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Abstract

In disease mapping, a scale effect due to an aggregation of data from a finer resolution level to a
coarser level is a common phenomenon. This article addresses this issue using a hierarchical
Bayesian modeling framework. We propose four different multiscale models. The first two models
use a shared random effect that the finer level inherits from the coarser level. The third model
assumes two independent convolution models at the finer and coarser levels. The fourth model
applies a convolution model at the finer level, but the relative risk at the coarser level is obtained
by aggregating the estimates at the finer level. We compare the models using the deviance
information criterion (DIC) and Watanabe-Akaike information criterion (WAIC) that are applied to
real and simulated data. The results indicate that the models with shared random effects
outperform the other models on a range of criteria.

Keywords

Deviance information criterion; Watanabe-Akaike information criterion; predictive accuracy;
shared random effect model; scaling effect

1 Introduction

In spatial epidemiology, an important goal is to study the spatial distribution of diseases.
Often, public health workers are interested in identifying areas which have a higher risk for a
certain disease so that resources can be allocated accordingly. Spatial epidemiology can help
us to examine such risk by taking into account population variation. Several authors have
studied the relative risk using a standardized mortality/morbidity ratio (SMR), which is
defined as the ratio of observed disease incidence relative to what is expected under standard
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conditions.? However, this is a crude approach and SMRs can provide unstable estimates due
to their ratio form. Moreover, they do not accommodate the correlation between neighbors.
To overcome this limitation, most notably, Besag et al.2 proposed a convolution model
(BYM) that models the relative risks as a function of spatially structured and unstructured
random effects.

Convolution models have been widely used in disease mapping.3 Besag et al.2 first
considered two additive components in the log of the relative risk: a correlated and an
uncorrelated component. The correlated component (CH) was assumed to have an intrinsic
conditional autoregressive (ICAR) prior distribution. On the other hand, the uncorrelated
component (UH) was assumed to have a zero mean Gaussian distribution. Alternative
correlation models are available. For example, a proper CAR model has been proposed for
the CH component, corresponding to a proper multivariate Gaussian distribution with a full
rank covariance matrix.*> On the other hand, Moraga and Lawson® considered Gaussian
component mixture models (GCM) and compared it to the ICAR assumption in a simulation
study. Even though the convolution model has been widely used for spatial epidemiology
data, it does not accommodate a spatial scaling effect associated with aggregation in the data
space.

A spatial scaling effect is induced from a lower geographical level (finer) to a higher
geographical level (coarser) by smoothing out variation (i.e. averaging).” Modeling scale
effects is of special interest in disease mapping. Scaling reduces the variability of the data
and makes them more alike, and hence the results from the finer data may not be consistent
with the results from the coarser data. For example, we may find a relationship between an
outcome and a covariate at the higher level, which is not retained at the lower level. On the
other hand, an atomistic fallacy will occur if we try to generalize directly from the lower
level (e.g. census tract) to the higher aggregation level (e.g. county) without adjusting for the
variability of individuals’ response to the diseases. In general, these scale change issues are
called the modifiable areal unit problem3 or change of support problem in geostatistics.8-2
In particular, Wong’ discussed in detail the two sub-problems (zoning and scale problem) of
MAUP. Here, we deal with the scale problem.

To encompass scaling effects, Kolaczyk and Haungl9 proposed a multiscale modeling
approach by factorizing the likelihood into the individual components of local information.
The model that they developed assumes that the hierarchical partitions correspond to the
successive aggregation of an initial data space. Here, we describe their model briefly.
Assume that Dis an arbitrary spatial area and 5; 4 are subareas in D at the Ath spatial scale

and relative positions 7within the scale, such that U}, B; ;=D and Uy ceh(ik) Bit k1= Bik,
where for a given choice of k=0, 1, ..., K;and 7= 1, ... Ny, ¢/, K) represents the collection
of spatial indices /* at scale level & for which By 41 © Bik. Note that &= 0 denotes the
coarsest level with Ap=1 while k= K'represents the finest level. Further, let

Yi=(Yiks-- - YNM,C)T be the vector of aggregated counts at the Ath scale and assume

