
School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Upper and Lower Complexity Bounds for Some
Problems in Elementary Geometry

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, richting Informatica
te verdedigen door

Rafael Grimson

Promotors: Prof. dr. Bart Kuijpers and Prof. dr. Joos Heintz

2nd February, 2010





Preface

This thesis would not be if not for the support of a number of people. First
of all, my gratitude goes to my supervisors Bart Kuijpers and Joos Heintz, for
their guidance and support.

I would like to thank Lucas Galfasó, Ariel Molinuevo, Alberto Carrassi and
Walied Othman for many stimulating discussions on different subjects related
to this thesis.

I am also grateful to the Theoretical Computer Science Group of Hasselt
University for the quiet and inspiring atmosphere they created. Part of this
work was realized during some visits to Joos Heintz at the University of Buenos
Aires. I’m grateful to both universities for their hospitality.

This research has been partially funded by the tUL-impulse programme
and by the Research Foundation Flanders (FWO-Vlaanderen, Research Project
G.0344.05).

Finally, my gratitude goes to my parents, brothers and sister for their faith
and love.

Rafael Grimson,
Brussels, November 2009

iii





Contents

Introduction 1

1 Lower Bounds for Linear Programming 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Definitions and Summary of Results . . . . . . . . . . . 6
1.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The Parametric Feasibility Problem . . . . . . . . . . . . . . . . 8
1.2.1 A Quantifier-Elimination Problem . . . . . . . . . . . . 8

1.3 Limiting Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Polyhedra and Elimination . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Preliminaries on Polyhedra and Polytopes . . . . . . . . 10
1.4.2 Polyhedra in Rn defined by n+ 1 Inequalities . . . . . . 11
1.4.3 The Geometry of the Parameters defining Polyhedra . . 13

1.5 Counting the Limiting Hypersurfaces . . . . . . . . . . . . . . . 14
1.6 Complexity Lower Bounds . . . . . . . . . . . . . . . . . . . . . 17

1.6.1 Dense Representation . . . . . . . . . . . . . . . . . . . 18
1.6.2 Sparse Representation . . . . . . . . . . . . . . . . . . . 19
1.6.3 Algebraic Computation Trees . . . . . . . . . . . . . . . 20

2 The Sign Condition Problem: Upper and Lower Bounds 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 The Sign Condition and Point Location Problems for a
Family of Polynomials . . . . . . . . . . . . . . . . . . . 24

2.1.2 Basic Observations . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Computational Models and Representations of Polynomials . . 27
2.2.1 Representation of the Polynomials . . . . . . . . . . . . 28

2.3 The Dialytic Method to solve the Sign Condition Problem . . . 29
2.4 Lower Bounds for the Sign Condition Problem . . . . . . . . . . 32

2.4.1 The Algebraic Model . . . . . . . . . . . . . . . . . . . . 33

v



vi Contents

2.4.2 Restricted Models . . . . . . . . . . . . . . . . . . . . . 38

3 The Point Location Problem for a Family of Polynomials 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The dialytic method for Point Location . . . . . . . . . . . . . 45
3.3 Point Location using Cylindrical Algebraic Decomposition . . . 46

3.3.1 An Elimination Step and its Data Structures . . . . . . 46
3.3.2 CAD for Point Location . . . . . . . . . . . . . . . . . . 51
3.3.3 Construction of the Database . . . . . . . . . . . . . . . 53

3.4 Point Location for Polynomials with Integer Coefficients . . . . 54
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 The Arithmetic Relation between Distance and Height . 55
3.4.3 The Mathematical Insight . . . . . . . . . . . . . . . . . 57
3.4.4 The Sign Condition Algorithm . . . . . . . . . . . . . . 59
3.4.5 The Point Location Algorithm . . . . . . . . . . . . . . 62

3.5 Local Ray Shooting . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Quantifier Elimination using Intrinsic Data Structures 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Constructible Sets . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 The Language L . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 A Computational Model for Intrinsic Data . . . . . . . . 72
4.2.4 Intrinsic Descriptions . . . . . . . . . . . . . . . . . . . . 74
4.2.5 Definition of Filtrations . . . . . . . . . . . . . . . . . . 75
4.2.6 Filtrations and Locally Closed Sets . . . . . . . . . . . . 76
4.2.7 Canonic Descriptions . . . . . . . . . . . . . . . . . . . . 77
4.2.8 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 The Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 Conversion Algorithms . . . . . . . . . . . . . . . . . . . 82
4.3.2 Quantifier-Elimination Algorithm . . . . . . . . . . . . . 84
4.3.3 Canonic Form Conversion Algorithm . . . . . . . . . . . 88
4.3.4 Our algorithm in other models . . . . . . . . . . . . . . 92

4.4 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 A Lower Bounds for the Conversion to Canonic Form . . 93
4.4.2 A Doubly-Exponential Lower Bound for QE . . . . . . . 94



Contents vii

5 Quantifier Elimination for Elementary Geometry 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Origins of the problem . . . . . . . . . . . . . . . . . . . 97
5.1.2 Outline and Summary . . . . . . . . . . . . . . . . . . . 99

5.2 Preliminaries and definitions . . . . . . . . . . . . . . . . . . . . 100
5.2.1 Semi-algebraic and geometric relations . . . . . . . . . . 100
5.2.2 Affine and similarity transformations of the plane . . . . 101
5.2.3 Affine-invariant and similarity-invariant relations . . . . 102
5.2.4 The theories R, E , A and their expressive power . . . . 103
5.2.5 Translations . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.6 Quantifier elimination for R, E and A . . . . . . . . . . 106

5.3 The new languages . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 The two basic segment-arithmetic functions . . . . . . . 108
5.3.2 The affine projection function . . . . . . . . . . . . . . . 110
5.3.3 The two basic metric functions . . . . . . . . . . . . . . 110
5.3.4 The language FO(β,>,⊕,⊗, π) and the theory A′ . . . . 111
5.3.5 The language FO(β,≡,>,⊕,⊗, π⊥, κ) and the theory E ′ 113

5.4 The translation S . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 A translation given an affine coordinate system for E . . 114
5.4.2 Finding a basis . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 The translation T . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Quantifier elimination for the theories A′ and E ′ . . . . . . . . . 123
5.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7.1 Discussion on the primitive notions . . . . . . . . . . . . 124
5.7.2 Axiom systems for the new languages . . . . . . . . . . 125

A Algebraic computational models 127
A.1 Algebraic Decision Trees over the Reals . . . . . . . . . . . . . 128
A.2 Algebraic Computation Trees over the Reals . . . . . . . . . . . 128

A.2.1 Syntax of computation trees . . . . . . . . . . . . . . . . 129
A.2.2 Semantics of computation trees . . . . . . . . . . . . . . 130
A.2.3 Pragmatics of computation trees . . . . . . . . . . . . . 132

A.3 Boolean-Arithmetic Circuits over the Reals . . . . . . . . . . . 133
A.4 The Bit Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4.1 Bit Representation of Algebraic Numbers . . . . . . . . 134
A.5 Representation of Polynomials . . . . . . . . . . . . . . . . . . . 135

A.5.1 Non-Scalar vs. Total Complexity . . . . . . . . . . . . . 136

Summary 147

Samenvatting 149





Introduction

This thesis is mainly dedicated to the study of upper and lower algebraic-
complexity bounds of some problems in the context of semi-algebraic geometry.
The main computational models considered are described in Appendix A.

In this Introduction, we present an overview of the contents of the thesis
and we finish with some historical notes concerning the development of the
algorithmic aspects of the elimination of quantifiers in the elementary theory
of the reals.

Overview of the Work

We first study the linear programming feasibility problem. This problem can
be stated as follows: given positive integers m > n, a matrix H ∈ Rm×n and a
vector h ∈ Rm decide whether there exists a column vector x ∈ Rn such that
H · x ≤ h, where the ≤ is interpreted componentwise.

The simplex method for linear programming solves this problem. It is well
known that this method is exponentially slow in the worst case. On the other
hand, the ellipsoid method (see [Kha79]) solves the feasibility problem over
the rational numbers in polynomial time in the bit model, but is not strongly
polynomial (i.e., it is not based on algebraic operations).

In fact, the existence of a polynomial-time algorithm, in the algebraic com-
putational model, solving the linear programming feasibility problem is an
open problem. It has been proposed by Smale as one of the great problems for
the present century (see Problem 9 in [Sma00]).

In Chapter 1, we analyze the algebraic complexity of the linear program-
ming feasibility problem over the reals and prove non-trivial lower bounds for
this problem. In particular, a lower bound for algebraic computation trees
based on the notion of limiting hypersurface is presented. However, our lower
bounds method does not provide an exponential lower bound in the considered
model.

We may ask then whether a non-uniform polynomial time algorithm can
be constructed to solve this problem. The method of limiting hypersurfaces

1
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introduced in Chapter 1 suggests that the feasibility of a given matrix may be
determined by the sign conditions satisfied by all its minors.

This is why, in Chapter 2, we study the sign condition problem for any
given a family of polynomials; this problem consists in determining the sign
condition satisfied by a fixed family of polynomials at a query point, performing
as little arithmetic operations as possible.

After defining precisely the sign condition and the point location problems,
we introduce a method called the dialytic method to solve the first problem
efficiently. This method involves a linearization of the original polynomials
and provides the best known algorithm to solve the sign condition problem.
Finally, using a technique that resembles that of Chapter 1, we prove a lower
bounds showing that the dialytic method is almost optimal.

However, if we would apply the dialytic method to the linear programming
feasibility problem, we would obtain an exponential-time algorithm. So, the
question of the algebraic complexity of this problem, remains open.

At this point, we continue our investigations on a refined version of the
sign condition problem: the point location problem. In Chapter 3, we discuss
different data structures that can be used to solve the point location problem
for a given family of polynomials. This problem asks to determine, not only the
sign condition satisfied by a family of polynomials at a query point, but also
the connected component of the realization of this sign condition containing
the query point. After showing how to adapt the dialytic method to this prob-
lem, we introduce, in Section 3.3, a method based on an Adapted Cylindrical
Algebraic Decomposition of the space that solves the point location problem
for any given family. In Section 3.4, we discuss the case of polynomials with in-
teger coefficients given in dense bit representation introducing a method that,
based on diophantine geometry, solves the point location problem for generic
families of polynomials. At the end of the chapter, we include a brief discussion
of the local ray shooting problem.

In Chapter 4, we continue the line of the investigations carried on in Chap-
ter 1, where we have shown that the limiting hypersurfaces of a set are intrin-
sic to it. First, we introduce the notion of intrinsic description of a linearly-
constructible set and study the complexity of quantifier-elimination methods in
a computational model where the output is required to be an intrinsic descrip-
tion of the underlying set. We present a quantifier-elimination algorithm in this
model. It turns out that our elimination algorithm has a doubly-exponential-
time complexity in the worst case, when the complexity is measured in terms
of syntactic parameters (number of polynomials and of quantifier alternations,
dimension of the ambient space). We show that in our computational model,
our algorithm is optimal, i.e., we prove a doubly-exponential lower bound in
the number of quantifier alternations of the input formula.
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Remarkably, we obtain simply-exponential complexity bounds on intrinsic
geometric parameters of the input problem. Thus, our algorithm distinguishes
between well-posed and ill-posed problems and can be inscribed in the new
generation of algorithms which take also into account intrinsic, semantic in-
variants of the input in order to measure the complexity of the procedure.

Chapter 5 is the only chapter not related to complexity theory. Following
the tradition of mathematical logic, we introduce new first-order languages for
the elementary n-dimensional geometry and elementary n-dimensional affine
geometry (n ≥ 2), based on extending the traditional languages FO(β,≡)
and FO(β), respectively, with new function symbols. Here, β stands for the
betweenness relation and ≡ for the congruence relation. We show that the
associated theories admit effective quantifier elimination.

Historical Notes on Quantifier Elimination

In the tradition of logic, quantifier-elimination has almost a century of history,
and has been used mainly as a tool to prove the decidability of a theory, i.e.,
as a decision procedure. Recently, in the context of Constraint Databases
[KLP00], it has been proposed as a query evaluation method (see Section 3.1
for a discussion of this use).

The first quantifier-elimination method for the theory of real closed fields
was presented by Tarski in the 1930s, based on previous work by Sturm and
Sylvester. The result was published in [Tar51], where Tarski presents an ef-
fective decision procedure for the elementary theory of the reals based on the
elimination of quantifiers.

The complexity study of such quantifier-elimination procedures started in
the 1970s with the design of doubly-exponential elimination algorithms by
Collins (see [Col75]) and, independently, by Monk and Solovay (see [Wüt76],
inspired by [Mon74]).

Modern quantifier-elimination procedures work in doubly-exponential time
in the number of quantifier alternations of the input formula (see the seminal
paper of Grigoriev and Vorobjov [GV88] and [Can88, Ren88, HSR89] for the
existential theory and [HRS90b, Ren92a, Ren92b, Ren92c, HRS93, BPR96] for
the general case; a complete account can be found in [BPR06]).

On the other hand, Davenport and Heintz [DH88] gave a doubly-exponential
lower bound for the general quantifier-elimination problem over the reals, if
polynomials are encoded in dense form (this result is also implicitly contained
in [Wei88]; both papers are motivated by the paradigm of [FR74]). Davenport
and Brown presented, in [BD07], a simplified proof of this doubly-exponential
lower bound that works for both, dense and sparse codification of polynomi-
als. Thus, in order of magnitude, upper and lower complexity bounds meet
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for classic data-structures (i.e., when polynomials are represented in dense or
sparse form).

In [BOKR84], Ben-Or, Kozen and Reif attempted to design a singly- ex-
ponential parallel-complexity decision procedure for the elementary theory of
the reals. Nevertheless, the authors failed to observe that the sequential com-
plexity of their algorithm becomes uncontrolled. This drawback was corrected
in [FGM90] and the outcome was a quantifier-elimination procedure in single-
exponential parallel time using a doubly-exponential number of processors.
Moreover, the optimality of this procedure was shown. In [MP93], this last
lower-bound result was extended to a slightly more general computational
model.

The reason of the inefficiency of general purpose algorithms for quanti-
fier elimination is unknown. There is still the hope that using alternative
data structures this high intractability will be overcome. The algorithms can
only deal with syntactic descriptions of the geometric objects involved and
the examples show that the impact of these description on the complexity is
enormous.

It is a major open question in complexity theory whether, using boolean-
arithmetic circuits to codify first-order formulas, a polynomial-time algorithm
can be designed for the elimination of a single quantifier block. In fact, this
question is equivalent to the PR = NPR problem (see [Koi00]). Up to now, no
general procedure has been designed able to improve substantially the worst-
case complexity of well-known algorithms based on classic encodings of poly-
nomials.

Complexity improvements based on alternative data-structures, such as
boolean-arithmetic circuits (also called arithmetic networks, see [vzG86a]) for
constructible sets, were only achieved for particular instances of elimination
problems and only few is known about lower complexity bounds for this kind
of encodings. Remarkably, it is proven in [HMPW98, GH01] and [CGH+03]
that any geometric elimination algorithm, using circuit encoding of polynomi-
als and being geometrically robust—a property owned by all known symbolic
methods—requires exponential time on infinitely many inputs. We shall con-
tinue the discussion on the relation of these articles and the present work in
Section 4.4.



1
Some Lower Bounds for the
Complexity of the Linear
Programming Feasibility
Problem over the Reals

Abstract. In this chapter, we analyze the algebraic complexity of the linear
programming feasibility problem over the reals and prove non-trivial lower
bounds for this problem. The linear programming feasibility problem can be
stated as follows: given positive integers m > n, a matrix H ∈ Rm×n and
a vector h ∈ Rm decide whether there exists a column vector x ∈ Rn such
that H · x ≤ h. For the case of polyhedra defined by 2n halfspaces in Rn,
we prove that the set I(2n,n) of parameters describing non-empty polyhedra,
has an exponential number of limiting hypersurfaces. From this geometric
result we obtain, as a corollary, the existence of a constant c > 1 such that,
if dense or sparse representation is used to encode polynomials, the length of
any quantifier-free formula expressing the set I(2n,n) is bounded from below by
Ω(cn). Other related complexity results are stated; in particular, a lower bound
for algebraic computation trees based on the notion of limiting hypersurface is
presented.

5



6 Lower Bounds for Linear Programming

1.1 Introduction

1.1.1 Definitions and Summary of Results

The linear programming feasibility problem over the reals can be stated as
follows: given two positive integers m and n, a matrix H ∈ Rm×n and a
vector h ∈ Rm decide whether there exists a column vector x ∈ Rn such that
H · x ≤ h, where the ≤ is interpreted componentwise.

In this chapter, we analyze the complexity of this problem for different data
structures.

We study the geometry of the set

I(m,n) = {(H,h) ∈ Rm×n ×Rm | ∃x ∈ Rn (H · x ≤ h)}

and show that it has at least
(
m
n+1

)
different limiting hypersurfaces (Corollary

1.5.5). Geometrically, to an existential quantifier block corresponds a pro-
jection. Hence, this set is the projection over Rm×n × Rm of {(H,h, x) ∈
Rm×n ×Rm ×Rn |H · x ≤ h}, that has only m limiting hypersurfaces (given
by the m equations in the system H · x = h).

These hypersurfaces turn out to be intrinsic, in the sense that any descrip-
tion of a set must involve the descriptions of its limiting hypersurfaces.

From these geometric results, we derive exponential lower bounds for the
size of any quantifier-free formula in the first-order language of the reals, ex-
pressing the set I(2n,n), if polynomials are codified using dense or sparse rep-
resentation (see Corollaries 1.6.2 and 1.6.6). Also, we obtain a linear lower
bound for the depth of any computation tree (see Appendix A.2 for a defini-
tion) solving the linear programming feasibility problem (see Corollary 1.6.10).

We further obtain (see Corollaries 1.6.3 and 1.6.7) a sub-exponential lower
bound for the complexity of any algorithm for the elimination of a single quan-
tifier block of quantifiers in the elementary theory of the reals, if polynomials
are codified using dense or sparse representation . Although it is not hard
to find examples (see, e.g., [CGH+03]) showing that the complexity swell oc-
curring in the elimination of a single block of quantifiers may be exponential
for these data structures, all such known examples are highly artificial. We
prove the first sub-exponential lower bound for a completely natural problem,
namely the linear programming feasibility problem.

This chapter is organized as follows. In Section 1.2, we state the feasibil-
ity problem as a quantifier-elimination problem and define the set I(m,n) ⊆
Rm×n × Rm. In Section 1.3, we define the notions of limiting hypersurface
of a semi-algebraic set and of a polynomial intervening in a formula. After-
wards, we prove Proposition 1.3.2, stating that if Z is a limiting hypersurface
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for a set W and Q is an irreducible polynomial defining Z, then Q intervenes
in any quantifier-free description of W . The fourth section is devoted to the
study of the geometry of the set I(m,n). Since, for fixed H and h, the set
{x ∈ Rn | H ·x ≤ h} is a polyhedron, the section begins with some preliminar-
ies on polyhedra. Finally, in Section 1.5, we prove that the set I(2n,n) has at
least

(
2n
n+1

)
limiting hypersurfaces. In Section 1.6, we use this geometrical fact

to prove complexity lower bounds for the different data structures considered.

1.1.2 Related Work

Quantifier Elimination. See the Introduction to this thesis for historical
notes concerning the algorithmic aspects of the elimination of quantifiers in
the elementary theory of the reals.

Limiting Hypersurfaces. As explained before, our proofs are based on
the fact that the limiting hypersurfaces of a set are intrinsic. Lazard used a
similar technique in [Laz88] to prove the optimality of solutions to two classical
quantifier-elimination problems.

Combining methods from abstract real algebraic geometry and complexity
theory, Lickteig [Lic90, Lic96] developed a technique to prove lower complexity
bounds in the algebraic-computation-tree model. This technique is also related
to ours, since it allows the use of limiting hypersurfaces as a complexity source.

Linear Programming. The Dantzig simplex method for linear program-
ming is known to be exponentially slow in the worst case. On the other hand,
the ellipsoid algorithm solves the feasibility problem over the rational num-
bers in polynomial time in the bit model (see [Kha79]), but is not strongly
polynomial. In fact, the existence of a polynomial-time algorithm, in the BSS
computational model, solving the linear programming feasibility problem is an
open problem. It has been proposed by Smale as one of the great problems
for the present century (see Problem 9 in [Sma00]). It follows from our results
that, for any boolean-arithmetic circuit accepting the set I(m,n), a multiple
of the polynomial describing each limiting hypersurface of I(m,n) will be eval-
uated in the execution of the circuit, for some input. This result implies a
lower bound for the linear programming feasibility problem that is far from
being strong enough to give a negative answer to Smale’s ninth problem. It
is our belief that if a proof of a negative answer is to be found, the notion of
uniformity will play a central role in it.
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1.2 The Parametric Feasibility Problem

The feasibility problem for linear optimization over the reals can be stated as
follows:

Given a matrix H ∈ Rm×n and a column vector h ∈ Rm, decide whether
there exists x ∈ Rn such that H ·x ≤ h, where the ≤ is interpreted componen-
twise.

1.2.1 A Quantifier-Elimination Problem

The above decision problem can be reformulated as a quantifier-elimination
problem. Let us first fix the notation. For each n,m ∈ N, m ≥ n + 1,
we consider x1, . . . , xn, t

(1)
1 , . . . , t

(1)
n , . . . , t

(m)
1 , . . . , t

(m)
n , and b(1), . . . , b(m) to be

indeterminates over R. We call x1, . . . , xn the variables and the remaining
m · n + m indeterminates, the parameters of the problem. Furthermore, we
shall use the shorthand notations x := (x1, . . . , xn) and

T :=

 t
(1)
1 . . . t

(1)
n b(1)

...
. . .

...
...

t
(m)
1 . . . t

(m)
n b(m)

 .

For the sake of readability, we shall not use different symbols for the in-
determinates and their realizations as elements of R. The distinction will be
clear from the context.

We define the formulas

σni (x, T ) := t
(i)
1 · x1 + · · ·+ t(i)n · xn − b(i) ≤ 0, (i = 1, . . . ,m),

φ(m,n)(T ) := ∃xσn1 (x, T ) ∧ · · · ∧ σnm(x, T ), (1.2.1)

and call I(m,n) the realization of φ(m,n) in the parameter space. We observe
that I(m,n) ⊆ Rm×n × Rm is the set of parameters defining m half-spaces
in Rn with non-empty intersection. In other words, the linear programming
feasibility problem in Rn with m constraints, is the membership problem for
the set I(m,n).

Finding quantifier-free formulas, ψ(m,n), expressing the sets I(m,n) is a way
to solve the parametric feasibility problem. We prove that there do not exist
quantifier-free formulas ψ(m,n), expressing the sets I(m,n), of length bounded
by a polynomial function in m and n if classic data structures (i.e., dense or
sparse encoding) are used to represent polynomials.
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For the sake of clarity, we shall write

TH :=

 t
(1)
1 . . . t

(1)
n

...
. . .

...
t
(m)
1 . . . t

(m)
n

 , Th :=

 b(1)

...
b(m)

 ,

and use the augmented matrix notation (TH |Th) = T .
Let i ∈ N, 1 ≤ i ≤ n. We shall call

t
(i)
1 · x1 + · · ·+ t(i)n · xn − b(i) = 0,

t
(i)
1 · x1 + · · ·+ t(i)n · xn − b(i) ≤ 0, and

t
(i)
1 · x1 + · · ·+ t(i)n · xn − b(i) < 0

the equality, the inequality, and the strict inequality associated with the ith row
of T , respectively.

1.3 Limiting Hypersurfaces

Let W ⊆ Rk be a semi-algebraic set. We give the definition of limiting hyper-
surface of W and prove that a description of each of these hypersurfaces must
intervene in any quantifier-free description of W . In this sense, we say that
limiting hypersurfaces of a set are intrinsic.

We refer the reader to [BCR98] for notions and notations from real alge-
braic geometry, e.g., the notions of zeros of an ideal, of semi-algebraic set, of
dimension of a set and of non-singular point.

We denote by ∂W the set of points in the border of W (neither interior
to W nor to the complement). We call Z ⊆ Rk an irreducible hypersurface if
dim(Z) = k − 1 and there exists an irreducible polynomial P ∈ R[x1, . . . , xk]
such that Z = {(x1, . . . , xk) ∈ Rk | P (x1, . . . , xk) = 0}.

Definition 1.3.1. Let Z be an irreducible hypersurface in Rk. We call Z a
limiting hypersurface of W if its intersection with ∂W has dimension k − 1.

We consider first-order formulas built from atomic formulas of the form
P = 0, P ≤ 0, where P ∈ R[x1, . . . , xk] is a polynomial with real coefficients.
Let ψ be a first-order formula and P ∈ R[x1, . . . , xk]. If ψ contains an atomic
subformula of the form P = 0 or P ≤ 0, we say that P appears in ψ. If a
non-zero polynomial P appears in ψ and Q ∈ R[x1, . . . , xk] is non-constant
and divides P , then we say that Q intervenes in ψ.
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Proposition 1.3.2. Suppose that W ⊆ Rk is a semi-algebraic set described
by a quantifier-free formula ψ. If ZQ is a limiting hypersurface for W and Q
is an irreducible polynomial describing ZQ, then Q intervenes in ψ.

Proof. Let us denote by P1, . . . , Ps the polynomials appearing in ψ and
suppose, without loss of generality, that none of them is the zero polynomial.
We define U := ZQ∩∂W and we recall that, by hypothesis, it is a semi-algebraic
subset of ZQ of dimension k − 1.

First, we remark that since dim(ZQ) = k−1 and Q is irreducible, a partic-
ular form of the real Nullstellensatz for principal ideas (see Theorem 4.5.1 in
[BCR98]) implies that a polynomial P ∈ R[x1, . . . , xk] vanishes on ZQ = Z(Q)
if and only if Q divides P . Thus, to complete the proof, it remains to show
that at least one Pj (1 ≤ j ≤ s) vanishes on ZQ.

To prove this, we consider, for any u ∈ U , the sign conditions C(u) ∈
{−1, 0, 1}s satisfied by the polynomials P1, . . . , Ps in this point. It is clear that
the truth value of the formula ψ in a point u depends only on C(u), since the
truth value of atomic formulas depend only on these sign conditions.

These sign conditions partition the set U is a finite number of disjoint
semi-algebraic components, U1, . . . , Ut, namely the non-empty supports in U
of each possible sign condition. By Proposition 2.8.5 in [BCR98], one of these
sets, say Ui, must have the same dimension as U , i.e., dim(Ui) = k − 1.

Now, since the polynomials P1, . . . , Ps have constant signs over Ui, it follows
that Ui ⊆W or Ui ⊆W c. Let us suppose, with out loss of generality, Ui ⊆W .

We claim that one of the polynomials P1, . . . , Ps vanishes in Ui. Let u ∈ Ui;
if none of the polynomials is zero in u then there exists and open neighborhood
in Rk of this point with the same sign conditions implying that u is an interior
point of W , contradicting u ∈ ∂W . Hence, there exists a positive integer j ≤ s
such that Pj is vanishes on Ui. Now, since Ui ⊆ ZQ, ZQ is irreducible and
both set have the same dimension, we conclude that the Zariski closure of Ui
equals ZQ. Hence, Pj vanishes on the whole ZQ. Thus, Q intervenes in ψ. 2

1.4 Polyhedra and Elimination

1.4.1 Preliminaries on Polyhedra and Polytopes

In this subsection, we recall the notions of polyhedron and polytope and prove
some basic properties. We use the notation from [Pad99] and refer there for
the proofs of some known results.

Definition 1.4.1. A set P ⊆ Rn is a polyhedron if and only if there exists
m ∈ N, an m × n matrix H and a vector h of m real numbers such that
P = {x ∈ Rn | H · x ≤ h}. The system of inequalities H · x ≤ h is a linear
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description of P . A polyhedron P is fully dimensional if dim(P ) = n. If the
polyhedron P is bounded we call it a polytope in order to distinguish it from
an unbounded polyhedron.

In other words, a polyhedron is the intersection of finitely many halfspaces
in Rn. We shall write P (H,h) to denote the polyhedron defined by H and h,
or simply P (M) whenM = (H|h). We remark that polyhedra are convex sets.

Definition 1.4.2. Let P ⊆ Rn be any set. A point x ∈ P is an extreme point
of P if and only if for any points x1, x2 ∈ P and any µ ∈ R with 0 < µ < 1
such that x = µx1 + (1− µ)x2, it follows that x = x1 = x2.

So, x is an extreme point of a subset P of Rn if its representation as a
convex combination by elements of P is unique, i.e., the trivial one involving
only x. Extreme points of polyhedra are also called vertices.

The following lemma (Proposition 7.2(b) in [Pad99]) shows how to calculate
the vertices of a polyhedron.

Lemma 1.4.3. The point x0 is a vertex of the polyhedron P (H,h) if and only
if H ·x0 ≤ h and H1 ·x0 = h1 for some n× (n+ 1) submatrix (H1|h1) of (H|h)
with rank(H1) = n.

Let P be a polyhedron and let S = {x | x is a vertex of P} be its set
of vertices. From the convexity of P it follows that the convex hull of S is
contained in P , i.e., conv(S) ⊆ P . The next lemma shows that the equality
holds if and only if P is a polytope. We refer the reader to Proposition 7.3(b)
in [Pad99] for a proof.

Lemma 1.4.4. Let S be the set of vertices of a polyhedron P . Then, conv(S) =
P if and only if P is a polytope.

The Platonic solids are examples of polytopes in R3. We remark that a
polytope might be not fully dimensional, as even the empty set is considered
to be a polytope.

1.4.2 Polyhedra in Rn defined by n+ 1 Inequalities

In this paragraph, we analyze the geometry of polyhedra in Rn defined by n+1
inequalities. We remark that these systems define, among other polyhedra, the
n-simplices.
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Consider m ≥ n+ 1 and T as in Section 1.2. We call, for the remaining of
this chapter,

A(T ) :=


t
(1)
1 . . . t

(1)
n

...
. . .

...
t
(n)
1 . . . t

(n)
n

t
(n+1)
1 . . . t

(n+1)
n

 , b(T ) :=


b(1)

...
b(n)

b(n+1)


and D(T ) the determinant of the submatrix (A(T )|b(T )) of T . When the
dependence on T is clear from the context, we write simply A, b and D for
A(T ), b(T ) and D(T ). We remark that D depends only on the first n+ 1 rows
of T .

For a fixed value of the parameters, consider the polyhedron P := P (A, b)
defined by {x ∈ Rn | A · x ≤ b}. We first show that if D = 0 then P is empty,
unbounded or a singleton.

By Lemma 1.4.3, if x is a vertex of P , then there exists 1 ≤ j ≤ n + 1
such that det(A(j)) 6= 0 and A(j) · x = b(j) where (A(j)|b(j)) results from the
elimination of the jth row in (A|b).

Now, if D(j) := det(A(j)) 6= 0, Cramer’s method can be applied to find
x(j) ∈ Rn, the unique solution to the system A(j) ·x = b(j). For 1 ≤ i ≤ n, call
A

(j)
i the matrix formed by replacing the ith column in A(j) by b(j). As a result

of Cramer’s method we obtain

x(j) =

(
det(A(j)

1 )
D(j)

, . . . ,
det(A(j)

n )
D(j)

)T

. (1.4.2)

Lemma 1.4.5. For 1 ≤ j ≤ n + 1, if D(T ) = 0 and D(j)(T ) 6= 0 then
A(T ) · x(j) = b(T ).

Proof. From Cramer’s method we know that A(j) ·x(j) = b(j) and so it remains
to verify the equality

(t(j)1 , . . . , t(j)n ) · x(j) = b(j).

This last equality is equivalent to D(T ) = 0, for multiplying

(t(j)1 , . . . , t(j)n ) · x(j) − b(j)

by D(j) we obtain

t
(j)
1 · det(A

(j)
1 ) + · · ·+ t(j)n · det(A(j)

n )− b(j) ·D(j)

that is exactly the Laplace expansion of the determinant of (A|b) by its jth

row. 2
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Proposition 1.4.6. If D(T ) = 0 and there exists 1 ≤ j ≤ n + 1 such that
D(j)(T ) 6= 0 then P (A, b) is unbounded or contains exactly one point.

Proof. Suppose that P := P (A, b) is bounded, i.e., suppose that it is a poly-
tope. Let j ≤ n + 1 be a positive integer such that D(j)(T ) is different from
zero. The previous lemma shows that x(j) ∈ P . We shall prove that P equals
{x(j)}.

Since a polytope is the convex hull of its vertices (Lemma 1.4.4), if P
contains more than one point then it contains at least two vertices. But any
vertex of the polytope P is a solution of a non-singular subsystem A(k) ·x = b(k)

(for some 1 ≤ k ≤ n + 1, see Lemma 1.4.3). Since D(T ) = 0, the previous
lemma shows that the solution x(k) of any of these non-singular subsystems
satisfies also the remaining equality (i.e., A · x(k) = b). Thus, all these non-
singular systems have the same unique solution. Hence, P is a singleton. 2

1.4.3 The Geometry of the Set of Parameters defining non-
empty Polyhedra

We turn now to the study of the geometry of the set I(m,n) = {T ∈ Rm×n ×
Rm | P (T ) 6= ∅}, i.e., the geometry in the parameter space of the set of
coefficients defining non-empty polyhedra. For any k ∈ N and any x ∈ Rk, we
use the usual notation for the maximum norm, ‖x‖ = sup{|xi| | 1 ≤ i ≤ k},
and denote, for any ε > 0, by Bε(x) the ball {y ∈ Rk | ‖x− y‖ < ε}.

We define B := {T ∈ Rm×n ×Rm | P (T ) is a polytope} and remark that
T /∈ B if and only if P (T ) is unbounded. By Paragraph 7.2.3 in [Pad99], we
know that:

• P = P (TH , Th) is unbounded if and only if it contains a halfline, i.e., a
subset of the form Lxy = {x+ λy | λ ≥ 0}, with ‖y‖ = 1;

• the halfline Lxy is contained in P if and only if x ∈ P and TH · y ≤ 0
holds.

Hence, the polyhedron P (TH , Th) is unbounded if and only if it is non-
empty and L(TH) := {y ∈ Rn | TH · y ≤ 0 and ‖y‖ = 1} is non-empty.

Although it is not true that B is an open set, we have the following two
results.

Lemma 1.4.7. The set {T ∈ Rm×n ×Rm | L(TH) 6= ∅} is closed.

Proof. We use the closed map lemma: For any Hausdorff space X and any
compact space Y , the canonical projection map π1 : X × Y → X is closed.
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Since the set Sn−1 := {y ∈ Rn | ‖y‖ = 1} is compact and C := {(T, y) ∈
Rm×n×Rm×Sn−1 | TH ·y ≤ 0 and ‖y‖ = 1 } is closed, the canonic projection,
π1(C), of C the onto Rm×n ×Rm is closed. Since π1(C) = {T ∈ Rm×n ×Rm |
L(TH) 6= ∅}, the lemma is proved. 2

Proposition 1.4.8. Let T be such that P (T ) is a non-empty polytope. Then,
T is an interior point of B.

Proof. If P (T ) is a non-empty polytope, then T ∈ B and L(TH) = ∅. By the
previous lemma there exists an ε > 0 such that from T̂ ∈ Bε(T ) it follows
L(T̂H) = ∅. Then, for any such T̂ ∈ Bε(T ), P (T̂ ) is a polytope. Thus, T is an
interior point of B. 2

Proposition 1.4.9. If T ∈ I(m,n) is a point in the parameter space such that
the polyhedron P (T ) ⊆ Rn is not fully dimensional, then T ∈ ∂I(m,n).

Proof. Let T ∈ I(m,n), then P := P (T ) is non-empty. Suppose it is not fully
dimensional. We claim that there exists at least one row in T —say, the row
(a|b)— such that its associated equality is satisfied by all the points in P , i.e.,
x ∈ P implies a · x = b.

For if not, there exists for each i, 1 ≤ i ≤ n, a point x<i> ∈ P not satisfying
the equality associated with the ith row of T . We define x :=

∑n
i=1

x<i>

n . Being
a convex combination of points in P , x ∈ P , i.e., x satisfies the m inequalities
associated with T . moreover, because of the linearity of the equations, the
point x satisfies the m strict inequalities associated with T . Then, x is an
interior point of P , contradicting the fact that P is not fully dimensional. This
proves the claim.

Suppose now that all the points in P satisfy the equality associated with
the ith row of T . For any given ε > 0 we construct new parameters Tε such
that ‖T − Tε‖ = ε and Tε /∈ I(m,n).

To do so, we replace in T the parameter b(i) by b(i) − ε to get the new
parameters Tε. Since P (Tε) ⊆ P (T ) and no point in P (T ) satisfies the ith

inequality associated with P (Tε), we conclude that P (Tε) is empty. Hence,
Tε /∈ I(m,n). Thus, T ∈ ∂I(m,n). 2

1.5 Counting the Limiting Hypersurfaces

In this section, we consider T ∈ Rm×n ×Rm with m ≥ n + 1. We will prove
that there exists a limiting hypersurface for I(m,n), associated with the first
n + 1 rows of T (among the original m), involving all the (n + 1) × (n + 1)
parameters in these rows. Afterwards, by a simple symmetry argument, it will
follow that there are at least

(
m
n+1

)
different limiting hypersurfaces for I.
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Lemma 1.5.1. The set ZD := {T ∈ Rm×n×Rm | D(T ) = 0} is an irreducible
hypersurface.

Proof. Since the polynomial D(T ) (as the determinant of a generic matrix)
takes positive and negative values in Rm×n×Rm, Proposition 4.5.1 in [BCR98]
implies that dim(ZD) = m(n + 1) − 1. The fact that ZD is an irreducible
hypersurface follows now from the irreducibility of the determinant. 2

Proposition 1.5.2. The irreducible hypersurface in the parameters space ZD
defined by the equation D(T ) = 0 is a limiting hypersurface for the set I(m,n).

We prove the proposition directly from the definition of limiting hyper-
surface, i.e., we prove that dim(ZD ∩ ∂I(m,n)) = m(n + 1) − 1. To do so,
we construct a non-singular point T̃ ∈ ZD. We then prove that there exists
ε > 0 such that any T ∈ Bε(T̃ ) ∩ ZD satisfies T ∈ ∂I(m,n). Before we prove
Proposition 1.5.2, we need two lemmas.

We define T̃ ∈ Rm×n ×Rm as follows:

T̃ :=



0

In×n
...
0

−1 · · · −1 0
0 · · · 0 1
...

. . .
...

...
0 · · · 0 1


. (1.5.3)

Since the origin of the standard coordinate system in Rn is the unique
solution to the inequalities associated with the first n+1 rows of T̃ and satisfies
the remaining m − n − 1 inequalities associated with T̃ , we conclude that
P (T̃ ) = {0}.

