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1
Introduction

1.1 Introduction

In recent times, considerable success has been achieved in the development of new

drugs for wide ranging diseases affecting human race. The process of drug develop-

ment has evolved into an extremely complex procedure. The first step in the process

of drug development is identifying promising compounds. Once a compound has been

isolated for further scrutiny, it enters a rigorous testing and evaluation stage, the so-

called pre-clinical phase. This stage is designed to assess the chemical properties of

the new drug as well as to determine the steps for synthesis and purification. In this

stage, the toxicological and pharmacological effects of the drug are evaluated through

in-vitro and in-vivo animal testing. If a compound is thought to be safe and effective

as a chemical agent, then it will be approved to move to a clinical trial stage. Once ap-

proved for clinical studies, a three-phase process begins where safety and efficacy are

continually assessed with increased scrutiny and an increasing patient population. At

1
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all stages of drug development, the efficacy of the drug is assessed through its effect on

clinically meaningful variables that are sensitive to detect treatment effects. However,

such variables might increase the complexity and/or the duration of a clinical trial,

either because they are costly, difficult to measure, require a long follow up time, or

require a large sample size due to low incidence of the event. These problems might

be avoided through replacing the true endpoints by other ones, measured earlier or

in a more convenient fashion, which here will be termed as surrogate endpoints.

The Biomarkers Definitions Working Group gives the following definitions for clin-

ical endpoint, biomarker and surrogate endpoint respectively. A clinical endpoint is

a characteristic or variable that reflects how a patient feels, functions, or survives. A

biomarker is a characteristic that is objectively measured and evaluated as an indica-

tor of normal biological processes, pathogenic processes, or pharmacologic responses

to a therapeutic intervention. Depending on their intended use, biomarkers are fur-

ther classified as therapeutic and prognostic. A therapeutic biomarker which is also

called a predictive biomarker is a biomarker that informs the treatment effect on the

clinical endpoint. A prognostic biomarker on the other hand, is a biomarker that in-

forms the clinical outcome, independent of treatment. It provides information about

natural course of the disease in individual with or without treatment under study. A

surrogate endpoint is a biomarker that is intended to substitute a clinical endpoint.

A surrogate endpoint is expected to predict clinical benefit, harm, or lack thereof

(Biomarkers Definition Working Group 2001). A surrogate endpoint, as compared to

true endpoints like survival, can often be measured earlier, easier, and more frequently

and is less subject to competing risks. To this end, surrogate endpoints come into

play in a number of contexts in place of the endpoint of interest, referred commonly

to as the true or clinical endpoint. One important reason for the present interest
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in surrogate endpoints is the advent of a large number of biomarkers that closely

reflect the disease process. An increasing number of new drugs have a well-defined

mechanism of action at the molecular level, allowing drug developers to measure the

effect of these drugs on the relevant biomarkers (Ferentz 2002). There is increasing

public pressure for new, promising drugs to be approved for marketing as rapidly as

possible, and such approval will have to be based on biomarkers rather than on some

long-term clinical endpoint (Lesko and Atkinson 2001). If the approval process is

shortened, there will be a corresponding need for earlier detection of safety signals

that could point to toxic problems with new drugs. It is a safe bet, therefore, that the

evaluation of tomorrow’s drugs will be based primarily on biomarkers, rather than

on the longer-term, harder clinical endpoints that have dominated the development

of new drugs until now. It is therefore best to use validated surrogates, though one

needs to reflect on the precise meaning and extent of validation (Schatzkin and Gail

2002). Like in many clinical decisions, statistical arguments will play a major role,

but ought to be considered in conjunction with clinical and biological evidence. For a

biomarker to be used as a “valid” surrogate, a number of conditions must be fulfilled.

The ICH Guidelines on Statistical Principles for Clinical Trials state that “In practice,

the strength of the evidence for surrogacy depends upon (i) the biological plausibility

of the relationship, (ii) the demonstration in epidemiological studies of the prognostic

value of the surrogate for the clinical outcome and (iii) evidence from clinical trials

that treatment effects on the surrogate correspond to effects on the clinical outcome”

(International Conference on Harmonisation 1998).

Ideally, there should be guidelines to declare a marker a useful surrogate for a

clinical endpoint. Several methods have been suggested for the formal evaluation of

surrogate markers. Some of these methods are based on a single trial while others,
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which are gaining momentum in the present day, are based on meta-analytic concepts.

The first formal approach to evaluate markers is attributed to Prentice (1989), who

has given a definition of surrogate endpoints, followed by a series of operational cri-

teria to check whether the definition is fulfilled. Freedman, Graubard, and Schatzkin

(1992) have supplemented the hypothesis-testing-based criteria, which necessarily de-

pend on the power of the test performed, with a quantity to be estimated. They

suggested the use of the so-called proportion of treatment effect explained (PTE) by

the surrogate as an alternative means of validation. The PTE faces serious drawbacks,

against the background of which Buyse and Molenberghs (1998) have suggested the

use of another quantity, the relative effect (RE), defined as the ratio of the treatment

effect on the true endpoint to that on the surrogate endpoint. In turn, the RE is open

to severe criticism as well. First, the RE’s confidence intervals, like the ones for PTE,

tend to be wide. While this could in principle be overcome, there is a second, more

severe problem in the sense that the RE is useful for prediction of the true treatment

effect from the surrogate treatment effect only when the relationship between both is

multiplicative. This may be rightfully viewed as restrictive and, in any case, cannot

be verified from a single trial. Moving away from single trial based methods leaves us

with the meta-analytic alternative. With in the context of meta-analytic approach,

two possible views are possible when evaluating a marker. The first deals with the in-

dividual patient level and is connected with the biological pathway from the surrogate

to the true endpoint and is termed as individual level surrogacy. This, however, does

not necessarily mean a marker is useful to capture the treatment effect in the setting of

a clinical trial. Therefore, a second view, focusing on the treatment effect is necessary

and possible (Fleming and DeMets 1996). Precisely, this level quantifies the associ-

ation between the treatment effects on the marker and the clinical endpoint which
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is termed as trial level surrogacy. Buyse et al (2000) and Burzykowsky et al (2004),

among others, have presented a meta-analytic modeling framework, within which both

forms of validation can be undertaken. Recently, pre-clinical microarray experiments

have become an increasingly common laboratory tools to investigate the activity of

thousands of genes simultaneously and their response to a certain treatment. The

main objectives for microarray studies vary from application to application, but most

of them revolve around identifying a group of genomic biomarkers for a particular clin-

ical outcome of interest. Note that, we can observe two main differences concerning

the evaluation of biomarkers, between the clinical trials and the microarray setting.

The first difference is that the surrogacy problem in the microarray setting consists of

thousands of potential biomarkers and one response which in most clinical trials is not

the case. The second difference is that surrogacy in the microarray setting is needed

to be tested and not just to be evaluated as has been the case in the clinical trial set-

ting surrogate marker validation although some surrogate marker validation exercises

have testing procedures. Appreciating these differences however, we still can establish

analogies between the individual and trial level surrogacy concepts and the prognostic

and predictive biomarkers respectively. The selection of prognostic biomarkers can

be carried out using existing methods within the the surrogate marker methodology

literature with no or little modifications. However, since most microarray experiments

are based on a single trial, selection of therapeutic biomarkers might not be easily

carried out with the existing methods developed for surrogate marker validation at a

trial level which calls for other alternative approaches.
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1.2 Structure of the Thesis

The main focus of this thesis is developing marker methodology for hierarchical out-

comes. More specifically, emphasis will be given to the statistical validation of surro-

gate endpoints. The thesis is organized in to two main parts. The first part deals with

the statistical validation of surrogate endpoints of various types while the second part

focuses on the selection and evaluation of genomic biomarkers. The methods summa-

rized in this thesis will be applied to real life data sets. It is therefore logical to start

the thesis by laying out the different case studies used to demonstrate the practical use

of the methods. Following the motivational case studies, we outline a concise review

of the meta-analytic approach to surrogate marker validation for two cross-sectional

normally distributed endpoints. Here, we raise computational and other issues which

have not been addressed before. This chapter uses the first publication in the list given

earlier as the main reference. The information-theoretic unification, which enables the

validation of normally as well as non-normally distributed outcomes will follow the

meta-analytic approach. The description of this approach will then be followed by

three chapters focused on the assessment of its performance for the cases of mixture

of binary and continuous, two binary endpoints and a mixture of time-to-event and

cross-sectional endpoints respectively. In the former two of the stated three chapters,

simulation studies will be carried out to compare the performance of the information-

theoretic approach against a probit formulation. The later mimics the meta-analytic

approach designed for two normally distributed endpoints by making use of latent

variable formulation. These two chapters use publications 2 and 4 respectively as

main references. On the third of these three chapters, three information theory based

methods will be compared with one another on a simulation setting where the pro-

portional hazard assumption is violated. These information theory based approaches
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will be followed by a method for a mixture of longitudinal and cross-sectional end-

points. The methods, which were originally designed for the case of two longitudinal

endpoints, will be modified to accommodate a mixture of cross-sectional and longitu-

dinal outcomes which will be used interchangeably as surrogate and true endpoints.

The main reference for this chapter is publication list 3. Once the methods are tuned

to deal with a mixed longitudinal and cross-sectional outcome, they will be used to

select optimal number of repeated measures in a new surrogate marker setting where

both the true and surrogate endpoints come from a single continuous longitudinal

sequence. The cumulated earlier measures of the sequence will be used as surrogates

for later measurements. The approach takes the cost of waiting time and inclusion of

extra time points by devising an objective function. The same methodology then will

be used for a binary longitudinal sequence. In both cases simulated data will be used

to aid understand the application of the methods under different scenarios. The main

reference for this chapter is publication 7. This chapter will wind up the validation

of surrogate endpoints part of the thesis.

The second part of the thesis starts with the method of selection and evaluation

of genomic biomarkers. Different statistical methods will be utilized to select and

evaluate feature-specific as well as joint biomarkers for depression. The methods in

this chapter mainly focus on selecting genes which exhibit a linear association with

the clinical outcome and use publication 6 as main reference. The assumption of

linearity might be restrictive and hence alternative methods for gene selection will

be the concern of the chapter that follows. Different parametric and non-parametric

models will be used to select genomic biomarkers. The two chapters on the selection

and evaluation of biomarkers focus on the so called prognostic biomarkers. The fact

that microarray experiments are single trial in nature prohibited the use of trial level
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surrogacy measure to quantify the association between the treatment effect on the

potential biomarker and the clinical outcome. Thus a Bayesian approach was enter-

tained through which an R-square type measure similar to the trial level surrogacy

is given. This chapter winds up the second part of the thesis and will be followed

by a general discussion and future research chapter. Some analytical derivations and

statistical software will be given in the subsequent appendices.



2
Motivational Case Studies

2.1 Motivating Case Study

In this chapter we will present the case studies used to elaborate the different method-

ologies summarized in this thesis. Unless stated, for the evaluation of surrogate end-

points part, Z represents a binary treatment indicator, S and T stand for surrogate

and true endpoints respectively. For the selection and evaluation of biomarkers part,

the same notations represent treatment , biomarker and clinical outcome respectively.

2.1.1 The Age-related Macular Degeneration Study

This is a clinical trial involving patients with age-related macular degeneration (ARMD),

a condition in which patients progressively lose vision. Overall, 1186 patients from

114 sites participated in the trial. Patients’ visual acuity was assessed using stan-

dardized vision charts displaying lines of five letters of decreasing size, which patients

had to read from top to bottom. The visual acuity was measured by the a visual

9
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acuity score. The sites in which patients were treated will be considered as units of

analysis. Some of the sites participating in the trial enrolled patients only to one of

the two treatment arms. These sites were excluded from considerations. A total of 82

sites were thus available for analysis, with a number of individual patients per center

ranging from 2 to 19 (424 patients overall).

2.1.2 A Meta-analysis of Five clinical Trials in Schizophernia

The data come from a meta-analysis of five double-blind randomized clinical tri-

als, comparing the effects of risperidone to conventional antipsychotic agents for the

treatment of chronic schizophrenia. Schizophrenia has long been recognized as a het-

erogeneous disorder with patients suffering from both ‘negative’ and ‘positive’ symp-

toms. Negative symptoms are characterized by deficits in cognitive, affective and

social functions for example poverty of speech, apathy and emotional withdrawal.

Positive symptoms entail more florid symptoms such as delusions, hallucinations and

disorganized thinking, which are superimposed on mental status (Kay, Fiszbein, and

Opler 1987). Several measures can be considered to asses a patient’s global condition.

Clinician’s Global impression (CGI) is generally accepted as an admittedly subjective

clinical measure of change. Here, the change of CGI from baseline will be considered

as the true endpoint. It is scored on a 7-grade scale used by the treating physician

to characterize how well a subject has improved since baseline. Another useful and

sufficiently sensitive assessment scales is the Positive and Negative Syndrome Scale

(PANSS) (Kay, Opler, and Lindenmayer 1988). The PANSS consists of 30 items

that provide an operationalized, drug-sensitive instrument, which is highly useful for

both typological and dimensional assessment of schizophrenia (Kay, Opler, and Lin-

denmayer 1988). We will use the change from baseline in PANSS as our surrogate
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endpoint. The data contains five trials and in all trials, information is available on

the investigators that treated the patients. This information is helpful to define group

of patients that will become units of analysis.

2.1.3 A Study on Stress Related Disorders

The data come from a preclinical rat experiment on a compound under development

for stress-related disorders. The objective of the experiment was to identify the effect

of the compound on stress hormones and a series of physiological variables. In the

experiment, stress is induced by forcing a rat to swim for 15 minutes in a bath of 20 cm

high lukewarm water of 25 degrees Celsius, according to a protocol as described by De

Groote and Linthorst (2007). The experiment was designed according to a latin square

crossover design with 4 periods and 4 treatment groups (vehicle without stress, vehicle

with stress, compound without stress, compound with stress). Forty-five minutes after

randomization, the rats were injected with either a vehicle or the compound under

consideration. Ten minutes later, half of the rats injected with the vehicle and half of

the rats injected with the compound, were subjected to so-called “swim stress”, also

depending on group membership. For all eight animals, measurements were analyzed

in order to quantify their stress level. Telemetry measurements (such as heart rate and

blood pressure) were recorded continuously and averaged every 5 minutes. Seventeen

blood samples were taken in a fully automated way, leaving the animals completely

undisturbed and following a well-defined scheme to sample blood plasma from which

corticosterone (CORT) was later extracted and quantified. And finally, rats were also

screened for their behavior in a 10 minutes interval by means of a video monitor. For

each rat, the percentage of time it has been active is thus determined. The recording

of behavior was done twice: a first time at 25 minutes after injection and a second
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time at 50 minutes after the end of the swim stress.

2.1.4 A Meta-analysis of Ten Clinical Trials in Acute Migraine

This is a meta-analysis of 10 early phase trials assessing the efficacy of several ther-

apies for the treatment of acute migraine crises. Each trial was placebo-controlled

and aimed at evaluating one of three experimental treatments. Two trials also in-

cluded an active control arm. Overall, 801 patients were available, recruited over

38 different centers, with between 1 and 86 patients enrolled per center. Severity

of headache and migraine-related symptoms were measured prior to and at several

occasions after the dose administration. Severity was rated on a four-grade intensity

scale (0 =no, 1 =mild, 2 =moderate, 3 =severe). Clinically relevant endpoints for

efficacy included pain-free (pain score=0) and pain relief (pain score<= 1) two hours

post-dose. The main goal is to identify what symptoms are typically associated with

migraine episodes, such as, for example, nausea, vomiting, increased sensitivity to

light, i.e., photophobia, as well as to sound, i.e., phonophobia.

2.1.5 Stroke Study on Children with Sickle Cell Disease

The data results from a clinical trial involving 2323 children with sickle cell disease

(SCD). Children with this disease are susceptible to having a stroke at some time in

their lives. One measure that is commonly used for risk estimation for stroke is the so

called Transcranial Doppler, or TCD. This measure provides a simple risk estimation

for stroke in children with SCD. The unit of measure is velocity in centimeters per

second, estimated by Doppler ultrasound, from the higher of the 2 middle cerebral

arteries (MCAs), and it represents a physiological marker of the speed of blood flow

in the artery. Blood flow velocity can be increased by reduced lumen diameter, as in

stenosis or vasospasm, and/or by increased volume flow through the artery. In this
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study diastolic and systolic TCD velocities are measured for each patient repeatedly

over time although the majority of the patients have only one measurement. In

addition to the TCD velocity measures, the time to first stroke, the age and gender

of the patients is also recorded. The main objective of the study is to asses if the

measured velocities can be used as possible surrogates for the time to stroke.

2.1.6 A Case Study in Depression

A growing number of theories are tested to elucidate the cognitive, molecular and

psycho-physiological underpinnings of brain dynamics in clinical depression. A re-

cent approach to the study of depression has been in molecular patient profiling and

neuro-degenerative risk factors. However, these theories are usually tested using single

variables, e.g., depression and alpha, depression and heart rate. This study aims to

combine the cognitive, psycho-physiological and molecular profiling variables, usually

studied in isolation, in depression. It is envisaged that the integration of commonly

studied indices of depression and molecular patient profiling offer the chance of better

understanding the biomarkers of major depression and that these biomarkers may

be applied to develop and guide more efficient drug development and testing pro-

grams. One way of measuring the severity of depression is through the use of the

Hamilton Depression Scale (HDS or HAMD). It is a test measuring the severity of

depressive symptoms in individuals, often those who have already been diagnosed

with a depressive disorder. The HAMD is used to assess the severity of depressive

symptoms present in both children and adults. It is oftentimes used as an outcome

measure for depression in evaluations of antidepressant psychotropic medications and

is a standard measure of depression used in research of the effectiveness of depression

therapies and treatments. It can be administered, for example, prior to the start of
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medication and then again during follow-up visits, so that medication dosage can be

changed in part based on the patient’s test score. The overall objective of this trial

is to identify possible biomarkers for depression. 31 patients had been followed up

4–6 weeks after commencement of treatment with antidepressants. Also, 15 control

individuals had been followed up 4–6 weeks after their first visit. However, of the

31 depressed patients which had measurements after treatment, after removing the

missing values in metabolites and gene expression, complete information was avail-

able for 14 patients for the analysis of metabolites and 19 patients for analysis of gene

expression. There were in total 17502 genes and 269 metabolites. In addition to the

gene and metabolite measures, storage time of the samples, age, gender, and season

when the samples were collected and whether or not the subjects fasted were recorded

for each patient.

2.1.7 Behavioral Study in Rats

This is a randomized pre-clinical experiment on behavioral study. For each sub-

ject information is available about a treatment group, a clinical endpoint, and gene-

expression. The aim of the analysis is to identify genes, which can be used as genomic

biomarkers, i.e., can be used in order to predict the clinical outcome, and/or are re-

lated to treatment. The behavioral study is an experiment for compulsive checking

disorder. The disorder is induced by treating the animals with a chemical compound.

Twenty-four rats were randomized equally into two groups. The first group received

the active compound (T), while the second was given a solvent (P). After receiving

treatment, the rats had to complete an open field test. The data indicated how often

a rat went back to its home base in the open field. The home base was defined as

the area where the animal spent the longest cumulative time. Animals showing the
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signs of the disorder (meaning that the compound has successfully induced the symp-

toms, characteristic of the disorder) were characterized by displaying, for example,

an increased frequency of visits to the home base. The clinical outcome of the exper-

iment is the total number of visits the rats made to the home base. After completion

of the experiment, a sample was taken from the thalamus part of the brain of the

rats and used to obtain microarray measurements for 5644 genes. The data, from

the Affymetrix Rat Genome U34A arrays, were summarized using the Affymetrix

microarray suite software (MAS) Version 5.0, and normalized using quantile normal-

ization. The aim of the study was to investigate whether one could identify gene

changes that were correlated with the compound, i.e., the symptoms of the disorder,

and thereby indirectly discover genes that are involved in this disease.





Part I

Validation of Surrogate

Endpoints
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3
Meta-Analytic Framework of

Surrogate Marker Validation

The evaluation of surrogate endpoints can be carried out with either a single trial

or within a meta-analytic frame work. Although the single trial based methods are

relatively easy in terms of implementation, they are surrounded with difficulty as

there evidently is replication at the patient level, but not at the level of the treatment

effect which prohibits the computation of the trial levels surrogacy which in most sit-

uations is the most important part of the evaluation process. In light of the difficulties

surrounding the single trial based methods, the use of the meta-analytic approach be-

comes imperative. The meta-analytic approach has been originally formulated for two

continuous, normally distributed outcomes, and extended in the meantime to a large

set of outcome types, ranging from continuous, binary, ordinal, time-to-event, and

longitudinally measured outcomes. In this chapter we briefly review the methodology

for the case of normally distributed outcomes, followed by the simplified modeling

19
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approaches suggested by Tibaldi et al (2003).

3.1 Meta-Analytic Approach for Continuous Out-

comes

The meta-analytic approach is based on a hierarchical two-level model. Both a fixed-

effects and a random-effects view can be taken. Let Tij and Sij be the random

variables denoting the true and surrogate endpoint for the jth subject in the ith

trial, and let Zij be the indicator variable for treatment. First, consider the following

fixed-effects models:

Sij = µSi + αiZij + εSij , (3.1)

Tij = µT i + βiZij + εTij , (3.2)

where µSi and µTi are trial-specific intercepts, αi and βi are trial-specific effects of

treatment Zij on the endpoints in trial i, εSij and εT ij are correlated error terms,

assumed to be zero-mean normally distributed with covariance matrix

Σ =


 σSS σST

σT T


 . (3.3)

A classical hierarchical, random-effects modeling strategy can also be adopted in

the following manner:

Sij = µS + mSi + αZij + aiZij + εSij , (3.4)

Tij = µT + mTi + βZij + biZij + εT ij . (3.5)

Here, µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi and

mT i are random intercepts, and ai and bi are random treatment effects in trial i for

the surrogate and true endpoints, respectively. The random effects (mSi, mT i ,ai , bi)

are assumed to be mean-zero normally distributed with covariance matrix
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D =




dSS dST dSa dSb

dT T dTa dTb

daa dab

dbb




. (3.6)

The error terms εSij and εTij follow the same assumptions as in the fixed effects

models. In addition, following the fixed effect models (3.1) and (3.2), we can specify




µSi

µT i

αi

βi




=




µS

µT

α

β




+




mSi

mT i

ai

bi




, (3.7)

where the second term on the right hand side of (3.7) is assumed to follow a zero-mean

normal distribution with covariance matrix (3.6). After fitting the above models, the

surrogate marker evaluation is captured by means of two quantities, the trial-level

and individual-level R2, respectively. The former quantifies the association between

the treatment effects on the true and surrogate endpoints at the trial level. The latter

measures the association at the level of the individual patient and after adjustment

for the treatment effect. The former is given by:

R2
trial

= R2
bi|mSi,ai

=



 dSb

dab




T 

 dSS dSa

dSa daa




−1 

 dSb

dab





dbb
. (3.8)

The above quantity is unitless and, at the condition that the corresponding variance-

covariance matrix is positive definite, lies within the unit interval. The models (3.1)

and (3.2) can be referred to as the full fixed effects models and it is possible to simplify

them. The reduced versions of these models are obtained by replacing the fixed trial-

specific intercepts, one for each endpoint, common to all trials. The reduced mixed

effect models result from removing the random trial-specific intercepts mSi and mT i
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from models (3.4) and (3.5). The R2 for the reduced models is then calculated as

follows:

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
. (3.9)

A surrogate could thus be adopted when R2
trial is sufficiently large. Arguably, rather

than using a fixed cutoff above which a surrogate would be adopted, there always will

be clinical and other judgement involved in the decision process. The R2
indiv

is based

on (3.3) and takes the following form:

R2
indiv

= R2
εT i|εSi

=
σ2

ST

σSSσT T

(3.10)

Note that, here, trial is considered as experimental unit which can be replaced by

center, investigator or any other suitable experimental unit, depending on the nature

of the study conducted. The issue of the unit of analysis is discussed in Section 3.3.1

and has been thoroughly studied by Cortiñas et al (2004).

3.2 Simplified Modeling Strategies

Though the hierarchical modeling discussed earlier is elegant, it often poses a con-

siderable computational challenge (Burzykowski, Molenberghs, and Buyse 2005). To

address this problem, Tibaldi et al (2003) suggested several simplifications of the

above strategy, briefly outlined here. These authors considered three possible dimen-

sions along which simplifications can be undertaken. The first dimension is what

they called the trial dimension. This dimension provides a choice between treating

the trial-specific effects as fixed or random. If the trial-specific effects are chosen to be

fixed, a two-stage approach is adopted. The first-stage model will take the form (3.1)

and (3.2) and at the second stage, the estimated treatment effect on the true endpoint

is regressed on the treatment effect on the surrogate and the intercept associated with
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the surrogate endpoint as

β̂i = λ̂0 + λ̂1µ̂Si + λ̂2α̂i + εi. (3.11)

The trial-level R2
trial(f)

then is the coefficient of determination obtained by regressing

β̂i on µ̂Si and α̂i, whereas R2
trial(r) is obtained from the coefficient of determination

resulting from regressing β̂i on α̂i only. The individual-level value is calculated as in

(3.10) using the estimates from (3.3). Note here that (r) and (f) are indicators that

the trial-level association is obtained based on the reduced or the full model respec-

tively. The second option is to consider the trial-specific effects as random. How one

then proceeds is related to the so-called endpoint dimension. Indeed, though natu-

ral to assume the two endpoints correlated, this choice does increase computational

complexity. The desirability to accommodate the bivariate nature of the outcome is

associated with interest in R2
indiv, which is in some cases of secondary importance.

At the same time, there is also a possibility to estimate it by making use of the

information-theoretic approach which will be discussed in the next chapter. Depend-

ing on the choice made on the endpoint dimension, two directions can be followed.

The first one involves a two-stage approach with univariate models (3.4) and (3.5) at

first stage. A second stage model consists of a normal regression with the random

treatment effect on the true endpoint as response and the random intercept and ran-

dom treatment effect on the surrogate as covariates. The second direction is based on

a full random effects (hierarchical) model as discussed in Section 3.1. If in the trial

dimension, the trial-specific effects are considered to be fixed, then models (3.1) and

(3.2) are fitted separately. Similarly, if the trial-specific effects are considered ran-

dom, then models (3.4) and (3.5) are fitted separately, i.e., the corresponding error

terms in the two models are assumed to be independent. Except when a bivariate

mixed-modeling approach is followed, there is a need to adjust for the heterogeneity
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in the amount of information contributed by the various trials. This is the subject of

the measurement error dimension. One can either ignore this phenomenon or weight

the trial-specific contributions according to trial size. This gives rise to a weighted

linear regression model (3.11) in the second stage.

3.3 Computational Considerations

In this section, we will address a number of computational issues and considerations,

such as the choice of the unit for analysis, the effect of treatment coding, the possible

occurrence of ill-conditioned and non-positive definite variance-covariance matrices.

3.3.1 Unit of Analysis

A cornerstone of the meta-analytic method is the choice of the unit of analysis such

as, for example, trial, center, or investigator. This choice may depend on practical

considerations, such as the information available in the data set at hand, experts’

considerations about the most suitable unit for a specific problem, the amount of

replication at a potential unit’s level, and the number of patients per unit. From a

technical point of view, the most desirable situation is where the number of units and

the number of patients per unit is sufficiently large. This issue has been discussed by

Cortiñas et al (2004).

3.3.2 Treatment Coding

When there is a treatment variable included in the model two choices need to be made

at analysis time. First, the treatment variable can be considered continuous or discrete

(a class variable). Second, when a continuous route is chosen, it is relevant to reflect

on the actual coding, 0/1 and −1/ + 1 being the most commonly encountered ones.

For models with treatment occurring as fixed effect only, these choices are essentially
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irrelevant, since all choices lead to an equivalent model fit, with parameters from

one situation to another connected by simple linear transformations. Note that this

is not the case, of course, for more than three treatment arms. However, of more

importance for us here is the impact the choices can have on the hierarchical model.

Indeed, while the marginal model resulting from (3.4)–(3.5) is invariant under such

choices, this is not true for the hierarchical aspects of the model, such as, for example,

the R2 measures derived at the trial level. Indeed, a −1/+1 coding ensures the same

components of variability operate in both arms, whereas a 0/1 coding, for a positive

definite D matrix, forces the variability in the experimental arm to be greater than

or equal to the variability in the standard arm. Both situations may be relevant, and

therefore it is of importance to illicit views on this issue from the study’s investigators.

3.3.3 Ill-Conditioned Variance-Covariance Matrix

When the full bivariate random effect is used, the R2
trial

is computed from the variance-

covariance matrix (3.6). It is sometimes possible that this matrix be ill-conditioned

and/or non-positive definite. In such cases, the resulting quantities computed based

on this matrix might not be trustworthy. One way to asses the ill-conditioning of

a matrix is by reporting its condition number, i.e., the ratio of the largest over the

smallest eigenvalue. A large condition number is an indication of ill-conditioning.

The most pathological situation occurs when at least one eigenvalue is equal to zero.

This corresponds to a positive semi-definite matrix, which occurs, for example, when

a boundary solution is obtained. Thus, in the validation process, it is necessary to

check the D matrix for absence or presence of these issues.
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3.4 Simulation Study

To asses the impact of using an incorrect treatment coding, a small simulation in-

volving 12 different combinations of trial size and number of individuals per trial has

been performed. The data were generated based on the following model:

Sij = 45 + mSi + (3 + ai)Zij + εSij , (3.12)

Tij = 50 + mT i + (5 + bi)Zij + εTij . (3.13)

Here ai and bi are random treatment effects in trial i for the surrogate and true

endpoints, respectively. The random effects (mSi, mT i ,ai , bi) are assumed to be

mean-zero normally distributed with covariance matrix

D =




3 2.4 0 0

2.4 3 0 0

0 0 3 2.7

0 0 2.7 3




. (3.14)

The error terms εSij and εTij are assumed to be zero mean random variables with

variance-covariance matrix

Σ =


 3 2.4

2.4 3


 . (3.15)

The number of trials was fixed to either 10, 20 or 50 with each trial involving either

10,20,40 or 60 subjects giving rise to 12 different scenarios. For each combination,

100 datasets were generated for both treatment codings. The datasets were then

analyzed with the correct treatment coding, i.e., the treatment coding with which the

data were generated, as well as with the opposite coding. For each case the median

condition number and the percentage of positive definite variance-covariance matrices

are counted. The results of these simulations are displayed in Tables 3.1 and 3.2.
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The simulation has revealed that, for a small number of analysis units and/or a small

number of subjects per analysis unit, the wrong treatment coding could result in a high

degree of uncertainty in the resulting variance-covariance matrix. For the 0/1 coding,

the effect is noticed even when the correct coding was followed to do the analysis,

i.e. there was high degree of uncertainty even when the data were analyzed with the

correct 0/1 coding for small sample sizes. The effect, however, seems to vanish with

increasing repetition of the unit of analysis and number of subjects per unit of analysis.

If we consider a median condition number of 100 as an arbitrary cutoff value, we notice

that we require a minimum of 20 trials to achieve a condition number less than 100

for 0/1 coding. This number, however, reduces to only 10 trials to reach a condition

number less than 100 for −1/ + 1 coding. With respect to the positive-definitness of

the variance-covariance matrix, the percentage of positive-definite matrices increases

with increase in the sample size for both treatment coding schemes. However, the

−1/ + 1 produced relatively a higher percentage of positive definite matrices even for

small samples as compared to the 0/1 coding where the percentage of positive definite

matrices is low even for moderately higher sample sizes. Based on the results of this

simulation, it seems reasonable to consider the −1/ + 1 treatment coding and chose

a reasonable unit of analysis to avoid the numerical problems and achieve positive

definiteness in the variance-covariance matrix.

3.5 Application to the Case Studies

Two case studies introduced in the motivating case studies chapter, Sections (2.1.1)

and (2.1.2) concerning schizophrenia and Age Related Macular Degeneration are an-

alyzed here. Let us start with the schizophrenia study. Here, trial seems the natural

unit of analysis. Unfortunately, the number of trials is not sufficient to apply the
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Table 3.1: Simulation results for −1/1 treatment coding.

simulation median condition

strategy % positive-definite number

simulation # # trials # subjects correct incorrect correct incorrect

1 10 10 42 41 3.44E+16 3.71E+17

2 10 20 66 65 178.00 403.10

3 10 40 91 91 78.36 172.86

4 10 60 98 98 81.23 158.39

5 20 10 90 90 52.43 138.62

6 20 20 97 98 43.33 102.34

7 20 40 100 100 34.87 101.55

8 20 60 100 100 32.97 84.41

9 50 10 100 100 27.55 84.56

10 50 20 100 100 26.54 80.64

11 50 40 100 100 24.28 75.01

12 50 60 100 100 24.92 72.86

full meta-analytic approach. The use of trial as unit of analysis for the simplified

methods might also entail problems. The second stage involves a regression model

based on only five points, which might give overly optimistic or at least unreliable

R2 values. The other possible unit of analysis for this study is ‘investigator’. There

were 176 investigators who each treated between 2 and 60 patients. The use of in-

vestigator as unit of analysis is also surrounded with problems. Although a large

number of investigators is convenient to explain the between investigator variability,

because there are few patients per investigators for some investigators, the resulting

within-unit variability might not be estimated correctly.

The basic meta-analytic approach and the corresponding simplified strategies have
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Table 3.2: Simulation results for 0/1 treatment coding.

simulation median condition

strategy % positive-definite number

simulation # # trials # subjects correct incorrect correct incorrect

1 10 10 10 10 5.44E+16 3.71E+17

2 10 20 25 25 4.09E+16 9.03E+16

3 10 40 57 58 304.05 1184.91

4 10 60 68 68 196.44 436.48

5 20 10 38 38 2.79E+16 6.6E+16

6 20 20 62 62 136.94 560.39

7 20 40 89 89 51.17 186.94

8 20 60 97 97 38.32 166.40

9 50 10 70 71 67.83 225.77

10 50 20 93 93 34.18 158.24

11 50 40 100 100 27.31 134.00

12 50 60 100 100 25.56 127.24

been applied to this data set. The results are displayed in Table 3.3. Investigator and

trial were both used as units of analysis. However, as there were only five trials, it

became difficult to base the analysis on trial as unit of analysis in the case of the full

bivariate random-effects approach. The results have shown a remarkable difference

in the two cases. Consistently, in all of the different simplifications, the R2
trial

values

were found to be higher when trial was used as unit of analysis as expected since the

second stage model involved a simple linear regression based on only five data points.

Furthermore, it is noted that, when investigator is used as unit of analysis, the R2
trial

values are higher when the reduced model is used as compared to the the case where

the full model used. The is an indication that the investigator-specific intercept terms
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for the surrogate model do convey information and unless there is special reason, full

model is to be preferred. The opposite result observed when trials are used as unit

of analysis is also explained in the same manner. The bivariate full random effects

model does not converge when trial is used as the unit of analysis. This might be due

to lack of sufficient information to compute all sources of variability. The reduced

bivariate random effects model converged for both cases, but the resulting variance-

covariance matrices were not positive-definite and were ill conditioned, as can be seen

from the very large value of the condition number. Consequently, the results of the

bivariate random effects model should be treated with caution as there might be high

uncertainty attached to the results obtained based upon these ill-conditioned matrices.

