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Chapter 1

Introduction

In the past, a microelectronic device used to be evaluated on its
performance and cost price. A high-quality product was understood to have
no defects or systematic failures on the moment it was leaving the manu-
facturer. Moreover, the reliability of a device, i.e., the ability to perform its
function under normal working conditions during a specific period of time
(Birolini, 1994), was not a serious issue. Today, the reliability of a device has
become an important subject. A high-quality product now also stands for a
reliable and safe product. The reasons of this tendency are manifold. Not
only has the competition between several manufacturers moved to the level
of a demonstrable reliability of their product, but also there is the increasing
expectation of the customer, as microelectronic devices have become indis-
pensable in human life. There are the growing costs of maintenance and
failure, the tendency to compare products based upon quality standards like
ISO9001, the fact that some products should be highly reliable for safety rea-
sons and the use of electronics in “harsh” environments, like the automobile
industry and space travel.

On top of that, with the advent of high-tech devices more and more
reliability problems are encountered. One of the main reasons of this is the

ongoing miniaturization of the integrated circuit (IC) due to the demand
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for highly sophisticated and high speed products. The result of this down-
scaling reveals itself both in an increase in the number of components of an
IC per unit of volume and a decrease of the dimension of these components.
Where components with a dimension in the order of ym were innovative in
the eighties, these days they are already old-fashioned. The consequences
of device scaling with respect to reliability are clear. A higher reliability of
the components is required to obtain the same reliability requirements for
an IC, physical mechanisms not playing a role in the aging process of older
technologies become important in new, down-scaled, technologies and new
materials, like Cu, high-K and low-K, have to be introduced.

In summary, the performance of reliability experiments has become
an essential issue in the development of microelectronic devices. Hereby,
reliability comes mainly back at three places: during the design of a chip,
during the qualification of a production process and during the production
monitoring. In essence, this work deals with the statistical modelling of data
generated by means of a reliability experiment. This kind of data is often
complex and requires for their processing advanced statistical techniques.
In some cases the microelectronic industry is faced with a lack of adapted
software. In addition, many statistical techniques used in other areas cannot
be applied in a straightforward manner due to the specific nature of reliability
data.

1.1 Aspects of a reliability analysis

The concept of “reliability analysis” is often indicated as a pure sta-
tistical matter. Nevertheless, statistics are only a part of it. On the whole,
it includes all kinds of investigations, experiments, analyses, ..., in order
to determine various aspects of the reliability of an item. A good overview
of what is understood under reliability analysis in microelectronics can be
found in Birolini (1994) and Ohring (1998). One of the important parts in
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microelectronics, is the process to understand the working and failure of a
specific component. For a basic component this means the physical under-
standing of the aging process, while for a more complex device this means the
relation between its failure and the failure of its basic components. Thanks
to this understanding, many models used in the statistical analysis can be
warranted. As this project deals with the statistical aspects of reliability

analysis, these models will not be questioned.

Basic concept and definitions

There exists a broad class of reliability experiments each with its
own specific goals. For example, there are controlled laboratory experiments
with basic components to assess their initial reliability, field experiments
with devices already on the market to compare results with those obtained
from designed laboratory tests, burn-in experiments to remove early failures
from a population of components, .... Within this class of experiments,
a substantial part is carried out with the intention of assessing product
reliability. In other words, the goal of the experiment is to predict the
reliability of the device under test (DUT).

The reliability of a device is defined as the probability that the de-
vice under normal working conditions and during a specific period of time
will carry out its function. Moreover, if 7 is the failure-free operating time
of a device (under normal working conditions) and considered to be a ran-
dom variable with distribution function F(¢) = P(7 < ¢), then reliability
can be quantified by means of the reliability function R(t) = 1 — F(t), i.e.,
the probability that the device has not failed at time ¢ (Birolini, 1994). In
general, an item is qualified as being reliable when it satisfies certain relia-
bility requirements. The latter are commonly expressed in terms of an z%
percentile or ¢, quantile, i.e., the time at which £% of the total population
of tested items has failed, with = a predefined percentage which is usually

very small. This £,5 quantile is related to the distribution of 7 through
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F(tyy) = P(1 < tyy) = x. It explains the importance of the estimation of

low quantiles in reliability analysis.

Event time data Reliability data collected from experiments carried out
to assess reliability, are so-called time-to-failure or failure time data. This
means that for each DUT an event time t° is registered. Failure time data
belong to the class of event time data. Examples of the latter from other
areas are survival data in biology and medicine, and event time data in social
sciences. Still, the specific nature of failure time data often requires another
approach, in particular when compared to survival data. Main differences

between these two groups of even time data are:

e Reliability experiments deal with items that are “dead” material, in
contrast to survival experiments. As a result, many reliability experi-
ments can be carried out in controlled circumstances, which is not the

case for medical or biological studies concerning humans or animals.

e Experiments in survival analysis can easily last a few years, contrary to
reliability experiments in microelectronics that should be carried out
fast and for a relatively small amount of money. This is due to both a

competition in price and performance between different manufacturers.

e While in survival analysis non- or semi-parametric statistical methods
are extensively used, in reliability analysis mostly parametric tech-
niques are applied. Partly, this is related to the different objectives
aimed at with both analyses. In particular, in a reliability analysis
often a lot of extrapolation is required. Another reason is that relia-
bility data are usually more appropriate for parametric techniques due

to the controlled environment of the experiment.

So, although there are a lot of statistical techniques to analyze event time
data, which is for a large part due to the extensive research in survival anal-

ysis, it is not straightforward to apply them on failure time data. Moreover,
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it is difficult to carry out a reliability analysis with most commercial statis-
tical software packages, as they include only a limited number of functions
for the (parametric) analysis of survival data.

The observed event time t¢ of a DUT is defined as the time span
between the start of the experiment for this DUT and the occurrence of an
event. The latter is either a failure or a removal of the DUT. In case the
observed event is a failure, the event time is the failure time or observed
failure free operating time t of the DUT, i.e., the time span between the
initial operation and failure of the device. For each device, the definition of
failure is specified in advance and depends on the reliability requirements for
the device under test. For example, the failure of a light bulb can be defined
as the moment that the bulb does not burn anymore, but equally well the
bulb can be defined as having failed when the amount of light it diffuses
is decreased with a certain percentage. If the DUT is removed from the
experiment before it failed, the event time, i.e., the time point of removal,
is a censoring time and the observation is referred to as right censored. The
reason for this removal can be a defect of the measuring system, end of the
test, .... There exist another kind of censoring where the DUT has already
failed on the moment that it is removed from the experiment. In this case,
the observed event time is left censored. An example of this situation is when
the DUT has failed before the first time point of inspection. A special case
of censoring is when the exact event time of a device cannot be observed,
but only a time interval in which the event occurred. The observed event
time is then interval censored. This situation typically happens when the
DUT cannot be monitored continuously, i.e., the device is inspected for a

failure or a removal only at specific points in time.

Type of samples Depending on the nature of the observed event times,
several kinds of a failure time sample can be collected from a reliability

experiment. Some important examples are:
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Complete sample. The experiment is finished when all components have
failed. Either all failure times are observed or they are all interval cen-
sored. Due to a lack of time, this kind of samples does not often occur
in real terms. However, they are the basis for developing statistical

techniques.

Type I singly right censored sample. The experiment is stopped at a pre-
defined point in time. Either a device has failed or it is right-censored
at the last measured time point. The number of failed devices is not
known in advance, in contrast to the total length of the experiment.

Since the total test time is known, this type of experiment is popular.

Multiple right censored sample. A device can be right censored at any time
during the experiment. This means that censoring times can be smaller
than failure times (in contrast to a type I singly censored sample). This
sample can be the result, for example, of an experiment where some
measurement systems of devices brake down, of an experiment where
failed devices are replaced by new devices or of a group of experiments

stopped at different points in time.

A lot of experiments carried out in a controlled environment will be type I
singly censored, while field data will be more frequently multiple censored.
Many other forms of samples exist, an overview can be found, for example,
in Lawless (1982, Chap. 1).

Failure time distributions

In the simplest setting of an experiment, items from one population
are put into operation under the same conditions. Although the items are
produced in the same way, they are not identical due to physical differences
caused by the production process. As a result, there is a spread present on
the observed failure times. These failure times are a realization of the posi-

tive random variable 7. Its (failure time) distribution reflects the variability
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in failure of an item caused through the differences in the population. There
are many distributions that can be used to model the variability between
the failure times, a description of most of them can be found in Meeker and
Escobar (1998, Chap. 4) and Lawless (1982, Chap. 1). Note that a nor-
mal distribution is usually not suitable and as such rarely applied, since its
domain is the real axis and a failure time is a priori non negative.

In practice, only a few distributions are used as failure time distri-
bution. The distributions commonly considered are the exponential, lognor-
mal, weibull and gamma distribution. Attempts to use other distributions
are seldom found in literature. Of these four, the lognormal and Weibull
distribution are the most popular ones. The lognormal distribution function

Frn(t) is given by:

(1.1)

Fon(f) = <M> |

1/6

with ®(z) the standard normal distribution function, n > 0 a scale and 5 > 0
a shape parameter. Often, the location parameter ; = In(n) and the scale
parameter o = 1/ are used instead of  and B. This originates from the
fact that if a random variable T is lognormally distributed with parameters
n and S, then the logarithm of T, i.e., Y = In(T'), is normally distributed

with parameters p and o. The Weibull distribution function Fyy (¢) is given

by:
£)1” n(t) —In
Fy(t)=1-— e[’(ﬁ)] = dopy (1(t)1/7$(77)> , (1.2)

" the standard smallest extreme value (SEV) or

with ®gpy(z) =1 — e
Gumbel distribution (Gumbel, 1958), n > 0 a scale and 5 > 0 a shape pa-
rameter. Also here holds that if a random variable T' is Weibull distributed,
then Y = In(7T') will have a SEV distribution with parameters y = In(n) and
o=1/p.

There are two main reasons why the lognormal and Weibull dis-

tribution are often applied to reliability data. First, both distributions are
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log-location-scale distributions, i.e., their distribution function can be writ-
ten as F(t) = Fy (W) with Fy(y) a standard function independent of
any parameter, i a location and o a scale parameter. For these distributions,
statistical theory and mathematics are relatively simple. Second, both distri-
butions have properties that make them appropriate to model failure times.
Extreme value theory suggest the suitability of the Weibull distribution and
the central limit theorem of the lognormal distribution for many applica-
tions (Crowder et al., 1991; Birolini, 1994). Apart from this, the Weibull
distribution allows both a monotonically increasing (5 > 1) and decreasing
(B < 1) hazard function. An increasing hazard is suitable for components
that are subjected to wear out or fatigue, while a decreasing hazard can be
used for components with an initial weakness (Birolini, 1994). Further, for
some typical components of an IC, the failure time distribution is consid-
ered to be Weibull or lognormal based on either a theoretical development or
a longterm experience (for example, Lloyd, 1979; Lloyd and Kitchin, 1990;
Degraeve, 1998).

The exponential distribution is the most simple failure time distri-
bution and a special case of the Weibull distribution (i.e., f = 1). In the
past, it was used extensively, partly due to the availability of easy statistical
methods for this function. Still, the exponential distribution turned out to
be inappropriate for many current devices due to its property of a constant
hazard or no memory (Lawless, 1982, pp. 14-15). This implicitly assumes
that devices do not age, wear out or have no weaknesses. It can be used for
robust devices that do not start to wear out for a long period. At present,
however, most high-tech devices are not robust. The gamma distribution is
not often applied, mainly because mathematically it is not attractive. Also
it is no log-location-scale distribution, although it does allow both monoton-

ically increasing and decreasing hazard functions.



Chapter 1: Introduction 9

Lifetime models

In order to assess the reliability of an item, it would be sufficient to
test a sample of the population at normal working conditions. If one would
last long enough, eventually all items of the sample will have failed. The
failure time distribution and so also the reliability function of the failure free
operating time 7 for this item, could then be estimated from the observed
failures times. There is, however, one crucial problem with this procedure:
the experiment would generally last ages (in the order of years). Since in the
microelectronic industry new devices and technologies are developed in quick
succession, this procedure is not suitable to test new devices. The technique
generally applied to shorten experiments such that is still possible to estimate
the reliability of a device at working conditions is called accelerated aging.
Based on the physical mechanisms that are responsible for the aging of a
device, physical factors are searched for that can accelerate the aging of a
device through an increase or decrease of their normal value. These factors
are referred to as stress factors. Typical stress factors are temperature,
current density, voltage, electrical field, ... A stress level is a value of a
stress factor. If an experiment is then carried out at elevated stress levels,
devices will fail much earlier in time. Usually, it is assumed that the applied
stress will not have an influence on the type of failure time distribution, but
will just modify the parameters (Birolini, 1994). An acceleration or lifetime
model is then used to extrapolate the failure time distribution from higher
stress levels to normal working conditions. This model relates the median
failure free operating time 7 of a device to the stress factors applied and
assumes that the shape of the failure time distribution is independent of
the applied stress. This last assumption can be easily adapted through the
incorporation of a model for the shape parameter. A lifetime model is mainly
built upon both theoretical and experimental physical evidence. Some are

broadly accepted, while for others a large disagreement exist.
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Physical Understanding )
What is the breakdown mechanism?

7N

Determination of the Prediction of the b
Field Acceleration Law Statistical Distribution (0)

NS

Extrapolation of the entire breakdown distribution
from high field (= measurement range) 3)
to low field (= device operation range)

2(a)

Is there a Reliability Problem? (4)

Figure 1.1: Schematic outline of how to approach the reliability problem for
an oxide (Degraeve, 1998).

Example 1: reliability of an oxide To summarize, we give an example
of how the reliability analysis for an oxide can be handled. The outline of
how to approach its reliability problem is taken from Degraeve (1998) and
given in Figure 1.1. An oxide is a dielectric, which is part of a capacitor and
of a transistor. Devices which are on their turn important components of
an IC. Oxides become constantly thinner and lately also new materials are
tested. Each time a “new” oxide is developed or an old one is improved, its
reliability has to be studied. The outline in Figure 1.1 reflects the different
steps which have to be carried out in a reliability analysis. The first step is
the work of engineers or physicists and is essential for the development of
the models as used in the next step. Obviously, a lot of research and initial
experiments are carried out. In the second step, two models are searched
for based upon results from (1) and possible prior knowledge. In step 2(b),

the type of failure time distribution for 7 is chosen such that it reflects the
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variability of failure within the population of oxides. For this kind of device,
typically the Weibull distribution is taken. In step 2(a), it is decided how
the lifetime model (or Field acceleration law) should look like. For an oxide,
mainly two stress factors are important in its aging process: temperature and
electrical field. Possible values for these factors in reliability requirements
are: E = 4MV/cm and T = 100°C. By an increase of the level of one of
these two factors, the oxide will age faster and so fail earlier. When the only
stress factor in the experiment is the electrical field, one of the two following

acceleration models are commonly used:

n = Ce"® (1.3)
n = CelG/E) (1.4)

with 7 the median lifetime of the oxide, E the value of the electrical field and
C, v and G parameters of the model depending on the specific oxide. Clearly,
conclusions about the reliability of an oxide will depend on the acceleration
model used. Large disagreements are found in literature concerning the use
of one of these two models (Degraeve et al., 1998; Martin et al., 1998). In step
(3) the models of step (2) are combined in order to extrapolate the failure
time distribution of 7 at normal working conditions. Although the scale
parameter of the Weibull distribution is equal to the 63% quantile and not
the 50% quantile or median, it is generally substituted in the lifetime model.
The underlying idea is that the parameter 1 in model (1.3) or (1.4) could
represent any quantile of the failure time distribution. Based on reliability
data collected from an experiment carried out at elevated values for the
electrical field, the models of step (2) can be estimated. From this, the
failure time distribution (and so the reliability function) at normal working
conditions can be estimated. In step (4), the obtained results are compared
with the stated (in advance) reliability requirements. Note that the outline
given in Figure 1.1 can be generalized to many other basic components of

an IC or even more complex devices.
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Parameter estimation

In microelectronics, there is no general agreement on the choice
of the estimation method. Many different techniques are considered, from
which some of them are even questionable. For example, a popular method
to estimate the parameters of a lognormal or Weibull distribution is least
squares estimation based on the corresponding probability plot. Neverthe-
less, the resulting estimated standard errors are incorrect and mostly by far
too small. Also there is a lack of adapted software (or easy to use software).
It is common practice to consider the most simple method and not neces-
sarily the most adapted one. Although there are standards available from
JEDEC of how to analyze certain experiments (for example, the standard
JESD37 to estimate the parameters of a lognormal distribution in case of
censored and singly right censored samples), many of the proposed methods
are not up-dated, and in addition not always followed.

However, under the force of circumstances, there is the tendency to
pay more attention to the use of suitable methods. Next to least squares esti-
mation, which is still used both in appropriate and inappropriate situations,
the maximum likelihood (ML) method is applied when feasible. Although
other techniques are described in advanced statistical (reliability) literature,
like Meeker and Escobar (1998), they are rarely used.

Example 2: a reliability sample from an accelerated test Figure 1.2
shows on a lognormal probability plot, a reliablity sample collected from an
accelerated test. This failure time sample is obtained from a temperature
storage experiment on commercial metal film resistors carried out at the
Institute for Materials Research (IMO). The only stress factor used for this
accelerated test is temperature. The applied stress levels are 120°C, 145°C
and 155 °C. The temperature at normal working conditions is 90 °C. At each
level, 126 components were tested. Apart from 1 right censored observation

for stress level 155 °C at the end of the experiment, all components failed. For
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T=120°C

0.5
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Figure 1.2: Lognormal probability plot of the failure time sample of example
2. The maximum likelihood estimate of the failure time distribution at all
stress levels as well as at the working condition is shown.

this type of device, often the lognormal distribution is considered as failure

time distribution and the following Arrhenius model as lifetime model:
Eq
n = Ce(kBiT), (1.5)

with n the median lifetime, T the absolute temperature in degrees K, kp the
Boltzmann constant (=8.6e-5eV/K) and C' and E, two parameters of the
model. The acceleration factor E, is commonly referred to as the activation
energy. Since the scale parameter of the lognormal distribution is also the
median of the distribution, it can be substituted in model (1.5) for . Based
on physical experience, the shape parameter of the lognormal distribution is

assumed to be equal for all stress levels. The following model is then fitted
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Frequency
k)
Frequency

(a) Sample 1. (b) Sample 2.
Figure 1.3: Histograms of (logarithmic) failure time samples.

to the sample by means of ML estimation:

In(t) — 1n(?7T)>
/6

nT = Ce(’fB—aT).

F(t;C,E,,B) =@ <
(1.6)

The fits of the ML estimate of the failure time distribution at the stress levels
and at the temperature of 90 °C are also shown in Figure 1.2. From this, ¢,
quantiles can be estimated and compared with reliability requirements. For
example, a possible reliability specification could be that the ¢ 49, quantile
(at T=90°C) should be larger than 1 month (=~ 4.4e4+4 minutes). Since
the ML estimate for the tj 9,9 quantile is 6.62 e4+4 minutes, with a 95%
asymptotic confidence interval given by [5.48 e+4; 7.89 e+4] minutes, this

requirement would be achieved.

1.2 Multimodal failure time data

In a reliability analysis, quite often not much attention is paid to

the choice of the failure time distribution for 7. Mostly, its type is rather
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chosen a priori with the belief that a simple (one or) two parameter distri-
bution, like the Weibull or lognormal distribution, is sufficient to describe
the variability in failure within the population of interest. In other words,
it is implicitly assumed that 7 has a homogeneous distribution. Although
this used to hold for many devices, more and more it seems that for some of
them these “basic” distributions do not capture anymore all features present
on the spread of the failure times. To illustrate what is meant, Figure 1.3
displays two histograms. Both depict the logarithmic failure times of a com-
plete failure time sample obtained from an experiment on a certain device,
carried out in the simplest setting. As noted, in histogram 1.3a the failure
times are more or less grouped, in contrast to histogram 1.3b which shows
the presence of two groups among the failure times. It turns out that the
distribution of the sample in 1.3a can be adequately described by a log-
normal distribution, while for the sample in 1.3b none of the homogeneous
distributions are appropriate. They all lack the possibility to model two (or

more) groups of failure times.

The sample depicted in histogram 1.3b is a typical example of a
so-called multimodal, in particular bimodal, sample. The failure time sam-
ple is heterogeneous, in the sense that the failure times can be divided into
a number of groups with each group related to a different failure behavior.
Physically, this means that within the population several failure mechanisms
act, which cause “the same kind of devices” to fail differently. This explains
the term multimodal, referring to the several failure causes or mechanisms
present in the population. It ought to be mentioned that these multimodal
failure time samples are not new (Kao, 1959; Joyce et al., 1976). Only, in
the past apparently the microelectronic industry experienced no reliability
problems when a simple failure time distribution was used to model the
distribution of the failure time 7 of these multimodal populations. Today,
however, not only a more adapted “heterogeneous” model is required due

to the fact that more reliability problems are encountered, but also multi-
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modal failure time samples occur much more frequently due to the advanced
technology (Mgltoft, 1983; Atakov et al., 1994; Ogawa et al., 2001).

1.2.1 Types of heterogeneous failure time distributions

Physically, a different failure behavior for the same kind of devices
is usually the result of one of the following two situations. On the one hand
it occurs that each device of the population can only fail due to one kind
of mechanism, but within the population there are several groups of devices
with each having a different failure behavior. These differences can be the
result of a different failure mechanism between the groups or of the same
mechanism which started to act on a different point in time. A typical exam-
ple of this situation is the production of a device through several machines
or through a production process that can lead to essential differences (with
respect to the failure behavior) within a device (Fisher et al., 2000). On the
other hand it happens that each device can fail due to multiple “competing”
failure mechanisms, but the device only fails due to the mechanism which
acts first. Again the population can be divided into several groups of devices
with a different failure behavior. Only, where for the first situation theoreti-
cally it would be possible to distinguish the groups before the devices are put
into operation, here a subdivision can only be made after all devices failed.
A typical example is given by a device that can fail due to either weaknesses
in the material caused by the production process or to wear out through its
aging process. The former is referred to as an extrinsic failure, the latter as
an intrinsic failure (Degraeve, 1998).

For these multimodal populations a heterogeneous failure time dis-
tribution, built up of homogeneous distributions, is required to adequately
describe the variability within the failure times. From a statistical point of
view, the first situation is modeled through a finite mizture distribution and
the second trough a competing risks or minimum type model. Both kind of

heterogeneous distributions are very popular in certain domains of statistics
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and the statistical literature concerning these models is huge.

1.2.2 The use of heterogeneous distributions in reliability

In spite of the need to use complex failure time distributions, they
are rarely applied in practice. The main reason for this is the lack of adapted
software in the microelectronic industry. But also the fact that organizations,
like JEDEC, which prescribe standard methods for the implementation of
reliability analyses, do not even consider methods to analyze multimodal
failure time samples, will not stimulate a more advanced statistical analysis
of these samples. This situation is not surprising given the rather limited
amount of (reliability) literature concerning the application and estimation
of heterogeneous failure time distributions. Although many textbooks on
reliability analysis mention the importance of these distributions, they often
do not consider estimation tools for them. Nevertheless, this is remarkable
given that the earliest articles dealing with multimodal failure time samples,
appeared already in the fifties (Acheson and McElwee, 1951; Kao, 1959).

Literature Articles in the domain of reliability, involved with the analysis
of multimodal populations can be roughly divided into two groups. In the
first one, new devices with a multimodal failure behavior are discussed. The
main purpose is the physical understanding of the different failure causes
or mechanisms. Often, multimodal failure time samples are shown, dis-
cussed and fitted, but mainly one has to guess the estimation method car-
ried out (Sichart and Vollertsen, 1991; Fisher et al., 2000; Ogawa et al.,
2001). Hereby, the main group of articles deals with bimodal populations.
Literature about this subject has grown a lot recently and is still growing
(Moltoft, 1983). The second group includes articles that are related to the
statistical analysis of multimodal failure time samples. Many of them con-
sider relatively simple estimation methods, from which graphical methods
are the most popular (Kao, 1959; Joyce et al., 1976; Mgltoft, 1983; Jiang and
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Murthy, 1995). Also, (new) estimation procedures are sometimes proposed
in order to avoid the more complicated and computational unattractive ML
method (Ling and Pan, 1998; Mu et al., 2000). Note that the latter, however,
should be treated with extreme caution since mostly properties of obtained
estimators are rarely known and quite often any statistical or physical rele-
vance is lacking. Still others, introduce different heterogeneous distributions
which do not rely on any physical evidence, in order to allow a graphical
estimation procedure (Zhang and Ren, 2002). Only a few articles deal with
more advanced estimation techniques, like the ML method (Mendenhall and
Hader, 1958; Chan and Meeker, 1999). Even so, many of them use the

methods without considering the pitfalls.

Software Many up-to-date applied software packages (used in the micro-
electronic industry) can estimate models that assume a basic failure time
distribution, like (1.6), including several forms of censoring. Quite often,
however, they are not able to estimate a heterogeneous failure time dis-
tribution. To our knowledge, WEIBULL and FAILURE, are two of the few
packages, if not the only ones, which do allow the estimation of certain het-
erogeneous failure time distributions. While FAILURE makes only use of the
ML method, in WEIBULL also a least squares technique is available. Nev-
ertheless, there seems to be some serious problems involved with their ML
estimation procedure. Namely, when using FAILURE for the ML estimation
of a complex failure time distribution, starting or initial values for the pa-
rameters have to be supplied in order to obtain ML estimates. Therefore,
the package is rather useless in practice, since software is demanded which
allows the “automatic” estimation of models. Although this requirement is
fulfilled by WEIBULL for some heterogeneous distributions, there is still an-
other problem of even more concern. Apparently, both packages can lead to
different ML estimates when estimating the same model to the same sample.

Clearly, this gives rise to different results and as such there is no unified ML
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approach. Furthermore, it is still the question whether both, one or none
of these two estimates have the desired properties of an ML estimate and
whether even more solutions would be possible. Importantly, no one seems

to be aware of these problems or take them seriously.

1.3 Objective

Too often somewhat simple graphical procedures are still applied
as only estimation tool in the few cases that a heterogeneous distribution is
considered for the analysis of multimodal failure time samples. But, even
if the more advanced ML method is used, it appears that its correctness
cannot be guaranteed. Distributions are estimated rather blindly with too
much respect for the ML method and without any justification of its use.
What about the appropriateness of the ML method for these distributions,
the multiple solutions, the statistical properties of the obtained solutions,
the initial values which have to be supplied, ...

In spite of this, more and more there is not only the demand to
analyze multimodal failure time samples with appropriate models, but also
to use, due to its increasing popularity, the maximum likelihood method for
their estimation. The main reason which prevents this method from being
used is the absence of a software package which allows the estimation of
these heterogeneous distributions, in a manner of speaking, with a press of
the button.

The aim of this project has its origin in these problems associated
with maximum likelihood estimation. Namely, how to estimate certain het-
erogeneous distributions to multimodal and in particular bimodal samples,
with a principled ML approach such that it is workable in practice. Impor-
tantly, this project could only be established through a strong cooperation
with other domains of statistics. It demonstrates the universal character

of statistics. It is the hope that in the future the interaction between the



20 Chapter 1: Introduction

different domains will become more pronounced.

1.4 Outline

From a modelling point of view, there are several ways to combine
simple homogeneous distributions to a heterogeneous distribution. Never-
theless, only two models are omnipresent in the statistical literature, i.e.,
the finite mixture and the competing risks model. Their popularity can
be mainly attributed to the fact that for many problems, as also for the
problem at hand, these models are the most natural and logical ones. In
this work, we will focus on the mixture model. Reasons are related to the
amount of knowledge already available about this model and the fact that,
so far, apparently it is the model most commonly considered in reliability
problems. Chapter 3 introduces the finite mixture model. Some definitions
and other notions are given as well as the form of the mixture required to
model the distribution of multimodal failure time samples, i.e., the general
finite mixture model. Also, we discuss the ML estimation of this model and
its related problems.

As this project is built upon the aim to analyze multimodal fail-
ure time samples, some of them are used as examples throughout this work.
They are obtained from experiments carried out at IMO, from other compa-
nies or from literature. Chapter 2 introduces these examples. To illustrate
that this work should not be restricted to the domain of reliability only, a
few other samples present in the literature are used as examples as well.
Although, they are not the result of a reliability experiment, they can be
modeled by means of a general finite mixture distribution.

In Section 1.2.2, we referred to several problems encountered dur-
ing the ML estimation of heterogeneous distributions. Essentially, these
problems boil down to the non-existence of the classical ML estimate and

the large number of maxima of the likelihood function. In Chapter 4, both
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problems will be handled in detail for the general finite mixture model.
Some (standard) solutions dealing with the nonexistent ML estimator are
compared to the alternative likelihood estimator. It is discussed how the
so-called spurious maxima and the many maxima can add something to the
likelihood analysis. In essence, we give our perception of how to deal with
the (maximum) likelihood estimation of finite mixtures in practice.

The main concern for the microelectronic industry are not the the-
oretical problems associated with ML estimation, but the practical problem
of how to obtain these estimates. We developed a starting value method that
automatically calculates the required estimates. In addition, it can be used
as an exploration tool. This procedure is introduced in Chapter 5. Further,
its performance as starting value procedure is evaluated and compared to
other methods and we consider some of its additional features.

To conclude, two case studies are discussed in Chapter 6. The first
handles the analysis of a bimodal failure time sample obtained from an accel-
erated test at 3 stress levels. The effect on the reliability conclusions whether
or not the bimodal failure behavior is taken into account, is illustrated, as
well as how appropriate likelihood estimates can be easily obtained for a
heterogeneous failure time distribution. In the second example, the galaxy
sample is considered. For this sample, the specific number of mixture com-
ponents is unknown. We show how the concept of spurious maxima and
the use of the starting value method can contribute to the discussion of the
number of mixture components.

In the final Chapter, main conclusions are stated as well as some

ideas for future research.
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Chapter 2

Key examples

For the moment, this chapter only contains the QQ-plots of the
samples used as an example throughout this work. It will contain a brief
description of the samples: background, failure time distributions usually

considered, . ...

23
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Figure 2.1: Lognormal QQ-plot of the resistor sample.

2.1 Failure time samples

2.1.1 The resistor sample

2.1.2 The interconnect sample.
2.1.3 Two laser samples

The laser A sample

The laser B sample

2.1.4 Two electromigration samples.
The EM1 sample

The EM2 sample

2.1.5 Appliance failure sample

(taken from Lawless (1982, p. 256))



Chapter 2: Key examples 25

STandard normal quantile

In(time)

Figure 2.2: Lognormal QQ@Q-plot of the interconnect sample.

°
2 o®
2 2
R » E
g g1
= . = o o
£ e ° o0 g o
5 -1 o ® 5
c c
B l T -1
< <
2 k. 2
% 21 . % 21
. .
-3 1
-3
-1 0 1 2 3 4 5 6 7 2 0 2 4 6 8
In(time) In(time)
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Figure 2.3: QQ-plots of two laser samples.
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(a) Lognormal QQ-plot of the EM1

sample.

(b) Lognormal QQ-plot of the EM2
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Figure 2.4: QQ-plots of electromigration samples.
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(b) Weibull QQ-plot.

Figure 2.5: QQ-plots of the appliance failure sample.
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Figure 2.6: Normal QQ-plot of the Pearson sample.
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Figure 2.7: Normal QQ-plot of the galazy sample.

2.2 Other multimodal samples

2.2.1 The Pearson sample

(taken from Everitt and Hand (1981, p. 46))

2.2.2 The galaxy sample

(taken from Aitkin (2001))
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Chapter 3

Finite mixtures

So far, we related the finite mixture model to the distribution of
multimodal failure time samples. In general, however, this model can be
situated in a much broader context. Not only it is applied in many other
situations, but also it belongs to the immensely rich class of mixture distri-
butions. The latter exist in a wide range of forms, are used in a wide class
of applications and although the related literature is huge already, it is still
growing. Well-known examples of areas where mixtures arise, are random
effects models, clustering, repeated measurement models, latent class mod-
els, empirical Bayes estimation, smoothing, ... An overview of the different
situations leading to the use of a mixture distribution, can be found, for
example, by Lindsay (1995, chap. 1).

With the article of Pearson in 1894, finite mixtures appear to be
the first kind of mixture models encountered in practice. Given that finite
mixtures can be regarded as the most natural derivation of a mixture model,
this is not illogical. In particular, finite mixtures arise naturally in the
context of modelling heterogeneous populations that can be subdivided into
a finite number of homogeneous populations or components (Lindsay, 1995,
p. 2). Today, finite mixtures are immensely popular and used in all kind of

applications. Many examples of the latter are given in Titterington et al.

29



30 Chapter 3: Finite mixtures

(1985). Literature concerning this topic is huge and covers a broad range of
problems from which a lot of them are considered in Everitt and Hand (1981).
A more up-to-date overview, with main focus on multivariate mixtures, can
be found in McLachlan and Peel (2000).

In the following Section 3.1, some definitions and terminology con-
cerning mixtures in general are given. The kind of finite mixture model,
which will be of main interest in this work, i.e., the mixture adapted to the
case of multimodal failure time samples, is presented in Section 3.2. Next,
section 3.3 deals with the theoretical and numerical identifiability of finite
mixtures. The concept of well or poorly separated mixtures, as well as their
graphical representation, is discussed in Section 3.4. In the final section, we
take a closer look at the maximum likelihood estimation of finite mixtures,
in particular to the related problems of which some were indicated yet in
Section 1.2.2.

3.1 Definitions and terminology

The density function h(y) of a (univariate) mixture in its most

general form is given by:

h(y; G, B, ) = / f(y]: B, 2)AG(). (3.1)

The density f(y) is called the (mizture) component density and can take on
any form. Quite often it is a member of the exponential family, especially the
normal distribution is frequently used. The parameter ¢ is the component
parameter or latent variable and can be a vector. The latter also holds for the
parameter 8. This is a nuisance parameter, which is only optional. Further,
a possible multivariate covariate & could belong to the model as well. The
distribution G is referred to as the mizing or latent distribution. It can be
considered as the distribution for the unobservable “random variable” ¢.

Depending on the specified distribution for G, several kinds of mixtures are
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distinguished. If the distribution of G is not specified, i.e., if no parametric
family for its distribution is assumed, the mixture model (3.1) without 8 is
referred to as a nonparametric mizture model and with B as a semiparametric
mizture model. These distributions lend themselves extremely well as a
model for unobserved population heterogeneity (Bohning, 2000, Chap. 1)
and also appear in the context of empirical Bayes estimation (Maritz and
Lwin, 1989). In contrast, parametric mizture models are obtained when
the distribution of G belongs to a certain parametric family. In case a
continuous distribution is assumed, the mixture model is called a mized
model. These models are frequently used and arise, for example, in the
context of models for longitudinal data (Verbeke and Molenberghs, 1997,
Chap. 3), repeated measurements models (Davidian and Giltinan, 1995) and
hierarchical Bayes models (Carlin and Louis, 1996). On the other hand,
when G is a discrete distribution, the resulting mixture is a finite mizture
distribution. As mentioned previously, such a model is appropriate when the
heterogeneity present in the sample can be quantified into a (known) finite
number of homogeneous subsamples.

Thus, for a finite mixture the mixing distribution G is a discrete
probability measure. This means that the support of G corresponds to a
limited number of points ¢j, 7 = 1... M, i.e., the different values that ¢
can take on. These points are referred to as support points. Further, at each
support point G puts mass 7, i.e., P(¢ = ¢;) = G(¢pj) = ;. The latter
are called probability masses or more commonly proportion parameters. The

density fas(y) of an M-component finite mizture can then be written as:

M
fuly;0) = mif(y;¢;,8) with

j=1
y (3.2)
0:(,3,¢1,...,¢M,7T1,...,7TM), Zﬂ'jzl.
7j=1

Generally, the component density f(y) is a one or two parameter distribu-
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tion. As a result, the support points ¢; are parameters in case of a one-
parameter component density or a two-parameter component density and a
nuisance parameter § present. The latter will also be referred to as the com-
mon parameter among the mixture components. The support points will be
a two-dimensional vector if there is no nuisance parameter and the compo-
nent density has two parameters. If there is no common parameter § among
the mixture components, the mixing is over all component parameters and

the mixture will be termed a general finite mizture.

3.2 A model for multimodal failure time samples

Most (univariate) multimodal failure time samples have a number
of characteristics in common. Of these, three important aspects are given
below. They mainly describe the requirements for a heterogeneous failure

time distribution.

1. For many reliability experiments carried out, reliability engineers gen-
erally know whether there is more than one failure mechanism involved.
Mostly, however, the specific failure reason for each DUT is unknown,
since at the end of the experiment it is either too difficult or too ex-
pensive (in terms of both money and time) to determine the failure
reason of each DUT.

2. The subsamples of a multimodal failure time sample, representing the
groups with a different failure behavior, are simply homogeneous fail-

ure time samples.

3. For many devices there is a priori no reason to assume a relation be-
tween the groups with a different failure behavior (for example, Joyce
et al., 1976; Fisher et al., 2000).

The first condition implies the suitability of a finite mixture model (under

the assumption that the different failure mechanisms are non competing).
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The second suggests that a homogeneous failure time distribution, like the
lognormal or Weibull, is most appropriate as component density. The last
characteristic points to a general finite mixture, as there is no reason to
assume a common (or nuisance) parameter among the mixture components.
Apart from this, a failure time sample will often be censored in some way.
Until now, finite mixtures are not much used in combination with a censored
sample. As such, the methods considered in the following should also be

applicable for censored samples.

In spite of the huge (statistical) literature dealing with finite mix-
tures, most models considered are not appropriate as a heterogeneous failure
time distribution. Indeed, the finite mixture model which is most commonly
used, is characterized through a normal component density and a common
scale parameter ¢ among all components. The popularity of this model is
partly due to the fact that estimation techniques, especially ML estimation,
are simplified a lot by mixing only over one parameter instead of two (Sec-
tion 3.5.2). Other important aspects are its increasing use in smoothing
applications and its relation to the nonparametric maximum likelihood es-
timate (NPMLE). The latter is obtained as the MLE of a nonparametric
mixture model. It has been proven that for the specific case of a nonpara-
metric normal mixture model with common fixed scale parameter, a unique
discrete NPMLE exist (Lindsay, 1983a,b). The resulting NPMLE is thus a

finite normal mixture with common scale parameter.

Other (continuous) distributions that occasionally appear as com-
ponent density, are often members of the exponential family and lately also
of the t-distribution family. However, general mixtures with a two-parameter
distribution as component density are not frequently used. Moreover, if the
component density has two parameters, then often one of the two is com-
mon. This also holds in the few cases that a Weibull mixture is considered.
There, either the shape parameter is taken to be common (Jewell, 1982) or

fixed (Rider, 1962). Note that an exponential mixture is a Weibull mixture



34 Chapter 3: Finite mixtures

with a common fixed (=1) shape parameter.

So, main interest is in general finite mixtures with a lognormal or
Weibull distribution as component density. Nevertheless, throughout this
work general normal and SEV mixtures will often be considered. Given the
equivalence between a normal (SEV) mixture and a lognormal (Weibull)
mixture, this will not change the objectives. Indeed, if the distribution of
a random variable T' is a finite lognormal (Weibull) mixture with density
Zj]\/il 7; fun(y; 14, B;), then the distribution of Y = In(T') is a finite normal
(SEV) mixture with density Z]]Vil 7 fn(y; g, 05) and p; = In(n;) and o =
1/B;j. To put it differently, through fitting a normal (SEV) mixture to a
logarithmically transformed sample, a lognormal (Weibull) mixture is fitted
to the untransformed sample. Therefore, all results obtained for normal
and SEV mixtures do equally well hold for lognormal and Weibull mixtures.
The preference for the normal mixture is logical seen the existing knowledge
about this model. The choice for the SEV mixture is related to the fact
that the relation between the SEV and Weibull mixture is similar to the
relation between the normal and lognormal mixture. In addition, the SEV
distribution is, like the normal distribution, a location-scale distribution.
Unless stated explicitly, the general mixtures considered in the following will
have a (log)location-scale distribution as component density. In addition, we
will mostly refer to the location and scale parameters of the location-scale

distribution, and not to the corresponding scale and shape parameter.

3.3 Identifiability

Before the estimation of any model can be considered, the question
of identifiability has to be answered. Generally, for a mixture distribution,
the aim is to identify the mixing distribution G(¢) based on observations
y from the mixture distribution with density h(y). This problem is often

regarded as a “missing data” problem since no realizations of ¢ are observed,
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but of the random variable Y (with mixture density h(y)). Given a mixture
model, the question is then whether it is meaningful to search for an estimate
of G. Information concerning the identifiability of nonparametric and finite
mixtures can be found in Teicher (1961, 1963) and Yakowitz and Spragins
(1968). Results about the identifiability of other mixtures can be found, for
example, in Maritz and Lwin (1989, chap. 2). We briefly summarize the

main results.

