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Abstract

In disease mapping, a scaling e↵ect due to an aggregation of data from a finer to a coarser

level is a common phenomenon. This article focuses on addressing this issue using a hierarchical

Bayesian modeling framework. We propose four di↵erent multiscale models. The first two models

use a shared random e↵ect that the finer level inherits from the coarser level. The third one assumes

two independent convolution models at the finer and coarser levels. The fourth applies a convolution

model at the finer level, but the relative risk at the coarser level is obtained by aggregating the

estimates at the finer levels. All these models were compared based on predictive accuracy, deviance

information criterion (DIC), and Watanabe-Akaike or widely applicable information criterion (WAIC)

that are applied to real and simulated data. The results indicate that the models with shared random

e↵ect outperform the other models on a range of criteria.

Some Keywords: Deviance information criterion (DIC); Watanabe-Akaike or widely applicable

information criterion (WAIC); predictive accuracy; shared random e↵ect model; scaling e↵ect.

1 Introduction

In spatial epidemiology (disease mapping), the main goal is to study the distribution of disease spatially.

Often, public health workers are interested in identifying areas which have a higher risk for a certain

infection so that resources can be allocated accordingly. Spatial epidemiology can help us to deal with

such risk by taking into account population variation. Several authors have studied this risk using a
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standardized mortality/morbidity ratio (SMR), which is defined as the amount of risk observed relative

to what is expected under standard conditions (Broeck et al., 2013). However, this is a very simple

approach and SMRs can provide unstable estimate of risk due to their ratio form. Moreover, it does

not accommodate the correlation between neighbors. To overcome the limitation with the SMR, most

notably, Besag et al. (1991) proposed a convolution model that allows the relative risk to be statistically

modeled by including spatially structured and unstructured random e↵ects in the model.

A convolution model has been widely used in disease mapping by many scholars (Lawson, 2013, ch 5).

Besag et al. (1991) first considered two additive components in their risk model: a correlated and an

uncorrelated component. The correlated component (CH) was assumed to have an intrinsic conditional

autoregressive (CAR) distribution. A proper CAR model has also been proposed for the CH component,

and this corresponds to a proper multivariate Gaussian distribution with the full rank of covariance matrix

(Cressie and Chan, 1989; Stern and Cressie, 1999). On the other hand, Moraga and Lawson (2012) have

considered Gaussian Component mixture (GCM) and compared it with CAR using a simulation study.

Even though the convolution model has been widely used for spatial epidemiology data, it does not

accommodate a spatial scaling e↵ect associated with aggregations in the data space.

Modeling scale e↵ects is a special interest in disease mapping. When data are aggregated from finer

(lower) to coarser (higher) level, obviously there will be a scaling e↵ect. It will result in an ecological

fallacy if we try to make an inference from a region to the individual located within that region without

adjusting the scaling down factor. We may also find a relationship between an outcome and a covariate at

the higher level, but that relationship may not retain at the lower level. On the other hand, an atomistic

fallacy will occur if we try to generalize directly from the lower level (e.g. census tract) to the higher

aggregation level (e.g. county) without adjusting the variability of individuals’ response to the diseases.

In general, this scale change issue is called the modifiable areal unit problem (MAUP; Lawson, 2013, ch

9) or change of support problem in geostatistics (Cressie, 1996; Banerjee et al., 2004).

To encompass scaling e↵ects, Kolaczyk and Haung (2001) proposed a multiscale modeling approach by

factorizing the likelihood into the individual components of local information. While there are other

multiscale models for descriptive purpose, their method was adopted for inferential purpose. The model,

which they developed, assumes that the hierarchical partitions correspond to the successive aggregation

of an initial data space. Nevertheless, their approach is limited to such assumptions and it considers

that the e↵ect at the highest level is fixed and not random. In addition, it is not flexible enough to

estimate the relative risks at the highest and lowest level at the same time. To overcome such issues, in

this paper, we develop a multiscale modeling framework that can be used to make inference both at the

higher (areas) and lower levels (subareas) simultaneously using a Bayesian models. We also evaluate the

performance of the di↵erent multiscale models used via simulation study.
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This paper proceeds as follows. Section 2 is devoted to the description of the data set, followed by the

statistical methodologies and the design of the simulation study that will be elaborated in Section 3. The

simulation results and the application of the multiscale modeling to a real data set will be presented in

Section 4. Finally, in Section 5, we discuss the main findings and draw conclusions from the results.

2 Georgia Oral Cancer Data

As part of our analysis of multiscale e↵ects we choose to examine a real data set: Georgia county and

public health district oral cancer incidence. This was chosen as it provides a reasonably large set of

spatial unit at each scale. The outcome of interest is the number of persons discharged from non-Federal

acute-care inpatient facilities for oral cancer in 2008 at both the county and public health (PH) levels.

There are 159 counties within 18 public health districts. These PH districts are the administrative units

that provide health services. Since a public health district contains at least one county, there may be a

clustering e↵ect, i.e., counties located within the same PH district may behave similarly. The counts of

disease at the public health level were created by aggregating the outcomes at the county level nested

within the PH district. Hence, the data exhibit scaling e↵ect when aggregated from the county to the

PH level. This e↵ect should be incorporated during modeling, a point on which we will elaborate in

Section 3. Figure 1 depicts the Georgia map which consists of 18 PH districts and 159 counties. We can

clearly see from the figure that the 159 counties are grouped into 18 public health districts. Hence, we

are interested to study the grouping e↵ect, which was occurred due to the classification of the counties

into PH districts. We analyze these data in Section 4.2 and now we proceed to the multiscale modeling

and a simulation study.

3 Multi-scale Modeling

In disease mapping, the information conveyed by maps varies with scale. This scale e↵ect may need to be

accommodated during modeling. Louie and Kolaczyk (2006) proposed the factorization of the likelihood

that contains the information on the scaling e↵ect in a multiscale fashion under the assumed Poisson

model. They assumed a multinomial distribution for the data at finer level conditioning on coarser

level. This approach is limited to the assumption of having a fixed coarser level e↵ect. In this paper,

we incorporate the scale e↵ect using a multiscale modeling approach. We have proposed four di↵erent

models to account for the scaling e↵ect. We discuss each of these models in the following subsections.
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Figure 1: State of Georgia, USA: County and PH district boundary map.

3.1 Model 1

The framework, which was developed by Louie and Kolaczyk (2006), can be further extended to estimate

relative risk in Poisson based models for count data. We are motivated by their use of convolution models

in estimating the relative risk of data available at multiple scales. However, these authors considered the

convolution model at the finer level only. Here, we study the model both at the finer and coarser levels

by including shared random e↵ect to handle the scaling e↵ect.