If we concentrate on the results based on investigator as unit of analysis, we observe a

low level of surrogacy of PANSS for CGI, with R2
trial

ranging roughly between 0.5 and

0.68 for the different simplified models. This result, however, has to be coupled with

other findings based on expert opinion to fully guarantee the validation of PANSS

as possible surrogate for the CGI. Turning to R2
indiv

, it ranges between 0.4904 and

0.5230, depending on the method of analysis, which is relatively low. To conclude,

based on the investigators as unit of analysis, PANSS does not seem a good surrogate

for the CGI. For the ARMD study, the only available unit of analysis was center.

There were 36 centers which treated between 2 and 18 patients. Note that these data

has been analyzed by Buyse et al (2000) with a treatment coding of 0 and 1 for the

placebo and treatment arms, respectively. Here, the −1/ + 1 coding was used and

thus slightly different results are obtained. The basic meta-analytic approach and the

corresponding simplified modeling strategies have also been applied to this dataset

and the results are displayed in Table 3.4 for the −1/ + 1 coding and in Table 3.5

for the 0/1 coding. For the ARMD study, the R2
trial ranges roughly between 0.64 and



3.6. Discussion 31

0.8, except for the full bivariate random effects models where we find R̂2
trial

= 0.9999.

However, the corresponding variance-covariance matrices were non-positive definite

and have very large condition number, a sign of high uncertainty surrounding the

latter estimate. Hence, it cannot be trusted. Based on the findings, it is possible to

say that assessment of change in visual acuity at 6 months does not seem to be a very

strong surrogate for the same assessment at 1 year.

3.6 Discussion

In this chapter we reviewed the meta-analytic strategy for validating a surrogate end-

point. The choice of unit of analysis and corresponding computational issues that

need to be given due attention have also been addressed. The choice of unit of analy-

sis in applying the meta-analytic approach is a very important issue to be considered.

There might be a large difference in the findings depending on the unit of analysis

chosen. The optimal unit of analysis is the one for which there is a sufficient number of

repetition and each unit has sufficiently large number of individuals within it. Ideally,

the choice of unit of analysis should be based on both statistical and subject-matter

considerations. The treatment coding also needs to be given serious consideration, in

consultation with experts who may be able to formulate an opinion on the possible

variability of the two treatment arms. It is also equally important to give due atten-

tion to the variance covariance matrices based upon which the association measures

are computed. Because an ill-condition or non-positive definite variance-covariance

matrix could yield an inflated association measure which could be misleading. A small

simulation study and analysis of two real datasets supported these points.
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Table 3.3: Schizophrenia study. Results of the trial-level (R2
trial

) surrogacy analysis.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Investigator 0.5887 0.5608 0.5488 0.5447

Trial 0.9641 0.9636 0.9849 0.9909

Bivariate approach

Investigator 0.5887 0.5608 0.9898∗

Trial 0.9641 0.9636 —

Reduced Model

Univariate approach

Investigator 0.6707 0.5927 0.5392 0.5354

Trial 0.8910 0.8519 0.7778 0.8487

Bivariate approach

Investigator 0.6707 0.5927 0.9999∗

Trial 0.7418 0.8367 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one eigenvalue

is very close to zero.The condition numbers for the three models with ill-condition matrices,

from top to bottom are 3.415E+18, 2.384E+18 and 1.563E+18 respectively.
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Table 3.4: ARMD data. Results of the trial-level (R2
trial

) surrogacy analysis −1/ + 1

coding.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Center 0.6922 0.6963 0.6605 0.7959

Bivariate approach

Center 0.6922 0.6963 0.9999∗

Reduced Model

Univariate approach

Center 0.6409 0.6562 0.6772 0.7929

Bivariate approach

Center 0.6409 0.6562 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one eigenvalue

is very close to zero.The condition numbers for Full and Reduced Bivariate random effects

models are 1.109E+17 and 1.965E+18 respectively
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Table 3.5: ARMD data. Results of the trial-level (R2
trial

) surrogacy analysis 0/1 coding.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted

Full Model

Univariate approach

Center 0.692 0.693 0.664 0.801

Bivariate approach

Center 0.692 0.693 —

Reduced Model

Univariate approach

Center 0.776 0.758 0.659 0.786

Bivariate approach

Center 0.776 0.758 —



4
Information-theoretic

Approach

The meta-analytic framework of surrogate marker validation has given another dimen-

sion, the trial level, which made it possible to validate a surrogate endpoint in terms

of its capacity to convey message about the treatment effect on the true endpoint.

However, this approach is computationally intensive and also requires different hier-

archical models for different types of outcomes. To circumvent this problem and give

a unified approach, Alonso and Molenberghs (2007) have introduced the information-

theoretic approach. This approach is simple to apply and can be used for a variety of

outcome combinations. In this chapter we will outline this approach through which

extension, and therefore unification for a variety of outcomes can be attained Alonso

and Molenberghs (2005).

35
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4.1 The Likelihood Reduction Factor

Estimating individual-level surrogacy, as the previous developments clearly show, has

frequently been based on a variance-covariance matrix coming from the distribution

of the residuals. However, if we move away from the normal distribution, it is not

always clear how to quantify the association between both endpoints after adjusting

for treatment and trial effect. To address this problem, Alonso et al (2005) and Alonso

and Molenberghs (2007) considered the following generalized linear models

gT{E(Tij)} = µT i + βiZij, (4.1)

gT{E(Tij|Sij)} = θ0i + θ1iZij + θ2iSij, (4.2)

where gT is an appropriate link function, µT i are the trial-specific intercepts and βi

are trial-specific effects of treatment Z on the true endpoint in trial i. θ0i and θ1i

are trial-specific intercepts and effects of treatment on the true endpoint when the

surrogate endpoint is known. Note that (4.1) and (4.2) can be readily extended to in-

corporate more complex settings. Other extensions, such as non-linearity between Sij

and gT{E(Tij)} are possible. Without loss of generality, we assume a linear relation-

ship between Sij and gT{E(Tij)}. If the trial-specific effects are considered random,

we extend (4.1) and (4.2) to appropriate generalized linear mixed-effects models

gT{E(Tij)} = µT + mT i + βZij + biZij, (4.3)

gT{E(Tij|Sij)} = θ0 + cT i + θ1Zij + aiZij + θ2iSij, (4.4)

where µT and β are a fixed intercept and treatment effect on the true endpoint, while

mT i and bi are a random intercept and treatment effects on the true endpoint. θ0 and

θ1 are a fixed intercept and treatment effect on the true endpoint when the surrogate

is known, and cT i and ai are a random intercept and treatment effects on the true
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endpoint when the surrogate is known. Observe that, in the case where the true

endpoint is continuous and normally distributed, (4.1) and (4.2) reduce to normal

regression models and (4.3) and (4.4) reduce to linear mixed models. On the other

hand, when the true endpoint is binary, (4.1) and (4.2) reduce to logistic regression

models. Let us turn to the so-called likelihood reduction factor (LRF). Alonso and

Molenberghs (2007) used the LRF to evaluate individual level surrogacy, which is

obtained by

LRF = 1 −
1

N

∑

i

exp

(
−

G2
i

ni

)
, (4.5)

where G2
i

denotes the log-likelihood ratio test statistic to compare (4.1) and (4.2) or

(4.3) and (4.4) within trial i. Alonso et al (2005) established a number of properties

for LRF, in particular its ranging in the unit interval and, importantly, its reduction

to the individual level surrogacy measure used in the cross-sectional case.

4.2 An Information-theoretic Unification

This proposal avoids the needs for a joint, hierarchical model, and allows for unifica-

tion across different types of endpoints. The entropy of a random variable (Shannon

1948), a good measure of randomness or uncertainty, is defined in the following way

for the case of a discrete random variable Y , taking values {k1, k2, . . . , km}, and with

probability function P (Y = ki) = pi:

H(Y ) =
∑

i

pi log

(
1

pi

)
. (4.6)

The differential entropy hd(X) of a continuous variable X with density fX(x) and

support SfX
equals

hd(Y ) = −E[log fX(X)] = −

∫

SfX

fX(x) log fX(x)dx. (4.7)
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The joint and conditional (differential) entropies are defined in an analogous fashion.

Defining the information of a single event as I(A) = log pA, the entropy is H(A) =

−I(A). No information is gained from a totally certain event, pA ≈ 1, so I(A) ≈ 0,

while an improbable event is informative. H(Y ) is the average uncertainty associated

with P . Entropy is always non-negative, satisfies H(Y |X) ≤ H(Y ) for any pair of

random variables, with equality holding under independence, and is invariant under

a bijective transformation Cover and Tomas (1991). Differential entropy enjoys some

but not all properties of entropy: it can be infinitely large, negative, or positive, and

is coordinate dependent. For a bijective transformation Y = y(X), it follows hd(Y ) =

hd(X) − EY

(
log

∣∣∣dx
dy (y)

∣∣∣
)
. We can now quantify the amount of uncertainty in Y ,

expected to be removed if the value of X were known, by I(X, Y ) = hd(Y )−hd(Y |X),

the so-called mutual information. It is always non-negative, zero if and only if X and

Y are independent, symmetric, invariant under bijective transformations of X and

Y , and I(X, X) = hd(X). The mutual information measures the information of X ,

shared by Y . Let us now introduce the entropy-power (Shannon 1948) for comparison

of continuous random variables. Let X be a continuous n-dimensional random vector.

The entropy-power of X is

EP(X) =
1

(2πe)n
e2h(X). (4.8)

The differential entropy of a continuous normal random variable is h(X) = 1
2 log

(
2πσ2

)
,

a simple function of the variance and, on the natural logarithmic scale: EP(X) = σ2.

In general, EP(X) ≤ Var(X) with equality if and only if X is normally distributed.

We can now define an information-theoretic measure of association Schemper and

Stare (1996):

R2
h =

EP(Y ) − EP(Y |X)

EP(Y )
, (4.9)



4.2. An Information-theoretic Unification 39

which ranges in the unit interval, equals zero if and only if (X, Y ) are independent,

is symmetric, is invariant under bijective transformation of X and Y , and, when

R2
h → 1 for continuous models, there is usually some degeneracy appearing in the

distribution of (X,Y). There is a direct link between R2
h and the mutual information:

R2
h = 1 − e−2I(X,Y ). For Y discrete: R2

h ≤ 1 − e−2H(Y ), implying that R2
h then has

an upper bound smaller than 1; we then redefine

R̃2
h =

R2
h

1 − e−2H(Y )
,

reaching 1 when both endpoints are deterministically related.

We can now redefine surrogacy, while preserving previous proposals as special

cases. While we will focus on individual-level surrogacy, all results apply to the trial

level too. Let Y = T and X = S be the true and surrogate endpoints, respectively.

We consider S a good surrogate for T at the individual (trial) level, if a “large”

amount of uncertainty about T (the treatment effect on T ) is reduced when S (the

treatment effect on S) is known. Equivalently, we term S a good surrogate for T at

the individual level, if our lack of knowledge about the true endpoint is substantially

reduced when the surrogate endpoint is known. A meta-analytic framework, with N

clinical trials, produces Nq different R2
hi, and a meta-analytic R2

h given by:

R2
h =

Nq∑

i=1

αiR
2
hi = 1 −

Nq∑

i=1

αie
−2Ii(Si,Ti),

where αi > 0 for all i and
∑Nq

i=1 αi = 1 can be entertained. Different choices for

αi lead to different proposals, producing an uncountable family of parameters. This

opens the additional issue of finding an optimal choice. In particular, for the cross-

sectional normal-normal case, Alonso and Molenberghs (2006) have shown that R2
h =

R2
indiv

. Finally, when the true and surrogate endpoints have distributions in the

exponential family, then LRF
P
→ R2

h when the number of subjects per trial goes to
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infinity. Alonso and Molenberghs (2007) developed asymptotic confidence intervals

for R2
h
, based on the idea of Kent (1983), to build confidence intervals for 2I(T, S).

Let â = 2nÎ(T, S), where n is the number of patients. Define κ1 : α(a) and δ1 : α(a)

by P (χ1
2
(κ1 : α(a)) ≥ a) = α and P (χ1

2
(δ1 : δ(a)) ≤ a) = α. Here, χ2

1 is a chi-squared

random variable with 1 degree of freedom. If P (χ1
2(0) ≥ a) = α then we set κ1 : α(a) =

0. A conservative two-sided 1 − α asymptotic confidence interval for R2
h

is

∑

i

αi [n−1

i
κi

1 : α
(â), n−1

i
δi

1 : α
(â)] , (4.10)

where 1−αi is the Bonferroni confidence level for the trial intervals Alonso and Molen-

berghs (2007). This asymptotic interval has considerable computational advantage

with respect to the bootstrap approach used by Alonso et al (2005). Although ITA

involves substantial mathematics, its implementation in practice is fairly straightfor-

ward and less computer-intensive than the meta-analytic approach.



5
Mixture of Continuous and

Binary Outcomes

In one of the preceding chapters, we have considered the meta-analytic approach which

has been formulated originally for two continuous, normally distributed outcomes. We

have raised some concerns related to the units of analysis and computational issues

that need to be addressed. In addition to the meta-analytic approach, we have also

outlined the information-theoretic approach which allows unification across different

endpoint combinations. The meta-analytic approach has been extended for other type

of outcome combinations. One such extension involves the mixture of continuous and

binary outcomes as given by Molenberghs Geys, and Buyse (2001). In this chapter

we provide a review of the method for a continuous-binary endpoint combination and

outline the application of the information-theoretic approach to the mixed continuous-

binary case and asses its performance using a simulation study.

41
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5.1 Methods for Mixed Continuous-Binary Endpoints

Statistical problems where various outcomes of a combined nature are observed are

common, especially with normally distributed outcomes on the one hand and binary or

categorical outcomes on the other hand. Emphasis may be on the determination of the

entire joint distribution of both outcomes or on specific aspects, such as the association

in general or correlation in particular between both outcomes. Here we focus on the

combination of continuous and binary outcomes. We start with a bivariate non-

hierarchical setting, which can always be expressed as the product of a marginal

distribution of one of the responses and the conditional distribution of the remaining

response given the former one. The main problem with this approach is that no

easy expressions for the association between both endpoints are available. Thus, we

opt for a symmetric treatment of both endpoints. Let us focus on the case where

the true endpoint is continuous and the surrogate is binary, the reverse case being

entirely similar. Generalized linear mixed models for endpoints of different data types

are challenging Molenberghs and Verbeke (2005). Hence, we concentrate on two-

stage fixed-effects models. In the first stage, let S̃ij be a latent variable of which Sij

is the dichotomized version. A bivariate normal model for S̃ij and Tij is given by

Molenberghs, Geys, and Buyse (2001):

S̃ij = µSi + αiZij + εSij , (5.1)

Tij = µT i + βiZij + εTij , (5.2)

where µSi and µTi are trial-specific intercepts, αi and βi are trial-specific effects of

treatment Zij on the endpoints in trial i, and εSi and εTi are correlated error terms,
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assumed to be zero-mean normally distributed with covariance matrix

Σ =




1
(1−ρ2)

ρσ√
(1−ρ2)

σ


 . (5.3)

The variance of S̃ij is chosen for computational reasons. Using a probit formulation

like Molenberghs Geys, and Buyse (2001) and owing to the replication at the trial

level, we can impose a distribution on the trial-specific parameters. At the second

stage, we assume model (3.7) given in section 3.1 of Chapter 3.

Measures to assess the quality of the surrogate both at the trial and individual

level are obtained as in (3.8) and (3.10). Interpretation of these measures and decision

making follows the logic laid out in Section 3.1 of Chapter 3.

5.2 A Simulation Study

The direct consequence of the fact that the models used in the information-theoretic

approach are univariate models is that, the models can be easily fitted using any

standard regression software. However, the performance of this approach has not

been studied in the mixed continuous and binary endpoint settings. In the next

section, insight into the performance of this approach, together with its asymptotic

interval, is offered through a simulation study. Let us first lay out the design of the

simulation study, whereafter the results are described.

5.2.1 Design of the Simulation Study

Due to the computational difficulties encountered in practice with the bivariate ran-

dom effects models required for the meta-analytic approach by Buyse et al (2000),

ITA becomes an interesting option to consider in practice. As stated earlier, the

performance of the later has not been investigated in the mixed continuous binary

setting, and is the focus of this section. Here, we outline the procedures followed in
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generating the data used for simulation. The data were generated based on models

(3.12)–(3.13) and the corresponding variance-covariance matrices. After generating

continuous outcomes based on the above models, a binary surrogate is obtained by

dichotomizing the resulting continuous surrogate using the fixed intercept as cut-off

point. The dichotomized surrogate takes value 1 if the corresponding continuous sur-

rogate is greater than µS and zero otherwise. This formulation assumes trial-level and

individual-level R2 values of 0.9 and 0.64, respectively, at the continuous scale. It is

important to note that this value of the individual-level R2 is the squared correlation

between the latent unobservable continuous surrogate endpoint and the observable

true endpoints. However, the situation is totally different at the trial-level. Based

on (5.1) and (5.2), Alonso et al (2005) showed that the relationship between the

treatment effects on the latent-continuous and observed-binary surrogate endpoints

is linear. Hence, the value of the trial-level R2 (0.9) is valid both for the latent and

observed surrogate. The number of trials was fixed to either 5, 10, 20 or 30. There

were 2 sets of trial sizes used, the first set consists of 10, 20, 40 or 60, which we term

small trial size. The second set consists of 100, 150, 200 or 300, termed large trial

size. A full combination of the number of trials and trial sizes was obtained. In each

case, 100 runs were performed, assuming either models (4.1) and (4.2) or models (4.3)

and (4.4). Apart from the primary objectives to investigate the performance of ITA

as well as comparing the bootstrap percentile intervals with the asymptotic interval

by Alonso and Molenberghs (2007), there are two secondary objectives. The first is

to investigate the impact of alternative link functions, at the individual-level, on the

performance of ITA. Thus, both probit and logit link functions were implemented in

all settings. Second, both linear and non-linear (splines) functions were considered,

at the trial-level, to explore the assumption of linearity between treatment effects.
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5.2.2 Simulation Results

Tables 5.2 and 5.3 present a selection of the simulation results. We focus on both

large and small numbers of trials and numbers of subjects per trial. Both individual-

level and trial-level R2 measures are included. ITA yields estimates of surrogacy at

the individual-level, bounded above by 0.3. Hence, the approach yields estimates

substantially lower than the value assumed when generating the datasets, 0.64. This

phenomenon is observed in all settings considered in the simulation study. However,

it should be noted that the value of 0.64 is the individual-level surrogacy at the la-

tent scale, whereas ITA estimates asses the individual-level surrogacy at the observed

scale. Also, it is expected that dichotomizing a continuous variable leads to informa-

tion loss, which would imply that results obtained from the continuous and discrete

version should not generally be expected to be in agreement with each other. Unlike

the individual level, Alonso et al (2002) showed that the trial-level surrogacy at the

latent scale translates equally to the observed scale. For small trial sizes ITA tends

to underestimate the trial-level surrogacy. Nevertheless, the models perform consid-

erably well for large trial sizes. The mixed-effect models, (4.3) and (4.4), outperform

the fixed-effect models, (4.1) and (4.2), in all simulation settings considered. However,

the mixed-models had some convergence issues, which were not encountered with the

fixed-effect models. Even so, the percentage of non-convergence is smaller than 10%

within each simulation setting. Generally, increasing the number of trials has little

effect on the surrogacy measures, although increasing the trial size appears to yield

better estimates for the surrogacy measures. Also, it is not advisable to use very small

number of trials, as it may overestimate or not provide enough data points to reliably

assess the trial-level surrogacy. The 95% asymptotic intervals are tighter than the 95%

percentile bootstrap intervals for all simulation settings considered. The discrepancy
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Table 5.1: Age-related macular degeneration trial. Estimates (standard error) of the

individual-level (R2
indiv

) and trial-level (R2
trial

) surrogacy analysis based on the conven-

tional and information-theoretic approach.

probit link logit Link

level type fixed mixed fixed mixed

information-theoretic approach

trial line 0.33 (0.14) 0.49 (0.13) 0.32 (0.13) 0.48 (0.13)

spline 0.33 (0.13) 0.49 (0.12) 0.32 (0.13) 0.48 (0.13)

individual 0.23 (0.13) 0.27 (0.13) 0.23 (0.13) 0.27 (0.13)

conventional meta-analytic approach (2-stage fixed effects)

trial 0.42 (0.13)

individual 0.44 (0.09)

between these intervals reduces with increases in the number of trials and trial sizes.

Further, the choice of an appropriate link function appears to have little influence on

the results. We Observed that more than 97% of the samples have differences below

0.1. Also, almost identical results were obtained in each sample when the spline and

linear functions were considered at the trial level as more than 93% of the samples

have differences inferior to 0.04.

5.3 Application to the Case Study

The case study on Age related Macular Degeneration introduced in Chapter 2 will

now be analyzed. The two-stage meta-analytic approach and the corresponding ITA

models have been applied to this dataset and results displayed in Table 5.1. Extension

of the meta-analytic approach to the mixed continuous and binary endpoints, using

two-stage fixed-effects model yields R2
indiv

=0.42 (s.e. 0.13) and R2
trial

=0.44 (s.e. 0.09).
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Thus, the loss of at least two lines of vision at 6 months is a relatively poor surrogate

for visual acuity at 1 year, a conclusion in synchrony with the one reached by Buyse

et al (2000) at the continuous level. At the individual level, ITA yield estimates

of R2
indiv

ranging from 0.2319 to 0.2735. It should be noted that we do not have

information about the degree of under-estimation of R2
indiv by ITA at the observed

scaled. As mentioned earlier, research on this issue is still ongoing. Nevertheless,

the very low values obtained indicate that the loss of at least two lines of vision at

6 months may not be a good surrogate for visual acuity at 1 year, at the individual

level. ITA yields estimates of R2
trial

ranging from 0.3211 to 0.4864. This indicates that

the loss of at least two lines of vision at 6 months does not seem to be a very good

surrogate for visual acuity at 1 year, at the trial level. It should be noted that the

size of the largest unit of analysis (center) was only 18, though. Thus, there may be

a considerable degree of under-estimation on the estimates of R2
trial. There appears to

be no difference between the probit and logit link functions on these data. Also, the

line and spline models yield similar results, indicating that the linearity assumption

at the trial level may be a plausible one. Furthermore, the mixed models generally

have higher estimates for surrogacy measures than the fixed models, hence, exhibiting

a lower degree of underestimation.

5.4 Discussion

In this chapter, we reviewed the extension of the meta-analytic strategy of Buyse

et al (2000), to a mixed binary and continuous endpoints, and the information-

theoretic approach for validating surrogate endpoints. Combination of the latter with

combined-type outcomes is novel. The meta-analytic approach and its extension are

mathematically appealing, but encounter practical and/or computational issues. The
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information-theoretic approach on the other hand involves substantial mathematics

yet it is more practically feasible than the meta-analytic approach as it depends on

simple univariate models. We primarily investigated the performance of the ITA

for combined continuous and binary endpoints, through a simulation study. Gener-

ally, this approach underestimates the measures of surrogacy. The underestimation

reduces with increase in both the number of trials and trial sizes. However, the simu-

lation study showed that the degree of underestimation is higher with very small trial

sizes, even for large number of trials. The model proposed by Alonso et al (2005)

for a general setting, which is based on fixed-effects models, was outperformed by its

extension to generalized linear mixed models, which has as its basis two univariate

mixed models. Quite similar results were obtained by extending the linear relation-

ship between the true and surrogate endpoints to non-linear, spline-based models, at

the trial level. Thus, it may be reasonable to assume a linear relationship between

the treatment effects on the true and surrogate endpoints. Asymptotic confidence

intervals for surrogacy measures (R2
indiv

and R2
trial

) performed better than bootstrap

confidence intervals, in the sense of being generally more narrow. On the other hand,

the asymptotic confidence intervals are computationally advantageous and are tighter

than the bootstrap confidence intervals. Arguably, a fully formal comparison would

be of interest; we view this a topic for further research. The choice of link function ap-

pears to have little influence on the estimates of the surrogacy measures. Particularly,

the logit and probit link functions gave similar estimates in all settings considered in

the simulation study. This is also supported by the fact that these link functions

gave almost identical estimates when applied to the motivational case study. These

finding are not surprising in view of their well-known relationship. The meta-analytic

strategy for evaluating surrogacy faces computational problems, which are largely al-
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leviated by the information-theoretic approach. On the other hand, the latter may

be biased downards in smaller trials. Therefore, it is advisable to reserve the use

of ITA for larger trial sizes. Also, the extended generalized linear mixed models are

recommended. Clearly, the use of validation methods, such as the ones proposed in

this chapter, whether based on R2, other association measures, or ITA, is but one

component of the broader surrogate endpoint evaluation picture.
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Table 5.2: Simulation study results for individual level surrogacy.

Individual-level surrogacy.

# trials # subjects R2
indiv

bootstrap c.i. asymptotic c.i.

Univariate fixed-effects model.

5 10 0.15 (0.00;0.38) (0.05;0.33)

5 60 0.16 (0.05;0.28) (0.10;0.23)

30 10 0.16 (0.09;0.24) (0.10;0.23)

30 60 0.16 (0.12;0.21) (0.14;0.19)

5 100 0.15 (0.06;0.25) (0.11;0.21)

5 300 0.15 (0.08;0.27) (0.13;0.19)

30 100 0.16 (0.12;0.19) (0.14;0.18)

30 300 0.16 (0.12;0.20) (0.15;0.17)

Univariate mixed-effects model.

5 10 0.16 (0.02;0.39) (0.06;0.37)

5 60 0.16 (0.05;0.28) (0.10;0.23)

30 10 0.18 (0.11;0.26) (0.12;0.25)

30 60 0.17 (0.12;0.21) (0.14;0.20)

5 100 0.15 (0.06;0.25) (0.11;0.21)

5 300 0.16 (0.08;0.27) (0.13;0.19)

30 100 0.16 (0.12;0.20) (0.14;0.18)

30 300 0.16 (0.12;0.20) (0.15;0.17)
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Table 5.3: Simulation study results for the trial level surrogacy.

Trial-level surrogacy.

# trials # subjects R2
trial

bootstrap c.i. asymptotic c.i.

Univariate fixed-effects model.

5 10 0.48 (0.00;0.95) (0.12;0.81)

5 60 0.59 (0.03;0.95) (0.13;0.87)

30 10 0.41 (0.13;0.62) (0.17;0.64)

30 60 0.51 (0.19;0.70) (0.26;0.71)

5 100 0.81 (0.01;0.99) (0.29;0.93)

5 300 0.82 (0.15;0.98) (0.30;0.96)

30 100 0.71 (0.46;0.84) (0.47;0.85)

30 300 0.75 (0.54;0.87) (0.52;0.88)

Univariate mixed-effects model.

5 10 0.42 (0.00;0.95) (0.13;0.78)

5 60 0.59 (0.00;0.94) (0.14;0.84)

30 10 0.43 (0.04;0.62) (0.18;0.63)

30 60 0.53 (0.28;0.75) (0.28;0.73)

5 100 0.82 (0.08;0.98) (0.30;0.94)

5 300 0.88 (0.34;0.99) (0.41;0.98)

30 100 0.78 (0.27;0.90) (0.54;0.87)

30 300 0.82 (0.51;0.92) (0.61;0.90)





6
A Binary Surrogate for a

Binary True Endpoint

The previous chapters dealt with the case of two normally distributed outcomes and

the case of a mixture of a normal and binary outcomes. We have noticed that,

the challenge of quantifying the association measures was more pronounced for the

case of the mixed continuous-binary endpoints. However, the introduction of the

information-theoretic approach has given a great deal of flexibility through which it

has been possible to quantify the individual level surrogacy in a simpler manner than

dealing with a probit formulation. In this chapter we move one step further and

consider the case of two binary outcomes. Unfortunately there is no simple tractable

bivariate model, similar to the bivariate normal distribution, which will enable us to

directly apply the method used for the case of two normally distributed outcomes.

However, similar to the previous chapter, we can attempt to quantify the individual

level association through the use of a probit formulation on the one hand and the

53



54 Chapter 6. A Binary Surrogate for a Binary True Endpoint

information-theoretic approach as a simplified alternative. We first consider the meta-

analytic approach for two binary outcomes which is based on a probit formulation

and proceed to the information-theoretic approach.

6.1 The Meta-Analytic Approach for Binary End-

points

To extend the methodology used for continuous endpoints to the case of binary end-

points , Renard et al (2002) adopted a latent variable approach, resting on the as-

sumption that the observed binary variables result from dichotomizing an unobserved

continuous variable based on the threshold chosen. Assume a pair of latent variables

(S̃ij , T̃ij), representing the continuous, underlying values of the surogate and true

endpoints for subject j in trial i, follwoing a random-effects model at the latent scale:

S̃ij = µS + mSi + αZij + aiZij + εSij , (6.1)

T̃ij = µT + mTi + βZij + biZij + εT ij , (6.2)

where µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi and mT i

are random (i.e., trial-specific) intercepts, ai and bi are random treatment effects, and

εSij and εT ij are error terms. The random effects are zero-mean normally distributed

with covariance matrix D given in (3.6), which is the same matrix we considered for

the case of two normally distributed outcomes and probit formulation of the mixture

of a binary and continuous outcomes. The error terms are also zero-mean normally

distributed with covariance matrix:

Σ =



 1 ρST

ρST 1



 .
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The implied model for the observed binary outcomes is then given by:

Φ−1[P (Sij = 1|mSi, mTi, ai, bi)] = µS + mSi + αZij + aiZij , (6.3)

Φ−1[P (Tij = 1|mSi, mTi, ai, bi)] = µT + mTi + βZij + biZij , (6.4)

where Φ denotes the standard normal cumulative distribution function. Formulation

(6.1)–(6.2) allows the use of the coefficient of determination (3.8) as the trial-level

R2, whereas the individual-level R2
indiv is equal to the square of ρST .

6.1.1 Parameter Estimation

Models (6.1)–(6.2) belong to the class of so-called generalized linear mixed mod-

els (Molenberghs and Verbeke 2005), with probit link even though the logit link is

more generally used for binary outcomes. Molenberghs and Verbeke (2005) discuss

a variety of commonly used estimation methods, including maximum likelihood with

numerical integration over the random effects, penalized quasi-likelihood, marginal

pseudo-likelihood, and Laplace approximation. These methods suffer to various ex-

tents from computational complexity and severe bias (Rodŕıguez and Goldman 1995,

Molenberghs and Molenberghs 2005). For the specific case of the probit link, as

in (6.3)–(6.4), Renard et al (2002) have suggested the use of so-called maximum

pairwise likelihood (MPL), a form of pseudo-likelihood (Molenberghs and Verbeke

2005). Let us briefly describe this method. Assembling all parameters into the vector

Θ, the contribution of the ith trial (i = 1, . . . , N) to the likelihood, conditional on

bi = (mSi, mT i, ai, bi)
T , is

Li(Θ|bi) =

ni∏

j=1

P (Sij , Tij|bi). (6.5)
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Maximum likelihood estimation follows from integrating (6.5) over bi, summing over

all subjects, taking the logarithm, and maximizing

ℓ(Θ) =

N∑

i=1

ln

∫
Li(Θ|bi)φ(bi; D)dbi (6.6)

over Θ. Here, φ(bi; D) denotes the mean-zero multivariate normal density with co-

variance matrix D. The intractable nature of (6.6) dictates the use of one or other

form of approximation, as mentioned earlier. Renard et al (2002) suggested the use of

maximum pairwise likelihood (MPL), a pseudo-likelihood approach based on replacing

the likelihood by a product of conditional and/or marginal densities. In our particular

case, the proper likelihood contribution of trial i is replaced by all possible pairwise

margins. Detailed overviews of the methodology can be found in Molenberghs and

Verbeke (2005) and Burzykowski, Molenberghs, and Buyse (2005).

6.2 Drawbacks and Simplified Modeling Strategies

While it is technically possible to fit the bivariate probit model, the use of which ne-

cessitated by the pairwise likelihood approach, there still are a number of drawbacks

associated with the approach outlined. First, the resulting surrogate marker evalu-

ation measures apply to the postulated latent variables rather than to the observed

binary variables. Second, the computational burden still is considerable. Third, the

approach might result in an ill-conditioned variance-covariance matrix, thence calling

the reliability of the association measures derived into question. In light of these

difficulties, it is beneficial to switch towards ITA. The ITA approach can be adapted

to accommodate the case of two binary outcomes by choosing an appropriate link

function such as logit or probit in the models (4.1) and (4.2). The individual level

surrogacy can then be quantified by using (4.5). As stated earlier, one issue arising

is that, for discrete random variables the measure of association based on ITA has
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an upper bound smaller than one, as shown by Alonso and Molenberghs (2007), who

therefore suggested the use of an adjusted version:

R2
hadj =

R2
h

1 − exp[−2H(Y )]
, (6.7)

where H(y) is the log-likelihood of the true endpoint divided by the total number

of subjects. ITA ideas can be applied to compute the trial-level R2
trial

too, using the

fully hierarchical model for continuous outcomes (Buyse et al 2000). The resulting

R2
h,trial will take the same form (4.5), with now G2

i the likelihood ratio statistics for

comparing models relating treatment effect on the true endpoint, with and without

adjusting for the treatment effect on the surrogate endpoint. Since this second-stage

model is for continuous endpoints, the issue of an upper bound smaller than one does

not crop up.

6.3 Simulation Study

Though the ITA approach has been applied to a case study involving binary outcomes

before, no objective evaluation has been performed to investigate the performance of

this approach through simulation studies. Here we will assess the performance of the

information-theoretic approach in comparison with the bivariate probit model, first

laying out the design of our simulation study and then summarizing the results.

6.3.1 Design of Simulation Study

The data were generated based on model (6.3)–(6.4). The parameters were set equal

to µS = 0.5, µT = 0.45, α = 0.05, and β = 0.03. Values assumed for the covariance
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matrices are:

Σ =


 3 2.4

3


 , D =




3 2.4 0 0

3 0 0

3 2.84605

3




.

After generating continuous outcomes based on the above models, the corresponding

binary variables are obtained by dichotomizing the resulting continuous outcomes

using the fixed intercepts as cut-off points, setting values exceeding the intercept to

1 and 0 otherwise. These model choices imply R2
trial

=0.90 and R2
indiv

= 0.64, at the

continuous scale.