Y enikk+1 is the vector of aggregated counts Yy ., for whom By .y € Bj k. Similar to
wavelet decomposition, Louie and Kolaczyk!! assume that the information in the original
measurement at the finest scale K; i.e. Yk, decomposes into conditionally independent
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components as those measurements are aggregated across each successively coarser level.
Mathematically, it can be expressed as

K—1Ny,

Pr(Y  |p, ) =Pr(Yioluro) [T TTPr(Y engipypor|Yir wik)
k=0i=1

where the count at the coarsest level follows a Poisson distribution, Y3 g ~Poisson (4 o), and
conditioning on the count at the coarser scale, the aggregated counts at the finer level follow
a multinomial distribution, Y 4, 4+1| Vi 4 @ik ~Multinomial (Y 4 wj4), with

_, -1
Wi k=H; g X Hch(ik),k-+1-

Nevertheless, their approach is limited by the conditional assumption, denoted by Y ¢y g k1l
Y k- This means that conditioning on the counts at the Ath coarser level (Y} ), the counts at
k+1 finer scale level (Y oy g+ 4+1) follow a multinomial distribution. This is not true in reality
because health data are collected at the finer level and not at the coarser level. Moreover, the
data at the coarser level are an aggregation of the data at the finer level. In addition, their
method does not help to assess whether a general clustering effect exists in the overall region
because it does not contain the spatial component which captures the extra-Poisson
variation. To address this issue, Louie and Kolaczyk!! considered a Poisson log-normal
model at each individual and independent scale & However, this method does not
accommodate the individual information at the finest level and it is not flexible enough to
estimate the relative risks at the lowest and highest levels at the same time. To overcome
such issues, in this paper, we develop a multiscale log-normal modeling framework that can
be used to make inference both at the higher (areas) and lower levels (subareas)
simultaneously using Bayesian models. We also evaluate the performance of the different
multiscale models via a simulation study.

This paper proceeds as follows. Section 2 is devoted to the description of the data set,
followed by the statistical methodologies and the design of the simulation study that will be
elaborated in Section 3. The simulation results and the application of the multiscale
modeling to a real data set will be presented in Section 4. Finally, in Section 5, we discuss
the main findings and draw conclusions from the results.

oral cancer data

As part of our analysis of multiscale effects, we chose to examine a real data set: Georgia
county and public health (PH) district oral cancer incidence. This was chosen as it provides a
reasonably large set of spatial units at each scale. The outcome of interest is the number of
persons discharged from non-federal acute-care inpatient facilities for oral cancer in 2008 at
both the county and public health levels. These PH districts are the administrative units that
provide health services. The counts of disease at the public health level were created by
aggregating the counts at the county level nested within the PH district. Hence, the data
exhibit a scaling effect when aggregated from the county to the PH level. This effect should
be considered during modeling, a point on which we will elaborate in Section 3. There are
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159 counties that are nested within 18 public health districts, as shown in Figure 1. Our
analysis of these data is deferred to Section 4.2.

3 Multi-scale modeling

3.1 Model 1

In disease mapping, the information conveyed by maps varies with scale. Louie and
Kolaczyk!! proposed a factorization of the likelihood that contains the information on the
scaling effect in a multiscale fashion under the assumed Poisson model. Conditioning on the
coarser level, they assumed a multinomial distribution for the data at the finer level. In this
paper, we incorporate the scale effect using a convolution (BY M) multiscale modeling
approach. We have proposed four different models to account for the scaling effect. We
discuss each of these models in the following subsections.

The framework, which was developed by Louie and Kolaczyk,12 can be further extended to
estimate relative risk in Poisson-based models for count data. \We are motivated by their use
of convolution models in estimating the relative risk of data available at multiple scales.
However, these authors considered the convolution model at the finer and coarser levels
separately. Here, we study the model both at the finer and coarser levels simultaneously by
including a shared random effect to handle the scaling effect.

Several studies have looked at multiscale modeling of spatial data within the Bayesian
framework.13-15 The models proposed by many of the previous studies involve complex
statistical and computational techniques that may not always be easily implemented in
standard software. Taking into account the need for simpler and more user-friendly methods,
we propose multiscale convolution models to obtain smoother risk estimates for multiscale
data.

