
 Procedia Computer Science 83 (2016) 50 – 57

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.04.098

ScienceDirect
Available online at www.sciencedirect.com

The 7th International Conference on Ambient Systems, Networks and Technologies
(ANT 2016)

Data Preparation to Simulate Public Transport in Micro-Simulations

using OSM and GTFS

Glenn Cicha,∗, Jan Vuurstaeka, Luk Knapena, Ansar-Ul-Haque Yasara, Tom Bellemansa,
Davy Janssensa

aTransportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek, Belgium

Abstract

Research on demand-responsive collective transportation facilities that can act as feeder services to time-table based public trans-

portation (PT) requires detailed and accurate information about the PT infrastructure, including the attachment of bus stops to

the appropriate network link. Due to the size of the infrastructure, the data integration shall be automated. This paper describes

the effort to prepare data from publicly available OpenStreetMap (OSM) and General Transit Feed Specification (GTFS) sources.

Procedures are proposed (i) to build a network derived from OSM suitable for simulations in transportation, (ii) to extract bus

stops from GTFS and remove anomalies and (iii) to find candidate network links to attach them.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: OpenStreetMap, General Transit Feed Specification, Micro-Simulation, Data Cleaning, Public Transport

1. Problem Context

A flow in a transportation network is the set of passages from a source S to a target T using one of the available

paths connecting S to T and for which the travel period overlaps a given set of periods (e.g. every Tuesday morning

between 07:30h and 09:30h). Thin flows consist of small amounts of passages. Serving them by time-table based

public transportation (TTB-PT) can be costly or lead to under-used services. One of the research objectives of the

Smart-PT project is to determine the viability of companies offering mini-bus based collective transportation on-

demand as a replacement for TTB-PT. Such services are expected to partly act as feeder services to TTB-PT. The

stochastic nature of the demand and the small capacity of the provided services require daily optimization of the driven

routes. The result is highly sensitive to small variations in the demand and in the characteristics of the local situation.

Hence, an accurate high resolution representation of the TTB-PT is required. Furthermore, the use of open and recent

data is preferred. Therefore, an automated tool to integrate OpenStreetMap (OSM) derived transportation networks

and General Transit Feed Specification (GTFS) is required. This paper discusses the first stage of an integration effort.

∗ Corresponding author. Tel.: +32-11-269-111 ; fax: +32-11-269-199.

E-mail address: glenn.cich@uhasselt.be

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.098&domain=pdf

51 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

(a) (b)

Fig. 1: (a) Situation with geometry: bus stop is connected to the (correct) solid green link. (b) Situation where the geometry is replaced by a straight

line segment: bus stop is connected to the (wrong) dashed red link.

Figure 1 shows that geometrically complete and accurate data is required to attach a bus stop to the correct side of

the road. On the other hand, the resulting network shall be as simple as possible because the algorithm that assigns

bus stops to network links is based on combinatorial optimization.

This paper is organized in the following way: in Section 2, we give an overview of the related work. Sections 3

and 4 are organized in the same way: first terminology is discussed, then the used algorithms followed by the results.

Section 3 discusses OSM and Section 4 discusses GTFS. In Section 5, an algorithm is described that is able to find

candidate locations for GTFS bus stops. Finally, we draw a conclusion and briefly discuss future work.

2. Related Work

In1, Zilske et al. describe a process in order to use OSM in the micro-simulator MATSim. They mention issues

related to getting high quality input data (in this case maps) to use in MATSim. Maps are in different (non-standard)

formats, difficult to get and in most cases not referenced to each other. The authors converted an OSM dataset to a

MATSim compatible input format and attempted to integrate OSM and GTFS in order to simulate public transport.

