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Chapter 1
Introduction

1.1 Introduction and outline of the thesis

In some clinical, environmental or economical studies, researchers are interested in

a semi-continuous outcome variable. Hereby the outcome variable attains on the

one hand the value zero with a discrete probability mass, while on the other hand

it has a continuous distribution for its non-zero response values. For example, in

an environmental study where investigators want to know the amount of a certain

toxic metal in an aquatic system, it is possible that this metal is not present in the

system (Blackwood (1991)). Also, in an economical study where we want to obtain

an insight in the amount of R & D which is done in different companies, we note

that some companies do not perform any reported R & D. As a last example, we

consider a biological study on ethanol-induced sleeping time in genetically selected

mice (Markel et al. (1995)). Some mice did not fall asleep because their genetic

metabolism was able to break down the alcohol in the blood very fast. In each of

these studies, one can identify two groups of study subjects. On the one hand, there

are individuals with a strictly positive value for the outcome variable which are called

susceptibles, while on the other hand, there are subjects with a zero outcome value.

These subjects are called non-susceptible because they do not show any response in

the study.

In the literature, we can distinguish between two different ways to analyze a

semi-continuous variable with an excess of zero values. A first way was introduced by

Tobin (1958). He proposed to use an underlying continuous latent random variable

1



2 Chapter 1. Introduction

and to consider the zero outcomes as censored observations of this latent variable at

zero. This Tobit model was later generalized by, for example, Cragg (1971), Amemiya

(1973) and many others. A survey of the Tobit model and its generalizations can be

found in Amemiya (1984). A second way to analyze semi-continuous variables is by a

finite mixture model consisting of a degenerate component at zero and a continuous

component for the non-zero values. This model was first introduced by Duan et al.

(1983) and later extended to other settings by for example Olsen and Schafer (2001).

In our work, we consider finite mixture structures for the response variables.

Due to technical limitations, it is in some studies not always possible to fully

observe the semi-continuous outcome variable. For example by a fixed detection

limit, we only observe an upper bound for the outcome variable in some individuals.

We call these observations left-censored. Moulton and Halsey (1995) developed

a finite mixture regression model for this type of left-censored semi-continuous

data. Hereby they assumed a parametric logistic regression model for the discrete

probability of a zero outcome value, and assumed a lognormal distribution for the

strict positive values. Due to the left-censoring, we note that it is not possible to

fully discriminate between the groups of susceptible and non-susceptible subjects.

The uncensored observations are clearly susceptible subjects, but for the censored

observations one cannot distinguish between unsusceptible subjects and susceptible

subjects with a censored outcome variable. Recently, Yang and Simpson (2010)

studied the computational issues in a more general class of parametric zero-inflated

left-censored mixture models and extended the model of Moulton and Halsey (1995).

The zero-inflated left-censored mixture models are in a way related to the so

called mixture cure models. Cure models are useful in modeling survival data with a

cure fraction. For example, in cancer studies, a substantial fraction of the patients

may be cured and will never experience relapse. An excellent book about this field

of research is Maller and Zhou (1996). Typical data sets have heavy right censoring

at the end of the follow-up period. Among the right censored observations, it is

impossible to distinguish between cured individuals and the non-cured individuals

who are censored due to incomplete follow-up. In the so called mixture cure models,

one models separately the survival distribution for the susceptible individuals (who

would eventually experience the event if there were no censoring) and the fraction

of the cured individuals. Parametric mixture cure models are studied since many

decades. Berkson and Gage (1952) used a model consisting of a mixture of the expo-

nential distribution and a constant cure fraction. Farewell (1982, 1986) extended this
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parametric modeling approach to Weibull regression for the susceptibles and logistic

regression for the cure fraction. Kuk and Chen (1992) introduced semi-parametric

mixture cure models. They modeled the survival times of susceptible subjects with

proportional hazards regression models, while they used logistic regression models

for the cure fraction. Lu (2008) used a joint parametric/nonparametric likelihood

technique to estimate the parameters in this model from right-censored data and

established the asymptotic properties of the estimators using the modern empirical

process theory. We note for completeness that the so called bounded cumulative

hazard cure models (see e.g. Yakovlev and Tsodikov (1996), Chen et al. (1999) and

Tsodikov et al. (2003)) are an appealing alternative to the mixture cure models.

The bounded cumulative hazard models assume that a latent biological process of

propagation of latent clonogenic tumor cells (N latent factors) is generating the

observed failure. In these models, an individual is at risk of failure if he/she is

exposed to at least one of these latent factors. If not, the individual is considered

cured. Failure occurs when one or more of these latent factors become activated.

The random variable N can have any finite-mean integer-valued distribution (e.g.

Poisson, geometric, etc.). In the most popular model, N is assumed to follow

a Poisson distribution, with covariates introduced through the parameter of this

distribution. The activation times are assumed to be independent and identically

distributed. It can be shown that in these models the cumulative hazard function for

the entire population of patients is bounded, which explains the name of this class of

models. Cooner et al. (2007) generalized the framework of the bounded cumulative

hazard models to a more flexible class of cure models under latent activation schemes.

In Chapter 2, we propose an extension of the mixture regression models by

Moulton and Halsey (1995) and Yang and Simpson (2010) for left-censored semi-

continuous data. Instead of a fixed detection limit, we assume a random censoring

variable. Furthermore we consider a semi-parametric mixture regression model

for this type of left-censored data. Hereby we take, as in the previous models,

a parametric regression model to investigate the influence of covariates on the

discrete probability of a zero outcome value. For the continuous positive part of the

outcome variable, we consider a semi-parametric Cox’s regression model instead of a

parametric model to study the influence of the covariates. The different parameters

in the mixture model are estimated using a likelihood method. Hereby the infinite

dimensional baseline cumulative hazard function is estimated by a step function.

In order to facilitate the maximum likelihood estimation procedure, we discuss

some technical aspects about the optimization algorithm. As results, we show the
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identifiability of the model and the consistency of the estimators for the different

parameters in the model. Next, we prove the asymptotic normality of the maximum

likelihood estimators applying theory about empirical processes (van der Vaart and

Wellner (1996)). In order to study the finite sample behavior of the estimators, we

set up a simulation study. Different simulation settings are considered. We compute

an estimate of the bias and standard deviations of the estimates for all parameters in

the zero-inflated semi-parametric regression model. For comparison, we also apply a

standard left-censored semi-parametric Cox’s regression model without zero-inflation

(see Kim et al. (2010)) to the data sets. The model of Kim et al. (2010) is developed

for doubly-censored data, but it can also be applied to left-censored data. Finally

the model is illustrated on a practical data set of ethanol-induced sleep time in mice

(Markel et al. (1995)).

In the simulation study of Chapter 2, we note that maximizing the empirical

likelihood for univariate zero-inflated left-censored time to event data is rather time

consuming and sometimes unstable. For example, when the probability of a zero

response is low, there can be some optimization problems. Kim et al. (2013) became

aware of similar problems in the computation of maximum likelihood estimators

for the proportional hazards model with doubly-censored data. To overcome these

problems, they proposed an approximated likelihood and developed an efficient

EM-algorithm to obtain estimates for the different parameters. In Chapter 3, we

investigate whether we can approximate the likelihood for the semi-parametric Cox’s

regression model for zero-inflated left-censored time to event data in a similar way.

As result, the consistency of the maximum approximated likelihood estimators is

proved. We further develop an efficient EM-algorithm to calculate the maximum

approximated likelihood estimates. In the M-step of the EM-algorithm one obtains

estimates for the logistic parameters and for the effect parameters of the proportional

hazards model separately from each other. Moreover, one can use standard functions

in the statistical software package R to compute these estimates. The estimates of

the jump sizes of the baseline cumulative hazard function can be computed from the

estimates for the effect parameters. By approximating the likelihood, we get a high

dimension reduction, which makes the optimization procedure more stable and faster.

Through a simulation study, the accuracies of the maximum approximated likelihood

estimates and the maximum likelihood estimates are compared for finite data samples.

Furthermore, the biological study on ethanol-induced sleeping time in mice

(Markel et al. (1995)) has a repeated measurement design, since mice are tested at
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two different times. This is an example where researchers are interested in bivariate

semi-continuous time to event data. Due to technical limitations, observations for

both semi-continuous outcome variables may be left-censored. Berk and Lachenbruch

(2002) extended the model of Moulton and Halsey (1995) to a multivariate setting

with repeated measurements. By introducing a random effect for each subject, they

allowed that the different measurements within a subject were not independent. Chu

et al. (2005) considered a bivariate submodel of this extended model. They proposed

the use of a bivariate Gaussian mixture model to model two measures of viral

load with known lower limits of detection and investigated in detail the correlation

coefficient between these measures.

In Chapter 4, we introduce bivariate parametric and semi-parametric regres-

sion models for left-censored observations where the underlying times until an event

have a discrete probability of a zero value. We first model the marginal probabilities

of a zero response and the marginal distributions of non-zero responses. Afterwards,

we impose a dependence structure to model the joint probability of having zero

responses in both measurements and the association between two non-zero responses.

This kind of marginal approach was also used in the bivariate cure-mixture model

of Chatterjee and Shih (2001), which was developed to analyze correlated survival

data when there exists a cured proportion in the study. In our regression models,

we assume in each measurement a parametric regression model for the marginal

probability of a zero response. The non-zero parts of both outcome variables are

modeled by parametric or semi-parametric proportional hazards models. For the

joint probability of a zero-response in both measurements, we model the cross ratio

of a contingency table containing all combinations of zero and non-zero responses

for both measurements. The association between two non-zero responses is modeled

by parametric families of copulas. Furthermore, we assume independent random

censoring variables instead of fixed detection limits.

To estimate the different parameters in the bivariate regression models, we

make use of maximum likelihood techniques. However, we note that the maximum

likelihood estimators do not have a closed form and numerical optimization becomes

more difficult as the number of parameters increases. The special structure of the

model suggests that we can consider a two-stage estimation procedure. At the first

stage we estimate the parameters in the margins, ignoring the dependence of the two

measurements. The second stage involves maximum likelihood of the dependence

parameters with the univariate parameters held fixed from the first stage. This
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technique was also used by, among others Shih and Louis (1995), Joe (1997) and

Chatterjee and Shih (2001). A partitioned form of the asymptotic variance-covariance

matrix of the two-stage parametric estimators is deduced, together with a jackknife

estimator for this matrix. We study the finite sample behavior of the parametric and

semi-parametric estimators through a simulation study and illustrate the model on

the practical data example of ethanol-induced sleeping time in mice.

Finally, in Chapter 5, general conclusions about the results are presented. In

addition we give some indications about possible future research.
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1.2 Practical data set of ethanol-induced sleep time

in mice

We will illustrate the performance of our regression models and estimation methods

on a practical study on ethanol-induced anesthesia (sleep time) in genetically-selected

strains of mice. The original data set was created by Markel et al. (1995) and

involved four different populations of mice, divided over three generations: two

parental inbred strains, their isogenic F1 population and a genetically-segregating F2

population derived by crosses of F1 mice. As primary goal, the populations of mice

were used to study the genetic influence of ethanol on sleep time. The selection of

the parental inbred strains was done in such a way that one of the parental strains

had in general a very long ethanol-induced sleep time, while the other parental strain

had a very short sleep time or did not sleep at all.

From Markel et al. (1995), we learn that the assessment of the ethanol-induced sleep

time was done in the following way. Every mouse was injected intraperitoneally with

a 4.1 g/kg dose of ethanol for a first time at 55-65 days of age (trial 1) and a second

time 7-10 days later (trial 2). After the injection, the mouse was placed on its back

and was considered anesthetized if it did not turn over more than three times within

the first minute. Repeated attempts to observe this behavior were made within

15 min after the injection. Anesthetic recovery was indicated when an individual

turned over three times within 1 min after being anesthetized. The sleeping time

of a mouse was measured as the time interval between observed anesthesia and the

final minute of recovery. We note that in the assessment of sleep time, the recording

is left-censored by a fixed detection limit taken at 1 min. For a mouse in which

repeated attempts to place it on its back failed, we know that the animal did not fall

asleep or had a very short sleep time. In this case, the mouse was immune for the

administered ethanol dose.

Next to the sleep time, several covariates were also recorded for each animal.

We focus in this doctoral thesis on the covariates sex, weight at each trial and the

coat color of the mouse. This variable coat color was dichotomized in the analysis

and will be used to study whether an albino mouse reacts differently to alcohol

than a non-albino mouse. Markel and Corley (1994) found that the gene coding for

albinism (Tyr) had an effect on the ethanol-induced sleep time. They posed that

either this gene or a gene closely linked to it, is important for sleep time.
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In this doctoral thesis, we only consider the bivariate observations for the se-

gregating F2 population within this data set. In Table 1.1, we give an overview of

the censoring status in both trials for the mice in the study.

Second

Uncensored Left-censored

First
Uncensored 978 51

Left-censored 34 8

Table 1.1: Censoring status. The rows correspond to the censoring status at the first

measurement, the columns to the censoring status at the second measurement.

Furthermore, we plot in Figure 1 the recorded sleep times for each mouse for

the first and second measurement. Hereby we note that the mice, for which one or

Figure 1.1: Scatter plot of the recorded sleep times for the first and second measurement.

both observations are censored (at the detection limit of 1 min), are given on lines

parallel to the x- and y-axis.



Chapter 2
Zero-inflated semi-parametric Cox’s

regression model

The focus in this chapter is on the semi-parametric modeling of zero-inflated left-

censored time to event data. In Section 2.1, we introduce mathematically the semi-

parametric Cox’s regression model for zero-inflated left-censored data. To estimate

the different parameters in our model, we make use of maximum likelihood techniques.

Hereby we note that the baseline cumulative hazard function is an infinite dimensional

parameter which is estimated by a step function. In order to facilitate the maximum

likelihood estimation procedure, we discuss some technical aspects about the opti-

mization algorithm. After introducing some regularity conditions in Section 2.2, we

show in Section 2.3 the identifiability of the model and the existence of the maximum

likelihood estimators. We prove in Section 2.4 the consistency of the maximum like-

lihood estimators under the regularity conditions. The asymptotic normality of the

maximum likelihood estimators is proved in Section 2.5. Next we present a simulation

study in Section 2.6 to investigate the finite sample properties of these estimators.

Afterwards, in Section 2.7, our model is illustrated on a practical data set of ethanol-

induced sleep time in mice. Finally, in Section 2.8, we give some conclusions about

our results.

9
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2.1 Methodology

In this section, we introduce a semi-parametric Cox’s regression model for zero-inflated

time to event data. We denote by Y a semi-continuous outcome variable which at-

tains the value zero with a discrete probability and has non-zero positive values with

a continuous distribution. Furthermore we assume that there exist two vectors of

covariates X and Z which may have components in common. We consider that the

conditional distribution of the outcome Y is given by

F (y|x, z) = P (Y ≤ y|X = x, Z = z) = π(x) + (1− π(x))FY >0(y|z),

where FY >0(y|z) = P (Y ≤ y|Y > 0, Z = z) is a continuous conditional distribution

for the non-zero values of the outcome Y and π(x) = P (Y = 0|X = x) is the

conditional probability of a zero outcome value. We assume a parametric model for

the conditional probability π(x) and denote it by π(γ, x). The parameters of this

model are expressed by a finite dimensional vector γ. For the conditional distribution

FY >0(y|z) of the non-zero outcome values, we consider a Cox’s regression model (Cox

(1972)). Hereto, we assume that the conditional hazard function has the following

form

λY >0(t|z) =
fY >0(t|z)
F̄Y >0(t|z)

= λ(t)g(β, z), (2.1)

where F̄Y >0(t|z) = 1− FY >0(t|z) (resp. fY >0(t|z) = d
dtFY >0(t|z)) is the conditional

survival (resp. density) function. The function λ(t) in (2.1) is an unknown baseline

hazard function and g(β, z) > 0 is a known parametric model which depends on a

finite dimensional vector β.

In some studies, it is impossible to fully observe the outcome variable Y and we only

see an upper bound. Therefore we assume that there exists a random variable C such

that we only observe T = max(Y,C) and δ = I(Y ≥ C). This type of data is called

left-censored data. Conditionally on the covariate vectors X and Z, we assume that

Y and C are independent. We denote the conditional distribution of C, given X and

Z, by FC|X,Z(c|x, z) = P (C ≤ c|X = x, Z = z).

To estimate the parameters γ and β and the baseline hazard function λ(t) in this

model, we use maximum likelihood techniques. Hereto we assume that (T1, δ1, X1, Z1),

. . . , (Tn, δn, Xn, Zn) is an i.i.d. sample of the observed variables (T, δ,X,Z). The
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contribution of an individual to the likelihood function is given by

p(t, δ, x, z) = {f(t|x, z)FC|X,Z(t|x, z)}δ{F (t|x, z)fC|X,Z(t|x, z)}1−δ

=
{

(1− π(γ, x))λ(t)g(β, z) exp (−g(β, z)Λ(t))FC|X,Z(t|x, z)
}δ

×{[π(γ, x) + (1− π(γ, x))

(1− exp(−g(β, z)Λ(t)))] fC|X,Z(t|x, z)
}1−δ

,

where f(t|x, z) (resp. fC|X,Z(c|x, z)) is the density function of the conditional outcome

variable Y (resp. censoring variable C) and Λ(t) =
t∫

0

λ(s)ds is the baseline cumulative

hazard function. Since the conditional distribution of the censoring variable does not

depend on the unknown parameters, we get that the likelihood function is given by

L(γ, β, λ) =

n∏
i=1

{(1− π(γ,Xi))λ(Ti)g(β, Zi) exp (−g(β, Zi)Λ(Ti))}δi

{π(γ,Xi) + (1− π(γ,Xi)) (1− exp(−g(β, Zi)Λ(Ti)))}1−δi .

However, it is impossible to maximize this expression over the space of all baseline

cumulative hazard functions. We will replace the baseline hazard function λ(t) by a

difference in the cumulative hazard function Λ(t) which we denote by Λ{t} = Λ(t)−
Λ(t−). This leads to the following likelihood function:

Le(γ, β,Λ) =

n∏
i=1

{(1− π(γ,Xi))Λ{Ti}g(β, Zi) exp (−g(β, Zi)Λ(Ti))}δi

{π(γ,Xi) + (1− π(γ,Xi)) (1− exp(−g(β, Zi)Λ(Ti)))}1−δi .

In this way we note that the maximum likelihood estimator for the baseline cumulative

hazard will be a step function. We consider the following non-parametric step function

for this baseline cumulative hazard function:

Λn(t) =

qn∑
k=1

λkI(uk ≤ t),

where 0 < u1 < . . . < uqn are the unique uncensored observations and λ1, . . . , λqn

are the corresponding step sizes in these time points. For a given sample, we obtain

maximum likelihood estimates for the different parameters γ, β and λ1, . . . , λqn by

maximizing the likelihood function Le(γ, β,Λn). We denote these estimates by θ̂ =

(γ̂, β̂, Λ̂n).
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Some remarks:

1. In the maximization process of the likelihood function, we note that the score

equations for the different step sizes in the baseline cumulative hazard function

∂

∂λk
logLe(γ, β,Λn) = 0, k = 1, . . . , qn,

give the following expressions:

λ̂k =
1

ξn(uk; θ̂)
, k = 1, . . . , qn,

where

ξn(u; θ) =

n∑
i=1

g(β, Zi){I(Ti ≥ u, δi = 1) + ai(θ)I(Ti ≥ u, δi = 0)},

ai(θ) = − (1− π(γ,Xi)) exp{−g(β, Zi)Λ(Ti)}
π(γ,Xi) + (1− π(γ,Xi))(1− exp{−g(β, Zi)Λ(Ti)})

,

with θ = (γ, β,Λ).

Hence, we see that we get a closed form solution for the step sizes of the non-

parametric baseline cumulative hazard function in all uncensored observations

which are larger than the largest censored observation. Suppose that all obser-

vations larger or equal than ul are uncensored. Then

λ̂l =
1

n∑
i=1

g(β̂, Zi)I(Ti ≥ ul)
.

Incorporating this into the likelihood function facilitates the maximum likeli-

hood optimization procedure. The number of parameters reduces significantly,

which makes the procedure much faster.

2. In the most extreme case, when all censored observations are smaller than the

smallest uncensored observation, the likelihood looks as follows:

Le(γ, β,Λn) =

n∏
i=1

{1− π(γ,Xi)}δi {π(γ,Xi)}1−δi ×

n∏
i=1

{[
qn∑
k=1

λkI(uk = Ti)

]
g(β, Zi)

exp

(
−g(β, Zi)

[
qn∑
k=1

λkI(uk ≤ Ti)

])}δi

= L1(γ) L2(β,Λn).
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We see that the first part of this likelihood is only concerned with the parame-

tric model of the zero-probability, while the second part is the likelihood of a

Cox’s regression model based on the subgroup of the uncensored observations.

Fitting the zero-inflated Cox’s regression model simplifies in this case to fitting a

logistic regression model on the censoring indicator variables and fitting a Cox’s

regression model on the subgroup of the uncensored observations. Hereto, one

can use respectively the glm- and coxph-function in R.

