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Chapter 1

General Introduction

Antibiotics are drugs that are used to treat bacterial infections. One prominent ex-

ample is penicillin, which was discovered by Alexander Fleming in 1929. He observed

that while some bacteria are sensitive to penicillin, others are resistant (Fleming,

1929). In his Nobel lecture, Fleming noted that the sensitive bacteria could easily

develop resistance by exposure to low doses of the antibiotic (Fleming, 1945). His

point was proven to be correct as only a few years later over 50% of Staphylococ-

cus aureus strains were no longer susceptible to penicillin (Alanis, 2005). Meanwhile,

both ecological studies and randomized controlled trials (RCTs) in individual patients

have demonstrated a link between antibiotic use and resistance (Costelloe et al., 2010;

Goossens et al., 2005; Malhotra-Kumar et al., 2007).

Over time, the use and misuse of antibiotics has led to resistance of bacteria to

several antibiotics (Ilić et al., 2012; Willemsen et al., 2009). This is a major public

health problem as resistance in the infecting organisms is related to treatment failure,

prolonged hospitalization, increased costs of care and increased mortality (French,

2005). In order to fight this problem an effective national and international approach

is needed urgently. One part of the solution, to which this thesis contributes, is to

gather trustworthy information on antibiotic use and its relationship with resistance

in order to develop targeted interventions (Smith, 1998).

1
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1.1 Outline of the thesis

With an incidence of 30 to 50 cases per 1000 patients per year, acute cough is one

of the main reasons for consulting in primary care (Gibson et al., 2013). Although

antibiotic treatment for acute cough cases has been shown to have little or no effect,

both overall and in patients with co-morbidities, and the majority of acute cough cases

are caused by a self-limiting lower respiratory tract infection (LRTI), antibiotics are

prescribed to over 50% of patients (Butler et al., 2009; Little et al., 2013; Moore et al.,

2014). This inappropriately high level of antibiotic prescribing is explained by the

difficulty to accurately identify patients that would benefit from antibiotic treatment

(e.g. suffering from a bacterial LRTI or pneumonia) (Teepe et al., 2016; Van Vugt

et al., 2013). Dinant et al. (2007) suggested that the best way forward is to identify

early and manage differently those at high risk of an adverse outcome, while adopt-

ing a ’wait and see approach’ for the others, hence adjusting treatment according to

prognosis rather than diagnosis. Therefore, in Chapter 2, we develop a prognostic

prediction rule to predict poor prognosis (i.e. admission to hospital or reconsultation

with new or worsened complaints) in patients presenting to primary care with acute

cough, aiming to enable general practitioners (GPs) to reassure patients at low risk

and provide appropriate treatment for patients at high risk.

Although guidelines for appropriate antibiotic dosing in hospitalized children do exist

(e.g. British National Formulary for Children), they are not used properly and pre-

scribed doses deviate substantially from recommended doses. Chapters 3 to 5 focus on

data collected within the Antibiotic Resistance and Prescribing in European Children

(ARPEC) project which was set up to determine factors that cause variation in doses

of antibiotics prescribed to hospitalized children. The information in this dataset has

a hierarchical structure, with children nested within departments nested within hos-

pitals nested within countries nested within UN macro-geographical regions. Such a

complex multi-level structure automatically gives rise to sparseness issues caused by

the low number of subunits at different levels of the hierarchy. Whenever a higher-

level unit contains only one subunit, this unit is referred to as a singleton. In Chapter

3, we evaluate the performance of the mixed effects model in the presence of single-

tons at the lowest level (i.e. the child). In Chapter 4, we evaluate the performance

of the F test in the presence of singletons at the highest level (i.e. the UN macro-

geographical region). In Chapter 5, we determine which factors are causing variation

in doses of ceftriaxone prescribed to hospitalized children and use a meta-analytic ap-

proach, pooling all antibiotic-specific analyses, to determine which factors are causing
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variation in doses of β-lactam antibiotics prescribed to hospitalized children.