6.3.2 Simulation Results

Several combination of the number of trials and trial sizes was considered. In each

case, 100 runs were performed. We further distinguish between the bivariate and uni-

variate models on the one hand, and mixed- versus fixed-effects models on the other

hand. The mixed models take the form of the probit model in the bivariate situa-

tion and the Generalized Linear Mixed Model (GLMM) in the univariate case. The

simulation results are displayed in Tables 6.2–6.17. Let us first consider association

at the trial level. The simulation reveal that the full bivariate random effects model

and its univariate counterpart are consistent in that both models produce surrogacy

measures approaching the true values with the number of trials and the number of

subjects increasing. However, the corresponding fixed-effects models lead to underes-

timation, even for larger sample sizes. Even though the full bivariate model leads to

measures at the latent scale, since it measures the association between the treatment

effects on the two endpoints, we expect it to be preserved at the explicit scale. This

claim is corroborated by the results from the univariate mixed model, which operates

at the observed binary scale. It is also noteworthy that there is not much difference
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between the ITA and the conventional approach of regressing the treatment effect on

the true endpoint on the treatment effect on the surrogate endpoint. Turning to the

individual-level association, the full bivariate random-effects and bivariate fixed-effect

models result in individual-level measures close to the true value, i.e., the theoretical

value at the latent scale. However, they are hard to translate from the latent scale

to the explicit one. ITA is a convenient way out of this problem. An important

observation is that the values reported with ITA are substantially smaller than their

latent counterparts, in line with expectation: switching from the latent scale to the

explicitly observed scale reduces association. This is a manifestation of the fact that

important information is lost when switching from a continuous to a binary scale.

Of course, in a real study, the binary variables are the only ones observed and it is

therefore fair to assert that the ITA is a fair representation of reality, whereas the

other methods are overly optimistic.

6.4 Application to the Case Study

The acute migrane data introduced in Chapter 2, Sections 2.1.4 was analyzed using

the methods introduced in the previous sections of this chapter. Of the symptoms

studied: nausea, vomiting, photophobia, phonophobia, the photobia symptom had the

highest trial-level surrogacy. Results for both the trial- and individual-level surrogacy

are presented in Table 6.1. Both point estimates as well as 95% confidence intervals

are presented. Observe that the univariate and bivariate fixed-effects models result in

smaller R2
trial

than the random-effects counterpart. However, the latter is unreliable

since it is found to be based on an ill-conditioned covariance matrix, in the sense

of a grossly inflated leading eigenvalue. Basing our conclusions on the univariate

mixed effect model, in the simulations found to work well, it is fair to assert that, at
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the trial level, the presence of photophobia is a good surrogate for migraine severity,

i.e., the corresponding R2
trial may be considered sufficiently high. The reasonably good

agreement between the treatment effects at both levels, and in addition the absence of

obvious outliers, is clear from Figure 6.1, a so-called bubble plot, displaying a scatter

of the pairs of treatment effects for each unit. The size of the circles, or bubbles, is

proportional to the number of patients per unit. The R2
indiv

for the bivariate fixed and

mixed models are higher than their univariate counterparts. This is expected for the

same reason as explained in Section 6.3.2, i.e., one is at the latent scale, whereas the

ITA works at the interpretationally more relevant explicitly observed scale.

6.5 Discussion

In this chapter, we have considered the bivariate probit model approach, and the

information-theoretic approach for validating surrogate endpoints. The use of the

latter framework with binary data has given a substantial simplicity of application

and ease of interpretation of the resulting association measure. The meta-analytic

framework through the probit formulation, where individual-level surrogacy is ex-

pressed at the latent level, leads to overestimation of the said quantity. Since the ITA

operates at the explicitly observed scale, it provides a fairer and more useful quantity.

Additionally, the computational complexity of the full random-effects meta-analytic

framework has led to the use of simplifying frameworks, trading the random effects

for fixed effects on the one hand and/or bivariate, joint modeling of both endpoints by

two univariate, separate models. These simplifications work well when the number of

trials and the number of subjects per trials is large, indicating one should in practice

carefully consider the unit of analysis. Applying the proposed methodology to acute



6.5. Discussion 61

Table 6.1: Acute Migraine Study. Estimates (confidence intervals) for trial-level and

individual-level surrogacy for the photophobia symptom.

Trial-level surrogacy

Fixed effects Random effects

Unweighted Weighted Unweighted Weighted

Univariate approach

0.7579 0.7579 0.8112 0.8886

(0.5712;0.8817) (0.5712;0.8817) (0.6367;0.9066) (0.8134;0.9567)

Bivariate approach

0.7336 0.7336 0.9587∗

(0.5426;0.8688) (0.5426;0.8688) (0.6966;1.000)

Individual-level surrogacy

Fixed effects Random effects

Univariate approach (ITA based)

0.5016 0.5885

(0.4354;0.5681) (0.5221;0.6540)

Bivariate approach (probit, latent scale)

0.8959 0.8664

(0.8822;0.9095) (0.6042;1.000)

∗: This value is unreliable due to ill-conditioning of the variance-covariance matrix

from which it was calculated.
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Figure 6.1: Acute Migraine Study. Bubble plot of trial-specific treatment effect on the

surrogate versus true endpoints. The size of the bubbles corresponds to the size of the

trial
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Table 6.2: Simulation study. Univariate mixed-effects model for large trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile asymptotic

1 5 100 0.2358 (0.1392;0.3489) (0.1687;0.3104)

2 5 150 0.2255 (0.1152;0.3402) (0.1710;0.2852)

3 5 200 0.2252 (0.1250;0.3378) (0.1776;0.2767)

4 5 300 0.2211 (0.1354;0.3102) (0.1822;0.2627)

5 10 100 0.2256 (0.1523;0.3158) (0.1782;0.2769)

6 10 150 0.2215 (0.1536;0.3100) (0.1827;0.2629)

7 10 200 0.2190 (0.1613;0.3068) (0.1854;0.2547)

8 10 300 0.2172 (0.1634;0.2821) (0.1896;0.2461)

9 20 100 0.2298 (0.1866;0.2778) (0.1955;0.2661)

10 20 150 0.2274 (0.1751;0.2853) (0.1994;0.2568)

11 20 200 0.2249 (0.1878;0.2635) (0.1947;0.3089)

12 20 300 0.2213 (0.1854;0.2748) (0.1936;0.2856)

13 30 100 0.2340 (0.1971;0.2816) (0.2006;0.2502)

14 30 150 0.2289 (0.1891;0.2723) (0.2058;0.2528)

15 30 200 0.2287 (0.1824;0.2603) (0.2086;0.2493)

16 30 300 0.2220 (0.1839;0.2561) (0.2054;0.2225)

migraine trial data has shown that photophobia is a reasonably good surrogate at the

trial level, whereas its surrogacy at the individual level may be called into question.

This finding is of interest and may spark of further investigation from a clinical and

biopharmaceutical perspective.
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Table 6.3: Simulation study. Univariate mixed-effects model for large trial sizes,

trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile asymptotic

1 5 100 0.9014 (0.5550;0.9959) (0.5719;0.9901)

2 5 150 0.9028 (0.5693;0.9985) (0.5803;0.9903)

3 5 200 0.8995 (0.5416;0.9978) (0.5704;0.9998)

4 5 300 0.9092 (0.5418;0.9993) (0.6014;0.9907)

5 10 100 0.8716 (0.3962;0.9683) (0.6005;0.9729)

6 10 150 0.8870 (0.4939;0.9718) (0.6283;0.9781)

7 10 200 0.8878 (0.4767;0.9760) (0.6312;0.9780)

8 10 300 0.8864 (0.5575;0.9753) (0.6322;0.9770)

9 20 100 0.8686 (0.7271;0.9432) (0.6809;0.9583)

10 20 150 0.8722 (0.7406;0.9442) (0.6869;0.9597)

11 20 200 0.8762 (0.7222;0.9493) (0.6942;0.9612)

12 20 300 0.8834 (0.7574;0.9548) (0.7079;0.9640

13 30 100 0.8596 (0.7548;0.9397) (0.7066;0.9436)

14 30 150 0.8631 (0.7659;0.9428) (0.7119;0.9454)

15 30 200 0.8713 (0.7761;0.9441) (0.7259;0.9493)

16 30 300 0.8767 (0.7977;0.9415) (0.7344;0.9520)
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Table 6.4: Simulation study. Univariate fixed-effects model for large trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile asymptotic

1 5 100 0.2232 (0.1135;0.3360) (0.1577;0.2966)

2 5 150 0.2194 (0.1297;0.3354) (0.1654;0.2787)

3 5 200 0.2183 (0.1082;0.3345) (0.1714;0.2692)

4 5 300 0.2183 (0.1185;0.3070) (0.1796;0.2597)

5 10 100 0.2134 (0.1388;0.2955) (0.1671;0.2638)

6 10 150 0.2161 (0.1367;0.3109) (0.1777;0.2572)

7 10 200 0.2132 (0.1557;0.3042) (0.1798;0.2485)

8 10 300 0.2142 (0.1509;0.2963) (0.1867;0.2429)

9 20 100 0.2149 (0.1693;0.2627) (0.1814;0.2504)

10 20 150 0.2161 (0.1609;0.2699) (0.1885;0.2449)

11 20 200 0.2152 (0.1818;0.2578) (0.1913;0.2401)

12 20 300 0.2134 (0.1781;0.2692) (0.1939;0.2337)

13 30 100 0.2172 (0.1830;0.2635) (0.1897;0.2461)

14 30 150 0.2158 (0.1736;0.2603) (0.1933;0.2393)

15 30 200 0.2174 (0.1769;0.2491) (0.1978;0.2378)

16 30 300 0.2148 (0.1768;0.2524) (0.1962;0.2200)
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Table 6.5: Simulation study. Univariate fixed-effects model for large trial sizes, trial-

level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile asymptotic

1 5 100 0.8462 (0.3826;0.9966) (0.4770;0.9799)

2 5 150 0.8575 (0.3961;0.9987) (0.5016;0.9809)

3 5 200 0.8520 (0.3065;0.9981) (0.5089;0.9756)

4 5 300 0.8864 (0.5697;0.9986) (0.5570;0.9873)

5 10 100 0.7514 (0.3991;0.9823) (0.4084;0.9347)

6 10 150 0.7791 (0.3896;0.9818) (0.4570;0.9436)

7 10 200 0.8057 (0.4401;0.9729) (0.4911;0.9531)

8 10 300 0.8199 (0.3564;0.9853) (0.5174;0.9567)

9 20 100 0.7049 (0.2900;0.9236) (0.4464;0.8761)

10 20 150 0.7123 (0.3697;0.9361) (0.4554;0.8809)

11 20 200 0.7321 (0.4283;0.9588) (0.4793;0.8924)

12 20 300 0.7503 (0.4652;0.9316) (0.5058;0.9007

13 30 100 0.6780 (0.4351;0.8713) (0.4528;0.8403)

14 30 150 0.6997 (0.5016;0.8793) (0.4795;0.8541)

15 30 200 0.7304 (0.4631;0.9175) (0.5211;0.8719)

16 30 300 0.7639 (0.5283;0.9317) (0.5673;0.8913)
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Table 6.6: Simulation study. Bivariate fixed-effects model for large trial sizes, trial-

level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile asymptotic

1 5 100 0.8500 (0.3796;0.9965) (0.4828;0.9802)

2 5 150 0.8609 (0.4050;0.9988) (0.5049;0.9817)

3 5 200 0.8592 (0.3285;0.9974) (0.5140;0.9778)

4 5 300 0.8893 (0.5515;0.9996) (0.5633;0.9877)

5 10 100 0.7735 (0.4328;0.9823) (0.4385;0.9428)

6 10 150 0.7930 (0.3886;0.9867) (0.4724;0.9491)

7 10 200 0.7930 (0.4443;0.9809) (0.5177;0.9594)

8 10 300 0.8240 (0.4396;0.9805) (0.5413;0.9632)

9 20 100 0.8375 (0.3261;0.9158) (0.4829;0.8934)

10 20 150 0.7352 (0.4798;0.9307) (0.5082;0.9043)

11 20 200 0.7545 (0.4747;0.9579) (0.5348;0.9149)

12 20 300 0.7746 (0.5489;0.9360) (0.5669;0.9244)

13 30 100 0.7126 (0.4928;0.8711) (0.4948;0.8624)

14 30 150 0.7444 (0.5919;0.8856) (0.5363;0.8815)

15 30 200 0.7764 (0.5390;0.9184) (0.5819;0.8992)

16 30 300 0.8059 (0.6373;0.9204) (0.6244;0.9155)
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Table 6.7: Simulation study. Bivariate fixed-effects model for large trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile

1 5 100 0.6843 (0.5058;0.8273)

2 5 150 0.6685 (0.5275;0.8218)

3 5 200 0.6642 (0.5141;0.7981)

4 5 300 0.6976 (0.5570;0.7440)

5 10 100 0.6521 (0.5497;0.7631)

6 10 150 0.6636 (0.5576;0.7748)

7 10 200 0.6527 (0.5872;0.7118)

8 10 300 0.6474 (0.5326;0.8485)

9 20 100 0.6640 (0.6009;0.7280)

10 20 150 0.6574 (0.5893;0.7339)

11 20 200 0.6517 (0.6041;0.7013)

12 20 300 0.6449 (0.6129;0.6910)

13 30 100 0.6682 (0.6066;0.7222)

14 30 150 0.6562 (0.6046;0.7109)

15 30 200 0.6495 (0.6136;0.7002)

16 30 300 0.6481 (0.6163;0.6845)
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Table 6.8: Simulation study. Bivariate mixed-effects model for large trial sizes, trial-

level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile

1 5 100 0.9433 (0.5005;1.0000)

2 5 150 0.9431 (0.4636;1.0000)

3 5 200 0.9477 (0.4611;1.0000)

4 5 300 0.9325 (0.5021;1.0000)

5 10 100 0.9291 (0.5706;0.9989)

6 10 150 0.9337 (0.6616;0.9996)

7 10 200 0.9306 (0.5499;0.9999)

8 10 300 0.9243 (0.4903;0.9998)

9 20 100 0.9236 (0.7458;0.9997)

10 20 150 0.9230 (0.7820;0.9996)

11 20 200 0.9196 (0.7602;0.9948)

12 20 300 0.9235 (0.7940;0.9977)

13 30 100 0.9152 (0.7932;0.9947)

14 30 150 0.9064 (0.7610;0.9963)

15 30 200 0.9079 (0.7914;0.9896)

16 30 300 0.9082 (0.7729;0.9984)
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Table 6.9: Simulation study. Bivariate mixed-effects model for large trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile

1 5 100 0.6863 (0.4814;0.9044)

2 5 150 0.6763 (0.5007;0.8370)

3 5 200 0.6681 (0.5305;0.7944)

4 5 300 0.6650 (0.5204;0.7967)

5 10 100 0.6379 (0.4949;0.7852)

6 10 150 0.6468 (0.5146;0.7929)

7 10 200 0.6359 (0.5409;0.7331)

8 10 300 0.6390 (0.5274;0.7345)

9 20 100 0.6376 (0.5555;0.7510)

10 20 150 0.6397 (0.5607;0.7421)

11 20 200 0.6398 (0.5692;0.7119)

12 20 300 0.6338 (0.5723;0.6929)

13 30 100 0.6392 (0.5695;0.7095)

14 30 150 0.6367 (0.5725;0.7006)

15 30 200 0.6398 (0.5779;0.7043)

16 30 300 0.6339 (0.5833;0.6804)
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Table 6.10: Simulation study. Univariate mixed-effects model for small trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile asymptotic

1 5 10 0.2661 (0.0108;0.6816) (0.0917;0.5070)

2 5 20 0.2709 (0.0642;0.5322) (0.1312;0.4442)

3 5 40 0.2407 (0.0998;0.3983) (0.1390;0.3608)

4 5 60 0.2365 (0.1292;0.3504) (0.1516;0.3340)

5 10 10 0.2990 (0.0902;0.4920) (0.1503;0.4765)

6 10 20 0.2574 (0.1373;0.4244) (0.1525;0.3793)

7 10 40 0.2448 (0.1434;0.3589) (0.1696;0.3289)

8 10 60 0.2398 (0.1515;0.6434) (0.1779;0.3078)

9 20 10 0.3090 (0.1824;0.4241) (0.1955;0.4360)

10 20 20 0.2853 (0.1456;0.4078) (0.2054;0.3727)

11 20 40 0.2497 (0.1764;0.3313) (0.1947;0.3089)

12 20 60 0.2381 (0.1783;0.3023) (0.1936;0.2856)

13 30 10 0.3362 (0.1964;0.4583) (0.2394;0.4406)

14 30 20 0.2753 (0.1839;0.3524) (0.2100;0.3456)

15 30 40 0.2513 (0.1985;0.3174) (0.2059;0.2995)

16 30 60 0.2388 (0.1823;0.2788) (0.2022;0.2775)
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Table 6.11: Simulation study. Univariate mixed-effects model for small trial sizes,

trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile asymptotic

1 5 10 0.7037 (0.0332;0.9949) (0.3199;0.9293)

2 5 20 0.8350 (0.2446;0.9944) (0.4456;0.9758)

3 5 40 0.8625 (0.2305;0.9951) (0.5228;0.9744)

4 5 60 0.8880 (0.5288;0.9978) (0.5531;0.9849)

5 10 10 0.7450 (0.3825;0.9375) (0.3836;0.9347)

6 10 20 0.7981 (0.4189;0.9637) (0.4691;0.9517)

7 10 40 0.8464 (0.4927;0.9605) (0.5462;0.9675)

8 10 60 0.8545 (0.4582;0.9704) (0.5751;0.9674)

9 20 10 0.7130 (0.4327;0.8718) (0.4455;0.8845)

10 20 20 0.7895 (0.5521;0.9110) (0.5502;0.9237)

11 20 40 0.8234 (0.5882;0.9447) (0.6067;0.9383)

12 20 60 0.8427 (0.6495;0.9501) (0.6374;0.9470)

13 30 10 0.7225 (0.4826;0.8965) (0.5098;0.8674)

14 30 20 0.7803 (0.5781;0.9044) (0.5862;0.9018)

15 30 40 0.8228 (0.6908;0.9179) (0.6482;0.9250)

16 30 60 0.8414 (0.7109;0.9188) (0.6761;0.9348)
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Table 6.12: Simulation study. Univariate fixed-effects model for small trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile asymptotic

1 5 10 0.2274 (0.0036;0.5809) (0.0684;0.4663)

2 5 20 0.2376 (0.0489;0.4606) (0.1072;0.4059)

3 5 40 0.2206 (0.0893;0.3844) (0.1229;0.3382)

4 5 60 0.2203 (0.1263;0.3297) (0.1379;0.3160)

5 10 10 0.2330 (0.0555;0.3973) (0.1027;0.4009)

6 10 20 0.2092 (0.1091;0.3693) (0.1144;0.3244)

7 10 40 0.2166 (0.1143;0.3334) (0.1454;0.2978)

8 10 60 0.2213 (0.1388;0.3281) (0.1614;0.2877)

9 20 10 0.2015 (0.0696;0.3304) (0.1081;0.3157)

10 20 20 0.2236 (0.1084;0.3348) (0.1513;0.3055)

11 20 40 0.2163 (0.1458;0.3014) (0.1647;0.2731)

12 20 60 0.2142 (0.1569;0.2859) (0.1755;0.2602

13 30 10 0.2231 (0.0886;0.3534) (0.1413;0.3177)

14 30 20 0.2147 (0.1305;0.2945) (0.1557;0.2804)

15 30 40 0.2174 (0.1668;0.2843) (0.1746;0.2636)

16 30 60 0.2149 (0.1662;0.2593) (0.1797;0.2523)
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Table 6.13: Simulation study. Univariate fixed-effects model for small trial sizes,

trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile asymptotic

1 5 10 0.74967 (0.2237;0.9994) (0.3429;0.9572)

2 5 20 0.78668 (0.1593;0.9970) (0.4210;0.9585)

3 5 40 0.81303 (0.1523;0.9995) (0.4644;0.9675)

4 5 60 0.83546 (0.3234;0.9980) (0.4714;0.9779)

5 10 10 0.67267 (0.2214;0.9198) (0.3019;0.9035)

6 10 20 0.66771 (0.1851;0.9623) (0.3120;0.8984)

7 10 40 0.71278 (0.1988;0.9589) (0.3563;0.9190)

8 10 60 0.73415 (0.2825;0.9809) (0.3988;0.9237)

9 20 10 0.63657 (0.2892;0.8413) (0.3533;0.8409)

10 20 20 0.64009 (0.3417;0.8394) (0.3567;0.8434)

11 20 40 0.66795 (0.3826;0.8884) (0.3944;0.8579)

12 20 60 0.66832 (0.3344;0.9317) (0.3996;0.8560)

13 30 10 0.63242 (0.3971;0.8232) (0.3980;0.8109)

14 30 20 0.62815 (0.3844;0.8106) (0.3913;0.8089)

15 30 40 0.64394 (0.4076;0.8313) (0.4129;0.8179)

16 30 60 0.66659 (0.4111;0.8379) (0.4408;0.8323)
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Table 6.14: Simulation study. Bivariate fixed-effects model for small trial sizes, trial-

level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile asymptotic

1 5 10 0.7975 (0.2130;0.9995) (0.3842;0.9699)

2 5 20 0.8059 (0.1797;0.9975) (0.4409;0.9635)

3 5 40 0.8148 (0.2834;0.9997) (0.4572;0.9699)

4 5 60 0.8427 (0.3645;0.9988) (0.4844;0.9795)

5 10 10 0.6749 (0.1515;0.9104) (0.3131;0.9013)

6 10 20 0.6512 (0.2183;0.9637) (0.2993;0.8905)

7 10 40 0.7099 (0.2898;0.9607) (0.3543;0.9172)

8 10 60 0.7392 (0.2288;0.9773) (0.3999;0.9268)

9 20 10 0.5941 (0.1759;0.8188) (0.3082;0.8139)

10 20 20 0.6197 (0.2706;0.8273) (0.3348;0.8307)

11 20 40 0.6709 (0.3847;0.8803) (0.3967;0.8601)

12 20 60 0.6833 (0.3681;0.9425) (0.4170;0.8646)

13 30 10 0.5675 (0.3313;0.7811) (0.3280;0.7654)

14 30 20 0.6147 (0.4083;0.8148) (0.3750;0.8004)

15 30 40 0.6505 (0.4540;0.8338) (0.4199;0.8226)

16 30 60 0.6834 (0.4700;0.8532) (0.4602;0.8435)
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Table 6.15: Simulation study. Bivariate fixed-effects model for small trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile

1 5 10 0.8298 (0.0492;0.9999)

2 5 20 0.7763 (0.2469;0.9999)

3 5 40 0.7099 (0.4134;0.9999)

4 5 60 0.6976 (0.4737;0.9999)

5 10 10 0.8461 (0.4281;0.9999)

6 10 20 0.7459 (0.4346;0.9999)

7 10 40 0.7110 (0.4852;0.9181)

8 10 60 0.6970 (0.5326;0.8485)

9 20 10 0.8179 (0.4765;0.9999)

10 20 20 0.7662 (0.4927;0.9187)

11 20 40 0.6967 (0.5409;0.8161)

12 20 60 0.6729 (0.5835;0.7787)

13 30 10 0.8487 (0.5242;0.9999)

14 30 20 0.7529 (0.4083;0.8148)

15 30 40 0.6995 (0.6036;0.8002)

16 30 60 0.6755 (0.5984;0.7589)
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Table 6.16: Simulation study. Bivariate mixed-effects model for small trial sizes,

trial-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
trial

percentile

1 5 10 0.9749 (0.6438;1.0000)

2 5 20 0.9556 (0.4628;1.0000)

3 5 40 0.9477 (0.5341;1.0000)

4 5 60 0.9349 (0.5049;1.0000)

5 10 10 0.9114 (0.5373;1.0000)

6 10 20 0.9252 (0.5364;1.0000)

7 10 40 0.9345 (0.6964;0.9999)

8 10 60 0.9263 (0.4939;0.9999)

9 20 10 0.9078 (0.5867;0.9999)

10 20 20 0.9321 (0.7076;0.9996)

11 20 40 0.9209 (0.6956;0.9998)

12 20 60 0.9240 (0.7508;0.9997)

13 30 10 0.9231 (0.6530;0.9999)

14 30 20 0.9189 (0.7196;0.9993)

15 30 40 0.9125 (0.7512;0.9937)

16 30 60 0.9142 (0.7970;0.9996)
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Table 6.17: Simulation study. Bivariate mixed-effects model for small trial sizes,

individual-level surrogacy.

strategy confidence intervals

sim. # # trials # subjects R2
indiv

percentile

1 5 10 0.8088 (0.1167;1.0000)

2 5 20 0.7758 (0.2494;1.0000)

3 5 40 0.7033 (0.4431;0.9936)

4 5 60 0.6993 (0.4511;0.9491)

5 10 10 0.7632 (0.2686;1.0000)

6 10 20 0.6562 (0.3415;0.9044)

7 10 40 0.6611 (0.4329;0.8421)

8 10 60 0.9243 (0.4708;0.8369)

9 20 10 0.6605 (0.3033;0.9413)

10 20 20 0.6567 (0.4167;0.8494)

11 20 40 0.6608 (0.4904;0.8182

12 20 60 0.6430 (0.5176;0.7935)

13 30 10 0.6340 (0.3267;0.8577)

14 30 20 0.6536 (0.4611;0.8232)

15 30 40 0.6366 (0.5332;0.7540)

16 30 60 0.6349 (0.5445;0.7378)



7
Cross-Sectional Surrogate for

Time-to-Event True Endpoint

In the last couple of years, a considerable amount of research has been devoted to

the statistical validation of surrogate endpoints of various types. The information-

theoretic approach by Alonso et al. (2007) has shed light on the possibility of us-

ing a unified platform for the validation of surrogate endpoints of both normally as

well as non-normally distributed outcomes. The performance of this method, for

time-to-event outcomes, however, has been less optimal, specially in the presence

of substantial censoring. In this chapter we will compare the performance of the

information-theoretic approach of Alonso et al. (2007) with the measure of explained

variation by Kent and O’Quigely (1988) and that of Xu and O’Quigely (1999) through

a simulation study and later the methods will be applied to a case study.

79
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7.1 The Information-theoretic Approach for Time-

to-Event Endpoint

The information-theoretic approach suggested in the previous chapters can be applied

to a case of time-to-event true endpoint with slight modification. The univariate mod-

els used to relate the expected value of the true endpoint to the treatment only and

to the surrogate endpoint and treatment can be altered to two appropriate models

for survival type outcome. Two such models could be the Cox-proportional hazards

model or an accelerated failure time model. If we chooses the Cox-proportional haz-

ards model, we can consider models (7.1) and (7.2). Then, depending on wether we

consider the number of subjects or number of events, we will end up with two different

measures of associations. Lets denote the two measures by R2
k and R2

n with k and n

representing the number of events and number of subjects respectively.

λ(t|z, s : β) = λ0(t) exp(β1z + β2s) (7.1)

λ(t|z : β) = λ0(t) exp(β1z) (7.2)

.

R2
k = 1 − exp




−G2

k


 (7.3)

R2
n = 1 − exp




−G2

n


 , (7.4)

where G2 is the likelihood ratio statistics to compare the two models and S and T

represent the surrogate and true endpoints respectively.
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7.2 The Kent and O’Quigley Measure of Explained

Variation

The survival analysis context adds a complication due to the presence of censoring.

In the absence of censored observations, a standard estimate of information gain will

be provided by the inverse of the number of subjects times the usual likelihood ratio

statistic which is equivalent to the Likelihood reduction factor approach of Alonso

et al. (2007). However, censoring is found to have a substantial effect on this mea-

sure. Another alternative approach is a method due to Kent and O’Quigley (1988).

These authors have introduced a measure of explained variation for censored survival

outcome using the concept of the information gain approach of Kent (1983). They

developed these ideas, obtaining simple, multiple and partial coefficients for the situ-

ation of proportional hazards regression. Their approach was based upon the idea of

transforming a general proportional hazards model to a specific one of Weibull form.

In this section we will outline this measure as discussed in Kent and O’Quigely (1988).

Without loss of generality lets first assume that there are no censored observations.

Consider two random variables X and Y and let G(x) denote the marginal distribution

of X and let the conditional distribution of Y given X be modelled by:

Y = −σµ − σβtX + σε, (7.5)

where the error ε follows some specified distribution with probability density function

f(y) and it is independent of X . If we assume a normal distribution with a zero mean

and a unit variance for the error term, the above model represents the usual linear

regression. If however, we chose a Gumbel density for f , it gives a weibull regression

model for T = eY where T is the survival time. Now let Θ = (β, µ, σ2) denote the

parameters of the model with σ > 0 and β = (β1, β2) a 2-dimensional vector. Let
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Θ1 = (β, µ, σ2) denote the true values of the parameters. Consider two hypotheses

H0 : β1 = 0 and H1 : no restrictions on β. The objective here is to measure the

dependence between Y and X1 after allowing the regression on X2. Now denote Θ0

be the value of Θ maximizing the expected log-likelihood:

Φ(Θ, Θ1) =

∫ ∫
log{f(y|x; θ)}f(y|x; θ1)dyG(dx) (7.6)

over Θ satisfying the null hypothesis. A measure of the distance between the null hy-

pothesis and the alternative hypothesis is given by the Kullback & Liebler information

gain

Γ = Γ(H1,H0,G) = 2{Φ(θ1; θ1) − Φ(θ1; θ0)}. (7.7)

Following this construction, Kent(1983) proposed (7.8) as a measure of dependence

between Y and X1 after allowing the regression on X2.

ρ2
W = 1 − e−Γ. (7.8)

Note that, Kent and O’Quigely denoted their dependence measure by ρ2
W in order

to emphasize the relationship to the Weibull distribution. They stated that in prin-

ciple other possible accelerated failure time and proportional hazard models could be

considered. The reasons they site for the choice of the weibull distribution is that, the

weibull distribution results in a tractable expected log-likelihood and can be viewed as

a proportional hazard model. Now within the context of surrogate marker validation

involving a time-to-event true endpoint and a cross-sectional surrogate endpoint, we

can calculate the measure suggested by setting T=Y , S=X1 and Z=X2. A detailed

account of the method can be found in Kent and O’Quigely (1988).
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7.3 Xu and O’Quigley Measure of Explained Vari-

ation

The Kent and O’Quigley measure of explained variation discussed earlier suffers from

two main drawbacks: computational complexity and its inability to accommodate

time-dependent covariates. Citing these shortcomings, Xu and O’Quigley (1999)

developed a similar measure based on information gain and using the conditional

distribution of the covariates given the failure times. This measure accommodates

time-dependent covariates and is computable using standard softwares for fitting a

Cox model. Extensions to multiple covariates are immediate.

Despite the fact that it is computationally simple and can accommodate time-

varying covariates, Xu and O’Quigley argue that, one important difficulty with the

approach of Alonso et al. (2007) is how to adequately deal with censoring. They state

that for low levels of censoring this may not be an issue of much concern but for high

levels it would be useful to have a coefficient that explains the proportion of variation

captured by the surrogate and which is not impacted by the censoring mechanism.

This is in fact quite easily achieved and amounts to working with the same quantities

described in Alonso et al. (2007) and weighting them differently Xu and O’Quigely

(2005).

Let S, T and Z denote the surrogate, time-to-event true endpoint and the binary

treatment indicator respectively as defined before. Now lets outline the steps involved

in quantifying the Xu and O’Quigley measure. First consider models (7.1) and (7.2).

Now from the partial likelihood estimates under (7.1), we can compute πj(t; β̂) and

πj(t; 0) as follows
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πj(t; β̂) =
yj(t) exp(β̂1z + β̂2s)∑n

j=1 yj(t) exp(β̂1z + β̂2s)
, (7.9)

πj(t; 0) =
yj(t)∑n

j=1 yj(t)
(7.10)

where yj(t) is the risk indicator. Then we compute P (ti), the jump of the Kaplan-

Meier curve at time ti. Now consider the quantity:

Γ̂2(β̂) = 2

k∑

i=1

P (ti)

n∑

j=1

πj(t; β̂) log(
πj(t; β̂)

πj(t; 0)
) (7.11)

from which we can compute ρ2
Z,S=1 − exp(−Γ̂2(β̂)). In a similar manner, using

the partial likelihood estimates under (7.2), we can proceed to compute πj(t; β̂) and

πj(t; 0) as follows:

πj(t; β̂) =
yj(t) exp(β̂1z)

∑n
j=1 yj(t) exp(β̂1z)

, (7.12)

πj(t; 0) =
yj(t)∑n

j=1 yj(t)
. (7.13)

Following the above procedures, compute Γ̂2(β̂) from which ρ2
z= 1− exp(−Γ̂2(β̂))

can be computed. Finally using the relationship that 1 − ρ2
z,s=(1 − ρ2

z) × (1 − ρ2
s|z),

we will be able to quantify the desired measure of association which is ρ2
s|z from the

quantities calculated above. We will denote the measure of Xu and O’Quigely by ρ2
xu.

For a detailed description of the method please refer to Xu and O’Quigely(1999) and

Xu and O’Quigely (2005).

7.4 A Simulation Study

In the next section, insight into the performance of the information-theoretic approach

of Alonso et al. (2007) together with the measure of explained variation by Kent
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and O’Quigely (1988) and Xu and O’Quigley (1999), is offered through a simulation

study. We first lay out the design of the simulation study, whereafter the results are

described.

7.4.1 Design of the Simulation Study

The focus of this section is to design a simulation study to compare the performance

of the methods discussed in the previous sections. To simplify matters and for ease of

comparison with the linear correlation coefficient and moreover to asses the robustness

of the models against the violation of the proportional hazard assumption, we will

assume a log-normal distribution for the the time-to-event outcome. This allows

us to generate data easily from a bivariate normal distribution assuming a normal

distribution for the cross-sectional surrogate endpoint. After generating outcomes in

this format, the survival outcome is obtained by taking the exponential of the resulting

continuous random variable. Censoring was introduced using a uniform distribution.

The percentage of censored observations was set be either 0, 10, or 35 which we

considered as the small to moderate level of censoring and another set which contains

50, 75 or 90 percent censored observations which represents a high to extreme number

of censored observations. The individual-level R2 values were set to be 0.36, 0.64, or

0.81. The number of subjects was fixed to be either 20, 50, 100, 200 or 1000. In each

case, 100 runs were performed, where the three methods discussed are computed.

7.4.2 Simulation Results

The simulation results are displayed in Tables 7.1 and 7.2. For small to moderate

level of censoring, all the methods seem to perform adequately with the estimated

measures approaching the true value from which the data were generated with increase

in sample size. For percentages of censoring ranging between 35% to 50%, R2
k and
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ρ2
xu tend to slightly overestimate the association measure whereas the R2

n provides

underestimated association measure even for substantially large sample size. The

overestimation of the R2
k and ρ2

xu becomes larger as we move to 75% censoring and

gets worse when the percentage of censoring is as high as 90%, while the R2
n pointing

in the opposite direction. The ρ2
w results in underestimated association measures

as the percentage of censoring gets larger, but the underestimation subsides as the

sample size increases except for high level of association between the surrogate and

the true endpoint. Note also that, as theoretically expected, with no censoring, the

R2
k and ρ2

w didn’t give similar results.

