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Abstract

In disease mapping, a scale effect due to an aggregation of data from a finer resolution level to a 

coarser level is a common phenomenon. This article addresses this issue using a hierarchical 

Bayesian modeling framework. We propose four different multiscale models. The first two models 

use a shared random effect that the finer level inherits from the coarser level. The third model 

assumes two independent convolution models at the finer and coarser levels. The fourth model 

applies a convolution model at the finer level, but the relative risk at the coarser level is obtained 

by aggregating the estimates at the finer level. We compare the models using the deviance 

information criterion (DIC) and Watanabe-Akaike information criterion (WAIC) that are applied to 

real and simulated data. The results indicate that the models with shared random effects 

outperform the other models on a range of criteria.

Keywords

Deviance information criterion; Watanabe-Akaike information criterion; predictive accuracy; 
shared random effect model; scaling effect

1 Introduction

In spatial epidemiology, an important goal is to study the spatial distribution of diseases. 

Often, public health workers are interested in identifying areas which have a higher risk for a 

certain disease so that resources can be allocated accordingly. Spatial epidemiology can help 

us to examine such risk by taking into account population variation. Several authors have 

studied the relative risk using a standardized mortality/morbidity ratio (SMR), which is 

defined as the ratio of observed disease incidence relative to what is expected under standard 
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conditions.1 However, this is a crude approach and SMRs can provide unstable estimates due 

to their ratio form. Moreover, they do not accommodate the correlation between neighbors. 

To overcome this limitation, most notably, Besag et al.2 proposed a convolution model 

(BYM) that models the relative risks as a function of spatially structured and unstructured 

random effects.

Convolution models have been widely used in disease mapping.3 Besag et al.2 first 

considered two additive components in the log of the relative risk: a correlated and an 

uncorrelated component. The correlated component (CH) was assumed to have an intrinsic 

conditional autoregressive (ICAR) prior distribution. On the other hand, the uncorrelated 

component (UH) was assumed to have a zero mean Gaussian distribution. Alternative 

correlation models are available. For example, a proper CAR model has been proposed for 

the CH component, corresponding to a proper multivariate Gaussian distribution with a full 

rank covariance matrix.4,5 On the other hand, Moraga and Lawson6 considered Gaussian 

component mixture models (GCM) and compared it to the ICAR assumption in a simulation 

study. Even though the convolution model has been widely used for spatial epidemiology 

data, it does not accommodate a spatial scaling effect associated with aggregation in the data 

space.

A spatial scaling effect is induced from a lower geographical level (finer) to a higher 

geographical level (coarser) by smoothing out variation (i.e. averaging).7 Modeling scale 

effects is of special interest in disease mapping. Scaling reduces the variability of the data 

and makes them more alike, and hence the results from the finer data may not be consistent 

with the results from the coarser data. For example, we may find a relationship between an 

outcome and a covariate at the higher level, which is not retained at the lower level. On the 

other hand, an atomistic fallacy will occur if we try to generalize directly from the lower 

level (e.g. census tract) to the higher aggregation level (e.g. county) without adjusting for the 

variability of individuals’ response to the diseases. In general, these scale change issues are 

called the modifiable areal unit problem3,7 or change of support problem in geostatistics.8–9 

In particular, Wong7 discussed in detail the two sub-problems (zoning and scale problem) of 

MAUP. Here, we deal with the scale problem.

To encompass scaling effects, Kolaczyk and Haung10 proposed a multiscale modeling 

approach by factorizing the likelihood into the individual components of local information. 

The model that they developed assumes that the hierarchical partitions correspond to the 

successive aggregation of an initial data space. Here, we describe their model briefly. 

Assume that D is an arbitrary spatial area and Bi,k are subareas in D at the kth spatial scale 

and relative positions i within the scale, such that  and , 

where for a given choice of k = 0, 1, …, K, and i = 1, …Nk, ch(i, k) represents the collection 

of spatial indices i′ at scale level k for which . Note that k = 0 denotes the 

coarsest level with N0=1 while k = K represents the finest level. Further, let 

 be the vector of aggregated counts at the kth scale and assume 

Ych(i,k)k+1 is the vector of aggregated counts  for whom . Similar to 

wavelet decomposition, Louie and Kolaczyk11 assume that the information in the original 

measurement at the finest scale K, i.e. YK, decomposes into conditionally independent 
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components as those measurements are aggregated across each successively coarser level. 

