,HWOConversion
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





 

 

5.4 Derivation of activity-travel sequences. 

Based on the previously obtained conversion probabilities and the frequencies of the observed 

call location trajectories, the occurrences of original activity-travel sequences can be 

ultimately derived. Suppose that m different call_stop_location_trajectories sss m,..., 21  are
 

constructed from a user’s call records, sorted by the length of these sequences, i.e. 

)(...)()( 21 slengthslengthslength m . Let the frequencies of these observed trajectories 

as 
yyy

k
,...,

21
 
respectively; the original occurrences of the corresponding travel sequences, 

denoted as xxx k,..., 21 , can be estimated by  the following linear equation. 
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From the above equation, the variables xxx k,..., 21 can be solved as follows. 
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In the case of the User121, apart from a daily sequence of HWOH, four other  

call_stop_location_trajectories are revealed by this user’s call records, including WH, OH, W 

and H, with the occurrences as 3, 2, 1 and 3 respectively. The original frequencies of these 

sequences, i.e. xx 51 , can be solved in the following equation: 

3),(),(
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From this equation, we obtain 23.0,30.0,78.5,67.3,03.4 54321  xxxxx . 

The obtained results then undergo two further processes. First, a zero is assigned to the 

variables which have negative values, e.g. x5
 for the sequence H in the above case. The 
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negative frequency for a travel sequence suggests that the actual occurrence probability of the 

potential travel sequence could be very low, and that the corresponding observed identical call 

location trajectory, e.g. H in this example, is likely to be generated by other longer travel 

sequences, such as HWOH, WH and OH. These negative frequencies are thus dismissed by 

setting the corresponding variables to zero. 

The second process is to normalize the obtained results for each individual, such that the total 

frequency of the derived travel sequences amounts to the observed sum of the call location 

trajectories. For the User121, the sum of the observed trajectories is 10, but that of the derived 

ones reaches 13.78, a ratio of these two numbers is used as the scaling factor, leading to the 

final solution as   0,22.0,19.4,67.2,92.2 54321  xxxxx .  

From the call location trajectories for this user, a total of 10, 5 and 3 location visits for home, 

work and non-mandatory activity purposes respectively, have been observed; while for the 

derived travel sequences, the corresponding number changes to 12.7, 5.8 and 7.1, 

respectively. The ratio of the total locations between these two types of sequences is 0.79, 

0.86 and 0.42 for these three activity classes respectively, close to the call location 

probabilities which are initially used for this derivation process. This further demonstrates that 

the derived travel sequences not only maintain the sequential order of the activity locations 

which are imbedded in the call location trajectories, but that they also preserve the call 

probabilities at individual locations as a whole. 

It can be noted that during the entire procedure of seeking the solutions, we assume that the 

original travel sequences could only occur within the space of observed call location 

trajectories },...,{ 21 sssS m . In theory, however, there could be a chance that an observed 

call location trajectory is produced by many other potential travel sequences, rendering the 

solution space to become infinite. However, for a possible travel sequence s p  which is not in 

the observed sequence space S , i.e. the frequency of the corresponding call location trajectory 

y p
 being zero, a value less than or equal to zero would be obtained as the actual frequency 

x p
 of this travel sequence. This implies that the positive frequencies of a travel sequence can 

only be found if this sequence is within the limited space S .  For instance, for the User121, if 

the potential travel sequence is longer than any trajectory in S , i.e. )()( 1slengthslength p  , 

assume HWOWHs p
, we obtain the following equation: 

0)HWOWH,HWOWH(PConversion x p
. From this equation, we have 0x p

. Otherwise, 

if the length of this travel sequence is shorter than certain observed trajectories in S , e.g. 

HWOs p
, we have 0)HWO,HWO(PConversion)HWO,HWOH(PConversion1  xx p

, 

from which a value of  0x p
 would be derived. 

