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Chapter 1
Introduction

In a survival study the variable of interest is the time to a pre-specified event (e.g., the
time to tumor appearance). Often, the event time is right-censored for some study items,
i.e., only a lower time bound for the event is observed (e.g., due to drop-out). Further,
a study can involve grouped data (e.g., twins - clusters of size two - are followed up for
tumor appearance). Since grouped study items chair common traits, their event times
exhibit within-cluster correlation.

Popular survival models that account for the association in grouped time-to-event
data are the frailty and the copula model. A frailty model is a hazards model supple-
mented with a cluster-specific random term, named the frailty. Hence, a frailty model is
a conditional model. A copula model describes the joint survival function of the event
times via the marginal survival functions and a dependence function, called the copula.
Typically, a copula model is used for clusters with small and equal size, whereas a frailty
model can also handle clusters with large and/or varying size.

In Section 1.1 the basic quantities of survival analysis are reviewed. In Section 1.2 the
data sets used to illustrate some of the developed methods are discussed. An overview
of the thesis objectives is given in Section 1.3.

1.1 Review of survival analysis concepts

In this section some basic notions on univariate right-censored event time data are
introduced.

1



2 Chapter 1. Introduction

Let n denote the number of study items. For item r (r = 1, . . . , n) we observe
Yr = min(Tr, Cr) where Tr is the event time and Cr is the censoring time. The indicator
δr = I(Tr ≤ Cr) equals one for an event and zero otherwise. Event times and censoring
times are assumed to be independent.

Let f be the probability density function and F (t) = P (T ≤ t) the cumulative
distribution function of T . Basic quantities used to describe time-to-event data are the
survival function

S(t) = P (T > t) = 1− F (t)

and the hazard function

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t = f(t)

S(t) .

The survival function S(t) gives the probability that a study item survives beyond time
t, while the hazard function h(t) represents the instantaneous failure rate given that the
item has survived up to time t. A related quantity is the cumulative hazard function

H(t) =
∫ t

0
h(v)dv = − logS(t).

The classical nonparametric estimator for the survival function S is the one introduced by
Kaplan and Meier (1958). For all values t within the range of the observed event times,
the Kaplan-Meier estimator is defined as

Ŝ(t) =
∏

r:Y(r)≤t

( n− r
n− r + 1

)δ(r)

where Y(1) ≤ . . . ≤ Y(n) are the order statistics of Y1, . . . , Yn and δ(1), . . . , δ(n) are the
corresponding indicators. The Kaplan-Meier curve is a step function with jumps at the
observed event times. The stochastic size of the jump at an event time depends on the
number of events at that time as well as on the pattern of the censored observations prior
to that time. In absence of censoring the Kaplan-Meier estimator reduces to the empirical
survival function.

1.2 Data description

In this section we introduce the data sets used to illustrate the methodology developed
in the future chapters.
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1.2.1 Udder infection data

Mastitis is a bacterial infection of the udder of a dairy cow, which affects the milk
production and the milk quality. Depending on the agent infecting the udder, mastitis
can even be lethal. Since the infection times in the four udder quarters of a cow are likely
to be correlated, we investigate the time to infection taking into account the existing
association. A cow is the cluster, the infection times of the four udder quarters are the
grouped data.

We consider two sets of mastitis data. In the first data set, 100 cows are fol-
lowed up for infection. A distinction is made between cows that have had one calving,
i.e., one lactation period (primiparous cows - parity = 1) and cows that have had multiple
calvings (multiparous cows - parity = 0). In the second data set, 407 primiparous cows
are followed up for infection. The two sets of data come from different studies, the small
data set is thus no subset of the larger data set.

An observation is right-censored if no infection occurs before the end of a lacta-
tion period, which is roughly 300 − 350 days but different for every cow, or if a cow is
lost to follow-up during the study, e.g., due to culling. Censoring occurs at the level of
the cluster (a cow), i.e., the same censoring time applies to the four udder quarters of a
cow. However, it may happen that one or more udder quarters are infected (event) with
the remaining ones free of infection (censored). In the first data set censoring varies from
19% to 22% in the four udder quarters, overall 21% of the observations are censored.
In the second data set censoring ranges from 64% to 69% in the four udder quarters,
overall 66% of the observations are censored.

Table 1.1 contains a few lines from the first data set (version 1), while Table 1.2
gives some lines from the second data set (version 2). It follows that, e.g., the infection
times of cow 1 in data set 1 are all censored, whereas the infection times of cow 1 in
data set 2 are all observed. Similar data have been analyzed by Massonnet et al. (2009)
and Goethals et al. (2009).

1.2.2 Insemination data

In a dairy farm one often registers the time from parturition to first insemination as this
is an important factor influencing the length of the calving interval, i.e., the time between
two calvings, which optimally lies between 12 and 13 months. Since the insemination
policy is similar within a farm, we model the time to first insemination taking into
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Table 1.1: Udder infection data - version 1. The first column contains the cow identification
number. The second column gives the minimum of the infection time and the censoring time
(in days) in each of the four udder quarters. The third column lists the corresponding censoring
indicators: one if infected and zero otherwise. The last column reveals the parity of the cow:
one for a primiparous cow and zero for a multiparous cow.

cow-id time status parity
1 (308.5, 308.5, 308.5, 308.5) (0, 0, 0, 0) 1
2 (95, 124, 231, 273) (1, 1, 1, 1) 1
. . . . . . . . . . . .
99 (49.5, 49.5, 49.5, 49.5) (1, 1, 1, 1) 0
100 (159, 233, 83.5, 201.5) (1, 0, 1, 1) 1

Table 1.2: Udder infection data - version 2. The first column contains the cow identification
number. The second column gives the minimum of the infection time and the censoring time (in
days) in each of the four udder quarters. The third column reveals the censoring status: one if
infected and zero otherwise. Only primiparous cows are considered.

cow-id time status
1 (67, 67, 119, 67) (1, 1, 1, 1)
2 (124, 333, 333, 333) (1, 0, 0, 0)
. . . . . . . . .
406 (220, 220, 220, 220) (0, 0, 0, 0)
407 (279, 279, 279, 263) (0, 0, 0, 1)

account the association induced by residence in the same farm. A farm is the cluster, the
time to first insemination of the cows in the farm are the grouped data. The data set
contains 181 farms, the number of cows per farm varies from 1 to 174 with on average
58 cows.

An observation is right-censored if a cow is not inseminated 300 days after calv-
ing or if a cow is lost to follow-up during the study, e.g., due to culling. Censoring does
not occur at the level of the cluster (a farm) but at the level of the items in a cluster,
i.e., distinct censoring times apply to cows within the same farm. Censoring in a farm
ranges from 0% to 100%, overall 18% of the observations are censored.
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Table 1.3: Insemination data. Column one and two contain the identification number of the
farm, resp. the cow. The third column gives the minimum of the time to first insemination and
the censoring time (in days). The fourth column contains the corresponding censoring indicator:
one if inseminated and zero otherwise. The last column shows the parity: one for a primiparous
cow and zero for a multiparous cow.

farm-id cow-id time status parity
1 1 68.5 1 0
. . . . . . . . . . . . . . .
1 51 70.5 1 1
. . . . . . . . . . . . . . .
181 10433 48.5 1 0
. . . . . . . . . . . . . . .
181 10513 155.5 1 1

As in the udder infection data parity is included as the single binary covariate. A
subset of the data is contained in Table 1.3. It follows that, e.g., cow 1 of farm 1 is
multiparous and inseminated at time 68.5, whereas cow 51 of farm 1 is primiparous and
inseminated at time 70.5. Similar data have been analyzed by Duchateau and Janssen
(2004) and Duchateau et al. (2005).

1.3 Outline

The main objective of this dissertation is to develop methods that allow flexible modeling
of the association present in clustered right-censored event time data.

Part I concentrates on the frailty model. Chapter 2 contains a brief review on the
proportional hazards model and the shared frailty model. In Chapter 3 we construct
a test to verify the aptness of an one-parameter gamma frailty density. Based on an
orthonormal polynomial expansion, a new class of extended gamma frailty densities is
defined. We obtain an explicit expression of the corresponding marginal likelihood for
right-censored event time data. Next, we apply an order selection test to find the best
fitting model within a considered series of expanded densities. A bootstrap is used to
obtain an approximate p-value. The developed method is investigated in a simulation
study and applied to the udder infection data as well as the insemination data. The
results in Chapter 3 are published in Geerdens et al. (2013).
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In Part II the focus is on copula modeling. Chapter 4 contains some basic con-
cepts of copula theory. In Chapter 5 exchangeable and nested Archimedean copulas
are compared to the more flexible Joe-Hu copula family, which consists of mixtures of
max-infinitely divisible bivariate copulas (Joe and Hu, 1996). A likelihood approach is
used to fit the diverse copulas. Next, we address the question of model selection. For
right-censored time-to-event data, we state conditions under which a penalized likelihood
based information criterion is weakly consistent or consistent. The developed method
is used in a simulation study and applied to the udder infection data. The material
of Chapter 5 is in Geerdens et al. (2014). In Chapter 6 a new nonparametric copula
estimator is defined for event time data subject to univariate or copula right-censoring.
We prove consistency and establish an asymptotic i.i.d. representation. A simulation
study is used to investigate the finite sample performance of the proposed estimator as
compared to the recent nonparametric copula estimator by Gribkova and Lopez (2014).
The results of Chapter 6 are in Geerdens et al. (2015).
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The frailty model
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Chapter 2
The proportional hazards and
the shared frailty model

The proportional hazards model is widely used to describe univariate time-to-event data
(Therneau and Grambsch, 2000; Klein and Moeschberger, 2003). For grouped event
time data, the within-cluster association needs to be taken into account and hence a
modification is required. A cluster-specific random effect is introduced, resulting in the
shared frailty model (Duchateau and Janssen, 2008; Wienke, 2011).

In Section 2.1 proportional hazards models are reviewed, shared frailty models are
defined in Section 2.2.

2.1 The proportional hazards model

Univariate time-to-event data are often described by means of the proportional hazards
model. Here, the hazard function at time t for study item r (r = 1, . . . , n) with covariate
vector xr = (xr1, . . . , xrp)

′ of length p is expressed as

hr(t) = h0(t) exp(β
′
xr) (2.1)

with h0(t) the baseline hazard function at time t, i.e., the hazard function at time t of an
item whose covariate values equal 0 and β the regression coefficients associated with xr.

9
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With hr(t) and hl(t) the hazard function of the rth, resp. the lth study item at time t,
the ratio of two hazard functions is given by

hr(t)
hl(t)

= exp
(
β
′
(xr − xl)

)
.

The above implies that the hazard ratio of two study items is constant over time,
explaining the notion ”proportional hazards model”.

In model (2.1), h0 can take a parametric form or can be left unspecified. A pop-
ular choice is h0(t) = λρtρ−1 with λ > 0 a scale parameter and ρ > 0 a shape parameter,
the Weibull baseline hazard function.

2.2 The shared frailty model

For clustered event time data the proportional hazards model in (2.1) is extended to the
shared frailty model, which is given by

hsr(t) = h0(t) exp(β
′
xsr + ws)

= h0(t)us exp(β
′
xsr) (2.2)

where hsr(t) is the hazard function at time t for the rth item (r = 1, . . . , ns) in
cluster s (s = 1, . . . , n) given ws, resp. us = exp(ws), h0(t) is the baseline hazard
function at time t and β are the regression coefficients associated with the covariate
vector xsr = (xsr1, . . . , xsrp)

′ of length p. Due to the inclusion of ws or us, a shared
frailty model is a conditional model. As in a proportional hazards model, h0 can take a
parametric form (e.g., Weibull) or can be left unspecified.

The factor us = exp(ws) is the frailty for cluster s (s = 1, . . . , n) and it is com-
mon to all members of that cluster, explaining the concept ”shared frailty”. It accounts
for the similarity in event time of items within the same cluster (correlation). The frailties
u1, . . . , un are assumed to be an i.i.d. sample from a density fU , where Var(U) represents
the heterogeneity between clusters. Common choices for the frailty density are:

• The one-parameter gamma density:

fU (u) = u1/θ−1 exp(−u/θ)
θ1/θΓ(1/θ)

(2.3)

with θ > 0. The mean and the variance of the frailty are: E(U) = 1 and Var(U) = θ.
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• The inverse Gaussian density:

fU (u) =
(
α

2π

)1/2
u−3/2 exp

(
− α

2uµ2 (u− µ)2
)

with µ > 0 and α > 0. The mean and the variance of the frailty are: E(U) = µ

and Var(U) = µ3/α.

• The positive stable density:

fU (u) = − 1
πu

∞∑
k=1

Γ(kν + 1)
k! (−u−ν)k sin(νkπ)

with 0 < ν < 1. This density has infinite mean and therefore the variance is also
undetermined.

Note that a frailty has a multiplicative effect on the baseline hazard function. To avoid
identifiability problems, the mean of the frailty needs to be specified. A standard choice, for
frailties with finite mean, is to set the mean equal to one. We illustrate the identifiability
issue with an example.

Example. Consider a frailty Ũ from a density f
Ũ

with E(Ũ) 6= 1 and a frailty U =
Ũ/E(Ũ) from a density fU with E(U) = 1. Suppose a Weibull baseline hazard function
is appropriate. We have

hsr(t) = λρtρ−1 ũs exp(β
′
xsr)

= λρtρ−1 us E(Ũ) exp(β
′
xsr)

= λ̃ρtρ−1 us exp(β
′
xsr)

where λ̃ = λE(Ũ). We also have hsr(t) = λρtρ−1 us exp(β′xsr). However, since E(Ũ) 6=
1, we obtain λ̃ 6= λ. The Weibull baseline hazard is thus identified differently for both
frailty densities.

The strength of the correlation is usually expressed by Kendall’s tau (Duchateau and
Janssen, 2008). For the one-parameter gamma density τ = θ/(θ+2), while τ = 1−ν for
the positive stable density. It holds that 0 < τ < 1. For the inverse Gaussian density with
µ = 1, Kendall’s tau equals 0.5−α+ 2α2 exp(2α)

∫∞
2α u

−1 exp(−u)du and 0 < τ < 0.5.

Due to its mathematical convenience, the one-parameter gamma is the most pop-
ular density choice. A strategy to verify its aptness is the subject of Chapter 3.





Chapter 3
A goodness-of-fit test for the
shared frailty model

As mentioned in Chapter 2, the shared frailty model can be used to describe clustered
time-to-event data. The shared frailty model has three components, namely the baseline
hazard function, the frailty and the exponential function describing the linear impact
of one or more covariates. Due to its mathematical tractability, the frailty is often
presumed to follow an one-parameter gamma density. Since it is the frailty density
that dictates the type of association, it is essential to verify the adequacy of the
chosen density. Here, the focus is on a diagnostic measure for the gamma frailty density,
assuming that the two other components of the shared frailty model are correctly specified.

To check the aptness of a gamma frailty density, Shih and Louis (1995) propose,
for frailty models with a parametric baseline hazard function, a graphical test based
on the evolution over time of the conditional frailty expectation given the observable
data. They show that, if a gamma frailty density is adequate, the considered quantity is
constant over time. An extension of the Shih and Louis test to an unspecified baseline
hazard function is given in Glidden (1999) and in Cui and Sun (2004).

In this chapter we develop, for shared frailty models with a parametric baseline
hazard function, a new test to validate the gamma frailty density. To this end, we rely
on ideas in Zhang and Davidian (2001) as well as in Claeskens and Hart (2009). They
replace the normal density of the random term in a mixed model by a Hermite series
expansion and subsequently verify the claim of normality via an order selection test.

13
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For likelihood based models, the asymptotic distribution of an order selection test is
established by Aerts et al. (1999).

In Section 3.1 we build, based on an orthonormal series expansion, a new class of
extended gamma frailty densities. Section 3.2 contains the corresponding marginal
likelihood for right-censored event time data. In Section 3.3 we use an order selection
test to find the best fitting density within a series of expanded models. In Section 3.4 a
simulation study is used to investigate the finite sample performance of the method. In
Section 3.5 we analyze the udder infection data and the insemination data. Conclusions
and a further discussion are in Section 3.6.

3.1 A class of extended gamma frailty densities

To test the gamma density assumption in a shared frailty model, we define a new class of
frailty densities based on polynomials orthonormal to the one-parameter gamma density.
Using the Gram-Schmidt orthogonalization procedure we obtain explicit expressions for
these polynomials, see Lemma 3.1.1.

Lemma 3.1.1. For n = 0, 1, 2, . . . the polynomial functions pn : R+ → R : u → pn(u)
with

pn(u) = (−θ)n exp(u/θ)u−1/θ+1 dn

dun

(
exp(−u/θ)u1/θ+n−1

)
=

n∑
i=0

(−θ)n−i
(
n

i

)
Γ (1/θ + n)
Γ (1/θ + i) u

i

are orthogonal with respect to the inner product 〈g1, g2〉 =
∫∞

0 g1(u)g2(u)fU (u)du where
fU is the one-parameter gamma density in (2.3). The set of polynomial functions vn :
R+ → R : u → vn(u) with vn(u) = pn(u)/‖pn‖1/2 and ‖pn‖ = θ2nn!Γ(1/θ+n)

Γ(1/θ) is
orthonormal.

Proof. Let k be a nonnegative integer. Integrate by parts k times in:∫ ∞
0

fU (u)ukpn(u)du = (−θ)n

θ1/θΓ (1/θ)

∫ ∞
0

uk
dn

dun

(
exp(−u/θ)u1/θ+n−1

)
du

= (−θ)n

θ1/θΓ (1/θ)

[{
uk

dn−1

dun−1

(
exp(−u/θ)u1/θ+n−1

)}∞
0︸ ︷︷ ︸

=0

−k
∫ ∞

0
uk−1 d

n−1

dun−1

(
exp(−u/θ)u1/θ+n−1

)
du

]
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= (−1)n+1θnk

θ1/θΓ (1/θ)

∫ ∞
0

uk−1 d
n−1

dun−1

(
exp(−u/θ)u1/θ+n−1

)
du

= . . .

= (−1)n+kθnk!
θ1/θΓ (1/θ)

∫ ∞
0

dn−k

dun−k

(
exp(−u/θ)u1/θ+n−1

)
du.

For k < n the above simplifies to

(−1)n+kθnk!
θ1/θΓ (1/θ)

[
dn−k−1

dun−k−1

(
exp(−u/θ)u1/θ+n−1

)]∞
0

= 0.

Since pk(u) is a polynomial of degree k, this implies that for k < n it holds that∫∞
0 fU (u)pk(u)pn(u)du = 0. However, for k = n the above simplifies to

θnn!
θ1/θΓ (1/θ)

∫ ∞
0

exp(−u/θ)u1/θ+n−1du = θ2nn!Γ (1/θ + n)
Γ (1/θ)

which completes the proof of orthogonality.

Further, since the leading term of pn(u) is un, it follows that

‖pn‖ =
∫ ∞

0
fU (u)p2

n(u)du =
∫ ∞

0
fU (u)unpn(u)du = θ2nn!Γ (1/θ + n)

Γ (1/θ) .

Therefore vn(u) = pn(u)/‖pn‖1/2, n = 0, 1, 2, . . . define a system of orthonormal poly-
nomials.

The first four orthonormal polynomials are: v0(u) = 1, v1(u) = (u − 1)θ−1/2,
v2(u) = {u2 − u(2 + 2θ) + θ + 1}/{θ(2 + 2θ)1/2} and v3(u) = {u3 − 3(1 + 2θ)u2 +
3(1 + 3θ + 2θ2)u− (1 + 3θ + 2θ2)}/{6θ3(1 + 3θ + 2θ2)}1/2. A graphical representation
is given in Figure 3.1.

Based on the polynomials in Lemma 3.1.1 an orthonormal series expansion around
the one-parameter gamma density fU is defined as

f
Ũm

(u) = fU (u)
c(d(m))

{
m∑
j=0

djvj(u)
}2

(3.1)

with Ũm the frailty for the model indexed by the series cut-off value m, d0 = 1 and
c(d(m)) =

∑m
j=0 d

2
j a normalization constant. Note that m = 0 corresponds to the

one-parameter gamma density fU and thus Ũ0 = U . By fitting models with different
series cut-off value m (via maximum likelihood estimation) and by using a model selection
method to choose the most appropriate value of m, one can verify the aptness of the
one-parameter gamma density.
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Figure 3.1: Polynomials orthonormal to the one-parameter gamma density with θ = 1; v0(u)
dot-dashed green line, v1(u) dotted blue line, v2(u) dashed red line and v3(u) solid black line.

The class of extended gamma frailty densities defined in (3.1) includes a wide
range of alternative frailty densities. In fact, any continuous density on the positive half-
line can be approximated by one of its members. Indeed, since

∫∞
0 exp(cu)fU (u)du <∞

for any 0 < c < 1/θ, the set of orthonormal polynomials vn (n = 0, 1, . . .) is closed with
respect to continuous functions g on (0,∞) that satisfy∫ ∞

0
g2(u)fU (u)du <∞. (3.2)

Consequently the polynomials are complete in the sense that limm→∞
∫∞

0 {g(u) −∑m
j=0 cjvj(u)}2fU (u)du = 0 for all continuous functions g on (0,∞) that satisfy (3.2)

(Nikiforov and Uvarov, 1988). Take f̃ any continuous density function on (0,∞), and
define g(u) = {f̃(u)/fU (u)}1/2. It is readily verified that (3.2) holds and hence the
series expansion in (3.1) is able to describe any continuous density on the positive real
line, where cj =

∫∞
0 {f̃(u)fU (u)}1/2vj(u)du. If moreover

∫∞
0 {g

′(u)}2ufU (u)du < ∞,
then the series expansion g(u) =

∑∞
j=0 cjvj(u) converges uniformly on every interval

[u1, u2] ⊂ (0,∞) (Nikiforov and Uvarov, 1988).