Definition (Teicher, 1961) A class of mixtures {h}, with respect to a cer-
tain family of component densities f(¢), ¢ € R™, induced by a set of dis-
tributions {G}, is called identifiable if

h(l‘;Gl) = h(]?;Gg) = Gy = GQ, VGl,GQ € {G} (33)

Given that {G} is the class of all possible distributions, then the
class of nonparametric mixture models is identifiable in case the component
density belongs to the (continuous) one-parameter exponential family or the
two-parameter exponential family with a common, fixed scale parameter.
However, this class is not identifiable in case the component density is a
member of the two-parameter exponential family or a (log)location-scale
distribution. Also the semiparametric mixture model is in that case not
identifiable (Lindsay, 1995, pp. 53-54).

On the contrary, if {G} is the class of all discrete distributions, i.e.,
{G} = U;2, G with G}, the class of distributions with a positive mass to
exactly k points, then the following result can be derived from one of Te-
ichers theorems (Teicher, 1963): the class of general finite mixtures with a
(log)location-scale distribution as component density is identifiable. Conse-
quently, the mixture models of main interest in this work are identifiable.

Still, this theoretical identifiability will not always be sufficient to
obtain meaningful estimates. For some samples, the ML estimation problem

is numerically not identifiable. In other words, the sample size is too small
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or the sample contains not enough information to distinguish one particular
model of a certain family. While this is mostly not an issue for the estimation
of simple one or two-parameter distributions, this is an important issue when
considering the maximum likelihood estimation of general finite mixtures.

Throughout this work, this topic will return several times.

3.4 Identifying the mixture components

Although (general) finite mixtures are identifiable, not all finite
mixtures are clearly recognizable as a mixture distribution. Specifically, for
some mixtures it will be easy to identify or recognize its different mixture
components, while for others this will not be the case. For mixtures with a
common scale parameter this comes down to how well the mixture compo-
nents are separated in location. In this section, we discuss how this concept
can be adapted to the case a of general finite mixture and which graphical
tools will be considered to recognize general mixtures, in particular two-

component mixtures.

3.4.1 Separation of the mixture components

For normal mixtures with a common scale parameter, the shape of
the density function, in particular its number of modes, depends highly on
how well the components are separated in location, i.e., how far the different
location parameters are situated off each other. For example, for the two-
component normal mixture with common scale parameter o and proportion
parameter equal to 0.5, the following subdivision exists (McLachlan and
Peel, 2000, pp. 9-10):

o A = "“U;“Z‘ > 2. The density function is bimodal. The larger the
value for A is, the more pronounced the bimodality will be and the

better the components can be identified from the mixture (based on
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the density plot). Mixtures with a clear bimodal density function are

referred to as well separated mixtures.

e A = 2. The density function has a kind of plateau, i.e., the only
maximum value of the density function is reached in several adjoining

points.

e A < 2. The density function is unimodal. It is not possible to identify
the two components of the mixture based on the density plot, or to
even identify the distribution as being a mixture. These mixtures are

often referred to as poorly separated mixtures.

In case of an unequal proportion parameter, the mixture density will no
longer be symmetrical, but for each value of m; a similar scheme can be
obtained with another borderline value for A. For example, for 7y = 0.2,
a sufficient condition to have a unimodal mixture density, is a value of A
smaller than about 2.7. Further, this concept can be easily adapted to
the case of an M-component normal mixture with common scale param-
eter. Also, it can be extended to any location-scale distribution, like the
SEV distribution, as component density. So, M-component mixtures with a
common scale parameter have clearly identifiable components if the location
parameters are sufficiently different (with respect to the size of the common
scale parameter). These mixtures are referred to as well separated mixtures.
They can be recognized through their density function which has M modes.

A generalization of this concept to the situation of general finite
mixtures is not straightforward. Two things are involved. First, there is the
fact that the modality of the density function cannot be reduced anymore
to the value of one single quantity A. The ratio of the different scale pa-
rameters becomes also important. Although there have been some attempts
to derive some rules, a general rule is difficult to obtain. A small overview
can be found in Everitt and Hand (1981, pp. 27-30). One of the sufficient

conditions to obtain a unimodal density for a two-component normal mix-
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ture, irrespective of the value of 7y, is given trough |pue — 1| < 2 min(oq, 03)
(Behboodian, 1970). A necessary condition, however, depends also on the
value of m; and its relation with min(oy,09). Second, the separation of
mixture components cannot be related anymore merely to the shape of the
density function or to the difference between the location parameters. If the
mixture components have similar location parameters, but scale parameters
which are sufficiently different, then the mixture components are still clearly
separated. However, the separation is in “scale” and not in location. Obvi-
ously, the mixture density will be unimodal, highly skewed and in addition,
difficult to recognize as a mixture on a density plot. This kind of separa-
tion, although often ignored, can equally well lead to mixtures with clearly
identifiable components (Section 3.4.2).

In the following, we will refer to poorly or well separated mixtures,
when the component mixtures are clearly separated in location, in scale or
in both. The larger the difference between the location parameters or scale
parameters, the better the mixture components are separated or can be iden-
tified from the mixture. Note that the value of the proportion parameters
will also have an influence on how well the mixture components are sepa-
rated. For some values, the location parameters or scale parameters have to

be further apart than for other values, to obtain a well separated mixture.

3.4.2 Graphical representation of mixtures

When mixture distributions are considered, a histogram is one of
the graphical tools most frequently used to visualize a sample. This graphic
can be regarded as an empirical counterpart of a density plot. Still, it is
rather difficult to use it for the recognition of samples with a mixture distri-
bution. There are two main reasons involved. On the one hand, the density
function of a mixture, in particular a general mixture, will not always reveal
the presence of a mixture, i.e., its density function will not always contain as

many modes as components. Nevertheless, the appropriateness of a mixture
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(a) Density plot. (b) Cdf plot on SEV probability scales.

Figure 3.1: A well separated two-component SEV mizture. Parameter values
are m = 0.2, H1 = 0, g1 = 0.5, Mo = 2.7, g9 = 0.67

distribution for a sample will be judged on the apparent number of modes of
a histogram. On the other hand, it has been indicated already several times
that the number of apparent modes in a histogram highly depends on the
number of bins or classes used (Everitt and Hand, 1981, p. 109; Haughton,
1997; Aitkin, 2001). As such, by changing the latter, the number of apparent
modes of a histogram can be easily changed.

For two-component (general) mixtures, Fowlkes (1979) indicates
that there do exist other kind of plots which make it possible to detect more
easily the presence of a general mixture distribution. One of them is the
quantile-quantile or QQ-plot (Section 5.2.1). These plots are often used in a
reliability analysis to depict a sample. Their main feature is that they allow
the recognition of many distributions which are based on a (log)location-
scale distribution. This also holds for two-component general finite mixtures
with a (log)location-scale distribution as component density. Although the
detection of mixtures with more than two components is more difficult, these

plots still allow an easy comparison between the observed sample and the



40 Chapter 3: Finite mixtures

0.8 3
w 2
06 =
|
Z o4 E 0
B4
0.2 §
@ 5
0.0 -3
-4 2 0 2 4 4 2 0 2 4
X X
(a) Density plot. (b) Cdf plot on normal probability
scales.

Figure 3.2: A well separated two-component normal mizture. Parameter
values are m; = 0.3, u1 =0, 01 =2, po = 0.5, 02 = 0.5

fitted distribution. Throughout this work, we will mostly use this QQ-plot
to depict the samples.

The theoretical counterpart of a QQ plot, is a plot of the cumulative
distribution function (cdf) of a distribution on certain probability scales
(Section 5.2.1). For a mixture distribution, the scales used are such that
the plot of the cdf of its component distribution is a straight line. For
example, normal (SEV) probability scales, are given by z for the x-axis
and ®=(y) (In(—In(1 — y))) for the y-axis. For lognormal or Weibull
probability scales, the scale on the x-axis is In(z). Based on the shape of the
cumulative distribution function on these scales, two-component mixtures
can be classified as being well or poorly separated. In particular, the more its
curve deviates from a straight line, the better the components of the mixture
are separated or the better the mixture components can be identified. As
an illustration, Figure 3.1 shows the density plot and the cdf plot of a two-
component SEV mixture with components well separated in location, while

Figure 3.2 gives the same plots for a two-component normal mixture with
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components well separated in scale. In Section 5.2.1 we will discuss how for
(well separated) two-component mixtures, the different components can be
identified from this kind of plots. To recognize well separated M-component
mixtures, each couple of two components has to be considered separately as
a two-component mixture. When each of those mixtures is well separated,

the M-component mixture will be well separated too (Section 5.5.2).

3.5 Maximum likelihood estimation of general fi-

nite mixtures

Through the years, a considerable number of estimation techniques
are developed. Most of them also found their way to finite mixture mod-
els. Before the advent of the computer in the early nineties, usually either
graphical techniques or the method of moments were applied as estimation
method for finite mixtures. Examples of graphical methods are given by
Harding (1948) and Preston (1952) for the two-component normal mixture
model, Kao (1959) for a two-component Weibull mixture and Bhattacharya
(1967), for grouped samples of a normal mixture model. The method of
moments was probably first used by Pearson (1894) for a two-component
general normal mixture. This method of moments was adopted by many,
but often with the restriction of a common scale parameter to simplify the
estimation procedure. A concise overview of the evolution of this method to
finite normal mixtures can be found in Redner and Walker (1984). Further,
it was used by Rider (1962) for a Weibull mixture with a common shape
parameter. From about the early sixties on, the maximum likelihood (ML)
appeared in literature as an estimation method for finite mixtures. Proba-
bly, Rao (1948) was one of the first using the ML method for the estimation
of a two-component normal mixture with common scale parameter. From
then on, the ML method was a preferred estimation method, mainly because

of the apparent superior properties of its estimators compared to the esti-
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mators of both graphical methods and the method of moments. Nowadays,
it is still a popular estimation tool together with Bayesian estimation (for
example, Redner et al., 1987; Aitkin, 2001). Sometimes, the two methods
are even combined (Aitkin and Rubin, 1985). More information about these
and other estimation methods for finite mixture models, in particular normal
mixtures, can be found in Everitt and Hand (1981) and Redner and Walker
(1984). Here, we focus on the ML estimation of general finite mixtures.

In the following Section 3.5.1, the ML estimation of finite mixtures
is briefly handled. Some of the main methods to obtain the ML estimates are
introduced. In Section 1.2.2, we pointed to some problems when ML estima-
tion is applied using some reliability software. Apparently, these problems
are no coincidence. Moreover, although the ML estimation of finite mixtures
seems feasible, without too many difficulties, this does not hold for the ML
estimation of general finite mixtures with a (log)location-scale distribution
as component density. There are two serious problems involved, which make
up the main topics of this project. They are introduced in Sections 3.5.2 and
3.5.3. As a result of these problems, a general framework for the ML esti-
mation of general finite mixtures is still lacking, in spite of the fact that the
estimation of the parameters of a general two-component normal mixture is

one of the oldest problems in statistical literature.

3.5.1 Calculation of the maximum likelihood estimate

One of the main reasons for the popularity of the maximum like-
lihood method are the good statistical properties of its estimators. In par-
ticular, under suitable regularity conditions, maximum likelihood estimators
(MLESs) are consistent and asymptotically efficient and normally distributed.
In the classical sense, the MLE is obtained as the global maximum of the
likelihood function. For many distributions among which a finite mixture
model, the maxima of the likelihood function can be obtained through solv-

ing the likelihood equations (LEQs). Specifically, given a (complete) sample
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y = (y1,...,yn) of sample size n, from a finite mixture with density (3.2),

then the likelihood function L(0;vy) is given by:
L(0;y) = [ fu(i; 0)- (3.4)
i=1

The LEQs are derived through equating to zero the partial derivatives of the
log likelihood function (i.e., In L(6;y)):

OlnL(0;y) 0’
00, N
: LEQs, (3.5)
OlnL(6;y) 0
a0, -

with p the number of parameters of the mixture model. Further, the co-
variance matrix of the asymptotic normal distribution of the MLE é, is

estimated by:

A — 1 "L 9?InL(6;y)
g =100) :[Z 9000’

—1
] : (3.6)

p——

with 7(0) the observed Fisher information matrix.

While for some distributions, like the members of the exponential
family, a closed form solution exists for the LEQs, mostly for finite mix-
tures they will have to be solved by means of an iterative procedure. Such a
method starts from an initial guess or starting value of the unknown param-
eters, and updates these values during a number of cycles until convergence.
The most popular and according to simulations (Everitt, 1984) also the most
adequate methods for mixtures, are the Expectation-Maximization(EM)-
algorithm and the Newton-Raphson(NR) method, as well as some of its
variations.

The EM-algorithm of Dempster et al. (1977) is developed to handle

maximum likelihood estimation in case of missing data problems. Each
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cycle of the iterative procedure consists of two steps: an expectation step,
calculating the expected complete data likelihood, given both the observed
data and the current parameter values, and a maximization step, maximizing
this expected complete data likelihood to obtain updated parameter values.
Given the fact that the estimation of a finite mixture distribution can be
viewed as a missing data problem (Section 3.3), the EM-algorithm is quite
suitable to handle ML estimation of finite mixtures. A detailed discussion
about the aspects of the EM-algorithm in case of finite (normal) mixtures can
be found in Redner and Walker (1984). Note that before the introduction of
the EM-algorithm in 1977, this iterative procedure was already derived by
some authors for the finite mixture problem without regarding it as a missing
data problem. Namely, Hasselblad (1969) for finite mixtures with a member
of the one-parameter exponential family as component density, and Wolfe
(1970) and Day (1969) for (general) finite normal mixtures, worked out,
amongst others, an iterative procedure based on the LEQs that appeared to
be the EM-algorithm.

In contrast to the EM-algorithm, the NR method is a general it-
erative procedure intended to solve any set of equations. For a simple one-
parameter equation g(z) = 0, one cycle into the NR procedure takes the form
Tkl = Tk — %. While for this single equation, (d%—(xx))_l is usually
easy to obtain, for a multi-parameter problem this involves the inversion of a
matrix. Variations of the NR-method, quasi-Newton methods, are intended
to simplify the calculation of this matrix inversion. More information on the
NR-method and some of its variations, in case of finite normal mixtures, can

be found in Everitt (1984) and Redner and Walker (1984).

It will be noted that within this project the EM-algorithm is often
preferred to the NR-method. The reasons for this will be explained where
necessary, but are mainly related to the instability of the NR-method and
the monotonicity property of the EM-algorithm. We implemented a version

of the EM-algorithm in the statistical language GAUSS. For the use of the
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NR-method, we considered the package CML of GAuUSS. Hereby, the CML

procedure is used with an analytical description of the gradient function.

3.5.2 The nonexistence of the classical maximum likelihood
estimate

In spite of the fact that the LEQs, previously given, can be solved
for most finite mixtures, the classical ML method seems to break down for
general finite mixtures with a (log)location-scale distribution as component
density. Moreover, for these mixtures the likelihood function is unbounded
at some points, also referred to as singularities, on the edge of the parameter
space. As a result, a classical MLE, defined as the global maximum of the
likelihood function does not exist. For example, take (y1,--- ,yn), a sample

from a two-component normal mixture with likelihood L(8,y) given by:

L(O,Y)Zﬁ{ il e{_%(%f]wt@e{_%(%ﬂ}. (3.7)

Pt 2moy 2m0oy

It is then easily seen that the likelihood goes to infinity whenever pu; = y;
and o1 approaches zero, with the other parameters having arbitrary values.
Clearly, these “maxima” are pathological and do not correspond to useful
mixtures. Moreover, they are inconsistent estimates and cannot be regarded
as maximum likelihood estimates, since due to its unboundedness, the like-
lihood function does not have a global maximum (Lehmann, 1980).

The main problem, however, for the ML estimation of general finite
mixtures is not this nonexistent MLE, but the fact that there is a huge dif-
ference in approach and no ambiguity in the way this ML problem is tackled.
For example, constraints on the parameters are incorporated, the construc-
tion of the likelihood function is adapted, other existing (local) maxima of
the likelihood function are chosen as estimate, ..., but rarely methods are
questioned or compared to each other. In Chapter 4, we not only try to

clarify this situation, but also give our point of view. Among other things,
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we will discuss and compare some important different approaches, look at
the behavior of the largest local maximum and discuss the importance of

considering the surface of the likelihood function.

3.5.3 The multiple root problem of the likelihood equations

It is well-known that the likelihood function of a mixture can have
multiple maxima. In particular, the LEQs for a general finite mixture model
usually have a lot of roots. The reason for this is related to the specific
nature of a general mixture model, as it models groups within a sample
whether these groupings are “real” or purely random. Nevertheless, in most
cases, interest is only in one specific root of the LEQs, which will often
be the root corresponding to the global or largest local maximum of the
likelihood function. However, most iterative procedures used to solve the
LEQs have no guaranteed global convergence. Moreover, it appears that the
root obtained highly depends on the starting values used. This explains the
situation encountered previously with the two (reliability) software packages:
other starting values were used, which resulted in different maxima.

As such, the choice of the starting values, in case of a general finite
mixture, primarily determines whether the intended maximum will be iden-
tified or not. In spite of this, only relatively little research efforts have been
devoted to the search for good starting values. Main focus remains directed
towards the improvement of the iterative procedures, especially the EM-
algorithm (Ueda et al., 2000; Celeux et al., 2001). We believe, however, that
a lot can be gained already when started with good, well-reasoned starting
values. As discussed in Chapter 5, they not only improve the performance
of iterative procedures, but also make simulations and bootstrap procedures
feasible (in terms of both time and unambiguity) and importantly make it
possible to fit mixtures in real terms (software, industry). In chapter 5, we
introduce a starting value method that allows a well-founded (maximum)

likelihood estimation of general finite mixtures in practice.
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Likelihood estimation of

general finite mixtures

The aim of this chapter is to clarify the situation concerning the
maximum likelihood estimation of general finite mixtures. As discussed, the
latter is problematic. Although in literature some solutions are proposed,
there is no general agreement of how to deal with it. There is too much
ambiguity in the approach of obtaining “adapted” ML estimates. The idea
is to set up a framework around the ML estimation of general finite mixtures.
This is done through investigating and comparing some existing techniques,
whether or not yet accepted. Quite likely, the solutions given will not be the
only ones, but at least the ones considered are checked in detail and their
pros and cons are known. It allows, for the first time, a sensible approach for
the estimation of general finite mixtures, based on the likelihood function.

The two main problems for the ML estimation of general finite

mixtures with a (log)location-scale distribution as component, are clear:

1. A classical MLE, i.e., the global maximum of the likelihood function,

does not exist due to the unboundedness of the likelihood function.

2. The LEQs contain usually a large number of roots.

47
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Although at first sight, the second problem is only a technical one, related to
the calculation of the MLE, it is nevertheless the direct cause of the presence

of the so-called spurious maxima. It will be handled in Section 4.3.

The main core of methods, proposed in literature to satisfactorily
tackle the unbounded likelihood problem, try to regularize the problem by
removing the unboundedness. Either the likelihood function is adapted or
the parameter space is restricted. While the latter is frequently used, we
believe that it suffers from some important drawbacks. Section 4.1 reviews
and discusses some standard methods to deal with an adapted or restricted
ML estimation of general finite mixtures. An alternative method, ignoring
the unboundedness of the likelihood function and referred to as likelihood
estimation, is based on the fact that there exists a local maximum of the
likelihood function with good statistical properties. This theory is rooted
in the literature, acknowledged by some authors, but still not often applied.
By going back to Cramér, we will review in Section 4.2 that well-behaved
estimates as a solution of the likelihood equations (LEQs) do exist for general
finite mixtures, despite the non-existence of the MLE. In particular, it will
be discussed that for the mixtures considered in this project, the largest local
maximum of the likelihood corresponds to these well-behaved estimates. In
Section 4.4, we have a closer look at some sample properties of the largest

local maximum.

In spite of this, not everyone agrees on the use of the latter: McLach-
lan and Peel (2000), amongst others, argue that one should first skip some
spurious maxima, before selecting the largest local one. Although, such spu-
rious maxima are indeed an issue, the way they are handled so far, seems to
be flawed. In addition, it is often overlooked that they also appear for most
other adapted ML methods. The result aimed at here is to put an end to the
myth that the likelihood estimate, defined as the largest local maximum of
the likelihood, cannot be used. In Section 4.3, we give our perception on this

problem, explain the presence of spurious maxima, relate it to the sample
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size and importantly gives some guidelines of how to deal with it in practice.
Finally, in Section 4.5, two estimation techniques, based on the ML method,
are compared with respect to what really concerns, namely inference. In
particular, three adapted likelihood estimators and the likelihood estimator

are compared.

4.1 Removing the unboundedness

The unboundedness of the likelihood function, in case of a gen-
eral finite mixture, is the immediate cause of the non-existence of a global
maximum, and so also of the (classical) MLE. As a result, many techniques
proposed to overcome the problem of a nonexistent MLE, try to remove in
some way this unboundedness in order to still obtain a, perhaps modified,
MLE. The most common approaches are based either on adapting the like-

lihood (Section 4.1.1) or on restricting the parameter space (Section 4.1.2).

4.1.1 Adaptation of the likelihood function

Cox and Hinkley (1974, Chap. 9) pointed out that the anomaly of
an infinite likelihood function would disappear if one would take into account
the inherent grouped nature of the data. In practice, all observations are
discrete and therefore a continuous model is only a theoretical concept. Sim-
ilarly, Aitkin (2001) states that the unboundedness of the likelihood arises
from its approximation to the actual grouped data likelihood.

From their point of view, the infinity problem results from a mis-
specification of the likelihood. As such, the problem could then be solved
through a more principled construction of the likelihood function. It should
be built as:

0}’ :H FMyz+5/2) (i_5/2)]7 (4'1)
=1
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with Fy(z) = 2%21 T F(Z|fom, 0m ), the cumulative distribution function
(cdf) of the mixture, F(x) the cdf of the mixture component and § the
grouping interval or the measurement instrument’s precision with which y;
is measured. As a consequence, this likelihood is bounded between 0 and 1.
Moreover, if a global maximum exists, it corresponds to a consistent MLE.
Note that, given a value for §, the observations y; are often recorded with an
accurateness larger than allowed by . Usually, these observations are used
in the likelihood function (4.1) without adapting them. We take the view
that this way of handling should be avoided. Instead, we prefer one of the

two following options:

1. The observations y; are rounded off according to ¢ (i.e., to y;s) and
used in (4.1) instead of y;. The resulting estimator will be referred to
as MLEJ.

2. The likelihood function, defined in (4.1), is replaced through
n
L(0,y) = [[{Fu([w:]) — Far(lwi))} (4.2)
i=1

with [y;] (lyi]) the observation y; rounded up (down) to the precision
0. The estimator will be referred to as MLEJ*.

Another approach, based on the same argument that all observa-
tions are discrete, is to bin the sample into a number of classes (m.), mostly
with equal width h (McLachlan and Peel, 2000, p. 101). The likelihood

function is then defined as

Mme

L(0,y) = [ [ [Fu(b;) — Far(ay)]™ (4.3)

7=1
with a; (b;) the lower (upper) limit of the j* class with b; — a; = h and n;
the number of observations within the class. Again, the likelihood function
is bounded and a consistent MLE (referred to as MLEy) is obtained if a

global maximum exists.



Chapter 4: Likelihood estimation of general finite mixtures 51

Apart from the fact that numerically, it can be demanding to manipu-
late a likelihood composed of differences of cumulative distributions instead
of densities, these adapted methods seem to be useful alternatives for the
(classical) ML method. Still, there are some drawbacks involved and some
important comments are in place. First, some authors state that the argu-
ment of discrete data does not necessarily get to the real issue. “Whether
or not it is possible in practice, it is still legitimate to suppose that the
observations are intrinsically continuously distributed and that discreteness
is the approximation” (Cheng and Tles, 1987, p. 98). Further, the original
likelihood (in the continuous case) was composed of density contributions
f(x;8), derived from probability elements P(z € dx) = f(x,6)dx (Cramér,
1946, chap. 32), obviating the need to be bounded above by 1. Also, despite
the fact that the infinite spikes of the likelihood do not yield useful estimates,
the infinity is not counter-intuitive. Indeed, if one of the variances goes to
zero, the corresponding component of the mixture becomes discrete with a
contribution to the joint distribution that will be “infinitely” greater than
a continuous one (e.g., you cannot better fit a point than by assigning the

entire mass to it).

Second, even if one considers (4.1) (or (4.2)) as the correct speci-
fication of the likelihood, how should one then choose the precision §7 In
rare cases, this value is known as being the precision of the measurement
system. But for most cases, the value of ¢ is unknown and one would be
unable to choose it without an unacceptably high amount of arbitrariness.
Similarly, this holds true for the number of classes m,. in case a binned like-
lihood is assumed. Nevertheless, the parameters § and m, can be regarded
as smoothing parameters. From this point of view, these methods could be

valuable in a kind of sensitivity analysis (Section 4.5).

Third, the global maximum of the likelihood function, irrespective
of the adapted form used, does not always exist. In particular, the adapted

likelihood function is discontinuous, like the classical likelihood function,
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at some points just outside the parameter space (for example at o1 = 0,
1 = y1 — 0/2 and the other parameters having arbitrary values). Due to
these discontinuities, an adapted likelihood function sometimes attains its
supremum in a point situated outside the parameter space. A supremum,
however, which is not a global maximum since this point does not belong
to the parameter space. As such, an adapted MLE does not exist either.
Basically, this problem is similar to the unbounded likelihood problem. In
Sections 4.2 and 4.5.3, we come back on this issue. Examples are given in
Sections 4.3 and 4.5.3.

In summary, adapted MLEs could be an option, but in essence they
mostly suffer from the same problem as the classical MLE. These methods
are not equivalent to classical ML estimation but to ML estimation adapted

for grouped data. A distinction which also exist for other distributions.

4.1.2 Restriction of the parameter space

Another way of bounding the likelihood is by restricting the param-
eter space. The singularities of the likelihood are situated on the edge of the
parameter space. Hence, by constraining the latter such that problematic
points are excluded, a bounded likelihood over the restricted space can be
obtained. However, one still has to prove the existence of a consistent MLE
for this kind of restricted likelihood problems.

One of the most popular forms of constraints, although it is often
not recognized as such, is the imposition of an equal scale parameter among
the different components of the mixture. In this case, the singularities of the
likelihood L(8,y) disappear (if the sample has a size larger than 1 and not
all values are equal), the likelihood becomes bounded and a consistent MLE
exists (Everitt and Hand, 1981). But, although this restrictive assumption
may be justified in some cases, in general it not a satisfactory solution (Fisher
et al., 2000; Joyce et al., 1976).

For a general mixture model, one can prevent the scale parame-
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ters of the different components to become zero, by interrelating them. In
this way, a constrained parameter space without singularities is obtained.
Moreover, Quandt and Ramsey (1978), amongst others, noted the existence
of a consistent MLE in case a relationship between the standard deviations
of the true mixture normal component densities was known and incorpo-
rated as constraints. A possibility, for example, are constraints of the form
o; = kjjo;, with k;; known constants. Exact knowledge of the constants,
however, is rare.

Alternatively, inequality constraints can be imposed as is done by

Hathaway (1985). He introduced the following inequalities:
o; > coip1,i=1,..., (M — 1);0p > cop,withe €]0, 1]. (4.4)

For this restricted likelihood problem in case of a normal mixture model,
Hathaway proved the existence of a global maximum of the likelihood re-
gardless of the value of ¢. Further, he showed the consistency of such a
global maximum if the constrained parameter space contained the true pa-
rameter. In other words, a consistent MLE exists if the true parameter is in
the restricted parameter space. Hathaway and Bezdek (1986) also adapted
the EM-algorithm to incorporate restrictions.

Another way to restrict the parameter space and exclude singulari-
ties is to work directly with compact subsets. For these likelihood problems,
Redner and Walker (1984) proved the existence, as sample size goes to infin-
ity, of a consistent MLE for the normal mixture problem over any compact
subspace containing the true parameter.

In spite of the fact that most of the methods mentioned are reason-
able, we do not consider them as an option. The major problem with this
kind of approach are the restrictions imposed on some of the parameters,
while a priori for most problems the parameters of a general finite mixture
can take on any value. Also, all results concerning the consistency of the

MLE are based upon the assumption that the constrained parameter space
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contains the true parameter, although the latter is unknown. So, the choice
of the value of ¢ and the choice of the compact subset, without knowledge
of the true parameter, is rather problematic. In addition, often restrictions
are too limiting. For example, imposing equality of the scale parameter is
an easy way to proceed, but in a lot of cases it is implausible. For the esti-
mation of a general finite mixture model, restricting the parameter space is

essentially circumventing the real problem.

4.2 An alternative: likelihood estimation

One of the main reasons for the popularity of the maximum like-
lihood method are the good statistical properties of the corresponding esti-
mators. Namely, they are consistent, asymptotically efficient and asymptot-
ically normally distributed under suitable regularity conditions. Although
the classical MLE does not exist for the general finite mixture model, as
noted before its likelihood function has many local maxima. Often, one of
these maxima and in particular the largest local one, was considered instead,
as it was understood to have the same properties as the MLE. In the course
of time, evidence appeared in literature for the normal mixture model, justi-
fying the approach tacitly followed. This provided a way to avoid the search
for a global maximum. First, empirical evidence was found, for example
by Quandt (1978) and Duda and Hart (1973), that a local maximum, more
specifically the largest one, corresponds to reasonable parameter estimates.
Later, Sundberg (1974), for incomplete data from an exponential family and
Kiefer (1978), for a switching regression model and Lehmann (1983), for gen-
eral situations, provided a solid basis for such an approach. They all proved
the existence of a consistent sequence of roots of the likelihood equations for
their particular problem or provided some regularity conditions.

In what follows a review of this theory is given (Section 4.2.1),

together with our perception of how it can be used to obtain parameter
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estimates with good statistical properties in case of general finite mixtures
with a (log)location-scale distribution as component density and without

any restriction on the parameters (Section 4.2.2).

4.2.1 Review

Cramér (1946, chap. 32-33) discussed the method of maximum like-
lihood for one-parameter distributions. Although he first defines the MLE
as the value which renders the likelihood as large as possible, his final def-
inition of an MLE is different from the classical one. Moreover, he states:
“Any solution of the likelihood equation will be called a mazimum likelihood
estimate of the unknown parameter”. With this definition in mind, he proves
that under certain general conditions as the sample size goes to infinity the
likelihood equation has a (but not any) solution that converges in probabil-
ity to the true parameter value, hence is consistent. Further, this solution
is also asymptotically efficient and normally distributed. In other words,
Cramér proved the existence of a solution of the likelihood equation with
good statistical properties and called it an MLE.

In 1948, Huzurbazar showed, under the same conditions as Cramér,
that with probability going to one as the sample size goes to infinity, such a
consistent root is unique and corresponds to a local maximum of the likeli-
hood. Thus, if a density satisfies the conditions of Cramér, a local maximum
of the likelihood exists , which possesses the required statistical properties.
This result provides a useful alternative to the condition of global maxima
only.

Wald (1949) gave a proof of consistency of the classical MLE, i.e.,
with the usual meaning attached to the global maximum of the likelihood.
His proof was based on totally different and more demanding assumptions
compared to Cramér’s conditions. In essence, Wald does not use differen-
tiability assumptions; even the LEQs do not have to exist. In addition,

Wald notes that Cramér is only proving the consistency of a local maxi-
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Wald's conditions:
global maximum (MLE) =
consistent estimate

Cramér’s conditions:
aroot of LEQ =
consistent estimate

same estimate
MLE = root LEQ
e.g. normal mixture with
equal scale parameter

LE =root LEQ
e.g. normal mixture with
unequal scale parameter

Classical MLE
e.g. support depends
on parameter

Figure 4.1: Likelihood estimation

mum, in contrast to his proof of the consistency of a global maximum. A
concise overview of both sets of conditions can be found in Section A.1 of
the appendix. Note that Cramér’s results were for the one-parameter case
(in contrast to Wald). Aitchison and Silvey (1958) generalize his results to
the multi-parameter case, whereas Chanda (1954) (proven by Tarone and
Gruenhage 1975) extends the uniqueness theorem of Huzurbazar. The con-

ditions are straightforward extensions of the one-parameter case.

Nowadays, the classical meaning of the MLE is still used in combi-
nation with the conditions of Cramér. Sometimes, as is the case for general
finite mixtures, this leads to the problem of a seeming failure of the maximum
likelihood method. Nevertheless, there would be no problem if the correct
conditions would be considered. Figure 4.1 gives an overview of these dif-
ferent approaches of (maximum) likelihood estimation. On the one hand,
there are the conditions of Wald ensuring the consistency of a global maxi-
mum, if this maximum exists. On the other hand, there are the conditions of

Cramér guaranteeing the existence of a consistent local maximum. Depend-
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ing on the assumptions a parametric family fulfills, we have the following

three possibilities:

Both conditions hold. They refer to the same estimate, i.e., the global
maximum. It can be found as a solution of the LEQs. This is the case
for a lot of two-parameter distributions such as the normal, Weibull,

gamma, ..., but also for a finite mixture with common scale parameter.

Only Wald’s conditions hold. If the global maximum exists, the classi-
cal MLE is consistent. This is typical for distributions that do not
have a derivative at some points in the parameter space. An exam-
ple is when the support depends on some parameter, like the uniform

distribution.

Only Cramér’s conditions hold. Even if the global maximum exists, it
does not necessarily have good statistical properties, but at least one
local maximum does. It corresponds to a root of the LEQs. This
is often the case for distributions with singularities situated on the
edge of the parameter space, such as for many general M-component

mixtures.

When applied to the problem at hand, it appears that the condi-
tions of Cramér are fulfilled for most general finite mixtures with a (log)lo-
cation-scale distribution as component density. In particular for normal
mixtures, it has been shown by Sundberg (1974) and Kiefer (1978), that
this parametric family satisfies the necessary conditions. A comparable proof
can be used, to demonstrate that the conditions are also fulfilled for SEV (or
Weibull) mixtures. No additional difficulties are encountered when consider-
ing an adapted likelihood function instead of the classical density likelihood.
In the same way, it can be shown that also in this case the conditions of
Cramér are satisfied (if minimum 3 adjacent intervals are available for each

component of the mixture).
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Already in 1956, Kiefer and Wolfowitz pointed out that a consistent
MLE did not exist for the general normal mixture model. They also indi-
cated that this was not only due to the “technical” problem of a nonexistent
global maximum. The problem was more profound as also the conditions
of Wald were not satisfied. In particular, there are problems with the inte-
grability assumption (Section A.1). The same holds true for general SEV
mixtures. But, while it is taken for granted that problems are solved through
a discretization or grouping of the sample, this is not necessarily the case.
It is not because the likelihood becomes bounded that a global maximum or
even a consistent MLE would exist. Apparently, for the adapted likelihood
functions, there are some problems too both with the existence of a global
maximum and the assumptions of Wald. Moreover, we did not found a way
to compactify the parameter space such that the continuity assumption is
fulfilled. In contrast, through restricting the parameter space a compactifi-
cation of the latter is possible and as such the conditions of Wald are often
satisfied in the restricted space. This result is already indicated by Sund-
berg (1974) for incomplete data problems from an exponential family, like a
normal mixture model. Sundberg states that in the situation of loss of in-
formation (such as grouping or mixing), the conditions of Wald are usually
much too strong and that results can only be obtained if the parameters are

restricted to compact subsets.

Thus, whether or not an adapted ML approach is followed, mostly
a consistent (classical) MLE does not exist for the general (log)normal, SEV
or Weibull mixture. However, a consistent local maximum does exist. Im-
portantly, for the finite mixture model figure 4.1 shows that whether we
either work with a mixture with common or non-common scale parameter,
in essence the same kind of estimate is obtained from the likelihood equa-
tions, in spite of the convention of terminology to only call the first an MLE.
The latter will be referred to as a likelihood estimate (LE).
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4.2.2 Multiple roots

It is not sufficient to know that a likelihood estimate exists. The
latter also has to be identified to be a useful estimate. This, however, is
not an obvious task for a general finite mixture model. Not only its LEQs
usually have a large number of roots, but also Cramér’s theory only states
the existence of a consistent root of the LEQ. No results are available on
which root to specify.

Basically, for finite mixtures, there are two types of roots. In the
first place, there are multiple roots caused by the non-identifiability of the
parameters in the model. Indeed, although the family of general finite mix-
tures is identifiable (Section 3.3), the parameters are not due to the arbi-
trariness of the numbering of components of the mixture. Moreover each
permutation of the component labels provides another root, resulting in at
least M! roots for the likelihood equations. Nevertheless, this problem is not
of great concern and can be avoided, for example, by ordering the sizes of
the different means or by introducing an equivalence relation in the param-
eter space making the true parameter identifiable relative to its equivalence
class. On the other hand, a second class of roots is of more concern. Day
(1969) stated that any pair, triplet,...of distinct observations sufficiently
close together, would generate a local maximum of the likelihood, resulting
in several roots for the likelihood equations. But his comment that therefore
ML estimation breaks down is not warranted as observed previously. These
roots are fundamentally different from each other and inherently due to the
nature of a finite mixture model.

According to theory, the LEQs contain a “unique consistent” root.
Note that unique here refers to a unique equivalence class (Redner, 1981) and
that there is also a certain ambiguity in this uniqueness statement (Perlman,
1983). The problem of identifying an unique consistent root is not related
to (maximum) likelihood estimation only. Other domains where it appears

are, for example, estimating equations and classical least squares estimation.
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Small et al. (2000) give a good overview of the problem in general and of
several methods dealing with the identification of a consistent sequence of
roots. Among the several options, the following three procedures are most

appropriate for the problem at hand:

1. If a consistent MLE exists, the global maximum corresponds to the

consistent root.

2. Given a consistent estimate, then the root closest (with closest de-
fined through some distance measure) to this estimate is consistent
(Lehmann, 1983, p. 421).

3. Given a consistent estimate, the root obtained by using this estimate
as starting value for an iterative procedure, is consistent (Small et al.,
2000).

Eventually, for the sample size sufficiently large, all procedures will lead
to the same root due to the uniqueness of the consistent sequence. For
finite normal mixtures with a common scale parameter all three methods
are workable. Not only a consistent MLE exists, but also another consis-
tent estimator, namely the moment estimator, can be obtained quite easily
(Section 5.1). As well-known, the first method is the most popular one. Nev-
ertheless, sometimes the moment estimator is used as a starting value. It is
then understood that the maximum obtained (with method 2 or 3) is the
MLE, which is not necessarily true, although the obtained root is consistent
too.

At first sight, none of the methods are usable for the general finite
mixture model. This is obvious for the first method. But also method 2
and 3 are not option since it is rather problematic to find another consis-
tent estimator (Section 5.1). Still a criterion similar to method 1 can be
applied, based on the consistency of the largest local maximum. Indeed, for

many general finite mixtures and in particular those considered here, the
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root corresponding to the largest (finite) local maximum of the likelihood
is consistent. For the normal mixture model, this can be shown in several
ways using results described in Section 4.1.2. Both the propositions of Hath-
away (1985) and Redner and Walker (1984) on the consistency of the global
maximum in a constrained parameter space, imply the consistency of the
largest local maximum. Similarly, it can be shown that it also applies for
SEV mixtures. For the adapted likelihood methods, the results of Sundberg
(1974) for the normal mixture model, imply the existence of a consistent
root, which, at least asymptotically, maximizes the adapted likelihood func-
tion in every compact subset of the parameter space. In general, this last
result holds true for any distribution satisfying both Cramér’s conditions
over the entire parameter space and Wald’s conditions over any compact

subspace containing the true parameter.

We preferred this “largest local” criterion to identify a consistent
root. In the following, we will refer to the largest local maximum as the
LE. This choice is founded on the connection with the classical maximum
likelihood method and the fact that it seems one of the few methods which
is feasible in practice. As Small et al. (2000) point out: “the multiple root
problem of the LEQs has one big advantage as opposed to other problems,
in that roots can be compared relatively based on their likelihood value.”
So, why not using this property. In spite of this, in the next chapter it will

become clear that the search for this largest local maximum is not obvious.

In summary, for general finite mixtures with a (log)location-scale
distribution as component density the likelihood estimate corresponds to the
largest local maximum of the likelihood function. It has the same properties
as the MLE and coincides with the MLE when this estimate exists and is
consistent. Apparently, the same holds for most adapted likelihood methods.
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4.3 The problem of spurious maxima

In spite of the results concerning the LE, McLachlan and Peel (2000,
chap. 2-3) argue, amongst others, that this largest local likelihood criterion
cannot be followed since a so-called spurious maximum can be chosen as LE.
In particular, it was noted, when estimating a general finite normal mixture,
that for some samples the largest local maximum of the likelihood could
correspond to a maximum with implausible values for the parameters, i.e., a
spurious maximum. Note that the presence of “implausible” maxima in the
likelihood function for these mixtures was already observed by Day (1969).

