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Abstract: There are many contemporary designs that do not use a random
sample of a fixed, a priori determined size. In case of informative cluster sizes,
the cluster size is influenced by the the cluster’s data, but here we cope with
some issues that even occur when the cluster size and the data are unrelated.
First, fitting models to clusters of varying sizes is often more complicated than
when all cluster have the same size. Secondly, in such cases, there usually is no
so-called complete sufficient statistic (Molenberghs et al., 2014).
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1 Introduction

In applied statistics, situations exist where there is no fixed sample size.
Molenberghs et al. (2014) provide an overview of various situations. Ex-
amples include: sequential trials, incomplete data, censored survival data,
etc. Here we focus on hierarchical or clustered data. Random cluster sizes
can occur for any outcome type, including continuous data, binary data,
counts, and failure times. We will focus on cases where the cluster size is
variable but independent of observed and unobserved outcomes. As a sim-
ple cluster paradigm, we consider the normal compound-symmetry (CS)
model.
Molenberghs et al. (2011) introduced the split-sample methodology, i.e., a
form of pseudo-likelihood where a sample is subdivided into subsamples.
These subsamples are analyzed as if they were unrelated and afterwards the

This paper was published as a part of the proceedings of the 30th Interna-
tional Workshop on Statistical Modelling, Johannes Kepler Universität Linz, 6–10
July 2015. The copyright remains with the author(s). Permission to reproduce or
extract any parts of this abstract should be requested from the author(s).



216 Clusters with random size: ML versus weighted estimation

results are appropriately averaged. There are many options for splitting the
data, but here we use splitting along the cluster sizes. For the subsamples,
closed-form estimators then exist, whereas they do not in the sample as
a whole. A weighted combination of the subgroup-specific estimators is
needed. However, Molenberghs et al. (2014) and Hermans et al. (2014) show
that there may not be an optimal set of weights, resulting from calculations
on incomplete sufficient statistics in the context of weighted averages.

2 Split-sample methods for clusters of variable size

2.1 Compound-symmetry model

Let Y be a vector of length n, following the compound-symmetry normal
law Y ∼ N(µ1n, σ

2In + dJn). In general, both Y and n are random vari-
ables. Let there be a sample of N independent clusters, with K different
cluster sizes nk (k = 1, . . . ,K) with multiplicity ck. Denote the outcome
vector for the ith (i = 1, . . . , ck) replicate among the cluster of size nk
by Y

(k)
i . For a sample with constant cluster size (K = 1), compound-

symmetry models allow closed-form solutions for the estimators. These suf-
ficient statistics are complete, the estimator is unique minimum variance
unbiased, and the mean parameter estimator and the variance parameter
estimator are independent. Hermans et al. (2015) show, based on likeli-
hood calculations, that in case K ≥ 2 all these results disappear and there
is no closed form solution. Likelihood calculations for K cluster sizes with
common mean and variance parameter across all clusters, do not lead to
explicit solutions, unless the variance components are known or the cluster
size is constant. This suggest further study of weighted averages, e.g., of
the form

µ̃ =

K∑
k=1

akµ̂k, σ̃2 =

K∑
k=1

bkσ̂2
k, d̃ =

K∑
k=1

gkd̂k, (1)

where µk, σ2
k, and dk are the cluster-specific parameters. This idea is very

similar to that in Molenberghs et al. (2011), who splits a sample in sub-
samples, that are analyzed seperately and than combined in an overall
estimator.

2.2 Pseudo-likelihood for split samples

A pseudo-likelihood function is one that replaces a given likelihood function
due to computational convenience. The likelihood contribution of a cluster
is now a product of contributions for the various sub-vectors. Molenberghs
et al. (2011) partitioned a sample in dependent or independent subsamples
and used pseudo-likelihood for the fit. Referring to the compound symmetry
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model described above, a pseudo-likelihood, for estimating a single vector
(µ, σ2, d) from a dataset divided into K subgroups, each containing ck
replicates, can be written as:

p`(θ) =

K∑
k=1

`(θk|y(k)
1 , . . . ,y(k)

ck
), (2)

with θk = (µk, σ
2
k, dk). All θk are assumed to be formally different, θ stacks

all vectors θk and the parameter of interest θ∗, is found from an appropriate
combination of the θk.

2.3 Weighting schemes

Referring to the setting in Section 2.1, note that subjects in different sub-
samples are allowed to have the same distribution, but that subjects in
the same sub-sample must have the same distributions. Consider pseudo-
likelihood in the general case (2). Assume that θ∗ is a vector of length p,
and that each θk is a separate copy of θ∗. Then θ is a vector of length K ·p
and A is a (p×K · p) matrix. The generic combination rules become:

θ̃∗ =

K∑
k=1

Akθ̂k, var(θ̃∗) =

K∑
k=1

AkVkA
′
k, (3)

with Vk = I0(θ̂k)−1. We use the symbol θ̃∗ to emphasize that this is not
necessarily the maximum likelihood estimator even though, in our formal-
ism, θ̂k is the maximum likelihood estimator when restricting attention to
subsample k.
Not every choice of the Ak leads to an unbiased estimator, but to ensure an
unbiased expectation of θ̃∗, we impose

∑K
k=1Ak = Ip. Two obvious choices

are constant, Ak = (1/K)Ip, and proportional weights, Ak = (ck/N)Ip.
Constant weights are an intuitive choice when partitioning in sub-samples
of equal size, however the latter one is more obvious for sub-samples of vary-
ing size. This leads us, using Lagrange multipliers, to the optimal weights,