Next, the mean value of the frailty Ũm is investigated. To this end, define aij =
(−θ)j−i

(
j
i

)Γ(1/θ+j)
Γ(1/θ+i) and a∗ij = aij/‖pj‖1/2 as well as b∗ij = a∗2ij + 2

∑
k+l=2i,k<l≤j a

∗
kja
∗
lj

and c∗ij = 2
∑
k+l=2i+1,k<l≤j a

∗
kja
∗
lj .
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Lemma 3.1.2. For Ũm a random variable with density f
Ũm

as in (3.1),

Em = E(Ũm) =
[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijθ
2i+1Γ(2i+ 1/θ + 1) +

j−1∑
i=0

c∗ijθ
2i+2Γ(2i+ 1/θ + 2)

}

+2
m−1∑
j=0

m∑
k=j+1

djdk

{
j∑
i=0

k∑
l=0

a∗ija
∗
lkθ

i+l+1Γ(i+ l + 1/θ + 1)
}]

1
c(d(m))Γ(1/θ) .

Proof. Note that for j 6= k, vj(u)vk(u) =
∑j
i=0
∑k
l=0 a

∗
ija
∗
lku

i+l and v2
j (u) =∑j

i=0 b
∗
iju

2i +
∑j−1
i=0 c

∗
iju

2i+1. The mean frailty can then be calculated as

E(Ũm) =
∫ ∞

0
uf

Ũm
(u)du =

∫ ∞
0

u
fU (u)
c(d(m))

[
m∑
j=0

djvj(u)
]2

du

=
∫ ∞

0
u
fU (u)
c(d(m))

[
m∑
j=0

d2
jv

2
j (u) + 2

m−1∑
j=0

m∑
k=j+1

djdkvj(u)vk(u)
]
du

= 1
c(d(m))

[
m∑
j=0

d2
j

∫ ∞
0

ufU (u)v2
j (u)du+ 2

m−1∑
j=0

m∑
k=j+1

djdk

∫ ∞
0

ufU (u)vj(u)vk(u)du
]

= 1
c(d(m))

[
m∑
j=0

d2
j

∫ ∞
0

ufU (u)
{

j∑
i=0

b∗iju
2i +

j−1∑
i=0

c∗iju
2i+1

}
du

+2
m−1∑
j=0

m∑
k=j+1

djdk

∫ ∞
0

ufU (u)
j∑
i=0

k∑
l=0

a∗ija
∗
lku

i+ldu

]

= 1
c(d(m))

[
m∑
j=0

d2
j

∫ ∞
0

fU (u)
{

j∑
i=0

b∗iju
2i+1 +

j−1∑
i=0

c∗iju
2i+2

}
du

+2
m−1∑
j=0

m∑
k=j+1

djdk

∫ ∞
0

fU (u)
j∑
i=0

k∑
l=0

a∗ija
∗
lku

i+l+1du

]

= 1
c(d(m))θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

∫ ∞
0

exp (−u/θ)
{

j∑
i=0

b∗iju
2i+1/θ +

j−1∑
i=0

c∗iju
2i+1/θ+1

}
du

+2
m−1∑
j=0

m∑
k=j+1

djdk

∫ ∞
0

exp (−u/θ)
j∑
i=0

k∑
l=0

a∗ija
∗
lku

i+l+1/θdu

]

= 1
c(d(m))θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ij

∫ ∞
0

exp (−u/θ)u2i+1/θdu

+
j−1∑
i=0

c∗ij

∫ ∞
0

exp (−u/θ)u2i+1/θ+1du

}
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+2
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lk

∫ ∞
0

exp (−u/θ)ui+l+1/θdu

]
.

Using the change of variable t = u/θ as well as the definition of the gamma function, i.e.,
Γ(a+ 1) =

∫∞
0 exp(−u)uadu, we have

E(Ũm) = 1
c(d(m))θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijθ
2i+1/θ+1

∫ ∞
0

exp (−t) t2i+1/θdt

+
j−1∑
i=0

c∗ijθ
2i+1/θ+2

∫ ∞
0

exp (−t) t2i+1/θ+1dt

}

+2
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkθ

i+l+1/θ+1
∫ ∞

0
exp (−t) ti+l+1/θdt

]

= 1
c(d(m))θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijθ
2i+1/θ+1Γ (2i+ 1/θ + 1)

+
j−1∑
i=0

c∗ijθ
2i+1/θ+2Γ (2i+ 1/θ + 2)

}

+2
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkθ

i+l+1/θ+1Γ (i+ l + 1/θ + 1)
]

= 1
c(d(m))Γ (1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijθ
2i+1Γ (2i+ 1/θ + 1)

+
j−1∑
i=0

c∗ijθ
2i+2Γ (2i+ 1/θ + 2)

}

+2
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkθ

i+l+1Γ (i+ l + 1/θ + 1)
]
.

Note that Em depends on d(m) as well as on the series cut-off value m. Due to their
multiplicative effect on the baseline hazard, we need to standardize the frailties Ũm to
have mean equal to one in order for model (2.2) to be well defined. Indeed, otherwise the
baseline hazard would change from one model to another (Section 2.2). We thus define
the frailty Um = Ũm/Em. It follows that the density of the standardized frailty equals

fUm(u) = fU (uEm)Em
c(d(m))

{
m∑
j=0

djvj(uEm)
}2

. (3.3)
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3.2 The marginal loglikelihood

Consider right-censored time-to-event data. Denote by Ysr = min(Tsr, Csr) the observed
time of item r (r = 1, . . . , ns) in cluster s (s = 1, . . . , n), Tsr is the true event time and
Csr is the censoring time. The indicator δsr = I(Tsr ≤ Csr) equals one if Ysr = Tsr and
zero otherwise. Event times and censoring times are assumed to be independent.

Let H0 be the cumulative baseline hazard and xsr the covariate vector of item r

in cluster s. Define As =
∏ns
r=1{h0(Ysr) exp(β′xsr)}δsr , Bs =

∑ns
r=1H0(Ysr) exp(β′xsr)

and Ds =
∑ns
r=1 δsr (s = 1, . . . , n). Denote the parameter vector of the baseline hazard

by ξ and use ζm as notation for the vector (ξ, β, θ, d(m)) where d(m) = (d0, . . . , dm).

A nice feature of a shared frailty model with an extended gamma frailty density is
that the marginal loglikelihood of the data has a closed form.

Theorem 3.2.1. The marginal loglikelihood of the extended gamma frailty model with
frailty density fUm as in (3.3) is given by

`m,marg(ζm) =
n∑
s=1

log
(

AsE
1/θ
m

c(d(m))θ1/θΓ(1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijE
2i
mΓ(2i+Ds + 1/θ)

(Bs + Em/θ)2i+Ds+1/θ

+
j−1∑
i=0

c∗ijE
2i+1
m Γ(2i+Ds + 1/θ + 1)

(Bs + Em/θ)2i+Ds+1/θ+1

}

+2
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkE

i+l
m Γ(i+ l +Ds + 1/θ)

(Bs + Em/θ)i+l+Ds+1/θ

])
.

Proof. For cluster s the conditional likelihood, Ls (ξ, β|Um,s = us), is given by

ns∏
r=1

[{
h0 (Ysr)us exp(β

′
xsr)

}δsr
exp

(
−H0 (Ysr)us exp(β

′
xsr)

)]

=
ns∏
r=1

uδsrs

ns∏
r=1

{
h0 (Ysr) exp(β

′
xsr)

}δsr
exp
(
−us

ns∑
r=1

H0 (Ysr) exp(β
′
xsr)

)
.

Using the notation As, Bs and Ds, the marginal likelihood for the sth cluster, i.e.,
Lm,marg,s (ζm), can be computed as

∫ ∞
0

Ls (ξ, β|Um,s = us) fUm(us)dus = As

∫ ∞
0

uDss exp(−usBs)fUm(us)dus
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= AsEm
c(d(m))

[∫ ∞
0

uDss exp(−usBs)fU (usEm)
{

m∑
j=0

djvj(usEm)
}2

dus

]

= AsEm
c(d(m))

[∫ ∞
0

uDss exp(−usBs)fU (usEm){
m∑
j=0

d2
jv

2
j (usEm) + 2

m−1∑
j=0

m∑
k=j+1

djdkvj(usEm)vk(usEm)
}
dus

]

= AsEm
c(d(m))

[
m∑
j=0

d2
j

∫ ∞
0

uDss exp(−usBs)fU (usEm)v2
j (usEm)dus

+2
m−1∑
j=0

m∑
k=j+1

djdk

∫ ∞
0

uDss exp(−usBs)fU (usEm)vj(usEm)vk(usEm)dus

]

= AsEm
c(d(m))

[
Fs +Gs

]
.

Using the change of variable ts = us (Bs + Em/θ) as well as the definition of the gamma
function Γ(a+ 1) =

∫∞
0 exp(−u)uadu, the terms Fs and Gs can be rewritten as

Fs =
m∑
j=0

d2
j

[∫ ∞
0

exp(−usBs)fU (usEm)

{
j∑
i=0

b∗ijE
2i
mu

2i+Ds
s +

j−1∑
i=0

c∗ijE
2i+1
m u2i+Ds+1

s

}
dus

]

= E
1/θ−1
m

θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

{∫ ∞
0

exp(−us(Bs + Em/θ))

j∑
i=0

b∗ijE
2i
mu

2i+Ds+1/θ−1
s +

j−1∑
i=0

c∗ijE
2i+1
m u2i+Ds+1/θ

s

}
dus

]

= E
1/θ−1
m

θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijE
2i
m

(Bs + Em/θ)2i+Ds+1/θ

∫ ∞
0

exp(−ts)t2i+Ds+1/θ−1
s dts

+
j−1∑
i=0

c∗ijE
2i+1
m

(Bs + Em/θ)2i+Ds+1/θ+1

∫ ∞
0

exp(−ts)t2i+Ds+1/θ
s dts

}]

= E
1/θ−1
m

θ1/θΓ (1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijE
2i
mΓ (2i+Ds + 1/θ)

(Bs + Em/θ)2i+Ds+1/θ

+
j−1∑
i=0

c∗ijE
2i+1
m Γ (2i+Ds + 1/θ + 1)

(Bs + Em/θ)2i+Ds+1/θ+1

}]



3.3. A likelihood ratio order selection test 21

Gs = 2
m−1∑
j=0

m∑
k=j+1

djdk

[∫ ∞
0

exp(−usBs)fU (usEm)

{
j∑
i=0

k∑
l=0

a∗ija
∗
lkE

i+l
m ui+l+Dss dus

}]

= 2E1/θ−1
m

θ1/θΓ (1/θ)

[
m−1∑
j=0

m∑
k=j+1

djdk

{∫ ∞
0

exp(−us(Bs + Em/θ))

j∑
i=0

k∑
l=0

a∗ija
∗
lkE

i+l
m ui+l+Ds+1/θ−1

s

}
dus

]

= 2E1/θ−1
m

θ1/θΓ (1/θ)

[
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkE

i+l
m

(Bs + Em/θ)i+l+Ds+1/θ∫ ∞
0

exp(−ts)ti+l+Ds+1/θ−1
s dts

]

= 2E1/θ−1
m

θ1/θΓ (1/θ)

[
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkE

i+l
m Γ (i+ l +Ds + 1/θ)

(Bs + Em/θ)i+l+Ds+1/θ

]
.

Therefore,

Lm,marg,s (ζm) = AsE
1/θ
m

c(d(m))θ1/θΓ(1/θ)

[
m∑
j=0

d2
j

{
j∑
i=0

b∗ijE
2i
mΓ(2i+Ds + 1/θ)

(Bs + Em/θ)2i+Ds+1/θ

+
j−1∑
i=0

c∗ijE
2i+1
m Γ(2i+Ds + 1/θ + 1)

(Bs + Em/θ)2i+Ds+1/θ+1

}

+2
m−1∑
j=0

m∑
k=j+1

djdk

j∑
i=0

k∑
l=0

a∗ija
∗
lkE

i+l
m Γ(i+ l +Ds + 1/θ)

(Bs + Em/θ)i+l+Ds+1/θ

]
.

Taking the log and summing over the n clusters one gets the expression for the marginal
loglikelihood `m,marg (ζm) =

∑n
s=1 log (Lm,marg,s (ζm)) as stated in Theorem 3.2.1.

3.3 A likelihood ratio order selection test

3.3.1 Null and alternative hypotheses

In model (2.2) we wish to test the null hypothesis that the frailties come from an one-
parameter gamma density

H0 : U ∼ fU (u) = u1/θ−1 exp(−u/θ)
θ1/θΓ(1/θ)

for some value θ > 0.



22 Chapter 3. A goodness-of-fit test for the shared frailty model

The alternative hypothesis Ha states that the frailty density is not an one-parameter
gamma density. Using models with a different series cut-off value m = 0, 1, . . . ,Mn in
the class of extended gamma frailty densities, the hypotheses can be rephrased as

H0 : m = 0 which is equivalent to: for all j = 1, . . . ,Mn : dj = 0
Ha : m > 0 which is equivalent to: there exists a j ∈ {1, . . . ,Mn} : dj 6= 0.

Different values of m = 1, 2, . . . ,Mn lead to different extensions of the gamma density.
The models based on a large value of m contain the models with a smaller value of m as
special cases. In other words, a nested model sequence is constructed by letting m grow.
In practice Mn is chosen fixed and not too large, since deviations from H0 will typically
be detected for fixed small values of Mn.

3.3.2 Order selection test

For likelihood based models, Aerts et al. (1999) defined the order selection (OS) statistic,
rephrased to our setting, by

Tn,OS = max
1≤m≤Mn

2 `m,marg(ζ̂m)− `0,marg(ζ̂0)
m

where ζm is the parameter vector of the model using density fUm . Denote the length of
ζm by qm.

With ζ̂0 and ζ̂m the maximum likelihood estimators of ζ0, resp. ζm, the numerator
of Tn,OS coincides with a likelihood ratio test. Further, note that an increase of the
series cutoff value m in (3.3) with one, implies the addition of one polynomial vm+1 to
the series or equivalently the addition of dm+1 to the vector of coefficients. Therefore,
the denominator of Tn,OS equals the difference in number of parameters of model m as
compared to the null model, i.e., qm − q0 = m. The omnibus nature of the test becomes
clear. The test is not a single likelihood ratio test, but a maximum of weighted likelihood
ratio statistics. By taking a maximum, the statistic Tn,OS combines various likelihood
ratio statistics and thereby handles the multiple testing issue. The weights 1/m take the
complexity of the models into account with a down-weight for large models.

Define a modified version of AIC (Akaike, 1973) by AICCα(m) = 2`m,marg(ζ̂m)−Cαqm,
where α denotes a pre-specified significance level. It then follows that rejecting H0 when
Tn,OS > Cα corresponds to rejecting H0 when m∗ = arg maxm=0,...,Mn

AICCα(m) > 0,
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explaining the name ”order selection test”. Indeed,

Tn,OS > Cα

⇔ max
1≤m≤Mn

2 `m,marg(ζ̂m)− `0,marg(ζ̂0)
m

> Cα

⇔ ∃m ∈ {1, . . . ,Mn} : 2 `m,marg(ζ̂m)− `0,marg(ζ̂0)
m

> Cα

⇔ ∃m ∈ {1, . . . ,Mn} : 2 {`m,marg(ζ̂m)− `0,marg(ζ̂0)} > Cαm

⇔ ∃m ∈ {1, . . . ,Mn} : 2 {`m,marg(ζ̂m)− `0,marg(ζ̂0)} > Cα{qm − q0}

⇔ ∃m ∈ {1, . . . ,Mn} : 2 `m,marg(ζ̂m)− Cαqm > 2 `0,marg(ζ̂0)− Cαq0

⇔ ∃m ∈ {1, . . . ,Mn} : AICCα(m) > AICCα(0)

⇔ m∗ = arg maxm=0,...,Mn AICCα(m) > 0.

To obtain the critical value Cα, information on the asymptotic distribution of Tn,OS is
needed. For a test about the density of the random effect in a mixed model, Claeskens
and Hart (2009) show that TOS = maxm≥1

Vm
m , where Vm =

∑m
j=1 Z

2
j with Z1, Z2, . . .

independentN(0, 1) distributed random variables, is the limiting form of Tn,OS as n→∞.
However, for the hypotheses in Section 3.3.1, a small simulation study based on 1000 data
sets, each with 150 clusters of size 4, θ = 0.3 or 0.5 and Mn = 3, reveals that the finite
sample null distribution of Tn,OS depends on the value of θ (see Figure 3.2). Moreover, a
concise simulation study based on 1000 data sets, each with 1000 or 5000 clusters of size
2, θ = 0.3 and Mn = 3, shows that convergence to the null distribution postulated by
Claeskens and Hart (2009) is rather slow. Indeed, according to the latter C0.05 = 4.18,
while based on the simulated distribution, we obtain C0.05 = 2.46 resp. C0.05 = 3.14
for the setting with 1000, resp. 5000 clusters. We therefore apply a bootstrap approach
to obtain approximate p-values. A detailed description of the bootstrap algorithm for a
shared frailty model can be found in Appendix A.1.

3.4 Simulation study

To evaluate the numerical performance of the proposed methodology, we set up a small
simulation study. The settings used are inspired by the study on the performance of the
gamma frailty model in Duchateau and Janssen (2008).

3.4.1 Simulation setting

Event times Tsr are generated based on model (2.2) with, for a binary covariate, a
hazard rate of 1.3, i.e., β = log(1.3) and a Weibull baseline hazard defined by a scale
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Figure 3.2: Kernel estimates of the finite sample density of Tn,OS for true values of θ equal to
0.3 (dotted blue line) and 0.5 (dashed red line). The solid black line represents the asymptotic
density of Tn,OS .

λ = 0.22 and a shape ρ = 1 (exponential baseline hazard). The frailties come from
either an one-parameter gamma density with θ = 0.3 (f1), an inverse Gaussian density
with µ = 1 and α = 10/3 (variance of 0.3) (f2), resp. µ = 2 and α = 5 (variance of 1.6)
(f3) or from a positive stable density with ν = 0.85 (f4) (see Section 2.2). The latter
three serve as alternative frailty densities. Note that, in terms of mean and variance, f2

is close to f1, f3 is away from f1 in a moderate way and f4 is far away from f1. Also,
the corresponding Kendall’s tau values are quite similar for the diverse frailty densities:
τ1 = 0.13, τ2 = 0.11, τ3 = 0.13 and τ4 = 0.15. To obtain censoring times Csr, think
about a trial where patients enter the study in a uniform way over an accrual period of
five years and with a follow up period of three years. The censoring time for a subject
then consists of the time at risk before the end of the accrual period plus the follow up time.

Since the maximization of the likelihood is numerically difficult and time-consuming,
especially when the value of m is large, which combined with a bootstrap algorithm costs
even more time, the investigation is limited to 200 simulated data sets containing 150 or
300 clusters (n) of size ns = 4, each supplemented with 150 bootstrap samples. Mn is
taken to be 3. While for a single data example the accuracy can be taken higher, this
was not feasible in the simulation study.
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The observed data are then given by Ysr = min(Tsr, Csr) and δsr = I(Tsr ≤ Csr)
(s = 1, . . . , 150 or 300, r = 1, . . . , 4). Under the gamma frailty model (f1), we obtain
33% censored observations, while for the inverse Gaussian and positive stable frailty
densities, the percentages of censored observations are approximately 32% (f2), 15%
(f3) and 1.4% for f4. For a trial with uniform censoring times it is natural that the
percentage of censored observations decreases for frailties that take larger (mean) values.
Equal censoring percentages can however be obtained by adapting the used censoring
mechanism.

The concrete settings we consider for (n,ns,frailty density) are thus (150,4,f1),
(300,4,f1), (150,4,f2), (300,4,f2), (150,4,f3), (300,4,f3), (150,4,f4), (300,4,f4). To
obtain p-values we use the parametric bootstrap algorithm described in Appendix A.1.

3.4.2 Simulation results

Table 3.1 lists the percentage of times that the null hypothesis is rejected. The level of
the test is approximately attained and the positive stable alternative model (f4) gives the
highest simulated rejection probability. For the inverse Gaussian alternative model f3 the
test is also able to pick up the deviation from the null model, but with less pronounced
simulated rejection probability. However, for the inverse Gaussian alternative model f2,
the detection more or less fails. Intuition for the simulated rejection probabilities in
Table 3.1 can be obtained from the information contained in Figure 3.3. In the left panel
data from a shared positive stable frailty model (f4) with Weibull baseline and one binary
covariate is considered. Given these data we fit a shared gamma frailty model, leading
to an estimated parameter θ̂ of 0.20 (se = 0.21 · 10−2). This gamma density is depicted
together with the positive stable density used to generate the data. The estimated gamma
density is in some sense the ’best possible null’ frailty for the given data set. It is clear
from the picture that the ’best possible null frailty’ is far from the ’real’ positive stable
frailty, which explains the high values for the simulated rejection probabilities. In the right
panel we do the same but now for the inverse Gaussian frailty model based on f3. For this
setting the ’best possible null frailty’ (θ̂ = 0.29, se = 0.27 · 10−2) is closer to the ’real’
inverse Gaussian frailty. Therefore, the test is still able to detect the deviation from the
null model but, compared to the positive stable alternative model, with lower simulated
rejection probability. As expected, the simulated rejection probabilities of the test increase
with increased sample size for data generated under the alternative hypothesis.
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Table 3.1: Simulation results. The first column reveals the simulation setting. The second and
third column list the percentages of simulated data sets for which the null hypothesis is rejected
at level α = 0.05, resp. at level α = 0.10. The first two rows correspond to the null hypothesis
(simulated significance levels).