To make more clear what is meant with a spurious maximum, we
look at an example given by McLachlan and Peel (2000, pp. 100-101). They
generated a sample of size 100 from a two-component normal mixture with
parameter values u; =0, 01y =09 =1, puo = 2 and m; = 0.5. A normal QQ-
plot of this sample is shown in Figure 4.2a. Two maxima of the likelihood
function were located. In Table 4.1, which gives the parameter values of
several maxima of this likelihood, they are referred to as maximum 3 and
6, respectively. Clearly, of these two, maximum 3 has the largest likelihood
value. But, it also has a value for m; which is about 2/100 and a very
small value for the scale parameter o;. Moreover, the first component of
the mixture (corresponding to maximum 3) is related to a subgroup of only
two successive data points of the ordered sample. As such, it is highly
unlikely that one would consider that maximum 3 reflects the “truth”. This
maximum is related to a pure random cluster of data points in the sample
and therefore it is called spurious. Further, the other maximum found (i.e.,
maximum 6 in Table 4.1) was considered to be the LE, due to the fact that
its parameter values are much more plausible. In addition, when the sample
was binned into 7 intervals of equal width, apparently the parameter values
of the MLE then obtained are close to the parameter values of maximum 6,
confirming their conclusion that maximum 6 was the LE. Hereby, binning

the sample was regarded as a procedure to remove spurious maxima since
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Table 4.1: Some local mazima of the likelihood function of the simulated
sample from McLachlan and Peel.

maximum I o1 2 o3 T InLL
1 (LE) -0.83 0.00040 1.06 1.33 0.020 -163.89
2 2.52 0.00065 0.99 134 0.020 -165.53
3 -2.16 0.0085 1.09 1.28 0.020 -165.94
4 091 141 1.71 047 0.86 -170.25
5 0.96 1.39 1.62 0.28 0.90 -170.25
6 -0.70 0.95 1.38 1.11 0.17 -170.56
MLE 1.03 1.34 -171.29

Note: The first 3 maxima are the largest local maxima; the maxima in bold are
obtained by McLachlan and Peel. The last row gives the MLE obtained for a normal

distribution.

the occurrence of these maxima in the likelihood function was attributed to
the continuous nature of the data.

We also scanned the whole parameter space for solutions of the
LEQs. The way this is carried out is explained in Chapter 5. A lot more
maxima than indicated by McLachlan and Peel, are found. Some of these
are given in Table 4.1. The first 3 maxima are the largest local maxima of
the likelihood function, the last 3 are the only maxima found which have
plausible parameter values. Between maximum 3 and 4 more than 20 other
maxima are situated. Clearly, the largest local maximum was not obtained
by McLachlan and Peel and the likelihood function contains many more
maxima than two. However, maximum 1 and 3 are similar in nature: both
are truly spurious. As such, there is still the problem that the LE is not
believable or reflecting the truth. But, as noted from Table 4.1, there is
also no a priori reason to take maximum 6 as the LE. Why not choosing
maximum 4 or 57 Indeed, both have a larger likelihood value and their
parameter values also seem plausible. The only motivation for choosing
maximum 6 as LE, is that it is the maximum closest to the true values, with

closest defined by some distance measure. However in real examples, one
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does not know the true values, which underscores that there are no good

grounds to choose maximum 6 as the LE.

The argument that spurious maxima are due to the continuous
nature of data is not warranted either. Indeed, binning the sample into
a number m, of intervals with equal width (or equivalently introducing a
measurement error ¢ for the data), will not solve the problem of spurious and
multiple maxima, of the likelihood function. The presence of these maxima, is
related to the specific nature of a general finite mixture, as it models clusters
within a sample, whether these clusters are real or random. Of course, the
number of maxima of the likelihood, and so also of spurious maxima, found
will decrease when m. becomes smaller, since clusters of the sample with a
small within variation will be smoothed out. But, how far can we decrease

m. without smoothing out the “real” subdivision of the sample?

To illustrate this, we binned the sample shown in Figure 4.2a into
80, 50, 20 and 7 classes of equal width. In Table 4.2, some “maxima” of
the likelihood function for each binned sample are given. Several things can
be inferred from this table. First, regardless of the number of classes used,
there are problems with the “global” maximum. In each case, the likelihood
function seems to attain its largest value in several points with approximately
the same values for the proportion parameter and the parameters of the
second component, while the values for the parameters of the first component
are different. Some of these apparent maxima are tabulated. They can
be recognized through the 7 sign behind the values for the parameters of
the first component. These points are no consistent estimates and even
no maxima. The reason is that only two adjacent intervals are used to
estimate the parameters of the first component, while at least 3 intervals are
required to obtain a consistent estimate (Sundberg, 1974). Second, distinct
spurious maxima do not necessarily disappear. Often, as the number of
classes reduces, they change into problematic maxima, before they fade away

(for example, the maxima related to maximum 3). We will give a more
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Table 4.2: Local mazima of the likelihood function for several binned samples
from the simulated sample of McLachlan and Peel.

m. max I o1 2 02 T InLL
3 -2.2177 0.00369 ? 1.118 1.238 0.0286 -416.718
3 -2.213 7 0.0117 ? 1.118 1.238 0.0286 -416.718
3 ] —2.218,-2.137] -0 1.085 1.276 0.0191 -418.439
80 4 1.690 0.0344 0.988 1.367 0.0517 -420.025
1 -0.513 0.0108 1.082 1.331 0.0371 -420.343
5 0.955 1.391 1.650 0.288 0.902  -421.192
6 -0.621 0.962 1.422 1.092 0.195 -421.450
3 -2.161 7 0.0184 7 1.118 1.246 0.0275 -371.314
3 -2.166 ? 0.00808 ? 1.118 1.246 0.0275 -371.314
50 1 -0.492 0.0170 1.098 1.328 0.0431 -373.192
5 0.976 1.376 1.705 0.110 0.928  -373.517
6 -0.609 0.925 1.431 1.097 0.197  -374.505
-2.022 7 0.0408 ? 1.126 1.240 0.0306 -280.776
3 ] —2.300, —1.975] -0 1.113  1.252 0.0265 -280.861
20  4-5 0.934 1.368 1.965 0.273 0910  -282.847
6 -0.610 0.931 1.434 1.094 0.199 -283.145
7 67 -1.326 ? 0.173 7 1.326 1.124 0.109 -178.326
-1.369 ? 0.00963 ? 1.326 1.124 0.109 -178.326

Note: ]a,b[ and — 0 refer to a maximum that would be attained in the points ¢; = 0

and p; €]a,b[. The second column refers to the labels of the maxima in Table 4.1.

detailed discussion of these first two points for the adapted ML methods in
Section 4.5.3. Third, we found no maximum, as so no consistent root, in
case of 7 classes. Only apparent maxima with the same likelihood value and
for which one of the components corresponds to only two adjacent intervals
are identified. If we would bin the sample in another way, other results are
possible. Fourth, binning the sample does not solve the problem of which
maximum to choose as the LE. Not only a global maximum is often not an
option, but also up to and including a number of 20 classes, there are at

least, two maxima with plausible parameter values.
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In summary, estimation procedures that pick out a maximum of the
likelihood function with plausible parameter values or look for a maximum
with parameter values that are close to the parameter values of the LE
obtained from a binned sample, are subjective, will not lead to a consistent
sequence of estimators and make the inference results unreliable. As such,
we do not recommend them. Nevertheless, we cannot neglect that there is
sometimes a problem with the LE, in the sense that it does not reflect the
true parameter values. The idea here is to clarify this situation and to pass
some well-founded means of how to handle this difficulty in practice. We
will first consider the problem of these “spurious” maxima in its entirety.
Therefore, a picture of the global problem is drawn through a classification
of the samples (Section 4.3.1). Then, it is discussed how the appearance of a
spurious LE and the known statistical properties of the LE can go together
(4.3.2). To end, we give our perception, by means of some guidelines, of how

to deal with spurious maxima in practice (4.3.3).

4.3.1 Stability of a sample
Highly unstable samples

Consider again the sample shown in Figure 4.2a and discussed pre-
viously. The problem for this sample was that the parameter values of the
LE were implausible or not reflecting the truth. The reason for this spurious
LE has to be searched for in the lack of information available within the
sample in order to fit a two-component mixture. In other words, although
this particular finite mixture model (i.e., the mixture with parameter values
pr = 0, uo = 2, 01 = 09 = 1 and m; = 0.5) is theoretically identifiable
(Section 3.3), numerically for this sample it is not. This can be observed in

several ways:

e A single normal distribution can be used to model the sample satis-

factorily. A test of normality does not reject the null hypothesis for
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Figure 4.2: Simulated sample of size 100 from MecLachlan and Peel (2000,
pp. 100). The true parameter values are pp =0, o1 = 09 = 1, py = 2 and
™ = 0.5.
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a = 0.005. The correlation between the sample quantiles z(; and
& — 0.375)/(n + 0.25)] is 0.9957. Moreover, without the prior
knowledge that this sample is simulated from a two-component mix-

ture, no one would fit a two-component mixture to this sample.

In Figure 4.2b the fit of the MLE obtained from a single normal distri-
bution and the fits of the two spurious maxima 1 and 3 (Table 4.1) are
shown. Apart from a small deviation in a small number of data points,
the fits can hardly be distinguished. While one of the two components
of the mixtures (corresponding to these spurious maxima) fits exactly 2
or 3 data points, the other component, for which the parameter values
of the location and scale parameter resembles the parameter values of
the MLE, has to fit the rest of the sample. Figure 4.2c shows also the
fit of the MLE of a single normal distribution, but now with the fits of
the three plausible maxima given in Table 4.1. Again, the distinction

between all 4 fits is minimal, certainly within the range of data.

Figure 4.2d depicts (on normal probability scales) the cumulative dis-
tribution function (cdf) of the true two-component normal mixture
with the cdf of a normal distribution with the same mean and stan-
dard deviation of the mixture. As can be observed, except for the

extreme tail ends, these two distributions can hardly be distinguished.

Thus, unless the sample size is unduly large, a single normal distribution

can equally well be used to fit a sample generated from this particular two-

component normal mixture. As a result, solutions of the LEQs for which

one of the two components of the mixture, fits exactly 2 or 3 data points,

will correspond to maxima at the top of the likelihood function, i.e., maxima

with a large likelihood value.

This sample is a typical example of what we define as a highly un-

stable sample with respect to the (general) two-component normal mixture.

This means that the largest local maximum of the likelihood function can
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Figure 4.3: A simulated and a real unstable sample.

be altered through some minor perturbations in the sample, that there are
several maxima of the likelihood function with about the same large likeli-
hood value (Table 4.1), and that there is no maximum which dominates the

likelihood function.

Unstable samples

Figure 4.3a shows the normal QQ-plot of a sample of size 30, simu-
lated from the two-component normal mixture with parameter values p1 = 0,
o1 =1, uo =2, 0o = 0.5 and m; = 0.2. The 5 largest maxima of the like-
lihood function (for a general two-component normal mixture) are given in
Table 4.3. At first sight, there seems to be no problem. The parameter
values of the LE are credible and its fit is acceptable (Figure 4.3b). Never-
theless, the parameter values of the LE are not at all in the neighborhood
of the true values, while those of the 2" largest maximum are closest to

the true values. This means that the LE is also spurious, i.e., its parameter
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Table 4.3: The 5 largest local mazima of the likelihood of the simulated sam-
ple of size 30 shown in Figure 4.3a.

maximum o1 2 o3 T InLL
1 (LE) 1.22 140 2.09 0.22 0.43 -32.94
2 0.17 1.46 2.03 0.50 0.17  -34.57
3 1.62 1.08 2.28 0.032 0.85 -38.79
4 1.98 0.0037 1.70 1.05 0.062 -40.06
5 2.32 0.0048 1.68 1.04 0.061 -40.31
MLE 1.72 1.02 -43.23

Note: The last row shows the MLE obtained for a normal distribution.

values do not reflect the truth, in spite of the fact that it is not possible to

derive it from the parameter values itself.

As a result, the problem is the same as for the highly unstable sam-
ple in Figure 4.2a, only less pronounced. Also the reason for this spurious
LE is the same: the sample size n is too small to distinguish the true distri-
bution. Moreover, it is not possible to numerically identify only one, i.e., the
true, two-component normal mixture. While for the previous sample, the
mixture could not be distinguished from a single normal distribution, here
it is clear from the QQ-plot in Figure 4.3a that a normal distribution would
not be appropriate, i.e., a straight line will not fit the sample satisfactorily.
However, there are two solutions of the LEQs for which the corresponding
two-component mixture models are difficult to distinguish within the range
of data. Outside this range, differences become marked. Consequently, con-
clusions drawn will depend highly on which of the mixtures (i.e., which of
the two maxima at the top of the likelihood) is chosen. For example, the
null hypothesis of equal scale parameters versus the alternative of unequal
scale parameters would be rejected with the likelihood ratio test (LRT) if
the first maximum was taken (LRT-value = 6.461), but accepted if the sec-
ond maximum was considered (LRT-value = 3.195) on a 95% level. Also

the difference in estimation of the low quantiles could influence the decision
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whether a physical component is accepted as reliable or not.

This sample is an example of an unstable sample (with respect
to a general two-component normal mixture), i.e., a few maxima, mostly
with plausible parameter values, are at the top of the likelihood function
(Table 4.3). The corresponding mixtures have a similar fit within the range
of data. Small perturbations in the sample can alter the largest maximum
of the likelihood into one of the other maxima at the top of the likelihood.

An example of a real unstable sample (with respect to a two-
component lognormal mixture) is given on a lognormal QQ-plot in Fig-
ure 4.3c. The LE-fit of a two-component lognormal mixture is depicted,
together with the fit of the 27? largest maximum. As noted, the difference,
between the two mixtures, with regard to the estimation of low quantiles,

will be large.

Stable samples

Figure 4.4a depicts the normal QQ-plot of a simulated sample of
size 50 from a two-component normal mixture with parameter values p; = 0,
op = 0.1, uo =0, 0o = 2 and m; = 0.5. Table 4.4 gives the 4 largest
local maxima, of the likelihood function. The LE has plausible parameter
values and does reflects the true values. It is also the maximum closest to
these true values. Most other maxima found have implausible values for
the parameters. Apparently, the sample is large enough to distinguish one
specific two-component mixture. Moreover, this sample is an example of a
stable sample, i.e., the likelihood function is dominated by one maximum.
Other maxima are pushed into the background. Small perturbations in the
sample will not alter the largest local maximum of the likelihood function.
Further, the difference in value of the likelihood between the first and the
second maximum is large.

Another example of a stable sample is shown in Figure 4.4b. It is

a sample of size 80, simulated from a two-component normal mixture with
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Figure 4.4: Simulated and real stable samples.

parameter values p1 = 0, 0y = 1, us = 2, 09 = 0.5 and m; = 0.4. The 4
largest local maxima of the likelihood function are tabulated in Table 4.5.
Here, the largest local maximum is not so dominant as for the previous
sample, but it is resistant to small perturbations. Further, the difference
in likelihood value between the 1! and 3** maximum is considerable and
the 27¢ maximum has implausible parameter values with a fit that differs

a lot from the LE fit (Figure 4.4b). No other maximum with reasonable

Table 4.4: The 4 largest local maxima of the likelihood of the simulated sam-
ple of size 50 shown in Figure 4.4a.

maximum I o1 2 o3 T InLL
1 (LE) 0.010 0.098 -0.035 1.79 0.34 -73.71
2 0.038 0.00032 -0.022 1.49 0.040 -82.35
3 2.15 0.0058  -0.15 1.40 0.058 -82.43

4 0.019 0.0017  -0.022 1.49 0.038 -85.63
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Table 4.5: The 4 largest local mazima of the likelihood of the simulated sam-
ple of size 80 shown in Figure 4.4b.

maximum  fi o1 b2 o3 T InL
1 (LE) 0.36 1.08 2.07 0.51 0.37 -111.62
2 1.68 3.33¢-005 1.44 1.14 0.025 -112.39
3 1.68 0.0027 1.43 1.15 0.046 -116.29
4 1.68 0.0014 143 1.15 0.036 -116.86

parameter values is found at the top of the likelihood function. Also here,

the LE is the maximum closest to the true values.

Obviously, for these two examples, the LE can be trusted. Although
many more maxima with mostly implausible parameter values are present in
the likelihood function, none of them bother. The samples contain enough
information, i.e., the sample size is large enough, to numerically distinguish
the underlying distribution. To conclude, Figure 4.4c gives a lognormal QQ-
plot of a real failure time sample together with the LE fit of a two-component
lognormal distribution. It is an example of stable sample encountered in

practice.

4.3.2 Discussion

Previous examples made clear the problem, touched upon already
by some, but never treated in detail. Namely, when estimating a general two-
component normal mixture to a sample, for certain samples the LE does not
reflect the true parameter values, but rather a random grouping within the
sample. In other words, the LE is unreliable or spurious. Sometimes, this is
clear from the parameter values of the LE itself, but equally well it may not
be. The former was true for highly unstable samples, the latter for unstable

samples.
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Cause of spurious likelihood estimate

We indicated that for (highly) unstable samples, a two-component
mixture was numerically not identifiable. The likelihood function contained
several local maxima with a large likelihood value and for which the cor-
responding mixtures had a resembling fit within the range of data. The
reason for this non-identifiability problem, resulting in an unreliable LE, is
a too small sample size (under the assumption that the true model is a two-
component mixture). The cause is twofold. First, there is the fact that the
“consistency” property of the LE is an asymptotic concept. This means that
only for a sufficiently large sample size the estimators looked at will approach
the true parameter values. For small sample sizes, on the contrary, nothing
is known about the performance of a consistent estimator. Second, there
would be no problem if the LEQs had only one root. However, due to the

nature of the mixture model itself, the LEQs contain many roots.

Relation to efficiency of the likelihood estimator It has already been
pointed out that for small sample sizes the MLE could be unreliable in case
of a finite normal mixture model (Hosmer, 1973). However, this was not
related to the occurrence of spurious maxima at the top of the likelihood
function, but to the fact that for these samples the MLE behaved rather
poorly. Especially, estimates were not accurate enough to be useful esti-
mates. Redner and Walker (1984) and Behboodian (1972), amongst others,
indicated that for poorly separated mixtures a huge sample size is required
not only to obtain efficient but also accurate estimates. In particular, Be-
hboodian calculated the Fisher information matrix 7(@) approximately for
several two-component normal mixtures. He noted that this matrix goes to
a singular matrix, i.e., the condition number ||1(8)|| of I(6) becomes infinite,
as the mixture components come closer or the proportion parameter goes to
0 or 1. Redner and Walker states that one can expect only a limited accu-

racy for the estimates in case of ill-conditioned problems. The latter refers
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to problems where the solution is very sensitive to perturbations in the data.
The maximization of the likelihood for unstable samples is an example of an
ill-conditioned problem. Both authors infer that for mixtures with a large
condition number for (@), i.e., poorly separated mixtures, the sample size

has to be huge to obtain precise estimates (see also Table 4.10).

Nevertheless, although the numerical identifiability of the prob-
lem is related to the accurateness (and efficiency) of the estimates, it was
not related to the appearance of spurious maxima at the top of the likeli-
hood function. Still, both features are a direct result of a too small sample
size. Moreover, spurious maxima are neglected, i.e., a plausible maximum
is searched for instead, while spurious maxima, turn out to be the best op-
tion to recognize too small sample sizes in case of a multiple root problem
(Section 4.3.3). From this point of view, it is interesting to observe the
(dis)similarity between the surfaces of the likelihood for small and large
sample sizes in case the LEQs have multiple roots and in case they only
have one root. On the one hand, for a small sample size, the likelihood
function will have a (very) flat curvature in case the LEQs have a unique
root. The flatness of the surface of the likelihood in case the LEQs have
multiple roots, is expressed through several maxima which are at the top of
the likelihood. One could think of a bumpy surface (see also Figure 4.5a).
On the other hand, the likelihood function will have a sharp curvature for a
large sample size in the one root case, while for the multiple root case the
sharpness of the likelihood is expressed through one dominating maximum
(see also Figure 4.5b). This means that, while in the one root case, a small
sample size can be noticed through the large value of the standard errors
(which are in relation to the curvature of the likelihood function), this is not
entirely true for the multiple root case. There, it is important to not only
focus on the largest maximum, but to obtain an overall view of the surface
of the likelihood function. This is the only way to obtain information about
the credibility of the LE.
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Definitions and general comments We introduced the notion of sta-
bility of a sample for a two-component normal mixture. In a similar way
it can be defined for any other distribution. Only the difference between a
highly unstable and an unstable sample is specific to the case of a general
M-component mixture. For the former, the largest local maximum is truly
spurious, i.e., at least one of the components of the mixture is related to a
subgroup of only a few data points. Such maxima are referred to as distinct
SPUTLOUS.

The problem of an unreliable LE is not related merely to the case of
likelihood estimation or to the mixture model. It is inherent to all consistent
estimators obtained as a solution of the LEQs and where these equations
have multiple roots. As such, it can just as well happen in case of classical
ML estimation or as will be illustrated further on for adapted likelihood
estimation. In the following paragraph an example is given of a distribution
where a spurious MLE can occur.

Apparently, for small sample sizes, the property of consistency for
a likelihood estimator when multiple roots are present in the LEQs, is not
enough to guarantee that the estimator is meaningful. As suggested a couple
of times, a spurious maximum can, on a purely theoretical basis, be defined
as any maximum not closest to the true values, with closest defined by
some distance measure. As such, for each sample, there is only one proper
maximum. Importantly, for some sample size n on, this maximum will be
equal to the LE or MLE due to their consistency property. Note that any
other method proposed to obtain a consistent root of the LEQs would suffer

from the same problem of spurious maxima (Section 4.2.2).

Example of a spurious MLE

A simple example to illustrate that the appearance of spurious max-
ima at the top of the likelihood function could also occur in case a consis-

tent MLE exists, is given by the one-parameter Cauchy location distribution
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(Barnett, 1966; Reeds, 1985). Its density function is:

fz) = m (=00 < 2,0 < 50), (4.5)
with 0 a location parameter. This parametric family fulfills both the condi-
tions of Cramér and Wald (Perlman, 1983). Therefore, the MLE exists, is
consistent and can be found as a root of the LEQ. This equation, however,
has usually more than one root or the likelihood function has more than one
maximum. Here, the presence of multiple maxima is related to the absence
of finite moments for the Cauchy location distribution. In particular, Reeds
(1985) showed that anomalous local maxima are related to outlying values
of the sample which arrive frequently due to the heavy tails of the Cauchy
distribution. Similar to the case of the mixture model, it is not possible to
distinguish an anomalous root (i.e., a spurious root) from a proper one in
case the sample size is too small.

As an example, Figure 4.5a depicts the logarithm of the likelihood
function of a sample of size 5, generated from the Cauchy location distri-
bution with location parameter § = 0. As noted, the likelihood function
has 4 maxima. The MLE corresponds to an anomalous root, since its pa-
rameter value is quite far from 0 and it is the maximum farthest from the
true value. According to the definition of stability, this is an unstable sam-
ple (with respect to the Cauchy location distribution). Indeed, leaving out
only one data point, will easily switch the global maximum of the likelihood
function into one of the other 3 maxima. If the sample size of this sample is
increased to 9, however, the sample becomes stable as shown in Figure 4.5b.
One maximum, i.e., the one closest to the true value, dominates the likeli-
hood function. Clearly, the same behavior is observed as for the examples
discussed in Section 4.3.1. Namely, for small sample sizes, the MLE cannot
be trusted, while for large samples the MLE is reliable. Importantly, the
value of “small” and “large” depends highly on the distribution used. For

the one-parameter Cauchy distribution, a small sample size means a value
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(a) Simulated sample of size 5. (b) Simulated sample of size 9.

Figure 4.5: Logarithm of the likelihood function of simulated samples from
the Cauchy location distribution with true parameter value 6 = 0.

not larger than about 6, while a large sample size is from about 10 onwards.
As such, in practice for this distribution there will be no problem with the
MLE, since usually the sample size will be larger than 10. For the finite
general mixture model, on the contrary, for some mixtures a size of 50 will
be large enough, while for others 1000 or even 10000 will not be sufficient.

Consequently, the credibility of the LE is an important issue there.

Required sample size

Quite likely the value of ||[1(0)]| determines not only the sample size
required to obtain accurate estimates, but will also be in relation with the
sample size needed to have a non spurious or reliable LE. Moreover, it is
expected that the sample size required will depend highly on the true finite
mixture model, especially on how well its components are separated. To
demonstrate this, we carried out a small simulation study for the general

two-component normal mixture model.
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Samples are generated from a two-component normal mixture model
with 12 different sets of parameter values divided into 3 groups of 4. In each
group, one parameter is varied in order to study one aspect of the identifia-
bility of the mixture components, i.e., how well the two component distribu-
tions can be identified from the mixture or how well they are separated. This
is related to mainly three aspects of the mixture: the difference in location
parameter of the two component distributions, the size of the ratio of the two
scale parameters and to a lesser degree the size of the proportion parameter.
The cumulative distribution functions of these 12 mixtures are displayed in
Figures 5.7a, 5.7b and 5.7c of Chapter 5. In the first group, the location
parameter of the second component, s, is varied. It takes the values 1,2, 3,
and 4. The values of the other parameters are gy = 0, oy = 02 = 1 and
m1 = 0.5. The larger the value of ug, the better the component distributions
are separated (Figure 5.7a). For the second group, all parameters, except
the scale parameter of the first component, are kept fixed. The values for the
parameters here are p; = s =0, 09 =2, m; = 0.5 and 07 = 0.1, 0.2, 0.5, 1.
In spite of the common location parameter, the components of the mixture
can still be clearly identified if the ratio of the two scale parameters deviates
sufficiently from 1 (Figure 5.7b). In the last group, the proportion parameter
is altered from a small value (0.2) over two average values (0.4 and 0.6) to
a large value (0.8). The values for the other parameters are p; =0, 09 = 1,
o = 2 and o9 = 0.5. It is clear from Figure 5.7¢ that also the value of my

has an influence on the identifiability of the mixture components.

For each set of parameter values, sample sizes of 20, 50, 100, 200, 300,
400, 500 and 1000 are used, with 1000 simulations in each case. Results are
summarized in Table 4.6. The possible spurious nature of the LE is assessed
through a comparison with the maximum closest to the true values. Here,
closest is defined by the Euclidean distance, but with the scale and pro-
portion parameters rescaled such that their domain is the same as for the

location parameters. The tabulated value k is then the number of times
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Table 4.6: The number of times out of 1000 (k) that the largest local mazi-
mum of the likelithood is a spurious mazimum.

M2
n 1 2 3 4
20 951 933 842 589
50 988 971 794 279
100 996 972 587 35
200 997 970 213 O
300 998 964 51
400 997 942 12
500 999 888 2
1000 1000 642 O

0
0
0
0

(a) First group: separation in lo-

cation.

o1
n 1 0.5 0.2 0.1
20 943 845 435 208
50 964 622 60 10
100 970 227 1 0

200 910 14 0 0
300 812 0 0 0
400 744 O 0 0
500 616 O 0 0
1000 151 O 0 0

(b) Second group: separation

in scale.

1

n 08 06 04 0.2

20 906 803 691 643

50 927 712 408 287
100 901 475 101 64
200 787 100 25 28
300 637 23 13 15
400 428 10 9 17
500 271 3 ) 10
1000 9 0 3 4

(¢) Third group: varying the

proportion parameter.
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out of 1000 that the LE is spurious. The value of k£ should go to 0 when n

increases.

Clearly, for all sets of parameter values, except for one set with re-
sults tabulated in the first column of Table 4.7a, the value of k shows finally
a decreasing trend. The dependency between how well the mixture compo-
nents are separated and the sample size required such that the LE is the
maximum closest to the true values, is evident from the tables. Moreover,
the value of k£ goes relatively fast to 0 for mixtures that have clearly identifi-
able components (i.e., the last one or two columns in each table). For some
sets of parameter values a sample size of 100 or even lower would be suffi-
cient, while for others a sample size of 200 is required. But, for some poorly
identifiable mixtures, although £k shows at last a decreasing trend, 0 is not
reached for even a sample size of 1000. The worst case is the mixture with
parameter values 1 =0, po =1, 01 =02 =1 and m; =0.5 (13lt column in
Table 4.7a), where k does not show at all a decreasing trend before a sample
size of 1000. It even gets worse as n increases. For example, for n = 1000,
in none of the generated samples, the LE was equal to the maximum closest
to the true values. The reason is clear: this specific mixture can be hardly
distinguished from a single normal distribution. As seen in Figure 5.7a, the
cdf of this mixture is practically a straight line. It is doubtful that any sam-
ple of this particular mixture distribution will be ever identified as coming

from a mixture.

In summary, from some sample size onwards, the LE will be a
good estimator. But the sample size required depends highly on how well
the components of the true mixture are separated. For some mixtures, a
(very) small sample size will be sufficient, but for others even a huge sample

size will not do.
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4.3.3 Guidelines

Although in theory the definition of a spurious maximum sounds
nice, in practice there is one big problem: the “truth” is not known. It
is not possible to search for the maximum closest to the true values. It is
possible, however, to search for the LE. As shown, if the sample size is large
enough, the LE will be the maximum closest to the true values. In other
words, it will not be spurious. Still, the sample size required is not known
either. Fortunately, the stability of a sample gives an excellent idea whether
the sample size is large enough, i.e., whether the LE can be trusted. We
derived some easy to use but important guidelines. They are based on the
fact that not only the LE has to be looked at, but also other maxima of the

likelihood function.

e The sample is highly unstable, i.e., many maxima from which a lot have
implausible parameter values are at the top of the likelihood function.
If the true distribution is a two-component mixture distribution the
sample size is far too small to detect this mixture. One can select from
several options, apart from proceeding with the LE or any other max-
imum: look for prior information (like physical background), increase
sample size or use a simpler model. For example, for the sample shown
in Figure 4.2a, a normal distribution would equally well fit this sample.
Moreover, an increase of sample size would not help in this case, unless

it would be huge.

e The sample is unstable, i.e., a few maxima which have mostly credible
parameter values, are dominating the likelihood function. Generally,
if the true distribution is a two-component mixture distribution, the
sample size is somewhat too small to distinguish between several two-
component mixtures. Often, a worst-case scenario can be used: based
on the few maxima dominating the likelihood function, several analyses

are carried out. The one with worst results (with respect to what is
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asked) is taken. Again prior information or an increase of the sample
size could help. For example, for the real sample shown in Figure 4.3c,
information of other experiments led to the 2"¢ maximum (and not

the LE) as the proper one.

e The sample is stable, i.e., one maximum dominates the likelihood func-
tion or the largest maximum is followed by distinct spurious maxima.
In such a case, there is nothing suggesting that the LE cannot be

trusted.

The stability of a sample (with respect to any model) tells a lot about the
credibility of the LE or MLE. Obviously, the likelihood function will have
to be scanned for local maxima in a well-reasoned way. In Chapter 5, we
explain how we dealt with this. Further, an extension of these guidelines
to mixtures with more than 2 components or other component distributions
is evident. Also, they can be just as well used for the adapted likelihood
methods.

To conclude this discussion, note that not all maxima with a very
small value for the proportion parameter are spurious. This occurs, for
example, in case the sample has a small group of outliers. In this situation,
the guidelines represented above, can also be used. As an example, consider
the sample shown on a normal QQ-plot in Figure 4.6a. This sample of size 40
is simulated from a two-component normal mixture with parameter values
uw1 = 0, oy = 0.005, po = 2.5, 09 = 0.5 and m; = 0.06. As observed, the
sample has a subgroup of two outlying data points. Table 4.7 gives the 3

Table 4.7: The 3 largest local mazima of the likelihood of the simulated sam-
ple of size 40 shown in Figure 4.6.

maximum 141 o1 42 o9 T InL
LE -0.0026 0.0014 2.50 0.53 0.045 -27.45
2 2.61 0.00015 2.37 0.77 0.050 -37.10

3 2.61 0.0036 236 0.78 0.068 -40.98
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(a) Normal QQ-plot. (b) LE fit of a 2-component

mixture.

Figure 4.6: Simulated sample of size 40 from a two-component normal miz-
ture with parameter values py = 0, o1 = 0.005, us = 2.5, o9 = 0.5 and
m = 0.06

largest local maxima of the likelihood function. Based on the difference in
likelihood value between the first and the second maximum, this sample is
stable. So, in spite of the small value of the proportion parameter, the LE

seems reliable, and indeed it reflects the true parameter values.

4.4 Sample properties of the likelihood estimator

In the previous sections, we obtained several results related to the
distribution of the LE in case of a general finite mixture with a (log)location-

scale distribution as component density. They can be summarized as follows:

e The LE is consistent. Its asymptotic distribution is normal with a

variance equal to I(8)~!/n, i.e., the LE is asymptotically efficient.

e For small sample sizes n, with small depending on how well the com-

ponents are separated, the LE is often spurious.
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e For large n, the LE is the maximum closest to the true values.

e For poorly separated mixtures, a large sample size is required to obtain
accurate or precise estimates, i.e., to obtain a rather small asymptotic

variance.

To link these results and to complete the overall picture on the properties of
the distribution of the likelihood estimator, both for small and large sample
sizes, we carried out a (small) Monte Carlo simulation. In particular, the
distribution of the LE for several two-component normal mixtures at various
sample sizes is simulated and compared to its asymptotic distribution and
to the (simulated) distribution of the maximum obtained when using the
true values as starting values. When applying the EM-algorithm as iterative
procedure, this last distribution is, from a moderate sample size onwards,
equal to the distribution of the maximum closest to the true parameter
values. Only in case of a (very) small sample size, for a few samples the
maximum obtained with the true parameter values will not be the maximum
closest to the true parameter values.

We considered the same 12 mixtures as in Section 4.3.2. For each
combination of parameter values and sample size, 1000 samples were gener-
ated. A simulated distribution for the LE and the maximum derived from the
true parameter values, is obtained, as well as a distribution for the estima-
tors of the corresponding variance-covariance matrices. To visually evaluate
the simulation results, we mainly used normal QQ-plots to look at the (uni-
variate) distribution for the estimator of each parameter and scatter plots
to consider the relation between the estimators of all parameters. Further,
some sample statistics are calculated: the mean of the estimates (5) with
estimated precision, the absolute bias, the variance of the estimates (Sg) and
also the mean of the estimated variances ((702) with estimated precision.

Table 4.8 presents some sample statistics for the well separated
mixture with parameter values u; =0, 0y = 0.1, us = 0, g2 = 2, m; = 0.5,

while Table 4.9 gives results for the poorly separated mixture with parameter
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values 1 = 0,01 = 1, po = 2, 0o = 0.5, m; = 0.8. The number between
brackets is an estimate of the precision, if available. The parameter 03
is the variance of the asymptotic distribution for the different parameters.
Further, “corr.” refers to the correlation between the sample quantiles é(i)
and @ ![(i—0.375)/(n+0.25)]. A value very close to one is an indication for a
normal distribution. These two examples illustrate quite well the tendency
which was noticed for all mixtures considered. Specifically, the following
conclusions can be drawn.

First, the small sample properties of the LE are not all comparable
with its large sample or asymptotic properties, i.e., the distribution of the
LE for small sample sizes cannot be modeled by the asymptotic distribution.
For example, in Table 4.8a at sample size 20 and in Table 4.9a at sample
sizes 100 and 200, it can be observed that:

e Estimates are biased. Especially, in case of the poorly separated mix-
ture, the bias can be large. For example, at n = 100 the bias of the
5 parameters varies from a value of 0.151 to 1.329, while at n = 20
for the parameters of the well separated mixture its value is between
0.0147 and 0.164.

e The distribution of the estimator of most parameters is clearly not
normal. This can be seen, for example, from the values of the correla-
tion parameter which are not close enough to one or from the normal
QQ-plots in Figures 4.7, 4.8a and 4.8c. Mostly, their shape does not

reveal a straight line.

e The variance of the distribution of the LE for each parameter (i.e.,
S;) is much larger compared to the asymptotic variance (i.e., o). For
example, the ratio Sg/og varies from 1.22 to 93 at n = 20 for the
parameters of the well separated mixture and from 1.36 to 47.7 for the

poorly separated mixture at n = 200.
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n Sample  pu1 o1 n2 02 T
stat
6 0.0189 0.0853 -0.0423 1.836 0.480
(0.0109) (0.00171) (0.0227) (0.0162) (0.00543)
bias 0.0189 0.0147 0.0423 0.164 0.0202
20 Sg 0.120 0.00292 0.517 0.262 0.0295
a2 0.00123 0.000741 0.405 0.209 0.0137
(6.51e-5) (3.95e-5) (0.00913) (0.00480) (1.19e-4)
o2 0.00129 0.000880 0.400 0.214 0.0161
corr 0.481 0.920 0.992 0.998 0.975
5 0.00106 0.0973 -0.0103 1.962 0.505
(0.00117) (0.000663)  (0.0127) (0.00935) (0.00269)
bias 0.00106 0.00273 0.0103 0.0382 0.00487
50 Sg 0.00137 0.000440 0.160 0.0873 0.00722
&_g 0.000536 0.000393 0.166 0.0880 0.00638
(9.99¢-6) (1.58e-5) (0.00198) (0.00104) (3.42¢-5)
0'3 0.000515 0.000352 0.160 0.0857 0.00646
corr 0.731 0.986 0.998 0.999 0.993
5 0.000701 0.0986 -0.00242 1.971 0.502
(5.14e-4) (4.39e-4) (0.00884) (0.00680) (0.00183)
bias 0.000701 0.00135 0.00242 0.0289 0.00151
100 S; 0.000264 0.000193 0.0781 0.0462 0.00336
&; 0.000264 0.000188 0.0805 0.0429 0.00322
(2.87e-6) (3.20e-6) (6.69e-4) (3.54e-4) (8.10e-6)
03 0.000258 0.000176 0.0801 0.0429 0.00323
corr 0.999 0.996 0.999 0.999 0.999
(a) Sample properties of the largest local maximum.
n Sample  u1 o1 [23] o2 T
stat
] -0.0000413 0.0951 -0.0310 1.880 0.508
(0.00125) (0.00117) (0.0220) (0.0154) (0.00399)
bias 0.0000413 0.00488 0.0310 0.120 0.00840
20 Sg 0.00156 0.00137 0.485 0.236 0.0159
52 0.00145 0.000899 0.422 0.219 0.0151
(5.91e-5) (4.11e-5) (0.00864) (0.00456) (7.97e-5)
corr 0.997 0.960 0.999 0.997 0.999
5 0.00185 0.09753 -0.0107 1.963 0.506
(0.000762)  (0.000643)  (0.0127) (0.00932) (0.00261)
bias 0.00185 0.00247 0.0107 0.0374 0.00560
50 Sg 0.000581 0.000414 0.160 0.0868 0.00683
52 0.000538 0.000396 0.166 0.0881 0.00640
(9.94e-6) (1.58e-5) (1.97e-3) (1.03e-3) (3.32e-5)
corr. 0.999 0.988 0.998 0.999 0.999

(b) Sample properties of the maximum attained with the true values.

Table 4.8: Simulation results for the well-separated mizture with parameter

values 1 =0, 00 = 0.1, ues =0, 09 =2, m = 0.5.
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n Sample  pu1 o1 n2 02 T
stat
0 0.340 1.169 0.671 0.0449 0.951
(0.00706) (0.00423) (0.0404) (0.00426) (0.00258)
bias 0.340 0.169 1.329 0.455 0.151
100 Sg 0.0498 0.0179 1.631 0.0181 0.00663
&; 0.0159 0.00796 0.00232 0.00102 0.000747
(2.20e-4) (8.11e-5) (3.71e-4) (1.33e-4) (7.35e-5)
03 0.0637 0.0264 0.0701 0.0324 0.0141
COrT. 0.937 0.921 0.981 0.614 0.641
5 0.287 1.151 0.853 0.0975 0.937
(0.00733) (0.00425) (0.0410) (0.00604) (0.00327)
bias 0.287 0.151 1.147 0.403 0.137
200 Sg 0.0536 0.0180 1.676 0.0364 0.0106
&_g 0.0100 0.00479 0.00404 0.00166 0.000934
(2.69e-4) (8.60e-5) (4.41e-4) (1.33e-4) (8.39¢-5)
03 0.0318 0.0132 0.0351 0.0162 0.00704
corr. 0.925 0.918 0.962 0.747 0.760
(a) Sample properties of the largest local maximum.
n Sample  pu1 o1 12} (] o1
stat
6 0.0300 0.953 1.779 0.457 0.775
(0.0111) (0.00433) (0.0249) (0.00550) (0.00337)
bias 0.0300 0.0466 0.221 0.043 0.025
100 Sg 0.122 0.0187 0.619 0.0302 0.0113
&_g 0.0733 0.0216 0.0983 0.0285 0.0215
(0.00590) (0.000867)  (0.00758) (0.00135) (0.00225)
COrT. 0.918 0.998 0.782 0.998 0.984
5 -0.0194 0.973 1.923 0.483 0.779
(0.00699) (0.00350) (0.0127) (0.00445) (0.00278)
bias 0.0194 0.0270 0.0769 0.0172 0.0212
200 Sg 0.0488 0.0122 0.161 0.0198 0.00774
&_g 0.0380 0.0124 0.0550 0.0183 0.0103
(0.00185) (3.65¢-4) (0.00417) (0.00104 (6.54e-4)
COrT. 0.938 0.998 0.756 0.998 0.993

(b) Sample properties of the maximum attained with the true values.

