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Abstract

Heritability is a important concept in animal and plant breeding, as it is in
human biological applications. It is quantified based on fitting a model to
hierarchical data. For data where linear models can be used, this attribute is
conveniently defined as a ratio of variance components. Matters are less sim-
ple for non-Gaussian outcomes. The focus here is on count outcomes where
extensions of the Poisson model are used to describe the data. Expressions
for heritability of count traits are derived using the so-called Poisson com-
bined model, which combines a Poisson outcome distribution with normal as
well as gamma random effects, to capture both correlation among repeated
observations as well as overdispersion, and admits closed-form expressions for
the mean, variances and, hence, ratio of variances. It thus flexibly accommo-
dates overdispersion and within-unit correlation. The proposed methodology
is illustrated using maize data from a plant breeding program and compared
with the usual, but questionable analysis using linear mixed models.

Keywords: Combined model, Gamma distribution, Generalized linear
mixed model, Overdispersion, Poisson distribution, Random effect

1. Introduction

Plant breeding is the purposeful manipulation of plant species to improve
certain aspects of plants, so as to perform new roles or enhance existing ones.
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Heritability, defined as the proportion of the genetic contribution over the
total variability in a phenotype, is often of importance in plant and animal
breeding. Knowledge of this attribute is useful to quantify the magnitude of
improvement in the population and it is used when predicting the outcome
of selection practiced among clones, inbred lines, or varieties (?).

The heritability determination is routinely based on hierarchical data of
a family-based nature. When the outcomes are normally distributed, linear
mixed models (?) are frequently used to estimate the genetic and environ-
mental effects by considering these factors as random terms in the model. For
data where these models can be used, the heritability can be quantified as
the ratio of the genotypic variance, σ2

g say, to the total phenotypic variance,
σ2

p say.
However, when the trait of interest is not normally distributed and/or it

does not follow a linear model, the genetic and environmental random terms
are no longer easily separable from the other model terms. This difficulty
arises in particular when one deals with count outcomes, which are common
in agricultural and livestock studies and are the focus of this paper. One
often models such data using generalized linear modeling (?), which covers
widely used statistical models, such as Poisson log-linear models for count
data.

In empirical research, it has been observed recurrently that the mean-
variance relationship for the Poisson model may not be met. As a result,
quite a bit of research was devoted to formulate models to deal with this
phenomenon, referred to as overdispersion or, sometimes also occurring, un-
derdispersion. We will simply refer to it as overdispersion.

The so-called generalized linear mixed model (GLMM) (??) has gained
popularity in discrete hierarchical data modeling. When overdispersion and
the need for hierarchical modeling occur simultaneously, the combined models
proposed by ? can be used. This model family accommodates overdispersion
and clustering through two separate sets of random effects and contains as
special cases the GLMM on the one hand, and several overdispersion models,
such as the negative-binomial model, on the other. In this paper, we use
such models for handling overdispersion and correlated data, while obtaining
heritability coefficients based on count traits.

The proposed methodology will be illustrated using data from a study
in plant breeding. The data refer to the number of tassel branches in maize
progenies. This count trait is of interest in breeding procedures, with smaller
numbers considered better. We derive heritability using two approaches: (a)
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linear mixed models, a conventional but in principle inadequate analysis, and
(b) using Poisson models.

The paper is organized as follows. In Section 2, the motivating case is
described with both analyses reported in Section 5. A review of the Poisson
combined model for hierarchical and overdispersed count data is the subject
of Section 3. We use this combined model to obtain heritability coefficients
for count traits, the expressions of which are presented in Section 4.

2. Motivating Case Study

The data considered here are obtained from a square lattice designed ex-
periment, implemented in four different environments, for the selection of
maize progenies in a plant breeding program at ESALQ, Piracicaba, Brazil.
Forty-nine progenies were replicated twice in each environment, which con-
sists of a combination between a crop season (first versus second crop sea-
son) and a location (ESALQ versus Sertãozinho). The planting during the
first crop season usually occurs between September and December, while the
planting in the second crop season takes place between January and April.
This division of planting periods is common in tropical countries such as
Brazil while in temperate regions there is only one planting season.