 

6 Classification  

All the obtained call_stop_location_trajectories and actual_travel_sequences are 

subsequently classified according to the home-based-tour-classification and daily-sequence-

classification, which have been previously established for workers’ activity-travel behavior. 

During this classification, a home location H is added at the end of a sequence if it is absent 

No. 55 Mobility/Transport D4D Challenge



from this sequence, based on the assumption that each individual starts and ends a day at 

home. For each of these two types of sequences, two corresponding profiles are obtained and 

they are stored into matrices, namely home-based-tour-profile and daily-sequence-profile. 

The Pearson correlation coefficient is used to measure the relation of the corresponding 

profiles between these two types of sequences. The correlation coefficient, denoted by r, is a 

measure of the strength of linear relationship between two variables. It takes on values 

ranging between 1 and -1, with 1 indicating a perfect positive linear relationship: as one 

variable increases in its values, the other variable increases as well. The closer the value is to 

1, the stronger the relationship is. 

For two matrices, denoted as A and B, and let d as the total number of the matrix elements, the 

r is computed as follows: 
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7. Case study 

In this section, adopting the proposed profiling approach and using the mobile phone data 

described in Section 3, we carry out an experiment. In this process, a set of 

call_stop_location_trajectories are first constructed, followed by the translation of the 

trajectories into actual_travel_sequences. Each step of this process is highlighted with the 

examination of some particular parameters. 

 

7.1 Construction of call_stop_location_trajectories 

7.1.1 Work_start_time and work_end_time 

Figure 3 describes the distribution of the frequency of calls made in each hour of the day 

during weekdays, showing that from 9am in the morning, calls reach to their peak level; while 

from 18pm in the late afternoon, a second climax of call activities start to occur. These two 

temporal points are chosen as the work_start_time and work_end_time, respectively. 

 

 
Figure 3. The distribution of the time of calls 
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Based on the pre-defined criteria for home and work location identification, 49436 (98.9% of 

the total) users have their home locations discovered. The remaining 1.1% are those who 

made no calls at weekend or in the night period from 18pm to 9am across the two surveyed 

weeks, and as a result their homes cannot be spotted by these rules. Meanwhile, 9,458 users 

(18.9% of the total) are screened out as employed people, if they work between 9am and 

17:59pm at least two weekdays per week. By contrast, those who work at night shifts or at 

weekends, or who work less than two days a week, or who make few calls at work, are not 

identified as workers. 

For those who have both predicted home and work locations, we further remove nearly 15% 

of the individuals who have unknown cell IDs for the identified home or work locations due 

to technical reasons that occur in the mobile phone data collection process. This results in a 

final dataset of 8,027 workers who represent 16% of the total users in the selected dataset. All 

the call records of these individuals during weekdays are extracted, and the consecutive calls 

made at a same location are aggregated. This leads to 69,578 raw_call_location_trajectories 

constructed for further analysis. 

 

7.1.2 Call_location_duration and maximum_time_boundary  

Two parameters characterize the stop location identification process. The first one, 

call_location_duration, determines the time limit above which the location is defined as a 

stop. This parameter depends on the minimum time required to possibly pursue an activity as 

well as the time period needed for traversing across the area. The other parameter, 

maximum_time_boundary, measures the time interval between the last call time at the 

previous location and the first call time at the next location, relative to the current place under 

investigation. Similar to call_location_duration, this parameter must be longer than a 

combination of the possible activity duration and the travel time needed going from the 

previous cell, passing the current one, and to the next area. In addition, it should also be able 

to detect location update errors which usually occur in a short time interval.  

In this experiment,   T on ion_duraticall_locat
 and T boundary imum_time_max

are set as 30 minutes 

and 60 minutes respectively. Under these thresholds, 40.3% of all locations from the 

raw_call_location_trajectories are removed; the remaining locations in these sequences form 

the set of call_stop_location_trajectories. The average length of these trajectories is 3.3. In 

comparison, using the existing method which defines as a stop location if the interval between 

the first login of the location and that of its next location is longer than 60 minutes, 67.6% of 

all the raw call locations are dismissed, with the average length of the retained sequences as 

2.33. 