Table 4.9: Simulation results for the mixture with poorly separated compo-
nents. Parameter values are u1 =0, o1 =1, us = 2, o9 = 0.5, m; = 0.8.
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Further, the estimated variance of the LE (&g) is much too small in com-

parison with the variance of the distribution of the LE (Sg) (for example,

at n = 20 for the well separated mixture, the ratio Sg /&g varies from 1.25
to 97.6 and from 2.25 to 703 at n = 100 for the poorly separated mixture).
As a result, in case of a small sample size, not only the LE will be biased
and asymptotic normal confidence intervals cannot be used, but also its es-
timated standard error (when based on the observed information matrix) is

highly unreliable.

Second, for small sample sizes, the distribution of the maximum
obtained with the true values is in general (much) closer to the asymptotic
distribution than the distribution of the LE. This can be noticed, for exam-
ple, through comparing the sample statistics in Table 4.8a and Table 4.8b at
sample size 20 and Table 4.9a and Table 4.9b at both sample sizes. Still, as
can be observed from the tables as well, also for this maximum it is mostly
not appropriate to use the asymptotic properties for small sample sizes, in
particular this holds true for poorly separated mixtures. To illustrate both
aspects, Figures 4.8a and 4.8c give the normal QQ-plot of the simulated
distribution of the LE and the maximum closest to the true values for the
parameters o1 and oy of the mixture with well separated components at
sample size 20. Figure 4.7 gives similar plots for the parameters p; and
of the poorly separated mixture at sample sizes 100 and 200. As observed,
the distribution of the maximum obtained with the true values is in general
closer to the asymptotic distribution, but also is mostly not normal. Fur-
ther, note the large difference between the two simulated distributions for

the poorly separated mixture.

Third, in general the distribution of the LE can be approximated
satisfactorily by its asymptotic distribution, if the largest local maximum is
also the maximum closest to the true parameter values. Moreover, for the
mixtures considered, a sufficiently large sample size corresponds to those

sizes for which Table 4.6 indicates that the LE is mostly not a spurious max-
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Standard normal quantiles
Standard normal quantiles
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(c) Parameter 71, n=100. (d) Parameter w1, n=200.

Figure 4.7: Normal QQ-plots of the simulated distribution of the LE (indi-
cated, black) and the mazimum obtained with the true values (grey) for some
parameters of the poorly separated mizture (u = 0, 01 = 1, uo = 2, 09 =
0.5, m = 0.8). The straight line is the cumulative distribution function of
the asymptotic distribution.
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(c) Parameter o2, n=20. (d) Parameter o2, n=>50. Almost no

distinction visible between both simu-

lated distributions.

Figure 4.8: Normal QQ-plots of the simulated distribution of the LE (indi-
cated, black) and the mazimum obtained with the true values (grey) for some
parameters of the well separated mizture (up = 0, 01 = 0.1, o = 0, o9 =
2, m = 0.5). The straight line is the cumulative distribution function of the
asymptotic distribution.
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imum. For example, at n = 100 for the well separated mixture, of the 1000
simulated samples no spurious LE was found while the distribution of the
LE resembles its asymptotic distribution (Figure 4.9). On the other hand,
at n = 50 still a small number of spurious LE were identified while for some
parameters the distribution of the LE cannot be modeled by its asymptotic
distribution (Figures 4.8b and 4.8d). Importantly, this also seems to hold
for the distribution of the maximum obtained with the true values. Namely,
it appears that although the distribution of the maximum derived from the
true values is generally closer to the asymptotic distribution, the approxima-
tion will be adequate if the distribution of the LE has become equal or close
to the distribution of the maximum closest to the true values. For example,
in Figure 4.8 it can be observed that in approaching the asymptotic distribu-
tion, both simulated distributions “first” approach each other. Note that in
Table 4.8b no sample statistics are given for the sample size 100, since at this
size the simulated distribution of the LE and the maximum obtained with
the true values were equal. To illustrate the relation with the asymptotic
distribution at this sample size, Figure 4.9 shows the normal QQ-plot of the
simulated distribution of the LE for all 5 parameters together with the cumu-
lative distribution function of the asymptotic distribution. As noted, for all
parameters the simulated distribution can be adequately modeled through

the asymptotic distribution.

In summary, as long as the LE is not the maximum closest to the
true values, its asymptotic properties cannot be guaranteed. Small sample
properties of the LE highly depends on the specific mixture used and should
be simulated when required. For real samples, the question whether the sam-
ple size is large enough to use asymptotic properties reduces again to the
question whether the LE is spurious or not. An answer which can be found
through looking at the stability of the sample or the nature of the surface of
the likelihood. In other words, the guidelines given in the previous section

about the credibility of the LE do equally well hold for the use of its asymp-
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Standard normal quantiles
o

Parameter

Figure 4.9: Normal QQ@Q-plot of the simulated distribution of the LE at
n=100 for all parameters of the mixture with parameter values u; =0, o1 =
0.1, po =0, 09 = 2, my = 0.5. The straight line is the cumulative distribution
function of the asymptotic distribution.

totic properties. Although in case of an unstable sample, it is preferable
to simulate the distribution of the LE as its asymptotic properties are still
questionable. Further, it appears that the sample size required at which the
distribution of the maximum closest to the true values is sufficiently close to
the asymptotic distribution, is essentially the same as for the distribution of
the LE.

We conclude this section with an important remark. In case of ML
estimation, the sample size required to obtain precise estimates is usually
derived from the variance of the asymptotic distribution. While for most
distributions for which the likelihood function has a single maximum it is
taken for granted that at this sample size the asymptotic properties can
be used as well, this is mostly not true in case of likelihood estimation of
general finite mixtures. To be precise, if n is large enough such that the LE
is reliable, then in general estimates will be precise as well. The reverse,
however, does not hold. To illustrate this, Table 4.10 gives the sample size

required to obtain an asymptotic variance for all parameters which is at most
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Table 4.10: Minimum sample size needed such that the wvariance of the
asymptotic distribution of all parameters is less than 0.01.

Group 1: o Group 2: oy Group 3: m

1 2 3 4 1 05 02 01 08 06 04 0.2
n 100000 1000 90 30 200 8 80 80 70 100 160 400

0.01, for the 3 groups of parameter values. When compared with the results
of Table 4.6, it can be seen that in many cases this calculated sample size
is mostly not sufficient to obtain also a non spurious LE. As a result, when
using general mixtures, in sample size calculations the spurious nature of

the LE should be considered rather than its accuracy.

4.5 The (maximum) likelihood estimator versus
the (maximum) likelihood estimator adapted

for measurement error

In statistics, there has always been and, probably will always be,
the discussion on the nature of measured data. Namely, should measured
data be considered as “continuous” or rather as “discrete”. The importance
of this has to be looked for, among other things, in the use of the maxi-
mum likelihood method to fit a certain model to a sample. In applying the
classical ML method, the likelihood function is composed of density contri-
butions f(z,0), with f the density of the model considered. Implicitly, in
using this density representation for the likelihood, measurements are as-
sumed to be continuous. Alternatively, to incorporate the discrete nature
of measurements, an adapted ML method was proposed. Hereby, the den-
sity contributions of the likelihood are replaced through certain differences
of the cumulative distribution function (Section 4.1.1). The likelihood has
then a cdf representation. Due to the numerical complicatedness of this

adapted ML method as compared to the classical version and the belief in
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this classical ML method, the discussion faded into the background. Nev-
ertheless, for the general finite mixture model, it was thrown up again by
some authors with the argument that a more principled construction of the
likelihood would solve the problems encountered with the classical method.
As noted previously, this argument cannot be warranted.

In spite of this, the question whether these methods really give
rise to other conclusions, is still left open. Namely, what are the differences
between obtained parameter estimates, estimated standard errors and re-
sults of hypothesis tests. Are the differences large enough to influence the
decision making process? Therefore, without entering into the discussion
whether measurements have to be considered as continuous or discrete, we
will compare these methods with respect to the most important point, i.e.,
inference results. Instead of confining oneself to only one of these two meth-
ods, we belief that one can confirm conclusions and turn this situation to its
advantage. First, in Section 4.5.1 the objectives and the procedure followed
are discussed. Main results are given in Section 4.5.2 in case the MLE exists

and in Section 4.5.3 if not. We end this section with some conclusions.

4.5.1 Outline

The classical (maximum) likelihood method and several versions
of the adapted (maximum) likelihood method will be compared for a nor-
mal mixture model. A distinction is drawn between the case of a common
and a non-common scale parameter. Table 4.11 gives a sketch of the sev-
eral estimators considered. In situation A, both the conditions of Wald and
Cramér are fulfilled. Nearly always, a consistent global maximum exists,
irrespective of the representation used for the likelihood function. For the
density representation this leads to the MLE, while for the cdf represen-
tation, we introduced in Section 4.1.1 the estimators MLEJ and MLEJ*.
A third adapted maximum likelihood estimator, namely MLEd,, is added.

For this estimator, the contributions to the likelihood function are given by



96 Chapter 4: Likelihood estimation of general finite miztures

Table 4.11: Different estimators considered for the normal mizture model.

Representation Estimator

of likelihood A: Common scale B: Non-common scale

density MLE LE
cdf MLES LE¢
MLEé* LE§*
MLEG, LEJ,

F(y+0/2) — F(y—6/2) (i.e., likelihood function (4.1) is used). In contrast
to the other two adapted estimators, the intervals [y +0/2,y — /2] are sym-
metrical around the observations. Its use will be explained further on. For
situation B, attention is replaced from the global maximum to the largest
local maximum. Mostly, the latter exists and is consistent. For the density
representation the LE is obtained, while for the cdf representation we will
refer to the estimators as LEJ, LEd* and LEd,. The latter are based on the
same construction of the likelihood function as used for MLEJ, MLEJ* and
MLEJ,. Note that situation A in combination with the cdf representation is
essentially considered as “the” classical ML method. Although situation B
is already an adjustment of the classical version, its density representation

is still considered as a classical method.

Objective

Generally, it is assumed that the density representation has one
major advantage as opposed to the cdf representation. Namely, numerically
it is much easier to maximize a likelihood function with a density representa-
tion. We did not pay specific attention to this aspect, although it appeared
directly from the simulations carried out. We will mainly focus on the dif-
ferences between the estimators and will only discuss some computational
issues when it was felt to be a problem. Stated below are the main questions

to be answered.
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e Is there an essential difference between situation A (i.e., existence of
consistent MLE) and situation B (i.e., no consistent MLE) in com-
paring the classical (maximum) likelihood method and the adapted
(maximum) likelihood methods? In other words, are the differences
between the density representation and the cdf representation in case
of a finite mixture with a common scale parameter comparable to the

case of a general finite mixture?

e When are the two (maximum) likelihood methods, i.e., the classical
and the adapted, comparable with regard to the decision making pro-
cess (both in situation A and B)?

— Is the obtained maximum with both methods essentially different
or is it only a matter of precision? Does this depends on the

0-value used?

— Is there a range of §-values for which the estimates and estimated
standard errors of the parameters are the same (upon a certain
precision) and for which the outcome of hypothesis tests is similar.

If so, are there any guidelines possible?

— Is it possible to derive a general rule for all samples.

e What is the influence of the value of §7

Procedure

Both a theoretical and an empirical approach are considered. The
former is used to identify some quantities which could be related to possible
differences between the methods. It is based on the fact that the density

representation can be seen as the limit of the cdf representation for § — 0,
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namely

Fys +0/2;0) — F(ys —6/2;0)

gi_r)% 5 = f(y;9) (4.6)
lim F([yl; 0) EF(LyJ;O) — £(y:0) (4.7)

The practical method consists in comparing the results of the estimation
methods for a number of samples where the parameter 0 is varied from a
small to a large value. The aim is to check some theoretical results, to state
some guidelines and to identify some additional relations. It is carried out
for a two-component normal mixture model both with a common and non-
common scale parameter. For each model, estimates of the model parameters
(1, po, 0, and ) or (u1, pe, 01,09, andmy) and the quantiles g1, %0.001 as
well as their estimated standard errors are compared. The quantiles are
studied due to their importance in reliability analysis. For the general nor-
mal mixture model, this comparison includes also the value of the likelihood
ratio test statistic (LRT) to test the null hypothesis of a common scale pa-
rameter against the alternative of an unequal scale parameter. Maximization
is performed using the EM-algorithm. It is followed by a few steps with the
NR-method to derive standard errors. The tolerance used is le-8 on the
gradient of the logarithm of the likelihood function. We are quite confident
to have a guaranteed convergence to a global or largest local maximum.
This result is based on the use of specific starting values and explained in
detail in the next chapter. Note that differences between the density and
cdf representation with regard to computational aspects, reveal itself in the
use of the EM-algorithm. The latter is due to its double iterative character
for the cdf representation much slower than for the density representation
(Section 5.5.1).
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4.5.2 The maximum likelihood method versus the maximum

likelihood method adapted for measurement error
Theoretical aspects

If the adapted likelihood function is composed of “symmetrical” cdf
contributions, the classical ML method can be regarded as an approximation
of the adapted ML method. Namely, given any density function f(y;80) and

corresponding cdf F'(y; @), the following Taylor expansion exists:

Fly+0/2;0) — F(y —6/2;0)

2 3
= Pw:0) + L2 1:0) + L2 g0y + P2 g 1
, 512 o\3 (4.8)
~(#(0) ~ L2 0y + PLE prigeo) - P g4

3 5
= 0f(y;0) + 2%#(% 6) + Q%JCW(?J; 0)+...

Based on this, it can be concluded that the approximation

holds if the higher order terms in (4.8) are negligible. If so, the classical ML
method and the adapted ML method with a “symmetrical” cdf representa-
tion, will usually give rise to similar parameter estimates. The question is

then when these higher order terms can be ignored.

For a finite mixture model with a location-scale distribution as
component density and a common scale parameter, it is not sufficient to
take d/2 smaller then one, to have a workable approximation at each point
in the parameter space. Namely, for values of the scale parameter smaller
than d, the terms f'(y;0), f"(y; @), ... cannot be neglected. For example, for

a two-component mixture model, the Taylor expansion (4.8) can be rewritten
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as:

o) o)
(1—m) [@<m+5/_2>_@<w_5/_2>]

g g g g

n(E)e() < 2) o ()
(= m) [(g) o () ok (B o (1)

(4.10)

_l’_

with ®(z) the standard cdf of the location-scale distribution and ¢(z) its
corresponding density function. Since all the derivatives of ¢(y — /o) goes
to zero for o — 0, it follows from this derivation that the quantity § /o marks
out the regions in the parameter space where the approximation will work
and where not. Namely, for values of o such that §/o is sufficiently smaller
than one, the other terms in the expansion can be mostly neglected. But, in
case 0/o is not smaller than one, certainly higher order terms of the Taylor
expansion are required to obtain a satisfactory approximation.

As a result, it is likely that the quantity /6P with oMEE the
MLE of the common scale parameter, determines whether the estimates
MLE and MLEJ; and other inference results are comparable or not. Indeed,
if this quantity is too close to or larger than one, the approximation (4.9)
does not hold in the neighborhood of the MLE, while the opposite is true
for values sufficiently smaller than one.

Still, this is not entirely correct for the adapted ML methods, giving
rise to the estimators MLEJ and MLEd*. The derivation leading to the
Taylor expansion (4.10) is for the “symmetrical” differences F'(y+b) — F(y—
a), with y the exact midpoint of the interval [y — a,y + b]. In contrast, the
intervals for the estimators MLEJ and MLEJ* are mostly not symmetrical

around the observations y. The only exception is when the given observations
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are already rounded off to the value of §. Then, the estimators MLE¢J and
MLEG; will be equal and MLEJ* cannot be derived. For a “non-symmetrical”
interval [y — a,y + b] , the Taylor expansion of a cdf likelihood contribution
becomes:

Fly+b;0) = F(y —a;0)
a3 b (4.11)
3!

= 0f(y;0) + %(b — a)df,(y; 6) +

' (y;0) + ...

As noted, compared to the expansion (4.8), a term of the second degree
is present. Although, it disappears as 0 decreases, smaller values of 0/0
are required (in comparison with the symmetrical case), to sufficiently ap-
proximate the likelihood with cdf representation through the likelihood with
density representation. As such, it is expected that the differences between
the estimators MLE and MLE¢$ (or MLEJ*) will be somewhat larger than

between the estimators MLE and MLEJ, at the same value of §.

Empirical results

Several samples, both real and simulated, are fitted to a two-
component normal mixture model with common scale parameter, using the
different estimation methods for a whole range of d-values. Only the results
for one sample, i.e., the most problematic one, are shown in Table 4.12. It
tabulates the largest absolute difference found between estimates and esti-
mated standard errors as well as the parameter where this value is reached.
The estimator MLEJ, is added to look at the differences between the use of
a symmetrical and a non-symmetrical interval around the observations for
the adapted ML methods.

The sample used for Table 4.12 has size 50 and is simulated from
a normal distribution with parameter values ;1 = 0 and ¢ = 0.5. It is one of
the few samples found for which the likelihood function for a two-component
normal mixture has more than one maximum. Indeed, for most samples the

likelihood function (irrespective of its representation) has, except for some
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Table 4.12: Maximum absolute difference between parameter estimates (first
table) and estimated standard errors (second table) of the different methods.
The parameter where the difference is largest, is indicated between brackets.

)

0 =wrre MLE - MLES MLE - MLES* MLES - MLES*  MLE - MLEG;
le-6 1.94e-6 2.10e-7 (t0.0l) 4.57e-7 (t0.001) 6.59e-7 (t0.00I) 1.27e-10 (t0.0l)
le-5 1.94e-5  2.04e-6 (uq1) 6.08e-6 (141) 8.12e-6 (1) 2.92e-11 (to.001)
le-4 1.94e-4 1.69¢-5 (/1,1) 5.59e-5 (t()_()()l) 7.26e-5 (t0.00I) 1.33e-9 (t0_001
le-3 1.94e-3 3.98e-4 (t()_()l) 3.76e-4 (ul) 7.56e-4 (/1,1) 1.33e-7 (t0_001
le-2 1.94e-2 3.48e-3 (/1,1) 5.47e-3 (ul) 8.95e-3 (/1,1) 1.33e-5 (t0_001
0.1 0.194 5.21e-2 (t0.0l) 1.61e-2 (t0.001) 6.21e-2 (t0.00I) 1.33e-3 (to.o(n
0.2 0389  7.63e2 (1)  9.25e-2 (p1) 0.169 (111) 5.35e-3 (to.001
04  0.777 1.55 (u1) 5.52e-2 (to.01) 1.56 (u1) 2.16e-2 (to.001
0.6 1.17 1.61 (,ul) 0.690 (,ul) 1.17 (,ug) 4.95e-2 (t0_001

1 194  0.202 (to.01) - - 0.152 (t.001)

0 #1 MLE-MLEé MLE - MLE§* MLES - MLEé* MLE - MLEJ,
le-6 50 2.95e-8 (/.,Ll) 1.58e-7 (t0.0l) 1.45e-7 (t0.0l) 2.02e-10 (/.,Ll)
le-5 50 1.45e-6 (t0.0l) 3.06e-6 (/Jq) 3.99¢e-6 (/Jq) 4.49e-11 (/.,Ll)
le-4 50 1.06e-5 (t()_()l) 2.12e-5 (t()_()l) 3.18e-5 (t()_()l) 9.01e-10 (t()_()l)
le-3 50 2.01e-4 (ul) 2.11e-4 (t()_()l) 3.86e-4 (/1,1) 9.01e-8 (t()_()l)
le-2 44/42 2.31e-3 (,ul) 4.50e-3 (/1,1) 6.82¢-3 (/1,1) 9.01e-6 (t()_()l)
0.1 20 2.19e-2 (/.,Ll) 2.18e-2 (/Jq) 1.35e-2 (t0.0l) 8.94e-4 (t0.0l)
0.2 12/14 2.63e-2 (t0.0l) 9.71e-2 (/Jq) 0.114 (t0.0l) 3.48e-3 (t0.0l)
0.4 8 0.561 (t0.0l) 4.82e-2 (/Jq) 0.551 (t0.0l) 1.23e-2 (t0.0l)
0.6 6 0.589 (t0.01) 0.901 (111) 1.43 (1) 2.13e-2 (t0.01)

1 5/4 0.189 (1) - - 4.28e-2 (1)

Note: # I is the the number of different intervals in the sample when using the

adapted ML methods related to the estimators MLES and MLEJ*. In case of an

unequal number between the two methods, the first number refers to the sample

corresponding to the estimator MLEG.
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boundary solutions corresponding to a single normal distribution, only one
maximum. The likelihood function for this sample has two maxima, both
situated at the top. The global maximum has likelihood value —41.97, the
other maximum —42.86. The ML estimates are ji; = —1.66 (0.620), jio =
0.110 (7.46e-2), 6 = 0.515 (5.52e-2) and 71 = 0.0200 (2.18e-2). From this

table, several things can be noted.

e For small values of §/6MF | there is a negligible difference between
all methods, regarding estimates and estimated standard errors. Dif-
ferences are only a matter of precision (i.e., the number of significant
figures which is equal among estimates). It improves as § decreases in

value.

e When the value of §/6MPE is smaller than about 0.5, differences be-
tween ML estimates (standard errors) and the estimates MLEJ; (stan-
dard errors) are unimportant. Once this quantity becomes larger, the
global maxima of the two likelihood functions are still situated in the
same region, but differences between estimates are not negligible any-

more.

e For the two adapted ML methods with a non-symmetrical contribution
to the likelihood function, the value of 6/6M"* has to be smaller than
about 0.1, to obtain estimates (and estimated standard errors) which
are equal to the MLEs for at least the first two figures. The influence
on the precision of the additional second degree term in the Taylor
expansion is clear, as this precision for the adapted ML method with
symmetrical contributions is noticeably larger at the same value of
5. Once §/6MLE is larger than 0.1, differences become marked. In
addition, sometimes the global maxima of the likelihood functions are
essentially different, i.e., they are not situated anymore in the same
region of the parameter space. For example, for § = 0.4, the two

maxima, of the adapted likelihood function corresponding to MLEJ,
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have changed from order. As a result, MLE¢ for 6 = 0.2 and MLE§ for
0 = 0.4 correspond to totally different maxima. For a value of 6 = 0.4
inference results based on the MLE (or MLEG¢*) and on the MLE§ can

be seriously different.

e The number of different intervals in the discretised samples has mostly
no effect on the difference with the classical ML, method. Except when
the number of adjacent intervals reduces to 4 or lower, there exist no

consistent adapted ML estimator anymore.

The results for another sample with a large value of MM

are given
in Table B.6 in Section B.3 of the appendix. In general, results for all other
samples are similar, apart from one thing. Namely, for samples for which
the likelihood function has only one maximum, no change of maxima will
arrive for the adapted ML methods. As ¢ increases, differences enlarges, but
global maxima stay in the same region (like the behavior of MLEJ, for the
sample discussed). The results can be easily extended to an M-component

mixture or to other (log)location-scale distributions as component density.

4.5.3 The likelihood method versus the likelihood method
adapted for measurement error

Surface of an adapted likelihood function

Before we compare the several estimation methods, we first take a
closer look at the estimation problems encountered when using the adapted
ML methods. As mentioned, these problems are similar in nature as those
of the classical ML method. Namely, for a general finite mixture model
a consistent adapted MLE does mostly not exist and spurious maxima, in
particular distinct spurious maxima, do not automatically disappear through
the introduction of a measurement error.

Table 4.13 gives for a range of d-values, some maxima of the adapted

likelihood function corresponding to LEJ for a stable sample, in case of a
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Table 4.13: Some mazxima of the adapted likelihood function corresponding to
LES in case of a two-component normal mizture model, for the large stable
resistor sample (n=125). The first row at each value of § gives always the
largest “maximum” found.

) i a1 fi2 o D1 InL
le-8 5.649 —0 6.786 0.450 0.00800 -2367.02
7.022 0.251 6.164 0.236 0.714 -2368.69
6.7/5 3.55e-5 6.777 0.464 0.0159 -2375.13
le-6 6.164 0.236 7.022 0.251 0.286 -1793.04
5.649 —0 6.786 0.450 0.00800 -1795.97
6.7/5 3.55e-5 6.777 0.464 0.0159 -1799.48
le-3 6.164 0.236 7.022 0.252 0.286 -929.575
6.745 —0 6.777 0.463 0.0151 -939.765

Note: The symbol — 0 for one of the scale parameters refers to a maximum attained

outside the parameter space. Maxima in italic are distinct spurious.

general two-component normal mixture. It allows to form an idea of the sur-
face of the adapted likelihood function. Among the maxima tabulated, the
largest one, whether attained in or outside the parameter space, is always
given. Tables 4.14a and 4.14b report the same but for highly unstable sam-
ples and for other adapted likelihood functions. Although, for each sample,
only one of the three adapted ML methods is used, results are similar if one
of the two other adapted ML methods is considered. Further, the examples
given, illustrate quite well the situation encountered for most other samples.
Below, our main findings are summarized. They hold for any of the three

adapted likelihood estimators given in Table 4.11.

e If § is sufficiently small, then for each sample, regardless of its stabil-
ity, the adapted likelihood function attains a maximum, outside the
parameter space, in the points p; €la;, bi[, o1 = 0, 1 = n;/n and
with pe and oo the adapted MLEs when fitting the sample without
the ' interval to a single component distribution. Hereby, a; and b;

are the limit points of the intervals of the discretised sample and n;
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the original number of duplicates in the continuous sample. For all
samples looked at, an upper limit for § was found so that the adapted
likelihood in case of a smaller value for ¢ attained its supremum in
one of these points or “singularities”. Since these points do not belong
to the parameter space, no global maximum exists at these d-values.
But even if they would belong to the parameter space, they are no
consistent estimates. For example, for the sample in Table 4.14a this
is true for § = le-4 or smaller, for the sample in Table 4.14b this holds
for = le-6 and for the sample in Table 4.13 a value as small as 1e-8 is
required. Note that these “maxima” are equivalent to the singularities
of the density likelihood. Only here, u can take on a range of values
and the likelihood value of such a singularity is bounded. But, like the
singularities of the density likelihood, also here they should be ignored.

For small values of ¢ distinct spurious maxima are present as many
as for the likelihood function with density representation. For larger
values, they are still present but their number decreases. Note that

only a few of them are included in the tables.

As ¢ increases in value, the singularities fade way, i.e., their likelihood
value diminish in comparison to the likelihood value of other maxima,
or they disappear. This can be observed, for example, by consider-
ing the position of the largest maximum at the smallest value for 4,
for the larger values of §. Still, other difficulties appear as both dis-
tinct spurious maxima and, latter on, maxima with one of the scale
parameters quite small, can change into new problematic points. In
particular, there are two kinds of problematic points for the adapted
likelihood function (in contrast to only one for the density likelihood).
On the one hand, there are the “maxima” equivalent to the infinities
of the density likelihood. A distinct spurious maximum will turn into

such a maximum if the few data points belonging to one component,
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will be situated in the same interval of the discretised sample. On the
other hand, these few data points could also belong to two adjacent
intervals of the discretised sample. As such, they cause an increase
of the likelihood for u; going to the common point of these two inter-
vals and o; going to 0, but often the maximum value of the likelihood
is not reached within any point (in or outside the parameter space).
This situation becomes problematic when it leads to the supremum
of the likelihood. Not only, no global maximum then exists, even not
outside the parameter space, but also due to the limits on the numer-
ical accuracy, apparent maxima will be identified. This was noticed,
for example, for the binned sample in Table 4.2. In the following, for
reasons of simplicity, we will use for both kind of situations the term
singularity and maximum attained outside the parameter space. No
distinction will be made anymore, since both do not lead to a consistent
root and should be discarded. Due to the fact that these singularities
are sometimes present at the top of the adapted likelihood function, a

classical adapted MLE does not exist.

e For stable samples, from a certain value for ¢ on, the consistent root of
the LEQs corresponds mostly to the global maximum, until the number
of intervals in the discretised sample has become to small. Although,
distinct spurious maxima and other singularities are still present, they
are not situated at the top of the likelihood function (Table 4.13).

e For highly unstable samples, distinct spurious maxima at the top of
the adapted likelihood function for small values of §, become often a
singularity where the likelihood attains its supremum for larger values
of §. For example in the Tables 4.14b and 4.14a, the second maxi-
mum at the smallest value for d, becomes the largest maximum and
a singularity at one value larger for 4. It depends on the value of ¢

and the way of constructing the adapted likelihood function, whether
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there exists a global maximum, and which maximum is the largest one
(Tables 4.14b and 4.14a). Unstable samples behave rather like sta-
ble samples, although for large values of § there could be a change of

maxima at the top of the adapted likelihood.

Also for these adapted ML methods there exists an alternative of
looking at the largest local maximum instead of the global maximum to
find a consistent estimate. The only difference with the density likelihood
is that the latter is always unbounded and therefore the global maximum
never exists. In contrast, for stable and many unstable samples, from some
value of ¢ onwards, the adapted likelihood function will mostly have a global
maximum. In this case, it equals the largest local maximum, but this does

not change the strategy of searching for the largest local maximum.

Comparing different estimators

Similarly as for the two-component mixture with common scale pa-
rameter, it can be derived that A = §/ min(oy, 02) is an important quantity
to look at when the classical likelihood and the adapted likelihood methods
are compared for the general two-component mixture model. The only dif-
ference in the Taylor expansion (4.10) is the occurrence of a different scale
parameter in the first and second component. As a result, we expect that for
A = §/min(61", 557) sufficiently smaller than one, the likelihood method
and the adapted likelihood method with symmetrical contributions will lead
to similar conclusions. For the other two adapted likelihood methods quite
likely a smaller value of A is needed to obtain negligible differences.

To check these findings, we fitted a general two-component normal
mixture model to a series of samples using all three adapted likelihood meth-
ods and this for different values of 4. Here, the results of two samples are
given, i.e., a stable and a highly unstable sample. Further, in Chapter 6, a
comparison for a general M-component normal mixture with more than two

components is worked out.
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) 2 a1 fi2 o D1 InL
le-4 4.222 —0 4.099 0.433 0.0768 -242.082
4.560 0.000299 4.071 0.413 0.0764 -2/5.950
3.600 0.285 4.340 0.213 0.314  -250.614
3.953 0.384 4.524 0.0869 0.728 -250.659
le-3  4.560 —0 4.071 0.413 0.0765 -185.659
4.222 —0 4.099 0433 0.0761 -186.804
3.209 0.0150 4.182  0.342 0.0757 -189.271
3.601 0.285 4.340 0.213 0.314  -190.753
3.952 0.385 4.524 0.0872 0.727 -190.801
le-2  3.210 0.0147 4.181  0.342  0.0757 -129.365
4.555 —0 4.073 0.413 0.0724 -130.277
3.621 0.295 4.346  0.209 0.328  -130.837
3.952 0.384 4.522 0.0879 0.727 -130.928
0.1 3.942 0.386 4.519 0.0816 0.713 -70.987
4.499 0.00619 4.018 0.417 0.190 -71.799
3.200 —0 4.179 0.347 0.0726 -71.925

(a) Adapted likelihood function corresponding to LES™ for a small

highly unstable failure time sample (n=26).

) i a1 Lo G2 D1 InL
le-6  3.538 —0 4.802 0.484 0.0147 -977.339
5.8329 8.22e-5 4.767 0.502 0.0293 -980.646
5.340 0.146 4.611 0.446 0.237 -985.049
le-4 5.327 —0 4.767 0.502 0.0293 -667.490
3.558 —0 4.802 0.484 0.0147 -668.792
5.445 0.00281 4.756 0.495 0.0405 -671.409
5.340 0.146 4.611 0.446 0.237 -671.898
le-2 5.445 —0 4.755 0.495 0.0412 -357.829
5.340 0.146 4.611 0.446 0.237 -358.746
5.329 —0 4.770 0.502 0.0252 -360.834
3.558 —0 4.802 0.485 0.0144 -360.225
0.1 5.340 0.144 4.611 0.445 0.237  -202.170
5385 0.0416 4.710 0.483 0.110 -202.929
5.444 —0 4.743 0.491 0.0593 -204.139

(b) Adapted likelihood function corresponding to LEds, for the

highly unstable interconnect sample (n=68).

Table 4.14: Some mazima of an adapted likelihood function for two highly
unstable samples in case of the two-component normal mizture model. The

first row at each value of § gives always the largest “maximum” found.
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(a) LEJ fits for 6 = 0.1, (b) LE6™ fits for 6 = 0.1 (c) LE§; fits for 6 = 0.1,
0.2 and 0.3. and 0.3. 0.3, 0.5 and 0.7.

Figure 4.10: QQ-plot of the resistor sample supplemented with several fits.

A stable sample The sample considered is the resistor sample introduced
in Section 2.1.1. It is a large stable sample of size 125. One maximum
is dominating the (density) likelihood function. The likelihood estimates
are fi1 = 6.164 (0.0638), 61 = 0.236 (0.0460), i = 7.022 (0.0354), o =
0.251 (0.0268), 1 = 0.286 (0.0538). The sample is estimated with all three
adapted likelihood methods for a range of ¢ values. Table 4.15a compares the
parameter estimates and Table 4.15b the estimated standard errors, while
Table 4.15¢ gives the values of the likelihood ratio test (LRT) statistic and
corresponding p-value to test the null hypothesis Hy : 01 = 09 against the

alternative Hy : 01 # 02. A number of conclusions can be drawn.

e If A is smaller than about 0.5-1, differences among estimates, esti-
mated standard errors and p-values are negligible between the classical
likelihood method and the “symmetrical” adapted likelihood method.
The more this value decreases, the smaller the differences become. For
larger values, differences cannot be neglected anymore, but final con-
clusions are mostly comparable. Only the precision diminishes. Note

that the estimates &IfES and &%ES go to zero for increasing values of 4.

This is illustrated in Figure 4.10c.



Chapter 4: Likelihood estimation of general finite mixtures

111

[ A LE - LE§ LE - LE§* LEJ - LE&* LE - LEds
le-6 4.23e-6 1.74e-7 (t0_001) 4.36e-8 (;LQ) 2.09e-7 (t0_001) 2.00e-11 (0’2)
le-5 4.23e-5 1.20e-6 (Hl) 8.42e-7 (Ul) 2.04e-6 (Ul) 4.91e-11 (t0_001)
le-4  4.23e-4 3.78e-6 (ul) 2.25e-5 (t0_001) 2.30e-5 (t0_001) 4.76e-9 (t0_001)
le-3  4.23e-3 3.78e-5 (Hl) 1.45e-4 (to_om) 1.66e-4 (to_om) 4.76e-7 (t0_001)
le-2 4.23e-2 6.78e-4 (;LQ) 8.72e-4 (ul) 1.08e-3 (;LQ) 4.76e-5 (t0_001)
0.1 0.423 2.17e-2 (p1) 1.42e-2 (p1) 3.57e-2 (u1) 4.78e-3 (to.001)
0.2 0.846 2.26e-2 (to_om) 1.59e-2 (to_om) 3.86e-2 (to_om) 1.9e-2 (to_om)
0.3 1.27 5.83e-2 (t0_01) 6.16e-2 (ul) 2.66e-2 (t0_001) 4.5e-2 (t0_001)
0.5 2.12 - - - 0.14 (t0_001)

(a) Maximum absolute difference between parameter estimates.

where the difference is largest, is indicated between brackets.

The parameter

[ #1 LE - LEJ LE - LE&* LE¢6 - LE6™ LE - LEds
le-6 125 3.64e-8 (Hl) 3.37e-8 ([,Ll) 2.41e-8 (t0_01) 8.12e-12 (t0_001)
le-5 126 1.42e-7 (t0_01) 1.97e-7 (;Ll) 2.14e-7 (;LQ) 7.85e-12 (t0_001)
le-4 125 3.98e-6 (Hl) 6.08e-6 (to_om) 4.45e-6 (to_om) 7.78e-10 (t0_001)
le-3 118/121 2.03e-5 (Hl) 8.11e-5 (/Ll) 6.50e-5 (to_om) 7.78e-8 (to_om)
le-2 87/84 1.31e-4 (ul) 6.99e-4 (;Ll) 8.30e-4 (;Ll) 7.78e-6 (t0_001)
0.1 20 1.08e-2 (Hl) 1.80e-3 (/Ll) 9.09e-3 (/Ll) 7.89e-4 (to_om)
0.2 11/10 1.59e-2 (ul) 2.86e-3 (t0_001) 1.52e-2 (;Ll) 3.3e-3 (t0_001)
0.3 7/8 1.76e-2 (to_m) 6.56e-3 (/Ll) 2.86e-2 /Ll) 8.0e-3 (to_om)
0.5 5/5 - - - 3.0e-2 (t0_001)

(b) Maximum absolute difference between estimated standard errors. The pa-

rameter where the difference is largest, is indicated between brackets.

LRT-value p-value

0 A LE LE§ LE&* LEds LE LE§ LEé* LEds
le-6 4.23e-6 0.0571 0.0571 0.0571 0.0571 0.811 0.811 0.811 0.811
le-b  4.23e-5 0.0571  0.0571  0.0571 0.0571 0.811 0.811 0.811 0.811
le-4 4.23e-4 0.0571 0.0571 0.0573  0.0571 0.811 0.811 0.811 0.811
le-3  4.23e-3  0.0571  0.0575 0.0562 0.0571 0.811 0.810 0.813 0.811
le-2  4.23e-2 0.0571 0.0573 0.0494 0.0571 0.811 0.811 0.824 0.811
0.1 0.423 0.0571  5.99e-3 0.112 0.0571 0.811 0.938 0.738 0.811
0.2 0.846 0.0571  0.0930 0.131 0.0565 0.811 0.760 0.717 0.812
0.3 1.27 0.0571 0.0261 0.186 0.0534 0.811 0.872 0.666 0.817
0.5 2.12 0.0571 - - 0.0217  0.811 - - 0.883

(c) Value of the LRT statistic and corresponding p-value (Hg

01 =02, Ha :

o1 # 09 ). The LRT statistic is assumed to have a x? distribution with 1 df.

Table 4.15: Comparison of the different likelihood methods for the resistor

sample.
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e For the other two adapted likelihood methods, the value of A certainly
has to be smaller than 0.1, to obtain unimportant differences with the
classical likelihood method. Nevertheless, although faster than for the
“symmetrical” adapted likelihood method, also for these methods only
the precision diminishes. As an example, Figures 4.10a and 4.10b give
some fits of the adapted likelihood estimates for values of A larger than

0.1. As noted, all fits are still comparable.

In summary, for all methods and values of § only one maximum
dominates the adapted likelihood function. It is situated in the neighbor-
hood of the dominating maximum of the density likelihood. The findings
drawn here, can be extended to most other stable samples and even to many
unstable samples with only a few maxima, not distinct spurious, at the top
of the likelihood function. Note that the results are similar to the case where
the MLE exists.

A (highly) unstable sample Table 4.16 summarizes the results for the
interconnect sample (Section 2.1.2). This sample of size 68 is highly un-
stable. The likelihood estimate is a distinct spurious maximum: [, =
4.767(5.84e-5), 61 = 0.502(4.12e-5), fiz = 5.329(0.0618), d2 = 8.22e-5(0.0437),
71 = 0.971 (0.0205). Note that inference results (of the likelihood method)
are not reliable here due to the instability of the sample. However, one can
still compare the different estimation methods. As observed from Table 4.16,
for a value of A not larger than about 0.1, results from all methods are com-
parable. Again differences between the classical method and the symmetri-
cal adapted likelihood method are considerably smaller as compared to the
other adapted likelihood methods. In addition, as long as A is not larger
than about 1, differences are only related to a diminishing precision, i.e., the
largest maximum of the adapted likelihood functions is similar to the largest
maximum of the classical likelihood function. Once A is larger than about

one, the dissimilarity between likelihood estimates and adapted likelihood
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) A LE - LE§ LE - LE§* LEJ - LE§* LE - LEJ,
le-6  1.22e-2  3.67e-7 (m1) 4.86e-7 (m1)  8.53e-7 (m1)  5.07e-10 (02)
le-5  0.122  4.75e-6 (m1) 3.78e-6 (m1)  8.53e-6 (m1) 5.07e-8 (02)
5e-5  0.608  1.23e-5 (my) 1.71e-5 (p2)  2.50e-5 (u2) 1.31e-6 (02)
le-4 1.22 3.02e-5 () 0.26 (u2) 0.26 (u2) 5.91e-4 (02)
le3 122 0117 (u)  0.117 (u2)  1.48e-4 (to.o01)  0.942 (my)
le2 122 0.210 (m) 0210 (m) 1223 (o)  0.208 (m)
01 1.22%+4 0228 (m) 0183 (m)  6.46e-2 (u2)  0.208 (my)

(a) Maximum absolute difference between parameter estimates.

where the difference is largest, is indicated between brackets.