Five plants were randomly selected from each plot and several pheno-
typic characteristics were measured, including the kernel-row number per
ear and the number of tassel branches. The latter is a characteristic related
to drought tolerance; the smaller the number of branches, the better. This
is because the plant does not need to move so many photo-assimilates there
rather than move to the ear. On the other hand, the kernel-row number is a
component of production, with higher values preferred.

The key research questions are what proportion of the variability of each
of these traits is due to the genetic effect, i.e., the heritability for this popu-
lation, and what progenies present the best predicted values with respect to
these characteristics. As a summary of the data with respect to the number
of tassel branches, Figure 1 shows the frequency plots, over both replica-
tions, over all progenies, and in each environment. In general, the number of
branches varies from 7 to 29 and the distribution is approximately symmetric.
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Figure 1: Maize Data. Frequency plots for number of tassel branches, over both replica-
tions, over all progenies, and in each environment.

3. An Extended Poisson Model to Handle Hierarchical and Overdis-

persed Data

In certain applications of standard generalized linear models, it is found
that the data exhibit overdispersion, i.e., the variability is greater than pre-
dicted by the mean-variance relationship inherent in the model formulation.
A number of models have been proposed for handling this phenomenon, es-
pecially in the Poisson case (??). Some also handle the rarer case of under-
dispersion.

An elegant formulation is through a two-stage approach. In the univariate
Poisson case, we assume that Yi|λi ∼Pois(λi) and then that λi is a random
variable with E(λi) = µi and Var(λi) = σ2

i . Then it follows that

E(Yi) =E[E(Yi|λi)] = E(λi) = µi,

Var(Yi) =E[Var(Yi|λi)] + Var[E(Yi|λi)] = E(λi) + Var(λi) = µi + σ2
i .

It is common to assume a gamma distribution for the random effects λi,
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leading to the so-called negative-binomial model.
This model can be extended to the case of repeated measurements. We

then assume a hierarchical data structure where Yij denotes the jth out-
come measured for cluster i, (i = 1, . . . , N ; j = 1, . . . , ni) and Yi is the
ni-dimensional vector of all measurements available for cluster i. The scalar
λi becomes a vector λi = (λi1, . . . , λini

)′, with E(λi) = µi and Var(λi) = Σi.
Then, E(Yi) = µi and Var(Yi) = Mi+Σi, where Mi is a diagonal matrix with
the vector µi along the main diagonal. The diagonal structure of Mi reflects
the conditional independence assumption, that is, all dependence between
measurements on the same unit stems from the random effects.

Alternatively, this repeated version of the overdispersion model can be
combined with normal random effects in the linear predictor. Such models,
proposed also by ? and ?, for the count case, will be discussed next.

? specified a model for count data combining ideas from the overdisper-
sion models and models with normal random effects. Later, ? proposed a
broad class of generalized linear models where the binary, count, and time-to-
event cases were given particular emphasis. These models, named combined
models, accommodate overdispersion and clustering through two separate
sets of random effects and produce models with only random effects and
models with only overdispersion as special cases.

? showed that the count models allow for closed-form expressions for the
mean vector and variance-covariance matrix. As highlighted by the authors,
the derivation of such closed forms has important implications because they
admit, for example, explicit correlation expressions. This aspect was exam-
ined by ? for Poisson-type models for count data.

In line with ?, ? specified a model for repeated Poisson data with overdis-
persion:

Yij ∼ Poi(θijλij), (1)

λij = exp(x′

ijβ + z′

ijbi), (2)

bi ∼ N(0, D), (3)

E(θi) = E[(θi1, . . . , θini
)′] = Φi, (4)

Var(θi) = Σi. (5)

Notice that the normal random effect to capture correlation among re-
peated observations is placed in the linear predictor while the random effect
to accommodate overdispersion acts multiplicatively in the mean of the vari-
able.

5



The θij can be assumed to follow a gamma model producing a Poisson-
gamma-normal model or, equivalently, a negative-binomial-normal model.
When the gamma distribution is chosen, it is assumed that the components
θij of θi are independent. In this case, Σi reduces to a diagonal matrix. It
should be noted that it is possible to allow for general covariance structures;
this is not considered further here.