We now prove that any T in a small neighborhood of T̃ satisfies

• P (T ) is a polytope contained in B1(0) ⊂ Rn and

• P (T ) equals P (A(T ), b(T )).

We remark that P (T̃ ) satisfies both properties. We define Ã := A(T̃ ) and
b̃ := b(T̃ ).

Lemma 1.5.3. There exists ε > 0 such that any (H|h) ∈ Bε(Ã|̃b) satisfies
P (H,h) ⊆ B1(0).

Proof. By Proposition 1.4.8, there exists an ε1 > 0 such that for any (H|h) ∈
Bε1(Ã|̃b), P (H,h) is a polytope.
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If P (H,h) is a non-empty polytope, by Lemma 1.4.4, it is contained in
B1(0) if and only if all its vertices are contained in B1(0). Hence, we shall
bound the vertices. To do this we use the fact that the vertices move continu-
ously with respect to the parameters, near (Ã|̃b).

We first remark that, since all the minors D(j)(Ã) are non-zero (for 1 ≤
j ≤ n + 1), there exists ε2 > 0, ε2 ≤ ε1, such that (H|h) ∈ Bε2(Ã|̃b) implies
D(j)(H) 6= 0 (1 ≤ j ≤ n+ 1).

Hence, for any (H|h) ∈ Bε2(Ã|̃b) the polytope P (H|h) has at most n + 1
different vertices (see Lemma 1.4.3) defined by the n+ 1 non-singular subsys-
tems resulting from the elimination of one row from (H|h). In fact, for each
j ≤ n + 1 a continuous functions V (j) : Bε2(Ã|̃b) → R can be defined, asso-
ciating to each matrix the norm of the result of the application of Cramer’s
method to the subsystem resulting from the elimination of the jth row from
(H|h) (i.e., V (j)(H|h) is the norm of the jth hypothetical vertex of P (H,h)).
Now, since for all j < n+ 1 the equality V (j)(Ã|̃b) = 0 holds, the continuity of
V (j) at (Ã|̃b) implies that there exists a neighborhood of (Ã|̃b) where the V (j)

are all bounded by 1.
Whence, there exists ε > 0, ε ≤ ε2 such that for all (H|h) ∈ Bε(Ã|̃b), the

polytope P (H,h) is contained in B1(0). 2

For any fixed T ∈ Rm×n ×Rm, let us write, as before, A for A(T ) and b
for b(T ). Recall that (A|b) ∈ R(n+1)×(n+1).

Lemma 1.5.4. Let T̃ be as in Equation 1.5.3. There exists an ε > 0 such
that any T ∈ Bε(T̃ ) satisfies P (T ) = P (A, b) ⊆ B1(0) and D(j)(T ) 6= 0, for
1 ≤ j ≤ n+ 1.

Proof. Consider 0 < ε < 1
n+1 satisfying the previous lemma and T ∈ Bε(T̃ ).

Then, P (A, b) ⊆ B1(0) and D(j)(T ) 6= 0 by construction, for 1 ≤ j ≤ n+ 1. It
remains to prove that P (T ) = P (A, b).

Clearly, P (T ) ⊆ P (A, b). To prove the other inclusion, let x ∈ P (A, b)
and consider for any i ∈ N, with n + 1 < i ≤ m, the inequality associated
with the ith row of T . We prove that x satisfies this inequality, i.e., we prove
t
(i)
1 · x1 + · · ·+ t

(i)
n · xn ≤ b(i).

Since b̃(i) = 1, t̃(i)1 = · · · = t̃
(i)
n = 0 and ‖T − T̃‖ < 1

n+1 , we have that

b(i) > n
n+1 and that ‖(t(i)1 , . . . , t

(i)
n )‖ < 1

n+1 holds.

Since ‖x‖ < 1, we have t(i)1 · x1 + · · · + t
(i)
n · xn ≤ n

n+1 < b(i). Hence, x
satisfies the inequality associated with the ith row of T , for any n+ 1 < i ≤ m.

Thus, P (T ) = P (A, b), which completes the proof. 2
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We are ready to prove Proposition 1.5.2.

Proof of Proposition 1.5.2. Let T̃ be as in the Equation (1.5.3). Since the
column vector b(T̃ ) is composed of zeros, D(T̃ ) = 0, i.e., T̃ ∈ ZD.

Since T̃ is a non-singular point of ZD (for instance, ∂D
∂b(1)

(T̃ ) = D(1)(T̃ ) =
1 6= 0), the implicit function theorem implies that, for any ε > 0, dim(ZD ∩
Bε(T̃ )) = dim(ZD) = m(n + 1) − 1, i.e., the local dimension of ZD at T̃ is
dim(ZD).

Let ε be a positive number satisfying Lemma 1.5.4. We show that ZD ∩
Bε(T̃ ) ⊆ ∂I(m,n).

Consider T ∈ Bε(T̃ ) and suppose that D(T ) = 0. By Lemma 1.5.4, we
have that, for 1 ≤ j ≤ n + 1, P (T ) = P (A, b) ⊆ B1(0) and that D(j)(T ) 6= 0,
for 1 ≤ j ≤ n + 1. Thus, Proposition 1.4.6 implies that P (T ) is a singleton.
Proposition 1.4.9 shows then that T ∈ ∂I(m,n). Hence, dim(∂I(m,n) ∩ ZD) =
m(n+ 1)− 1.

Now, the fact that ZD is a limiting hypersurface follows from Lemma 1.5.1.
2

Corollary 1.5.5. The set I(m,n) has Ω(
(
m
n+1

)
) different limiting hypersurfaces

given by the (n+ 1)× (n+ 1) minors of the parameter matrix.

Proof. By the previous proposition, the first minor defines a limiting hypersur-
face. Considering any other (n+ 1)× (n+ 1) minor of the parameters matrix
T we can argue analogously getting an irreducible hypersurface. Since there
are

(
m
n+1

)
such minors and the variables involved in each minor are different,

the set I(m,n) has at least
(
m
n+1

)
different limiting hypersurfaces. 2

1.6 Complexity Lower Bounds

In this section, we use Proposition 1.3.2 and Corollary 1.5.5 to prove exponen-
tial lower bounds for the length of any quantifier-free formula expressing the
set I(2n,n), if polynomials are given in dense or sparse representation. After-
wards, we analyze the consequences of these results for algebraic computation
trees.

The notion of length of a formula strongly depends on the way terms (i.e.,
polynomials) are represented in the formula. Once this representation is fixed,
the notion of length of an atomic formula follows naturally as the sum of
the lengths of the terms involved, plus one. The recursive definition of the
length of a formula is completed stating |∃x ϕ| = |ϕ| + 1, |¬ϕ| = |ϕ| + 1 and
|ϕ ? ψ| = |ϕ|+ |ψ|+ 1 for ? ∈ {∨,∧}.
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We shall consider the dense and the sparse representation of polynomials.
In the case of dense representation two parameters are commonly used in order
to measure the size of a polynomial: the degree and the number of variables.
Let f ∈ R[x1, . . . , xk] be a polynomial of degree d, we define its dense length
as
(
d+k
k

)
.

The sparse representation is restricted to polynomials with integer coeffi-
cients, since the heights of these coefficients will play an important role in the
bounds. The sparse representation of a polynomial f ∈ Z[x1, . . . , xk] consists
of the list of pairs (µ, aµ), where µ = (µ1, . . . , µk) ∈ Nk and aµ ∈ Z, corre-
sponding to all non-zero coefficients of f . The sparse length of a polynomial is
defined as the bit length of the concatenation of the absolute values of all the
numbers µ1, . . . , µk, aµ, . . . in this list, written in binary.

For the sake of succinctness, the length of a formula ψ with polynomials
codified in dense form, will be called the dense length of ψ, and denoted |ψ|d.
If polynomials are codified in sparse form, we call it the sparse length of ψ and
denote |ψ|s.

1.6.1 Dense Representation

Proposition 1.6.1. If ψ be a first-order formula with polynomials codified in
dense form, then |ψ|d is bounded from bellow by the sum of the degrees of the
different irreducible polynomials intervening in ψ.

Proof. Let Q1, . . . , Qs be the non-constant polynomials appearing in ψ, with
factorizations Qi = Pi,1 · · ·Pi,ki where Pi,j are the irreducible polynomials of
positive degree intervening in ψ. Let di = deg(Qi). Since the dense length ofQi
is at least di+1, the dense length of ψ is bounded from bellow by

∑s
i=1(di+1).

Since di =
∑ki

j=1 deg(Pi,j), the sum of the degrees of the different irreducible
polynomials intervening in ψ is a lower bound for the dense length of ψ. 2

Corollary 1.6.2. Any quantifier-free formula, written using dense represen-
tation of polynomials and expressing the set I(2n,n), has size Ω(4n ·

√
n).

Proof. Let ψ be a quantifier-free formula describing the set I(2n,n). Corollary
1.5.5 shows that the

(
2n
n+1

)
minors of the parameter matrix T define different

limiting hypersurfaces for I(2n,n). Proposition 1.3.2 implies that these minors
intervene in ψ. Since these polynomials have degree n + 1, Proposition 1.6.1
implies that the dense length of any quantifier-free formula describing this set
is Ω(

(
2n
n+1

)
(n+ 1)). The conclusion follows immediately from an application of

Stirling’s formula. 2

This gives a sub-exponential lower bound for the worst case complexity
of the elimination of a single quantifier block, for any algorithm using dense
representation of polynomials.
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Corollary 1.6.3. There exist a real constant c > 1 such that, if polynomials
are codified using the dense representation, any algorithm for the elimination
of one existential block of quantifiers performs, on inputs of length L, Ω(c

√
L)

operations in the worst case.

Proof. A straightforward computation shows that |φ(2n,n)|d = O(n2), where
φ(2n,n) is the formula introduced in the Equation (1.2.1). Corollary 1.6.2 shows
that any quantifier-free formula ψ expressing the same set has |ψ|d = Ω(4n).
Since any algorithm for the elimination of a single quantifier block has to write
down the output, we conclude that the worst case complexity for inputs of
dense length L is bounded from below by Ω(c

√
L) for a real constant c > 1. 2

1.6.2 Sparse Representation

To prove an analog lower bound for sparse codification of polynomials we use
the following result from [AKS07].

Proposition 1.6.4. Let f ∈ Z[x1, . . . , xk] and consider the factorization

f = q ·
∏
p

pep

where q is a cyclotomic polynomial, p ∈ Q[x1, . . . , xk] runs over all non-
cyclotomic irreducible factors of f , and ep is the corresponding multiplicity.
Then, ∑

p

ep ≤ 56 · k3 · log ‖f‖1 · log3(8k deg(f)). 2

We immediately obtain that the number of different non-cyclotomic irre-
ducible polynomials intervening in a formula ψ is polynomially bounded in
terms of the sparse length of ψ.

Corollary 1.6.5. There exists a positive constant c1 ∈ R such that, any
quantifier-free first-order formula ψ, has sparse length

|ψ|s = Ω(nf(ψ)c1),

where nf(ψ) is the number of different non-cyclotomic irreducible factors in-
tervening in ψ. 2

Corollary 1.6.6. There exists a constant c2 ∈ R, c2 > 1 such that any
quantifier-free formula expressing the set I(2n,n) has sparse length |ψ|s =
Ω(c2

n).
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Proof. We argue as in the proof of Corollary 1.6.2. Let ψ be a quantifier-free
formula describing the set I(2n,n). Corollary 1.5.5 shows that the

(
2n
n+1

)
minors

of the parameter matrix T define different limiting hypersurfaces for I(2n,n).
Proposition 1.3.2 shows that these minors intervene in ψ. Thus, Proposition
1.6.5 implies that any quantifier-free formula describing this set has sparse
length Ω(

(
2n
n+1

)c1).
Applying Stirling’s formula yields

(
2n
n+1

)c1 ∼ ( 4n√
πn

)c1 . Taking c2 such that
1 < c2 < 4c1 we obtain ( 4n√

πn
)c1 = Ω(c2

n), which completes the proof. 2

We conclude with a sub-exponential lower bound for the worst case com-
plexity of any algorithm for the elimination of a quantifier block, if sparse
representation of polynomials is used.

Corollary 1.6.7. There exists a real constant c > 1 such that, if polynomials
are codified using the sparse representation, any algorithm for the elimination
of one existential block of quantifiers performs Ω(c

3√L) operations in the worst
case on inputs of length L.

Proof. A straightforward computation shows that |φ(2n,n)|s = O(n3). Corol-
lary 1.6.6 shows that any quantifier-free formula ψ expressing the same set
has sparse length |ψ|s = Ω(c2

n). Since any algorithm for the elimination of a
quantifier block has to write down the output, we conclude that the worst case
complexity for inputs of sparse length L is bounded from below by Ω(c

3√L),
for a real constant c > 1. 2

1.6.3 Algebraic Computation Trees

A natural model to prove complexity lower bounds is that of algebraic com-
putation trees (see Appendix A.2 for a definition, see also [BO83, Str83] and
[BCS97, Bür01] for more references). Given an algebraic computation tree S,
we write, following [BCS97], C∗.≤(S) for the multiplicative branching complex-
ity of S.

We prove the following general lower bound for the multiplicative branching
complexity of algebraic computation trees, based on the notion of limiting
hypersurface.

Proposition 1.6.8. Consider an algebraic computation tree, S, deciding mem-
bership of a set W ⊂ Rn. Let H1, . . . ,Hs be the different limiting hypersur-
faces of W . Suppose that these hypersurfaces are described by irreducible
polynomials of degrees d1, . . . , ds respectively, and call D =

∑s
i=1 di. Then,

the multiplicative branching complexity of S is bounded from bellow by log(D):

C∗.≤(S) > log(D).
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Proof. Since algebraic computation trees can be naturally translated to first-
order formulas, and, in such a translation, branching nodes translate to atomic
formulas, Proposition 1.3.2 implies that a multiple of the polynomial describing
each limiting hypersurface of W must be evaluated at some branching node of
S. This implies that the sum of the degrees of the polynomials involved in the
different branching nodes of S is at least D.

On the other hand, a routine computation shows that the sum of the degrees
of the polynomials involved in the different branching nodes of S is bounded
from above by 2C

∗.≤(S) − 1.
Thus, 2C

∗.≤(S) > D. Taking logarithms we conclude that C∗.≤(S) >
log(D), which completes the proof. 2

Proposition 1.6.9. For n sufficiently large, the multiplicative branching com-
plexity of any algebraic computation tree, S, accepting the set I(2n,n) satisfies

C∗.≤(S) > 2n.

Proof. Let S be an algebraic computation tree accepting the set I(2n,n). Propo-
sition 1.5.5 shows that I(2n,n) has

(
2n
n+1

)
limiting hypersurfaces of degree n+1.

Thus, by Proposition 1.6.8, we have C∗.≤(S) > log((n+ 1)
(

2n
n+1

)
). Application

of Stirling’s formula immediately yields (n+1)
(

2n
n+1

)
> c ·4n ·

√
n, for a positive

constant c. Thus, C∗.≤(S) > 2n+ log(n)
2 + log(c), which completes the proof.2

In other words, we have proved the following.

Corollary 1.6.10. For n sufficiently large, the multiplicative branching com-
plexity of any computation tree that solves the linear programming feasibility
problem in Rn for 2n constraints is bounded from bellow by 2n.





2
The Sign Condition Problem:
Upper and Lower Bounds

Abstract. In this chapter, we study the algebraic complexity of the sign con-
dition problem for any given a family of polynomials. Essentially, the problem
consists in determining the sign condition satisfied by a fixed family of polyno-
mials at a query point, performing as little arithmetic operations as possible.
After defining precisely the sign condition and the point location problems,
we introduce a method called the dialytic method to solve the first problem
efficiently. This method involves a linearization of the original polynomials
and provides the best known algorithm to solve the sign condition problem.
Moreover, using a technique that resembles that of Chapter 1, we prove a lower
bounds showing that the dialytic method is almost optimal.

2.1 Introduction

Given a partition S of Rn into disjoint regions, the point-location problem
for the partition S asks to determine the region containing a query point.
Point location is a basic problem in computational geometry and has inspired
several data structures (see [Sno04]). It has applications in different domains,
including geographic information systems (GIS) and robot motion planning.
We give now a precise definition of this problem.

23
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Definition 2.1.1. An algorithm taking as input a point in Rn and with a
finite set of possible outputs {O1, ..., Ok} solves the point location problem for
a given partition S of Rn if it satisfies the following condition:

for any pair of points x, y ∈ Rn, the algorithm returns the same output on
both inputs x and y, if and only if x and y belong to the same element of the
partition S of Rn.

The output of a point location algorithm can be seen as a label identifying
the region containing the query point. The regions in the given partition may
have very complex descriptions. Using labels instead of these descriptions, we
obtain algorithms whose query time is independent of their size. Using the
terminology from database theory, we are measuring the point location search
time and not its report time.

2.1.1 The Sign Condition and Point Location Problems for a
Family of Polynomials

Definition 2.1.2. Let P ⊂ R[X1, ..., Xn] be a finite family of polynomials.
The realizations of the P-sign condition form a partition of Rn denoted by
S(P). The elements of S(P) are not necessarily connected subsets of Rn. We
define the arrangement induced by P as the partition of Rn consisting of the
connected components of the realization of the sign conditions of the family
P and denote it by A(P). The elements of A(P), are called the faces of the
arrangement induced by P.

The point location problem for the partition A(P) is called the point loca-
tion problem for the family P and will be studied in the next chapter. In the
present chapter, we study the point location problem for the partition S(P),
called the sign condition problem for the family P.

In Section 2.2.1, we introduce the different representations of polynomials
that we consider: circuit, dense arithmetic and dense bit representations. In
Section 2.3 we introduce the dialytic method ; it solves the sign condition prob-
lem for a given family of polynomials in any of the mentioned representations
(see Theorem 2.3.2 and Corollaries 2.3.3 and 2.3.4). Finally, in Section 2.4 we
present sharp lower bounds for this problem.

2.1.2 Basic Observations

The simplest instance of point location is list searching. Given different points
x1, x2, ..., xs ∈ R, consider indices 1 ≤ i1, ..., is ≤ s such that xi1 < ... < xis .
Then, a partition of R into disjoint regions is determined by these points and
the intervals (−∞, xi1), (xi1 , xi2), ..., (xis−1 , xis), (xis ,+∞). The list searching
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problem already illustrates several aspects of the general point location prob-
lem. On the one hand, without any preprocessing, the point location query for
this partition of R can be answered in time O(s) performing a linear search.
On the other hand, if we order the points in a preprocessing stage (using
O(s log(s)) operations), the query can be answered performing a binary search
involving only O(log(s)) operations. In what follows, we generalize this second
method to higher dimensions and higher degrees.

The space Rn can be divided in 2n regions by n hyperplanes. If we consider
s > n hyperplanes in Rn, we will no longer obtain 2s regions determined. Some
implications appear; its associated system of equations is overdetermined. It
is easy to see this in the plane: two lines divide the plane in four different
regions, but no three lines divide the plane in eight regions. Not all syntac-
tically possible sign conditions are simultaneously geometrically realizable by
any family of hyperplanes.

An analogous phenomenon can be observed for algebraic hypersurfaces of
higher degree. In 1968, Warren [War68] proved that the number of connected
components of the realizations of strict sign conditions of a family of s poly-
nomials in n variables of degree at most d, is bounded by (4esd/n)n (see also
[Mil64, Gri88, HRS90b, JS00, LB01, BPR10]).

For a fixed n, the number of syntactically definable sign conditions, 3s,
grows exponentially with s, while the number of simultaneously geometrically
realizable sign conditions grows only polynomially in s and d. Moreover, the
number of faces of the induced arrangement is also polynomial in s and d, for
any fixed n. The best bound known today [BPR10] for the number of faces of
A(P) is

(2d)n

n!
sn +O(sn−1).

Observing this bound, it is natural to try to design an algorithm that solves
the point location problem performing a number of arithmetic operations that
grows logarithmically in s, the number of polynomials in the family P.

2.1.3 Related Work

Linear Case. Let P ⊂ R[X1, ..., Xn] be a family of s linear polynomials. We
remark that, since the non-empty realizations of P-sign conditions are convex
sets, the sign condition and point location problems for the family P coincide.

Dobkin and Lipton [DL76] were the first to present an algorithm solving
the point location problem, in this context, whose query time is logarithmic
in the numbers s of polynomials; the size of the associated data structure is
O(s2n−2). Clarkson [Cla87] improved the space complexity to O(sn+ε); in both
cases the query time is exponential in n. Meyer auf der Heide [MadH84] solved
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a particular instance of this problem (he considered hyperplanes with integer
coefficients only), that allowed him to derive the existence of a non-uniform
polynomial-time solution to the Knapsack Problem (see also [MadH88]). Fi-
nally, in 1993, Meiser [Mei93] gave a solution with running time O(n5 log(s))
and space bound O(sn+ε), for arbitrary ε > 0. The preprocessing is done in
expected time O(sn+1+ε), for arbitrary ε > 0. This last algorithm allowed
Meiser to derive a strongly polynomial non-uniform algorithm for the NP-
complete Knapsack problem (see also Chapter 3 in [BCS97]). After the next
paragraph, we give a brief description of Meiser’s algorithm.

Polynomial case. Chazelle and Sharir [CS90] (see also [CEGS91]) proposed
an algorithm, based on Collins’ Cylindrical Algebraic Decomposition [Col75],
for the general algebraic point location problem in the traditional unit-cost
RAM model. The complexity of their method is logarithmic in the number
of polynomials, but in the complexity analysis they ignore the dependency of
their method on the degree of the polynomials and on the dimension of the
ambient space. This is a usual practice in computational geometry, where the
degree of the polynomials and the dimension of the ambient space are assumed
to be bounded by a constant.

Grigoriev [Gri00] bounded the branching (or topological) complexity of the
sign condition problem from above by the logarithm of the number of faces of
the arrangement A(P). Nevertheless, the algebraic complexity of Grigoriev’s
method depends linearly on s. See also [Koi00] for further details and for its
relation with the P = NP question over the reals.

Before presenting our work, we briefly summarize Meiser’s algorithm for
the linear case.

Meiser’s algorithm. For future reference, we state Meiser’s result [Mei93]
precisely in the model of algebraic computation trees.

Theorem 2.1.3. Given a family, P ⊂ R[X1, ..., Xn], containing s linear poly-
nomials, there exists an algebraic computation tree ΓP that solves the sign
condition problem for the family P in time O(n5 log(s)).

The size of the tree ΓP is bounded by O(sn+ε) and it can be constructed
in expected time O(sn+1+ε), for arbitrary ε > 0. ut

Meiser’s original algorithm uses the trie data structure. The conversion
of this algorithm to the context of algebraic computation trees is straight-
forward. We observe that the upper bound stated by Meiser for his algorithm
is not optimal. He claims an O(n5 log(s)) bound, but more precisely it is
n4 log(n)O(1) log(s). Meiser’s method behaves well also in the bit model; see
his article and the next section for further details.
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Roughly, in a first step the algorithm evaluates at the query point all the
polynomials in a subset R of P and determines the degenerated simplex (see
[Mei93]) in a triangulation of4A(R) of A(R) containing the query point. The
set R and the triangulation 4A(R) are precomputed and have the following
key properties:

• The cardinality of R is bounded by a polynomial in n,

• the degenerated simplex in the triangulation4A(R) containing the query
point can be determined in polynomial time in n, and

• only a constant fraction ε, 0 < ε < 1 of the polynomials in P change
their sign in each degenerated simplex in 4A(R).

In this way, after a logarithmic number of steps (log(s)), the problem is reduced
to a number of equations whose number depends on n but not on s. Then, the
sign condition is determined by direct evaluation.

We remark that Meiser’s algorithm is completely linear, i.e., it does not
perform any non-scalar multiplication.

2.2 Computational Models and Representations of
Polynomials

Our algorithms in this chapter are represented by algebraic computation trees
over the real numbers (see A.2). We measure the number of arithmetic opera-
tions performed by an algorithm and call it its algebraic complexity.

In some cases, we are also interested in the bit or binary complexity of
our algorithms. To measure this within our computational model, we restrict
the arithmetic operations performed by our algorithms to integer numbers.
Rational and algebraic numbers are represented by tuples of integers and we
measure, besides the number of arithmetic operations, the bitsize of the integers
involved in these operations (see Section A.4.1).

In this sense, algorithms (like that of Khachiyan [Kha79] for linear program-
ming) that belong to the bit model but are not based on arithmetic operations,
are out of the scope of our model.

Roughly, given a finite family of polynomials we construct, in a preprocess-
ing stage, a data structure. Then, using this data structure, we answer some
queries about the original family efficiently. Within the model of algebraic
computation trees, the data structure is the algebraic computation tree itself.

The performance of a data structure is measured by the time spent in
answering a query (called the query time), the time needed to construct the
data structure (called the preprocessing time) and the size of the data structure.
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Since the data structure is constructed only once, its query time and size are
more important than its preprocessing time. If a data structure supports
insertion and deletion operations, the update time is also relevant, but we shall
not consider this situation.

The complexity of some queries depend on the output size—consider, for
instance, the sign condition query described in the next section. We divide
the query time in two parts: the search time and the reporting time. For some
applications, it is important to distinguish different answers but not to write
them down explicitly. In these cases, the search time plays a fundamental role.

Lower Bounds. For the lower bounds, we consider two models: algebraic
computation trees and algebraic decision trees (see Appendix A for precise
definitions and references). Since we are working over the field of the real
numbers, branching nodes have three different immediate successors in the
tree, corresponding to the three possible results of the sign test.

2.2.1 Representation of the Polynomials

Now, we describe the data types used, in this and the following chapter, to
represent polynomials. Let us first introduce some notation.

Definition 2.2.1. A sign condition is an element of {0, 1,−1}. For x ∈ R we
define

sgn(x) :=


−1 if x < 0;
0 if x = 0;
1 if x > 0.

Let P ⊂ R[X1, ..., Xn]. A P-sign condition, σ, is an element of {−1, 0, 1}P .
We say that P realizes the sign condition σ at x ∈ Rn, or that x satisfies the
sign condition σ if, for every P ∈ P, sgn(P (x)) = σ(P ). We denote the sign
condition realized by P at x by sgn(P, x). If σ is a P-sign condition, its level
is defined as the cardinal of the set {P ∈ P | σ(P ) = 0}.

Let us denote by H(m) the height (or absolute value) of an integer m ∈ Z
and by h(m) its logarithmic height (or bitsize) defined as h(m) := plog(H(m)+
1)q.

For a polynomial P ∈ Z[X1, ..., Xn], we denote by H(P ) its height defined
as the maximal height of all its coefficients and, analogously, by h(P ) its loga-
rithmic height defined as the maximal logarithmic height of all its coefficients.

Let be given a polynomial F ∈ R[X1, ..., Xn]. In this and the following
chapter, we shall consider the following different representations of it. Besides
the number n of variables, each of these representations has associated some
natural parameters measuring the complexity of the representation.
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1. Arithmetic-circuit representation. The polynomial F is represented
by an arithmetic circuit Γ over R (see [vzG86b, BCS97]) that computes
it. We limit ourselves to division-free circuits. Let us denote by L the
non-scalar size of Γ and observe that the degree of F is bounded by 2L.
The parameters associated with this representation are n and L.

2. Dense arithmetic representation. Suppose that the polynomial F
has degree d. The dense arithmetic representation of F consists on the
tuple in R(d+nn ) of its coefficients in the monomial basis. The parameters
associated with this representation are n and d.

3. Dense bit representation. We assume that the polynomial F has
integer coefficients. If F has logarithmic height τ and degree d, its dense
bit representation is the tuple in Z(d+nn ) of its coefficients in the monomial
basis, where each integer is represented by its bit encoding (of size at most
τ). The parameters associated with this representation are n, d and τ .

Given a family F := {F1, ..., Fs} of polynomials in R[X1, ..., Xn], the dense
(arithmetic or bit) representation of F is simply the collection of the dense
(arithmetic or bit) representations of each polynomial in the family F .

On the other hand, the arithmetic-circuit representation the family F is
division-free arithmetic circuit Γ over R that computes all the polynomials in
F . Let us denote by L the non-scalar size of Γ and observe that the degrees
of the polynomials in F are bounded by 2L. The parameters associated with
this representation are s, n and L.

We observe that the dense representation can be seen as a special case of
the arithmetic-circuit representation with L equal to

(
d+n
n

)
−n−1, the number

of monomials of degree between two and d in n variables.

2.3 The Dialytic Method to solve the Sign Condition
Problem

In this section we introduce the dialytic method 1 and show how it enables us to
reduce the sign condition problem to the linear case. We assume the arithmetic-
circuit representation of polynomials. We recall that the dense arithmetic
representation can be seen as a particular case of this representation.

1. The word dialytic comes from the Greek word διάλυσις, meaning separation [LSJM40].
This term was used by Sylvester [Syl42] when he introduced the resultant of a monic poly-
nomial treating each monomial as a different variable.



30 The Sign Condition Problem: Upper and Lower Bounds

Let us consider a family F := {F1, ..., Fs} of polynomials in R[X1, ..., Xn]
and suppose that ΓF is a division-free arithmetic circuit of non-scalar com-
plexity L that computes the family F .

Suppose given a family of polynomials G = {G1, ..., Gk} ⊂ R[X1, ..., Xn]
that generate an R-subspace VG of R[X1, ..., Xn] that contains F . Let us
also suppose that the family G can be evaluated by a division-free arithmetic
circuit of non-scalar complexity LG . We consider the following three different
examples of the family G, called the family of generators:

• As the family of generators we can take the family GP composed of
the polynomials computed by the non-scalar multiplication nodes in ΓF
together with a basis for the linear polynomials in R[X1, ..., Xn]. In this
case, we have k = L+n+1 and LGP = L. It is clear that any polynomial
in F can be written as a linear combination of the polynomials in GP .

• Alternatively, as the family of generators we can take a maximal, R-
linearly independent subset GF of {F1, ..., Fs}. In this case, we have
k equal to the dimension of the R-subspace generated F (bounded by
L+ n+ 1, as the previous example shows) and LGF ≤ L.

• Finally, if the polynomials F1, ..., Fs have degree bounded by d we can also
take, as the family of generators, the monomial basis GB of R[X1, ..., Xn]
obtaining k =

(
n+d
n

)
and LGB =

(
n+d
n

)
− (n+ 1).

We assume fixed any such family of generators G = {G1, ..., Gk}. Then, for
1 ≤ i ≤ s and 1 ≤ j ≤ k, there exist constants α(i)

j ∈ R such that

Fi = Σk
j=1α

(i)
j Gj .

Let Z1, ..., Zk be new indeterminates and consider, for 1 ≤ i ≤ s, the
polynomials Fi := Σk

j=1α
(i)
j Zj ∈ R[Z1, ..., Zk]. Let us denote by G : Rn → Rk

the function defined by G(x) := (G1(x), ..., Gk(x)).

Remark 2.3.1. For any x ∈ Rn and for 1 ≤ i ≤ s, the value of Fi(x) is the
same as the value of Fi(G(x)).

In particular, this implies that a solution for the sign condition problem
for the family of linear polynomials {F1, ..., F1} induces a solution for the sign
condition problem for the original family {F1, ..., Fs}.

Theorem 2.3.2. Let F := {F1, ..., Fs} ⊂ R[X1, ..., Xn] be a family of polyno-
mials and suppose given an arithmetic circuit ΓF of non-scalar complexity L
that computes the family F .
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Then, there exists an algebraic computation tree Γ that solves the sign
condition problem for the family F performing O((L + n)5 log(s)) arithmetic
operations.

The size of Γ is bounded by sO(n+L) and it can be constructed in expected
time sO(n+L).

Proof. Let G = {G1, ..., Gk} be one of the families of generators GP or GF (see
page 30), and denote by G : Rn → Rk the associated function.

Using Meiser’s result (see Theorem 2.1.3) we construct an algebraic com-
putation tree ΓF that solves the point location problem for the family F :=
{F1, ..., Fs} of linear polynomials in R[Z1, ..., Zk], with query timeO(k5 log(s)).

Then, given a query point x ∈ Rn the sign condition satisfied by the family
{F1, ..., Fs} at x can be determined using Meiser’s algorithm for the family F
at the point G(x).

The correctness of this method follows from Remark 2.3.1. The number of
arithmetic operations needed to compute G(x) is bounded by O((L+ n)2) by
Lemma A.5.1 and k is bounded by L+ n+ 1 by construction. Thus, the total
complexity is bounded by O((L+ n)5 log(s) + (L+ n)2) = O((L+ n)5 log(s)).

ut

If we use the monomials basis GB as the family of generators, we obtain
the following result.

Corollary 2.3.3. Let F := {F1, ..., Fs} ⊂ R[X1, ..., Xn] be a family of poly-
nomials of degree bounded by d.

Then, there exists an algebraic computation tree Γ that solves the sign con-
dition problem for the family F performing O(

(
d+n
n

)5
log(s)) = O(d5n log(s))

arithmetic operations
The size of Γ is bounded by sO(dn) and it can be constructed in expected

time sO(dn).

Proof. Ordering the monomials in R[X1, ..., Xn] of degree at most d by as-
cending degree, each monomial in GB can be computed as a product of two
preceding monomials. Hence, the family GB can be computed by a division-
free arithmetic circuit of non-scalar complexity

(
n+d
n

)
−n− 1. Thus, the result

follows from last theorem. ut

If we restrict our algorithms to perform arithmetic operations on integers,
using Proposition A.4.3, we obtain the following result.

Corollary 2.3.4. Let F := {F1, ..., Fs} ⊂ Q[X1, ..., Xn] be a family polyno-
mials of total degree bounded by d and logarithmic height bounded by τ .
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Then, there exists an algebraic computation tree Γ that allows to deter-
mine, for any algebraic point x ∈ Rn given by a triangular Thom encoding of
size (d′, τ ′), the sign conditions satisfied by the polynomials in F at x perform-
ing log(s)dO(n) arithmetic operations between integers of logarithmic height
bounded by τdO(n), where τ = max{τ, τ ′} and d = max{d, d′}. The size of
the algebraic computation tree Γ is O(τs(d+1)n) and it can be constructed in
expected time O(τs(d+1)n+1). ut

Evaluation of First-Order Quantifier-Free Formulas. Let us consider
L, the first-order language defined as the usual first-order language of the reals
but allowing only unary predicates t > 0 and t = 0 for any term t in the
language, instead of the usual binary predicates s = t and s > t for arbitrary
terms s and t. Of course, this does not change the expressive power of the
language.

Let ϕ be a quantifier-free formula in this language with n free variables.
The truth value of ϕ evaluated at x ∈ Rn depends only on the signs taken at
x by the polynomials involved in ϕ. Hence, as a consequence of the Corollary
2.3.3 we obtain the following result.

Proposition 2.3.5. Let ϕ be a quantifier-free formula with n free variables
in the language L containing s polynomials of degree bounded by d.

Then, there exists an algebraic computation tree Γ that solves the mem-
bership problem for the set {x ∈ Rn | R |= ϕ(x)} performing O(d5n log(s))
arithmetic operations.

The size of Γ is bounded by sO(dn) and it can be constructed in expected
time sO(dn). 2

We remark that the dialytic method performs non-scalar multiplications
only to evaluate the function G (defined before Remark 2.3.1) at the input
point. The rest of the algorithm is free from non-scalar multiplications, i.e.,
it performs only linear operations on these results and branches according to
their signs.

We can ask now: are these complexity bounds reasonable for the simple
sign condition problem? In the next section we shall prove some lower bounds
related to this problem.

2.4 Lower Bounds for the Sign Condition Problem

We shall analyze the cost of solving the sign condition problem for different
examples of families of polynomials. Each example leads to a different lower
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complexity bounds for the depth of any algorithm in our model solving this
problem. In this way, we obtain lower bounds for the worst case complexity of
the sign condition problem in terms of natural parameters of the given family.

First, we concentrate on the algebraic computation tree model and measure
the multiplicative non-scalar complexity of the algorithms.

In Example 1 we construct, for any positive integers s and n, a family of
s linear forms in R[X1, ..., Xn] that leads to the lower bound Ω(n · log(s)) for
the branching complexity of any algebraic computation tree solving the sign
condition problem for this family.

In Example 2 we construct, for any positive integers s, L and n with
s ≥ n2, a family of non-scalar complexity L, containing s + 1 polynomials
in R[X1, ..., Xn], that leads to the lower bound l(L, n, s) := max{L, n log3(s)

2 }
for the multiplicative branching complexity of any algebraic computation tree
solving the sign condition problem for this family. If we denote by u(L, n, s) :=
O((L + n)5 log(s)) the upper bound given by the dialytic method, we obtain
that

u(L, n, s) ≤ O(l(L, n, s)6) = l(L, n, s)O(1).

Hence, this example shows that the dialytic method is almost optimal.
The main drawback of Example 2 is that the degrees of the polynomials

involved in it are exponential on L. Example 3 is a modification of it. We
obtain, under a suitable hypothesis, the same results as in the referred example
with the additional property that the polynomials in the constructed family
have degree bounded by O(L2).

In Examples 4 and 5, we reduce classical problems in complexity theory to
the sign condition problem. In this way, using well known results from Ben-Or,
Baur and Strassen we obtain lower bounds for the sign condition problem.

In Example 6, we consider a very restricted model: algebraic decision trees
that can only test the sign of the polynomials in the family F at the input point.
Our algorithms do not fit in this model since they evaluate also polynomials
that do not belong to the original family. For this model, we show an Ω(s)
lower bound.

Finally, in Example 7, we describe a natural restricted model where the
dialytic method fits and deduce another linear lower bounds for the complexity
of any algebraic computation tree solving the sign condition problem in this
restricted model.

2.4.1 The Algebraic Model

In this section, we concentrate on the multiplicative branching complexity of
any algebraic computation tree solving the sign condition problem for a given
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family of polynomials, i.e., we take into account non-scalar multiplications and
comparisons.

First we give a lower bound for the linear case, showing that Meiser’s
original algorithm is almost optimal.

Example 1. This example is a simplified linear version of the example used
in [JS00] to prove a lower bound on the number of sign conditions satisfied by
a family of polynomials.

For any positive integers s and n with s > n, consider s linear forms
l1, ..., ls ∈ R[X1, ..., Xn] satisfying:

• for every subset {li1 , ..., lin} of {l1, ..., ls} consisting of n different linear
forms, the linear equation system li1(X) = 0, ..., lin(X) = 0 has exactly
one solution in Rn, and

• for every subset {li1 , ..., lin+1} of {l1, ..., ls} consisting of n + 1 different
linear forms, the linear equation system li1(X) = 0, ..., lin+1(X) = 0 has
no solutions in Rn.