Suppose Yy is a vector of observed aggregated outcomes y; « for spatial unit 7at the Ath scale
level, k=0,1, ..., K i=1, ...,N where N is defined to be the number of units at the Ath
level and K denotes the number of levels. We use ¢/(/, k) to denote the set of spatial subunits
at the A+ 1 level uniquely allocated within the th unit of the Ath level. For example, for

count data, we can express the aggregation as y@k:ZlGCh(i’k)yth for k=0,1, ..., K The
aggregated counts at each level are assumed to be conditionally independently distributed
according to a Poisson distribution with mean (; x = €; 46k, i.€. Vi 6j x~ Poisson (u; =

e; kB k), where g; x is the expected number of cases in the #h area at scale kand 6; is the
relative risk given by

log(0ik)=a0k+vikt+uik- (1)

Here 4 « Is the intercept at scale level &, whereas v, and v; . are the spatially structured and
unstructured random effects for unit 7at scale level &, respectively. Let py(8,) be the joint

prior distribution of the NV, components of 01.=(01%, .. ., 9Nk,k) for scale £; i.e.

Dk (01) =TI i (0;.1), and D (y|0k)=T1%, Dk (vix |01 ) i the joint distribution of the
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sample which is represented as the likelihood L(B4y,) when viewed as a function of 6.
Then, the posterior distribution at scale &, which is a combination of the prior distribution
and the likelihood function, is defined as

Pr(0klyr) o< Le(Oxlyr)pr Ok) - (2)

To obtain the posterior parameter estimates, specifically the relative risk at each scale, we
can sample from the updated posterior distribution P B4yx) using an McMC sampling
method.

Linkage between the different levels can be achieved via the spatially structured and
unstructured random effects or directly through the relative risk. Following that, we will
discuss how we can implement these models for two level count data.

Let yjo, /=1, ..., N, be the subunit level counts of disease and y;1 = Zeecnin) V2, =1, ..,
Ny be the th unit level counts of disease obtained by summing the counts at the subunit
level; My and A, are the number of units and subunits, respectively. In Model 1, we
considered a joint convolution model at the subunit and unit levels. The linkage between
these two levels was incorporated in the model by including a shared spatially structured
unit-level random effect u;1,.,, where (/£/) denotes the subunit /within the h unit. For
example, if unit 7has m; subunits, each of the subunits (children) inherits a common
characteristic from their unit (parent) via the shared random effect w1, In other words,
i1, Will be common for all the children who belong to the same parent. For unit /and
subunit /within 7, the model is given by

yi,1~Poisson(e; 16; 1),

log(0;,1)=ao,1+vi,1+u;1,

y,2~Poisson(e; 26;2),
log(01.2)=a02Fvi2tuiiei ()

Note that in this model the spatially correlated random effect is shared from the unit-level
model to the subunit-level model. In other words, the spatial association is defined at the
coarser (unit) level, and assumed to be the same at the finer (subunit) level. Here,

Z Yi1 Z Yi,2

> piand 1o are the expected rates with p;1 and p, denoting the
population size at the coarser and finer levels, respectively. For this model and for the other
models below, we have assumed a flat prior for the intercept parameters, d 1 and dp ».
Further, the uncorrelated heterogeneity (UH) random effects, v;1 and v, were assumed to

€i,1=Pi,1 €1, 2=pL2

be normally distributed, i.e. v;1~N (0, sd; ;) and v, 2~N (0, sd; 5), whereas the correlated
heterogeneity random effect, v;1, was assumed to have a conditional autoregressive (ICAR)
distribution, which is the most widely used method because of its theoretical properties,
computational and interpretation advantages.316 The ICAR structure can be expressed as
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_ 5d3,1
Uj,1 'U/_i’l"VN u5,i?17 )
mia )’ @

where

Here, ns, , is the cardinality of &;1, which denotes the set of labels of the neighbors of unit 7
and u_;4 is the set of all random effects not including the #h. For the hyperparameters, sd,»,
sdy1, and sdy;1, we considered a uniform prior distribution, (0, 100).17

Model 2 is similar to Model 1 except that in this model an extra spatially structured random
effect is included at the subunit level, i.e. vy; is added to the model. This extra random effect
captures the additional spatial structure at the finer level, which is not captured by the
coarser level random effect. The model can be written as

yi,1~Poisson(e;16;1),

log(0;,1)=a0,14vi,1+ui,1,

y,2~Poisson(e; 20; 2),
log(elj)ZGO)Q+’Ul’2+/LLl’2+’u,i72<IEi), (5)