Then, regarding the overdispersion random effects, three instances could
be of interest: (1) the random-effects θij are independent; (2) the θij are
allowed to be dependent; (3) they are equal to each other and hence reduce
to θij = θi. Independent θij imply that the use is strictly confined to capture
additional overdispersion, i.e., not captured by the normal random effects. In
contrast, when they are allowed to be correlated, they offer a way to model,
for example, serial correlation.

The marginal mean vector and variance-covariance matrix were derived
by ? and are reproduced in Appendix A. We considered this model to
calculate the genetic contribution to the total variability of the traits of
interest, that is, the heritability. The derivation of such measure is presented
in the following section.

4. Derivation of Heritability for Count Data

Consider the Poisson-Gamma-Normal model and its variance presented
in (A.1). Also, without loss of generality, set E(θi) = 1. The variance is

Var(Yi) = µij + µij(Pi,jj − 1)µij , (6)

where

µij = exp

(

x′

ijβ +
1

2
z′

ijDzij

)

= µ0ijµ1ij,

with notation as in (1)–(5), and

Pi,jj = µ1ij(σi,jj + 1)µ1ij = µ2
1ij(σi,jj + 1).

The non-genetic contribution over the total variability is:

ξij =
1 + µ0ij[(σi,jj + 1) − 1]

µ1ij{1 + µ0ijµ1ij[µ
2
1ij(σi,jj + 1) − 1]}

. (7)
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The ratio in (7) places the variance presented in (6), for D = 0, in the
numerator and the full variance of the combined model in the denominator.
The heritability, that is, the proportion of the total variability related to the
genetic effect is:

H2
ij = 1 − ξij . (8)

The full variance is the phenotypic variance, σ2
p, and the obtained heritability

is at individual level. Because of the mean-variance relationship, ξij and
hence H2

ij depends on the mean, thus also on the covariates.
A specific case arises when there is no overdispersion. In such case, the

non-genetic contribution can be derived from the Poisson-Normal model or
simply by setting σi,jj = 0 in (7). The contribution then is

ξPN,ij =
1

µ1ij [1 + µ0ijµ1ij(µ2
1ij − 1)]

, (9)

and the heritability is calculated from replacing ξij by ξPN,ij in (8).
It is not uncommon to model other sources of variability, such as the

environmental effect. This effect can be included as a random term in model
(1)–(5), which slightly changes the terms:

λij = exp(x′

ijβ + z′

1ijvi + z′

2ijwi),

vi ∼ N(0, D1),

wi ∼ N(0, D2),

where vi and wi are the genetic and environmental effects, respectively.
Then, the variance is:

Var(Yij) = µij + µij(Pi,jj − 1)µij ,

where

µij = exp

(

x′

ijβ +
1

2
z′

1ijD1z1ij +
1

2
z′

2ijD2z2ij

)

= µ0ijµ1ijµ2ij

and

Pi,jj = µ1ijµ2ij(σi,jj + 1)µ1ijµ2ij = µ2
1ijµ

2
2ij(σi,jj + 1).
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In this case, the contribution from overdispersion and from the random
effect wi over the total variability is:

ξij =
1 + µ0ijµ2ij[µ2ij(σi,jj + 1) − 1]

µ1ij{1 + µ0ijµ1ijµ2ij[µ2
1ijµ

2
2ij(σi,jj + 1) − 1]}

. (10)

When there is no overdispersion, (10) reduces to:

ξPN,ij =
1 + µ0ijµ2ij(µ2ij − 1)

µ1ij[1 + µ0ijµ1ijµ2ij(µ2
1ijµ

2
2ij − 1)]

. (11)

The heritability values are obtained from applying (10) or (11) to (8).
Notice that the ratios ξij and ξPN,ij are not free of the marginal mean

function. In practice, therefore, one should compute some useful summaries
of the values Hij , given that they depend on the means at measurement j
for unit i. Of course, when covariates are limited to a few factors with a
limited number of levels, like is the case in our applications, the heritability
coefficients will only be dependent on these.