Mathematically, it can be expressed as

where the count at the coarsest level follows a Poisson distribution, Y1,0 ~Poisson (μ1,0), and 

conditioning on the count at the coarser scale, the aggregated counts at the finer level follow 

a multinomial distribution, Ych(i,k),k+1|Yi,k, ωi,k ~Multinomial (Yi,k; ωi,k), with 

.

Nevertheless, their approach is limited by the conditional assumption, denoted by Ych(i,k)k+1|

Yi,k. This means that conditioning on the counts at the kth coarser level (Yi,k), the counts at 

k+1 finer scale level (Ych(i,k+,k+1) follow a multinomial distribution. This is not true in reality 

because health data are collected at the finer level and not at the coarser level. Moreover, the 

data at the coarser level are an aggregation of the data at the finer level. In addition, their 

method does not help to assess whether a general clustering effect exists in the overall region 

because it does not contain the spatial component which captures the extra-Poisson 

variation. To address this issue, Louie and Kolaczyk11 considered a Poisson log-normal 

model at each individual and independent scale k. However, this method does not 

accommodate the individual information at the finest level and it is not flexible enough to 

estimate the relative risks at the lowest and highest levels at the same time. To overcome 

such issues, in this paper, we develop a multiscale log-normal modeling framework that can 

be used to make inference both at the higher (areas) and lower levels (subareas) 

simultaneously using Bayesian models. We also evaluate the performance of the different 

multiscale models via a simulation study.

This paper proceeds as follows. Section 2 is devoted to the description of the data set, 

followed by the statistical methodologies and the design of the simulation study that will be 

elaborated in Section 3. The simulation results and the application of the multiscale 

modeling to a real data set will be presented in Section 4. Finally, in Section 5, we discuss 

the main findings and draw conclusions from the results.

2 Georgia oral cancer data

As part of our analysis of multiscale effects, we chose to examine a real data set: Georgia 

county and public health (PH) district oral cancer incidence. This was chosen as it provides a 

reasonably large set of spatial units at each scale. The outcome of interest is the number of 

persons discharged from non-federal acute-care inpatient facilities for oral cancer in 2008 at 

both the county and public health levels. These PH districts are the administrative units that 

provide health services. The counts of disease at the public health level were created by 

aggregating the counts at the county level nested within the PH district. Hence, the data 

exhibit a scaling effect when aggregated from the county to the PH level. This effect should 

be considered during modeling, a point on which we will elaborate in Section 3. There are 
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159 counties that are nested within 18 public health districts, as shown in Figure 1. Our 

analysis of these data is deferred to Section 4.2.

3 Multi-scale modeling

In disease mapping, the information conveyed by maps varies with scale. Louie and 

Kolaczyk11 proposed a factorization of the likelihood that contains the information on the 

scaling effect in a multiscale fashion under the assumed Poisson model. Conditioning on the 

coarser level, they assumed a multinomial distribution for the data at the finer level. In this 

paper, we incorporate the scale effect using a convolution (BYM) multiscale modeling 

approach. We have proposed four different models to account for the scaling effect. We 

discuss each of these models in the following subsections.

3.1 Model 1

The framework, which was developed by Louie and Kolaczyk,12 can be further extended to 

estimate relative risk in Poisson-based models for count data. We are motivated by their use 

of convolution models in estimating the relative risk of data available at multiple scales. 

However, these authors considered the convolution model at the finer and coarser levels 

separately. Here, we study the model both at the finer and coarser levels simultaneously by 

including a shared random effect to handle the scaling effect.