One factor influencing antibiotic dosing that could not be assessed using the ARPEC

data is time. The evolution of outpatient antibiotic use over time is assessed in Chap-

ter 6 using quarterly use data expressed in defined daily doses (DDD) or packages

per 1000 inhabitants per day (DID and PID, respectively). When linking antibiotic

use with resistance, both DID and PID could be used. In Chapter 7, we investigate

which measure best explains this association. In Chapter 8, we focus on resistance

profiles in streptococci which reside asymptomatically in the oropharynx but can

cause e.g. otitis or pneumonia when they invade the ear and lower respiratory tract,

respectively. Upon consumption, an antibiotic is most successful in eliminating the

sensitive bacterial phenotypes, leaving a small proportion of highly resistant bacterial

phenotypes behind. As a result, the proportion of resistant phenotypes directly after

antibiotic treatment is elevated. When no new exposure follows, the advantage of

being resistant disappears and the proportion of resistant phenotypes decreases as

a result of natural selection against a redundant trait. We compare the persistence

of this elevated resistance in oropharyngeal streptococci after exposure to penicillins

and cephalosporins or macrolides and tetracyclines.

In Belgium, several attempts have been made to lower resistance rates by optimizing

antibiotic consumption. This was done through e.g. the introduction of antimicrobial

management teams (AMTs) in hospitals and launch of an annual antibiotic awareness

day in 2001. In Chapter 9, we assess the impact of these policies on three selected

quality indicators using change-point mixed models.
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1.2 Motivating data

In this section, we introduce the datasets that are used throughout this work. The

Acute Cough Data (Section 1.2.1) are used to develop a prediction rule that will help

to identify patients with poor prognosis. The stability of linear multi-level models

and of the F test will be assessed using the Ceftriaxone Data (Section 1.2.2). Current

variations in antibiotic doses prescribed to hospitalized children are assessed using the

Inpatient Antibiotic Use Data (Section 1.2.3) and variations in antibiotic doses pre-

scribed to outpatients are studied using the Outpatient Antibiotic Use Data (Section

1.2.4). The Outpatient Antibiotic Use Data are linked with the Yearly Antimicrobial

Resistance Data (Section 1.2.5) to investigate the association between antibiotic use

and resistance. Persistence of resistance is evaluated using the Bacterial Susceptibility

Data (Section 1.2.6) and the impact of Belgian policies on antimicrobial consumption

is assessed using the Hospital Stays Data (Section 1.2.7).

1.2.1 Acute Cough Data

Data on the presence of poor prognosis (i.e. admission to hospital or reconsultation

with new or worsened complaints) in adult patients presenting to primary care with

acute cough were collected in work packages 9 (an observational study of adults with

an LRTI) and 10a (a randomized trial to assess the clinical effectiveness of antibiotics

for community-acquired LRTI) within the GRACE (Genomics to combat Resistance

against Antibiotics in Community-acquired LRTI in Europe; www.grace-lrti.org) Net-

work of Excellence. Information on clinical signs, severity of symptoms, co-morbidities

and presence of poor prognosis for 3104 patients was obtained using a case report form

(CRF), a diary filled out by the patient in the 28 days following consultation and a

notes review. Patients that did not meet the imposed inclusion criteria (listed in

Table A1)(0.3%) or had no prognosis reported (4.2%) were removed from the dataset.

The remaining patients are distributed over 11 countries according to Table 1.1. To

avoid computational issues, we selected countries with more than 15 patients with

poor prognosis for further analysis (i.e. Belgium, Germany, the Netherlands, Poland,

Spain and the UK). The working data contain information on 100 variables recorded

for 2604 patients. Included explanatory variables cover information that is available

on the day of consultation and concentrations of C-reactive protein (CRP) and blood

urea nitrogen (BUN) (variables are listed in Table A2).

In Chapter 2, the Acute Cough Data will be used to develop a framework for the

prediction of poor prognosis in patients presenting to primary care with acute cough.
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Table 1.1: Number of patients with poor prognosis in the Acute Cough Data.

Country
Number of Number of

patients poor prognoses

Belgium 388 76

France 30 7

Germany 189 52

Italy 18 0

Netherlands 325 75

Poland 590 120

Slovakia 139 5

Slovenia 73 6

Spain 594 86

Sweden 103 8

UK 518 113

1.2.2 Ceftriaxone Data

Data on the use of ceftriaxone (expressed in mg/kg/day) in hospitalized children were

collected in a pilot study for a one-day point prevalence survey (PPS) organised within

work package 5 (PPS of paediatric hospital antimicrobial consumption) of the ARPEC

project. The pilot study was conducted between September and December 2011.