Vi1 and vy, were assumed to follow an independent normal distribution as in Model 1 and
we assumed a conditional autoregressive (ICAR) distribution for the spatially structured
random effect given by

2
— Sdu 2
U2 U,Z.VQNN(U(;ZQ, —)7
LT (6)
where

_ 1
Us, 1*5— Z Uy o

b1 esy o

Here, ng, , is the cardinality of &;,, which represents the set of labels of the neighbors of
subunit/and sa),» ~ U(0, 100). Note that two counties are neighbors if they share a common
boundary and it is possible a pair of counties can be neighbors even if they lie within
different (but adjoining) public health districts.
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3.3 Model 3

The third model assumes two separate convolution models at both the subunit and unit
levels. The model for unit 7and subunit /within 7is of the form

y;.1~Poisson(e; 16; 1),
log(8;,1)=a0,1+vi1+ui 1,

y1,2~Poisson(e; 20, 2),
log(6;,2)=a02+v1 2+ 2. @)

Note that this model does not introduce linkage between the subunit and unit levels; rather it
assumes they are independent. The distributions for v;1, vj2, 1, and 1y, were assumed to
be the same as in Model 2.

3.4 Model 4

Finally, in model 4, we assumed a convolution model to calculate the relative risk at the
subunit level, 8;,, while the relative risk at the unit level, 6,1, is obtained by aggregating
over the subunit estimated effects. The model is defined as

y1,2~Poisson(e; 20;2),
log(6;2)=ao,24u; 2+v12,
Oi1=pi1/¢€i1,

i 1= Z €120 2.
lech(i,1) 8)

Note that Model 4 is different from Models 1-3 in the sense that we did not model the unit
level data. Indeed, we did not include spatially correlated and uncorrelated random effects at
the unit level, as in Models 1-3. This procedure simplifies the model because we have fewer
free parameters to estimate as compared with Models 1-3. The motivation to consider this
model is the fact that the data at the coarser level are an aggregation of the data at the finer
level, and hence, we argue that the relative risk at the coarser level can be obtained by
averaging the relative risk at the finer level within the coarser level.

3.5 Model assessment and goodness of fit

To investigate the performance of the models, the deviance information criterion (DIC18:19),
which is a combination of the likelihood function (deviance) and a model complexity term
(PDgic; number of effective parameters), was calculated. We have also considered other
criteria for model comparison such as WAIC20:21 (Watanabe-Akaike information criterion).
For a predictive accuracy assessment, the mean absolute prediction error (MAPE) and mean
square prediction error (MSPE) were used. In addition, we examined local measures of fit
including the conditional predictive ordinate (CPO3).

WAIC is a fully Bayesian technique for model selection and uses a posterior distribution
rather than a point estimate. WAIC can be considered as computationally convenient
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approximation to cross validation. To compute WAIC, define the log pointwise predictive
density (Ippd) as

lppd:lOngpost (yz) :Zlogfp(yi }e)ppost (9) dg

i=1 i=1

where p()/6) is the log predictive density and pos{ ) represents the posterior distribution.
In practice, we can compute Ippd by evaluating the expectation using draws (&°, s=1, ..., S)
from the posterior distribution p,,s(6) as follows

n S
1
computed, 4= log(§ > p(yi]6%)).

=1 s=1

Hence, the WAIC can be calculated as

WAIC= — 2 x eT[;i
:computedlppd — PDyaic.

waic»

elpd

waic

Here, PDvaic=y . Vil11og(p(y:]0%)) with V5., log(p(y;]6%)) is the sample variance of the

; 1 s 2
log predictive density for each data point y;and V;S:1 a.s:mzszl (as —@) , where

as=log(p(y;|6%)). On the other hand, elpd.,,;.. PDwaic, /4 and Sdenote the expected log
pointwise predictive density, effective number of parameters, the number of data points, and
the number of simulation draws, respectively.