We remark that these conditions define a non-empty open set (complemen-
tary to determinantal varieties, see [JS00]) in the space Rs×(n+1) of coefficient
of the linear forms. Hence, it is legitimate to assume the existence of a family
{l1, ..., ls} with the stated properties. The linear forms l1, ..., ls are said to be
in general position. Let us denote by Cs the number of sign conditions realized
by this family in Rn.

The two preceding conditions guarantee that for any two different subsets,
{li1 , ..., lin} and {lj1 , ..., ljn}, of {l1, ..., ls} consisting each of n linear forms,
the unique solution of the linear equation system li1(X) = 0, ..., lin(X) = 0
is different from the unique solution of the linear equation system lj1(X) =
0, ..., ljn(X) = 0. In particular, we obtain that the family {l1, ..., ls} satisfies
at least

(
s
n

)
different sign conditions in Rn, i.e., Cs ≥

(
s
n

)
.

The following proposition follows immediately and plays an important role
in our lower-bound results.

Proposition 2.4.1. If an algebraic computation tree computes a partition π
of Rn, then its branching complexity is at least log3(#π).

Proof. We recall that, in any algebraic computation tree, the only nodes with
more than one immediate successor are the branching nodes, that have three
immediate successors. Taking into account that a computation tree has at
least one output node (i.e., one leaf of the subjacent tree) for each element of
π, the proof follows easily by induction. ut
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Suppose that Γ is an algebraic computation tree that solves the sign con-
dition problem for the family {l1, ..., ls}. Hence, it computes a partition of
cardinality Cs. We conclude, from Proposition 2.4.1, that its branching com-
plexity is at least log3(Cs) > n(log3(s) − log3(n)). In particular, if we take
s > n2, we obtain that the branching complexity of Γ is n log3(s)

2 = Ω(n·log(s)).
We remark that the upper bound given by Meiser’s algorithm isO(n5 log(s)).

Thus, the upper bound is bounded by a polynomial function of the lower bound,
which is satisfactory.

Meiser’s algorithm does not use non-scalar multiplications. From our lower
bound, we conclude that using non-scalar multiplications would not help to
improve essentially the point location algorithm in the linear case.

For the discussion of the next example we need the following technical
lemma that is the key to bound the non-scalar complexity of any algebraic
computation tree that solves the sign condition problem (compare with Section
1.3).

Lemma 2.4.2. Assume that {F0, ..., Fs} is a family of different irreducible
polynomials defining real algebraic hypersurfaces in Rn and that Γ is an alge-
braic computation tree solving the sign condition problem for this family.

Then, for every i ∈ N, 0 ≤ i ≤ s, there exists a branching node of Γ testing
the sign of a multiple of Fi evaluated at the input point.

Proof. Let G1, ..., Gk bee the non-zero irreducible factors of the polynomials
intervening in the branching nodes of Γ and suppose, for the sake of definite-
ness, that F0 is not associated with any of them. We remark that G1, ..., Gk
and F0 are irreducible.

Then, a particular form of the real Nullstellensatz for principal ideas (see
Theorem 4.5.1 in [BCR98]) implies that there exists an x ∈ Rn such that
F0(x) = 0 and Gi(x) 6= 0 for 1 ≤ i ≤ k. Choose ε ∈ R, ε > 0 such that the
polynomials G1, ..., Gk do not vanish anywhere in the ball B = Bε(x).

Therefore, the signs of G1, ..., Gk are constants in B. In particular, the
computation path followed by Γ for any two input points of B is exactly the
same.

Since {x ∈ Rn | F0(x) = 0} is an hypersurface that cuts B, we conclude
that there are two points y, z ∈ B satisfying the conditions F0(y) = 0 and
F0(z) 6= 0. Hence, Γ does not solve the sign condition problem for the family
{F0, ..., Fs}. This contradicts the assumption that Γ solves the sign condition
problem for the family {F0, ..., Fs}. ut

Example 2. In this example we show that, for any positive integers n, s and
L with s > n2 it is possible to construct a family F of s + 1 polynomials



36 The Sign Condition Problem: Upper and Lower Bounds

in R[X1, ..., Xn] such that L(F) = L and any algebraic computation tree
solving the sign condition problem for this family has multiplicative branching
complexity at least max{L, n · log(s)}.

Given positive integers s, n and L with s > n2, consider, as in Example 1, s
linear forms F1, ..., Fs ∈ R[X1, ..., Xn] in general position and let us define the
polynomial F0 := X2L

1 −X2. We denote by F the family F := {F0, F1, ..., Fs}
composed of these polynomials.

Suppose that Γ is an algebraic computation tree that solves the sign condi-
tion problem for this family. Since the family F has at least the same number
of realizable sign conditions as the family {F1, ..., Fs}, we conclude, as in Ex-
ample 1, that the branching complexity of Γ is at least n log3(s)

2 .
Clearly, the polynomial F0 = X2L

1 − X2 is irreducible and takes positive
and negative values in Rn. Hence, it defines a real algebraic hypersurface.
Whence, the family F satisfies the assumptions of Lemma 2.4.2. Thus, Γ
evaluates a multiple of F0. Since the degree of any multiple of F0 is at least
2L, we conclude that the non-scalar complexity of Γ is at least L.

Summarizing, we have that the branching complexity of Γ is at least n log3(s)
2

and that its non-scalar complexity is at least L. Hence, its multiplicative
branching complexity is at least l(L, n, s) := max{L, n log3(s)

2 }.
The upper bound obtained from the dialytic method is u(L, n, s) := O((L+

n)5 log(s)). In order to compare both bounds, we remark that l(L, n, s) =
max{L, n log3(s)

2 } ≥ O(L+ n · log(s)). Hence, we obtain that

u(L, n, s) ≤ l(L, n, s)6 = l(L, n, s)O(1).

This proves that the dialytic method behaves very well for the chosen param-
eters.

Discussion. Let us consider a new parameter M ∈ N defined as the max-
imum of the non-scalar complexity of each polynomial in the given family.
We remark that while the upper bound given by the dialytic method depends
intrinsically on L, our lower bound would depend on M instead of L.

The family of polynomials constructed in this example has two character-
istics that allowed us to derive the lower complexity bound:

1. the non-scalar complexity of some polynomials in the family is close to
the non-scalar complexity of the whole family (L = MO(1)), and

2. the family defines enough different sign conditions (sO(n)).

What is not satisfactory about this lower bound is that the degrees of the
polynomials involved are exponential on L. In the following example, we show
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that, under a suitable assumption, it is possible to modify our construction to
obtain a polynomial F0 whose degree is quadratic in its non-scalar complexity.

Example 3. This example is a modification of Example 2 and we shall use
the notation introduced there. For any d > 0 sufficiently large, there exists,
following Corollary 3.1 in [BH99], a univariate polynomial Pd ∈ R[X] of degree
d such that the non-scalar complexity of any multiple of Pd is at least 1

3d
1
2 .

In particular, L(Pd) ≥ 1
3d

1
2 . On the other hand, Horner’s rule give the upper

bound, L(Pd) ≤ d− 1.
We make the following (unproven) assumption: For any d > 0 sufficiently

large and for any constant c ∈ R the non-scalar complexity of any multiple of
Pd − c is at least 1

3d
1
2 .

We assume that this conjecture is true and continue with the following
construction.

Consider the polynomial F̃0 := Pd(X1) − X2 ∈ R[X1, ..., Xn]. We claim
that the non-scalar complexity of any non-zero multiple of F̃0 in R[X1, ..., Xn]
is at least 1

3d
1
2 . To prove the claim, consider a straight line program (SLP) γ

of non-scalar complexity L that computes a non-zero multiple P of F̃0. Take
x = (x1, ..., xn) ∈ Rn such that P (x) 6= 0, evaluate the SLP γ in (X,x2, ..., xn)
and denote by γ′ the resulting SLP. Then, γ′ computes a non-zero multiple
of Pd − x2 ∈ R[X] and we conclude from our conjecture that its non-scalar
complexity is at least 1

3d
1
2 . Since the non-scalar complexity of γ is at least that

of γ′, our claim follows.
We define now the family F̃ as in the last example but using the polynomial

F̃0 instead of F0. We immediately obtain the following result.
For any three positive integers n, s and d with s > n2 and d > O(1)

there exists a family F of non-scalar complexity L(F) = dO(1) containing
s + 1 polynomials in R[X1, ..., Xn] of degree bounded by d such that any
algebraic computation tree solving the sign condition problem for this family
has multiplicative branching complexity Ω(d+ n · log(s)).

Example 4. Let k ∈ N and let T3k ∈ R[X] be the 3k-th Chebyshev poly-
nomial. We observe that T3k has 3k distinct real roots and that T3k can be
evaluated using 3k non-scalar multiplications (see [BE95]).

Let s := n, L := 3kn = O(kn) and, for 1 ≤ i ≤ s, define Fi := T3k(Xi). It is
easy to see that F1, ..., Fs may be evaluated by a division-free arithmetic circuit
over R of non-scalar size L. Strassen’s degree method (see Corollary 8.36
in [BCS97]) implies now that the complexity bound O(kn) is asymptotically
optimal for the evaluation of F1, ..., Fs.

Let us suppose that Γ is an algebraic computation tree that solves the sign
condition problem for F1, ..., Fs performing at most N non-scalar multiplica-
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tions and decisions. This algorithm may be applied to solve the membership
problem of V := {x ∈ Rn | Fi(x) = 0 for 1 ≤ i ≤ s} using N non-
scalar multiplications and decisions. We observe that V is a zero dimensional
set consisting of 3kn points. Thus, V has 3kn connected components. Ap-
plying Ben-Or’s method to this situation (see Theorem 11.9 in [BCS97]), we
deduce now that the solution of the membership problem of V requires at
least Ω(log(#V )) = Ω(kn) non-scalar operations and decisions. Thus, we have
N = Ω(kn) = Ω(L).

Using the Dialytic method, we obtain the following upper bound N =
O((L+ n)5 log(s)) = O(L5 log(n)) = LO(1).

Example 5. For any positive integer m, let n := 2m, s = m and consider the
variables X1, ..., Xm, Y1, ..., Ym. For 1 ≤ j ≤ m let Fj := (Xj − Y1) · · · (Xj −
Ym). Suppose there is given a sign condition determination algorithm for
F1, ..., Fs which, for any input point (x, y) ∈ Rm ×Rm = R2m, has at most
N non-scalar multiplications and branchings. Then, we are able to decide
within the same complexity whether for a given point (x, y) ∈ R2m F1(x, y) 6=
0, ..., Fs(x, y) 6= 0, i.e., whether Πs

j=1Fj(x, y) = Π1≤i,j≤s(xi − yj) 6= 0 holds.
This is equivalent to deciding whether {x1, ..., xm} ∩ {y1, ..., ym} 6= ∅. Fol-

lowing Ben-Or (see [BO83] or Theorem 11.9 and Corollary 11.11 in [BCS97]),
this implies N = Ω(n log(n)). On the other hand, from Corollary 8.13 in
[BCS97] (originally by Baur and Strassen [BS83]) F1, ..., Fs may be evaluated
by a division-free arithmetic circuit of size L := O(n log(n)).

Thus, we have a lower bound of Ω(L) and an upper bound of LO(1) log(n) =
LO(1) log(L) = LO(1).

2.4.2 Restricted Models

In this section, we consider two different restricted models.

Algebraic decision tree model. The first model we consider is the most
restricted model where the sign condition problem for a family {F1, ..., Fs} of
polynomials con be solved. In this model, an algorithm is an algebraic decision
tree (that should not be confused with the algebraic computation trees of the
previous examples, see Appendix A) whose tests can only be based on the sign
satisfied by some polynomial in {F1, ..., Fs} evaluated at the input point.

Example 6. In this example, we construct a family of linear polynomials in
R[X1, X2] and show that any algebraic decision tree in our restricted model
that solves the sign condition problem for this family must have depth s.

Consider the unit circle in the plane S1 ⊂ R2 and s different points on
it, p1, ..., ps ∈ S1. For 1 ≤ i ≤ s, let us denote by Fi the linear equation
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pi · (x1, x2) − 1 representing the tangent line to S1 passing through pi. We
remark that inside the unit circle all these equations take negative values.
Also, for 1 ≤ i ≤ s, all these linear polynomials take negative values at pi
except Fi which is zero.

Suppose now that Γ is an algebraic decision tree satisfying that any of its
decisions (branchings) is based on the sign of some polynomial in the family
F1, .., Fs evaluated at the input point. We claim that for any input whose
computation path follows the negative sign branch of each test in this path,
all the polynomials in the family F1, ..., Fs must be evaluated before the sign
taken by all of them at the input is completely determined.

To prove the claim, suppose that F1, ..., Fs−1 are evaluated but not Fs.
Consider the point ps; as remarked before, F1, ..., Fs−1 take negative values at
ps and Fs(ps) = 0. Then, there exists a small open ball, Bε(ps) ⊂ R2 such
that F1, ..., Fs−1 take negative values inside this ball. Since Fs = 0 describes a
line, we conclude that there exist two different points, namely x and y, in the
ball Bε(ps) such that Fs(x) > 0 and Fs(y) < 0. Hence, the sign of an input
point cannot be determined evaluating a proper subset of {F1, ..., Fs} at this
point. Thus, the depth of Γ is at least s.

Discussion. This example can be easily generalized to higher dimensions
and, with some more work, to polynomials of any given non-scalar complexity.

This example shows that other polynomials than F1, ..., Fs must be eval-
uated in order to obtain an upper bound that depends logarithmically on s.
Inspecting Meiser’s algorithm and the dialytic method, we see that it is enough
to admit to test the sign of linear combinations of the polynomials evaluated
in previous tests. This motivates the following model.

Oracle model. Let us assume given a family F := {F1, ..., Fs} of polyno-
mials in R[X1, ..., Xn] and an oracle that can evaluate any polynomial in this
family.

An algorithm solving the sign condition problem for the family F in the
oracle model is an algebraic computation tree that computes the partition
S(P) of Rn performing, beside the branchings, only the following kinds of
computations:

• constants from R;

• additions;

• multiplication (scala and non-scalar);

• evaluation of a polynomial Fi ∈ F at the input (oracle call);
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Additions and multiplications can be only performed using the results of
previous computations; the only computation nodes that have access to the
input x ∈ Rn are the nodes corresponding to oracle calls. Our complexity
model is expressed in terms of the number of oracle calls. ut

The dialytic method fits in this model. To see this, consider the set GF of
generators for the dialytic method (see Section 2.3) and assume the evaluation
of these generators as oracle calls. Its complexity is L + n + 1 oracle calls,
where L is the non-scalar complexity of the family F . Moreover, besides the
evaluations of polynomials in the family F , all the operations performed by this
method are R-linear, i.e., no non-scalar multiplications are used. We remark
that the input x ∈ Rn can be reconstructed (using linear algebra) from the
result of the evaluation of the polynomials in GF .

This model fits well in the structure of the known sign condition which
evaluate F1, ..., Fs as if were given by an oracle. For such algorithms, the
circuit representation of F1, ..., Fs is natural.

In the following example we construct, for any s and any n that divides s,
a family F ⊂ R[X1, ..., Xn] containing s R-linearly independent polynomials
and show that any algorithm in the oracle model that solves the sign condition
problem must evaluate all the s polynomials for some input.

The non-scalar complexity of the family F constructed in the next example
is L = s. This explains the apparent incompatibility between the upper bound
given by the dialytic method (it uses L + n + 1 oracle calls) and the lower
bound Ω(s) for the number of oracle calls deduced in the following paragraph.

Example 7. Let n, s and d be a positive integers such that s = dn. Choose
d + 1 different real numbers τ0, ..., τd and let us consider, for 1 ≤ j ≤ d, the
polynomials

Fj :=
∏

k=0...d,k 6=j
(X − τk)

and, for 1 ≤ i ≤ n, F (i)
j := Fj(Xi) ∈ R[X1, ..., Xn]. We shall denote by F the

family

F := {F (i)
j | 1 ≤ i ≤ d and 1 ≤ j ≤ n}.

Let us suppose that Γ is an algorithm in the oracle model that solves
the sign condition problem for the family F . We claim that on input x :=
(τ0, ..., τ0) ∈ Rn, Γ evaluates all the polynomials in F .

Suppose that the claim does not hold. We further suppose, without loss of
generality, that on input x the algebraic computation tree Γ does not evaluate
F

(1)
1 .
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Consider the point x′ := (τ1, τ0, ..., τ0) ∈ Rn and remark that F (1)
1 is the

only polynomial in F that does not vanish at x′, and that all the other poly-
nomials in F vanish at x.

We recall that in this model, the tests performed at a branching node in
a computation path in Γ are sign tests of polynomials evaluated at the values
taken by polynomials previously evaluated in that computation path. Since
the results of the evaluation of all the polynomials in F \ {F (1)

1 } at x and x′

are equal, we conclude that both x and x′ determine the same computation
path in Γ. In particular the output is the same for both inputs. Since they
do not satisfy the same F-sign condition, we obtain a contradiction. This
contradiction proves our claim.

In this way, we obtain that any algorithm in the oracle model, that solves
the sign condition problem for the family F , must evaluate all the polynomials
in F for some input. Since there are s = dn different polynomials, we obtain
that s is a lower bound for the number of oracle calls in this model, in the
worst case.

We recall that the dialytic method fits in the oracle model and has un upper
bound that grows only logarithmically with s. This is not a contradiction.
Since all the polynomials in the family F are linearly independent, its non-
scalar complexity is at least Ω(s) = Ω(nd). On the other hand, since this family
can be computed from the monomials X1, X

2
1 , ..., X

d+1
1 , ..., Xn, X

2
n, ..., X

d+1
n

performing linear operations, we conclude that its non-scalar complexity is
upper bounded by L := nd = s. Thus, the non-scalar complexity of this
family equals its cardinality, what explains the origin of our lower bound.





3
The Point Location Problem for
a Family of Polynomials

Abstract. In this chapter, we discuss different data structures that can be
used to solve the point location problem for a given family of polynomials.
This problem asks to determine, not only the sign condition satisfied by a
family of polynomials at a query point, but also the connected component of
the realization of this sign condition containing the query point. After showing
how to adapt the dialytic method to this problem, we introduce, in Section
3.3, a method based on an adapted Cylindrical Algebraic Decomposition of the
space that solves the point location problem for any given family. In Section
3.4, we discuss the case of polynomials with integer coefficients given in dense
bit representation introducing a method that, based on diophantine geometry,
solves the point location problem for generic families of polynomials. At the
end, we include a brief discussion of the local ray shooting problem.

3.1 Introduction

In this chapter, we address the point location problem that was introduced
in the previous chapter. We use the notions and notations introduced there.
We assume that the polynomials are represented in dense (bit or arithmetic)
form and we measure the number of arithmetic operations performed by the
algorithms. We first discuss how the dialytic method can be used to solve the
point location problem. Then, we introduce two other data structures to solve
this problem.

43
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Relation with Constraint Databases. Using the framework of Constraint
Databases [KLP00, Rev02] with polynomial constraints, we can to deal with
geometric figures in the affine space Rn containing infinitely many points
(semi-algebraic sets) which are finitely represented as boolean combinations
of polynomial equalities and inequalities. The data model proposed by the lit-
erature on Constraint Databases to describe geometric figures in Rn is based
on quantifier-free first-order formulas over the reals. This might be very inef-
ficient. As remarked in [HK04], explicitly giving disjunctive normal and using
dense or sparse encoding of polynomials as data structures turns out to be in-
convenient for many applications. Another example that shows the complexity
problems that faces this traditional vision is given by the membership prob-
lem: direct and brutally evaluating a first-order formula at a query point may
result too expensive, and it could be evaluated otherwise (see, for instance,
Proposition 2.3.5).

Inspired by the indexing techniques used in Relational Databases, we study
some queries that arise naturally in the context of spatial databases and pro-
pose new data structures specifically designed to answer them.

The philosophy of our work is that each query requires, to be answered effi-
ciently, data structure and/or an evaluation algorithm specifically designed for
it. This contrasts with the original viewpoint of Constraint Databases, that is
more coarse. There, only simple data structures are used and it is assumed that
first-order queries are evaluated using a general purpose quantifier-elimination
method.

The algebraic computation trees constructed by the dialytic method pre-
sented in the previous chapter can be seen as data structures stored in a
database used to answer the sign condition query efficiently for a fixed family
of polynomials. In the following pages, we discuss three (this and two other)
data structures that can be used to solve the point location problem for a fam-
ily of polynomials with a complexity depending only logarithmically on s. A
precise algebraic model of computation allowing the use of precomputed data
structes is missing in the literature and further research is needed to give a
satisfactory definition of such a computational model.

In Section 3.3, we introduce a method based on an Adapted Cylindrical
Algebraic Decomposition of the space that solves the point location problem
for any fixed family. This method, being based on projections and a recursion
on the dimension of the ambient space, requires doubly-exponential query time.

In Section 3.4, we discuss the case of polynomials with integer coefficients
given in dense bit representation, introducing a method that, based on dio-
phantine geometry, solves the point location problem for generic families of
polynomials. Assuming that the query space is [0, 1]n and that the given fam-
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ily of polynomials F is generic, we construct a uniform grid over [0, !]n such
that each small hypercube determined by this grid is only cut by, at most, n
polynomials in F .

In Section 3.5, we discuss how this last data structure can be used to solve
the local ray shooting problem. Finally, we shall discuss the advantages and
drawbacks of each of them in Section 3.6.

3.2 The dialytic method for Point Location

We concentrate on the arithmetic bit model, and show how the dialytic method
can be used to solve the point location problem for a given family of polyno-
mials.

We recall that the sign condition problem for a family P ⊂ R[X1, ..., Xn]
of polynomials can be solved in this model using Corollary 2.3.4.

To solve the point location problem for a family of polynomials, we use the
following proposition, that is an immediate consequence of Theorem 16.18 in
[BPR06] (see [HRS90a, GHR+90, HRS94b, CGV91, GV92, HRS94a, Can93,
GR93, BPR99] for the historical development of this result).

Proposition 3.2.1. Let P be a family of s polynomials in R[X1, ..., Xn] of
degree bounded by d. Then, there exists a family P̃ containing sndO(n4) poly-
nomials in R[X1, ..., Xn] of degree bounded by dO(n3), such that the partition
S(P̃) of Rn induced by the realization of the sign conditions on the family P̃
is finer than the partition A(P) induced by the connected components of the
realization of the sign conditions on the family P.

Moreover, there exists an algorithm that, on input P, computes a family
P̃ with the stated properties in time bounded by sn+1dO(n4); if the input
polynomials have integer coefficients whose bitsize is bounded by τ , the bitsize
of the coefficients of the output is τdO(n3). ut

The last proposition implies that a solution of the sing condition problem
for the family P̃ leads to a solution of the point location problem for the family
P. Combining the Corollary 2.3.4 with the last proposition, and identifying
different outputs corresponding to a same face of the arrangement A(P), we
obtain following corollary.

Corollary 3.2.2. Let P := {P1, ..., Ps} be a family polynomials in R[X1, ..., Xn]
of total degree bounded by d and logarithmic height bounded by τ . Then,
there exists a data structure of size τsdO(n4) that allows to solve the point lo-
cation problem for the family P. For any x ∈ Rn given by a triangular Thom
encoding of size (d′, τ ′), the point location query at x is answered perform-
ing log(s)dO(n4) arithmetic operations between integers of logarithmic height
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bounded by τdO(n), where τ = max{τ, τ ′} and d = max{dO(n3), d′}. The data
structure can be constructed in expected time τsdO(n4) . ut

3.3 Point Location using Cylindrical Algebraic De-
composition

Cylindrical Algebraic Decomposition (CAD) was introduced by Collins [Col75]
as a method to eliminate quantifiers in formulas of the elementary first-order
theory of the reals. CAD is a powerful tool that allows, among other things,
to decide the truth a first-order sentence in this theory and to compute strat-
ifications of a semi-algebraic set. Its main drawback is its complexity. The
size of a CAD adapted to a family {P1, ..., Ps} of polynomials of degree d in
R[X1, ..., Xn] is (sd)O(1)n .

In this section, we show how CAD can be used to solve the point location
problem. More than thirty years after its introduction by Collins, CAD has
become a standard technique. We base our results on the CAD construction
given in the textbook [BPR06], that are, in its turn, based on the cited original
work of Collins.

First, we introduce some notation. If P ∈ R[X1, ..., Xn] and x ∈ Rn−1,
we denote by P [x] the polynomial P (x,Xn) ∈ R[Xn]. Given a family P ⊂
R[X1, ..., Xn], we denote by P[x] the family {P [x] | P ∈ P}. A subset T of
Rn is called P-invariant if every polynomial P ∈ P has constant sign on T .

If P ∈ R[X] has ξ1 < ... < ξl as its different real roots, we call ξi the ith

real root of P , for 1 ≤ i ≤ l. The ith real root of a family {P1, ..., Ps} ∈ R[X]
is defined as the ith real root of Πs

i=1Pi.
For any 0 ≤ i < j ∈ N we denote by πi : Rj → Ri the projection onto the

first i coordinates, where R0 is defined as a singleton.

3.3.1 An Elimination Step and its Data Structures

Definition 3.3.1. Let P be a polynomial in R[X1, ..., Xn] and let S be a
semi-algebraic subset of Rn−1. We say that the real roots of P are delineable
on S and that ξ1, ..., ξl delineate the roots of P on S if there are continuous
semi-algebraic functions ξ1 < ... < ξl : S → R such that

• for every x ∈ S, the set {ξ1(x), ..., ξl(x)} is the set of all different real
roots of all non-zero polynomials P (x,Xn), and

• for 1 ≤ i ≤ l, the multiplicity of the root ξi(x) of P (x,Xn) is constant
for x ∈ S
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If P := {P1, ..., Ps} is a family of polynomials in R[X1, ..., Xn] we say that
ξ1, ..., ξl delineate the roots of P on S if they delineate the roots of Πs

i=1Pi on
S.

We remark that, if they exist, the functions that delineate the roots of the
family P on S are uniquely determined.

Given P,Q ∈ R[X1, ..., Xn] we denote by srj(P,Q) the jth signed subre-
sultant coefficient of P and Q and by lcof(P ) the leading coefficient of P seen
as a polynomial in R[X1, ..., Xn−1][Xn]. If P is a family of polynomials, we
denote by Tru(P) the set of truncations of the polynomials in P considered as
polynomials in the variable Xn. See [BPR06] for precise definitions.

Following [BPR06], we denote by ElimXn(P) ⊂ R[X1, ..., Xn−1] the set of
polynomials defined as follows:

• If R ∈ Tru(P), degXn(R) ≥ 2,ElimXn(P) contains all the nons-constant
srj(R, ∂R/∂Xn), j = 0, ...,degXn(R)− 2.

• If R ∈ Tru(P), S ∈ Tru(P), degXn(R) ≥ 2,ElimXn(P) contains all
srj(R,S) which are not in R, j = 0, ...,min(degXn(R), degXn(S))− 1.

• If R ∈ Tru(P) and lcof(R) is not in R, ElimXn(P) contains lcof(R).

From the Theorems 5.15 and 5.16 in [BPR06], we immediately obtain the
following result.

Theorem 3.3.2. Let P be a set of polynomials in R[X1, ..., Xn] and let S be
a connected semi-algebraic subset of Rn−1. If S is ElimXn(P)–invariant then
the real roots of P are delineable on S. ut

Definition 3.3.3. Let P = {P1, ..., Ps} ⊂ R[X1, ..., Xn] be a family of polyno-
mials, let S be a semi-algebraic subset of Rn−1 such that the family P[x] has l
real roots for any x ∈ S. A root selection table for P over S contains
l records. The ith record, for 1 ≤ i ≤ l, is composed of a pair (pi, qi) such
that for all x ∈ S, the ith real root of P[x] coincides with the qi-th real root of
Ppi [x].

If n = 1, we call any root selection table for P over R0 simply a
root selection table for P.

We immediately obtain the following result.

Corollary 3.3.4. Let P be a set of polynomials in R[X1, ..., Xn] and let S be
a connected semi-algebraic subset of Rn−1. If S is ElimXn(P)–invariant then
there exist a root selection table for P over S.
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Proof. Choose some x ∈ S. Since any real root of P[x] is a real root of P [x] for
some P ∈ P, there exists a root selection table for P[x]. Let us denote
it by T RootsP,x .

Suppose that for some i, j ∈ N and some P ∈ P, the ith real root of P[x]
coincides with the jth real root of P [x]. By Theorem 3.3.2, the real roots of
P and of every P ∈ P are delineable on S. Hence, by a simple continuity
argument, the ith real root of P[x′] coincides with the jth real root of P [x′],
for any x′ ∈ S. Thus, T RootsP,x is a root selection table for P over S. ut

Definition 3.3.5. Let P be a finite family of polynomials in R[X1, ..., Xn], let
S be a connected semi-algebraic subset of Rn−1 and suppose that ξ1 < ... < ξl
delineate the roots of P on S. A P-stratum over S is:

• either the graph of one of the functions ξS,j , for j = 1, ..., lS ,

• or a band of the cylinder bounded from bellow and from above by the
graphs of the functions ξS,j and ξS,j+1, for j = 0, ..., lS , where we take
ξS,0 = −∞ and ξS,lS+1 = +∞.

The P-strata over S are numbered in ascending order: 1, 2, ..., 2l + 1. In this
way, the stratum corresponding to the graph of the function ξS,j has number
2j, for j = 1, ..., lS . The strata corresponding to the graph of a function are
called graph strata. The remaining ones are called band strata.

If the polynomials in P are univariate, the P-strata over R0 are points and
open intervals. We refer to them simply as the P-strata.

Remark that the P-strata over S form a partition of S × R and that if
P ′ ⊃ P then the P ′-strata over S constitute a refinement of the partition
given by the P-strata over S.

Remark 3.3.6. Let C be a P-stratum over S. By definition, no polynomial in
P changes its sign on C. Hence, to every P-stratum over S there corresponds a
single P-sign-condition. In other words, C is P–invariant. In particular, since
any stratum is connected, C is contained in a single face of the arrangement
A(P).

On the other hand, different P-strata over S can realize the same P-sign-
condition. It is clear that if two strata realize the same sign condition, then
they are both band strata or graph strata.

If P is a polynomial in R[X1, ..., Xn] we denote by D(P ) the set consisting
of P and its successive non-zero derivatives with respect to Xn. For P ⊂
R[X1, ..., Xn] we define D(P) := ∪P∈PD(P ). The following Proposition is a
generalized form of Thom’s Lemma (see Lemma 5.32 in [BPR06]). It ensures
that, adding the corresponding derivatives, each sign condition is realized on,
at most, one stratum.
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Proposition 3.3.7. Let P ∈ R[X1, ..., Xn] and let S be a connected semi-
algebraic subset of Rn−1. If S is ElimXn(D(P ))–invariant, then each D(P )-
sign-condition realizable in S×R is realized on exactly one D(P )-stratum over
S.

Proof. By Theorem 3.3.2, the real roots of D(P ) are delineable on S. Hence,
the concept of D(P )-stratum over S is well defined. By Remark 3.3.6, each
D(P )-stratum over S is D(P )–invariant, i.e., it realizes a single D(P )-sign
condition.

Let σ be a D(P )-sign-condition realizable in S×R. Let x′ ∈ S and consider
the set R := {x ∈ R | sgn(D(P ), (x′, x)) = σ}. Remark that R intersects every
stratum realizing the sign condition σ. By Thom’s Lemma, R is a point or
an open interval. If R is a point, we conclude that there is only one stratum
realizing the sign condition σ.

Let us assume that R is an open interval. Then, the strata that intersect R
are band strata. Thus, R is the union of disjoint open intervals corresponding to
the different band strata realizing the sign condition σ. Since R is connected,
we conclude that there is a single D(P )-stratum over S realizing the sign
condition σ. This completes the proof. ut

We remark that any P -stratum over S is the union of some D(P )-strata
over S.

Definition 3.3.8. If S is a connected semi-algebraic subset of Rn−1 which is
ElimXn(D(P ))–invariant, we define the Thom encoding table of P over S
as the table that associates to any D(P )-sign-condition realizable in S×R the
number of the unique P -stratum over S realizing it. The existence of this table
is guaranteed by Proposition 3.3.7. We require the table to be lexicographically
ordered by D(P )-sign-condition and denote it by T ThomP,S .

With this last definition we have completed our basic data structures. We
present now the algorithms used to query these tables. In order to specify, in
the description of our algorithms, the assumptions concerning preconstructed
tables or the parameters of an algorithm, and to differentiate these from the
inputs of the algorithm, we use the label context.

Algorithm 3.3.9 (Thom encoding query over S).

Context: Let P ∈ R[X1, ..., Xn] be a polynomial of degree d, let S be a con-
nected semi-algebraic subset of Rn−1 which is ElimXn(D(P ))–invariant and
assume precomputed the Thom encoding table of P over S, T ThomP,S .
Input: A D(P )-sign condition σ, realizable in S ×R.
Output: The number of the P -stratum over S realizing σ.
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Procedure: Perform a binary search on the (lexicographically ordered) Thom
encoding table and return the stratum number corresponding to σ.
Complexity Analysis: Since T ThomP,S is lexicographically ordered by sign con-
dition, the search time is logarithmic in the length of the table. Since the
number of real roots of the family D(P ) is bounded by d(d+ 1)/2, the number
of D(P )-strata (i.e., the number of rows in the table) is at most d2 + d + 1.
Hence, the total complexity is O(log(d)).
Proof of Correctness: Follows from the Proposition 3.3.7 and the definition
of the Thom encoding table of P over S. ut

Algorithm 3.3.10 (Relative position query over S).

Context: Let P ∈ R[X1, ..., Xn] be a polynomial of degree d and logarith-
mic height τ , let S be a connected semi-algebraic subset of Rn−1 which is
ElimXn(D(P ))–invariant and assume precomputed the Thom encoding table
of P over S, T ThomP,S .
Input: A triangular Thom encoding for x ∈ Rn of size (d′, τ ′) and i ∈ N such
that P has at least i different real roots.
Output: Bellow, Inside or Above according to the relative position of x with
respect to the ith real root of P .
Procedure: Use the sign determination algorithm (see Proposition A.4.3)
to obtain the sign condition satisfied by D(P ) at x. A Thom encoding query
over S then gives the number, pos, of the P -stratum containing x. If pos > 2i
return Above, if pos < 2i return Bellow, otherwise return Inside.
Complexity Analysis: Denoting by d the maximum of d and d′ and by τ
the maximum of τ and τ ′, the first step requires dO(n) arithmetic operations
between integers of logarithmic height bounded by τdO(n) and dominates the
total complexity.
Proof of Correctness: Follows from Proposition A.4.3, the correctness of
Algorithm 3.3.9 (Thom encoding query over S) and the numbering of the
P-strata over S given in Definition 3.3.5. ut

Algorithm 3.3.11 (P-stratum-number query over S).

Context: Let P ⊂ R[X1, ..., Xn] be a family of s polynomials of degree
bounded by d and logarithmic height τ , let S be a connected semi-algebraic
subset of Rn−1 which is ElimXn(P)–invariant and ElimXn(D(P ))–invariant for
every P ∈ P.
Assume precomputed the Thom encoding table of P over S, T ThomP,S , for
each P ∈ P.
Assume also precomputed T RootsP,S , a root selection table for P over S

(see Definition 3.3.3) and let us denote by pi and qi the two elements of the ith
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record in this table.
Input: A triangular Thom encoding for x ∈ S ×R of size (d′, τ ′).
Output: The number of the P-stratum over S containing x.
Procedure: Let g be the length of the table T RootsP,S , i.e., suppose that the
polynomials in P have g different real roots over S.
Perform a binary search on the ordered set of P-strata over S to determine the
number of the P-stratum containing x and output the result. More precisely:

Let l := 1, u := 2g + 1.
While l 6= u

Let i := p l+u
4

q

Perform an Relative position query over S for x with respect to
the qi-th real root of the polynomial Ppi ∈ P.

If the result is Inside return 2i (x belongs to the stratum C2i).
If the result is Bellow set u := 2i− 1.
If the result is Above set l := 2i+ 1.

Loop.
Return l (x belong to the unique remaining stratum, Cl).
Complexity Analysis: The number of comparisons in the binary search is
of order O(log(g)) = O(log(ds)). Each use of the Relative position query

over S requires dO(n) arithmetic operations, where d is defined as the maxi-
mum of d and d′. Thus, the total complexity is log(s)dO(n). The bitsize of the
integers involved is bounded by τdO(n), where τ is the maximum of τ and τ ′.
Proof of Correctness: Follows immediately from the usual properties of
binary search (see, for example, [Knu98]), the correctness of the Relative
position query over S and the properties of the root selection table.
ut

In particular, the previous query can be applied over connected regions
which are ElimXn(D(P))–invariant.

3.3.2 CAD for Point Location

We introduce now the notion of extended cylindrical (algebraic) decomposition
of Rn induced by a family of polynomials P.

Definition 3.3.12. Let P be a finite family of non-zero polynomials. We
define P? := ∪ni=1Pi where Pn := P and, for any i = 1, ..., n − 1, Pi :=
ElimXi+1(D(Pi+1)). We further define P≤i := ∪j≤iPj .

For 1 ≤ i ≤ n, consider the family Si consisting of the connected compo-
nents of the non-empty realizations of sign conditions on P≤i.
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We call the sequence S1, ...,Sn the extended cylindrical decomposition of
Rn induced by the family P. The elements of Si are called the cells of level
i of the extended cylindrical decomposition of Rn induced by a family P or,
for short, P-cells of level i. We define R0 as the unique P-cell of level 0 and
S0 := {R0}.

The following proposition is a direct consequence of the Theorem 5.33 in
[BPR06].

Proposition 3.3.13. With the notation from previous definition, for each
1 ≤ i ≤ n, the P-cells of level i form a finite partition of Ri into semi-algebraic
subsets and satisfy the following properties:

• each cell S ∈ S1 is either a point or an open interval;

• for every 1 ≤ i ≤ n and every S ∈ Si, S is a Pi-stratum over the P-cell
πi−1(S) of level i− 1.

Definition 3.3.14. To any cell of level i (1 ≤ i ≤ n) in the extended cylindrical
decomposition of Rn induced by a family P we associate its cell code in Ni

defined as follows:

• the P-cell code associated to a cell C of level 1 is its stratum number;

• if, for some 1 < i ≤ n, C is a P-cell of level i that is the mth stratum
over the P-cell πi−1(C) of level i−1, we define its cell code as code(C) =
(code(πi−1(C)),m).

If α is a P-cell code, we denote its corresponding P-cell by Cα.