5. Data Analysis

The data introduced in Section 2 were analyzed using two approaches.
First, we used linear models, which are frequently used for genetic evalu-
ation, referred to as ‘conventional analysis.’ In spite of its convenience, we
consider it less adequate because it does not do full justice to the type of data
collected. Second, we used the appropriate methodology from the previous
section. From the estimates obtained under both approaches, we calculated
the heritability for the number of tassel branches in this population.

It is noteworthy that, in this work, we do not model the progeny-
environment interaction that can exist in this kind of study. So, all analyses
were performed separately for each environment. Furthermore, we opted to
work with the observations only at the plot level, which is the lowest and most
informative hierarchical level, and did not estimate the block and replication
nested effects of the lattice design.

The following linear predictor was considered in both approaches:

ηij = β0 + bi,

where β0 is an effect common to all observations, bi is the genetic random
effect of the ith progeny (49 progenies), and bi ∼ N(0, σ2

g). In the linear
models, a random residual effect, εij say, completes the model specification,
where εij ∼ N(0, σ2).
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5.1. The Conventional Linear Analysis

In this section, we will analyze the number of tassel branches considering
the linear fixed-effects and linear mixed-effects models. Results from fitting
both models are displayed in Table 1. Unsurprisingly, the goodness-of-fit of
the mixed models is higher than that of univariate linear regression. From
the estimated variance components and using the classical definition of her-
itability at the individual level, H2 = σ2

g/σ
2
r + σ2

g , we calculated the genetic
contribution in each one of the environments.

The heritability values are H2 = 0.1931 for the first crop season at
ESALQ, H2 = 0.3864 for the first crop season at Sertãozinho, H2 = 0.3508
for the second crop season at ESALQ, and H2 = 0.266 for the second crop
season at Sertãozinho.

5.2. The Proposed Poisson-type Analysis

In this section, we will analyze the number of tassel branches considering
(1) the Poisson model (P--), (2) the Poisson Normal (P-N), (3) the Poisson-
Gamma model (PG-), (4) the Poisson-Gamma-Normal model (PGN). Results
from fitting these models are displayed in Table 2.

The estimates of the Gamma parameter were very high in all environ-
ments, demonstrating the absence of overdispersion in this application. Again,
as expected, in all cases, the goodness-of-fit of the (P-N) models is higher
than that of the (P--) models. So, the (P-N) estimates were used in (9) and
(8) to obtain heritability.

The estimated non-genetic contributions and heritability values are ξPN =
0.9219 and H2 = 0.0781 for the first crop season at ESALQ, ξPN = 0.7828
and H2 = 0.2172 for the first crop season at Sertãozinho, ξPN = 0.8635 and
H2 = 0.1365 for the second crop season at ESALQ and ξPN = 0.8586, and
H2 = 0.1414 for the second crop season at Sertãozinho.

Another question of interest in plant breeding programs is to identify the
best progeny with respect to the characteristic under investigation, and, for
this, we plotted the empirical Bayes estimates for the random effects (Figure
2). In all environments, progeny 45 has the lowest predicted number of tassel
branches, except for the second crop season at ESALQ, where progeny 49
showed superior performance.

Note that the heritability values calculated from the (P-N) models are
smaller than those obtained from the linear-mixed model analysis. Close
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Table 1: Maize study. Parameter estimates and standard errors for the regression coeffi-
cients in (1) the linear model (LM) and (2) linear mixed model (LMM), considering the
trait number of tassel branches in the four environments.