The working data contain information on 329 ceftriaxone prescriptions for children

hospitalized in 124 departments in 47 hospitals in 20 countries in 10 UN macro-

geographical regions. Explanatory variables include characteristics of the patient, the

department, the hospital and the country and are listed in Table 1.2. The hierarchical

structure of the Ceftriaxone Data gives rise to sparseness issues mainly caused by the

low number of subunits at the lowest and the highest level (i.e. the child and the UN

macro-geographical region, respectively). In Chapter 3, we evaluate the stability of

the linear multi-level model in the presence of worsening sparseness at the lowest level

(i.e. the child). In Chapter 4, we study the performance of the F test in the presence

of worsening sparseness at the highest level (i.e. the UN macro-geographical unit).
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1.2.3 Inpatient Antibiotic Use Data

Data on antimicrobial use in hospitalized children were collected in a one-day PPS

organised within work package 5 of the ARPEC project. The PPS was organised

worldwide in three waves (March - April 2011, September - December 2011 and Octo-

ber 2012 - January 2013) and is described in great detail elsewhere (Versporten et al.,

2013).

In this thesis, we focus on β-lactam antibiotics that were prescribed frequently (i.e.

over 200 prescriptions observed in the PPS). Patients with their gender or prescribed

dose missing were removed from the dataset (0.7%). The working data contain in-

formation on 5228 prescriptions (expressed in mg/kg/day) for children hospitalized

in 1217 paediatric departments in 222 hospitals in 41 countries in 9 UN macro-

geographical regions. They are aggregated at the level of the active substance in accor-

dance to the Anatomical Therapeutic Chemical (ATC) Classification System (WHO

(2011)) and contain information on doses (in mg/kg/day) of 12 β-lactam antibiotics.

Included substances are oral amoxicillin (J01CA04) and amoxicillin with β-lactamase

inhibitor (BLI) (J01CR02) and parenteral ampicillin (J01CA01), benzylpenicillin

(J01CE01), amoxicillin with BLI (J01CR02), piperacillin with BLI (J01CR05), cefa-

zolin (J01DB04), cefuroxime (J01DC02), cefotaxime (J01DD01), ceftazidime (J01DD02),

ceftriaxone (J01DD04) and meropenem (J01DH02). Explanatory variables include

characteristics of the patient, the department, the hospital and the country and are

listed in Table 1.2.
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The most frequently prescribed antimicrobial in the Inpatient Antibiotic Use Data

is parenteral ceftriaxone (18.9%). It is a third-generation cephalosporin with broad-

spectrum activity against Gram-positive and Gram-negative bacteria. In Chapter

5, we will study the causes of variation in doses of individual β-lactam antibiotics

prescribed to hospitalized children. Using a meta-model we will assess whether the

factors causing variation in individual β-lactam antibiotics (e.g. ceftriaxone) impact

all β-lactam antibiotics in the same manner and test whether higher doses were given

to children treated for a severe infection compared to children treated for a mild or

moderate infection, with severity of the reason for treatment classified as shown in

Table 1.3.

Table 1.3: Classification of severity of the reason for treatment.

Severity Reason for treatment

Severe Sepsis, central nervous system infections, cardiac infections,

febrile neutropenia/fever in oncologic patients, catheter

related blood stream infections

Moderate Surgical disease, lower respiratory tract infections, urinary

tract infections, lymphadenitis, skin/soft tissue infections,

joint/bone infections, fever of unknown origin,

gastrointestinal tract infections

Mild Upper respiratory tract infections, acute otitis media

Other Prophylaxis, tuberculosis, malaria, unknown

1.2.4 Outpatient Antibiotic Use Data

Data on outpatient antibiotic use, expressed in DID and PID, were collected within

the European Surveillance of Antimicrobial Consumption (ESAC) project (currently

ESAC-Net). Data were measured yearly and quarterly between 2000 and 2007 and

aggregated at the level of the active substance in accordance to the ATC classification

system and the DDD measurement unit (WHO (2011)). Information was available

for 31 countries, being 26 EU member states (all but Cyprus and Malta), two found-

ing members of the European Free Trade Association (Norway and Switzerland) and

three other countries (Turkey, Israel and Russian Federation). For most countries,
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information on ambulatory care was provided, although for some only information

on total care was available (Denmark, Netherlands, Russian Federation, Sweden and

Slovenia). This was not considered to be a problem as ambulatory care represents

over 90% of total care.