This occurs for example in studies with a fixed detection limit, such as the bio-

logical study on ethanol-induced sleep time in mice (Markel et al. (1995)), which

will be analyzed in Section 2.7.

2.2 Regularity conditions

We give in this section an overview of the assumptions that we impose for the following

existence, identifiability, consistency and asymptotic normality results in the Cox’s

regression on zero-inflated left-censored data.

Hereby we first consider the support of the different random variables in this model.

For the semi-continuous outcome variable Y , the support is given by the set {0} ∪
[ρY , τY ] where ρY = sup{y|FY >0(y) = 0} and τY = inf{y|FY >0(y) = 1} are the lower-

(resp. upper-) end of the support of the continuous non-zero part of the outcome Y .

For the censoring variable C, we denote the support by the interval [ρC , τC ]. This

leads to a support [ρT , τT ] for the observed time T with ρT = max(0, ρC) = ρC and

τT = max(τY , τC). Also, for the observed time of the uncensored observations, we see

that the support is given by [max(ρY , ρC), τY ] while for the censored observations,

this is [ρC , τC ].

Assumptions:

A1: The components in the covariate sets X and Z are bounded (|Xj | < MX ,

|Zj | < MZ).

A2: The parameter spaces of the finite dimensional parameters γ and β are compact

and will be denoted by Θγ and Θβ .

A3: The function π(γ, x) is a continuous function of γ and x with 0 < π(γ, x) < 1 for

(γ, x) ∈ Θγ × [−MX ,MX ]dX . We also assume that this function is identifiable

(i.e. π(γ, x) = π(γ∗, x)⇒ γ = γ∗).

A4: The function g(β, z) > 0 is a continuous function of β and z, ((β, z) ∈ Θβ ×
[−MZ ,MZ ]dZ ), which is identifiable (i.e. g(β, z) = g(β∗, z)⇒ β = β∗).
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A5: There exist ρ and τ with ρT < ρ < τ < τT such that:

a. 0 < inf
t∈[ρ,τ ]

λ0(t) ≤ sup
t∈[ρ,τ ]

λ0(t) < ∞, where λ0 is the true baseline hazard

function.

b. The conditional distribution function of C given X and Z, denoted with

FC|X,Z , has bounded derivatives on [ρ, τ ], except at finitely many points.

Furthermore, FC|X,Z(ρ) > 0.

We will consider ρ and τ as the beginning and endpoint of any interval on which

all uncensored observations are observed. ρ and τ can be arbitrarily close to

resp. ρY and τY .

2.3 Identifiability and existence of the maximum

likelihood estimators

In this section, we first show that the Cox’s regression model for zero-inflated left-

censored data is identifiable. Hereto we prove that the finite dimensional parameters γ

and β, and the infinite dimensional baseline cumulative hazard function Λ are uniquely

determined from the observed data. Next we show that the maximum likelihood

estimators for these parameters exist.

Theorem 1. Under assumptions A1 − A5, we get that the parameters (γ, β,Λ) are

identifiable.

Proof. Let us assume that we have two sets of parameters (γ, β,Λ) and (γ∗, β∗,Λ∗)

such that the observed quantities are the same,

p(t, δ, x, z) = p∗(t, δ, x, z).

This is equivalent to

(1− π(γ, x)) exp(−Λ(t)g(β, z)) = (1− π(γ∗, x)) exp(−Λ∗(t)g(β∗, z)).

Since this holds for all time points t in the support, we get that there exists a positive

function c(x̃) such that

1− π(γ, x)

1− π(γ∗, x)
=

exp(−Λ∗(t)g(β∗, z))

exp(−Λ(t)g(β, z))
= c(x̃),
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where x̃ represents the set of covariates which is common for x and z. Hence we get

that

Λ∗(t)g(β∗, z) = − log(c(x̃)) + Λ(t)g(β, z),

1− π(γ∗, x) =
1− π(γ, x)

c(x̃)
.

For the Cox’s regression model, we note that any multiplication of the function g(β, z)

by a constant c∗ can be absorbed in the baseline cumulative hazard function. There-

fore we can always find a value z0 within the covariate space such that g(β, z0) = 1

for all values of β. This leads to

Λ∗(t) = − log(c(x̃0)) + Λ(t).

By solving the previous relationships for g(β∗, z), we get that

g(β∗, z) =
− log(c(x̃)) + g(β, z)Λ(t)

− log(c(x̃0)) + Λ(t)
.

In this expression, we need to show that the right-hand side does not depend on the

time t. By using a first order Taylor expansion, we get that

g(β∗, z) = g(β, z) +
− log(c(x̃0))(1− g(β, z))

− log(c(x̃0)) + Λ(t)
− c(x̃)− c(x̃0)

c0(− log(c(x̃0)) + Λ(t))
,

where c0 is between c(x̃) and c(x̃0). If we want that the right-hand side of this equation

does not depend on t, we need that c(x̃) − c(x̃0) = 0 for all x̃ and c(x̃0) = 1. This

gives that g(β∗, z) = g(β, z), Λ∗(t) = Λ(t) and π(γ∗, x) = π(γ, x). Under assumption

A3 and A4, we get that this model is also identifiable. If the covariate sets x and z

have no covariates in common, we get that the function c(x̃) is a constant and we can

find in a similar way that it is equal to 1.

Next, we prove the existence of the maximum likelihood estimators on a compact set.

Theorem 2. Under the assumptions A1 − A5, there exists a vector (γ̂, β̂, Λ̂n) =

(γ̂, β̂, λ̂1, . . . , λ̂qn) which maximizes the likelihood function Le(γ, β,Λn) =

Le(γ, β, λ1, . . . , λqn).

Proof. Since g(β, z) is a continuous function over the compact sets of β and z, we

have that this function is bounded from below and above by positive constants, K1

and K2. We see that

0 ≤ Le(γ, β, λ1, λ2, . . . , λqn) ≤
n∏
i=1

{Λ{Ti}K2 exp[−Λ(Ti)K1]}δi .
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Now, let us consider the set

∆M = {(λ1, λ2, . . . , λqn)|λ1 + λ2 + . . .+ λqn ≤M} ⊂ Rqn+ ,

with 0 < M < +∞.

Since Le(γ, β, λ1, λ2, . . . , λqn) is continuous in (γ, β, λ1, λ2, . . . , λqn), it will have a

maximum on the compact subspace Θγ ×Θβ ×∆M , for any given value M . Denote

by LM the maximum value of Le(γ, β, λ1, λ2, . . . , λqn) over Θγ ×Θβ ×∆M . However,

since Me−MK1 → 0 as M → +∞, there exists an M0 such that the maximum

value LM of Le(γ, β, λ1, λ2, . . . , λqn) over Θγ × Θβ × ∆M does not get any larger

than LM0
. Therefore we can restrict the parameter space of (γ, β, λ1, λ2, . . . , λqn) to

Θγ × Θβ ×∆M0
. By the continuity of Le(γ, β, λ1, λ2, . . . , λqn) on this space, we get

the existence of the maximum likelihood estimator

2.4 Consistency

In this section, we prove the consistency of the maximum likelihood estimators under

some regularity conditions. We follow the ideas of Kim et al. (2010).

Let (γ0, β0,Λ0) be the true values of the parameters.

Theorem 3. Under assumptions A1 − A5, the maximum likelihood estimators

(γ̂, β̂, Λ̂n) are consistent. This means that

|γ̂ − γ0| → 0, |β̂ − β0| → 0 and sup
t∈[ρ,τ ]

|Λ̂n(t)− Λ0(t)| → 0,

with probability 1.

Proof. The proof of the consistency is divided into several steps.

Before giving the full proof, we first give a short sketch. In the first step,

we show that the maximum likelihood estimators for γ, β and Λ are bounded almost

surely. In Section 2.1, we found an expression for the estimators of the step sizes of

the nonparametric baseline cumulative hazard function:

λ̂r =
1

nξn(ur; θ̂)
.

In step 2, we prove that there exists Mξ > 0 such that inf
t∈[ρ,τ ]

ξn(t; θ̂) > Mξ for all

sufficiently large n, with probability 1. Hereto we assume that such an Mξ does not

exist and derive a contradiction with the boundedness of Λ̂n(τ). In step 3, we define
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an estimator Λ̃n(.). We show that this estimator converges to Λ0(.) uniformly on

[ρ, τ ]. Next, we suppose that γ̂, β̂ and Λ̂n converge to γ+, β+ and Λ+ uniformly. In

step 4, we show that

dΛ̂n

dΛ̃n
(t)→ dΛ+

dΛ0
(t)

uniformly on [ρ, τ ], with probability 1. In this part of the proof, we use the result

from step 2. In step 5, we use Helly’s selection theorem. We can find a convergent

subsequence of θ̂ = (γ̂, β̂, Λ̂n), with convergence point θ+ = (γ+, β+,Λ+). The result

from step 4 implies that

0 ≤ 1

n
le(γ̂, β̂, Λ̂n)− 1

n
le(γ0, β0, Λ̃n)→ KL(θ+, θ0),

where KL(θ+, θ0) is the negative of the Kullback-Leibler divergence. We show that

KL(θ+, θ0) = 0. Using the model identifiability, we get that that θ+ = θ0.

After this brief sketch, we describe every step of the proof in more detail.

Step 1: Since Θγ and Θβ are compact sets, the MLE’s of γ and β are bounded by

some constants Mγ and Mβ . We first prove that there exists a constant MΛ such that

Λ̂n(τ) ≤ MΛ for all sufficiently large n with probability 1. That is, the maximum

likelihood estimator for Λ is bounded with probability 1. We have that, for any γ, β

and Λ,

1

n

(
le(γ̂, β̂, Λ̂n)− le(γ, β,Λ)

)
=

1

n

n∑
i=1

δi

{
log

1− π(γ̂, Xi)

1− π(γ,Xi)
+ log

Λ̂n{Ti}
Λ{Ti}

+ log
g(β̂, Zi)

g(β, Zi)

−g(β̂, Zi)Λ̂n(Ti) + g(β, Zi)Λ(Ti)

}
+

1

n

n∑
i=1

(1− δi) log
π(γ̂, Xi) + (1− π(γ̂, Xi))(1− exp[−g(β̂, Zi)Λ̂n(Ti)])

π(γ,Xi) + (1− π(γ,Xi))(1− exp[−g(β, Zi)Λ(Ti)])
.

Since g(β, z) is a continuous function over the compact sets of β and z, this function

is bounded from below and above by positive constants K1 and K2. So there exists a

positive constant K such that

1

n

n∑
i=1

δi log
g(β̂, Zi)

g(β, Zi)
≤ K 1

n

n∑
i=1

δi → KE(δ),
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as n → +∞, by the Glivenko-Cantelli theorem. Since also π(γ, x) is a continuous

function over the compact sets of γ and x, we get in a similar way that there exist

constants K ′ and K ′′ such that

1

n

n∑
i=1

δi log
1− π(γ̂, Xi)

1− π(γ,Xi)
≤ K ′ 1

n

n∑
i=1

δi → K ′E(δ),

1

n

n∑
i=1

(1− δi) log
π(γ̂, Xi) + (1− π(γ̂, Xi))(1− exp[−g(β̂, Zi)Λ̂n(Ti)])

π(γ,Xi) + (1− π(γ,Xi))(1− exp[−g(β, Zi)Λ(Ti)])

≤ K ′′ 1
n

n∑
i=1

(1− δi)→ K ′′E(1− δ).

If we take for Λ(t), Λ̄n(t) =
∑
uk≤t

1
n , we have that

1

n

n∑
i=1

δi log
Λ̂n{Ti}
Λ̄n{Ti}

=
1

n

qn∑
k=1

log(nλ̂k)

≤ qn
n

log

[
1

qn

qn∑
k=1

nλ̂k

]
=
qn
n

log Λ̂n(τ) +
qn
n

log

(
n

qn

)
≤ log Λ̂n(τ) +O(1),

by an application of Jensen’s inequality. Furthermore we note that

1

n

n∑
i=1

δig(β, Zi)Λ̄n(Ti) ≤
1

n

n∑
i=1

δig(β, Zi) ≤
1

n

n∑
i=1

g(β, Zi)→ E[g(β, Z)],

for all β. We also find that

− 1

n

n∑
i=1

δig(β̂, Zi)Λ̂n(Ti) ≤ −K1
1

n

qn∑
k=1

λ̂k

n∑
i=1

δiI(Ti ≥ uk)

≤ K1Λ̂n(τ) sup
u∈[ρ,τ ]

∣∣∣∣∣ 1n
n∑
i=1

δiI(Ti ≥ u)− E[δI(T ≥ u)]

∣∣∣∣∣
−K1 min

u∈[ρ,τ ]
E[δI(T ≥ u)]Λ̂n(τ).

By Glivenko-Cantelli, the first term in this last expression converges to 0 when n

increases. We see that for sufficiently large n,

1

n

(
le(γ̂, β̂, Λ̂n)− le(γ, β, Λ̄n)

)
≤ log Λ̂n(τ)−K1E[δI(T ≥ τ)]Λ̂n(τ) +O(1).

Hence, if Λ̂n(τ) → +∞, the right hand side of the inequality diverges to −∞. But

this would contradict with 1
n

(
le(γ̂, β̂, Λ̂n)− le(γ, β, Λ̄n)

)
≥ 0. Therefore, this means

that Λ̂n(τ) should be bounded for sufficiently large n, with probability 1.
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Step 2: Let θ = (γ, β,Λ) and θ̂ = (γ̂, β̂, Λ̂n). We already mentioned that

λ̂r =
1

nξn(ur; θ̂)
,

where

ξn(t; θ) =
1

n

n∑
i=1

g(β, Zi){I(Ti ≥ t, δi = 1) + ai(θ)I(Ti ≥ t, δi = 0)},

with

ai(θ) = − (1− π(γ,Xi)) exp{−g(β, Zi)Λ(Ti)}
π(γ,Xi) + (1− π(γ,Xi))(1− exp{−g(β, Zi)Λ(Ti)})

.

We show that there exists Mξ > 0 such that inf
t∈[ρ,τ ]

ξn(t; θ̂) > Mξ for all sufficiently

large n, with probability 1.

Suppose that such an Mξ does not exist. Let ε be fixed, whose value will be specified

later. Then, we can find a sufficiently large n and t∗ ∈ [ρ, τ ] such that ξn(t∗; θ̂) < ε.

By assumption A5, there exists κ > 0 such that T has a bounded density on either

(t−κ, t] or (t, t+κ] for any t ∈ [ρ, τ ]. We will show that when T has a bounded density

on (t∗ − κ, t∗], then Λ̂n(t∗) − Λ̂n(t∗ − κ) > MΛ as n → ∞, which is a contradiction

(with step 1). If T has a bounded density on (t∗, t∗ + κ], a similar contradiction can

be derived. The proof for this case is omitted.

From assumption A3, there exists a constant Ma > 0 such that

sup
i
|ai(θ̂)| ≤ sup

i

1− π(γ,Xi)

π(γ,Xi)
≤Ma

with probability 1.

Let ν = sup
z,|β|<Mβ

g(β, z)(1 +Ma). For any t ∈ (t∗ − κ, t∗], we have

ξn(t; θ̂) ≤ |ξn(t; θ̂)− ξn(t∗; θ̂)|+ ξn(t∗; θ̂)

≤ ν

n

n∑
i=1

I(t ≤ Ti < t∗) + ε.

Since T has a bounded density on (t∗ − κ, t∗], the Glivenko-Cantelli lemma implies

that there exists a constant φ > 0 such that

1

n

n∑
i=1

I(t < Ti ≤ t∗) ≤ φ(t∗ − t)

for all sufficiently large n.
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Hence, we have that

Λ̂n(t∗)− Λ̂n(t∗ − κ) =
1

n

∑
t∗−κ<ur≤t∗

1

ξn(ur, θ̂)
≥ 1

n

∑
t∗−κ<ur≤t∗

1

νφ(t∗ − ur) + ε

→
∫
X,Z

t∗∫
t∗−κ

(1− π(γ0, x))fY >0(t|z)FC|X,Z(t|x, z)
νφ(t∗ − t) + ε

dtP (dxdz)

≥ ζ

νφ

− t∗∫
t∗−κ

1

νφ(t∗ − t) + ε
d(νφ(t∗ − t) + ε)


=

ζ

νφ
[log(νφκ+ ε)− log ε] =

ζ

νφ
log

[
νφκ

ε
+ 1

]
, (2.2)

with

ζ = inf
t∈[ρ,τ ]

Ex,z
{

(1− π(γ0, x))fY >0(t|z)FC|X,Z(t|x, z)
}
.

In the expression for ζ, fY >0(t|z) is the density of the non-zero part of the response,

and FC|X,Z(t|x, z) = P (C ≤ t|X = x, Z = z). Ex,z means that the expectation is

taken over X and Z. Due assumption A5, we know that ζ > 0. Finally, choose ε

sufficiently small, so that (2.2) is larger than MΛ, which is a contradiction with the

boundedness of Λ̂n(τ).

Step 3: Define

λ̃r =
1

nξn(ur; θ0)
,

where θ0 = (γ0, β0,Λ0). We will prove that Λ̃n(.) =
qn∑
k=1

λ̃kI(uk ≤ .) converges to

Λ0(.) uniformly on [ρ, τ ] . Note that

Λ̃n(t) =

∫ t

0

1

ξn(s; θ0)

1

n
dNn(s),

where Nn(t) =
n∑
i=1

I(Ti ≤ t, δi = 1). Since classes of uniformly bounded and monotone

functions are Glivenko-Cantelli (van der Vaart and Wellner (1996)), we have that

Nn(t)

n
→ Ex,z

{
(1− π(γ0, x))g(β0, z)

∫ t

ρT

λ0(s) exp{−g(β0, z)Λ0(s)}FC|X,Z(s|x, z)ds
}

uniformly on [ρT , τT ] with probability 1. Furthermore we have that in

ξn(t; θ0) =
1

n

n∑
i=1

g(β0, Zi){I(Ti ≥ t, δi = 1) + ai(θ0)I(Ti ≥ t, δi = 0)},
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1

n

n∑
i=1

g(β0, Zi)I(Ti ≥ t, δi = 1)→

Ex,z

{
(1− π(γ0, x))g(β0, z)∫ τT

t

g(β0, z)λ0(s) exp{−g(β0, z)Λ0(s)}FC|X,Z(s|x, z)ds
}

and

1

n

n∑
i=1

g(β0, Zi)ai(θ0)I(Ti ≥ t, δi = 0)→

Ex,z

{
−(1− π(γ0, x))g(β0, z)

∫ τT

t

exp{−g(β0, z)Λ0(s)}fC|X,Z(s|x, z)ds
}
,

uniformly on [ρT , τT ] with probability 1. Hence, after using integration by parts, we

get that

ξn(t, θ0)→ Ex,z{(1− π(γ0, x))g(β0, z) exp{−g(β0, z)Λ0(t)}FC|X,Z(t|x, z)},

uniformly on [ρT , τT ] with probability 1.

Since

d

dt
Ex,z

{
(1− π(γ0, x))g(β0, z)

∫ t

ρT

λ0(s) exp{−g(β0, z)Λ0(s)}FC|X,Z(s|x, z)ds
}

= λ0(t)Ex,z{(1− π(γ0, x))g(β0, z) exp{−g(β0, z)Λ0(t)}FC|X,Z(t|x, z)},

we get

Λ̃n(t) =

∫ t

0

1

ξn(s, θ0)

1

n
dNn(s)

→
∫ t

0

λ0(s)Ex,z{(1− π(γ0, x))g(β0, z) exp{−g(β0, z)Λ0(s)}FC|X,Z(s|x, z)}
Ex,z{(1− π(γ0, x))g(β0, z) exp{−g(β0, z)Λ0(s)}FC|X,Z(s|x, z)}

ds

= Λ0(t)

uniformly on [ρ, τ ] with probability 1.

Step 4: Suppose that γ̂, β̂ and Λ̂n converge to γ+, β+ and Λ+ uniformly. We will

show that

dΛ̂n

dΛ̃n
(t)→ dΛ+

dΛ0
(t) (2.3)

uniformly on [ρ, τ ], with probability 1.
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Since classes of uniformly bounded and monotone functions are Glivenko-Cantelli, we

have that

1

n

n∑
i=1

g(β, Zi)I(Ti ≥ t, δi = 1)→

Ex,z

{
g(β, z)(1− π(γ0, x))

∫ τT

t

fY >0(s|z)FC|X,Z(s|x, z)ds
}

(2.4)

and

1

n

n∑
i=1

g(β, Zi)ai(θ)I(Ti ≥ t, δi = 0)→ (2.5)

Ex,z

{
g(β, z)

τT∫
t

− (1− π(γ, x)) exp{−g(β, z)Λ(s)}
π(γ, x) + (1− π(γ, x))(1− exp{−g(β, z)Λ(s)})

×

[π(γ0, x) + (1− π(γ0, x))FY >0(s|z)]fC|X,Z(s|x, z)ds
}
,

uniformly on [ρT , τT ], with probability 1. We have that ξn(t; θ̂)→ ξ(t; θ+) uniformly

on [ρT , τT ] with probability 1, where ξ(t, θ) equals the sum of the right hand sides of

(2.4) and (2.5) and θ+ = (γ+, β+,Λ+) .