Definition 3.3.15. Let P be a finite family of non-zero polynomials. Using
the notation from Definition 3.3.12, we define a CAD database for the family P
as a database that contains, for 1 ≤ i ≤ n, the family of polynomials Pi and, for
each P-cell S of level i (0 ≤ i < n) in the extended cylindrical decomposition
of Rn induced by P:

• a root selection table for Pi+1 over S and

• for each P ∈ Pi+1 the Thom encoding table of P over S.

Before presenting the P-stratum-number query we bound the degree and
number of polynomials in P≤i, for 1 ≤ i ≤ n. The next bounds follow directly
from the complexity analysis of Algorithm 12.34 in [BPR06] (cf. also Theorem
10 in [Col75]).
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Proposition 3.3.16. Let P ⊂ R[X1, ..., Xn] be a family of s nonzero polyno-
mials with degree bounded by d. Using the notation from Definition 3.3.12,
for any 1 ≤ i ≤ n, the set Pn−i, has at most O(sd)3i polynomials of degree
bounded by O(d)2i . ut

Algorithm 3.3.17 (P-stratum-number query).

Context: Let P ⊂ R[X1, ..., Xn] be a family of s polynomials of degree at
most d and logarithmic height bounded by τ .
Assume precomputed the CAD database for the family P
Input: A triangular Thom encoding for x ∈ Rn of size (d′, τ ′).
Output: The cell code of the P-cell containing x.
Procedure:
Let m be the answer to a P-stratum-number query on x1.
Let α be an empty list of integers. Append m to α.
For i = 2 to n do
−Letm be the answer to a Pi-stratum-number query over Cα in (x1, ..., xi).
−Add m to the list α.
Return α.
Complexity Analysis: For 1 ≤ i ≤ n, let di and si be the degree and
the number of polynomials in Pi. By Proposition 3.3.16, di = O(d)2n−i and
si = O(sd)3n−i . Let us denote di := max{di, d′}. For 1 ≤ i ≤ n, the
Pi-stratum-number query costs log(si)di

O(n). Adding the complexity of these
steps and simplifying, we obtain that the total complexity is log(s)dO(1)nd′O(n).
The integers involved in these operations have bitsize bounded by τdO(1)nd′O(n).
Proof of Correctness: Follows from the Definition 3.3.14 (cell-code defini-
tion) and the correctness of the Algorithm 3.3.11 (P-stratum-number query).
ut

3.3.3 Construction of the Database

The constructions of the Cylindrical Algebraic Decomposition from [Col75]
and [BPR06] contain all the ingredients we need to build our CAD database.
We summarize the precise result in the following theorem.

Theorem 3.3.18. Let P := {P1, ..., Ps} be a family non-zero of polynomials
in R[X1, ..., Xn] of degree bounded by d ≥ 2.

Then, there exists a data structure of size (sd)O(1)n , that can be con-
structed in time (sd)O(1)n and that allows to solve the point location problem
for the family P. The number of arithmetic operations performed for a query
point x ∈ Rn represented by a triangular Thom encoding of size (d′, τ ′) is
log(s)dO(1)nd′O(n).
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Moreover, if the bitsize of the coefficients of P is bounded by τ , the bit-
size of the intermediary computation of the preprocessing stage and of the
polynomials stored in the database is bounded by τdO(1)n . The bitsize of the
integers involved in th query evaluation is bounded by τdO(1)nd′O(n), where
τ := max{τ, τ ′}.

Proof. The Algorithm 12.32 (improved cylindrical decomposition) in [BPR06]
computes the polynomials in P? (see Definition 3.3.12), a sample point for
each cell and the sign conditions valid at each sample point, satisfying the
bounds in statement of the theorem. From this information, the tables for
the CAD database can be easily computed and ordered. Finally, using sample
points, we identify different P-cells corresponding to the same face of A(P).
The complexity bounds of the whole procedure are those of the statement of
the theorem, since the O symbol hides the cost of the last steps.

The query evaluation time follows from the correctness of Algorithm 3.3.17
(P-stratum-number query). ut

3.4 Point Location for Polynomials with Integer Co-
efficients

In 1984, Meyer auf der Heide [MadH84] solved the point location problem for
a family of linear polynomials with integer coefficients. His strategy was to
find, given a family of affine linear polynomials in Z[X1, ..., Xn] of logarithmic
height bounded by τ ∈ N, an ε > 0 depending only on n and τ , called the
coarseness of the given family, such that any hypercube in Rn of side-length
ε has the following property: all the affine hyperplanes defined by the given
family that cut the given hypercube have a common intersection point. This
fact allowed him to design a non-uniform polynomial-time algorithm which
solves the Knapsack Problem. In the present section, we shall generalize this
argumentation to semi-algebraic subsets of Rn of arbitrary degree.

3.4.1 Introduction

Let R be an hypercube in Rn and let P ∈ Z[X1, ..., Xn] be a polynomial. If
the sign of P is not constant on R we say the P cuts R.

Let P := {P1, ..., Ps} be a family of polynomials in Z[X1, ..., Xn] of total
degree and logarithmic height bounded by d and τ respectively. We remark
that this implies a bound on the cardinality s of P: since each polynomial is
determined by its

(
n+d
d

)
coefficients and each coefficient by its τ bits, we obtain

s ≤ 2τ(
n+d
d ) ≤ 2τ(d+1)n .
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We further remark that this bound on the cardinality of P makes the
parameter s disappear from our complexity bounds. Since s is bounded by
2τ(d+1)n , a bound of the kind τdO(n) log(s) equals τdO(n), where s does not
intervene.

In this section, we assume that the family {P1, ..., Ps} is generic in the
following sense: for any 1 ≤ r ≤ n and any 1 ≤ i1 < ... < ir ≤ s, the
polynomials Pi1 , ..., Pir form a regular sequence in Q[X1, ..., Xn] or generate
the trivial ideal. In the sequel, we suppose again d ≥ 2.

Under this genericity assumption, we decompose the hypercube [0, 1]n ⊂
Rn in small closed hypercubes with mutually disjoint interiors. For each of
these small hypercubes, there exist at most n polynomials of P which cut it;
the remaining polynomials in P have constant, positive or negative, sign on the
hypercube. The side length of each of these hypercubes is of order 2−τd

O(n2) .
The information about which polynomials of P cut a given small hypercube

and the signs of the remaining polynomials is stored, at a preprocessing stage,
in a data structure.

First, we present an algorithm that solves the sign condition problem. It
works as follows. Given a point x ∈ [0, 1]n, the preconstructed data structure
allows us to determine in τdO(n2) steps a small hypercube Rx containing the
point x and the polynomials in P that cut this hypercube. Evaluating at
x the (at most n) polynomials of P that cut the hypercube Rx, we solve
the sign condition problem for the family P (see the definition in Section
2.1) performing τdO(n2) operations. We remark again that s—the number
of polynomials in P—is not involved in the complexity of the query and is
bounded by the remaining parameters.

Since different connected components of the same sign condition may inter-
sect the same small hypercube, this algorithm does not solve the point location
problem. Under the additional hypothesis that different connected components
of a same sign condition have disjoint closures, we present an algorithm that
solves the point location problem for the family P in τdO(n3) operations.

3.4.2 The Arithmetic Relation between Distance and Height

We extend the notion of height to rational numbers. If r = p
q 6= 0 is a

rational number with p, q ∈ Z coprime, we define its height as H(r) :=
max{H(p), H(q)} and its logarithmic height as h(r) := max{h(p), h(q)}.

From Theorem 1.3.1 in [BPR94] (restated as Theorem 14.21 in [BPR06])
we immediately obtain the following result.

Proposition 3.4.1. Let ϕ(Y1, ..., Yl) be an existential first-order formula, with
l free variables of the form ∃X1...∃Xkψ, where ψ is a boolean combination of
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polynomial equalities and inequalities involving polynomials of degree bounded
by d and logarithmic height bounded by τ . Then, there exists an equivalent
quantifier-free formula involving polynomials of degree bounded by dO(k) and
logarithmic height bounded by τdO(kl). ut

Lemma 3.4.2. Let ψ be a quantifier-free first-order formula over the reals
with only one free variable and involving polynomials with integer coefficients
of height bounded by H. Suppose that there exists real numbers µ 6= 0 that
belongs to the border of the realization of ψ, R(ψ) ⊂ R. Then, |µ| > 1

H+1 .

Proof. Since the formula ψ is quantifier free, µ must be a root of some of the
polynomials involved in ψ, namely P =

∑d
i=0 aiX

i ∈ Z[X]. The height of P
is bounded by H. We assume, without loss of generality, that a0 6= 0.

Thus, by Cauchy’s bound for the zeroes of a polynomial, the absolute value
of any root of P is at least 1

H+1 . In particular, |µ| > 1
H+1 . ut

Definition 3.4.3. For α1 < β1, α2 < β2, ..., αn < βn ∈ Q, the set

[α1, β1]× ...× [αn, βn] ⊂ Rn

is called a rational hyper-rectangle with coordinates α1, ..., αn, β1, ..., βn. Its
logarithmic height is defined as the maximal logarithmic height of its coordi-
nates.

Proposition 3.4.4. There exists a universal constant c ∈ R, c > 0 that satis-
fies, for any three positive integers τ, n and d > 2 the following property.

Let R ⊂ Rn be a rational hyper-rectangle of logarithmic height τ and
let P1, ..., Pr, Q ∈ Z[X1, ..., Xn] be polynomials of degree at most d and of
logarithmic height bounded by τ . Consider the subsets of Rn

P := {P1 = 0, ..., Pr = 0} ∩R and Q := {Q = 0} ∩R.

If P and Q are disjoint then their euclidian distance is strictly greater than
2−τd

c·n .

Proof. Let us assume that P and Q are disjoint and non-empty. Since they
are closed and bounded, the distance between them is positive, say µ ∈ R>0.
Denoting by χR the first-order formula that expresses the set R, we consider
the variable ε and the following first-order formula:

ϕ(ε) := ∃x1 ... ∃xn∃y1 ... ∃yn χR(x) ∧ χR(y) ∧
P1(x) = 0 ∧ ... ∧ Pr(x) = 0 ∧

Q(y) = 0 ∧ |x− y|2 ≤ ε2.
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Clearly, a positive real number ε satisfies this formula if and only if ε ≥ µ.
The formula ϕ has ε as the only free variable, x1, ..., xn, y1, ..., yn as bounded
variables and involves polynomials of degree at most d and logarithmic height
at most τ . Hence, by Proposition 3.4.1, there exists an equivalent quantifier-
free first-order formula ψ involving polynomials of degree bounded by dO(n) and
height bounded by 2τd

O(n) . Thus, by Lemma 3.4.2, µ is at least 1

1+2τd
O(n) =

2−τd
O(n) . ut

3.4.3 The Mathematical Insight

We recall that our genericity hypothesis (see Section 3.4.1) implies that, for
any point of Rn, there exist at most n polynomials of the family P intersect
simultaneously at any point in Rn. Given an hypercube R ⊂ Rn, we say that
P is k-determined over R if at most k polynomials of the family P cut R.

Proposition 3.4.5. Let P := {P1, ..., Ps} ⊂ Z[X1, ..., Xn] be a family of
polynomials of total degree bounded by d and logarithmic height bounded by
τ .

Then there exists a constant c′ ∈ N such that the rational number δ :=
2−τd

c′·n2

> 0 of logarithmic height τdO(n2), satisfies the following property:
any hypercube R ⊂ [0, 1]n of side length δ is n-determined for the family P.

Following Meyer auf der Heide, we call the rational number δ a coarseness
for the family P.

Proof. Let R0 = [0, 1]n ⊂ Rn. If R0 is n-determined we are done. Otherwise,
we proceed with the following construction.

Let c ∈ R, c > 0 be such that δ1 = 2−τd
c·n satisfies the Proposition 3.4.4

on R0 for every P1, ..., Pr, Q ∈ P with r ≤ n. Let 0 < δ′1 <
δ1√
n
be a rational

number of logarithmic height at most τplog(n)qdc·n. Let us consider the sub-
division of R0 in rational hypercubes of side length δ′1 and logarithmic height
τndc·n and let R1 be one such hypercube.

We claim that there are two possibilities:

1. R1 is n-determined,

2. at most n− 1 polynomials in P intersect simultaneously in R1.

To prove our claim, suppose that R1 is not n-determined and that there
exists 1 ≤ i1 < ... < in ≤ s such that P := {Pi1 = 0, ..., Pin = 0} ∩ R1 6= ∅.
Since R1 is not n-determined, there exists Q ∈ P \ {Pi1 , ..., Pin} that cuts R1.
By our genericity hypothesis, P∩{Q = 0} is not empty. Hence, by Proposition
3.4.4, the distance between P and {Q = 0} ∩R1 is at least δ1. Let x ∈ P and
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y ∈ {Q = 0} ∩R1. Then, since both belong to R1, |x− y| ≤
√
nδ′1 < δ1. This

contradicts Proposition 3.4.4 and proves our claim.
We iterate this process. Let 1 < i ≤ n and let us assume as inductive

hypothesis that after the ith iteration we obtain a partition of [0, 1]n into
rational hypercubes of side length δ′i > 0 and logarithmic height bounded by
τ(plog(n)qd·c·n)i such that each hypercube is (n− i+1)-determined or at most
n− i polynomials in P intersect simultaneously in it.

Let Ri be one hypercube in this partition. If Ri is (n− i+ 1)-determined
we are done. Thus, let us suppose that at most n−i polynomials in P intersect
simultaneously in Ri.

We subdivide Ri in smaller hypercubes. Let δi+1 = 2−τ(plog(n)qdc·n)idc·n =
2−τ(plog(n)q)id(i+1)c·n satisfy Proposition 3.4.4 on the hypercube Ri for every
P1, ..., Pr, Q ∈ P with r ≤ n. Let 0 < δ′i+1 < δi+1√

n
be a rational num-

ber of logarithmic height τ(plog(n)qdc·n)(i+1). Let us consider the subdivi-
sion of Ri in rational hypercubes of side length δ′i+1 and logarithmic height
τ(plog(n)qdc·n)(i+1) and let Ri+1 be one such hypercube.

As before, we claim that there are two possibilities:

1. Ri+1 is (n− i)-determined,

2. at most n− i− 1 polynomials in P intersect simultaneously in Ri+1.

To prove our claim, suppose that Ri+1 is not (n− i)-determined and that
exist indices 1 ≤ j1 < ... < jn−i ≤ s such that P := {Pj1 = 0, ..., Pjn−i =
0} ∩ R1 is not empty. Since Ri+1 is not (n − i)-determined, there exists Q ∈
P\{Pj1 , ..., Pjn−i} that cuts Ri+1. By our inductive hypothesis (Ri is (n−i+1)-
determined), P∩{Q = 0}∩Ri+1 = ∅. Hence, by Proposition 3.4.4, the distance
between P and {Q = 0} ∩ Ri+1 is at least δi+1. Let x ∈ P and y ∈ {Q =
0} ∩ Ri+1. Then, since both belong to Ri+1, |x − y| ≤

√
nδ′i+1 < δi+1. This

contradicts Proposition 3.4.4, proves our claim and completes the inductive
step.

It follows that, after n iterations, we arrive to an hypercube Rn which is
1-determined.

In particular, it follows from the construction that any hypercube R ⊂ R0

of side length δ := δ′n = 2−τ(plog(n)qdc·n)n = 2−τd
O(n2) is n-determined for the

family P. ut

We briefly discuss the case of affine hyperplanes (d = 1, the affine linear
case). Although in this case Proposition 3.4.1 and hence Proposition 3.4.4 can
be improved to obtain heights which are simply exponential in the dimension n,
the height resulting from the iterative method presented in the last proposition
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remains doubly exponential in the dimension (2τO(n)n). Hence, we keep our
assumption d ≥ 2 in the sequel.

3.4.4 The Sign Condition Algorithm

Based on the results of the last paragraph, we construct a big data structure
of size 2τd

O(n2) that allows, for any x ∈ [0, 1]n, a fast determination of the sign
condition satisfied by the polynomials in P at x.

In order to specify, in the description of our algorithms, the assumptions
made about the parameters of an algorithm and to differentiate these from the
inputs of the algorithm, we use the label Context:.

First we state the following algorithm that is a form of multidimensional
binary search, with m as a parameter.

Algorithm 3.4.6 ( 1
m-grid query).

Context: Let be given a positive integer m of logarithmic height, say µ.
Input: A triangular Thom encoding for x = (x1, ..., xn) ∈ [0, 1]n of size (d′, τ ′).
Output: (i1, ..., in) ∈ Nn such that x ∈ Πn

j=1[ ijm ,
ij+1
m ]

Procedure:
For j = 1, ..., n perform a binary search to determine ij such that xj ∈
[ ijm ,

ij+1
m ].

Each comparison of the binary search is done evaluating the sign of a polyno-
mial Xj − q

m for an appropriate integer q.
Return (i1, ..., in).
Complexity Analysis: Each binary search requires O(µ) comparisons. Each
comparison costs dO(1) arithmetic operations using the sign determination
algorithm (see Proposition A.4.3). Hence, the algorithm performs µd′O(1)n
arithmetic operation between integers of logarithmic height bounded by µd′O(1),
where µ is the maximum between µ and τ ′.
Proof of Correctness: The proof is delicate, but follows the usual argumen-
tation of binary search (see, for instance [Knu98]). ut

Let P = {P1, ..., Ps} ⊂ Z[X1, ..., Xn] be a finite family of polynomials
and let m ∈ Z. We define the 1

m -grid cut array of the family P as the n-
dimensional array of size mn that in the position (i1, ..., in) ∈ {0, ...,m − 1}n
contains the list of the indices of the polynomials in P that cut the hypercube
Πn
j=1[ ijm ,

ij+1
m ] ⊂ [0, 1]n. By Proposition 3.4.5, each of these lists contains at

most n indices.
The 1

m -grid cut array can be queried using the following algorithm.
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Algorithm 3.4.7 (Sign condition query).

Context: Let P = {P1, ..., Ps} ⊂ Z[X1, ..., Xn] be a generic family of polyno-
mials of degree bounded by d and logarithmic height bounded by τ .
Letm ∈ N of logarithmic height µ such that any hypercube contained in [0, 1]n

of side length 1
m is n-determined for the family P.

Assume precomputed the 1
m -grid cut array for P.

Input: A triangular Thom encoding for x = (x1, ..., xn) ∈ [0, 1]n of size (d′, τ ′).
Output: (i1, ..., in) ∈ Nn such that x ∈ R := Πn

j=1[ ijm ,
ij+1
m ] and the sign con-

dition satisfied at x by the polynomials in P that cut the hypercube R.
Procedure:
Perform a 1

m-grid query to determine (i1, ..., in) ∈ Nn such that

x ∈ Πn
j=1[

ij
m
,
ij + 1
m

].

Let j1, ...jk be the indices in the position (i1, ..., in) of the 1
m -grid cut array.

Using the sign determination algorithm, evaluate the sign condition satis-
fied by Pj1 , ..., Pjk at x.
Return(i1, ..., in) and the sign condition satisfied by Pj1 , ..., Pjk at x.
Complexity Analysis: The first step requires µd′O(n) arithmetic operations
between integers of logarithmic height bounded by max{µ, τ ′}d′O(n) by the
complexity analysis of Algorithm 3.4.6.
By Proposition A.4.3 (sign determination algorithm), the evaluation of
each polynomials costs dO(n) arithmetic operations between integers of log-
arithmic height bounded by max{τ, τ ′}dO(n), where d = max{d, d′}. Since at
most n polynomials in P cut the hypercube R, the complete evaluation phase
costs at most ndO(n) = d

O(n) arithmetic operations. Thus, the total algebraic
complexity is µd′O(n) + d

O(n).
Proof of Correctness: Follows from the correctness of the Algorithm 3.4.6
( 1
m-grid query) and the properties of the 1

m -grid cut array. ut

The following proposition is useful to analyze the cost of the precomputa-
tion.

Proposition 3.4.8. Let R ⊂ Rn be an hypercube, let P ∈ Z[X1, ..., Xn] be
a polynomial and suppose that τ bounds the logarithmic heights of R and P .
Then, it is possible to decide whether P cuts R in dO(n) arithmetic operations
between numbers of logarithmic height bounded by τdO(n).

Proof. Clearly, the formula

ϕP := ∃x (P (x) = 0 ∧ χR(x))
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is true if and only if P cuts R. By Theorem 13.14 in [BPR06], this sentence
can be decided within the stated bounds. ut

Theorem 3.4.9. Let P := {P1, ..., Ps} be a generic family of polynomials
in Z[X1, ..., Xn] of total degree and logarithmic height bounded by d and τ
respectively.

Then, there exists a data structure of size 2τd
O(n2) , that can be constructed

in time 2τd
O(n2) and that allows to determine, for any x ∈ [0, 1]n given by a

triangular Thom encoding of size (d′, τ ′), the sign conditions satisfied by the
polynomials in P at x in τdO(n2)d′O(n) arithmetic operations between integers
of logarithmic height bounded by max{τdO(n2), τ ′}d′O(n).

Proof. By Proposition 3.4.5, there exists a constant c ∈ N such that, defining
m := 2τd

cn2

and δ := 1
m , P is n-determined over any hypercube R ⊂ [0, 1]n

of side length δ, i.e., δ is a coarseness for the family P. We assume that the
constant c has been computed before the construction of the data structure.

We first compute the 1
m -grid cut array for P: for any 0 ≤ i1, ..., in < m

and any 1 ≤ k ≤ s, we determine if the polynomial Pk cuts the hypercube
Πn
j=1[ ijm ,

ij+1
m ] using Proposition 3.4.8. The complete construction of the 1

m -

grid cut array for P requires smndO(n) = 2τd
O(n2) arithmetic operation be-

tween rational numbers of logarithmic height bounded by τdO(n2).
Suppose now precomputed the 1

m -grid cut array for P. We claim that
the Sign condition query computes a partition of Rn finer that S(P). To
prove our claim let x, x′ ∈ [0, 1]n be such that the Sign condition query
outputs the same result (i1, ..., in), σ for both x and x′. Hence, x and x′ belong
to the same small hypercube R = Πn

j=1[ ijm ,
ij+1
m ] and satisfy the same sign

condition σ on the polynomials that cut R. Since the remaining polynomials
in P do not cut R, their sign is invariant on R. In particular, P realizes the
same sign condition at x and at x′.

Now it is easy to identify (using a precomputed extra table) within the
same complexity bounds the different outputs of the Sign condition query
corresponding to a same sign condition.

The algebraic complexity of the Sign condition query is µd′O(n) +dO(n),
where µ = τdO(n2) is the logarithmic height of m and d = max{d, d′}. Thus,
in our case, the Sign condition query requires τdO(n2)d′O(n) arithmetic op-
erations between integers of logarithmic height bounded by max{τdO(n2), τ ′} ·
d′O(n). ut
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3.4.5 The Point Location Algorithm

Different faces of the arrangement A(P) can satisfy the same sign condition.
The following results are used to distinguish these different components.

Proposition 3.4.10. Let S1, S2 ⊂ Rn be two different connected components
of a semi-algebraic set described by a quantifier-free formula involving poly-
nomials of degree bounded by d and height bounded by H. If the distance µ
between S1 and S2 is positive, then it is at least H−dO(n3) .

Proof. By Proposition 16.22 in [BPR06], S1 and S2 can be described by first-
order quantifier-free formulas χS1 and χS2 involving polynomials of degree
bounded by dO(n3) and height bounded by HdO(n3) . Consider the formula

ϕ(ε) := ∃x1 ... ∃xn∃y1 ... ∃yn (χS1(x) ∧ χS2(y) ∧ |x− y|2 ≤ ε2).

The formula ϕ has one free variable, 2n quantified variables and involves poly-
nomials of degree bounded by dO(n3) and height bounded by HdO(n3) . Clearly,
µ belongs to the border of the realization of ϕ. Hence, By Proposition 3.4.1,
there exists an equivalent quantifier-free first-order formula ψ involving poly-
nomials of height bounded by HdO(n3) . Thus, by Lemma 3.4.2, µ is at least

1

1+HdO(n3)
= H−d

O(n3) . ut

Adding the hypothesis that the distance between any two different con-
nected components of a same sign condition of the family P is positive, we can
prove the following theorem.

Theorem 3.4.11. Let P := {P1, ..., Ps} be a generic family of polynomials
in Z[X1, ..., Xn] of total degree and logarithmic height bounded by d and τ
respectively. Suppose that the distance between any two different connected
components of a same sign condition of the family P is positive.

Then, there exists a data structure of size 2τd
O(n3) , that can be constructed

in time 2τd
O(n3) and that allows to solve the point location problem, for any

x ∈ [0, 1]n given by a triangular Thom encoding of size (d′, τ ′), in τdO(n3)d′O(n)

arithmetic operations between integers of logarithmic height bounded by d′O(n)

max{τdO(n3), τ ′}.

Proof. Since the distance between any two different connected components of
a same sign condition of the family P is positive, Proposition 3.4.10 implies
that there exists m := 2τd

O(n3) such that any the distance between any two
different connected components of a same sign condition of the family P is at
least

√
n
m . By Proposition 3.4.5, the integer m can be chosen to satisfy also
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that any hypercube of side length δ := 1
m contained in [0, 1]n is n-determined

for the family P (δ is a coarseness for the family P). We proceed as in the
proof of Theorem 3.4.9.

We first compute the 1
m -grid cut array for P: for any 0 ≤ i1, ..., in < m,

and any 1 ≤ k ≤ s we determine if the polynomial Pk cuts the hypercube
Πn
j=1[ ijm ,

ij+1
m ], using the Proposition 3.4.8. The complete construction of the

1
m -grid cut array for P requires smndO(n) = 2τd

O(n3) arithmetic operation
between rational numbers of logarithmic height bounded by τdO(n3).

Suppose now precomputed the 1
m -grid cut array for P. We claim that

the Sign condition query computes a partition of Rn finer that A(P). To
prove our claim let x, x′ ∈ [0, 1]n be such that the Sign condition query
outputs the same result (i1, ..., in), σ for both x and x′. Hence, x and x′ belong
to the same small hypercube R = Πn

j=1[ ijm ,
ij+1
m ] and satisfy the same sign

condition σ on the polynomials that cut R. Since the remaining polynomials
in P do not cut R, their sign is invariant on R. In particular, P realizes the
same sign condition at x and at x′.

Since x and x′ belong to the same small hypercube R, their distance is at
most

√
n
m . Hence, by construction, they cannot belong to different connected

components of a same sign condition of the family P. Since they satisfy the
same P-sign condition, we conclude that x and x′ belong to the same face of
the arrangement A(P). We remark that it is not difficult to identify, in the
preprocessing stage, different outputs corresponding to the same face of A(P)
within the same complexity bounds.

Finally, computing sample points (using Algorithm 13.11 in [BPR06]) cor-
responding to all the possible outputs of the Sign condition query, it is
possible to construct (in a preprocessing stage) an ordered table that identifies
with a same label different outputs of the Sign condition query correspond-
ing to a same face of the arrangement A(P) (see Theorem 16.18 in [BPR06]).
This construction can be done within the same space and time requirements
as the 1

m -grid cut array . The query time for this table is less than the sign
condition query time. This allows us to solve the point location problem for
the family P.

The algebraic complexity of the Sign condition query is µd′O(n) +dO(n),
where µ = τdO(n3) is the logarithmic height of m and d = max{d, d′}. Thus, in
our case, the Sign condition query requires τdO(n3)d′O(n) arithmetic opera-
tions between integers of logarithmic height bounded by max{τdO(n3), τ ′}d′O(n).
This completes the proof. ut
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3.5 Local Ray Shooting

In this section, we consider another important query from computational ge-
ometry: the ray shooting query. Computing the intersection between beams
and geometric objects is a central problem in radio-therapy; see [Pel04] for
references and the known results in the linear case. We shall study a local
version of this query, defined in the sequel, that can be efficiently answered
using the database constructed in the last section.

Given a large family of geometric objects in Rn, the ray shooting query
asks, given point p ∈ Rn and a direction −→v , the first object in the family
intersected by the ray {p + λ−→v | λ > 0} defined by the pair p,−→v , if the ray
intersects one such object or a message reporting that the ray intersects no
object.

The local ray shooting query for a family of geometric objects and a fixed
ε > 0 asks, given point p ∈ Rn and a direction −→v , the first object in the family
intersected by the ray defined by the pair p,−→v , if the distance among the first
intersection point and the original point p is at most ε, or a message reporting
that none exist.

In our case, each object is described as the set of zeroes of a polynomial
in R[X1, ..., Xn]. By the local ray shooting query for a family of polynomials
P ⊂ R[X1, ..., Xn], we understand the local ray shooting query for the family
of sets {{x ∈ [0, 1] | P (x) = 0} | P ∈ P}.

Let P := {P1, ..., Ps} be a family of polynomials in Z[X1, ..., Xn] of total
degree and logarithmic height bounded by d and τ respectively. As in the last
section, we assume that P is generic. We recall that in the last section, the unit
hypercube [0, 1]n was decomposed into small hypercubes of side length δ :=

2−τd
O(n2) (δ is the coarseness of the family P given by Proposition 3.4.5) and a

database was constructed associating to each hypercube in this decomposition
the (at most n) polynomials in the family P that cut it.

Let k be a positive integer and let us consider ε := kδ. We shall see that the
database constructed in the last section allows to solve the local ray shooting
problem for the family P of polynomials for the previously fixed ε efficiently.

The local ray shooting query can be used as part of a ray tracing algorithm,
for instance, to draw a neighborhood of any singularity of the semi-algebraic
set {x ∈ [0, 1] | P (x) = 0 for some P ∈ P}.

3.5.1 The algorithm

Let us discuss now the technique used to solve the local ray shooting problem.

Theorem 3.5.1. Let P := {P1, ..., Ps} be a family of generic polynomials
in Z[X1, ..., Xn] of total degree and logarithmic height bounded by d and τ
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respectively. Let δ := 2−τd
O(n2) be the coarseness of the family P given by

Proposition 3.4.5. Let k be a positive integer and let ε := kδ.
Then, the data structure constructed in Theorem 3.4.9 for the family P,

allows to solve the local ray shooting problem for this family and for the fixed
ε within the following complexity bounds.

For any p ∈ [0, 1]n and any non-zero direction −→v ∈ Rn given by triangu-
lar Thom encodings of size (d′, τ ′), the local ray shooting algorithm performs
τd′O(1)n+kd

O(n) arithmetic operations between integers of logarithmic height
bounded by τdO(n), where d := max{d, d′} and τ := max{τdO(n2), τ ′}.
Proof. The query algorithm we are going to present can be briefly described
as follows. First, the algorithm determines a small hypercube R of side length
δ containing the input point p using the 1

m-grid query (Algorithm 3.4.6) for
m = 1/δ, performing τnd′O(1) arithmetic operations between integers of loga-
rithmic height bounded by τd′O(1). Then, it verifies whether the ray emanating
from p with direction −→v intersects, inside R, some of the algebraic sets that
cut this hypercube (these are at most n by the genericity hypothesis and their
indices are stored in the preconstructed 1

m -grid cut array). If this is the
case, it determines the first and reports it.

We remark that, following the direction of the ray emanating from p with
direction −→v , the cubes of the partition intersected by this ray admit a natural
total order. If no intersection point is found inside R the algorithm proceeds
to the next hypercube in the grid, R′, intersected by the ray emanating from p
with direction −→v (the determination of R′ can be done fast and its complexity
is hidden in the total complexity of our method by the O symbol). Then, the
algorithm repeats the previous process for R′, i.e., it verifies whether the ray
emanating from x with direction −→v intersects, inside R′, some of the algebraic
sets that cut this hypercube. If this is the case, it determines the first and
report it. If this is not the case, it proceeds to the next hypercube in the
grid intersected by the ray. This process is iterated (at most nk times) until
an hypercube whose distance to p is bigger than ε is reached. As soon as an
intersection point is found, it is reported. If no intersection point is found, the
algorithm reports that none exist.

To analyze the complexity of the method, we have to study the complexity
of two different tasks:

• Given a polynomial P ∈ P, determine whether it intersects the ray de-
fined by p,−→v inside an hypercube R.

• Given the list of polynomials in P whose set of zeroes intersect, inside an
hypercube R, the ray defined by p,−→v , determine which of them defines
the first intersection point.
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Let us start with the first task. This problem can be stated as a decision
problem for the existential theory of the reals. Let ϕp(x) be the quantifier-free
first-order formula based on the triangular Thom encoding of p that is true
only when x = p holds and, analogously, for ϕ−→v (x). Then, ϕp(x) involves d′

polynomials of degree bounded by d′ and logarithmic height bounded by τ ′.
Let ϕR be the formula defining R.

Let P ∈ P and let us consider the first-order formula

∃λ ∃p ∃v (ϕp(p) ∧ ϕ−→v (v) ∧ λ > 0 ∧ P (p+ λv) = 0 ∧ ϕR(p+ λv)).

This formula expresses that the set of zeroes of the polynomial P intersects
a ray defined by p,−→v inside the hypercube R. Its truth can be determined
using Theorem 13.14 in [BPR06]. The formula involves 2(d′ + n + 1) poly-
nomials of degree bounded by d and logarithmic height bounded by τ and
2n + 1 existentially quantified variables. Hence, its truth can be decided in
d
O(n) arithmetic operations between integers of logarithmic height bounded by
τd

O(n).

The strategy for the second task is similar. Let us denote by Pi1 , ..., Pic the
polynomials in P whose sets of zeroes intersect the ray defined by p,−→v inside
the hypercube R. We assume c > 1 since otherwise there is nothing to do. We
remark that c ≤ n, since (by the genericity hypothesis and the construction of
δ) at most n polynomials in P cut the hypercube R.

First, considering the first intersection points of the sets of zeroes of Pi1
and Pi2 with the ray defined by p,−→v , we determine which is nearer to p. Then,
we compare the distance to p of the nearest of these two points with the first
intersection point determined by Pi3 and so on. After c− 1 < n comparisons,
we will have determined the polynomial that defines the first intersection point.

Let Pi and Pj be two polynomials that intersect the ray defined by p,−→v .
Keeping the notation used in the last formula, consider the following one:

∃λ ∃p ∃v ∀λ′ (ϕp(p) ∧ ϕ−→v (v) ∧ λ > 0 ∧ Pi(p+ λv) = 0 ∧
∧ [(0 < λ′ < λ)→ Pj(p+ λ′v) 6= 0]).

Clearly, this formula is true if and only if the first intersection point of the
ray defined by p,−→v with the set of zeroes of Pi is not further from p than the
first intersection point of this ray with the set of zeroes of Pj . Its truth can be
determined using a quantifier-elimination procedure.

The formula involves 2d′ + 5 polynomials of degree bounded by d and
logarithmic height bounded by max{τ, τ ′}. It contains 2n + 1 existentially
quantified variables and one universally quantified variable, with only one al-
ternation of quantifiers. Hence, by Theorem 14.21 in [BPR06], its truth can be
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decided in dO(n) arithmetic operations between integers of logarithmic height
bounded by max{τ, τ ′}dO(n).

Since both tasks are realized at most n times for each visited hypercube, and
since the number of hypercubes visited to answer one query is bounded by kn,
we conclude that the local ray shooting query algorithm performs τnd′O(1) +
kd
O(n) arithmetic operation between integers of logarithmic height bounded

by τdO(n). ut

3.6 Discussion

We have studied three data structures used to solve the point location problem
for a family of polynomials: the one obtained from the dialytic method; the
data structure obtained from a Cylindrical Algebraic Decomposition of the
space; and a third data structure that is based on a uniform partition of the
unit cube in Rn.

All of them require doubly-exponential time to be constructed and doubly-
exponential space to be stored.

From a geometric viewpoint the most important difference is that the last
two data structures, as well as the original one constructed by Meiser for the
linear case, achieve much more than just the determination of the face of the
arrangement A(P) containing a query point x ∈ Rn. They allow us to obtain
information concerning a simple neighborhood of x.

Using Meiser’s original data structure (see Section 2.1.3) for a family P of
linear polynomials, it is easy, not only to locate the query point x ∈ Rn among
the different faces of the arrangement A(P) but also to obtain a simplex ∆x,
containing x, that is not cut by any of the polynomials in the family P. This
simplex ∆x can be given in parametric form, what allows to move the point x
inside it without altering the sign conditions satisfied by P at this point.

Using the CAD data structure (see Section 3.3), we can obtain a Tarski
cell containing the query point, i.e. a contractible set of bounded description
size (here, the bound depends only on the discrete parameters of the input). A
parametrization of such a cell using Nash (e.g., rational) functions is possible.

Finally, the construction of Section 3.4 for generic families yields, for a given
query point x ∈ Rn, an hypercube containing x and the list of polynomials in
P that cut this hypercube. These three data structures give local information
about a topologically trivial neighborhood of the query point.

On the other hand, the case of the dialytic method given in Section 2.3 is
completely different. It has the best query time without requiring any gener-
icity hypothesis but does not allow us to obtain local information. Using the
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notation from Section 2.3, if we take the polynomial preimage ∆′x of the sim-
plex ∆G(x) obtained in Rk by Meiser’s algorithm to Rn via G−1 we obtain
the semi-algebraic set ∆′x containing x whose topology can be highly non-
trivial and, without considerable computational effort, generally unknown. In
particular, the dialytic method does not provide, in contrast with the other
methods, a simple geometrical and topological structure with the help of which
a set ∆′x containing x can be determined allowing to easily find a parametric
representation of the query point.

In this sense, the dialytic method provides less than the other studied
methods. Hence, it is not surprising that the query time for this method is
smaller.

It is precisely this local information concerning a neighborhood of the query
point that allows to solve efficiently the local ray shooting problem using the
last introduced data structure. We remark that also the genericity hypothesis
plays an important role in our local ray shooting algorithm.

Under this genericity hypothesis on the family P, our algorithm for the ray
shooting problem may be adapted to the CAD data structure. The reasons re-
cently exposed, make us unable to apply a similar method to the data structure
obtained from the dialytic method in order to solve this problem efficiently.

We comment on another approach to the ray shooting problem for a family
of polynomials that deserves further research (cf. [AE99]). A ray in Rn can be
represented as a point in the space Rn × Sn−1. This space can be partitioned
into cells so that all the points in one cell correspond to rays that hit the same
object first. In this way, the ray shooting problem in Rn becomes a point
location problem in Rn × Sn−1.

Finally, we remark that this chapter provides a certified example of a well
known folklore result: the preconstruction of big databases allows fast queries;
there is a trade off between the size of the database and the query time.



4
Quantifier Elimination using
Intrinsic Data Structures:
the Linear Case

Abstract. In this chapter, we introduce the notion of intrinsic description of
a linearly-constructible set and study the complexity of quantifier-elimination
methods in a computational model where the output is required to be an in-
trinsic description of the underlying set. We introduce a quantifier-elimination
algorithm in this model. It turns out that our elimination algorithm has a
doubly-exponential-time complexity in the worst case, when the complexity is
measured in terms of syntactic parameters (number of polynomials, number
of quantifier alternations, number of variables). We show that in our compu-
tational model, our algorithm is optimal, i.e., we prove a doubly-exponential
lower bound in the number of quantifier alternations of the input formula.