All the models were implemented using the mix of Gibbs and Metropolis-Hastings
algorithms of Markov chain Monte Carlo (McMC) in WinBUGS invoked through R with
15,000 samples after the first 15,000 samples were discarded from the analysis. We
considered three chains in parallel, and hence the posterior inferences are based on 45,000
samples. For all models, convergence was assessed using an estimated potential scale

reduction factor, p, trace plots, and Brooks, Gelman and Rubin’s (BGR) plots.22

3.6 Simulation study

The aim of our simulation study is to evaluate and compare Models 1-4 using DIC, WAIC,
MAPE, MSPE, bias, and MSE of the parameters obtained by fitting the models to simulated
data sets under a handful of scenarios. To simulate data that could be encountered in a real
life, we considered two situations. In the first situation, we simulate the relative risk (8; )
and the expected rate (¢; x) at the finer level K from a gamma distribution and then we
generate the data from a Poisson distribution with mean equal to 6; x€; . In the second
situation, we simulate the relative risk using a convolution model (log(6;x) = @ x+ Uik *+
Vi k) and then we sample the data from a Poisson’s distribution with mean equal to 6; xé; -
We describe these scenarios in the following sections.
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3.6.1 Scenario 1: simulation from Poisson—gamma distributions—In practice, we
may have data at census tract, county, and public health district levels. Taking into account
this structure, we simulated data from a Poisson distribution with three levels of hypothetical
grid divided into 24 x 24=256 smaller areas of the finest (lower) level, 23 x 23=64 areas
(pixels) at the medium level, and 22 x 22 = 16 areas in the coarsest (higher) level. First, 256
samples were generated from a Poisson distribution at the finest (lower) level. To obtain the
64 samples at the next level (medium), we aggregated the samples at the finest level nested
within the medium level. Similarly, the 16 samples were obtained by aggregating the
observations at the medium level nested within the coarsest level. Mathematically, this could
be expressed as follows

Yj1= Z Yi,2,

icch(j,1)

Yj2= Z Y1,35

lech(i,2)
y1,3~Poisson(e;, 30;3) 9)

where ¢;3 is the expected rate, 6;3 denotes the relative risk at the finest level, ¢/(/, 2) is the
set of subareas at the lower level nested within the th area at the medium level, and cA(j, 1)
represents the set of subareas at the medium level nested within the jth area at the higher
level. Further, yy3, /=1, ..., Ny =256, yj5, i=1, ..., Np =64,and y;1, /=1, ..., N3 = 16,
are the samples generated at the lower, medium, and higher levels, respectively. We assumed
6,3 follows a gamma distribution with shape 4, and scale B parameters, i.e. 8,3 ~ gamma (a,
). For the hyperparameter of the gamma distribution, we assumed both aand g equal to one
so that the mean and variance of 8,3 will be one. This assumption could generate relative
risks that are similar to real life examples. We assumed that the expected numbers in the 256
areas are fixed and equal to one, ¢;3=1, /=1, ..., 256.

3.6.2 Scenario 2: simulation from a convolution model—In turn, we generated data
similar to the first scenario in equation (9), but now we assumed a convolution model for the
relative risk, i.e. log(6;3) = a3 + uy3 + v;3. To compute the relative risk 6,3, we have to
specify values for the intercept 4 3 and generate the spatially structured (¢;3) and
unstructured (v;3) random effects from a ICAR and normal distributions, respectively. There
are two options in order to sample the spatially structured random effects ¢;3 from the ICAR
distribution. First, we simulated ¢;3 from the ICAR using the car.normal function through
the BRugs Package. However, with this approach, we have to use the McMC sampling
method and it is computationally intensive. Hence, in the second option, we sampled these
random effects directly from the ICAR (6) using a program written in R software. The steps
are as follows:

1 The sampling approach is initiated using starting values for u?d from a standard

normal distribution, u23~N (0, 1), and we assumed the overall variance equals

one, sdﬁ’gzl. Note that we have also assumed different possible values for sdﬁ3
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2. B 1
t - - - - ut = uO,
We sampled w; 5 from a normal distribution with mean "~ ns, 5 21/55173 U3

2
. . 2 . ut ~N ﬂt —Sdu’S
and with variance equal to sd,, 3/ns, ,, i.e., 3 o137 ns,, ) where r=1.
3. Conditioning on the current simulated values of the correlated heterogeneity

(uﬁg), we simulated the next sample ufgl from a normal distribution with mean

1
Us 5=

t
u - 2 _
2 ng Zz’ssl,g I',3 and variance equal to sd;, 5/ns, ., where £=1.