In2,3, the authors describe methods in order to assess the quality of the OSM network. Eight quality indicators are

discussed: geometric/positional accuracy, attribute accuracy, completeness, logical consistency, semantic accuracy,

temporal accuracy, lineage and usage. The quality indicator in which we are interested for this paper is the attribute

accuracy. It describes the accuracy/correctness of the attributes in OSM. In2, Haklay conducts an analysis of positional

accuracy and the completeness of the OSM dataset. In order to analyze this, the Ordnance Survey for the region of

London, UK is used. In3, Girres and Touya assess the attribute accuracy by studying the matching between lake

names in the region of l’Alpes d’Huez. They noticed that only 55% of the lake names are as informed as their base

truth. However, when OSM describes a lake name, there is a nearly identical matching. Note that for such methods a

base truth is required.

In4, Mooney and Corcoran describe the annotation process in OSM. The main issue in the annotation process is

the lack of discipline and automatic checking with respect to defining attribute names and with respect to assigning

attributes to objects. Contributors can specify an unlimited amount of tag elements and there are no context restrictions

regarding the attribute values of those tags. The authors studied (i) the assignment of attribute values to tag elements,

(ii) the type of contribution by the contributors and (iii) the use of the OSM Map Features page.

In5, Barron et al. attempt to assess the quality of OSM without the use of any base truth. They use the OSM-

Full-History-Dump in order to assess the quality. They propose a framework consisting of a set of tools to assess

the quality of several OSM characteristics. For example, they attempt to assess completeness of the road network by

comparing the evolution in link lengths. When the length of the links stabilizes, they assume that the links of that area

are finished. In contrast, when the link lengths change a lot, it means that the links are not close to completion.

Our paper focuses on data cleaning as a prerequisite in the process of OSM-GTFS integration.

3. OpenStreetMap

3.1. Terminology

In order to conduct the cleaning and preparation steps, the OSM data (which is described in XML) is read into Java

classes. We assume the reader is familiar with the OSM terminology. The Java classes we created are (i) General-
Point, (ii) GeneralLink, (iii) GeneralTransportInfrastructure and (iv) GeneralRoad.

52 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

P1 P2 P3 P4L1 L2 L3

General Transport Infrastructure
Fig. 2: A representation of the terminology, with P∗ the GeneralPoints and L∗ the GeneralLinks of the presented GeneralTransportInfrastructure.

Definition 3.1. A GeneralPoint represents a node in the OSM dataset. It merely defines the shape of a GeneralLink.

Definition 3.2. A GeneralLink represents a link which has no one-on-one mapping with the OSM dataset. A Gener-

alLink consists of n GeneralPoints where n ≥ 2, because every GeneralLink needs at least a start and end GeneralPoint.

GeneralLinks can only meet each other in the start and/or end GeneralPoints, which means that a GeneralLink does

not have any junctions in the intermediate GeneralPoints that serve to define the road geometry.

Definition 3.3. A GeneralTransportInfrastructure is the base class for a GeneralRoad. It holds a hash map of attributes

(key-value pairs) and a list of GeneralLinks. A GeneralTransportInfrastructure consists of n GeneralLinks where

n ≥ 1. The hash map of attributes represents the attribute values of tags in the OSM dataset.

Definition 3.4. A GeneralRoad is a class, extended of GeneralTransportInfrastructure, which represents a way with

the tag “highway” in the OSM dataset. While a GeneralTransportInfrastructure has general functionality, a General-

Road has specific functionality, such as information about the number of lanes, the speed limits, direction etc.

A representation of the definitions can be seen in Figure 2. Note that we are also able to extend this software for

other transportation infrastructures such as railways.

3.2. Algorithms

In order to combine the OSM data with a GTFS dataset, we will clean, reduce and prepare the OSM data.

Definition 3.5 (cleaning, reduction, preparation). Cleaning is the process in which we will enrich, correct and com-
plete OSM objects. Reduction is the process in which OSM objects that are not useful for any purpose will be removed.

Preparation is the process in which application specific actions are performed.

3.2.1. Cleaning
The first cleaning step is resetting inconsistent individual and group values to predefined values. An invalid indi-

vidual value is inconsistent with its range specification. Straightforward rules are developed such as “total number of

lanes > 0”. Detecting inconsistent group values is done by comparing values; these rules are more complex such as

“total number of lanes = number of forward lanes + number of backward lanes”.