The parameter

0 A LE - LE§ LE - LE§* LES - LE§* LE - LE§,
le6 68  154e6 (u1) 2.03e7 (u1) 3.57e-7 (u1) 2.54e-10 (o)
le5 68  1.99e-6 (u1) 1.58-6 (1) 3.57e-6 (1)  2.55e-8 (o)
5e-5 68  5.18¢-6 (1y)  5.18¢-6 (u1)  3.32e-6 (u2)  6.72e-7 (o)
le-4 68 1.25e-5 (u1)  8.0le-4 (u2) 8.0le-4 (u2)  3.32e-6 (07)
le-3 65 4.51e-3 (71'1) 4.52e-3 (71'1) 5.58e-5 (/.,Ll) 0.143 (t0.00I)
le-2 57/61 0.151 (t0_001) 0.151 (t()_()()l) 5.36e-4 (7T1) 0.310 (t()_()()l)
0.1 18/20 0.156 (to.001) 0.150 (to.001) 4.07e-2 (my) 0.314 (to.001)

(b) Maximum absolute difference between estimated standard errors. The pa-

rameter where the difference is largest, is indicated between brackets.

LRT-value p-value

0 A LE LE§ LE§* LEds LE LE§ LE6* LEds
le-6 1.22e-2 10.854 10.864 10.840 10.854 9.86e-4 9.816e-4 1.26e-3  9.86e-4
le-5 0.122 10.854  10.721 10.963 10.854  9.86e-4 1.06e-3 9.29e-4  9.86e-4
5e-5 0.608 10.854  11.220 11.221 10.854 9.86e-4  8.09e-4  8.09e-4  9.86e-4
le-4 1.22 10.854  10.079 8.361 10.861  9.86e-4 1.50e-3 3.83e-3  9.82e-4
le-3 12.2 10.854  2.970 2.820 3.064  9.86e-4  8.48e-2  9.31e-2  8.00e-2
le-2 122 10.854 2.100 2.165 2.046 9.86e-4 0.147 0.141 0.153
0.1 122 10.854 1.301 3.056 2.047  9.86e-4 0.254 8.00e-2 0.153

(c) Value of the LRT statistic and corresponding p-value (Ho : 1 = 02, Ha : 01 # 02).
The LRT statistic is assumed to have a x? distribution with 1 df

Table 4.16: Comparison of the different likelihood methods for the highly

unstable interconnect sample.
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estimates is no longer a matter of precision only. Maxima at the top of the
adapted likelihood functions are not necessarily in the neighborhood of the

largest local maximum of the classical likelihood function. For example:

e At 6 = le-4, LE6* corresponds to a totally different maximum than
LE, LEJ and LEd;.

e At 0 = le-3, all adapted likelihood functions have a largest maximum
which largely differs from the maximum corresponding to the LE (Ta-
ble 4.16a).

The observations for this sample do hold for any other highly un-
stable sample and for some unstable samples. Importantly, inference results
of the adapted likelihood methods depend heavily on the value of ¢ used and
the sample remains (highly) unstable. No unambiguous conclusions can be
drawn. This demonstrates once more that it is dangerous to rely on infer-
ence results for highly unstable samples, regardless of the likelihood method
used. Adapting the likelihood function will not improve the situation. More-
over, numerically it can be difficult to distinguish the largest local maximum

among all singularities and apparent maxima.

4.5.4 General conclusions

No essential differences are observed between the situation where
the MLE exists and where not, when applied to finite normal mixtures. If A

MLE in case of a common scale parameter and §/ min(51%, 53F)

equals §/6
for the general mixture model, then the following summary can be made of
the comparison between the classical (maximum) likelihood method and the

adapted “non-symmetrical” (maximum) likelihood methods:
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A<o1
For all samples:

-Unimportant to negligible differences
between estimates and estimated
standard errors.

-If § decreases, differences diminish.

A>1

Stable samples:

-Differences are due to a diminishing
precision.

-Comparable largest maximum for all
likelihoods.

Highly unstable samples:
-Important differences due to non
comparable largest maxima for the
different likelihoods, not a matter of
precision.

-Largest maximum of the adapted like-
lihood depends on the value of 4.
-Different conclusions.

Unstable samples:

-Mostly classified by the stable sam-
ples, but for some samples differences
between methods evolve like for a

highly unstable sample.

Similar results hold for the “symmetric” adapted likelihood method. Only,
the boundaries on A can be taken less stringent. For A < 1, differences
between the two methods are quite smaller than the differences between
the classical likelihood method and the non-symmetrical adapted likelihood
methods. They are often even acceptable. Note that the boundary values
used (i.e., 0.1 and 1), are only approximate values. Furthermore, the re-
sults can be easily extended to (log)normal mixtures with more than two
components and to SEV or Weibull mixtures.

The parameter d is a kind of smoothing parameter. The larger it
value is, the more small groupings of data points, whether random or not, will
disappear in the discretised sample. Through the use of a large measurement
error, a large part of random groupings can be removed, but possibly also
the “true” one. Importantly, for most samples the stability does not depend
on the value of ¢ used. If the exact value of § is known, a simple comparison
with the likelihood estimates of the scale parameters, can reveal whether

an analysis with an adapted likelihood method will add something. If the
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value of § is unknown, a kind of sensitivity analysis can be carried out to
verify how consistent the results are with those obtained from the likelihood
method. It should be realized, however, that its introduction is useless in
the impossible search for a proper likelihood estimate for a highly unstable

sample.



Chapter 5

An automatic starting value

procedure

In the previous chapter, we have compared for a general finite mix-
ture model some important estimation methods, based on the maximum
likelihood method. Until now, in the examples and simulations given, we
did not explain how the estimates were calculated. Moreover, it was taken
for granted that the estimate, i.e., the largest local maximum of the likeli-
hood function under consideration, was found. In this chapter we discuss
how to obtain such estimates and in particular how we were able to detect
the largest local maximum with a certainty of almost 100%. In essence, it
all amounts to the choice of the starting values. Specifically, for the finite
mixture model, estimates can be found as a root of the LEQs corresponding
to the largest local maximum of the likelihood function. However, to solve
these equations an iterative procedure as well as a set of initial or starting
values for the parameters, are required (Section 3.5.1). While for most clas-
sical one or two parameter distributions the choice of starting values is not
important since their LEQs contain a single root, for the mixture problem

apparently good starting values are essential.
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The key problem for the general mixture model, primarily due to
the usually large number of roots for the LEQs, is that the root obtained
may be highly sensitive to the starting values used (Fowlkes, 1979; Redner
and Walker, 1984; Bohning, 2000). In other words, a poor choice of starting
values will not necessarily give rise to the required largest local maximum,
i.e., such starting values can converge to an improper root. An example
of where this can lead to, apart from wrong point and interval estimates, is
given by B6hning (2000, pp. 66-70). There, the null distribution of the likeli-
hood ratio test statistic in case of the null hypothesis of a simple exponential
distribution against the alternative of a two-component exponential mixture,
is simulated. It is demonstrated that the simulated distribution quantiles of
the likelihood ratio statistic can differ a lot depending on the starting value
procedure used. Note that in this example only a Weibull mixture with a
common known shape parameter is used, in which case the number of roots
are considerably less compared to a general Weibull mixture. As such, one
can expect that things will become even worse for general mixtures. But
there are more problems involved with poor starting values. Namely, they
can lead, in particular for the EM-algorithm, to very slow convergence and

to a failure of convergence, especially in combination with the NR-method.

On the other hand, there are multiple reasons to spend some time
in searching good starting values, i.e., parameter values in the neighborhood
of a (largest) local maximum of the likelihood function. Namely, such start-
ing values are the best way to speed up the algorithm (Furman and Lindsay,
1994), in particular the EM-algorithm. They are the best option to arrive
at the largest local maximum with an iterative procedure and they consider-
ably reduce the chance of failure to converge, mainly in case of a NR based
iterative method. Also, given a set of good starting values an indication
of the stability of the sample can be obtained. In addition, if the method
calculating these starting values, i.e., the starting value method, allows au-

tomation, then simulations and bootstrap procedures are feasible (in terms
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of both time and unambiguity) and it becomes possible to fit mixtures in

real terms (software, industry).

Nevertheless, only relatively little research efforts have been de-
voted to these starting values. Instead, a lot of attention is paid to the
improvement of the weaknesses of some iterative procedures, in particular
the EM-algorithm. Ironically, in case of finite mixtures, a lot can be gained
already through the choice of a series of well-reasoned starting values. In
addition, as Bohning (2000, p. 67) states: “the starting value problem is
mostly treated in an ad hoc manner and the impression is left that the
choice of starting values is not crucial”. Often, it is assumed that in case
of univariate mixtures relatively few problems are met in order to arrive at
the proper maximum (Everitt and Hand, 1981, p. 47), despite the indica-
tion of the opposite by others (Fowlkes, 1979). It is believed that as long
as the sample size is large enough and the mixture components quite well
separated, then any reasonable starting value will end in the largest local
maximum. However, no one really seems to know what is meant with “large
enough”, “quite well separated” and “reasonable”. Also, what to do in cases
where the estimation of a mixture is required with poorly separated compo-
nents (for example, when the null distribution of a likelihood ratio statistic
has to be simulated) or where the sample size is too small? There, it is of
importance that also if a distinct spurious maximum is the largest local one,
that it can be found. All too often, it is taken for granted that by trying
a number of starting values and picking out the largest maximum (Everitt
and Hand 1981, pp. 41-42; Hastie et al. 2001, p. 239), the MLE or LE is

obtained, without any further justification.

Here, the starting value problem for general finite (log)normal, SEV
and Weibull mixtures is handled. In Section 5.1, we discuss first the rather
limited amount of literature about starting values. An overview is given of
the existing starting value methods, as well as some of their major short-

comings. We specify how, to our opinion, a starting value method should
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look like or should perform. A new developed starting value method to
obtain the LE for two-component mixtures, fulfilling some of the most im-
portant requirements is introduced in Section 5.2. Although good starting
values are required, irrespective of the fact of an LE or an adapted LE is
searched for, main focus is first on a starting value procedure for the LE.
The reason is that in essence the adapted LEs discussed in the previous
chapter can be viewed as special cases of the LE. Once a good method is
obtained for the LE, it should be possible to extend it to the case of adapted
LEs (Section 5.5.1). Furthermore, the starting value method is essentially
developed for a two-component mixture. The reason for this is twofold: it
is the simplest general finite mixture model, although already complicated,
and the most commonly used one in reliability analysis. In Section 5.5,
among other extensions, it is discussed how the developed method can be
generalized to the case of more than two components. A simulation study,
described in Section 5.3, demonstrates the excellent performance of the pro-
posed starting value method and compares it with the performance of some
other methods. Further, it is explained how the method can be extended to
find almost always the LE, also in case of small sample sizes. Next to this, it
is illustrated in Section 5.4 by means of some examples, how some features
of the developed starting value method can be used to obtain an idea about
the amount of information available in the sample with respect to a finite

mixture model.

5.1 Literature review

We begin with an overview of the most important methods, present
in literature and (experimental) software packages, to obtain starting values.
Some of these methods are specific to the mixture model case, others are
primarily used for other problems but could serve as well for the mixture

problem.
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At random procedures. Starting values are generated by means of a ran-
dom process. Roughly these methods can be divided into two groups:
those derived specific for the finite mixture model and those methods
that apply for more general problems. Within the last group, the most
“simple” method is to randomly choose a value for each parameter.
Finch et al. (1989) developed this technique further, by introducing
the concept of probabilistic measures of adequacy. It is then possible
to determine the chance that a global maximum was not found yet
with a set of random starting points. Hereby, each parameter has a
certain distribution attached to it, from which to sample its values.
Another example of a general procedure is the bootstrap root search
method, proposed by Markatou et al. (1998) and Markatou (2000), in
a weighted likelihood context. The idea is to detect as many roots of
the LEQs as possible and the global maximum in particular. Briefly,
B bootstrap samples of size m are generated from the original sample.
For each bootstrapped sample, moment estimates of the parameters
are calculated and used as starting values. Based on the technique
of Finch, it is suggested that for their particular problem, 100 boot-
strap samples are usually sufficient to obtain with a high chance the
global maximum. The main difference with the method of Finch is
that the starting values, although obtained by a random process, are
data driven. Note that this method will be difficult to use due to a
problem with the moment estimates in case of general finite mixtures

as explained further on.

McLachlan and Peel (1998) (see also McLachlan and Peel, 2000) sug-
gest two random methods for the finite mixture case, implemented in
their software program EMMIX. The first procedure consists of ran-
domly dividing the sample into M subgroups, with M the required
number of mixture components. The EM-algorithm is then started

from the M-step given a complete data likelihood, based on the divi-
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sion, and not from the E-step given starting values for the parameters.
To remove effects of the central limit theorem on the starting values,
it is suggested to first take a subsample of the data which is then
randomly divided (instead of the whole sample) and used in the first
M-step of the EM-algorithm. A second method randomly generates g
mean values from a multivariate normal distribution with the sample
mean and sample variance as parameters. Another random method
specific to the finite mixture case is given by Finch et al. (1989) for
a two-component normal mixture with common scale parameter. A
starting value for the proportion parameter is generated from the stan-
dard uniform distribution. Starting values for the other parameters
are derived from a division of the sample into two subgroups based
upon the generated value of the proportion parameter. Note that for
these last two random methods maxima, corresponding to mixtures for
which the components are primarily separated in scale, will be rarely
detected.

Although random methods are easy to use, they usually have one major
shortcoming in that they do not deliver well-reasoned starting values.
Certainly, this holds true for the methods of McLachlan and Finch.
As such, the main advantage of speeding up the iterative procedure
and reducing the number of failures to convergence is lost, since start-
ing values can equally well be poor choices. Furthermore, not much
is known about the performance of these methods in case of finite
mixtures, i.e., the number of starting values required to obtain with
a high probability the largest maximum. According to Finch et al.
(1989), the relatively simple problem of a two-component normal mix-
ture with common scale parameter is already rather difficult to handle
with random starting values, in case of a mixture with poorly separated

components.

Multivariate starting value methods. In a model-based clustering ap-
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proach, multivariate finite (normal) mixtures are frequently used to
model clusters within the data. Conversely, many clustering methods,
which are rather based upon heuristics, but intuitively reasonable pro-
cedures (Fraley and Raftery, 2000), can be used to obtain starting val-
ues for the finite normal mixture model. Examples are k-means cluster-
ing methods, hierarchical clustering methods (Johnson and Wichern,
1998, chap. 12) and the fuzzy c-means algorithm (Bezdek and Dunn,
1975).Although these methods seem to work fine in case of multivari-
ate mixtures or univariate mixtures with a common scale parameter,
in our experience they perform quite unsatisfactorily as starting value
method for the univariate general mixture model. Its major shortcom-
ing is that maxima corresponding to mixtures for which the compo-
nents are mainly separated in scale, will rarely be found. But there
are more disadvantages. Not much is known about their performance:
it has not been checked whether these starting values give rise to the
largest local maximum. For the fuzzy c-means algorithm, Hathaway
and Bezdek (1986) show in the univariate case that estimates obtained
with this algorithm are not necessarily consistent, a property which is
desirable for starting values. These clustering methods also depend on
some extra (algorithmic) parameters. Sometimes even starting values
are required. Also it is unknown how they will perform for mixtures
with other component densities than the normal distribution. Another
possibility to obtain starting values for multivariate mixtures is the use
of principle component analysis (McLachlan, 1988). This, however, is

useless in the univariate case.

Consistent estimation methods. A consistent estimator, used as a start-
ing value, converges to the consistent root of the LEQs, i.e., to the
MLE or LE if the sample size is large enough (Section 4.2.2). As such,
any consistent estimator will be a good starting value. Well-known

examples of consistent estimators are moment estimators and estima-
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tors obtained from the moment generating function. Also the true
parameter values, though useless in real applications, have this desir-
able property. There is, however, one major problem blocking these
methods from being used as a starting value method. Namely, for the
general finite mixture model it is rather problematic to find or to calcu-
late such consistent estimators. Indeed, Bowman and Shenton (1973)
establish for general (log)normal finite mixtures that moment estima-
tors are not unique and importantly do not always exist. Besides,
apparently there is no simple way to calculate them: for a general two-
component normal mixture, Pearson’s famous 9-nonic has to be solved
(Pearson, 1894). Note that this problem does not appear in case of
a finite (log)normal mixture with a common scale parameter. There,
Furman and Lindsay (1994) proved the existence of a unique moment
estimator which could relatively easy be calculated, irrespective of the
number of mixture components. Further, not much is known about
moment estimators for SEV or Weibull mixtures. When moment esti-
mation is applied, the shape parameter is mostly taken to be common
(Rider, 1962). In general, also an iterative procedure is required for
their own calculation. Similar remarks hold for estimators based on
the moment generating function (Quandt, 1978; Quandt and Ramsey,

1978). These estimators are a generalization of moment estimators.

Techniques for a normal mixture with a common scale parameter.
The LEQs for mixtures with a common scale parameter contain consid-
erably less roots than in case of a general mixture model. Still, starting
values are of importance, especially for small sample sizes or when too
many mixture components are considered (for example, Finch et al.
1989 and Bdhning 2000, pp. 67-70). In literature, some suggestions and
methods are present to derive starting values for this specific model.
There are the unique, easy to calculate, moment estimators (Furman
and Lindsay, 1994). Further, Finch et al. (1989) uses starting values
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based upon an estimate of Engelman and Hartigan (1969) for the pro-
portion parameter. This estimate is obtained by maximizing the ratio
of the between sum of squares to within sum of squares among all pos-
sible splits of the sample. According to Finch this estimate would only
miss the global maximum in 3% of the samples, when the latter are
generated from a single normal distribution. Lindsay (1995, pp. 65-66)
indicates that the NPMLE also can be used to derive starting values.
Indeed, given a value of the common scale parameter, a unique, discreet
NPMLE exists and can be calculated (Bohning, 1995). This estimate
suggests then the maximum number of mixture components. But, as
mentioned too by Lindsay, this method would be hard to use in simula-
tions and practice. Although most of these methods work fine for this
specific mixture model, they can be hardly adopted to the situation of
a general mixture. The case of the moment estimator is discussed pre-
viously. The Engelman-Hartigan estimate of the proportion parameter
could also be derived for a SEV mixture with common scale parameter,
but when generalized, mixtures with components separated mainly in
scale, will be overlooked. Finally, the theory of the NPMLE does not
hold for general finite mixtures with a (log)location-scale distribution
as component density, mainly due to the non-identifiability problem of

general nonparametric mixtures (Section 3.3).

Graphical procedures. Asthe name suggests, these methods utilize graph-
ics. Often the latter will be a probability or QQ-plot (Section 5.2.1). A
large part of those methods make use of the naked eye and were a pop-
ular estimation tool before the introduction of the computer, mainly
due to the unappealing moment estimates (Fowlkes, 1979). Graphical
estimates were quite rough, but sufficient at that time. According to
Fowlkes, one of the best graphical methods originates from Harding
(1948), relating the shape of the configuration of a normal QQ-plot

to the parameters of a general two-component normal mixture. Note
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that this kind of graphical procedures are still sometimes used (in a
reliability context) to estimate general finite mixtures (Mgltoft, 1983;
Jiang and Murthy, 1995). Jiang and Murthy (1995) consider the esti-
mation of two-component Weibull mixtures. It ought to be mentioned
that their technique, though laborious, is one of the few that takes into
account also the estimation of mixtures with components separated in
shape. Bhattacharya (1967) developed a method for grouped normal
data not based on a probability plot, quite useful in an exploratory
analysis. While it is often possible to derive useful starting values for
mixtures with clearly separated components, these methods are not
an option as a starting value method. Indeed, they are subjective and
allows hardly ever automation. On the other hand, there are more ob-
jective graphical methods using a computerized approach. Examples
are least squares estimation based upon a QQ-plot and the starting
value method of Fowlkes (1979). The former is not considered as an
option since it also involves a set of equations that has to be solved.
The latter formalized in essence the approach of Harding (1948). This
method works fine in many cases and leads to well-reasoned starting
values, but is difficult to computerize, since starting values are again
needed. In addition, the method does not take into account the possi-

bility of a mixture where the components are separated in scale.

Other procedures. There exist some methods to find the global maximum
of a function without the need to specify a starting value, i.e., the so-
called global optimization procedures (Cetin et al., 1993; Battiti and
Tecchiolli, 1996; Chelouah, 2000). For the general finite mixture case,
they are not really an option due to the singularities of the likelihood.
In addition, the few which exist, are very slow and do require in turn
bounds of the parameter space. Further, there have been some at-
tempts to turn the EM-algorithm into a global convergence algorithm
(Celeux et al., 1996, 2001). In other words, to make the algorithm less



Chapter 5: An automatic starting value procedure 127

sensitive to the starting values used. We prefer the search for good
starting values, as not only the largest local maximum is of interest,
but also the stability of the sample. In spite of this, the performance
of these adapted EM-algorithms is never properly investigated. Most
simulation studies were not only very small, but also compared the
result of the adapted algorithm with the outcome of for example, the
EM-algorithm. In none of the cases, a comparison was made with the

true largest local maximum.

From this survey, it is not only clear that most starting value proce-
dures have some important shortcomings when applied to the general finite
mixture model, but also that we expect a lot from a starting value method.
If we had the choice, the “perfect” starting value method should at least

have the following two properties:

e For any sample, one of the produced starting values has to converge
(with an iterative procedure) to the root corresponding to the required

maximum.

e The method should include the ability to automate or should be com-

puterizable.

The first requirement implies having a good starting value method. Nev-
ertheless, mainly due to the nature of a general finite mixture model, it is
not possible to obtain this for small sample sizes with any starting value
procedure, unless the whole parameter space would be scanned. Instead, we
replace this requirement by the property of consistency. Hereby, we term
a starting value method consistent when one of the produced starting val-
ues converge to the required maximum, at least for sufficiently (reasonable)
large samples. The second property implies that the algorithm should al-
low automation, should be easy to carry out, avoiding complex or lengthy

calculations, and ought to be fast, since slow algorithms cannot be used in
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Table 5.1: Properties of possible starting value methods for the finite general
(two-component) mixture model.

Mecll/Mcl2 Clus MM E-H Fow
Original model general general common common general
M > 2 M>2 M>2 M=2 M=2
Complete Yes/No No No No No
Extension possible to
SEV /Weibull Yes ? Yes Yes Yes
Censored data ? ? No ? Yes
M >2 Yes Yes Yes Yes ?
Consistency ? No Yes No No
Computerizable + Yes No Yes No
More than 1 starting Yes Yes No No No
value

Explanation of the abbreviations: Mcll: Randomly subdividing the sample; McL2:
Generating means from a multivariate normal distribution; MM: Method of mo-
ments; Clus: Clustering procedures; E-H: The estimates of Engelman-Hartigan;
Fow: The method of Fowlkes

simulations and in practice. In addition, it includes the use of good starting
values, improving the performance of the iterative procedure.

Apart from these two requirements, which actually any starting
value method for any model should meet, we demand something more specific
to the problem at hand. Namely, it should be possible to extend the method
for censored data due to the nature of reliability data, for grouped (binned)
data in order to obtain adapted likelihood estimates and preferably also for
more than two mixture components. Further, in Section 4.3.3 we stressed
the fact that it was important to look at the stability of the sample or to
obtain an idea about the surface of the likelihood. Therefore, the method
should not lead to one well-reasoned starting value, but to a (small) number
of starting values, which allow to have an idea about the stability of the
sample.

To conclude, Table 5.1 summarizes the main properties of those

starting values methods which, at least in theory, can be extended to a
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method applicable for general two-component normal mixtures. Some com-

ments on the table are in place:

e The original model consisted in all cases of a normal component den-

sity.

e The property complete refers to whether all kinds of mixtures can be
reached, i.e., if also starting values can be obtained that converge to
a maximum corresponding to a mixture with components separated

mainly in scale.

e The extension to SEV/Weibull component densities and censored sam-
ples are required to have a useful method for reliability purposes. Also,
it is preferable that the method can be used for a mixture model with

more than two components.

e There is only one method, namely the method of moments, which is
consistent by theory, if the estimates exist. The main problem for
all other methods is that not much is known about their consistency.
There is even no empirical evidence. An additional problem, mostly
neglected, is that given a starting value, it is difficult to determine
whether the root corresponds to the required largest local maximum.
Far too often it is taken for granted that the largest maximum is ob-
tained if none of the other algorithms in the experiment lead to a
larger maximum (Furman and Lindsay, 1994; Ueda et al., 2000) or
when the parameter values of the root look reasonable. Although, the
results obtained could be good, none of these techniques are tested to
see whether they really work, i.e., whether the required maximum is
indeed obtained for sufficiently large sample sizes. Sometimes the ob-
tained root is compared (with a certain distance measure) to the true
values or to the root obtained with the true values as justification that
the MLE is obtained (Furman and Lindsay, 1994; Celeux et al., 2001).
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Although this root is also an example of a consistent estimate, it is not
necessarily the MLE or LE.

e The two random methods by Mclachlan are not quite considered as
being computerizable since they do not lead to well-reasoned starting

values.

e There are some strong indications that most clustering methods, the
estimates of E-H and the method of Fowlkes are consistent in case of
a normal mixture with common scale parameter. But since they are
not complete for the general mixture model, they are not consistent

for the general mixture model.

To our opinion, none of these methods, except perhaps the complete random
method, are acceptable as a starting value method for a general finite mix-
ture model since each of them lack at least one essential property. The idea
was to develop a new alternative technique which should a least be complete,
computerizable with a number of well-reasoned starting values and consis-
tent. In addition, it should allow an easy extension to censored data. The

resulting method is introduced in the next section.

5.2 The tangent-rico method

In spite of the fact that most existing graphical procedures are
found to be unsuitable as a starting value method, they have the interesting
feature of delivering data driven and often well-reasoned starting values. For
that reason, we have opted for a graphical approach in developing a starting
value method. As basic graphical tool the QQ-plot is considered. Compared
to other plots that visualize distributions, this plot allows much more eas-
ily the recognition of finite mixtures, in particular two-component mixtures
(Section 3.4). Note that the choice of this kind of plot entails that the start-

ing value method will be difficult to extend to mixtures with a component
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distribution not belonging to a (log)location-scale family. Nevertheless, this
is a not an issue for the mixtures considered here as well as in many other
reliability situations.

The algorithm is based on the relation between the shape of the QQ-
plot of a sample and a split of this sample into two subgroups, corresponding
to the two components of the mixture. It makes use of the nature of a mixture
as a model for populations with multiple groups present. In Section 5.2.1,
we discuss the different shapes of a QQ-plot for a two-component mixture.
The algorithm is explained in Section 5.2.2 and the automated method is

introduced in Section 5.2.3.

5.2.1 Quantile-quantile plot of a general two-component mix-
ture

Given a complete ordered sample (m(l),x(g), . ,x(n)) and a dis-
tribution with cumulative distribution function (cdf) F, then a probability
or quantile-quantile(QQ)-plot of this sample for the distribution F, is de-
fined as a plot of the sample quantiles z(;) versus the theoretical quantiles
F~Y(p;). For a (log)location-scale distribution, a QQ-plot of a sample is
generally constructed through plotting z(;) (In(z(;))) versus the theoretical
quantiles Fy ' (p;), with Fy(z) = F(z|u = 0,0 = 1) the cdf of the standard
location-scale distribution (D’agostino and Stephens, 1986, pp. 25, 464). If
the underlying distribution of the sample is also a (log)location-scale distri-
bution, then the shape of its QQ-plot should resemble a straight line. The
probabilities p; are referred to as quantile probabilities or more commonly
as plotting positions. There is no unique way to determine these points and
in the literature there is a lot of discussion about the best choice for them.
In general, the “best” choice depends on the application of the QQ-plot and
even then there is no general agreement. More information can be found in
Meeker and Escobar (1998, chap. 6).

One possibility for the plotting positions is given by n_i%;_l, with
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0 <c<1,1<i<n andn the sample size (D’agostino and Stephens,
1986, p. 25). For ¢ = 0.5 or ¢ = 0, this leads to the popular choices %

or n+r1 . However, we have opted for the positions 1 — 6_%(Si+5i‘1), with
S; = 22:1 # the empirical cumulative hazard function, introduced by

Nelson (1982). They are based upon the plotting positions 1 — e~, which
are a natural extension of the hazard plotting positions S;. Only, the mid-
points %(SZ + S;_1) are considered, as it is argued that these points would
agree better with a distribution fitted by maximum likelihood (Nelson, 1982).
Nevertheless, as will be discussed further on, for the intended application the

choice of the plotting positions appears to be rather unimportant.

A theoretical QQ-plot of a distribution with cdf G versus a dis-
tribution with cdf F' is defined as a plot of the theoretical quantiles G~'(p)
versus the theoretical quantiles F~!(p). In addition, x can be plotted against
F~YG(z)). If a sample is distributed according to G, then the shape of the
QQ-plot for F of this sample, should resemble the shape of the theoretical
QQ-plot of G against F. When F' is the cdf of a standard location-scale
distribution (i.e., Fp) and G the cdf of a mixture with a component distri-
bution belonging to the same parametric family as Fp, then the theoretical
QQ-plot of G versus Fj is nothing else than a plot of the cdf of the mix-
ture distribution on appropriate probability scales (i.e., scales according to
the distribution of Fy). For a mixture with a log-location-scale distribution
as component, this kind of QQ-plot is constructed through plotting In(z)
against F, '(G(In(z))). In the following, unless stated explicitly, the term
theoretical QQ-plot of a mixture will refer to these specific plots. Also when
there is no ambiguity possible whether either an (empirical) QQ-plot or a

theoretical QQ-plot is meant, the term theoretical will be left out.

As well-known, the shape of the QQ-plot of a (log)location-scale
distribution against the standard (log)location-scale distribution is a straight
line. In contrast, the shape of the QQ-plot of a two-component mixture

will be a curve. It can now be proven that in case the component has a
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SEV (Weibull) distribution, this theoretical QQ-plot will have 3 inflection
points, i.e., points where the second derivative of the curve is zero. This
number reduces to 1 if the scale parameter is common (Jiang and Murthy,
1995). The same can be shown to hold true for a (log)normal component
distribution. Nevertheless, depending on both the separation in location
(scale) and in scale (shape) of the mixture components and, to a lesser
degree, the size of the proportion parameter, not all inflection points will
be visible on a theoretical QQ-plot. Moreover, two different configurations
can be distinguished: a steep-flat-steep form (Figure 5.1c) and a flat-steep-
flat form (Figure 5.2¢). The recognition of one of these two shapes on an

(empirical) QQ-plot is the basis of the starting value method.

Steep-flat-steep Form

When the two component densities of a two-component mixture
distribution are placed one after the other on a density plot, as shown in
Figures 5.1a—5.1b, the shape of the QQ-plot of this mixture (versus its com-
ponent distribution) will be steep-flat-steep (Figure 5.1c). In this case, the
difference between the location (scale) parameters of the mixture compo-
nents is more important than the difference between their scale (shape) pa-
rameters. Only the right tail of the component density with the smallest
location (scale) parameter overlaps with the left tail of the other compo-
nent density in the density plot. The further the components of the mixture
are separated (in location), the smaller this overlap becomes and the more
pronounced the steep-flat-steep form will be. The QQ-plot is characterized
through the presence of one clear inflection point, referred to as point A
in Figure 5.1c. It corresponds to a minimum for the first derivative of the
QQ-plot as shown in Figure 5.1d and 5.1e. Still another inflection point
(B) corresponding to a maximum for the first derivative of the QQ-plot is
present. Only, it is hardly visible and as such not important. Moreover, due

to a limited numerical accuracy, the QQ-plot of is lacking a third inflection
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Figure 5.1: A two-component lognormal mizture with a steep-flat-steep form.
Parameter values are m = 0.2, py =In(m) =0, o = 1/ =1, py =
3, o9 = 0.5.
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point. This point (C) would be situated after point B for the example in
Figure 5.1c, since o1 > 0. In case 01 < o9, the order of the inflection points
would be C, B and A. In case of a common scale (shape) parameter, point
A is the only inflection point left.

For (log)normal mixtures with 71 = 0.5 and o1 = 09, it can be
proven that m equals ®(y;), with y; the y coordinate of inflection point
A (Fowlkes, 1979). For other proportions and unequal scale (shape) pa-
rameters, ®(y;) is still a good approximation for m; as long as the overlap
between the component densities is not too large. The approximation im-
proves when the overlap becomes smaller. Importantly, inflection point A
indicates roughly where to situate the different components of the mixture:

the first component before this point and the second one after it.

Flat-steep-flat Form

If the overlap between the two component densities becomes too
large, one of these two densities will become fully enclosed by the other
density (Figures 5.2a — 5.2b). The QQ-plot then has a flat-steep-flat form
(Figure 5.2c). Contrary to the previous form, the shape of the QQ-plot is
now dominated by the difference between the scale (shape) parameters of
the mixture components. For Weibull or lognormal mixtures, the component
density with the largest shape parameter () is surrounded by the one with
the smallest shape parameter. Consequently, the tail ends in the QQ-plot
are dominated by the component density with the smallest shape parameter.
For normal or SEV mixtures, the component density with the largest scale
(o) parameter will dominate the tail ends of the QQ-plot.

As shown in Figure 5.2e, which gives the second derivative of the
QQ-plot, three inflection points, referred to as A,B and C, are now present on
the QQ-plot (Figure 5.2c). Points A and C correspond to a minimum for the
derivative of the QQ-plot, while B corresponds to a maximum (Figure5.2d).

Further points A and C roughly mark out where each component of the mix-
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Figure 5.2: A two-component Weibull mizture with a flat-steep-flat form.
Parameter values are 71 = 0.5, 1 =8, 1 = 0.8, o = 10, B = 5.
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ture is dominating: before A and after C, the component with the largest
scale parameter (or smallest shape parameter) has the upper hand over the
other; while the reverse is true between these two inflection points. Unfor-
tunately, as can be noticed from Figures 5.2c and 5.2d, none of these two
inflection points can be clearly distinguished from the QQ-plot. As such,
they will rarely be detected on a QQ-plot of a sample. Although the oppo-
site is true for the inflection point B, it cannot be used to locate the two
components of the mixture. Note that with this form, none of the quantities
®(y), with y the y-coordinate of one of the inflection points, gives a good
approximation of the proportion parameter.

A more distinct feature of a QQ-plot with a flat-steep-flat shape,
is the fact that near points A and C, there are points I and II, where the
tangential deflection, i.e., the angle between two adjoining lines, is larger
then anywhere else on the QQ-plot (Figures 5.2c — 5.2f) or where the cosine
of the tangential deflection attains a minimum. These points are termed
nodes. The nodes can be distinguished through the sign of the sine of the
tangential deflection: for node I the sine is positive while the sine is negative
for node II. Such nodes also exist in case the QQ-plot has a steep-flat-steep
shape. One node is then situated before and the other after the inflection
point A (Figure 5.1f). Only now the first node is characterized through a

negative sine and the second through a positive sine.

Summary

In general, the QQ-plot of a two-component mixture, will be char-
acterized either through the presence of one clear inflection point or through
two nodes. Even more than on the QQ-plot these specific points can be
identified on two plots derived of the QQ-plot: the derivative plot and the

cosine of the tangential deflection plot.

e In case the QQ-plot has a steep-flat-steep shape, its derivative plot will

have one clear minimum. The corresponding plot of the cosine of the
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tangential deflection will have two minima. The first minimum, having
a negative sine, is situated before the inflection point and the other,

having a positive sine, is situated after the inflection point.

e In case the QQ-plot has a flat-steep-flat shape, its plot of the cosine of
the tangential deflection will have two minima, with the first having a
positive sine and the second a negative sine. On the derivative plot,

between these two nodes a clear maximum is situated.

The empirical counterparts of these two plots derived of the QQ-plot, will not
only be used in the starting value method. Apparently, they are useful as an
exploration tool to obtain an idea about the number of possible components

and to situate these components (Section 5.4).

5.2.2 Algorithm

The main problem in obtaining starting values for the mixture
model, is that we do not know to which component of the mixture each
unit of the sample belongs. Or, in terms of reliability, the specific failure
reason of each device is unknown. If the membership of each unit would
be known, estimates for the parameters of the components densities, i.e.,
(u1,01) and (p2,02), could easily be obtained. Indeed, instead of fitting the
whole sample to the mixture, each subsample can then be fitted separately
to the component distribution. Likewise, an estimate for the proportion pa-
rameter 71 can then simply be determined as the ratio of the size of one
subsample to the total sample size.

This fact will be used in the algorithm to arrive at starting values
for (pu1,01) and (p2,02): given a subdivision of the sample, starting values
for the parameters of the component densities will be the MLEs obtained
from fitting each subsample separately to the component distribution. The
only question left then is how to subdivide a sample. Here, this division is

related to the specific shape of the QQ-plot of the sample, i.e., depending
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on whether the shape is steep-flat-steep or flat-steep-flat, a split is proposed

based on the place of possible inflection points or nodes.

Tangent-rico method for the steep-flat-steep form

A QQ-plot with a steep-flat-steep shape has one clearly visible in-
flection point A. This point can be seen as a kind of turning point for the
domination of the mixture by one of its components. Indeed, before this
point A the first component of the mixture, i.e., the component with the
smallest location parameter, roughly dominates the mixture, while after A
the other component dominates. Hereby, “before” and “after” refer to the x
coordinate of point A. In practice, it can be stated that data points situated
before this inflection point are more [ikely to belong to the first component,
while the reverse is true for the other data points. Based on this, a division
of the sample is possible. The most clear-cut one, places all points before
the inflection point A in one subsample and all points after in the other sub-
sample. A more refined procedure excludes from this division all points in
the neighborhood of A, since for these points the uncertainty to which group
they belong, is largest. From this division, a starting value for the proportion
parameter m; can be obtained as the ratio of the number of points in the
first subsample to the total number of data points in the two subsamples.

Of course, any inflection point is unknown for the QQ-plot (for a
certain (log)location-scale family) of a sample. As such, given an empirical
QQ-plot, somehow an estimate for the inflection point A has to be searched
for. This is done using the property that the first derivative of a theoretical
QQ-plot of a mixture attains its minimum in point A. Note that although for
a continuous derivable curve, a tangent line or derivative is unambiguously
defined in each point, this notion is far less clear for a discrete curve, as
for example an empirical QQ-plot. The definition as well as the calculation
of the derivative in a point of a discrete curve is taken from Anderson and
Bezdek (1984). Briefly, the derivative in a point (z,y) is defined as the
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Figure 5.3: Deriving starting values for the sample EM1. Division of the
sample is based on the data point indicated in Figure 5.3a.

derivate of the best line through a number of neighboring points or neighbors
around (z,y), with “best” in the sense that the sum of the squares of the
orthogonal distances between these points to each other line is minimized.
So, to calculate the derivative in a point, only the number of neighbors, m,
has to be chosen. The larger m is, the “smoother” the derivative of the

discrete curve will be.

Candidates for the inflection point A are then those points of the
QQ-plot where the (numerical) derivative of the QQ-plot attains a local
minimum. Here, a minimum of a row of figures is defined as a number in
the row which is smaller than &k —1 (k + 1) earlier and k+1 (k — 1) following
neighbors, with each neighbor having a larger value than the preceding one.
Throughout this work, k is taken to be 2. Whereas in theory there is only one
inflection point A, in practice the derivative of a discrete QQ-plot usually
has multiple local minima. In a lot of cases, the global minimum is the
best choice. In the final algorithm, for a given value of m, the two minima
with the smallest value for the derivative are taken as candidates for the

inflection point. Each minimum will lead to another division of the sample
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Figure 5.4: Plots of the derivative of the QQ-plot of Figure 5.3a for several
m-values.

and consequently to other starting values.

As an example, consider the lognormal QQ-plot of the failure time
sample EM1 in Figure 5.3a (Section 2.1.4). The QQ-plot has a clear steep-
flat-steep form. For several values of m the numerical derivative of this
QQ-plot is calculated and shown in Figures 5.4a, 5.4b and 5.4c. With k = 2,
the 8 failure time for m = 3 or 5 and the 7" failure time for m = 7,
is selected as the only candidate (given m) for the inflection point A. The
subsamples, obtained from a clear-cut division (i.e., only the inflection point
is left out for the division) based on the 8" failure time as candidate for the
inflection point, are shown in Figure 5.3b on a lognormal QQ-plot. Also,
the ML fit of each subsample together with the MLEs, i.e., the starting
values for the parameters of the components of the mixture, are shown. The
starting value for m; is 7/13 = 0.54. With these starting values, the EM-
algorithm converged to the largest local maximum of the likelihood (for a
two-component lognormal mixture). Likelihood estimates of the parameters
are 11 = 0.58; 17 = 6.13;61 = 0.37; fio = 7.11; 59 = 0.09. Figure 5.3c depicts
the fit.
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Tangent-rico method for the flat-steep-flat form

A QQ-plot with a flat-steep-flat form has in theory not one but
two inflection points (A and C in Figure 5.2¢), marking out the regions
where one of the two components of the mixture is dominating. Practically,
data points between these two inflection points are more likely to belong
to the same component, likewise for data points before the first and after
the second inflection point. As such, a clear-cut division or a more refined
one through exclusion of neighbors of the inflection points, can be obtained.
Still, as discussed previously, these inflection points are not useful since they
are difficult to detect on an empirical QQ-plot. However, near the inflection
points, two clearly visible nodes are situated which can equally well be used
to mark out the regions on the QQ-plot where one of the components of the
mixture is dominating.