Several studies have looked at multiscale modeling of spatial data within the Bayesian framework (Louie

and Kolaczyk 2006; Lee et al., 2009; Louie and Kolaczyk 2004; You and Zhou 2011). The models proposed

by many of the previous studies involve complex statistical and computational techniques that may not

always be easily implemented in standard softwares. Taking into account the need for simpler and more

user-friendly methods, we propose multiscale convolution models to obtain smoother risk estimates for

multiscale data.

Suppose yk is a vector of observed aggregated outcomes yik for unit i at the kth scale level, k = 1, . . . ,K;

i = 1, . . . , Nk, where Nk is defined to be the number of units at the k

th level and K denotes the number

of levels. Note that k is ranked from lowest to highest level. in this paper, we use the phrase lowest level

to refer for the finest (e.g. census tract) while highest level to refer to the coarsest level (e.g. state). We

assume that Sik is the set of subunits at the k� 1 level within the i

th unit at the k

th level. For example,

for count data, we can express the aggregation as yik =
P

l✏Sik

ylk, yik�1 =
P

l✏Sik�1

ylk�1, . . . for k = 2, . . . ,K.

The aggregated data at each level are assumed to have a Poisson distribution, i.e., yk ⇠ Pk(µk = ek✓k),

4



where ek is the expected rate and ✓k is the relative risk which is given by:

log(✓k) = a0k + vik + uik, (1)

where a0k, uik, vik are the intercept, spatially structured, and unstructured random e↵ects for scale level k,

respectively. Let pk(✓k) be the joint prior distribution of the p components of ✓k for scale k, i.e., pk(✓k) =
pQ

i=1
pik(✓ik), i = 1, . . . , p, and pk(yk|✓k) =

nQ
i=1

pk(yik|✓ik) is the joint distribution of the sample which is

represented as the likelihood L(✓k|yk) when viewed as a function of ✓k. The posterior distribution, which

is a combination of the prior distribution and the likelihood function, could be defined as:

Pk(✓k|yk) _ Lk(✓k|yk)pk(✓k), (2)

where Pk(✓k|yk) is the posterior distribution for scale k. To obtain the posterior parameter estimates,

specifically the relative risk at each scale, we can sample from the updated posterior distribution Pk(✓k|yk)

using an McMC sampling method. Note that the total likelihood function could be given as L(✓|y) =
KQ

k=1
Lk(✓k|yk) (Lawson, ch 9).

Linkage between the di↵erent levels can be achieved via the spatially structured and unstructured random

e↵ects or directly through the relative risk as well. Following that, we will discuss how we can implement

these models for two level count data.

Let yi1, i = 1, . . . , N1, is the subunit level count of disease and yi2 =
P
l✏Si2

yl1, i = 1, . . . , N2, is the i

th unit

level count of disease aggregated at the subunits level; N1, and N2 are the number of subunits and units,

respectively. In Model 1, we considered a joint convolution model at the subunit and unit levels. The

linkage between these two levels was incorporated in the model by including a shared spatial structure

random e↵ect, ui2. The model is given by

yi1 ⇠ Poisson(ei1✓i1),

log(✓i1) = a01 + vi1 + ui2,

yi2 ⇠ Poisson(ei2✓i2),

log(✓i2) = a02 + vi2 + ui2.

(3)

Here, ei1 =
P

yi1
pi1P
pi1

is the expected rate at the subunit level, pi1 is the population size of the ith subunit.

The expected rate at the unit level, ei2, is obtained by aggregating the expected rate at the subunit, ei1,

laid within the i

th unit. For this model and for the other subsequent models below, we have assumed a

flat prior for the intercept parameters, a01 and a02. Further, the uncorrelated heterogeneity (UH) random

e↵ects, vi2 and vi1, were assumed to be normally distributed, i.e., vi2 ⇠ N(0, sd2v2) and vi1 ⇠ N(0, sd2v1),

whereas the correlated heterogeneity random e↵ect, ui2, was assumed to have conditional autoregressive
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(CAR) distribution of the form:

ui2 | u�i2 ⇠ N(ū�i2 ,
sd

2
u2

n�i2

), (4)

where

ū�i2 =
1

n�i2

X

m✏�i2

um2,

n�i2 is the cardinality of �i2, which denotes the set of labels of the neighbors of unit i and u�i2 is the

contiguous spatially structured random e↵ect for unit i. For the hyperparameters, sdv1, sdv2, and sdu2,

we considered a uniform prior distribution, U(0, 100) (Gelman et al, 2006).

3.2 Model 2

Model 2 is similar to Model 1 except now the spatially structured random e↵ect at the subunit level, i.e.,

u

c
i is added to the model. The model can be written as

yi1 ⇠ Poisson(ei1✓i1),

log(✓i1) = a01 + ui1 + vi1 + ui2,

yi2 ⇠ Poisson(ei2✓i2),

log(✓i2) = a02 + vi2 + ui2.

(5)

We assume a conditional autoregressive (CAR) distribution of the spatially structured random e↵ect

given by:

ui1 | u�i1 ⇠ N(ū�i1 ,
sd

2
u1

n�i1

), (6)

where

ū�i1 =
1

n�i1

X

m✏�i1

um1,

n�i1 is the cardinality of �i1, which represents the set of labels of the neighbors of subunit i and sdu1 ⇠

U(0, 100).
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3.3 Model 3

This model assumes two separate convolution models at both the subunit and unit levels. The model is

of the form:

yi1 ⇠ Poisson(ei1✓i1),

log(✓i1) = a01 + ui1 + vi1,

yi2 ⇠ Poisson(ei2✓i2),

log(✓i2) = a02 + vi2 + ui2.

(7)

Note that this model does not introduce linkage between the subunit and unit level rather it assumes

they are independent.

3.4 Model 4

In this model, we assume a convolution model to calculate the relative risk at the subunit level, ✓i1,

while the relative risk at the unit level, ✓i2, is simply obtained by aggregating over the subunit estimated

e↵ects. The model could be defined as:

yi1 ⇠ Poisson(ei1✓i1),

log(✓i1) = a01 + ui1 + vi1,

✓i2 = µi2/ei2, µi2 =
P
l✏Si2

el1✓l1.