 

7.2 Conversion from  call_stop_location_trajectories into actual_travel_sequences  

7.2.1 Average_call_intervene and average_call_rate 

When estimating these two variable values, all the calls made by the identified workers, 

including the ones that may be made on a road or have false location IDs due to localization 

errors, are all considered. This results in the average_call_intervene as 192 min over a full 

day of 24 h. However, as demonstrated in Figure 3, the occurrence of calls is not equally 

distributed, more calls are observed during the day than at night, the inclusion of the night 

No. 55 Mobility/Transport D4D Challenge



period would bias the real call intervene time during the daytime period.  In this study, only 

the period of 6am-12pm is thus taken into account. This reduces the call intervene to 137 min; 

accordingly, the average_call_rate is 0.0073. 

In an existing study (Calabrese et al., 2011), however, a 260 min of call intervene is derived; 

this difference could be caused by the following factors. (i) Only workers are considered in 

our study. (ii) The mobile phone data in this experiment is more recent than the data used in 

the existing study. (iii) People could make more calls in Ivory Coast than in Massachusetts in 

the United states where the existing study is performed.  

 

7.2.2 Actual_location_duration  

This variable value is approximated by a real activity-travel behavior survey that was 

conducted in Belgium which will be described later. From this survey, the average location 

duration y)on(activition_duratitual_locataverage_ac  are 222, 317 and 75 min for 

home, work and non-mandatory activity locations, respectively. 

 

7.2.3 Episode_length 

This variable specifies the time window by which the location duration is split into a number 

of episodes, i.e. experiments. The length of this window is decided such that the call behavior 

of users in an episode should be independent of that in its next episode. To obtain such an 

episode length, the average voice call duration of users is considered, which is derived from 

an additional dataset that records the duration for all voice calls between each two cells in 

Ivory Coast. The resultant average call duration is 1.92 min, a 2-min interval is thus taken as 

the estimation of this episode length.  

Based on all the above parameter settings, the call probability at a location is derived, and it is 

0.805, 0.903 and 0.424 for home, work and non-mandatory activity locations, respectively. 

These obtained probabilities, combined with the observed frequencies of the 

call_stop_location_trajectories for each user, lead to the prediction of the number of the 

actual_travel_sequences for the individual, using the method described in Section 5.3 and 5.4. 

 

8 Comparison of results from mobile phone data with real activity-travel diary data 

To illustrate the practical ability of our approach to really serve as a benchmark method, we 

compare the results derived from the mobile phone data with the statistics drawn from real 

activity-travel surveys. Unfortunately, no official activity-travel surveys have been 

documented in Ivory Coast. Therefore, data stemming from other countries, including South 

Africa and Belgium, have been adopted for this purpose. The authors acknowledge that the 

real travel behavior in Ivory Coast most likely is considerably different to the one reported in 

South Africa and Belgium. Consequently, the illustration serves to underline the applicability 

of the approach, not to infer the travel behavioral relationships in this particular case. The 

comparison is carried out in two aspects, including the aspect of individual locations, e.g. the 

average number of locations visited each day, and the sequential aspect of the activity 

locations, e.g. the home-based-tour-profile and the daily-sequence-profile.  

 

8.1 Travel survey in South African 
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The South Africa National Household Travel Survey (NHTS) was the first national survey of 

travel habits of individual and households, aimed at making significant improvements in 

public transport services. The survey was based on a representative sample of 50,000 

households throughout South Africa and undertaken between May and June in 2003 

(http://www.arrivealive.co.za/pages.aspx?nc=household).  