4, We repeated step 3 for £=2, ..., 7until we obtain a clustered random effect. In
our case, with 7 =10, we obtained spatially structured random effects similar to
the one generated through BRugs package using car.normal function.

The unstructured random effects (v;3) were simulated from a normal distribution with mean

equal to zero and variance Sdig. Note that, the expected rates were sampled from a
gamma(1, 1).

4.1 Simulation results

In this section, we describe the simulation results. First, we present the findings obtained
from the simulation study in scenario 1. Thereafter, we present the results obtained from the
models fitted to the simulated data in scenario 2. Table 1 displays the models fitted to 200
simulated data sets using the mix of Gibbs and Metropolis-Hastings algorithms. First, we
assessed convergence for some simulated data sets, and the trace plots, BGR plots, and p
suggest that convergence has occurred for three chains of 15,000 sample size after the first
15,00 samples were discarded from the analysis. We also checked the convergence for a
single chain of 15,000 samples using trace plots and here also there was a good mixing
between the samples, and hence we decided to use a single chain with 15,000 sample size
after convergence. To compare the models, the bias and MSE of the relative risks were
calculated. To evaluate the predictive ability of the models, we calculated the MSPE and
MAPE. Besides, PD, DIC, and WAIC were computed at each scale level to compare model
performance. Finally, the computation time was extracted to compare the execution time for
the models. To summarize the simulation results, we calculated the mean values of the bias,
MSE, MAPE, MSPE, PD, DIC, and WAIC obtained from the models fitted to the 200
simulated data sets.

4.1.1 Scenario 1: results for data simulated from Poisson-gamma distribution
—The results obtained from the models fitted to sampled data within the hypothetical grid
are shown in Table 2. When the relative risk is assumed to follow a gamma distribution with
shape and scale parameters equal to one, Models 1 and 2 produce DIC value less than
Models 3 and 4, especially at the lower and medium levels. Similarly, the bias and MSE of
the relative risk computed from Models 1 and 2 are smaller than the bias and MSE of the
relative risk obtained from Models 3 and 4. Further, Model 1 converges faster than the other
models. However, the first three models produce similar MAPE and MSPE at all levels
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except for a slight difference at the medium level. Note that Model 4 reveals MAPE and
MSPE higher than the other models in the medium and higher levels. We have also
simulated data within the Georgia state map and the results are presented in the
Supplementary Appendix, Table 1. Note that in all tables, values that are smallest over the
different models are indicated in bold.

4.1.2 Scenario 2: results for data simulated from a convolution model—Tables 3
and 4 display the results of the model fitted to the simulated data within the hypothetical
grid. We can see that similar conclusion can be drawn as in scenario 1. In particular, the PD
of the DIC penalizes more for model complexity as compared to the PD of the WAIC and
they both tend to decrease as we aggregate the data from lower to higher level. This is not
surprising because the effective number of parameters depends on the sample size. The same
is true for the DIC, WAIC, and deviance. Although there is not much difference in the DIC
computed from the different models at lower and higher levels, there is a large difference at
the medium level. Note that the results of the DIC and WAIC are close to each other as they
should be. The results of the DIC for all the 200 data sets are shown in Figure 2. Here also,
Models 1 and 2 outperform the other models.

Furthermore, we have simulated data within the Georgia state map assuming the spatially
structured and unstructured random effects different for all the 200 data sets and the results
are presented in the Supplementary Appendix, Tables 2-5. The conclusions from these
results are also similar to the conclusions drawn from the results for the simulated data
within the hypothetical grid. To investigate how robust our results are with the assumed
values for the random effects, we have generated data assuming the spatially structured
random effect is the same for all 200 data sets (see the results in the Supplementary
Appendixes, Tables 6 and 7).