Several studies have looked at multiscale modeling of spatial data within the Bayesian 

framework.13–15 The models proposed by many of the previous studies involve complex 

statistical and computational techniques that may not always be easily implemented in 

standard software. Taking into account the need for simpler and more user-friendly methods, 

we propose multiscale convolution models to obtain smoother risk estimates for multiscale 

data.

Suppose yk is a vector of observed aggregated outcomes yi,k for spatial unit i at the kth scale 

level, k = 0, 1, …, K; i = 1, …,Nk, where Nk is defined to be the number of units at the kth 

level and K denotes the number of levels. We use ch(i, k) to denote the set of spatial subunits 

at the k + 1 level uniquely allocated within the ith unit of the kth level. For example, for 

count data, we can express the aggregation as  for k = 0, 1, …, K. The 

aggregated counts at each level are assumed to be conditionally independently distributed 

according to a Poisson distribution with mean μi,k = ei,kθi,k, i.e. yi,k|θi,k ~ Poisson (μi,k = 

ei,kθi,k), where ei,k is the expected number of cases in the ith area at scale k and θi,k is the 

relative risk given by

(1)

Here a0,k is the intercept at scale level k, whereas ui,k and vi,k are the spatially structured and 

unstructured random effects for unit i at scale level k, respectively. Let pk(θk) be the joint 

prior distribution of the Nk components of  for scale k, i.e. 

, and  is the joint distribution of the 
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sample which is represented as the likelihood L(θk|yk) when viewed as a function of θk. 

Then, the posterior distribution at scale k, which is a combination of the prior distribution 

and the likelihood function, is defined as

(2)

To obtain the posterior parameter estimates, specifically the relative risk at each scale, we 

can sample from the updated posterior distribution Pk(θk|yk) using an McMC sampling 

method.

Linkage between the different levels can be achieved via the spatially structured and 

unstructured random effects or directly through the relative risk. Following that, we will 

discuss how we can implement these models for two level count data.

Let yl,2, l = 1, …, N2, be the subunit level counts of disease and yi,1 = Σl∈ch(i,1) yl,2, i = 1, …, 

N1 be the ith unit level counts of disease obtained by summing the counts at the subunit 

level; N1 and N2 are the number of units and subunits, respectively. In Model 1, we 

considered a joint convolution model at the subunit and unit levels. The linkage between 

these two levels was incorporated in the model by including a shared spatially structured 

unit-level random effect , where (l∈i) denotes the subunit l within the ith unit. For 

example, if unit i has mi subunits, each of the subunits (children) inherits a common 

characteristic from their unit (parent) via the shared random effect . In other words, 

 will be common for all the children who belong to the same parent. For unit i and 

subunit l within i, the model is given by

(3)

Note that in this model the spatially correlated random effect is shared from the unit-level 

model to the subunit-level model. In other words, the spatial association is defined at the 

coarser (unit) level, and assumed to be the same at the finer (subunit) level. Here, 

 and  are the expected rates with pi,1 and pl,2 denoting the 

population size at the coarser and finer levels, respectively. For this model and for the other 

models below, we have assumed a flat prior for the intercept parameters, a0,1 and a0,2. 

Further, the uncorrelated heterogeneity (UH) random effects, vi,1 and vl,2, were assumed to 

be normally distributed, i.e.  and , whereas the correlated 

heterogeneity random effect, ui,1, was assumed to have a conditional autoregressive (ICAR) 

distribution, which is the most widely used method because of its theoretical properties, 

computational and interpretation advantages.3,16 The ICAR structure can be expressed as
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(4)

where

Here,  is the cardinality of δi,1, which denotes the set of labels of the neighbors of unit i 
and u−i,1 is the set of all random effects not including the ith. For the hyperparameters, sdv,2, 

sdv,1, and sdu,1, we considered a uniform prior distribution, U(0, 100).17

3.2 Model 2

Model 2 is similar to Model 1 except that in this model an extra spatially structured random 

effect is included at the subunit level, i.e. ul,2 is added to the model. This extra random effect 

captures the additional spatial structure at the finer level, which is not captured by the 

coarser level random effect. The model can be written as

(5)

vi,1 and vl,2 were assumed to follow an independent normal distribution as in Model 1 and 

we assumed a conditional autoregressive (ICAR) distribution for the spatially structured 

random effect given by

(6)

where

Here,  is the cardinality of δl,2, which represents the set of labels of the neighbors of 

subunit/and sdu,2 ~ U(0, 100). Note that two counties are neighbors if they share a common 

boundary and it is possible a pair of counties can be neighbors even if they lie within 

different (but adjoining) public health districts.
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3.3 Model 3