(n,ns,frailty density) α = 0.05 α = 0.10
(150,4,f1) 0.09 0.14
(300,4,f1) 0.03 0.09
(150,4,f2) 0.10 0.15
(300,4,f2) 0.08 0.15
(150,4,f3) 0.14 0.22
(300,4,f3) 0.20 0.28
(150,4,f4) 0.91 0.92
(300,4,f4) 0.99 0.99

3.5 Illustrative example

We apply the proposed methodology to the udder infection data described in Section 1.2.1
and the insemination data of Section 1.2.2.

3.5.1 Udder infection data

Consider the udder infection data - version 1 (100 cows). We assume a Weibull baseline
hazard, i.e., ξ = (λ, ρ). When taking Mn = 5 the value of the order selection test
statistic Tn,OS is 4.82 and the bootstrapped p-value based on 300 samples equals 0.03.
We therefore reject the null hypothesis. The value of Mn is not that important, also
for, e.g., Mn = 3 the conclusion holds. For the given data set, the extended gamma
frailty density with m = 2 is preferred: with C0.05 estimated to be 4.15, AICC0.05(0) for
the null model equals −841.31 while m = 2 corresponds to an AICC0.05(2) of −839.98.
The parameter estimates of the chosen density are λ̂ = 8.31 · 10−5 (se = 4.14 · 10−5),
ρ̂ = 2.05 (se = 0.11), β̂ = 0.34 (se = 0.29), θ̂ = 0.92 (se = 0.25), d̂1 = 0.09 (se =
0.09) and d̂2 = 0.48 (se = 0.16). Figure 3.4 shows the estimated null density together
with the estimated preferred frailty density.

For the udder infection data we plot, in the left panel of Figure 3.5, the centered
average of the posterior mean frailty over time together with the 95% confidence limits
(Shih and Louis, 1995). The observed pattern is only constant quite late in time. Hence,
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Figure 3.3: Comparison of the true log-frailty density (solid black line) with the estimated log-
frailty one-parameter gamma density (dashed red line). Left panel: true density is positive stable
with ν = 0.85 and estimated gamma density parameter is θ̂ = 0.20, right panel: true density is
inverse Gaussian with µ = 2, α = 5 and estimated gamma density parameter is θ̂ = 0.29.

the gamma frailty density assumption is questionable. This is in line with our finding.

3.5.2 Insemination data

Consider the insemination data. We assume a Weibull baseline hazard, i.e., ξ = (λ, ρ).
Based on Mn = 5, we obtain 51.51 as Tn,OS , which is much larger than the largest
value of Tn,OS in the 300 bootstrap samples (8.41) resulting in a p-value of zero, i.e.,
there is no support for the null hypothesis. Also here the choice of Mn is not crucial,
the same p-value is obtained when setting Mn = 3. For this data set, the extended
gamma frailty density with m = 4 was preferred: with C0.05 estimated to be 3.93,
AICC0.05(0) for the null model equals −30538.06 while for m = 4 AICC0.05(4) takes a
value of −30435.46. The parameter estimates of the chosen density are λ̂ = 0.04 · 10−2

(se = 0.03 · 10−3), ρ̂ = 1.76 (se = 0.01), β̂ = −0.16 (se = 0.02), θ̂ = 6.02 (se = 5.32),
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Figure 3.4: Estimated null density of log(U) (dashed red line) and estimated selected density of
log(U) (solid black line). Left panel: udder infection data, right panel: insemination data.

d̂1 = 1.31 (se = 0.29), d̂2 = 2.50 (se = 0.51), d̂3 = 2.46 (se = 0.46) and d̂4 = 1.77 (se
= 0.56). Figure 3.4 gives a graphical representation of the estimated null density and
the estimated frailty density with m = 4.

The plot in the right panel of Figure 3.5 shows the centered average of the pos-
terior mean frailty over time together with the 95% confidence limits (Shih and Louis,
1995) for the insemination data. Since the observed pattern is far from constant, the
gamma frailty model does not fit the data well. Again this conclusion is in line with our
finding.

3.6 Discussion

In this chapter, we unfold a procedure to assess the suitability of an one-parameter
gamma density for the random effect in a shared frailty model with a parametric baseline
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Figure 3.5: Centered average posterior frailty mean over time (Shih and Louis, 1995) - left panel:
udder infection data, right panel: insemination data.

hazard. Using an orthonormal polynomial expansion, a new class of gamma frailty
densities that enables us to approximate any continuous density on the positive half-line
is defined. We obtain an explicit expression of the corresponding marginal likelihood for
right-censored event time data. An order selection test based on an adapted version of
Akaike’s information criterion is used to find the best fitting model within a considered
series of expanded densities. A bootstrap algorithm leads to an approximate p-value. It
turns out that our approach tackles the problem at hand quite well, i.e., it is able to
detect smaller as well as substantial deviations from an one-parameter gamma density
with reasonable to very high power.

Even though the developed method proves to be useful, some remarks need to be made.
First, the use of an order selection test requires the fit of multiple extended gamma frailty
densities and hence is computationally intensive. A score test that relies only on the fit
of the null density might serve as an alternative. For linear mixed models, such a score
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test has been suggested by Thas (2009) in a discussion of Claeskens and Hart (2009). A
score test would, however, require the calculation of the matrix of second order partial
derivatives with respect to all unknown parameters in the shared frailty model, which is a
non-trivial task. A singleton test might also be an alternative. Here, an extended gamma
frailty density is formed by a single orthonormal polynomial, i.e., f̌Um(u) = fU (u)v2

m(u)
(m = 0, . . . ,Mn). Note that, except for the null density, no nesting is present. A
test based on Tn,singleton = maxm=1,...,Mn

{log Ľm(ξ̂m, β̂m, θ̂m) − log Ľ0(ξ̂0, β̂0, θ̂0)},
where Ľm is the likelihood of a shared frailty model with the mth singleton density
(m = 0, . . . ,Mn), can be performed. In a regression context, such a singleton test has
been studied by Aerts et al. (2004). Similar to our test, a bootstrap procedure would be
advised rather than working with the asymptotic test distribution.

Second, besides a random effect the shared frailty model includes two other com-
ponents, namely the baseline hazard function and the exponential function describing the
linear impact of one or more covariates. We focus on the frailty density, while the other
(parametric) parts are presumed to be correct. This approach might be too restrictive,
i.e., there is no guarantee that (for real-life data) a detection of lack-of-fit is not induced
by a false specification of a non-frailty component. To allow for an unspecified baseline
hazard function, several approaches may be applicable. One method is to profile out
the baseline hazard via the EM algorithm for a shared frailty model (Duchateau and
Janssen, 2008, section 5.1), whereas another strategy is to adjust the penalized likelihood
algorithm for a shared frailty model (Duchateau and Janssen, 2008, section 5.2) to allow
for an expanded gamma frailty density. Both approaches would use an iterative procedure
to estimate the frailty density, while within the present parametric context an exact
likelihood expression is available. To ease the linear impact of one or more covariates, the
spline approach of Duchateau and Janssen (2004) might be worthwhile to investigate.

Third, the defined orthonormal polynomials are specifically constructed for an one-
parameter gamma density. Similar calculations could be done for other frailty densities.
While the derivation of the polynomials might still be explicit, there is no guarantee that
the corresponding marginal likelihood has a closed form.



Part II

The copula model

31





Chapter 4
The copula model

In this chapter we briefly review some basic concepts of copula theory. Copulas can be
used to unravel the association in grouped event time data if the clusters are small and
of equal size. Denote the size of a group by p, i.e., for each cluster s (s = 1, . . . , n) we
have that ns = p.

A p-variate copula is a function C : [0, 1]p → [0, 1] satisfying:

(1) for every (u1, . . . , up) in [0, 1]p: C(u1, . . . , up) = 0 if at least one ur = 0 and
C(u1, . . . , up) = uk if all ur = 1 except uk (k 6= r = 1, . . . , p),

(2) for every hyperrectangle B = [u1, v1]× . . .× [up, vp] ⊂ [0, 1]p with ur ≤ vr for all
r (r = 1, . . . , p), the C-volume of B is non-negative, i.e.,

MvpupM
vp−1
up−1

. . . Mv2
u2
Mv1
u1
C(w1, . . . , wp) ≥ 0

where Mvrur C(w1, . . . , wp) = C(w1, . . . , vr, . . . , wp) − C(w1, . . . , ur, . . . , wp) (r =
1, . . . , p).

Stated otherwise, a copula C is a p-variate distribution function on [0, 1]p with uniform
margins.

The key result in copula theory is the Sklar’s theorem (Sklar, 1959): given a p-
variate joint survival function S(t1, . . . , tp) = P (T1 > t1, . . . , Tp > tp) with marginal
survival functions Sr(tr) = P (Tr > tr) (r = 1, . . . , p), there exists a p-variate copula C
such that

S(t1, . . . , tp) = C(S1(t1), . . . , Sp(tp)).

33
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Moreover, if the marginal survival functions are continuous, then the copula C is unique
and

C(u1, . . . , up) = S(S−1
1 (u1), . . . , S−1

p (up))

with S−1
r quantile functions (r = 1, . . . , p).

The above implies that the modeling of the joint survival function can be split
into two distinct parts: (1) the specification of the marginal survival functions; (2) the
identification of a copula that interconnects the former and hence fully captures the
within-cluster association. Note that such a complete segregation is not possible for a
shared frailty model (Goethals et al., 2008).

Often the pairwise correlation of cluster items is of particular interest. The strength of
the association modeled by a bivariate copula C is commonly expressed via Kendall’s tau
(τ), which is defined as (Nelsen, 2006)

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.

It holds that τ ∈ [−1, 1] where independence corresponds to τ = 0. Since Kendall’s
tau is a global measure of association, it does not reflect the tail behavior of the data.
To investigate the latter, the lower (δL) and upper (δU ) tail dependence coefficients can
be used. With U1 and U2 uniform [0, 1] random variables, these measures are given by
(Nelsen, 2006)

δL = lim
u→0

P (U2 < u|U1 < u) = lim
u→0

C(u, u)
u

δU = lim
u→1

P (U2 > u|U1 > u) = lim
u→1

1− 2u+ C(u, u)
1− u .

C is said to have lower (upper) tail dependence if δL ∈]0, 1] (δU ∈]0, 1]) and no lower
(upper) tail dependence if δL = 0 (δU = 0). Here, a copula is used to model the joint
survival function of event times. Therefore, a copula with lower tail dependence covers
the association between late event times, whereas a copula with upper tail dependence
captures the association between events that occur early in time.

In this dissertation, the focus is on semiparametric (Chapter 5) and nonparametric
(Chapter 6) copula estimation. In a semiparametric copula, the marginal survival
functions are modeled in a nonparametric way, while the copula function is taken to be of
a parametric form. On the other hand, if the marginal survival functions and the copula
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function are left unspecified, we obtain a nonparametric copula. Often, a semiparametric
copula is constructed via one or several Laplace transforms. With M the distribution
function of a positive random variable, a Laplace transform is defined as

ψ(s) =
∫ ∞

0
exp(−sα)dM(α)

or equivalently, a Laplace transform is a continuous strictly decreasing function
ψ = [0,∞[→ [0, 1] with ψ(0) = 1, ψ(∞) = 0 and satisfying the complete monotonicity
condition (−1)k ∂k

∂sk
ψ(s) ≥ 0, i.e., its derivatives must alternate in sign.

More (basic) information on copulas can be found in Nelsen (2006).





Chapter 5
Semiparametric copula
estimation

As mentioned in Chapter 4, a copula can be used to model clustered time-to-event data.
In this chapter, the focus is on four-variate semiparametric copulas, i.e., the marginal
survival functions are modeled in a nonparametric way while the copula function takes a
parametric form.

Popular models are the exchangeable and the nested Archimedean copulas (Nelsen,
2006; Savu and Trede, 2006; Hofert, 2008). Unfortunately, they induce rather restrictive
data dependence structures. Therefore, we investigate the use of Joe-Hu copulas (Joe
and Hu, 1996) as a more flexible alternative. To fit the diverse copulas, we use the
likelihood approach by Shih and Louis (1995). Given the variety of possible copulas,
the question of model selection arises. Based on ideas in Sin and White (1996),
Claeskens and Hjort (2008) as well as in Chen et al. (2010), we state conditions under
which a penalized likelihood based information criterion is weakly consistent or consistent.

In Section 5.1 the exchangeable and the nested Archimedean copulas are com-
pared to the more flexible Joe-Hu copulas. Section 5.2 contains the quasi-likelihood
for right-censored quadruple event time data. In Section 5.3 we address the issue of
model selection. In Section 5.4 the udder infection data are analyzed. To investigate the
numerical performance of the methodology we set up a simulation study, see Section 5.5.
Conclusions and ideas for future work are in Section 5.6. Supplementary info on the tail
behavior of exchangeable Archimedean and Joe-Hu copulas is given in Section 5.7. Key
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results needed for the proofs are collected in Appendix B.1.

5.1 Flexible copula models

In this section we show that the association pattern induced by the exchangeable and the
nested Archimedean copulas is quite restrictive and that the alternative Joe-Hu copulas
provide more flexibility.

5.1.1 Exchangeable and nested Archimedean copulas

With ψ a Laplace transform, a four-variate exchangeable Archimedean copula (EAC) is
defined as

C(u1, . . . , u4) = ψ
(
ψ−1(u1) + ψ−1(u2) + ψ−1(u3) + ψ−1(u4)

)
(5.1)

and is therefore completely determined by the choice of ψ. The latter implies a restrictive
dependence structure. Indeed, since only ψ can be specified, all bivariate marginal
copulas are exactly the same. For EAC, ψ is often called the generator of the copula.

Fully and partially nested Archimedean copulas (FNAC, resp. PNAC) extend EAC’s and
hence allow a more flexible association pattern. For four-dimensional data, the correlation
structures are given in Figure 5.1. The corresponding copula expressions are

C(u1, . . . , u4)

= ψ3
(
ψ−1

3 (u4) + ψ−1
3
[
ψ2
(
ψ−1

2 (u3) + ψ−1
2
[
ψ1
(
ψ−1

1 (u2) + ψ−1
1 (u1)

)])])
(5.2)

respectively,

C(u1, . . . , u4)

= ψ3
(
ψ−1

3
[
ψ1
(
ψ−1

1 (u1) + ψ−1
1 (u2)

)]
+ ψ−1

3
[
ψ2
(
ψ−1

2 (u3) + ψ−1
2 (u4)

)])
(5.3)

where ψi (i = 1, 2, 3) are Laplace transforms. From the formulas it follows that FNAC
and PNAC allow the free specification of three out of the six bivariate margins, while the
three remaining bivariate margins are implied by the chosen copula structure. Further,
to be a valid copula, each combination of Laplace transforms within a NAC, as given
by ψ−1

i ◦ ψj (i 6= j ∈ {1, 2, 3}), needs to satisfy the complete monotonicity condition
(Joe, 1997; Hofert, 2008). For two Laplace transforms from the same family the latter is
equivalent to claiming that the degree of dependence, as expressed by the bivariate copula
parameters, decreases with the level of nesting. However, the mixing of diverse Laplace
transforms needs to be handled with more care. We illustrate the complete monotonicity
condition for a NAC with two examples.
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Example 1. Consider a Gumbel Laplace transform ψ with parameter θ0 and another
Gumbel Laplace transform φ with parameter θ1. It holds that

ψ−1 ◦ φ(s) = s
θ0
θ1 .

The first order derivative is always positive. The second order derivative is negative if and
only if θ0 ≤ θ1. Given the latter, the alternating signs of the higher order derivatives is
ensured. Therefore ψ−1 ◦ φ satisfies the complete monotonicity condition if and only if
θ0 ≤ θ1.

Example 2. Consider a Clayton Laplace transform ψ with parameter θ0 and a Gumbel
Laplace transform φ with parameter θ1. It holds that

ψ−1 ◦ φ(s) =
exp

(
θ0s

1
θ1
)
− 1

θ0
.

The first order derivative is always positive. The second order derivative is only negative
for s-values satisfying (θ1 − 1

θ0

)θ1
≥ s

regardless the value of θ0 and θ1. Therefore ψ−1 ◦φ does not satisfy the complete mono-
tonicity condition, i.e., the combination of a Clayton Laplace transform with a Gumbel
Laplace transform will always leads to an improper copula.

5.1.2 Joe-Hu copulas

A copula family that is much more flexible than the one of exchangeable and nested
Archimedean copulas is the Joe-Hu family (Joe and Hu, 1996), which is constructed as
follows. Let Kij be bivariate copulas that are max-id, i.e., Kγ

ij is a distribution function
for all γ > 0 (1 ≤ i < j ≤ 4). Further, let H1,. . . ,H4 be univariate cdf’s on [0, 1] and let
M be the distribution function of a positive random variable α whose Laplace transform
is given by ψ. Joe and Hu (1996) define a four-variate copula by considering the following
mixture: ∫ ∞

0

∏
1≤i<j≤4

Kα
ij(Hi(ui), Hj(uj))

4∏
i=1

Hνiα
i (ui) dM(α)

= ψ
(
− log

( ∏
1≤i<j≤4

Kij(Hi(ui), Hj(uj))
4∏
i=1

Hνi
i (ui)

))

= ψ
(
−

∑
1≤i<j≤4

logKij(Hi(ui), Hj(uj))−
4∑
i=1

νi logHi(ui)
)

(5.4)
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Figure 5.1: With θ the parameter of ψ and θj the parameter of ψj (j = 1, 2, 3), the tree
structures and the association patterns of EAC, FNAC and PNAC are given by: (a) and (d) EAC:
all pairs have the same dependence parameter θ; (b) and (e) FNAC: pair (1,2) has association
parameter θ1, pairs (1,3) and (2,3) have association parameter θ2 and all other pairs have
association parameter θ3 (with θ1 ≥ θ2 ≥ θ3); (c) and (f) PNAC: pair (1,2), resp. pair (3,4),
has association parameter θ1, resp. θ2, and all other pairs have association parameter θ3 (with
θ1 ≥ θ3, θ2 ≥ θ3). A bigger node corresponds to a larger value for θj , while different line types
represent different dependencies.
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where the νi’s are chosen fixed constants satisfying νi > −3 (i = 1, . . . , 4) (for dimension
p: νi > 1− p). The νi’s are usually nonnegative, but they can be negative if some of the
Kij correspond to an independence copula.

For (5.4) to be a copula, the margins need to be uniform. This can be achieved
by choosing Hi(ui) equal to exp(−piψ−1(ui)) with pi = 1/(νi + 3) (i = 1, . . . , 4) (for
dimension p: pi = 1/(νi + p− 1)). One then obtains the copula

C(u1, . . . , u4)

= ψ
(
−

∑
1≤i<j≤4

logKij(exp(−piψ−1(ui)), exp(−pjψ−1(uj))) +
4∑
i=1

νipiψ
−1(ui)

)
.

(5.5)

Note that the inclusion of the νi’s ensures that the above family of multivariate copulas
is closed under margins and that the (i,j)-bivariate marginal copula is given by

C(ui, uj) = ψ(− logKij(exp(−piψ−1(ui)), exp(−pjψ−1(uj)))

+(νi + 2)piψ−1(ui) + (νj + 2)pjψ−1(uj)). (5.6)

See Joe and Hu (1996) for technical details where it is further shown that C(ui, uj)
is more concordant, i.e., more positive quadrant dependent than its Archimedean
counterpart.

The dependence structure in (5.5) is completely determined by the choice of the
Kij (1 ≤ i < j ≤ 4) and the Laplace transform ψ. The Laplace transform ψ induces
a minimal level of overall association, while the copulas Kij allow a fine-tuning of
the dependence for each of the six bivariate margins. Examples of popular bivariate
Archimedean copulas that are max-id and therefore can be used as building blocks
Kij are listed in Table 5.1. These copulas have different dependence properties, hence
using (a combination of) them in (5.5) allows the construction of copulas with flexible
dependence patterns. We refer to Section 5.7 for a description and a visualization of the
dependence properties of bivariate Archimedean copulas and bivariate Joe-Hu models.
The impact of the chosen νi on the modeled association is also illustrated. Condi-
tions to check the max-id assumption can be found in Joe (1993) and Joe and Hu (1996).

Note that by taking Kij(ui, uj) = uiuj , i.e., the independence copula, for all pairs (i, j)
(i 6= j ∈ {1, . . . , 4}), the copula in (5.5) is Archimedean with Laplace transform ψ.
Furthermore, by appropriate choices of the Kij (1 ≤ i < j ≤ 4) with Kij(ui, uj) 6= uiuj

for some pairs (i, j) it is possible to create a dependence structure that is the same as the
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Table 5.1: Bivariate Archimedean max-id copulas and their Laplace transforms - ũ = 1 − u and
ṽ = 1 − v.

copula K(u, v) ψ(s) θ ∈
Clayton

(
u−θ + v−θ − 1

)−1/θ (1 + θs)−1/θ ]0,∞[
Gumbel e−((− logu)θ+(− log v)θ)1/θ

e−s
1/θ [1,∞[

Frank − 1
θ log

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
− 1
θ log

(
1− (1− e−θ)e−s

)
]0,∞[

Joe 1−
(
ũθ + ṽθ − ũθṽθ

)1/θ 1− (1− e−s)1/θ [1,∞[

one generated by a nested Archimedean copula and this without the required modeling
restrictions of the latter, e.g., the association structure in Figure 5.1 (e) can be obtained
by taking K12 6= K13 = K23 6= K14 = K24 = K34, while the correlation pattern in
Figure 5.1 (f) can be constructed by setting K12 6= K34 6= K13 = K23 = K14 = K24.
Exchangeable and nested Archimedean copulas are thus, in some sense, a subclass of the
Joe-Hu family.