The information recorded by the survey includes the travel time to various public transport 

services, e.g. trains and buses, as well as to activity services, e.g. shops and post offices. The 

number of trips and the purposes for these trips are also documented for each individual on a 

typical weekday.  The survey results reveal that the majority of the respondents can access to 

most of the activity services within half an hour (i.e. the travel time), and the average activity 

location visited by a worker on a weekday is estimated at between 3.46 and 4.06 

(http://www.arrivealive.co.za/document/household.pdf). 

 

8.2 Travel survey in Belgium 

Despite the relative geographic proximity between South Africa and Ivory Coast, the 

information on the NHTS is nevertheless limited. Moreover, the detailed travel patterns for 

each individual are not accessible for us. This necessitates the use of a second survey that 

provides activity-travel sequences on entire days and will be used as a reference for the 

illustration of the derived profiles.  

The survey, namely SBO, stems from a large scale Strategic Basic Research project on 

transportation modeling and simulation, and it was conducted on 2500 households between 

2006 and 2007 in Belgium. In the survey, the respondents recorded trip information during 

the course of one week, such as trip start time and end time, purpose of the trip (e.g. activity 

type), and trip origin and destination (e.g. activity location). The average travel time is 24 

min, comparable to the 30 min for a typical travel in South Africa.  

In the SBO survey, activity locations are represented with statistical sectors, each of which 

ranges from a few hundred meters to a few thousands in radius, similar to the spatial 

granularity level of cell locations in GSM network. Table 2 illustrates a typical diary of 

respondent identified as ‘HH4123GL10089’ on May, 9th, 2006. Only the variables that are 

relevant for the current study are presented in this table; a more detailed variable list and 

elaboration on this survey can be found in (Cools et al., 2009). 

 

TABLE 2. Travel Diary Data 
Respondent ID  Date  Trip Start 

Time  

Trip End 

Time  

Trip 

Origin  

Trip 

Destination  

Trip Purpose  

 

HH4123GL10089  09/05/2006  07:45:00  08:00:00  34337 34345 Work  

HH4123GL10089 09/05/2006  17:00:00  17:15:00  34345 34349 Shopping(non-mandatory)  

HH4123GL10089 09/05/2006  17:40:00  17:30:00  34349 34337 Home 

 

From the dataset, the diaries on weekdays from 372 individuals who work at least two days a 

week are extracted. Activity duration at the destination of a trip is estimated as the time 

interval between the end time of the trip and the start time of its next trip, if the travel is not 

the last movement of a day. Otherwise, for the last trip, the activity end time at the travel 

destination is unknown. Another unknown factor is the activity start time at the origin of the 

first travel of a day. These two times are thus approximated by the typical  time for getting up 

in the morning and going to sleep in the evening in Belgium, which are estimated as 6am and 
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12pm, respectively (Hannes et al., 2012). The average of all the obtained duration at locations 

with an identical activity motivation over all the individuals is stored in the variable 

average_actual_location_duration which has been previously used in the experiment to 

derive the actual_travel_sequences.  

 

8.3 Statistics on the average length of sequences  

Table 3 summarizes the statistics on the average number of locations visited each day, i.e. the 

average length of sequences, derived from the sequences of raw_call_location_trajectories, 

call_stop_location_trajectories and actual_travel_sequences which have been previously 

built based on the mobile phone data. The results drawn from both the NHTS and SBO 

surveys are also presented alongside as a comparison. 

 

Table 3. Statistics on the average length of sequences
a
 

Sequences RCLT CSLT ATS NHTS SBO 

Average length of sequences 5.69 3.30 4.02 3.46-4.06 3.96 
a
The columns from left to right represent the raw_call_location_trajectories (RCLT),  

call_stop_location_trajectories (CSLT), actual_travel_sequences (ATS), NHTS and SBO surveys, respectively. 

 

It was noted from Table 3 that the average length of sequences first drops from initial 5.69 for 

the raw_call_location_trajectories to 3.3 for the call_stop_location_trajectories, and then 

rises again to 4.02 for the estimated travel sequences which is the closest to the number 

observed in both NHTS and SBO surveys. In addition, the differences in this variable value 

imply the importance of the process from the identification of stop locations to the inference 

of complete travel sequences proposed by our approach, when analyzing activity-travel 

behavior based on the mobile phone data. 