Remarkably, we obtain simply-exponential complexity bounds on intrinsic
geometric parameters of the input problem. Thus, our algorithm distinguishes
between well-posed and ill-posed problems and can be inscribed in the new
generation of algorithms which take also into account intrinsic, semantic in-
variants of the input in order to measure the complexity of the procedure.

69
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4.1 Introduction

Given a quantified first-order formula, to eliminate the quantifiers means to
give a quantifier-free equivalent formula. The goal of the present chapter is to
analyze the behavior of quantifier-elimination algorithms that proceed block
by block when the intermediary data obtained after the elimination of each
block is required to be intrinsic to the geometry of the input. In this way, we
fix a software architecture.

Since the complexity swell that takes place in the process of quantifier
elimination over R or C can be already observed in the linear case, we restrict
ourselves to this simpler framework in our analysis. See the Introduction to this
thesis for historical notes concerning the algorithmic aspects of the elimination
of quantifiers in the elementary theory of the reals.

In Section 4.2, we introduce the notion of intrinsic description of con-
structible sets. Afterwards, we define their canonic descriptions, and we in-
troduce the computational model and the data structures used to store these
descriptions. We further prove that canonic descriptions are intrinsic.

In Section 4.3, we present our quantifier-elimination algorithm. After elim-
inating one quantifier block, our method cleans the syntactic description thus
obtained, reducing it to its canonic description. In this sense, our method
follows the philosophy of the Kronecker algorithm for geometric elimination,
described in [GLS01, DL07]. It turns out that the elimination algorithm we
are going to introduce has a doubly-exponential-time complexity in the worst
case, when the complexity is measured classically (using syntactic measures).
Nevertheless, proceeding in this way, we obtain simply-exponential complexity
bounds on intrinsic geometric parameters of the input problem. Thus, our
algorithm distinguishes between well-posed and ill-posed problems and can be
inscribed in the new generation of algorithms which take also into account in-
trinsic, semantic invariants of the input in order to measure the complexity of
the procedure.

Finally, in Section 4.4, we prove that our complexity bounds are tight for
the previously fixed kind of data structures and discuss the related work on
lower bounds.

4.2 Theoretical Foundations

4.2.1 Constructible Sets

We work over a fixed field, K, and we denote An the n-dimensional affine space
over K.
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Definition 4.2.1. A subset S ⊂ An is called affine if it is the solution space
of a system of linear equations with coefficients in K.

A subset of An is called linearly constructible, or simply constructible in
this chapter, if it can be expressed from affine sets using unions, intersections
and complements.

For subsets in C, the notion of irreducible subset used in algebraic geometry
agrees with our notion of affine subset. In the sequel, we shall only refer to the
Zariski topology of the affine spaces which we are going to consider. If C is a
constructible subset of An, we denote by (C) its closure. Any closed linearly
constructible subset C ⊆ An can be uniquely decomposed into irreducible
components C = ∪di=1Ci. If C = ∪di=1Ci is not the union of any proper subset
of {C1, ..., Cd}, we say that {C1, ..., Cd} is an irredundant decomposition of C
and that the degree of C is d, denoted deg(C) = d.

Finally, given a constructible set C ⊂ An, we define the dimension of C
as the maximum of the dimensions of the irreducible components of an irre-
dundant decomposition of its closure, and denote it by dim(C). By definition
dim(∅) := −∞. The following statement is an instantiation of Proposition
5.40 in [BPR06] to the linear case and is easy to prove.

Lemma 4.2.2. If C ∈ C, C 6= ∅ then dim(C \ C) < dim(C). ut

4.2.2 The Language L

Our aim is to associate with any constructible set a canonic description. Let
us first remark that the closure of any constructible set owns already a natural
description, namely, the list of its irreducible components.

This is the starting point of the following constructions which will lead us
to the canonic description of arbitrary constructible sets.

The difficulty we face is the following. Affine sets themselves seem not to
own a natural description. Let us analyze the most basic case, an hyperplane
in An. It can be described naturally with one equation, but all the non-zero
multiples of this equation describe the same hyperplane. Which one shall we
choose as the canonic one? Here it is possible, fixing an order on the variables,
to determine a standard equation adding a rule like: the main coefficient with
respect to the given order of variables has to be one. However, this viewpoint
introduces an artifact (the variables order) which has no a priori geometric
meaning and is therefore not intrinsic in our sense.

We face a more complex situation when trying to determine the canonic
equation system corresponding to a given affine set of higher codimension. For
example, a straight line in a three dimensional ambient space has no intrinsic
equation system because every description of the line as the solution space
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of an equation system is, geometrically speaking, a description of the line as
the intersection of two hyperplanes and there is no natural criterion known
to choose the hyperplanes canonically. As in the previous case, a standard,
non-intrinsic, equation system can be chosen fixing an order on the variables.
The Gröbner basis approach illustrates how this can be done. We shall not go
into the details.

In order to overcame this problem of indeterminacy we are going to intro-
duce for each affine set a special predicate symbol. Doing this, we shall obtain
a unique and canonical description for each linearly constructible subset C ∈ C

such that the atomic formulas involved in these descriptions depend only on
the geometry of C.

Language L. We suppose that the predicates of our first-order language are
the characteristic functions of affine sets contained in C. We shall then be able
to associate with any constructible set a canonic description.

For an affine set S, we denote by ∆S the atomic formula that describes
S and we call ∆S the atomic description of S. We build the rest of the
descriptions—first-order formulas—from these atomic formulas. We denote by
L the first-order language whose vocabulary consists only of the predicates
{∆S | S is an affine subset in An, for some n}.

The first-order formulas in the language L are called L-formulas. Given an
L-formula ϕ, we denote by deg(ϕ) the number of atomic descriptions in the
formula ϕ, counted with repetitions. We remark that, defined in this way, the
notion of degree of a formula is an algebraic avatar of the syntactic notion of
formula length.

4.2.3 A Computational Model for Intrinsic Data

We use three data types with their respective constructors and queries to ex-
press our intrinsic elimination algorithms. We denote them by DAf ,DN and
Dlist. We briefly describe them in the sequel.

In agreement with our first-order language L, the data type DAf stores
atomic descriptions of affine sets. For the sake of simplicity, given an affine
set S we also denote by ∆S the instance of DAf that stores the description
of S. No confusion arises from using the same symbol for atomic first-order
predicates and DAf instances. When needed, we write DnAf to emphasize the
ambient space dimension.

To deal with the dimensions of constructible sets in the algorithms we need
other data type, denoted by DN, that represents natural numbers. Finally, we
have the data type of the list, Dlist, whose instances represent finite (possibly
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mixed) sequences of DAf ,DN and Dlist instances. The reader may think of an
instance of Dlist as a stack or a linked list.

For 1 ≤ i1 < ... < im ≤ n, we denote by (x1, . . . , x̂i1 , . . . , x̂im , . . . , xn) the
n −m tuple composed of the coordinates x1, ..., xn excluding xi1 , ..., xim , and
by x the tuple (x1, ..., xn).

Now we describe some operations on this data types.

• Intersection: ∩ : DnAf ×DnAf → DnAf ,

∩(∆S ,∆T ) := ∆S∩T .

• For 1 ≤ i1 < ... < im ≤ n, Projections: πni1,...,im : DnAf → D
n−m
Af ,

πni1,...,im(∆S) := ∆{(x1,...,x̂i1 ,...,x̂im ,...,xn)∈An−m | ∃xi1 ,...,∃xim∈Amx∈S}.

• Dimension: dim : DAf → DN,

dim(∆S) := dim(S).

• Decrement: dec : DN → DN,

dec(n) := n− 1.

These five operations are called elementary operations. We further intro-
duce the elementary tests.

• Contention (⊂): DnAf ×DnAf → {True, False},

(∆S ⊂ ∆T ) = True if and only if S ⊂ T.

• Order (<): DN ×DN → {True, False},

(a < b) = True if and only if the number represented by a

is smaller than the number represented by b.

• Type: Dlist → {A,N,L},

Type(l) equals A,N or L if the data type

of the data instance l is DAf ,DN or Dlist, respectively.
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Our algorithms also have the ability to deal with lists, but we shall not go
into the details, as they are completely standard and quite intricate.

An algorithm in our model is specified and programmed in terms of these
data types, independently of how they are implemented. Each operation is
called an elementary operation. Our complexity model is expressed in terms
of these elementary operation. The algebraic complexity of our algorithms
can be obtained multiplying the number of elementary steps by the number
of arithmetic operations they perform. See Section 4.3.4 for a possible im-
plementation of the type DAf in terms of arithmetic operations. The cost of
each elementary operation in this implementation reduces to M(n) = O(n3)
arithmetic operations, where n is the dimension of the ambient space.

4.2.4 Intrinsic Descriptions

Definition 4.2.3. Let H be a finite family of affine sets. We define the de-
scriptive power of H, DH , as the boolean algebra of sets generated by the
elements of H. The atoms are the elements of

ZH := {Z ∈ DH | ∃M ⊂ H, Z =
⋂
X∈M

X ∩
⋂
X/∈M

Xc 6= ∅}.

In particular, the elements of ZH form a finite partition of An and every
element in DH is finite union of elements in ZH (compare [Hei83] for the
polynomial case).

Clearly, if Z ∈ ZH then Z ∈ DH .

Proposition 4.2.4. If C ∈ DH , then C ∈ DH .

Proof. The set C can be written as a union of atoms, C =
⋃
i≤j Zi. Then,

since the union is finite, C =
⋃
i≤j Zi. Thus, C ∈ DH . ut

Definition 4.2.5. A brick of an L-formula ϕ is the realization of an atomic
descriptions appearing in ϕ. We denote the set of bricks of ϕ by Bϕ,

Bϕ := {R(∆) | ∆ is an atomic description appearing in ϕ}.

We observe that the bricks are affine sets. The descriptive power of Bϕ,
namely DBϕ , is abbreviated by Dϕ.

Definition 4.2.6. Let C be a constructible set. We define descriptive power
of C as the boolean algebra containing those constructible sets that belong to
the descriptive power of any description of C. In symbols

DC :=
⋂

R(ϕ)=C

Dϕ.
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We observe that C ∈ DC .

Definition 4.2.7. Let ϕ be an L-formula and let C = R(ϕ). The formula ϕ
is called an intrinsic description of C if Dϕ = DC .

In other words, a description ϕ is intrinsic if its descriptive power is mini-
mal.

4.2.5 Definition of Filtrations

To define the canonic description of a constructible set, we need the geometric
results from the present section.

Definition 4.2.8. Given C and D two closed sets, we say that D is strictly
contained in C, and denote it by D < C, if D ⊆ C and C \D = C.

We show how to decompose a constructible sets into a sequence of closed
sets.

Definition 4.2.9. A filtration, F = C(1), . . . , C(k), is a finite chain of non-
empty closed sets each one strictly contained in the previous one, C(i+1) < C(i).
The number k is called the length of the filtration F . For the sake of simplicity,
we shall write C(i) = ∅, for i > k.

The degree of the filtration F is defined as the sum of the degrees of the
closed sets in the chain: deg(F ) =

∑k
i=1 deg(C(i)).

We denote by F ′ the filtration C(2), . . . , C(k) obtained from F by deleting
its first element and with F the class of all the filtrations. The closed set C(i)

is called the ith level of the filtration F .

There is a natural way to associate filtrations with constructible sets and
viceversa. For this purpose, we consider now the functions F : C −→ F and
E : F −→ C.

We start defining FC , the image of C under the map F , by induction on
dim(C). If C = ∅ we define FC as the empty chain. Let us suppose given
a non-empty C ∈ C and that F is defined for all the constructible sets of
lower dimension than C. Using the fact that dim(C \ C) < dim(C) (Lemma
4.2.2), we define FC := C,FC\C . It is clear that a filtration cannot have length
greater than n+ 1.

For the definition of E : F −→ C, we proceed in a similar way. If F is the
empty filtration, we define EF = ∅. Let F = C(1), . . . , C(k) be a filtration of
length k and let us suppose E defined for all the filtrations of smaller length.
We define EF := C(1) \ EF ′ .
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Proposition 4.2.10. F ◦ E = IdF and E ◦ F = IdC.

Proof. Let C ∈ C. We prove by induction on dim(C) that C = EFC holds. If
C = ∅, then FC is empty and therefore we have EFC = C. Suppose now that
dim(C) ≥ 0, then we have FC := C,FC\C and therefore EFC = C \ EFC\C =
C \ (C \ C) = C, where the second equality is valid by inductive hypothesis.

Now, we prove that for all F ∈ F, F = FEF holds. If F is the empty
filtration, the equality is immediate. Suppose that the equality holds for all
the filtrations of length lower than k > 0, and let F = C(1), . . . , C(k) be a
filtration. We have, by the definitions of E and F , that

FEF = FC(1)\EF ′ = C(1) \ EF ′ ,F(C(1)\EF ′ )\(C(1)\EF ′ )
.

Since for all 1 ≤ i < k, C(i) < C(1) holds, we have that C(1) \ EF ′ = C(1).
Hence, in particular, (C(1) \ EF ′) \ (C(1) \ EF ′) = EF ′ . In this way, we obtain
FEF = C(1),FEF ′ . Thus, by inductive hypothesis, FEF = F . ut

Definition 4.2.11. Given a constructible set C, we define its degree as the
degree of its filtration, deg(C) := deg(FC).

Although the similarity of the conceptualization, this definition does not
coincide with the definition of grade given in [Hei83].

The fact that we use the same name and notation for the degree of a
formula, of a filtration and of a constructible set should not lead to confusions.
As we shall see later, the use of an homonym is justified.

4.2.6 Filtrations and Locally Closed Sets

We recall that a set C ⊂ An is called locally closed if it is the intersection of
an open and a closed set. We remark that, in particular, if C and D are closed
sets and D < C then C \D is a locally-closed set.

Proposition 4.2.12. If C ∈ C and FC = C(1), . . . , C(k) then

C =
d k

2
e⋃

i=1

(C(2i−1) \ C(2i)).

Moreover, the union is disjoint.

Proof. Let C ∈ C and define F := FC = C(1), . . . , C(k). We proceed by
induction on k. The result being immediate for k = 1 and k = 2, we suppose
k > 2 and that the result holds for filtrations of length bounded by k − 2.
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By definition of E , EF = C(1) \ (C(2) \ EF ′′). Using the rule of De Morgan,
this can be rewritten as, EF = C(1) ∩ (C(2) ∩ (EF ′′)c)c = C(1) ∩ ((C(2))c ∪EF ′′),
where Zc denotes the complement of the set Z. Observing that EF ′′ ⊂ C(1),
we obtain C = EF = (C(1) ∩ (C(2))c) ∪ EF ′′ = (C(1) \ (C(2))) ∪ EF ′′ . Thus, the
result follows by induction. The union is disjoint because EF ′′ ⊂ C(2). ut

The following proposition shows that the filtration of a constructible set
and that of its complement are pretty similar.

Proposition 4.2.13. Let C be a constructible subset of An and let us denote
by F = C(1), . . . , C(k) the filtration associated with C. If C(1) = An then
FCc = F ′, else FCc = An, C(1), . . . , C(k).

Proof. Since for any constructible set C ⊂ An, C = An or Cc = An and
the complement is involutary (i.e., Ccc = C) we can assume with out loss of
generality that C = An.

Hence, the result follows immediately, since

Cc = (EF )c = (An \ EF ′)c = EF ′ .

ut

We observe that, if C is a constructible set, deg(Cc) ≤ deg(C) + 1.

4.2.7 Canonic Descriptions

Now we introduce the concept of canonic description of constructible sets. If
C is a constructible set, its canonic description, denoted by ΦC , is a first-order
formula in the language L that expresses the set C using its filtration. We
explicitly state the way that this description is stored in the algorithms.

Using the filtrations we can determine each constructible set from a chain of
closed sets. In its turn, closed sets can be determined as an irredundant union
of affine sets. Hence, we first give the definition of the canonic description for
closed sets and then we extend it to arbitrary constructible sets.

Affine Sets: If S is an affine set, we define ΦC := ∆C , i.e., its canonic
description is its atomic description. In the algorithms, this formula is stored
as one instance of the DAf data type.

Closed Sets: Let C ⊂ An be a closed set. Consider C = ∪di=1Ci an irredun-
dant decomposition of C as union of affine sets. This decomposition is unique
up to the order of its members.
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We define

ΦC :=
d∨
i=1

∆Ci .

A description like this is called a closed-set canonic description.
In the algorithms, the formula ΦC is stored as the list of atomic descriptions

(∆C1 , . . . ,∆Cd) using the data type Dlist.

Proposition 4.2.14. Given a list of d affine subsets of An, the canonic de-
scription of its union can be found in O(d log(d)) elementary operations, in
the sense of Section 4.2.3. The algorithm that performs this operation is called
CLEAN-CLOSED.

Proof. The algorithm simply orders the d affine sets by decreasing dimension
(in O(d2) elementary operations) and successively classifies them in selected
and discarded, discarding those sets that are subsets of some previously selected
one.

It is necessary to classify d sets and each classification takes less than
d elementary operations. The whole algorithm performs O(d2) elementary
operations.

The output of the algorithm is the list of selected sets. This list describes
an irredundant decomposition of the input. ut

Constructible Sets: Let C be a constructible set and let FC = C(1), . . . , C(k)

be its filtration. We define

ΦC :=
d k

2
e∨

i=1

(ΦC(2i−1) ∧ ¬ΦC(2i)).

That R(ΦC) = C is a direct consequence of Proposition 4.2.12. The for-
mula ΦC is called the canonic description of C.

We store this description as a list of canonic descriptions of closed sets,
(ΦC(1) , . . . , ΦC(k)). This data structure will also be used to store the filtrations.
Thus, from an algorithmic point of view, filtrations and canonic descriptions
of constructible sets are indistinguishable.

We remark that for any constructible set C, deg(ΦC) = deg(FC) = deg(C)
holds.

Proposition 4.2.15. There exists an algorithm, called NEG, such that, on
input a canonic description of a constructible set C ⊂ An, it outputs the
canonic description of the set Cc, performing two elementary operations.
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Proof. By Proposition 4.2.13, it is sufficient to verify whether the first element
of the filtration associated with C represents the whole ambient space, An, or
not and remove or add the atomic description ∆An to the input list, accordingly.

ut

Canonic Descriptions are Intrinsic We prove now that canonic descrip-
tions are intrinsic and we give an alternative characterization of DC .

A boolean algebra of constructible subsets of the affine space An is called
expanded if for every closed set in the algebra, all its irreducible components
also belong to the algebra.

Proposition 4.2.16. The descriptive power of C, DC , is the minimal ex-
panded boolean algebra containing C and closed un Zariski closures. Also,
DC = DΦC .

Proof. Certainly, DC is a boolean algebra and it contains C. By Proposition
4.2.4, it is closed under closures. It is expanded because all the Dϕ in the
definition of DC (see Definition 4.2.5) are expanded.

To prove that it is the minimal with these properties, consider ΦC , the
canonic description of C, and observe that the bricks of ΦC are the irreducible
components of the sets C(1) = C,C(2) = C \ C,C(3) = (C \ C) \ (C \ C), . . ..
We remark that these bricks belong to any expanded boolean algebra closed
under closures and containing C. Hence, DC = DΦC and the proof is complete.

ut

Since, by last proposition, DC = DΦC , we immediately obtain the following
corollary.

Corollary 4.2.17. The canonic description of a constructible set is intrinsic.
ut

Striped Affine Sets

In the next section, we shall present a quantifier-elimination algorithm for
linear constructible sets. To eliminate one quantifier block is equivalent to find
the description of a projection of a constructible set. As a general fact, this is
not an easy task. Now, we introduce a particular kind of locally-closed sets,
called striped affine sets, for which the elimination process is easy.

Definition 4.2.18. If C is an affine set and D < C is a closed set then C \D
is called a striped affine set or striped set for short.



80 Quantifier Elimination using Intrinsic Data Structures

Given a striped affine set R, we denote by R+ its closure and with R− the
set Rc ∩ R+. It is clear that R = R+ \ R− and that R− < R+. We also use
this notation for locally-closed sets.

Following the canonic description introduced in Section 4.2.7, a striped set
R is stored as the pair (∆R+ ,ΦR−). We remark that deg(R) = deg(R+) +
deg(R−) = 1 + deg(R−), since R+ is always an affine set.

We observe that any consistent conjunction of equalities and negation of
equalities expresses a striped affine set. On the other hand, the canonic de-
scription of the striped affine set R, ΦR, can be seen as the conjunction of an
atomic formula with a conjunction of negations of atomic formulas (remember
that the atomic formulas are equivalent to a conjunction of equalities).

We shall see now that the projection of a striped affine set is easy to com-
pute. This will play a central role in our quantifier-elimination algorithm which
will reduce the general problem to the projection of striped affine sets.

Consider an orthogonal projection π : An → An−m. Given an affine set
A ⊂ An and x ∈ π(A), the dimension of the set A ∩ π−1(x) is independent of
the element x ∈ π(A). We we call it the dimension of the fibers of A for the
projection π, and denote it by df(π,A).

Lemma 4.2.19. Let R = R+ \ R− ⊂ An be a striped affine set with R− =⋃d
i=1R

−
i , the irredundant decomposition of R−. Let π : An → An−m be an

orthogonal projection. Then,

π(R) = π(R+) \ (
⋃
i

df(π,R+)=df(π,R−i )

π(R−i )).

Also, deg(π(R)) ≤ deg(R).

Proof. This equality can be simply proven observing that π(R) ⊂ π(R+) and
that a point x ∈ π(R+) does not belong to π(R) if and only if for some i ≤ d,
π−1(x) ∩R+ = π−1(x) ∩R−i . Since R+ and R−i are affine sets and R−i ⊂ R+,
this last condition is equivalent to df(π,R+) = df(π,R−i ) and x ∈ π(R−i ).

The degree bound follows immediately from the description of π(R). Hence,
the lemma follows. ut

The striped affine sets play a central role in this work because, on the one
hand they are easy to project, and on the other hand, as Proposition 4.2.12
shows, every constructible set can be decomposed as the union of striped sets.

4.2.8 Particles

When trying to bound the degree of the filtration of a set from an arbitrary de-
scription of the set, we need to count how many irreducible sets can be defined
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from the given family of irreducible sets using intersections. For this task, the
algebraic notion of atom is not well-suited. We introduce the geometric notion
of particle.

Definition 4.2.20. Let D be an expanded boolean algebra of constructible
sets. We call the irreducible sets in D, particles of D.

Remark 4.2.21. Let H be a family of irreducible sets in An and let DH be
its descriptive power. Then, the set of particles of DH is given by

{P ∈ DH | P =
⋂
S∈I

S, P 6= ∅, for some I ⊂ H}.

We denote by pcl(D) the number of particles in D. We observe that there
exists a bijective relation between atoms and particles of D (taking closure).
Also note that given C ∈ C, the irreducible components of the different level
of the filtration FC are always particles of DC . Hence, we obtain immediately
obtain the following result.

Proposition 4.2.22. The number of particles in DC is an upper bound for
the degree of C. ut

For n, d ∈ N, we define

particle-bound(n, d) :=
(
d
n

)
+
(

d
n− 1

)
+ . . .+

(
d
1

)
+ 1.

Proposition 4.2.23. Let H be family containing d > 1 irreducible sets in An,
then the number of particles in DH , pcl(DH), is at most particle-bound(n, d).
Also, for n > 1, particle-bound(n, d) ≤ dn.

Proof. Since, by Remark 4.2.21, every particle can be written as intersection of
at most n elements inH, the bound is immediate from the sum over k = 0, ..., n
of the number of different possible intersections of k irreducible sets in H. The
estimation, for d, n > 1, particle-bound(n, d) ≤ dn constitutes an elementary
fact in combinatorics. ut

In Section 4.4.1 we give an example showing that this exponential behavior
can actually occur.

4.3 The Algorithms

To eliminate one existential quantifier block before a canonic description, we
first convert the canonic description to a description of the same set as a
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union of striped affine sets. Then, we project each striped set and, finally,
we convert the result to its canonic description. In Section 4.3.1, we present
the two conversion algorithms. In Section 4.3.2, we introduce the projection
algorithms and the complete quantifier-elimination method.

4.3.1 Conversion Algorithms

Decomposition as Union of Striped Affine Sets

Locally closed sets as union of striped affine sets: Any locally closed
set, C = C+ \ C− can be described in a natural way as a striped sets union.

If C+ decomposes as ∪di=1C
+
i (an affine sets union) then C decomposes as

the striped affine sets union ∪di=1(C+
i \ (C+

i ∩ C−)). We define

ΣC+\C− :=
d∨
i=1

(∆C+
i
∧ ¬ΦC+

i ∩C−
).

This gives a description of C as a striped affine sets union. We will store it,
naturally, as the list of striped affine set descriptions that compose it.

Proposition 4.3.1. If C is a locally closed set, given ΦC+ and ΦC− it is
possible to obtain the formula ΣC+\C− in O(deg(C+) deg(C−)2) elementary
operations. Moreover, the degree of ΣC+\C− is bounded by deg(C)2.

Proof. Each closed set C+
i ∩C− has degree bounded by deg(C−). Hence, it is

possible to find its canonic description, using the algorithm CLEAN-CLOSED,
performing O(deg(C−)2) elementary operations (see Proposition 4.2.14). The
algorithm performs deg(C+) of these reductions. Clearly, the degree of each
striped affine set is bounded by deg(C−) + 1 ≤ deg(C) and there are deg(C+)
of these sets. Hence, the degree of ΣC+\C− is bounded by deg(C)2. ut

We call CONV-LC2SA the algorithm underlying the proof of Proposition
4.3.1

Constructible sets as union of striped affine sets: Let FC = C(1), . . . ,
C(k) be the filtration associated with C. Using FC and the Proposition 4.2.12,

we know how to describe C as a locally closed sets union: C =
⋃d k

2
e

i=1(C(2i−1) \
C(2i)). By the preceding paragraph, we know how to describe each locally
closed set C(2i−1) \ C(2i) as a striped set union.

We now define

ΣC :=
d k

2
e∨

i=1

ΣC(2i−1)\C(2i) (4.3.1)
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In this way, any constructible set can be described as a union of striped
affine sets. The formula ΣC is called the striped sets union description of C
and it is stored as the list of striped sets descriptions that compose it. Clearly,
R(ΣC) = C.

The following lemma will be useful to obtain the bounds of next corollary.

Lemma 4.3.2. Let t, d1, ..., dm natural numbers and let d =
∑m

i=0 di. Then,
dt ≥

∑m
i=1 d

t
i.

Proof. We proceed by induction onm. The result being tautological form = 1,
we assume m > 1. Let us denote by a the natural number

∑m−1
i=0 di.

By inductive hypothesis at ≥
∑m−1

i=0 dti. Now, the result follows immedi-
ately from the binomial formula: dt = (a + dm)t =

∑t
i=0

(
t
i

)
aidt−im ≥ at + dtm.

This completes the proof. ut

Corollary 4.3.3. Given FC , the filtration associated with a constructible
set C, it is possible to find ΣC , the description of C as a striped-set union,
performing O(deg(C)3) elementary operations.

Also, deg(ΣC) ≤ deg(C)2.

Proof. Let d be the degree of C, and for 1 ≤ i ≤ dk2e, let us denote by di the

sum of the degrees of C(2i−1) and C(2i). Then, d =
∑d k

2
e

i=1 di. By Proposition
4.3.1, the ith disjunct in Equation 4.3.1 has degree bounded by d2

i and can be
computed performing O(d3

i ) elementary operations. Hence, last lemma implies
that ΣC has degree bounded by d2 and that the whole procedure requires O(d3)
elementary operations. ut

We call CONV-FILT2SA the algorithm that performs this conversion.

Canonic Form Conversion

We present the algorithm CONV-SA2FILT that finds the canonic description
of a set described as a union of striped sets, obtaining the following result:

Proposition 4.3.4. Given Σ, a striped sets union description of a constructible
set C ⊂ An, with deg(Σ) = d, it is possible to find the canonic description of C,
∆C in O(d2n2

) elementary operations, using the algorithm CONV-SA2FILT.
Moreover deg(C) ≤ pcl(DΣ) ≤ deg(Σ)n.

Proposition 4.3.4 is proved in Section 4.3.3. We observe that the canonic
form conversion algorithm is the only step that cannot be done in polyno-
mial time. In a certain sense, this is the bottleneck of our whole quantifier-
elimination method. Since the output of this algorithm is determined in ad-
vance, it makes sense to ask whether this conversion can be done in polynomial
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time in the degrees of the input and the output. In Section 4.4 we shall exhibit
an argument which indicates a negative answer to this question.

4.3.2 Quantifier-Elimination Algorithm

In this section we present the quantifier-elimination algorithm. We first analyze
the elimination of one existential block before a striped set description, we
then generalize it to constructible sets and, finally, to an arbitrary number of
quantifiers blocks.

Projection of Striped Sets

As first step towards a quantifier-elimination algorithm, we are interested in
finding the canonic description of a set defined by Q∆, where Q = ∃xi1 . . . ∃xim
is an existential-quantifier block and ∆ is the description of a striped set. The
main interest in the striped sets is that they are easy to project, and that its
projection is again a striped set.

Given Q = ∃xi1 . . . ∃xim , an existential-quantifier block, we define the pro-
jection πQ : An → An−m,

πQ(x1, . . . , xn) = (x1, . . . , x̂i1 . . . , x̂im . . . xn).

We remark that for an affine subset A of An, the dimension of the πQ-
fibers of A can be computed by means of the following form of the Dimension
Theorem in linear algebra:

df(πQ, A) = dim(A)− dim(πQ(A)).

Hence, given the atomic description of A, it is possible to compute the
description of the projection πQ(A) and its fiber dimension, df(p,A), using
O(1) elementary operations.

We obtain the following result.

Proposition 4.3.5. Given an existential-quantifier block Q and a canonic
description of a striped set R, we can compute the canonic description of
πQ(R) in O(deg(R)2) elementary operations. Also, deg(πQ(R)) ≤ deg(R).

Proof. Using Lemma 4.2.19, it is possible to obtain a description of the striped-
affine set πQ(R) in O(deg(R)) elementary operations, but the result is not
necessarily in canonic form. Using Proposition 4.2.14, we reduce it to obtain
the canonic description of πQ(R) performing other deg(R−)2 elementary oper-
ations. ut

The algorithm that perform this computation is called PROJ − SA.
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Projection of Canonically Described Constructible Sets

Combining the results established up to here and using the fact that projections
commute with unions, i.e., πQ(C ∪ D) = πQ(C) ∪ πQ(D), we are now able
to compute a description of the projection of any constructible set, given its
canonic description.

Proposition 4.3.6. Let C ⊂ An be a constructible set of degree d. Given
its canonic description and an existential-quantifier block Q, it is possible to
description as union of striped sets, ΣπQ(C), of πQ(C), performing O(d3) ele-
mentary operations.

Moreover, we have deg(ΣπQ(C)) ≤ d2 and pcl(DΣπQ(C)
) ≤ dn.

Proof. The algorithm performs two steps. First, it converts the given canonic
description to a description as a striped sets union using the algorithm CONV-
FILT2SA (described in the Corollary 4.3.3). Second, it projects each striped
set in this union using the algorithm PROJ-SA (see Proposition 4.3.5). This
gives a description of πQ(C) as a striped-sets union. In the first step, the
degree grows at most quadratically. In the second step, the degree does not
grow. ut

We call PROJ-FILT2SA this algorithm. We remark that it perform a
polynomial number of steps in the input’s degree.

Canonical Description of the Projection of Canonically Described
Constructible Sets

We remark that the description ΣπQ(C) of πQ(C) obtained from the last propo-
sition may be redundant. It is possible to apply the algorithm enounced in
Proposition 4.3.4 to clean this description finding the canonic description of
πQ(C). This allows us to iterate the process and eliminate several quantifiers
blocks, as we will see.

We present now the following algorithm, called ELIM-EXIST. In the next
proposition, we summarize the results.

Algorithm 4.3.7 (ELIM-EXIST).

Input: Φ a canonic description of a set C and Q an existential-quantifier
block.
Output: A canonic description of πQ(C)
Procedure: Σ := PROJ-FILT2SA(Φ, Q).
Return CONV-SA2FILT(Σ). ut
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Proposition 4.3.8. Let C ⊂ An be a constructible set of degree d, let ΦC be
its canonic description and let Q be an existential-quantifier block. On input
ΦC and Q, the previous algorithm outputs the canonic description of the set
R(QΦC) performing O(d4n2

) elementary operations.
Also, deg(πQ(C)) ≤ dn.

Proof. The algorithm performs two steps. The first step converts the canonic
description given as input to a striped-sets-union description of its projection.
By last proposition, this step requires O(d3) elementary operations and the
degree of the resulting description is at most d2. In the second step, we convert
this description to a canonic one. The time bound follows immediately from
Proposition 4.3.4.

Composing both algorithms with their respective degree bounds, we obtain
a d2n degree bound for the output. However, we can do better. Let BC be the
set of bricks of ΦC , and let us denote by πQ(BC) the set

{πQ(B) | B is a brick of ΦC}.

It is clear that πQ(C) belongs to the boolean algebra DπQ(BC) (our quantifier-
elimination method furnishes a proof of this fact). By Proposition 4.2.23 and
Proposition 4.2.22 we have deg(πQ(C)) ≤ dn. ut

Quantifier-elimination Algorithm

Combining the algorithms introduced in the last sections, we obtain finally a
quantifier-elimination procedure. As usual, we suppose that the input of our
algorithm is in prenex normal form (see [Men97]). We also assume that the
quantifier-free part of the input is the canonic description of a constructible
set.

Let Q be a list of quantifiers that can be divided into alternated blocks
Q = Q(r) · · ·Q(1) and let ΦC be the canonic description of the constructible
set C of degree d. We are interested in the canonic description of the set
R(QΦC).

For a block Q(i) of universal quantifiers, we write Q̃(i) for its associated
block of existential quantifiers, in symbols Q̃(i) = ¬Q(i). If Q(i) is a block of
existential quantifiers, we write Q̃(i) for the same block.

When Q is a universal-quantifiers block, the classical equivalence

Q∆↔ ¬Q̃¬∆ (4.3.2)

and the fact that finding the canonic description of the complement of a set
given in canonic description is simple, allow us to use the previous algorithm
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also to eliminate also a block of universal quantifiers, leading to the following
results.

Algorithm 4.3.9 (ELIM-QUANT).

Input: ∆ a canonic description of a set C and Q(r) · · ·Q(1) alternated quan-
tifiers blocks.
Output: Canonic description of the set R(Q∆)
Procedure: If (Q(1) is universal) ∆ := NEG(∆).
For (i = 1, . . . , r)

∆ := ELIM-EXIST(∆, Q̃(i)).
∆ := NEG(∆).

If (r ≡ 1 mod 2) ∆ := NEG(∆).
Return ∆. ut

The following results, summarizes the complexity of our algorithm when
measured in terms of extrinsic (syntactic) parameters.

Theorem 4.3.10. Let C ⊂ An be a constructible set of degree d, let ΦC be
its canonic description and let Q be a list of quantifiers that can be divided
into r alternated blocks Q(1) · · ·Q(r). The previous algorithm finds the canonic
description of the set R(Q∆), in O(d2nr+1

) elementary operations. The degree
of the output is bounded by O(dn

r
).

Proof. The correctness of the algorithm follows from the Equation 4.3.2 and
Proposition 4.3.8. Let us denote by Ci the constructible set R(Q(i) · · ·Q(1)∆)
and by di its degree. Let us also define d0 := d. Then, for 1 ≤ i ≤ r,
by Proposition 4.3.8, the ith iteration of the for-loop in the above algorithm
takes O(di−1

4n2
) elementary operations and di ≤ dni−1. Hence, deg(R(Q∆) =

dr ≤ dn
r and the last iteration of the for-loop takes O(dn

r−14n2
) = O(d4nr+1

)
elementary operations. Thus, the theorem follows. ut

Our algorithms has a form that is suitable for an intrinsic version. Here,
the parameters that governs the complexity are intrinsic to the geometry of
the set and the bound is simply exponential in terms of them.

With the hypothesis and notations from the last proposition, let us denote
by Ci the constructible set R(Q(i)rQ(1)∆) and di its degree. Defining δ =
max{di | i = 0, . . . , r}, we obtain the following result.

Theorem 4.3.11. The previous algorithm finds the canonic description of the
set Cr performing O(δ2n2

) elementary operations.

This means that it is possible to eliminate r quantifiers blocks in simply-
exponential time in an intrinsic geometric parameter. In this sense, our algo-
rithm distinguishes between well-posed and ill-posed problems.
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4.3.3 Canonic Form Conversion Algorithm

The rest of this section is technical and may be skipped in a first reading. We
present the algorithm CONV-SA2FILT that finds the filtration of a set given
as a union of striped sets, thus proving the Proposition 4.3.4.

Let Σ be a formula, with deg(Σ) = d, that expresses a set C as union of s
striped sets

Σ = ∨i=1,...,s(∆R+
i
\ ΦR−i

).

We start presenting the algorithm that finds the first two levels, C(1) and C(2),
of the filtration FC .

Algorithm 4.3.12 (CONV-SA2FILT-L1L2).

Input: Σ, description of C as a union of striped sets R1, ..., Rs.
Output: C(1) and C(2), the first two levels of the filtration FC .
Procedure: Define C(1) :=CLEAN-CLOSED(∆R+

1
, ...,∆R+

s
). (irreducible

components of the closure)
Define C(2) := ∅;
Define ΦS :=CLEAN-CLOSED(ΦR−1

, ...,ΦR−s
). (the list of potential stripes)

Let m be the number of affine sets in S;
(S is the union of the affine sets, S1, ..., Sm)

For i = 1, . . . ,m
C(2) :=CLEAN-CLOSED(C(2), TRUE-HOLES(∆Si ,Σ)).

Return C(1), C(2). ut

In each step of the unique for of the previous algorithm, the stripes are
reduced as much as possible to find the second level of the filtration. The
stripes coming from each Ri are not necessarily components of C(2) since they
can be covered by some other Rj . The algorithm TRUE-HOLES is in charge
of performing this verification.

The algorithm CONV-SA2FILT-L1L2 uses the procedure CLEAN-CLOSED
(see Proposition 4.2.14) and the procedure TRUE-HOLES that, given ∆S (an
atomic description of an affine set S) and Σ (a description of a striped affine
sets union) outputs an irredundant decomposition of the set S \ R(Σ). We
present now this last algorithm.