The third model assumes two separate convolution models at both the subunit and unit 

levels. The model for unit i and subunit l within i is of the form

(7)

Note that this model does not introduce linkage between the subunit and unit levels; rather it 

assumes they are independent. The distributions for vi,1, vl,2, ui,1, and ul,2 were assumed to 

be the same as in Model 2.

3.4 Model 4

Finally, in model 4, we assumed a convolution model to calculate the relative risk at the 

subunit level, θl,2, while the relative risk at the unit level, θi,1, is obtained by aggregating 

over the subunit estimated effects. The model is defined as

(8)

Note that Model 4 is different from Models 1–3 in the sense that we did not model the unit 

level data. Indeed, we did not include spatially correlated and uncorrelated random effects at 

the unit level, as in Models 1–3. This procedure simplifies the model because we have fewer 

free parameters to estimate as compared with Models 1–3. The motivation to consider this 

model is the fact that the data at the coarser level are an aggregation of the data at the finer 

level, and hence, we argue that the relative risk at the coarser level can be obtained by 

averaging the relative risk at the finer level within the coarser level.

3.5 Model assessment and goodness of fit

To investigate the performance of the models, the deviance information criterion (DIC18,19), 

which is a combination of the likelihood function (deviance) and a model complexity term 

(PDdic; number of effective parameters), was calculated. We have also considered other 

criteria for model comparison such as WAIC20,21 (Watanabe-Akaike information criterion). 

For a predictive accuracy assessment, the mean absolute prediction error (MAPE) and mean 

square prediction error (MSPE) were used. In addition, we examined local measures of fit 

including the conditional predictive ordinate (CPO3).

WAIC is a fully Bayesian technique for model selection and uses a posterior distribution 

rather than a point estimate. WAIC can be considered as computationally convenient 
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approximation to cross validation. To compute WAIC, define the log pointwise predictive 

density (lppd) as

where p(yi|θ) is the log predictive density and ppost(θ) represents the posterior distribution. 

In practice, we can compute lppd by evaluating the expectation using draws (θs, s = 1, …, S) 

from the posterior distribution ppost(θ) as follows

Hence, the WAIC can be calculated as

Here,  with  is the sample variance of the 

log predictive density for each data point yi and , where 

. On the other hand, , PDwaic, n, and S denote the expected log 

pointwise predictive density, effective number of parameters, the number of data points, and 

the number of simulation draws, respectively.

All the models were implemented using the mix of Gibbs and Metropolis-Hastings 

algorithms of Markov chain Monte Carlo (McMC) in WinBUGS invoked through R with 

15,000 samples after the first 15,000 samples were discarded from the analysis. We 

considered three chains in parallel, and hence the posterior inferences are based on 45,000 

samples. For all models, convergence was assessed using an estimated potential scale 

reduction factor, , trace plots, and Brooks, Gelman and Rubin’s (BGR) plots.22

3.6 Simulation study

The aim of our simulation study is to evaluate and compare Models 1–4 using DIC, WAIC, 

MAPE, MSPE, bias, and MSE of the parameters obtained by fitting the models to simulated 

data sets under a handful of scenarios. To simulate data that could be encountered in a real 

life, we considered two situations. In the first situation, we simulate the relative risk (θi,K) 

and the expected rate (ei,K) at the finer level K from a gamma distribution and then we 

generate the data from a Poisson distribution with mean equal to θi,Kei,K. In the second 

situation, we simulate the relative risk using a convolution model (log(θi,K) = a0,K + ui,K + 

vi,K) and then we sample the data from a Poisson’s distribution with mean equal to θi,Kei,K. 