7.5 Application to the Case Study

The three measures of association discussed earlier were applied to the case study in

stroke of children with sickle cell disease introduced in Chapter 2, Section 2.1.5. The

response of interest was time to first stroke for which several competing surrogate

endpoints were considered. From the results summarized in Table 7.3, we can learn

that none of the potential surrogates have a reasonable degree of association with the

response. R2
k and ρ2

xu produced relatively higher measures of association, while ρ2
w

resulted in very small measures in agreement with the results of the simulation study.

Taking the fact that there is a 90% censoring into consideration and inline with the

results of the simulation study, we tend to trust the ρ2
w measure to provide a reasonable

estimate as compared to the other two measures of association. Our conclusion based

on this association measure reflects absence of overlapping information between the

potential surrogates and the true endpoint.
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7.6 Discussion

In this chapter we have compared the performance of three information theory based

methods for the evaluation of a cross-sectional surrogate for a time-to-event true end-

point when the assumption of proportional hazard is violated. Substantial literature

exists concerning the performance of these methods when the proportional hazard

assumption is full filled. Within the context of validating a time-to-event surrogate

endpoint for a time-to-event true endpoint, a small simulation study was performed

to compare the performance of the Xu and O’Quigely measure against the measure

suggested by Alonso et al. (2007) for varying percentages of censoring. The simu-

lation results have revealed that for most instances the Xu and O’Quigely measure

outperforms the measure of Alonso et al. (2007) given that the proportional hazard

assumption is satisfied. Schemper and Stare (1996) compared several measures of

explained variation including the Kent and O’Quigely measure of association for a

Cox proportional hazards model. They have found that among the other methods

suggested, the measure of Kent and O’Quigely was unaffected by censoring even for

substantial percentage of censoring. It is therefore possible to assume that, except

the information-theoretic approach of Alonso et al. (2007), the other two methods

have given very promising results even for large percentage of censoring under the

assumption of proportional hazard. Note however that, not many studies have been

conducted to see how these methods fair when the proportional hazards assumption is

questionable. The first method due to Alonso et al. (2007), which was found to per-

form well for many non-normally distributed outcomes, seems less adept for the case

of survival outcomes. This is specially true for the case of excess censoring and small

sample sizes, which was also the case even when the proportional hazard assumption

was full filled. The Kent and O’Quigely measure is found to perform very well even
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for moderately large percentage of censoring for reasonable number of observations.

A noticeable drawback of the method by Kent and O’Quigely, apart from its com-

putational difficulty, is its inadequacy to accommodate time varying covariates. The

third method which is due to Xu and O’Quigely is more flexible in terms of allowing

the inclusion of time-varying covariates. This method however, is highly dependent

on the proportional hazard assumption. It was however found that, even when the

proportional hazard assumption does not hold, the method has given acceptable level

of bias for large sample sizes. Of the three methods, the method by Alonso et al.

(2007) has the least computational difficulty. The version of this method which uses

the number of events rather than the total number of subjects is to be preferred.

This version was found to perform well in small and medium level of censoring and

large sample sizes. The methods were evaluated for the case of single trial setting,

however all of them can be used for the meta-analytic setting with little modification.

In conclusion, for a case of cross-sectional surrogate with no time varying covariates,

the measure of Kent and O’Quigely is a promising choice even when the proportional

hazard assumption is questionable. If we resort our attention to the case study, we

can learn that none of the potential surrogates have enough information to be able

to predict the true endpoint.
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Table 7.1: Simulation results for 0%, 15% and 35% censored observations. (n: Sample size ; R2
k: R2 based on ITA with number of

events is denominator; R2
n: R2 based on ITA with number of subjects as denominator; ρ2

w: R2 based on the Kent and O’Quigely

measure of dependence; ρ2
xu : R2 based on the Xu and O’Quigely measure of dependence;

Censoring =0% Censoring =15% Censoring =35 %

R2 = 0.36

n R2
k R2

n ρ2
w ρ2

xu R2
k R2

n ρ2
w ρ2

xu R2
k R2

n ρ2
w ρ2

xu

20 0.3459 0.3459 0.4048 0.3467 0.3782 0.3329 0.4156 0.3633 0.4245 0.3018 0.4250 0.4027

50 0.3329 0.3329 0.3690 0.3337 0.3616 0.3201 0.3814 0.3486 0.4097 0.2870 0.3972 0.3911

100 0.3292 0.3292 0.3572 0.3298 0.3540 0.3105 0.3649 0.3448 0.3956 0.2752 0.3777 0.3799

200 0.3334 0.3334 0.3522 0.3339 0.3643 0.3216 0.3674 0.3562 0.4110 0.2890 0.3832 0.3975

1000 0.3333 0.3333 0.3465 0.3338 0.3572 0.3152 0.3552 0.3525 0.4032 0.2812 0.3697 0.3949

R2 = 0.64

20 0.5904 0.5904 0.6686 0.5913 0.6213 0.5634 0.6726 0.6030 0.6696 0.5120 0.6714 0.6431

50 0.5965 0.5965 0.6418 0.5974 0.6266 0.5713 0.6495 0.6076 0.6795 0.5156 0.6602 0.6524

100 0.5992 0.5992 0.6314 0.5999 0.6301 0.5723 0.6366 0.6157 0.6825 0.5195 0.6493 0.6569

200 0.6088 0.6088 0.6310 0.6094 0.6430 0.5859 0.6420 0.6301 0.6907 0.5311 0.6519 0.6649

1000 0.6122 0.6122 0.6267 0.6129 0.6418 0.5849 0.6335 0.6321 0.6908 0.5278 0.6425 0.6744

R2 = 0.81

20 0.7436 0.7436 0.8203 0.7445 0.7640 0.7090 0.8151 0.7454 0.8028 0.6508 0.7984 0.7755

50 0.7692 0.7692 0.8105 0.7700 0.7942 0.7423 0.8157 0.7761 0.8329 0.6792 0.8209 0.8043

100 0.7771 0.7771 0.8042 0.7777 0.8022 0.7495 0.8071 0.7876 0.8376 0.6876 0.8102 0.8121

200 0.7873 0.7873 0.8046 0.7878 0.81337 0.7620 0.8101 0.8009 0.8469 0.7012 0.8133 0.8240

1000 0.7911 0.7911 0.8006 0.7917 0.81420 0.7635 0.8036 0.8036 0.8493 0.7019 0.8069 0.8328
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Table 7.2: Simulation results for 50%, 75% and 90% censored observations. (n: Sample size ; R2
k: R2 based on ITA with number

of events as denominator; R2
n: R2 based on ITA with number of subjects as denominator; ρ2

w: R2 based on the Kent and O’Quigely

measure of dependence; ρ2
xu : R2 based on the Xu and O’Quigely measure of dependence;

Censoring =50% Censoring =75 % Censoring =90 %

R2 = 0.36

n R2
k R2

n ρ2
w ρ2

xu R2
k R2

n ρ2
w ρ2

xu R2
k R2

n ρ2
w ρ2

xu

20 0.4496 0.2741 0.4336 0.4259 0.5294 0.1980 0.3516 0.4915 0.5444 0.1081 0.2231 0.005

50 0.4331 0.2580 0.4031 0.4104 0.5142 0.1779 0.3765 0.4889 0.5941 0.1024 0.1868 0.5900

100 0.4302 0.2514 0.3887 0.4127 0.5190 0.1746 0.3777 0.4907 0.6622 0.1067 0.2522 0.6317

200 0.4357 0.2586 0.3847 0.4198 0.5319 0.1749 0.3818 0.5078 0.6396 0.1006 0.3098 0.6118

1000 0.4333 0.2528 0.3728 0.4231 0.5196 0.1655 0.3618 0.5074 0.6415 0.0933 0.3419 0.6251

R2 = 0.64

20 0.6793 0.4568 0.6574 0.6457 0.7232 0.3103 0.4790 0.6560 0.7560 0.1736 0.3213 0.7883

50 0.7013 0.4681 0.6605 0.6668 0.7649 0.3238 0.5958 0.7259 0.8062 0.1810 0.3297 0.7984

100 0.7107 0.4717 0.6534 0.6850 0.7900 0.3288 0.6311 0.7803 0.8717 0.1939 0.4267 0.8351

200 0.7201 0.4858 0.6536 0.6952 0.8008 0.3339 0.6420 0.7741 0.8749 0.1911 0.5206 0.8435

1000 0.7212 0.4807 0.6436 0.7024 0.7997 0.3270 0.6260 0.7803 0.8819 0.1845 0.5932 0.8635

R2 = 0.81

20 0.8136 0.5897 0.7851 0.7670 0.8357 0.4019 0.6334 0.7508 0.8299 0.2194 0.4157 0.8455

50 0.8485 0.6244 0.8206 0.8205 0.8864 0.4371 0.7501 0.8540 0.8960 0.2414 0.4052 0.8277

100 0.8570 0.6317 0.8119 0.8275 0.9056 0.4522 0.7774 0.8802 0.9492 0.2644 0.5719 0.9290

200 0.8660 0.6500 0.8132 0.8438 0.9167 0.4642 0.8017 0.8933 0.9547 0.2694 0.6412 0.9331

1000 0.8700 0.6487 0.8062 0.8520 0.9181 0.4598 0.7901 0.9009 0.9597 0.2632 0.7609 0.9464
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Table 7.3: Results of the case study. (R2
k: R2 based on ITA with number of events as denominator; R2

n: R2 based on ITA with

number of subjects as denominator; ρ2
w: R2 based on the Kent and O’Quigely measure of dependence; ρ2

xu : R2 based on the Xu

and O’Quigely measure of dependence

Surrogate R2
k R2

n ρ2
w ρ2

xu

Maximum diastolic TCD velocity 0.5594 0.0787 0.0231 0.6777

Maximum mean TCD velocity on right 0.4718 0.0618 0.0142 0.6824

Maximum systolic TCD velocity 0.6245 0.0933 0.0215 0.6944

Maximum of maximum mean TCD velocity on left and right 0.6448 0.0983 0.0245 0.6727

Difference between maximum systolic and dystolic TCD velocity 0.3728 0.0456 0.0340 0.2999

Maximum mean TCD velocity 0.6245 0.0933 0.0215 0.7491





8
Mixture of Longitudinal and

Cross-Sectional Endpoints

Thus far, we have considered the case of two cross-sectionally measured outcomes

and tried to quantify the individual and trial level surrogacy measures. In practice

however, we will encounter cases where one or both of the endpoints of interest is

multivariate in nature and specifically longitudinally measured. This induces a new

challenge in terms of quantifying the desired measures of association. The methods

that have been suggested for the univariate cases may not be directly applicable

to this situation. In addition to adapting the methods to the case of longitudinal

outcomes, we are also challenged with fitting the appropriate model for the time

course. The concern of this chapter is therefore to revisit the methods suggested for

the case of two continuous longitudinal outcomes and adapt them for cases where

either of the two outcomes is cross-sectionally measured. We start by giving a concise

description of the various methods used in validating a surrogate endpoint, for the

93
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case of two longitudinal outcomes and then adapt the methods to the case of a mixture

of longitudinal and cross-sectional outcomes, with focus on individual level surrogacy.

8.1 Measures for Two Longitudinal Outcomes

We begin with the review of the variance reduction factor and the R2
Λ, suggested

by Alonso et al. (2003) for the case of two repeatedly measured outcomes, where

after we show how theses methods can be adapted to the situation where one of the

two outcomes is cross-sectional. Let us assume that there are n subjects enrolled

for a particular study and further suppose that tjk is the time at which the kth

measurement of the jth subject is taken. Let Tjk and Sjk be the true and the surrogate

endpoints, respectively, and let Zj be a binary treatment indicator. Now, consider

the following joint model for the true and surrogate endpoints:

Tjk = µ
T

+ αZj + f(tjk) + εTjk ,

Sjk = µ
S

+ βZj + f(tjk) + εSjk ,

(8.1)

where (µ
T
, µ

S
, α,β) are intercepts and treatment effects on the true and surrogate

endpoints, respectively, f(tjk) is a flexible function in time which can be modeled as

fractional polynomial, penalized spline, or any flexible function in time. In principle,

it is possible for the two endpoints to depend on time through different functions,

in which case we will have fT (tjk) and fS(tjk) for the true and surrogate endpoint

respectively. However, without loss of generality, let us assume that both depend on

time through the same function. The error terms (εTjk , εSjk) are assumed to follow

a zero-mean normal distribution with patterned variance-covariance matrix

Σ =



 Σ
TT

Σ
T S

Σ
ST

Σ
SS



 , (8.2)

with obvious notation. In this setting, Alonso et al. (2003) proposed to quantify

the individual-level surrogacy using the so-called variance reduction factor , which is
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defined as

V RF =
tr(Σ

T T
) − tr(ΣT |S)

tr(Σ
T T

)
, (8.3)

where Σ
T |S denotes the conditional variance-covariance matrix of Tjk given Sjk, i.e.,

ΣT |S = ΣT T − ΣTSΣ−1
SS

ΣST . Furthermore, these authors have shown that the V RF

satisfies a set of properties that makes it practically applicable: (i) V RF ranges

between zero and one; (ii) V RF = 0 if and only if the true and the surrogate endpoints

are independent; (iii) V RF = 1 if and only if there exists a deterministic relationship

between the true and surrogate endpoint; and (iv) V RF = R2 in the cross-sectional

setting. Note that, at the individual level, interest lies in the prediction of the true

endpoint given the surrogate endpoint. In this regard, property (ii) shows that if the

V RF equals zero, then no sensible prediction is possible, whereas a perfect prediction

is attained if V RF equals one, as indicated by property (iii). Property (iv) establishes

the link between this approach and the one suggested by Buyse et al. (2000) for

univariate outcomes. As can be seen from (8.3), the V RF summarizes the variability

of the two endpoints using the trace of the corresponding variance-covariance matrices.

In multivariate analysis, there is no unique way of defining a generalized variance, the

trace is one of the classical ways of doing so, while another common definition uses

the determinant. Interestingly, using the trace or the determinant to summarize the

variability of the endpoints has important ramifications for analysis and leads to two

totally separate measures with different interpretations. To this end, Alonso et al.

(2003) have suggested another measure, the so-called R2
Λ, which uses this alternative

definition of the generalized variance. Like the V RF , this measure can be derived

based on Model (8.1), as follows:

R2
Λ = 1 −

|Σ |

|ΣT T | · |ΣSS |
. (8.4)
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The authors have shown that this measure also enjoys desirable properties: (i) R2
Λ

is symmetric and invariant with respect to linear bijective transformations; (ii) R2
Λ

ranges between zero and one; (iii) R2
Λ = 0 if and only if the error terms are inde-

pendent; (iv) R2
Λ = 1 if and only if there exist a and b so that aTεSjk

= bTεTjk
with

probability one; and (v) R2
Λ = R2 in the cross-sectional setting. All of these prop-

erties, except the fourth property are shared with the V RF . The fourth property,

however, differs in important ways from the V RF . Indeed, whereas the V RF takes

the value 1 when there is a deterministic relationship between both endpoints, R2
Λ is

1 whenever there is a deterministic relationship between two linear combinations of

both endpoints, allowing us to uncover strong association in cases where the V RF

might fail to do so. This is not a disadvantage of one or the other proposal, but rather

underscores them focusing on different aspects. The expression for R2
Λ clearly shows

that, unlike the V RF , this measure treats both endpoints symmetrically.

8.2 A Longitudinal Surrogate for a Cross-Sectional

True Endpoint

Let us assume that the surrogate endpoint is repeatedly measured over time with K

repeated measures and that the true endpoint is cross-sectional. Model (8.1) takes

the form:

Tj = µ∗
T

+ α∗Zj + εT j ,

Sjk = µ∗
S

+ β∗Zj + f(tjk) + εSjk .

(8.5)

Notice that there are some important differences between (8.5) and the joint model

for two longitudinal outcomes given in (8.1). One dissimilarity is that there is a differ-

ence in the number of parameters when modeling the surrogate and true endpoints. A

second one, a computational issue is induced such that, the variance-covariance ma-

trix of the error term (ε
Sij

, εTij
)T , Σ, cannot be modeled using a Kronecker product of
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two matrices like suggested in Galecki (1994), as there are no repeated measurements

within the true endpoint. Thus, Σ has to be modeled as one matrix using either a

compound symmetry, first-order autoregressive, spatial or another type of covariance

structure. Nevertheless, Σ can still be subdivided into four sub-matrices, i.e.,

Σ =


 σT T ΣT S

ΣST Σ
SS


 . (8.6)

Here, σT T denotes the variance of the true endpoint, ΣTS is a (1 ×K) vector contain-

ing the covariances between the true endpoint and the surrogate endpoint at different

time points, and Σ
SS

is a (K × K) variance-covariance matrix associated with the

longitudinal surrogate endpoint. Then, the V RFindiv for longitudinal surrogate and a

cross-sectional true endpoint denoted by V RFLC
ST

, with a subscript ‘L’ (‘C’) reminis-

cent of ‘longitudinal’ (‘cross-sectional’), can be computed as

V RFLC
ST

=
tr(σ

T T
) − tr(σT |S)

tr(σ
T T

)
, (8.7)

where σ
T |S denotes the conditional variance of T given S: σT |S = σT T −ΣT SΣ−1

SS
ΣST .

Using this expression, (8.7) can be re-written as

V RFLC
ST

=
tr(σ

T T
) − tr(σT T − ΣTSΣ−1

SS
ΣST )

tr(σ
T T

)
. (8.8)

Note that all matrices involved in the computation of V RFLC
ST

are of dimension (1×1)

and hence the trace reduces to the corresponding scalar, offering the opportunity to

simplify (8.8):

V RFLC
ST

=
σT T − σT T + ΣT SΣ−1

SS
ΣST

σT T

=
ΣT SΣ−1

SS
ΣST

σT T

. (8.9)

Notice that V RFLC
ST

= 0 if and only if ΣST = 0, i.e., if and only if when S and T are

independent.
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Intuitively, (8.9) quantifies how much of the total variability of the true endpoint is

explained by the surrogate endpoint, after adjusting for treatment effects and repeated

measures of the surrogate endpoint. Resorting our attention to R2
Λ, let us again

consider Model (8.5) and the corresponding variance-covariance matrix (8.6). The

R2
Λ for a longitudinal surrogate and a cross-sectional endpoint is given by

R2,LC
Λ,ST

= 1 −
|Σ |

|σT T | · |ΣSS |
, (8.10)

where σT T , ΣSS, and Σ are as defined in (8.6). Note that

|Σ| = |ΣSS| · |ΣT |S | = |ΣSS| · |σT T − ΣTSΣ−1
SS

ΣST |,

and, substituting this in (8.10), we obtain

R2,LC
ΛST

= 1 −
|σT T − ΣT SΣ−1

SS
ΣST |

|σT T |

= 1 −
σT T − ΣTSΣ−1

SS
ΣST

σT T

=
ΣT SΣ−1

SS
ΣST

σ
T T

, (8.11)

since all matrices involved are of dimension one.

8.3 A Cross-Sectional Surrogate for a Longitudinal

True Endpoint

Next, let us consider a role reversal, such that the true endpoint is repeatedly mea-

sured over time with K repeated measures, whilst having the surrogate endpoint in

cross-sectional form. Model (8.1) then becomes:

Tjk = µ∗
T

+ β∗Zj + f(tjk) + εTjk ,

Sj = µ∗
S

+ α∗Zj + εSj .

(8.12)
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The error terms (εT jk ,εSj
) are zero-mean normally distributed with variance-covariance

matrix:

Σ =


 ΣTT ΣT S

ΣST σ
SS


 . (8.13)

Now, the V RFindiv for this case is

V RFCL
ST

=
tr(Σ

T T
) − tr(ΣT |S)

tr(Σ
T T

)

=
tr(Σ

T T
) − tr(ΣT T − ΣTSσ−1

SS
ΣST )

tr(Σ
T T

)

=
tr(Σ

T T
) − tr(ΣT T ) + tr(ΣT Sσ−1

SS
ΣST )

tr(Σ
T T

)

=
tr(ΣT SΣST )

σSS.tr(Σ
T T

)
. (8.14)

From (8.9) and (8.14), it is clear that there is asymmetry in the VRF calculations.

Results differ depending on which of the two endpoints is the cross-sectional one.

This is in line with our expectations. In the case of a longitudinal true endpoint, the

V RF measures the ability of the cross-sectional endpoint to predict the longitudinal

outcome at each time point, whereas when the longitudinal sequence is treated as

surrogate endpoint, the V RF measures the adequacy of the longitudinal sequence to

predict the cross-sectional outcome. It is therefore imperative to determine in advance

which of the two outcomes is treated as true when applying this procedure to quantify

association. Either way, a V RF value close to one indicates that the surrogate is a

‘good’ predictor of the true endpoint at the individual level, while values close to zero

indicate ‘poor’ prediction. In any case however, the values of the V RF have to be

complemented with expert opinion before passing judgment on the adequacy of the

surrogate to predict the true endpoint. In the same manner lets us consider model
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(8.12). The R2
Λ for a longitudinal true and a cross-sectional surrogate endpoint is

R2,CL
Λ,ST

= 1 −
|Σ |

|ΣTT | · |σSS |

= 1 −
|ΣTT | · |σSS − ΣST Σ−1

T T
ΣT S |

|ΣT T | · |σSS |

= 1 −
|σSS − ΣST Σ−1

T T
ΣTS |

|σ
SS

|

= 1 −
σSS − ΣST Σ−1

T T
ΣT S

σ
SS

=
ΣST Σ−1

T T
ΣT S

σ
SS

. (8.15)

Comparing (8.11) with (8.15) establishes that R2,LC
Λ,ST

= R2,CL
Λ,ST

. In the first case, we

used σT T and ΣSS as component variances, of scalar and matrix type, respectively.

These roles are reversed in the current, second case. Nevertheless, we obtain the same

final expression for R2
Λ as is, of course, entirely in line with the original, symmetric

definition (8.4) of the quantity. Furthermore, note that R2
Λ and V RF are equal when

the surrogate is longitudinal and the true endpoint cross-sectional. This implies that,

only the VRF with the surrogate cross-sectional and the true endpoint longitudinal

will be different from all of the others, that than coincide. This again highlights

the feature that, for a longitudinal true endpoint, the V RF studies prediction of the

entire sequence, while the R2
Λ assesses how well an optimal linear combination of

the true endpoint profile can be predicted. Both may be useful, but definitely are

different. Moreover, one would expect the V RF to be well below the R2
Λ in many

applications, since prediction of an entire longitudinal sequence from a cross-sectional

quantity is a tall order, whereas it might well be feasible to predict a particular

linear combination. The choice between the two measures lies in the objective to be

attained. If the objective is to measure the strength of the surrogate to predict the
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entire sequence of the true endpoint, then V RF will be an ideal choice. However,

when this seems an attainable goal or when we are rather interested in predicting

some linear combination of the true endpoint, then we can resort to R2
Λ. Note that

standard error of the estimates can be calculated using either a delta method or

bootstrap (Efron, Bradley and Tibshirani, 1993).

8.4 Flexible Linear Mixed Modeling

The setting considered here include both cross-sectional and longitudinal outcomes

and hence appropriate modeling of the longitudinal outcome is called for. Let us first

give a brief introduction to the analysis of longitudinal data.

8.4.1 Longitudinal Data Analysis

Since we are in the framework of continuous longitudinal data, modeling can be done

by way of a linear mixed model. The general linear mixed-effects model can be

represented as (Verbeke and Molenberghs, 2000):






Y j = Xjβj + Zjbj + εj

bj ∼ N(0, G), εj ∼ N(0,Σj), b1, . . . , bN , ε1, . . . , εN are independent,

(8.16)

where Y j (j = 1, . . . , n) is the mi-dimensional response vector of measurements

for subject j, Xj and Zj are mj × p- and mj × q-dimensional matrices of known

covariates (e.g., time), respectively, βj is a p-dimensional vector of fixed effects, bj is

q-dimensional subject-specific vector of random effects and εj is an mj-dimensional

vector of residuals. The matrix G is a general q×q covariance matrix and Σj is an mj×

mj covariance matrix. Often, Σj is assumed to equal σ2
εImj

, resulting in the so-called

conditional independence model. Note that when the response is cross-sectional, the

general model reverts to the usual regression model wherein subject-specific effects are
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dropped. The evolution over time can be captured by specifying parametric functions,

such as, for example, linear, quadratic or even higher-order polynomials in the vector

Xj . These effects may well be included in the random-effects vector Zj as well.

However, it is not difficult to imagine cases where obtaining a suitable parametric

form adequately describing the mean is a challenge. Although our primary goal is

to quantify the association between various outcomes via surrogate marker validation

methods, proper modeling of the mean evolution in time is necessary. One can get rid

of the need to specify a parametric model through use of flexible modeling techniques,

an issue taken up further in the following section.

8.4.2 Flexible Modeling Techniques

Postulating a parametric function to model the mean evolution may be difficult and/or

restrictive. An appealing alternative is to model the time evolution using some flexible

smooth function. In this section, we briefly discuss linear mixed models to model

longitudinal data (Verbeke and Molenberghs, 2000) with the time trend determined

by some flexible smooth function in the form of either penalized smoothing splines

(Eilers and Marx, 1996; Verbyla et al., 1999; Ruppert, Wand, and Carroll, 2003) or

fractional polynomials (Royston and Altman, 1994).

Penalized Smoothing Splines

Use of penalized splines results in a semi-parametric smooth function, the term ‘semi-

parametric’ here referring to the feature that the model combines parametric and

non-parametric aspects. We provide a brief description of the model as is usually

encountered with longitudinal data.

Let Yjk denote the response taken from subject j at time tjk (k = 1, . . . , K).

The model of interest can be expressed as: Yjk = f(tjk) + εjk, for a smooth function
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f(·). Restricting focus to the truncated lines basis, which is simple in formulation and

performs adequately in many circumstances (Ngo and Wand, 2004), the penalized-

spline representation can be written as:

Yjk = β0 + β1tjk +

Q∑

q=1

bq(tjk − κq)+ + εjk, (8.17)

where κ1, . . . , κQ are a set of distinct knots in the range of tjk, t+ = max(0, t), and

bq ∼ N(0, σ2
b ). The knot points are selected as equally spaced quantiles of time

(Ruppert et al., 2003). For ease of development, we adopt the following matrix

notation. Let

Y j =
[

yjk

]

1≤j≤n,1≤k≤K
, Xj =

[
1 tjk

]

1≤j≤n,1≤k≤K
, β =

[
β0 β1

]′

.

Further, define:

Zj =
[

(tjk − κk)+

]

1≤j≤n, 1≤k≤K, 1≤κ≤Q
, b =

[
b1, . . . , bQ

]′

, εj =
[

ε11, . . . , εnK

]′

using this notation, a stacked version of (8.17) becomes Y = Xβ + Zb + ε. The

correspondence between the penalized spline smoother and the optimal predictor in

a mixed model framework is a key feature in fitting the models. This connection

offers the opportunity of using ordinary software packages for mixed models, such

as, for example, SPlus, SAS, or R. Fitting penalized splines by the linear mixed

model approach has some appealing advantages, such as automatic determination of

the smoothing parameter, a unified framework for inference, and the flexibility with

which the models can be extended (Faes et al., 2006).

Fractional Polynomials

As an alternative to capturing the time trend as mentioned in Section 8.4.2, the so-

called fractional polynomial approach may be used. Fractional polynomials provide

an extension to classical polynomials allowing for non-integer powers to the time
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covariate, thereby adding greater flexibility in capturing rather complex non-linear

relationships. A brief description of fractional polynomials is given below. Let t =

(tj1, . . . , tjK) denote the set of time points pertaining to subject j. Royston and

Altman (1994) define a fractional polynomial of degree m by

φm(t; β, p) =

m∑

r=0

βrHr(t), (8.18)

where m is a positive integer and p = (p1, . . . , pm) is a real-valued set of powers such

that p1 ≤ · · · ≤ pm and β = (β0, . . . , βm) are real-valued coefficients. For r = 0,

H0(t) = 1, p0 = 0, and for r = 1, . . . , m:

Hr(t) =





tpr if pr 6= pr−1,

Hr−1(t) ln(t) if pr = pr−1.

As mentioned in Royston and Altman (1994), polynomials of a degree higher than 2

or 3 are rarely encountered in practice. The best power transformation is frequently

found among the members of the list {−2,−1,−0.5, 0, 0.5, 1, . . . , max(3, m)}. While it

is possible to incorporate other powers, there is a danger coming with including large

negative powers, in the sense that individual extreme observations will influence the

fit too much (Royston, Parmar, and Qian 2003). Note that the fractional polynomial

model has been defined in its generic form and in analogy with penalized-splines

models; extension to include covariates other than time is possible.

8.5 Application to the Case Study

The case study on stress related disorders introduced in Chapter 2 section 2.1.5 was

analyzed here. The objective was to assess the association between the different re-

sponses before and after stress was induced. Thus, the results for pre-stress and

post-stress correspond to the associations measured between the different responses
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before and after the stress with the treatment variable (Z), having two possible values

(1: active treatment, 0:vehicle) for pre-stress and having four different possible values

after stress. Figure 8.1 shows the group-specific mean profiles of CORT measure-

ments, averaged over the four treatment periods. The plot depicts the average CORT

values per treatment group at each time point, essentially showing how, on average,

CORT values evolve over time in each treatment group. The need for flexible modeling

tools is apparent, since finding a suitable or rather an acceptable classical parametric

model is not an easy task. Hence, as mentioned before, we discuss results emanating

from an application of surrogate marker validation methodology in conjunction with

flexible modeling techniques (spline and fractional-polynomial based), meant to ap-

propriately capture trends over time. For purposes of comparison, an unstructured

mean model or a full factorial structure for time is also considered. However, this

approach often yields excessively large numbers of parameters, thereby rendering it

less desirable. The variance-covariance matrices, based upon which the V RF and

R2
Λ are computed, are estimated using maximum likelihood. The variance-covariance

matrices can assume general structures unless the data suggests otherwise. In such

cases, simple covariance structures, such as auto-regressive or compound symmetry,

might be considered. For the purpose of our application, a number of models with

different variance-covariance structures has been fitted. The best model, here being

an unstructured variance-covariance structure, can be chosen using a conventional

likelihood ratio test and/or Akaike’s Information Criterion. The results of the analy-

sis for the association of telemetry and behavior as well as that of CORT and behavior

are summarized in Table 8.1 with bootstrap standard errors and in Table 8.2 with

asymptotic standard errors, respectively. We should like to point out that it is not

a trivial task to derive a closed-form expression for the standard errors of V RF and
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R2
Λ for the particular case we have considered. However, fortunately, Alonso et al

(2006) have shown that the V RF and R2
Λ are special cases of the so-called Likelihood

Reduction Factor , which is based on the information-theory approach. These authors

have derived an asymptotic solutions for LRF . Hence, by virtue of the relationship

of these measures with the LRF , we have been able to provide asymptotic standard

errors based on the information-theory approach. There are no general guidelines as

to how large a V RF and R2
Λ should be in order to be considered sufficiently large.

However, since the V RF and R2
Λ are R-square type measures, it might be possible

to make some general remarks concerning the degree of association based on their

magnitude. Since such a degree of association arguably would vary from application

to application, the final decision has to be made in consultation with the experts,

regardless their value. Having this in mind, from the results for the pre- and post-

stress, we might infer that there is a rather weak relationship between behavior and

CORT. However, strong and moderate relationships were observed between heart rate

and behavior, and between blood pressure and behavior, respectively. Recall that be-

havior is measured cross-sectionally while CORT, heart rate, and blood pressure are

longitudinal outcomes. In this regard, when the cross-sectional outcome was used as a

possible surrogate for the longitudinal outcomes, the V RF produced very low values,

as anticipated in the previous section. Indeed, it is very difficult to predict the sub-

tleties and richness of a longitudinal sequence from a single, cross-sectional measure.

We consider this a desirable feature of the V RF . The R2
Λ on the other hand, states

that, although still small for some of the endpoints, there is better hope to predict

a particular linear combination of the longitudinal outcomes from the cross-sectional

outcome. As such, V RF and R2
Λ both provide useful but totally different pieces of

information. When there is role reversal, that is, when the longitudinal outcomes
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were treated as a possible surrogates for the cross-sectional outcome, the V RF values

coincided with the R2
Λ. This underscores that the V RF does not treat both end-

points symmetrically. The R2
Λ, however, stayed the same even when there was role

reversal, as expected from its construction. The higher V RF and R2
Λ values obtained

when the longitudinally measured heart rate and blood pressure were used as surro-

gate endpoints for the cross-sectionally measured behavior, establish the possibility

of predicting behavior using some linear combination of the longitudinal sequence.

Zooming in on the association between telemetry and CORT, both longitudinal in

nature, we learn that there is a very weak association, with a maximum R̂2
Λ = 0.2314

and maximum V̂ RF = 0.0513, between the three modeling approaches. This is an

indication that there is a very limited overlap in information between both outcomes,

inhibiting comfortable prediction of one from the other. In conclusion, the analysis

has revealed that the longitudinally measured CORT level offers limited opportunity

for prediction of activity, which is measured by the degree of alertness expressed in

terms of the percentage of minutes the rats have been awake. We learn that heart rate

and blood pressure are weakly related to CORT but have a strong predictive ability

for behavior. The results advice against the use of activity to predict the longitudinal

CORT level, heart rate, and blood pressure at each time point.

8.6 Discussion

In this chapter, we have adapted surrogate marker evaluation methods, originally de-

signed to handle two repeated measures sequences, to the case of one cross-sectional

and one longitudinal outcome, where either of these can be used as the surrogate.