4.2 Application to the Georgia oral cancer data

To assess the benefit of the shared random effect models, we applied Models 1-4 (see
Section 3) to the Georgia oral cancer study. The estimated potential scale reduction factor
(Table 7), trace, and BGR plots suggest that convergence has occurred for all model
parameters. The results of the model fit and predictive accuracy are shown in Table 5. There
is a gain in terms of model fit (DIC and WAIC), especially at the PH level. Moreover, the
parsimonious model (Model 1) fits the data slightly better than Model 2. Hence, in this
example, including the structural random effect at the county level (Model 2) does not
improve the model fit other than adding model complexity. The predictive accuracy (MAPE
and MSPE) at the PH level for Model 1 is better than the other models. However, the
predictive accuracy at the county level is not different between the models. If we do not take
into account model complexity, the model which introduces two separate convolution
models (Model 3) provides better model fit (Deviance) at the county level as compared to
the shared random effect models (Models 1 and 2). According to the CPO, which does not
penalize model complexity, all the models perform similarly at the county level, but there is
a slight improvement in the shared random effect models at the PH level (Figure 4). We have
also calculated the computation time in seconds to check which model converges faster and
the results are shown in Table 5 under the column labeled as CT, which represents the
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computation time in seconds. We can clearly see that Model 1 converges much faster than
the other models. These results are consistent with the results obtained from the simulation
study. The implementation of Models 1-4 using WinBUGS programs is given in the
Supplementary Appendix (Section 2).

The posterior summary statistics are given in Table 6. The study-wide relative risks of all the
models, (exp(dp 2) and exp (dg 1)), is approximately equal to one with 95% credible interval
in the range of 0.85-1.2 at both the county and PH levels. Hence, there is no significant
increase in the number of persons discharged from non-federal acute-care inpatient facilities
for oral cancer in the Georgia state as compared to what is expected. However, this is not
true for each county and PH district (Figure 3). Here, the relative risks obtained from Model
4 in the PH level range between 0.03 and 2.78, while for the other models between 0.72 and
1.72. There is some inconsistency between the relative risk obtained from Model 4 at the PH
level and the other models. For instance, Model 4 indicates an elevated risk in the southwest
border, whereas the other models show a lower risk in this PH district. This may be due to
the correlation between the neighbors which is not accounted for in Model 4 at the PH level.
Moreover, the trend of the relative risk in Models 1-3 is similar at both county and PH
levels. There is an elevated risk to the southeast border at both levels. On the other hand, all
the models produce similar relative risk at the county level. Note that the SMR at the county
level provides crude estimates which ranges from zero to seven because it does not adjust
the spatial correlation between the counties and the noise in the data (Table 8).

The variability of the unstructured random effects (sd,,1 and sa),») obtained from the models
is similar. Nevertheless, the variability of the structured random effect (sa),») from Model 2
is smaller than that of Model 3. This may be due to some part of this variability in Model 2
being accommodated for by the shared random effect (sd, 1 = 0.474), which is higher than
the variance in Model 3 (sdj;1 = 0.411).

5 Discussion and conclusion

In this paper, we investigated the effect of scaling in disease mapping using a multiscale
Bayesian modeling framework. We have shown that the scaling effect could be
accommodated by using shared random effect multiscale models (Models 1 and 2). These
models provide not only a better fit to the data, but also produce a better predictive accuracy
as compared to the independent convolution model (Model 3) and Model 4, especially at the
coarser level. This is an expected result because the effect of the coarser level is inherited by
the finer level through the shared random effect. The parsimonious shared random effect
model (Model 1) also converges faster than the other models.

The simulation results indicate that models with shared random effects are the best model,
especially at the coarsest level, when the data are simulated from a Poisson distribution with
mean equal to ;36,3 in which ¢;3 and 6,3 are generated from a gamma distribution with the
shape and scale parameters equal to one. We also found that the bias and MSE of the relative
risks computed from these models are lower than those of Models 3 and 4.
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For data drawn from a convolution model within the Georgia state map assuming the
spatially structured and unstructured random effects different for all the simulated data sets,
the DIC favors the shared random effect models at the PH level, while the DIC prefers
Model 4 at the county level. However, DIC supports the shared random effect models at the
county level when the data are sampled from a convolution model with constant spatially
correlated and uncorrelated random effects for all the simulated data sets. Here, Model 3,
which uses an independent convolution model at the county and PH levels, fits the simulated
data as well as the shared random effect models. On the other hand, the DIC obtained from
the shared random effect models at the lower and medium levels for the data generated
within a hypothetical grid is much lower than those of Models 3 and 4. In this spatially
structured simulation, we have also obtained more unbiased and efficient estimates of the
relative risks for the shared random effect models as compared to the independent
convolution model. All the models recover well the assumed overall log relative risk (& 3),
spatially structured («/3), and unstructured (v;3) random effects. Nevertheless, Models 3 and
4 yield slightly better estimates of the variances of the spatially structured (sa),3) and
unstructured (sd,3) random effects in most of the cases.