(8)

3.5 Model Assessment and Goodness of Fit

To investigate the performance of the models, a deviance information criterion (DIC; Spiegelhalter et

al., 2002; Gelman et al., 2004), which is a combination of the likelihood function (deviance) and model

complexity (PDdic; number of e↵ective parameters), was applied to the data. We have also considered

other criteria for model selection such as WAIC (Watanabe-Akaike or widely applicable information

criterion; Watanabe, 2010; Gelman et al., 2013) and conditional predictive ordinate (CPO; Lawson,

2013, ch 4). For a predictive accuracy assessment, mean absolute prediction error (MAPE) and mean

square error prediction (MSPE) were used.

WAIC is a fully Bayesian technique for model selection and uses a posterior distribution rather than

the point estimate. WAIC can be considered as computationally convenient approximations to cross

validation and could be computed as:
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WAIC = �2 ⇤ delpdwaic,

delpdwaic = clpd�dPDwaic,

where clpd =
nP

i=1
log( 1

S

SP
s=1

p(yi|✓s)), and dPDwaic =
SP

s=1
V

S
s=1 log(p(yi|✓s)). Here, clpd, delpdwaic, dPDwaic,

V , n, and S denote the computed log pointwise predictive density, expected log pointwise predictive

density, e↵ective number of parameters, sample variance, the number of data points, and posterior sim-

ulations, respectively.

For all models, convergence was assessed using estimated potential scale reduction factor, R̂, trace plots,

and Brooks, Gelman and Rubin’s (BGR) plots (Gelman and Rubin, 1992).

3.6 Simulation Study

A simulation study was conducted to compare the performance of the models for data generated under

a hypothetical (theoretical) grid with three levels and under the real Georgia oral cancer study with

two levels. Initially, gamma distributions were considered as a simple case but these were extended to

spatially structured simulations for more realistic scenarios.

3.6.1 Simulation from Gamma Distributions

In practice, we may have data at census tract, county, and public health district levels. Taking into

account this structure, we simulated data from a Poisson distribution with three levels of hypothetical

grid which is divided into 24x24=256 smaller areas of the finest (lower) level, 23x23=64 areas (pixels) at

the medium level, and 22x22=16 areas in the coarsest (higher) level. First, 256 samples were generated

from a Poisson distribution at the finest (lower) level. To obtain the 64 samples at the next level

(medium), we aggregated the samples at the finest level nested within the medium level. Similarly, the

16 samples were obtained by aggregating the observations at the medium level nested within the coarsest

level. Mathematically, this could be expressed as follows:

yi1 ⇠ Poisson(ei1✓i1),

yi2 =
P
l✏Si2

yl1,

yi3 =
P
l✏Si3

yl2,

(9)

where ei1 is the expected rate, ✓i1 denotes the relative risk at the finest level, Si2 is the set of subareas

at the lower level nested within the i

th area at the medium level, and Si3 represents the set of subareas

at the medium level nested within the i

th area at the higher level. yi1, i = 1, . . . , N1 = 256, yi2, i =

8



1, . . . , N2 = 64, and yi3, i = 1, . . . , N3 = 16, are the samples generated at the lower, medium, and higher

levels, respectively. We assumed ✓i1 follows a gamma distribution with shape ↵, and scale � parameters,

i.e., ✓i1 ⇠ gamma(↵,�). For the hyperparameter of the gamma distribution, we assume both ↵ and �

equal to one so that the mean and variance of ✓ will be one. This assumption could generate relative

risks that are similar to real life example. The expected rate of the 256 areas were supposed to be equal

to one. Note that we have also sampled data that mimic the Georgia oral cancer study.

3.6.2 Simulation from a Convolution Model

In turn, we generated data from Model 4 (8) similar in spirit to the Georgia oral cancer study. First, the

spatially structured random e↵ects were simulated from an intrinsic conditional autoregressive (CAR)

through the BRugs Package. However, with this approach, we have to use the McMC sampling method

and it is computationally intensive. Hence, we sampled these random e↵ects from CAR (6) using a

program written in R software.

To sample from (6), we have to know the conditional mean and the overall variance sd

2
u1. To obtain the

conditional mean and conditional variance, we first assumed ui1 follows a standard normal distribution

and sdu1 equals to one. Then, ui1 was sampled from a normal distribution with conditional mean equal

to the average of the contiguous u�i1 and conditional variance inversely proportional to n�i1 . To cluster

the random e↵ects spatially, this process should be repeated a number of times. In our case, we repeated

this process four times and obtained spatially structured random e↵ects similar to the one generated

through BRugs package. The unstructured random e↵ects were simulated from a normal distribution

with mean equal to zero and variance sd2v1. Similarly, we have simulated data from the hypothetical grid

in (9), however, we used a convolution model in ((8)) to obtain the relative risk, ✓i1. Note that in all

scenarios, the expected rates were sampled from �(1, 1).

The models discussed above were fitted to 200 simulated data using the Monte Carlo Markov Chain

(McMC) method with 15000 samples after the first 15000 samples were discarded from the analysis. To

compare the models, the bias and MSE of the relative risks were calculated. To evaluate the predictive

ability of the models, we calculated the MSPE and MAPE. Besides, PD, DIC, and WAIC were computed

at each level to compare model performance. Finally, the computation time was extracted to compare

the execution time for the models. To summarize the simulation results, we calculated the mean values

of the bias, MSE, MAPE, MSPE, PD, DIC, and WAIC obtained from the models fitted to the 200 data

sets.
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4 Results

4.1 Simulation Results

In this section, we describe the simulation results. First, we present the findings obtained from the

simulation study that assumes the data follow a Poisson distribution with mean equal to ei1✓i1 and the

relative risk ✓i1 itself was simulated from a gamma distribution with scale and shape parameter equal to

one. Thereafter, we present the results obtained from the models fitted to the simulated data which were

generated from a Poisson distribution with mean equal to ei1✓i1, but the relative risk ✓i1 was calculated

via the convolution model in (8).

4.1.1 Results for Data Simulated from Gamma Distributions

The results obtained from the sampled data under a hypothetical grid scenario are shown in Table 1.

When the relative risk is assumed to follow a gamma distribution with shape and scale parameters equal

to one, Models 1 and 2 produce DIC value less than Models 3 and 4, especially at lower and medium

levels. Similarly, the bias and MSE of the relative risk computed from Models 1 and 2 are smaller than

the bias and MSE of the relative risk obtained from Models 3 and 4. Further, Model 1 converges faster

than the other models. However, the first three models produce similar MAPE and MSPE at all levels

except a slight di↵erence at the medium level. Note that the Model 4 reveals MAPE and MSPE higher

than the other models in the medium and higher levels.