A second cleaning step is auto completing OSM tags using predefined rules. This is done based on existing OSM

tags. For example when “total number of lanes = 4”, “number of backward lanes = 2” and “number of forward lanes

= UNDEFINED”, we can assume that the “number of forward lanes = 2”.

A third cleaning step (also enriching OSM tags) is adding and completing existing tags using a set of rules. Note

that these rules are country dependent. In Belgium, the maximum speed of a “primary” road is 120[km/h]. When

there is a road with type “primary” and “max speed = UNDEFINED” we assign 120 to the max speed. Due to lack of

space it is not possible to exhaustively list the set of rules used in the first three steps.

A fourth cleaning step is removing GeneralLinks with a length of zero while maintaining the topology of the

network.

A fifth cleaning step first merges GeneralTransportInfrastructures and then GeneralLinks that are separated by

useless splits. Such useless splits can be generated by previous cleaning steps or by mistakes during data entry.

Definition 3.6. A useless split of a GeneralTransportInfrastructure is a GeneralPoint which has exactly two Gener-

alLinks connected to it, where these two GeneralLinks are in two separate GeneralTransportInfrastructures that have

the same attributes, but a different list of GeneralLinks.

53 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

The condition stating exactly two GeneralLinks is sufficient because all GeneralLinks in a GeneralTransportInfras-

tructure need to have identical attribute values, including the direction.

Definition 3.7. A useless split of a GeneralLink is a GeneralPoint that has exactly two GeneralLinks (belonging to

the same GeneralTransportInfrastructure) connected to it.

In fact there is no reason for two GeneralTransportInfrastructures having identical attributes to be separated by

a split. Note that it is very important that we first merge GeneralTransportInfrastructures and then GeneralLinks.

Otherwise, we might introduce new useless splits of GeneralLinks while merging GeneralTransportInfrastructures.

3.2.2. Reduction
The first reduction step is removing road types which we do not want in the output dataset. The cleaning tool

allows the user to specify (i) a list of types to keep in the dataset and (ii) a list of types to drop from the dataset.

It is impossible to specify every road type that exists in the OSM dataset due to the lack of attribute key and value

validation as mentioned in Section 2. That is why we implemented a feature that will convert every type that is not

contained in one of both lists to the “unclassified” type. This is done in order to avoid dropping road types that might

be useful.

Another reduction is done by removing sinks, sources, black holes, white holes and islands in order to ensure that

the transportation network constitutes a strongly connected graph.

Definition 3.8 (sink, source). A node is a sink if it has no outgoing edges, i.e. you can enter it, but cannot leave it. A

node is a source if it has no incoming edges, i.e. you can leave it, but cannot enter it.

Definition 3.9 (black hole, white hole). A sub network is called a black hole if you can enter this sub network, but

cannot leave it. A sub network is called a white hole if you can leave this sub network, but cannot enter it.

Definition 3.10. A sub network is called an island if you cannot enter and leave this sub network.

It was observed by interactive visual inspection that the part of the network constituting sources, sinks, black holes,

white holes and islands represents a small amount of road segments consisting mainly of walking roads. Therefore, it

was judged that dropping those parts is a justified solution.

3.2.3. Preparation
As discussed in Section 1, the goal of this data preparation is connecting GTFS stops to the OSM network. Note

that we also need to take into account the side of the road. Therefor, we split every GeneralTransportInfrastructure

with direction BOTH into two identical GeneralTransportInfrastructures, one with direction FORWARD and one with

direction BACKWARD. By doing this, candidate locations for GTFS stops can be assigned separately on both sides

of the road.