To investigate the results obtained from the simulation study in a real example, we applied
Models 1-4 to the Georgia oral cancer data. Here also, both the DIC and WAIC tend to
select the shared random effect models, especially at the PH level. Although there is not
much difference at the county level, the predictive accuracy of the shared random effect
models is better than that of Models 3 and 4 at the PH level. However, the deviance, which
does not penalize model complexity, favors the parsimonious multiscale models, Models 3
and 4, at the county level, while it selects Models 1 and 2 at the PH level.

Multiscale modeling has been studied by several researchers.19-11 Our approach of
multiscale modeling is different from Louie and Kolaczyk!! in three respects. First, those
authors assume a multinomial distribution for the outcome at the finer level conditioning on
the outcomes at the coarser level. This assumption introduces a fixed coarser level effect. On
the other hand, our method assumes a random effect at this level and the scaling effect of the
coarser level is inherited into the finer level via the shared random effect model. Second,
their method does not encompass the spatially structured random effect that handles the
correlation between the neighbors, whereas our methods do so. Finally, our convolution
multiscale models are easily implemented in standard software such as WinBUGS.

In summary, the shared random effect models outperform the other models both in real and
simulated data. Interestingly, the parsimonious shared random effect model, i.e. the model
that excludes the spatially correlated random effect at the finer level is as competitive as
Model 2, which includes the correlated random effect. This may be due to the fact that the
shared random effect that was inherited from the coarser level is flexible enough to handle
the correlation between the neighbors. Although it is not as attractive as the shared random
effect models, Model 4 is slightly better than the independent convolution model. These
results indicate that there should be a linkage to account for the scaling effect between the
finer and coarser levels. We conclude that sharing the random effect between these two
levels improves the model fit, predictive accuracy, and estimation of the relative risks.
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Though we have achieved better results by including shared random effects into the model,
our paper has some limitations. First, we introduced the shared random effect through the
spatially structured random effects. Currently, we are investigating sharing unstructured
random effects alone and sharing both the structured and unstructured random effects
simultaneously to accommodate a scale effect. Although our shared random effect model

improves the model fit, especially at the coarser level, it does not quantify the scaling effect.
Hence, measuring the scale effect using correlation structures between the finer and coarser
level is planned. Furthermore, our multiscale model could be easily extended to account for

predictor effects at the finer and coarser levels. We do not pursue this extension here.

In general, our multiscale modeling can be useful in addressing the modifiable areal unit
problem when the scaling problem is an issue because it takes into account the scaling
through a shared random effect. Hence, for pubic health applications, it would be useful to
jointly model the risks at different levels to obtain more accurate risk estimates for planning
purposes.
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Figure 1.
State of Georgia, USA: County and PH district boundary map.
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Figure 2.

Deviance information criterion (DIC) values for the 200 simulated data within a hypothetical
grid with spatially structured (v3) and unstructured random effects (v;3) assumed to be
constant over all the 200 data sets (scenario 2).
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Figure 3.

Georgia oral cancer data. Relative Risk (RR) at each county and public health (PH) district.
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Figure 4.

Georgia oral cancer study. Conditional predictive ordinates (CPO) at each county and public

health (PH) district.
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Description of Models fitted to the hypothetical grid data.

Table 1

Model Description

Model 1a  log(6;1) = @1 + Vi1 + Uj1
log(0i,2)=a0,2+vi2+ui2+uj1 ;e
log(01,3)=a0,3+v13+ui 2.,

Model 22 log(6;1) = @1 + Vi1 + Uja
log(gi,Q):(10,2+Ui,2+ui,2+uj,l(iej)
log(01,3)=a0,3+vi3+ur3+ui2 e,

Model 32 log(6;1) = @1 + Vi1 + Uja
109(8;2) = @1 + Viz + Uj2
10g(6)3) = a3+ Vi3 + Uy3

Model 4a 0/:1 = 2/8(.‘/7(/',l) 6,229,:2/6]'1

62 = Ziecn(iz) €130)3/€12

109(6)3) = @3+ Vi3 + Uj3
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