5.2 The quasi-loglikelihood

Consider four-variate right-censored event time data. Denote the observed time of item
r (r = 1, . . . , 4) in cluster s (s = 1, . . . , n) by Ysr = min(Tsr, Csr) with Tsr the true
event time and Csr the censoring time. The indicator δsr = I(Tsr ≤ Csr) equals
one if Ysr = Tsr and zero otherwise. Event times and censoring times are assumed
to be independent. Denote the joint survival function of (T1, . . . , T4) by S and the
marginal survival functions by Sr (r = 1, . . . , 4). Recall from Sklar’s theorem that
S(t1, . . . , t4) = C(S1(t1), . . . , S4(t4)) for a copula function C. We aim at modeling C
in a semiparametric way.

Consider a setM of diverse EAC, FNAC and PNAC as well as Joe-Hu models:

M =
⋃D
d=1Md

with Md = {Cd(u1, . . . , u4; ζd) : ζd ∈ Ad ⊂ Rqd}. Here, the parameter space Ad is a
subset of the qd-dimensional Euclidean space. The parameter vector ζd contains, for each
single model Md, all specific parametric characteristics: the Laplace transform ψd (EAC,
Joe-Hu), the Laplace transforms ψd,i (FNAC, PNAC) (i = 1, 2, 3) and the bivariate
max-id copulas Kd,ij (Joe-Hu) (1 ≤ i < j ≤ 4).
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Further, with

∆s =
4∏
r=1

(1− δsr)

∆s(p) = δsp

4∏
r=1;r 6=p

(1− δsr)

∆s(p, q) = δspδsq

4∏
r=1;r 6=p,q

(1− δsr) for p 6= q

∆s(p, q, v) = δspδsqδsv(1− δsw) for w 6= p, q, v and p 6= q 6= v

∆s(1, 2, 3, 4) =
4∏
r=1

δsr

and

ls,d(us1, . . . , us4, δs1, . . . , δs4; ζd)

= ∆s log (Cd(us1, us2, us3, us4; ζd))

+
4∑
p=1

[
∆s(p) log

(
∂Cd(us1, us2, us3, us4; ζd)

∂usp

)]

+
∑
p 6=q

[
∆s(p, q) log

(
∂2Cd(us1, us2, us3, us4; ζd)

∂usp∂usq

)]

+
∑
p 6=q 6=v

[
∆s(p, q, v) log

(
∂3Cd(us1, us2, us3, us4; ζd)

∂usp∂usq∂usv

)]

+∆s(1, 2, 3, 4) log
(
∂4Cd(us1, us2, us3, us4; ζd)

∂us1∂us2∂us3∂us4

)

the loglikelihood of model Md (d = 1, . . . , D) for right-censored data is given by (Shih
and Louis, 1995; Massonnet et al., 2009)

logLn,d(ζd) =
n∑
s=1

ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζd)

where Vsr = Sr(Ysr) (s = 1, . . . , n and r = 1, . . . , 4). From the above ζd can be
estimated if Sr (r = 1, . . . , 4) are known. Often Sr (r = 1, . . . , 4) are unknown and the
two-step approach by Shih and Louis (1995) is applied: replace Sr by its Kaplan-Meier
counterpart Ŝr to obtain V̂sr = Ŝr(Ysr) (s = 1, . . . , n and r = 1, . . . , 4) and maximize
the quasi-loglikelihood

log L̃n,d(ζd) =
n∑
s=1

ls,d(V̂s1, . . . , V̂s4, δs1, . . . , δs4; ζd)
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to attain the maximum quasi-likelihood estimator

ζ̂n,d = arg max
ζd∈Ad

log L̃n,d(ζd).

The optimization of the quasi-loglikelihood is implemented in a generic R-program which
is discussed in Section 5.5.

5.3 Model selection

We would like to select a model from the setM =
⋃D
d=1Md. Misspecification is possible,

i.e., the true (unknown) copula C does not need to be inM. Hence, we want to choose
the ‘best possible’ copula in M or the copula in M that is the ‘closest’ we can get to
the true (unknown) copula C (Sin and White, 1996; Claeskens and Hjort, 2008). The
discrepancy between the true (unknown) copula C and model Md inM (d = 1, . . . , D)
can be measured by the Kullback-Leibler discrepancy

n−1Etrue [logLtrue(ζtrue)− logLn,d(ζd)] (5.7)

where Etrue denotes the expectation with respect to the true (unknown) copula C and
logLtrue is the true (unknown) loglikelihood.

Given that we work under general misspecification, we need, for each model Md

(d = 1, . . . , D), the pseudo-true parameter value ζ∗n,d where

ζ∗n,d = arg max
ζd∈Ad

n−1
n∑
s=1

Etrue [ls,d(V1, . . . , V4, δ1, . . . , δ4; ζd)] .

The pseudo-true parameter value minimizes the Kullback-Leibler discrepancy (5.7) or
equivalently, it is the parameter value for which the loglikelihood using the dth model is
as close as possible to the true (unknown) loglikelihood. Note that for the data generating
process that we consider, i.e., right-censored data with independent event and censoring
times, the above reduces to

ζ∗n,d = ζ∗d = arg max
ζd∈Ad

Etrue [ld(V1, . . . , V4, δ1, . . . , δ4; ζd)] .

In the remainder we present the model selection procedure in its general form.

To select a model from the set M =
⋃D
d=1Md a penalized quasi-loglikelihood is

used. More specifically, for model Md (d = 1, . . . , D) we consider

ICn(Md) = −2 log L̃n,d(ζ̂n,d) + pen(n, d). (5.8)
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Common examples of the penalty term are pen(n, d) = 2qd, leading to the Akaike
information criterion, AIC (Akaike, 1973) and pen(n, d) = qd logn, resulting in the
Bayesian information criterion, BIC (Schwarz, 1978). The smaller the value of ICn(Md),
the better the model Md is.

Propositions 5.3.1 and 5.3.2 indicate that, based on information criterion (5.8),
the best model is chosen in a (weakly) consistent way. Here, we follow the terminology
introduced by Sin and White (1996), where (weak) consistency of a selection criterion
refers to the use of a weak law of large numbers. The proofs of Propositions 5.3.1
and 5.3.2 rely on results in Chen et al. (2010), where it is shown that under suitable
conditions: (1) the estimator ζ̂n,d converges to the pseudo-true parameter value ζ∗n,d and
(2) the estimator ζ̂n,d is asymptotically normal. The findings of Chen et al. (2010) and
the corresponding conditions are listed in Appendix B.1.

Suppose that there is exactly one model Md0 in the set of considered models M
which reaches the smallest Kullback-Leibler discrepancy. Proposition 5.3.1 states a
condition on the penalty under which information criterion (5.8) is weakly consistent,
i.e., under which it selects model Md0 with probability tending to one.

Proposition 5.3.1 (Weak consistency). Suppose that there is an unique model Md0 in
the set of considered modelsM which reaches the smallest Kullback-Leibler discrepancy,
i.e.,

lim inf
n→∞

min
d 6=d0

n−1Etrue[logLn,d0(ζ∗n,d0
)− logLn,d(ζ∗n,d)] > 0. (5.9)

Define ∆ICn(d0, d) = ICn(Md0) − ICn(Md). If for all d = 1, . . . , D, pen(n, d0) −
pen(n, d) = op(n) and if the conditions of Proposition B.1.1 are satisfied, then weak
consistency holds, i.e.,

lim
n→∞

P (max
d6=d0

∆ICn(d0, d) < 0) = 1.

Proof. From Proposition B.1.1 we have (d0 6= d = 1, . . . , D)

n−1{log L̃n,d0(ζ̂n,d0)− log L̃n,d(ζ̂n,d)}

= n−1Etrue[logLn,d0(ζ∗n,d0
)− logLn,d(ζ∗n,d)] +Qn

with Qn = oP (1) or equivalently

log L̃n,d0(ζ̂n,d0)− log L̃n,d(ζ̂n,d) = Etrue[logLn,d0(ζ∗n,d0
)− logLn,d(ζ∗n,d)] +Q∗n
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with Q∗n = oP (n). Hence, for models Md0 and Md satisfying (5.9) (d0 6= d = 1, . . . , D)
we obtain

∆ICn(d0, d) = ICn(Md0)− ICn(Md)

= −2{log L̃n,d0(ζ̂n,d0)− log L̃n,d(ζ̂n,d)}+ pen(n, d0)− pen(n, d)

= −2{Etrue[logLn,d0(ζ∗n,d0
)− logLn,d(ζ∗n,d)]}+Q∗n

+pen(n, d0)− pen(n, d)

= −2{Etrue[logLn,d0(ζ∗n,d0
)− logLn,d(ζ∗n,d)]}+Rn

≤ −κn+Rn

with Rn = Q∗n + pen(n, d0) − pen(n, d) and where, for κ > 0, the last equality follows
from (5.9).

The former holds for all models Md0 and Md satisfying (5.9) (d0 6= d = 1, . . . , D), we
thus have maxd 6=d0 ∆ICn(d0, d) ≤ −κn+Rn.

Further, due to the penalty condition, it holds that for each ξ > 0 there exists
N(ξ) such that for n > N(ξ): P (−κn+Rn > 0) < ξ or P (−κn+Rn < 0) > 1− ξ.

Consequently, limn→∞ P (maxd 6=d0 ∆ICn(d0, d) < 0) = 1.

Proposition 5.3.1 implies that model selection based on AIC and/or BIC is weakly
consistent.

Next, suppose that there are two or more models that achieve nearly the same
small Kullback-Leibler discrepancy. Define J and J̃ to be (non-empty) sets of such
’good’ models and state that Md, Md′ ∈ J if and only if

lim sup
n→∞

n−1/2Etrue[logLn,d′(ζ∗n,d′)− logLn,d(ζ∗n,d)] <∞ (5.10)

and Md, Md′ ∈ J̃ if and only if

log L̃n,d′(ζ∗n,d′)− log L̃n,d(ζ∗n,d) = OP (1). (5.11)

Proposition 5.3.2 states conditions on the penalty under which information criterion (5.8)
selects, with probability tending to one, from a set of ’good’ models J or J̃ a most
parsimonious model, i.e., a model having the least parameters. The latter is called con-
sistency. Note that there might be more than one parsimonious model. Define J0 ⊂ J
the subset of J with the most parsimonious models, i.e., J0 = {Md0 ∈ J : qd0 =
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min{qd : Md ∈ J }} and J̃0 ⊂ J̃ the subset of J̃ with the most parsimonious models,
i.e., J̃0 = {Md0 ∈ J̃ : qd0 = min{qd : Md ∈ J̃ }}.

Proposition 5.3.2 (Consistency). Assume that the conditions of Proposition B.1.3 are
satisfied.

(a) With J defined in (5.10), assume that for all Md0 ∈ J0, for all Md ∈ J \J0,
the penalty is such that P ({pen(n, d) − pen(n, d0)}/

√
n → ∞) = 1. Then, with

probability tending to one a most parsimonious model will be selected, i.e.,

lim
n→∞

P ( max
Md 6∈J0

∆ICn(d0, d) < 0) = 1.

(b) With J̃ defined in (5.11), assume that for all Md0 ∈ J̃0, for all Md ∈ J̃ \J̃0:
P (pen(n, d)−pen(n, d0)→∞) = 1. Then, with probability tending to one a most
parsimonious model will be selected, i.e.,

lim
n→∞

P ( max
Md 6∈J̃0

∆ICn(d0, d) < 0) = 1.

Proof. We first prove (a).

From Proposition B.1.3 we have (d0 6= d = 1, . . . , D)

log L̃n,d(ζ̂n,d)− log L̃n,d0(ζ̂n,d0) = Etrue[logLn,d(ζ∗n,d)− logLn,d0(ζ∗n,d0
)] +Qn

with Qn = OP (n1/2). Hence, for models Md0 and Md (d0 6= d = 1, . . . , D), we obtain

∆ICn(d0, d) = ICn(Md0)− ICn(Md)

= 2{log L̃n,d(ζ̂n,d)− log L̃n,d0(ζ̂n,d0)} − {pen(n, d)− pen(n, d0)}

= 2{Etrue[logLn,d(ζ∗n,d)− logLn,d0(ζ∗n,d0
)]}+Qn

−{pen(n, d)− pen(n, d0)}

= Rn − Pn

where Rn = 2{Etrue[logLn,d(ζ∗n,d) − logLn,d0(ζ∗n,d0
)]} + Qn and Pn = pen(n, d)

−pen(n, d0).

The former holds for all models Md0 and Md (d0 6= d = 1, . . . , D), thus also for
all models Md0 ∈ J0 and Md ∈ J \J0. We then have

max
Md 6∈J0

∆ICn(d0, d) = R∗n − P ∗n
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where R∗n and P ∗n are Rn resp. Pn corresponding to Md0 ∈ J0 and Md ∈ J \J0 for
which ∆ICn(d0, d) is maximal.

Further, (5.10) implies that for all ξ > 0 there exists ∆(ξ) < ∞ and N1(ξ) such
that for all n > N1(ξ): P (R∗n > n1/2∆(ξ)) < ξ/2. Also, due to the penalty condition,
there exists N2(ξ) such that for all n > N2(ξ): P (P ∗n < n1/2∆(ξ)) < ξ/2.

Let n > max(N1(ξ), N2(ξ)), then

P ( max
Md 6∈J0

∆ICn(d0, d) < 0) = P (R∗n < P ∗n)

≥ P (R∗n ≤ n1/2∆(ξ), P ∗n ≥ n1/2∆(ξ))

≥ 1− P (R∗n < n1/2∆(ξ))− P (P ∗n < n1/2∆(ξ))

> 1− ξ.

Consequently, limn→∞ P (maxMd 6∈J0 ∆ICn(d0, d) < 0) = 1.

We now prove (b).

Define

∇ logLn,d(ζd) = ∂ logLn,d(ζd)
∂ζd

,∇2 logLn,d(ζd) = ∂2 logLn,d(ζd)
∂ζ2
d

∇ log L̃n,d(ζd) = ∂ log L̃n,d(ζd)
∂ζd

,∇2 log L̃n,d(ζd) = ∂2 log L̃n,d(ζd)
∂ζ2
d

.

A Taylor expansion of log L̃n,d(ζ∗n,d) around ζ̂n,d gives

log L̃n,d(ζ∗n,d) = log L̃n,d(ζ̂n,d) + (ζ∗n,d − ζ̂n,d) ∇ log L̃n,d(ζ̂n,d)

+ 1
2(ζ∗n,d − ζ̂n,d)T ∇2 log L̃n,d(ζ̄n,d) (ζ∗n,d − ζ̂n,d)

= log L̃n,d(ζ̂n,d) + 1
2(ζ∗n,d − ζ̂n,d)T ∇2 log L̃n,d(ζ̄n,d) (ζ∗n,d − ζ̂n,d)

where ζ̄n,d is between ζ∗n,d and ζ̂n,d.

Define Bn,d = −n−1Etrue[∇2 logLn,d(ζ∗n,d)] and B̄n,d = −n−1∇2 log L̃n,d(ζ̄n,d).
Under the conditions of Proposition B.1.2, Chen et al. (2010) show that B̄n,d converges
in probability to Bn,d as n→∞.
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Further,

1
2(ζ∗n,d − ζ̂n,d)T B̄n,d (ζ∗n,d − ζ̂n,d)

= 1
2(ζ∗n,d − ζ̂n,d)T (B̄n,d −Bn,d) (ζ∗n,d − ζ̂n,d) + 1

2(ζ∗n,d − ζ̂n,d)T Bn,d (ζ∗n,d − ζ̂n,d).

Since B̄n,d −Bn,d = oP (1) and ζ∗n,d − ζ̂n,d = OP (n−1/2) (Proposition B.1.2), the above
is OP (n−1). Therefore,

n−1 log L̃n,d(ζ̂n,d) = n−1 log L̃n,d(ζ∗n,d) + 1
2(ζ∗n,d − ζ̂n,d)T B̄n,d (ζ∗n,d − ζ̂n,d)

= n−1 log L̃n,d(ζ∗n,d) +Qn

with Qn = OP (n−1) or equivalently

log L̃n,d(ζ̂n,d) = log L̃n,d(ζ∗n,d) +Q∗n

with Q∗n = OP (1). Hence, for models Md0 and Md, we obtain (d0 6= d = 1, . . . , D)

∆ICn(d0, d) = ICn(Md0)− ICn(Md)

= 2{log L̃n,d(ζ̂n,d)− log L̃n,d0(ζ̂n,d0)} − {pen(n, d)− pen(n, d0)}

= 2{log L̃n,d(ζ∗n,d)− log L̃n,d0(ζ∗n,d0
)}+Q∗n

−{pen(n, d)− pen(n, d0)}

= Rn − Pn

where Rn = 2{log L̃n,d(ζ∗n,d)− log L̃n,d0(ζ∗n,d0
)}+Q∗n and Pn = pen(n, d)− pen(n, d0).

The former holds for all models Md0 and Md (d0 6= d = 1, . . . , D), thus also for
all models Md0 ∈ J̃0 and Md ∈ J̃ \J̃0. We then have

max
Md 6∈J̃0

∆ICn(d0, d) = R∗n − P ∗n

where R∗n and P ∗n are Rn resp. Pn corresponding to Md0 ∈ J̃0 and Md ∈ J̃ \J̃0 for
which ∆ICn(d0, d) is maximal.

Further, (5.11) implies that for all ξ > 0 there exists ∆(ξ) < ∞ and N1(ξ) such
that for all n > N1(ξ): P (R∗n > ∆(ξ)) < ξ/2. Also, due to the penalty condition, there
exists N2(ξ) such that for all n > N2(ξ): P (P ∗n < ∆(ξ)) < ξ/2.
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Let n > max(N1(ξ), N2(ξ)), then

P ( max
Md 6∈J̃0

∆ICn(d0, d) < 0) = P (R∗n < P ∗n)

≥ P (R∗n ≤ ∆(ξ), P ∗n ≥ ∆(ξ))

≥ 1− P (R∗n < ∆(ξ))− P (P ∗n < ∆(ξ))

> 1− ξ.

Consequently, limn→∞ P (max
Md 6∈J̃0

∆ICn(d0, d) < 0) = 1.

The penalty in AIC does not depend on the sample size, hence Proposition 5.3.2 implies
that model selection based on AIC is not consistent. The penalty in BIC includes the
sample size and by Proposition 5.3.2 model selection based on BIC is consistent. A
possible drawback of using a sample size dependent penalty is that, due to an increase
in penalty, simpler models tend to be selected for a larger sample size, which might be
counter-intuitive.

5.4 Illustrative example

We apply the discussed methodology to the udder infection data described in Section 1.2.1.

Consider the udder infection data - version 2 (407 cows). We construct 4 EAC’s,
4 FNAC’s and 4 PNAC’s (Table 5.3). Figure 5.1 visualizes the induced dependence
structures. We also build 64 Joe-Hu copulas (Table 5.4). The considered association
patterns are depicted in Figure 5.2. For the Joe-Hu copulas, we have to specify
for which pairs of udder quarters extra dependence is added on top of the overall
association captured by the Laplace transform ψ, i.e., we need to identify the pairs
(i, j) for which Kij is different from the independence copula. The situation is
summarized in Table 5.2. Further, we take νi = 0 (i = 1, . . . , 4) and, within a specific
dependence pattern, all Kij not equal to the independence copula are of the same
copula type (e.g., Clayton). By doing so, a nested sequence of Joe-Hu models is
obtained. It is possible to combine Kij ’s of different copula types (e.g., Clayton and
Gumbel), but since this would lead to an increased number of possible copulas, we
do not consider this option. Note that the dependence pattern in Figure 5.2 (b) is
the same as the one of PNAC in Figure 5.1 (c). However, the copula underlying the
pattern in Figure 5.2 (b) allows a more flexible mixing of copula components (Section 5.1).

The obtained AIC and BIC values are listed in Table 5.3 and Table 5.4, with the
three best models marked in bold. It follows that for the udder infection data the simpler
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Table 5.2: Considered Joe-Hu structures for the udder infection data.

pattern pairs (i, j) for which Kij(u, v) 6= uv number of
parameters

a (1,2) 2
b (1,2), (3,4) with K12 6= K34 3
c (1,2), (3,4), (1,3), (2,4) with K12 6= K34 6= K13 = K24 4
d (1,2), (3,4), (1,3), (2,4), (2,3) with K12 6= K34 6= K13 = K24 6= K23 5

Table 5.3: AIC/BIC-values for EAC, FNAC and PNAC.