Since inft∈[ρ,τ ] ξn(t; θ̂) > Mξ, by Step 2, we have that inft∈[ρ,τ ] ξ(t; θ
+) > Mξ > 0. In

Step 3, we have proved that ξn(t; θ0)→ ξ(t; θ0) uniformly on [ρT , τT ], with probability

1. We get that,

dΛ̂n

dΛ̃n
(t)→ ξ(t; θ0)

ξ(t; θ+)
(2.6)

uniformly on [ρ, τ ], with probability 1.

Since dΛ̃n(t) = 1
ξn(t;θ0)

1
ndNn(t), we have

Λ+(t)← Λ̂n(t) =

∫ t

0

1

ξn(s; θ̂)

1

n
dNn(s)

=

∫ t

0

ξn(s; θ0)

ξn(s; θ̂)
dΛ̃n(s)→

∫ t

0

ξ(s; θ0)

ξ(s; θ+)
dΛ0(s).

Hence,

Λ+(t) =

∫ t

0

ξ(s; θ0)

ξ(s; θ+)
dΛ0(s).

Thus, Λ+(t) is absolutely continuous with respect to Λ0(s). We find

dΛ+

dΛ0
(t) =

ξ(t; θ0)

ξ(t; θ+)
. (2.7)
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From (2.6) and (2.7), we conclude that

dΛ̂n

dΛ̃n
(t)→ dΛ+

dΛ0
(t)

uniformly on [ρ, τ ], with probability 1.

Step 5: By Helly’s selection theorem, we can find a convergent subsequence of θ̂

(Parner (1998)). With abuse of notation, we let θ̂ be a convergent subsequence and

θ+ be the convergence point of θ̂. Then, (2.3) in Step 4 implies that

0 ≤ 1

n
le(γ̂, β̂, Λ̂n)− 1

n
le(γ0, β0, Λ̃n)→ KL(θ+, θ0),

where KL(θ+, θ0) is the negative of the Kullback-Leibler divergence. It is defined by

KL(θ+, θ0) = E[δ{log(1− π(γ+, X)) + log g(β+, Z)} − δg(β+, Z)Λ+(T )

+(1− δ) log{π(γ+, X) + (1− π(γ+, X))

(1− exp[−g(β+, Z)Λ+(T )])}]

−E[δ{log(1− π(γ0, X)) + log g(β0, Z)} − δg(β0, Z)Λ0(T )

+(1− δ) log{π(γ0, X) + (1− π(γ0, X))

(1− exp[−g(β0, Z)Λ0(T )])}]

+E

[
δ log

λ+(T )

λ0(T )

]
.

Since the Kullback-Leibler divergence is non-negative, KL(θ+, θ0) is non-positive.

So KL(θ+, θ0) = 0. Using the identifiability result in Theorem 1, this implies that

θ+ = θ0, which terminates the proof of the consistency.

2.5 Asymptotic normality

In this section, we prove the asymptotic normality of the maximum likelihood es-

timators under some assumptions. We assume that the regularity conditions A1,

A2 and A5 of Section 2.2 still hold. We further assume a logistic regression model

π(γ,X) =
exp(X>γ)

1 + exp(X>γ)
for the probability of a zero response and we assume that

g(β, Z) = exp(Z>β). These regression functions satisfy conditions A3 and A4. The

first element of the X-vector is assumed to be one, such that the first element of

γ represents the intercept of the logistic regression model. We also presume that

P (X>c = 0) = 1 implies that c = 0. Let θ0 = (γ0, β0,Λ0) be the true values of the

parameters.
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Theorem 4. Under the assumptions mentioned before, the scaled process
√
n(γ̂−γ0, β̂−β0, Λ̂n(·)−Λ0(·)) converges weakly to a zero-mean Gaussian process in

the metric space Θγ×Θβ× l∞[ρ, τ ], where l∞[ρ, τ ] is the space containing all bounded

valued cadlag (right continuous with left limits existing) functions on [ρ, τ ], equipped

with the supremum norm.

Proof. To prove this theorem, we apply Theorem 3.3.1 of van der Vaart and Wellner

(1996). We first need to define a random map Ψn and a fixed map Ψ from a set, say A,

containing the true values of the parameters and (at least asymptotically) the possible

values of the estimators. Theorem 3.3.1 of van der Vaart and Wellner (1996) involves

verifying four sufficient conditions:
√
n(Ψn(θ0) − Ψ(θ0)) converges in distribution

to a tight Gaussian process W (weak convergence of the empirical process at the

truth), an approximation condition of the score operator, Fréchet differentiability of

the asymptotic score and continuous invertibility of the information operator.

We define a set

Hp = {h = (h1, h2, h3) : h1 ∈ Rdx+1, h2 ∈ Rdz and h3 is a function

of bounded variation on [ρ, τ ]; |h1|+ |h2|+ ‖h3‖v ≤ p},

where ‖h3‖v is the absolute value of h3(ρ) plus the total variation of h3 over the

interval [ρ, τ ], that is ‖h3‖v = |h3(ρ)| +
∫ τ
ρ
|dh3|. We shall restrict consideration to

h3 which is cadlag. We can consider the parameter θ = (γ, β,Λ) as a functional on

Hp given by θ(h) = h>1 γ + h>2 β +
∫ τ
ρ
h3dΛ and the parameter space Θ as a subset of

l∞(Hp), the space of bounded functionals on Hp, equipped with the supremum norm

‖θ‖p = sup
h∈Hp

|θ(h)|.

The set A is defined as a small neighborhood containing the true parameters θ0 as

A = {θ = (γ, β,Λ) : ‖θ − θ0‖p < ε},

where ε is a small positive constant. Theorem 3 assures that, when the sample size is

sufficiently large, the estimates θ̂ = (γ̂, β̂, Λ̂n) fall into the set A almost surely.

We now define Ψn and Ψ as random and fixed maps respectively from A to l∞(Hp).
More specifically, we define

Ψn(θ)[h1, h2, h3] = Pn(φ(θ, h)) and Ψ(θ)[h1, h2, h3] = E(φ(θ, h)),

where Pn denotes the empirical measure, φ(θ, h) = h>1 lγ(θ) + h>2 lβ(θ) + lΛ(θ)[h3], lγ

is the score vector for γ, lβ is the score vector for β and lΛ(θ)[h3] is the score for Λ

along the submodel Λ(·) + ε
∫ ·
ρ
h3dΛ. The maximum likelihood estimators and the

true parameters satisfy Ψn(θ̂) = 0 and Ψ(θ0) = 0.
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Direct calculations give

lγ(θ) = −δ exp(X>γ)

1 + exp(X>γ)
X

+(1− δ)

exp(X>γ)

1 + exp(X>γ)
exp[− exp(Z>β)Λ(T )]X

exp(X>γ) + 1− exp[− exp(Z>β)Λ(T )]
,

lβ(θ) = δZ − δΛ(T ) exp(Z>β)Z

+(1− δ)exp[− exp(Z>β)Λ(T )] exp(Z>β)Λ(T )Z

exp(X>γ) + 1− exp[− exp(Z>β)Λ(T )]
,

lΛ(θ)[h3] = δh3(T )− δ exp(Z>β)

∫ T

ρ

h3(s)dΛ(s)

+(1− δ)
exp[− exp(Z>β)Λ(T )] exp(Z>β)

∫ T
ρ
h3(s)dΛ(s)

exp(X>γ) + 1− exp[− exp(Z>β)Λ(T )]
.

The classes A and Hp are Donsker classes. Since φ(θ, h) is a bounded Lipschitz

functional with respect to A × Hp, Theorem 2.10.6 of van der Vaart and Wellner

(1996) yields that the class {φ(θ, h) : (θ, h) ∈ A×Hp} is a Donsker class. Since

{φ(θ0, h) : h ∈ Hp} ⊂ {φ(θ, h) : (θ, h) ∈ A×Hp},

{φ(θ0, h) : h ∈ Hp} is also a Donsker class. Hence
√
n(Ψn(θ0) − Ψ(θ0)) converges in

distribution to a tight Gaussian process W, so that the first sufficient condition of

Theorem 3.3.1 in van der Vaart and Wellner (1996) is satisfied. We further have that

the class {φ(θ, h)− φ(θ0, h) : (θ, h) ∈ A×Hp} is a Donsker class. One can also show

that

E sup
h∈Hp

(φ(θ, h)− φ(θ0, h))2 <∞,

which by the dominated convergence theorem implies that

sup
h∈Hp

E(φ(θ, h)− φ(θ0, h))2 → 0,

when θ → θ0. Since θ̂ → θ0 uniformly and almost surely by Theorem 3, Lemma 3.3.5

of van der Vaart and Wellner (1996) implies that

‖
√
n{Ψn(θ̂)−Ψ(θ̂)} −

√
n{Ψn(θ0)−Ψ(θ0)}‖p = op(1 +

√
n‖θ̂ − θ0‖). (2.8)

The approximation of the score operator in (2.8) is the second sufficient condition of

Theorem 3.3.1 of van der Vaart and Wellner (1996).
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For the Fréchet differentiability of the asymptotic score Ψ at θ0, first note that Ψ is

Gâteaux differentiable in a neighborhood of θ0 and that the derivative is continuous.

Since X and Z are bounded, one can show that

sup

{∥∥∥∥ ∂∂λΨ(θ0 + λθ)

∥∥∥∥
p

: ‖θ‖p ≤ 1, |λ| ≤ ε

}
<∞

for an ε > 0. Proposition 1 in the Appendix of Bickel et al. (1993) assures that Ψ is

Fréchet differentiable at θ0, which is the third sufficient condition of Theorem 3.3.1

of van der Vaart and Wellner (1996).

It remains to show that the information operator Ψ̇(γ0,β0,Λ0) (i.e. the Fréchet deriva-

tive of Ψ at θ0) is continuously invertible on its range. Let γε = γ0 +εh̃1, βε = β0 +εh̃2

and Λε(·) = Λ0(·) + ε
∫ ·
ρ
h̃3dΛ0. A calculation and algebraic manipulation shows that

Ψ̇(γ0,β0,Λ0)(h̃1, h̃2,

∫ ·
ρ

h̃3dΛ0)[h]

=
∂

∂ε
E
{
h>1 lγ(γε, βε,Λε) + h>2 lβ(γε, βε,Λε) + lΛ(γε, βε,Λε)[h3]

}∣∣
ε=0

(2.9)

= h̃>1 Q1(h1, h2, h3) + h̃>2 Q2(h1, h2, h3) +

∫ τ

ρ

Q3(h1, h2, h3)(t)h̃3(t)dΛ0(t),

(2.10)

where Qi, i = 1, 2, 3 are linear operators satisfying

Q1(h1, h2, h3) = B1h1 +B2h2 +

∫ τ

ρ

{
D1(s)>

(∫ s

ρ

h3(t)dΛ0(t)

)}
ds,

Q2(h1, h2, h3) = B3h1 +B4h2 +

∫ τ

ρ

{
D2(s)>

(∫ s

ρ

h3(t)dΛ0(t)

)}
ds,

Q3(h1, h2, h3)(t) = D3(t)>h1 +D4(t)>h2 +D5(t)h3(t)

+

∫ τ

t

{
D6(s)

∫ s

ρ

h3(t)dΛ0(t)

}
ds,

where Dj(·), j = 1, . . . , 6 are continuously differentiable functions depending on the

true distribution. They are obtained by doing some algebraic manipulations on the

derivatives in (2.9) in the direction of the baseline cumulative hazard function. For

example, we have that

D5(t) = −
∫
X,Z

exp(z>β0)

1 + exp(x>γ0)

[ ∫ τ

t

fY >0(s|z)FC|X,Z(s|x, z)ds
]
P (dxdz)

+

∫
X,Z

exp(z>β0)

1 + exp(x>γ0)

[ ∫ τ

t

exp[− exp(z>β0)Λ0(s)]fC|X,Z(s|x, z)ds
]
P (dxdz).



2.5. Asymptotic normality 27

The matrices Bi, i = 1, . . . , 4 are given by

B1 = E

(
∂2

∂γ∂γ>
logL(γ0, β0,Λ0)

)
= E

(
− δ exp(X>γ0)

[1 + exp(X>γ0)]2
XX>

−(1− δ)

exp(X>γ0)

1 + exp(X>γ0)
exp[− exp(Z>β0)Λ0(T )] exp(X>γ0)XX>

{exp(X>γ0) + 1− exp[− exp(Z>β0)Λ0(T )]}2

+(1− δ)

exp(X>γ0)

[1 + exp(X>γ0)]2
exp[− exp(Z>β0)Λ0(T )]XX>

exp(X>γ0) + 1− exp[− exp(Z>β0)Λ0(T )]

)
,

B2 = E

(
∂2

∂β∂γ>
logL(γ0, β0,Λ0)

)
= −E

(
(1− δ)exp[− exp(Z>β0)Λ0(T )] exp(Z>β0) exp(X>γ0)Λ0(T )ZX>

{exp(X>γ0) + 1− exp[− exp(Z>β0)Λ0(T )]}2

)
,

B3 = B>2 ,

B4 = E

(
∂2

∂β∂β>
logL(γ0, β0,Λ0)

)
= E

(
− δΛ0(T ) exp(Z>β0)ZZ>

−(1− δ)exp[− exp(Z>β0)Λ0(T )][exp(Z>β0)]2[Λ0(T )]2ZZ>

exp(X>γ0) + 1− exp[− exp(Z>β0)Λ0(T )]

+(1− δ)exp[− exp(Z>β0)Λ0(T )] exp(Z>β0)Λ0(T )ZZ>

exp(X>γ0) + 1− exp[− exp(Z>β0)Λ0(T )]

−(1− δ){exp[− exp(Z>β0)Λ0(T )]}2[exp(Z>β0)]2[Λ0(T )]2ZZ>

{exp(X>γ0) + 1− exp[− exp(Z>β0)Λ0(T )]}2

)
.

For the continuous invertibility, it suffices to show that Q(h1, h2, h3) =

(Q1(h1, h2, h3), Q2(h1, h2, h3), Q3(h1, h2, h3)), viewed as an operator from H∞ to H∞
is continuously invertible (see f.e. Parner (1998) and Kim et al. (2010)). We show

that Q is one-to-one and can be written as a sum of a continuously invertible linear

operator L and a compact operator C, which implies that Q is continuously invertible

(see Rudin (1991)).

That Q is one-to-one means that if ‖h‖ > 0 then ‖Q(h)‖ > 0. Suppose that

Qi(h1, h2, h3) = 0 for i = 1, 2, 3 for some h = (h1, h2, h3). We wish to show that

h1 = 0, h2 = 0 and h3 = 0. Considering (2.9)-(2.10) and choosing h̃1 = h1, h̃2 = h2,
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h̃3 = h3, we have that

E
{
h>1 lγ(γ0, β0,Λ0) + h>2 lβ(γ0, β0,Λ0) + lΛ(γ0, β0,Λ0)[h3]

}2
= 0.

Hence,

h>1 lγ(γ0, β0,Λ0) + h>2 lβ(γ0, β0,Λ0) + lΛ(γ0, β0,Λ0)[h3] = 0 (2.11)

almost surely. Note that the left hand side of (2.11) is the score function at the true

value along a one-dimensional submodel {γ0 + εh1, β0 + εh2,Λ0(·) + ε
∫ ·
ρ
h3dΛ0}.

Consider (2.11) and set δ = 0 and T = s ∈ [ρ, τ ]. Then we obtain the following

equation:

exp(X>γ0)

1 + exp(X>γ0)
X>h1 + exp(Z>β0)Λ0(s)Z>h2 + exp(Z>β0)

∫ s

ρ

h3(t)dΛ0(t) = 0,

almost surely on {δ = 0}. Suppose that not both of h2 and h3(·) are equal to zero. In

that case,
exp(X>γ0)

1 + exp(X>γ0)
X>h1 would be constant on {δ = 0}, which is impossible.

Therefore, h2 = 0 and h3(·) = 0. Since, by assumption, P (X>h1 = 0) = 1 implies

that h1 = 0, we conclude that Q is a one-to-one map.

Finally, we prove that Q can be written as a sum of a continuously invertible linear

operator L and a compact operator C. Let L(h) = (Lγ0(h1), Lβ0
(h2), LΛ0

(h3)), where

Lγ0(h1) = E

(
∂2

∂γ∂γ>
logL(γ0, β0,Λ0)

)
h1 = B1h1,

Lβ0
(h2) = E

(
∂2

∂β∂β>
logL(γ0, β0,Λ0)

)
h2 = B4h2,

LΛ0
(h3)(·) = D5(·)h3(·).

One can show that the matrices B1 and B4 are invertible by a direct calculation.

Hence Lγ0 and Lβ0 are one-to-one. Since Lγ0 and Lβ0 are finite dimensional operators

and D5(·) 6= 0 on ]ρ, τ [, L is a continuously invertible linear operator. To show that

Q(h)−L(h) is compact, we show that for an arbitrary sequence {hn}n≥1 in Hp, there

exists a convergent subsequence of {Q(hn)−L(hn)}. Helly’s selection theorem assures

that there exists a subsequence {nk}k≥1, and a function, h, such that hnk converges

pointwise to h since Hp is compact. Applying the dominated convergence theorem,

one sees that the subsequence Q(hnk)− L(hnk) converges to Q(h)− L(h).

We verified the four sufficient conditions of Theorem 3.3.1 of van der Vaart and Wellner

(1996). Hence

√
n{γ̂ − γ0, β̂ − β0, Λ̂n(·)− Λ0(·)} → −Ψ̇−1

(γ0,β0,Λ0)W,
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where we can calculate the asymptotic variance of W(h) as

var(W(h)) = −Ψ̇(γ0,β0,Λ0)(h1, h2,

∫ ·
ρ

h3dΛ0)[h].

The asymptotic covariance of W(h) and W(g) can be computed as

cov(W(h),W(g)) = −Ψ̇(γ0,β0,Λ0)(g1, g2,

∫ ·
ρ

g3dΛ0)[h].

2.6 Simulation study

In this section, we show the performance of the zero-inflated semi-parametric Cox’s

regression model for finite data samples. Hereto we set up a simulation study and

generate the data sets as follows:

• X = Z ∼ Uniform[0, 10]; C ∼ Uniform[0, c].

• Probability of a zero response: π(γ,X) = exp(γ0+γ1∗X)
1+exp(γ0+γ1∗X) .

• J ∼ Bernoulli(1− π(γ,X)).

If J = 0, then T = C and δ = 0.

If J = 1, then T = max(Y,C) and δ = I(Y ≥ C), where Y ∼ Cox’s model

(g(β, z) = eβz; baseline hazard: Weibull(a0,b0)).

2.6.1 Settings

We consider in this simulation study five different settings, with various values of

γ0, γ1, β, the baseline parameters a0 and b0, and c. The different settings are given

in Table 2.1.

γ0 γ1 β a0 b0 c Λ0(20) Λ0(30) Λ0(40)

Setting 1 -0.3 0.15 -0.05 4 30 30 0.1975 1 3.1605

Setting 2 -2 0.10 -0.05 4 30 30 0.1975 1 3.1605

Setting 3 -0.3 0.15 -0.05 4 30 40 0.1975 1 3.1605

Setting 4 -0.3 0.15 0.15 4 30 30 0.1975 1 3.1605

Setting 5 0.5 -0.2 0.15 2 25 30 0.64 1.44 2.56

Table 2.1: Parameter values for γ0, γ1, β, a0, b0 and c in the different settings. The values

for the true baseline cumulative hazard function at t = 20, t = 30 and t = 40 are also

calculated.
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From the density plots in Figure 2.1, it is clear that in setting 3 we will have more

censoring among the responders, compared to setting 1. Further, we note that in

settings 1-3, the Weibull distribution of the responders has a larger scale parameter

for individuals with larger values of X. In settings 4-5, the Weibull distribution of

the responders has a smaller scale parameter for individuals with larger values of X.

(a) Setting 1-3 (b) Setting 4

(c) Setting 5

Figure 2.1: Densities of C (Uniform); Y |Y > 0, X = 0 (Weibull-solid); Y |Y > 0, X = 5

(Weibull-dashed) and Y |Y > 0, X = 10 (Weibull-dotted).

To get more insight in the censoring mechanism, we plot in Figure 2.2 for each

(marginal) setting the conditional probability of a zero response and the conditional

probability of a censored observation when we know that the response is not zero.
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(a) Setting 1 (b) Setting 2

(c) Setting 3 (d) Setting 4

(e) Setting 5

Figure 2.2: The probability of a zero response and the conditional censoring probabilities.
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These conditional probabilities are combined to also show the overall conditional

probability of a censored observation. Note that ‘conditional’ means conditional on

the covariates in the model.

For the first setting, we note that the overall conditional censoring probability

is high. This is mainly due to a high conditional probability of a zero response.