Also here, given the QQ-plot of a sample, these nodes are unknown.
Candidates will be searched for based on the property that theoretically both
nodes have a minimum value for the cosine of the tangential deflection of
the QQ-plot. For a discrete curve, we calculate the tangential deflection of a
point (z,y) as the angle between the “best” line through the m consecutive
points with (z,y) as endpoint and the best line through the m consecutive
points with the neighbor of (z,y) as starting point (Anderson and Bezdek,
1984). Data points for which the cosine of the tangential deflection attains
a local minimum, are then candidate nodes. Moreover, if the sine of the
tangential deflection is positive (negative), such a data point will be a can-
didate for the first (second) node. Generally, multiple local minima will be
found and multiple combinations will be possible. In the final algorithm for
each value of m, the best two combinations of candidates for the nodes will
be chosen.

Figure 5.5a depicts the SEV QQ-plot of a simulated sample of a
two-component SEV mixture with sample size 50 and true parameter values
m = 0.6,u1 = 0,00 = 2,0 = 0.5,00 = 0.1. As noted, it has a flat-
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Figure 5.5: Deriving starting values for a simulated sample. Division of the
sample is based on the two data points indicated on Figure 5.5a.

steep-flat form. The tangential deflection of the QQ-plot is calculated for
several m-values. Plots of the cosine of this tangential deflection are shown in
Figure 5.6. Note the smoothing property of m: the more it increases in value,
the smoother the curve becomes. Data points where an important local
minimum is attained, are indicated together with the sign of the sine of the
tangential deflection in these points. For m = 3, the local minimum situated
at the 15" data point, cannot be a candidate for the second node (negative
sine) since no candidates for the first node are situated before this data
point. For m =5 (and k = 2), the algorithm selected the 21" and 42" data
points, as best combination of possible candidates for the first and second
node. The SEV QQ-plot of the two subsamples, obtained from a clear-cut
division based on these selected data points as candidate nodes, is shown
in Figure 5.5b. The subsamples are fitted separately with the ML method.
Resulting fits and MLEs, which are the starting values for the parameters
of the components of the mixture, are also given in Figure 5.5b. A starting
value for m; is 28/48 = 0.58. The result of the EM-algorithm with the use

of the these starting values is the largest local maximum. The likelihood
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Figure 5.6: Plots of the cosine of the tangential deflection of the QQ-plot of
Figure 5.5a for several m-values.

estimates are 711 = 0.58, fi; = 0.11, &1 = 2.14, fi» = 0.096, 65 = 0.57. The

resulting fit is shown in Figureb.5c.

Choice of the plotting positions

Since the tangent-rico method makes use of the QQ-plot of a sam-
ple, there is the question whether the choice of the plotting positions will
have an important influence on the performance of the method. Moreover,
will different choices for p; change a lot the obtained starting values. The
answer is no. The reason behind it, is that the main peculiarities of most

“reasonable” choice of the plotting posi-

samples remain, irrespective of the
tions. Or as Nelson (1972) states it: “differences between the various plotting
positions appear to be negligible in comparison with the inherent variability
in the sample”. To justify this, we carried out some small-scale simulations
to check the importance of the choice of p;. In particular, for sample sizes
varying from 20 to 1000, 100 samples were generated from either a normal
or a SEV mixture. For each simulated sample, the “best” candidate for
the inflection point or couple of nodes obtained with different choices for p;
and different values of m, are compared. Mostly, worst-case scenarios were

considered, i.e., generating samples from a distribution and analyzing it ac-
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cording to a QQ-plot based on another distribution. For example, simulating
a sample from a normal distribution and searching the normal QQ-plot for
inflection points or simulating from a SEV mixture and searching the normal
QQ-plot for couples of nodes. In Section B.1 of the appendix, the results for

some cases are tabulated. We briefly summarize the main findings.

e For standard situations, regardless of the sample size used and the
value of m, in almost 90% of the simulated samples, the best candi-
dates found were identical for all choices of plotting positions. For
the remaining cases, mostly the candidates were equal up to one data

point (in the ordered sample).

e For the worst-case situations, regardless of the sample size used and
the value of m, mostly there was a match between the candidates in at
least 80% of the cases. For at least 90% of the samples, the candidates
were equal up to one data point. Often for larger values of m, less
matches are found. The only exception is for the plotting position
1 — e~ %. With this choice, the percentages are generally worse than

indicated here, i.e., a decrease with about 10%.

e For the samples with no match (up to one data point) between two
choices of plotting positions, often the best candidate found with one
choice of plotting positions is the second best candidate found with
another choice of plotting positions. Rarely, it was found that the
candidate data points for one choice of plotting positions were totally

different compared to another choice.

5.2.3 Automatic Procedure

Up to here, we explained how to calculate starting values, given the
shape of a QQ-plot of a mixture. To automatize the proposed algorithm,
the method has to be extended such that this form is no longer required

as an input. Therefore, given a sample, for each of the two forms, several
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starting values will be computed. Moreover, for each form and for each
choice of m, two sets of starting values will be determined. As mentioned
previously, m is a kind of smoothing parameter. In the procedure, 3 values
for m are implemented, namely 5, 10 and 20 percent of the sample size of
the sample considered. In doing so, it is possible to obtain starting values
where the proportion parameter has quite a small value regardless of the
sample size. At the same time, with the other choices for m, starting values
are obtained neglecting the very small subgroups, whether purely random
or not, of the sample. So, irrespective of the sample size, at most 12 sets of
starting values will be obtained for each sample. In the following section, we
will demonstrate that for the proposed choices of m this algorithm works to

satisfaction.

Mostly the tangent-rico method will be used in combination with
the EM-algorithm (Section 3.5.1). There are several reasons why we prefer
this algorithm to NR-based procedures. The most important one is the sta-
bility of the EM-algorithm, converging generally to the maximum closest to
the starting values used. Since the tangent-rico method produces a set of
starting values, each in the neighborhood of a local maximum (not neces-
sarily the largest one), it is important to converge to this maximum and not
to jump to another one. Not only this increases the chances to obtain the
largest local maximum, but also it allows to obtain a good idea about the sta-
bility of the sample (Section 5.4). Another reason is that the EM-algorithm
contributes to the feasibility of likelihood estimation in simulations. It is
relatively easy to overcome problems with convergence to singularities and
points on the edge of the parameter space. We are aware of the main dis-
advantage of the EM-algorithm, being a slow algorithm. But, unless the
mixtures had very poorly separated components, this was not a big issue in
the following simulations. Although it ought to be mentioned that problems
are more severe for SEV or Weibull mixtures than for (log)normal mixtures,

since for the former each cycle in the EM-algorithm is double iterative. Apart
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from this, when we used the tangent-rico method in combination with the
NR-method, often the resulting maxima where similar to the one obtained
with the EM-algorithm. This points to the fact that the starting values used,
are already close to a maximum of the likelihood function. In addition, no

real convergence problems were encountered.

5.3 A simulation study

The main purpose of developing an alternative starting value method,
was to find a method which would at least be consistent, computerizable and
complete. Through its design, the tangent-rico method is complete. Since
the method gives rise to a set of well-reasoned starting values and allows the
ability to be automated, it can be expected that the method is also comput-
erizable. On the other hand, the question whether the method is consistent,
ensuring the outcome of the likelihood estimate for sufficiently large sam-
ple sizes, cannot be answered directly. Since it is not possible to show this
property theoretically, a simulation study is carried out to demonstrate the
consistency of the tangent-rico method. Furthermore, this simulation study
will confirm both its ability to be automated and, through the choice of the
mixtures used, the completeness of the tangent-rico method.

To empirically evaluate the consistency, the largest local maximum
of the likelihood function has to be compared to the maxima obtained with
the generated starting values for each simulated sample. This requires, how-
ever, that the largest local maximum of the likelihood function would be
known for each sample. In Section 5.3.1, it is explained how we dealt
with this problem. Simulations demonstrating the good performance of our
method and comparing it to the performance of other methods, are pre-
sented in Section 5.3.2. All simulations are carried out in GAUSS. The
EM-algorithm was stopped when the relative difference of all 5 model pa-

rameters was smaller than 1e-8. During the whole study no evidence was
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found that the EM-algorithm was stopped too early or that no maximum

was found.

5.3.1 Search for the largest local maximum

In practice, the global maximum of a function can be found through
a global optimization method, i.e., a procedure scanning the whole domain
of the function. However, as mentioned earlier on, these methods are very
slow and in addition difficult to use due to the unboundedness of the likeli-
hood function for a general mixture. Also, we did not consider as an option
the search on a 5-dimensional grid of points for the largest maximum, as it
would be to laborious. Instead, we made use of the specific nature of a mix-
ture to describe populations where multiple groups are present. All methods
considered, including the proposed starting value method are based on this
property that is highly useful in the search for local maxima. Indeed, each
maximum of the likelihood function (of a two-component mixture) can be
related to a certain division of the sample into two groups. Conversely, some
splits of the sample into two subsamples will give rise to a local maximum
of the likelihood. Starting values converging to these maxima with an iter-
ative procedure, can be easily derived from these splits in a similar way as
explained in the introduction of Section 5.2.2.

As a result, based on all possible divisions of the sample into two
groups, one should be able to detect all local maxima of the likelihood func-
tion, in particular the largest local maximum. This means that for a sample

(n=1) _ (n 4 1) starting values will have to be verified. Unfor-

of size n, 2
tunately, this number increases exponentially and is even for small samples
already huge as can be seen from column I of Table 5.2. As a consequence,
this method I, is not useful in practice for finding the largest local maximum
of a likelihood function. In fact, it can be regarded as a global optimization
procedure adapted to the general (two-component) mixture model.

Apparently, method I generates many useless starting values. In-



Chapter 5: An automatic starting value procedure 149

Table 5.2: Number of possible starting values for several methods based on a
split of a sample of size n into two subgroups.

Sample Method
size n I 11 117
10 501 35 9+ 12

20 524267 170 19+ 12
40 5.498¢e!t 740 39 + 12
60 1.153e!® 1710 59 + 12
80 6.044e* 3080 79+ 12
100 6.338¢%° 4850 99 + 12
150 7.136e** 11025 149 + 12
200 8.035¢>® 19700 199 + 12

deed, a lot of them converge either to the same maximum or to a point
situated on the edge of the parameter space (for example, m; = 0 or 1)
corresponding to a single distribution instead of a mixture or even to a
singularity. According to Day (1969), divisions for which one of the two
subsamples consists of data points sufficiently close together, will generate
a local maximum. As opposed to this, divisions of the sample for which
the two subsamples contain data points that are spread out over the whole
ordered sample, will create starting values with quite similar values for the
parameters of the first and the second component of the mixture. Such
starting values often converge to a maximum that corresponds to a single
(component) distribution. Hereby, close and ordered refer to some distance
measure on the observations. Based on this, a simplified method I, for
finding the largest local maximum can be derived. Namely, only these splits
of the sample for which one of the two subgroups is formed by successive
data points of the ordered sample, are considered. As indicated in column
11 of Table 5.2, the number of possible divisions of the sample decreases
dramatically. Moreover, as suggested above and supported by subsequent
simulations, at least one of these starting values will give rise to the largest

local maximum.

Nevertheless, the number of starting values which has to be checked
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remains too large. So, also method I is difficult to use for simulation
purposes in case the sample size is larger than about 60 — 80. The question
is then how the number of starting values can be further decreased. For that,
we approached the problem in a different way. During the development and
testing of the tangent-rico method, it was observed that for those samples
where the generated starting values did not converge to the largest local
maximum with the EM-algorithm, this largest local maximum was almost
always characterized through a very small (or large) value for the proportion
parameter. Hereby, the simulated samples were small enough so that method
IT could be used to identify the largest local maximum. For these samples,
irrespective of the value of m, it was usually not possible to derive a starting
value that would converge to this largest local maximum. The reason for
this is that the largest local maximum of the likelihood corresponded to a
split of the sample into one group of all data points, except 2 or 3, and a
very small subgroup containing the remaining 2 or 3 successive data points.
In other words, a distinct spurious maximum was found as largest local
maximum. Starting values to arrive at these maxima are related to a division
of the sample where one of the two groups contains no more than a few
successive data points. In general, these starting values are rarely derived

with a starting value procedure.

Apparently, in combining the starting values related to splits of the
sample with one of the two subgroups having only two successive data points
and those starting values obtained with the tangent-rico method (at most
12), the largest local maximum of the likelihood can be found. Therefore,
we considered it as a third method in order to search for the largest local
maximum of the likelihood. It is easily seen then that with this method 117
there are at most (n — 1) 4+ 12 splits of the sample possible. Importantly, as
demonstrated hereafter, simulations indicate that this method nearly always

leads to the largest local maximum, irrespective of the sample size.
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Figure 5.7: Cumulative distribution functions on a normal probability scale
for the three groups of parameter values. The straight line is always the cdf
of @ normal distribution with 4 =0 and o = 1.

Results for two-component normal mixtures

Samples are generated from a two-component normal mixture with
12 different sets of parameter values divided into 3 groups of 4. In each
group, one parameter is varied to consider one specific aspect of the separa-
tion of the mixture components. In the first group all parameters except the
location parameter of the second component, us, are kept fixed. The param-
eter uo is varied to obtain a different degree of separation in location. The
parameter values used are: p1 = 0,01 =09 = 1,7 = 0.5 and ps = 4,3,2,1.
The larger the value of us, the better the components of the mixture are sep-
arated and the more the theoretical QQ-plot of the mixture deviates from
a straight line (Figure 5.7a). For the second group, the scale parameter of
the first component, oy, is varied. The values for the parameters here are
p1 = po = 0,00 =2,m = 0.5 and o7 = 0.1,0.2,0.5,1. Note that the com-
ponents of the mixture can be clearly identified if the size of the ratio of

the two scale parameters is large or small enough (Section 3.4). The more
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this ratio deviates from 1, the better the two components are separated in
scale (Figure 5.7b). In the last group, the proportion parameter 7, is altered
from a small value (0.2), over two averages values (0.4 and 0.6) to a large
one (0.8). The values for the others parameter are p; = 0,00 = 1,y = 2
and oo = 0.5. It is clear from Figure 5.7c, that also the size of my has an

influence on how well the mixture components are separated.

For each set of parameter values, sample sizes of 10, 20,50 and 100
were used, with 1000 simulations in each case. Due to the huge number
of starting values, it is not possible, except for size 10, to use method I
in practice. Instead, a number of divisions out of the total group of all
possible divisions (or equivalently starting values) were randomly chosen.
For poorly separated mixtures, we expect the probability to obtain at least
one division which leads to the largest local maximum to be quite small.
However, if during the simulation starting values are encountered which
converge to maxima with a higher likelihood value than the maxima obtained
with method 17, then there is evidence that this method does not always
give rise to the largest local maximum. For the sample sizes 20, 50 and 100,
respectively 1000, 1200 and 2000 starting values were randomly chosen for

each simulated sample.

Results are summarized in Tables 5.3a, 5.3b and 5.3c. For each
combination of parameter values and sample size, the maximum with the
largest likelihood value obtained with method I7 is compared to the largest
maximum obtained by the other two methods. The first row for each sample
size (referred to as =), gives the number of times that the maxima of the two
methods considered are equal, the second row (referred to as >) indicates
the number of times that the likelihood value of the maximum obtained with
method 11 is larger than the likelihood value of the maximum obtained with
one of the two other methods. Hereby, maxima are considered to be equal
when the difference in likelihood value between the two maxima, is smaller

than le-5, with a tolerance of 1e-8 used in the EM-algorithm. For most sets
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of parameter values and choices of sample sizes the simulations last no more
than 1 or 2 days. The exceptions are the sample sizes 50 and 100 for the very
poorly separated mixtures: g1 = 1 in the first group, o2 = 1 in the second
group and m; = 0.8 in the third group. The main reason is the evaluation
of the more than 5000 starting values in combination with the slowness of
the EM-algorithm for this kind of mixtures. Note that in practice it was not
possible to carry out simulations for sample sizes larger than 100. In that
case method I is not feasible anymore.

The results point to two things. First, the equivalence between
method I1 and I1] can be assumed. Apart from one or two exceptions in
case of a very small sample size, the largest maximum obtained with either
method is the same. None of the simulations shown here or performed
before, indicated the opposite. Second, there is nothing to suggest that the
largest local maximum is not obtained with method I7 (or method II1I). Up
to now, irrespective of the sample, any maximum obtained from a starting
value chosen at random from the group of starting values induced by method
I, has no larger likelihood value than the largest maximum obtained with
method I1. As a result, method 117 and so also method 17, can be seen as
a method to obtain the largest local maximum of the likelihood function in

case of a two-component (log)normal mixture model.

Results for two-component SEV mixtures

The same kind of simulation study as for normal mixtures has been
set up. Three groups of sets of parameter values are considered. For the
first and second group the same parameter values as for the normal mixture
case are used. In the third group the proportion parameter is also varied,
but now the QQ-plot of the mixture has basically a flat-steep-flat shape
instead of a steep-flat-steep shape. The parameter values for the third group
are 41 = 0,01 = 0.5, g = 1,00 = 3 and m; = 0.2,0.4,0.6,0.8. For this

combination of parameter values (i.e., o1 < 09), the mixture components
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po =1 po =2 p2 =3 po =4
n I III I II7 I III I III
10 = 1000 1000 1000 999 1000 1000 1000 1000
> 0 0 0 1 0 0 0 0
20 = 646 1000 687 1000 681 1000 778 1000
> 354 0 313 0 319 0 222 0
50 = 229 1000 214 1000 347 1000 784 1000
> 771 0 786 0 653 0 216 0
100 = 26 1000 95 1000 484 1000 965 1000
> 974 0 905 0 516 0 35 0
(a) Group 1: separation in location.
g1 =1 g1 =0.5 g1 =0.2 g1 =0.1
n I III I II7 I II7 I II7
10 = 1000 1000 999 (1) 999 (1) 1000 1000 999 (1) 999 (1)
> 0 0 0 0 0 0 0 0
20 = 691 1000 733 999 855 1000 935 1000
> 309 0 267 1 145 0 65 0
50 = 236 1000 537 1000 973 1000 999 1000
> 764 0 463 0 27 0 1 0
100 = 156 1000 784 1000 1000 1000 1000 1000
> 844 0 216 0 0 0 0 0

(b) Group 2: separation in scale. The number between brackets is the number of

samples where no maximum at all was found.

71'1:0.2 71'1:0.4 71'1:0.6 7T1:0.8

n I 117 1 117 1 117 I 117

10 = 1000 1000 1000 1000 1000 999 1000 1000
> 0 0 0 0 0 1 0 0

20 = 779 1000 765 1000 708 1000 689 1000
> 221 0 235 0 292 0 311 0

50 = 818 1000 718 1000 445 1000 287 1000
> 182 0 282 0 355 0 713 0

100 = 982 1000 944 1000 575 1000 168 1000
> 18 0 96 0 425 0 832 0

(¢) Group 3: varying the proportion parameter.

Table 5.3: Comparison between the largest mazimum obtained with method
IT and the largest mazimum obtained with method I or I11.
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can be better identified for larger values of 7; than for smaller values.
Simulations for the SEV-mixture require much more time due to
the double iterative character of its EM-algorithm. Compared to the M-step
for a normal mixture, there is no closed form solution of the M-step for the
SEV mixture. This can slow down the EM-algorithm considerably and makes
good starting values even more important since one cycle cost more in time.
Therefore, for the simulations with the SEV mixture, we reduced both the
number of simulated samples and the sample sizes used. Namely, for each set
of parameter values, sample sizes of 20 and 50 are considered, with only 100
simulations in each case. Also, at each sample size only 200 starting values
were randomly chosen for each simulated sample, in contrast to the more
than 1000 random starting values for the normal case. Tables summarizing
the results of the simulation experiment can be found in Section B.2.1 of the

appendix. Main findings are similar to the normal mixture case, briefly:
e Methods I1 and II1 are equivalent.

e Method IT (or III) leads generally to the likelihood estimate, irre-

spective of the sample size.

5.3.2 Consistency of the tangent-rico method

Although method II1 could be used to obtain the likelihood es-
timate, even for rather large sample sizes, apparently for sufficiently large
sample sizes this method, and so its increasing number of starting values,
is not necessary. Namely, we will empirically show that the tangent-rico
method is consistent. In addition, the dependency between the sample size
required to obtain the LE with the tangent-rico method and the separation
of the mixture components is studied. Furthermore, we will compare the
performance of the proposed starting value method with three other start-
ing value methods, from which two are known to be consistent as well. Of

those two, the first method uses the true values as starting values, while



156 Chapter 5: An automatic starting value procedure

the second makes use of the moment estimates. The former, however, can-
not be applied in real terms, while the latter cannot always be used due
to the fact that the moment estimates do not always exist (Section 5.1). A
last starting value method generates at most 15 starting values, through ran-
domly dividing the sample into two subsamples. This method is actually the
method Mcll (Table 5.1). While not much is known about its consistency,
this simulation study allows also to infer some consistency results. For all
four methods, the largest maximum obtained from the EM-algorithm with
their starting values, will be compared with the largest maximum obtained
with method I11.

Results for the two-component normal mixture

The same 12 sets of parameter values as in Section 5.3.1 for the
normal mixture case, are used for the simulation study. Note that the groups
are put together in such a way that the dependency can be studied between
the minimum sample size required to obtain the LE with a certain starting
value method and how well the mixture components can be identified on
the mixture QQ-plot. Hereby, three aspects of the finite mixture model
related to this identifiability should be looked at: the separation in location
of the mixture components (group 1), the separation in scale of the mixture
components (group 2) and the value of the proportion parameter (group 3).

Results of the simulation experiment are summarized in Tables 5.4,
5.5 and 5.6. For each set of parameter values, sample sizes of 20, 50, 100, 200,
300,400,500 and 1000 were considered with 1000 simulations in each case.
The tabulated value k£ is the number of times out of 1000 that the largest
maximum obtained with the starting values of a certain starting value method
is equal to the largest maximum obtained with method //I. The number
in brackets indicates how many times the moment estimates do not exist or
that all starting values of a method converge to a singularity. Method A is

the proposed starting value method, method B uses the true values as start-
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Table 5.4: The number of times (k) out of 1000 that the starting value of a
certain method leads to the LE for the sets of parameter values of group 1.

p2 =1 2 =2

n A B C D A B C D
20 256 (3) 89 91 (208) 285 (1) 104 91 (163)

50 153 (1) 19 16 (349) 157 34 35 (178)

100 48 10 (58) 10 (427) 15 (10) 78 32 (5)  30(203) 42 (1)
200 20 4(28) 3(437) 8 (3) 53 32 (7) 31 (148) 36
300 14 2(20)  2(458) 3 (7) 51 36 (1) 36 (127) 40
400 11 5(26) 5(455) 7 (7) 73 58 55 (91) 68
500 4 1(21)  1(447) 1 (5) 125 112 109 (70) 116
1000 1 0(18) 0(466) 1 (3) 368 358 351 (28) 366

2 =3 pz =4

n A B C D A B C D
20 326 177 175 (64) 544 426 (1) 420 (25)

50 335 209 203 (57) 774 723 717 (11)

100 470 415 416 (26) 430 970 965 959 (5) 967
200 800 788 784 (6) 794 1000 1000 1000 1000
300 951 949 947 (3) 950 1000 1000 1000 1000
400 989 988 988 989 1000 1000 1000 1000
500 999 998 998 999 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000

ing values, method C uses the moment estimates and method D generates

randomly 15 divisions out of the total group of all possible divisions.

From these tables a number of conclusions can be drawn. First, the
consistency of all four methods is clear. Indeed, for each set of parameter
values, except for one set in the first group, the value of k£ approaches 1000
when n increases or k shows an increasing trend from a certain sample size
on. As can be noted this is not completely true for method C, i.e., the
method of moments. For some sets of parameter values the non-existence of
the moment estimates is only a problem for small sample sizes (Table 5.4),
but apparently for other sets this remains an issue regardless of the sample
size (Tables 5.5, 5.6). There are even sets where the moment estimates only
exist in no more than 50% of the simulated samples. As such, it is clear
that this method cannot be used to obtain starting values for the general
finite mixture model. Further, a set of 15 random starting values seems to

be sufficient to obtain a consistent random starting value method.
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Table 5.5: The number of times (k) out of 1000 that the starting value of a
certain method leads to the LE for the sets of parameter values of group 2.

op =1 o1 = 0.5

n A B C D A B C D
20 275 (4) 95 (138) 86 (356) 404 (2) 222 155 (279)

50 194 57 (85) 38 (453) 504 400 (1) 284 (311)

100 135 49 (39) 39 (362) 67 804 772 542 (292) 784
200 133 95 (15) 74 (334) 106 (5) 987 986 632 (358) 987
300 224 188 (4) 111 (320) 198 (2) 1000 1000 619 (379) 1000
400 281 259 164 (329) 263 1000 1000 561 (438) 1000
500 398 384 236 (346) 388 1000 1000 550 (450) 1000
1000 855 850 494 (408) 850 1000 1000 456 (544) 1000

o1 = 0.2 o1 =0.1

n A B C D A B C D
20 733 (1) 594 251 (415) 858 809 298 (483)

50 965 942 587 (355) 999 990 588 (375)

100 1000 999 652 (343) 1000 1000 1000 656 (336) 1000
200 1000 1000 615 (385) 1000 1000 1000 594 (406) 1000
300 1000 1000 604 (396) 1000 1000 1000 588 (412) 1000
400 1000 1000 581 (419) 1000 1000 1000 571 (429) 1000
500 1000 1000 546 (454) 1000 1000 1000 524 (476) 1000
1000 1000 1000 433 (567) 1000 1000 1000 404 (596) 1000

Second, the better the mixture components are separated, i.e., the
more the theoretical QQ-plot of the mixture differs from a straight line
(Figure 5.7), the smaller the sample size n has to be such that the LE is
reached with one of the starting values. This holds true for any of the
starting value methods, as expressed in the Tables 5.4, 5.5 and 5.6. For
some mixtures, a sample size of 50 will do, while for others a sample size of
1000 is not even sufficient. Note that for the third group of starting values,
there is a dissimilar behavior for values of the proportion parameter larger
than 0.5 versus those smaller than 0.5. Indeed, for smaller values of the
proportion parameter the sample size n can be taken considerably smaller in
order to converge to LE (with one of the constructed starting values) than
for larger values of the proportion parameter. The reverse tendency holds

in case o1 < 09.

Third, the proposed starting value method performs at least as

good and in many cases even better than the other starting value methods.
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Table 5.6: The number of times (k) out of 1000 that the starting value of a
certain method leads to the LE for the sets of parameter values of group 3.

w1 = 0.2 w1 = 0.4

n A B C D A B C D
20 551 (6) 393 (118) 355 (201) 501 (3) 349 (13) 337 (83)

50 814 730 670 (101) 698 603 (1) 524 (153)

100 984 947 831 (133) 970 953 914 776 (147) 943
200 1000 978 833 (158) 997 1000 985 821 (165) 999
300 1000 987 812 (184) 1000 1000 991 818 (174) 1000
400 1000 987 819 (180) 997 1000 995 826 (167) 1000
500 1000 994 816 (182) 998 1000 997 848 (149) 1000
1000 1000 997 842 (157) 1000 1000 997 843 (154) 1000

71 = 0.6 71 =0.8

n A B C D A B C D
20 371 220 (7) 211 (105) 301 (1) 138 (33) 131 (150)

50 403 296 (1) 261 (146) 200 83 (4) 70 (210)

100 573 531 452 (171) 550 154 102 78 (221) 106
200 927 908 711 (166) 922 245 217 175 (218) 225
300 989 981 829 (151) 988 380 366 322 (179) 373
400 999 996 845 (147) 999 580 573 476 (195) 577
500 1000 997 867 (129) 1000 736 730 622 (178) 734
1000 1000 1000 901 (99) 1000 993 991 865 (129) 992

In other words, the number of times that the LE is reached when using the
starting values of the proposed tangent-rico method, is at least as large as
compared to the number of times that the LE is reached when using the true
values or moment estimates as starting values. The performance of the at

random starting value method is quite similar.

Fourth, there is one set of parameter values in the first group,
namely u; = 0,01 =1, uo =1, 09 = 1, m; = 0.5, where k£ does not finally
show an increasing trend. For the given sample sizes it even get worse
as n increases. The reason is clear: this mixture distribution is hardly
distinguishable from a single normal distribution. The form of its QQ-plot
(Figure 5.7a) is almost a straight line. As an example, Figure 5.8a shows
both the normal QQ-plot of a simulated sample of size 1000 from this mixture
distribution and the normal QQ-plot of a simulated sample of size 1000 of a
normal distribution with parameter values u = 0, ¢ = 1. As noted, without

prior knowledge, it is not possible to tell which of the two simulated samples
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Figure 5.8: Identifiability of the mixture distribution with parameter values
,u1:0, 0'1:1, ILLQZ]., 0'2:1, 7T1:0.5.

stems from a mixture distribution. Moreover, one would consider them both
coming from a normal distribution. Even a simulated sample of size 5000 of
this mixture distribution cannot be recognized as coming from a mixture. As
seen in Figure 5.8b, the ML fit of a normal distribution for a sample of size
5000 is almost equal to the cdf of the true mixture distribution. It is doubtful
that any sample of this particular mixture distribution will be ever identified
as coming from this mixture, without the need for an enormous sample size.
The cdf of this mixture is too close to the cdf of the normal distribution with

the same mean and standard deviation of the mixture (Figure 5.8c).

Results for the two-component SEV mixture

The same 12 sets of parameter values as those used in Section 5.3.1

for the SEV case, are considered. Compared to the simulation study for the
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normal mixture distribution, a reduced number of simulations is carried out.
Less sample sizes are handled (i.e., 20, 50, 100 and 500) and in each case only
100 samples are generated. Also, moment estimates are not used as starting
values, since it is rather difficult to obtain them. Tables summarizing the
results of the simulation study are given in Section B.2.2 of the appendix.
The overall picture is the same as for the normal mixture distribution.

In addition, we take a closer look at the number of iterations re-
quired to obtain convergence with the EM-algorithm, given a set of starting
values. As noted before, for the SEV mixture one cycle in the EM-algorithm
is rather time consuming. As such, a smaller number of iterations posi-
tively influence the speed of the EM-algorithm. To compare the number of
iterations necessary to obtain convergence with the starting values of a cer-
tain method, at each combination of sample size and set of parameter values
used in the simulation study, the average number of iterations, taken over all
simulated samples and starting values used with a certain method, is calcu-
lated. These averages are not only derived for the tangent-rico method, the
at random method and for the true values, but also for the starting values
used to obtain distinct spurious maxima (i.e., the starting values of method
ITI, without the one of the tangent-rico method). The latter is referred to
as method E in Table 5.7, which tabulates the resulting averages. Results

point to the following conclusions.

e For small to moderate sample sizes, considerably less iterations are
required with the starting values of the tangent-rico method, than
with the starting values of the at random method. Hereby, the size of
small (or moderate) depends on how well the mixture components are
separated. In particular for poorly separated mixtures, an advantage

is obtained with the tangent-rico method.

e For large sample sizes, this advantage does not exist. Sometimes the
starting values of the at random method do require less cycles, while

sometimes this is the case for the starting values of the tangent-rico
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method. There is an indication that the former holds for mixtures with
components mainly separated in scale, while the latter seems to hold

for mixtures separated in location.

e Mostly, for small to moderate sample sizes the true values are no better
starting values than the one obtained with the tangent-rico method.
For large sample sizes, they outperform both the tangent-rico method

and the at random method.

e The best starting values (with regard to the number of iterations re-
quired) are without any doubt the starting values of method E. Regard-
less of the sample size and the separation of the mixture components,
they require only a limited number of iterations. This illustrates the

feasibility, even for moderate samples sizes, of method I11.

Conclusions

In summary, we believe to have shown the excellent performance
of the proposed starting value method. It works as good and mostly even
better than using the true values as starting values. For sufficiently large
sample sizes, the LE is always reached with one of the starting values (in
combination with the EM-algorithm). The required sample size depends on
how well the components of the true mixture distribution can be identified
or how well they are separated. In addition, we provided a method (I17),
feasible for medium sample sizes, that for any sample give rise to the LE.

Next to this, it is shown that the at random starting value method
with a set of 15 starting values is consistent as well. Still, for small to moder-
ate sample sizes these starting values need more iterations until convergence
of the EM-algorithm. Especially, in case of poorly separated mixtures, these

starting values slow down the algorithm a lot.



Chapter 5: An automatic starting value procedure 163

Table 5.7: The average number of iterations required until convergence with
the starting values of a certain method.

ur =1 p2 =2
n A B D FE A B D FE
20 91 131 143 38
50 233 547 449 39
100 300 434 484 39
500 682 741 847 42
p2 =3 po =4

n A B D E A B D FE
20 78 106 126 35 42 37 71 30
50 105 125 182 39 66 62 109 37
100 133 127 203 40 67 55 122 40
500 174 142 261 43 73 50 159 41

(a) Sets of parameter values of group 1.

o1 = 1 o1 = 0.5
n A B D E A B D FE
20 73 125 128 33
50 88 135 177 38
100 106 129 150 39
500 134 105 129 42
g1 — 0.2 g1 = 0.1

n A B D E A B D FE
20 42 34 72 28 38 22 59 24
50 44 38 51 31 37 24 39 26
100 52 37 50 33 51 24 38 28
500 77 35 49 35 61 21 34 29

(b) Sets of parameter values of group 2.

T = 0.2 ™ = 0.4
n A B D E A B D E
20 8 63 1148 39 56 53 142 31
50 135 114 556 39 86 84 164 34
100 225 121 450 38 94 60 91 37
500 383 110 326 40 131 61 91 40
T = 0.6 ™ = 0.8
n A B D E A B D E
20 55 61 70 35 100 60 108 33
50 54 52 60 35 49 48 58 35
100 53 44 53 36 45 40 49 40
500 56 40 52 36 39 31 40 37

(c) Sets of parameter values of group 3.
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5.4 Additional features of the tangent-rico method

The tangent-rico method was initially developed as a method to
construct well-reasoned and data driven starting values. Nevertheless, it
turned out that the method itself and some of the plots used in the method
add important information to the analysis of a sample when considering a
finite mixture distribution. On the one hand, given a specific finite mixture
model, the set of maxima obtained with the starting values of the tangent-
rico method, give a good indication of the stability of the sample. In some
way, these maxima can be viewed as the result of a well-considered scan of
the likelihood surface. On the other hand, without specifying the number
of components, plots of the derivative and of the cosine of the tangential
deflection of the QQ-plot for several values of m, are good exploration tools.
They indicate the maximum amount of information available in the sample
(with respect to the number of components) and where to situate the dif-
ferent components in the sample. In this section, only the situation of at
most two mixture components is handled. The idea behind it, is based on
the theoretical counterparts of these plots, when the true distribution is a
two-component mixture (Section 5.2.1). A generalization to more than two

components is discussed in Section 5.5.2.

In the following, these two features of the tangent-rico method are

worked out by means of three examples.

5.4.1 Example 1: the resistor sample

The lognormal QQ-plot of this sample, shown in Figure 5.9, has a
pronounced steep-flat-steep shape. It is a classic example of a sample from
which its stability (with respect to a two-component lognormal mixture) is
already noticed from the QQ-plot itself. Unfortunately, such samples are

not often encountered in practice.



Chapter 5: An automatic starting value procedure 165

0.99 : 0.99
/ . )
o 0.9 52+ o
ke 38 \( 3 05
§ o5 5
5 >¢‘ 5 o1
E o1 /’< E 0.01
0.01 .® 23- 1e-3
* 1e-4
1e-3 T T T T T 1e-5 T T
55 6.0 6.5 7.0 75 5.0 55 6.0 6.5 7.0 75 8.0
In(time) In(time)
(a) Position of the “best” inflection (b) LE fit of the sample and fit of
point for m = 25 with neighboring the other maximum found with the
nodes. tangent-rico method.

Figure 5.9: Lognormal QQ-plots of the resistor sample.

Applying the tangent-rico method

For a sample of size 125, the values of the smoothing parameter
m, used in the tangent-rico method, are 7, 13 and 25 (5%, 10% and 20% of
the sample size rounded to the nearest odd integer). For m = 25 there is
only one appropriate candidate couple of nodes (Figure 5.11b), which results
in a total of 11 starting values instead of 12. The best candidate inflection
point found for m = 25, i.e., data point 38, is indicated on Figure 5.9a.
All starting values but one converge to the same maximum with the EM-
algorithm. Table 5.8 gives the parameter values and value of the logarithm
of the likelihood for these two maxima. As noted, the difference in likelihood
value between them is huge. These two facts clearly indicate that the sample
is stable. This is confirmed through carrying out method I71. No larger
maximum is detected. Moreover, all other maxima found have a likelihood
values which is considerably smaller than the likelihood value of the largest

local maximum. To illustrate the latter, the second largest maximum found,
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Table 5.8: Local mazima of the likelihood function for the resistor sample in
case of a two-component lognormal mizture. Estimated parameters are the
location and scale parameters of the log failure times.

method maximum ﬂl (5’1 ﬂg (5’2 7A1'1 InLL
TR LE 6.164 0.236 7.022 0.251 0.286 -66.100
TR 6.769 0.474 6.895 0.030 0.937 -78.284
117 6.745 3.55e-5 6.777 0.464 0.0159 -72.545

Note: TR refers to the tangent-rico method.

which is distinct spurious, is included in Table 5.8.

Thus, for this sample no evidence of an unstable likelihood surface
is found. It was possible to infer this directly from the maxima obtained
with the starting values of the tangent-rico method. There is no reason to
mistrust the largest maximum found with the starting values of the tangent-
rico method. In conclusion, the fit of the LE is shown in Figure 5.9b. As a

comparison the poor fit of the other maximum obtained is also shown.

Plots derived from the QQ-plot

Plots of the derivative and of the cosine of the tangential deflection
for the values 13 and 25 are shown in Figures 5.10 and 5.11. The plots for
m = 7 are similar to the plots for m = 13, only less smoothed. Both kind
of plots point to the fact that a two-component mixture is appropriate as
distribution for the sample. This is most easily seen from the plots for m =
25. In particular, the derivative plot has one marked minimum (situated at
data point 38). Moreover, there is a good resemblance between the derivative
plot of the theoretical QQ-plot of the two-component lognormal mixture with
the LEs as parameter values (Figure 5.10c) and its empirical counterpart for
m = 25 (Figure 5.10d), i.e., with the logarithm of the failure times used
as x-coordinate and not the number of ordered data points. Further, the
presence of two clear minima for the plot of the cosine of the tangential

deflection is not in conflict with the steep-flat-steep shape of the QQ-plot.
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Figure 5.12: Lognormal QQ-plot of the interconnect sample.

Indeed, the sign of the sine for the first minimum is negative and positive for
the second (i.e., the reverse order of for a candidate couple of nodes). These
two nodes are situated around the candidate inflection point (Figure 5.9a).
Again the empirical plot corresponds nicely to its theoretical counterpart
(Figures 5.11c and 5.11d).

Although, for smaller values of m the plots contain more minima
and so more suggestions for other candidate inflection points, the general
tendency is clear. Namely, these plots suggest the presence of two subsam-
ples and a two-component distribution for the sample with the components

separated in location.

5.4.2 Example 2: the interconnect sample

The lognormal QQ-plot of the interconnect sample is shown in Fig-
ure 5.12a. Although the shape of this QQ-plot deviates, mainly at the end,

from a straight line, it does not reveal either the presence of an additional
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failure mode for the devices under study.

Applying the tangent-rico method

Based on sample size 68, the m-values for the tangent-rico method
are 3, 7 and 13. In total, 11 starting values are derived. For m = 13, there
was only one appropriate candidate couple of nodes available (Figure 5.14b).
These starting values converged, with the EM-algorithm, to 4 different max-
ima, given in Table 5.9. Although the largest maximum found is not distinct
spurious, this result points rather to an unstable than a stable sample. It is
doubtful whether the largest maximum found is the LE. Not only too many
different maxima are obtained (with only 11 starting values), but also there
is no large difference in the likelihood values. For this kind of outcome, it
is sensible to also apply method III. By carrying out the latter, we in-
deed found some distinct spurious maxima with a larger likelihood value.
In particular, the LE is distinct spurious. As such, this sample is unstable.
Apart from maximum M1, found with the starting values of the tangent-rico
method, most maxima identified are distinct spurious or have a rather small
value for the proportion parameter. From this point of view, it is tempting
to base inference results on this “plausible” maximum M1. Nevertheless, we
do not advise this, since the sample clearly contains not enough information
to model two failure modes. In addition, even if it would be the maximum

closest to the true values, is asymptotic properties cannot be guaranteed.