ψ EAC FNAC PNAC
Clayton 307.38 / 311.38 308.72 / 320.75 305.85 / 317.88
Gumbel 386.75 / 390.76 372.05 / 384.07 358.40 / 370.43
Frank 315.23 / 319.23 312.66 / 324.69 307.72 / 319.74
Joe 440.61 / 444.62 421.09 / 433.11 405.67 / 417.70

models, i.e., EAC, FNAC and PNAC are insufficient. It is the Joe-Hu copula with the
most elaborate dependence structure, pattern d, that outperforms all other models. The
parameter estimates of the preferred model are listed in the left panel of Table 5.5, while
the corresponding estimated lower and upper tail dependence values are displayed in the
right panel. The results in Section 5.7 are applied. The tail dependence coefficients for
udder pair (i, j) 6= (1, 4) are calculated using the estimated parameter of the Laplace
transform (θC) and the estimated value of the parameter θJij of Kij (i < j ∈ {1, 2, 3, 4}).
Since K14 equals the independence copula, the tail dependence coefficients for udder pair
(1, 4) are calculated using only the estimated parameter of the Laplace transform (θC).
To obtain standard errors 1000 bootstrap samples are used; the resampling algorithms
(parametric bootstrap) are given in Appendix A.2. From Table 5.5 it follows that the
infection times are substantially correlated, i.e., the lower tail dependence equals 0.74 for
all udder quarter pairs and the upper tail dependence of the udder quarter pairs ranges
from 0 to 0.31. Late event times thus follow a similar association pattern, while for early
event times the association changes per udder quarter pair. No specific symmetries are
present.
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(a) (b)

(c) (d)

Figure 5.2: Considered Joe-Hu structures for the udder infection data - different line types
represent different dependencies.
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Table 5.4: AIC/BIC-values for Joe-Hu copulas.

ψ Kij pattern a pattern b pattern c pattern d
Clayton Clayton 283.46 / 291.48 252.54 / 264.56 232.89 / 248.92 228.80 / 248.84

Gumbel 279.44 / 287.46 254.75 / 266.78 214.56 / 230.59 199.13 / 219.17
Frank 267.85 / 275.87 217.24 / 229.26 202.44 / 218.48 198.16 / 218.21
Joe 280.43 / 288.44 256.34 / 268.36 214.02 / 230.06 197.99 / 218.04

Gumbel Clayton 352.45 / 360.47 311.70 / 323.72 272.61 / 288.64 262.12 / 282.16
Gumbel 355.27 / 363.29 326.87 / 338.89 271.07 / 287.10 247.56 / 267.60
Frank 354.63 / 362.65 327.53 / 339.56 289.13 / 305.17 267.22 / 287.26
Joe 355.85 / 363.86 327.96 / 339.99 271.86 / 287.89 248.54 / 268.58

Frank Clayton 291.69 / 299.71 261.45 / 273.48 238.21 / 254.25 232.33 / 252.37
Gumbel 287.43 / 295.45 262.29 / 274.32 221.71 / 237.74 205.12 / 225.17
Frank 289.48 / 297.50 281.57 / 293.60 272.15 / 288.18 273.58 / 293.62
Joe 287.48 / 295.50 262.36 / 274.38 221.68 / 237.72 205.03 / 225.07

Joe Clayton 397.31 / 405.33 349.35 / 361.38 298.41 / 314.45 284.41 / 304.46
Gumbel 402.36 / 410.37 369.28 / 381.31 301.67 / 317.71 275.06 / 295.10
Frank 398.69 / 406.71 378.79 / 390.81 329.38 / 345.42 293.10 / 313.14
Joe 402.89 / 410.91 370.26 / 382.28 302.59 / 318.62 276.21 / 296.26

Table 5.5: Estimates of the Clayton Laplace parameter (θC) and of the bivariate Joe copula
parameters (θJ

ij) as well as the corresponding estimated lower (δ̂L) and upper tail dependence
parameter (δ̂U ); the estimated standard errors se1 and se2 are obtained using the bootstrap
Algorithms 1 and 2 (Appendix A.2).

estimated pair of udder δ̂L δ̂U

parameter (se1, se2) quarters (se1, se2) (se1, se2)
θC 2.31 (0.30, 0.29) 1-4 0.74 (0.03, 0.03)
θJ12 2.62 (0.73, 0.69) 1-2 0.74 (0.03, 0.03) 0.23 (0.03, 0.03)
θJ23 1.38 (0.23, 0.23) 2-3 0.74 (0.03, 0.03) 0.12 (0.04, 0.04)
θJ34 4.44 (1.03, 1.05) 3-4 0.74 (0.03, 0.03) 0.28 (0.02, 0.02)

θJ13 = θJ24 9.65 (1.35, 1.37) 1-3 and 2-4 0.74 (0.03, 0.03) 0.31 (0.01, 0.01)
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5.5 Simulation study

To allow flexible choices for ψ and Kij (1 ≤ i < j ≤ 4) in a Joe-Hu copula, we developed
a generic R-program based on the copula formula in (5.5). Due to this generic character,
some numerical care is needed, e.g., evaluation of the exponent of the negative inverse
Laplace transform might be tedious due to limited precision. We addressed this issue by
high precision calculations, i.e., instead of using the double precision numbers in R, we
use multiple precision floating point numbers (Maechler, 2014). Further, note that the
likelihood expression in (5.7) contains (higher order) partial derivatives of the copula. The
exact expressions are typically quite cumbersome to obtain. In the program, we therefore
used finite forward differences as approximations. To evaluate the numerical performance
of the generic R-program, we set up a small simulation study.

5.5.1 Simulation setting

We generate 600 datasets, each containing 500 clusters of size 4 from either the Clayton
copula with θ = 3.19, the Frank copula with θ = 5.76 or the Joe-Hu copula

C(u1, . . . , u4)

=
(

1 +
{(
u−θ1 − 1

)α +
(
u−θ2 − 1

)α} 1
α +

{(
u−θ3 − 1

)α +
(
u−θ4 − 1

)α} 1
α

)− 1
θ

with θ = 2.91 and α = 1.17. This Joe-Hu copula can be constructed by taking
ν1 = . . . = ν4 = −2, ψ a Clayton Laplace transform with parameter θ, K12 = K34

a bivariate Gumbel copula with parameter α and all other Kij independence copulas
(1 ≤ i < j ≤ 4). Based on the results in Section 5.7, it holds that the bivariate
margins of the Clayton copula have lower tail correlation with δL = 0.81, while those
of the Frank copula display no tail dependence. The (1, 2) and (3, 4) margins of the
Joe-Hu copula have lower and upper tail correlation given by δL12 = δL34 = 0.82, resp.
δU12 = δU34 = 0.19, all other bivariate Joe-Hu margins show only lower tail dependence
with δL = 0.79.

To obtain event times Tsr (s = 1, . . . , 500 and r = 1, . . . , 4) Weibull margins with
scale λ = 0.5 and shape ρ = 1.5 are used. The censoring mechanism is assumed to be
univariate, i.e., Csr = Cs (s = 1, . . . , 500 and r = 1, . . . , 4), Weibull with scale and
shape given by λ = 0.15, ρ = 1.5, resp. λ = 0.85, ρ = 1.5, leading to approximately
23%, resp. 63% censoring. The latter corresponds to the censoring present in the udder
infection data. The observed data can then be calculated as Ysr = min(Tsr, Csr) and
δsr = I(Tsr ≤ Csr) (s = 1, . . . , 500 and r = 1, . . . , 4).
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Table 5.6: Simulation results. The first and second column give the simulation setting. The
third column reveals the used stepsize. Columns four and five list the mean estimated copula
parameters, while columns six to eight contain the mean estimated lower (δ̂L, δ̂U12 = δ̂L34) and
upper (δ̂U12 = δ̂L34) tail dependence parameter. All estimated parameters are supplemented
with the corresponding empirical standard deviation.

copula censoring stepsize θ̂ (se) α̂ (se) δ̂L12 = δ̂L (se) δ̂U12 =
δ̂L34 (se) δ̂U34 (se)

Clayton 23% 0.001 3.09 (0.23) 0.80 (0.01)
0.0005 3.09 (0.23) 0.80 (0.01)

63% 0.001 3.04 (0.33) 0.79 (0.02)
0.0005 3.04 (0.33) 0.79 (0.02)

Frank 23% 0.001 5.74 (0.27)
0.0005 5.73 (0.26)

63% 0.001 5.72 (0.38)
0.0005 5.72 (0.37)

Joe-Hu 23% 0.001 2.81 (0.23) 1.18 (0.03) 0.81 (0.01) 0.78 (0.02) 0.20 (0.03)
0.0005 2.81 (0.23) 1.18 (0.03) 0.81 (0.01) 0.78 (0.02) 0.20 (0.03)

63% 0.001 2.77 (0.33) 1.18 (0.04) 0.81 (0.02) 0.78 (0.02) 0.20 (0.04)
0.0005 2.78 (0.32) 1.18 (0.04) 0.81 (0.02) 0.78 (0.02) 0.20 (0.04)

5.5.2 Simulation results

The results, obtained by applying the generic R-program with a stepsize of either 0.001
or 0.0005 for the finite forward differences, are summarized in Table 5.6. It follows that,
on average and taking the empirical standard deviation into account, the estimation of
the copula and tail dependence parameters is on target. The performance is somewhat
more accurate for the Frank copula and slightly better for light censored data.

5.6 Discussion

In this chapter, we show that Joe-Hu copulas allow a flexible modeling of diverse
dependence structures, including the more restricted ones implied by the exchangeable
and the nested Archimedean copulas. Vine copulas also constitute a flexible alternative
(Aas et al., 2009; Berg and Aas, 2009; Kurowicka and Joe, 2011). The construction
of the latter is based on a decomposition of the joint copula density into a cascade of
bivariate (un)conditional copula densities. Given the variety of possible bivariate copula
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densities and the numerous ways of decomposing the joint copula density, it is clear that
vine copulas can describe multiple (non-symmetric) association patterns. Compared to
a Joe-Hu copula, a vine copula has no closed form. Hence, the calculation of bivariate
margins and tail dependence coefficients is non-trivial. Further, even though vine copulas
are well explored for complete data, no extension to right-censored data is yet available.
This is the subject of future research.

Further, we prove that, under certain conditions, model selection based on infor-
mation criterion (5.8) is weakly consistent or consistent. Sin and White (1996) state
conditions on the penalty under which a selection criterion of the form (5.8) is strongly
consistent, i.e., under which the best (parsimonious) model is selected almost surely. The
necessary tool to establish the latter is the law of the iterated logarithm. A translation to
the context of (misspecified) semiparametric copulas might be possible, but is beyond the
scope of this dissertation. An alternative selection method for semiparametric copulas is
the copula information criterion (CIC) by Grønneberg and Hjort (2014). They construct
an unbiased estimator of the Kullback-Leibler discrepancy between a model and the true
copula C, leading to some extra penalty terms as compared to (5.8). Since the derivation
has only been carried out for complete data, CIC is not applicable in the current setting.

5.7 Addendum

In this section we explore the tail behavior of the copulas discussed in Section 5.1.

Consider a four-variate exchangeable or nested Archimedean copula (5.1) - (5.3).
The bivariate copula margins are given by

C(ui, uj) = ψ̃(ψ̃−1(ui) + ψ̃−1(uj)) (5.12)

where ψ̃ ∈ {ψ,ψ1, ψ2, ψ3}, i.e., each bivariate margin is an exchangeable Archimedean
copula. The tail dependence parameters of (5.12) can be calculated via Theorem
B.1.1. For ψ̃ ∈ {Clayton, Gumbel, Frank, Joe} the result is contained in Table 5.7.
Figure 5.3 visualizes the induced association for ψ̃ ∈ {Clayton, Gumbel, Frank, Joe} with
parameter θ = 3. It follows that a Clayton copula is lower tail dependent, a Gumbel and
a Joe copula have upper tail dependence, while a Frank copula exhibits no tail dependence.

Further, consider two four-variate Joe-Hu copulas (5.5): one with νi = 0 or pi = 1/3 for
all i ∈ {1, . . . , 4} (as in Section 5.4) and one with νi = −2 or pi = 1 for all i ∈ {1, . . . , 4}
(as in Section 5.5). From (5.6) we get that the first Joe-Hu copula has bivariate margins
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given by

C(ui, uj) = ψ
(
− logKij(exp(− 1/3ψ−1(ui)), exp(− 1/3ψ−1(uj)))

+ 2/3ψ−1(ui) + 2/3ψ−1(uj)
)

(5.13)

while those of the second Joe-Hu copula take the form

C(ui, uj) = ψ
(
− logKij(exp(−ψ−1(ui)), exp(−ψ−1(uj)))

)
. (5.14)

The copulas in (5.13) and (5.14) are used to demonstrate the gain in association flexibility
compared to a bivariate exchangeable Archimedean copula as well as to illustrate the
impact of the chosen νi on the modeled association.

For various choices of ψ and Kij , the tail dependence parameters of (5.13) and
(5.14) can be calculated via Theorem B.1.2 and Theorem B.1.3, respectively. The results
are summarized in Table 5.8 and Table 5.9. Figure 5.4 and Figure 5.5 allow a visual
comparison of the induced association for ψ the Clayton Laplace transform with θ = 3
and Kij a max-id copula with parameter α = 4 where Kij ∈ {Clayton, Gumbel, Frank,
Joe}.

It appears that the lower tail dependence caused by ψ a Clayton Laplace trans-
form is strengthened for Kij a Clayton copula and that some upper tail dependence is
introduced by taking Kij either a Gumbel or a Joe copula. Setting Kij to be a Frank
copula has no effect on the modeled tail dependence. Moreover, if all other model
parameters are taken constant, the chosen value of νi seems to impact the strength
of the modeled correlation, i.e., a smaller value of νi leads to a somewhat stronger
association. In practice νi is fixed and consequently the parameters of ψ and Kij will
have to accommodate for the choice of νi.

Note that the above results are to be expected: (5.12) is an one-parameter cop-
ula, while (5.13) and (5.14) are two-parameter models. Therefore, the former can
describe either lower or upper tail dependence (if present), whereas the latter two can
capture both lower and upper tail dependence (if present).
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(a) δL = 0.79 and δU = 0
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(b) δL = 0 and δU = 0.74
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(c) δL = 0 and δU = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) δL = 0 and δU = 0.74
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Figure 5.3: Tail dependencies for several bivariate exchangeable Archimedean copulas defined
by (5.12) with θ = 3: (a) Clayton, (b) Gumbel, (c) Frank, (d) Joe.
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(a) δL = 0.84 and δU = 0
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(b) δL = 0.83 and δU = 0.27
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(c) δL = 0.79 and δU = 0
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(d) δL = 0.79 and δU = 0.27
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Figure 5.4: Tail dependencies for several bivariate Joe-Hu copulas defined by (5.13) with θ = 3
and α = 4, (a) Kij = Clayton, (b) Kij = Gumbel, (c) Kij = Frank, (d) Kij = Joe.
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(a) δL = 1 and δU = 0
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(b) δL = 0.94 and δU = 0.81
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(c) δL = 0.79 and δU = 0
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(d) δL = 0.79 and δU = 0.81
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Figure 5.5: Tail dependencies for several bivariate Joe-Hu copulas defined by (5.14) with θ = 3
and α = 4, (a) Kij = Clayton, (b) Kij = Gumbel, (c) Kij = Frank, (d) Kij = Joe.
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Table 5.7: Lower (δL) and upper (δU ) tail dependence parameter for some bivariate exchangeable
Archimedean copulas defined by (5.12).

copula δL δU

Clayton 2−1/θ 0
Gumbel 0 2− 21/θ

Frank 0 0
Joe 0 2− 21/θ

Table 5.8: Lower (δL) and upper (δU ) tail dependence parameter for some bivariate Joe-Hu
copulas defined by (5.13).

ψ K δL δU

Clayton Clayton
( 5

3
)−1/θ 0

Gumbel
( 1

3 (4 + 21/α)
)−1/θ 1

3 (2− 21/α)
Frank 2−1/θ 0
Joe 2−1/θ 1

3 (2− 21/α)
Gumbel Clayton 0 2− 21/θ

Gumbel 0 2−
( 1

3 (4− 21/α)
)1/θ

Frank 0 2− 21/θ

Joe 0 2−
( 1

3 (4− 21/α)
)1/θ

Frank Clayton 0 0
Gumbel 0 1

3 (2− 21/α)
Frank 0 0
Joe 0 1

3 (2− 21/α)
Joe Clayton 0 2− 21/θ

Gumbel 0 2−
( 1

3 (4− 21/α)
)1/θ

Frank 0 2− 21/θ

Joe 0 2−
( 1

3 (4− 21/α)
)1/θ



62 Chapter 5. Semiparametric copula estimation

Table 5.9: Lower (δL) and upper (δU ) tail dependence parameter for some bivariate Joe-Hu
copulas defined by (5.14).

ψ K δL δU

Clayton Clayton 1 0
Gumbel 2−1/θα 2− 21/α

Frank 2−1/θ 0
Joe 2−1/θ 2− 21/α

Gumbel Clayton 2−1/α if θ = 1 and 1 if θ > 1 2− 21/θ

Gumbel 0 2− 21/θα

Frank 0 2− 21/θ

Joe 0 2− 21/θα

Frank Clayton 2−1/α 0
Gumbel 0 2− 21/α

Frank 0 0
Joe 0 2− 21/α

Joe Clayton 2−1/α 2− 21/θ

Gumbel 0 2− 21/θα

Frank 0 2− 21/θ

Joe 0 2− 21/θα



Chapter 6
Nonparametric copula
estimation

In Chapter 5 semiparametric copulas are used to describe clustered right-censored event
time data. In this chapter, the focus is on bivariate nonparametric copula estimation, i.e.,
the marginal survival functions and the copula function are modeled in a nonparametric
way.

For complete time-to-event data, a nonparametric copula estimator has been in-
troduced and studied by Deheuvels (1979) as well as Gaenssler and Stute (1987). More
recent papers include Fermanian et al. (2004) and Segers (2012). For right-censored
event time data, less work has been done. Recently, Gribkova and Lopez (2014) defined
a nonparametric copula estimator for various right-censoring schemes. In this chapter, an
alternative is proposed. We prove consistency and derive an asymptotic i.i.d. representa-
tion. The ideas in Lin and Ying (1993) as well as Wang and Wells (1997) are instrumental.

In Section 6.1 we give the right-censoring schemes that are considered. Section 6.2
contains existing nonparametric survival function estimators. In Section 6.3 a new
nonparametric copula estimator is defined. Consistency is established in Section 6.4,
an asymptotic i.i.d. representation is derived in Section 6.5. In Section 6.6 we use a
simulation study to investigate the finite sample performance of the new estimator. A
comparison with the nonparametric copula estimator of Gribkova and Lopez (2014)
is provided. Section 6.7 closes the chapter with a discussion. Section 6.8 contains
supplementary material. Key results needed for the proofs are collected in Appendix B.2.
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6.1 Censoring schemes

Consider bivariate right-censored event time data. Denote the observed time of item r

(r = 1, 2) in cluster s (s = 1, . . . , n) by Ysr = min(Tsr, Csr) with Tsr the true event time
and Csr the censoring time. The indicator δsr = I(Tsr ≤ Csr) equals one if Ysr = Tsr

and zero otherwise. Event times and censoring times are assumed to be independent.

The vector (T1, T2) of event times has joint survival function S, the marginal sur-
vival and distribution functions are denoted by S1 and S2, resp. F1 and F2. The vector
(C1, C2) of censoring times has joint survival function SC , the marginal survival and
distribution functions are given by SG1 and SG2 , resp. G1 and G2. The joint survival
function of (Y1, Y2) is denoted by SY , where Yr = min(Tr, Cr) (r = 1, 2).

Sklar’s theorem implies that S(t1, t2) = C(S1(t1), S2(t2)) for a copula function C.
We aim at estimating C in a nonparametric way. Two settings for (C1, C2) are considered:

(1) univariate censoring, i.e., C1 = C2 = C̄ and thus

SC(c1, c2) = P (C1 > c1, C2 > c2) = SG(max(c1, c2))

where SG is the survival function of C̄. In practice, SG is replaced by the
Kaplan-Meier estimator ŜG based on (Ỹs, 1 − δ̃s) where Ỹs = max(Ys1, Ys2) and
δ̃s = δs1δs2 (s = 1, . . . , n). Indeed, C̄ can be seen as the censoring time of
T̃ = max(T1, T2). We then observe Ỹs = min(T̃s, C̄s) = min(max(Ts1, Ts2), C̄s)
= max(min(Ts1, C̄s),min(Ts2, C̄s)) = max(Ys1, Ys2) and δ̃s = I(T̃s ≤ C̄s) =
I(max(Ts1, Ts2) ≤ C̄s) = I(Ts1 ≤ C̄s) I(Ts2 ≤ C̄s) = δs1δs2 (s = 1, . . . , n).

(2) copula censoring, i.e., C1 and C2 are associated via a copula C̃ and thus

SC(c1, c2) = P (C1 > c1, C2 > c2) = C̃(SG1(c1), SG2(c2)).

In practice, SGr is replaced by the Kaplan-Meier estimator ŜGr based on (Ysr, 1 − δsr)
(s = 1, . . . , n and r = 1, 2) and C̃ is assumed to be known, i.e., C̃ = C̃θ with known
parameter θ. We also discuss the case of an unknown parameter θ. The setting of C1

and C2 independent is covered by taking C̃ the independence copula.

6.2 Nonparametric survival function estimators

In this section two nonparametric survival function estimators for right-censored event
time data are given.
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Lopez and Saint-Pierre (2012) as well as Gribkova et al. (2013) consider an esti-
mator of the form

Sn(t1, t2) = 1
n

n∑
s=1

WsnI(Ys1 > t1, Ys2 > t2) (6.1)

where Wsn = δs1δs2/Ŝ
lc
C (Ys1, Ys2) and ŜlcC is an appropriate estimator for a left-

continuous version of SC . Wsn is non-zero if cluster s contains only events and zero
otherwise (s = 1, . . . , n).