We describe these scenarios in the following sections.
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3.6.1 Scenario 1: simulation from Poisson–gamma distributions—In practice, we 

may have data at census tract, county, and public health district levels. Taking into account 

this structure, we simulated data from a Poisson distribution with three levels of hypothetical 

grid divided into 24 × 24=256 smaller areas of the finest (lower) level, 23 × 23=64 areas 

(pixels) at the medium level, and 22 × 22 = 16 areas in the coarsest (higher) level. First, 256 

samples were generated from a Poisson distribution at the finest (lower) level. To obtain the 

64 samples at the next level (medium), we aggregated the samples at the finest level nested 

within the medium level. Similarly, the 16 samples were obtained by aggregating the 

observations at the medium level nested within the coarsest level. Mathematically, this could 

be expressed as follows

(9)

where el,3 is the expected rate, θl,3 denotes the relative risk at the finest level, ch(i, 2) is the 

set of subareas at the lower level nested within the ith area at the medium level, and ch(j, 1) 

represents the set of subareas at the medium level nested within the jth area at the higher 

level. Further, yl,3, l = 1, …, N1 = 256, yi,2, i = 1, …, N2 = 64, and yj,1, j = 1, …, N3 = 16, 

are the samples generated at the lower, medium, and higher levels, respectively. We assumed 

θl,3 follows a gamma distribution with shape a, and scale β parameters, i.e. θl,3 ~ gamma (α, 

β). For the hyperparameter of the gamma distribution, we assumed both a and β equal to one 

so that the mean and variance of θl,3 will be one. This assumption could generate relative 

risks that are similar to real life examples. We assumed that the expected numbers in the 256 

areas are fixed and equal to one, el,3 = 1, l = 1, …, 256.

3.6.2 Scenario 2: simulation from a convolution model—In turn, we generated data 

similar to the first scenario in equation (9), but now we assumed a convolution model for the 

relative risk, i.e. log(θl,3) = a0,3 + ul,3 + vl,3. To compute the relative risk θl,3, we have to 

specify values for the intercept a0,3 and generate the spatially structured (ul,3) and 

unstructured (vl,3) random effects from a ICAR and normal distributions, respectively. There 

are two options in order to sample the spatially structured random effects ul,3 from the ICAR 

distribution. First, we simulated ul,3 from the ICAR using the car.normal function through 

the BRugs Package. However, with this approach, we have to use the McMC sampling 

method and it is computationally intensive. Hence, in the second option, we sampled these 

random effects directly from the ICAR (6) using a program written in R software. The steps 

are as follows:

1. The sampling approach is initiated using starting values for  from a standard 

normal distribution, , and we assumed the overall variance equals 

one, . Note that we have also assumed different possible values for .

Aregay et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.

We sampled  from a normal distribution with mean 

and with variance equal to , i.e., , where t = 1.

3. Conditioning on the current simulated values of the correlated heterogeneity 

, we simulated the next sample  from a normal distribution with mean 

 and variance equal to , where t = 1.

4. We repeated step 3 for t = 2, …, T until we obtain a clustered random effect. In 

our case, with T = 10, we obtained spatially structured random effects similar to 

the one generated through BRugs package using car.normal function.

The unstructured random effects (vl,3) were simulated from a normal distribution with mean 

equal to zero and variance . Note that, the expected rates were sampled from a 

gamma(1, 1).

4 Results

4.1 Simulation results

In this section, we describe the simulation results. First, we present the findings obtained 

from the simulation study in scenario 1. Thereafter, we present the results obtained from the 

models fitted to the simulated data in scenario 2. Table 1 displays the models fitted to 200 

simulated data sets using the mix of Gibbs and Metropolis-Hastings algorithms. First, we 

assessed convergence for some simulated data sets, and the trace plots, BGR plots, and 

suggest that convergence has occurred for three chains of 15,000 sample size after the first 

15,00 samples were discarded from the analysis. We also checked the convergence for a 

single chain of 15,000 samples using trace plots and here also there was a good mixing 

between the samples, and hence we decided to use a single chain with 15,000 sample size 

after convergence. To compare the models, the bias and MSE of the relative risks were 

calculated. To evaluate the predictive ability of the models, we calculated the MSPE and 

MAPE. Besides, PD, DIC, and WAIC were computed at each scale level to compare model 

performance. Finally, the computation time was extracted to compare the execution time for 

the models. To summarize the simulation results, we calculated the mean values of the bias, 

MSE, MAPE, MSPE, PD, DIC, and WAIC obtained from the models fitted to the 200 

simulated data sets.