 

8.4 Home_based_tour_profile 

Table 4 shows the relative frequency of each pattern class in the 

home_based_tour_classification, obtained from the call_stop_location_trajectories,  the 

actual_travel_sequences and the SBO diaries, respectively. The differences in the percentages 

of corresponding pattern classes between these each two types of sequences are also listed. 

 

Table 4. Home_based_tour_profile (%)
a
 

Pattern CSLT ATS ATS - CSLT SBO ATS - SBO CSLT - SBO 

H 9.0 4.4 -4.6 6.4 -2.0 2.6 

HWH 50.3 39.1 -11.2 42.9 -3.8 7.4 

HOH 18.0 26.3 8.3 32.5 -6.2 -14.5 

HOWH 5.1 6.7 1.6 3.1 3.6 2.0 

HWOH 8.2 10.3 2.1 10.8 -0.5 -2.6 

HWOWH 3.4 3.8 0.4 1.6 2.2 1.8 

HOWOH 2.5 4.1 1.6 1.9 2.2 0.6 

HOWOWH 0.7 1.0 0.3 0.2 0.8 0.5 

HWOWOH 1.4 2.1 0.7 0.5 1.6 0.9 

HOWOWOH 0.5 0.8 0.3 0.1 0.7 0.4 

More than 2 work 

activities 

1.0 1.3 0.3 0.2 1.1 0.8 

a
 The columns from left to right represent the typical patterns, the call_stop_location_trajectories (CSLT), the 

actual_travel_sequences (ATS), the differences between ATS  and CSLT, the SBO diaries (SBO), the 

differences between ATS  and SBO, and the differences between CSLT  and SBO, respectively. 
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Table 4 indicates that, when the call_stop_location_trajectories are converted into the 

actual_travel_sequences, the percentage of shorter patterns, e.g. H and HWH, increases; 

while that of longer patterns, e.g. HWOWOH, decreases. During this sequence conversion 

process,  an observed call  location trajectory is expected to be generated not only from an 

travel sequence that is identical to this observed trajectory, but more likely from a sequence 

that is longer than this observed one due to the fact that not every visited location is exposed 

by the mobile phone data. For instance, although 9.0% of the total call locations trajectories 

belong to the pattern of H, only 4.4% is estimated to be the days when the individuals do not 

make any trips but staying at home.  The remaining 4.6% is probably generated from other 

longer travel sequences where the missing locations are as a result of the nature of the mobile 

phone data.     

Another feature in the conversion process is that, the lower the probability that people make 

calls at a location, the higher the frequency of the derived travel sequence that contains this 

location, tends to be, in order to give rise to the call location trajectories that amount to the 

observed frequency of the trajectories. This can be further illustrated by the pattern HOH. 

Although this pattern is as short as HWH, the probability at a non-mandatory activity location 

O, e.g. 0.424 in this experiment, is the lowest among all the three activity types. This leads to 

a prediction of high frequency of this pattern for the derived travel sequences. 

When the patterns obtained from the derived travel sequences are compared with the ones 

drawn from the SBO diaries, it was observed that the major contrast resides in the difference 

between the group of short sequences and the other group accommodating long patterns. The 

SBO data has higher frequencies in short sequences while lower occurrences for long 

patterns, than the derived travel sequences. This tendency remains when the SBO data is 

compared with the call_stop_location_trajectories. While apart from the likelihood that 

people in Belgium may conduct less activities on average than in Ivory Coast, this also 

demonstrates the possibility that the diaries under-represent people’s activity-travel behavior, 

especially for short period of activities. The shortcoming has been well documented in 

literatures (e.g. Cools et al., 2009). 