The methods have been applied to quantifying association between longitudinally

measured CORT level, heart rate, and blood pressure, with cross-sectional behavior
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measured by the level of activity, expressed as the percentage of time experimental

rats have been active after exposure to treatment followed by stress. The methods

appear to work adequately for this particular mix of longitudinal and cross-sectional

endpoints. The various theoretical properties of the methods have manifested them-

selves in the results of the data analysis. In particular, it has been nicely confirmed

that the V RF focuses on the prediction of a longitudinal sequence as a whole by

a cross-sectional outcome, while R2
Λ is concerned with the prediction of an optimal

linear combination of the longitudinal outcome. In the case of two longitudinal out-

comes, the optimal linear combinations from the two outcomes are the first canonical

variates. In the context of a longitudinal true and cross-sectional surrogate endpoint,

the optimal linear combination could be the first principal component or any other

summary measure of the longitudinal measurements, thereby maximally retaining in-

formation. Thus, optimality in this context refers to finding a linear combination

that best summarizes the repeated measures. The longitudinal outcomes were mod-

eled using flexible modeling tools such as fractional polynomials, penalized splines,

and a general unstructured mean where the time trend is not modeled but rather an

analysis-of-variance type approach is followed. This offers the possibility of fitting

different models and then selecting the best one according to some model selection

tool such as, for example, Akaike’s Information Criterion. It is, indeed, important

to conduct proper modeling before moving into quantifying surrogacy, because the

results may critically depend on the model’s goodness-of-fit. In all cases, V RF or

R2
Λ estimates close to one are indicative of ‘good’ surrogacy, with the reverse holding

for values close to zero. Evidently, it is difficult to provide general advice as to how

large is large enough. Arguably, the statistical evaluation of a surrogate can be an

important component in the decision making process, but at least equally important
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Figure 8.1: Group-specific mean profiles of CORT values, averaged over different

treatment periods. The shaded regions indicate the time windows in which activity

was measured before and after the stress induction.

is expert opinion coming in from pharmacological, biological, clinical, ethical, and

health economy considerations.
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Table 8.1: R2
indiv

values(bootstrap standard errors) under pre-stress and post-stress conditions, for a variety of true and surrogate

endpoints, using unstructured, fractional polynomial, and penalized splines models, and based on both V RF and R2
Λ.

endpoint unstructured fract. pol. pen. splines

true surrogate V RF R2
Λ V RF R2

Λ V RF R2
Λ

Pre-stress

behavior CORT 0.433(0.1803) 0.433(0.1803) 0.372(0.1547) 0.372(0.1547) 0.402(0.1818) 0.402(0.1818)

CORT behavior 0.060(0.0314) 0.433(0.1813) 0.039(0.020) 0.372(0.1547) 0.026(0.290) 0.402(0.1818)

behavior heart rate 0.807(0.0928) 0.807(0.0928) 0.816(0.1116) 0.816(0.1116) 0.798(0.1793) 0.798(0.1793)

heart rate behavior 0.119(0.0568) 0.807(0.0928) 0.069(0.0624) 0.816(0.1116) 0.071(0.0689) 0.798(0.1793)

behavior blood pressure 0.571(0.1916) 0.571(0.1916) 0.586(0.1781) 0.586(0.1781) 0.408(0.2146) 0.408(0.2146)

blood pressure behavior 0.081(0.0246) 0.571(0.1916) 0.073(0.0468) 0.586(0.1781) 0.011(0.0369) 0.408(0.2146)

Post-stress

behavior CORT 0.386(0.1889) 0.386(0.1889) 0.499(0.2095) 0.499(0.2095) 0.359(0.1190) 0.359(0.1190)

CORT behavior 0.038(0.0248) 0.386(0.1889) 0.045(0.0984) 0.499(0.2095) 0.032(0.0273) 0.359(0.1190)

behavior heart rate 0.913(0.0498) 0.913(0.0498) 0.984(0.0263) 0.984(0.0263) — —

heart rate behavior 0.227(0.0868) 0.913(0.0498) 0.126(0.0755) 0.984(0.0263) — —

behavior blood pressure 0.343(0.1041) 0.343(0.1041) 0.513(0.2050) 0.513(0.2050) — —

blood pressure behavior 0.079(0.055) 0.343(0.1041) 0.160(0.1288) 0.513(0.2050) — —
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Table 8.2: R2
indiv

values (asymptotic standard errors) under pre-stress and post-stress conditions, for a variety of true and surrogate

endpoints, using unstructured, fractional polynomial, and penalized-splines models, and based on both V RF and R2
Λ.

endpoint unstructured fract. pol. pen. splines

true surrogate V RF R2
Λ V RF R2

Λ V RF R2
Λ

Pre-stress

behavior CORT 0.433(0.1178) 0.433(0.1178) 0.372(0.1174) 0.372(0.1174) 0.402(0.1179) 0.402(0.1179)

CORT behavior 0.060(0.0632) 0.433(0.1178) 0.039(0.0533) 0.372(0.1174) 0.026(0.0463) 0.402(0.1179)

behavior heart rate 0.807(0.0724) 0.807(0.0724) 0.816(0.0702) 0.816(0.0702) 0.798(0.0745) 0.798(0.0745)

heart rate behavior 0.119(0.0850) 0.807(0.0724) 0.069(0.0669) 0.816(0.0702) 0.071(0.0677) 0.798(0.0745)

behavior blood pressure 0.571(0.1105) 0.571(0.1105) 0.586(0.1091) 0.586(0.1091) 0.408(0.1179) 0.408(0.1179)

blood pressure behavior 0.081(0.0717) 0.571(0.1105) 0.073(0.0685) 0.586(0.1091) 0.011(0.0823) 0.408(0.1179)

Post-stress

behavior CORT 0.386(0.1177) 0.386(0.1177) 0.499(0.1156) 0.499(0.1156) 0.359(0.1171) 0.359(0.1171)

CORT behavior 0.038(0.0528) 0.386(0.1177) 0.045(0.0563) 0.499(0.1156) 0.032(0.00497) 0.359(0.1171)

behavior heart rate 0.913(0.0415) 0.913(0.0415) 0.984(0.0108) 0.984(0.0108) — —

heart rate behavior 0.227(0.1063) 0.913(0.0415) 0.126(0.0868) 0.984(0.0108) — —

behavior blood pressure 0.343(0.1164) 0.343(0.1164) 0.513(0.1149) 0.513(0.1149) — —

blood pressure behavior 0.079(0.0709) 0.343(0.1164) 0.160(0.0947) 0.513(0.1149) — —





9
Optimal Number of Repeated

Measurements

Surrogate-marker validation exercises that have been considered thus far involved two

different endpoints, where one endpoint is a candidate surrogate and the other is a

true endpoint. Such endpoints may be of the same nature (e.g., both continuous,

binary, or longitudinal) or of a mixed nature (e.g., a binary surrogate, for a con-

tinuous true endpoint, a continuous surrogate for time-to-event true endpoint). In

contrast, the scenario we deal with here has only one endpoint, measured repeatedly

over time. We are then interested in the predictive potential of the earlier clinical

measurements for the later ones, and in particular for the last one. This can be placed

within the surrogate-marker evaluation context, by considering the accumulated first

few repeated measurements as potential surrogates and the outcome, for example at

the final measurement occasion, as the true endpoint. Thus, for each subject, the

surrogate is a vector of repeated measurements and the true endpoint is a scalar. The

113
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situation where the surrogate is a single early measurement is, of course, merely a

special case. The challenge is to determine the number of repeated measures that are

required to adequately predict the true endpoint. It is evident that collecting more

repeated measurements enhances prediction. However, more repeated measurements

imply longer study periods and increase cost. Thus, there must be a balance between

cost and precision. The objective we want to address in this chapter is threefold.

First, existing surrogate-marker evaluation procedures will be tuned to accommodate

the present scenario. Second, selection of an optimal number of repeated measure-

ments will be effectuated using an objective function, designed as a weighted function

of financial cost and predictive precision. The objective function allows tuning to

the specific needs of a particular case study. Third, a simulation study is conducted

to investigate the performance of the proposed procedure under different covariance

structures for the repeated measures.

9.1 Measure of Surrogacy

In this chapter we are dealing with a special case that deviates from the main stream

surrogate marker validation where two separate outcomes are entertained. Note how-

ever that, a closer look into the problem reveals that the situation is similar to the case

of a longitudinal surrogate for a cross-sectional outcome discussed in Chapter 8. The

only difference is that, here the problem is formulated based on a single repeatedly

measured endpoint which will be subdivided into a surrogate and true endpoint. As

a consequence, we have a repeatedly measured (longitudinal) surrogate and a singly

measured (cross sectional) true endpoint. Thus the measures derived in the previous

chapter for the case of a longitudinal surrogate endpoint for a cross-sectional true

endpoint can directly be applied to this situation.
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9.1.1 Optimal Number of Repeated Measurements

In this scenario, we are interested in predicting the outcome of a subject at a specified

point in time given an accumulated number of repeated measurements of the outcome

at an earlier point in time. Along this idea, let us denote by Yijk the kth measurement,

k = 1 . . .K, of subject j, j = 1 . . . ni, in trial i, i = 1 . . .Nt. We shall further assume

that the following model holds

Yijk = (β0 + b1i) + (β1 + b2i)Zij + β2tik + β3Zijtik + εijk, (9.1)

where Zij and tik are binary treatment indicator and the time at which measurements

are taken, (b1i, b2i) are trial specific effects assumed to follow a normal distribution

with mean zero and variance covariance matrix DL, and the error vector εijk is

assumed to follow a normal distribution with mean zero and variance covariance

matrix ΣL. Our model assumes a linear treatment effect over time, which is equal

for all trials but can be extended to more complex model, if need be, as proposed by

Alonso et al. (2004d). Let us formally define our surrogate and true endpoints, based

on (9.1). Suppose we intend to investigate if the first cumulated m measurements,

where 1 ≤ m ≤ K − 1, are a good predictor for the outcome measured at time K.

Our surrogate endpoint is then the m dimensional vector of measurements S̃T

ij
=

(Yij1, . . . , Yijm), and our true endpoint is the measurement YijK , i.e., Sijk = Yijk

(k = 1, . . . , m − 1) and Tij = YijK , where the indices i, j, and k are defined as in

(9.1). This leads to model (8.5) and its variance covariance matrix from which we

can compute the measure of surrogacy of the initial m measures for the final outcome

using (8.9).
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9.1.2 Cost Function and Optimal Number of Measurements

To determine the optimal number of measurements (mo), we will consider the follow-

ing cost function, introduced by Winkens et al. (2005):

FC = NC1 + NKC2. (9.2)

Here, FC represents the fixed total financial cost, N is the total number of subjects in

the study, K is the number of planned repeated measurements per subjects, C1 is the

cost of recruiting a subject to the study, and C2 is the cost per measurement and per

subject. Let R = C1/C2 be the ratio of the two costs; usually the cost of recruiting

a subject to the study is higher than the cost per measurement, i.e., R > 1. We can

then re-write (9.2) as FC = NC2(R + K). Suppose now that, instead of taking K

measurements, we take m, 1 ≤ m ≤ K−1, measurements and use this information to

predict the outcome at the Kth time point, the financial cost for the m measurements

is then given by FC(m) = NC1 + NmC2. Thus, the proportion of the total financial

cost required to take m measurement is PFC(m) = (R + m)/(R + K). It is easy to

show that the variance of the prediction, based on m observations, of the outcome

at the last time point takes the form [1 − V RFind(m)]σT T . Note further that σT T is

constant, irrespective of the number of repeated measurements used as a surrogate;

thus a standardized version of the prediction variance, 1 − V RFind(m), will be used.

Finally, a weighted linear combination of the prediction variance and the financial

cost can be used to define an objective function as shown in (9.3), with weights w1

and (1−w1), respectively. An advantage of standardizing the prediction variance and

financial cost for a given number of repeated measurements m is the relative ease of

specifying w1, compared to using the non-standardized versions:

CPR0(m) = w1 · [1 − V RFind(m)] + (1 − w1) ·
R + m

R + K
. (9.3)
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The number mo is determined as that minimizing CPR(m). Let us consider some

extensions. The objective function assumes that the cost of each measurement is the

same, which may be unrealistic for some situations; for example, when patients have

to stay in a hospital or health institute, where the waiting time may incur additional

costs, a feature not accommodated by (9.3). One can therefore elect to introduce a

third term accounting for time lag:

CPRI(m) = w1 · [1 − V RFind(m)] + w2 ·
R + m

R + K
+ w3 ·

tm − t0
tk − t0

. (9.4)

If the repeated measures are equidistant with time lag △, then tm = t0 + △M and

tk = t0 + △K. Hence, (9.4) takes the form

CPRI(m) = w1 · [1 − V RFind(m)] + w2 ·
R + m

R + K
+ w3 ·

M

K
. (9.5)

If in addition we assume that the waiting cost for the first measurement is zero, then:

CPRII(m) = w1 · [1 − V RFind(m)] + w2 ·
R + m

R + K
+ w3 ·

M − 1

K
. (9.6)

These objective functions assume that the cost is constant across treatment arms,

whether of a placebo, standard-therapy, or experimental nature. When deemed un-

realistic, appropriate modifications can be implemented. Arguably, the choice of a

cost function will have to balance simplicity with it being a realistic representation of

reality. In what follows, objective function (9.3) will be employed, unless otherwise

stated.

9.2 Some Important Special Cases

In this section, we aim to aid understanding of the nature of the cost functions through

theoretical considerations for two special, important cases. The detailed derivations

of the expressions for the associations measures are given in the appendix A.



118 Chapter 9. Optimal Number of Repeated Measurements

9.2.1 Compound Symmetry Structure

Assume that the covariance structure of (9.1) is compound symmetry (CS), i.e., ΣL =

σ(1− ρ)IK + σρJK , where σ denotes the variance of the response at each time point,

ρ is the correlation between two observations, IK is a K-dimensional identity matrix

and JK is a K-dimensional square matrix of ones. It is easy to show that, in this

setting,

V RFind(m) =
mρ2

1 + (m − 1)ρ
.

Let us study the predictive characteristics of this case. It follows that V RFind(m) is

an increasing function of m as far as ρ 6= 0, 1 and, therefore, the more observations

we include in S̃
ij
, the more precise our prediction of Tij will be. Turning to ρ, the

question is how the correlation influences the amount of information that S̃
ij

brings

about Tij. To usefully study this, let us calculate the additional information that one

extra observation will bring, quantified using the ratio:

g(ρ) =
V RFind(m + 1)

V RFind(m)
=

(
m + 1

m

) (
1 + (m − 1)ρ

1 + mρ

)
.

Some elementary calculations show that g(ρ) is a decreasing function of ρ and there-

fore, the higher the correlation the less we gain by taking additional observations,

rather an intuitive result. Indeed, if the correlation is very high, then all the mea-

surements are nearly deterministically related, and having observed one or a few of

them will allow us to predict with high precision all the others. For instance, in the

extreme case when ρ = 1 the V RFind(m + 1) = V RFind(m) for all m and the first

observation will be sufficient to predict the true endpoint without error. Coherent

with the nature of compound symmetry, the position in the sequence of the m obser-

vations that constitute the surrogate is totally irrelevant. It is easy to show that in
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this setting the CPR function takes the form

CPR(m) = w1 ·
(1 − ρ)(1 + mρ)

1 + (m − 1)ρ
+ (1 − w1) ·

R + m

R + K
, (9.7)

of which the extremes are easy to determine: (9.7) reaches its minimum at m+ and

m− when ρ > 0 and ρ < 0 respectively, where

m± = −

(
1 − ρ

ρ

)
±

√
w1(R + K)(1 − ρ)

1 − w1
. (9.8)

Obviously, in many practical situations, m± will not be integers, in which case they

will have to be rounded. There is also a possibility for m± to assume a negative value

for some combinations of K, ρ, R, and w1. When this happens, m± should be set

to one. Zooming in on m+ reveals that, when less weight is assigned to the precision

part of the cost function, an increase in R has little influence on m+ but its influence

increases as more weight is assigned to precision. This is to be expected because

when the cost of recruiting subjects is much higher than taking more measurements

on subjects, the obvious way to increase precision is through taking more measurement

per subject. An increase in the correlation ρ between measurement leads to a decrease

in m+ when the weight assigned to precision is small to moderate. When the weight

increases, the value of m+ increase for ρ in [0; 0.5] and decreases in [0.5; 1]. Also, a

increase in K generally leads to a slight increase in m+.

9.2.2 First-order Auto-regressive Process

Another association structure frequently encountered in longitudinal data is the first-

order auto-regressive one, with ρt the correlation between two measurements, t time

units apart. In this case, Σ
SS

is also an (m × m) AR(1) matrix, Σ
ST

= ΣT

T S
=

ρK−mδT

1 with δT

1 = (ρm−1, . . . , 1) and σ
T T

= σ. It then follows that V RFind(m) =

ρ2(K−m)σδT

1 Σ−1
SS

δ1. Further, using the expression for the inverse of an AR(1) ma-

trix (Graybill 1983), one can prove that σδT

1
Σ−1

SS
δ
1

= 1 and therefore V RFind(m) =
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ρ2(K−m). Like in the compound-symmetry case, here the V RFind(m) is an increasing

function of m. However, unlike before, it is also an increasing function of ρ, implying

that the higher ρ, the more advantageous it is to include more observations into the

surrogate. This is again a very intuitive result. This is intuitively plausible because,

under AR(1), the correlation decreases rapidly with time lag; hence it is recommend-

able to consider surrogate outcomes that are collected sufficiently closely to the true

endpoint. More generally, the position of the surrogate measures within the sequence

of repeated measures is now relevant. For instance, if we now consider as the sur-

rogate marker a sub-sequence of m observations starting at time point s + 1, then

V RFind(s+1)(m) = ρ2(K−s−m). Obviously, V RFind(s+1)(m) ≥ V RFind(m), for s ≥ 1,

and therefore considering m observations closer to the true endpoint will result in a

surrogate with more predictive power. In this scenario, the CPR function takes the

form:

CPR(m) = w1 ·
(
1 − ρ2(K−m)

)
+ (1 − w1) ·

R + m

R + K
. (9.9)

Interestingly, (9.9) does not reach its minimum value in the interval (1, K − 1) and

therefore CPR(m) will always lead to choosing the first observation only if the cost

is the impelling criterion or choosing the entire K − 1 sequence if prediction is the

more important factor. This result also holds if the longitudinal surrogate sequence

is started at a time point different from the first one. Thus, the CPR(m) seems

to indicate that in this scenario the surrogate should contain one observation only

and therefore, the most rational choice would be to consider a value sufficiently close

to the true endpoint so that a reasonable level of precision can be achieved in the

prediction. Obviously, the closer this observation is to the true endpoint the better

the prediction will be but the longer we will have to wait. A compromise between

these two considerations should be found in this setting using external elements such
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as, for example, expert opinion.

9.3 Simulation Study

Even though the previous results are enlightening, not all cases are analytically

tractable. Moreover, even in those cases where analytic results are obtainable it

is still of great interest to study the performance of the proposed method when pa-

rameters have to be estimated. To this end, a simulation study was performed to

investigate further these issues, with focus on the two association structures namely

compound symmetry and autoregressive of order one.

9.3.1 Design of Simulation Study

Equally spaced longitudinal data were generated based on (9.1) and using a two-stage

approach. In the first stage, random trial-specific intercepts and treatment effects,

b1i and b2i respectively, were generated from a zero-mean normal distribution with

covariance matrix

DL =



 1.5 2.098

2.098 3.26



 .

Additionally, error terms εijk were generated from a zero-mean normal distribution

with covariance matrix ΣL, either AR(1) or CS. The variance in ΣL was assumed

constant and the correlation between successive measurements was set to either 0.3,

0.6, or 0.9. The fixed-effects vector was set to βT = (2.5, 4.3, 0.78, 3.5). Using these,

the outcomes were obtained from (9.1). The data generation scheme assumes that

the treatment-by-time interaction is constant across trials. To increase flexibility, a

more general framework, where the treatment effect is allowed to randomly vary over

time and across trials was adopted. The first stage now involved generation of ran-

dom trial-specific time effects and random slopes, in addition to random trial-specific

intercepts and treatment effects, b1i and b2i, from a zero-mean normal distribution
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with covariance matrix

DL =




1.0 0.8 0.00 0.00

0.8 1.0 0.00 0.00

0.0 0.0 1.00 0.95

0.0 0.0 0.95 1.00




.

The error terms were, again, generated from a zero-mean normal distribution with

AR(1) or CS covariance matrix ΣL, The outcome vector Yijk then takes the form:

Yijk = (β0 + b0i) + (β1 + b1i)Zij + (β2 + b2i)tij + (β3 + b3i)Zijtij + εijk.

The number of trials was set to either 10, 20, 30, or 40. Two sets of trial sizes were

considered. The first set of smaller trial sizes consists of 20, 40, and 60 subjects per

trial. The second set of larger trial sizes consists of 100, 200, and 300 subjects per

trial. The simulation consists of a full combination of the specified correlation values,

covariance matrix structures, number of trials, and trial sizes. For each combina-

tion, 100 datasets (samples) where generated, analyzed and the optimal number of

measurements determined.

9.3.2 Simulation Study Results

The results of the simulation for the case of R = 4 and K = 10 are summarized in

Tables 9.1–9.3. In the tables, V RFind(mo) is the usual individual-level surrogacy for

the optimal number of measurements, while V RFind(K − 1) corresponds to the entire

K − 1 sequence being used as a surrogate. Furthermore, f represents the percentage

of datasets that resulted in a given mo as the optimal number of measurements. The

weight, w1, was set to either 0.3, 0.5, or 0.7. Let us focus on the first data-generation

scheme, where the treatment-by-time interaction is assumed constant across trials.

We learn that the V RFind(m) increases with increasing number of repeated measure-

ments. When the data are generated under AR(1) but analyzed using an unstructured
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covariance matrix, the optimal number of time points was chosen to be either 1 or

9, depending on the weights assigned. When the correlation was set to 0.9, assigning

more weight to precision or equal weights to both precision and financial cost re-

quires all 9 repeated measurements to minimize the objective function. For the other

possible values of the correlation, i.e., 0.30, 0.60, or 0.71, if more weight is assigned

to financial cost or equal weights are assigned to financial cost and precision then

the optimum simply is the first measurement only. However, the entire sequence is

needed when progressively more weight is assigned to the precision. This result is in

agreement with Section 9.2, where we have shown that, under AR(1), CPR(m) does

not reach its minimum value in the interval (1, K−1) and therefore it will always lead

to taking either only one observation or the entire K − 1 subsequence. Hence, this

result carries over to the simulation setting, in spite of the added variability coming

from parameter estimation. When the data are generated using CS and analyzed with

either unstructured or CS, 1, 2, 3, or 4 repeated measurements may be required to

predict the outcome at the last time point, with differing percentages of the sample

depending on the weight assigned. When less weight is assigned to precision, the

first observation is selected and the optimal number of measurements equals one, for

both CS and unstructured. In the second data-generation scheme, where treatment

effects are allowed to vary, the same results followed, for both AR(1) and CS. We

also gave some consideration to the Toeplitz, or banded, structure, where the corre-

lation between pairs of measurements varies with the time lag between them, in an

unstructured way, but is independent of the actual times at which the measurements

are taken. Furthermore, an AR(1)-type structure was assumed where the decline in

autocorrelation is expressed in terms of the square root of the time lag, denoted by

AR(1)-Sq. The results are summarized in Table 9.3. For the Toeplitz structure up to
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Table 9.1: Simulation study. Results for the optimal number of measurements with

AR(1). (ρ: correlation between successive time measurements; w1: weight assigned

to the precision part of the objective function; mo: optimal number of measure-

ments; V RFind(m): individual-level surrogacy for the optimal number of measure-

ments; V RFind(K − 1): expected value of individual-level surrogacy; f : percentage of

datasets resulting in mo is 100% in all cases.)

V RFind(m) V RFind(m)

w1 mo as AR(1) as CS w1 mo as AR(1) as CS

ρ = 0.30 & V RFind(K − 1) = 0.09 ρ = 0.71 & V RFind(K − 1) = 0.50

0.7 1 0.00003 0.0006 0.7 9 0.50 0.50

0.5 1 0.00003 0.0006 0.5 1 0.0032 0.0032

0.3 1 0.00003 0.0006 0.3 1 0.0032 0.0032

ρ = 0.60 & V RFind(K − 1) = 0.36 ρ = 0.90 & V RFind(K − 1) = 0.81

0.7 9 0.36 0.42 0.7 9 0.81 0.81

0.5 1 0.07 0.07 0.5 9 0.81 0.81

0.3 1 0.07 0.07 0.3 1 0.15 0.15

five time points and for the unstructured matrix up to six time points were selected

as optimum, depending on the weight assigned to the precision part of the cost func-

tion. For the AR(1)-Sq structure, the optimal time point swings between taking the

first measurement or the entire sequence. However, it picks the first time point as

optimal more often, except when the weight assigned to precision is as high as 70%

and correlation values are 0.60 and 0.90. For a correlation of 0.30, it invariably picks

the first time point only, even when the weight is as high as 70%.
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9.4 Constrained Maximization

There are circumstances in which clinical trials are faced with budget constraints and

yet are expected to produce acceptable results. This predicament motivates the use of

constraint maximization to arrive at an optimal number of subjects and/or repeated

measures per subject, thereby not exceeding the budget available. Translated to our

setting, we aim at maximizing the individual level surrogacy measure, subject to cost

and time constraints. We first maximize V RFind(m) subject to (R + m)/(R + K) ≤

δ1 and then later subject to two constraints given by: (R + m)/(R + K) ≤ δ1 and

(tm − t0)/(tk − t0) ≤ δ2, where both δ1 and δ2 assume values between zero and one.

Without loss of generality, if we assume that the measurements are equally spaced

with fixed time interval △, then tm = t0 + △M and tk = t0 + △K and hence the

second constraint reduces to M/K ≤ δ2. Using a Lagrange multiplier for the first

optimization problem, one can show that, for CS with positive ρ, the optimal number

of repeated measures required for a percentage budget of δ1 is given as:

M =





δ1(R + K) − R if (R + 1) − δ1(R + k) ≤ 1
ρ ,

2
(

1−ρ
ρ

)
− δ1(R + K) + R if (R + 1) − δ1(R + k) ≥ 1

ρ .

In a similar manner, for AR(1) with ρ ≥ 0, the optimal number of repeated measures

for a given percentage of the budget is M = δ1(R + K) − R. If we now maximize

the association measure subject to both budget and time constraint, we find M =

min[δ1(R + K) − R, δ2K] for the optimal number of repeated measures for both CS

and AR(1). To enhance insight, we carried out a limited set of simulations for both

AR(1) and CS. The simulation has revealed that as R increases, the optimal M

diminishes. This is in line with intuition because the total cost and the number of

subjects in the study are fixed and hence to maintain a low cost, the only option is

to reduce the number of repeated measures. It also follows that, for some values of
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R, it is not possible to obtain a value of M for which the percentage of cost incurred

is lower than the specified δ value. In such cases, only the first time point or the

entire sequence could be taken, depending on the magnitude of M . In this context,

it is also worth noting that, although there is no difference in the optimal number of

repeated measures for CS and AR(1), the same number of repeated measures in the

two covariance structures will nevertheless not yield identical V RFind(m) values.

9.5 Application to the Case Study

Two case studies introduced in Chapter 2, Sections 2.1.1 and 2.1.2 are analyzed here

and the results displayed in Tables 9.4 and 9.5, respectively. For the data coming from

the opthalmology experiment, measurements of visual acuity were taken at baseline

and every sixth week there after up to the 54th week giving 10 repeated measures. For

the schizophrenia study, the PANSS values were measured at five different time points,

taken at the baseline and every two weeks thereafter. In both cases, the objective is

to predict the ultimate measurement using earlier ones from the sequence, thereby

accounting for cost. In both cases, an unstructured variance-covariance matrix fits

the data best. Now focusing attention on the data coming from the opthalmology

experiment, we find that, with increasing weight attributed to precision: the first

one; the first and the second; the first, the second, and the third; the first eight; or

all nine time points were required to optimally predict the final measurement. Note

that one time unit corresponds to 6 weeks. Thus, for example, taking the first three

time points amounts to using measurements from 18 weeks to predict a response at

the 54th week. For the schizophrenia experiment, first, to stabilize the variance, a

linear transformation of the outcome and a non-linear transformation of time, taking

the form Yij = −3.5675 + 0.0484 · PANSSij and tj,new = e−tj/4, respectively, were
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applied. It follows that, with increasing weight assigned to precision: the first one;

the first and the second; or all four time points were required to optimally predict the

final measurement. In line with intuition, in both cases, the number of time points

required also changes with increasing R. Setting R = 0 corresponds to assuming that

subjects are recruited at no cost or when interest is solely with the cost per additional

measurement occasion. To accommodate the waiting time in the decision making

process, we also studied the optimal number of time points based on the modified

cost functions (9.5) and (9.6). Results can be found in Table 9.5 for schizophrenia

and Table 9.6 for opthalmology. The modified functions lead to the same results when

R = 0, but, as R increases, the modified cost functions are more prudent and tend to

select less time points.

9.6 Discussion

In this chapter, unlike conventional surrogate marker validation, which involves two

separate outcomes where one is used as a potential surrogate for the other, we have

studied a scenario where there is only a single outcome, measured repeatedly over

time. The objective was to assess the performance of accumulated measures of an

equally spaced longitudinal sequence as a possible surrogate for a final outcome and

to determine the optimal number of repeated measures required to adequately attain

‘good’ surrogacy. The determination of the optimal number of measurements requires

striking a balance between precision and cost of incorporating a long sequence of

repeated measures. To this end, an objective function has been utilized. The objective

function has two parts, which take care of the cost and precision components. The

importance of both components is gauged through the use of weights. Whenever it

is felt that the importance of precision outweighs cost, more weight will be assigned
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to the precision part and vice versa. The objective function can be modified to

accommodate other possible sources of cost. One such cost is the cost of waiting time.

This can be incorporated through a third component which accounts for the time lag

between the start of the study and the optimal time point. This calls for assigning

three possible weights, corresponding to financial cost, time cost, and precision cost,

respectively. The results of the simulation study for two data-generation schemes,

based on CS and AR(1), have revealed that, depending on the correlation structure

of the data and the weights assigned, the first few repeated measures or the entire

K − 1 sequence might be needed to adequately predict the outcome at the last time

point. Assuming that the outcome has an AR(1) structure, we showed theoretically

and via simulations that either only the first measurement or the entire K−1 sequence

is required to predict the true endpoint, depending on the weights chosen and the level

of the AR(1) correlation. This is a very interesting characteristic of the first-order

auto-regressive structure. Our results illustrate that here no balance between precision

and cost is possible, because the objective function always leads to the two extreme

situations. If precision is the driving requirement, then the entire K − 1 subsequence

is the best option, whereas if cost if the impelling factor then the surrogate should

never contain more than a single observation. In such a situation, the best strategy

will be to use only one measurement, located somewhere in the interval (1, K − 1).

Obviously if the observation is taken at the end of the sequence, more predictive

power will be achieved but a longer waiting time will also be needed. Arguably, a

decision should then be taken based on other field related factors and the opinion of

the experts in the area will be important. Moreover, at most six measurements, about

60% of the entire sequence, are required to adequately predict the final measurement

if the outcome has a CS or a Toeplitz structure, or a general structure with slowly
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decaying correlation between repeated measures. Based on these findings, it seems

promising to use the proposed approach to balance between cost and precision in

the process of evaluating the performance of a few repeated measures taken early as

possible surrogates to adequately predict the outcome and/or treatment effect of the

final measure.
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Table 9.2: Simulation study. Results for the optimal number of measurements with

CS. (ρ: correlation between successive time measurements; w1: weight assigned

to the precision part of the objective function; mo: optimal number of measure-

ments; V RFind(m): individual-level surrogacy for the optimal number of measure-

ments; V RFind(K − 1): expected value of individual-level surrogacy; f : percentage of

datasets resulting in mo.)

as CS as UN

w1 mo V RFind(m) f V RFind(m) f

ρ = 0.30 & V RFind(K − 1) = 0.24

0.7 1 0.11 18 0.10 18

0.7 2 0.14 6 0.12 34

0.7 3 0.16 60 0.17 22

0.7 4 0.19 16 0.19 26

0.5 1 0.09 100 0.09 100

0.3 1 0.09 100 0.09 100

ρ = 0.60 & V RFind(K − 1) = 0.56

0.7 3 0.49 60 0.48 62

0.7 4 0.52 40 0.51 38

0.5 1 0.37 30 0.37 18

0.5 2 0.44 70 0.43 82

0.3 1 0.36 100 0.36 100

ρ = 0.71 & V RFind(K − 1) = 0.68

0.7 2 0.58 14

0.7 3 0.62 100 0.62 80

0.7 4 0.64 6

0.5 3 0.62 70

0.5 4 0.64 6

0.5 1 0.51 30

0.5 2 0.58 70 0.57 24

0.3 1 0.50 100 0.50 100

ρ = 0.90 & V RFind(K − 1) = 0.89

0.7 2 0.85 100 0.85 100

0.5 1 0.81 100 0.81 100

0.3 1 0.81 100 0.81 100
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Table 9.3: Simulation study. Results for the optimal number of measurements with:

unstructured covariance; Toeplitz correlation structure with slowly declining correla-

tion; and AR(1) with square root of time lag analyzed as conventional AR(1). ( w1:

weight assigned to the precision part of the objective function; mo: optimal number of

measurements; V RFind(m): individual-level surrogacy for the optimal number of mea-

surements; V RFind(K −1): expected value of individual-level surrogacy; f : percentage

of datasets resulting in mo.)

w1 mo V RFind(K − 1) f

Unstructured

V RFind(K − 1) = 0.995

0.1 1 0.53 100

0.3 1 0.53 100

0.5 4 0.86 92

0.5 5 0.91 8

0.7 6 0.96 100

0.6 4 0.86 29

0.6 5 0.91 57

0.6 6 0.96 14

Toeplitz

V RFind(K − 1) = 0.75

0.1 1 0.15 100

0.3 2 0.16 80

0.3 3 0.22 20

0.5 4 0.38 100

0.6 4 0.38 98

0.6 5 0.42 2

0.7 5 0.42 100

w1 mo V RFind(K − 1) f

AR(1)-Sq

ρ = 0.30 & V RFind(K − 1) = 0.22

0.1 1 0.0016 100

0.3 1 0.0016 100

0.5 1 0.0016 100

0.6 1 0.0016 100

0.7 1 0.0016 100

AR(1)-Sq

ρ = 0.60 & V RFind(K − 1) = 0.50

0.1 1 0.052 100

0.3 1 0.052 100

0.5 1 0.052 100

0.6 9 0.052 100

0.7 9 0.052 100

AR(1)-Sq

ρ = 0.90 & V RFind(K − 1) = 0.86

0.1 1 0.21 100

0.3 1 0.21 100

0.5 1 0.21 100

0.6 1 0.21 100

0.7 9 0.86 100
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Table 9.4: Case study in opthalmology. Results for the optimal number of measure-

ments based on cost function (9.3). (w1: weight assigned to the precision part of the

objective function; mo: optimal number of measurements;R = C1/C2 be the cost ra-

tio ; V RFind(m): individual-level surrogacy for the optimal number of measurements;

V RFind(K − 1): expected value of individual-level surrogacy.)

V RFind(K − 1) = 0.91

w1 R mo V RFind w1 R mo V RFind

0.1 0 1 0.18 0.1 4 1 0.18

0.3 0 1 0.18 0.3 4 1 0.18

0.4 0 2 0.34 0.4 4 3 0.45

0.5 0 3 0.45 0.5 4 8 0.85

0.7 0 9 0.91 0.7 4 9 0.91

0.1 1 1 0.18 0.1 6 1 0.18

0.3 1 1 0.18 0.3 6 2 0.34

0.4 1 2 0.34 0.4 6 3 0.45

0.5 1 3 0.45 0.5 6 8 0.85

0.7 1 9 0.91 0.7 6 9 0.91

0.1 2 1 0.18

0.3 2 1 0.18

0.4 2 2 0.34

0.5 2 3 0.45

0.7 2 9 0.91
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Table 9.5: Case study in schizophrenia. Results for the optimal number of measure-

ments based on cost function (9.3) and modified cost function (9.5). (w1: weight

assigned to the precision part of the objective function; mo: optimal number of

measurements;R = C1/C2 be the cost ratio ; V RFind(m): individual-level surrogacy

for the optimal number of measurements; V RFind(K−1): expected value of individual-

level surrogacy.)