Effect Par. (LM) (LMM)

1. First crop season at ESALQ
Intercept β0 16.359 (0.146) 16.359 (0.241)

Var. of progenies σ2
g 2.013 (0.579)

Var. residual σ2
r 10.410 (0.665) 8.397 (0.566)

-2log-likelihood 2538.5 2493.2

AIC 2542.5 2499.2
2. First crop season at Sertãozinho

Intercept β0 16.571 (0.162) 16.571 (0.344)
Var. of progenies σ2

g 4.995 (1.171)

Var. residual σ2
r 12.931 (0.826) 7.935 (0.534)

-2log-likelihood 2644.8 2502.9
AIC 2648.8 2508.9

3. Second crop season at ESALQ
Intercept β0 15.157 (0.138) 15.157 (0.282)

Var. of progenies σ2
g 3.292 (0.789)

Var. residual σ2
r 9.381 (0.599) 6.090 (0.410)

-2log-likelihood 2487.5 2366.8

AIC 2491.5 2372.8
4. Second crop season at Sertãozinho

Intercept β0 15.818 (0.154) 15.818 (0.284)
Var. of progenies σ2

g 3.105 (0.803)

Var. residual σ2
r 11.687 (0.747) 8.582 (0.578)

-2log-likelihood 2595.2 2518.9
AIC 2599.2 2524.9

attention should be given to this point: a misspecification of the data distri-
bution can lead to overestimated random effects and, hence, result in erro-
neously high heritability values.

It is clear that the original structure of the lattice design was not consid-
ered and a completely randomized design model was used. For purposes of
illustration, it was an acceptable choice. By doing so, the block and replica-
tion effects were not modeled and their variation was added to the variance
component σ2

r , which is overestimated. As a result, the estimated heritabil-
ity is underestimated. Even the heritabilities for the linear mixed model are
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underestimated; they are higher than those considering the Poisson distribu-
tion.

To illustrate the effect of model misspecification in the estimation of ge-
netic quantities, we also analyzed the kernel-row number per ear. The fre-
quency plots and the estimates of the models considered are presented in
Appendix C. For this trait, there is a significant effect of the ear diameter
covariate, considering the linear mixed models in all environments and the
Poisson model in the first crop season at Sertãozinho. Also for this envi-
ronment, the (PG-) and (PGN) models failed to converge, but this is not a
surprise due to the high estimates of the Gamma parameter and null esti-
mates of random effects.

If one assumes the normal distribution for this count trait, the heritability
values are H2 = 0.0806 for the first crop season at ESALQ, H2 = 0.1640 for
the first crop season at Sertãozinho, H2 = 0.2936 for the second crop sea-
son at ESALQ and H2 = 0.1590 for the second crop season at Sertãozinho.
On the other hand, considering the Poisson models, there are neither sig-
nificant overdispersion nor significant normal random effects and, hence, the
heritability is not significantly different from 0.

The amount of genetic variation determines the rate of change of a trait
under selection and if there is no genetic variation, there is no response to
selection (?).

6. Concluding Remarks

In this paper, we have derived a principled expression for heritability,
based on hierarchical count data. To these data, Poisson-based mixed mod-
els as well as and linear mixed models have been fitted and compared. Al-
though conventional, we consider inadequate the use of linear (mixed) models
for count data and showed that, using this approach, the genetic random ef-
fects can be overestimated, leading to incorrect heritability values. Of course,
when counts would be very large and at least approximately normally dis-
tributed, the above judgment can be relaxed.

The so-called combined model was used in the Poisson approach. It brings
together a generalized linear model for count data with both normal and
gamma random effects, thus accommodating correlation and overdispersion..
Importantly, the standard generalized linear mixed model is a special case of
the combined model, implying that the derivations reported here also apply
to this commonly encountered GLMM case.
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Table 2: Maize study. Parameter estimates and standard errors for the regression coef-
ficients in (1) the purely Poisson model (P--), (2) the Poisson-Normal model (P-N), (3)
the Poisson-Gamma model (PG-), and (4) the Poisson-Gamma-Normal model (PGN),
considering the trait number of tassel branches in the four environments.