3.3. Results

For the experiments we used the part of the OSM network delimited by the minimal bounding box that contains all

the bus stops of “De Lijn” (PT provider for buses and trams of Flanders) which includes the northern part of Belgium

and the southern part of the Netherlands. The following pipeline of steps is used: (i) Remove GeneralRoads which

are not needed, (ii) Change type of GeneralRoads which do not occur in one of the two lists (iii) reset incorrect indi-

vidual values, (iv) auto complete GeneralRoads, (v) reset incorrect individual values, (vi) reset incorrect group values,

(vii) enrich GeneralRoads with rules, (viii) remove GeneralLinks with zero length, (ix) merge GeneralTransportIn-

frastructures, (x) merge GeneralLinks, (xi) remove GeneralLinks/GeneralTransportInfrastructures not belonging to the

strongly connected graph and (xii) convert GeneralTransportInfrastructures with direction BOTH into a FORWARD

and BACKWARD GeneralTransportInfrastructure. Note that we reset incorrect values twice because we might in-

troduce new mistakes when we auto complete the data. Suppose that “total number of lanes = 2”, “total number

of forward lanes = 4” and “total number of backward lanes = UNDEFINED”; in this case the individual values are

correct. However, if we auto complete the backward lanes, it will result in -2, which is an incorrect individual value.

In Table 1 an overview of the different steps is given. The main reduction in amount of objects happens in Step (i) in

54 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

which GeneralTransportInfrastructures are deleted which are not needed. Other decent reductions happen in Step (ix)

and (x) in which GeneralTransportInfrastructures and GeneralLinks are merged. At the end of Step (xi) the amounts of

GeneralTransportInfrastructures, GeneralLinks and GeneralPoints are reduced by respectively 25.28%, 32.60% and

28.54%. Finally, in Step (xii) there is a large increase in both GeneralTransportInfrastructures and GeneralLinks due

to the conversion of GeneralTransportInfrastructures with direction BOTH to FORWARD and BACKWARD.

Table 1: Results of the OSM data preparation pipeline. The symbol “#” represents the amount of remaining objects and the symbol “δ” represents

the amount of modified objects. GeneralTransportInfrastructures is abbreviated as GTI, GeneralLinks as GL and GeneralPoints as GP.

Description Step #GTI #GL #GP δGTI

Initial / 776 483 1 336 260 969 907 /

Remove not needed GeneralRoads (i) 612 402 1 043 840 837 735 0

Change type of “unknown” GeneralRoads (ii) 612 402 1 043 840 837 735 67 989

Reset incorrect individual values (iii) 612 402 1 043 840 837 735 0

Auto complete GeneralRoads (iv) 612 402 1 043 840 837 735 136 071

Reset incorrect individual values (v) 612 402 1 043 840 837 735 0

Reset incorrect group values (vi) 612 402 1 043 840 837 735 571 310

Enrich GeneralRoads with rules (vii) 612 402 1 043 840 837 735 612 402

Remove GeneralLinks with zero length (viii) 612 402 1 043 815 837 731 0

Merge GeneralTransportInfrastructures (ix) 580 211 1 043 815 837 731 0

Merge GeneralLinks (x) 580 211 905 397 699 313 0

Remove objects not belonging to the strongly connected graph (xi) 580 211 900 702 693 068 0

Convert BOTH to FORWARD and BACKWARD (xii) 1 132 382 1 764 648 693 068 0

4. General Transit Feed Specification

4.1. Terminology

We will not describe the GTFS dataset in this paper. For more information we refer to https://developers.

google.com/transit/gtfs/.

4.2. Algorithms

4.2.1. Unresolved References Removal - Simplification
The GTFS dataset uses files which are connected to each other by identifiers. Hence, there can be missing links

when an identifier occurs in one file but not in the other files. Data records containing unresolved references are

deleted from the dataset.

The data preparation covered by this section is used in order to be able to connect GTFS stops to the OSM network.

Hence, duplicate trips (= trips which serve the same stops in exactly the same order) are useless because they need

to be processed multiple times. We decided to delete these duplicate trips because we are not interested in the time

dimension (only in the sequence of stops). This reduction will decrease the complexity of the OSM-GTFS integration.