Alternatively, Lin and Ying (1993) as well as Wang and Wells (1997) consider

SY (t1, t2) = P (Y1 > t1, Y2 > t2)

= P (T1 > t1, T2 > t2)P (C1 > t1, C2 > t2)

= S(t1, t2)SC(t1, t2)

or

S(t1, t2) = SY (t1, t2)
SC(t1, t2)

to obtain

Ŝ(t1, t2) =
n−1

n∑
s=1

I(Ys1 > t1, Ys2 > t2)

ŜC(t1, t2)
(6.2)

with ŜC an appropriate estimator for SC . In contrast to the estimator Sn(t1, t2), all
clusters can contribute to the estimator Ŝ(t1, t2).

For complete data both estimators coincide with the empirical survival function.

6.3 Nonparametric copula function estimators

In this section two nonparametric copula estimators for right-censored event time data
are defined.

Given the estimator in (6.1), Gribkova and Lopez (2014) apply the Sklar’s theo-
rem to obtain

Cn(u1, u2) = Sn(S−1
n1 (u1), S−1

n2 (u2)) (6.3)
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where Sn1(t1) = Sn(t1, 0) and Sn2(t2) = Sn(0, t2). The estimator contains the weights
Wsn and thus ignores any cluster with at least one censored observation.

Alternatively, define Vr = Sr(Yr) (r = 1, 2) and consider

P (V1 < u1, V2 < u2)

= P (T1 > S−1
1 (u1), T2 > S−1

2 (u2))P (C1 > S−1
1 (u1), C2 > S−1

2 (u2))

= C(u1, u2)SC(S−1
1 (u1), S−1

2 (u2))

or

C(u1, u2) = P (V1 < u1, V2 < u2)
SC(S−1

1 (u1), S−1
2 (u2))

(6.4)

to obtain

Ĉ(u1, u2) =
n−1

n∑
s=1

I(V̂s1 < u1, V̂s2 < u2)

ŜC(Ŝ−1
1 (u1), Ŝ−1

2 (u2))
(6.5)

where V̂sr = Ŝr(Ysr), Ŝr is the Kaplan-Meier estimator for Sr based on (Ysr, δsr) and
Ŝ−1
r is the corresponding quantile function (s = 1, . . . , n and r = 1, 2). Further, ŜC is

an appropriate estimator for SC . Note that, unlike the estimator Cn(u1, u2), all clusters
can contribute to the estimator Ĉ(u1, u2).

For complete data both estimators reduce to the empirical copula function.

Before we explore the asymptotic behavior of the nonparametric copula estima-
tor (6.5), some extra notation is introduced. Denote the upper endpoint of the support
of any distribution function L by TL, i.e., TL = inf {t : L(t) = 1}. Due to independence
of Tr and Cr, it holds that THr = min(TFr , TGr ) for the distribution functions Fr
of Tr, Gr of Cr and Hr of Yr (r = 1, 2). Further, in the case of univariate cen-
soring, T

H̃
= min(T

F̃
, TG) where F̃ , G and H̃ are the distribution functions of resp.

T̃ = max(T1, T2), C̄ and Ỹ = min(T̃ , C̄).

Moreover, to study the asymptotic properties of the nonparametric copula estima-
tor (6.5), we need the following conditions:

(C1) S and SC are continuous.

(C2) SY is Lipschitz of order 1.
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(C3) SY is differentiable and its partial derivatives S(1)
Y and S(2)

Y are Lipschitz of order 1.

(C4) SGr is Lipschitz of order 1 (r = 1, 2).

(C5) SG is Lipschitz of order 1.

(C6) SG is differentiable and its derivative S′G is Lipschitz of order 1.

(C7) S−1
r (ur) < THr (r = 1, 2).

(C8) S−1
r (ur) < T

H̃
(r = 1, 2).

(C9) For Sr(TGr ) < ur < 1, Sr is differentiable at S−1
r (ur) with fr(S−1

r (ur)) > 0 where
fr = −S′r (r = 1, 2).

(C10) SGr is differentiable with |S′Gr | bounded in [0, T ] with T < THr (r = 1, 2).

(C11) SG is differentiable with |S′G| bounded in [0, T ] with T < T
H̃
.

6.4 Consistency

In (6.4) and (6.5), denote the numerator by A resp. Â and the denominator by B resp.
B̂, i.e.,

C(u1, u2) = A

B
and Ĉ(u1, u2) = Â

B̂
.

In this section the consistency of the estimator Ĉ(u1, u2) is established by proving that
Â→ A a.s. and that B̂ → B a.s.

We start by showing that Â→ A a.s.

Theorem 6.4.1. Assume (C1), (C2), (C7) and (C9). Then, as n→∞, Â→ A a.s.

Proof. We have

Â−A = An1 +An2 +An3

with

An1 = 1
n

n∑
s=1

I(Vs1 < u1, Vs2 < u2)− P (V1 < u1, V2 < u2)

An2 = 1
n

n∑
s=1

I(V̂s1 < u1, V̂s2 < u2)− P (V̂1 < u1, V̂2 < u2)

−
[ 1
n

n∑
s=1

I(Vs1 < u1, Vs2 < u2)− P (V1 < u1, V2 < u2)
]

An3 = P (V̂1 < u1, V̂2 < u2)− P (V1 < u1, V2 < u2).
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By the strong law of large numbers: An1 → 0 a.s.

For An2, introduce the notation

Sn,Y (y1, y2) = 1
n

n∑
s=1

I(Ys1 > y1, Ys2 > y2).

By continuity of S1 and S2, we can write

1
n

n∑
s=1

I(Vs1 < u1, Vs2 < u2) = Sn,Y (S−1
1 (u1), S−1

2 (u2)).

Using that the jumps of a Kaplan-Meier estimator are O(n−1) a.s. (Aly et al., 1985), we
have

1
n

n∑
s=1

I(V̂s1 < u1, V̂s2 < u2) = Sn,Y (Ŝ−1
1 (u1), Ŝ−1

2 (u2)) +O(n−1) a.s.

Further, note that

P (V1 < u1, V2 < u2) = SY (S−1
1 (u1), S−1

2 (u2))

P (V̂1 < u1, V̂2 < u2) = SY (Ŝ−1
1 (u1), Ŝ−1

2 (u2)) +O(n−1) a.s.

We therefore have

An2 = Sn,Y (Ŝ−1
1 (u1), Ŝ−1

2 (u2))− Sn,Y (S−1
1 (u1), S−1

2 (u2))

−
[
SY (Ŝ−1

1 (u1), Ŝ−1
2 (u2))− SY (S−1

1 (u1), S−1
2 (u2))

]
+O(n−1) a.s.

Lemma B.2.2 and Lemma B.2.6 imply that An2 = O(n−3/4(logn)−3/4) a.s.

Further, Lemma B.2.2 and (C2) indicate that

P (Y1 > Ŝ−1
1 (u1), Y2 > Ŝ−1

2 (u2))− P (Y1 > S−1
1 (u1), Y2 > S−1

2 (u2))→ 0 a.s.

Again using that the jumps of a Kaplan-Meier estimator are O(n−1) a.s., it follows that
An3 → 0 a.s.

In Theorems 6.4.2 and 6.4.3 we show, for the censoring schemes described in Section 6.1,
that B̂ → B a.s.

Theorem 6.4.2 (univariate censoring). Assume (C1), (C5), (C8) and (C9). Then, as
n→∞, B̂ → B a.s.
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Proof. We have to show that

ŜG(max(Ŝ−1
1 (u1), Ŝ−1

2 (u2)))→ SG(max(S−1
1 (u1), S−1

2 (u2))) a.s.

Apply the equality max(a, b) = a+ 1
2 [|a− b| − (a− b)] and Lemma B.2.2 to obtain

max(Ŝ−1
1 (u1), Ŝ−1

2 (u2))→ max(S−1
1 (u1), S−1

2 (u2)) a.s. (6.6)

Then use the decomposition

ŜG(max(Ŝ−1
1 (u1), Ŝ−1

2 (u2)))− SG(max(S−1
1 (u1), S−1

2 (u2)))

= ŜG(max(Ŝ−1
1 (u1), Ŝ−1

2 (u2)))− SG(max(Ŝ−1
1 (u1), Ŝ−1

2 (u2)))

+ SG(max(Ŝ−1
1 (u1), Ŝ−1

2 (u2)))− SG(max(S−1
1 (u1), S−1

2 (u2)))

= Bn1 +Bn2.

Lemma B.2.1 and (C8) imply that Bn1 → 0 a.s., while (C5) and (6.6) lead to Bn2 → 0
a.s.

Theorem 6.4.3 (copula censoring). Assume (C1), (C4), (C7), (C9) and (C10). Then,
as n→∞, B̂ → B a.s.

Proof. We have to show that

C̃(ŜG1(Ŝ−1
1 (u1)), ŜG2(Ŝ−1

2 (u2)))→ C̃(SG1(S−1
1 (u1)), SG2(S−1

2 (u2))) a.s.

By the Lipschitz property of copulas (Nelsen, 2006), it suffices to show that for r = 1, 2:

ŜGr (Ŝ−1
r (ur))→ SGr (S−1

r (ur)) a.s.

We have

ŜGr (Ŝ−1
r (ur))− SGr (S−1

r (ur)) = In1r + In2r + In3r

with

In1r = ŜGr (S−1
r (ur))− SGr (S−1

r (ur))

In2r = SGr (Ŝ−1
r (ur))− SGr (S−1

r (ur))

In3r = ŜGr (Ŝ−1
r (ur))− ŜGr (S−1

r (ur))−
[
SGr (Ŝ−1

r (ur))− SGr (S−1
r (ur))

]
.

Lemma B.2.1 and (C7) imply that In1r → 0 a.s., while Lemma B.2.2, (C7) and (C4) lead
to In2r → 0 a.s. For In3r it holds by Lemma B.2.2 and (C7) that

|In3r| ≤ sup
0≤x,y≤T

sup
|x−y|≤an

|[ŜGr (x)− ŜGr (y)]− [SGr (x)− SGr (y)]|

for some T < THr and an = O(n−1/2(logn)1/2). By Lemma B.2.5 the latter is
O(n−3/4(logn)3/4) a.s.
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Remark 6.4.1. In practice the copula C̃ is taken to be of some parametric form, i.e.,
C̃ = C̃θ with known parameter θ. If θ is unknown, then, with θ̂ a consistent estimator
for θ

C̃
θ̂
(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2)))→ C̃θ(SG1(S−1

1 (u1)), SG2(S−1
2 (u2))) a.s.

provided the conditions of Theorem 6.4.3 hold and C̃θ is Lipschitz of order 1 as a function
of θ.

The general conclusion of this section is that, under the stated conditions, Ĉ(u1, u2) →
C(u1, u2) a.s. for all (u1, u2) in the unit square except (possibly) in strips along the west
and the south side. For univariate censoring, the region of convergence is [S1(T

H̃
), 1] ×

[S2(T
H̃

), 1], while for copula censoring the region is [S1(TH1), 1]× [S2(TH2), 1].

6.5 Asymptotic representation

In this section we construct an asymptotic i.i.d. representation for the numerator Â and
the denominator B̂ of the estimator Ĉ(u1, u2). Note that

Ĉ(u1, u2)− C(u1, u2) = Â

B̂
− A

B

= 1
B

(Â−A)− A

B2 (B̂ −B)− 1
BB̂

(Â−A)(B̂ −B) + A

B2B̂
(B̂ −B)2.

The first and second term in the right hand side of the decomposition give an asymptotic
i.i.d. representation for the estimator Ĉ(u1, u2). Indeed, based on the consistency and
the theorems in this section, the third and fourth term are oP (n−1/2).

We first give an asymptotic i.i.d. representation for Â.

Theorem 6.5.1. Assume (C1), (C2), (C3), (C7) and (C9). Then, as n→∞,

Â−A = 1
n

n∑
s=1

[
I(Ys1 > S−1

1 (u1), Ys2 > S−1
2 (u2))− SY (S−1

1 (u1), S−1
2 (u2))

+
2∑
r=1

1
S′r(S−1

r (ur))
S

(r)
Y (S−1

1 (u1), S−1
2 (u2)) ψsr(S−1

r (ur))
]

+ oP (n−1/2)

with S(r)
Y , r = 1, 2, the partial derivatives of SY and

ψsr(t) = Sr(t)
[ ∫ t

0

I(Ysr ≤ y)−Hr(y)
(1−Hr(y))2 dHu

r (y)

+ I(Ysr ≤ t, δsr = 1)−Hu
r (t)

1−Hr(t)
−
∫ t

0

I(Ysr ≤ y, δsr = 1)−Hu
r (y)

(1−Hr(y))2 dHr(y)
]
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where Hu
r (t) = P (Yr ≤ t, δr = 1) (r = 1, 2).

Proof. We have

Â−A = An1 +An2 +An3 +O(n−1) a.s.

with An1, An2 and An3 as in the proof of Theorem 6.4.1.

We keep An1 as the first part of the representation.

A Taylor expansion for An3 gives

An3 = S
(1)
Y (S−1

1 (u1), S−1
2 (u2))(Ŝ−1

1 (u1)− S−1
1 (u1))

+ S
(2)
Y (S−1

1 (u1), S−1
2 (u2))(Ŝ−1

2 (u2)− S−1
2 (u2)) + oP (n−1/2).

The order of the remainder term follows from (C3) and Lemma B.2.2. For Ŝ−1
r (ur) −

S−1
r (ur) (r = 1, 2), we use the i.i.d. representation given in Lemma B.2.4:

Ŝ−1
r (ur)− S−1

r (ur) = 1
nS′r(S−1

r (ur))

n∑
s=1

ψsr(S−1
r (ur)) +Rnr

where Rnr = O(n−1 logn) a.s.

Finally, use Lemma B.2.2 as well as Lemma B.2.6 to obtain that An2 =
O(n−3/4(logn)3/4) a.s.

In Theorem 6.5.2 we obtain, for univariate censoring, an asymptotic i.i.d. representation
for B̂. A similar result, for copula censoring, is given in Remark 6.5.1.

Theorem 6.5.2 (univariate censoring). Assume (C1), (C6), (C8), (C9) and (C11).
Then, as n→∞,

B̂ −B =

− 1
n

n∑
s=1

ψGs (S−1
1 (u1)) + S

′

G(S−1
1 (u1))

nS
′
1(S−1

1 (u1))

n∑
s=1

ψs1(S−1
1 (u1)) + oP (n−1/2)

if S−1
1 (u1) ≥ S−1

2 (u2)

− 1
n

n∑
s=1

ψGs (S−1
2 (u2)) + S

′

G(S−1
2 (u2))

nS
′
2(S−1

2 (u2))

n∑
s=1

ψs2(S−1
2 (u2)) + oP (n−1/2)

if S−1
2 (u2) ≥ S−1

1 (u1)

with S′G the derivative of SG and ψsr(t) (r = 1, 2) as in Theorem 6.5.1.
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Proof. If S−1
1 (u1) = S−1

2 (u2), then, by consistency of Ŝ−1
r (ur) (r = 1, 2) (Lemma B.2.2)

Ŝ−1
1 (u1) = Ŝ−1

2 (u2) with probability one.

Suppose S−1
1 (u1) > S−1

2 (u2). By (6.6) it holds that max(S−1
1 (u1), S−1

2 (u2)) = S−1
1 (u1)

and max(Ŝ−1
1 (u1), Ŝ−1

2 (u2)) = Ŝ−1
1 (u1) for n sufficiently large. We then have

B̂ −B = Bn11 +Bn21 +Bn31

where

Bn11 = ŜG(S−1
1 (u1))− SG(S−1

1 (u1))

Bn21 = SG(Ŝ−1
1 (u1))− SG(S−1

1 (u1))

Bn31 = ŜG(Ŝ−1
1 (u1))− ŜG(S−1

1 (u1))− SG(Ŝ−1
1 (u1)) + SG(S−1

1 (u1)).

Under (C1) and (C8) an i.i.d. representation for Bn11 can be obtained via Lemma B.2.3:

Bn11 = − 1
n

n∑
s=1

ψGs (S−1
1 (u1)) +Rn11

with Rn11 = O(n−1 logn) a.s.

A Taylor expansion for Bn21 gives

SG(Ŝ−1
1 (u1))− SG(S−1

1 (u1)) = S
′

G(S−1
1 (u1))(Ŝ−1

1 (u1)− S−1
1 (u1)) + oP (n−1/2).

The order of the remainder term follows from (C6) and Lemma B.2.2. For Ŝ−1
1 (u1) −

S−1
1 (u1) we use the i.i.d. representation given in Lemma B.2.4:

Ŝ−1
1 (u1)− S−1

1 (u1) = 1
n

1
S
′
1(S−1

1 (u1))

n∑
s=1

ψs1(S−1
1 (u1)) +Rn1

where Rn1 = O(n−1 logn) a.s.

Further, Lemma B.2.2 and Lemma B.2.5 imply that Bn31 = O(n−3/4(logn)3/4)
a.s. The proof is analogous for S−1

2 (u2) > S−1
1 (u1).

Remark 6.5.1. Since

C̃(ŜG1(Ŝ−1
1 (u1)), ŜG2(Ŝ−1

2 (u2))) = C̃(SG1(S−1
1 (u1)), SG2(S−1

2 (u2)))

+ C̃(1)(SG1(S−1
1 (u1)), SG2(S−1

2 (u2)))[ŜG1(Ŝ−1
1 (u1))− SG1(S−1

1 (u1))]

+ C̃(2)(SG1(S−1
1 (u1)), SG2(S−1

2 (u2)))[ŜG2(Ŝ−1
2 (u2))− SG2(S−1

2 (u2))]

+ oP (n−1/2)
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the i.i.d. representation for B̂ −B in case of copula censoring can be obtained along the
same lines if we assume that C̃ has Lipschitz continuous partial derivatives C̃(1) and C̃(2).
In practice the copula C̃ is taken to be of some parametric form, i.e., C̃ = C̃θ with known
parameter θ. If θ is unknown and estimated by θ̂, we can use the above together with

C̃
θ̂
(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2))) = C̃θ(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2)))

+
[
C̃
θ̂
(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2)))− C̃θ(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2)))

]
as well as

C̃
θ̂
(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2)))− C̃θ(ŜG1(Ŝ−1

1 (u1)), ŜG2(Ŝ−1
2 (u2)))

= C̃
′

θ(SG1(S−1
1 (u1)), SG2(S−1

2 (u2)))(θ̂ − θ) + oP (n−1/2)

if we further require that C̃ ′θ, the partial derivative of C̃θ with respect to θ, is Lipschitz
in θ and in (SG1(S−1

1 (u1)), SG2(S−1
2 (u2))) and that θ̂− θ has some i.i.d. representation.

The general conclusion of this section is that, under the stated conditions, Ĉ(u1, u2) −
C(u1, u2) can be represented as an average of i.i.d. random variables with zero mean
and a term of lower order. The representation is valid in a subset of the unit square,
[S1(T

H̃
), 1] × [S2(T

H̃
), 1], resp. [S1(TH1), 1] × [S2(TH2), 1] for univariate, resp. copula

censoring. Normality can be obtained, but given the complexity of the representations,
the derivation of a closed formula for the asymptotic variances is not tractable. Moreover,
the latter will contain several expressions that need to be estimated. Although we do not
investigate this here, bootstrap alternatives can be considered.

6.6 Simulation study

To evaluate the finite sample behavior of the proposed copula estimator (6.5), we set up a
simulation study. A comparison with the estimator of Gribkova and Lopez (2014) in (6.3)
is made.

6.6.1 Simulation setting

We generate 500 datasets, each containing 250 or 500 clusters of size 2 from a Clayton
copula, resp. a Gumbel copula, with a dependence parameter such that Kendall’s tau
(τT ) equals 0.25 or 0.75 (Table 6.1). For the event times Tsr (s = 1, . . . , 250 or 500,
r = 1, 2), Weibull margins with scale λ = 0.5 and shape ρ = 1.5 are used.

Censoring is assumed to be univariate or to be directed by a Clayton copula, resp.
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a Gumbel copula, with a dependence parameter such that Kendall’s tau (τ
C̃
) equals 0.1

or 0.5 (Table 6.1). For the censoring times Csr (s = 1, . . . , 250 or 500, r = 1, 2), we use
Weibull margins with scale and shape given by λ = 0.15, ρ = 1.5, resp.λ = 0.85, ρ = 1.5,
leading to approximately 23%, resp. 63% censoring.

The observed data are Ysr = min(Tsr, Csr) and δsr = I(Tsr ≤ Csr) (s = 1, . . . , 250 or
500, r = 1, 2).

Here, the focus is on a Clayton copula and a Gumbel copula. Even though both
copulas can exhibit the same strength of association as expressed by Kendall’s tau (τ),
they model a different correlation structure, i.e., a Clayton copula is lower tail dependent,
while a Gumbel copula is upper tail dependent (Section 5.7 - Table 6.1).

6.6.2 Simulation results

To investigate the performance of the proposed copula estimators as compared to their
Gribkova-Lopez equivalent, we compute for each estimator the distance between the es-
timated copula Ĉ and the true underlying copula C, i.e., we look at

RMSE =

√√√√ ∑
(ul,uk)∈Grid

{
Ĉ(ul, uk)− C(ul, uk)

}2

Table 6.1: Simulation setting. Copula parameter θ with corresponding value of Kendall’s tau
(τ) and lower (δL), resp. upper (δU ) tail dependence parameter.

copula θ τ δL δU

Clayton 0.22 0.10 0.04 0
0.66 0.25 0.35 0
2 0.50 0.71 0
6 0.75 0.89 0

Gumbel 1.11 0.10 0 0.13
1.33 0.25 0 0.32
2 0.50 0 0.59
4 0.75 0 0.81
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where Grid = R∩{(u, v)|u, v ∈ {0.05, 0.10, . . . , 0.95}} withR = [S1(T
H̃

), 1]×[S2(T
H̃

), 1]
for univariate censoring and R = [S1(TH1), 1]× [S2(TH2), 1] for copula censoring.