In conclusion, Figure 5.12b displays the fits of the LE and of maxi-
mum M1, together with the ML fit of a single lognormal distribution. Within
the range of data, only at the end there is a substantial difference between
the fits of the LE and the MLE on the one hand and the fit of maximum
M1 at the other hand. The arrow indicates where the LE fit and the MLE
fit differ.
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Table 5.9: Local mazima of the likelihood function for the interconnect sam-
ple for a two-component lognormal mizture. FEstimated parameters are the
location and scale parameters of the log failure times.

method maximum [ll 6’1 [lg (5’2 7}1 InLL
TR M1 4.610 0.446 5.340  0.146 0.763  -45.595
TR 4.821 0.496 4.197 0.0244 0.940 -47.588
TR 4.780 0.511 4.919 0.00447 0970 -48.446
TR 4.784 0.512 4.765 0.0115 0.966 -48.989
11 LE 5.329 8.22e-5 4.767  0.502 0.0293 -41.191
II1 5.071 9.41e-5 4.775 0.508  0.0292 -42.319

Plots derived from the QQ-plot

Figures 5.13 and 5.14 depict the plots of the derivative and of the
cosine of the tangential deflection of the QQ-plot at the m-values 7 and
13. The plots for m = 3 are not shown, they pronounce even more the
small random deviations in the sample. From both kind of plots, there is
no straight evidence that a two-component mixture would be appropriate as
distribution for the sample. Certainly, for m = 7 the derivative plot shows
too many minima around the same value. Although the two smallest minima
remain the same for m = 13, there is no minimum which dominates. Note
that the starting values derived from the candidate inflection point 39 (at
m = 13) are close to the parameter estimates corresponding to maximum
M1. The same can be said for the plots of the cosine: there is no convincing
candidate couple of nodes. Also with each couple of nodes, a large local
maximum should correspond for the derivative plot (situated between the
two nodes). But for the maxima of the derivative plot the same holds true as
for its minima, i.e., there is no clear maximum, except perhaps at the end.
The corresponding deviation on the QQ-plot, however, is too small and not

distinct enough, to be recognized as being not random.
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5.4.3 Example 3: appliance failure sample

Both a lognormal and a Weibull mixture are considered. Fig-
ures 5.15a and 5.16a depict the Weibull, respectively the lognormal QQ-plot
of this sample. At first sight, differences between these plots are rather small.

The shape of both QQ-plots verges to a steep-flat-steep shape.

Applying the tangent-rico method

Regardless of the model under consideration, m takes on the values
3, 7 and 13 in the tangent-rico method. In both cases, a full set of 12 starting

values is obtained.

A two-component Weibull mixture The derived starting values con-
verge to 3 different maxima, given in Table 5.10a. From this, the stability
of the sample cannot be guaranteed since at least two maxima (M1, M2)
seem to be at the top of the likelihood function. Through method 171,
two distinct spurious maxima, among which the LE, are detected with a
larger likelihood value than maximum M1. So, this sample is unstable. Fig-
ure 5.15b illustrates why a distinct spurious maximum is at the top of the
likelihood function. The fits of the LE and of maxima M1 and M2 are shown.
For more than 80% of the data (i.e., the data situated within the displayed
box), the three fits are comparable. Apparently, the amount of data situated
outside the box is not large enough or is still situated to close to the straight
line modeling the data inside the box, to guarantee that this deviation is not

purely random.

A two-component lognormal mixture Only two maxima are found
with the starting values of the tangent-rico method. They are tabulated in
Table 5.10b. There is a large difference in likelihood value between these two
maxima. The sample seems stable and the largest maximum found is likely

to be the largest local maximum. This is confirmed by applying method
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method maximum 6’1 [ll 6’2 ﬂg 7?'1 InLL
TR M1 0.601 4.558 0.713 7.928 0.137 -92.699
TR M2 1.272 7.227 0410 8.163 0.598 -94.712
TR 1.010 7.704 0.107 7.113 0969 -97.378
II1 LE 0.00150 8.321 1.025 7.638 0.0481 -90.643
II1 0.000606 8.320 1.016 7.657 0.0325 -92.104

(a) Estimation of a two-component Weibull mixture

method maximum [ll (5’1 ﬂg 6'2 ﬁl InLL
TR LE 4.728 1.074 7.687 0.693 0.210 -93.834
TR M1 6.895 1454 8312 0.0631 0.878 -101.298
II1 M2 8.321 0.00160 7.003 1.447 0.0488 -98.728

(b) Estimation of a two-component lognormal mixture

Table 5.10: Local mazima of the likelihood function for the appliance failure
sample. Estimated parameters are the location and scale parameters of the
log failure times.

IT1. No larger maximum is obtained and the likelihood value of the first
maximum (M2) that comes after the LE is considerably smaller than the
likelihood value of the LE. The fits of the LE and maxima M1 and M2 are
shown in Figure 5.16. Here the LE-fit can be distinguished over the whole
range of data from the fits of the other two maxima. In contrast to the
Weibull case where a single distribution is still an option, this is not the
case if the mixture component is assumed to have a lognormal distribution.

Clearly, a single lognormal distribution is not appropriate.

Plots derived of the QQ-plot

We now take a closer look at the plots of the derivative and of
the cosine of the tangential deflection for both the Weibull and lognormal
QQ-plot. All derivative plots are included in Figure 5.17, while the cosine
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plots are given in Figure 5.18. The plots derived from the Weibull QQ-plot
are quite similar in nature to the ones derived from the lognormal QQ-
plot. From both, there is the suggestion that the sample consists of two
subgroups. Although, this is more evident for the lognormal case than for
the Weibull case. In particular, in both cases the plots of the derivative
have a pronounced global minimum which points to an obvious candidate
inflection point. This point is situated around data point 12 and related to
a couple of minima on the cosine plot situated around data points 6 and
16. But for the lognormal derivative plots, the global tendency after this
minimum is increasing, while for the Weibull derivative plots this tendency
is less clear. This is illustrated further through the fact that the second
candidate inflection point situated around data point 31-34, give rise to
another maximum for the Weibull mixture (i.e., maximum M2), while this
is not the case for the lognormal mixture.

Furthermore, the maximum at the end of the derivative plots cor-
responds to a candidate couple of nodes (around data points 47 and 54).
Based on this candidate couple of nodes, maximum M1 is obtained for the
two-component lognormal mixture, while no maximum is found in case of
a Weibull mixture. Still, this maximum should be rather looked at as the
maximum belonging to the global minimum in case of steep-flat-steep shape
(and so corresponding to the couple of nodes around data points 17 and 54),

then as a maximum pointing to an additional third component.

5.4.4 Summary

For a general two-component mixture model, mostly it is possible
to infer the stability of the sample given the maxima obtained with the

starting values of the tangent-rico method. Therefore, one has to look at:
1. The number of different maxima found.

2. The difference in likelihood value between the several maxima found.
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In general, for a stable sample the largest maximum detected with the start-
ing values of the tangent-rico method, is also the LE. For an unstable sample,
method I11 could be carried out to obtain a more complete view of the sur-
face of the likelihood function.

Given a distribution for the mixture components, both the plots of
the derivative and of the cosine of the tangential deflection can be simply
derived for several values of the smoothing parameter m. Hereby, the choices
5, 10 and 20% of the sample size are sufficient to give a global picture. These

plots can be read as follows:

e A distinct (or dominant) global minimum for the derivative plot points
to a candidate inflection point, i.e., to a mixing of two distributions
separated in location. This candidate indicates more or less where
the domination of the first component ends and the domination of the
second component begins. On the corresponding plot of the cosine
of the tangential deflection, before and after this candidate a clear
minimum should be situated; the first having a negative sine, the last

a positive sine.

e A distinct (or dominant) global maximum for the derivative plot points
to a candidate couple of nodes, i.e., to a mixing of two distributions
separated in scale. On the corresponding plot of the cosine of the tan-
gential deflection, before and after this maximum a minimum should
be located. This first minimum should have a positive sine, the sec-
ond a negative sine. At the same time, these two minima form the
candidate couple of nodes. Their positions indicate where the different

components of the mixture are dominating.

e If there are no pronounced minima and maxima for the derivative plot,
quite likely a mixture distribution is not appropriate as a distribution

for the sample.
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These guidelines are based on the theoretical counterparts of the derivative
and cosine plot, given a two-component mixture. They can be extended to
the case of more than two components. This and the fact that it is possible
to detect any kind of mixture (i.e., also the one separated in scale) on these

plots, give them an advantage over other exploration tools.

5.5 Extensions of the tangent-rico method

The tangent-rico method allows an easy extension to many other
situations. Here, the most important ones will be discussed. In Section 5.5.1,
we consider the extension to censored data problems, which includes the
derivation of starting values for the adapted likelihood methods. Further,
Section 5.5.2 handles the calculation of starting values for finite mixtures
with more than two components. In the last section, the simplified tangent-
rico method for the finite mixture distribution with a common location or

scale parameter is briefly discussed.

5.5.1 Censoring

One of the main advantages of using a probability plot as the basis
of a starting value method, is that this plot can be constructed too in case
of censoring. At least, as long as a random censoring mechanism is assumed.
As such, to adapt the tangent-rico method to censored samples, only the

following two changes has to be carried out:
e The probability plot has to be adjusted to a censored sample.

e The division of the sample into two subsamples has to take into con-

sideration the censored data points.

We will consider into more detail two right censoring mechanisms which often
occur in reliability situations. Further, we will handle the case of interval

censoring to obtain starting values for the adapted LEs.
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Note that a problem of more concern for censored samples, is the
use of the tangent-rico method in combination with the EM-algorithm.
In particular, the EM-algorithm becomes for any general mixture with a
(log)location-scale distribution as component, a double iterative procedure,
as there exists no closed form solution anymore for the M-step. But, in
contrast to the double iterative EM-algorithm for complete SEV (Weibull)
mixtures, the slowness of the EM-algorithm is now a potential problem. The
reason is that censoring is a second kind of missing data, next to the missing
group information for each observation. As a result, the EM-algorithm will
slow down considerably in case of heavy censored samples. Therefore, for the
samples used throughout this work, we also looked at the performance of the
NR-method. Although more research is required, it appears that the NR-
method could be a useful alternative for censored data problems. Namely,
mostly the same group of maxima as with the EM-algorithm, is obtained
with the NR-method (from the starting values of the tangent-rico method)

and we had almost no convergence problems with the NR-method.

Type I Singly Right censoring

A type I singly right censored sample consists of r failure times and
n—r (right) censored observations at the same time point c. If (y(1),- .., y(r))
are the ordered failure times, than it holds that ¢ > y(,). Although, the
probability plot has only n — r points (related to the failures), the plotting
positions for these points are the same as in case of a complete sample. So,
the probability plot is made up of the points (y(;),p; = 1 — e_%(si—l"'si)), i =
1,...,r. Given then a candidate inflection point, situated at the s** ordered
(failed) observation, the sample is divided in the subsamples (y1), - -, y(s—1))
and (y(s41),---,Y()) together with the r censored observations. For a cou-
ple of candidate nodes at the s'ih and sgh data points, the first subsam-
ple consists of the failure times (y(1),..-,¥Y(s,—1)s Y(so41)s--+»Y(r)) Supple-

mented with the r censored observations. The second subsample equals
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then (Y(s,4+1)s -+ > Y(sa—1))-

Example The censored laser A sample, introduced in Section 2.1.3, is a
type I singly right censored sample, with sample size 85 and 39 censored
observations. Its lognormal QQ-plot is shown in Figure 5.19a. It has a pro-
nounced steep-flat-steep shape. For the tangent-rico method, m takes on
the values 3, 5 and 9, i.e., 5, 10 and 20% of 46 (the number of points on
the QQ-plot). A plot of the derivative for m = 5 is given in Figure 5.19b
and of the cosine of the tangential deflection in Figure 5.19c. For both,
a similar picture is obtained at the other m-values. The derivative plot is
dominated through a big jump, which is related to one obvious candidate
inflection point. This is confirmed through the presence of one clear min-
imum with a negative sine, situated just before this jump, on the cosine
plot. On both kind of plots, no other distinct features can be observed. Fig-
ure 5.19d shows the QQ-plots of the two subsamples based on a division of
the best candidate inflection point for m = 5, i.e., the 12!" data point, and
the corresponding ML fits. As noted, the first (uncensored) subsample has
an outlying observation. This results in a rather poor ML fit. For m = 3,
the best candidate was data point 11, resulting in a first subsample without
an outlying observation and a much better ML fit. Note that the second
subsample is also type I singly right censored. To illustrate the difference
between the starting values obtained from a division of the sample based
on the 11" and the 12" data point as inflection point, Figure 5.19e shows
the fits corresponding to both sets of starting values. Although both fits are

1" data point is excellent. Moreover,

good, the one corresponding to the 1
almost no difference exists with the LE-fit for a two-component lognormal
mixture. Both sets of starting values lead to the LE. The estimates are
f1 = —0.14,6; = 0.078, 42 = 6.46,69 = 1.81 and 7; = 0.12. The sam-
ple is clearly stable. The 12 starting values, obtained with the tangent-rico

method, converged to 3 different maxima with a huge difference in likelihood
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value between the largest and second largest maximum found (i.e., -117.436
versus -138.200).

Multiple right censoring

In contrast to the previous situation, censored observations can
occur at any point in time. The sample consists of n time points among
which r failure times y; and n — r censoring times ¢;. Only failed obser-
vations are taken up in the probability plot. If S is the set of all indices
of the failure times in the ordered sample, then the plotting positions are
defined by p; = 1 — e 2(51%5) i € S, with §; = ¥ 0q s mobry

inflection point based on the s ordered failed observation Y(s), the sam-

For an

ple is divided into the subsamples (y(1),- - -, Y(s—1), C(1)s- - -+ (1)), With ¢y <
Yis) and (Y(s41)s > Y(r)> Ct+1)s - - s Cn—r)). Note that early censored ob-
servations could perhaps also belong to the second component. However,
it is quite impossible to retrieve this information. We only propose one
way to deal with multiple censoring. For a couple candidate nodes situ-
ated at the s!* and s ordered failure times, the two subsamples become
(Y(1ys s Y(s1=1)2 C(1)5 -+ -3 C(t1)s Y(sat1)s =+ > Y(r)s Clta+1)s -+ -5 C(n—r)) and
(y(31+1), o Y(sa—1)s Cty+1)s -+ o s C(tz)), with Cty) < Y(s1) and C(ta+1) > Y(sz)-

Example Still to work out: deriving starting values for a multiple right

censored Weibull sample.

Interval censoring

Each observation of an interval censored sample is both left and
right censored. No time point is observed, but a time interval in which
the event (i.e, a failure or a removal) has occurred. We will only consider
grouped or binned samples with non-overlapping intervals. At worst intervals

are adjacent, i.e., one interval begins where the previous one ends. This last
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situation typically occurs for a large value of the measurement error § or for
a small number of binned intervals.

A complete interval-censored sample with n observations, consists
of m intervals J¢;_1,t;] with in each interval d; failed observations ()", d; =
n). For the construction of a probability plot we follow Meeker and Esco-
bar (1998, pp. 132-134): on the appropriate probability scales the upper
endpoints ¢; of the intervals are plotted against the nonparametric estimate
f?(tl) = # = p; as plotting position. Note that with this choice the last
point F(tm) = 1 cannot be plotted. The division of the sample is handled
in a similar way as for a complete sample.

Interval-censored samples can also be right-censored, i.e., the ob-
served event is sometimes a removal. FEach interval has then d; failed
observations and r; censored observations. In this case, the plotting po-
sition for the upper endpoint ¢; is changed into 1 — H;-:l[l — %] with
n, = n — E;-;}) dj — E;-;}) rj,ro = 0 and dy = 0. If each interval con-
tains at least one failed observation, then the division of the sample can be
done in the same way as for a complete interval-censored sample. If not,
the division of the sample is carried out according to the guidelines, given

previously, for right-censored samples.

Example A famous complete interval censored sample is the sample con-
sidered in 1894 by Pearson (Section 2.2.1). Its normal QQ-plot is shown in
Figure 5.20a. The sample has size 1000 with only 19 different adjacent inter-
vals. This results in one m-value (i.e., m = 3) for the tangent-rico method.
Figures 5.20b and 5.20c give the plots of the derivative and the cosine of
the tangential deflection of the QQ-plot. Both plots clearly confirm that
a two-component distribution with components separated in location is ap-
propriate for the sample. There is only one one candidate inflection point
(corresponding to the 10" ordered interval) and there exist no appropriate

couple of candidate nodes. In addition, the global minimum (related to the
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candidate inflection point) of the derivative plot dominates this plot and
it is nicely situated between two minima on the corresponding cosine plot.
Figure 5.20d depicts the two subsamples, the fits and values of the corre-
sponding MLEs. The starting value for the proportion parameter equals
T = Z?:1 di/(z?:1 d; + Zgn d;) = 0.73. The starting values converge
to the LE, which is given by i1 = 19.96,6; = 2.13, i = 26.16,62 = 2.74
and 71 = 0.65. Clearly, the sample is stable. To summarize, Figure 5.20e
shows the small difference between the LE fit and the fit corresponding to
the starting values. It illustrates not only the excellent LE fit, but also the

good starting values.

5.5.2 More than two components

While a theoretical QQ-plot of a two-component mixture can have
two different shapes, there are many more possibilities for the shape of the
QQ-plot of a mixture with more than two components. With three compo-
nents there are at least 6 different forms and this number grows exponentially
with the number of components. Nevertheless, without knowing all different
shapes, it is possible to extend the tangent-rico method to a general M-
component mixture. Namely, most M-component mixtures can be related
to a combined series of inflection points and couple of nodes. As such, based
on a recursive procedure started from both an inflection point and a cou-
ple of nodes, an almost complete extension of the method can be obtained.
Figure 5.21a outlines the procedure when started from an inflection point.
It depicts the “extension” tree or all possible combinations started from an
inflection point. Each inflection point can be followed either through an in-
flection point or a couple of nodes and similar each couple of nodes can be
followed through either an inflection point or a couple of nodes. In addition,
there are two ways to combine an inflection point and a couple of nodes
and two ways to combine two couples of nodes. The inflection point can be

situated between or after a couple of nodes. One couple of nodes can be
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M=2
(a) Extension tree started from an (b) A mixture of three components
inflection point. characterized through two couples

of nodes with one contained by the
other.

Figure 5.21: Eztension of the tangent-rico method to more than two
components.

situated between another couple of nodes (Figure 5.21b) or after this other
couple. As an example, Figure 5.22 gives the QQ-plots for 3 out of the 6
possible combinations for a 3-component mixture. Figure 5.23 shows the
corresponding mixture densities. The mixture in Figure 5.22a corresponds
to a series of two inflection points. It has three components separated in
location. Figures 5.22b and 5.22c show the two possible configurations cor-
responding to a series of an inflection point and a couple of nodes. In the
first, the couple of nodes follows the inflection point, while for the second

the inflection point is situated between the two nodes.

Given a sample and a value for the parameter m, then first all
candidate inflection points and candidate couples of nodes are searched for
and ordered from best candidate to worst. Next, for each combination in

the two extension trees, a number of series is built up with the candidate
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inflection points and candidate couple of nodes. This number can be varied
according to the number of candidates that are used for each position in the
combination. Usually, if possible, M candidates are considered. As such,
for M=3 up to 6 series of starting values are derived for each combination,
resulting in a total of at most 36 sets of starting values for one m-value.
Consequently, the number of starting values increases a lot when the number
of components increases, but the same holds for the number of maxima of
the likelihood function.

In the same way as for a general two-component mixture, the
tangent-rico method can be completed to obtain also the largest local maxi-
mum in case of small sample sizes (method I17 in Section 5.3.1). Therefore,
starting values for distinct spurious maxima have to be constructed. In case
of M components, these starting values can be derived by considering one
subsample of two successive data points and M-1 other subsamples of the
remaining part of the sample. This leads for each couple of successive ob-
servations, in contrast to the situation of two components, not to one set of
starting values but to a number of sets. For the division of the rest of the
sample into M-1 subsamples, the tangent-rico method for M-1 components is
used. As a result, it is not possible to guarantee that in any case the largest
maximum obtained, is indeed the largest local maximum. Due to the latter
and the increasing number of starting values, it is rather difficult to carry

out simulations for finite mixtures with more than 3 components.

However, this does not mean that samples cannot be estimated to a
general M-component mixture with the likelihood method. By means of the
tangent-rico method, a lot of information can be obtained concerning the
stability of the sample and the credibility of the largest maximum found.
Indeed, if the maxima identified with the starting values of the tangent-
rico method, suggest an unstable likelihood surface, then this extension of
method 111 can be used to search for maxima with a larger likelihood value.

If distinct spurious maxima, are found with a larger likelihood value than
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Figure 5.24: Derivative plots of the QQ-plots in Figure 5.22.

maxima obtained with the tangent-rico method or if the largest maximum
found is not dominant, then the credibility of the LE, whether it is identified

or not, is lost.

Also here, a useful tool for the exploration of samples, with regard
to the possible number of mixture components, are the plots of the derivative
and the cosine of the tangential deflection of the QQ-plot. Although they
give no clear-cut answer on the possible number of mixture components, they
do indicate how many mixture components are relevant and where they can
be situated on the QQ-plot. Previously, in Section 5.4.4, we indicated how
to interpret these plots when no more than two components were assumed.
The case of an unspecified number of components is quite similar. For the
derivative plot, usually it can be assumed that it should have one additional
pronounced maximum or minimum for each extra component, as this is
often the case for its theoretical counterpart. Of course, it has to be taken
into account that between any two minima a maximum is situated (and the

reverse). The only exception is the case where all components are separated
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in scale. There, the derivative plot while have only one sharp maximum, but
the cosine plot will reveal several couples of nodes. Further, the cosine plot
can be used in the same way as explained earlier on, to confirm the minima
and maxima located in the derivative plot. Figure 5.24 gives three examples
of derivative plots for a 3-component normal mixture. The derivative plot in
Figure 5.24a has two marked minima, in Figure 5.24b one distinct minimum

and maximum and in Figure 5.24c two clear maxima.

Example The laser B sample is considered (Section 2.1.3). The lognor-
mal QQ-plot of this complete sample of size 158, is given in Figure 5.25a.
First, we will discuss the information available from the plots derived from
the QQ-plot. Next, we will handle the likelihood estimation of several M-
component lognormal mixtures using the tangent-rico method and the ex-
tension of method I1I. The m-values used in tangent-rico method are 7, 15
and 31. Plots of the derivative and of the cosine of the tangential deflection
of the QQ-plot for m = 15 are shown in Figures 5.25b and 5.25c. Basically,
the same picture is obtained for other m-values, with more (unimportant)
minima, for the smaller m-value and a smoother plot for the larger m-value.
As observed, the derivative plot has a pronounced global minimum (situ-
ated around data point 100) and maximum (between data points 11 and
60). This is line with the picture given by the cosine plot. Namely, it has
one obvious candidate couple of nodes (i.e., 18 and 87) related to the max-
imum and one couple of nodes (i.e., 87 and 114) which is nicely situated
around the minimum. Note that the couple (18, 51) is another candidate
couple of nodes that can be related to the global maximum of the derivative
plot. This suggest that at least a 3-component mixture would be appropri-
ate. Besides these two main features, there is a second maximum (between
data points 60 and 100) and minimum (data point 135) that could point to
an additional component. This is, however, not likely given that they are

not pronounced enough. So, although at first sight the QQ-plot is rather
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steep-flat-steep, indicating the presence of only two components, other plots

suggest the presence of at least three components.

Next, we used the tangent-rico method to fit a two-component log-
normal mixture to the sample. The sample seems stable. The LE fit is
shown in Figure 5.25d. It has a steep-flat-steep shape with an inflection
point situated around data point 100. Also the fit of the second largest
maximum found, is given. Its shape is flat-steep-flat with the nodes situ-
ated around data points 18 and 87. Its likelihood value (-239.910) is far
below the likelihood value of the LE (-228.558). The likelihood estimates
are iy = —0.44,6; = 0.36, 42 = 3.95,62 = 1.03 and 7; = 0.63. Still, in
spite of the stability of the sample, the fit of the LE is rather poor at the

beginning of the sample.

When fitting a 3-component lognormal mixture to the sample, the
stability of the sample seems to be preserved, given the maxima identified
with the tangent-rico method. We scanned the likelihood surface for other
maxima. Although, it contains a large number of maxima, from which many
are plausible, the largest maximum found with the starting values of the
tangent-rico method dominates the likelihood function. No distinct spuri-
ous maxima are found with a larger likelihood value. The nice fit of the LE
is given in Figure 5.26c. A corresponding density plot for the densities of
the mixture components is shown in Figure 5.26b. Note that the density
functions are rescaled according to the proportion parameter for each com-
ponent. It can be seen that two components of the mixture are separated
in scale (corresponding to a couple of nodes) and that a third component
follows which is separated in location with the other two components (cor-
responding to an inflection point). A possible starting value to identify this
maximum corresponds to a subdivision of the sample based on the couple
of nodes (18,87) and the inflection point 100. A QQ-plot of the three sub-
samples with corresponding MLE fits is given in Figure 5.26a. For each of

the subsamples, a lognormal distribution seems to fit quite well. The LEs
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for the parameters are: ji; = —0.49,6; = 0.57, i = —0.41,69 = 0.17, 45 =
3.95,63 = 1.02,7; = 0.22 and 73 = 0.41. The likelihood value of the LE
is -216.885 (which is considerably larger than the likelihood value of the
LE for the two-component mixture). The second largest maximum found
was distinct spurious with likelihood value -219.356. The first not distinct
spurious maximum identified after the LE, has likelihood value -221.354. It
corresponds to a subdivision of the sample according to two inflection points
situated around the 11** and the 100 data point.

Subsequently, we fitted a 4-component lognormal mixture to the
sample. For this mixture, according to the maxima obtained with the
tangent-rico method, the sample was clearly unstable, even highly unstable.
With the extension of method I11], several distinct spurious maxima were
found with a likelihood value larger than the largest maximum identified
with the tangent-rico method. In addition, several plausible maxima with
a small difference in likelihood value were obtained. The fits of the largest
maximum identified and of a large plausible maxima found, are shown in
Figure 5.26d. The arrow indicates where the fits are deviating from the LE
fit of the 3-component lognormal mixture. As observed, the fits are quite
similar both to each other and to the LE fit of the 3-component mixture.
Likely, the sample is too small to numerically distinguish a 4-component

mixture.

In summary, this sample contains enough information to obtain a
reliable LE for a 3-component lognormal mixture. This is suggested by the
plots derived of the QQ-plot and confirmed by the stability of the sample
with respect to this model. Although 4 or more mixture components could
be useful to arrive at a better fit of the sample, these mixtures cannot be

used for inference.
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5.5.3 A common parameter among the mixture components
Common scale parameter

The tangent-rico method can be simplified a lot when a common
scale parameter is assumed among the mixture components. For a two-
component mixture, the QQ-plot has always a steep-flat-steep form with only
one inflection point (as opposed to the theoretical three inflection points for a
general two-component mixture). Moreover, a theoretical QQ-plot of an M-
component mixture contain exactly M-1 inflection points, since components
can only be separated in location. As such, a plot of the tangential deflection
of the QQ-plot is not required to derive starting values. In addition, the
number of pronounced minima, on the plots of the derivative of the QQ-plot
give a clear indication of the number of possible components for the mixture.
The calculation of starting values is done in a similar way as for the general
finite mixture model, but now with subdivisions of the sample based solely
upon candidate inflection points. Note that this procedure can be used for
an exponential mixture since the latter is a Weibull mixture with common
shape parameter. Further, this method can be considered with a known or

unknown common scale parameter.

Common location parameter

Although a mixture with a common location parameter is rarely
encountered, it is possible to fit these kind of mixtures. In contrast to a com-
mon scale parameter, the shape of the QQ-plot of a two-component mixture
is always flat-steep-flat. Only candidate couple of nodes, and thus only plots
of the cosine of the tangential deflection, are required to determine starting
values. Again the extension to mixtures with more than two components is
quite trivial. Namely, mixture components have to be distinguished based
on the value of their scale parameter and as such candidate couple of nodes

also have to be contained in each other. For example, if (a1,b1) and (a2, bs)
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are the x-coordinates of the two couple of nodes of a 3-component mixture,

then the order between these coordinates has to be a1 < ag < by < by or the

reverse.



Chapter 6

Case studies

6.1 Analyzing a field example: the electromigra-

tion sample

The electromigration sample EM2 is an industrial sample (Sec-
tion 2.1.4). This bimodal failure time sample was passed on with the request
for an appropriate bimodal analysis, preferably making use of the maximum

likelihood method. For this sample, main interest is in:
e Estimation of the quantile %y ;¢ at a temperature of 125°C.

e Estimation of the electromigration temperature model parameter, i.e.,

the activation energy FE,, at both modes.
e Estimation of the scale parameter o at both modes.

Other possible questions could be to assess whether the activation energy
and/or scale parameter is equal among the two modes or whether the two
modes are present in the sample.

To analyze the sample three methods will be considered. The first

is simply to ignore the bimodality and to use the same methods as for
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monomodal samples. In spite of the fact that this can lead to wrong (reliabil-
ity) conclusions or a biased estimate for the activation energy, by experience
it is still the preferred way of handling in industry. The monomodal method
outlined in the JEDEC standard, JESDG63, is a linear (least squares) regres-
sion analysis (on the logarithmic transformed failure times). Second, the
sample will be split into two subsamples, one for each failure mode. Each
of the two subsamples will be analyzed according to monomodal techniques.
This is one of the few methods proposed and also used to deal with bimodal-
ity. Third, a likelihood analysis using a two-component lognormal mixture
model is considered.

The main question we like to answer is if a bimodal likelihood
analysis contributes to the reliability conclusions, i.e., whether it is worth
the effort. Moreover, what is the effect of ignoring the failure modes and
what are the advantages and disadvantages of simply splitting up the sample
into two subsamples compared to the more complicated bimodal likelihood

analysis.

6.1.1 A linear regression analysis

Commonly, for electromigration data, the distribution of the failure
times at one stress level is assumed to be lognormal, or the distribution of
the logarithm of the failure times to be normal. The linear regression model

used, can then be written as:

In(t;) = C + E,x; + € € iid., € ~N(0,06%), i=1.n, (6.1)

with the covariate z; = ﬁ the rescaled temperature, kg the Boltzmann
constant and C, E, and ¢ the model parameters. Figure 6.1a shows the
estimated least squares regression line on a plot of the covariate z against
the logarithm of the failure time In(¢). Its slope is the estimated activation
energy Ea. Figure 6.1b gives a QQ-plot of the residuals. Clearly, the as-

sumption of a normal distribution for the error term ¢; is violated. This can
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also be noticed from Figure 6.1c, which illustrates that a normal distribu-
tion gives rise to a poor fit of the failure times. Note that a two-component
normal mixture distribution fits the residuals quite well. Consequently, the
estimation of low quantiles, under the assumption of a normal distribution,
cannot be trusted. Also, even if a common standard deviation (i.e., the scale
parameter o) is assumed among the two failure modes, the estimated stan-
dard deviation will be considerably larger than in each of the two modes,
i.e., will be biased. Further, if there are indeed two failure modes, likely the
estimates of the other model parameters, in particular E,, will be biased
too.

To compare with the methods in the following sections, Table 6.1a
gives the estimates and 95% asymptotic confidence intervals for the parame-
ters. Hereby, the maximum likelihood method is used. Although parameter
estimates are the same as with least squares regression, estimates of the stan-
dard deviation and of the standard errors are slightly different. Through
carrying out the ML method, it is easier to compare the results with the

likelihood analysis of Section 6.1.3.

6.1.2 Subdividing the sample

Often, if the presence of more than one failure mode is recognized,
the part of the sample which is of interest, is selected. In particular, it
happens that one of the two failure modes is not considered to be relevant for
the intended goals. For example, if the first mode is related to a defect mode,
commonly main interest is in the second mode. As such, only estimates of
model parameters and quantiles for this second mode are then required.
Also, the suggestion has been made several times to only look at the first
part of the sample, related to the first failure mode, as main focus is on the
estimation of low distribution quantiles.

In these cases, the technique mainly applied is to (visually) split the

sample into two subsamples corresponding to each of the two failure modes.
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E, o to.01% at 325°C  tg.01% at 125°C
(eV) (minutes) (years)
MLE 1.23 0.782 4.43 1.39
95% CI  [0.986, 1.48] [0.666, 0.897] [2.80, 7.02] [0.122, 15.8]

(a) Maximum likelihood estimation of model (6.1).

Ea g t0_01% at 325°C t0.0l% at 125°C
Subsample (eV) (minutes) (years)
Sample 1 1.33 0.532 4.15 3.31
[1.05,1.61]  [0.395, 0.669]  [2.41, 7.16] [0.198, 55.4]
Sample 2 1.05 0.156 74.8 4.15
0.093,1.12] [0.128,0.184]  [66.9, 83.7] [2.28, 7.56]

(b) Splitting the electromigration sample into two subsamples: estimation of
model (6.1) to both subsamples.

Ea g t0.01% at 325°C t0.01% at 125°C
Model (eV) (minutes) (years)
1°¢ comp. 1.36 0.501 4.48 5.09
of M1 [1.05, 1.68] [0.327, 0.674]  [2.45, 8.19] [0.230, 113]
274 comp. 1.06 0.171 69.8 3.98
of M1 (0.985, 1.13] [0.131,0.211]  [59.0, 82.6] [1.90, 8.36]
M1 5.21 4.04
[2.97, 9.15] [1.93, 8.47]

M2 1.02 0.353 (o) 7.10 0.296

(0.042, 1.11] [0.195,0.511]  [4.34, 11.6] [0.120, 0.728]

0.220 (02)
[0.173, 0.266]

M3 1.06 0.251 9.49 0.53

(0.071,1.14] [0.218,0.204]  [7.98, 11.24] [0.226, 1.26]

(c) (Maximum) likelihood estimation of model (6.2) and several simplified versions.
Model M1: the bimodal regression model (6.2), model M2: (6.2) with common E,,
model M3: (6.2) with common E, and o.

Table 6.1: (Mazimum) likelihood estimates and 95% asymptotic confidence
intervals (CIs) of parameters and some quantiles of several models for the
electromigration sample EM2.
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As a result, both subsamples can be analyzed with monomodal techniques

and problems seem to be solved.

On the QQ-plot in Figure 6.2a, it is indicated how we subdivided
the sample. At each stress level, all data points before the indicated data
point and this point itself are allocated to the first subsample, while all data
points after are assigned to the second subsample. The lognormal QQ-plots
of these two subsamples are given in Figures 6.2b and 6.2c. It is noted
that for both subsamples, a lognormal failure time distribution seems to
be appropriate at all stress levels, as well as a constant o over all stress
levels. To both samples the linear regression model (6.1) is fitted with the
ML method. Estimates and asymptotic confidence intervals for the model
parameters and some quantiles are given in Table 6.1b. Note that at both
modes, the estimate of the scale parameter is considerably smaller than the

estimate obtained in Section 6.1.1 for the whole sample.

Given that for each device under test the exact failure mode would
be known, this method would be fine. However, this is not the case here
and the division of the sample will always be subjective. Moreover, through
subdividing the sample, it is implicitly assumed in the analysis that there
is the knowledge about the exact failure cause of each unit. Although es-
timates will usually be more efficient than when the uncertainty about the
bimodality is taken into account, information is used which does not exist.
Consequently, it could lead to wrong results. In addition, for this sample
there is the advantage that the split can be carried out relatively easy, but
this is not always the case (for example, the clear bimodal resistor sample
of Section 2.1.1).
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6.1.3 A bimodal likelihood analysis

The cumulative distribution function of a “bimodal” regression

model, adapted to the electromigration case, is given by:

ln(t) - Ch - Ea1x> n (1 B 71_1)(1) (ln(t) — Cy — Egpox

o1 02

?

(6.2)

with z = 1/(kpT). At each stress level, the failure time distribution is a

me:m@<

general two-component lognormal mixture. Here, the scale parameters for
the two components are assumed to be constant over all stress levels. This
model can be simplified either by considering a common scale parameter
among the mixture components (i.e., 01 = 09) or a common parameter for
the activation energy (i.e., Fq1 = E42).

To fit model (6.2) with the likelihood method, starting values to
maximize the likelihood function have to be calculated. Therefore, we first
analyzed the failure time samples at each stress level separately. For all three
stress levels, the sample was unstable (with respect to a two-component log-
normal mixture). In each case, two maxima were dominating the likelihood
function. Between these two and all other maxima, there was a considerable
gap in likelihood value. Figure 6.3a shows for each of the three samples, the
fits of these two maxima. At the stress levels 350 °C and 300 °C, the largest
local maxima are related to the fits not referred to by 2, while the reverse
is true at the other stress level. As noted, the three fits indicated by 2 are
similar in shape as well as the other 3 fits. Moreover, they form two groups
of 3 similar maxima.

Based on these groups, two sets of starting values are derived. Pre-
cisely, for each group, starting values for C; (Cy) and E,; (E,2) are obtained
from a least squares regression of the 3 estimates for p1 (u2) on z. For o1, 09
and 7, the mean of the 3 parameter values (at the 3 stress levels) is taken.
In case of a common scale or common activation energy, the mean of the

values at the two modes is considered. For model (6.2) both sets of starting
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(b) LE fit of model (6.2) and MLE fit
(referred to by 2) of the bimodal regres-
sion model with both common scale pa-

rameter and activation energy.
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(c) Prediction at 125°C of model (6.2)
(M1), of the simplified model with com-

mon activation energy (M2) and of the

model with both common scale param-

eter and activation energy (M3).

Figure 6.3: A two-component lognormal regression model.
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Table 6.2: Comparing different models: values of the log likelihood (InL) and
results of some likelihood ratio tests.

Monomodal Bimodal regression model (6.2)
model (6.1) =o0,=E, =o0,#E, #o0,=E, #o0,#E,
InL -103.157 -54.032 -53.437 -52.304 -50.732
Hy:=o0,=E, 1.19 3.46 6.60
df, p-value 1, 0.275 1, 0.063 2, 0.0369
Hy:=o0, # E, 5.41
df, p-value 1, 0.0200
Hy :#£0,=E, 3.14
df, p-value 1, 0.0764

Note: the row for Hy gives the value of the likelihood ratio test statistic, df refers

to the corresponding degrees of freedom.

values converge with the NR-method to the same maximum. Further, there
was no evidence that the likelihood function contained more than one local
maximum (apart from boundary solutions). We also fitted the simplified
models with common scale parameter, common activation energy and both
parameters common. Figure 6.3b shows the nice LE fit of model (6.2). But
also the MLE fit of the model with both a common scale parameter and ac-
tivation energy, is quite good. The values of the logarithm of the likelihood
of these 4 models and of model (6.1) are given in Table 6.2. In addition, the

values of some likelihood ratio test statistics are supplemented.

From this, two important observations can be made. First, there
is a huge difference in likelihood value between the “monomodal” regres-
sion model and any of the bimodal regression models given. Again, this
shows that a lognormal distribution is not suitable as failure time distri-
bution at each stress level. Moreover, as illustrated also in Figure 6.3a, a
two-component lognormal mixture captures the variability within the failure

times quite well. Second, the difference among the several bimodal regres-
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sion models is rather small. There is only weak evidence for a different
scale parameter between the two mixture components. Moreover, a com-
mon activation energy seems appropriate. Note that no further information
was received from the company concerning the feasibility of each of those
4 bimodal models. The choice for one of these also has to rely on physical
grounds. For example, it can be noted from Figure 6.3c and table 6.1c,
that for model (6.2), the two components have changed from order at the
stress level T=125°C (due to the fact that the acceleration factor, i.e., the
activation energy, is larger for the first mode than for the second). The
consequences with respect to the conclusions drawn for the reliability of the
devices under study, are quite large when considering this model compared
to the more simplified models. Namely, with model (6.2), the estimated life
of the devices of the population is (much) longer (Figure 6.3c).