While analyzing the GTFS data, we encountered situations where the same GTFS stop is served multiple times,

separated, in the majority of the cases, by a short interval (in most of the cases one minute). We decided to delete

those stops because this will only make the OSM-GTFS integration more complex, without having an influence on

the actual results of the assignments.

4.2.2. Trips Containing Stop Visits in Inconsistent Orders
Each stop has a unique identifier id and a name (in most but not all cases a combination of municipality and street

name). If two stops share the same name, they are on the same bidirectional network GeneralLink (road segment) at

opposite sides of the street (and hence, they correspond to opposite GeneralLink travel directions). As a consequence,

each stop is uniquely identified by an id, but also by a tuple 〈name, dir〉 where dir ∈ {FORWARD,BACKWARD} and

55 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

S1

S2

S3

S4

S5.1S6.1S7.1

S7.2 S6.2 S5.2

S1S2

(b)(a)

Fig. 3: Two parts of a network: the circles represent road junctions, the arrows represent lanes and the symbols S i and S i, j identify stops; the

location on the GeneralLink is denoted by the small stroke perpendicular to the GeneralLink. (a) A real case where stops S 1 and S 2 are visited in

both orders. The trip moving from the left to the right contains two loops. (b) The example explained in the text.

name identifies a network GeneralLink. People can board and alight a vehicle at only one side (in continental Europe

the right hand side).

Assume two stops S 1 and S 2 so that both 〈S 1, S 2〉 and 〈S 2, S 1〉 are subsequences of some, not necessarily different,

trips (i.e. the stops are used consecutively and in both orders). Cases where S 1 and S 2 are used in both sequence

orders but not as consecutive stops in a trip are not considered. The GeneralLinks corresponding to the respective

stops need to be crossed in the same direction in all cases (because of the boarding and alighting side restriction).

In case S 1 and S 2 share the same name, they correspond to a single GeneralLink and to opposite directions (because

they are different stops). Both 〈S 1, S 2〉 and 〈S 2, S 1〉 imply a U-turn in the trip (which is possible).

In case S 1 and S 2 have different names and none of both names are shared names, it is sure that in all cases exactly

the same stops are used (since none of the stops has a counterpart at the opposite side of the street). This case is shown

in Figure 3a. This case was found in reality and necessarily induces a cycle in the route.

Finally, if the stops have different names and at least one of the names is a shared name, then it is assumed that an

error was made while creating the GTFS database and a voting concept is used to select one of the cases to be kept.

In this case the number of trips for both occurrences 〈S 1, S 2〉 and 〈S 2, S 1〉 are counted. The case that is found in the

majority of trips is assumed to be the right one. The other trips are corrected by swapping the “wrong” tuple. The

reduction step will be explained using the synthetic example shown in Figure 3b. For that case the shared stop name
assumption means that exactly one name is associated with each of the pairs {S 5.1, S 5.2}, {S 6.1, S 6.2} and {S 7.1, S 7.2}.
Suppose we have the following four trips: {S 4 − S 5.2 − S 6.2 − S 7.2, S 3 − S 5.2 − S 6.2 − S 7.2, S 2 − S 5.2 − S 6.2 − S 7.2, S 1 −
S 6.2 − S 5.2 − S 7.2}. The first step consists of finding pairs of consecutive stops used in both orders. In this case we

find a list of ordered pairs 〈S 5.2, S 6.2〉 and 〈S 6.2, S 5.2〉. The next step is counting the number of trips in which the pairs

occur in every trip of the dataset. In our case, we will compare {S 5.2, S 6.2} and {S 6.2, S 5.2}with every trip in the dataset.

The tuple {S 5.2, S 6.2} occurs three times, while {S 6.2, S 5.2} occurs only one time. We assume that the case having the

highest occurrence frequency is the correct one and hence, the last trip will be corrected. Suppose that there is not a

majority, but the occurrences of both tuples are equal; in this case none of the trips are corrected. Note that we only

tested these cleaning steps for buses and trams (GTFS for “De Lijn”). The single side boarding/alighting assumption

does not hold for trains (at least not in Belgium).