The second setting corresponds to a low conditional probability of a zero response,

combined with a rather small conditional censoring probability for the responders. In

the third and fourth setting, there is a high overall conditional censoring probability,

induced by a high conditional probability of a zero response, together with a rather

high conditional censoring probability for the responders. In setting 5, the conditional

probability of a zero response is high and decreases with increasing covariate values,

while the conditional censoring probability for the responders is increasing. This

consequently gives us that for large values of the covariate, the overall conditional

censoring probability is mostly determined by the high percentage of censoring for

the responders.

In each simulation setting we generate 500 data sets, with n = 100, n = 200

and n = 500 observations. The maximization of the likelihood is conducted using the

numerical optimizer nlm in the statistical software package R.

2.6.2 Results

For the five different settings, we calculate an estimate of the bias and the standard

deviation of the 500 ML estimates. The results are shown in Table 2.2.

In the five different settings, we see in the table that the bias and the standard

deviation of the maximum likelihood estimates decrease as the sample size increases.

This is in line with what we expect based on the theoretical results. However we note

that there are some differences between the settings. In the first setting, the bias and

the standard deviation for all parameter estimates are low. This was expected since

the parameters in this setting were created such that there was a clear conditional

probability of a zero response value. The larger bias and standard deviation for the

logistic parameters in setting 2, compared to setting 1, is due to the small rate of

zero responses. The estimators for parameters in the Cox’s regression model, on the

other hand, produced smaller biases and standard errors. The higher percentage of

censoring among the responders in settings 3 and 4 explains the higher biases and
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standard deviations compared to setting 1. Furthermore we note that, for the data

sets with 100 observations, the estimates of the bias and the standard deviations for

the logistic parameters in the second and fifth settings are rather large. This can be

explained by the fact that for some of these generated data sets our algorithm was not

able to estimate the probability of a zero response properly. We see that the censored

observations in the data sets generated in setting 2 are mostly censored non-zero

response values for responders, such that a zero-inflated model may not be applicable

in this case. Also in some data sets generated in setting 5 we see this behavior, but

in general the censored observations in these data sets are a mix of censored positive

response values and actually zero values for non-responders.

2.6.3 Comparison with a left-censored semi-parametric Cox’s

regression model

In Subsection 2.6.2, we noticed that in some simulation settings the zero-inflated semi-

parametric model does not perform well for small data sets. In this aspect, we also

apply a left-censored semi-parametric Cox’s regression model (see Kim et al. (2010))

to the data sets of sample size 100 from settings 1-5 and compare the results with the

previous ones. The model of Kim et al. (2010) is developed for doubly-censored data,

but it can also be applied to left-censored data. The likelihood is given by

Ll(β,Λ) =

n∏
i=1

{Λ{Ti}g(β, Zi) exp (−g(β, Zi)Λ(Ti))}δi

{(1− exp(−g(β, Zi)Λ(Ti)))}1−δi .

Kim et al. (2010) consider a non-parametric step function for the baseline cumulative

hazard function. The step function has jumps at all uncensored observations and at

the first censored observation, if this observation is smaller than the smallest uncen-

sored observation.

In Table 2.3, the bias and the standard deviation of the estimates for the hazard

parameter β are shown.

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

0.0870 (0.0402) 0.0257 (0.0366) 0.0810 (0.0413) -0.0283 (0.0405) -0.0976 (0.0416)

Table 2.3: The bias and standard deviation (between brackets) of the estimates for β in

the left-censored semi-parametric Cox’s regression model, based on the data sets with 100

observations.
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In Figure 2.3, we show the pointwise average of the estimates of the baseline cumu-

lative hazard function at time points ranging from 0 to 60 for both the zero-inflated

and the standard Cox’s model for analyzing left-censored data. These averages are

compared with the values of the true baseline cumulative hazard function at these

time points.

From Table 2.3 and Figure 2.3, we learn that for setting 2 a standard left-

censored semi-parametric Cox’s regression model can be sufficient. For this setting,

the average estimates of the baseline cumulative hazard function for the standard

left-censored semi-parametric Cox’s regression model and for the zero-inflated model

are close to each other. For settings 1 and 3-5, we see in the beginning a clear

and large jump in the graphs for the standard left-censored semi-parametric Cox’s

regression model, which indicates that it is very useful to account for the extra

probability of a zero response. Furthermore we note that the average estimates of

the baseline cumulative hazard functions for the zero-inflated model are very close to

the true function values on a quite large interval of time points. This confirms that

there is little bias in the estimates of the baseline cumulative hazard function at time

points that are not too high.

In general, we can conclude that the zero-inflated semi-parametric model per-

forms better than the standard left-censored semi-parametric model when there

is a clear conditional probability of a zero response value. So we suggest to use

the zero-inflated model in practice for analyzing left-censored data for which it is

known that there may be some underlying zeros present in the data set. As relevant

examples, we can consider studies where investigators want to know the amount of a

certain toxic product in ground water or in the food industry. There may be many

samples in which the product is not present. However, by detection limits in the

measuring mechanism, it is not possible to observe these zeros. In the next section,

we consider another example, namely a biological study on ethanol-induced sleeping

time in genetically selected mice (Markel et al. (1995)). Some mice did actually not

fall asleep, but got the value of the detection limit for their response sleep time.
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(a) Setting 1 (b) Setting 2

(c) Setting 3 (d) Setting 4

(e) Setting 5

Figure 2.3: Pointwise average of the estimates of the cumulative hazard function at different

time points, compared with the true baseline cumulative hazard function.
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2.7 Example: Modeling ethanol-induced anesthesia

(sleep time)

In this section, we illustrate the zero-inflated Cox’s regression model with a practical

study on ethanol-induced anesthesia (sleep time) in genetically-selected strains of

mice, described in Section 1.2. In this example, we consider the same regression

model for the sleep time as in the simulation study and take a logistic regression

model for the probability of a zero outcome value and the regular Cox’s regression

model for the non-zero outcome value with g(β, z) = ez
>β . We investigate the

influence of the following covariates on sleep time: sex, albinism (which is a binary

variable indicating whether the mouse was albino), weight at the first test session,

and an interaction between sex and albinism.

As we saw in the methodology, the zero-inflated Cox’s regression model as-

sumes that the baseline hazard is zero before the smallest uncensored observation.

Consequentially, the probability of a value of sleep time between zero and the

detection limit is also zero in this model. In Section 2.1, we noted that fitting

the zero-inflated Cox’s regression model simplifies in this case to fitting a logistic

regression model on the censoring indicator variables and fitting a Cox’s regression

model on the subgroup of the uncensored observations. This can be done with

standard statistical software. The parameter estimates and their standard errors

are given in Table 2.4. In the same table we also give a parametric (zero-inflated)

Logistic-Weibull model to compare with the zero-inflated Cox’s regression model. In

the parametric Logistic-Weibull model, we assume that the baseline hazard comes

from a Weibull distribution. The probability of a non-zero censored value of the

sleep time has, in this case, an expression which depends on the parameters of the

Weibull baseline hazard and is non-zero. Furthermore we fit a standard left-censored

semi-parametric Cox’s regression model (see Kim et al. (2010)) to the data. The

corresponding baseline hazard function has a mass at the detection limit and at all

uncensored observations.

We notice in Table 2.4 that in both the zero-inflated Cox’s model and the pa-

rametric Logistic-Weibull model, the same covariates have a significant effect in the

logistic part of each model. An albino mouse has a significant higher probability of

having a zero value for the sleep time than a non-albino mouse. Furthermore we note

that the gender of a mouse also has a significant effect in the logistic part, through its
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Zero-inflated Parametric Standard

Cox’s model Logistic-Weibull model left-censored Cox’s model

Logistic part

Intercept -3.8111 (0.3540)∗∗∗ -3.8233 (0.3580)∗∗∗

Sex 0.6626 (0.4929) 0.6692 (0.4975)

Albinism 1.3294 (0.4457)∗∗∗ 1.3364 (0.4484)∗∗∗

Sex*Albinism -1.2629 (0.6880)∗ -1.2703 (0.6926)∗

Weight 0.0531 (0.0684) 0.0539 (0.0689)

Hazard part

Sex 0.0560 (0.0895) 0.0475 (0.0911) 0.0748 (0.0880)

Albinism 0.1022 (0.1045) 0.0665 (0.1048) 0.1655 (0.1006)∗

Sex*Albinism -0.0169 (0.1484) 0.0273 (0.1484) -0.0815 (0.1441)

Weight -0.0193 (0.0130) -0.0209 (0.0132) -0.0166 (0.0129)

Table 2.4: The estimates for the different parameters in the zero-inflated Cox’s model, in the

parametric Logistic-Weibull model and in the standard left-censored Cox’s model. Standard

errors are given in brackets. ∗ means significant at p < 0.1, ∗∗ significant at p < 0.05 and
∗∗∗ significant at p < 0.01.

interaction with albinism. Therefore we see that a female albino mouse has a lower

probability of non-sleep than a male albino mouse. The other covariates do not have

a significant effect in the logistic part of both models. For the hazard part of both

zero-inflated models, we see that none of the covariates has a significant influence on

the hazard. This means that as soon as the mice are sleeping, gender, albinism and

weight don’t have a significant effect on the duration of the sleep time. In Table 2.4,

we also see that the estimates for the different parameters are almost the same in the

zero-inflated Cox’s model and in the parametric Logistic-Weibull model. Initially,

we would not expect this because, as stated before, we assumed that the baseline

cumulative hazard is zero before the first uncensored observation in the zero-inflated

Cox’s model, which is not the case for the parametric Logistic-Weibull model.

In the standard left-censored Cox’s model, we notice that only the covariate albinism

has a significant influence on the hazard. It indicates that an albino mouse has a

higher hazard than a non-albino mouse, which means a shorter sleep time.
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In Figure 2.4, we plotted the estimated baseline cumulative hazard functions

for the three models. We also zoom in on the behavior of the graphs in the

beginning of the time axis. The estimated baseline cumulative hazard functions in

Figure 2.4: Estimates of the baseline cumulative hazard function.

the zero-inflated left-censored Cox’s model and in the standard left-censored Cox’s

model are close to each other. However, the relatively large jump at the detection

limit of the baseline cumulative hazard function in the standard left-censored Cox’s

model, reveals that a zero-inflated model may be better able to describe the data.

The knowledge that some mice might be resistant to the alcohol dose fortifies the

choice for a zero-inflated model.

The estimates of the baseline cumulative hazard functions in the parametric and in

the semi-parametric zero-inflated model are almost the same for small values of sleep

time. From the data we notice that the baseline cumulative hazard in the parametric

Logistic-Weibull model is almost zero for small times which explains why there is

not much difference here between the zero-inflated Cox’s model and the parametric

Logistic-Weibull model. This also explains why the estimates for the parameters do

not differ much.
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2.8 Conclusion

In several studies with left-censored data, the underlying time until an event can

also become zero. To accommodate for this problem and to study the influence of

covariates on the response variable, we introduced a zero-inflated Cox’s regression

model. In this model, we assumed that the probability of having a zero response is

modeled through a logistic regression. Furthermore we assumed that the hazard of

the non-zero part of the response follows a Cox’s regression model. We estimate the

baseline cumulative hazard function by a non-parametric step function. The different

parameters in our model are estimated by maximum likelihood techniques. We proved

the consistency and the asymptotic normality of the maximum likelihood estimators.

The simulation results showed that our model performs well, especially when there

is a clear conditional probability of a zero response. Finally, we have applied the

regression model on a practical data set of ethanol-induced sleep time in mice.



Chapter 3

Approximated likelihood

In this chapter, we consider a new procedure for estimating the parameters in the semi-

parametric Cox’s regression model for univariate zero-inflated left-censored time to

event data, introduced in Chapter 2. In the simulation study of Section 2.6, we noticed

that the maximization of the likelihood was rather time consuming and sometimes

unstable. For example, when the probability of a zero response is low, there can

be some optimization problems. In Section 3.1, we propose an approximation of

the likelihood and we develop an efficient EM-algorithm to calculate the maximum

approximated likelihood estimates. A similar approximation was introduced by Kim

et al. (2013), in order to solve stability problems in the computation of maximum

likelihood estimates for the proportional hazards model with doubly-censored data.

In Section 3.2, the consistency of the maximum approximated likelihood estimators

is proved. Furthermore, the accuracies of the maximum approximated likelihood

estimates and the maximum likelihood estimates for finite data samples are compared

in Section 3.3. In Section 3.4, the new estimation technique is applied in the analysis of

the data set of ethanol-induced sleep time in mice. Section 3.5 states some conclusions

about the results.

41
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3.1 Methodology

To estimate the parameters γ and β and the baseline hazard function λ(t) in the

model, introduced in Chapter 2, we derived the empirical likelihood:

Le(γ, β,Λ) =

n∏
i=1

{(1− π(γ,Xi))Λ{Ti}g(β, Zi) exp (−g(β, Zi)Λ(Ti))}δi

{π(γ,Xi) + (1− π(γ,Xi)) (1− exp(−g(β, Zi)Λ(Ti)))}1−δi ,

where Λ{t} = Λ(t)−Λ(t−). We considered the following non-parametric step function

for the baseline cumulative hazard function:

Λn(t) =

qn∑
k=1

λkI(uk ≤ t),

where 0 < u1 < . . . < uqn are the unique uncensored observations and λ1, . . . , λqn

are the corresponding step sizes at these time points.

For a given sample, we can obtain maximum likelihood estimates for the dif-

ferent parameters γ, β and λ1, . . . , λqn by maximizing the likelihood function

Le(γ, β,Λn). Note that the number of parameters to be optimized is proportional

to the number of uncensored observations. This number can be very high when

the sample size is large. Despite the technical aspects that facilitate the maximum

likelihood estimation procedure, discussed in Section 2.1, the optimization procedure

is sometimes very time consuming. Moreover, in the simulation study of Section 2.6

we noticed that in some cases the optimization procedure was not able to estimate

the probability of a zero response well.

To obtain a more stable and faster algorithm, we propose an approximation of

the likelihood and we develop an efficient EM-algorithm to obtain estimates for the

different parameters. In the approximation of the likelihood function Le(γ, β,Λn),

we use a first order Taylor expansion:

exp{g(β, z)λ(t)} − 1 ≈ g(β, z)λ(t).
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Hence, we have that

1− exp(−g(β, Zi)Λn(Ti))

=
∑

l:ul≤Ti

[exp{−g(β, Zi)Λn(ul−1)} − exp{−g(β, Zi)Λn(ul)}]

=
∑

l:ul≤Ti

[(exp{g(β, Zi)Λn{ul}} − 1) exp{−g(β, Zi)Λn(ul)}]

≈
∑

l:ul≤Ti

[g(β, Zi)Λn{ul} exp{−g(β, Zi)Λn(ul)}] .

We plug this approximating expression into the likelihood function Le(γ, β,Λn) and

obtain the approximated empirical likelihood:

LA(γ, β,Λn) =

n∏
i=1

{
(1− π(γ,Xi))Λn{Ti}g(β, Zi) exp{g(β, Zi)Λn(Ti)}

}δi
{
π(γ,Xi) + (1− π(γ,Xi))×

∑
l:ul≤Ti

[g(β, Zi)Λn{ul} exp{−g(β, Zi)Λn(ul)}]
}1−δi

.

The so called maximum approximated likelihood (MAL) estimates for γ, β and

λ1, . . . , λqn are obtained by maximizing the approximated empirical likelihood

LA(γ, β,Λn). We can develop an efficient Expectation-Maximization algorithm to

compute the MAL estimates, which is an important advantage. We will treat the

left-censored observations as unobserved missing data.

The approximated empirical likelihood implies that the conditional distribution

of Yi|Yi > 0; given Ti = ti, δi = 0 and Zi = zi is discrete, having mass on

{uk : uk ≤ ti} and

PYi>0(Yi = uk|Ti = ti, δi = 0, Zi = zi, β,Λn)

=
PYi>0(Yi = uk, Ti = ti, δi = 0|Zi = zi, β,Λn)

PYi>0(Ti = ti, δi = 0|Zi = zi, β,Λn)

=
ζi(uk;β,Λn)∑

l:ul≤ti

ζi(ul;β,Λn)
, (3.1)

where ζi(u;β,Λn) = g(β, zi)Λn{u} exp{−g(β, zi)Λn(u)}.
Define δ̃i = 1 if Yi > 0 and δ̃i = 0 if Yi = 0. For uncensored observations, we know Yi

and consequently δ̃i. For left-censored observations, Yi and δ̃i are unobserved. The
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complete empirical likelihood (i.e. empirical likelihood of (Yi, δ̃i, Xi, Zi)) is given by

Lc(γ, β,Λn) =

n∏
i=1

[
(1− π(γ,Xi))Λn{Yi}g(β, Zi) exp{−g(β, Zi)Λn(Yi)}

]δ̃i
[
π(γ,Xi)

]1−δ̃i

=

n∏
i=1

[
1− π(γ,Xi)

]δ̃i[
π(γ,Xi)

]1−δ̃i

n∏
i=1

qn∏
k=1

[
{λkg(β, Zi)}I(δ̃i=1,Yi=uk)

exp{−g(β, Zi)λkI(δ̃i = 1, Yi ≥ uk)}
]
.

The corresponding log complete empirical likelihood becomes

lc(γ, β,Λn) =

n∑
i=1

[
δ̃i log(1− π(γ,Xi)) + (1− δ̃i) log π(γ,Xi)

]
+

n∑
i=1

qn∑
k=1

[
I(δ̃i = 1, Yi = uk)(log λk + log g(β, Zi))

−g(β, Zi)λkI(δ̃i = 1, Yi ≥ uk)

]
.

Define D = {(T1, δ1, X1, Z1), . . . , (Tn, δn, Xn, Zn)}. In the E-step, we calculate

l∗(γ, β,Λn) = E(lc(γ, β,Λn)|D, γc, βc,Λcn)

=

n∑
i=1

[
E(δ̃i|D, γc, βc,Λcn) log(1− π(γ,Xi))

+(1− E(δ̃i|D, γc, βc,Λcn)) log π(γ,Xi)

]
+

n∑
i=1

qn∑
k=1

[
E(I(δ̃i = 1, Yi = uk)|D, γc, βc,Λcn)(log λk + log g(β, Zi))

−g(β, Zi)λkE(I(δ̃i = 1, Yi ≥ uk)|D, γc, βc,Λcn)
]
,

where E(·|D, γc, βc,Λcn) is the conditional expectation of δ̃i, I(δ̃i = 1, Yi = uk) and

I(δ̃i = 1, Yi ≥ uk) given the data and the current parameter values (γc, βc,Λcn). For

δi = 1, we know δ̃i, I(δ̃i = 1, Yi = uk) and I(δ̃i = 1, Yi ≥ uk), so no expectation

is needed. For δi = 0, we can calculate all expected values using the conditional
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distribution in (3.1). We have

mi = E(δ̃i|D, γc, βc,Λcn)

=

(1− π(γc, Xi))
∑

l:ul≤Ti

pil

π(γc, Xi) + (1− π(γc, Xi))
∑

l:ul≤Ti

pil
,

where pil = g(βc, Zi)λ
c
l exp{−g(βc, Zi)Λ

c
n(ul)}. In a similar way, we have

eik = E(I(δ̃i = 1, Yi = uk)|D, γc, βc,Λcn) (3.2)

=
(1− π(γc, Xi))pik

π(γc, Xi) + (1− π(γc, Xi))
∑

l:ul≤Ti

pil

for uk ≤ Ti and eik = 0 for uk > Ti. Based on these expected values, we can also

compute

rik = E(I(δ̃i = 1, Yi ≥ uk)|D, γc, βc,Λcn) (3.3)

=

qn∑
l=k

eil

for uk ≤ Ti and rik = 0 for uk > Ti.

For notation, we let

mi = δ̃i = 1,

eik = I(δ̃i = 1, Yi = uk) = I(Yi = uk),

rik = I(δ̃i = 1, Yi ≥ uk) = I(Yi ≥ uk),

for δi = 1.

We conclude with the result of the E-step:

l∗(γ, β,Λn) =

n∑
i=1

[mi log(1− π(γ,Xi)) + (1−mi) log π(γ,Xi)] (3.4)

n∑
i=1

qn∑
k=1

[eik(log λk + log g(β, Zi))− rikg(β, Zi)λk] .

In the M-step, the parameter values are updated with (γ̂, β̂, Λ̂n), which maximize

l∗(γ, β,Λn). From (3.4), we notice that the first part of l∗(γ, β,Λn) is only concerned

with the parametric model of the zero-probability, while the second part is only

concerned with the parameters from the hazard part of the model. This yields that
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the estimates of the logistic parameters and the hazard parameters can be found

separately from each other.

γ̂ maximizes

n∑
i=1

[mi log(1− π(γ,Xi)) + (1−mi) log π(γ,Xi)] . (3.5)

This optimization can be conducted using a numerical optimizer.

For the hazard part, we have that

λ̂k =

n∑
i=1

eik

n∑
i=1

rikg(β̂, Zi)

and β̂ is the solution of

qn∑
k=1

n∑
i=1

eik

[
∂
∂β g(β, Zi)

g(β, Zi)
− z̄k(β)

]
= 0, (3.6)

where

z̄k(β) =

n∑
j=1

rjk
∂

∂β
g(β, Zi)

n∑
j=1

rjkg(β, Zj)

is a weighted average. The equation in (3.6) is similar to the score equation of the

partial likelihood for the Cox’s model with right-censored observations.