V RFind(K − 1) = 0.85

Cost function (9.3) Cost function (9.5)

w1 R mo V RFind(m) w1 w2 w3 R mo V RFind(m)

0.1 0 1 0.20 0.1 0.1 0.8 0 1 0.20

0.3 0 1 0.20 0.3 0.1 0.6 0 1 0.20

0.5 0 2 0.59 0.5 0.1 0.4 0 2 0.59

0.7 0 4 0.85 0.7 0.1 0.2 0 4 0.85

0.1 1 1 0.20 0.1 0.1 0.8 1 1 0.20

0.3 1 2 0.59 0.3 0.1 0.6 1 1 0.20

0.5 1 2 0.59 0.5 0.1 0.4 1 2 0.59

0.7 1 4 0.85 0.7 0.1 0.2 1 4 0.85

0.1 2 1 0.20 0.1 0.1 0.8 2 1 0.20

0.3 2 2 0.59 0.3 0.1 0.6 2 1 0.20

0.5 2 2 0.59 0.5 0.1 0.4 2 2 0.59

0.7 2 4 0.85 0.7 0.1 0.2 2 4 0.85

0.1 4 1 0.20 0.1 0.1 0.8 4 1 0.20

0.3 4 2 0.59 0.3 0.1 0.6 4 1 0.20

0.5 4 4 0.85 0.5 0.1 0.4 4 2 0.59

0.7 4 4 0.85 0.7 0.1 0.2 4 4 0.85

0.1 6 1 0.20 0.1 0.1 0.8 6 1 0.20

0.3 6 2 0.59 0.3 0.1 0.6 6 1 0.20

0.5 6 4 0.85 0.5 0.1 0.4 6 2 0.59

0.7 6 4 0.85 0.7 0.1 0.2 6 4 0.85
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Table 9.6: Case study in opthalmology. Results for the optimal number of measure-

ments based on modified cost function (9.5) and (9.6); ( w1-w3): weights assigned to

the precision, financial cost and waiting time parts of the objective function; mo: op-

timal number of measurements; R = C1/C2 be the cost ratio; V RFind(m): individual-

level surrogacy for the optimal number of measurements; f = 100: percentage of

datasets resulting in mo, in all cases.)

Cost Ratios

Weights R = 0 R = 1 R = 2 R = 4 R = 6

w1 w2 w3 mo V RFind mo V RFind mo V RFind mo V RFind mo V RFind

Modified cost function (9.5)

0.1 0.1 0.8 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.1 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.1 0.5 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.1 0.4 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.7 0.1 0.2 9 0.91 9 0.91 9 0.91 9 0.91 9 0.91

0.1 0.2 0.7 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.2 0.5 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.2 0.4 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.2 0.3 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.6 0.2 0.2 8 0.85 8 0.85 8 0.85 9 0.91 9 0.91

Modified cost function (9.6)

0.1 0.1 0.8 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.1 0.6 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.1 0.5 1 0.18 1 0.18 2 0.34 2 0.34 2 0.34

0.5 0.1 0.4 2 0.34 3 0.45 3 0.45 3 0.45 3 0.45

0.7 0.1 0.2 9 0.91 9 0.91 9 0.91 9 0.91 9 0.91

0.1 0.2 0.7 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.3 0.2 0.5 1 0.18 1 0.18 1 0.18 1 0.18 1 0.18

0.4 0.2 0.4 2 0.34 2 0.34 2 0.34 2 0.34 2 0.34

0.5 0.2 0.3 3 0.45 3 0.45 3 0.45 3 0.45 3 0.45

0.6 0.2 0.2 8 0.85 8 0.85 8 0.85 8 0.85 8 0.85
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Predicting the Final Outcome

of a Binary Longitudinal

Response

Similar to the case of a continuous longitudinal outcome outlined in the previous chap-

ter, one might be interested in predicting the final outcome of a binary longitudinal

sequence using cumulative earlier measurement subject to cost and time constraints.

To this end, we will devise the same set of methodology used in the previous chapter

to address the stated objective. For the case of predicting the final measurement of

the continuous longitudina1 outcome, we have used the V RF as a measure of asso-

ciation between earlier measures and final outcome. For this case however, we will

use the information-theoretic approach measure denoted by R2
h. The objective func-

tion, which accounts for cost of time and financial cost coupled with the precision of

135
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prediction, can then take the following format:

CPRI(m) = w1 · [1 − R2
h(m)] + w2 ·

R + m

R + K
+ w3 ·

tm − t0
tk − t0

, . (10.1)

10.1 Simulation Study

The methodology has been thoroughly discussed in the previous chapter and hence

we proceed with a small simulation study to asses how the method fairs within the

context of binary longitudinal outcome. We begin with a concise description of the

data generation schemes followed.

10.1.1 Generating Binary longitudinal outcome

Data were generated under three different scenarios: the Bahadur model and under

the assumption of first order autoregressive and compound symmetric correlation

structures for the error terms. Let Y = (Y1, ..., YT ) represent a vector of binary

responses for any subject. Further, we let the marginal mean of Y t , where t = 1, ..., T ,

be E(Yt) = P (Yt = 1) = µt. In addition, for any subject, we let the correlation

between the two binary responses Yt and Y
′

t , t 6= t
′

, be Corr(Yt, Y
′

t ) = ρtt′ . One

method for generating longitudinally correlated binary data is based on the work of

Bahadur (1961), who proposed a representation for multivariate binary distributions

which is expressed as a joint mass function of Y1, ..., YT . Specifically, if all coefficients

of order three and higher are ignored,

f(Y1, ..., YT ) =

{
T∏

t=1

µyt

t (1 − µt)
1−yt

} 


1 +
∑

1≤t≤t′

ρtt′ ỸtỸt′




 , (10.2)

where Ỹt = (Yt − µt)/
√

µt(1 − µt) results from simply standardizing Yt. This

joint distribution is used to determine an expression for the conditional probabil-
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ity P (Yt = 1|Yt−1, ..., Y1), which is subsequently employed to generate a value for

Yt. Unfortunately, Bahadur’s (1961) representation is computationally difficult to

manipulate when T is large, and becomes even more so when the higher-order co-

efficients are not ignored. Furthermore, truncation of the representation after the

second-order term to reduce computational complexity will come at the expense of

limited dependence ranges for the binary responses. However, the Bahadur (1961)

representation does offer some flexibility in that in order to generate binary responses

it is not necessary to impose standard-type correlation structures on the Yt, such as

autoregressive of order one Patrick J. Farrell and Katrina Rogers-Stewart (2008). In

most real life applications however, standard-type correlation structures on the Yt,

such as autoregressive of order one and compound symmetry are common place. Here

we briefly introduce the data generation scheme for these two special cases as out-

lined in Patrick J. Farrell and Katrina Rogers-Stewart (2008). Kanter (1975) used

a model which was designed to only generate correlated binary responses according

to a stationary autoregressive process of order p, which we will refer to as AR(p).

Initially, a value for Y1 is generated from a Bernoulli distribution with parameter µ.

Then, in order to generate Yt, t = 2, ..., T according to an autoregressive process of

order min(t.1, p), Kanter (1975) proposes the model

Yt =

min(t−1,p)∑

t′=1

U
(t

′
)

t (Yt−t′ ⊕ Wt)




1 −

min(t−1,p)∑

t′=1

U
(t

′
)

t




 Wt, (10.3)

where ⊕ represents addition modulo 2. In addition, U
(t

′
)

t and Wt are generated as

Bernoulli random variables with parameters ξ(t
′
) and η, which are determined by the

values of µ and the correlation parameters. In a spirit similar to Kanter (1975), Lunn

and Davies (1998) introduce an efficient model for the generation of stationary binary
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response data with mean µ that are correlated according to either a stationary AR(1),

or an exchangeable process with parameter ρ. For AR(1) data, Lunn and Davies

(1998) suggest to initially generate Y1 from a Bernoulli distribution with parameter µ,

and then Yt for t = 2, ..., T according to Yt = AtYt−1+(1−At)Bt, where At and Bt are

generated as Bernoulli random variables with parameters ρ and µ, respectively. Since

ρ must be treated as a Bernoulli parameter here, it is only possible to generate AR(1)

binary sequences with a positive correlation. Generation of exchangeable binary data

proceeds in a similar fashion. Initially, Y0 is generated from a Bernoulli distribution

with parameter ρ, and then the sequence is generated using Yt = AtY0 + (1−At)Bt ,

where At and Bt are generated as Bernoulli random variables with parameters
√

(ρ)

and µ, respectively. For this study we have generated data with compound symmetry

and Autoregressive of order one following the suggestion of Lunn and Davies (1998)

and using Bahadur’s formulation.

10.1.2 Simulation Study Results

The results for the simulation study have shown that, for the CS and AR(1) pro-

cesses, the R2 values start from relatively small values and gradually increases as the

number of repeated measures increases. For the Bahadur model, the R2 values start

at a relatively higher value and increase gradually to even higher values. The optimal

number of repeated measures required to adequately predict the final outcome con-

sidering cost and waiting time has also been considered. For the Bahadur model up to

8 time points were selected optimal with varying percentages of samples pointing to

different number of time points depending on the magnitude of the weight assigned.

For the AR(1) and CS structures more or less similar results to the continuous case

are observed, i.e., for AR (1) swinging between 1 and 9 time points but with some
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percentage of samples pointing to other possible number of measurements as optimal.

For CS up to 5 time points were selected as optimal. The effect of R, the cost ratio

of recruiting a patient and taking repeated measures was minimal or non-existent.

10.2 Application to the Case Study

The case study on Age related Macular Degeneration introduced in Chapter 2, Sec-

tions 2.1.1 was used to demonstrate the application of the method for the prediction of

the final outcome of binary longitudinal sequence. The visual acuity measures were

first dichotomized by taking the change from baseline values. If the visual acuity

shows an increase relative to the baseline it will be set to one and zero otherwise. The

dichotomized version of the dataset was used to demonstrate the performance of the

method. The results of the analysis for a cost ratio R = 4 are shown in Tables 10.1-

10.4. The results have shown that either the first measure or the entire sequence

are required to adequately predict the final outcome. This is in agreement with the

simulation results; as the correlation structure that best fits the data was found to be

an AR(1). The effect of the cost ratio is minimal or non-existent.

10.3 Discussion

In this chapter, we have devised the same methodology that was used in the previous

chapter to predict the final outcome of a binary longitudinal sequence using earlier

measures subject to cost and time constraints. We learn from the results that for

the Compound symmetry correlation structure, a varying number of samples have

suggested the use of few earlier repeated measures to predict the final outcome. For

the Auto regressive of order-one correlation structure on the other hand, either the

first time or the entire sequence is required to predict the final outcome depending
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Table 10.1: Results for the optimal number of measurements for the case study in

Ophthalmology based on CPR0(m).w1: weight assigned to the precision part of the

objective function; mo: the optimal number of measurements; R2
h: individual-level

surrogacy for the optimal number of measurements; f : percentage of datasets resulting

in mo.)

w1 R R2
h mo f

0.1 4 0.12221 1 100

0.3 4 0.12221 1 100

0.5 4 0.12221 1 100

0.6 4 0.58070 8 100

0.7 4 0.58070 8 100

on the weight assigned to the precision part of the cost function. The results of

the Bahadur model show that up to a maximum of 8 time points might be required

to make adequate predictions. The results for the Compound symmetry and Auto

regressive of order-one structures are in synchrony with the results obtained for the

case of continuous longitudinal outcome. This method proves to be very beneficial if

the correlation structure can be assumed to be Compound symmetry or the data can

be assumed to follow a Bahadur model since for these cases first few measurements

are required to adequately predict the outcome at the end of the study. This is a

desirable property, as with only few repeated measures, it will be possible to predict

the outcome which could have taken longer and incurred more cost.
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Table 10.2: Results for the optimal number of measurements for the case study in

Ophthalmology based on CPRI(m).w1-w3: weights assigned to the different parts of

the objective function; mo: the optimal number of measurements; R2
h: individual-level

surrogacy for the optimal number of measurements; f : percentage of datasets resulting

in mo.)

w1 w2 w3 R R2
h mo f

0.1 0.1 0.8 4 0.12221 1 100

0.3 0.1 0.6 4 0.12221 1 100

0.5 0.1 0.4 4 0.12221 1 100

0.7 0.1 0.2 4 0.58070 8 100

0.1 0.2 0.7 4 0.12221 1 100

0.3 0.2 0.5 4 0.12221 1 100

0.5 0.2 0.3 4 0.12221 1 100

0.6 0.2 0.2 4 0.58070 8 100

0.1 0.3 0.6 4 0.12221 1 100

0.3 0.3 0.4 4 0.12221 1 100

0.5 0.3 0.2 4 0.12221 1 100

0.6 0.3 0.1 4 0.58070 8 100
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Table 10.3: Results for the optimal number of measurements for the case study in

Ophthalmology based on CPRII(m).w1-w3: weights assigned to the different parts of

the objective function; mo: the optimal number of measurements; R2
h: individual-level

surrogacy for the optimal number of measurements; f : percentage of datasets resulting

in mo.)

w1 w2 w3 R R2
h mo f

0.1 0.1 0.8 4 0.12221 1 100

0.3 0.1 0.6 4 0.12221 1 100

0.5 0.1 0.4 4 0.12221 1 100

0.7 0.1 0.2 4 0.58070 8 100

0.1 0.2 0.7 4 0.12221 1 100

0.3 0.2 0.5 4 0.12221 1 100

0.5 0.2 0.3 4 0.12221 1 100

0.6 0.2 0.2 4 0.58070 8 100

0.1 0.3 0.6 4 0.12221 1 100

0.3 0.3 0.4 4 0.12221 1 100

0.5 0.3 0.2 4 0.12221 1 100

0.6 0.3 0.1 4 0.58070 8 100
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Table 10.4: Results for the optimal number of measurements for the case study in

Ophthalmology based on CPRII(m).w1-w3: weights assigned to the different parts of

the objective function; mo: the optimal number of measurements; R2
h: individual-level

surrogacy for the optimal number of measurements; f : percentage of datasets resulting

in mo.)

w1 w2 w3 R R2
h mo f

0.1 0.1 0.8 4 0.12221 1 100

0.3 0.1 0.6 4 0.12221 1 100

0.5 0.1 0.4 4 0.12221 1 100

0.7 0.1 0.2 4 0.58070 8 100

0.1 0.2 0.7 4 0.12221 1 100

0.3 0.2 0.5 4 0.12221 1 100

0.5 0.2 0.3 4 0.12221 1 100

0.6 0.2 0.2 4 0.58070 8 100

0.1 0.3 0.6 4 0.12221 1 100

0.3 0.3 0.4 4 0.12221 1 100

0.5 0.3 0.2 4 0.12221 1 100

0.6 0.3 0.1 4 0.58070 8 100
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11
Genomic Biomarkers:

Feature-specific and Joint

Biomarkers

A biomarker can be defined as a physical sign or laboratory measurement that serves

as an indicator for biological processes, pathogenic processes, or pharmacologic re-

sponses to a therapeutic intervention Lesko and Atkinson (2001). When the mea-

surement in question is the expression of a gene, we refer to the gene as a ge-

nomic biomarker. We can differentiate between feature-specific and joint biomarkers.

Feature-specific biomarker refers to a single biomarker used on its own to explain

characteristics of the clinical outcome. Whilst a joint biomarker involves a combina-

tion of biomarkers combined according to some guideline. The focus of this chapter

will therefore be to apply different statistical methods to select and evaluate genomic

biomarkers for continuous clinical outcome. We will first introduce approaches that

147
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are designed for selecting feature-specific biomarkers and then move on to two ap-

proaches designed for constructing joint biomarkers. The methods described will

then be applied to a case study in depression where we select genes and metabolites

as both feature-specific and joint biomarkers for depression measured by Hamilton

Depression Scale (HAMD).

11.1 Feature-specific Biomarkers in Microarray Ex-

periments

The main goal in this setting is to identify specific biomarkers for a particular response

of interest. As stated earlier, their is an analogy between prognostic biomarker and

individual level surrogate defined within the surrogate marker validation framework.

The implication of this analogy is that, the methods designed for the evaluation of

surrogacy at the individual patient level can be used with no or little modification to

select and evaluate prognostic biomarkers. To this end, for univariate outcomes, we

can use a joint model of the response and the gene expression in line with the model

introduced in chapter (3), for the case of two normally distributed outcomes and

quantify the association using the individual-level R2. Another alternative approach

is the information-theoretic approach, which can be used both for normal and non-

normal outcomes. The R2
Λ, introduced for two longitudinal outcomes, can be used

for repeatedly measured response and gene expressions. Note however that, all these

models are fitted for each gene separately, a procedure often termed “gene-by-gene”

analysis. It is also important to highlight that a microarray experiment is equivalent

to the single trial setting and hence, the gene specific models used to compute the

association measures should be tuned to reflect the single trial setting.
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11.2 Joint Biomarkers in Microarray Experiments

In this section, we focus on the question: “How to combine information about ex-

pression levels from all genes in the array into one variable?” which we term a “joint

biomarker.” In the microarray setting, the number of predictors is large compared

to the number of observations, and the design matrix of the gene expressions S is

likely to be singular, making a regression approach to summarize information into

one linear predictor no longer feasible. Several approaches have been developed to

cope with this problem. One approach is to perform a principal component analysis

(PCA) of the S matrix and then use the principal components of S as regressors on

the response of interest Bair et al (2006). The orthogonality of the principal compo-

nents eliminates the multicollinearity problem. A possible strategy is to keep only the

first few components. Alternatively, so-called partial least squares regression can be

employed Herve Abdi( 2003). In the following sections, we briefly outline supervised

principal components analysis and partial least squares regression respectively.

11.2.1 Supervised Principal Component Analysis

The Supervised principal Component Analysis (SPCA) relies on the underlying as-

sumption that there is a latent variable U(§), associated with the response variable

T . Because in almost all cases the number of genes is much larger than the number

of observations, the first step in the SPCA method is data reduction in which the

dimension of the expression matrix § is reduced. In line with Bair et al (2006), a

fully supervised method is expected to give the most weight to those genes having the

strongest relationship with the response. The SPCA approach ensures that U(§) will

be constructed in such a way that the association between the joint biomarker and

the response will be maximized. The SPCA methods consists of three main steps:
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• Step 1: Fit one of the gene-specific models and estimate the association measure.

• Step 2: Form a reduced expression matrix consisting of only those genes whose

gene specific association measure exceeds a threshold level.

• Step 3: Let SR be the reduced matrix. Compute for each matrix the first

principal component, U(SR).

The three steps ensure that selection of the subset of genes from which the first prin-

cipal component is calculated will maximize the corresponding association measure.

This is a crucial point: because the joint biomarker is latent, it is constructed in

such a way that it will maximize the association measure. As a consequence, for a

given dataset, U(SR) is the “best” joint biomarker. Once the U(SR) is computed,

its association with the response can be quantified using the measures used for the

selection of feature-specific biomarkers.

11.2.2 Supervised Partial Least Squares

Partial least squares (PLS) regression is a technique that generalizes and combines

features from principal component analysis and multiple regression. In PCA, the

strategy implemented was to keep only a few of the first components. But because

the components are to explain S rather than T , there is no guarantee that the prin-

cipal components, which explain S, are relevant for T . In contrast, PLS regression

finds components from S that are also relevant for T . Specifically, PLS regression

searches for a set of components, called latent vectors, that perform a simultaneous

decomposition of S and T , with the constraint that these components explain as

much as possible of the covariance between S and T . This step generalizes PCA. It

is followed by a regression step where the decomposition of S is used to predict T .

For our particular case, the PLS is used to create a joint biomarker that optimally
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explains the response. The procedure is supervised, because the genes to be used for

the construction of the factors that explain the response are selected based on the

strength of their association with the response. The general steps in SPLS can be

summarized as follows:

• Step 1: Fit one of the gene-specific models and estimate the association measure.

• Step 2: Form a reduced expression matrix consisting of only those genes whose

gene specific association measure exceeds a threshold level.

• Step 3: Let SR be the reduced matrix. Fit a partial least squares regression

and take the first factor, U(SR).

• Step 4: Select the genes with the largest influence on the resulting latent factor

in Step 3 and use them to construct the joint biomarker using PLS.

11.3 Application to the case Study

The different methods discussed earlier are applied to the case study in depression

introduced in Chapter 2, Sections 2.1.6. We first introduce the results for feature-

specific biomarkers and then move to the joint biomarkers based on principal compo-

nents and partial least squares respectively.

11.3.1 Feature-specific Biomarkers

For all the patients in the study, 17502 genes, 269 metabolites, and a HAMD score

were measured before and after treatment with the objective of identifying genes and

metabolites as potential biomarkers for depression. Association measures based on

a joint model and information-theoretic approaches were computed for all genes and

metabolites after correcting for some other variables such as storage time, gender and
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age of the patient. Note however that, since all patients are treated, there is no need to

adjust for treatment effect in the usual sense. Rather, the treatment effect is accounted

for by taking the difference from baseline. The results are summarized in Tables 11.1

and 11.2 and Figures 11.2–11.4. After multiplicity adjustment using the false dis-

covery rate (FDR) approach (Benjamini and Hochberg, 1995), two genes (736, 2419)

and three metabolites (68, 12, and 67) were found to be significant. As theoretically

expected, the results from the joint model and the information-theoretic approach are

the same. Figures 11.2 and 11.3 depict the scatter plot of the residuals from the top

four genes/metabolites and HAMD score. It is possible to observe that there appears

to be a linear association between the HAMD score and the genes/metabolites after

adjusting for treatment and other covariates. Figure 11.4 shows density plots of the

R2 values for the whole 17502 genes and 269 metabolites. As expected, the majority

of genes/metabolites have very low correlation with the HAMD score after adjusting

for the confounders. Instead of taking the changes from baseline, if we directly con-

sider the pre and post treatment HAMD scores and the pre and post gene/metabolite

values, we can measure the association between some linear combination of the pre

and post treatment HAMD scores and pre and post gene/metabolite values using the

R2
Λ. The results are summarized in Tables 11.3 and 11.4. In these tables, the top 20

genes/metabolites with higher R2
Λ values are displayed. The coefficients correspond-

ing to the pre/post HAMD and gene/metabolite can be used to construct the linear

combination whose association has been quantified by the R2
Λ. These linear combina-

tions can be viewed as weighted sums of the pre/post measurements, although some

of them might not have a clear biological interpretation. However, they still can serve

as possible transformations of the pre/post HAMD score and the gene/metabolite

measurements that can maximize the association between the two group of measures.
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The plot in Figure 11.5 depicts the fact that there is a linear combination of the

pre/post HAMD score that is strongly correlated with a linear combination of the

pre/post gene expression other than the change from baseline for gene 12161. From

the tables, one also notes that different sets of genes/metabolites are selected as top

20 when on the one hand R2
Λ and on the other hand the information-theoretic or joint

model approach were used. This is, however, expected since R2
Λ quantifies the asso-

ciation between the vector of pre/post HAMD score and pre/post gene/metabolite

values. However, in the cases of the of the later two, we related the changes after

treatment. Note also that the leave-one-out cross validation results are comparable

with the original measures, giving comfort to the validity of the measures. However,

it is important to mention that, after adjustment for multiplicity, using (FDR) ap-

proach (Benjamini and Hochberg, 1995) none of the genes/metabolites were found to

be significant for R2
Λ.

11.3.2 Joint Biomarkers Using Principal Component Analysis

Up until now, we have been able to identify a set of genes/metabolites in the array

as possible biomarkers for the HAMD score. However, instead of taking a partic-

ular gene/metabolite as a biomarker, information gain might be achieved if a joint

biomarker could be constructed. To this end, we have used the supervised princi-

pal component analysis discussed in Section 11.2. Once the top k genes/metabolites

are identified based on their correlation with the HAMD score, i.e the subset of k

genes/metabolites with the highest threshold level, a principal component involving

these top genes/metabolites is constructed as a possible joint biomarker. Three ap-

proaches have been followed. The first approach achieves the stated objective by

taking the top k gene/metabolites and constructing a first principal component as
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joint biomarker profile. If we observe Figure 11.6, and Table 11.5, we can easily

notice that when the fifth best gene is included in the construction of the principal

component, the correlation between the gene profile and the HAMD score becomes

smaller than by merely taking the top four genes and hence a second approach is

considered. This is similar to the first approach except that a gene/metabolite will

be included as part of the gene/metabolite profile only if it results in an increase

of the correlation between the profile and the HAMD score. Using the second gene

profiling approach, 6 genes were considered in the construction of the the gene profile,

giving an R2 value of 0.8923, which is higher than taking for example the top 20 genes

at once. In a similar manner, for the metabolites, following the first approach, the

association increases from the the first to the second metabolites and then declines

when the third best metabolite is included as the component of the joint biomarker

profile. Thus here also, the second approach was entertained and 9 metabolites were

selected, producing an R2 = 0.9433, which is higher than taking the top 20 metabo-

lites to construct a metabolite profile. The third approach involves three steps: (1)

construct a principal component based on top k genes/metabolites; (2) re-rank the

genes/ metabolites based on their loadings in the principal component; (3) construct

a joint biomarker based on the top genes/metabolites with larger weights. The results

for the third approach are summarized in Table 11.6.

Apart from the fact that the use of the supervised principal component analysis

is tempting, in that it maximizes the measure of association with the response, as

opposed to taking a single gene/metabolite, there is a need to perform a significance

test on the resulting measure of association as it might not be statistically signifi-

cant. We have performed a permutation-based test to asses the significance of the

correlation between the response and the joint biomarker. As can be observed from
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Tables 11.5 and 11.6, there is a significant association between the joint metabolite

biomarkers and the response, irrespective of the number of top metabolites considered

and the approach followed. On the other hand, none of the joint genomic biomarkers

constructed based on the top k genes have a significant correlation with the response.

This prompts caution in using the joint biomarker constructed by using the princi-

pal components analysis approach without proper significance testing of the inflated

association measure.

11.3.3 Joint Biomarkers Using Partial Least Squares

Similar to the supervised principal components analysis discussed earlier, here also

we begin with the selection of gene/metabolite-specific biomarkers. The top k genes

and metabolites selected based on the information-theoretic approach will be used as

inputs for the partial least squares regressions. Two approaches were followed. First,

similar to the SPCA, the joint biomarker was created by incorporating the top k

genes/metabolites into the construction of the latent factor. As can be observed from

Figure 11.6, similar to the SPCA, the association measure increases and decreases

with the inclusion of more genes/metabolites. A second approach is carried out as

follows. To begin with, all the top k genes/metabolites will be used in the partial

least squares regression to create the latent factor that is associated with the HAMD

score. Then the genes/metabolites are re-ranked according to the absolute value of

their corresponding weights. The joint biomarker is then constructed by selecting

the top genes/metabolites, in terms of the absolute value of the weight, one by one

starting with the top gene/metabolite until inclusion of gene/metabolites does not

improve the amount of variation explained by the joint biomarker. The results are

summarized in Tables 11.7 and 11.8. Under this approach, for both the gene and
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metabolite expressions, it was observed that the explained variation increases up to

a certain limit and then decreases, and seems to stabilizes after a while. This implies

that no additional information will be gained about the response by incorporating

more genes/metabolites. The test of significance for the joint biomarker based on the

PLS approach revealed that only the joint biomarker constructed based on the top 2,

3, or 4 genes is significant, while the joint biomarker involving any number of the top

20 metabolites was significant.

11.4 Discussion

The primary objective of the analysis in this chapter was to select and evaluate

gene/metabolite-specific biomarkers for depression and to construct a joint biomarker

using information from several genes/metabolites simultaneously. Three modeling ap-

proaches have been applied to select and evaluate genes/metabolites that are strongly

related to depression as measured by HAMD score. The first two approaches involved

measuring the linear association between the pre/post treatment HAMD difference

with the pre/post treatment gene/metabolite difference through the use of a joint

model and the information-theoretic approach. The two approaches yielded similar

results, in agreement with theoretical expectation. But, given the number of poten-

tial biomarkers available, which amounts to the number of models that need to be

fitted, it seems reasonable to consider the information-theoretic approach that has

less computation time as opposed to the approach based on a bivariate model. Fur-

thermore, in the information-theoretic approach, it is possible to distinguish between

genes/metabolite with positive and negative association with the response, directly

from the model. The other added advantage of the information-theoretic approach

is that it can readily be applied to non-normal settings, such as binary and time-
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to-event. The third approach, which took a multivariate look in to the data, aims

at quantifying a general association between some linear combinations of pre/post

HAMD score and the pre/post gene/metabolite, based on the concept of canonical

correlation. The coefficients corresponding to the pre/post HAMD score and the

gene/metabolite expressions can be used to calculate the linear combinations that

could result in the maximum correlation between the gene/metabolite expressions

and the HAMD score. Note however that, there exists a possibility of selecting differ-

ent sets of genes/metabolites as top k gene/metabolites by the first two methods and

the multivariate approach. For example, if we consider the genes, we see that only four

genes were commonly selected by the three methods. For this particular setting, the

difference between the first two approaches and the approach based on the multivari-

ate model which uses R2
Λ, is that, in the case of the first two approaches, we relate the

changes from baseline post-pre gene/metabolites to post-pre HAMD vales and pick

those genes/metabolites which give a higher degree of association. Whereas, in later

case we look for genes/metabolites where some linear combination of pre and post

gene/metabolites values is related to a linear combination of the pre and post HAMD

values, and provide the linear combination that maximizes the association. Thus, in

similar settings where pre/post measures are taken, the choice between the methods

is based on the research question of interest. If interest focuses on finding genes that

show an increase or decrease in expression level in relation to an increase/decrease in

HAMD score value, then the information-theoretic approach is advisable. However,

if the interest is to find any general association between the pre/post HAMD and

gene/metabolite levels, then the multivariate model will be appropriate.

In addition to selecting gene/metabolite specific biomarkers, we have attempted

to construct a joint biomarker through the use of supervised principal components
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analysis and supervised partial least squares regression. The supervised principal com-

ponent involves two stages. in the first stage, genes/ metabolites exhibiting strong

correlation with the HAMD score are selected. The second stage involves creating

a first principal component of the top genes/metabolites. Within the framework of

supervised principal components approach, we followed two additional alternative ap-

proaches. In the first alternative, instead of taking the top k genes as they are, we

have created a joint biomarker consisting of a subset of the top 20 genes/metabolites.

In this alternative approach, a gene/metabolite will be included as component of

the joint biomarker only if its inclusion results in increase in the magnitude of the

association of the joint biomarker with the HAMD score. This has resulted in an

increase in the measure of association between the joint biomarker and the HAMD

score with only 6 genes and 9 metabolites. The second alternative starts with the top

20 genes/metabolites from which a first principal component is constructed. Then,

subsets of genes/metabolites are selected to construct the joint biomarker based on

the absolute value of their loadings. Although the joint biomarker has given an

improved measure of association, a permutation-based test has revealed that the ob-

served measure of association between the joint gene biomarker involving any number

of the top 20 genes is not statistically significant. This prompts carrying out an ap-

propriate test of significance of the association measures, be it on a gene/metabolite

specific biomarker or on the joint biomarker that involves the top k genes. In a

similar manner, we used the supervised partial least squares approach to construct

a joint biomarker. First, the top k genes/metabolites were used to construct a fac-

tor that has the potential of predicting the HAMD score. But later it was observed

that the amount of explained variation in the HAMD score will be higher if only the

genes/metabolites with positive weights were used. Another alternative approach was
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also entertained. Here, first all the top k genes/metabolites are used in the partial

least squares regression and the absolute values of their weights are used to re-rank

the genes/metabolites. Then, the genes/metabolites with higher weights are included

into the joint biomarker, starting with the top gene until the explained variation starts

to decline. A permutation based test was performed to asses the significance of the

the association measure based on the last approach. The result has revealed that

joint biomarkers involving the top 4 genes and any number of top metabolites were

statistically significant.

The comparison between the SPCA and SPLS approaches reveals that, when

the reduced matrix is formulated based solely on the univariate association of the

individual genes/metabolites, the SPCA approach provides better prediction of the

response, although the significance of the inflated association measure is questionable.

If instead of taking the order of the genes/metabolites based on their individual asso-

ciation as it is, and rather re-rank them according to their influence (loading) of the

joint biomarker, then the SPLS approach results in a large association measure consis-

tently for any number of top genes/metabolites considered in the construction of the

joint biomarker. It is also worth noting that different sets of genes/metabolites were

deemed important in the construction of the joint biomarker with the two approaches.

This however is expected since in the case of the PLS approach, the genes/metabolites

are selected such that the correlation between the joint biomarker and the response is

maximized. For the SPCA analysis on the other hand, the genes/metabolites are se-

lected based on their contribution to the principal component. But because, individu-

ally, the genes/metabolites are correlated with the response, they are expected to have

a better association jointly which is manifested in the magnitude of the association

measure of the joint biomarker. Thus, in similar situations, if one opts for the SPCA
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approach, it is advisable to use some reasonable number of top genes/metabolites as

selected by their individual association with the response in the construction of the

joint biomarker. However, proper testing of significance for the resulting measure

should be carried out. The SPLS approach seems to have better performance when

the reduced matrix is reformulated based on the weight of each gene on the latent

construct rather than taking the top genes/metabolites as selected by their individ-

ual correlation with the response. To avoid the dimensionality problem, as well as to

circumvent inclusion of noisy genes/metabolites which might affect the prediction of

the response, the procedure can be initiated by first selecting a reasonable number of

genes/metabolites based on their individual association but perform further selection

of subset of genes/metabolites based on their relative importance in the resulting joint

biomarker.
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Figure 11.1: Genes and metabolites with relatively strong association with change

from baseline HAMD score (left) and weak association (right) after correcting for

covariates.
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Figure 11.2: Top four genes based on the informaion-theory approach.
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Figure 11.3: Top four metabolites based on ITA.
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Table 11.1: Results for top 20 genes. R2: Association measure based on the

information-theory approach, and adjusted association; R2
cr: R2 with leave-one-out

cross validation; rawp: Raw p-values; adjp: adjusted p-values

Gene Id R2 R2
hcr rawp adjp

736 0.7579 0.7541 < 0.0001 0.0365

2419 0.7295 0.7243 < 0.0001 0.0426

3455 0.6536 0.6477 < 0.0001 0.1553

9859 0.6507 0.6460 < 0.0001 0.1553

8427 0.5910 0.5906 0.0001 0.3142

1954 0.5881 0.5829 0.0001 0.3142

13988 0.5799 0.5782 0.0002 0.3142

6342 0.5786 0.5728 0.0002 0.3142

6119 0.5771 0.5723 0.0002 0.3142

16073 0.5632 0.5575 0.0002 0.3142

16501 0.5447 0.5380 0.0003 0.3142

16415 0.5394 0.5345 0.0003 0.3142

5543 0.5381 0.5328 0.0003 0.3142

14657 0.5376 0.5355 0.0003 0.3142

9635 0.5276 0.5247 0.0004 0.3142

6195 0.5236 0.5187 0.0004 0.3142

4900 0.5194 0.5193 0.0005 0.3142

12791 0.5178 0.5126 0.0005 0.3142

15294 0.5146 0.5123 0.0005 0.3142

4375 0.5090 0.5018 0.0006 0.3142
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Table 11.2: Results for top 20 metabolites. R2: Association measure based on the

information-theory approach, and adjusted association; R2
cr: R2 with leave one out

cross validation; rawp: Raw p-values; adjp: adjusted p-values

Metabolite Id R2 R2
cr rawp adjp

68 0.7256 0.7164 0.0001 0.0317

12 0.6466 0.6446 0.0005 0.0489

67 0.6400 0.6306 0.0005 0.0489

255 0.5516 0.5493 0.0020 0.1302

21 0.5312 0.5333 0.0026 0.1302

153 0.5011 0.5011 0.0038 0.1302

253 0.4870 0.4872 0.0045 0.1302

194 0.4823 0.4774 0.0048 0.1302

87 0.4782 0.4731 0.0050 0.1302

11 0.4773 0.4724 0.0050 0.1302

130 0.4728 0.4771 0.0053 0.1302

46 0.4606 0.4545 0.0061 0.1341

84 0.4560 0.4481 0.0065 0.1341

144 0.4258 0.4258 0.0091 0.1535

25 0.4195 0.4199 0.0098 0.1535

172 0.4191 0.4180 0.0098 0.1535

139 0.4184 0.4174 0.0099 0.1535

259 0.4102 0.4111 0.0109 0.1535

258 0.4037 0.4080 0.0117 0.1535

262 0.4015 0.4007 0.0119 0.1535
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Table 11.3: Results for top 20 genes based on R2
Λ. R2

Λ R2
Λcr: The measure of asso-

ciation with and without cross validation; Hcof0,Hcof1: The coefficients for pre and

post treatment HAMD score; Gcof0,Gcof1: The coefficients for pre and post treatment

gene expressions; rawp: Raw p-values; adjp: adjusted p-values.