Tables 2 displays the results of the data generated to mimic the Georgia oral cancer study. We have also

found here that Models 1 and 2 provide smaller DIC value than Models 3 and 4, especially at the PH

level. The WAIC also favors Models 1 and 2 at this level. Moreover, the MAPE, MSPE, bias, and MSE

of the relative risk of these models are slightly lower than that of Models 3 and 4. However, the MAPE

and MSPE at the county level are almost an identical for all the models.

4.1.2 Results for Data Simulated from a Convolution Model

The simulation results for the data generated from Model 4 using a programmed R software to sample

the spatially structured random e↵ect are shown in Tables 3-4. From Table 3, we can see that the DIC

slightly opts for Model 4 at the county level, whereas it supports Model 1 at the PH level. The predictive

accuracy is similar across the models except Model 4 has the smallest MSPE at the PH level. In spite of

that, Model 4 provides slightly smaller MSE of the relative risk. This is an expected result because the

data were generated from Model 4. On the other hand, Model 1 converges much faster than the other

models. Table 4 shows the bias and MSE of the intercept a01 and the variance of the spatially structured
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Table 1: Simulation results for the data generated from a hypothetical grid. Lower, medium, and higher

represent the three levels; DIC, MAPE, MSPE, ✓i1 ⇠ gamma(↵,�), and CT represent the average de-

viance information criterion, mean absolute prediction error, mean square prediction error, the relative

risk at the county level, and computation time in seconds over the 200 data sets, respectively.

Models PDdic DIC MAPE MSPE ✓1 CT

lower medium higher lower medium higher lower medium higher lower medium higher bias MSE elapsed

Model 1 35.52 33.35 8.61 672.71 265.84 97.82 0.91 1.90 4.48 2.10 6.78 32.33 -0.36 0.89 69.16

Model 2 35.88 33.49 8.66 672.19 266.09 97.88 0.91 1.90 4.48 2.10 6.81 32.34 -0.36 0.89 213.81

Model 3 36.24 31.03 9.55 713.77 291.62 98.34 0.91 2.17 4.45 2.18 8.17 31.92 -0.46 0.98 207.34

Model 4 36.26 - - 713.78 - - 0.91 2.53 7.86 2.18 11.37 86.84 -0.46 0.98 484.48

Table 2: Simulation results for the data generated from a Poisson distribution with mean e

c
i✓

c
i that mimic

the Georgia oral cancer study, where ✓i1 ⇠ gamma(↵,�). WAIC, PDdic, and PDwaic represent the

average widely applicable information criterion, and the e↵ective number of parameters used to calculate

DIC and WAIC over the 200 data sets, respectively.

Models PDdic DIC PDwaic WAIC MAPE MSPE ✓1 CT

county PH district county PH district county PH district county PH district county PH district county PH district bias MSE elapsed

Model 1 46.39 9.75 348.91 87.68 36.27 5.34 349.02 84.94 0.80 2.91 2.07 16.94 0.008 1.41 69.13

Model 2 47.44 10.06 348.92 88.27 36.97 5.58 348.98 85.57 0.79 2.92 2.06 17.12 0.009 1.44 203.18

Model 3 49.95 10.98 349.76 92.01 37.96 7.22 348.86 90.65 0.79 3.04 2.05 18.11 0.01 1.46 129.02

Model 4 49.86 - 349.63 - 37.85 6.96 348.67 89.31 0.79 3.00 2.05 17.86 0.01 1.44 150.79
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and unstructured random e↵ects, sdu1 and sdv1, respectively. Model 4 yields a tiny bias of the overall

relative risk (exp(a01)), whereas Model 3 produces smallest bias of sdu1 and sdv1. Moreover, both Models

3 and 4 have smaller MSE of a01 and sdu1. Yet, Model 1 slightly compact MSE of sdv1.

When data are generated from Model 4 with assumed values of a01 = �2, sdu1=1, sdv1=1, and simulated

ui1 through BRugs package, Model 4 has the smallest DIC at the county level, whereas Models 1 and 2

have slightly smaller DIC at PH level (Table 5). The MAPE and MSPE at the PH level prefer Models

1 and 2 though there is no quite di↵erence among the models at the county level. The bias and MSE

of Models 1 to 3 are close to each other. Still, Model 1 converges faster. Model 4 has a little bias of

a01, sdu1, and MSE of sdu1, while the Model 3 has a smaller bias and MSE of sdv1. Until now, we

have seen the results for the simulated data assuming the spatially structured and unstructured random

e↵ects di↵erent for all the 200 data sets. To investigate the e↵ects of these random variables, we have

also generated data assuming the spatially structured random e↵ect the same for all the 200 data sets

(see the results in Appendixes A and B).

Table 3: Simulation results for the data generated similar in structure to Georgia oral cancer data.

The spatially structured random e↵ects were simulated using programmed R software and assumed to be

di↵erent for all the 200 data sets.

Models assumed values PDdic DIC MAPE MSPE ✓1 CT

a01 sdu1 sdv1 county PH district county PH district county PH district county PH district bias MSE CT

Model 1 0.1 1 1 70.06 13.12 448.08 103.69 1.14 4.24 4.31 37.69 -0.01 6.44 50.51

Model 2 0.1 1 1 71.12 13.37 446.67 104.18 1.13 4.25 4.25 37.85 -0.01 6.49 103.20

Model 3 0.1 1 1 72.45 14.31 446.18 106.41 1.13 4.29 4.17 38.07 -0.01 6.43 100.04

Model 4 0.1 1 1 69.50 - 443.66 - 1.11 4.11 3.93 34.51 -0.01 5.31 153.25

Table 4: Simulation study. Summary of the bias and MSE of the parameters for the data generated

similar in structure to Georgia oral cancer study. The spatially structured random e↵ects were simulated

using a programmed R software and assumed to be di↵erent for all the 200 data sets.

Models assumed values bias MSE

a01 sdu1 sdv1 a01 sdu1 sdv1 a01 sdu1 sdv1

Model 1 0.1 1 1 -0.053 - 0.038 0.043 - 0.029

Model 2 0.1 1 1 -0.064 -0.451 -0.028 0.043 0.338 0.037

Model 3 0.1 1 1 -0.029 -0.236 -0.011 0.029 0.246 0.052

Model 4 0.1 1 1 -0.014 -0.316 -0.057 0.029 0.249 0.034
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Table 5: Simulation results for the data generated similar in structure to Georgia oral cancer study. The

spatially structured random e↵ects were simulated through BRugs Package and assumed to be di↵erent

for all the 200 data sets. The assumed values were as follows: a01=-2, sdu1=1, and sdv1=1.