Consider the case where g(β, Zi) = exp(β>Zi). The left-hand side of (3.6) can also

be written as

n∑
i=1

qn∑
k=1

eik

Zi −
n∑
j=1

qn∑
l=1

ejlI(ul ≥ uk) exp(β>Zj)Zj

n∑
j=1

qn∑
l=1

ejlI(ul ≥ uk) exp(β>Zj)

 . (3.7)

We use standard functions in the statistical software package R to compute estimates

for β and Λ. In order to use the coxph-function in R, we propose to use a data

duplication method. The data set has to be constructed in the following way:
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Row Time Indic Z Weights

1 u1 1 Z1 e11

...

n u1 1 Zn en1

n+ 1 u2 1 Z1 e12

...

2n u2 1 Zn en2

...

(qn − 1)n+ 1 uqn 1 Z1 e1qn

...

qnn uqn 1 Zn enqn

Table 3.1: Data duplication

Each individual i appears qn times in this constructed data set, with (uncensored)

time to events u1, . . . , uqn and weights ei1, . . . , eiqn . We fit a weighted Cox’s

proportional hazards model with time variable Time, censoring indicator Indic and

covariates Z. The weights are in the Weights-column. Ties have to be handled with

the Breslow approximation method. The score equation of the partial likelihood of

these observations corresponds to equation (3.7).

Some remarks:

1. In the most extreme case, all censored observations are smaller than the smallest

uncensored observation. In this situation, mi = 0, eik = 0, rik = 0 for δi = 0

and mi = 1, eik = I(Yi = uk), rik = I(Yi ≥ uk) for δi = 1. Expression

(3.5) becomes the log-likelihood for fitting a logistic regression model on the

censoring indicator random variables. Equation (3.6) collapses with the score

equation of the partial likelihood for a Cox’s regression model based on the

subgroup of the uncensored observations. We conclude that the EM-algorithm

simplifies to fitting a logistic regression model on the censoring indicator random

variables and fitting a Cox’s regression model on the uncensored observations.

In the second remark of Section 2.1, we mentioned that the maximum likelihood

estimates can be found similarly. The ML estimators and the MAL estimators

are the same in this case. It occurs for example in studies with a fixed detection

limit.

2. The covariance matrix of the MAL estimators can be estimated by the observed
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information matrix with the Louis formula. Define G(θ) = ∂lc(θ)
∂θ and H(θ) =

∂2lc(θ)
∂θ2 . The covariance matrix of the MAL estimators θ̂ = (γ̂, β̂, Λ̂n) can be

estimated by V −1

n , where

V = −E[H(θ̂)|D, θ̂]− E[G(θ̂)G(θ̂)>|D, θ̂].

The calculation of E[G(θ̂)G(θ̂)>|D, θ̂] requires the calculation of some extra

conditional expectations, especially

E[δ̃iI(δ̃i = 1, Yi = uk)|D, θ̂] = E(I(δ̃i = 1, Yi = uk)|D, θ̂),

E[δ̃iI(δ̃i = 1, Yi ≥ uk)|D, θ̂] = E(I(δ̃i = 1, Yi ≥ uk)|D, θ̂),

E[I(δ̃i = 1, Yi = uk)I(δ̃i = 1, Yi ≥ ul)|D, θ̂]

= E(I(δ̃i = 1, Yi = uk)|D, θ̂)I(k ≥ l),

E[I(δ̃i = 1, Yi ≥ uk)I(δ̃i = 1, Yi ≥ ul)|D, θ̂]

= E(I(δ̃i = 1, Yi ≥ uh)|D, θ̂),

with h = max{l, k}. All these conditional expectations are in (3.2) and (3.3).

Note that the Louis formula is rather difficult to implement. We can also use a

bootstrap approach to obtain estimates of the variances of the MAL estimators.

In the bootstrap method, We construct a large number of resamples of the ob-

served data set and of equal size to the observed data set. The resamples are

obtained by random sampling with replacement from the original data set. For

each of the resamples, one obtains MAL estimates of the model parameters and

one computes their sample variances. In Section 3.3, we will show the perfor-

mance of the bootstrap variance estimation method. The bootstrap approach

is easy to program, but computer-intensive and rather time consuming.

3.2 Consistency and asymptotic normality

In this section we state and prove the consistency of the maximum approximated

likelihood estimators. The assumptions that we impose for the consistency result are

the same as in Section 2.2 of Chapter 2.

Let (γ0, β0,Λ0) be the true values of the parameters.

Theorem 5. Under assumptions A1 − A5, given in Section 2.2 of Chapter 2, the

maximum approximated likelihood estimators (γ̂, β̂, Λ̂n) are consistent. This means
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that

|γ̂ − γ0| → 0, |β̂ − β0| → 0 and sup
t∈[ρ,τ ]

|Λ̂n(t)− Λ0(t)| → 0

with probability 1.

Proof. To prove the consistency of the maximum approximated likelihood estimators,

we follow the ideas stated in Chapter 2 and in Kim et al. (2013).

Step 1: Since Θγ and Θβ are compact sets, the MAL estimators of γ and β are

bounded by some constants Mγ and Mβ . We first prove that there exists a constant

MΛ such that Λ̂n(τ) ≤ MΛ for all sufficiently large n with probability 1. That is,

the maximum approximated likelihood estimator for Λ is bounded with probability

1. We have that, for any γ, β and Λ

1

n

(
lA(γ̂, β̂, Λ̂n)− lA(γ, β,Λ)

)
=

1

n

n∑
i=1

δi

{
log

1− π(γ̂, Xi)

1− π(γ,Xi)
+ log

Λ̂n{Ti}
Λ{Ti}

+ log
g(β̂, Zi)

g(β, Zi)

−g(β̂, Zi)Λ̂n(Ti) + g(β, Zi)Λ(Ti)

}
+

1

n

n∑
i=1

(1− δi)

log

π(γ̂, Xi) + (1− π(γ̂, Xi))
∑

l:ul≤Ti

[
g(β, Zi)λ̂l exp{−g(β, Zi)Λ̂n(ul)}

]
π(γ,Xi) + (1− π(γ,Xi))

∑
l:ul≤Ti

[g(β, Zi)Λ{ul} exp{−g(β, Zi)Λ(ul)}]
.

Since g(β, z) is a continuous function over the compact sets of β and z, this function

is bounded from below and above by positive constants K1 and K2. So there exists a

positive constant K such that

1

n

n∑
i=1

δi log
g(β̂, Zi)

g(β, Zi)
≤ K 1

n

n∑
i=1

δi → KE(δ),

as n → +∞, by the Glivenko-Cantelli theorem. Since also π(γ, x) is a continuous

function over the compact sets of γ and x, we get in a similar way that there exists a

constant K ′ such that

1

n

n∑
i=1

δi log
1− π(γ̂, Xi)

1− π(γ,Xi)
≤ K ′ 1

n

n∑
i=1

δi → K ′E(δ).
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Since
∑

l:ul≤Ti

[
g(β̂, Zi)λ̂l exp{−g(β̂, Zi)Λ̂n(ul)}

]
≤ 1 − exp[−g(β̂, Zi)Λ̂n(Ti)] ≤ 1, we

have that

1
n

n∑
i=1

(1−δi) log

π(γ̂, Xi) + (1− π(γ̂, Xi))
∑

l:ul≤Ti

[
g(β̂, Zi)λ̂l exp{−g(β̂, Zi)Λ̂n(ul)}

]
π(γ,Xi) + (1− π(γ,Xi))

∑
l:ul≤Ti

[
g(β, Zi)Λ{ul} exp{−g(β, Zi)Λ(ul)}

]

≤ 1

n

n∑
i=1

(1− δi) log
π(γ̂, Xi) + (1− π(γ̂, Xi))(1− exp[−g(β̂, Zi)Λ̂n(Ti)])

π(γ,Xi)

≤ 1

n

n∑
i=1

(1− δi) log
1

π(γ,Xi)

≤ K ′′ 1
n

n∑
i=1

(1− δi)→ K ′′E(1− δ),

for some constant K ′′.

If we take for Λ(t), Λ̄n(t) =
∑
uk≤t

1
n , we have that

1

n

n∑
i=1

δi log
Λ̂n{Ti}
Λ̄n{Ti}

=
1

n

qn∑
k=1

log(nλ̂k)

≤ qn
n

log

[
1

qn

qn∑
k=1

nλ̂k

]
=
qn
n

log Λ̂n(τ) +
qn
n

log

(
n

qn

)
≤ log Λ̂n(τ) +O(1),

by an application of Jensen’s inequality.

Furthermore we note that

1

n

n∑
i=1

δig(β, Zi)Λ̄n(Ti) ≤
1

n

n∑
i=1

δig(β, Zi) ≤
1

n

n∑
i=1

g(β, Zi)→ E[g(β, Z)],

for all β. We also find that

− 1

n

n∑
i=1

δig(β̂, Zi)Λ̂n(Ti) ≤ −K1
1

n

qn∑
k=1

λ̂k

n∑
i=1

δiI(Ti ≥ uk)

≤ K1Λ̂n(τ) sup
u∈[ρ,τ ]

∣∣∣∣∣ 1n
n∑
i=1

δiI(Ti ≥ u)− E[δI(T ≥ u)]

∣∣∣∣∣
−K1 min

u∈[ρ,τ ]
E[δI(T ≥ u)]Λ̂n(τ).



3.2. Consistency and asymptotic normality 51

By Glivenko-Cantelli, the first term in this last expression converges to 0 when n

increases. We see that for sufficiently large n,

1

n

(
lA(γ̂, β̂, Λ̂n)− lA(γ, β, Λ̄n)

)
≤ log Λ̂n(τ)−K1E[δI(T ≥ τ)]Λ̂n(τ) +O(1).

Hence, if Λ̂n(τ) → +∞, the right hand side of the inequality diverges to −∞. But

this would contradict with 1
n

(
lA(γ̂, β̂, Λ̂n)− lA(γ, β, Λ̄n)

)
≥ 0. Therefore, this means

that Λ̂n(τ) should be bounded for sufficiently large n, with probability 1.

Step 2: Let θ = (γ, β,Λ) and θ̂ = (γ̂, β̂, Λ̂n).

Note that from the score equation

∂

∂λr
logLA(γ, β,Λn) = 0,

we find an expression for the different step sizes in the baseline cumulative hazard

function:

λ̂r =
1

nξ̄n(ur; θ̂)
,

where

ξ̄n(t; θ) =
1

n

n∑
i=1

g(β, Zi){I(Ti ≥ t, δi = 1) + āi(t; θ)I(Ti ≥ t, δi = 0)},

with

āi(t; θ) = −

(1− π(γ,Xi))

 ∑
l:t≤ul≤Ti

ζi(ul; θ)− exp{−g(β, Zi)Λ(t)}


π(γ,Xi) + (1− π(γ,Xi))

∑
l:ul≤Ti

ζi(ul; θ)

and

ζi(t; θ) = g(β, Zi)Λ{t} exp{−g(β, Zi)Λ(u)}.

We show that there exists Mξ > 0 such that inf
t∈[ρ,τ ]

ξ̄n(t; θ̂) > Mξ for all sufficiently

large n, with probability 1.

Suppose that such an Mξ does not exist. Let ε be fixed, whose value will be specified

later. Then, we can find a sufficiently large n and t∗ ∈ [ρ, τ ] such that ξ̄n(t∗; θ̂) < ε.

By assumption A5, there exists κ > 0 such that T has a bounded density on either

(t−κ, t] or (t, t+κ] for any t ∈ [ρ, τ ]. We will show that when T has a bounded density

on (t∗ − κ, t∗], then Λ̂n(t∗) − Λ̂n(t∗ − κ) > MΛ as n → ∞, which is a contradiction
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(with step 1). If T has a bounded density on (t∗, t∗ + κ], a similar contradiction can

be derived. The proof for this case is omitted.

From assumption A3 and the fact that
∑

l:ul≤Ti

ζi(ul; θ) ≤ 1− exp[−g(β̂, Zi)Λ(Ti)] ≤ 1,

there exists a constant Ma > 0 such that

sup
i,t
|āi(t; θ)| ≤ sup

i

1− π(γ,Xi)

π(γ,Xi)
≤Ma

with probability 1.

Let ν = sup
z,|β|<Mβ

g(β, z)(1 +Ma). For any t ∈ (t∗ − κ, t∗], we have

ξ̄n(t; θ̂) ≤ |ξ̄n(t; θ̂)− ξ̄n(t∗; θ̂)|+ ξ̄n(t∗; θ̂)

≤ ν

n

n∑
i=1

I(t ≤ Ti < t∗) + ε.

Since T has a bounded density on (t∗ − κ, t∗], the Glivenko-Cantelli lemma implies

that there exists a constant φ > 0 such that

1

n

n∑
i=1

I(t < Ti ≤ t∗) ≤ φ(t∗ − t)

for all sufficiently large n.

Hence, we have that

Λ̂n(t∗)− Λ̂n(t∗ − κ) =
1

n

∑
t∗−κ<ur≤t∗

1

ξn(ur, θ̂)
≥ 1

n

∑
t∗−κ<ur≤t∗

1

νφ(t∗ − ur) + ε

→
∫
X,Z

t∗∫
t∗−κ

(1− π(γ0, x))fY >0(t|z)FC|X,Z(t|x, z)
νφ(t∗ − t) + ε

dtP (dxdz)

≥ ζ

νφ

− t∗∫
t∗−κ

1

νφ(t∗ − t) + ε
d(νφ(t∗ − t) + ε)


=

ζ

νφ
[log(νφκ+ ε)− log ε] =

ζ

νφ
log

[
νφκ

ε
+ 1

]
, (3.8)

with

ζ = inf
t∈[ρ,τ ]

Ex,z
{

(1− π(γ0, x))g(β0, z)λ0(t) exp{−g(β0, z)Λ0(t)}FC|X,Z(t|x, z)
}
.

In the expression for ζ, FC|X,Z(t|x, z) = P (C ≤ t|X = x, Z = z). Ex,z means that the

expectation is taken over X and Z. Due assumption A5, we know that ζ > 0. Finally,
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choose ε sufficiently small, so that (3.8) is larger than MΛ, which is a contradiction

with the boundedness of Λ̂n(τ).

Step 3: Define

λ̃r =
1

nξn(ur; θ0)

where

ξn(t; θ) =
1

n

n∑
i=1

g(β, Zi){I(Ti ≥ t, δi = 1) + ai(θ)I(Ti ≥ t, δi = 0)}

with

ai(θ) = − (1− π(γ,Xi)) exp{−g(β, Zi)Λ(Ti)}
π(γ,Xi) + (1− π(γ,Xi))(1− exp{−g(β, Zi)Λ(Ti)})

and θ0 = (γ0, β0,Λ0). In step 3 of the proof of the consistency of the ML estimators

in Section 2.4, we proved that Λ̃n(.) =
qn∑
k=1

λ̃kI(uk ≤ .) converges to Λ0(.) uniformly

on [ρ, τ ].

Since Λ̃n converges uniformly to Λ0 on [ρ, τ ], Λ̃n is bounded on [ρ, τ ] by assumption

A5. Through similar lines as in step 2, one can prove that λ̃r = O( 1
n ). This also

implies that

sup
i
|1− exp(−g(β0, Zi)Λ̃n(Ti))−

∑
l:ul≤Ti

ζi(ul; θ̃)| = O

(
1

n

)
, (3.9)

where θ̃ = (γ0, β0, Λ̃n). We need (3.9) in step 5.

Step 4: Suppose that γ̂, β̂ and Λ̂n converge to γ+, β+ and Λ+ uniformly. We will

show that

dΛ̂n

dΛ̃n
(t)→ dΛ+

dΛ0
(t) (3.10)

uniformly on [ρ, τ ], with probability 1.

In step 4 of the proof of the consistency of the ML estimators in Section 2.4, we already

showed that (3.10) holds for the maximum likelihood estimator. Since sup
l
λ̂l = O( 1

n )

and β̂ is bounded, we have

sup
i
|1− exp(−g(β̂, Zi)Λ̂n(Ti))−

∑
l:ul≤Ti

ζi(ul; θ̂)| = O

(
1

n

)
. (3.11)

Furthermore

sup
t∈[ρ,τ ]

|ξ̄n(t; θ̂)− ξn(t; θ̂)| = O

(
1

n

)
.
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which implies that (3.10) also holds for the MAL estimator.

Step 5: By Helly’s selection theorem, we can find a convergent subsequence of θ̂

(Parner (1998)). With abuse of notation, we let θ̂ be a convergent subsequence and

θ+ be the convergence point of θ̂. Then, (3.9) and (3.10) imply that

0 ≤ 1

n
lA(γ̂, β̂, Λ̂n)− 1

n
lA(γ0, β0, Λ̃n)→ KL(θ+, θ0)

where KL(θ+, θ0) is the negative of the Kullback-Leibler divergence. It is defined by

KL(θ+, θ0)

= E[δ{log(1− π(γ+, X)) + log g(β+, Z)} − δg(β+, Z)Λ+(T )

+(1− δ) log{π(γ+, X) + (1− π(γ+, X))(1− exp[−g(β+, Z)Λ+(T )])}]

−E[δ{log(1− π(γ0, X)) + log g(β0, Z)} − δg(β0, Z)Λ0(T )

+(1− δ) log{π(γ0, X) + (1− π(γ0, X))(1− exp[−g(β0, Z)Λ0(T )])}]

+E

[
δ log

λ+(T )

λ0(T )

]
.

Since the Kullback-Leibler divergence is non-negative, KL(θ+, θ0) is non-positive. So

KL(θ+, θ0) = 0. Using the identifiability result in Theorem 1 of Chapter 2, this

implies that θ+ = θ0, which terminates the proof of the consistency.

Furthermore, we give some ideas to establish the asymptotic normality of the maxi-

mum approximated likelihood estimators. Expression (3.11) in the proof of the con-

sistency of the MAL estimators implies that, for a large number of observations, the

MAL estimators do not differ much from the ML estimators. In Section 2.5, we al-

ready proved the asymptotic normality of the ML estimators. We believe that the

asymptotic normality also holds for the MAL estimators. In future research, we will

try to give a formal proof. Hereto we will investigate the difference between the

score functions for the maximum approximated likelihood estimators and the score

functions for the maximum likelihood estimators. Statistical inference on the score

functions for the ML estimators may lead to an asymptotic normality result for the

MAL estimators.
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3.3 Simulation study

In this section, we compare the accuracies of the maximum approximated likelihood

estimates and the maximum likelihood estimates for finite data samples. In Section 2.6

of Chapter 2, we considered five different simulation settings. For each simulation

setting we generated 500 data sets, with n = 100, n = 200 and n = 500 observations.

For the five different settings, we calculated an estimate of the bias and the standard

deviation of the 500 ML estimates. The results were shown in Table 2.2 of Section 2.6.

From the same data sets we now calculate MAL estimates by applying the proposed

EM-algorithm. Estimates for the bias and the standard deviations of the 500 MAL

estimates, in all different settings, are shown in Table 3.2.

For the five different settings, we see in Table 3.2 that the bias and the standard

deviation of the maximum aproximated likelihood estimates decrease as the sample

size increases. This is in line with what we expect based on the theoretical results.

However we notice some differences between the settings. In the first setting, the bias

and the standard deviation for all parameter estimates are low. This was expected

since the parameters in this setting were created such that there was a clear conditional

probability of a zero response value. The larger bias and standard deviation for the

logistic parameters in setting 2, compared to setting 1, is due to the small rate of

zero responses. The estimators for parameters in the Cox’s regression model, on the

other hand, produced smaller biases and standard deviations. The higher percentage

of censoring among the responders in setting 3 and 4 explains the higher biases and

standard deviations compared to setting 1.

By comparing the biases and standard deviations in Table 2.2 and Table 3.2, we

notice that the MAL estimators are always more accurate than the ML estimators.

Especially the standard deviations of the MAL estimates are less than those of the

ML estimates of Chapter 2.

Furthermore, in Table 2.2 we saw that the biases and standard deviations of the ML

estimates for the logistic parameters in the second and fifth setting, based on data

sets with 100 observations, were rather high. This is not the case for the biases and

standard deviations of the MAL estimates. The MAL estimation approach is better

able to handle with data sets from which the probability of a zero response is not

easy to estimate.

In the ML estimation method of Chapter 2, we optimize for many parameters at

once, while in the M-step of the EM-algorithm we obtain estimates of the γ- and

β-parameters separately from each other and the estimates of the step sizes of the
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baseline cumulative hazard function can be calculated from the estimates for the

β-parameters. This gives a high dimension reduction. It makes the optimization

procedure more stable and it makes that the MAL estimates are obtained much

faster than the ML estimates.

We conclude that the MAL estimation method is a competitive alternative to the

ML estimation procedure, due to the computational stability and the speed at which

the estimates are obtained.