4.1.1 Scenario 1: results for data simulated from Poisson-gamma distribution
—The results obtained from the models fitted to sampled data within the hypothetical grid 

are shown in Table 2. When the relative risk is assumed to follow a gamma distribution with 

shape and scale parameters equal to one, Models 1 and 2 produce DIC value less than 

Models 3 and 4, especially at the lower and medium levels. Similarly, the bias and MSE of 

the relative risk computed from Models 1 and 2 are smaller than the bias and MSE of the 

relative risk obtained from Models 3 and 4. Further, Model 1 converges faster than the other 

models. However, the first three models produce similar MAPE and MSPE at all levels 
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except for a slight difference at the medium level. Note that Model 4 reveals MAPE and 

MSPE higher than the other models in the medium and higher levels. We have also 

simulated data within the Georgia state map and the results are presented in the 

Supplementary Appendix, Table 1. Note that in all tables, values that are smallest over the 

different models are indicated in bold.

4.1.2 Scenario 2: results for data simulated from a convolution model—Tables 3 

and 4 display the results of the model fitted to the simulated data within the hypothetical 

grid. We can see that similar conclusion can be drawn as in scenario 1. In particular, the PD 

of the DIC penalizes more for model complexity as compared to the PD of the WAIC and 

they both tend to decrease as we aggregate the data from lower to higher level. This is not 

surprising because the effective number of parameters depends on the sample size. The same 

is true for the DIC, WAIC, and deviance. Although there is not much difference in the DIC 

computed from the different models at lower and higher levels, there is a large difference at 

the medium level. Note that the results of the DIC and WAIC are close to each other as they 

should be. The results of the DIC for all the 200 data sets are shown in Figure 2. Here also, 

Models 1 and 2 outperform the other models.

Furthermore, we have simulated data within the Georgia state map assuming the spatially 

structured and unstructured random effects different for all the 200 data sets and the results 

are presented in the Supplementary Appendix, Tables 2–5. The conclusions from these 

results are also similar to the conclusions drawn from the results for the simulated data 

within the hypothetical grid. To investigate how robust our results are with the assumed 

values for the random effects, we have generated data assuming the spatially structured 

random effect is the same for all 200 data sets (see the results in the Supplementary 

Appendixes, Tables 6 and 7).

4.2 Application to the Georgia oral cancer data

To assess the benefit of the shared random effect models, we applied Models 1–4 (see 

Section 3) to the Georgia oral cancer study. The estimated potential scale reduction factor 

(Table 7), trace, and BGR plots suggest that convergence has occurred for all model 

parameters. The results of the model fit and predictive accuracy are shown in Table 5. There 

is a gain in terms of model fit (DIC and WAIC), especially at the PH level. Moreover, the 

parsimonious model (Model 1) fits the data slightly better than Model 2. Hence, in this 

example, including the structural random effect at the county level (Model 2) does not 

improve the model fit other than adding model complexity. The predictive accuracy (MAPE 

and MSPE) at the PH level for Model 1 is better than the other models. However, the 

predictive accuracy at the county level is not different between the models. If we do not take 

into account model complexity, the model which introduces two separate convolution 

models (Model 3) provides better model fit (Deviance) at the county level as compared to 

the shared random effect models (Models 1 and 2). According to the CPO, which does not 

penalize model complexity, all the models perform similarly at the county level, but there is 

a slight improvement in the shared random effect models at the PH level (Figure 4). We have 

also calculated the computation time in seconds to check which model converges faster and 

the results are shown in Table 5 under the column labeled as CT, which represents the 
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computation time in seconds. We can clearly see that Model 1 converges much faster than 

the other models. These results are consistent with the results obtained from the simulation 

study. The implementation of Models 1–4 using WinBUGS programs is given in the 

Supplementary Appendix (Section 2).