Models PDdic DIC MAPE MSPE ✓1 CT

county PH district county PH district county PH district county PH district bias MSE CT

Model 1 20.45 7.22 163.11 55.72 0.29 1.23 0.45 3.52 0.003 0.16 182.46

Model 2 21.62 7.39 163.11 55.72 0.29 1.24 0.45 3.56 0.004 0.17 352.09

Model 3 22.87 7.73 164.55 59.26 0.29 1.31 0.45 3.82 0.003 0.17 387.68

Model 4 21.46 - 156.45 - 0.28 1.34 0.47 4.02 0.013 0.21 429.71

Table 6: Simulation study. Summary of the bias and MSE of the parameters for the data generated

similar in structure to Georgia oral cancer data. The spatially structured random e↵ects were sampled

through BRugs Package and assumed to be di↵erent for all the 200 data sets.

Models assumed values bias MSE

a01 sdu1 sdv1 a01 sdu1 sdv1 a01 sdu1 sdv1

Model 1 -2 1 1 -0.199 - -0.165 0.225 - 0.154

Model 2 -2 1 1 -0.257 -0.366 -0.217 0.287 0.292 0.163

Model 3 -2 1 1 -0.176 -0.247 -0.087 0.200 0.276 0.128

Model 4 -2 1 1 -0.13 -0.14 -0.16 0.16 0.25 0.17
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Table 7 gives the results of the model fitted to the simulated data from the hypothetical grid. The DIC

favors Models 1 and 2 at all levels, especially at lower and medium levels. In addition, the WAIC prefers

Model 2 at the lower and higher levels, whereas the Model 1 at the medium level. Note that these results

are more pronounced at the medium level. Further, using MAPE and MSPE, the predictive accuracy

computed from Models 1 and 2 is slightly better than that of Models 3 and 4 at the medium level.

The posterior mean estimate and precision are displayed in Table 8. Here also, Model 1 provides better

mean and precision estimates of the relative risk. On the other hand, the bias and MSE of the sdu1 and

sdv1 obtained from Models 3 and 4 are smaller than that of Models 1 and 2. However, all the models

produce similar bias and MSE of the structured (ui1) and unstructured random e↵ects (vi1). Similar

findings can be observed in the data generated by allowing the correlated and uncorrelated random

e↵ects to be constant for all the 200 data sets (Appendix B;Tables B.3 and B.4).

Table 7: Simulation results for data generated from a hypothetical grid. The spatially structured and

unstructured random e↵ects were simulated using a programmed R software and were assumed to be

di↵erent for all the 200 data sets. The assumed values were as follows: a01=0.1, sdu1=1, and sdv1=1.

Models PDdic DIC PDwaic WAIC MAPE MSPE CT

lower medium higher lower medium higher lower medium higher lower medium higher lower medium higher lower medium higher elapsed

Model 1 93.25 36.70 12.48 703.73 304.35 110.12 69.43 18.19 7.50 700.55 291.59 107.89 1.11 2.62 5.97 3.81 14.06 60.25 667.25

Model 2 95.09 37.12 12.45 702.25 305.49 110.05 69.93 18.62 7.47 698.06 292.92 107.80 1.11 2.63 5.97 3.78 14.12 60.21 1268.04

Model 3 109.42 44.40 13.49 709.88 326.40 111.21 74.89 27.64 7.80 699.15 319.27 108.44 1.10 2.76 5.97 3.75 15.04 60.42 1352.94

Model 4 109.49 - - 709.73 - - 74.89 26.74 7.44 698.92 318.61 107.87 1.09 2.77 5.97 3.75 14.98 59.78 1746.73

Table 8: Simulation study. Summary of the bias and MSE of the parameters for the data generated

from a hypothetical grid. The spatially structured and unstructured random e↵ects were generated using

a programmed R software and were assumed di↵erent for all the 200 data sets.

Models assumed values bias MSE

a01 sdu1 sdv1 ✓1 a01 sdu1 sdv1 u1 v1 ✓1 a01 sdu1 sdv1 u1 v1

Model 1 0.1 1 1 0.006 0.009 - 0.24 - 0.008 4.499 0.022 - 0.081 - 1.022

Model 2 0.1 1 1 0.009 -0.018 -0.655 -0.258 -0.003 0.008 4.519 0.022 0.507 0.093 0.107 1.077

Model 3 0.1 1 1 0.016 -0.012 -0.356 -0.053 -0.003 0.008 4.583 0.019 0.332 0.034 0.198 1.144

Model 4 0.1 1 1 0.015 -0.014 -0.345 0.054 -0.003 0.008 4.56 0.021 0.319 0.036 0.201 1.082

The e↵ective number of parameters (PD), DIC, Deviance, and MSPE at the three di↵erent levels for the

simulated data from a hypothetical grid are displayed in Figure 2. We can clearly see that the PD of the
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DIC penalizes more for model complexity as compared to the PD of the WAIC and they both tend to

decrease as we aggregate the data from lower to higher level. This is not surprising because the e↵ective

number of parameters depends on the sample size. The same is true for the DIC, WAIC, and deviance.

Although there is not much di↵erence in the DIC computed from the di↵erent models at lower and higher

levels, there is a large di↵erence at the medium level. The results of the DIC for all the 200 data sets are

shown in Figure 3. Here also, Models 1 and 2 outperform the other models. Note that the results of the

DIC and WAIC are close to each other as they should be. However, there is not much di↵erence in the

MSPE among the models and it tends to increase as the aggregation change from lower to higher level.

Note that the MSPE at the medium level (e.g. MSPE is 15.14 for Model 1, see Appendix, Tables B.3)

is approximately four times to the MSPE at the lower level (4.06). Moreover, the MSPE at the higher

level (64.76) is almost four times to that of at the medium level and sixteen times to the MSPE at the

lower level. This is may be due to the sample size because the sample size at the lower level (256) is four

times of the sample size at the medium level (64) and sixteen times to that of at the higher level (16).