Aoptk =
(∑K

m=1 V
−1m

)−1

V −1
k . These then lead to the maximum likelihood

estimator. However, not in every case will there be a closed-form solution
for Vk and if there are these may depend on unknown parameters. To solve
this dilemma, consider first scalar weights by demanding Ak to be diago-
nal. Each component of θ∗, θ∗r say, is determined as a linear combination,

θ̃∗r =
∑K
k=1 ak,r θ̂k,r, with Ak = diag(ak,1, · · · , ak,p). The resulting optimum

will not necessarily be equal to the MLE, but the weights can be chosen
for computational convenience. A second option is iterated optimal weights.
The data need to be analyzed only once, to find θ̂k. From these, an initial es-
timator for θ∗ is computed using a simple weighting method, e.g., constant

or proportional weights. Using θ∗(t) and calculating V
(t+1)
k , θ∗(t+1) can be
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determined as θ∗(t+1) =

(∑K
k=1

[
V

(t+1)
k

]−1
)−1∑K

k=1

[
V

(t+1)
k

]−1

θ̂k. This

is repeated until convergence. From this we deduce the approximate opti-
mal weights, a non-iterative approximation.

3 Partitioned-sample analysis for the compound
symmetry model

The weights discussed in the previous section can be constructed for this
specific case. Due to the independence of the mean and the variance compo-
nents, the optimal and scalar weights do not make a difference for the mean
parameter, but are different for the variance parameters. The weights de-
pend on the parameters, but by plugging in the cluster-size specific mean
and variance components, the expressions can be used for approximate
weighting. But also the principles of iterated and approximate weights can
be applied, as in Section 2.3.
The scalar weights are found to be:

ak =

cknk
σ2+nkd∑K

m=1
cmnm
σ2+nmd

, (4)

bk =
ck(nk − 1)∑K

m=1 cm(nm − 1)
, (5)

gk =

cknk
σ4

nk−1 +2σ2d+nkd2∑K
m=1

cmnm
σ4

nm−1 +2σ2d+nmd2

, (6)

with
∑K
i=1 ak =

∑K
i=1 bk =

∑K
i=1 gk = 1. These weights again depend on

the parameters and they can again be made part of an iterative scheme.
Calculations show that the variance of the weighted estimator of the mean
equals that of the maximum likelihood, so the weighted split-sample pa-
rameter is the maximum likelihood estimator. This is to be expected due to
the the independence of the mean estimator from the variance components
estimators for a given cluster size. Thus, the optimally weighted estimator
and the scalar estimator coincide for the mean. This is not true for the
variance components, however.
By approximating these weights for the case where cluster sizes are large, we
derive that these weights are almost identical to the proportional weights,
which makes them a sensible option for practice.
All this can also be applied when there is only one cluster per sub-sample,
a so called cluster-by-cluster analysis. Then, ck ≡ 1, K ≡ N, and nk will
no longer be unique. Since we make use of the fact that the cluster size is
constant within a stratum, and not that the cluster sizes must be different
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TABLE 1. ML and weighted split-sample estimates (standard errors): (a)
ML: maximum likelihood; (b) REML: restricted maximum likelihood; (c) Prop.:
proportional weights; (d) Equal: equal weights; (e) Appr.sc.: like proportional
weights, except that for bk is used; (f) Scalar: scalar weights, with the sub-sam-
ple specific weights plugged in for the parameters figuring in the weights; (g)
Opt.: optimal weights, with the sub-sample specific weights plugged in for the
parameters figuring in the weights.

Par. ML REML Prop. Equal Appr.sc. Scalar Opt.

µ 0.89450 0.89450 0.87305 0.85896 0.87305 0.91831 0.91831
σ2 0.01950 0.01950 0.02200 0.02657 0.01951 0.01930 0.00603
d 0.01449 0.01467 0.00895 0.00858 0.00895 0.00085 0.00220

s.e.(µ) 0.01228 0.01234 0.01035 0.01478 0.01035 0.00761 0.00761
s.e.(σ2) 0.00087 0.00087 0.00160 0.00431 0.00101 0.00097 0.00040
s.e.(d) 0.00245 0.00248 0.00208 0.00355 0.00208 0.00048 0.00044

between different strata, this is no problem. Result can be combined using
again the weighted estimators or a two-stage approach. For the latter one,
unbiasedness is not necessarily obtained.

4 Case study: a developmental toxicity study

The chemical compound di(2-ethylexyl)phthalate (DEHP) is used as plas-
ticizer for numerous devices. Due to a possible presence in human and
animal tissue, caused by leaks in plastic containers, toxic effects need to
be investigated. The study was conducted in timed-pregnant mice during
the period of major organogenesis (Tyl et al., 1988). A total of 1082 live
fetuses were dissected. Our focus is on the continuous weight outcome. Fe-
tuses are clustered within mothers. The CS model is fitted to the fetal
weight outcome to examine the performance of the weighted estimators in
Table 1. All split-sample estimators perform well in comparison with the
(restricted) maximum likelihood estimators, only the optimal weights give
slightly deviating results, which is because uncertainty due to the depen-
dence of the weights on parameters is currently ignored. Using the delta
method, this can be rectified. Importantly, the weighted estimators are a
magnitude faster than the likelihood-based ones.

5 Concluding remarks

The use of weighted estimators reduced computation time and en enhances
computation stability. They are simple to use, especially the proportional
weights, and have a high efficiency.
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