6.1.4 Discussion

If it is a priori known that there are two (or more) failure modes,
there is no reason to not use a so-called bimodal linear regression model.
Even if interest is only at one of the two failure modes, the general two-
component regression model can be used to obtain estimates and estimated
standard errors for the parameters at the different modes (for example,
model 6.2). The only difference with the method of Section 6.1.2 is a (slight)
loss in efficiency. This can be noted, for example, from the length of the con-
fidence intervals given in Table 6.1b and in Table 6.1c for the parameters of
two mixture components of model (6.2). Still, as long as the exact failure
cause for the devices is not known, these smaller estimated standard errors
should be considered with care. Moreover, the one obtained with the gen-
eral bimodal regression model do take into account the uncertainty about
the failure cause and as such should be preferred. In addition, with this
bimodal regression model, several tests can be carried out quite easily and

more simplified models can be considered.
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The use of the lognormal linear regression model when the presence
of two or more failure modes is clear, should be avoided. Not only the
estimate of the scale parameter will be biased, but also the estimate of the
activation energy is not in line with the results obtained from other models,
using a common activation energy at both modes (Table 6.1a versus model
M2 and M3 in Table 6.1c). In particular, when a common activation energy
is assumed in model (6.2), not only its estimate is considerably smaller but
also the length of the obtained confidence interval. To our opinion, there is no
reason to not take into account the presence of more than one failure mode.
Moreover, when good starting values are available, obtaining a likelihood

estimate for bimodal regression models, is a performable task.
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6.2 On the number of mixture components for the

galaxy sample

As mentioned in Section 2.2.2, the main issue for the galaxy sam-
ple is on the modality of the density function of its distribution, i.e., is it
multimodal or rather unimodal. In literature, this sample has received al-
ready a lot of attention. In general, its distribution is assumed to be a finite
normal mixture. As such, the question on the modality of the distribution
was turned into a discussion on the number of mixture components. Note,
however, that these two problems are not totally equivalent, as a unimodal

distribution can be a finite mixture.

Most analyses carried out are of a Bayesian type. Depending on the
model used, and in particular the choice of the prior distributions, the result-
ing answer on the number of components ranges from 3 up to 9. No general
agreement is obtained. A brief overview of the Bayesian analyses carried
out, is given in Aitkin (2001). Only a few authors consider a (maximum)
likelihood analysis. In comparing the results from the Bayesian analysis with
a likelihood analysis, Aitkin fits a series (with increasing number of compo-
nents) of finite normal mixtures both with a common and a non-common
scale parameter. Based on results of a bootstrap likelihood ratio test, Aitkin
concludes that there is a convincing evidence for three components in case
of a normal mixture with common scale parameter or for four components
in case of a general normal mixture. Also, there is no convincing evidence
for more than these numbers. Hereby, results for the full bootstrap analysis
to assess the number of components for the general finite normal mixture
model are taken from McLachlan and Peel (2000, pp. 194-196). However,
based on the same bootstrap p-values, McLachlan and Peel suggest at a 5%

level of significance, 6 components.

In none of the likelihood analyses carried out, the presence of spu-

rious maxima was mentioned. Neither, the surface of the likelihood function
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was discussed. In addition, we find a number of 6 components for the general
normal mixture model, with a sample size of 82 rather questionable. This
can only hold if the 6 components would be very good separated and clearly
distinguishable on the QQ-plot. The latter is not the case, as only 3 groups
are visible (Figure 2.7). Furthermore, although a value for the measurement
error (0=0.05) is given, it is never accounted for. Apart from this, Aitkin
(2001) states that there is a small overstatement in the likelihood when using
the density representation in case of a small value of one of the scale param-
eters (as opposed to the “correct” cdf representation). Still, his likelihood
estimates are derived from the density representation and not from the cdf

representation.

The objective of the following study is threefold:

e To demonstrate how the methodology introduced in the previous chap-
ters, contributes to the discussion of the number of possible mixture
components. In particular, how the analysis of the surface of the like-
lihood can reveal the maximum amount of information available in the
sample to model a certain number of mixture components, without a

formal testing procedure.

e To illustrate that results on maxima and likelihood ratio tests should

be considered with caution.

e To show the difference on the final result when taken into account the

measurement error 4.

Note that a lognormal distribution for the component density could be more
appropriate for the data, given the nonnegative nature of the velocities. Still,
we will not consider this, as we want to compare with results obtained in

literature.
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6.2.1 Likelihood analysis
Interpretation of the derivative and cosine plots

The plots of the derivative and of the cosine of the tangential deflec-
tion for m equal to 9 and 17 are given in Figure 6.4. No additional features
are observed in plots for smaller values of m. At least two pronounced min-
ima, one situated at the beginning (around data point 10) and one at the
end (around 78), are noticed on the derivative plot. For m = 9, this first
minimum can be related to the couple of nodes (4, 15) at the cosine plot,
while for the other minimum only the first node (around data point 74) is
visible. These minima correspond to the two outlying groups of data points
situated at the beginning and end of the QQ-plot. Either these two groups
belong to two different components or to one component which contains
the other middle group. For the former the two minima correspond to two
candidate inflection points, for the latter these minima can be related to a
candidate couple of nodes at the cosine plot (situated around data points 15
and 74). The related maximum on the cosine plot for this couple seems to
be divided in two. This could point to an additional (3" or 4/*) component
situated in the middle of the sample. Either this can be related to the global
maximum (corresponding to a candidate couple of nodes situated around
the data points 15 and 37) or to a minimum situated around data point
44. Nevertheless, although the middle part of the QQ-plot deviates from a
straight line, it is not clear whether this will be enough to be recognized as

not random.

In summary, there is a suggestion for at least three components
and at most four in case of a general finite mixture model. In case of a
common scale parameter, the same proposal can be made for the number
of components. Although at the derivative plot, certainly for m = 9, there
are more than 3 minima, the other minima are no clear indication for an

additional component.
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Figure 6.4: Plots of the derivative and of the cosine of the tangential deflec-
tion of the QQ-plot of the galaxy sample.



Chapter 6: Case studies 215

Analysis of the likelihood

Non-common scale parameter We scanned the likelihood surface in
case of an M-component general normal mixture model, started with one
component and stopped at 6 components. Apart from the single normal
mixture model, for each number of components the tangent-rico method is
first used to obtain an indication of the stability of the sample. In addition,
with the extension of method 111, we also derived specific starting values
to search for distinct spurious maxima. Both the EM-algorithm and the
NR-method were used as iterative procedure. Although with the same set
of starting values, not exactly the same set of maxima was obtained, all
different maxima found with one algorithm, were also derived with the other
procedure.

Table 6.3 summarizes the main results. Not the maxima itself, but
their likelihood values are given to look at the stability of the sample. The
numbered maxima are the largest one found (in order). Note that up to three
components, we are confident to have found the largest local maxima, i.e.,
the LE, and the other largest maxima. For more than three components,
distinct spurious maxima are found at the top of the likelihood function.
Although not likely, it is possible that there exist other distinct spurious
maxima with a larger likelihood value. Some comments on the table are

provided.

e For M=2, there are two maxima at the top of the likelihood. There is a
large gap (in likelihood value) with the following maxima. All maxima
shown are found with the starting values of the tangent-rico method.
This sample is unstable. Although here the reason is not the sample
size, but an unsuitable model as illustrated in Figure 6.5a. The latter
shows the poor fits of the LE and the second largest maximum. It can
be seen that the LE is related to an inflection point situated around
data point 10 (i.e., the best candidate inflection point) and maximum

2 to a couple of nodes situated around the data points 15 and 74
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Table

6.3: Value of the log likelihood function (InL) for several maxima in

case of a general M-component normal mizture, with M ranging from 1 to 6.

Number of components M

Maxima 1 2 3 4 5 6

(M)LE -240.417 -220.195 -203.485 -196./33 -189.951 -182.580

2 - -220.362 -209.837 -196.856  -190.278  -184.796
3 - -229.071  -212.143  -197.137  -190.455  -185.450
4 - -231.733  -212.257 -197.720 -190.875  -186.578
5 - -212.810
A - -236.985 -199.296  -192.235
B - -196.137

Note: Maxima in italic are distinct spurious, maxima in bold are those obtained by

Aitkin (2001).

(i.e., one of the two best options for a couple of nodes). The other
maxima found can be related to other candidates inflection points or
couple of nodes (for example, maximum 3 corresponds to the couple of
nodes (15,37) and maximum A to the inflection point 78). Note that
between maxima 4 and maximum A several distinct spurious maxima,

are located.

For M=3, 78 starting values are derived with the tangent-rico method,
resulting in 9 different maxima. The likelihood values of the four
largest maxima found, are given in the table. This outcome suggest a
rather stable sample. Moreover, with the extension of method I11, no
larger maximum than these first four maxima, is identified. The largest
distinct spurious maximum found, is situated at place 5. Figure 6.5b
shows the LE fit. As noted, this maximum is related to inflection
points around data points 10 and 78. Figure 6.5¢ shows the fits of
maximum 2 and 3. Maximum 2 corresponds to the inflection point 10

and the couple of nodes (15, 37), while maximum 3 is related to the
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couple of nodes (15, 70) and the inflection point situated around data
point 44. While the LE captures most features of the sample, apart
from perhaps the middle part, maximum 2 and 3 clearly miss either

the beginning or the end.

e For M=4, with the 311 starting values of the tangent-rico method, more
than 30 maxima are identified. No dominating maxima is found (for
example, maximum 3, 4 and A are among the largest maxima iden-
tified). This clearly indicates that the sample is unstable. Through
applying method ITI, two distinct spurious maxima with a larger like-
lihood value are located. The four largest maxima found, all add a
fourth component to the LE of the 3-component mixture. In partic-
ular, a similar component is related to the beginning and the end of
the sample, but they divide the middle part differently. Figure 6.5d
shows the QQ-plot restricted to the middle part of the sample and
the fits of the four largest maxima. The arrows point to the deviation
of the sample related to each maximum. As noted, the difference be-
tween all four fits is rather minimal and they are all close to the fit
of the 3-component mixture. It illustrates that none of the deviations
in the middle part of the sample (in particular, the one correspond-
ing to maximum 4) are pronounced enough to be considered as not at

random.

e For M=5 and M=6, respectively 698 and 880 starting values, are de-
rived. While many maxima are found, no maximum is identified which
dominates the likelihood. On the contrary, the sample appears to be
highly unstable with respect to a 5-component or 6-component mixture
model. The largest maximum found at M=6 corresponds to a mixture
with two of the components related to two groups of each two isolated
data points, as indicated in Figure 6.6. Therefore, some consider this

maximum as not being distinct spurious, we does. Not only the fit of
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the LE for the 3-component mixture shows that these two groups are
not outlying with respect to this model, but also the two additional
components has no other goal than exactly fitting these two groups of

two points.

e Maxima indicated in bold are the estimates considered by Aitkin (2001).
In 3 out of the 6 cases, among which the case M=2, not the largest
maximum is given. Clearly, this influence his results. As he states that
the LE for M=6 is not useful (due to its spurious nature), what would
have been his decision when the true largest maximum was considered
for M=4 and M=57 Importantly, these incorrect estimates also have

an effect on the results of a bootstrap likelihood ratio test.

Given the surface of the likelihood at M=4, and in particular 5
and 6, the known results of the bootstrapped likelihood ratio p-values (to
test M against M+1 components) should be questioned. Based on which
maximum of the likelihood for the M-component mixture, the bootstrap
is carried out? In addition, no information is given on which maxima are
chosen (in the bootstrap procedure) as estimates. Are they chosen in a con-
sequent way, i.e., the largest local maximum or the maximum obtained with
a consistent estimate as starting value? Moreover, when the largest local
maximum is searched for in a bootstrap likelihood ratio test, to test M=3
against M=4, it is unlikely that a small p-value will be obtained. Namely,
for the bootstrapped samples (based on the LE for the 3-component mixture
model), most largest local maxima found for the 4-component mixture will
be distinct spurious. As such, quite likely the value of the likelihood ratio
statistic for the LE found at M=4, will belong to the middle group.

Common scale parameter In general, the normal mixture model with
common scale parameter is much easier to handle than the mixture model
with non-common scale parameter. The likelihood contains only a few max-

ima, irrespective of the number of mixture components. As a result, it is
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galazy sample.
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Figure 6.6: Fit of the LE for the 6-component mizture compared to the LE
fit of the 3-component mizture.

more feasible to carry out reliable bootstrap likelihood ratio tests. Still, find-
ing the global maximum is not always straightforward and it does happen
that a local maximum is taken as the global one.

We used the simplified tangent-rico method to derive starting val-
ues. Mixture models up to 6 components are fitted. Table 6.4 give the
likelihood values of the largest maxima found. Some observations can be
made. First, in all cases, at most two maxima and a number of boundary
solutions are identified. Again the MLEs given by Aitkin do not always
correspond to the global maximum. This has some consequences for some
of its bootstrap likelihood ratio tests (to assess the number of components)

carried out. In particular,

e For M=2 no MLE was found. As a result, a bootstrap likelihood ratio
test (to test one component against two or two against three) could
not be carried out. In spite of the fact that the likelihood function for

M=2 has a global maximum.

e For M=5, a local and not the global maximum was found. Conse-
quently, not only the p-value to test 4 against 5 components will be

incorrect, but also the bootstrap likelihood procedure to test 5 against
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Table 6.4: Value of the log likelihood (InL) for several mazima in case of an
M-component normal mizture with a common scale parameter.

Number of components M

Maxima, 1 2 3 4 5 6
MLE -240.417 -230.500 -212.683 -208.249 -205.346 -197.295
2 - -239.371 - - -205.427 -
A - -240.417 -230.500 -212.683  -208.249  -205.346

Note: Maxima in bold are those obtained by Aitkin (2001). Maxima A are boundary

solutions.

6 components, since simulated samples will be based on this incorrect
MLE. For this case, we only expect minor differences when using the
correct MLE due to the similar nature of the local and global maxi-

mum.

Second, to infer the stability of the sample mainly the difference
in likelihood value between the MLE and the MLE of the mixture with one
component less has to be looked for. Although, one should be careful with
interpretations. For example, for the 6-component mixture the likelihood
function has only one maximum, with a likelihood value that is considerably
larger than the likelihood value of the global maximum at M=5, i.e., the
sample seems to be stable. Still, compared to the MLE at M=4, the two
additional components of the MLE at M=6 essentially only fit the two groups
of two isolated data points better (Figure 6.7a). Sometimes, as for example
at M=5, the instability of the sample is clear from the few maxima at the
top of the likelihood.

Third, the difference in likelihood value between the MLE of the
two-component and the three-component mixture suggest that a third com-
ponent is necessary (see also Figure 6.7b). This is confirmed by the result
of the likelihood ratio test, to test 1 against 3 components, given by Aitkin
(2001). For M larger than 3, mostly the global maximum of the likelihood
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Figure 6.7: MLE fits of the mizture model with common scale parameter for
the galazy sample.

function does not really dominate this likelihood. Moreover, the additional
components only fit some specific features of the middle part of the sample
better. As a result, with regard to inference, quite likely no more than 3
components will be accepted. This is in line with the bootstrap likelihood
ratio test results of Aitkin. Note that for smoothing applications more than

3 components could be useful.

6.2.2 An adapted likelihood analysis

All observations are rounded to the given value of 6 = 0.05. The
adapted likelihood estimator looked at is MLEJ. The interval-censored sam-
ple consists of 60 different intervals. Its normal QQ-plot is shown in Fig-
ure 6.9a. For both the mixture model with common and non-common scale
parameter, Table 6.5 give the smallest value among all scale parameters for
some of the maxima of the (density) likelihood function. From this, it is pos-
sible to deduce the number of mixture components at which differences can

be expected between the likelihood analysis and the adapted one. Namely,
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in case of an non-common scale parameter, up to M=3 the smallest scale
parameter encountered for the largest 3 maxima of the density likelihood, is
sufficiently larger than 0.05. As such, conclusions drawn from the likelihood
and the adapted likelihood analysis are likely to be similar. On the contrary,
from M=4 on, distinct spurious maxima are at the top of the density likeli-
hood function. This gives rise to a value for one of the scale parameters of
the largest maximum which is considerably smaller than 0.05. Consequently,
different maxima will be at the top of the likelihood and the adapted likeli-
hood function. For a common scale parameter, however, no real differences
are expected between both analyses, since up to M = 6 (and even more) the
MLE of the scale parameter is large enough compared to 0.05.

To check these findings, an adapted likelihood analysis, similar to
the likelihood analysis, is carried out. In the following, results are briefly
described.

Interpretation of the derivative and cosine plot

The m-values used in the tangent-rico method are 3, 7 and 13.
Derivative and cosine plots for the two largest values are shown in Figure 6.8.
It is observed that they resemble those obtained from the uncensored sample

(Figure 6.4). As a result, similar conclusions can be drawn.

Analysis of the adapted likelihood

Non-common scale parameter Table 6.6 is the equivalent of Table 6.3
for the adapted likelihood analysis. Except here, maxima are tabulated ac-
cording to their equivalent in the density likelihood (if found). So, likelihood
values are not necessarily placed in an increasing order. Up to 3 mixture
components, no problems are encountered. The largest local maxima are
easily located. The three largest maxima identified can be compared to
those found with the classical likelihood function. Although the difference

in likelihood value between two of these maxima can be slightly different in
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Figure 6.8: Plots of the derivative and of the cosine of the tangential deflec-
tion of the normal QQ-plot of the interval-censored galazy sample.
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Table 6.5: Smallest value among all scale parameters of a mizture model,
for some mazima of Tables 6.8 and 6.4.

Number of components M
Maxima 1 2 3 4 5 6
(M)LE 454 0.422 0.423 0.000500 0.000500  0.0175

2 - 1.88 0.422 0.0175  0.000500  0.000500
3 - 0.560 0.644 0.0201 0.0430 0.0201
4 - 0.0203  0.0202 0.438 0.0175 0.00200
5 - 0.000500

A - 0.921 0.421 0.0201

B

- 0.422

(a) Non-common scale parameter.

Number of components M.
Maxima 1 2 3 4 ) 6
MLE 4.54 3.03 2.08 132 1.10 0.81
2 - 4.02 - - 1.07 -

(b) Common scale parameter.

both situations, findings are the same. For M=2, the sample is unstable due
to an unsuitable model, while for M=3 the sample is stable. Figure 6.9b
illustrates that there is an negligible difference between the likelihood and

the adapted likelihood estimate for the 3-component mixture model.

With more than 3 components, finding the adapted likelihood esti-
mate for the M-component mixture is not obvious. Although some distinct
spurious maxima present in the likelihood function are disappeared in the
adapted likelihood function (for example, those maxima with one of the scale
parameters equal to 0.0005), the surface of the latter is still highly unstable.
It has a lot of maxima attained outside the parameter space and many other

maxima, with plausible parameter values. The introduction of § does not
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galaxy sample. component mixture model.

Figure 6.9: Interval-censored galazy sample.

lead to a reliable adapted likelihood estimate for any of the mixture models
with more than 3 components. Moreover, for M=6 we did not identify a
largest local maximum. Note that maximizing the adapted likelihood func-
tion with M larger than 3, is quite complicated compared to the classical
case.

In summary, this adapted likelihood analysis confirms the results
obtained with the likelihood analysis. The sample is too small to clearly

recognize a fourth component.

Common scale parameter Practically the same results as with the like-
lihood analysis are obtained. Until at least 6 components, the surface of the
adapted likelihood function looks like the surface of the classical likelihood
function. To illustrate this, the differences in logarithm of likelihood value
between the MLEs at M and M+1 components is tabulated in Table 6.7
for both analyses. As noted, differences between both situations are minor.

Further, no more or other maxima are found and adapted MLEs are equal



Chapter 6: Case studies 227

Table 6.6: Value of the adapted log likelihood function for the largest mazima
found in case of an M-component general normal mizture.

Number of components M

Maxima, 1 2 3 4 5 6
(M)LE -486.070 -465.989 -449.313 - - -428.000
2 - -466.037  -455.624  -/43.337 - -
3 - -474.738 -457.879  -442.408 -435.159 -429.496
4 - -476.859  -457.515  -443.457 - -434.820
5 - -457.882
A - -482.663 -445.157  -437.290
-440.477
B - -442.016

Note: Values in bold correspond to the adapted likelihood estimate. Values in italic
are related to maxima attained outside the parameter space. The numbers in the

column “maxima” refer to the maxima in Table 6.3

Table 6.7: Difference in log likelihood value between the (adapted) MLEs for
the M-component and (M+1)-component mizture model with common scale
parameter.

Combinations of mixture components

Method 1-2 2-3 3-4 4-5 5-6
Likelihood 9.917 17.817 4.434 2903 8.051
Adapted likelihood 9.879 17.815 4.399 2.876 7.932

to the MLEs for at least 2 significant numbers. As a result, conclusions

concerning the dominance of the global maximum are similar.

Also the results of the likelihood ratio test to assess the equality
of the scale parameters (given a number of mixture components) are com-
parable up to 3 components. Namely, for the two-component mixture, the
value of the likelihood ratio test statistic for the likelihood analysis is 20.61
as opposed to 20.34 for the adapted analysis. For the 3-component mixture

this becomes 18.40 against 18.13. In case of more than 3 components results
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are not comparable anymore. However, in this situation carrying out this
kind of test is rather useless due to the nature of the surface of both the

classical and adapted likelihood of the general finite mixture model.

6.2.3 Conclusions

Based on an analysis of the likelihood surface, it can be concluded
that no more than 3 components are appropriate when considering a gen-
eral normal mixture model. The sample contains not enough information to
obtain a useful likelihood estimate for a 4-component general normal mix-
ture model. Although derivative and cosine plots weakly suggest a fourth
component, the sample size is too small to recognize it as not at random.

This is in contrast to results obtained in the literature. Both Aitkin
(2001) and McLachlan and Peel (2000) state that at least four components
could be used.

When the general normal mixture model is estimated, information
concerning the likelihood surface should be given. If only likelihood esti-
mates are given, they should be considered with caution. Likewise, results
of bootstrap likelihood ratio tests should be handled carefully. We belief that
a likelihood ratio test to assess M against M+1 components, should not be
carried out if the sample is highly unstable with respect to an M-component
mixture.

The results of the adapted likelihood analysis confirm the conclu-
sions of the likelihood analysis. Findings could be derived directly through
considering the magnitude of the scale parameters of the likelihood estimates

only.
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Conclusions

The basic aim of this project was to arrive at a sensible and work-
able approach for the maximum likelihood estimation of general finite mix-
tures. At the end, this work can be looked at as a kind of “guidebook”
for the (maximum) likelihood estimation of (general) finite mixtures with
a (log)location-scale distribution as component density. We believe that it
provides the theoretical background as well as the practical tools to carry
out a principled likelihood based analysis of “multimodal” samples. Two of
its main applications are illustrated by the case studies in Chapter 6.

While for many basic distributions the application of the ML method
is straightforward with the commonly accepted global maximum as MLE,
the use of the classical ML method for the general finite mixture distribution
is generally assumed to be problematic. In Chapter 4, we have given one
possible framework, which allows to handle this estimation problem. We
investigated and compared some existing techniques and solutions dealing
both with the nonexistent classical MLE and with the choice of one proper
maximum out of the many of the classical likelihood function. We have not
only explained that most standard methods which try to solve the problem
of the nonexistent MLE, either do not solve the problem of the non-existence

of a consistent global maximum or are not an option, but also that the al-
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ternative likelihood method can be considered as a natural extension of the
classical ML method.

Moreover, we believe to have shown that there is no reason to not
use the likelihood method for the estimation of general finite mixtures as
long as one keeps in mind some basic rules. First, instead of concentrating
only on one specific maximum, the nature of the likelihood surface has to be
considered too. Specifically, if the largest local maximum is not dominating
the likelihood function, inference results based on any maximum should be
questioned or even not used at all. On the contrary, if the largest local max-
imum dominates the likelihood function, principled inference results can be
obtained from the likelihood estimate in the same way as from a classical
MLE. Second, if distinct spurious maxima are at the top of the likelihood
function, there are problems with the numerical identifiability of the esti-
mation problem. Reliable or meaningful estimates cannot be obtained from
maxima of the likelihood function. Nevertheless, these spurious maxima,
make it possible to recognize too small sample sizes or a mixture model with
too many components. Their appearance at the top of the likelihood re-
veal that the asymptotic properties of the LE cannot be guaranteed at this

specific sample size.

The incorporation of a measurement error will not solve the prob-
lems encountered with the classical ML. method. Moreover, not only these
adapted likelihood methods deal with the same kind of problems, but also
the same kind of strategy as for a likelihood analysis has to be followed for
an adapted likelihood analysis. Based on the likelihood estimates of the
scale parameters, in case of a location-scale distribution as component den-
sity, and the possible values for the measurement error, it can be derived

whether an adapted likelihood analysis could lead to different conclusions.

We proposed some tools that allow an exploration of the samples
with regard to the possible number of mixture components as well as the

automatic fitting of general finite mixtures. The tangent-rico method has
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an excellent performance as a starting value method, in particular in combi-
nation with the EM-algorithm. For two-component general finite mixtures,
it has been shown that this method works at least as good as using the
true values as starting values. In addition, it can be supplemented with a
feasible method that, regardless of the sample size, give almost always rise
to the largest local maximum. For mixtures with a small number of com-
ponents, it has been made possible to carry out reliable simulations and
bootstrap procedures. But most importantly, irrespective of the number of
mixture components, the maxima identified with the starting values of the
tangent-rico method, give in general a good indication of the stability of the

sample.

Unless the mixture components are very poorly separated or cen-
soring is involved, the EM-algorithm in combination with the tangent-rico
method only required a limited amount of time. Although, its performance
was slower for smallest extreme value or Weibull mixtures compared to
(log)normal mixtures, certainly for two or three-component mixtures it is
still workable in practice. However, in case of moderate or heavily censored
samples, the slowness of the EM-algorithm is a potential problem. When us-
ing the NR-method, often the same maxima as with the EM-algorithm were
obtained. Still more research is required to find out whether it would be a
good alternative. As a final note, it should be realized that poorly separated
mixtures, whether the scale parameter is common or not, will always require
a huge sample size to obtain reliable (maximum) likelihood estimates. Their
estimation will always be problematic, no matter what iterative procedure

is used.

Apart from the NR-method, the methods used in this work are
implemented by the authors. Quite likely their performance can be improved
by a better implementation. However, the methods, as proposed here, are a
good basis for the set up of a complete software package, which easily and

in sound way, handles the likelihood estimation of general finite mixtures.
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This work should not be regarded as an end-point. Many questions
remain open and many extensions are still worth the effort to be investi-
gated. One topic which deserves more attention is the relation between the
stability of the sample and the need for a formal testing procedure for the
specific number of mixture components. In particular, whether such a test
is still useful when distinct spurious maxima are found at the top of the
likelihood function. Further, there is the possible extension of this work,
and in particular the tangent-rico method, to the second important type of
heterogeneous failure time distribution, namely the minimum-type model.
Also, there remains open the question whether the tangent-rico method can
be extended to the case of multivariate mixtures. Still, the biggest chal-
lenge is to incorporate all of this in a performant software package, which
is accessible to all kinds of domains, including the reliability of electronic

components.
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Conditions for (maximum)

likelihood estimation

A.1 Conditions of Cramér and Wald
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Additional tables

B.1 The influence on the starting values of the

choice of the plotting positions
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Table B.1: Comparison of candidates found for inflection points or nodes
using different sorts of plotting positions for some worst-case scenarios.

1_e S {05 103175

n m n 710365  ntl
20 3 ? ? ? ?
5
50 3
5
11
100 5
11
21
500 25
51
101
1000 51
101
201

(a) Comparison of “best” inflection point found
based on a SEV QQ-plot when samples originate
from a 2-component normal mixture with true pa-

rameter values 1 = 0,00 = 1l,u2 = 3,02 =
0.5,p1 = 0.2.
. pi .

noom 1S b ioum i
20 3 91 96 95 94

5 81 (84) 89(92) 90 (92) 86 (88)
50 3

5

11
100 )

11

21
500 25

51

101
1000 51

101

201

(b) Comparison of “best” couple nodes found based on a
normal QQ-plot when samples originates from a normal

distribution with true parameter values = 0,0 = 4.
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B.2 A simulation study for two-component SEV

mixtures

B.2.1 Search for the largest local maximum
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Table B.2: Comparison between the largest mazimum obtained with method
11 and the largest mazimum obtained with method I or I11.

po=1 pp=2 pp=3 pp=4
n I 111 1 111 1 II11 1 III

20 = 53 100 64 100
> 47 0 36 O

50 = 29 100 69 100
> 71 0 31 O

(a) Group 1: separation in shape parameter.

g1 — 1 g1 — 0.5 g1 = 0.2 g1 = 0.1
n I 111 1 III I 111 1 III

20 = 71* 99* 86 100
> 28 0 14 0

50 = 92 100 100 100
> 8 0 0 0

*Only 99 simulations are carried out. Simulation 100
compared maxima with a singularity

(b) Group 2: separation in scale parameter. The num-
ber between brackets is the number of samples where no

maximum at all was found.

T =0.2 71'120.4 71'120.6 71'120.8
n I 111 1 II1 1 III I II7

20 = 73 100 64** 98**
> 27 0 33 0

50 = 90 100 &9 100
> 10 0 11 0

*Only 98 simulations are carried out. Simulation 99,
100 compared maxima with a singularity

(¢) Group 3: varying the proportion parameter.
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Table B.3: The number of times (k) out of 100 that the starting value of a
certain method leads to the LE for the sets of parameter values of group 1.

M2 = 1 M2 = 2
n A B D A B D
20 30 14 (4) 22
50 18 5(4) 7
100 15 12(2) 12
200

M2 = e =4

n A B D A B D
20 52 28 (1) 43 52 34 46
50 46 31 32 79 75 75
100 56 50 53 91 91 91
500

B.2.2 Consistency of the tangent-rico method
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Table B.4: The number of times (k) out of 100 that the starting value of a
certain method leads to the LE for the sets of parameter values of group 2.

g1 = 1 g1 = 0.5
n A B D A B D
20 39 (1) 17 (9) 28 (3)
50 56 36 41
100 71 67 67
200

g1 = 0.2 g1 = 0.1
n A B D A B D
20 67 49 62 90 73 82
50 98 93 97 100 98 99
100 100 100 100 100 100 100
200

B.3 Tables for Section 4.5

MLE versus adapted MLEs for large value of 6™MF The sample

from Table B.6 has size 50 and is simulated from a two-component normal

mixture with parameter values p; =0, uo = 7, 0 = 3 and m; = 0.5. Except
for some boundary solutions, all likelihood functions had only one maximum.

The MLE is given by fi; = —0.327(1.11), jis = 5.86(1.03), & = 2.79(0.435)
and #; = 0.435(0.156).

LE versus adapted LEs
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Table B.5: The number of times (k) out of 100 that the starting value of a
certain method leads to the MLE for the sets of parameter values of group 3.

™ = 0.2 T = 0.4
n A B D A B D
20 47 18(1) 31(1) 62  26(2) 44(1)
30 30 18 13 70 35 62
100 44 30 33 99 97 98
500

™ = 0.6 T = 0.8
n A B D A B D
20 61 (1) 45(2) 51 (1) 66 (1) 57 (10) 45 (20)
30 95 84 92 94 90 91
100 100 99 100 100 99 99

500
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Table B.6: Mazimum absolute difference between parameter estimates (first
table) and estimated standard errors (second table) of the different methods.
The parameter where the difference is largest, is indicated between brackets.

0 &M% MLE - MLE§ MLE - MLEé* MLES - MLE6*  MLE - MLEJ,
le6 3.58¢-7 1.67e-7 (1) 1.24e-7 (u1) 2.91e-7 (111 1.37e-9 (t0.001)
le-5 3.58e-6 1.52e-6 (/JQ) 2.57e-6 (t0.00I) 2.15e-6 (t0.001) 4.38e-10 (/.,Ll)
le-4 3.58e-5 1.86e-5 (t0.001) 4.37e-5 (t0.00I) 6.23e-5 (t0.001) 4.58e-10 (t0.00I)
le-3  3.58e-4  1.28e-4 (u2) 4.00e-4 (u2) 5.29e-4 (p2) 4.23e-8 (t0.001)
le-2 3.58e-3 2.31e-3 (t()_()()l) 3.45e-3 (t0.00I) 5.75e-3 (t()_()()l) 4.23e-6 (t()_()()l
0.1 3.58e-2 2.78e-2 (t()_()()l) 3.43e-2 (t0_001) 3.96e-2 (ul) 4.23e-4 (t()_()()l

1 0.358 0.152 (t0_001) 0.274 (/1,1) 0.359 (/1,1) 4.26e-2 (t()_()()l
1.5 0.538 0.232 (/Jq) 0.224 (t0.00I) 0.398 (/Jq) 9.68e-2 (t0.001

2 0.717 0.294 (u2) 0.675 (1) 0.864 (u2) 0.174 (t0.001)

0 #1 MLE - MLE§S MLE - MLE§* MLEJ - MLE§*  MLE - MLEG,
le-6 50 7.39e-8 (u1) 9.02e-8 (1) 1.64e-7 (u1) 2.19e-9 (u2)
le5 50  6.42e-7 (uo)  5.27e-T () 1.40e-7 (u1)  6.60e-10 (to.001)
led 50  7.90e-6 (u1)  1.78¢-5 (1) 2.57e-5 (1) 8.67e-11 (to.001)
le-3 50 6.29e-5 (p2) 2.17e-4 (1) 2.69e-4 (1) 6.03e-9 (to.001)
le-2 50 1.77e-3 (Hl) 1.98e-3 (/.Ll) 3.75e-3 (/.Ll) 6.03e-7 (t0,001)
0.1 44 1.11e-2 (1) 1.69e-2 (1) 3.96e-2 (u2) 6.03e-5 (t0.001)

1 17/18 0.118 (/1,2) 8.93e-2 (,ug) 0.207 (/1,2) 6.04e-3 (t()_()()l)
1.5 13/12 4 976—2(/1,2) 0.234 (/1,1) 0.230 (/1,2) 1.36e-2 (t()_()()l)

2 10/9  0.136 (1) 0.256 (112) 0.235 (112) 2.42e-2 (o.001)

Note: # Iis the the number of different intervals in the sample for the adapted ML

methods. In case of an unequal number between the two methods, the first number

refers to the sample corresponding to the estimator MLES.
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Table B.7: Mazimum absolute difference between parameter estimates and
estimated standard errors of the different methods: di refers to max|é — §|
and dy to max|se(0) — se(0)|, with 6 and 0 one of the estimates LE, MLES
or LEj. The parameter where the difference was largest is indicated between

brackets.
5 W LE - MLES§ LE - LE} MLES - LE}
le=® 1.81e73 dy | 7.55e7 1 (oq) | 7.08¢77 (p1) 7.08¢7 (p1)
ds | 3.10e 1t (oy) L4de 7 (1) L4de 7 (1)
le ® 1.81e? di | 7.55¢ 7 (0q) 3.35e¢ % (p1) 3.35e¢ % (p1)
dy | 3.10e™ (o7) 6.59¢~7 (1) 6.59¢7 (1)
le™? 0.181 dy | 7.56e=7 (o) 7.89¢° (p1) 7.89¢7° (p1)
do 3.11e” "7 (01) 1.60e" (to_om) 1.60e—° (to_om)
0.0005 0.905 dy | 2.01le7® (0y) 0.058 (p1) 0.058 (p1)
do 8.54e~ 0 (0'1) 0.018 (t0.00I) 0.018 (t0.00I)
le™3 1.81 dy | 1.04e7* (0q) 2.24e (p1) 2.11e7* (p1)
dy | 5.08¢° (01) 4.77e > (1) 8.43e 7 (0y)
0.005 9.05 dq 0.058 (p1 0.058 (p1) 0.0015 (£0.001)
dg 0.018 (t0.00I) 0.018 (t0.00I) 0.00076 (0'1)
0.01 18.1 dy | 6MIEY = (¥) 0.34 (p1) -
dy - 0.14 (to.001) -
0.05 90.5 dq 0.33 (p1) 0.32 (p1) 0.017 (1)
dg 0.13 (to_om) 0.13 (t()_()()l) 0.0032 (pl)
0.1 181 dy | 6MIEY = (¥) 0.61 (01) -
do - 0.086 (t0.001) -
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Table B.8: Testing o1 = o9 with the likelihood ratio test. The LR statistic is
assumed to have a x? distribution with 1 df. The last column indicates the
lowest a-level (of the commonly used) on which the Hy would be rejected.

o W Method | LRT-value | p-value | a-level A
LE 6.639 0.00998 1%
le S 1.81e 3 LE; 6.636 0.00999 1%
MLE§ 6.639 0.00998 1%
le™ 1.81e™ LE; 6.651 0.00991 1%
MLE§ 6.639 0.00998 1%
le ! 0.181 LE; 6.361 0.0117 5%
MLE§ 6.639 0.00997 1%
0.0005 0.905 LE; 5.944 0.0148 5%
MLE§ 6.641 0.00996 1%
le=3 1.81 LE; 7.586 0.00588 1%
MLE§ 6.691 0.00969 1%
0.005 9.05 LE; 5.855 0.0155 5%
MLE§ 6.262 0.0123 5%
0.01 18.1 LE; 4.563 0.0327 5%
MLE§ 5.032 0.0249 7 5%
0.05 90.5 LE; 6.538 0.0106 5%
MLEJ 4.237 0.0396 5%
0.1 181 LE; 2.509 0.113 12%
MLE§ 5.162 0.0231 5%
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Table B.9: Mazimum absolute difference between parameter estimates and
estimated standard errors of the different methods: di refers to max| — 0|
and do to max|se(0) — se(f)|, with @ and 0 one of the estimates LE, MLE)

or LE5. The parameter where the difference was largest is indicated between
brackets.
) W LE - MLE§ LE - LEj MLES6 - LEj
le 6 5.97¢ 6 dq 4.78¢~ 11 (to_om) 3.37e 7 (to 001) 3.37e 7 (t() 001)
dg 8.376_11 (t0.00I) 8346 (t[) 001) 8.34e~ 8 (t() [)01)
le=® 5.97¢° dq 4.53e—11 (t0.001) 6.88¢7° (t0.001) | 6.88¢7° (t0.001)
do 1.12e ' (¢0.001) 1.68e° (to.001) | 1.68e ° (t0.001)
1674 5.97674 dq 4.11e7? (t() 001) 6.17¢° (to 001) 6.17¢° (t() 001)
dg 1036 (t() [)01) 2236 5 (t[).()[)l) 2236 5 (t0.00I)
le=3 5.97¢3 dy 4.11e~7 (to.001) 1.63e~* (02) 1.63e=* (09)
do 1.03e~ 7 (t0.001) 5.14e 7 (o) 5.14e > (o)
le 2 5.97¢ 2 dq 4.11e° (t() 001) 4.33¢3 (t0.001) 4.37674 (to_om)
dg 1.03e~ 5 (t0.00I) ]_.736_d (t[).()[)l) ]_.726_d (t0.00I)
01 ] 0597 [d | 0.0041 (to.001) | | 0.047 (to.001) | 0.052 (to.001) |
I S || ____ 0.0010 (to.001)_ _ _ _ _[ | 0.016 (to.001) _ | 0015 (Zo.001) _ |
02 ] .19 [d | 0.017 (tooo1) | 0.02L(o2) [ 0.032 (09) |
dg 0.0040 (t0.00I) 0.0067 (,U:Q) 0.0068 (/.1;2)
0.3 1.79 d1 0.038 (t0.001) 0.066 (/1,2) 0.067 (,ug)
dQ 0.0087 (t0.001) 0.0040 (,ug) 0.0084 (t0.001)
0.5 2.99 dq 0.11 (%0.001) 0.056 (p2) 0.12 (%0.001)
do 0.020 (t0.001) 0.0055 (to_om) 0.014 (to_om)
0.7 4.18 dy GMIEY () 0.36 (%0.001) -
dy - 0.39 (p2) -
1 5.97 dy | GMEEY — 0 and 63750 — 0 | 0.48 (0.001) -
0, : 0.21 (12) :
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Table B.10: Testing o1 = o2 with the likelihood ratio test. The LR statistic
is assumed to have a x> distribution with 1 df. The last column indicates the
lowest a-level (of the commonly used) on which the Hy would be rejected.

4] W Method | LRT-value | p-value | a-level A

LE 2.149 0.143 15%
le™5 | 5.97e7 LE; 2.149 0.143 15%
MLEG§ 2.149 0.143 15%
le®| 597e” LE; 2.149 0.143 15%
MLEG§ 2.149 0.143 15%
le=* | 5.97e™* LE; 2.150 0.143 15%
MLEG§ 2.149 0.143 15%
le? | 5.97e? LE; 2.140 0.143 15%
MLEG§ 2.149 0.143 15%
le 2 5.97¢ 2 LE; 2.288 0.130 15%
MLEG§ 2.149 0.143 15%

o1 | 0597 [ LE; [ 3.223 | 0.0726 | 10% |
MLEG§ 2.150 0.143 15%

02 | .19 [ LE; [ 1281 | 0258 | 30% |
MLEG§ 2.160 0.142 15%
0.3 1.79 LE} 1.599 0.206 25%
MLEG§ 2.211 0.137 15%
0.5 2.99 LE; 3.345 0.0674 10%
MLEG§ 2.460 0.117 15%
0.7 4.18 LE} 0.00916 | 0.942 95%
MLEG§ 2.766 0.0963 10%
1 5.97 LE; 0.0372 0.847 85%
MLEGS 0 1 non
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