 

8.5 Daily_sequence_profile 

Figure 4(a) depicts the correlation between the relative frequency of each pattern class in the 

daily_sequence_profile obtained from the call_stop_location_trajectories and the 

actual_travel_sequences. It was noted that, the majority pattern classes follow a similar 

distribution in relative frequencies between these types of sequences. The few outliers can be 

divided into two groups: the group of HWH, H and HWHWH which are 14.1%, 5.9% and 

1.4% higher for the call_stop_location_trajectories, and the other group consisting of HOH, 

the patterns with more than 2 home-based tours, and HOWOH, which show a 3.7%, 2.5% and 

2.1% higher frequency for the actual_travel_sequences, respectively. This further 

demonstrates that, compared to the call_stop_location_trajectories, the derived travel 

sequences tend to have a high proportion for long patterns and for patterns which 

accommodate locations with low call probabilities, e.g. non-mandatory activity locations O. 

In contrast, a lower percentage is anticipated for short patterns and for patterns containing 

locations with high call probabilities, e.g. work places W, after the sequence conversion 

process. 
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In Figure 4(b) which describes the correlation between the daily_sequence_profiles obtained 

from the actual_travel_sequences and the SBO diaries, we found that most patterns have a 

moderately higher frequency for the actual_travel_sequences than the SBO data. However, a 

few outliers show remarkably higher occurrences for the SBO diaries, e.g. HWOH and 

HWHOH accounting for a 7.3% and 7.1% higher percentage, respectively. It suggests that 

compared to Ivory Coast, people in Belgium may carry out more non-mandatory activities on 

the way from work back to home as well as in the evening period after arriving at home. In 

addition, a further examination reveals that out of all 93 pattern classes in the 

daily_sequence_profile, 59 (63.4%) are zero frequencies for the SBO data; while for the 

call_stop_location_trajectories and actual_travel_sequences, only 16 patterns (17.2%) are 

not represented. It reflects that the sequences derived from the mobile phone data are more 

representative in travel behavior than the survey data, further underlying the significance of 

using mobile phone data to explore the characters of travel behavior. 

 

 
Figure 4. Correlation between the relative frequency of each corresponding pattern class 

Note: x- and y-axis represent the relative frequency of each corresponding pattern class  obtained from the 

call_stop_location_trajectories (CSLT) and the actual_travel_sequences (ATS) (a), and  the SBO diaries and the 

actual_travel_sequences (b). The line of y=x is also presented as a reference line. 

 

The correlation r between the call_stop_location_trajectories and the 

actual_travel_sequences as well as between the actual_travel_sequences and the SBO data is 

0.91 and 0.89, respectively. The high correlation shows that the profile derived from the 

estimated travel sequences has an overall close relationship to that obtained from the call stop 

location trajectories, and in the meantime the profile of the travel sequences also accounts for 

the deviation in frequencies for each particular pattern which are caused by the discrepancy 

between the call behavior and the actual activity-travel behavior. In addition, the derived 

profile also resembles the frequency distribution of travel sequences from a real travel 

behavior survey. These results suggest the derived profile of travel sequences can properly 

represent workers’ travel behavior in a studied area, and therefore capable of being used to 

validate the simulated sequences generated from travel behavior models. 

Nevertheless, in this case study, we used the surveys conducted in South Africa and Belgium 

as an illustration for the results derived by our approach.  However, variation exists across 

different regions and countries. As described in the introduction, travel behavior is shaped by 
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the conditions of land use and transportation network as well as the social-economic 

background of individuals. Besides, several years of time differences when these datasets 

were collected, as well as the fact that the surveys, especially the SBO survey, were based on 

a small set of samples, all contribute to the deviation exposed in this experiment results 

between the derived travel sequences and the survey data. With a real travel survey conducted 

in the same or similar context to where the mobile phone data is obtained, it is believed that 

the activity-travel behavior profiling approach based on the mobile phone data would bring 

even better results to current experimental outcome. 