Gene Id R2
Λ R2

Λcr Hcof0 Hcof1 Gcof0 Gcof1 rawp adjp

12161 0.9177 0.9075 18.081 -4.4469 -0.1393 0.4462 0.00001 0.2478

9806 0.8871 0.8877 -2.0437 63.2346 -0.06813 0.3694 0.00007 0.2809

4877 0.8862 0.8833 24.782 133.77 0.0015 0.2711 0.00008 0.2809

5324 0.8846 0.8778 2.8306 4.2187 0.0886 -0.3943 0.00008 0.2809

13456 0.8832 0.8682 -3.5597 -50.955 -0.2276 0.4817 0.00009 0.2809

11687 0.8831 0.8706 -28.479 31.169 0.2176 -0.4844 0.00009 0.2809

4078 0.8810 0.8744 5.308 -0.5172 0.2326 -0.2423 0.00011 0.2974

4796 0.8780 0.8733 8.9318 -0.8017 -0.2501 0.4551 0.00014 0.3098

8845 0.8645 0.8551 246.04 13.147 0.2569 -0.4242 0.00026 0.5177

5329 0.8564 0.8560 2.8713 1.3125 0.2318 -0.2392 0.00038 0.5783

3150 0.8551 0.8468 -5.2653 6.0060 -0.0797 0.3837 0.00040 0.5783

736 0.8543 0.8526 -4.1146 2.7613 -0.1902 0.1098 0.00041 0.5783

16964 0.8519 0.8507 12.860 -23.366 -0.1570 0.4605 0.00045 0.5783

16073 0.8482 0.8503 0.1580 1.5688 -0.1217 -0.0525 0.00048 0.5783

9810 0.8477 0.8439 49.596 -17.088 0.0014 0.2713 0.00049 0.5783

8182 0.8452 0.8391 -407.53 494.72 -0.0661 0.3669 0.00050 0.5923

2619 0.8392 0.8404 12.947 226.52 -0.0014 0.2758 0.00060 0.5923

16415 0.8361 0.8376 0.8542 -2.4436 0.0604 0.1723 0.00071 0.5923

9859 0.8336 0.8379 7.0408 -1.8856 -0.2414 0.2774 0.00078 0.5923

8369 0.8318 0.8206 -94.226 43.135 -0.0524 0.3491 0.00080 0.5923
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Table 11.4: Results for top 20 metabolites based on R2
Λ. R2

Λ R2
Λcr: The measure

of association with and without cross validation; Hcof0,Hcof1, Mcof0,Mcof1: The

coefficients for pre and post treatment HAMD score and for pre and post treatment

metabolite expressions respectively; rawp: Raw p-values; adjp: adjusted p-values.

Metabolite Id R2
Λ R2

Λcr Hcof0 Hcof1 Mcof0 Mcof1 rawp adjp

68 0.9364 0.9308 -2.5773 2.5960 0.1988 -0.3786 0.0032 0.4116

168 0.8484 0.8526 -2.6417 3.2986 -0.1023 0.4584 0.0204 0.7672

158 0.8468 0.8467 -1.0414 3.2146 0.2119 -0.2378 0.0207 0.7672

115 0.8371 0.8464 1.9940 -0.96005 0.1821 -0.0300 0.0244 0.7672

150 0.8080 0.8073 10.444 -5.8443 -0.2912 0.5654 0.0367 0.7672

263 0.8028 0.8114 -0.5355 4.2755 0.2104 -0.3109 0.0040 0.7672

84 0.7727 0.7765 1.0859 -4.4460 -0.1963 0.3867 0.0604 0.7672

239 0.7647 0.7610 -0.4305 1.8738 0.1676 -0.4396 0.0658 0.7672

46 0.7622 0.7873 2.2478 -2.0604 -0.1810 0.4215 0.0675 0.7672

21 0.7605 0.7714 4.8186 -5.8448 0.1583 0.0570 0.0695 0.7672

152 0.7527 0.7520 1.1737 1.1501 -0.1780 0.4264 0.0769 0.7672

67 0.7516 0.7437 -2.7632 5.1035 0.2104 -0.3100 0.0783 0.7672

222 0.7463 0.7486 8.2472 -4.4350 -0.1404 0.4577 0.0849 0.7672

24 0.7461 0.7568 0.4841 1.8812 0.0859 0.2404 0.0852 0.7672

200 0.7181 0.7245 4.2544 0.2299 0.1676 -0.3497 0.1128 0.8784

11 0.7154 0.7294 4.2544 0.2299 0.1676 -0.3497 0.1155 0.8784

73 0.6654 0.7281 0.1145 2.8322 -0.1912 0.4009 0.1185 0.8784

171 0.6971 0.7066 2.0562 -0.3953 0.1188 0.1673 0.1399 0.8784

12 0.6914 0.6989 2.0562 -0.395 0.11887 0.1673 0.1480 0.8784

69 0.6842 0.6938 2.3975 0.1941 -0.12853 0.4604 0.1579 0.8784
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Figure 11.5: Panel A: Plot of the change from baseline HAMD score versus change

from baseline gene expression. Panel B: Plot of optimal linear combination of pre/post

HAMD score versus pre/post gene expression for gene 12161.

5 10 15 20

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Top K Genes

R
2

A

PCA
PLS

5 10 15 20

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Top K Metabolites

R
2

B

PCA
PLS

Figure 11.6: Panel A: Plot of the R2 measure with SPCA and SPLS, based on leave-

one-out cross validation for top genes selected based on R2
h. Panel B: Plot of the

R2 measure with SPCA and SPLS, based on leave-one-out cross validation for top

metabolites selected based on R2
h.
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Table 11.5: Results of supervised principal components based on top 20 genes and

metabolites selected based on R2
h. R2, R2

cr: The measure of association without and

with leave one out cross validation; and p-values.

Genes Metabolites

Top R2 R2
cr p-value R2 R2

cr p-value

2 0.7791 0.7747 0.2280 0.8229 0.8146 0.0000

3 0.8253 0.8218 0.3270 0.8029 0.7927 0.0000

4 0.8301 0.8281 0.2980 0.8072 0.7987 0.0000

5 0.7917 0.7923 0.3430 0.8342 0.8270 0.0003

6 0.7734 0.7714 0.4260 0.8603 0.8529 0.0002

8 0.8210 0.8187 0.1070 0.8118 0.8032 0.0001

10 0.7977 0.7978 0.7330 0.8630 0.8488 0.0001

15 0.8084 0.8059 0.8510 0.8819 0.8548 0.0001

20 0.8090 0.8070 0.7940 0.8452 0.8203 0.0001

Table 11.6: Results of supervised principal components based on top k genes and

metabolites selected based on weights on PCA. R2, R2
cr: The measure of association

without and with leave-one-out cross validation; and p-values.

Genes Metabolites

Top R2 R2
cr p-value R2 R2

cr p-value

2 0.6597 0.6335 0.3010 0.7168 0.5736 0.0030

3 0.6733 0.6852 0.6060 0.6947 0.6145 0.0030

4 0.7162 0.7321 0.6220 0.7845 0.6382 0.0020

5 0.7006 0.7601 0.6630 0.7205 0.6525 0.0000

6 0.7229 0.7733 0.6680 0.7094 0.6667 0.0000

8 0.7544 0.7864 0.6930 0.6673 0.6830 0.0000

10 0.7586 0.8005 0.7100 0.7250 0.6930 0.0000

15 0.8183 0.8209 0.7950 0.7808 0.7168 0.0000

20 0.8419 0.8372 0.8090 0.8659 0.7540 0.0000
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Table 11.7: Results of supervised partial least squares based on top k genes and metabo-

lites selected based on R2
h. R2, R2

cr: The measure of association without and with

leave-one-out cross validation; and p-values.

Genes Metabolites

Top R2 R2
cr p-value R2 R2

cr p-value

2 0.5561 0.5591 0.4480 0.7915 0.7907 0.0000

3 0.7292 0.7330 0.3820 0.7805 0.7808 0.0000

4 0.6797 0.6867 0.5170 0.7715 0.7717 0.0000

5 0.6405 0.6505 0.8380 0.8377 0.8381 0.0000

6 0.6442 0.6520 0.9350 0.8534 0.8544 0.0000

8 0.71946 0.7246 0.8420 0.7986 0.8004 0.0000

10 0.7329 0.7382 0.7330 0.8056 0.8083 0.0000

15 0.7245 0.7272 0.9340 0.7933 0.7977 0.0000

20 0.7314 0.7342 0.9400 0.7521 0.7581 0.0001

Table 11.8: Results of supervised partial least squares based on top k genes and metabo-

lites selected based on weights on PLS. R2, R2
cr: The measure of association without

and with leave-one-out cross validation; and p-values.

Genes Metabolites

Top R2 R2
cr p-value R2 R2

cr p-value

2 0.8029 0.7996 0.0370 0.7281 0.7341 0.0000

3 0.8337 0.8297 0.0810 0.7878 0.7783 0.0000

4 0.8779 0.8464 0.0630 0.8607 0.8168 0.0000

5 0.8380 0.8552 0.2040 0.8377 0.8273 0.0000

6 0.7939 0.8603 0.4810 0.8534 0.8479 0.0000

8 0.7696 0.8494 0.7300 0.8168 0.8635 0.0010

10 0.7633 0.8393 0.8360 0.7868 0.8608 0.0020

15 0.7584 0.8406 0.8680 0.7588 0.8554 0.0030

20 0.7314 0.8504 0.9370 0.7521 0.8657 0.0040
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Figure 11.7: Panel A: Plot of the R2 measure with SPCA and SPLS, based on leave-

one-out cross validation for top genes selected based on weights. Panel B: Plot of the

R2 measure with SPCA and SPLS, based on leave-one-out cross validation for top

metabolites selected based on weights.





12
Alternative Methods For The

Selection of Prognostic

Biomarkers

The selection and evaluation of genes as prognostic biomarkers requires quantifying

the degree of association between the response of interest and the gene expression af-

ter correcting for treatment and other possible confounding factors. The associations

between the gene expression and the response could be of linear or nonlinear type. If

we can possibly assume that there is a linear relationship between the gene expression

and the response after accounting for a set of confounding variables, we can use two

of the widely used measures of association suggested in the surrogate marker litera-

ture namely the adjusted association and the likelihood reduction factor. The same

methods have been applied in the previous chapter for selecting genomic biomarkers.

The two methods involve either fitting a bivariate model and quantify the association

173
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through individual level R2 or use an equivalent conditional model which has its basis

in the information-theoretic approach and use the likelihood reduction factor. The

two methods perform rather well for genes which exhibit a linear association with

the response. Practice has however thought us that there are other possible types

of relationships with some responses. In this chapter, we will outline some methods

that could be used to quantify association with the response without a need to spec-

ify functional relationships and revisit the information-theoretic approach with some

flexible function to capture possible non-linear relationships with the response.

12.1 Information-theoretic Approach with Penalized

Smoothing Splines

Recall that the information-theoretic approach is based on the fit of two univariate

models. With in the context of microarray setting, the first model relates the expected

value of the clinical outcome to the treatment and/or other confounding variables

only, and the second relates the expected value of the clinical outcome to the gene

expression as well. So far, we have considered the case where the gene expression

enters the model as a covariate in a linear fashion. However, we can incorporate

a flexible function to deal with a possible non-linear relationship between the gene

expression and the response. One such function is penalized smoothing spline which

is discussed in chapter 8 for longitudinal data. Here we provide a brief description of

the model for this particular situation. Let Tj denote the response taken from subject

j and Sij be the gene expression for the ith gene of subject j . Then the model which

relates the response and the gene expression takes the form: E(Tj |Sij) = Zjβ+f(Sij),

for a smooth function f(·). The penalized-spline representation of the model can then
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be written as:

E(Tj |Sij) = Zjβ +

Q∑

q=1

bq(Sij − κq)+, (12.1)

where κ1, . . . , κQ are a set of distinct knots in the range of Sij , S+ = max(0, S),

and bq ∼ N(0, σ2
b ). The knot points are selected as equally spaced quantiles of Sij

(Ruppert et al., 2003). Similar to the original information-theoretic approach, the

measure of association can be quantified by comparing this model with a model that

relates the response to treatment and other confounders only. Note however that, if

there is no treatment effect or other confounding variables to account for, the two

models would be a model relating the response to the gene expression and the second

one an intercept model for the response.

12.2 Nonlinear Correlation Coefficient

Here we give a concise description of the nonlinear correlation coefficient (NCC) mea-

sure suggested by Wang et al (2005). The authors have tried to demonstrate that

the mutual information carried by the rank sequences, which are obtained from the

original sequences, is a good measure of nonlinear correlation. They later have de-

veloped the measure as a concept called nonlinear correlation coefficient. Given two

discreet random variables S and T , for describing the general correlation between

two variables except for the correlation coefficient which is used to describe the linear

correlation of the two variables, the mutual information concept is used widely which

is defined as:

I(S; T ) = H(S) + H(T ) − H(S, T ), (12.2)

H(S) is the information entropy of the variable S, which is defined as:

H(S) = −

L∑

j=1

pj lnpj, (12.3)
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and the joint entropy of the two variables S and T , H(S, T ), is defined as

H(S, T ) = −

L∑

j=1

M∑

j=1

pj lnpj. (12.4)

Wang et al (2005) state that mutual information can be thought of as a gener-

alized correlation analogous to the linear correlation coefficient, but sensitive to any

relationship, not just linear dependence. But it can be seen from the definition of the

mutual information that it does not range in a definite closed interval as the squared

correlation coefficient does, which ranges in [0, 1] with 0 indicating the minimum lin-

ear correlation and 1 indicating the maximum. They have given a revised version

of the mutual information, which will be sensitive to the general correlation of two

variables as the mutual information does, while ranges within a closed interval [0, 1].

Considering two discrete variables S = {sj}1 ≤ j ≤ n and T = {tj}1 ≤ j ≤ n, they

are first resorted in ascending order and placed into b ranks with first n/b samples

in the first rank, the second n/b samples in the second rank, and so on. Second, the

sample pairs, {sj, tj}1 ≤ j ≤ n, are placed into a b × b rank grids by comparing the

sample pairs to the rank sequences of S and T . The revised joint entropy of the two

variables S and T is defined as

Hr(S, T ) = −
n∑

j=1

L∑

k=1

nij

n
logb

njk

n
, (12.5)

where njk is the number of samples distributed in the jkth rank grid. And the

nonlinear correlation coefficient is defined as

NCC(S; T ) = Hr(S) + Hr(T ) − Hr(S, T ), (12.6)

where Hr(S) is the revised entropy of the variable S, which is defined as
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Hr(S) = −

L∑

i=1

ni

N
logb

ni

N
. (12.7)

Notice that the number of samples distributed into each rank of S and T is invari-

ant, and the total number of sample pairs is N , so the nonlinear correlation coefficient,

(12.6), can be rewritten as

NCC(S, T ) = 2 +

b2∑

i=1

nij

N
logb

nij

N
. (12.8)

The nonlinear correlation coefficient not only is sensitive to the nonlinear corre-

lation of two variables, but can also describe this relationship with a number that

ranges within the closed interval [0, 1]. In the maximum correlation condition, sam-

ple sequences of the two variables are exactly the same, i.e. sj = tj(j = 1, 2, . . . , N)

Wang et al(2005).

12.3 Regression Tree Analysis

The regression tree methodology (RTA) is a very well-known and widely used tech-

nique for different applications. In contrast to classical regression techniques, for

which the relationship between the response and predictors is pre-specified, such as

linear or quadratic, and the test is performed to confirm or reject the relationship,

regression tree analysis assumes no such relationship Breiman et al (1984). It is pri-

marily a method for constructing a set of decision rules on the predictor variables.

The rules are constructed by recursively partitioning the data into successively smaller

groups with binary splits based on a single predictor variable. Splits for all of the pre-

dictors are examined by an exhaustive search procedure and the best split is chosen.

For regression trees, the selected split is the one that maximizes the homogeneity of
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the two resulting groups with respect to the response variable, the split that maxi-

mizes the between-group sum of squares, as in analysis of variance, although other

options may be available. The output is a tree diagram with branches determined

by the splitting rules and a series of terminal nodes that contain the mean response.

The procedure initially grows maximal trees and then uses techniques such as cross-

validation to prune the overfitted tree to an optimal size Therneau and Atkinson

(1997). We choose as the right- sized” tree the smallest-sized, i.e., least complex,

tree of which the cross-validation costs do not differ appreciably from the minimum

cross-validation costs Breiman et al (1984). In particular, some authors proposed a

1-SE rule” for making this selection, i.e., choose as the right-sized” tree the smallest-

sized tree whose cross-validation costs do not exceed the minimum cross-validation

costs plus one the standard error of the cross-validation costs for the minimum cross-

validation costs tree. RTA has clear advantages over classical statistical methods in

that it is effective in uncovering structure in data with hierarchical or non-additive

variables. Because no prior assumptions are made about the nature of the relation-

ships among the response and predictor variables, RTA allows for the possibility of

interactions and non-linearity among variables.

It should be emphasized here that our main objective is to measure the association

between the gene expression and the response after accounting for treatment and

other confounding variables. Now collecting the residuals Sij and Tj for the gene

expression of the ith gene of jth subject and the response of jth subject respectively

from their joint model, the association measure that will be employed with regression

tree analysis takes the ideas proposed by Alonso and Molenberghs (2007) into account

and, for this particular model (for the final tree), can be written as

RDtreei =
D(T ) − D(T | Si)

D(T )
, (12.9)
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where

D(T ) =

n∑

j

(Tj − T ), (12.10)

is the deviance. Furthermore, D(T | Si) denotes the deviance of the final pruned tree

when the information of the gene expression are accounted for. Assuming that we

have v terminal nodes (M1; M2; Mv), D(T | Si) can be calculated as:

D(T | Si) =

v∑

h=1




∑

TjεMm

(Tj − TMh
)2


 , (12.11)

where TMh
is the mean in terminal node Mh.

12.4 Bagging Regression Trees

Bagging is a technique that can be used with many regression methods so as to reduce

the variance associated with prediction, thereby improving the prediction process.

The main idea behind bagging is as follows: many bootstrap samples are drawn

from the available data, some prediction method is applied to each bootstrap sample,

and then the results are combined, by averaging for regression, to obtain the overall

prediction, with the variance being reduced due to the averaging. It can be used

to improve both the stability and predictive power of regression trees, but its use is

not restricted to improving tree-based predictions. Rather, it is a general technique

that can be applied in a wide variety of settings to improve predictions. Bagging

avoids overfitting by randomizing the input of deterministic learning algorithms in

the hope that directions where overfitting occurs for individual predictions cancel out.

Whatever overfitting there might be is averaged out when the combining takes place.

The main characteristic of bagging that prevents it from being affected by overtraining
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is that, in bagging, the training data set is modified randomly and independently at

each step. The bootstrap resampling used in bagging is known as a robust technique.

Therefore, in expectation, the distribution of a bootstrap sample, which consists of

63,2% of training data, becomes similar to the real data distribution. In this way,

bagging is prevented from overtraining. The association measure will then be the

median of the list of relative reduction in deviance RDtree of each tree constructed

for each bootstrap sample.

12.5 Random Forests

A random forest (RF) is an ensemble of many identically distributed trees generated

from bootstrap samples of the original data Breiman (2001). Each tree is constructed

via a regression tree algorithm. The simplest random forest with random features

is formed by selecting randomly, at each node, a small group of input variables to

split on. The size of the group is fixed throughout the process of growing the forest.

Each tree is grown by using the RTA methodology without pruning. Some features of

random forest worth highlighting are: (1) it is an excellent classifier, comparable in

accuracy to support vector machines; (2) it generates an internal unbiased estimate of

the generalization error as the forest building progresses; (3) it computes proximities

between pairs of cases that can be used in clustering, locating outliers, or by scaling,

giving useful views of the data; (4) it is well known that random forests avoid over-

fitting and it has been demonstrated to have excellent performance in comparison to

other machine learning algorithms Cortiñas et al (2009). The measure of association

will be computed similarly to the case in which bagging methods were used. For the

Random Forest cross-validation methods may not be needed since each tree is grown

from a bootstrapped sample, on average, about one-third of the observations in the
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data set will not be used to grow the tree.

12.6 Support Vector Machine

The term support vector machines (SVM) refers to a family of learning algorithms

which is considered as one of the most efficient methods throughout a variety of

applications. SVM is a supervised learning technique for classification and regression.

SVM can also be applied to regression problems by the introduction of an alternative

loss function, (Smola, 1996). The loss function must be modified to include a distance

measure. SVM regressions use the ε-insensitive loss function. If the deviation between

the predicted and actual values is less than ε, then the regression function is considered

good, which can be mathematically expressed as: −ε ≤ ω.Sij − b − Tj . From a

geometric point of view, it can be seen as a band of size 2ε around the hypothesis

function and any point outside this band is considered as a training error. Suppose

the data can be explained by a linear model; the goal is to find a fitting hyperplane

〈ω, gij〉 + b = 0. Formally, we need to minimize ‖ω‖2/2, subject to the following

constraints:

Tj − 〈ω, Sij〉 − b ≤ ε, 〈ω, Sij〉 − Tj ≥= ε

To account for training errors and the possibility of handling non-linearity, we can

map the input data Sij into a, possibly higher-dimensional, so-called feature space

Φ(Sij) and introduce some weights to our optimization problem, which now becomes:

min
‖ω‖2

2
+ c.

N∑

i

(ξi + ξ̂i),

subject to the following constraints:
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Tj − 〈ω, Φ(Sij)〉 − b ≤ ε + ξj ,

〈ω, Φ(Sij)〉 − tj ≥= ε + ξj ,

ξj , ξ̂j ≥ 0.

We then need to solve a constrained optimization problem. It turns out that, in

most cases, it can be solved more easily in its dual formulation. Several kernels can

be used such as:

• Polynomial: (γ(〈Sij , Skj〉 + δ)d

• Radial basic function (RBF): exp(γ‖Sij, Skj‖
2)

• Sigmoid: tanh(γ(〈Sij , Skj〉 + δ).

One possible way to select a kernel is first to tune all three kernels, using cross-

validation, and, finally, the kernel, together with the set of parameters that produce

the smallest mean squared error would be retained. In this way, we can control for

the risk of overfitting, given that the set of parameters used to obtain the final model

are selected using a cross-validation procedure. We can then go on and evaluate

the model performance for each of the observations left out in the cross-validated

samples and thus the ability of the model to generalize beyond the fitting data. For

this application, we have considered the RBF kernel, which can handle the non-linear

mapping and have few parameter to be controlled (C between 0.25 and 6, with step

of 0.25 and γ between 0.5 and 50 with step of 0.5) Hsu et al (2001). The parameters

C and γ obtained from the tuning process were then used to estimate the measure of

association. For comparison purposes, we have also considered the polynomial kernel.

Similar to the case of regression trees, the association measure can be computed using

the ratio between the portion of the variability not explained by the model and the

total variability of the residuals from the response:
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RDSV Mi =
D(T ) − DSV MR(T | Si)

D(T )
, (12.12)

D(T ) can be calculated as in (12.10), and DSV MR(T | Si) is the sum of the squares

of the differences between the actual value (Tj) and their estimated value obtained

when the SVM regression model is employed.

12.7 Application to the Case Study

The methods discussed in the previous sections were applied to the case study in

depression. The results are summarized in Tables 12.1- 12.3. The results highlighted

that, when there is a noticeable linear relationship, the information-theoretic ap-

proach without flexible functional form in the gene expression performs reasonably

well. However, when there is some form of nonlinear relationship, this method is less

optimal. To augment flexibility to this simple but elegant approach, we have used

penalized spline. It is worth mentioning here that, the information-theoretic approach

complemented with the splines method still selected the same set of genes that were

selected by the linear models. This however is not the failure of the method to deal

with non-linear associations but rather can be attributed to the way the knot points

were selected. Since there are large number of models to be fitted, the default knot

selection was used. With appropriate knot points selected, this method can perform

reasonably well for addressing both linear as well as non-linear associations as has

been the case for other applications Tilahun et al (2007). The rest of the alternative

methods have selected different genes with different patterns. The support vector

machine approach with radial basis has selected genes with linear as well as nonlinear

relationships. The random forest method has given substantially larger values of the

association measure compared to the other approaches. The non linear correlation
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coefficient of Wang et al(2005) has given similar values for the association measure for

a large number of genes. This might be attributed to the fact that the method works

on the ranks of the genes rather than the actual values. The use of cross-validation is

advised as it appeared that the results with and without cross-validation were found

to be different.

12.8 Discussion

In this chapter, we have outlined alternative methods for the selection of prognostic

genomic biomarkers in line with Cortiñas et al (2009) who used the same set of meth-

ods to quantify the trial level surrogacy in the context of meta-analytic framework of

surrogate marker validation. The main motivation behind the use of these alterna-

tive methods in the selection of prognostic biomarkers is the need to deal with other

possible types of associations rather than simple linear relationships.

The methods that assume linear relationship between the gene expression and the

outcome might come short of selecting genes that exhibit other forms of associations.

This could lead to loss of important information which amounts to loss of some im-

portant prognostic biomarkers. The comparison of the methods has revealed that the

different methods might select different set of genes as potential biomarkers. How-

ever some of the methods seem to perform poorly which is reflected by the type of

genes they have selected. For example the non-linear correlation coefficient of Wang

et al(2005) has given similar measures of associations for a large number of genes

which might be questionable given that some of the genes do not seem to have any

meaningful association with the response. Some other methods, such as the support

vector machine with radial basis, on the other hand, picked genes that have portrayed

both linear as well as non-linear associations with the response.
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Table 12.1: Results for top 20 genes ITA and NCC

ITA Non-linear Correlation

Gene LRF LRFcr Gene NCC NCCcr

736 0.7579 0.7541 14771 0.72856 0.58561

2419 0.7295 0.7243 5167 0.71319 0.51359

3455 0.6536 0.6477 4165 0.67247 0.49785

9859 0.6507 0.6460 2891 0.67247 0.51666

8427 0.5910 0.5906 13703 0.65710 0.54923

1954 0.5881 0.5829 13515 0.65710 0.52826

13988 0.5799 0.5782 16929 0.65710 0.52076

6342 0.5786 0.5728 6298 0.65710 0.53576

6119 0.5771 0.5723 10544 0.65710 0.53686

16073 0.5632 0.5575 2391 0.65710 0.55028

16501 0.5447 0.5380 12978 0.65710 0.49359

16415 0.5394 0.5345 11559 0.65710 0.53524

5543 0.5381 0.5328 676 0.65710 0.55969

14657 0.5376 0.5355 5585 0.65710 0.54035

9635 0.5276 0.5247 7654 0.65710 0.56184

6195 0.5236 0.5187 14338 0.65710 0.58147

4900 0.5194 0.5193 6876 0.65710 0.54464

12791 0.5178 0.5126 2514 0.65710 0.53524

15294 0.5146 0.5123 4146 0.65710 0.55807

4375 0.5090 0.5018 13133 0.65710 0.50811
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Table 12.2: Results for top 20 genes Regresion tree Random Forest and Bagging.

Regresstion Trees Bagging Random Forest

Gene RT RTcr Gene Bagg Gene RF

304 0.68016 0.60334 8039 0.61277 7407 0.92480

14338 0.67599 0.57584 6458 0.61232 213 0.91894

4319 0.66621 0.64267 16575 0.60797 11585 0.90820

4739 0.66581 0.46607 13988 0.60713 2696 0.90143

11629 0.66497 0.52607 6228 0.57677 5252 0.89644

6458 0.65962 0.62697 9761 0.57269 15041 0.86346

4618 0.65789 0.57569 5144 0.56375 9447 0.85629

12844 0.65634 0.58129 5363 0.56304 14253 0.84653

16028 0.65504 0.54897 10351 0.56187 6186 0.83971

9761 0.65326 0.61939 11010 0.55900 16886 0.83568

11618 0.65131 0.54502 7489 0.55703 16358 0.83488

10363 0.65109 0.55807 2970 0.55640 11583 0.83402

7829 0.64672 0.50540 736 0.54896 338 0.82453

16575 0.64507 0.62101 6406 0.54806 16135 0.82190

6098 0.64440 0.53311 12484 0.53888 697 0.81716

10401 0.64409 0.50206 44 0.53500 13572 0.81654

5986 0.64351 0.59575 13965 0.53431 9565 0.81394

6692 0.64102 0.60109 307 0.53133 14048 0.80730

1764 0.64060 0.52899 3772 0.52993 16912 0.80180

1025 0.63889 0.58602 3645 0.52628 9995 0.79238
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Table 12.3: Results for top 20 genes SVM with polynomial and Radial Basis

Polynomial Basis Radial Basis

Gene SV M SV Mcr Gene SV M SV Mcr

6195 0.61628 0.58789 5144 0.73692 0.67544

14157 0.60334 0.58143 736 0.66090 0.65484

4055 0.60155 0.57661 2940 0.65652 0.60360

2903 0.58291 0.56110 10540 0.63615 0.59622

3455 0.57470 0.56472 12483 0.62505 0.59569

6008 0.56447 0.53505 862 0.60827 0.58801

2519 0.55457 0.53672 3455 0.60326 0.57892

16501 0.54994 0.54574 12748 0.60192 0.58665

11096 0.54718 0.52774 11105 0.59653 0.56807

15204 0.54220 0.52994 5215 0.59461 0.57649

6345 0.53957 0.53106 13893 0.59446 0.56181

10455 0.53724 0.51402 13081 0.59082 0.54215

2419 0.53643 0.54212 10351 0.58994 0.57088

6342 0.53045 0.53491 3598 0.58874 0.54205

12023 0.52857 0.50317 7429 0.58796 0.50982

1548 0.52701 0.51101 2419 0.58761 0.58754

1249 0.52617 0.50895 4382 0.58663 0.56366

3290 0.52306 0.50376 12847 0.58637 0.56107

13767 0.52138 0.49973 4126 0.58630 0.56403

6414 0.51725 0.50240 4900 0.58385 0.55803



188 Chapter 12. Alternative Methods

In a real life application, involving a large number of genes, it might not be feasi-

ble to apply these methods all at once. Note however that, the information-theoretic

approach with appropriate choice of the knot points and the support vector machine

approach with radial basis can handle both linear as well as non-linear associations

adequately. Hence these two methods might be suitable candidates for general pur-

poses. The information-theoretic approach with splines can easily be fitted with any

software which has the facility to handle linear mixed models. It also takes substan-

tially less computation time which makes it a prime candidate to deal with situations

that call for both linear and non-linear associations. The methods suggested in this

chapter should be complemented with tests for the significance of the resulting as-

sociation measures through for example bootstrap methods. However, the bootstrap

methods might be time consuming and hence there is a need to devise other methods

that might be less computationally intensive which we believe could be an interesting

topic for further research. In this regard also, the information-theoretic approach gets

the upper hand as there is an asymptotic theory that allows for the construction of

asymptotic confidence interval for the estimated measure of association.



13
The Selection and Evaluation

of Gene Specific biomarkers:

Hierarchical Bayesian

Approach

It has to be recalled that depending on the way they are related to the clinical out-

come, biomarkers can be classified as prognostic or therapeutic. The selection of

prognostic biomarkers can be carried out by using an association measure which

quantifies the relationship between the response of interest and the biomarker after

adjusting for treatment and other confounding variables. The selection of therapeutic

biomarkers on the other hand, requires establishing a relationship between the treat-

ment effects on the clinical outcome and the potential biomarker. In the surrogate

marker validation context, the former are referred to as individual level surrogates

189
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while the latter ones refer to what is known as trial level surrogate. The absence of

replicates at a trial level in a microarray experiment has prohibited the direct use of

some of the methods designed for surrogate marker validation which has led to the

use of a Bayesian approach. This approach assumes a bivariate normal distribution

for the treatment effects on the potential biomarker and the response of interest from

which an R-square type measure can be derived. In this chapter, this approach will

be discussed and then will be applied to a case study in behavior. The results are

compared with the approach of Lin et.al (2007) which uses the relative reduction in

deviance based on regression tree approach. Let us begin with a brief introduction

of the method of reduction in relative deviance and later move on to the hierarchical

Bayesian modeling.

13.1 Reduction in Relative Deviance

To evaluate the quality of therapeutic biomarkers, Lin et.al (2007) followed the ap-

proach of Alonso and Molenberghs (2005) and proposed a measure for therapeutic

biomarker, the reduction in relative deviance. The total variability of the response,

the deviance, without any information about the gene-expression level can be mea-

sured by

D(T ) =

n∑

j=1

(Tj − µ̂)
2
, (13.1)

where µ̂ = 1/n
∑n

j=1 Tj and j = 1, . . . , n indicates the arrays. For a therapeutic

biomarker, because gene-expression is differentially expressed, one can use the gene-

expression level in order to predict the response level. While a linear regression

model is not an appropriate model for this type of a biomarker, a regression tree

model (Venables and Ripley 1994), in which the gene-expression is the only predictor,

can capture the structure of the data shown in Figure 13.1.
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Figure 13.1: A regression tree model for a hypothetical example with two terminal

nodes. The vertical line in the plot indicates the split point in the regression tree.

D(Y ) represents the total variability in the response Y , while D1(Y |X) and D2(Y |X)

represent the variability within each of the terminal nodes.