We observe that it is here where the complexity explosion takes place. It
is interesting to remark the analogy with the algorithm that finds the DNF
(disjunctive normal form) of the negation of a formula given in DNF. Also in
that case, a combinatorial explosion takes place (see [JS00]).

If T is an affine set and R is a striped set we say that R covers T bulkily if
R ∩ T = T .
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Algorithm 4.3.13 (TRUE-HOLES).

Input: ∆T a description of an affine set T ; Σ d̄escription of a striped sets
union R1, . . . , Rs.
Output: ∆T1 , . . . ,∆Tm , a description of an irredundant decomposition of the
set T \ R(Σ).
Procedure: For i = 1, . . . , s

If ((T ⊂ R+
i ) and (T ∩R−i = ∅)) (Ri covers it completely)

Return ∆∅.

Let g = 0;
For i = 1, . . . , s

If ((T ⊂ R+
i ) and (T ∩R−i v T )) (Ri covers it bulkily)

g = i.

If (g = 0) (i.e., it is not covered bulkily by any Ri)
Return ∆T .(then, T = T \ R(Σ), i.e., T it is a true hole)

(at this point we know that Rg covers T bulkily)
(so the new potential true holes are contained in T ∩R−g )
Let m be the number of affine sets in R−g .

∆ := ∅.
For i = 1, . . . ,m

∆ :=CLEAN-CLOSED(∆, TRUE-HOLES(∆T∩(R−g )i
,Σ)).

Return ∆. ut

The plan for the rest of this section is the following: first, we analyze
the complexity of the two algorithms recently presented (TRUE-HOLES and
CONV-SA2FILT-L1L2) and prove their correctness. Then, we present the
algorithm CONV-SA2FILT (that is the one that converts striped affine sets
union description to canonic descriptions) with its corresponding complexity
analysis.

Lemma 4.3.14. Given Σ—a description of degree d of a constructible set
C ⊂ An as a striped sets union, and given ∆T—the description of an affine set
T ⊂ An of dimension k, the algorithm TRUE-HOLES returns a description
of an irredundant decomposition of T \ R(Σ) performing O(d2k+1) elementary
operations.

Proof. If dim(T ) = 0, then T consists of one point and there are two possible
outputs: T and ∅ depending on whether T * C or T ⊆ C. The previous
algorithm determines this in O(d) elementary operations. The correctness, in
this case, follows immediately.
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Let us suppose now that the lemma is proven for dim(T ) < k and consider
an input with dim(T ) = k. Looking at the definition of the TRUE-HOLES
algorithm, it is clear that before the line defining ∆ := ∅ the algorithm performs
O(d) elementary operations between affine sets. Hence, we only need to bound
the time used in m calls to the instruction

∆ = CLEAN-CLOSED(∆,TRUE-HOLES(∆T∩(R−g )i
,Σ)).

We observe that m ≤ d and that we have that dim(∆T∩(R−g )i
) < k. By the

inductive hypothesis, each call to TRUE-HOLES takes less than O(d2k−1) ele-
mentary operations. Hence, in the whole for-loop, a total of O(d2k) elementary
operations are performed in the recursive calls to TRUE-HOLES.

We observe that, since the output of TRUE-HOLES is a list of parti-
cles of the original input family, Proposition 4.2.23 implies that deg(TRUE-
HOLES(∆T∩(R−g )i

,Σ)) ≤ dk and deg(∆) ≤ dk hold during the execution of the
for-loop. Hence, each call to CLEAN-CLOSED takes less than O(d2k) elemen-
tary operations. Thus, the complete algorithm performs a total of O(d2k+1)
elementary operations.

To prove the correctness of the algorithm, let us first suppose that T \ R(Σ)
is empty. In this case, the algorithm finishes after the first IF, returning ∆∅.

Secondly, if T \ R(Σ) = T , the algorithm halts after the third IF returning
∆T .

Hence, let us finally assume that ∅ 6= T \ R(Σ) 6= T . Thus, T is bulkily
covered by some Ri and the correctness follows by inductive hypothesis on the
dimension of T . From the properties of the CLEAN-CLOSED algorithm it
follows that the output is irredundant. ut

Now, analyze the complexity of the algorithm CONV-SA2FILT-L1L2.

Lemma 4.3.15. Given Σ, a degree d description of a constructible set C
of dimension k, as a striped affine sets union, the algorithm CONV-SA2FILT-
L1L2 finds the first two levels of the filtration FC performingO(d2k) elementary
operations.

Proof. The first three lines in the definition of the algorithm CONV-SA2FILT-
L1L2 can be done using O(d2) elementary operations. The unique for-loop
in the algorithm can be bounded in the same way as in the previous proof,
obtaining the announced bounds.

Since closure commutes with finite unions, the first level of the filtration is
the one computed in the first line of the algorithm.

The second level of the filtration is, by definition, equal to C \ C. Since,
C = R(Σ) and

C \ C ⊂ ∪i=1,...,mSi,
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we conclude that the second level of the filtration equals

∪i = 1, ...,m(Si \ R(Σ)).

That C(2) is given in canonic form is ensured by the properties of the CLEAN-
CLOSED algorithm. Thus, the correctness of the algorithm follows from the
correctness of TRUE-HOLES and the proof is complete. ut

We present, finally, the algorithm that finds the filtration of a space given
as a striped sets union.

Algorithm 4.3.16 (CONV-SA2FILT).

Input: Σ, description of a constructible set C as tripped set union.
Output: FC .
Procedure: Let i = 1.
Let Φ = Σ.
While (Φ 6= ∅)

(C(i), C(i+1)) =CONV-SA2FILT-L1L2(Φ). (compute the next two lev-
els)

Φ = Σ ∩ C(i+1). (compute a description of the remaining points)
Let i = i+ 2.

Return (C(1), C(2), . . . , C(i−1)). ut

Lemma 4.3.17. Given Σ, a degree d description of a constructible set C of
dimension k, as a striped set union, the algorithm CONV-SA2FILT finds the
filtration FC performing O(d2k2

) elementary operations.

Proof. The time bound is deduced from the following inequalities: for every
i, deg(C(i)) ≤ deg(C) ≤ dk and deg(Φ) ≤ deg(C(i)) · deg(Σ) ≤ dk+1, and
then—taking into account that the dimension decreases with i—the number
of elementary operations in each call to the algorithm CONV-SA2FILT-L1L2
can be bounded by O(d2k),O((dk+1)2(k−2)), O((dk+1)2(k−4)), . . . ,O(dk+1) re-
spectively, summing up a total of O(d2k2

) elementary operations. ut

Thus, we obtain:

Proposition 4.3.18. Given Σ, a degree d description of a constructible subset
C of An as a striped affine sets union, the algorithm CONV − SA2FILT
returns the filtration (and then the canonic description) FC performingO(d2n2

)
elementary operations,

In addition deg(C) ≤ pcl(Σ) ≤ particle-bound(n,deg(Σ)) ≤ deg(Σ)n. ut
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4.3.4 Our algorithm in other models

We briefly sketch how our algorithm can be implemented in the BSS and Turing
machine computational models.

An algorithm in the BSS computational model over K [BCSS98, BSS89]
consists of a finite directed connected graph with four types of nodes: input,
computation, branch and output. Computation nodes perform arithmetic op-
eration, branch nodes test equalities. The complexity of an algorithm is a
function of the input size and bounds the number of fundamental operation
performed from input to output.

A matrix library for the data type DAf

In this section we briefly sketch a possible implementation of the data type DAf
with its four elementary operations (see section 4.2.3) in terms of arithmetic
operations.

If T ⊂ An is an affine set, the instance of DAf describing it has the
following information: n := dim(An) the dimension of the ambient space,
r := dim(An)− dim(T ) the rank of the system and a k× (n+ 1)-matrix, MT ,
containing the coefficients of an inhomogeneous linear equation system in row
echelon form (i.e., triangulated) whose solution is T . We observe that this
representation is natural when an order in the variables has been fixed.

In this way, the cost of knowing the dimension of the set is one elementary
operation (dim = n−r). The three other elementary operations in this library
can be easily implemented with a complexity bound M(n) = O(n3) using
Gaussian elimination 1.

The algorithms to intersect and to verify containment are very simple.
To compute the intersection of two affine sets, just paste the two matrices,
one bellow the other, and triangulate the new system. To verify contention,
compute the intersection and verify if the rank has augmented. The projection
algorithm is sketched bellow.

Affine sets projections: Let T be an affine set in An, and consider the
matrix in row echelon formMT of size r× (n+1) associated with this instance
of DAf . Re-triangulating the matrix if necessary, we can assume that we are
projecting the first m coordinates.

1. Gaussian elimination, was the first systematic method for solving linear systems of
equations. In his famous paper [Str69], Strassen showed that an n × n matrix can be
inverted in O(nlog 7) time. Winograd [Win70] originally proved that matrix multiplication
is no harder than matrix inversion, and the converse is due to Aho, Hopcroft, and Ullman
[AHU74]. The most asymptotically efficient algorithm for multiplying n×n matrices to date,
due to Coppersmith and Winograd [CW90], has a running time of O(n2.376).
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The projection of T (that is an affine subset of An−m) is determined by the
right inferior sub-matrix, Mp(T ), of size (n−m− dim(p(T )))× (n−m+ 1)),
corresponding to those equations in which the variables x1, . . . , xm do not
intervene. The correctness of the method follows from the following remark:
being the original system in row echelon form, xm+1, . . . , xn is a solution for
the subsystem Mp(T ) if and only if it can be extended to a solution, x1, . . . , xn
for the original system MT . Hence, the subsystem Mp(T ) corresponds the
projection of the set T .

Results in other models

Using the previously described matrix library to perform operations among
linear sets, our algorithm can be translated to the BSS context obtaining the
following result.

Theorem 4.3.19. Let C ⊂ An be a constructible set of degree d, let ΦC be its
canonic description and let Q be a list of quantifiers that can be divided into
r alternated blocks Q(1) · · ·Q(r). Our algorithm in the BSS model finds the
canonic description of the set R(Q∆), in O(d2nr+1

n3) arithmetic operations.

Finally, we remark that our algorithm and its complexity bound results can
be transferred mutatis mutandis to the context of Turing complexity, since the
coefficient growth of intermediary computations remain under control.

4.4 Lower Bounds

4.4.1 A Lower Bounds for the Conversion to Canonic Form

We present now two examples showing that the conversion from striped-set
union to the canonic description can lead to great complexity swell, indepen-
dently of the method followed to perform this conversion. In particular, the
second example shows that the exponential behavior predicted by the bound
on the number of particles can actually occur.

Example 1. Consider, for 1 ≤ i ≤ r and 1 ≤ j ≤ s, the lines in K2 given by
the equations Ri : x = i and Sj : y = j. The realization of the formula

ϕrs :=
r∨
i=1

Ri ∧ ¬(
s∨
i=1

Sj)

has a canonic description’s degree r(s+1), although the formula ϕrs has degree
r + s.
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In the canonic description of this set it is not possible to refer to the lines
Sj because they are not intrinsic. Then, every point of intersection has to
be described individually. This example shows that the canonic descriptions
might be much longer than simple natural descriptions.

Example 2. Consider, for 1 ≤ i ≤ r, the striped affine sets Ti := {(x1, . . . ,
xn) ∈ An | xi 6= 0 ∧ xi 6= 1} and the set C := ∪i = 1rTi, given as a union
of n striped affine sets of degree three. The set C equals Rn \ {0, 1}n and is
described by the formula (x1 6= 0∧ xi 6= 1)∨ . . .∨ (xn 6= 0∧ xn 6= 1) of degree
2n. The canonic description for C has degree 2n + 1.

This kind of examples can arise in the elimination process: a short intrinsic
formula can define a set that, when projected, has no short intrinsic description.
If we abandoned the idea of using intrinsic data structures, we could avoid the
exponential swell in these and other examples. Nevertheless, it is not known
whether this is enough to solve the doubly-exponential explosion in Example
3 that follows.

4.4.2 A Doubly-Exponential Lower Bound for Quantifier Elim-
ination

The following example follows immediately from Theorem 3 in [BD07]. It is an
adaptation to the linear case of the results of Davenport and Heintz [DH88],
whose origins can be traced back to Fischer and Rabin [FR74]. It will allow
us to prove a doubly-exponential lower bound for quantifier elimination in the
linear case over any field of characteristic 0.

We remark that the solution of the next example is related to the Wilkinson
- Pochhammer polynomial (see [Par95] and [HM93]).

Example 3. We define the predicate Φ0(x, y) by the formula ((y = 2x)∨ (y =
2− 2x)). We further define

Φn(x, y) := ∃zn∀xn−1yn−1

 (yn−1 = yn ∧ xn−1 = zn)
∨

(yn−1 = zn ∧ xn−1 = xn)

→ Φn−1(xn−1, yn−1)

If R is a binary relation, we denote by Rn(x, y) the relation ∃x1 · · ·xn−1

(R(x, x1) ∧ R(x1, x2) ∧ . . . ∧ R(xn−1, y)). If we denote R0(x, y) the relation
defined by Φ0(x, y), the formula Φn(x, y) encodes the relation R2n

0 (x, y).
In this way, the formula Φn(x, 1

2) has length O(n) (or O(n log(n)) if we
count that the variable xn needs space log(n) to be written down) and encodes
a set with 22n points.
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This last example shows that any quantifier-elimination algorithm that
uses at least one bit of information to describe each irreducible component
in a closed set (we call them disjunctive forms, as the canonic form we have
previously presented and also as the disjunctive normal form) needs a doubly-
exponential amount of time to write down the output. In this way, we obtain
the following result.

Theorem 4.4.1. Any algorithm in that takes a quantified L-formula as input
and outputs a quantifier-free equivalent L-formula, requires, in the worst-case,
at least a doubly-exponential amount of time in the number of quantifier al-
ternations to write down the output. ut

Also, as shown in [BD07], if sparse or dense representation of polynomials
is used and the coefficients are stored classically (as the binary representation
of the numbers) the bit length of the output is still doubly exponential.

Related to the notion of quantifier elimination, there is the informal notion
of geometric elimination. This notion includes, for instance, polynomial equa-
tion solving in algebraically or real-closed fields or, more generally, algebraic va-
rieties in algebraically closed fields. The elimination of an existential-quantifier
block preceding the description of a constructible set may be seen as a par-
ticular geometric-elimination task. The most efficient quantifier-elimination
algorithms require exponential time in the number of variables (in the worst
case) to eliminate a single quantifier block. It is not clear whether this phe-
nomenon is due to the algorithms and the data structures or to the intrinsic
nature of quantifier and geometric elimination.

One may ask whether this issue changes for elimination procedures based on
more flexible data structures, as straight-line programs (see [BCS97]) to store
polynomials and boolean-arithmetic circuits (see [vzG86a]) for constructible
sets. Complexity improvements based on these data structures were only be
achieved for particular instances of elimination problems and only partial re-
sults are known about lower complexity bounds for this kind of encodings.
Remarkably, it is proven in [HMPW98, GH01] that any geometric elimination
algorithm, using the arithmetic-circuit encoding of polynomials and being geo-
metrically robust –a property owned by all known symbolic methods–, requires
exponential time on infinitely many inputs. These results where generalized to
continuous encodings in [CGH+03].

We remark that the definitions of the notions of geometric elimination
procedure and of geometrically robust involve two notions that are related to
our notion of intrinsic description.

On the one hand, any parametric elimination procedure is branching par-
simonious (by definition, see [GH01]). This requires that the procedure does
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not branch on non-intrinsic conditions (in the sense of Section 4.2.4) to solve
a given elimination problem .

On the other hand, a geometrically-robust parametric elimination procedure
produces, by definition, outputs that depend only on the input equation system
but not on their circuit representation. This condition can be seen as a mild
intrinsicity requisite.

We finally remark that the conclusions of these works suggest that any
polynomial-time geometric-elimination algorithm must have a huge topolog-
ical complexity. Hence, a hypothetical efficient elimination procedure would
depend on complicated casuistics.



5
Quantifier elimination for
elementary geometry and
elementary affine geometry

Abstract. Following the tradition of mathematical logic, in this chapter,
we introduce new first-order languages for elementary n-dimensional geometry
and elementary n-dimensional affine geometry (n ≥ 2), based on extending
the traditional languages FO(β,≡) and FO(β), respectively, with new function
symbols. Here, β stands for the betweenness relation and ≡ for the congru-
ence relation. We show that the associated theories admit effective quantifier
elimination. This is the only chapter not related to complexity theory.

5.1 Introduction

5.1.1 Origins of the problem

Elementary n-dimensional Euclidean geometry, En, is the theory dealing with
the elementary properties of the n-dimensional Euclidean space. In this con-
text, elementary means the portion of geometry that can be developed without
the help of set-theoretic notions. Tarski’s axiom system for this theory, already
presented by him in his course given at the Warsaw University in 1926-27 and
finally published in [Tar59] and [WST83], is based on two primitive notions:
betweenness and equidistance. The theory En is complete but not categorical:

97
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its models are, up to isomorphisms, the n-dimensional Cartesian spaces over
some real closed fields [Tar59]. The first axiom system based on these primitive
notions was proposed by Veblen [Veb04].

As remarked by Szczebra and Tarski [ST79], it is easy to give an axiom sys-
tem for the elementary theory of n-dimensional affine geometry, An. It is also a
complete theory and the only primitive notion of this theory is the betweenness
relation. In her monograph [Szm83], Szmielew showed that this last primitive
notion can be replaced by parallelity, leading to a more abstract development
of affine geometry, including representation theorems for subsystems of the
axiom system of affine geometry.

The interested reader can consult [TG99] and Chapter 7 in [BGKV07] for
more references and historical remarks on the development of these theories.

We present two new first-order theories, E ′n and A′n, in the languages FO(β,
≡,>,⊕,⊗, π⊥, κ) and FO(β,>,⊕,⊗, π), respectively, that are definitional ex-
tensions (see Section 4.6 in [Sho67]) of En and An, respectively, and that admit
effective quantifier elimination.

Like in Szczebra and Tarski [ST79], the detailed discussion will be restricted
to the case n = 2, i.e., to the geometry of the plane. We denote by E and A
the theories E2 and A2 respectively. In the last section we shall indicate how
our results can be extended to higher dimensions.

There are classical examples of this technique, based on extending the vo-
cabulary with new symbols—expressing properties already definable by quan-
tified formulas in the original language—to obtain a new theory that admits
quantifier elimination and has the same expressive power as the original lan-
guage. For instance, by adding the binary relation symbol “<” to the vo-
cabulary 〈+,×, 0, 1〉, Tarski[Tar51] obtained a theory, R, for real closed fields
that admits quantifier elimination . Another classic example is that of the
congruence relations in Presburger arithmetic [End00].

Languages that admit the elimination of quantifiers for elementary algebra
and fragments of geometry have been the subjects of several investigations, but
as far as we know, no language for elementary geometry which allows quantifier
elimination has been proposed. In a way, this omission is surprising, because
quantifier elimination is a natural requirement of expressivity for a language.

Quantifier elimination methods have been mainly used to obtain decision
procedures. Recently, within the theory of constraint databases [KLP00], they
have also been used to evaluate queries. In particular, within the context
of spatial databases, the languages FO(β,≡) and FO(β) have been proposed
[GBG99] as query languages for geometric databases. The results we present
here lead to a query evaluation procedure for these query languages. Finally,
the problem of finding minimal languages for elementary geometry and ele-
mentary affine geometry that admit the elimination of quantifier is interesting
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from a metamathematical viewpoint.
We remark that, sharing some primitive notions, the languages that we ob-

tain are related to the languages used in constructive geometry [MS68, Pam01,
Pam08]. One difference is the absence of constant symbols in our language.
We remark that in the presence of constant symbols, formulas can express
relations that are not invariant under similarity transformations of the plane.
Our languages preserve this basic characteristic of Euclidean geometry.

5.1.2 Outline and Summary

The chapter is organized as follows. In Section 5.2 we introduce the concepts
of affine-invariant and similarity-invariant relation. We also introduce the the-
ories, R, A and E with their associated languages FO(+,×, <, 0, 1), FO(β) and
FO(β,≡). Being all three complete theories, we fix a standard model for each
and use the fact that a formula holds in this model if and only if it is true in
the corresponding theory.

We stress the difference between geometric variables and algebraic vari-
ables, and introduce the concept of translation. In particular, we recall the ex-
istence of a translation from FO(β,≡) (and hence, also from FO(β)) to FO(+,
×, <, 0, 1). This translation is based on the fact that the Euclidean plane can
be embedded in the Cartesian plane by taking coordinates in a fixed coordinate
system.

We recall that R admits the elimination of quantifiers, and we denote by
ER a quantifier-elimination function for this theory. We prove that no finite
predicative extension of FO(β) or FO(β,≡) admits quantifier elimination.

In Section 5.3, we define the basic segment-arithmetic functions, ⊕ and ⊗,
the affine projection function, π, and the two basic metric functions, π⊥ and
κ (corresponding to the orthogonal projection and the segment construction
function), and expand the vocabularies of FO(β) and FO(β,≡) adding new
function symbols for some of these basic functions, and the 0-ary relation
symbol >. The interpretation of the new symbols in the resulting languages,
FO(β,>,⊕,⊗, π) and FO(β,≡,>,⊕,⊗, π⊥, κ), are given by FO(β)-formulas
and FO(β,≡)-formulas respectively. In this way, the resulting theories, A′ and
E ′ are a definitional extension of A and E respectively. This ensures that the
new languages have the same expressive power as the original ones and also
the existence of translations B from FO(β,>,⊕,⊗, π) to FO(β) and M from
FO(β,≡,>,⊕,⊗, π⊥, κ) to FO(β,≡).

In Section 5.4, we define a translation S : FO(+,×, <, 0, 1)QF,AI → FO(β,
>,⊕,⊗, π)QF , translating any formula in the affine-invariant quantifier-free
fragment of FO(+,×, <, 0, 1) into the quantifier-free fragment of FO(β,>,⊕,
⊗, π) in such a way that, for any affine-invariant quantifier-free FO(+,×, <, 0,
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1)-formula ϕ, S(ϕ) and ϕ express the same relation. The technical difficulty in
the construction of this translation is due to the absence of constant symbols
in FO(β,>,⊕,⊗, π) to use as coordinate system and the subsequent need to
use some of the variables already involved in the formula as a reference system.

Analogously, in Section 5.5, we define a translation T : FO(+,×, <, 0,
1)QF,SI → FO(β,≡,>,⊕,⊗, π⊥, κ)QF , translating any formula in the similarity-
invariant quantifier-free fragment of FO(+,×, <, 0, 1) into the quantifier-free
fragment of FO(β,≡,>,⊕,⊗, π⊥, κ).

In Section 5.6, we define EA′ := S ◦ER ◦ C ◦ B : FO(β,>,⊕,⊗, π)→ FO(β,
>,⊕,⊗, π)QF as the composition of the translations C, B and S with the
quantifier-elimination function ER. The map EA′ results to be a quantifier-
elimination function for the theory A′. In this sense, we prove that A′ is a
conservative extension of A that admits quantifier elimination. Analogously,
we prove that the map EE ′ := T ◦ ER ◦ C ◦M : FO(β,>,⊕,⊗, π)→ FO(β,>,
⊕,⊗, π)QF is a quantifier-elimination function for the theory E ′.

In the last section, we discuss the dispensability of the primitive notions
of our new languages. Finally, we briefly indicate how, performing only minor
changes in the argumentation, analogous constructions could be carried on for
higher-dimensional theories.

For the fluidity of the exposition, we do not prove every geometrical state-
ment in our argumentation. The missing arguments may be filled in using
basic tools from analytic geometry.

5.2 Preliminaries and definitions

5.2.1 Semi-algebraic and geometric relations

Let R be the set of real numbers and let E be a model of Tarski’s elementary
plane geometry isomorphic to R2. We call E the Euclidean plane and we
refer to R2 as the Cartesian plane. We fix an affine coordinate system in E,
that is, we fix an origin O and two points A1 and A2 such that these three
points are not collinear, and define CO,A1,A2 as the function from E to R2 that
maps points to their coordinates with respect to the affine coordinate system
O,A1, A2. We also fix an Euclidean coordinate system in E, that is, we fix
two points E1 and E2 such that the segments OE1 and OE2 are orthogonal
and congruent and define CO,E1,E2 as the function from E to R2 that maps
points to their coordinates with respect to the Euclidean coordinate system
O,E1, E2.

We shall deal with the following two different kinds of relations.
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Definition 5.2.1. A k-ary semi-algebraic relation (k ≥ 1) is a subset of Rk

that can be described as a boolean combination (intersection, union, comple-
ment) of sets of the form

{(x1, ...., xk) ∈ Rk | p(x1, ..., xk) > 0},

where p is a polynomial with integer coefficients in the variables x1, ..., xk.
A k-ary geometric relation (k ≥ 1) is a subset of Ek such that its image

under CkO,E1,E2
is a semi-algebraic relation of R2k. 2

We have allowed only rational coefficients in the definition of semi-algebraic
relation for simplicity: as we will see, in this way semi-algebraic relations
correspond exactly to the relations expressible in the language FO(+,×, <, 0,
1).

We will refer to variables ranging over E as geometric variables, whereas
variables ranging over R will be called algebraic variables. Also, for ease of
reading, we shall consistently use the letters o, p, q, r, s, u, v, e1, e2, p1, p2, ...,
to represent geometric variables, and a, b, x, y, t, x1, y1, x2, y2, ..., for algebraic
variables. Variables ranging over the natural numbers N will be denoted by
i, j, k, l,m n. Finally, with the exception of the already fixed pointsO,E1, E2, A1

and A2 ∈ E, we differentiate geometric variables from points in E writing pi
and pi respectively. In this way, pi is a geometric variable while pi represents
some fixed point in E. Analogously, we write xi for algebraic variables and xi
for fixed elements of R.

5.2.2 Affine and similarity transformations of the plane

Definition 5.2.2. An affine transformation of R2 is a bijective function f :
R2 → R2, for which there exist a11, a12, a21, a22, b1, b2 ∈ R, with

f(x, y)T =
(
a11 a12

a21 a22

)(
x
y

)
+
(
b1
b2

)
.

An affine transformation of E is a bijective function f : E → E, such that
C−1
O,A1,A2

◦ f ◦ CO,A1,A2 is an affine transformation of R2. 2

Since any two affine coordinate systems are equal up to an affine transfor-
mation of the plane, the notion of affine transformation of E is independent of
the chosen affine coordinate system O, A1, A2.

In particular, translation, rotation, scaling, and reflection over an axis are
affine transformations. We remark that our definition of affine transformation
coincides with what are usually called non-degenerate affine transformations.

We denote by ‖ · ‖ : R2 → R the norm of points in the Cartesian plane,
‖(x, y)‖ =

√
x2 + y2.
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Definition 5.2.3. A similarity transformation of R2 is a bijective function
f : R2 → R2, for which there exist r ∈ R, r > 0 such that for all pairs,
(x1, y1) and (x2, y2), of points in R2, the following holds:

‖f(x1, y1)− f(x2, y2)‖ = r · ‖(x1, y1)− (x2, y2)‖.

A similarity transformation of E is a bijective function f : E → E, such that
C−1
O,E1,E2

◦ f ◦ CO,E1,E2 is a similarity transformation of R2. 2

Since any two Euclidean coordinate systems are equal up to a similarity
transformation of the plane, the notion of similarity transformation of E is
independent of the chosen Euclidean coordinate system O, E1, E2.

In particular, translation, rotation, dilatations, and reflection over an axis
are similarity transformations. Clearly, any similarity transformation is an
affine transformation but the converse does not hold.

5.2.3 Affine-invariant and similarity-invariant relations

Now, we define the concept of an affine-invariant relation.

Definition 5.2.4. A k-ary geometric relation P is called affine invariant if
for any tuple (p1, ..., pk) in Ek and any affine transformation f of E, we have
that (p1, ..., pk) ∈ P implies (f(p1), ..., f(pk)) ∈ P .

A 2k-ary semi-algebraic relation Q is called affine invariant if for any tuple
(x1, y1, ..., xk, yk) in R2k and any affine transformation f of R2, we have that
(x1, y1, ..., xk, yk) implies (f(x1, y1), ..., f(xk, yk)) ∈ Q. 2

We remark that affine-invariant semi-algebraic relations range over pairs
of real numbers while affine-invariant geometric relations range over points in
the plane E. As an example for previous definition, we consider the geometric
relation L ⊂ E3 consisting of triples (p, q, r) ∈ E3 that are collinear. Since any
affine transformation preserves collinearity, this relation is affine invariant. A
finer relation that will play an important role is β, which consists of all triples
(p, q, r) ∈ E3 for which q belongs to the closed line segment between p and
r. Clearly, β is also affine invariant. Their semi-algebraic counterparts are
subsets of R6 and can be expressed algebraically, as will be later.

Certainly, not all geometric relations are affine invariant. For example,
the unary relation {O}, containing the origin of the affine coordinate system
O,A1, A2, is not affine invariant.

Definition 5.2.5. A k-ary geometric relation P is called similarity invariant
if for any tuple (p1, ..., pk) in Ek and any similarity transformation f of E, we
have that (p1, ..., pk) ∈ P implies (f(p1), ..., f(pk)) ∈ P .
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A 2k-ary semi-algebraic relation Q is called similarity invariant if for any
tuple (x1, y1..., xk, yk) in R2k and any similarity transformation f of R2, we
have that (x1, y1..., xk, yk) implies (f(x1, y1), ..., f(xk, yk)) ∈ Q. 2

Since similarity transformations are affine transformations, affine-invariant
relations are similarity invariant.

In Euclidean geometry there is no notion of unit length. Hence, no intrinsic
metric can be defined in the Euclidean plane. Although, the relation ≡, con-
sisting of all quadruples (p, r, q, s) ∈ E4 such that the segments pr and qs are
congruent (i.e., for which the distance between p and r is equal to the distance
between q and s), is a similarity-invariant relation. It gives an example of a
similarity-invariant relations that is not affine invariant.

Further examples of affine-invariant (and thus, similarity-invariant) geo-
metric relations concern parallelism and equal ratio. Indeed, if four points
define two parallel lines, then the results of any affine transformation applied
to them, also define two parallel lines. Also, the ratio of a triple (p, q, r) of

collinear points, defined (when p 6= r) as ‖CO,A1,A2
(q)−CO,A1,A2

(p)‖
‖CO,A1,A2

(r)−CO,A1,A2
(p)‖ and denoted

(p : q : r), is independent of the affine coordinate system O,A1, A2 of E.
Therefore, the 6-ary geometric relation equal ratio (p : q : r) = (p′ : q′ : r′) is
affine invariant.

5.2.4 The theories R, E, A and their expressive power

We define the first-order languages FO(+,×, <, 0, 1), FO(β,≡) and FO(β) and
their standard interpretations.

We suppose that first-order formulas are built using the connectives ¬ and
∧ and the existential quantifier ∃. The symbols ∨, → and ∀ and 6= stand for
their usual abbreviations.

Definition 5.2.6. Suppose that σ is a first-order vocabulary, S is a σ-structure,
and ψ a FO(σ)-formula with m free variables. The relation expressed by ψ in
S is the set of m-tuples of elements of S that satisfy ψ.

If k < m and (s1, ..., sk) is an k-tuple of elements of S, we define the
relation expressed by ψ[s1, ..., sk] in S as the set of (m−k)-tuples (sk+1, ..., sm)
of elements of S such that (s1, ..., sm) satisfy ψ. 2

Since we consider only one interpretation of each language, we shall use
the same symbol for relation/functional symbols and their interpretations, not
to overload the notation. We also refer to the relation expressed by a formula
without reference to the structure considered. As we shall see, the theories
that we are going to introduce now express precisely, semi-algebraic, similarity-
invariant and affine-invariant geometric relations, respectively.
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The language FO(β) is the first-order logic with a vocabulary consisting
only of the ternary relation symbol β. As the standard interpretation for this
language, we consider the structure (E,β), where variables are assumed to
range over the Euclidean plane E and where (p, q, r) ∈ β if and only if p, q
and r are collinear points and q belongs to the closed line segment between p
and r. In particular, (p, p, q) ∈ β for any p, q ∈ E. We denote by A the first-
order theory resulting from this standard interpretation. The next proposition
follows immediately from Proposition 5.4 in [GBG99].

Proposition 5.2.7. The relations expressible in A, correspond exactly to the
affine-invariant geometric relations. 2

The language FO(β,≡) is the first-order logic with a vocabulary consisting
only of the ternary relation symbol β and the quaternary relation symbol ≡.
As the standard interpretation for this language, we consider the structure
(E, β,≡), where variables are assumed to range over the Euclidean plane E,
β is defined as before and (p, r, q, s) ∈≡ if and only if the segments pr and
qs are congruent. We denote by E the first-order theory resulting from this
standard interpretation. For the sake of readability and following the tradi-
tion, we denote ≡ (pi, pj , pk, pl) by pipj ≡ pkpl. The next proposition follows
immediately from Proposition 5.5 in [GBG99].

Proposition 5.2.8. The relations expressible in E , correspond exactly to the
similarity-invariant geometric relations. 2

Finally, FO(+,×, <, 0, 1) is a first-order language with a signature con-
sisting of the binary function symbols + and ×; the binary relation symbol
<; and the constant symbols 0 and 1. We call this language the language of
real closed fields. As its standard interpretation, we consider the structure
(R,+,×, <, 0, 1), that is, the reals with the well-known functions, relation and
constants. We denote by R the theory resulting from this interpretation, usu-
ally called the first-order theory of the real closed fields. The next proposition
follows from Theorem 2.74 in [BCR98].

Proposition 5.2.9. The relations expressible in R, correspond exactly to the
semi-algebraic relations. 2

Clearly, not any FO(+,×, <, 0, 1)-formula expresses a similarity-invariant
relation. The formula x1 = 0 ∧ y1 = 0 exemplifies this. We shall denote
by FO(+,×, <, 0, 1)SI the similarity-invariant fragment of FO(+,×, <, 0, 1),
i.e., the set of FO(+,×, <, 0, 1)-formulas expressing similarity-invariant semi-
algebraic relations. Analogously, we denote by FO(+,×, <, 0, 1)AI the affine-
invariant fragment of FO(+,×, <, 0, 1).
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Also, for any first-order vocabulary σ, we denote by FO(σ)QF the quantifier-
free fragment of FO(σ).

5.2.5 Translations

In order to compare relations defined on the Euclidean plane with relations
defined on the Cartesian plane, we introduce the following definitions.

Let us call the languages with geometric variables (whose standard interpre-
tation is given over E) geometric languages; FO(β) and FO(β,≡) are examples
of geometric languages.

Definition 5.2.10. Let ϕ be a formula in a geometric language expressing the
m-ary geometric relation Gϕ (m ≥ 0) and let ψ be a FO(+,×, <, 0, 1)-formula
expressing the 2m-ary semi-algebraic relation Aψ. If, for any points p1, . . . , pm
in E, with coordinates (x1, y1), . . . , (xm, ym) with respect to the coordinate
system O,E1, E2,

Gϕ(p1, . . . , pm) holds if and only if Aψ(x1, y1, . . . , xm, ym) holds,

then ϕ and ψ are said to express the same relation. 2

We remark that, since FO(β,≡)-formulas express similarity-invariant rela-
tions, in the case ϕ ∈ FO(β,≡), the previous definition is independent of the
Euclidean coordinate system O,E1, E2. Analogously, for ϕ ∈ FO(β) the defi-
nition remains invariant if we change O,E1, E2 to any other affine coordinate
system.

The following two fundamental examples are basic results in analytic ge-
ometry.

Example 1. The FO(+,×, <, 0, 1)-formula

Equidistancecoord(x1, y1, x2, y2, x3, y3, x4, y4) :=
(x1 − x2)2 + (y1 − y2)2 = (x3 − x4)2 + (y3 − y4)2

and the FO(β,≡)-formula p1p2 ≡ p3p4 express the same relation.

Example 2. Another important example is given by the FO(+,×, <, 0, 1)-
formula

βcoord(xi, yi, xj , yj , xk, yk) :=
[(xi − xj)(yk − yj) = (xk − xj)(yi − yj)] ∧

[((xk − xj)(xj − xi) > 0) ∨ ((xk − xj)(xj − xi) = 0)]∧
[((yk − yj)(yj − yi) > 0) ∨ ((yk − yj)(yj − yi) = 0)]

and the FO(β)-formula β(pi, pj , pk). They both express the same relation.
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Definition 5.2.11. Given two syntactic fragments L1 and L2, of two first-
order languages with a fixed interpretation, a recursive functionM that maps
any L1-formula, ϕ, to a L2-formula,M(ϕ), expressing the same relation as ϕ
will be called a translation between these fragments. 2

Using the previous examples, we define a translation C from FO(β,≡) to
FO(+,×, <, 0, 1)SI . For any i in N and any point pi in E, we denote by xi
and yi the first and the second coordinates of pi with respect to our fixed
coordinate system O,E1, E2. Since for all p1, p2, p3, p4 ∈ E, E |= β[p1, p2, p3]
if and only if R |= βcoord[x1, y1, x2, y2 , x3, y3] and E |= [p1, p2] ≡ [p3, p4] if
and only if R |= Equidistancecoord[x1, y1, x2, y2, x3, y3, x4, y4], we immediately
obtain a translation, C, defined on the quantifier-free fragment of FO(β,≡).

Indeed, C is obtained by translating pi = pj by xi = xj ∧ yi = yj and
by defining C(β(pi, pj , pk)) as βcoord(xi, yi, xj , yj , xk, yk), C(pipj ≡ pkpl) as
Equidistancecoord(xi, yi, xj , yj , xk, yk, xl, yl), and further C(ϕ∧ψ) as C(ϕ)∧C(ψ)
and C(¬ϕ) as ¬C(ϕ). We extend C, by recursion on the quantifier-depth, to
the whole language FO(β,≡) defining C(∃piϕ) as ∃xi∃yiC(ϕ).

Using the two previous examples it is easy to prove, by induction on the
structure of formulas, that for any FO(β,≡)-formula ϕ with m free variables
and for any points p1, . . . , pm in E, with coordinates (x1, y1), . . . , (xm, ym) the
following holds:

E |= ϕ[p1, . . . , pm] if and only if R |= C(ϕ)[x1, y2, . . . , xm, ym].

We summarize this result in the following proposition.

Proposition 5.2.12. The function C is a translation from FO(β,≡) to FO(+,
×, <, 0, 1)SI . 2

In particular, we obtain the following corollary.