We further investigate the performance of the bootstrap estimators for the

variance of the MAL estimators for the first simulation setting. Hereto we calculate

empirical coverage probabilities of the 95% confidence intervals of the regression

coefficients and 95% pointwise confidence intervals of the cumulative hazard function

at time points ranging from 20 to 50. The coverage probabilities are computed

based on 500 data sets with resp. 100 and 200 observations. The bootstrap variance

estimates for each of the 500 data sets are based on 1000 replications. For the

finite dimensional parameters in the first simulation setting we show the results in

Table 3.3.

n=100 n=200

γ0 0.940 0.950

γ1 0.954 0.950

β 0.972 0.968

Table 3.3: Empirical coverage probabilities of the 95% confidence intervals for simulation

setting 1.

The empirical coverage probabilities for the logistic regression coefficients γ0 and γ1

and for the hazard parameter β are rather close to the nominal level of 95%. Figure 3.1

shows empirical coverage probabilities of 95% pointwise confidence intervals of the

cumulative hazard functions at several time points. The confidence intervals of the

cumulative hazard functions at time points in the interval from 25 to 45 present no

difficulties. For small and large time points, the empirical coverage probabilities are

substantially smaller than 95%. For smaller time points, this is due to the higher

percentage of censored observations. At larger time points there are not enough data

to estimate the cumulative hazard function well. The estimated cumulative hazard

functions remain constant at their estimates in the largest uncensored observations.

However, we note that the coverage probabilities are getting closer to the nominal level

as the sample size increases. In general, the bootstrap variance estimation method
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(a) Setting 1 - n=100 (b) Setting 1 - n=200

Figure 3.1: Empirical coverage probabilities of 95% pointwise confidence intervals of the

cumulative hazard functions.

performs reasonably well and is easy to implement in R.

3.4 Example: Modeling ethanol-induced anesthesia

In this section, we reconsider the study on ethanol-induced anesthesia (sleep time) in

genetically-selected strains of mice, described in Section 1.2. We fit a zero-inflated

regression model on the data. As in Section 2.7, we investigate the influence of the

following covariates on sleep time: sex, albinism, weight at the first test session,

and an interaction between sex and albinism. We apply the EM-algorithm to obtain

MAL estimates for the different parameters. We use the bootstrap estimation method

(based on 1000 replications) to obtain estimates of the standard errors of the MAL

estimators. The results are shown in Table 3.4.

We note that in the assessment of sleep time, the recording is left-censored by a fixed

detection limit at 1 min. We already mentioned that in case of a fixed detection limit,

the EM-algorithm simplifies to fitting a logistic regression model on the censoring

indicator random variables and fitting a Cox’s regression model on the uncensored

observations. In the second remark of Section 2.1, we noted that the maximum

likelihood estimates can be found similarly in case of a fixed detection limit. So,



3.5. Conclusion 59

Logistic part

Intercept -3.8111 (0.4177)

Sex 0.6626 (0.5734)

Albinism 1.3295 (0.4503)

Sex*Albinism -1.2629 (0.7251)

Weight 0.0531 (0.0757)

Hazard part

Sex 0.0556 (0.0891)

Albinism 0.1026 (0.1086)

Sex*Albinism -0.0179 (0.1498)

Weight -0.0191 (0.0128)

Table 3.4: The MAL estimates for the different parameters in the zero-inflated Cox’s model.

Standard errors, obtained by the bootstrap estimation method, are given in brackets.

logically, the MAL estimates in Table 3.4 are similar to the ML estimates shown in

Table 2.4 of Section 2.7. The bootstrap standard errors are only little larger than the

standard errors shown in Table 2.4.

3.5 Conclusion

In this chapter, we introduced the maximum approximated likelihood estimators for

the parameters in the semi-parametric Cox’s regression model for zero-inflated left-

censored time to event data. The estimates can be computed by an efficient EM-

algorithm. In the M-step of the EM-algorithm one obtains estimates of the γ- and

β-parameters separately using standard statistical software and the estimates of the

step sizes can be calculated from the estimates for the β-parameters. This gives a

high dimension reduction, which makes the optimization procedure more stable and

faster. Our simulation results showed that the MAL estimator outperforms the ML

estimator. As theoretical result, we proved the consistency of the MAL estimator.





Chapter 4
Bivariate parametric and

semi-parametric regression models

The biological study on ethanol-induced sleeping time in mice, described in Section 1.2

of Chapter 1, has a repeated measurement design since mice are tested at two dif-

ferent times. This is an example where researchers are interested in bivariate semi-

continuous time to event data. Due to technical limitations, observations for both

semi-continuous outcome variables may be left-censored. In this chapter, the focus

is on copula regression models for analyzing bivariate zero-inflated left-censored time

to event data. In Section 4.1, we first describe mathematically the copula regression

model. Next we describe a two-stage parametric and a two-stage semi-parametric

estimation approach to obtain estimates of the different parameters in the model.

The asymptotic variance-covariance matrix of the two-stage parametric estimators

is derived by applying theory of inference functions. This matrix is estimated by a

jackknife estimator. A simulation study is set up to illustrate the performance of the

two-stage parametric and the two-stage semi-parametric estimation method for our

regression model. The results are shown in Section 4.2. In Section 4.3, our model is

illustrated on the practical data set of ethanol-induced sleep time in mice. Finally,

Section 4.4 states some conclusions about the results.

61
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4.1 Methodology

4.1.1 Model

We assume for each subject a bivariate vector of measurements (Y1, Y2) of times until

an event. Y1 and Y2 are semi-continuous outcome variables which attain the value

zero with a discrete probability and have non-zero positive values with a continuous

distribution. We assume that conditionally on the covariate groups X and Z, the

joint distribution of (Y1, Y2) is given by a bivariate mixture model:

F (y1, y2|X = x, Z = z)

= P (Y1 = 0, Y2 = 0|X = x)

+
[
P (Y2 = 0|X = x)− P (Y1 = 0, Y2 = 0|X = x)

]
FY1>0,Y2=0(y1|Z = z)

+
[
P (Y1 = 0|X = x)− P (Y1 = 0, Y2 = 0|X = x)

]
FY1=0,Y2>0(y2|Z = z)

+
[
1− P (Y1 = 0|X = x)− P (Y2 = 0|X = x) + P (Y1 = 0, Y2 = 0|X = x)

]
× FY1>0,Y2>0(y1, y2|Z = z). (4.1)

The notation X and Z for the two covariate groups is introduced to distinguish

between the set of covariates which we will use in the marginal regression model for

the zero responses and the set of covariates which will influence the non-zero response

times. In a practical data analysis or as shown in the simulation section, a covariate

can be part of both sets of covariates without any problem. In the previous expression,

we denote by

FY1>0,Y2=0(y1|Z = z) = P (Y1 ≤ y1|Y1 > 0, Y2 = 0, Z = z),

FY1=0,Y2>0(y2|Z = z) = P (Y2 ≤ y2|Y1 = 0, Y2 > 0, Z = z),

FY1>0,Y2>0(y1, y2|Z = z) = P (Y1 ≤ y1, Y2 ≤ y2|Y1 > 0, Y2 > 0, Z = z).

We focus in this copula regression model on the marginal distribution of each mea-

surement on the one hand and on the other hand on the association between the

distributions of both measurements. In this aspect, we introduce a simplifying as-

sumption that will allow us to set up later a two-stage estimation procedure where

we first estimate the parameters in the marginal regression models under a working

independence model, and afterwards in a second stage estimate the association para-

meters. Therefore we assume that the marginal distribution of a non-zero component

does not depend on the susceptibility status of the other component, i.e.

FY1>0,Y2>0(y1|Z = z) = FY1>0,Y2=0(y1|Z = z) = FY1>0(y1|Z = z), (4.2)

FY1>0,Y2>0(y2|Z = z) = FY1=0,Y2>0(y2|Z = z) = FY2>0(y2|Z = z).
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This means that the value of a non-zero response in one component, conditional on

the covariates, does not depend on the status of the response of the other component.

A similar assumption was made in the bivariate cure-mixture model of Chatterjee and

Shih (2001) to reduce the number of terms in the model. Using assumption (4.2), we

need to introduce the following part of the joint model in (4.1):

(i) The probability of a zero response for respectively measurement 1 and measure-

ment 2: P (Y1 = 0|X = x) and P (Y2 = 0|X = x).

(ii) The distributions of Y1 given Y1 > 0 and Y2 given Y2 > 0: for the non-zero

distributions FY1>0(y1|Z = z) and FY2>0(y2|Z = z).

(iii) The joint probability of having zero responses in both measurements:

P (Y1 = 0, Y2 = 0|X = x).

(iv) The joint distribution of Y1, Y2 given Y1 > 0, Y2 > 0: FY1>0,Y2>0(y1, y2|Z = z).

(i) We assume a parametric regression model for the marginal probability of a zero

response in each measurement. We denote these regression models with π1 and π2:

P (Y1 = 0|X = x) = π1(γ1, x) and P (Y2 = 0|X = x) = π2(γ2, x).

(ii) For the conditional distribution of the non-zero outcome values, we consider pro-

portional hazards models. We assume that the conditional hazard function for the

first outcome has the following form:

λY1>0(y1|Z = z) = λ1(y1) exp(β>1 z),

where λ1 is a baseline hazard function. The conditional distribution function is given

by

FY1>0(y1|Z = z) = 1− exp[− exp(β>1 z)Λ1(y1)],

with Λ1 the baseline cumulative hazard function corresponding to λ1. Similarly, we

assume for the second measurement that

FY2>0(y2|Z = z) = 1− exp[− exp(β>2 z)Λ2(y2)],

with Λ2 a baseline cumulative hazard function.

Afterwards, a dependence structure between the two measurements is speci-

fied.
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(iii) For the joint probability of having zero responses for both measurements, we

model the cross ratio in a contingency table with Y1 = 0 versus Y1 > 0, and Y2 = 0

versus Y2 > 0. We assume that, conditionally on the covariates, this cross ratio is

constant:

ψ =
P (Y1 = 0, Y2 = 0|X = x)P (Y1 > 0, Y2 > 0|X = x)

P (Y1 = 0, Y2 > 0|X = x)P (Y1 > 0, Y2 = 0|X = x)
.

(iv) To model the association between two non-zero responses, we use a family of

copula functions. A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with

properties

(a) ∀u, v ∈ [0, 1]:

C(u, 0) = 0 = C(0, v), C(u, 1) = u and C(1, v) = v;

(b) ∀u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 en v1 ≤ v2:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

From this definition, we note that a two-dimensional copula function is a bivariate

distribution function for which both marginal distribution functions are uniform

distributions on the interval [0, 1]. One of the major results of copula functions

is given by Sklar’s theorem and expresses that any bivariate distribution function

can be written as a copula function which is evaluated in the marginal distribution

functions. For an extended introduction into copula functions, we refer to Nelsen

(2006).

In this doctoral thesis, we will consider copula families Cθ(u, v), where a para-

meter θ controls the strength of dependence. The copula links the univariate

marginals to form a joint distribution. By assumption (4.2), we can express the joint

distribution of the non-zero responses as (Sklar (1959)):

FY1>0,Y2>0(y1, y2|Z = z) = Cθ(FY1>0(y1|Z = z), FY2>0(y2|Z = z)).

There are many parametric copula functions which could be used in this expression,

like for example, the Gaussian copula family and the Plackett copula family. An

overview of several copula families is found in Nelsen (2006). We consider in the si-

mulation study and in the data example, some one-parameter families of Archimedean

copula functions of which the expression is given by:

Cθ(u, v) = φ
[−1]
θ {φθ(u) + φθ(v)} ∀u, v ∈ [0, 1],
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where φθ : [0, 1]→ [0,∞] is a continuous, strictly decreasing convex generating func-

tion such that φθ(1) = 0 and φ
[−1]
θ is the pseudo-inverse of φθ, given by

φ
[−1]
θ (t) =


φ−1
θ (t), 0 ≤ t ≤ φθ(0),

0, φθ(0) ≤ t ≤ ∞.

We will consider some commonly used examples of Archimedean copula generators:

the Clayton, Frank and Gumbel-Hougaard generator. They are shown in Table 4.1.

Together with these generators, we also present the expression of Kendall’s tau.

φθ(t) θ ∈ τθ

Clayton t−θ−1
θ [−1,∞)\{0} θ

θ+2

Frank − ln
(
e−θt−1
e−θ−1

)
(−∞,∞)\{0} 1− 4

θ [1− 1
θ

∫ θ
0

t
et−1dt]

Gumbel-Hougaard (− ln t)θ [1,∞) θ−1
θ

Table 4.1: Some families of Archimedean copula functions with their generator and associ-

ation expression for Kendall’s tau.

Kendall’s tau is often used as a global measure of the association. It can be expressed

by a simple function of the generator φθ (Genest and MacKay (1986a,b)):

τθ = 1 + 4

∫ 1

0

φθ(t)

φ′θ(t)
dt.

Until this point, we only described the four different parts of the bivariate zero-inflated

regression model for the outcome variables (Y1, Y2). Due to technical limitations, it is

impossible in some studies to fully observe the outcome variables (Y1, Y2), for example

by a detection limit. In that case, we only see an upper bound for one or both outcome

variables. So, both observations may be left-censored. We assume that there exists

a couple of random variables (C1, C2), independent of (Y1, Y2) conditionally on the

covariate groups X and Z such that we observe (T1, T2, δ1, δ2, X, Z), with

T1 = max(Y1, C1) and δ1 = I(Y1 ≥ C1),

T2 = max(Y2, C2) and δ2 = I(Y2 ≥ C2).

In this doctoral thesis, we limit ourselves to independent censoring, because when

we would also assume an association structure between the lifetimes (Y1, Y2) and the

censoring times (C1, C2) (dependent censoring), this would complicate the likelihood

functions for the estimation of the parameters even more.
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4.1.2 Estimation

To estimate the different parameters in our model, we make use of maximum likelihood

techniques. The likelihood of a random sample (T1i, T2i, δ1i, δ2i, Xi, Zi); i = 1, . . . , n

is given by

L =

n∏
i=1

[
h1,1(T1i, T2i|X = Xi, Z = Zi)

]δ1iδ2i [h0,0(T1i, T2i|X = Xi, Z = Zi)
](1−δ1i)(1−δ2i)

.
[
h1,0(T1i, T2i|X = Xi, Z = Zi)

]δ1i(1−δ2i) [h0,1(T1i, T2i|X = Xi, Z = Zi)
](1−δ1i)δ2i

where

hj,k(t1, t2|X = x, Z = z) =
∂2

∂t1∂t2
P (T1 ≤ t1, T2 ≤ t2, δ1 = j, δ2 = k|X = x, Z = z),

j, k ∈ {0, 1}. Based on expression (4.1) for (Y1, Y2), we note that the contribution of

an individual is given by a mixture of one, two or four terms depending on whether

none, one or both observations are left-censored. Since (Y1, Y2) and (C1, C2) are as-

sumed to be independent, we can remove all factors concerning the distribution of

(C1, C2). These factors don’t yield any information about the unknown parameters.

In the following subsections, we specify parametric forms for the baseline cumulative

hazard functions Λ1(t) and Λ2(t) and afterwards we estimate them non-parametrically.

Hereby we note that the maximum likelihood estimators do not have a closed form

and numerical optimization becomes more difficult as the number of parameters in-

creases. Due to the simplifying assumption (4.2) we are able to set up in the both

cases a two-stage estimation procedure, similar to the one used in Shih and Louis

(1995), Joe (1997) and Chatterjee and Shih (2001). In this way, we reduce the num-

ber of parameters that have to be estimated at the same time. First, we estimate

the parameters of the marginal regression function under an independent working

assumption and afterwards we estimate in a second stage the association parameters.

4.1.2.1 Parametric estimation

In the parametric estimation approach, we assume that Λ1(t) and Λ2(t) have known

parametric forms Λ1(t, ζ1) and Λ2(t, ζ2), where ζ1 and ζ2 are vectors of parameters.

Let l(α1, α2, ρ) =

n∑
i=1

L(Wi, α1, α2, ρ) denote the bivariate log-likelihood, where α>1 =

(γ>1 , β
>
1 , ζ

>
1 ), α>2 = (γ>2 , β

>
2 , ζ

>
2 ) and ρ> = (ψ, θ). The Wi, i = 1, . . . , n represent the

observations (T1i, T2i, δ1i, δ2i, Xi, Zi). When we optimize this likelihood function over

all parameters by looking for the solution (α̂1, α̂2, ρ̂) of the set of equations,

(∂l/∂α>1 , ∂l/∂α
>
2 , ∂l/∂ρ

>) = 0>,
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we get the one-stage maximum likelihood estimates.

As already mentioned, we also consider a two-stage estimation procedure. At

the first stage, we estimate the marginal parameters α1 and α2 using a univariate

zero-inflated parametric Cox’s regression approach that ignores the dependence of

the two components. Hereto, we maximize the marginal log-likelihoods l1 and l2,

where

lj(αj) =

n∑
i=1

Lj(Wji, αj)

=

n∑
i=1

δji log{[1− πj(γj , Xi)]λj(Tji, ζj) exp(β>j Zi) exp[− exp(β>j Zi)Λj(Tji, ζj)]}

+(1− δji) log{πj(γj , Xi) + [1− πj(γj , Xi)](1− exp[− exp(β>j Zi)Λj(Tji, ζj)])},

with j = 1, 2 separately to obtain estimates α̃>1 = (γ̃>1 , β̃
>
1 , ζ̃

>
1 ) and α̃>2 =

(γ̃>2 , β̃
>
2 , ζ̃

>
2 ). At the second stage, estimates of the association parameters ρ are

obtained by fixing the parameters of the marginal distributions at their estimates and

maximizing the bivariate log-likelihood l(α̃1, α̃2, ρ) with respect to ρ. So, (α̃1, α̃2, ρ̃)

is the solution of

(∂l1/∂α
>
1 , ∂l2/∂α

>
2 , ∂l/∂ρ

>) = 0>. (4.3)

For notation, we let η> = (α>1 , α
>
2 , ρ

>) be the vector of all parameters, η̂> =

(α̂>1 , α̂
>
2 , ρ̂

>) be the one-stage maximum likelihood estimators and η̃> = (α̃>1 , α̃
>
2 , ρ̃

>)

be the two-stage estimators. In a similar way as in Joe (2005), we can obtain a par-

titioned form for the asymptotic variance-covariance matrix of η̃. Hereto, we apply

theory of inference functions, where the inference functions in the left-hand side of

(4.3) are written as

n∑
i=1

g(Wi; η),

where g> = (g>1 , g
>
2 , g

>
3 ), gj = ∂Lj/∂αj for j = 1, 2; and g3 = ∂L/∂ρ.

Let (η0)> = (α0
1, α

0
2, ρ

0)> be the true parameter vector. From maximum likelihood

theory (for example in Lehmann (1998)), we know that
√
n(η̂ − η0) converges in

distribution to a multivariate normal distribution with mean vector zero and variance-

covariance matrix I−1, where the Fisher information matrix I can be partitioned into

blocks:

I =

I11 I12 I13

I21 I22 I23

I31 I32 I33

 ,
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where Ijk = −E[∂2L/∂αj∂α
>
k ] for 1 ≤ j, k ≤ 2, Ij3 = −E[∂2L/∂αj∂ρ

>], I3j = I>j3
for j = 1, 2 and I33 = −E[∂2L/∂ρ∂ρ>].

In Theorem 6, we show the asymptotic normality of the two-stage estimators under

regularity conditions A1 −A4:

A1: There exists an open subset Θ of the parameter space containing the true para-

meter vector η0, such that the third partial derivatives of Lj(wj , αj), j = 1, 2,

with respect to the components of αj can be computed for almost all wj and

such that the third partial derivatives of L(w,α1, α2, ρ), with respect to the

components of α1, α2 and ρ can be computed for almost all w.

A2: The first and second order partial derivatives satisfy the following equations:

E[∂L1(W1, α1)/∂α1] = 0,

E[∂L2(W2, α2)/∂α2] = 0,

E[∂L(W,α1, α2, ρ)/∂η] = 0,

and

E[−∂2L1(W1, α1)/∂α1∂α
>
1 ] = E[∂L1(W1, α1)/∂α1 · (∂L1(W1, α1)/∂α1)>],

E[−∂2L2(W2, α2)/∂α2∂α
>
2 ] = E[∂L2(W2, α2)/∂α2 · (∂L2(W2, α2)/∂α2)>],

E[−∂2L(W,α1, α2, ρ)/∂η∂η>] = E[∂L(W,α1, α2, ρ)/∂η · (∂L(W,α1, α2, ρ)/∂η)>].

Note that this condition is satisfied if the specified model allows the interchange

of integrals and partial derivatives.

A3: Let Jjk = Cov(gj , gk) = E[gjg
>
k ] for 1 ≤ j, k ≤ 2, so that Jjj is the information

matrix from the j-th marginal log-likelihood. The elements of Jjk and I have

to be finite and J11, J22 and I have to be positive definite for all η in Θ.

A4: All third partial derivatives, mentioned in A1, are bounded by functions, with

a finite expected value w.r.t. the true parameter vector.