Moreover, because the gene is differentially expressed, we can restrict the tree

to two terminal nodes (two final homogenous groups of the response), in which the

cutoff point (or the split point) is determined only by the gene-expression level. An

example of the cutoff point is shown as the vertical line in Figure 13.1. Let k denote

the number of terminal nodes in the tree and let D(T |S, k = 2) denote the sum of

deviances for the terminal nodes,

D(T |S, k = 2) = D1(T |S) + D2(T |S)

=
∑

Tj∈k1
(Tj − µ̂1)

2
+

∑
Tj∈k2

(Tj − µ̂2)
2
,

(13.2)

where D1(T |S) and D2(T |S) denote the deviance in each of the terminal nodes, k1

and k2 denote the sets of subject indices corresponding to the two terminal nodes,
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and µ̂1 and µ̂2 are the mean response in the two terminal nodes. The reduction in

the deviance, D(T ) − D(T |S, k = 2), measures the gain in prediction of the response

level using gene-expression, as compared to the case where the gene-expression is not

used. In other words, the reduction in deviance measures whether information about

the gene-expression is relevant for predicting the response level. The relative deviance

reduction, R2
D, is given by

R2
D =

D(T ) − D(T |S)

D(T )
=

D(T ) − D1(T |S) − D2(T |S)

D(T )
,

hence,

R2
D =

∑n
j=1 (Tj − µ̂)

2
−

[∑
Tj∈k1

(Tj − µ̂1)
2
+

∑
Tj∈k2

(Tj − µ̂2)
2
]

∑n
j=1 (Tj − µ̂)2

. (13.3)

Following Alonso and Molenberghs’ (2005) information theoretic approach, it is

easy to see that R2
D belong to the family of information theoretic association mea-

sures. This is a crucial point, as it implies that, although prognostic and therapeutic

biomarkers are evaluated using different validity measures both measures can be in-

terpreted in the same way.

13.2 Hierarchical Joint Model for the Gene Expres-

sion and the Response

In the relative reduction approach discussed in the previous section, geneomic biomark-

ers were evaluated according to their quality in predicting the response. In this section

we focus on the association between the treatment effects upon the response and the

gene expression. In particular we wish to identify genomic biomarkers for which in-

formation about the treatment effect upon the biomarker will reduce the uncertainty

about the treatment effect upon the outcome of primary interest. In other words we
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would like to identify genomic biomarkers for which treatment effect upon biomarker

can be used in order to predict the treatment effect upon the response.

Now let us discuss the hierarchical Bayesian joint model for the gene expression

and the response, from which both prognostic and therapeutic genes can be tested

and evaluated. For this let us consider a single gene, and fit the following bivariate

model for the gene expression and the response of interest. Here Sij denotes the gene

expression of the ith gene of the jth subject whereas Tj represents the clinical outcome

of interest.



 Sij

Tj



 ∼ N







 µS + Zjα

µT + Zjβ



 , Σi =



 σ
SS

σ
ST

σ
ST

σ
T T







 . (13.4)

From this model, the selection of prognostic biomarkers can be carried out by

using the so called adjusted association which takes the form

ρ2 =
σ2

ST

σST σTT
. (13.5)

Hierarchical Bayesian model allows us to evaluate therapeutic biomarkers by spec-

ifying a joint prior distribution , [β, αi], for the treatment effects. Note that both

[Tj , Sij |Zj ] and [β, αi] are gene specific which implies that a “gene by gene” analysis

is performed. The prior and hyperprior distributions for the parameters in (13.4)

will be discussed in the next section. Note that a microarray experiment is equiv-

alent to the single trial setting in the clinical trials framework in the sense that for

a gene specific model we have one treatment effect each upon the response and the

gene expression. This is in contrast with the multiple trial setting in which one can

estimate a trial specific treatment effect for each trial. Using hierarchical Bayesian

models, Daniels and Hughes (1997) and Shkedy et al. (2005) show that the trial level

surrogacy can be evaluated from prior distribution of the treatment effects. In what
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follows, we specify the prior distribution for the joint model and show that, similar to

the meta analytic approach, a second level of association, which we term “gene level

association” can be evaluated from the joint distribution of the treatment effects.

13.2.1 Specification of the Prior Distributions

In order to complete the specification of the hierarchical model we assume independent

normal prior to the intercepts, i.e,

µSj
∼ N(0, θ2

µSj
),

µT ∼ N(0, θ2
µT

),
(13.6)

For the precision parameters in (13.6) flat hyperprior models are specified using

Gamma distributions, e.g., θ−2
µS

∼ Gamma(0.001, 0.001), etc. Similar to the model

proposed by Daniels and Hughes (1997) and Shkedy et al. (2005), we need to specify

a prior distribution to model the association between the treatment effects of the two

endpoints. We specify a bivariate normal prior distribution


 αj

β



 ∼ N







 0

0



 , Dj



 , (13.7)

with variance-covariance matrix given by

Dj =



 d
αjαj

d
αjβ

d
αjβ

d
ββ



 . (13.8)

Within the meta analytic approach, the measure for trial level surrogacy, R2
trial is

derive from the covariance matrix D (Buyse et al. 2000). We follow this approach

and use coefficient of determination, R2
gene , in order to evaluate the association

between αj and β.

R2
gene =

d2
αjβ

d
αjαj

d
ββ

. (13.9)

Indeed, R2
gene = 1 indicates a deterministic relationship between the treatment

effects while R2
gene = 0 indicates that the treatment effects are uncorrelated. Wishart
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distributions are assumed as the hyperprior distribution for the variance-covariance

matrices in (13.4) and (13.8):

D−1 ∼ Wishart(RD), Σ−1 ∼ Wishart(RΣ). (13.10)

In summary, the gene-level and individual-level associations (used to select prognostic

biomarkers) are assessed using the posterior means for the coefficients of determination

(13.5) and (13.9), respectively. Note that both (13.5) and (13.9) are gene specific

coefficients.

13.3 Model Selection

In order to validate the genes that are selected as therapeutic biomarkers, we can

proceed by fitting two models. The first model corresponds to the one discussed earlier

which assumes that the treatment effects on the gene expression and the outcome are

jointly normally distributed. The second model assumes that the treatment effects

are independent which can be formulated by specifying a variance covariance matrix

of the form:

Dj =



 d
αjαj

0

0 d
ββ



 . (13.11)

For each gene, the two models will be fitted and their corresponding DIC values

will be compared. Genes whose DIC is smaller for the first model which assumes

existence of correlation between the two treatment effects compared to the second

model will be considered as potential therapeutic biomarkers.
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13.4 Confirmatory Analysis

The model selection approach discussed earlier can be a handy tool to indirectly

ascertain whether or not the observed association between the treatment effects αj

and β is statistically significant. In this section, we try to address the same objective

using a different approach. From previous experiences and a preliminary analysis of

the case study under consideration, we can learn that the only association between

the clinical outcome and most of the the gene expressions is treatment induced. Thus

a gene expression will be considered a reasonable biomarker if it enables us to answer

the question namely ”does the gene expression provide information that can be used

in order to classify the response into the two treatment groups?”. This is equivalent to

saying that substantial amount of the information about the treatment effect on the

clinical outcome is captured by the gene expression. Now let us consider the following

model construction.


 Xij

Yi


 ∼ N





 µXj

+ αiZi

µY + γIi


 , Σj


 . (13.12)

This model is similar to the previous bivariate model except here Ii, which is an

indicator variable determined by the gene expression, such that

Ii =





1, Xik ≤ θ,

0, Xik > θ,
(13.13)

is used in place of the treatment. The parameter θ is a split point which split the

response into two groups. Observations to the left of θ form one group while obser-

vations to the right of θ form the second group. We specify a non informative prior

for θ

θ ∼ U [min(Xik), max(Xik)] . (13.14)
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Note that models (13.4) and (13.12) both imply that the distribution of the response

is a mixture of two distributions. The shift in the mixture in (13.4) is β determined

by the treatment group while the shift in (13.12) is γ and it is determined by the

gene expression. Hence, the model in (13.12) focuses on the question whether the

gene expression cab be used in order to determine the shift of the response. Note that

if Zi = Ii i = 1, . . . , n then β = γ in this case the classification based on the gene

expression form the two treatment groups. The procedure will be carried out similar

to a leave-one-out approach in a sense that, each time the response of a single subject

will be dropped and the model will be fitted with the remaining subjects and then

the fitted model will be used to predict the outcome of the subject dropped. For a

good biomarker, the predicted values are expected to be closer to the group means

of the clinical outcome which manifests the assumptions that the treatment on the

clinical outcome is captured by the gene expression.

13.5 Application to the Case Study

The Bayesian approach discussed earlier has been applied to the case study introduced

in the Section 2.1.7. The top 20 genes selected based on the association between the

treatment effects on the gene expressions with the treatment effects on the response

and the top 20 genes selected based on the relative reduction in deviance are dis-

played in Table 13.1. The results have exhibited that none of the genes qualify to be

prognostic biomarkers for the response as the magnitude of the association measures

were found to be rather too small. However, the treatment effects on three genes

have shown a relatively moderate level of association with the treatment effect on

the response. This highlights that there is some hope of using these set of genes

as possible therapeutic biomarkers. This is in agreement with what can be seen in
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the box plots displayed in Figure 13.2 and 13.3. From these box plots we can see

that there is a clear treatment effect for the top three genes and on the response.

From Figure 13.5 we can see that for the gene which was selected as a top gene the

posterior distribution of the R2 values is skewed to the left with the majority of the

values closer to one. Whilst for the least ranking gene, the distribution is skewed

to the right with more small values. The contour plots also exhibit the presence of

correlation between the treatment effects on gene 1962 and the response while no ap-

parent pattern is observed for the gene expression of gene 1090. The model selection

approach followed has also revealed that the DIC values for the model which assumes

correlation between the treatment effects are slightly smaller than the independence

model. This gives a guarantee that the assumption might be viable. The confirma-

tory analysis was performed for the top and least genes namely genes 1962 and 1090.

As can be seen from Figure 13.6, for gene 1962, for which the treatment effect have

showed a moderate level of association with the treatment effect on the clinical out-

come, the predicted values from the model with treatment effect and a model with

the gene expressions used in place of the treatment effect, are closer to the mean of

each treatment group confirming that the treatment effect on the clinical outcome is

captured by the gene expression. For gene 1090, the predicted values based on the

treatment effect used as a covariate are closer to the mean of each treatment group

while the once predicted with the gene expression used in place of the treatment are

clustered to the over all mean inline with expectation. In conclusion, even though

there is a relatively moderate association between the treatment effects on the four

genes and the outcome, there is very little information left in the gene expressions

about the response of interests after adjusting for treatment effect. The comparison

of the Bayesian approach and the relative reduction in deviance reveals that, some
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of the top genes by both approaches are identical although the rankings differer from

one to the other.

13.6 Discussion

In this chapter, we have introduced a Bayesian approach to select prognostic and ther-

apeutic genomic biomarkers. The method can be applied both for a single microarray

experiment as well as for the meta-analytic approach. We have tried to establish

analogies between the measures of associations defined in the meta-analytic frame

work of the surrogate marker validation and the selection and evaluation of biomark-

ers. The individual level surrogacy, which quantifies the association at the individual

patient level can be directly used in the microarray setting to select prognostic biom-

rkers. The selection of therapeutic biomarkers, using the method designed for trial

level surrogacy, however, requires the existence of replications at the trial level which

is not a common practice in microarray settings. This problem has motivated the

use of the Bayesian approach where the treatment effects from the response of inter-

est and the gene expressions are assumed to follow a bivariate normal distribution.

This formulation has enabled us to derive an R-square type measure similar to the

adjusted association, which is used to select prognostic biomarkers. From the results

we have been able to identify few genes which might be considered as possible thera-

peutic biomarkers. However, none of the genes qualify to be considered as prognostic

biomarkers as reflected by the small magnitude of the association measure relating the

response to the gene expression after adjusting for treatment. Some of the top genes

selected by the relative reduction in deviance and the Bayesian approach were iden-

tical. This however does not necessarily mean that the two methods are equivalent.

The reduction in relative deviance quantifies the association between the response
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Figure 13.2: Boxplot of the total distance traveled by the rats.

and the gene expressions without adjusting for treatment effect under the assumption

that the observed association is induced by treatment only. The justification that the

genes selected by this approach are therapeutic comes from the very assumption that

the observed association is treatment induced and hence the genes contain informa-

tion about the treatment effect on the response indirectly. The Bayesian approach

on the other hand, quantifies the association between the gene expressions and the

response after adjusting for the treatment effect. And by further assuming that the

treatment effects on the gene expression and the outcome follow a bivariate distri-

bution, it enables us to select genes whose treatment effect gives indication of the

treatment effect on the clinical outcome. Note however that, the Bayesian method

hinges strongly on the validation of the assumptions made about the the treatment

effects and hence care should be taken in making general conclusion about the results.
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Table 13.1: Top 20 genes selected based on R2
gene and RDtree.

Top Genes Based on Rgene Top Genes Based on RD

Gene R2
gene ρ2 Gene RE RDtree

1962 0.6362 0.0564 345 -0.5548 0.7565

60 0.6183 0.0198 1962 -0.4241 0.7565

345 0.6053 0.0545 4447 -2.0463 0.7565

486 0.5460 0.0286 5356 -7.4262 0.7307

59 0.5442 0.0476 486 -0.7625 0.7280

1569 0.2825 0.0058 662 -2.4272 0.6442

5614 0.2728 0.0003 2247 -5.1065 0.6123

4447 0.2658 0.0002 5614 1.8131 0.5769

158 0.2540 0.1033 5216 2.6550 0.5578

2028 0.2521 0.0650 1022 -5.3237 0.5576

214 0.2400 0.0338 214 -2.2181 0.5561

662 0.2172 0.0523 59 -0.7582 0.5548

3899 0.2164 0.0475 60 -0.4819 0.5548

2591 0.2140 0.0015 158 -2.0907 0.4309

4254 0.2114 0.1137 1316 3.0449 0.4181

1263 0.2050 0.1073 522 -5.6379 0.4122

637 0.1964 0.0084 2489 5.8340 0.4099

4320 0.1947 0.0137 3170 -11.6454 0.4088

2697 0.1937 0.0077 4297 3.9599 0.4017

2753 0.1887 0.0005 5352 -6.7483 0.3574
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Figure 13.3: Boxplot of the top four genes selected based on correlation of treatment

effects.
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14
Conclusions and Further

Research

Statistical methods that can be used for the selection and evaluation of biomarkers

which later will be validated to graduate into potent surrogate markers are in dire

demand. The selected biomarkers need to go through rigorous testing procedures

both statistically as well as biologically to finally end up being reliable replacements

for the clinically relevant endpoint. The competitive nature of the pharmaceutical

industry and the impending societal demand for urgent drugs for some of the chronic

diseases threatening human life add to the need for these methods.

In this thesis we have revised some existing methods, introduced some new once

and assessed their merit through simulation studies. The thesis is organized in to

two parts. The first part dealt with surrogate marker validation and the second one

is devoted to the selection and evaluation of biomarkers mainly genomic biomarkers

from microarray experiments. This however is not the natural ordering of the events.

205
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In practice, we first identify a biomarker which later will be promoted to a surro-

gate endpoint. However, the aim here is to introduce a set of methods that have

been designed to validate a surrogate endpoint for the selection and evaluation of

biomarkers.

The case of two normally distributed outcomes has been thoroughly investigated

by several authors but there were still some subtle issues that were marginalized.

Some of these issues are related to computational considerations that need due at-

tention which other wise could cause the conclusions to follow questionable. The

treatment coding might appear a trivial task but our simulation study has revealed

that it needs to be taken seriously specially when a random effects approach is fol-

lowed. The choice between a 0/1 and −1/ + 1 coding schemes has implications in the

positive definiteness and ill-conditioning of the variance covariance matrices based up

on which the association measures are computed. In most instances, statistical soft-

ware packages such as SAS, report that the variance-covariance matrix is not positive

definite when there is a negative eigenvalue. But ill-conditioned covariance matrices

for which there is a huge discrepancy between the smallest and the largest eigenval-

ues might pass undetected. The association measures based on such matrices will be

exaggerated sending a false alarm which could lead to grave consequences. Thus con-

siderable attention should be given to the ill-condition matrices. We have introduced

the condition number, which is the ratio of the largest to the smallest eigenvalue, as

a possible gauge to determine the influence of the ill-conditioning of the covariance

matrix on the magnitude of the association measure.

A move away from the normal-normal setting induces new set of challenges. The

fine properties of the bivariate normal distribution will no longer hold true for other

bivariate distributions and hence new methods need to be devised to circumvent
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these challenges. This has led to the use of the information-theoretic approach which

has resulted in a unification across different outcome types. The method was found

to work well for a combination of two binary outcomes and mixture of binary and

continuous outcomes with a slight downward bias for small samples. However, the

measure has shown to be less adept for the case of time-to-event true endpoints. The

presence of censored observations introduced a new form of challenge. Two direction

were followed, the first is to consider the number of events as denominator in the

computation of the likelihood reduction factor and the second one considered the

use of the number of subjects rather than events. The later one has resulted in a

substantial downward bias while the former pointed in the opposite direction. Of the

two however, the one that uses the number of events works reasonably well for small

percentage of censoring.

In light of the shortcomings of the information-theoretic approach for time-to-

event true endpoints, two other methods were entertained. The two methods are

derived based on the information theory measure proposed by Kent (1983). Because

the methods were thoroughly investigated for their robustness against censoring un-

der the Cox-proportional hazard assumption, we tried to asses their merit when this

assumption is questionable. The simulation studies have reveled that the method

due to Kent and O’Quiegely performs reasonably well for the case of time-to-event

true endpoint and cross-sectional surrogate endpoint. This method however is criti-

cized for its inability to accommodate time varying covariates and its computational

complexity.

Repeated measures of a quantitative marker are commonly obtained in clinical

trials. When such measurements have the ability to predict, and/or explain a large

proportion of the variability of, future clinical measurements or status of a patient,
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then the marker may be used as a surrogate for the final measurements or status

of a patient at the end of the study. If this is the case, such a marker may lead to

a reduction of the length and hence the cost of the study. For example, instead of

taking repeated measurement for a period of say 60 months, it may be possible to

use the repeated measurements for the first 24 or 30 months to accurately predict the

measurement at 60 months; thereby reducing the length of the study by about 50%.

This phenomenon was studied in this thesis for the case of binary and continuous

longitudinal sequences. Two special cases for the correlation structure namely com-

pound symmetry and Auto-regressive of order one were specially treated for which

analytical solutions have been derived. For the compound symmetry and other cor-

relation structures where the correlation between repeated measures decays slowly,

few earlier measures were sufficient to adequately predict the final measurement of

a longitudinal sequence. For the Auto-regressive of order one correlation structure,

depending on the magnitude of the correlation the first measurement or the entire

sequence were needed. Logically a large number of earlier repeated measures might

provide good prediction of the ultimate measurement but this entails a larger cost.

And on the other hand, taking very few measures might hinder the precision of pre-

diction. A balance should be strike between cost and precision. This was handled by

introducing a cost function.

The selection and evaluation of biomarkers part of the thesis mainly focused on

using the same set of methods that have been devised to validate surrogate endpoints.

The concepts related to individual and trial level surrogacy got their analogies in the

form of prognostic and therapeutic biomarkers. This analogy laid the foundation

for the use of the measures in the surrogate marker to select and evaluate genomic

biomarkers. The individual level surrogacy which works at the individual patient
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level was directly used with little or no modification to select prognostic biomarkers.

The trial level surrogacy measure is based on a meta-analytic framework which has

hindered its direct use to select therapeutic biomarkers as most microarray experi-

ments are single trial experiments. This has led to the use of a Bayesian approach

which mimics the meta-analytical frame work. The analogy emanates from the use

of a distributional assumption around the treatment effects on the clinical outcome

and the gene expression. This has led to the derivation of the so-called gene-level

association.

As it is not possible to exhaust all possible scenarios and all details within the

scenarios considered, some questions are left for further research. The information-

theoretic approach as opposed to a probit formulation was appreciated as it quantifies

the association at the observed scale of the outcome. But the amount of bias on

the individual level association introduced from moving from the latent scale to the

observable scale is not clear. This might be further investigated through a simulation

study or analytical derivation.

Two competing methods namely partial least squares and principal components

were used to construct joint biomarkers with different ways of selecting the set of genes

to be used in the construction. The methods were applied to a case study but were

not formally tested in a simulation setting and this can lead to one further research.

Moreover, several alternatives to the methods that deal with linear associations and

a Bayesian approach were entertained for the selection of prognostic and therapeutic

biomarkers respectively. These methods however, have not been formally investigated

for their merit using a simulation study. We therefore consider this also an interesting

area for further research.
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A

Mathematical Derivations

Here we will outline the analytical derivations used in the chapter concerned with the

optimal number of repeated measures. It has to be recalled that, in the chapter on

the mixed longitudinal and cross-sectional setting, we have shown that, the R2
Λ and

V RFind are equal for a longitudinal surrogate and a cross-sectional true endpoint, and

hence we use R2
Λ in place of V RFind for ease of notation.
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Derivation of The Association Measures

Compound Symmetry case

Let us assume that we have k longitudinal observations with a mean vector µ and

variance covariance matrix Σc:

Y =




y1

y2

.

.

.

yk




, E(Y ) = µ =




µ1

µ2

.

.

.

µk




V (Y ) = Σc,

we will further assume that Σc is a kXK compound symmetric matrix , i.e

Σc = σ




1 ρ . . . ρ

ρ 1 . . . ρ

. . . . . .

. . . . . .

. . . . . .

ρ ρ . . . 1




= σ(1 − ρ)Ik + σρJk,

where Jk = 1k1
′

k. It is well known that (Graybill 1983),

‖Σc‖ = σk(1 − ρ)k−1(1 + (k − 1)ρ.

We now want to evaluate the performance of the first m observations as a surrogate

for the last one. Therefore in this setting we will consider:
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S =




y1

y2

.

.

.

ym




T = Yk.

X =


 S

T


 =




y1

y2

.

.

.

ym




, E(X) = µ =




µ1

µ2

.

.

.

µk




and V (X) = Σ where Σ is a (m+1)× (m+1) compound symmetry matrix. Essentially,

Σ can be decomposed as:

Σ = σ


 RSS RST

RTS RTT


 ,

where:

1. RSS is a compound symmetric correlation matrix.

2. RTS= (ρ, ρ, . . ., ρ) is a 1× m vector and RST = Rt
TS

3. RTT =1

The amount of information on T that S brings can be quantified as:

R2
Λ = 1 −

|Σ |

|ΣT T | · |ΣSS |
.

Using (1) and (2) and the expression for the determinant of a compound symmetry

matrix given earlier we have:
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R2
Λ(m) = 1 −

σm+1(1 − ρ)(1 + mρ)

ρm+1(1 − ρ)m−1(1 + (m − 1)ρ)
= 1 −

(1 − ρ)(1 + mρ)

1 + (m − 1)ρ
.

⇒ R2
Λ(m) =

mρ2

1 + (m − 1)ρ
.

The R2
Λ(m) is a function of m, the number of repeated measurements, if we cal-

culate the derivative of R2
Λ(m) with respect to m we get:

d

dm
R2

Λ(m) =
ρ2(1 − ρ)

[1 + (m − 1)ρ]2
≥ 0.

This implies that if ρ 6= 1 then R2
Λ(m) is an increasing function of m i.e the

more repeated measures we include in S, the more precise our prediction of T will

be. However, another important question is concerned with the impact of ρ on this

information gain, i.e, how the value of ρ influences the amount of information that S

brings about T . To study this issue further, let us consider the additional information

that one extra observation will bring. This means, let us consider a new surrogate

formed by adding another observation to S. For this new surrogate :

R2
Λ(m + 1) =

(m + 1)ρ2

1 + mρ

let us define

g(ρ) =
R2

Λ(m + 1)

R2
Λ(m)

=

(
m + 1

m

) (
1 + (m − 1)ρ

1 + mρ

)

g(ρ) quantifies how much extra information about the true endpoint we get by

considering another observation.

g
′

(ρ) =

(
m + 1

m

) (
−1

[1 + mρ]2

)
< 0.
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This last equation implies that g(ρ) is a decreasing function of ρ, i.e, the higher

the correlation between two consecutive observations the less we gain by taking more

observations. On the other hand, the lower the ρ the more meaningful it is to consider

more observations. Note that g(ρ) will reach its maximum when ρ = 1 and in that

case:

g(1) =
R2

Λ(m + 1)

R2
Λ(m)

= 1 ⇔ R2
Λ(m + 1) = R2

Λ(m)

and therefore, adding a new observation will not bring any additional information.

Indeed, if ρ = 1 then there is deterministic relationship between Yi and Yk for all i.

Actually, knowing the value of Y1 would be enough to predict T = Yk without error.

Conversely, if ρ = 0 then R2
Λ(m) = 0 for all m = 1, . . . k − 1. Obviously in that

situation all the observations are independent and no sensible prediction is possible.

Finally, it is important to point out that in all the previous analysis the position of

the chosen surrogate vector S is totaly irrelevant, i.e, all these results will be equally

valid if we consider the following vector: St = (Yi+1, Yi+2, . , . Yi+m) with i + m < k.

Auto-Regressive of Order One AR(1)

Let us consider the same general settings as in the compound symmetry case with

V (Y ) = ΣAR where ΣAR is now the variance covariance matrix of an AR(1) process,

i.e

ΣAR = σ2




1 ρ ρ2 . . ρk−1

ρ 1 . . . ρk−2

. . . . . .

. . . . . .

. . . . . .

ρk−1 ρk−2 . . . 1




.



228 Mathematical Derivations

Like before we want to evaluate the performance of the first m observations as a

surrogate for the last one. For this situation V (X) = Σ where

Σ = σ


 RSS δ

δt 1


 =


 σRSS σδ

σδt σ


 =


 ΣSS ΣST

ΣTS ΣTT


 ,

here:

1. RSS is an AR(1) m × m correlation matrix.

2. δt= (ρk−1, ρk−2, . . ., ρk−m) = ρk−m(ρm−1, ρk−2, . . ρ, 1)

so Σ can be written as:

Σ =




1 ρ ρ2 . . . . ρm−1 | ρk−1

ρ 1 ρ . . . . ρm−2 | ρk−2

. . . . . . . . | .

. . . . . . . . | .

ρm−1 ρm−2 . . . . . 1 | .

ρk−1 ρk−2 . . . . . ρk−m | 1




.

In this scenario it has been shown that:

R2
Λ =

ΣTSΣ−1
SSΣST

σTT
=

σδt(σRSS)−1σδ

σ

⇒ R2
Λ = ρ2(k−m)deltat

1R
−1
SSδ1

where δt
1 = (ρm−1, ρm−2, ., ., ., ρ, 1). Note that RSS is again an AR(1) matrix of

dimension m and from Gray bill (1983), we have
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R−1
SS =

1

(1 − ρ2)




1 −ρ 0 . 0 0

−ρ 1 + ρ2 −ρ . 0 0

0 −ρ 1 + ρ2 . 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 . 1 + ρ2 −ρ

0 0 0 . ρ 1




In general if ci denotes the ith column of RSS then:

Ct
i = (0, 0, ., ., ., 0, ,−ρ, 1+ρ2, −ρ, 0, ., ., ., 0) i = 2, ., ., ., m−1 where the first

−ρ appears in the i−1 component, and Ct
1 = (1,−ρ, 0, ., ., ., 0)Ct

m = (0, ., ., ., ., −ρ, 1).

Using this notation we have that:

δt
1RSS =

1

(1 − ρ2)
(δt

1C1, δt
1C2, ., ., ., δt

1Cm),

but : δt
1Ci = ρm−i(−ρ) + ρm−i−1(1 + ρ2) + ρm−i−2(−ρ)) = −ρm−i+1 + ρm−i−1 +

ρm−i+1 − ρm−i−1 = 0 so δt
1Ci = 0 for i = 2, ., ., ., m − 1, we also have :

δt
1C1 = ρm−1 − ρm−1 = 0

δt
mCm = −ρ2 − ρm−1 = 0

⇒ δt
1RSS =

1

1 − ρ2 (0, 0, ., ., ., 1 − ρ2)

Finally we have:



230 Mathematical Derivations

δt
1R

−1
SS =

1

1 − ρ2 (0, 0, ., ., ., 1 − ρ2)




ρm−1

ρm−2

.

.

.

ρ

1




=
1

1 − ρ2 (1 − ρ2) = 1

⇒ δt
1R

−1
SSδ1 = 1,

and therefore R2
Λ = ρ2(k−m) where k = 1, ., ., ., m − 1. Here again R2

Λ(m) is an

increasing function of m, i.e., the more observations we take, the more preciese our

prediction on the true endpoint will be. Additionally, R2
Λ is also an increasing function

of ρ and, therefore, the higher the correlation the more meaningful is to take more

observations. Unlike in the compound symmetry case, in this scenariao the ”position”

of the of the surrogate sequence becomes relevant. Indeed, let us assume that we shift

the entire sequence in the following way:

snew =




Ys

Y s + 1

.

.

.

Ys+m




,

with s + m < k. In this scenario it is easy to see that: R2
Λs = ρ2(k−(s+m−1) and

obviously R2
Λs ≥ R2

Λ for s ≥ 1. This implies that considering m observations closer

to the true endpoint will result in a surrogate with more predictive power than the
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one obtained by using m observations further away from the true endpoint.

Computing the Optimal Number of Measurements

Compound Symmetry case

We have proposed to calculate the optimal number of measurements to predict the

true endpoint by minimizing the objective function:

CPR0(m) = w1 · (1 − R2
Λ(m)) + (1 − w1) ·

R + m

R + K
,

where k is the total number of measurements and 1 ≤ m ≤ k.

We know that, for the compound symmetry case:

1 − R2
Λ(m) =

(1 − ρ)(1 + mρ)

1 + (m − 1)ρ
.

and therefore:

CPR0(m) = w1 ·
(1 − ρ)(1 + mρ)

1 + (m − 1)ρ
+ (1 − w1) ·

R + m

R + K
.

To find the maximum of CPR0(m) we need to solve the score equation:

d

dm
CPR0(m) = 0.

But

d

dm
CPR0(m) = w1 · (1 − ρ) ·

d

dm

(
1 + mρ

1 + (m − 1)ρ

)
+

1 − w1

R + K

d

dm

(
1 + mρ

1 + (m − 1)ρ

)
=

−ρ2

[1 + (m − 1)ρ]2

⇒
d

dm
CPR0(m) =

−w1 · (1 − ρ)ρ2

[1 + (m − 1)ρ]2
+

1 − w1

R + K

and this implies:
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⇒
d

dm
CPR0(m) ⇔

1 − w1

R + K
=

w1 · (1 − ρ)ρ2

[1 + (m − 1)ρ]2

Solving this equation with respect to m we get:

m12 =

(
−(1 − ρ)

ρ

)
±

√
(R + k)w1(1 − ρ)

1 − w1

so essentially we have two solutions:

m1 =

(
−(1 − ρ)

ρ

)
+

√
(R + k)w1(1 − ρ)

1 − w1

m2 =

(
−(1 − ρ)

ρ

)
−

√
(R + k)w1(1 − ρ)

1 − w1

The value of m that minimizes CPR0(m) is the one for which its second derivative

is positive:

d2

dm2 CPR0(m) =
2 · w1(1 − ρ)ρ3

[1 + (m − 1)ρ]3

and therefore :

d2

dm2 CPR0(m1) =
2 · w1(1 − ρ)ρ3

[
(R + K)w1ρ

2(1 − ρ)

dm2

]3/2

d2

dm2 CPR0(m2) =
−2 · w1(1 − ρ)ρ3

[
(R + K)w1ρ

2(1 − ρ)

dm2

]3/2

We have then the following case:

1. If ρ > 0 , d2

dm2 CPR0(m2) > 0 and m1 is the optimal

2. If ρ < 0 , d2

dm2 CPR0(m2) > 0 and m2 is the optimal
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In a practical situation m1 and/or m2 might not necessarily be integers and hence

we should take the next closest integer.

Auto-Regressive of Order One AR(1)

Similar to the compound symmetry case, we want to calculate the optimal number

of measurements to predict the true endpoint by minimizing the objective function:

CPR0(m) = w1 · (1 − R2
Λ(m)) + (1 − w1) ·

R + m

R + K
, (A.1)

where k is the total number of measurements and 1 ≤ m ≤ k.

We know that, for the AR(1) case:

R2
Λ(m) = ρ2(k−m),

and therefore:

CPR0(m) = w1[1 − ρ2(k−m)] + (1 − w1)
R + M

R + K
.

Now to find the value of m that maximizes CPR0(m) we need to solve the score

equation:

d

dm
CPR0(m) = 2w1ρ

2(k−m) log ρ +
1 − w1

R + K
.

But

d

dm
CPR0(m) = 0

⇔ −2w1ρ
2(k−m) log ρ =

1 − w1

R + K

⇔ ρ2(k−m) =
−(1 − w1)

2w1(R + K) log ρ
,
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and this implies:

⇔ 2(k − m) log ρ = log

[
−(1 − w1)

2w1(R + K) log ρ

]

⇔ (k − m) =

log

[
−(1 − w1)

2w1(R + K) log ρ

]

2 log ρ

⇔ m = k −

log

[
−(1 − w1)

2w1(R + K) log ρ

]

2 log ρ
.

To ascertain whether m maximizes or minimizes CPR0(m) we need to evaluate

the second derivative of the function, we have:

d2

dm2 CPR0(m) = −4w1(log ρ)2ρ2(k−m) < 0,

for all m. This result implies that the previous value of m maximizes CPR0(m). This

from a practical point of view means that the minimum value of CPR0(m) can only

be attained at the two extreme cases i.e m= 1 or m= k − 1.



B
Software

A list of generic SAS macros that have been used to carry out the analysis in this thesis

are given below. For the details concerning how to invoke the respective macros, the

data layout and the inputs required please refer to the macros which can be obtained

from the center for statistics website or could be requested from the authors.

B.1 Two Continuous Outcomes

The analysis discussed in Chapter 3 can be conducted using the SURCONCON

macro. The macro allows a choice between the full random effects approach or the

simplified modeling strategies. It also allows the choice of four different types of boot-

strap based confidence intervals for the trail and individual level surrogacy measures.
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B.2 Two Binary Outcomes

The SAS macro SURBINBIN can be used to perform the analysis described in

chapter 6. Both the meta-analytic approach and information theoretic approach can

be carried out using this macro.

B.3 Mixture of Binary and Continuous Outcomes

The SAS macro SURBINCON can be used to perform the analysis described in

chapter 5. Information theoretic approach with both fixed and random trial specific

effects will be used.

B.4 Two Longitudinal Outcomes

The SAS macro LONG LONG computes the V RF and R2
Λ for the case of longitu-

dinal endpoints with linear time effect or when time is considered as a class variable.

For fractional polynomial and smoothing splines additional manipulation is required.

A dataset will be produced namely ”Bothlong” containing the V RF and R2
Λ values.

B.5 Longitudinal and Cross-sectional Outcomes

The SAS macro LONG CROSS computes the V RF and R2
Λ for the case of mix-

ture of longitudinal and cross-sectional endpoints. The macro computes the stated

quantities by alternatively using the longitudinal and the cross-sectional outcomes as

surrogate endpoints for the other.