 

9. Sensitivity analysis 

Throughout the profiling process, several parameters including call_location_duration, 

maximum_time_boundary and actual_location_duration, have been defined. This prompts to 

have a final investigation into how the thresholds of these parameters affect the predicted 

results, including the average length of call_stop_location_trajectories and the 

actual_travel_sequences, referred as CSLT_length and ATS_length respectively, as well as 

the coefficients between the call_stop_location_trajectories and the actual_travel_sequences 

as well as between the actual_travel_sequences and the SBO diaries, simplified as r1 and r2, 

respectively. 

 

9.1 Call_location_duration and maximum_time_boundary 

In the process of stop location identification, when the threshold T on ion_duraticall_locat for 

the parameter call_location_duration increases, the minimum time duration required to 

consider a location as a stop becomes longer, leading to a decrease in the number of daily 

location visits. This is well reflected in Figure 5(a). However, the rate of reduction is very 

slow; particularly, when this parameter reaches a certain threshold, e.g. 30 minutes set up in 

this experiment, the lengths of both types of sequences enter into a nearly constant level. A 

similar stabilization is observed in Figure 5(b) when T on ion_duraticall_locat passes the 30 

minutes threshold. 

 

 
Figure 5. Correlation between the threshold of call_location_duration and the results 

Note: x-axis stands for the threshold of call_location_duration, and y-axis for the sequence length of 

CSLT_length and ATS_length respectively (a) and the coefficients r1 and r2 respectively (b). 
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Figure 6(a) and 6(b) show how the results evolve with the threshold 

T boundary imum_time_max for the parameter of maximum_time_boundary. As expected, when 

the maximum available time needed for a possible stop location sets longer, the number of 

identified stop locations drops, as shown in Figure 6(a). However, this does not bring about 

the same amount of change to the coefficients; especially when  T boundary imum_time_max

increases to a certain value, e.g. 60 minutes adopted in our experiment,  both r1 and r2 

develop into a stable level. This suggests that, although the number of disclosed stop locations 

diminishes as this duration limit becomes stricter, the disregarded potential stop locations are 

likely distributed randomly across various types of pattern classes. As a result, the coefficients 

which reflect the relative frequency of these patterns remain almost the same, regardless of 

the minor changes that could arise from these parameter settings. 

 

 
 

Figure 6. Correlation between the threshold of maximum_time_boundary and the results 
Note: x-axis stands for the threshold of maximum_time_boundary, and y-axis for the sequence length of  

CSLT_length and ATS_length respectively (a) and the coefficients r1 and r2 respectively (b). 

 

9.2 Actual_location_duration 

Figures 7 describes the relation between the parameter actual_location_duration for work 

activities and the estimated results. It indicates that, as this duration becomes longer, the 

ATS_length2 for the derived travel sequences decreases while r1 and r2 increases, but these 

changes disappear when this duration pass a certain point, e.g. 240 minutes.  

 

 
Figure 7. Correlation between the actual_location_duration for work activities and the derived results  

Note: x-axis stands for the actual_location_duration for work activities, and y-axis for the sequence length of  

ATS_length (a) and the coefficients r1 and r2 (b). 
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This phenomenon can be explained by the binomial model employed to estimate the call 

probability at a location. According to this model, when the actual_location_duration is 

longer, the probability at a location )lCallP( i
 becomes higher, as demonstrated by Figure 

8(a). However, the amount of increases in the probabilities as the activity duration extends 

e.g. one hour longer, is not evenly distributed, which can be manifested in Figure 8(b). It 

shows that: as the activity duration becomes longer, the amount of growth in the location 

probabilities diminishes until to a nearly zero level. This explains the occurrence of the flat 

curves observed in Figure 7. 

 

 
Figure 8. Correlation between the actual_location_duration and the call probability at a location 

Note: x-axis stands for the actual_location_duration for work activities, and y-axis for the call probability at a 

location (a) and for the difference between the probability obtained from the corresponding 

actual_location_duration and the other probability derived from a duration which is 60 min longer than this 

current duration (b). 