Figures 6.1 - 6.5 display boxplots of the difference in RMSE between the proposed and
the Gribkova-Lopez estimator (RMSEP -RMSEGL) as obtained in the diverse settings
described in Section 6.6.1. Herein, the wiskers of each boxplot extend to the 5 and
95 percentiles of the obtained RMSE difference. If the true copula is Clayton, resp.
Gumbel, the boxplot is labeled by Cijk, resp. Gijk. The indexing is as follows: i = 1
for τT = 0.25 and i = 2 for τT = 0.75; j = 1 for 23% censoring and j = 2 for 63%
censoring; k = 1 for 250 clusters and k = 2 for 500 clusters, e.g., C121 refers to a
Clayton copula with τT = 0.25, 63% of censoring and 250 clusters. Note that a value
of RMSEP -RMSEGL < 0 favors our estimator over the one of Gribkova and Lopez (2014).

Figures 6.1 (a) and (b) summarize the results in case of univariate censoring. The
boxplots indicate that for light censored data, the Gribkova-Lopez estimator outperforms
the proposed one, whereas for heavily censored data the proposed estimator performs
at least as well and often better than the Gribkova-Lopez estimator, especially when
the correlation between event times is low (τT = 0.25). In Figures 6.1 (c) and (d) a
four-dimensional version of the proposed estimator is compared with the four-dimensional
Gribkova-Lopez estimator. Clearly our estimator gains a lot in performance as compared
to the Gribkova-Lopez estimator and is the better one.

The results of copula censoring with a known parameter (Figure 6.2 and Figure 6.3) are
similar to those where the copula parameter is estimated (Figure 6.4 and Figure 6.5).
The boxplots indicate that for light censored data and event times with an association
of τT = 0.25 both nonparametric estimators have similar performance, while for highly
related event times (τT = 0.75) the estimator of Gribkova and Lopez is the better one.
For heavily censored data the boxplots reveal that for τT = 0.75 and τ

C̃
= 0.10 the

Gribkova-Lopez estimator is to be preferred, while for τT = 0.25 and τ
C̃

= 0.50 the
proposed estimator is superior. For the remaining combinations of τT and τ

C̃
no real

preference is shown.

These results are in line with what should be expected. The Gribkova-Lopez esti-
mator takes only those clusters into account with all observations events and therefore
heavy censoring and/or a high cluster dimension eliminates a considerable amount of
data, whereas the proposed copula estimator does not discard this information. We also
see that for strongly related event times this elimination is less severe.
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(a) univariate censoring, two dimensions
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(b) univariate censoring, two dimensions
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Figure 6.1: Simulation results. Difference in RMSE (RMSEP -RMSEGL) for univariate censoring.
Left panel: 23% censoring, right panel: 63% censoring - upper panel: two-dimensional data, lower
panel: four-dimensional data.
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(a) censoring via Clayton copula with τ
C̃

= 0.1
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(d) censoring via Clayton copula with τ
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Figure 6.2: Simulation results. Difference in RMSE (RMSEP -RMSEGL) for censoring via Clayton
copula. Left panel: 23% censoring, right panel: 63% censoring - upper panel: censoring copula
has τ

C̃
= 0.10, lower panel: censoring copula has τ

C̃
= 0.50.
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(a) censoring via Gumbel copula with τ
C̃

= 0.1
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Figure 6.3: Simulation results. Difference in RMSE (RMSEP -RMSEGL) for censoring via Gum-
bel copula. Left panel: 23% censoring, right panel: 63% censoring - upper panel: censoring
copula has τ

C̃
= 0.10, lower panel: censoring copula has τ

C̃
= 0.50.
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(a) censoring via Clayton copula with τ
C̃

= 0.1
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(c) censoring via Clayton copula with τ
C̃

= 0.5
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(d) censoring via Clayton copula with τ
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= 0.5
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Figure 6.4: Simulation results. Difference in RMSE (RMSEP -RMSEGL) for censoring via es-
timated Clayton copula. Left panel: 23% censoring, right panel: 63% censoring - upper panel:
censoring copula has τ

C̃
= 0.10, lower panel: censoring copula has τ

C̃
= 0.50.
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(a) censoring via Gumbel copula with τ
C̃

= 0.1
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(c) censoring via Gumbel copula with τ
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(d) censoring via Gumbel copula with τ
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Figure 6.5: Simulation results. Difference in RMSE (RMSEP -RMSEGL) for censoring via esti-
mated Gumbel copula. Left panel: 23% censoring, right panel: 63% censoring - upper panel:
censoring copula has τ

C̃
= 0.10, lower panel: censoring copula has τ

C̃
= 0.50.
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6.7 Discussion

In this chapter, we define a new nonparametric copula estimator for the joint survival
function of right-censored event time data. Censoring is assumed to be univariate or
to be dictated by a copula. We establish consistency and obtain an asymptotic i.i.d.
representation for the proposed estimator. A simulation study reveals that, depending on
the amount of censoring, the strength of data association and the data dimension either
our estimator or its Gribkova-Lopez equivalent is preferred.

Even though the new nonparametric copula estimator covers a wide range of
right-censored data settings, one may want to relax the assumption of univariate
or copula censoring. To this end, the nonparametric survival function estimator by
Akritas and Van Keilegom (2003) might be worthwhile to investigate. The latter is
a linear combination of averaged kernel based conditional survival functions, which is
shown to be consistent and to exhibit asymptotic normality. Via Sklar’s theorem and an
appropriate choice of marginal quantile functions, a nonparametric copula estimator can
be constructed. However, compared to the proposed nonparametric copula estimator,
bandwidth selection needs to be handled.

Often a semiparametric copula is used to analyze right-censored grouped event
time data (Chapter 5). Given that the copula determines the type of association between
the cluster components, it is essential to verify the aptness of the chosen copula.
The newly derived nonparametric copula estimator can be used to do so, e.g., via the
L2-distance with the maximum quasi-loglikelihood estimator of the presumed copula
(Section 5.2). A comparison with copula selection via AIC and/or BIC (Section 5.3) can
be made. This topic is the subject of future research.

6.8 Addendum

Nonparametric survival function estimation has also been considered by van der Laan
et al. (2002). They focus on univariate right-censored event time data. In this section
we extend the van der Laan estimator to general right-censored event time data and we
show that, for event times and censoring times that are independent, the estimator in
van der Laan et al. (2002) reduces to estimator (6.2).

For cluster s, define Bs = I(Ts1 > t1, Ts2 > t2) and ∆s =
∏2
r=1(1 − ∆sr) with

∆sr = I(min(Tsr, tr) > Csr) (s = 1, . . . , n and r = 1, 2).
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Following the idea in van der Laan et al. (2002), we have: Bs can not be calcu-
lated from the observed data (Ysr, δsr) (s = 1, . . . , n and r = 1, 2)

⇔ ∃r ∈ {1, 2} : δsr = 0 and tr > Csr

⇔ ∃r ∈ {1, 2} : Tsr > Csr and tr > Csr

⇔ ∃r ∈ {1, 2} : min(Tsr, tr) > Csr

⇔ ∃r ∈ {1, 2} : ∆sr = 1

or equivalently, Bs can be calculated from the observed data (Ysr, δsr) ⇔ ∆s = 1
(s = 1, . . . , n and r = 1, 2).

Further,

E[∆|T1, T2] = E
[∏2

r=1(1−∆r)|T1, T2
]

= E[I(min(T1, t1) ≤ C1,min(T2, t2) ≤ C2)|T1, T2]

= P (min(T1, t1) ≤ C1,min(T2, t2) ≤ C2 |T1, T2)

= SlcC (min(T1, t1),min(T2, t2)|T1, T2)

and thus

E
[

∆B

SlcC (min(T1, t1),min(T2, t2)|T1, T2)

]

= E
[
E
[

∆B

SlcC (min(T1, t1),min(T2, t2)|T1, T2)

]
|T1, T2

]

= E
[

B E
[
∆|T1, T2

]
SlcC (min(T1, t1),min(T2, t2)|T1, T2)

]
= E[B].

Based on the above, an estimator is given by

S̃(t1, t2) = 1
n

n∑
s=1

∆sBs

ŜlcC (min(Ts1, t1),min(Ts2, t2)|Ts1, Ts2)
(6.7)

with ŜlcC an appropriate estimator for a left-continuous version of SC .

To see the equivalence with estimator (6.2), note that I(Ys1 > t1, Ys2 > t2) = ∆sBs.
Further, the denominator of (6.7) needs to be calculated only if ∆sBs = 1. The latter
implies Tsr > tr (r = 1, 2) and we obtain ŜlcC (t1, t2|Ts1, Ts2). For event times and
censoring times that are independent, we have ŜlcC (t1, t2). Hence, (6.2) and (6.7) are
equivalent, except for the use of a right-continuous, resp. a left-continuous estimator for
SC .
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Appendix A
Bootstrap algorithms

A.1 Frailty bootstrap algorithm

For the order selection test in Section 3.3, an approximate p-value can be obtained via
a parametric bootstrap as described in Algorithms 1 and 2 (Davison and Hinkley, 1997;
Massonnet et al., 2006).

Algorithm 1

Step 1: Fit the loglikelihood in Theorem 3.2.1 with m = 0, . . . ,Mn and obtain
the actual value of the order selection test statistic: Tact. Denote the parameter
estimates under the null hypothesis (m = 0) by ξ̂0, β̂0 and θ̂0.

Step 2: Generate B resamples in the following way:

Step 2.1: Sample u∗1,. . . , u∗S from a Γ(1/θ̂0, θ̂0) distribution.

Step 2.2: For r = 1, . . . , ns and s = 1, . . . , n, generate event times T ∗sr
from the estimated survival function Ŝsr(t) = {exp(−Ĥ0(t))}u∗s exp(β̂0xsr)

with Ĥ0(t) the estimated cumulative baseline hazard.

Step 2.3: If δsr = 0 set C∗sr = Ysr; if δsr = 1 generate C∗sr from the same
uniform distribution as was used for the original data.

Step 2.4: Set Y ∗sr = min(T ∗sr, C∗sr) with δ∗sr = 1 if Y ∗sr = T ∗sr; and δ∗sr = 0
otherwise.

Step 2.5: Obtain the bootstrap value of the order selection test statistic: T ∗b .
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Step 3: Obtain the bootstrap version of PH0(T > Tact), i.e., p∗ = #{b : T ∗b >

Tact}/B.

Algorithm 2
This algorithm is analogous to algorithm 1, with Step 2.3 replaced by:

Step 2.3 bis: If δsr = 0 set C∗sr = Ysr; if δsr = 1 generate C∗sr from the conditional
censoring distribution given that Csr > Ysr, i.e., generate C∗rs from

Ĝ(t)− Ĝ(Ysr)
1− Ĝ(Ysr)

with Ĝ the Kaplan-Meier estimator of the censoring distribution.

A.2 Copula bootstrap algorithm

In the presence of univariate censoring, standard errors for the estimated parameters of
a copula can be obtained via a parametric bootstrap as described in Algorithms 1 and 2
(Davison and Hinkley, 1997; Massonnet et al., 2009).

Algorithm 1

Step 1: Fit the copula of interest to the data (V̂sr, δsr), where Ysr = min(Tsr, Cs),
δsr = I(Tsr ≤ Cs) and V̂sr = Ŝr(Ysr) with Ŝr the Kaplan-Meier estimator for
the true survival function of the observations Tsr (s = 1, . . . , n and r = 1, . . . , 4).
Obtain the maximum quasi-likelihood estimator ζ̂S,d (Section 5.2).

Step 2: Generate B bootstrap resamples in the following way:

Step 2.1: Generate (U∗s1, U∗s2, U∗s3, U∗s4) from the copula of interest with ζ̂S,d
as parameter value.

Step 2.2: Create (T ∗s1, T ∗s2, T ∗s3, T ∗s4) via T ∗sr = Ŝ−1
r (U∗sr).

Step 2.3: Estimate the censoring distribution G via a Kaplan-Meier estimator
based on the observations (max(Ys1, Ys2, Ys3, Ys4), 1−δs1δs2δs3δs4). Generate
C∗s from Ĝ.

Step 2.4: Set Y ∗sr = min(T ∗sr, C∗s ) and δ∗sr = I(T ∗sr ≤ C∗s ).

Step 2.5: Set V̂ ∗sr = Ŝ∗r (Y ∗sr) with Ŝ∗r the Kaplan-Meier estimator for the true
survival function of the observations T ∗sr.
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Step 2.6: Fit the copula of interest to the bootstrap data (V̂ ∗sr, δ∗sr). Obtain
the maximum quasi-likelihood estimator ζ̂∗S,d.

Step 3: The B bootstrap resamples give ζ̂∗(1)
S,d , . . . , ζ̂

∗(B)
S,d . Calculate the standard

error of the ζ̂∗(b)S,d (b = 1, . . . , B).

Algorithm 2
This algorithm is analogous to algorithm 1, with Step 2.3 replaced by:

Step 2.3 bis: If δsr = 0 for at least one r ∈ {1, 2, 3, 4}, set C∗s =
max(Ys1, Ys2, Ys3, Ys4); if δsr = 1 for all r ∈ {1, 2, 3, 4} generate C∗s from the
conditional censoring distribution given that Cs > Ysr, i.e., generate C∗s from

Ĝ(t)− Ĝ(Ysr)
1− Ĝ(Ysr)

with Ĝ the Kaplan-Meier estimator of the censoring distribution based on the ob-
servations (max(Ys1, Ys2, Ys3, Ys4), 1− δs1δs2δs3δs4).





Appendix B
Useful propositions, theorems
and lemmas

B.1 Propositions and theorems used in Chapter 5

B.1.1 Propositions used in Section 5.3

The proofs of the propositions in Section 5.3 rely on results in Chen et al. (2010). In this
section we list the required propositions and their conditions.

Consider four-variate right-censored event time data. Denote the observed time of
item r (r = 1, . . . , 4) in cluster s (s = 1, . . . , n) by Ysr = min(Tsr, Csr) with Tsr

the true event time and Csr the censoring time. The indicator δsr = I(Tsr ≤ Csr)
equals one if Ysr = Tsr and zero otherwise. With Sr the survival function of the rth
component and Ŝr the corresponding Kaplan-Meier estimator, define Vsr = Sr(Ysr) and
V̂sr = Ŝr(Ysr) (s = 1, . . . , n and r = 1, . . . , 4).

The following conditions are sufficient to ensure the convergence of the maximum
quasi-loglikelihood estimator ζ̂n,d to the pseudo-true parameter value ζ∗n,d (Chen et al.,
2010).

(C1) (i) The sequence of event times (Ts1, . . . , Ts4) (s = 1, . . . , n) is an i.i.d. sample
from an unknown joint survival function S with continuous marginal survival
functions Sr (r = 1, . . . , 4).

(ii) The sequence of censoring times (Cs1, . . . , Cs4) (s = 1, . . . , n) is an inde-
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pendent sample with joint survival functions SCs(c1, . . . , c4) = P (Cs1 >

c1, . . . , Cs4 > c4) (s = 1, . . . , n) and marginal survival functions SGsr

(s = 1, . . . , n and r = 1, . . . , 4).

(iii) The censoring times (Cs1, . . . , Cs4) are independent of the event times
(Ts1, . . . , Ts4) (s = 1, . . . , n) and there is no mass concentration at 0 in
the sense that lim supn→∞ n−1∑n

s=1 (1− SGsr (η)) → 0 as η → 0 (r =
1, . . . , 4).

(C2) Let Ad, the parameter space of ζd, be a compact subset of Rqd . For every ε > 0,

lim inf
ζd∈Ad:‖ζd−ζ∗n,d‖≥ε

n−1
n∑
s=1

Etrue[ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζ∗n,d)

−ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζd)] > 0.

(C3) The true (unknown) copula C has continuous partial derivatives.

(C4) (i) ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd) is a continuous function of ζd ∈ Ad for any
(u1, . . . , u4) ∈]0, 1[4.

(ii) Denote

Ls = sup
ζd∈Ad

|ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζd)|

∇ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd) = ∂ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)
∂ζd

Lsζd = sup
ζd∈Ad

|∇ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζd)|.

Then, limK→∞ lim supn→∞ n−1∑n
s=1 Etrue[LsI(Ls ≥ K) + LsζdI(Lsζd ≥

K)] = 0.

(iii) For any η > 0 and any ε > 0, there is K > 0 such that
|ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)| ≤ K|ls,d(u

′

1, . . . , u
′

4, δ1, . . . , δ4; ζd)| for all
ζd ∈ Ad and all ur ∈ [η, 1[ such that 1− ur ≥ ε(1− u

′

r) (r = 1, . . . , 4).

(C5) If Tsr (s = 1, . . . , n) are subject to non-trivial censoring (i.e., Csr 6=∞), then Ŝr is
truncated at the tail in the sense that for some τr, Ŝr(tr) = Ŝr(τr) for all tr ≥ τr

and lim infn→∞ n−1∑n
s=1 SGsr (τr)Sr(τr) > 0.

Condition (C1) provides a very general censoring setting, e.g., the censoring times
(Cs1, . . . , Cs4) are allowed to be non-identically distributed and can be discrete or con-
tinuous. Condition (C2) ensures that the pseudo-true parameter value ζ∗n,d is uniquely
identifiable, while condition (C5) is imposed to handle the possible tail instability of the
Kaplan-Meier estimator. Conditions (C3) and (C4) are technical conditions.
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Proposition B.1.1. (Chen et al., 2010) Under conditions (C1)–(C5), we have:

(1) ‖ζ̂n,d − ζ∗n,d‖ = oP (1),

(2) n−1 log L̃n,d(ζ̂n,d) = n−1Etrue[logLn,d(ζ∗n,d)] + oP (1).

Proposition B.1.1 (1) states that the maximum quasi-loglikelihood estimator ζ̂n,d is a
consistent estimator for the pseudo-true parameter value ζ∗n,d, while Proposition B.1.1
(2) is a weak law of large numbers.

Denote

∇2ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd) = ∂2ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)
∂ζ2
d

∇rls,d(u1, . . . , u4, δ1, . . . , δ4; ζd) = ∂ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)
∂ζd∂ur

and

Ir(Ysr, δsr)(Ytr) = −Sr(Ytr)
[∫ Ytr

−∞

dNsr(u)
Pn,r(u) −

∫ Ytr

−∞

I(Ysr ≥ u)dΛru
Pn,r(u)

]
Wr(Ysr, δsr; ζ∗n,d) = Etrue[∇rls,d(Vs1, . . . , Vs4, δ1, . . . , δ4; ζ∗n,d)Ir(Ysr, δsr)(Ytr)|Ysr, δsr]

with Λr(u) = − log(Sr(u)), Nsr(u) = δsrI(Ysr ≤ u), dNsr(u) = Nsr(u) − Nsr(u−)
and Pn,r(u) = n−1∑n

s=1 P (Ysr ≥ u). Let Vartrue denote the variance with respect to
the true (unknown) copula C.

The following (technical) conditions are sufficient to ensure the asymptotic normality of
the maximum quasi-loglikelihood estimator ζ̂n,d (Chen et al., 2010).

(A1) (i) (C2) holds with ζ∗n,d ∈ int(A∗d) for all n, where A∗d is a compact subset of Ad.

(ii) Bn,d = −n−1∑n
s=1 Etrue[∇2ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζ∗n,d)] has all its

eigenvalues bounded below and above by some finite positive constants.

(iii) Σn,d = n−1∑n
s=1 Vartrue[∇ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζ∗n,d) +∑4

r=1Wr(Ysr, δsr; ζ∗n,d)] has all its eigenvalues bounded below and above by
some finite positive constants.

(iv) ∇ls,d(Vs1, . . . , Vs4, δs1, . . . , δs4; ζ∗n,d) +
∑4
r=1Wr(Ysr, δsr; ζ∗n,d) satisfies Lin-

deberg condition (s = 1, . . . , n).

(A2) Functions ∇2ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd) and ∇rls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)
are well-defined and continuous in (u1, . . . , u4, ζd) ∈]0, 1[4×Ad (r = 1, . . . , 4).
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(A3) (i) |∇ls,d(u1, . . . , u4, δ1, . . . , δ4; ζ∗n,d)| ≤ b
∏4
r=1{ur(1− ur)}−ar for some b > 0

and ar ≥ 0 such that lim supn→∞ n−1Etrue[
∏4
r=1{Vsr(1− Vsr)}−2ar ] <∞.

(ii) |∇rls,d(u1, . . . , u4, δ1, . . . , δ4; ζ∗n,d)| ≤ p
∏4
r=1{ur(1 − ur)}−ar for some p

and ar such that lim supn→∞ n−1Etrue[{Vsr(1−Vsr)}ξr−ar
∏4
k 6=r=1{Vsk(1−

Vsk)}ak ] <∞ for some ξr ∈]0, 1/2[.

(A4) (i) Denote

Lsrζd = sup
ζd∈Ad

|∇rls,d(Vs1, . . . , Vs4, δ1, . . . , δ4; ζd)|

Lsζ2
d

= sup
ζd∈Ad

|∇2ls,d(Vs1, . . . , Vs4, δ1, . . . , δ4; ζd)|.

Then, limK→∞ lim supn→∞ n−1∑n
s=1 Etrue[LsrζdI(Lsrζd ≥ K) + Lsζ2

d

I(Lsζ2
d
≥ K)] = 0.