The posterior summary statistics are given in Table 6. The study-wide relative risks of all the 

models, (exp(a0,2) and exp (a0,1)), is approximately equal to one with 95% credible interval 

in the range of 0.85–1.2 at both the county and PH levels. Hence, there is no significant 

increase in the number of persons discharged from non-federal acute-care inpatient facilities 

for oral cancer in the Georgia state as compared to what is expected. However, this is not 

true for each county and PH district (Figure 3). Here, the relative risks obtained from Model 

4 in the PH level range between 0.03 and 2.78, while for the other models between 0.72 and 

1.72. There is some inconsistency between the relative risk obtained from Model 4 at the PH 

level and the other models. For instance, Model 4 indicates an elevated risk in the southwest 

border, whereas the other models show a lower risk in this PH district. This may be due to 

the correlation between the neighbors which is not accounted for in Model 4 at the PH level. 

Moreover, the trend of the relative risk in Models 1–3 is similar at both county and PH 

levels. There is an elevated risk to the southeast border at both levels. On the other hand, all 

the models produce similar relative risk at the county level. Note that the SMR at the county 

level provides crude estimates which ranges from zero to seven because it does not adjust 

the spatial correlation between the counties and the noise in the data (Table 8).

The variability of the unstructured random effects (sdv,1 and sdv,2) obtained from the models 

is similar. Nevertheless, the variability of the structured random effect (sdu,2) from Model 2 

is smaller than that of Model 3. This may be due to some part of this variability in Model 2 

being accommodated for by the shared random effect (sdu,1 = 0.474), which is higher than 

the variance in Model 3 (sdu,1 = 0.411).

5 Discussion and conclusion

In this paper, we investigated the effect of scaling in disease mapping using a multiscale 

Bayesian modeling framework. We have shown that the scaling effect could be 

accommodated by using shared random effect multiscale models (Models 1 and 2). These 

models provide not only a better fit to the data, but also produce a better predictive accuracy 

as compared to the independent convolution model (Model 3) and Model 4, especially at the 

coarser level. This is an expected result because the effect of the coarser level is inherited by 

the finer level through the shared random effect. The parsimonious shared random effect 

model (Model 1) also converges faster than the other models.

The simulation results indicate that models with shared random effects are the best model, 

especially at the coarsest level, when the data are simulated from a Poisson distribution with 

mean equal to el,3θl,3 in which el,3 and θl,3 are generated from a gamma distribution with the 

shape and scale parameters equal to one. We also found that the bias and MSE of the relative 

risks computed from these models are lower than those of Models 3 and 4.
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For data drawn from a convolution model within the Georgia state map assuming the 

spatially structured and unstructured random effects different for all the simulated data sets, 

the DIC favors the shared random effect models at the PH level, while the DIC prefers 

Model 4 at the county level. However, DIC supports the shared random effect models at the 

county level when the data are sampled from a convolution model with constant spatially 

correlated and uncorrelated random effects for all the simulated data sets. Here, Model 3, 

which uses an independent convolution model at the county and PH levels, fits the simulated 

data as well as the shared random effect models. On the other hand, the DIC obtained from 

the shared random effect models at the lower and medium levels for the data generated 

within a hypothetical grid is much lower than those of Models 3 and 4. In this spatially 

structured simulation, we have also obtained more unbiased and efficient estimates of the 

relative risks for the shared random effect models as compared to the independent 

convolution model. All the models recover well the assumed overall log relative risk (a0,3), 

spatially structured (ul,3), and unstructured (vl,3) random effects. Nevertheless, Models 3 and 

4 yield slightly better estimates of the variances of the spatially structured (sdu,3) and 

unstructured (sdv,3) random effects in most of the cases.