4.3. Results

For the experiments, we used the following pipeline of reduction steps: (i) find unique trips, (ii) remove data which

is not connected, (iii) remove duplicate consecutive stops and (iv) correct stops which are used in both directions. In

Table 2, an overview is given of the percentage of deleted objects in every file. For the case study “De Lijn”, the

following results where found: the algorithm detected 19.12% of trips (i.e. the unique ones) in which duplicate

consecutive stops occur and 0.57% of the trips were corrected due to the inconsistent orders.

56 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

Table 2: Overview of deleted objects in % per file for a set of GTFS files.

GTFS File Agencies Calendar Dates Routes Stops Stop Times Trips

De Lijn 0.00 42.62 15.06 19.13 97.45 97.50

TEC 0.00 22.22 0.00 33.33 93.11 93.20

MIVB 0.00 0.00 32.56 39.12 99.84 99.79

Connexxion 0.00 27.55 0.00 22.06 97.20 96.85

EBS 54.17 79.44 5.41 37.12 81.44 84.04

A B

C

L2

D

L4

L3

(0,0) (50,0)

(0,-50) (50,-50)

A B

C

L2

D

L4

L3

(0,0) (50,0)

(0,-50) (50,-50)

A B

C

L2

D

L4

L3

(0,0) (50,0)

(0,-50) (50,-50)

(10,0)

(0,-22)

(10,-50)
BA

(0,0) (50,0)

15m

L1

50m
15m

(a) (c)(b) (d)

A

D

L4

,0)

Fig. 4: (a) Four GeneralLinks and a GTFS stop. (b) Three GeneralLinks fall in the radius. (c) Projections on the GeneralLinks are calculated.

(d) Three projections on the same link of which two projections share the shortest distance. A random point from the two shortest will be chosen.

5. Finding Candidate Locations for GTFS Stops

5.1. Algorithm

The goal of this algorithm is finding a set of candidate locations, called projected stops, for every GTFS bus stop.

One of these projected stops will be chosen as the representative of the GTFS stop in the assignment algorithm which

is currently in development. We determine these projected stops by the use of a PostGIS database. In this database,

we have imported all the cleaned OSM data (as described in Section 3.2).

To find projected stops, we determine the radius in which needs to be searched and the maximum amount of

projected stops we want. For this step the GIS functionality of the PostGIS database is used.

For every GTFS stop, we will calculate projected stops. This is achieved by finding every GeneralLink in a radius

R of the GTFS stop. This query will return between zero and maximum X nearest GeneralLinks as a result. Both R
and X can be configured in the software. When no GeneralLinks are found in the radius R, the algorithm will double

the radius R and will attempt to find GeneralLinks again. This process will continue until at least one GeneralLink is

found. In order to find a candidate location, we also need the nearest point on the link geometry on which the GTFS

stop is projected. This is done by another query which can find the projection of a GeneralPoint (coordinates of the

GTFS stop) on a GeneralLink (found by the previous query).

In Figure 4, an example of these steps is given. For this example, we choose a radius of 50 meters and a maximum

amount of projected stops of three. In Figure 4a, we can see the starting situation with four GeneralLinks and a GTFS

stop (cross). In Figure 4b, we see the radius which is specified and it is clear which GeneralLinks are found. The

final step is finding the exact location of the projection, this can be seen in Figure 4c. Note that it is also possible that

two or more projections on the same link with the same distance are found. In such cases a random point out of these

closest points will be chosen. This can be seen in Figure 4d.

5.2. Results

In6, Haklay et al. investigated the positional accuracy of OpenStreetMap roads in the Greater London area. In

complete areas the average error is 9.57[m] with a standard deviation of 6.51[m]. In incomplete areas the average

error is 11.72[m] and the standard deviation is 7.73[m]. In6, completeness is defined as “a measure of the lack of
data” and examined for specific areas by visual inspection of maps and by comparing (by means of GIS) the total

road length found in OSM and in reference maps respectively. From several non-authoritative website sources it was

found that the accuracy threshold d at 95% for GPS devices (used to locate the bus stops) can be assumed to be 20[m].