Effect Par. (P--) (P-N) (PG-) (PGN)
1. First crop season at ESALQ

Intercept β0 2.795 (0.011) 2.793 (0.015) 2.795 (0.011) 2.793 (0.015)
Gamma param. α 1000.020 (580.310) 7638.150 (11268)
Var. of progenies σ2

g 0.005(0.002) 0.005 (0.002)
-2log-likelihood 2573.6 2564.4 -28771 -28783
AIC 2575.6 2568.4 -28767 -28777

2. First crop season at Sertãozinho
Intercept β0 2.808 (0.011) 2.800 (0.021) 2.808 (0.011) 2.800 (0.021)
Gamma param. α 5982.350 (10830) 7735.860 (11025)
Var. of progenies σ2

g 0.016 (0.005) 0.016 (0.005)
-2log-likelihood 2658.3 2595.4 -29.356 -29419
AIC 2660.3 2599.4 -29352 -29413

3. Second crop season at ESALQ
Intercept β0 2.719 (0.012) 2.713 (0.019) 2.719 (0.012) 2.713 (0.019)
Gamma param. α 6786.550 (10475) 7791.040 (10969)
Var. of progenies σ2

g 0.010 (0.004) 0.010 (0.004)
-2log-likelihood 2532.4 2501.6 -25526 -25556
AIC 2534.4 2505.6 -25522 -25550

4. Second crop season at Sertãozinho
Intercept β0 2.761 (0.011) 2.756 (0.018) 2.761 (0.011) 2.756 (0.018)
Gamma param. α 6008.200 (10200) 7660.940 (12063)
Var. of progenies σ2

g 0.010 (0.003) 0.010 (0.003)
-2log-likelihood 2614.3 2584.9 -27301 -27331
AIC 2616.3 2588.9 -27297 -27325

The combined model and its GLMM sub-model admit closed-form expres-
sions for means, variances, and higher-order moments. As a result, variance
ratios have explicit expressions too. The heritability coefficient is sufficiently
simple and appealing, in particular in special cases, to be of practical value.

We want to reiterate that, in these models, heritability is a function
rather than a constant. At first sight, this is a drawback. However, it is a
consequence from the mean-variance relationship in the models considered.
If the model fits the data well, it can also be claimed to be a feature of
the data. Practically, heritability changes with the effects present in the
predictor functions. Evidently, one can summarize the functions in a variety
of ways, using averages, medians, quartiles, ranges, etc.
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Figure 2: Maize Data. Empirical Bayes Estimates for number of tassel branches in each
environment.
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Appendix A. Model Elements for the Poisson Combined Model

The mean and variance expressions for the Poisson combined model (1)–
(5) were presented by ?. The mean vector µi = E(Yi) has components

µij = φ exp

(

x′

ijβ +
1

2
z′

ijDzij

)

and the variance-covariance matrix is given by

Var(Yi) = Mi + Mi(Pi − Jni
)Mi, (A.1)

where Mi is a diagonal matrix with the vector µi along the diagonal and the
(j, k)th element of Pi equals

pi,jk = exp

(

1

2
z′

ijDzik

)

σi,jk + φijφik

φijφik

exp

(

1

2
z′

ikDzij

)

.

Note that σi,jk is the (j, k)th element of Σi.
These expressions also produce their simplified counterparts for the spe-

cial cases, including the Poisson-normal model and the Poisson model. For
instance, when only normal random effects are present, the mean vector
components slightly simplify:

µij = exp

(

x′

ijβ +
1

2
z′

ijDzij

)

,

and the variance-covariance matrix is

Var(Yi) = Mi + Mi(e
ZiDZ′

i − Jni
)Mi.

Appendix B. SAS Implementation

The SAS programs, using the procedure NLMIXED, for the linear mixed
model and Poisson models are as follows.

proc nlmixed data=env1 corr;

title ‘NTB: Linear mixed model’;

parms beta0=16.36 sigma=3.23;

mean = beta0 + b;

model ntb ~ normal(mean,sigma*sigma);
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random b ~ normal(0,d*d) subject=gen;

estimate ‘Variance Prog.’ d*d;

estimate ‘Variance Residual’ sigma*sigma;

run;

The special case of the Poisson model simply follows from removing the
RANDOM statement and the b effect in the linear predictor.

proc nlmixed data=env1 tech=NRRIDG qpoints=50 corr;

title ‘NTB: Poisson-Normal model’;

parms beta0=2.7948;

eta = beta0 + b;

lambda = exp(eta);

model ntb ~ poisson(lambda);

random b ~ normal(0,d*d) subject=gen;

estimate ‘Variance Prog.’ d*d;

run;