Note that this is not true for the simulated data that mimic the Georgia oral cancer study because we

have an irregular shape of the Georgia state.
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Figure 2: PD, DIC, WAIC, Deviance, and MSPE for the data generated from a hypothetical grid with

spatially structured (ui1) and unstructured random e↵ect (vi1) assumed to be constant over all the 200

data sets.
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Figure 3: Deviance information criterion (DIC) values for the 200 simulated data from a hypothetical

grid with spatially structured (ui1) and unstructured random e↵ects (vi1) assumed to be constant over all

the 200 data sets.
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4.2 Application to Data

To assess the benefit of the shared random e↵ect models in real life example, we have applied the models

discussed above to the Georgia oral cancer study. The estimated potential scale reduction factor, trace,

and BGR plots indicate good convergence for all model parameters. The results of the model fit and

predictive accuracy are shown in Table 9. We can clearly see that there is a gain in terms of model

fit (DIC and WAIC), especially at the PH level. Moreover, the parsimonious model (Model 1) fits the

data slightly better than Model 2. Hence, in this example, including the structural random e↵ect at

the county level (Model 2) does not improve the model fit other than adding model complexity. The

predictive accuracy (MAPE and MSPE) at the PH level for the Model 1 is better than the other models.

However, the predictive accuracy at the county level is not quite di↵erent between the models. If we do

not take into account for model complexity, the model which introduces two separate convolution models

(Model 5) provides better model fit (Deviance) at the county level compared to the shared random e↵ect

models (Models 1 and 2). According to the CPO, which does not also penalize model complexity, all

the models perform similarly at the county level but there is a slight improvement in the shared random

e↵ect models at the PH level (Figure 5).

The posterior summary statistics are given in Table 10. The overall relative risks of all the models,

(exp(a01) and exp(a02)), is approximately equal to one with 95 % credible interval in the range of 0.85

and 1.2 at both the county and PH levels. Hence, there is no significant increase in the number of persons

discharged from non-Federal acute-care inpatient facilities for oral cancer in the Georgia state compared

to what is expected. However, this is not true for each county and PH district (Figure 4). Here, the

relative risks obtained from Model 6 in the PH level range between 0.03 and 2.78, while for the other

models between 0.72 and 1.72. There is some inconsistency between the relative risk obtained from Model

6 at the PH level and the other models. For instance, Model 6 indicates an elevated risk in the northwest

part of the Georgia state, whereas the other models show an elevated risk in the southeast part. This is

may be due to the correlation between the neighbors is not accommodated in Model 6 at the PH level.

On the other hand, all the models produce similar relative risk at the county level. Note that the SMR

at the county level provides crude estimates which ranges from zero to seven because it does not adjust

the spatial correlation between the counties and the extra-variability in the data (Table 11.

On the other hand, the variability of the unstructured random e↵ects (sdv1 and sdv2) obtained from

the models are similar. Nevertheless, the variability of the structured random e↵ect (sdu1) from Model

2 is smaller than that of Model 3. This is may be due to some part of this variability in Model 2 is

accommodated by the shared random e↵ect (sdu2=0.474), which is higher than the variance in Model 3

(sdu2=0.411).
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Figure 4: Georgia oral cancer data. Relative Risk (RR) at each county and public health (PH) district.
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Figure 5: Georgia oral cancer study. Conditional predictive ordinates (CPO) at each county and public

health (PH) district.
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Table 9: Model fit and predictive accuracy results for Georgia oral cancer data.

Models PDdic DIC PDwaic WAIC MAPE MSPE Deviance

county PH district county PH district county PH district county PH district county PH district county PH district county PH district

Model 1 23.85 8.74 485.09 108.11 21.68 4.12 485.95 104.65 1.39 4.72 4.96 37.01 461.25 99.34

Model 2 26.97 9.23 484.17 109.57 23.85 4.65 485.09 106.34 1.38 4.79 4.89 38.2 457.21 100.34

Model 3 33.32 11.30 485.36 114.75 27.91 7.02 485.60 112.79 1.36 5.05 4.82 42.4 452.05 103.45

Model 4 32.63 - 485.38 - 27.53 - 485.78 - 1.36 8.28 4.83 161.9 452.75 -

Table 10: Georgia oral cancer data. Posterior mean estimates, standard error, and 95% Credible Interval.

Models Mean sd 95%CI

a01 a02 sdu1 sdv1 sdu2 sdv2 a01 a02 sdu1 sdv1 sdu2 sdv2 a01 a02 sdu1 sdv1 sdu2 sdv2

Model 1 0.003 -2.34E-5 - 0.256 0.492 0.082 0.065 0.059 - 0.122 0.139 0.064 (-0.131,0.125) (-0.118,0.116) - (0.046,0.495) (0.265,0.808) (0.002,0.239)

Model 2 -0.010 4.04E-4 0.329 0.219 0.474 0.089 0.070 0.060 0.155 0.117 0.148 0.065 (-0.126,0.164) (-0.141,0.126) (0.083,0.674) (0.027,0.458) (0.226,0.810) (0.007,0.249)

Model 3 0.024 -0.004 0.517 0.259 0.411 0.139 0.074 0.068 0.166 0.121 0.177 0.107 (-0.155,0.125) (-0.121,0.118) (0.219,0.865) (0.053,0.495) (0.099,0.806) (0.003,0.377)

Model 4 0.027 - 0.539 0.237 - - 0.075 - 0.181 0.109 - - (-0.126,0.169) - (0.191,0.896) (0.057,0.472) - -

Table 11: Georgia oral cancer study: Descriptive statistics of observed out come (O), expected rate (E)

and standardized incidence ratio (SIR) at both the county and public health district.

county PH district

O E SIR O E SIR

Minimum 0.00 0.07 0.00 7.00 6.18 0.49

1st quartile 0.00 0.47 0.00 14.55 14.50 0.77

3rd quartile 3.00 2.03 1.74 26.00 27.21 1.31

Maximum 32.00 36.00 7.11 40.00 38.99 1.79

Median 1.00 0.92 0.90 24.00 19.66 0.96

Mean 2.42 2.42 1.19 21.39 21.39 1.05

SD 4.51 5.02 1.39 9.12 9.33 0.36
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5 Discussion and Conclusion

In this paper, we investigated the e↵ect of scaling in disease mapping using a multiscale Bayesian modeling

framework. We have shown that the scaling e↵ect could be accommodated using shared random e↵ect

multiscale models (Models 1 and 2). These models provide not only a better fit to the data, but also they

produce a better predictive accuracy as compared to the independent convolution model (Model 5) and

Model 4, especially at the coarser level. This is an expected result because the e↵ect of the coarsest level

is inherited into the finer level through the shared random e↵ect. Furthermore, we obtained an unbiased

estimate of the relative risks. The parsimonious shared random e↵ect model (Model 1) also converges

faster than the other models.