To investigate the results obtained from the simulation study in a real example, we applied 

Models 1–4 to the Georgia oral cancer data. Here also, both the DIC and WAIC tend to 

select the shared random effect models, especially at the PH level. Although there is not 

much difference at the county level, the predictive accuracy of the shared random effect 

models is better than that of Models 3 and 4 at the PH level. However, the deviance, which 

does not penalize model complexity, favors the parsimonious multiscale models, Models 3 

and 4, at the county level, while it selects Models 1 and 2 at the PH level.

Multiscale modeling has been studied by several researchers.10–11 Our approach of 

multiscale modeling is different from Louie and Kolaczyk11 in three respects. First, those 

authors assume a multinomial distribution for the outcome at the finer level conditioning on 

the outcomes at the coarser level. This assumption introduces a fixed coarser level effect. On 

the other hand, our method assumes a random effect at this level and the scaling effect of the 

coarser level is inherited into the finer level via the shared random effect model. Second, 

their method does not encompass the spatially structured random effect that handles the 

correlation between the neighbors, whereas our methods do so. Finally, our convolution 

multiscale models are easily implemented in standard software such as WinBUGS.

In summary, the shared random effect models outperform the other models both in real and 

simulated data. Interestingly, the parsimonious shared random effect model, i.e. the model 

that excludes the spatially correlated random effect at the finer level is as competitive as 

Model 2, which includes the correlated random effect. This may be due to the fact that the 

shared random effect that was inherited from the coarser level is flexible enough to handle 

the correlation between the neighbors. Although it is not as attractive as the shared random 

effect models, Model 4 is slightly better than the independent convolution model. These 

results indicate that there should be a linkage to account for the scaling effect between the 

finer and coarser levels. We conclude that sharing the random effect between these two 

levels improves the model fit, predictive accuracy, and estimation of the relative risks.
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Though we have achieved better results by including shared random effects into the model, 

our paper has some limitations. First, we introduced the shared random effect through the 

spatially structured random effects. Currently, we are investigating sharing unstructured 

random effects alone and sharing both the structured and unstructured random effects 

simultaneously to accommodate a scale effect. Although our shared random effect model 

improves the model fit, especially at the coarser level, it does not quantify the scaling effect. 

Hence, measuring the scale effect using correlation structures between the finer and coarser 

level is planned. Furthermore, our multiscale model could be easily extended to account for 

predictor effects at the finer and coarser levels. We do not pursue this extension here.

In general, our multiscale modeling can be useful in addressing the modifiable areal unit 

problem when the scaling problem is an issue because it takes into account the scaling 

through a shared random effect. Hence, for pubic health applications, it would be useful to 

jointly model the risks at different levels to obtain more accurate risk estimates for planning 

purposes.
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Figure 1. 
State of Georgia, USA: County and PH district boundary map.
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Figure 2. 
Deviance information criterion (DIC) values for the 200 simulated data within a hypothetical 

grid with spatially structured (ul,3) and unstructured random effects (vl,3) assumed to be 

constant over all the 200 data sets (scenario 2).
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Figure 3. 
Georgia oral cancer data. Relative Risk (RR) at each county and public health (PH) district.
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Figure 4. 
Georgia oral cancer study. Conditional predictive ordinates (CPO) at each county and public 

health (PH) district.

Aregay et al. Page 19

Stat Methods Med Res. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Aregay et al. Page 20

Table 1

Description of Models fitted to the hypothetical grid data.

Model Description

Model 1a log(θj,1) = a0,1 + vj,1 + uj,1

Model 2a log(θj,1) = a0,1 + vj,1 + uj,1

Model 3a log(θj,1) = a0,1 + vj,1 + uj,1

log(θj,2) = a0,1 + vi,2 + ui,2

log(θl,3) = a0,3 + vl,3 + ul,3

Model 4a θj,1 = Σiεch(j,1) ei,2θi,2/ej,1

θi,2 = Σlεch(i,2) el,3θl,3/ei,2

log(θl,3) = a0,3 + vl,3 + ul,3
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