Theorem 6. Under regularity conditions A1−A4,
√
n(η̃−η0) converges in distribution

to a multivariate normal distribution with mean vector zero and variance-covariance

matrix V . The matrix V is given by

V = D−1
g Mg(D

−1
g )>,

where Dg = E[−∂g(W ; η)/∂η>] and Mg = Cov(g(W ; η)) = E[gg>].
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Proof. We will consider Taylor series expansions of the elements of the vectors
n∑
i=1

g1(W1i, α1),

n∑
i=1

g2(W2i, α2) and

n∑
i=1

g3(Wi, η). We introduce the following nota-

tion: g1q = ∂L1

∂α1q
, where α1q is the q-th element of the vector α1. Similarly, g2r = ∂L2

∂α2r

and g3s = ∂L
∂ρs

, where α2r and ρs are the r-th and s-th element of α2 and ρ respectively.

A Taylor series expansion of

n∑
i=1

g1q(W1i, α1) around α0
1 and evaluated at α̃1 gives

n∑
i=1

g1q(W1i, α̃1) = 0 =

n∑
i=1

g1q(W1i, α
0
1)−A>q,α1

(α0
1)(α̃1 − α0

1) (4.4)

+
1

2
(α̃1 − α0

1)>Hq,α1,α1
(α∗1)(α̃1 − α0

1),

where

Aq,α1
(α1) = −

n∑
i=1

∂g1q(W1i, α1)

∂α1
= −

n∑
i=1


∂g1q(W1i,α1)

∂α11

∂g1q(W1i,α1)
∂α12

...

 ,

Hq,α1,α1
(α1) =

n∑
i=1

∂2g1q(W1i, α1)

∂α1∂α>1
=

n∑
i=1


∂2g1q(W1i,α1)

∂α2
11

∂2g1q(W1i,α1)
∂α11∂α12

. . .

∂2g1q(W1i,α1)
∂α12∂α11

∂2g1q(W1i,α1)

∂α2
12

. . .

...
...

...


and α∗1 is a point on the line segment connecting α1 and α0

1. Similarly,

n∑
i=1

g2r(W2i, α̃2) = 0 =

n∑
i=1

g2r(W2i, α
0
2)−A>r,α2

(α0
2)(α̃2 − α0

2) (4.5)

+
1

2
(α̃2 − α0

2)>Hr,α2,α2
(α∗2)(α̃2 − α0

2),

where

Ar,α2
(α2) = −

n∑
i=1

∂g2r(W2i, α2)

∂α2
,

Hr,α2,α2
(α2) =

n∑
i=1

∂2g2r(W2i, α2)

∂α2∂α>2

and α∗2 is a point on the line segment connecting α2 and α0
2.
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We also have that
n∑
i=1

g3s(Wi, η̃) = 0 =

n∑
i=1

g3s(Wi, η
0)−B>s,η,1(η0)(α̃1 − α0

1) (4.6)

−B>s,η,2(η0)(α̃2 − α0
2)−B>s,η(η0)(ρ̃− ρ0)

+
1

2
(α̃1 − α0

1)>Ks,α1,α1
(η∗)(α̃1 − α0

1)

+
1

2
(α̃1 − α0

1)>Ks,α1,α2
(η∗)(α̃2 − α0

2)

+
1

2
(α̃1 − α0

1)>Ks,α1,ρ(η
∗)(ρ̃− ρ0)

+
1

2
(α̃2 − α0

2)>Ks,α2,α1
(η∗)(α̃1 − α0

1)

+
1

2
(α̃2 − α0

2)>Ks,α2,α2
(η∗)(α̃2 − α0

2)

+
1

2
(α̃2 − α0

2)>Ks,α2,ρ(η
∗)(ρ̃− ρ0)

+
1

2
(ρ̃− ρ0)>Ks,ρ,α1(η∗)(α̃1 − α0

1)

+
1

2
(ρ̃− ρ0)>Ks,ρ,α2(η∗)(α̃2 − α0

2)

+
1

2
(ρ̃− ρ0)>Ks,ρ,ρ(η

∗)(ρ̃− ρ0),

where

Bs,η,1(η) = −
n∑
i=1

∂g3s(Wi, η)

∂α1
, Bs,η,2(η) = −

n∑
i=1

∂g3s(Wi, η)

∂α2
,

Bs,η(η) = −
n∑
i=1

∂g3s(Wi, η)

∂ρ

and

Ks,x,y(η) = =

n∑
i=1

∂2g3s(Wi, η)

∂x∂y>
,

with x and y vectors of parameters. η∗ is a point on the line segment connecting η

and η0. Rearranging the terms in (4.4), (4.5) and (4.6), we get

1√
n

n∑
i=1

g1q(W1i, α
0
1) =

[
1

n
A>q,α1

(α0
1)− 1

2n
(α̃1 − α0

1)>Hq,α1,α1(α∗1)

]
√
n(α̃1 − α0

1),

1√
n

n∑
i=1

g2r(W2i, α
0
2) =

[
1

n
A>r,α2

(α0
2)− 1

2n
(α̃2 − α0

2)>Hr,α2,α2
(α∗2)

]
√
n(α̃2 − α0

2)
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and

1√
n

n∑
i=1

g3s(Wi, η
0) =

[
1

n
B>s,η,1(η0)− 1

2n
(α̃1 − α0

1)>Ks,α1,α1(η∗)

− 1

2n
(α̃2 − α0

2)>Ks,α2,α1(η∗)

− 1

2n
(ρ̃− ρ0)>Ks,ρ,α1(η∗)

]√
n(α̃1 − α0

1)

+

[
1

n
B>s,η,2(η0)− 1

2n
(α̃1 − α0

1)>Ks,α1,α2
(η∗)

− 1

2n
(α̃2 − α0

2)>Ks,α2,α2
(η∗)

− 1

2n
(ρ̃− ρ0)>Ks,ρ,α2

(η∗)

]√
n(α̃2 − α0

2)

+

[
1

n
B>s,η(η0)− 1

2n
(α̃1 − α0

1)>Ks,α1,ρ(η
∗)

− 1

2n
(α̃2 − α0

2)>Ks,α2,ρ(η
∗)

− 1

2n
(ρ̃− ρ0)>Ks,ρ,ρ(η

∗)

]√
n(ρ̃− ρ0).

Regularity condition A4 ensures that the third derivatives of the marginal and bivari-

ate log-likelihoods in the error terms are bounded in probability. In the assumptions,

we introduced the following notation: Jjk = Cov(gj , gk) = E[gjg
>
k ] for 1 ≤ j, k ≤ 2.

By the law of large numbers, as n→ +∞,

A>α1
(α0

1)

n
,
A>α2

(α0
2)

n
,
B>η,1(η0)

n
,
B>η,2(η0)

n
,
B>η (η0)

n

converge to J11, J22, I31, I32 and I33 respectively. Remark that A>α1
(α0

1) is the matrix

with rows given by the vectors A>q,α1
(α0

1). A similar statement holds for the other

matrices. Hence, we have that(
n∑
i=1

g1(W1i, α
0
1),

n∑
i=1

g2(W2i, α
0
2),

n∑
i=1

g3(Wi, η
0)

)>
/
√
n (4.7)

is approximately equivalent to
√
nDg(η̃ − η0), where

Dg = E[−∂g(W ; η)/∂η>] =

J11 0 0

0 J22 0

I31 I32 I33

 .
One can show that Cov(gj , g3) = E[gjg

>
3 ] = 0 for j = 1, 2. By the central limit
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theorem, (
n∑
i=1

g1(W1i, α
0
1),

n∑
i=1

g2(W2i, α
0
2),

n∑
i=1

g3(Wi, η
0)

)>
/
√
n

converges to multivariate normal distribution with mean vector zero and variance-

covariance matrix Mg, where

Mg = E[gg>] =

J11 J12 0

J21 J22 0

0 0 I33

 .
Thus,

√
n(η̃−η0) converges to multivariate normal distribution with mean vector zero

and variance-covariance matrix V = D−1
g Mg(D

−1
g )>.

We have that

D−1
g =

J
−1
11 0 0

0 J−1
22 0

a1 a2 I−1
33

 ,
where aj = −I−1

33 I3jJ
−1
jj for j = 1, 2. A matrix multiplication gives

D−1
g Mg =


J−1

11 J11 J−1
11 J12 0

J−1
22 J21 J−1

22 J22 0

a1J11 + a2J21 a1J12 + a2J22 I3

 ,
where I3 is the identity matrix with the same dimension as ρ. Carrying out a final

matrix multiplication, we can conclude that V has (j, k) element J−1
jj JjkJ

−1
kk for

1 ≤ j, k ≤ 2; (j, 3) element J−1
jj

2∑
k=1

Jjka
>
k for j=1,2; (3, j) element (

2∑
k=1

akJkj)J
−1
jj

for j = 1, 2; (3, 3) element I−1
33 +

2∑
j=1

2∑
k=1

ajJjka
>
k . The diagonal elements J−1

jj ,

for j = 1, 2, of V can be obtained directly from the Fisher information matrices

corresponding to the marginal log-likelihoods.

In a practical data analysis, we need a consistent estimator Ṽ for the variance-

covariance matrix V of η̃. Instead of deriving analytic forms for the derivatives

in V and computing empirical versions of the expectations, we avoid taking these

derivatives of log-likelihoods by using the jackknife estimator for n−1V , proposed
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in Joe (1997). We only have to code the log-likelihoods (marginal and bivariate)

and use a numerical optimizer to obtain estimates of the marginal and dependence

parameters. Let η̃(i) be the two-stage estimator for η with the i-th observation Wi

deleted, for i = 1, . . . , n. The jackknife estimator for n−1V is

n∑
i=1

(η̃(i) − η̃)(η̃(i) − η̃)T .

We give a non-rigorous justification of this estimation method. From (4.7), we know

that

(η̃ − η0) ≈ 1

n
D−1
g

n∑
k=1

g(Wk, η
0),

for n large enough. In the same way, we can show that

(η̃(i) − η0) ≈ 1

n− 1
D−1
g

∑
k 6=i

g(Wk, η
0)

≈ 1

n− 1
D−1
g

[nDg(η̃ − η0)− g(Wi, η
0)]

=
n

n− 1
(η̃ − η0)− 1

n− 1
D−1
g g(Wi, η

0).

So,

(η̃(i) − η̃) = (η̃(i) − η0)− (η̃ − η0)

≈ n

n− 1
(η̃ − η0)− 1

n− 1
D−1
g g(Wi, η

0)− (η̃ − η0)

=
1

n− 1
(η̃ − η0)− 1

n− 1
D−1
g g(Wi, η

0)

≈ − 1

n
D−1
g g(Wi, η

0),

for n large enough. We conclude that

n∑
i=1

(η̃(i) − η̃)(η̃(i) − η̃)> ≈ 1

n2
D−1
g

[
n∑
i=1

g(Wi, η
0)g>(Wi, η

0)

]
(D>g )−1

≈ 1

n
D−1
g Mg(D

>
g )−1

=
1

n
V,

for n large enough.
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4.1.2.2 Two-stage semi-parametric estimation

In the semi-parametric estimation approach we estimate the baseline cumulative ha-

zard functions Λ1(t) and Λ2(t) by non-parametric step functions:

Λ1n(t) =

qn∑
k=1

λ1kI(u1k ≤ t), Λ2n(t) =

rn∑
l=1

λ2lI(u2l ≤ t)

where 0 < u11 < . . . < u1qn , resp. 0 < u21 < . . . < u2rn are the unique uncen-

sored observations for the first, resp. second measurement and λ11, . . . , λ1qn , resp.

λ21, . . . , λ2rn are the corresponding step sizes in these time points. Since estimation

of all marginal and dependence parameters simultaneously becomes computationally

difficult if the number of uncensored observations increases, we only consider the two-

stage estimation procedure. At the first stage, we estimate the marginal parameters

γ1, β1, λ1k and γ2, β2, λ2l by fitting univariate zero-inflated semi-parametric Cox’s re-

gression models (introduced in Chapter 2) for each margin, ignoring the dependence

of the two components. At the second stage, estimates of the association parameters

ψ and θ are obtained by fixing the parameters of the marginal distributions at their

estimates and maximizing the bivariate log-likelihood with respect to ψ and θ. We

consider, as in the parametric setting, a jackknife approach to obtain standard errors

of the semi-parametric estimators.

In the numerical optimization process to find the different parameter estimates, we

note that the number of parameters over which we have to optimize, can be reduced

in some studies. As in the univariate setting, described in Chapter 2, we see that if the

largest observations in either of the measurements are uncensored, the corresponding

step sizes of the baseline cumulative hazard functions have a closed form solution

which only contains the parameters β. For example, suppose that all observations for

the first outcome variable larger or equal than u1p are uncensored, then

λ̂1p =
1

n∑
i=1

exp(Z>i β̂1)I(T1i ≥ u1p)
.

In the most extreme case, where all censored observations are smaller than the smallest

uncensored observation (f.e. in case of a fixed detection limit as in the example

of Section 4.3), fitting the zero-inflated Cox’s regression model simplifies to fitting

a logistic regression model on the censoring indicator variables and fitting a Cox’s

regression model on the subgroup of the uncensored observations for the first outcome

variable.
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4.2 Simulation study

In this section, the performance of the one-stage parametric, the two-stage parametric

and the two-stage semi-parametric estimation methods are compared. We set up a

simulation study and generate data sets using the following simulation scheme:

(i) We generate a covariate related to the first measurement: X1 = Z1 ∼
Uniform[0, 10] and a covariate related to the second measurement: X2 = Z2 ∼
Uniform[0, 10]. So X = (X1, X2)> and Z = (Z1, Z2)>.

(ii) For the censoring times, we assume that C1 ∼ Uniform[0, c1], C2 ∼
Uniform[0, c2] with C1 and C2 independent.

(iii) We consider logistic regression models for the probability of zero values of the

event times Y1 and Y2:

π1(γ1, X) =
exp(γ0

1 + γ1
1X1)

1 + exp(γ0
1 + γ1

1X1)
, π2(γ2, X) =

exp(γ0
2 + γ1

2X2)

1 + exp(γ0
2 + γ1

2X2)
.

Hereby we take the cross ratio ψ to model the association.

(iv) The non-zero event times are drawn from an Archimedean copula model (para-

meter: θ) with weibull regression models as margins (parameters: β1, β2). The

baseline hazards λ1, λ2 are from Weibull(a1,b1) and Weibull(a2,b2).

(v) For the observed measurements, we consider T1 = max(Y1, C1) and δ1 = I(Y1 ≥
C1), T2 = max(Y2, C2) and δ2 = I(Y2 ≥ C2).

In this simulation study, we investigate four different simulation settings. The

marginal parameters for both measurements γ1, β1, a1, b1 and γ2, β2, a2, b2 are chosen

to take the values in Table 4.2. The censoring variables C1 and C2 are assumed to

have the same uniform distribution with support determined by the value of c. The

choice of the four settings is made in such a way that we can compare the performance

of the estimation methods for high and low marginal probabilities of a zero response,

for different levels of censoring and for different strengths of association between two

non-zero responses.

Note that the marginal parameters of setting 1 and 4 correspond to the para-

meter values of setting 1 in Section 2.6 of Chapter 2. From Figure 2.2, we notice
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γ> β a b c ψ θ

Setting 1 (-0.3,0.15) -0.05 4 30 30 3 2

Setting 2 (-2,0.10) -0.05 4 30 30 3 2

Setting 3 (-0.3,0.15) -0.05 4 30 40 3 2

Setting 4 (-0.3,0.15) -0.05 4 30 30 3 6

Table 4.2: Parameter values for γ, β, a, b, c, ψ and θ in the different settings.

that the overall conditional censoring probability is high. This is mainly due to a

high conditional probability of a zero response. The marginal parameters of setting 2

correspond to the parameter values of setting 2 in Section 2.6. This marginal setting

corresponds to a low conditional probability of a zero response, combined with a

rather small conditional censoring probability for the responders. In the third setting,

which corresponds to setting 3 of Section 2.6, there is a high overall conditional

censoring probability, induced by a high conditional probability of a zero response,

together with a rather high conditional censoring probability for the responders.

For the association between two non-zero responses, we consider the Clayton,

Frank and Gumbel-Hougaard families of copula functions. Since the conclusions for

the Frank and Gumbel-Hougaard copula functions are similar to those of Clayton,

we only show results for the Clayton copula model. In Setting 1-3, we take θ = 2

corresponding to a Kendall’s τ = 0.50 (association between two non-zero responses).

In Setting 4, the values of the marginal parameters are equal to those in Setting 1,

but the association between two non-zero responses is very high (τ = 0.75). In all

settings, we choose the cross ratio ψ fixed at three. Since the Clayton copula only

has a strict generator when the event times have a positive association, we did not

consider a negative association for the moment. Furthermore we kept the cross ratio

fixed because we wanted to focus on the influence of the zero inflation probability in

the four settings.

For each simulation setting we generate 500 data sets, with n = 200, or n = 500

observations. We use the copula-package (Yan (2007)) in R to draw samples from

the different copula models. We conduct the one-stage and two-stage parametric

estimation approach, assuming Weibull baseline cumulative hazard functions. We also

estimate the marginal and association parameters by the two-stage semi-parametric

approach. In each setting, we compute estimates of the bias and standard deviation of

the one-stage and two-stage parametric estimates and the two-stage semi-parametric

estimates. The results are shown in Table 4.3 and Table 4.4.
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In the four settings, we see that the biases and the standard deviations of the one-stage

and two-stage estimates decrease as the sample size increases. This is in line with

what we expect based on the theoretical results. Since the estimates of the marginal

parameters in the two-stage procedure are obtained without using the information in

the correlation, we expect the two-stage parametric estimates to be inefficient relative

to the one-stage maximum likelihood estimates. However, we see that the estimators

of the marginal parameters in the two-stage parametric method perform almost as

well as the one-stage estimators. In simulation Settings 1, 2 and 3, we notice that the

two-stage parametric approach performs even better than the one-stage approach in

estimating the dependence parameters ψ and θ. This can be explained as follows: due

to the two-stage procedure, the number of parameters over which, in each step, has

to be optimized is lower and therefore the estimation can be done more accurately.

When the association between two non-zero responses is very high, as in Setting 4,

the bias of the two-stage estimator of θ is (in absolute value) higher than the bias of

the one-stage estimator. Ignoring the high dependence of two non-zero responses in

the estimation of the marginal parameters, results in a higher bias for the estimation

of θ in the second stage.

The larger bias and standard deviation for the logistic parameters and the association

parameter ψ in Setting 2, compared to Setting 1, is due to the small rate of zero

responses for both measurements. The estimators for parameters in the Cox’s regres-

sion models and the copula parameter, on the other hand, produced smaller biases

and standard deviations. The higher percentage of censoring among the responders

in Setting 3 explains the higher biases and standard deviations compared to Setting

1.

When we compare the performance of the two-stage parametric and the two-stage

semi-parametric approach, we note that both approaches have about the same effi-

ciency. Relaxing the parametric assumptions seems not to reduce the efficiency of

the dependence parameters. We can conclude that the two-stage parametric and

semi-parametric estimation methods work well, especially when the association be-

tween both measurements is not too high. We emphasize that two-stage estimates

are obtained much faster than the one-stage estimates.

Furthermore we obtain for each data set with 200 observations in Setting 1 an estimate

for the variance-covariance matrix of the one-stage parametric estimators (by inverting

the Hessian matrix at the optimum) and for the variance-covariance matrix of the two-

stage parametric estimators (estimate based on analytic derivatives and empirical

versions of the expectations and a jackknife estimate). We show the means of the

estimates of the standard errors in Table 4.5. By comparing the means of the empirical
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1-stage 2-stage

Inv Hes Emp Jack

γ̂01 0.3243 0.3371 0.3429

γ̂11 0.0573 0.0596 0.0606

β̂1 0.0380 0.0474 0.0472

â1 0.4007 0.4887 0.4753

b̂1 1.4938 1.7866 1.7573

γ̂02 0.3233 0.3361 0.3403

γ̂12 0.0573 0.0597 0.0603

β̂2 0.0381 0.0474 0.0469

â2 0.4046 0.4979 0.4773

b̂2 1.4901 1.7671 1.7272

ψ̂ 1.3026 1.3064 1.3285

θ̂ 0.6650 0.6877 0.6781

Table 4.5: Estimation of the standard error of the one-stage and two-stage parametric

estimators - Setting 1, n=200.

estimates (Emp) with the corresponding standard deviations in Table 4.3, we see that

the sandwich estimator performs well in estimating the true standard errors. We also

note that the means of the jackknife estimates of the standard errors of the two-stage

estimators (Jack) are comparable to the empirical estimates and are only little larger

than the estimates of the standard errors for the one-stage estimators (Inv Hes). The

jackknife estimator performs well in estimating the standard errors of the estimators

in the two-stage parametric approach.

4.3 Example: Modeling ethanol-induced anesthesia

In this section, we further analyze the data from the practical study of ethanol-

induced anesthesia in genetically-selected strains of mice, described in Section 1.2.