The simulation results indicate that the models with shared random e↵ects are the best model when data

are simulated from a Poisson distribution with mean equal to ei1✓i1 in which ei1 and ✓i1 are generated

from a gamma distribution with the shape and scale parameters equal to one. These results are more

pronounced at the PH level of the simulated data that mimic the Georgia oral cancer study, while at

the lower and medium levels for the data generated from a hypothetical grid. Moreover, at the PH and

medium levels, the predictive ability of the shared random e↵ect models is better than the other models.

We have also found that the bias and MSE of the relative risks computed from these models are lower

than that of Models 3 and 4.

For data drawn from Model 4 with spatially structured and unstructured random e↵ects assuming ran-

dom for all the simulated data sets, the DIC favors the shared random e↵ect models at the PH level, while

Model 4 at the county level. However, it advocates the shared random e↵ect models at the county level

when the data are sampled from Model 4 with constant spatially correlated and uncorrelated random

e↵ects for all the simulated data sets. Here, Model 5, which uses an independent model at the county

and PH levels, fits the simulated data as good as the shared random e↵ect models. On the other hand,

the DIC for the shared random e↵ect models at the lower and medium levels for the data generated from

a hypothetical grid is much lower than that of Models 3 and 4. In this spatially structured simulation,

we have also obtained more unbiased and e�cient estimates of the relative risks for the shared random

e↵ect models as compared to the independent convolution model. All the models recover well the as-

sumed simulated overall relative risk, spatially structured (ui1), and unstructured (vi1) random e↵ects.

Nevertheless, Models 3 and 4 yield more unbiased and precise estimate of the variance of the spatially

structured (sdu1) and unstructured (sdv1) random e↵ects in most of the cases.

To investigate the results obtained from the simulation study in a real example, we have implemented the

models to the Georgia oral cancer study. Here also, both the DIC and WAIC tend to select the shared

random e↵ect models, especially at the PH level. Although there is not much di↵erence at the county

level, the predictive accuracy of the shared random e↵ect models is better than that of Models 3 and
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4 at the PH level. However, the deviance, which does not penalize model complexity, favors the simple

multiscale models, Models 3 and 4, at the county level, while Models 1 and 2 at the PH level.

Multiscale Modeling has been studied by several researchers (Kolaczyk and Haung, 2001; Louie and

Kolaczyk, 2006). Our approach of multiscale modeling is di↵erent from Louie and Kolaczyk (2006) in

many aspects. First, these authors assume a multinomial distribution at the finer level conditioning on

coarser level. This assumption introduces a fixed coarser level e↵ect. On the other hand, our method

assumes a random e↵ect at this level and the scaling e↵ect of the coarsest level is inherited into the finer

level. Second, their method does not encompass the spatially structured random e↵ect that handles the

correlation between the neighbors, whereas our methods do so. Moreover, our convolution multiscale

models could be implemented easily in standard softwares such as WinBUGS and INLA.

In summary, the shared random e↵ect models outperform the other models both in real and simulated

data. Interestingly, the parsimonious shared random e↵ect model, i.e., the model that excludes the

spatially correlated random e↵ect at the finer level is as competitive as Model 2, which includes the

correlated random e↵ect. This is may be due to the shared random e↵ect that was inherited from the

coarsest level is flexible enough to handle the correlation between the neighbors. Although it is not as

attractive as the shared random e↵ect models, Model 4, which is the most parsimonious model, is slightly

better than the independent convolution model. These results indicate that there should be a linkage to

account for scaling e↵ect between the finer and coarser level. We conclude that sharing the random e↵ect

between these two levels improves the model fit, predictive accuracy, and estimation, and e�ciency of

the relative risks.

Though we have achieved better results by including shared random e↵ect into the model, our paper has

some limitations. First, we introduced the shared random e↵ect through the spatially structured random

e↵ect. Currently, we are investigating using shared unstructured random e↵ects to accommodate a scaling

e↵ect. Although our shared random e↵ect model improves the model fit, especially at the coarser level,

it does not quantify the scaling e↵ect. Hence, measuring the scaling e↵ect using correlation structures

between the finer and coarser level is planned. Furthermore, when an interest arises to measure a relation

between an outcome and a covariate, say, if the relationship at the finer level will hold true at the coarser

level, our multiscale model could be easily extended to account for such issues. This is also in our plan.
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APPENDIX

In this appendix, we present the supplementary material for the simulation study. Section A provides the

simulation results for the data generated assuming the spatial structured random e↵ect is the same for

all 200 data sets while the unstructured random e↵ect is allowed to be random for all the 200 data sets.

Section B illustrates the results for the simulated data assuming both the structured and unstructured

random e↵ect will be constant across the 200 data sets.

A Fixing the spatially structured random e↵ect

To compare the e↵ects of the spatially structured random e↵ect, we have also simulated data from Model

4 by fixing ui1, i.e., assuming the same ui1 for all the 200 data sets. Here, the Model 2 produces slightly

smaller DIC at the county level, while Model 1 at the PH level. Additionally, the predictive accuracy at

the PH district level slightly advocates Model 1, whereas it is almost an identical at the county level. The

bias and MSE of the relative risk at the county level is also similar for all the models except the MSE

computed from Model 4 is slightly larger than the MSE obtained from the other models (Table A.1). On

the other hand, Model 1 has the lowest bias, MSE of a01, and sdu1. But, Model 2 provides tiny bias and

MSE of sdv1. Note that the Model 3 has a relatively high bias and MSE of sdu1 (Table A.2).

Table A.1: Simulation results for the data generated similar in structure to Georgia oral cancer data.

The spatially structured random e↵ects were generated using a programmed R software and were assumed

constant, while the unstructured random e↵ects were assumed di↵erent for all the 200 data sets. The

assumed values were as follows: a01=0.1, sdu1=1, and sdv1=1.

Models PDdic DIC MAPE MSPE ✓1 CT

county PH district county PH district county PH district county PH district bias MSE elapsed

Model 1 64.26 12.00 422.05 98.37 1.04 3.81 3.49 30.46 0.03 4.16 184.76

Model 2 66.81 13.32 421.67 101.71 1.03 3.89 3.43 31.18 0.03 4.22 346.65

Model 3 65.01 12.21 422.14 98.80 1.04 3.82 3.49 30.60 0.03 4.22 352.99

Model 4 67.91 - 425.11 - 1.05 3.89 3.57 31.42 0.04 4.56 251.84
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Table A.2: Simulation study. Summary of the bias and MSE of the parameters for the data generated

similar in structure to Georgia oral cancer data. The spatially structured random e↵ects were generated

using a programmed R software and were assumed constant, while the unstructured random e↵ect were

assumed di↵erent for all the 200 the data sets.