 

All these above analysis shows that, except that the increase in T boundary imum_time_max

reduces the number of identified stop locations, a certain amount of changes in these 

parameters do not incur a significant deviation in the results of both the average length of 

sequences as well as the profiles. This suggests that the profiles built upon the mobile phone 

data are stable and consistent in revealing people’s activity-travel behavior; a minor change in 

these parameters that are required in the profiling process will not lead to a substantially 

different outcome. 

 

10. Conclusions and discussion 

The approach of profiling workers’ travel behavior based on mobile phone data is both unique 

and important in that it builds a new measure which can be used to directly evaluate the 

simulated activity-travel sequences yielded from micro-simulation models of travel 

behaviour. The advantage of using this method is that it does not depend on conventional 

diaries, the data requirement is fairly simple and its collection cost is low. More importantly, 

the massive mobile phone data monitors current activity-travel behavior in a large proportion 

of population expanding over a long time period, the profile derived from the data is thus 

capable of providing a more representative and objective validation measure.  

Experiments on this approach by using data collected from people’s natural mobile phone 

usage have demonstrated an overall high correlation coefficient between the profiles derived 

from the observed call location trajectories as well as from the derived travel sequences. The 
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relative frequency of each corresponding pattern class between these two profiles, however, 

shows a certain level of differences, a reflection of the deviation between the movement 

revealed by the call behavior and the real path that the individuals have experienced. In 

addition, the derived travel sequences also show reasonable outcome when they are compared 

to the statistics drawn from real travel surveys conducted in South Africa and Belgium, 

respectively. Furthermore, the examination into this method’s sensitivity demonstrates its 

consistence and stability in drawing the real picture of activity-travel behavior over various 

parameter settings.   

Beyond the initial goal of building a new measure for travel behavior simulation models, the 

proposed method for stop location identification and subsequent actual travel sequences 

derivation provides a broad use for the application of the massive mobile phone data. For 

instance, in the process of building OD matrices (Calabrese et al., 2011), only the stop 

locations revealed by the phone data are used; places where no calls are made are thus 

ignored. The results in our experiments suggest of an average of 21.8% increase from the 

initially obtained call stop locations to the derived complete location visits. Consequently, the 

OD matrices based on the mobile phone data reflect only a part of the whole picture of 

people’s transfer phenomena, as acknowledged by the authors of the study.  Based on our 

method, the real travel sequences could be derived first and a more accurate OD matrix could 

be anticipated.  

The proposed approach can also be adopted for the characterization of non-workers’ travel 

behavior. No work activities dominate the individuals’ activity-travel sequences, but more 

home-based tours for non-mandatory activity purposes could be considered.   

Nevertheless, despite the promising experiment results, there are still certain areas which need 

to be improved in the future research. First, when calculating the call probability at a location, 

we simply use a universal call rate which is derived from the mobile phone data across all 

types of activity locations and all individuals. But people communicate with others not at a 

same pace, and they may also call at different frequencies depending on what they are doing. 

Like the call rate, the use of an average actual location duration for each activity purpose 

across all users leaves a second possibility for improvement, as the activity duration across 

different individuals is likely to differ. The proposed method will be undoubtedly 

strengthened if both the call rate and the activity duration is considered at individual level and 

across each category of activity locations. Third, the method to identify home and work places 

could also be enhanced through machine learning techniques, as explored by a recent study 

(Liu et al., 2013). 

While being faced with the challenge of acquiring both the mobile phone data and the real 

travel survey from a same or similar study region, in this study we use the travel surveys 

which are conducted in different environments than the phone data, as the reference to 

compare and illustrate the results. Nevertheless, in the future research, the proposed method 

must be applied to a real travel survey which is sampled in a similar context to where the 

phone data is obtained. Such surveys thus provide another possibility of enhancement by 

bringing more relevance to this method in terms of tuning up the parameters as well as 

validating the results.  
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