57 Glenn Cich et al. / Procedia Computer Science 83 (2016) 50 – 57

Based on both error limits, we decided to use 30[m] as the radius to find matching GeneralLinks for a bus-stop. For

the experiments we chose a maximum of ten projected stops per GTFS stop. In Table 3, an overview of the number

of GTFS stops having a specific number of projected stops is given. For instance, there are 16 196 GTFS stops which

have two projected stops.

Table 3: Number of GTFS stops having the number of projected stops indicated in the column header.

Amount of Projected Stops found per GTFS stop 1 2 3 4 5 6 7 8 9 10

Occurrence Frequency 161 16 196 255 3 276 161 5 450 95 2 030 66 2 964

In total there are 127 066 projected stops found for a total of 30 654 GTFS stops, which is on average 4.15 projected

stops per GTFS stop; this means we did not underestimate the amount of projected stops found per GTFS stop. In

none of the cases a doubling of the radius was needed, which means that 30[m] was well chosen. One can observe

that the amount of even occurrences is significantly higher than the amount of odd occurrences. This is due to the fact

that we converted GeneralTransportInfrastructures with a direction of BOTH (which is the majority) to a FORWARD

and a BACKWARD GeneralTransportInfrastructure.

6. Conclusion and Future Work

Accurate detailed data is required for micro-simulation aimed at the evaluation of collective transportation facilities.

The data preparation consists of (i) the creation of an automatic tool to import OSM and GTFS data and (ii) the

development of an algorithm to automatically assign about 30k bus stops to the OSM network (about 500k links).

This paper describes the first stage of the OSM-GTFS integration, i.e. the algorithms to clean, reduce and prepare

the OSM and GTFS data. Due to the size and the update frequency of the OSM and GTFS data, integrating them

interactively is not an option. Ongoing and future research focuses on the problem of automatic bus stop assignment.

Acknowledgements

The research reported was partially funded by the IWT 135026 Smart-PT: Smart Adaptive Public Transport (ERA-

NET Transport III Flagship Call 2013 “Future Traveling”).

References

1. Zilske, M., Neumann, A., Nagel, K.. Openstreetmap for traffic simulation. In: M. Schmidt, G. Gartner (Eds.), Proceedings of the 1st
European State of the Map OpenStreetMap conference, no. 11-10. Vienna, Austria: M. Schmidt, G. Gartner (Eds.); 2011, p. 126–134. URL:

sotm-eu.org/userfiles/proceedingssotmEU2011.pdf.

2. Haklay, M.. How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets.

Environment and Planning B: Planning and Design 2010;37(4):682–703. URL: http://epb.sagepub.com/lookup/doi/10.1068/

b35097. doi:10.1068/b35097.

3. Girres, J.F., Touya, G.. Quality Assessment of the French OpenStreetMap Dataset. Transactions in GIS 2010;14(4):435–459. URL: http://

onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2010.01203.x/abstract. doi:10.1111/j.1467-9671.2010.01203.x.

4. Mooney, P., Corcoran, P.. The Annotation Process in OpenStreetMap. Transactions in GIS 2012;16(4):561–579. URL: http://

onlinelibrary.wiley.com/doi/10.1111/j.1467-9671.2012.01306.x/abstract. doi:10.1111/j.1467-9671.2012.01306.x.

5. Barron, C., Neis, P., Zipf, A.. A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis. Transactions in GIS 2014;

18(6):877–895. URL: http://onlinelibrary.wiley.com/doi/10.1111/tgis.12073/abstract. doi:10.1111/tgis.12073.

6. Haklay, M., Basiouka, S., Antoniou, V., Ather, A.. How Many Volunteers Does it Take to Map an Area Well? The Validity of Linus Law to

Volunteered Geographic Information. Maney Publishing (c) The British Cartographic Society 2010;47(4):315–322.