Models assumed values bias MSE

a01 sdu1 sdv1 a01 sdu1 sdv1 a01 sdu1 sdv1

Model 1 0.1 1 1 -0.226 - 0.017 0.083 - 0.021

Model 2 0.1 1 1 -0.147 -0.349 -0.036 0.043 0.256 0.034

Model 3 0.1 1 1 -0.231 -0.519 -0.075 0.084 0.368 0.038

Model 4 0.1 1 1 -0.137 -0.209 -0.053 0.039 0.187 0.039

B Fixing both the spatially structured and unstructured ran-

dom e↵ect

Furthermore, we have sampled data assuming the same ui1 and vi1 for all the 200 data sets and results

are displayed in Table B.1. Here, the DIC is almost the same at the county level, while it tends to select

slightly model 1 at the PH level. Nevertheless, the MAPE and MSPE slightly favor Model 4 at the PH

level, whereas all the models have similar MAPE and MSPE at the county level. The bias and MSE

of the relative risk are homogenous for all the models, indicating that all the models produce similar

estimation and precision of the relative risk if both the structured and unstructured random e↵ects are

allowed to be constant among the data sets. Using the CPO method, there is not much di↵erence among

the models (Figures B.6). Moreover, the bias of the structured ui1 and unstructured vi1 random e↵ects

is almost an identical for all the models (Table B.2). The spatially structured and unstructured random

e↵ects obtained from all the models (Figure B.8) are similar to the simulated one (Figure B.7). In spite

of that, the bias and MSE of the overall relative risk and sdu1 obtained from Models 3 and 4 are smaller

than that of Models 1 and 2. Model 2 has the smallest bias of sdv1, whereas the Model 1 reveals lower

MSE of sdv1.
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Figure B.6: Simulation Study. Conditional predictive ordinates (CPO) at each county and public health

(PH) district.
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Table B.1: Simulation results for data generated similar in structure to Georgia oral cancer data. The

spatially structured and unstructured random e↵ects were assumed constant for all the 200 data sets. The

assumed values were: a01=0.1, sdu1=1, and sdv1=1.

Models PDdic DIC PDwaic WAIC MAPE MSPE ✓1 CT

county PH district county PH district county PH district county PH district county PH district county PH district bias MSE CT

Model 1 40.79 9.21 452.39 103.64 49.81 7.89 446.07 101.01 1.14 4.21 4.11 36.61 0.04 5.59 203.24

Model 2 72.86 13.14 452.48 103.64 49.99 8.03 446.03 101.34 1.14 4.22 4.11 36.79 0.04 5.69 279.19

Model 3 74.09 14.25 451.54 106.00 49.32 8.89 442.96 103.96 1.14 4.27 4.06 36.93 0.04 5.65 320.00

Model 4 74.17 - 451.56 - 49.33 7.77 442.93 100.71 1.14 4.19 4.06 35.50 0.04 5.65 338.89

Table B.2: Simulation study. Summary of the bias and MSE of the parameters for the data generated

similar in structure to Georgia oral cancer data. The spatially structured and unstructured random e↵ects

were assumed constant for all the 200 data sets.

Models assumed values bias MSE

a01 sdu1 sdv1 a01 sdu1 sdv1 u1 v1 a01 sdu1 sdv1 u1 v1

Model 1 0.1 1 1 -0.101 - 0.053 - -0.001 0.031 - 0.014 - 1.313

Model 2 0.1 1 1 -0.109 -0.494 -0.004 -0.011 -0.001 0.033 0.341 0.020 0.219 1.311

Model 3 0.1 1 1 0.003 -0.416 0.057 -0.011 -0.003 0.014 0.263 0.023 0.236 1.317

Model 4 0.1 1 1 0.003 -0.435 0.059 -0.011 -0.003 0.015 0.290 0.026 0.230 1.319

Table B.3: Simulation results for data generated from a hypothetical grid. The spatially structured and

unstructured random e↵ects were generated using a programmed R software and were assumed constant

for all the 200 data sets. The assumed values were as follows: a01=0.1, sdu1=1, and sdv1=1.

Models PDdic DIC PDwaic WAIC MAPE MSPE CT

lower medium higher lower medium higher lower medium higher lower medium higher lower medium higher lower medium higher elapsed

Model 1 96.47 37.50 12.47 726.05 310.77 111.73 71.45 18.42 7.51 721.72 297.57 109.46 1.17 2.73 6.24 4.06 15.14 64.76 277.79

Model 2 97.95 37.89 12.42 725.04 311.74 111.62 72.03 18.79 7.49 720.87 298.66 109.43 1.16 2.74 6.24 4.09 15.07 64.91 534.11

Model 3 113.28 45.82 13.40 732.66 333.41 112.56 76.92 28.14 7.71 720.73 325.59 109.76 1.15 2.88 6.23 4.04 16.20 64.79 564.95

Model 4 113.34 - - 733.78 - - 77.03 27.38 7.18 720.90 325.27 108.58 1.15 2.89 6.19 4.06 16.26 63.88 690.84
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Figure B.7: The simulated correlated heterogeneity (CH) from a conditional autoregressive (CAR) and

simulated uncorrelated heterogeneity (UH) random e↵ects from a normal distribution.

Table B.4: Simulation study. Summary of the bias and MSE of the parameters for the data generated

from a hypothetical grid. The spatially structured and unstructured random e↵ects were generated using

a programmed R software and were assumed constant for all the 200 data sets.

Models assumed values bias MSE

a01 sdu1 sdv1 ✓1 a01 sdu1 sdv1 u1 v1 ✓1 a01 sdu1 sdv1 u1 v1

Model 1 0.1 1 1 0.011 0.075 - 0.242 - -0.107 4.707 0.014 - 0.068 - 1.022

Model 2 0.1 1 1 0.014 0.069 -0.679 -0.257 0.019 -0.107 4.737 0.013 0.517 0.079 0.109 1.022

Model 3 0.1 1 1 0.022 0.072 0.216 -0.078 0.019 -0.107 4.917 0.013 0.240 0.042 0.226 1.084

Model 4 0.1 1 1 0.021 0.073 -0.444 0.041 0.019 -0.107 4.86 0.013 0.299 0.016 0.234 1.082
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Figure B.8: The average spatially correlated heterogeneity (CH) and uncorrelated heterogeneity (UH)

random e↵ects obtained from the models fitted to 200 data sets.
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