The data set has a repeated measurement design where mice are tested at two

different times. In Sections 2.7 and 3.4, we only considered observations of the first

test session for the segregating F2 mouse population. In this section, we consider

the observations of both test sessions for the F2 population. In Figure 1.1, we saw

that the range and the distribution of the observed lifetimes on the lines parallel to

the x- and y-axis (with one or both observations censored at the detection limit of 1

min) is no much different from the range and the distribution of the lifetimes for the

corresponding measurement within the plane. Except for the more extreme observed

bivariate couples, we think that the simplifying assumption (4.2) of Section 4.1 is
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not too much violated, such that we can assume that the marginal distribution of

a non-zero component does not depend on the susceptibility status of the other

component. In this way, we can use the zero-inflated regression model to analyze

this data set.

We fit logistic regression models for the marginal probability of a zero response in

each measurement:

logit π1 = γ0
1 + γ1

1Albinism,

logit π2 = γ0
2 + γ1

2Albinism.

Hereby we considered after model selection only albinism a a binary variable indicating

whether the mouse was albino. We further fit a proportional hazards model for the

distribution of non-zero responses for both measurements:

λY1>0(t) = λ1(t) exp[β1
1Sex + β2

1Weight1],

λY2>0(t) = λ2(t) exp[β1
2Sex + β2

2Weight2].

In these models, we study the influence of the covariates sex and weight at respectively

trial 1 and trial 2, on the hazard function of the non-zero response. Male mice with

weight of 21 grams are used as reference in both trials. Since the sleep times in both

trials are recorded on the same animal, they are correlated. The dependence structure

of two non-zero responses is fit by a Clayton, Frank and Gumbel-Hougaard family of

copula functions. Each of these copula functions represents a specific association

structure in which resp. early event times, latter event times or, early and latter

event times are more correlated. The cross ratio ψ induces the joint probability of

having zero responses for both measurements.

We conduct both the two-stage parametric and the two-stage semi-parametric esti-

mation approach. In the parametric approach, we fit Weibull hazard functions for

the baseline hazard functions λ1 and λ2. In the semi-parametric approach, the base-

line cumulative hazard functions are estimated by non-decreasing step functions, with

jumps at the uncensored observations for respectively measurement 1 and measure-

ment 2. As we saw in the methodology, the semi-parametric regression model assumes

that the baseline hazards are zero before the smallest uncensored observations for re-

spectively measurement 1 and measurement 2. Consequentially, the probabilities for

a value of sleep time between zero and the detection limit are also zero. At the

first stage, we estimate all marginal parameters ignoring the dependence of the two

measurements. At the second stage, we hold the marginal parameters fixed from the
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first stage and estimate the dependence parameters. The two-stage parametric and

semi-parametric estimates for the marginal parameters are shown in Table 4.6. The

standard errors are obtained by the jackknife estimation method. We note that, due

to the two-stage estimation approach, estimates of the marginal parameters do not

depend on the choice of the association models.

Parametric Semi-parametric

Logistic part

γ̂0
1 (Intercept) -3.4616 (0.2089) -3.4532 (0.2072)

γ̂1
1 (Albinism) 0.8147 (0.3328) 0.8099 (0.3311)

γ̂0
2 (Intercept) -3.1373 (0.1782) -3.1342 (0.1777)

γ̂1
2 (Albinism) 0.9124 (0.2791) 0.9107 (0.2785)

Hazard part

β̂1
1 (Sex) 0.0609 (0.0817) 0.0607 (0.0825)

β̂2
1 (Weight1) -0.0192 (0.0136) -0.0171 (0.0131)

β̂1
2 (Sex) 0.3414 (0.0847) 0.3336 (0.0836)

β̂2
2 (Weight2) 0.0517 (0.0130) 0.0495 (0.0131)

Shape1 1.8407 (0.0565)

Scale1 91.5099 (2.6009)

Shape2 2.0174 (0.0657)

Scale2 92.7139 (2.5032)

Table 4.6: Estimates for the marginal parameters. Standard errors are given in brackets.

We notice that in both the parametric and the semi-parametric model, the same

parameters are significant. In the logistic part for both measurements, an albino

mouse has a significant higher probability of having a zero value for the sleep time

than a non-albino mouse. In the hazard part of the first measurement, the effects

of both sex and weight are not significant. This means that as soon as the mice are

sleeping, albinism and weight don’t have a significant effect on the duration of the

sleep time at the first measurement. The parameters β1
2 (Sex) and β2

2 (Weight2)

are highly significant. At the second measurement, a female mouse has a higher

hazard than a male mouse with the same weight, which means a shorter sleep time

for female mice. In contrast to the first trial, the hazard increases for heavier mice at

the second measurement, resulting in a shorter sleep time compared to thinner mice

of the same sex. We believe that heavier mice got used to the alcohol after the first
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trial and that these mice are more resistant to the alcohol challenge at the second

trial. We also notice that the estimates and standard errors of the parameters are

almost the same in the parametric and semi-parametric model.

In Figure 4.1, we show the estimates of the baseline cumulative hazard func-

tions for both the parametric and semi-parametric model. We see that, for both

(a) Measurement 1 (b) Measurement 2

Figure 4.1: Parametric and non-parametric estimates of the baseline cumulative hazard

functions.

measurements, the estimated Weibull cumulative hazard function and the non-

parametric step function are almost the same for a quite large interval of sleep times.

The Weibull models fit the distributions of the non-zero response values in both

measurements reasonably well. The Weibull cumulative baseline hazards are almost

zero for small times, which explains why there is not much difference between the

parametric and semi-parametric models.

The parameter estimates for the dependence parameters and their standard errors are

given in Table 4.7.

The estimates of the hazard ratio ψ indicate a significant association between the sus-

ceptibilities of the mice at the two test sessions, regardless of the choice of parametric

or semi-parametric marginal distributions and irrespective the choice of the copula

model. Mice with a strict positive value for the sleep time at trial 1 are likely to have

a strict positive value for sleep time at trial 2. In the semi-parametric models, the

estimate of ψ does not depend on the choice of copula that models the association
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Parametric

Clayton Frank Gumbel-Hougaard

ψ̂ 4.0651 (1.7941) 3.9756 (1.7397) 3.9927 (1.7492)

θ̂ 0.3848 (0.0556) 4.2084 (0.2496) 1.4661 (0.0399)

τ̂θ 0.1613 0.4034 0.3179

Semi-Parametric

Clayton Frank Gumbel-Hougaard

ψ̂ 3.9416 (1.7174) 3.9416 (1.7174) 3.9416 (1.7174)

θ̂ 0.7891 (0.0676) 3.8921 (0.2365) 1.4956 (0.0380)

τ̂θ 0.2829 0.3800 0.3314

Table 4.7: Estimates for the dependence parameters. Standard errors are given in brackets.

between two non-zero responses. This can be explained by the presence of a fixed de-

tection limit for both measurements and both baseline hazards being zero before the

smallest uncensored observations for respectively the first and second measurement.

The full likelihood splits up so that the logistic paramaters and ψ can be estimated

separately from the other parameters. The copula parameter can’t be compared be-

tween models, because it has a different interpretation in different models. However,

all copula parameter estimates correspond to a low to moderate positive global as-

sociation between two non-zero responses. Kendall’s tau values corresponding to the

different copula parameter estimates θ̂ range between 0.16 and 0.40. Mice that have

a longer sleep time at trial 1 tend to have a longer sleep time at trial 2. We conclude

that there is a clear association between the sleep times in both trials.

4.4 Conclusion

In some studies with bivariate left-censored data, the underlying response variables

also attain a zero value with a positive discrete probability. We introduced parametric

and semi-parametric regression models for these bivariate zero-inflated left-censored

survival data. The different parameters in the model are estimated using maximum

likelihood techniques. The numerical optimization of the likelihood becomes more

difficult as the number of parameters increases. Fortunately, the model structure

suggests that a two-stage estimation procedure can be considered. Firstly we estimate
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the parameters in the margins, ignoring the dependence of the two components. The

second stage involves maximum likelihood of the dependence parameters with the

univariate parameters held fixed from the first stage. We derived a partitioned form

for the asymptotic variance-covariance matrix of the two-stage parametric estimators

and discussed a jackknife estimator for this matrix. In the simulation study, we showed

that the two-stage parametric and semi-parametric estimation methods perform well,

especially when the association between two non-zero responses is low or moderate.

Finally, we have applied our regression model on a practical data set of ethanol-

induced sleep time in mice.





Chapter 5
Concluding remarks and possible

future research

In Chapter 2, a new semi-parametric regression model for analyzing zero-inflated

randomly left-censored time to event data was introduced. It was proposed to

combine a parametric regression model for the probability of having no response

with a semi-parametric model for the time to event for the responders. The different

parameters in the mixture regression model were estimated by maximizing an em-

pirical likelihood. Some nice properties such as the consistency and the asymptotic

normality of the maximum likelihood estimators were proved.

For some data sets, the optimization procedure proposed in Chapter 2 was not

able to estimate the probability of a zero response well. Therefore, in Chapter 3,

an approximation of the likelihood was considered. We developed an efficient

EM-algorithm to compute the maximum approximated likelihood estimates. The

approximation of the likelihood led to a high dimension reduction, which made

the optimization procedure more stable. The maximum approximated likelihood

estimates were more accurate than the corresponding maximum likelihood estimates.

Moreover, the MAL estimates were obtained much faster. As result, the consistency

of the maximum approximated likelihood estimators was proved. In future research,

the asymptotic normality of the MAL estimators may be studied.

The focus of Chapter 4 was on parametric and semi-parametric regression models for

analyzing bivariate zero-inflated left-censored time to event data. A marginal mo-

87
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deling approach was considered. First, the marginal probabilities of a zero response

were modeled by a parametric regression model. The non-zero parts of both outcome

variables were modeled by parametric or semi-parametric proportional hazards

models. Afterwards, a dependence structure was imposed to model the association

of the two measurements. For the joint probability of having zero-responses for both

measurements, we modeled the cross ratio in a contingency table with combinations

of zero and non-zero responses for both measurements. The association between

two non-zero responses was modeled by a parametric family of copulas. In the

proposed models, the cross ratio and the copula parameter where not allowed to

vary with some covariates. As extension, we may model the influence of covariates

on the copula parameter θ and on the cross ratio ψ with parametric regression models.

To estimate the different parameters in our model, maximum likelihood tech-

niques were used. The special structure of the model suggested the consideration

of a two-stage estimation procedure, instead of maximizing the full log-likelihood

at once. At the first stage the parameters in the margins were estimated. Hereby,

the dependence of the two measurements was ignored. In the semi-parametric

estimation approach, we obtained estimates for the marginal parameters by fitting

a univariate zero-inflated semi-parametric Cox’s regression model, introduced in

Chapter 2, for each margin. The second stage involved maximum likelihood of the

dependence parameters with the univariate parameters held fixed from the first stage.

The simulation study showed that the two-stage parametric and semi-parametric

estimation methods perform reasonably well, especially when the association between

both measurements is not too high.

In future research, it may be worth to investigate whether an approximation

of the semi-parametric full likelihood, similar to the one used in the univariate case

(Chapter 3), gives more accurate estimates for both the marginal and the dependence

parameters. At the first stage of the two-stage estimation procedure, the efficient

EM-algorithm may be used to obtain estimates for the marginal parameters.

Furthermore, in Chapter 4, the performance of the two-stage semi-parametric

estimation approach was only investigated by simulations. We may try to prove the

consistency and the asymptotic normality of the estimators under some regularity

conditions. Finally, we may think about goodness-of-fit tests to verify whether a

class of copula regression models complies with the data found in a practical study.
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Finally, mention that the content of Chapter 2 is contained in Grouwels and

Braekers (2011) and Braekers and Grouwels (2013), while Braekers and Grouwels

(2015) deals with the bivariate parametric and semi-parametric regression models

introduced in Chapter 4. In future, we will also try to publish the results of Chapter 3

in a scientific journal.
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Samenvatting

In sommige klinische, economische of milieustudies zijn onderzoekers gëınteres-

seerd in een semi-continue uitkomstvariabele Y . Deze uitkomstvariabele neemt de

waarde nul aan met een discrete kansmassa en heeft een continue verdeling voor de

niet-nul responswaarden. Bijvoorbeeld, in een milieustudie, waarbij onderzoekers

gëınteresseerd zijn in de hoeveelheid van een bepaald toxisch metaal in een specifiek

ecosysteem, is het mogelijk dat dit metaal niet aanwezig is. Als tweede voorbeeld

kunnen we een biologische studie beschouwen over ethanol-gëınduceerde slaap in

genetisch geselecteerde muizen. Tijdens deze studie vielen sommige muizen niet

in slaap van de toegediende dosis ethanol omdat hun metabolisme de alcohol

zeer snel kon afbreken (Markel et al. (1995)). In beide studies kunnen we twee

groepen van subjecten onderscheiden. In een eerste groep hebben de subjecten

een strikt positieve waarde voor de uitkomstvariabele. Deze subjecten worden de

ontvankelijken genoemd. De tweede groep van subjecten reageert niet in de studie en

heeft een waarde nul voor de uitkomstvariabele. We noemen hen de onontvankelijken.

In dit proefschrift modelleren we de verdeling van een semi-continue variabele

met een mengselmodel:

F (y|x, z) = P (Y ≤ y|X = x, Z = z) = π(γ, x) + (1− π(γ, x))FY >0(y|z).

We beschouwen een parametrisch regressiemodel π(γ, x) om de invloed van covariaten

op de discrete kans op een nulwaarde voor de uitkomstvariabele te beschrijven. Voor

de verdeling FY >0(y|z) van de niet-nul responswaarden beschouwen we een semi-

parametrisch Cox regressiemodel om de invloed van covariaten op deze verdeling te

bestuderen. Hiervoor veronderstellen we dat de conditionele risicofunctie de volgende
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vorm heeft:

λY >0(t|z) = λ(t)g(β, z).

De functie λ(t) is een ongespecifieerde referentie risicofunctie en g(β, z) > 0 is een

parametrisch model.

In sommige studies is het onmogelijk om de uitkomstvariabele Y volledig te

observeren en zien we slechts een bovengrens. Wiskundig drukken we dit uit door een

tweede positieve, onafhankelijke stochastische variabele C te onderstellen die we de

censureringstijd noemen. Voor elk studiesubject observeren we een stochastische va-

riabele T die het maximum is van de tijd tot een gebeurtenis Y en de censureringstijd

C. Voorts krijgen we een indicator die aangeeft welke van deze variabelen het grootst

is. Subjecten waarvoor de tijd tot een gebeurtenis groter is dan de censureringstijd

worden ongecensureerde observaties genoemd. Subjecten waarbij de censureringstijd

groter is dan de tijd tot een gebeurtenis worden gecensureerde observaties genoemd.

We noemen dit type van gegevens in het algemeen, linksgecensureerde gegevens. De

ongecensureerde observaties zijn duidelijk ontvankelijken. Voor de gecensureerde

observaties kan men echter geen onderscheid maken tussen onontvankelijke subjecten

en ontvankelijke subjecten met een gecensureerde tijd tot een gebeurtenis.

Om de verschillende parameters in het mengselmodel te schatten maken we

gebruik van de methode van de maximale aannemelijkheid. De oneindig dimensionale

referentie cumulatieve risicofunctie wordt geschat met een een stap-functie, met

sprongen op de ongecensureerde geobserveerde tijdstippen. In Hoofdstuk 2 worden

enkele technische aspecten besproken die de berekening van de meest aannemelijke

schattingen vergemakkelijken. Als resultaten worden de consistentie en de asymptoti-

sche normaliteit van de meest aannemelijke schatters bewezen. In een simulatiestudie

wordt het gedrag van de schatters voor steekproeven uit verschillende onderliggende

modellen en met verschillende steekproefgroottes bestudeerd. Daarnaast wordt het

semi-parametrisch regressiemodel voor links-gecensureerde data met extra nullen

gëıllustreerd aan de hand van de data set over ethanol-gëınduceerde slaap in genetisch

geselecteerde muizen.

In de simulatiestudie van Hoofdstuk 2 merken we op dat de optimalisatiepro-

cedure voor het bepalen van de meest aannemelijke schattingen soms onstabiel is en

enige tijd vergt. Wanneer bijvoorbeeld de kans op een nulwaarde voor de respons

laag is, kunnen er zich optimalisatieproblemen voordoen. Om deze problemen op
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te vangen, wordt in Hoofdstuk 3 onderzocht of de aannemelijkheidsfunctie kan

benaderd worden, waardoor de optimalisatieprocedure op een efficiëntere manier

kan verlopen. Als resultaat tonen we de consistentie van de maximale benaderende

aannemelijkheidsschatters aan. We ontwikkelen een efficiënt EM-algoritme om de

maximale benaderende aannemelijkheidsschattingen te berekenen. In de M-stap

van het algoritme kan men schattingen voor de logistische parameters en voor de

effectparameters van het Cox model afzonderlijk van elkaar bekomen. Daarenboven

kan gebruik gemaakt worden van standaardfuncties in het statische softwarepakket

R om deze schattingen te berekenen. De schattingen van de spronggroottes van de

referentie cumulatieve risicofunctie kunnen berekend worden uit de schattingen van

de effectparameters. In de simulatiestudie zien we dat de voorgestelde benaderende

schattingsmethode een competitief alternatief vormt voor de standaard maximale

aannemelijksmethode uit Hoofdstuk 2. Het benaderen van de aannemelijkheidsfunc-

tie leidt immers tot een grote dimensieverlaging, hetgeen de optimalisatieprocedure

stabieler en sneller maakt.

In de biologische studie over ethanol-gëınduceerde slaap in genetisch geselec-

teerde muizen worden de muizen op twee verschillende tijdstippen getest. Het is een

voorbeeld waarin onderzoekers gëınteresseerd zijn in twee semi-continue uitkomst-

variabelen Y1 en Y2, die mogelijk afhankelijk van elkaar zijn. In Hoofdstuk 4 wordt

de gezamenlijke verdeling van (Y1, Y2) gemodelleerd door middel van een bivariaat

mengselmodel. We modelleren eerst de marginale kansen op een nulwaarde voor

iedere uitkomstvariabele en de marginale verdelingen van de niet-nul responswaarden.

We veronderstellen parametrische regressiemodellen, bijvoorbeeld logistische regres-

siemodellen, voor de marginale kans op een nulwaarde voor iedere meting. De niet-nul

gedeeltes van beide uitkomstvariabelen worden gemodelleerd met parametrische of

semi-parametrische Cox regressiemodellen. Daarna wordt de afhankelijkheid van

de uitkomstvariabelen Y1 en Y2 gemodelleerd. Voor de gezamenlijke kans op een

nulwaarde voor beide uitkomstvariabelen, modelleren we de dubbelverhouding in een

contingentietabel met combinaties van nul en niet-nul responswaarden voor beide

metingen. De associatie tussen twee niet-nul responswaarden wordt gemodelleerd

door middel van parametrische copulafamilies.

In sommige studies is het onmogelijk om de uitkomstvariabelen Y1 en Y2 volle-

dig te observeren en zien we slechts een bovengrens. Beide observaties kunnen dus

links-gecensureerd zijn. Wiskundig drukken we dit uit door een koppel stochastische

veranderlijken (C1, C2), onafhankelijk van (Y1, Y2) conditioneel op de covariaten, te
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veronderstellen. Voor elk studiesubject observeren we

T1 = max(Y1, C1) and δ1 = I(Y1 ≥ C1),

T2 = max(Y2, C2) and δ2 = I(Y2 ≥ C2).

Om de verschillende parameters in de bivariate parametrische en semi-parametrische

regressiemodellen voor links-gecensureerde data met extra nullen te schatten,

maken we gebruik van de methode van de maximale aannemelijkheid. Men heeft

echter geen gesloten vorm voor de meest aannemelijke schatters en de numerieke

optimalisatieprocedure wordt moeilijker naarmate het aantal parameters stijgt. De

speciale structuur van het model suggereert dat we een schattingsprocedure in twee

fasen kunnen beschouwen. In de eerste fase worden de marginale parameters geschat,

waarbij de afhankelijkheid van de twee metingen genegeerd wordt. In de tweede fase

worden de marginale parameters gefixeerd op hun geschatte waarden uit de eerste fase

en wordt de bivariate aannemelijkheidsfunctie gemaximaliseerd om schattingen voor

de afhankelijkheidsparameters te bekomen. Deze techniek werd ook gebruikt in onder

andere Shih and Louis (1995), Joe (1997) en Chatterjee and Shih (2001). Als resultaat

wordt een gepartitioneerde vorm voor de asymptotische variantie-covariantie matrix

van de 2-fasen parametrische schatters afgeleid, samen met een jackknife schatter

voor deze matrix. De prestaties van de 2-fasen parametrische en semi-parametrische

schattingsmethodes worden onderzocht in een simulatiestudie. De resultaten van de

simulaties tonen dat de 2-fasen schattingsmethodes goed werken, vooral wanneer de

associatie tussen de twee uitkomstvariabelen niet extreem hoog is. Op het einde

van Hoofdstuk 4 wordt de data set met de ethanol-gëınduceerde slaaptijden in

genetisch geselecteerde muizen verder geanalyseerd door middel van parametrische

en semi-parametrische regressiemodellen voor bivariate links-gecensureerde data met

extra nullen.

In Hoofdstuk 5, ten slotte, worden algemene conclusies getrokken en worden

indicaties gegeven voor mogelijk toekomstig onderzoek.
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