Corollary 5.2.13. The function C is a translation from FO(β) to FO(+,×, <,
0, 1)AI . 2

5.2.6 Quantifier elimination for R, E and A

We recall that a first-order theory S over a vocabulary σ admits quanti-
fier elimination if, for any formula ϕ in FO(σ), there exist a quantifier-free
equivalent FO(σ)-formula. A recursive function ES : FO(σ) → FO(σ)QF is
called a quantifier-elimination function if for any FO(σ)-formula ϕ, ES(ϕ) is
a quantifier-free FO(σ)-formula, equivalent to ϕ. If such a function exists,
the theory is said to admit effective quantifier elimination. We remark that a
quantifier-elimination function for S is a translation from FO(σ) to FO(σ)QF .
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In the 1930s, Tarski showed that the theory of real closed fields, R, admits
effective quantifier elimination (see [Tar51], or [BPR06] for a modern account).
In the same article, Tarski used this result and the translation C, from FO(β,
≡) to FO(+,×, <, 0, 1), to give a decision procedure for elementary geometry.
We denote by ER a quantifier-elimination function for the theory of real closed
fields.

The theories E and A do not admit quantifier elimination. We consider,
as a first trivial example, the quantified FO(β)-sentence ∃p (p = p). Since
the languages FO(β) and FO(β,≡) have no 0-ary predicate symbols and no
constant symbols, they admit no quantifier-free sentences. Hence, A and E do
not admit quantifier elimination.

We prove a much stronger result: it is not possible to obtain a theory that
admits quantifier elimination by extending FO(β) (nor FO(β,≡)) with finitely
many relation symbols. For every k ∈ N, consider the semi-algebraic affine-
invariant relation P k consisting of the triplets of aligned points (o, p, s) such
that the segment os is equal to k times the segment op. Clearly, if k 6= j then
the relations P k and P j are different. This implies that there are countably
infinite different ternary affine-invariant relations. By Proposition 5.2.7, all
these ternary relations are expressible in FO(β). We denote by ψk a FO(β)-
formula expressing the relation P k.

Proposition 5.2.14. Any extension of FO(β) with a finite number of new
relation symbols does not admit quantifier elimination.

Proof. We suppose than an extension of FO(β) with a finite number of new
relation symbols is given. If this extension admitted quantifier elimination,
all the different ternary relations P i(o, p, q), i ∈ N, would be expressible in
this language by a quantifier-free formula. Since there are no constant nor
function symbols in the new language, the only terms that can be built in the
extended language using the variables o, p and q are the atomic terms o, p and
q themselves. Thus, the number of different atomic formulas that can be built
using only the given variables is finite. Hence, the number of non-equivalent
quantifier-free formulas in this language is finite. Therefore, the extended
language cannot express, without quantifiers, all the infinite different relations
expressed by the quantified FO(β)-formulas ψk, k ∈ N. This concludes the
proof. 2

The previous proof yields immediately the following corollary.

Corollary 5.2.15. Any extension of FO(β,≡) with a finite number of new
relation symbols does not admit quantifier elimination. 2
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5.3 The new languages

In this section, we introduce the two basic segment arithmetic functions, ⊕ and
⊗, the affine projection function π, and the two basic metric functions, π⊥ and
κ, and define the new languages FO(β,>,⊕,⊗, π) and FO(β,≡,>,⊕,⊗, π⊥,
κ) with their standard interpretations. We prove that they express precisely
the affine-invariant and similarity-invariant geometric relations, respectively.
We also show the existence of translations B : FO(β,>,⊕,⊗, π) → FO(β),
M : FO(β,≡,>,⊕,⊗, π⊥, κ)→ FO(β,≡).

First, we show how to express some affine-invariant relations in the language
FO(β), that we need later on to define these functions.

• The formula:

L(p, q, r) := β(p, q, r) ∨ β(p, r, q) ∨ β(q, p, r)

expresses that the points p, q and r are collinear. We remark that this is
a quantifier-free expression.

• The formula:

P(p, q, r, s) := (L(p, q, r) ∧ L(p, q, s)) ∨ r = s ∨
∀u(¬L(p, q, u) ∨ ¬L(r, s, u))

expresses that the segments pq and rs are parallel. We remark that the
first line expresses that the four points are aligned or that a segment is
just a point, in both cases pq and rs are considered parallel. The second
line expresses that no point is collinear with p and q and with r and s,
at the same time.

We shall also need the following similarity-invariant relation.

• The FO(β,≡)-formula:

R(p, q, r) := ¬L(p, q, r) ∧ ∃o(β(o, p, q) ∧ or ≡ rq ∧ op ≡ pq)

expresses that the points p, q and r form a non-degenerate triangle with
a straight angle at p.

5.3.1 The two basic segment-arithmetic functions

Now, we present the formulas that implicitly define the basic segment-arithmetic
functions.
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• Sum: the relation “the vector −→os is the result of the vector sum of −→op and
−→oq” is, certainly, an affine-invariant geometric relation. Thus, by Propo-
sition 5.2.7, there exists a FO(β)-formula expressing it. We explicitly
state one such formula, based on the parallelogram rule:

Sum(o, p, q, s) := (o = p ∧ s = q) ∨ (o = q ∧ s = p) ∨
∃u∃v(¬L(o, p, u) ∧ ¬L(o, q, v) ∧ P(o, p, u, v) ∧

∧ P(o, u, p, v) ∧ P(q, u, s, v)).

We note that the quantifier-free formula P(o, p, q, s) ∧ P(o, q, p, s) ex-
presses the same relation as Sum(o, p, q, s) when o, p and q are not aligned.
The existential quantifiers in the previous formula are needed to express
the desired relation when o, p and q are collinear.

Let x1, x2, x3 be three real numbers. Using the coordinates in the fixed
coordinate system O,A1, A2 to express points in E, we consider o =
(0, 0), p1 = (x1, 0), p2 = (x2, 0) and p3 = (x3, 0). Then, the relation
Sum(o, p1, p2, p3) holds if and only if x1 + x2 = x3 as real numbers.
This allows us to translate the semi-algebraic addition into the geometric
context.

• Equal Ratio: We consider the 5-ary relation: “o, p and q are collinear,
o 6= p, o 6= r and s is the unique point, collinear with o and r, that
satisfies (o : p : q) = (o : r : s)”. This is an affine-invariant geometric
relation and since FO(β) is a complete language for these relations, there
exists an FO(β)-formula expressing it. In fact, it is expressed by the
following formula:

EqualRatio(o, p, q, r, s) := L(o, p, q) ∧ L(o, r, s) ∧ (o 6= p) ∧ (o 6= r) ∧
∃u∃v[L(o, u, v) ∧ ¬L(o, p, u) ∧ ¬L(o, r, u) ∧ (o 6= u) ∧

P(u, r, v, s) ∧ P(u, p, v, q)).

That this formula expresses the desired relation is a direct consequence
of Thales’ theorem (also called intercept theorem). The formula is not
quantifier free. As in the definition of Sum, the quantifiers are needed to
cover the non-generic cases, i.e., when all the points are collinear.

Let x1, x2, x3 be three real numbers. Using the coordinates in the fixed
coordinate system O,A1, A2 to express points in E, we consider o =
(0, 0), e1 = (1, 0), p1 = (x1, 0), p2 = (x2, 0) and p3 = (x3, 0). We have
that, for x2 6= 0, EqualRatio(o, e1, p1, p2, p3) holds if and only if x1·x2 = x3
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as real numbers. This allow us to translate the semi-algebraic product
into the geometric context.

Constructions, similar to Sum and EqualRatio, to deal with segment arith-
metic can be found already in Descartes [Des37], in Hilbert’s book [Hil99] and
also in [WST83] (see also [Har00] for a contemporary account).

We remark that for every o, p, q ∈ E there exists a unique s satisfying
Sum(o, p, q, s). On the other hand, for every o, p, q, r there exists at most one
s satisfying EqualRatio(o, p, q, r, s).

We conclude that the following two FO(β)-formulas define functional rela-
tions with respect to their last variable:

• Sum(o, p, q, s);
• EqualRatio(o, p, q, r, s) ∨ [(¬L(o, p, q) ∨ ¬L(o, r, s) ∨ o = p ∨ o = r) ∧ s = o].

The functions defined by these two FO(β)-formulas are called the basic segment-
arithmetic functions and are denoted by ⊕ : E3 → E and ⊗ : E4 → E,
respectively.

5.3.2 The affine projection function

We present the formula that defines the affine projection function.

• Affine Projection: We want to express the following relation: “the
points o, p and q form an affine coordinate system and s is the projection,
parallel to oq, of r on the line op, or o, p and q are aligned and s=o”.
Being an affine-invariant geometric relation, we know that the relation
is expressible in FO(β). Explicitly, we can express it as:

Projection(o, p, q, r, s) := ¬L(o, p, q) ∧ [(L(r, o, p) ∧ s = r) ∨
(¬L(r, o, p) ∧ L(s, o, p) ∧ P(r, s, o, q))] ∨ (L(o, p, q) ∧ s = o).

We remark that the formula defines a functional relation in s. We call this
function the affine projection function and denote it by π : E4 → E.

5.3.3 The two basic metric functions

Now, we present the two formulas that implicitly define the basic metric func-
tions.

• Segment Construction: The axiom of segment construction states
that ∃s(β(p, o, s)∧ os ≡ qr). This axiom appears in Tarski’s axiomatiza-
tion of elementary geometry [Tar59] (see also the first congruence axiom
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in Hilbert’s text [Hil99]). We introduce the FO(β,≡)-formula SegConst
closely related to it:

SegConst(o, p, q, r, s) := (o = p ∧ s = o) ∨
(o 6= p ∧ β(p, o, s) ∧ os ≡ qr).

We remark that this relation expressed by this formula is functional in
s. If o 6= p, the unique s satisfying SegConst(o, p, q, r, s) is the point in
the ray opposite to −→op such that the segments qr and os are congruent.

• Orthogonal Projection: We consider the 4-ary relation expressed by

OrtProj(o, p, q, s) := (L(o, p, q) ∧ s = q) ∨
∨ (¬L(o, p, q) ∧ L(o, p, s) ∧ (R(s, q, o) ∨ R(s, q, p))).

When o 6= p, the last formula expresses that s is the orthogonal projection
of q over the line passing through o and p. We remark that this formula
defines also a functional relation in s.

The functions implicitly defined by these FO(β,≡)-formulas with respect
to their last variable are called the basic metric functions and are denoted by
κ and π⊥, respectively.

5.3.4 The language FO(β,>,⊕,⊗, π) and the theory A′

We expand the language FO(β) with a new function symbol of the correspond-
ing arity for each one of the two basic segment-arithmetic functions and for
the affine projection function: ⊕,⊗, π. As before, we use the same symbols
for the function symbols in the vocabulary and for their interpretations. We
also add the 0-ary relation symbol >. In this way, we obtain the expanded
language FO(β,>,⊕,⊗, π).

Now, we define the standard interpretation of FO(β,>,⊕,⊗, π). We inter-
pret variables as points in E, the predicate symbol > as the constant 0-ary
predicate true, the predicate symbol β is interpreted as in FO(β) and the three
new function symbols as the functions introduced above. We call the resulting
theory A′ and remark that it is a definitional extension of A.

Being a geometric language, we shall use Definition 5.2.10 to compare the
relations expressed by FO(β,>,⊕,⊗, π) and FO(+,×, <, 0, 1)-formulas. Now,
the notion of translation given in Definition 5.2.11 can be applied, in particular,
to mappings from FO(β,>,⊕,⊗, π) to FO(β) and from the affine-invariant
fragment of FO(+,×, <, 0, 1) to FO(β,>,⊕,⊗, π).

Since the three FO(β)-formulas stated at the end of Sections 5.3.1 and
5.3.2 implicitly define the three new functions, the expressive power of the
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expanded language, FO(β,>,⊕,⊗, π), is the same as that of the original one,
FO(β), and there exists a translation B : FO(β,>,⊕,⊗, π) → FO(β) (for a
proof see, e.g., Section 4.6 in Shoenfield’s classic book [Sho67]). If ϕ ∈ FO(β,
>,⊕,⊗, π) happens to be a FO(β)-formula, then B(ϕ) is just ϕ. Essentially,
via this map, a formula in FO(β,>,⊕,⊗, π) is translated to an FO(β)-formula
replacing each occurrence of a new symbol, by its defining formula in FO(β).
This is summarized in the next proposition:

Proposition 5.3.1. The map

B : FO(β,>,⊕,⊗, π)→ FO(β)

is a translation. 2

For the sake of legibility, we shall use the following suggestive notation for
terms in the language FO(β,>,⊕,⊗, π). We write

• p⊕o q for ⊕(o, p, q);

• q ⊗o,p r for ⊗(o, p, q, r); and

• πopq(r) for π(o, p, q, r).

The next lemma follows directly from the definitions.

Lemma 5.3.2. We consider x1, x2 ∈ R and three affine-independent points
o, e1, e2 ∈ E. We further denote p1 = (x1, 0) and p2 = (x2, 0), where the coor-
dinates are taken with respect to the affine coordinate system o, e1, e2. Then,
the standard interpretation of the term p1 ⊕o p2 is the point with coordinates
(x1 + x2, 0), and the standard interpretation of p1 ⊗o,e1 p2 has coordinates
(x1 · x2, 0). 2

We further define the following abbreviations:

• AffCoord1
o,e1,e2(p) := πo,e1,e2(p); and

• AffCoord2
o,e1,e2(p) := πo,e2,e1(p)⊗o,e2 e1.

When the points o, e1, e2 form an affine coordinate system, it follows
immediately that the term AffCoord1

o,e1,e2(p) can be interpreted geo-
metrically as the projection, in the direction of oe2, of the point p
onto the line oe1. Under the same hypothesis and denoting by p′ the
projection parallel to oe1 of the point p over the line oe2, the term
AffCoord2

o,e1,e2(p) represents the unique point q on the line oe1 that sat-
isfies (o : e1 : q) = (o : e2 : p′).
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We state this result for further reference.

Lemma 5.3.3. We suppose that the points o, e1, e2 form an affine coordinate
system and that the point p has coordinates (x, y) in this coordinate system.
Then, the term AffCoord1

o,e1,e2(p) is naturally interpreted as the point with
coordinates (x, 0) and the term AffCoord2

o,e1,e2(p) as the point with coordinates
(y, 0), always with respect to the same coordinate system. 2

5.3.5 The language FO(β,≡,>,⊕,⊗, π⊥, κ) and the theory E ′

We expand the language FO(β,≡) with a new function symbol of the corre-
sponding arity for each one of the two basic segment-arithmetic function and
for the two basic metric functions: ⊕,⊗, π⊥ and κ. As before, we use the same
symbols for the function symbols in the vocabulary and for their interpreta-
tions. We also add the 0-ary relation symbol >. In this way, we obtain the
expanded language FO(β,≡,>,⊕,⊗, π⊥, κ).

Now, we define the standard interpretation of FO(β,≡,>,⊕,⊗, π⊥, κ). We
interpret variables as points in E, the predicate symbol > as the constant 0-
ary predicate true, the predicate symbols β is interpreted as the betweenness
relation and the four new function symbols as the corresponding functions
introduced above. We call the resulting theory E ′ and remark that it is a
definitional extension of E .

We shall use Definition 5.2.10 to compare the relations expressed by FO(β,
≡,>,⊕,⊗, π⊥, κ) and FO(+,×, <, 0, 1)-formulas. Now, the notion of transla-
tion given in Definition 5.2.11 can be applied, in particular, to mappings from
FO(β,≡,>,⊕,⊗, π⊥, κ) to FO(β) and from the similarity-invariant fragment
of FO(+,×, <, 0, 1) to FO(β,≡,>,⊕,⊗, π⊥, κ).

Since the four functions ⊕,⊗, π⊥ and κ are implicitly definable in FO(β,≡)
(see Sections 5.3.1 and 5.3.3), the expressive power of the expanded language,
FO(β,≡,>,⊕,⊗, π⊥, κ), is the same as that of the original one, FO(β,≡), and
there exists a translationM : FO(β,≡,>,⊕,⊗, π⊥, κ)→ FO(β,≡). Again, for
a proof see, e.g., Section 4.6 in Shoenfield’s classic book [Sho67]. We obtain
the following Proposition.

Proposition 5.3.4. The map

M : FO(β,>,⊕,⊗, π)→ FO(β)

is a translation. 2

We shall use the notation previously introduce for the symbols ⊕ and ⊗
and we denote by π⊥op(q) the FO(β,≡,>,⊕,⊗, π⊥, κ)-term π⊥(o, p, q).

We further define the following abbreviations:
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• EuCoord1
o,e1,e2(p) := π⊥o,e1(p);

• EuCoord2
o,e1,e2(p) := π⊥o,e2(p)⊗o,e2 e1; and

• ε(o, p, q) := κ(o, o⊕−π⊥op(q) q, o, p).

The following result follows immediately from the definitions.

Lemma 5.3.5. We suppose that the points o, e1, e2 form an Euclidean coor-
dinate system and that the point p has coordinates (x, y) in this coordinate
system. Then, the term EuCoord1

o,e1,e2(p) is naturally interpreted as the point
with coordinates (x, 0) and the term EuCoord2

o,e1,e2(p) as the point with coor-
dinates (y, 0), always with respect to the same coordinate system. 2

Lemma 5.3.6. If the points o, e1, e2 form an affine coordinate system, then
the points o, e1, ε(o, e1, e2) form an Euclidean coordinate system.

Proof. Let us suppose that the three points are affine independent. The
segments oe1 and oε(o, e1, e2) and congruent by construction (see the definition
of κ). Since the point ε(o, e1, e2) belongs to the line o(q − π⊥op(q)) that is
perpendicular to the line op, the three points form an Euclidean coordinate
system. 2

5.4 The translation S of FO(+,×, <, 0, 1)QF,AI-formulas
to FO(β,>,⊕,⊗, π)QF -formulas

In the present section, we define a translation from the quantifier-free affine-
invariant fragment of FO(+,×, <, 0, 1) into the quantifier-free fragment of
FO(β,>,⊕,⊗, π).

The main result of the present section is the following theorem.

Theorem 5.4.1. There exists a translation

S : FO(+,×, <, 0, 1)QF,AI → FO(β,>,⊕,⊗, π)QF .

5.4.1 A translation given an affine coordinate system for E

We assume that the variables used in FO(+,×, <, 0, 1)-formulas are x1, y1,
x2, y2, ... and we define a map (not a translation)

So,e1,e2 : FO(+,×, <, 0, 1)QF,AI → FO(β,>,⊕,⊗, π)QF .

The image, So,e1,e2(ϕ), of an FO(+,×, <, 0, 1)-formula ϕ in the variables x1,
y1, ..., xm, ym, involves the variables o, e1, e2, p1, p2, ..., pm.
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First, we define it for FO(+,×, <, 0, 1)-terms, by induction on structure of
the term, as follows:

• So,e1,e2(0) := o,

• So,e1,e2(1) := e1,

• So,e1,e2(xi) := AffCoord1
o,e1,e2(pi),

• So,e1,e2(yi) := AffCoord2
o,e1,e2(pi),

• So,e1,e2(t1 + t2) := So,e1,e2(t1)⊕o So,e1,e2(t2) and

• So,e1,e2(t1× t2) := So,e1,e2(t1)⊗o,e1 So,e1,e2(t2), where t1 and t2 are FO(+,
×, <, 0, 1)-terms.

We remark that the image of an FO(+,×, <, 0, 1)-term involving the vari-
ables x1, y1, . . . , xm, ym, through the map So,e1,e2 , is an FO(β,>,⊕,⊗, π)-term
in the variables o, e1, e2 and p1, . . . , pm. The map So,e1,e2 allows us to translate
the two basic semi-algebraic operations (+ and ×) to the geometric setting, as
is proved in the next proposition.

Proposition 5.4.2. Let us assume that o, e1, e2 are three affine-independent
points. Let t be a FO(+,×, <, 0, 1)-term in the variables x1, y1, . . . , xm, ym
and consider points p1, . . . , pm in E, with coordinates (x1, y1), . . . , (xm, ym)
with respect to the coordinate system o, e1, e2.

Then, So,e1,e2(t)[o, e1, e2, p1, ..., pm] has coordinates (t[x1, y1, ..., xm, ym], 0)
in the affine coordinate system o, e1, e2.

Proof. We prove the proposition by induction in length of the term t. If it is
an atomic term, the conclusion follows directly from Lemma 5.3.3. It remains
to prove the cases t = r+ s and t = r× s, where r and s are shorter FO(+,×,
<, 0, 1)-terms. But these cases are direct consequence of Lemma 5.3.2. 2

Now, we define the translation of atomic formulas. The case of the relation
symbol “<” is based in a case analysis. We define

• So,e1,e2(t1 = t2) as So,e1,e2(t1) = So,e1,e2(t2); and

• So,e1,e2(t1 < t2) as (So,e1,e2(t1) 6= So,e1,e2(t2)) ∧ (ϕ1 ∨ ϕ2 ∨ ϕ3), where

ϕ1 := β(So,e1,e2(t2), o, e1) ∧ β(So,e1,e2(t1),So,e1,e2(t2), e1);
ϕ2 := β(o, e1,So,e1,e2(t2)) ∧

(β(So,e1,e2(t1), o, e1) ∨ β(o,So,e1,e2(t1),So,e1,e2(t2))); and
ϕ3 := β(o,So,e1,e2(t2), e1) ∧

(β(So,e1,e2(t1), o, e1) ∨ β(o,So,e1,e2(t1),So,e1,e2(t2))).
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Finally, we extend the map So,e1,e2 to the whole quantifier-free fragment
of FO(+,×, <, 0, 1) in the natural way, simply translating the conjunctions as
conjunctions and negations as negations. The resulting formula always has
o, e1, e2 as extra free variables and one geometric variable for each couple of
coordinate-variables in the original formula.

To lighten the notation, we write So,e1,e2(ϕ) for So,e1,e2(ϕ)[o, e1, e2].

Proposition 5.4.3. Let us suppose that o, e1, e2 ∈ E form an affine coordi-
nate system, and that ϕ is a quantifier-free FO(+,×, <, 0, 1)-formula in the
variables x1, y1, ..., xm, ym. Consider points p1, . . . , pm in E, with coordinates
(x1, y1), . . . , (xm, ym) with respect to the coordinate system o, e1, e2. Then,
A′ |= So,e1,e2(ϕ)[p1, ..., pm] if and only if R |= ϕ[x1, y1, . . . , xm, ym].

Proof. It is sufficient to prove the proposition for atomic formulas. The case
of a formula of the form t1 = t2 is a consequence of Proposition 5.4.2. Let us
suppose that ϕ is of the form t1 < t2.

Let us denote by t1 the real number t1[x1, y1, ..., xm, ym], and by t2 the real
number t2[x1, y1, ..., xm, ym].

Then, the points So,e1,e2(t1)[p1, ..., pm] and So,e1,e2(t2)[p1, ..., pm] have, re-
spectively, by Proposition 5.4.2, coordinates (t1, 0) and (t2, 0) in the coordinate
system o, e1, e2.

We can suppose, with out loss of generality, that t1 6= t2. Now, we claim
that t1 < t2 holds if and only if (ϕ1∨ϕ2∨ϕ3)[p1, ..., pm] holds. Let us suppose
that 0 < t2 < 1, the remaining cases (t2 = 0, t2 = 1, t2 < 0 and t2 > 1) can be
handled analogously.

Clearly, since 0 < t2 < 1, (ϕ1 ∨ ϕ2)[p1, ..., pm] is false. Since, under the
above hypothesis, t1 is less than t2 if and only if “0 is between t1 and 1, or t1
is between 0 and t2”, ϕ3[p1, ..., pm] holds if and only if t1 < t2 holds. Hence,
we have proved the claim and completed the proof of the proposition. 2

5.4.2 Finding a basis

The map So,e1,e2 is not a translation because it adds the three new free variables
o, e1 and e2. We show how to use the variables p1, ..., pm already involved in
the formula, considering three different situations:

1. when all the variables represent the same point;

2. when all the variables represent points that are aligned and two are
different; and

3. when there are three variables representing affine-independent points.
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To distinguish these cases, we define the three FO(β,>,⊕,⊗, π)-formulas
AffBasis, Alignedm and Equalm, and their FO(+,×, <, 0, 1)-counterparts.

First, we define

AffBasis(p1, p2, p3) := ¬L(p1, p2, p3) and
AffBasiscoord(x1, y1, x2, y2, x3, y3) :=

(x2 − x1)× (y3 − y1)− (y2 − y1)× (x3 − x1) 6= 0.

We remark that these are quantifier-free formulas. Both formulas express the
same affine-invariant relation: that the three points form an affine coordinate
system. That the second formula expresses this relation is a consequence of the
fact that the oriented area of the parallelogram with vertices at (0, 0), (a, b), (a+

c, b+ d), and (c, d), is given by the determinant of the matrix
(
a b
c d

)
.

Further on, we consider, for m ∈ N, m ≥ 3, the formulas

Alignedmcoord(x1, y1, . . . , xm, ym) :=∧
1≤i<j<k≤m

¬AffBasiscoord(xi, yi, xj , yj , xk, yk);

Alignedm(p1, . . . , pm) :=
∧

1≤i<j<k≤m
¬AffBasis(pi, pj , pk);

Equalmcoord(x1, y1, . . . , xm, ym) :=
∧

2≤i≤m
(x1 = xi) ∧ (y1 = yi); and

Equalm(p1, . . . , pm) :=
∧

2≤i≤m
(p1 = pi).

We remark that these four formulas express affine-invariant relations. The
first two express the same relation, namely, that the points are aligned. The
last two also express the same relation, namely, that all the points are the
same.

For the remainder of this section, let us suppose that ϕ(x1, y1, . . . , xm, ym)
is a quantifier-free FO(+,×, <, 0, 1)-formula expressing an affine-invariant re-
lation. For i, j, k ∈ N such that 1 ≤ i < j < k ≤ m, let us denote by ϕ〈i,j,k〉

the formula

AffBasiscoord(xi, yi, xj , yj , xk, yk) ∧ ϕ(x1, y1, . . . , xm, ym).

We remark that ϕ〈i,j,k〉 expresses an affine-invariant relation.

Lemma 5.4.4. The formula ϕ〈i,j,k〉 and AffBasis(pi, pj , pk)∧Spi,pj ,pk(ϕ) express
the same relation.
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Proof. For any p1, ..., pm ∈ E we consider (x1, y1), ..., (xm, ym) to be their
coordinates in some fixed affine coordinate system. We prove that

R |= AffBasiscoord[xi, yi, xj , yj , xk, yk] ∧ ϕ[x1, y1, . . . , xm, ym].

if and only if

A′ |= AffBasis[pi, pj , pk] ∧ Spi,pj ,pk(ϕ)[p1, . . . , pm].

On the one hand, if pi, pj , pk are affine dependent, then both formulas are
clearly false. On the other hand, if pi, pj , pk are affine independent, since ϕ
is affine invariant, Proposition 5.4.3 implies that ϕ[x1, y1, . . . , xm, ym] holds if
and only if Spi,pj ,pk(ϕ)[p1, . . . , pm] holds.

Hence, ϕ〈i,j,k〉 and AffBasis(pi, pj , pk) ∧ Spi,pj ,pk(ϕ) express the same rela-
tion. 2

Let us denote by ϕ〈∗〉 the FO(+,×, <, 0, 1)-formula

Equalmcoord(x1, y1, . . . , xm, ym) ∧ ϕ(x1, y1, . . . , xm, ym).

Lemma 5.4.5. The formula ϕ〈∗〉 expresses the same relation as Equalm(p1, ...,
pm) or as ¬>, and which of the two is the case is decidable.

Proof. Since the theory of real closed fields is recursively decidable (see, for
instance, [BCR98]), it is, in particular, effectively decidable wether ϕ〈∗〉 is
satisfiable or not. If it is unsatisfiable, it expresses the same relation as ¬>.

Suppose, on the other hand, that it its satisfiable. We prove that, under
this assumption, ϕ〈∗〉 expresses the same relation as Equalm. Clearly, if a tuple
of pairs of coordinates satisfies ϕ〈∗〉, then all the pairs are equal. But since
ϕ〈∗〉 expresses an affine-invariant relation, its truth value is invariant under
translations. Hence, it is satisfied by all m-tuples of equal pairs of coordinates.
Whence, ϕ〈∗〉 expresses the same relation as Equalm, and the proof is complete.

2

To take care of those cases where all the points are aligned and two are
different, we define a new map So,e1 , differing from So,e1,e2 only in the third
and fourth rules in the definition of the term-translation. We remark that the
these rules are the only ones where the map So,e1,e2 involves e2. So, we have:

• So,e1(0) := o;

• So,e1(1) := e1;

• So,e1(xi) := pi;
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• So,e1(yi) := o;

• So,e1(t1 + t2) := So,e1(t1)⊕o So,e1(t2); and

• So,e1(t1 × t2) := So,e1(t1)⊗o,e1 So,e1(t2).

For i ≤ m, let us denote by ϕ〈i〉 the formula

Alignedmcoord(x1, y1, . . . , xm, ym) ∧ ((x1 6= xi) ∨ (y1 6= yi)) ∧
ϕ(x1, y1, . . . , xm, ym).

Arguing as in the proofs of Proposition 5.4.2 and Lemma 5.4.4, we obtain the
following result.

Lemma 5.4.6. The formulas, ϕ〈i〉 and

Alignedm(p1, . . . , pm) ∧ (p1 6= pi) ∧ Sp1,pi(ϕ)(p1, . . . , pm)

express the same relation. 2

The three previous lemmas motivate the following definitions. Consider
the formulas

αm :=
∧

2≤i≤m
((x1 = xi) ∧ (y1 = yi)) ∨ ¬((x1 = xi) ∧ (y1 = yi));

βm :=
∧

1≤i<j<k≤m
(AffBasiscoord(xi, yi, xj , yj , xk, yk) ∨

¬AffBasiscoord(xi, yi, xj , yj , xk, yk)).

Clearly, αm and βm are logically valid.

We are now ready to prove Theorem 5.4.1.

Proof of Theorem 5.4.1 Given ϕ(x1, y1, . . . , xm, ym), a quantifier-free FO(+,×,
<, 0, 1)-formula expressing an affine-invariant relation, we define ϕ̃ as the result
of a first distribution of the conjunctions over the disjunctions in ϕ∧αm ∧βm.
We remark that, since αm and βm are logically valid, ϕ̃ is equivalent to ϕ. It
is also quantifier free and affine invariant. Also, and to clarify the meaning of
previous distribution, we remark that any disjunct in ϕ̃ contains, for any 1 ≤
i < j < k ≤ m, AffBasiscoord(xi, yi, xj , yj , xk, yk) or ¬AffBasiscoord(xi, yi, xj ,
yj , xk, yk) as a conjunct and for any 1 < i ≤ m, it also contains ((x1 =
xi) ∧ (y1 = yi)) or ((x1 6= xi) ∨ (y1 6= yi)) as a conjunct.
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We define the translation S(ϕ) as the disjunction of the translation of each
disjunct γ in ϕ̃. Each disjunct is translated using the Lemmas 5.4.4, 5.4.5 and
5.4.6.

First, we consider the case where, for some i, j, k ∈ N, γ contains the
formula AffBasiscoord(xi, yi, xj , yj , xk, yk) as a conjunct. Let us suppose that γ
is of the form AffBasiscoord(xi, yi, xj , yj , xk, yk) ∧ δ, where (i, j, k) is the first
triple, in the lexicographical order, such that AffBasiscoord(xi, yi, xj , yj , xk, yk)
is a conjunct of γ. Then, we define

S(γ) := AffBasis(pi, pj , pk) ∧ Spi,pj ,pk(δ)(p1, . . . , pm).

By Lemma 5.4.4, S(γ) expresses the same relation as γ.
Now, we suppose now that γ contains no conjunct of the form AffBasiscoord

(xi, yi, xj , yj , xk, yk). Hence, γ contains Alignedmcoord(x1, y1, . . . , xm, ym) as a
conjunct. If it contains, for some 1 < i ≤ m, ¬((x1 = xi) ∧ (y1 = yi)) as a
conjunct, let us write γ = Alignedmcoord(x1, y1, . . . , xm, ym)∧¬((x1 = xi)∧(y1 =
yi) ∧ δ for the first i with this property, and define

S(γ) := Aligned(p1, . . . , pm) ∧ (p1 6= pi) ∧ Sp1,pi(δ)(p1, . . . , pm).

By Lemma 5.4.6, S(γ) expresses the same relation as γ.
Finally, we suppose that γ contains no conjunct of the form ¬((x1 = xi) ∧

(y1 = yi)). Then, it contains Equalmcoord(x1, y1, . . . , xm, ym) as a conjunct. We
define S(γ) := ¬> or S(γ) := Equalm(p1, . . . , pm), in order to obtain a FO(β,
>,⊕,⊗, π)-formula expressing the same relation, what is possible by Lemma
5.4.5.

We finally define
S(ϕ) =

∨
γ disjunct in ϕ̃

S(γ)

Clearly, S(ϕ) is quantifier free and expresses the same relation as ϕ. Whence,
S : FO(+,×, <, 0, 1)QF,AI → FO(β,>,⊕,⊗, π)QF is a translation, and the
proof is completed. 2

5.5 The translation T of FO(+,×, <, 0, 1)QF,SI-formulas
to FO(β,≡,>,⊕,⊗, π⊥, κ)QF -formulas

We define a translation from the quantifier-free similarity-invariant fragment
of FO(+,×, <, 0, 1) into the quantifier-free fragment of FO(β,≡,>,⊕,⊗, π⊥,
κ).

The main result of the present section is the following theorem.
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Theorem 5.5.1. There exists a translation

T : FO(+,×, <, 0, 1)QF,SI → FO(β,≡,>,⊕,⊗, π⊥, κ)QF .

As in the last section, we assume that the variables used in FO(+,×, <, 0,
1)-formulas are x1, y1, x2, y2, ... and we define a map (not a translation)

To,e1,e2 : FO(+,×, <, 0, 1)QF,AI → FO(β,>,⊕,⊗, π)QF .

The image, To,e1,e2(ϕ), of an FO(+,×, <, 0, 1)-formula ϕ in the variables x1, y1,
..., xm, ym, involves the variables o, e1, e2, p1, p2, ..., pm.

First, we define it for FO(+,×, <, 0, 1)-terms, by induction in structure of
the term, as follows:

• To,e1,e2(0) := o,

• To,e1,e2(1) := e1,

• To,e1,e2(xi) := EuCoord1
o,e1,e2(pi),

• To,e1,e2(yi) := EuCoord2
o,e1,e2(pi),

• To,e1,e2(t1 + t2) := To,e1,e2(t1)⊕o To,e1,e2(t2) and

• To,e1,e2(t1× t2) := To,e1,e2(t1)⊗o,e1 To,e1,e2(t2), where t1 and t2 are FO(+,
×, <, 0, 1)-terms.

The next proposition is the Euclidean analogous to Proposition 5.4.2. Its
proof is completely analogous to that of Proposition 5.4.2, using Lemma 5.3.5
instead of Lemma 5.3.3.

Proposition 5.5.2. Let us assume that o, e1, e2 form an Euclidean coordinate
system. Let t be a FO(+,×, <, 0, 1)-term in the variables x1, y1, . . . , xm, ym
and consider points p1, . . . , pm in E, with coordinates (x1, y1), . . . , (xm, ym)
with respect to the coordinate system o, e1, e2.

Then, To,e1,e2(t)[o, e1, e2, p1, ..., pm] has coordinates (t[x1, y1, ..., xm, ym], 0)
in the Euclidean coordinate system o, e1, e2. 2

The map To,e1,e2 is defined on atomic formulas and extended to the whole
quantifier-free fragment of FO(+,×, <, 0, 1) in an analogous way as So,e1,e2 was
defined. Also, we write To,e1,e2(ϕ) for To,e1,e2(ϕ)[o, e1, e2].

The next proposition and its proof are the Euclidean analogous to Propo-
sition 5.4.3.
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Proposition 5.5.3. Let us suppose that o, e1, e2 ∈ E form an Euclidean coor-
dinate system, and that ϕ is a quantifier-free FO(+,×, <, 0, 1)-formula in the
variables x1, y1, ..., xm, ym. Consider points p1, . . . , pm in E, with coordinates
(x1, y1), . . . , (xm, ym) with respect to the coordinate system o, e1, e2. Then,
E ′ |= To,e1,e2(ϕ)[p1, ..., pm] if and only if R |= ϕ[x1, y1, . . . , xm, ym]. 2

The map To,e1,e2 is not a translation because it adds the three new free
variables o, e1 and e2. We use the same strategy as in the case of So,e1,e2 to use
the variables p1, ..., pm already involved in the formula. That is, we considering
the three different situations:

1. when all the variables represent the same point;

2. when all the variables represent points that are aligned and two are
different; and

3. when there are three variables representing affine-independent points.

Since the Euclidean relations among aligned points coincide with the affine
relation among these points, Cases (1) and (2) are translated exactly as in the
affine case. The next lemma show how to manage the third case.

Let us suppose that ϕ(x1, y1, . . . , xm, ym) is a quantifier-free FO(+,×, <, 0,
1)-formula expressing a similarity-invariant relation. We recall that for i, j, k ∈
N such that 1 ≤ i < j < k ≤ m, we denote by ϕ〈i,j,k〉 the formula

AffBasiscoord(xi, yi, xj , yj , xk, yk) ∧ ϕ(x1, y1, . . . , xm, ym).

We remark that ϕ〈i,j,k〉 expresses a similarity-invariant relation.

Lemma 5.5.4. The formulas ϕ〈i,j,k〉 and AffBasis(pi, pj , pk)∧Tpi,pj ,ε(pi,pj ,pk)(ϕ)
express the same relation.

Proof. For any p1, ..., pm ∈ E we consider (x1, y1), ..., (xm, ym) to be their
coordinates in some fixed Euclidean coordinate system. We prove that

R |= AffBasiscoord[xi, yi, xj , yj , xk, yk] ∧ ϕ[x1, y1, . . . , xm, ym].

if and only if

E ′ |= AffBasis[pi, pj , pk] ∧ Tpi,pj ,ε(pi,pj ,pk)(ϕ)[p1, . . . , pm]

On the one hand, if pi, pj , pk are affine dependent, then both formulas are
clearly false. On the other hand, if pi, pj , pk are affine independent, Lemma
5.3.6 implies that pi, pj , ε(pi, pj , pk) form an Euclidean coordinate system.
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Thus, since ϕ is similarity invariant, Proposition 5.5.3 implies that the
sentence ϕ[x1, y1, . . . , xm, ym] holds if and only if Tpi,pj ,ε(pi,pj ,pk)(ϕ)[p1, . . . , pm]
holds.

Hence, ϕ〈i,j,k〉 and AffBasis(pi, pj , pk)∧Tpi,pj ,pk(ϕ) express the same relation,
what completes the proof. 2

Finally, we prove Theorem 5.5.1.