The above program makes use of the built-in Poisson likelihood. The Poisson-
Gamma-Normal model, or the combined model, need to be implemented
using the so-called general likelihood, i.e., the user defined likelihood feature.
The resulting program is as follows:

proc nlmixed data=env1 tech=NRRIDG qpoints=50;

title ‘NTB: Poisson-Gamma-Normal model’;

parms beta0=2.79 alpha=200 d=0.06775;

eta = beta0 + b;

lambda = exp(eta);

ll = lgamma(alpha + ntb) - lgamma(alpha) + ntb*log(1/alpha) -

(ntb + alpha)*log(1 + (1/alpha)*lambda) + ntb*eta;

model ntb ~ general(ll);

random b ~ normal(0,d*d) subject=gen;

estimate ‘Variance Prog.’ d*d;

run;

The special case of the Poisson-Gamma model or, equivalently, the nega-
tive binomial model, follows from removing the RANDOM statement in the
previous program.
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Figure C.3: Maize Data. Frequency plots for kernel-row number per ear, over both repli-
cations, over all progenies and in each environment.

Appendix C. Results for Kernel-row Number

Figure C.3 shows the frequency plots for the characteristic kernel-row
number per ear, over both replications, over all progenies and in each envi-
ronment. This count is always an even number that varies from 10 to 20 in
this population. The estimates of the linear mixed model and Poisson models
are displayed in Table C.3.
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Table C.3: Maize study. Parameter estimates and standard errors for the regression coef-
ficients in (1) the linear mixed model (LMM), (2) the purely Poisson model (P--), (3) the
Poisson-Normal model (P-N), (4) the Poisson-Gamma model (PG-), and (5) the Poisson-
Gamma-Normal model (PGN), considering the trait kernel-row number per ear in the four
environments.

Effect Par. (LMM) (P--) (P-N) (PG-) (PGN)
1. First crop season at ESALQ

Intercept β0 10.059 (0.939) 2.615 (0.012) 2.615 (0.012) 2.615 (0.012) 2.615 (0.012)
Ear diameter β1 0.739 (0.192)
Gamma param. α 9116.39 (11350) 1200.00 (539.77)

Var. of progenies σ2

g
0.107 (0.048) 1.15×10−14 1.18 ×10−14

Var. residual σ2

r
1.219 (0.082)

-2log-likelihood 1518.6 2236.1 2236.1 -21636 -21632
AIC 1526.6 2238.1 2240.1 -21632 -21626

2. First crop season at Sertãozinho
Intercept β0 8.505 (0.997) 2.156 (0.200) 2.156 (0.200)
Ear diameter β1 1.096 (0.207) 0.097 (0.042) 0.097 (0.042)
Gamma param. α

Var. of progenies σ2

g
0.260 (0.081) 6.51×10−27

Var. residual σ2

r
1.325(0.089)

-2log-likelihood 1581.8 2245.1 2245.1
AIC 1589.8 2249.1 2251.1

3. Second crop season at ESALQ
Intercept β0 12.236 (0.983) 2.615 (0.012) 2.615 (0.012) 2.615 (0.012) 2.615 (0.012)
Ear diameter β1 0.307 (0.209)
Gamma param. α 9131.74 (11593) 800.00 (300.44)

Var. of progenies σ2

g
0.534 (0.136) 3.42×10−17 2.51×10−12

Var. residual σ2

r
1.285 (0.087)

-2log-likelihood 1593.9 2251.3 2251.3 -21646 -21640
AIC 1601.9 2253.3 2255.3 -21642 -21634

4. Second crop season at Sertãozinho
Intercept β0 9.967 (1.064) 2.619 (0.012) 2.619 (0.012) 2.619 (0.012) 2.619 (0.012)
Ear diameter β1 0.779 (0.220)
Gamma param. α 8410.39 (10023) 1000.00 (414.27)

Var. of progenies σ2

g
0.248 (0.077) 1.39×10−16 8.75×10−15

Var. residual σ2

r
1.312 (0.088)

-2log-likelihood 1575.6 2245.9 2245.9 -21772 -21767
AIC 1583.6 2247.9 2249.9 -21768 -21761
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