(ii) For any η > 0 and any ε > 0, there is K > 0 such that

|∇ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)|+ |∇2ls,d(u1, . . . , u4, δ1, . . . , δ4; ζd)|

≤ K{|∇ls,d(u
′

1, . . . , u4, δ1, . . . , δ
′

4; ζd)|+ |∇2ls,d(u
′

1, . . . , u
′

4, δ1, . . . , δ4; ζd)|}

for all ζd ∈ Ad and all ur ∈ [η, 1[ such that 1−ur ≥ ε(1−u
′

r) (r = 1, . . . , 4).

Proposition B.1.2. (Chen et al., 2010) Under conditions (C1)–(C5) and (A1)–(A4), we
have: Bn,dΣ−1/2

n,d

√
n(ζ̂n,d − ζ∗n,d) → N(0, Iqd) in distribution, where Bn,d and Σn,d are

defined in (A1).

Denote by eds the difference of the loglikelihood component evaluated at the pseudo-true
parameter value and its expected value under the true (unknown) copula C (d = 1, . . . , D
and s = 1, . . . , n) and define for d 6= d′ = 1, . . . , D:

σd,d′ = n−1
n∑
s=1

Etrue[(eds − E[eds])(ed′s − E[ed′s])].

Proposition B.1.3. (Chen et al., 2010) Assume that conditions (C1)–(C5) and (A1)–
(A4) are satisfied for all models Md (d = 1, . . . , D) and that eds satisfies a Lindeberg
condition. If Ωn = (σd,d′) (d 6= d′ = 1, . . . , D) is finite and its largest eigenvalue is
positive uniformly in n, then

n−1/2
[

log L̃n,d(ζ̂n,d)− log L̃n,d′(ζ̂n,d′)

−Etrue[logLn,d(ζ∗n,d)− logLn,d′(ζ∗n,d′)]
]
d6=d′=1,...,D

→ N(0,Ωn)

in distribution.

The extra Lindeberg condition on eds is needed to allow for non-nested models.
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B.1.2 Theorems used in Section 5.7

The calculation of the tail dependence parameters in Section 5.7 is based on findings in
Joe and Hu (1996) and Nelsen (2006). In this section we state the required theorems.

Theorem B.1.1. (Nelsen, 2006) The tail behavior of (5.12) can be described by

δL = lim
s→∞

ψ̃(2s)
ψ̃(s)

and δU = 2− lim
s→0

1− ψ̃(2s)
1− ψ̃(s)

.

Theorem B.1.2. (Joe and Hu, 1996) The tail behavior of (5.13) can be described by

(1) if the lower tail behavior of Kij is given by Kij(u, u) ∼ βuρ as u→ 0 (ρ ≥ 1) then

δL = γ lim
s→∞

ψ
′(− log β + γs)

ψ′(s)

where γ = 1/3(ρ+ 4) ≥ 1,

(2)

δU = 2− γ lim
s→0

ψ
′(γs)
ψ′(s)

where γ = 2− β/3 ∈ [1, 2] and β ∈ [0, 1] denotes the upper tail dependence of Kij .

Theorem B.1.3. (Joe and Hu, 1996) The tail behavior of (5.14) can be described by

(1) if the lower tail behavior of Kij is given by Kij(u, u) ∼ βuρ as u→ 0 (ρ ≥ 1) then

δL = ρ lim
s→∞

ψ
′(− log β + ρs)

ψ′(s) ,

(2)

δU = 2− γ lim
s→0

ψ
′(γs)
ψ′(s)

where γ = 2− β ∈ [1, 2] and β ∈ [0, 1] denotes the upper tail dependence of Kij .

B.2 Lemmas used in Chapter 6

The proofs of the theorems in Section 6.4 and Section 6.5 rely on the asymptotic behavior
of the Kaplan-Meier estimator and its quantiles. In this section we collect the required
properties.

Consider univariate right-censored event time data. Denote the observed time of
item r (r = 1, . . . , n) by Yr = min(Tr, Cr) with Tr the true event time and Cr the
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censoring time. The indicator δr = I(Tr ≤ Cr) equals one if Yr = Tr and zero otherwise.
Event times and censoring times are assumed to be independent. Denote the distribution
function of T (C) by F (G) and the survival function by S (SG). With H the distribution
function of Y , we obtain 1 −H = (1 − F )(1 − G). Further, for the upper endpoint of
the support of F , G and H, we have TH = min(TF , TG).

Recall, the Kaplan-Meier estimator (Kaplan and Meier, 1958) for S is given by

Ŝ(t) =
∏

r:Y(r)≤t

( n− r
n− r + 1

)δ(r)

where Y(1) ≤ . . . ≤ Y(n) are the order statistics of Y1, . . . , Yn and δ(1), . . . , δ(n) are the
corresponding δr’s. The quantile functions of S and Ŝ are defined in the usual way: for
0 < u < 1, S−1(u) = inf {t : S(t) ≤ u} and Ŝ−1(u) = inf{t : Ŝ(t) ≤ u}.

The first two lemmas are on the consistency of Ŝ and Ŝ−1. We need the condi-
tions:

(C1) S and SG are continuous.

(C9) For S(TG) < u < 1, S is differentiable at S−1(u) with f(S−1(u)) > 0 where
f = −S′ .

Note that the numbering of the conditions is the same as in Section 6.3. The formulation
is however adapted to the present univariate situation.

Lemma B.2.1. (Földes and Rejtő, 1981). Assume (C1). Then, for T < TH ,

sup
0≤t≤T

|Ŝ(t)− S(t)| = O(n−1/2(log logn)1/2) a.s.

Lemma B.2.2. (Gijbels, 1990). Assume (C1), (C9) and S−1(u) < T < TH . Let {an}
be a sequence of positive numbers tending to zero and, for n sufficiently large,

a2
nn(logn)−1f2(S−1(u))(1−H(T ))4/72 > 1.

Then,

|Ŝ−1(u)− S−1(u)| ≤ an = O(n−1/2(logn)1/2) a.s.

The next two lemmas provide an i.i.d. representation for Ŝ and Ŝ−1.
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Lemma B.2.3. (Lo and Singh, 1986; Major and Retjő, 1988). Assume (C1). Then, for
0 ≤ t ≤ T < TH ,

Ŝ(t) = S(t)− 1
n

n∑
r=1

ψr(t) +Rn(t)

with sup0≤t≤T |Rn(t)| = O(n−1 logn) a.s. and

ψr(t) = S(t)
[ ∫ t

0

I(Yr ≤ y)−H(y)
(1−H(y))2 dHu(y)

+ I(Yr ≤ t, δr = 1)−Hu(t)
1−H(t) −

∫ t

0

I(Yr ≤ y, δr = 1)−Hu(y)
(1−H(y))2 dH(y)

]
where Hu(t) = P (Y ≤ t, δ = 1).

Lemma B.2.4. (Gijbels and Veraverbeke, 1998). Assume (C1) and (C9). Then, for
S−1(u) < T < TH ,

Ŝ−1(u) = S−1(u)− 1
n

1
f(S−1(u))

n∑
r=1

ψr(S−1(u)) + oP (n−1/2)

with ψr as in Lemma B.2.3.

The last two lemmas describe the oscillation behavior of Ŝ − S and Sn,Y − SY (defined
in Section 6.4). The following conditions are needed:

(C2) SY is Lipschitz of order 1.

(C11) S is differentiable with |S′ | bounded in [0, T ] with T < TH .

Lemma B.2.5. (Gijbels, 1990; Schäfer, 1986). Assume (C1) and (C11). Let {an} be a
sequence of positive numbers tending to zero with ann(logn)−1 > c > 0 for n sufficiently
large. Then,

sup
0≤x,y≤T

sup
|x−y|≤an

|[Ŝ(x)− Ŝ(y)]− [S(x)− S(y)]| = O(a1/2
n n−1/2(logn)1/2) a.s.

Lemma B.2.6. Assume (C2). Let 0 < u1, u2 < 1 and let {an} be a sequence of positive
numbers such that, for some constant c > 0, an ∼ cn−1/2(logn)1/2 as n→∞. Then,

sup
|x|≤an,|y|≤an

|[Sn,Y (S−1
1 (u1) + x, S−1

2 (u2) + y)− Sn,Y (S−1
1 (u1), S−1

2 (u2))]

−[SY (S−1
1 (u1) + x, S−1

2 (u2) + y)− SY (S−1
1 (u1), S−1

2 (u2))]|

= O(n−3/4(logn)3/4) a.s. (B.1)
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Proof. Let {bn} be a sequence of positive numbers such that, for some constant
c0 > 0, bn ∼ c0n

1/4(logn)1/2 as n → ∞. Define θk,n = S−1
1 (u1) + anb

−1
n k and

θ
′

l,n = S−1
2 (u2) + anb

−1
n l for k, l = −bn, . . . , bn.

Due to the monotonicity of SY and Sn,Y in both arguments, the left hand side
of (B.1) is bounded above by Kn + Ln with

Kn = max
−bn≤k,l≤bn

|[Sn,Y (θk,n, θ
′

l,n)− Sn,Y (S−1
1 (u1), S−1

2 (u2))]

−[SY (θk,n, θ
′

l,n)− SY (S−1
1 (u1), S−1

2 (u2))]|

and

Ln = max
−bn≤k,l≤bn−1

|SY (θk+1,n, θ
′

l+1,n)− SY (θk,n, θ
′

l,n)|.

Consider Ln. Due to the Lipschitz continuity of SY , it holds that

|SY (θk+1,n, θ
′

l+1,n)− SY (θk,n, θ
′

l,n)| ≤ |θk+1,n − θk,n|+ |θ
′

l+1,n − θ
′

l,n|

= |anb−1
n |+ |anb−1

n | = 2anb−1
n .

Therefore, Ln = O(anb−1
n ) = O(n−3/4).

Consider Kn. We want to show that Kn = O(n−3/4(logn)3/4) a.s. By the
Borel-Cantelli lemma the latter holds if

∞∑
n=1

P (Kn ≥ γn) <∞

where γn = c1n
−3/4(logn)3/4 with c1 > 0 a constant (to be specified later).

To prove the above, we rely on

P (Kn ≥ γn) ≤
bn∑

k,l=−bn

P (Gkl,n ≥ γn)

where

Gkl,n = |[Sn,Y (θk,n, θ
′

l,n)− Sn,Y (S−1
1 (u1), S−1

2 (u2))]

−[SY (θk,n, θ
′

l,n)− SY (S−1
1 (u1), S−1

2 (u2))]|.

Note that nGkl,n = |
n∑
s=1

Ys −
n∑
s=1

E(Ys)| with

Ys = I(Ys1 > θk,n, Ys2 > θ
′

l,n)− I(Ys1 > S−1
1 (u1), Ys2 > S−1

2 (u2)).
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Indeed,

n∑
s=1

Ys =
n∑
s=1

[
I(Ys1 > θk,n, Ys2 > θ

′

l,n)− I(Ys1 > S−1
1 (u1), Ys2 > S−1

2 (u2))
]

=
n∑
s=1

I(Ys1 > θk,n, Ys2 > θ
′

l,n)−
n∑
s=1

I(Ys1 > S−1
1 (u1), Ys2 > S−1

2 (u2))

= nSn,Y (θk,n, θ
′

l,n)− nSn,Y (S−1
1 (u1), S−1

2 (u2))

and

n∑
s=1

E(Ys) = E
[
nSn,Y (θk,n, θ

′

l,n)− nSn,Y (S−1
1 (u1), S−1

2 (u2))
]

= E
[
nSn,Y (θk,n, θ

′

l,n)
]
− E

[
nSn,Y (S−1

1 (u1), S−1
2 (u2))

]
= nSY (θk,n, θ

′

l,n)− nSY (S−1
1 (u1), S−1

2 (u2))

where the last equality holds since nSn,Y (y1, y2) follows a Binomial distribution with
parameters n and SY (y1, y2).

We apply Bernstein’s inequality to obtain

P (nGkl,n ≥ nγn) = P (Gkl,n ≥ γn)

≤ 2 exp
(
− n2γ2

n

2
∑n
s=1 Var(Ys) + 4nγn/3

)
.

Further,

Var(Ys) ≤ E(Y 2
s )

= E
[
I(Ys1 > θk,n, Ys2 > θ

′

l,n)
]

+ E
[
I(Ys1 > S−1

1 (u1), Ys2 > S−1
2 (u2))

]
−2E

[
I(Ys1 > θk,n, Ys2 > θ

′

l,n, Ys1 > S−1
1 (u1), Ys2 > S−1

2 (u2))
]

= SY (θk,n, θ
′

l,n) + SY (S−1
1 (u1), S−1

2 (u2))

−2SY (min(θk,n, S−1
1 (u1)),min(θ

′

l,n, S
−1
2 (u2)))

≤ c2an

where the last inequality holds due to the Lipschitz continuity of SY .
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Hence,

n2γ2
n

2
∑n
s=1 Var(Ys) + 4nγn/3

≥ n2γ2
n

2
∑n
s=1 c2an + 4nγn/3

= nγ2
n

2c2an + 4γn/3

≥ nc21n
−3/2(logn)3/2

(2c2c+ 4c1/3)n−1/2(logn)1/2 for n sufficiently large

= c21
2c2c+ 4c1/3

logn.

Given c and c2, we can choose c1 sufficiently large such that c2
1

2c2c+4c1/3 ≥ 2. We then
have

n2γ2
n

2
∑n
s=1 Var(Ys) + 4nγn/3

≥ 2 logn

⇒ − n2γ2
n

2
∑n
s=1 Var(Ys) + 4nγn/3

≤ −2 logn

⇒ 2 exp
(
− n2γ2

n

2
∑n
s=1 Var(Ys) + 4nγn/3

)
≤ 2n−2.

Consequently,

P (Kn ≥ γn) ≤
bn∑

k,l=−bn

P (Gkl,n ≥ γn) ≤
bn∑

k,l=−bn

2n−2 = 8b2nn−2

and thus P (Kn ≥ γn) = O(b2nn−2) = O(n−3/2 logn) = O(n−10/9). Moreover,∑∞
n=1 P (Kn ≥ γn) ≤

∑∞
n=1 n

−10/9 <∞ and thus Kn = O(n−3/4(logn)3/4).

Combining the results on Kn and Ln completes the proof.

Note that the above is a two-dimensional version of a result by Bahadur (1966) (see also
Serfling (1980)).



Samenvatting

In de overlevingsanalyse is de tijd tot een bepaalde gebeurtenis, de overlevingstijd, de sto-
chastische variabele waarin men geïnteresseerd is. Voorbeelden van overlevingstijden zijn:
(i) de tijd tot de ontwikkeling van hepatitis, (ii) de tijd tot de terugkeer van borstkanker
en (iii) de tijd tot de genezing van een uierinfectie bij koeien. Het toepassingsdomein van
de overlevingsanalyse is zeer breed. Vaak is de overlevingstijd onderworpen aan rechtse
censurering. De overlevingstijd is dan, voor een aantal observaties, niet exact gekend
en er wordt enkel een ondergrens geobserveerd (bv., de studie stopt nog voor hepatitis
zich ontwikkelt). Veelal komen overlevingstijden gegroepeerd voor. Voorbeelden van
groepering zijn: (i) een persoon wordt opgevolgd tot de ontwikkeling van diverse vormen
hepatitis (A/B/C), (ii) de terugkeer van borstkanker wordt nagegaan bij patiënten
die behandeld zijn in eenzelfde ziekenhuis en (iii) de uier van een koe bestaat uit vier
kwartieren, de infectiestatus van elk kwartier wordt opgevolgd. De groep of cluster is
hierbij achtereenvolgens (i) de persoon, (ii) het ziekenhuis en (iii) de koe.

De overlevingstijden binnen een cluster zijn doorgaans gelijkaardig; ze vertonen
een zekere correlatie. Klassieke methoden uit de overlevingsanalyse die de associatie
gepast in rekening brengen zijn het frailty model en het copula model. Een frailty model is
een uitbreiding van het uitvalsmodel (hazard model) van Cox, waarbij een multiplicatieve
stochastische factor, de frailty, aan de uitvalsfunctie wordt toegevoegd. Een frailty model
is dus een conditioneel model, waarbij de frailty de afhankelijkheid tussen de observaties
binnen een cluster bepaalt. In een copula model wordt de gezamelijke overlevingsfunctie
aan de marginale overlevingsfuncties gekoppeld via een copula functie. De copula
beschrijft de associatie tussen de observaties binnen een cluster. Een copula model
wordt gebruikt voor de analyse van overlevingstijden indien de clusters klein en van
gelijke grootte zijn, terwijl een frailty model ook toegepast kan worden indien de clusters
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omvangrijk en/of van verschillende grootte zijn.

Het doel van dit proefschrift is methoden te ontwikkelen die toelaten om de af-
hankelijkheidsstructuur in rechts gecensureerde gegroepeerde overlevingstijden flexibel
te modelleren. Hiertoe bestuderen we het frailty model en het copula model in meer detail.

In Deel 1 bekijken we het gedeeld (shared) frailty model. Hoofdstuk 2 beschrijft
beknopt het Cox model en de uitbreiding naar het gedeeld frailty model. In een gedeeld
frailty model bepaalt de keuze van de frailty dichtheid het type afhankelijkheid tussen de
overlevingstijden. Mogelijke frailty dichtheden zijn, onder meer, de invers Gaussische en
de positief stabiele dichtheid, de meest populaire is echter de gamma dichtheid.

In Hoofdstuk 3 ontwikkelen we, voor een gedeeld frailty model met een parametri-
sche uitvalsfunctie als basis, een omnibus toets om de hypothese van een gamma frailty
dichtheid na te gaan. Hiertoe definiëren we, via een orthonormale reeksontwikkeling, een
nieuwe klasse van veralgemeende gamma frailty dichtheden. De marginale aannemelijk-
heidsfunctie voor rechts gecensureerde overlevingstijden heeft een expliciete vorm. Een
orde selectie toets met bijbehorend bootstrap algoritme laat toe om binnen een reeks
van veralgemeende gamma frailty dichtheden de meest geschikte dichtheid te vinden.
Via een simulatiestudie onderzoeken we het onderscheidingsvermogen van de toets. Uit
de resultaten blijkt dat de voorgestelde procedure erin slaagt om afwijkingen van een
gamma frailty dichtheid te detecteren.

In Deel 2 bestuderen we het copula model. Hoofdstuk 4 beschrijft kort de basis
van de copula theorie. Het sleutelresultaat hierin is de stelling van Sklar (Sklar, 1959) die
aangeeft dat de copula functie het type afhankelijkheid tussen de overlevingstijden bepaalt.

In Hoofdstuk 5 ligt de focus op semiparametrische copulas: de marginale overle-
vingsfuncties worden niet-parametrisch gemodelleerd, terwijl de copula een parametrische
vorm aanneemt. We starten met een vergelijking tussen de vaak gebruikte (geneste)
Archimedische copulas (bv., Clayton en Gumbel) en de minder gekende Joe-Hu copulas
(Joe en Hu, 1996). We tonen hierbij aan dat de afhankelijkheidstructuur horende bij
een (geneste) Archimedische copula uiterst beperkt is en dat een Joe-Hu copula de
vereiste flexibiliteit toelaat. Gezien de veelheid aan mogelijke copula modellen, is de
ontwikkeling van een selectie methode noodzakelijk. Hiertoe beschouwen we, voor rechts
gecensureerde overlevingstijden, een criterium dat gebaseerd is op de gepenaliseerde
aannemelijkheidsfunctie en we bewijzen dat, onder bepaalde voorwaarden, dit criterium
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hetzij het beste model (één model bereikt de kleinste Kullback-Leibler waarde - zwakke
consistentie) hetzij het beste model met het laagste aantal parameters (er zijn meerdere
modellen die een gelijkaardige kleine Kullback-Leibler waarde hebben - consistentie)
verkiest. Het verband met de welbekende AIC en BIC criteria komt hierbij aan bod.
Om de diverse copula modellen te fitten, gebruiken we een generisch R-programma
waarin de componenten van de aannemelijkheidsfunctie numerisch benaderd worden via
eindige voorwaartse differenties. Een simulatiestudie toont de goede werking van het
R-programma aan.

Indien de keuze van de parametrische bouwstenen van een semiparametrische co-
pula niet evident is, dan biedt het gebruik van een niet-parametrische copula een uitweg.
Dit is het onderwerp van Hoofdstuk 6. We definiëren een nieuwe niet-parametrische
copula schatter voor rechts gecensureerde overlevingstijden. Hierbij bekijken we twee
vormen van censurering: (i) univariate censurering - per cluster is er één censureringstijd
die gemeenschappelijk is voor alle componenten binnen een cluster en (ii) copula
censurering - iedere component binnen een cluster heeft zijn eigen censureringstijd en de
afhankelijkheid tussen de censureringstijden binnen een cluster wordt beschreven door
een (gekende) parametrische copula. De situatie waarbij de censureringstijden binnen
een cluster onafhankelijk zijn, is hierin bevat. Voor de nieuwe copula schatter tonen
we de consistentie aan en geven we de asymptotische representatie als een som van
onafhankelijke identisch verdeelde stochastische veranderlijken. Om de kwaliteit van de
nieuwe copula schatter te evalueren, vergelijken we deze in diverse data scenario’s met de
recent ontwikkelde niet-parametrische copula schatter van Gribkova en Lopez (2014). De
resultaten geven aan dat de hoeveelheid censurering, de sterkte van de associatie tussen
de overlevingstijden alsook de grootte van de cluster bepalend zijn voor de kwaliteit van
de schatter. Gegeven een concrete situatie, geniet de nieuwe copula schatter dan wel de
schatter van Gribkova en Lopez (2014) de voorkeur.
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