Proof of Theorem 5.5.1 Given ϕ(x1, y1, . . . , xm, ym), a quantifier-free FO(+,×,
<, 0, 1)-formula expressing a similarity-invariant relation, we define ϕ̃ as in the
proof of Theorem 5.4.1. We define the translation T (ϕ) as the disjunction of
the translation of each disjunct γ in ϕ̃. Each disjunct is translated using the
Lemmas 5.5.4, 5.4.5 and 5.4.6.

Let γ be a disjunct in the disjunction ϕ̃ of the form AffBasiscoord(xi, yi,
xj , yj , xk, yk) ∧ δ, where (i, j, k) is the first triple, in the lexicographical order,
such that AffBasiscoord(xi, yi, xj , yj , xk, yk) is a conjunct of γ. Then, we define

T (γ) := AffBasis(pi, pj , pk) ∧ Tpi,pj ,ε(pi,pj ,pk)(δ)(p1, . . . , pm).

By Lemma 5.5.4, T (γ) expresses the same relation as γ.
The other two cases (γ contains Alignedmcoord ∧ (p1 6= pi) for some i ∈ N or

γ contains Equalmcoord as conjuncts) are treated in a way completely analogous
to the affine case. Since affine and Euclidean relation among aligned points
coincide, the map

T (ϕ) =
∨

γ disjunct in ϕ̃

T (γ)

obtained in this way T : FO(+,×, <, 0, 1)QF,SI → FO(β,≡,>,⊕,⊗, π⊥, κ)QF
is a translation, and the proof is completed. 2

5.6 Quantifier elimination for the theories A′ and E ′

Theorem 5.6.1. The theory A′ expresses exactly the affine-invariant geomet-
ric relations and admits effective quantifier elimination.

Proof. We prove that

S ◦ ER ◦ C ◦ B : FO(β,>,⊕,⊗, π)→ FO(β,>,⊕,⊗, π)QF

is an effective quantifier-elimination function.
Since S,ER, C and B are recursive functions, their composition is recursive.
Let ϕ be a FO(β,>,⊕,⊗, π)-formula. By Corollary 5.2.13 and Propositions

5.3.1, the FO(+,×, <, 0, 1)-formula ψ := C(B(ϕ)) expresses the same relation
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as ϕ. In particular, it expresses an affine-invariant relation. We recall from Sec-
tion 5.2.6, that ER(ψ) is a quantifier-free FO(+,×, <, 0, 1)-formula, equivalent
to ψ. In particular, it expresses the same relation as ϕ. Thus, by Theorem
5.4.1, S(ER(ψ)) is a quantifier-free FO(β,>,⊕,⊗, π)-formula expressing the
same relation as ϕ.

Being a definitional extension of a complete theory, A′ is complete. Thus,
two FO(β,>,⊕,⊗, π)-formulas express the same relation (under the standard
interpretation) if and only if they are equivalent in A′.

Hence, for any FO(β,>,⊕,⊗, π)-formula ϕ, S(ER(C(B(ϕ)))) ∈ FO(β,>,
⊕,⊗, π) is quantifier free and equivalent to ϕ.

Whence, A′ admits effective quantifier elimination. 2

In an analogous way, we obtain the following result.

Theorem 5.6.2. The theory E ′ expresses exactly the similarity-invariant ge-
ometric relations and admits effective quantifier elimination.

Proof. Arguing as in the previous proof, using Theorem 5.5.1 instead of The-
orem 5.4.1, and Theorem 5.3.4 instead of 5.3.1 we conclude that

T ◦ ER ◦ C ◦M : FO(β,≡,>,⊕,⊗, π⊥, κ)→ FO(β,≡,>,⊕,⊗, π⊥, κ)QF

is an effective quantifier-elimination function for E ′. 2

5.7 Final Remarks

5.7.1 Discussion on the primitive notions

We have added new function symbols and the 0-ary predicate symbol > to
our vocabularies to obtain quantifier elimination. We know that the original
language does not admit quantifier elimination. It is a natural question whether
some of the symbols in the resulting vocabularies are dispensable.

We shall say that a symbol is dispensable in a vocabulary if any property
expressible in the corresponding language can be expressed by a quantifier
free formula not involving the symbol. We remark that, since we require the
formula to be quantifier free, this notion is more subtle than what is usually
understood by independence of the primitive notions.

We briefly argue that > and ⊗ are indispensable in both extended vocab-
ularies.

The case of > is immediate. Since FO(β,>,⊕,⊗, π) and FO(β,≡,>,⊕,⊗,
π⊥, κ) have no constant symbols, no quantifier free sentence can be constructed
with out it. Hence, it is indispensable.
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To prove that ⊗ is indispensable in FO(β,>,⊕,⊗, π), consider the formula
z 6= o∧o⊕z o = r⊗z,o r, expressing that the three points are collinear and that
the ratio (z : o : r) is equal to ±

√
2. Theorem 2 in [Tar31] implies that this

cannot be defined only with β and ⊕ (the function π does not add expressive
power on collinear points). The proof that ⊗ is indispensable in FO(β,≡,>,
⊕,⊗, π⊥, κ) is completely analogous. The dispensability of the symbols β, π
and ⊕ in FO(β,>,⊕,⊗, π) remains an open problem.

Consider the following two FO(β,≡,>,⊕,⊗, π⊥, κ)-formulas:

• ≡ (o, p, q, r)↔ o⊕p o = κ(o, p, q, r);

• β(p, q, r)↔ (p = κ(q, r, q, p) ∨ q = r).

The second formula is analogous to the abbreviation (3) in [Pam01]. The
truth of both formulas in E ′ is easy to verify. Hence, the symbols β and
≡ can be replaced in any FO(β,≡,>,⊕,⊗, π⊥, κ)-formula by the right side
of these formulas. Thus, β and ≡ are dispensable in the language FO(β,≡,
>,⊕,⊗, π⊥, κ). We conclude that the language FO(>,⊕,⊗, π⊥, κ) expresses
exactly the similarity-invariant properties of the Euclidean plane and admits
the elimination of quantifiers. The dispensability of the symbols ⊕, π⊥ and κ
in FO(>,⊕,⊗, π⊥, κ) remains an open problem.

5.7.2 Axiom systems for the new languages FO(β,>,⊕,⊗, π)
and FO(>,⊕,⊗, π⊥, κ)

Tarski’s complete axiom system for elementary Euclidean geometry can be
transformed to a complete axiom system for the theory E ′ in the language
FO(β,≡,>,⊕,⊗, π⊥, κ) adjoining the axiom > and the implicit definitions of
the new function symbols (replacing in formulas given in Section 5.3 the vari-
able s by the corresponding instantiated function symbol). Finally, replacing
in the resulting axiom system, each occurrence of β and ≡ by the equivalent
FO(>,⊕,⊗, π⊥, κ)-formulas recently introduced, we obtain an axiom system
in the language FO(>,⊕,⊗, π⊥, κ) for the corresponding theory. The resulting
axioms are all universal (also called, quantifier-free) with the exception of the
lower-dimensional axiom and the continuity axiom-schema. A natural ques-
tion remains open: Is it possible to extend our vocabulary with finitely many
new functions to obtains a purely universal axiomatization in the line of con-
structive analysis? We remark that an analogous procedure can be followed to
axiomatize the affine case.
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Extension to higher dimensions

Our results can easily be extended to n-dimensional spaces for n > 2. We
briefly indicate how.

In the affine case, we replace the projection function symbol π by πn whose
interpretation is defined as follows.

πn(p, o, e1, e2, ..., en)

is the projection, parallel to the affine hull of o, e2, ...en, of p over o, e1, if p be-
longs to the affine hull of o, e1, e2, ...en and o otherwise. A direct generalization
of our proofs (using πn to coordinate the space) shows that the language FO(β,
>,⊕,⊗, πn), interpreted over the n-dimensional Euclidean space, expresses ex-
actly the affine-invariant relations on the n-dimensional Euclidean space and
admits quantifier elimination.

On the other hand, a straightforward generalization to dimension n of
our proofs shows that the language FO(>,⊕,⊗, π⊥, κ), interpreted over the n-
dimensional Euclidean space (where π⊥ is, as before, interpreted as the orthog-
onal projection over a line), expresses exactly the similarity-invariant relations
and admits the elimination of quantifiers.



A
Algebraic computational models

We introduce the main computational models considered in this thesis: the
algebraic computation tree model and the boolean-arithmetic circuit model.

Algebraic computation trees represent a good model of sequential algebraic
computations. The notion of boolean-arithmetic circuit enables to capture the
notion of parallel complexity.

Any boolean-arithmetic circuit can be transformed into an algebraic com-
putation tree of depth bounded by the size of the original circuit. Thus, a
lower bound for the sequential complexity in the model of algebraic computa-
tion trees implies a lower bound for the sequential complexity in the model of
boolean-arithmetic circuits.

We start defining the algebraic decision tree model, that is a simple model
used to prove lower complexity bounds (see Exercises 3.15 and 11.4 in [BCS97]).

A tree is a finite set T of nodes such that

• there is one specially designated node called the root of the tree;

• the remaining nodes are partitioned into m ≥ 0 disjoint nonempty sets
T1, ..., Tm, and each of these sets is in a tree. These trees are call the
subtrees of the root.

The number m of subtrees of a node v ∈ T is called the outdegree of the
node. The root of a tree is called the parent of the roots of its subtrees. The
predecessor relation is defined as the transitive closure of the parent relation.
Hence, a node v1 ∈ T is called a predecessor of a node v2 ∈ T if v1 is the root
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of a subtree of T containing v2. A ternary tree is a tree in which each internal
node has outdegree one, two or three.

A.1 Algebraic Decision Trees over the Reals

Let n be a positive integer. An algebraic decision tree over the reals is a
ternary tree together with a function that assigns to each of its inner nodes v a
polynomial Fv in R[X1, ..., Xn], and to each of its leaves a label (for instance,
these labels could be “accept" or “reject").

The semantics of algebraic decision trees is defined as follows. To any
input x ∈ Rn, we assign a unique path in the tree from the root to a leaf by
continuing with the left son of a node v if Fv(x) < 0, with the middle son if
Fv(x) = 0, and with the right son if Fv(x) > 0. The output of the algebraic
decision tree is the label of the leaf where the path ends.

The number of steps of an algebraic decision tree is defined as the depth
of the underlying tree.

Algebraic decision trees are used to give lower bounds for the branching
(also called topological) complexity of semi-algebraic problems.

As we show in Section 2.4, this model can be used to show that if an
algorithm solves the sign condition problem for a family P of polynomials,
evaluating only the polynomials in this family, then the algorithm might have
to evaluate all the polynomials in P for a given input.

A.2 Algebraic Computation Trees over the Reals

We now describe the model of algebraic computation trees. Our definitions
are based on the formulation of [BCS97] (see also [Str81], [BO83] and [Lic90]).
For convenience, we shall distinguish two types of inputs for computation trees:
variables and parameters. As is also the case of physical systems, the distinc-
tion might depend on the context of application.

Analogous to Strassen [Str81], we define computation trees as consisting
of a subjacent tree, an instruction function and an inference partition of the
leaves. Since we shall consider different inference partitions for a fixed tree and
a fixed instruction function, we introduce the intermediary notion of algebraic
tree as a couple composed of a tree together with an instruction function for
this tree. In this way, a computation tree is an algebraic tree together with an
inference partition of the its leaves.
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A.2.1 Syntax of computation trees

Definition A.2.1 (Algebraic trees). Let T be a finite tree with four types
of nodes: assignment nodes (outdegree 1), arithmetic nodes (outdegree 1),
test nodes (outdegree 3) and leaf nodes (outdegree 0). An algebraic tree with
variables X1, ..., Xn and parameters U1, ..., Um, is a such a tree T together with
a function (the instruction function) that associates

- to each assignment node v, a real constant, a variable or a parameter;

- to each arithmetic node v, an arithmetic operation ◦v ∈ {+,−,×, /} and
two predecessor nodes, p1(v) and p2(v), of v in T ;

- to each test node v, two predecessor nodes, p1(v) and p2(v), of v in T ;

- to each leaf node l, an (eventually empty) output list of predecessor nodes
p1(l), ..., pil(l) of l in T .

The tree T is called the subjacent tree of the algebraic tree. When no confusion
can arise, we denote algebraic trees with the same symbols as their subjacent
trees.

We denote by T(n) the set of algebraic trees involving n variables and no
parameters, and by T(n,m) the set of algebraic trees involving n variables and
m parameters. ut

Definition A.2.2 (Computation tree). A computation tree, (T , σ), is an alge-
braic tree T together with a partition σ of the set of leaves of T (the inference
partition) such that the length il of the output list is constant on σ-classes.

The (algebraic) tree T is called the subjacent (algebraic) tree of the com-
putation tree (T , σ). The depth and size of a computation tree are the depth
and the size of its subjacent tree.

If a computation tree involves parameters, we shall call it a parametric
computation tree to emphasize this fact.

We denote by C(n) the set of computation trees with n variables, and by
C(n,m) the set of parametric computation trees with n variables and m param-
eters. ut

The parameters of a parametric computation trees can be instantiated by
different values; each instantiation defines a new computation tree.

Definition A.2.3 (Instantiation of the parameters). Let T ∈ T(n,m) be a
parametric algebraic tree.

For any u = (u1, ..., um) ∈ Rm, we define T [u] as the (nonparametric)
algebraic tree having the same subjacent tree as T and whose instruction
function differs from that of T in that it assigns the real constant ui to any
node v where the instruction function of T assigned the parameter Ui. ut
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Let (T , σ) ∈ C(n,m) and let u ∈ Rm. We remark that, since the subjacent
trees of T and of T [u] are the same tree, σ is an inference partition for T [u],
i.e., (T [u], σ) ∈ C(n) is a computation tree.

A.2.2 Semantics of computation trees

Let T be an algebraic tree with variables X1, ..., Xn and parameters U1, ..., Um.
We associate to each internal node v ∈ T , a rational function compv ∈
R[X1, ..., Xn, U1, ..., Um], as follows:

- for an assignment node v, with an associated real constant c, we define
compv := c;

- for an assignment node v, with an associated variable Xi, we define
compv := Xi;

- for an assignment node v, with an associated parameter Ui, we define
compv := Ui;

- for an arithmetic node v, we define compv := compp1(v) ◦v compp2(v);

- for a test node v, we define compv := compp1(v) − compp2(v).

If v is an internal node of T , we say that it computes the rational function
compv. For any x = (x1, ..., xn) ∈ Rn and any u = (u1, ..., um) ∈ Rm we asso-
ciate to v the real value compv(x, u) if compv is defined on (x, u). Otherwise,
we say that compv is undefined on (x, u).

Definition A.2.4 (Computation path, output). The computation path fol-
lowed in an algebraic tree T , for parameters (u1, ..., um) ∈ Rm, on input
x = (x1, ..., xn) ∈ Rn, is the unique path in T that satisfies the following
properties:

- the path starts at the root of T ;

- the successor of an assignment node v in this path is its unique immediate
successor in the tree T ;

- an arithmetic node v has a successor in this path only if compv(x, u) is
defined: in this case the successor of v in the path is its unique successor
in T ; otherwise, the computation path ends in v;

- the successor of a test node v in this path corresponds to the first,
second or third immediate successor of the node v in T , according to
whether compv(x, u) is less, equal or greater than zero, respectively—
i.e., according to whether compp1(v)(x, u) is lower, equal or greater than
compp2(v)(x, u);
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- leaf nodes have no successor in a computation path.

We denote by T (x, u) the last node reached by this computation path. If
T (x, u) is a leaf, say l, of T , then we call it the result of the execution of T on
input x for parameters u, and we say that the algebraic tree T is executable
on (x, u). Let p1(l), ..., pil(l) be the output list of l. Then (compp1(l)(x, u), ...,
comppil (l)

(x, u)) is called the output of T on input x for parameters u. If
(T , σ) ∈ C(n,m), then the σ-class in which the leaf l = T (x, u) lies is called the
output class of (x, u). ut

If l ∈ T is a leaf, we define the semi-algebraic set

Dl := {(x, u) ∈ Rn ×Rm | T (x, u) = l}.

A leaf l ∈ T is called active for parameters u ∈ Rm if, for some x ∈ Rn, it
is the result of the execution of T on input x for parameters u, i.e., l = T (x, u).

Computation trees compute collections. Let us now state precisely what
a computation tree computes. Let (T , σ) ∈ C(n,m) be a parametric computa-
tion tree and let J ⊂ Rn × Rm be a semi-algebraic set. We say that T is
executable on J if and only if T is executable on every element of J . Let the
inference partition σ be {σ1, ..., σt} and let ki be the common output length of
the nodes in σi. The set J is partitioned into the subsets (1 ≤ i ≤ t)

Ji := {(x, u) ∈ J | the output class of (x, u) is σi}.

We call this the partition of inputs of (T , σ) on J . For each i, 1 ≤ i ≤ t, we
have a mapping ϕi : Ji → Rki assigning to any (x, u) ∈ Ji its output. The
unique extension ϕ of the ϕi, to a map defined on J is called the computation
map of T on J . On a given input (x, u) ∈ J the computation tree (T , σ)
decides in which of the classes Ji the element (x, u) lies and computes the
output ϕ(x, u) of T on (x, u). This motivates the following definition.

Definition A.2.5 (Collection). A collection for a semi-algebraic set J ⊂ Rn×
Rm consists of a partition π = {J1, ..., Jt} of J into finitely many semi-algebraic
components and of a family of semi-algebraic functions ϕi : Ji → Rki for
1 ≤ i ≤ t. We will denote a collection by (ϕ, π) where ϕ is the unique map
defined on J which extends the ϕi. ut

Definition A.2.6 (Computable in time t). Let (T , σ) ∈ C(n,m) be a compu-
tation tree and let J ⊂ Rn ×Rm. We say that (T , σ) computes the collection
(ϕ, π), consisting of the computation map and the partition of inputs of the
computation tree (T , σ) on J , in time t, where t is the depth of the tree T .

A collection (ϕ, π) is computable in time t if there exists a computation
tree of depth bounded by t that computes (ϕ, π). ut
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The depth of an algebraic computation tree is also called its total or al-
gebraic complexity. The maximum number of tests in a single path is called
its branching complexity. Analogously, the maximum number of non-scalar
products in a single path in the tree is called its non-scalar complexity

Let us discuss some special cases. A collection (ϕ, π) for J with π = {J}
describes a “pure computational problem”. In this case, we omit π and speak
of the collection ϕ; we say that T computes the function ϕ.

On the other hand, a collection (ϕ, π) where ϕ maps every (x, u) to a zero-
length output, describes a decision problem. Point location problems are of this
kind. If |π| = 2 then we have a membership problem. In these cases, we omit ϕ
and regard the partition π as a special collection; we say that (T , σ) computes
the partition π. If T involves parameters we say that (T , σ) computes the
parametric partition π.

The following result is immediate and can be found, for example in [Lic96]

Proposition A.2.7. If a computation tree (T , σ) computes a partition π of a
set J in time t and π̃ is a coarser partition of J , then there exists an inference
partition σ̃ such that (T , σ̃) computes the partition π̃ in time t. ut

Instantiation of the parameters and notation. For any polynomial F ∈
R[X1, ..., Xn, U1, ..., Um] and any u ∈ Rm let us denote by F [u] the polynomial
F (X1, ..., Xn, u) ∈ R[X1, ..., Xn]. Also, for any set J ⊂ Rn × Rm and any
u ∈ Rm, let us denote by J [u] the set {x ∈ Rn |(x, u) ∈ J}.

A parametric partition π = {π1, ..., πk} of a set J ⊂ Rn ×Rm induces, for
every u ∈ Rm, a partition π[u] on J [u] given by π[u] := {π1[u], ..., πk[u]}.

The next proposition follows immediately from the definitions.

Proposition A.2.8. Let (T , σ) ∈ C(n,m) be a parametric computation tree
that computes a parametric partition π of J in time t.

If u ∈ Rm, then (T [u], σ) ∈ C(n) computes the partition π[u] of J [u] in
time t. ut

A.2.3 Pragmatics of computation trees

Algebraic computation trees provide an excellent model to prove lower bounds
for the algebraic complexity of some problems. Lower bounds are usually
proved for the branching complexity or the non-scalar complexity of any alge-
braic computation tree solving a fixed problem.

In order to prove lower bounds, the main drawback of this model is that
it does not include a notion of uniformity. On the other hand, this allows
to describe non-uniform algorithms in this model. For instance, Meyer auf
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der Heide [MadH84] described a non-uniform polynomial time solution to the
NP-complete Knapsack problem using a similar (linear) model.

A.3 Boolean-Arithmetic Circuits over the Reals

As said before, algebraic computation trees represent a good model of sequen-
tial algebraic computations. The notion of boolean-arithmetic circuit allows us
to capture the notion of parallel complexity.

A boolean-arithmetic circuit (also called arithmetic networks in [vzG86a]),
C, is a directed acyclic graph where each node of the graph is an input node
or a constant node if it has in-degree zero and a gate node if its in-degree
is positive. Output nodes are nodes with out-degree zero. Also, every node
will be arithmetic or boolean according to the kind of information it contains
(observe that input and constant nodes can be of any of both kinds). Nodes
connected to gates are supposed to be of the correct type, as described bellow.

Every gate node will be labeled as one of the following:

• Arithmetic Gate Nodes: ×,+,−, /. Input: two arithmetic nodes.

• Boolean Gate Nodes: ∧,∨ (with two boolean nodes as input) and ¬ (with
one boolean input node).

• Boolean Sign Nodes. Input: one arithmetic node. Its boolean value
depends on the sign ({−1, 0, 1}) of the input. There are two kind of
boolean sign nodes corresponding to the two predicates = and ≤.

• Arithmetic Selection Nodes. Input: two arithmetic and one boolean node.
Its values is equal to the first or second arithmetic input according to the
truth value of the boolean input.

We define the size of C as the number of nodes in the circuit (see also
[Weg87]). We will use this number as our measure of sequential complexity,
whereas the parallel complexity is determined by the depth of the circuit (i.e.,
the length of the longest path in the subjacent graph, from an input node to
an output node).

We will not define the semantics of boolean-arithmetic circuits. We recall
that any boolean-arithmetic circuit can be transformed into an algebraic com-
putation tree of depth bounded by the size of the original circuit. Thus, a
lower bound for the sequential complexity in the model of algebraic computa-
tion trees implies a lower bound for the sequential complexity in the model of
boolean-arithmetic circuits.
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A.4 The Bit Models

By the bit model we understand the Turing machine model. On the other
hand, within an algebraic computation model, we can restrict the arithmetic
operations to be performed only among integers. in this case, the bitsize of
these integers involved is taken into account.

Even when we restrict our algorithms to work over the integers, they have
to deal with algebraic numbers (for example, to represent sample points of
semi-algebraic sets). In this context, we use the following representation for
algebraic numbers.

A.4.1 Bit Representation of Algebraic Numbers

Definition A.4.1. Let T ∈ Z[X] be a non-zero polynomial and let σ be a
sign condition on the derivatives of T . We say that (T, σ) is a Thom encoding
of the real algebraic number x if T (x) = 0 and x satisfies the sign condition σ.
By the degree and logarithmic height of a Thom encoding we understand the
degree and logarithmic height of T .

We remark that by Thom’s Lemma (see Proposition 2.5.4 in [BCR98]) two
different real numbers cannot have the same Thom encoding.

Definition A.4.2. A Triangular Thom encoding for a tuple of real algebraic
numbers (x1, ..., xn) ∈ Rn is a pair (T , σ), where T is a tuple (T1, ..., Tn) of
polynomials and σ is a tuple (σ1, ..., σn) of sign conditions such that, (T1, σ1)
is a (non-zero) Thom encoding of x1 and, for 2 ≤ i ≤ n, Ti ∈ Z[X1, ..., Xi] and
(Ti(x1, ..., xi−1, Xi), σi) is a (non-zero) Thom encoding of xi.

The degree and logarithmic height of a triangular Thom encoding (T , σ)
are defined, respectively, as the maximal degree and the maximal logarithmic
height of the polynomials T1, ..., Tn. The size of (T , σ) is defined as the pair
(d, τ), where d is its degree and τ its logarithmic height.

We remark that the triangular Thom encoding is the natural representation
of the sample points obtained by the Cylindrical Algebraic Decomposition
method.

To evaluate the sign of a polynomial P ∈ Z[X1, ..., Xn] at an algebraic
point, we use Algorithm 11.8 (sign determination algorithm) from [BPR06].
The properties of this algorithm are summarized in the following proposition.

Proposition A.4.3. Let P be a polynomial in Z[X1, ..., Xn] and let (T , σ)
be a triangular Thom encoding of x ∈ Rn. Assume that P and (T , σ) have
degrees and logarithmic height bounded by d ≥ 2 and τ , respectively. Then,
the sign determination algorithm determines the sign of P (x) performing
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dO(n) arithmetic operations. Moreover, the logarithmic height of the integers
involved in these operations is bounded by τdO(n).

By convention and to simplify the statement of the complexity results, we
assume that the d, the bound on the degrees of the polynomials involved in
the input of our algorithms, is at least 2.

A.5 Representation of Polynomials

Let be given a polynomial F ∈ R[X1, ..., Xn]. We shall consider the following
different representations of it. Besides the number n of variables, each of
these representations has associated some natural parameters measuring the
complexity of the representation.

1. Arithmetic-circuit representation. The polynomial F is represented
by an arithmetic circuit Γ over R that computes it (see [vzG86b, BCS97];
succinctly, an arithmetic circuit is a boolean-arithmetic circuit involving
only arithmetic input nodes, arithmetic constant nodes and arithmetic
gate nodes). We limit ourselves to division-free circuits. Let us denote by
L the non-scalar size of Γ (i.e., the number of non-scalar multiplication
nodes in the circuit) and observe that the degree of F is bounded by 2L.
The parameters associated with this representation are n and L.

2. Dense arithmetic representation. Suppose that the polynomial F
has degree d. The dense arithmetic representation of F consists on the
tuple in R(d+nn ) of its coefficients in the monomial basis. The parameters
associated with this representation are n and d.

3. Dense bit representation. Let us assume that the polynomial F has
integer coefficients. If F has logarithmic height τ and degree d, its dense
bit representation is the tuple in Z(d+nn ) of its coefficients in the monomial
basis, where each integer is represented by its bit encoding (of size at most
τ). The parameters associated with this representation are n, d and τ .

4. Sparse representations The sparse representation of the polynomial
F consists of the list of all pairs (µ, aµ), where aµ ∈ R is a non-zero
coefficient of F corresponding to the monomial with multi-exponent µ ∈
Nn. The parameters associated with this representation are n, d, the
number of non-zero coefficients of F and, if the polynomial has integer
coefficients, also their logarithmic height.
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5. Straight-line-program representation. A straight line program (SLP,
for short) can be defined as an algebraic computation tree without branch-
ing nodes. It is the sequential version of arithmetic circuits.

Given a family F := {F1, ..., Fs} of polynomials in R[X1, ..., Xn], the
arithmetic-circuit representation the family F is division-free arithmetic cir-
cuit Γ over R that computes all the polynomials in F . Let us denote by L the
non-scalar size of Γ. The parameters associated with this representation are
s, n and L.

A.5.1 The Relation Between the Total and the Non-Scalar
Complexity of Evaluating a Family of Polynomials

Given a circuit representation of a family F := {F1, ..., Fs} ⊂ R[X1, ..., Xn],
we discuss the cost (total complexity) of evaluating some of these polynomials.

Lemma A.5.1. Let F := {F1, ..., Fs} ⊂ R[X1, ..., Xn] be a family of poly-
nomials represented by a division-free arithmetic circuit Γ of non-scalar com-
plexity L. Let k be a positive integer, 1 ≤ k ≤ s, and let 1 ≤ i1 ≤ · · · ≤
ik ≤ s be integers. Then, Fi1 , ..., Fik can be computed with total complexity
O((L+ k)(L+ n)).

Proof. Let us denote by n1, ..., nL the non-scalar multiplication nodes in Γ and
by P1, ..., PL the polynomials in R[X1, ..., Xn] computed by these nodes. We
assume, without loss of generality, that deg(P1) ≤ deg(P2) ≤ · · · ≤ deg(PL).

It is easy to see that, for 1 ≤ i ≤ L, the node ni computes the product of
two polynomials of the form

Σi−1
j=1γjPj + Σn

j=1βjXj + β0,

where the greek letters represent real numbers. Rewriting the circuit if nec-
essary, each of these linear combinations can be computed from the preceding
non-scalar multiplication nodes and input variables without non-scalar multi-
plications and a total complexity of O(n+ i). Thus, there exists a division-free
arithmetic circuit, namely ΓP , that computes the family {P1, ..., PL} with total
complexity O(L2 + nL).

We remark that, for any 1 ≤ i ≤ s,

Fi = ΣL
j=1γjPj + Σn

j=1βjXj + β0,

where the greek letters represent real numbers. Hence, each Fi can be com-
puted from {P1, ..., PL} performing O(L+n) arithmetic operations. Thus, the
polynomials Fi1 , ..., Fik can be computed with a total complexity O(L2 +nL)+
O(k(L+ n)). This competes the proof. ut
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Summary

This thesis is mainly dedicated to the study of upper and lower complexity
bounds of some problems in the context of semi-algebraic geometry. We present
a brief summary of its contents.

In Chapter 1 we analyze the algebraic complexity of the linear programming
feasibility problem over the reals and prove non-trivial lower bounds for this
problem. The linear programming feasibility problem can be stated as follows:
given positive integersm > n, a matrixH ∈ Rm×n and a vector h ∈ Rm decide
whether there exists a column vector x ∈ Rn such that H · x ≤ h. For the
case of polyhedra defined by 2n halfspaces in Rn, we prove that the set I(2n,n)

of parameters describing non-empty polyhedra, has an exponential number of
limiting hypersurfaces. From this geometric result we obtain, as a corollary, the
existence of a constant c > 1 such that, if dense or sparse representation is used
to encode polynomials, the length of any quantifier-free formula expressing the
set I(2n,n) is bounded from below by Ω(cn). Other related complexity results
are stated; in particular, a lower bound for algebraic computation trees based
on the notion of limiting hypersurface is presented.

In Chapter 2, we study the sign condition problem for any given a family
of polynomials. Essentially, the problem consists in determining the sign con-
dition satisfied by a fixed family of polynomials at a query point, performing
as little arithmetic operations as possible. After defining precisely the sign
condition and the point location problems, we introduce a method called the
dialytic method to solve the first problem efficiently. This method involves
a linearization of the original polynomials and provides the best known al-
gorithm to solve the sign condition problem. Finally, using a technique that
resembles that of Chapter 1, we prove a lower bounds showing that the dialytic
method is almost optimal.

In Chapter 3, we discuss different data structures that can be used to solve
the point location problem for a given family of polynomials. This problem
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asks to determine, not only the sign condition satisfied by a family of polyno-
mials at a query point, but also the connected component of the realization of
this sign condition containing the query point. After showing how to adapt the
dialytic method to this problem, we introduce, In Section 3.3, a method based
on an Adapted Cylindrical Algebraic Decomposition of the space that solves
the point location problem for any given family. In Section 3.4, we discuss
the case of polynomials with integer coefficients given in dense bit represen-
tation introducing a method that, based on diophantine geometry, solves the
point location problem for generic families of polynomials. We include a brief
discussion of the local ray shooting problem.

In Chapter 4, we introduce the notion of intrinsic description of a linearly-
constructible set and study the complexity of quantifier-elimination methods
in a computational model where the output is required to be an intrinsic
description of the underlying set. We introduce a quantifier-elimination al-
gorithm in this model. It turns out that our elimination algorithm has a
doubly-exponential-time complexity in the worst case, when the complexity
is measured in terms of syntactic parameters (number of polynomials and of
quantifier alternations, dimension of the ambient space). We show that in
our computational model, our algorithm is optimal, i.e., we prove a doubly-
exponential lower bound in the number of quantifier alternations of the input
formula.

Remarkably, we obtain simply-exponential complexity bounds on intrinsic
geometric parameters of the input problem. Thus, our algorithm distinguishes
between well-posed and ill-posed problems and can be inscribed in the new
generation of algorithms which take also into account intrinsic, semantic in-
variants of the input in order to measure the complexity of the procedure.

The Chapter 5 is the only chapter not related to complexity theory. Follow-
ing the tradition of mathematical logic, we introduce new first-order languages
for the elementary n-dimensional geometry and elementary n-dimensional affine
geometry (n ≥ 2), based on extending the traditional languages FO(β,≡) and
FO(β), respectively, with new function symbols. Here, β stands for the be-
tweenness relation and ≡ for the congruence relation. We show that the asso-
ciated theories admit effective quantifier elimination.

A preliminary version of Chapter 1 was presented in Dagstuhl [Gri07]. A
journal version is published as [GK09]. Parts of Chapters 2 and 3 have been
presented in the 11th SYNASC symposium under the title “Point Location in
arrangements of algebraic hypersurfaces” and a journal version of these chap-
ters is being prepared. Chapter 5 has been recently sent for publication. Other
publications in this period include [KOG07, KOG10] and [FGG08, FGG].



Samenvatting

Deze thesis is voornamelijk gewijd aan de studie van onder- en bovengrenzen
van de complexiteit van enige problemen in de context van semi-algebraïsche
meetkunde. Hier geven we een korte samenvatting van de inhoud.

In hoofdstuk 1 analyseren we we de algebraïsche complexiteit van het “linear
programming feasibility”-probleem over de reële getallen en we bewijzen niet-
triviale ondergrenzen voor dit probleem. Het linear-programming-feasibility-
probleem kan als volgt geformuleerd worden: gegeven positieve gehele getallen
m > n, een matrix H ∈ Rm×n en een vector h ∈ Rm, beslis of een kolom-
vector x ∈ Rn bestaat zodanig dat H · x ≤ h. Voor het geval van veelvlakken
gedefinieerd door 2n half-ruimten in Rn, tonen we aan dat de verzameling
I(2n,n) van parameters die niet-lege veelvlakken beschrijven een exponentieel
aantal begrenzende hyperoppervlakken heeft. Als een gevolg van dit meetkundig
resultaat verkrijgen we het bestaan van een constante c > 1 zodat, als we dense
of sparse representatie gebruiken om de veeltermen te beschrijven, de lengte
van iedere kwantor-vrije formule die de verzameling I(2n,n) uitdrukt, Ω(cn) als
ondergrens heeft. We geven ook andere gerelateerde complexiteitsresultaten,
in het bijzonder geven we een ondergrens voor algebraïsche berekeningsbomen
die gebaseerd is op de notie van begrenzend hyperoppervlak.

In hoofdstuk 2 bestuderen we het “sign condition”-probleem voor een gegeven
familie van veeltermen. Dit probleem bestaat erin het teken te bepalen van
een vaste familie veeltermen in een gegeven query-punt, en dit door zo weinig
mogelijk rekenkundige operaties uit te voeren. Nadat we het sign-condition-
en het “point location”-probleem precies gedefinieerd hebben, voeren we de zo-
genaamde dialytische methode in om het eerste probleem efficiënt op te lossen.
Deze methode houdt de linearisatie in van de gegeven veeltermen en levert
het beste gekende algoritme op om het sign-condition-probleem op te lossen.
Tenslotte, gebruik makend van een techniek die op de techniek uit hoofdstuk 1
lijkt, bewijzen we ondergrenzen die aantonen dat de dialytische methode bijna
optimaal is.
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In hoofdstuk 3 bestuderen we verschillende gegevensstructuren die gebruikt
kunnen worden om het point-location-probleem op te lossen voor een gegeven
familie veeltermen. Dit probleem vraagt niet enkel de teken-voorwaarden te
bepalen waaraan een query-punt voldoet voor de familie veeltermen, maar het
vraagt bovendien naar de samenhangingscomponent van de realisatie van de
teken-voorwaarden waartoe het query-punt behoort.

Nadat we aangetoond hebben hoe de dialytische methode kan aangepast
worden om dit probleem op te lossen, introduceren we in sectie 3.3 een meth-
ode die gebaseerd is op Aangepaste Cilindrische Algebraïsche Decompositie
van de ruimte om het point-location-probleem op te lossen voor een geven
familie van veeltermen. In sectie 3.4 bestuderen we het geval van veeltermen
met gehele coefficiënten die in dense bit-representatie gegeven worden en we
introduceren een methode die gebaseerd is op diophantische meetkunde en die
het point-location-probleem oplost voor generische families van veeltermen.
We bespreken ook het “local ray shooting”-probleem.

In hoofdstuk 4 introduceren we de notie van intrinsieke beschrijving van
een lineaire construeerbare verzameling en we bestuderen de complexiteit van
kwantor-eliminatie-methodes in een berekeningsmodel waar geëist wordt dat
de output een intrinsieke beschrijving van de onderliggende verzameling is. We
introduceren een kwantor-eliminatie-algoritme in dit berekeningsmodel. In het
slechtste geval heeft ons algoritme een dubbel-exponentiële tijdscomplexiteit,
als de complexiteit gemeten wordt in termen van syntactische parameters (aan-
tal veeltermen en kwantoren, dimensie van de omgevende ruimte). We tonen
aan dat dit algoritme optimaal is in ons berekeningsmodel. We tonen een on-
dergrens aan die dubbel-exponetieel is in het aantal kwantoren in de formule.

Merkwaardig genoeg bekomen we enkel-exponentiële complexiteitsgrenzen
op de intrinsieke meetkundige parameters van de input. Daardoor kunnen onze
algoritmen het onderscheid maken tussen goed- en slecht-geformuleerde prob-
lemen en kunnen ze aldus beschouwd worden als nieuwe-generatie algoritmen
die ook intrinsieke, semantische invarianten van de input in rekening brengen
om de complexiteit te meten.

Hoofdstuk 5 is het enige hoofdstuk dat niet over complexiteit handelt. Vol-
gens de traditie van wiskundige logica, introduceren we eerste-orde talen voor
de elemantaire n-dimensionale meetkunde en de elementaire n-dimensionale
affiene meetkunde (n ≥ 2), gebaseerd op het uitbreiden van de klassieke talen
FO(β,≡) en FO(β), respectievelijk, met nieuwe functie-symbolen. Hier staat β
voor de “betweenness”-relatie en ≡ voor de congruentie-relatie. We tonen aan
dat de geassocieerde theorieën kwantor-eliminatie toelaten.
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Een werkversie van hoofdstuk 1 werd gepubliceerd als Dagstuhl-rapport [Gri07].
Een journaal-versie werd gepubliceerd als [GK09]. Delen van hoofdstukken 2
en 3 werden voorgesteld op het 11de SYNASC Symposium onder de titel “Point
location in arrangements of algebraic hypersurfaces” en een journal-versie van
deze hoofdstukken is in voorbereiding. Hoofdstuk 5 is naar een journaal ter
publicatie gestuurd. Andere publicaties gemaakt tijdens de afgelopen jaren
zijn [KOG07, KOG10] en [FGG08, FGG].
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