The data contain information on consumption of antibacterials for systemic use (J01)

and its eight pharmacological subgroups (i.e. penicillins (J01C), macrolides (J01F),

quinolones (J01M), cephalosporins (J01D), tetracyclines (J01A), sulphonamides (J01E),

urinary antiseptics (J01X) and other antibiotics (concatenation of J01B, J01G and

J01R)). Information on two chemical subgroups of J01C (i.e. penicillins with extended

spectrum (J01CA) and combinations of penicillins (J01CR)) is also provided.

The observed country-specific changes in quarterly antibiotic consumption expressed

in DID and PID are shown in Figure 1.1. The individual profiles show that there

is considerable within-country and between-country variability, indicating the need

for random effects in the model. It can also be seen that there is a clear seasonal

fluctuation, which could be approximated well by a sine wave and suggests the need

for a non-linear term to model the seasonality.

D
ID

0

10

20

30

40

50

Time (2000-2008)

2000 2001 2002 2003 2004 2005 2006 2007 2008

P
ID

0

2

4

6

8

10

Time (2000-2008)

2000 2001 2002 2003 2004 2005 2006 2007 2008

Figure 1.1: Observed country-specific changes in quarterly antibiotics consumption

(J01) expressed in DID (left) or PID (right) for 31 European countries.

In Chapter 6, data on quarterly antibiotic consumption will be analysed in order

to detect a time-trend in antibiotic dosing. In Chapter 7, data on yearly antibiotic

consumption will be coupled with data on antimicrobial resistance (Section 1.2.5) in

order to investigate the association.
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1.2.5 Yearly Antimicrobial Resistance Data

Data on proportions of penicillin-non-susceptible Streptococcus pneumoniae (PNSP)

and erythromycin-non-susceptible Streptococcus pneumoniae (ENSP) isolates were

collected within the European Antimicrobial Resistance Surveillance System (EARSS)

project (currently EARS-Net). Data were gathered yearly between 2000 and 2009. In-

formation was available for 30 countries, being 27 EU member states (all but Greece),

two founding members of the European Free Trade Association (Norway and Switzer-

land) and one other country (Iceland).

The observed country-specific changes in PNSP and ENSP over time are shown in

Figure 1.2. This figure shows that there is a lot of within-country and between-country

variability, indicating the need for random effects in the model.

pr
op

or
tio

n 
of

 P
N

S
P

0.0

0.2

0.4

0.6

0.8

1.0

Time

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

pr
op

or
tio

n 
of

 E
N

S
P

0.0

0.2

0.4

0.6

0.8

1.0

Time

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 1.2: Observed country-specific evolution of the proportion of PNSP (left) and

ENSP (right) over time for 30 European countries.

In Chapter 7, we will investigate the association between antibiotic use and resistance.

Therefore, we will combine data on yearly outpatient antibiotic use (Section 1.2.4)

with the data on antimicrobial resistance that were introduced here. Three new

datasets will be created by combining use data with resistance data for the same year

(time lag = 0), resistance data for one year later (time lag = 1) and resistance data

for two years later (time lag = 2). When creating these three datasets, we will only

consider countries for which both use and resistance data are available. Each of the

combined datasets contains information on 27 European countries, encompassing 25

EU member states (all but Cyprus, Malta and Greece) and two founding members of

the European Free Trade Association (Norway and Switzerland).
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1.2.6 Bacterial Susceptibility Data

Data containing information on individual patients’ resistance status linked with infor-

mation on individual antimicrobial consumption were collected during a multi-centric

study conducted within a collaboration of the Intermutualistic Agency (IMA) and

the Scientific Institute of Public Health (Catry et al., 2008). The information on

resistance status was obtained from 14 voluntary participating laboratories (in 2005).

The information on patient prescriptions was obtained from national reimbursement

data (collected by IMA for the period July 2004 - December 2005). In this thesis,

we focus on prescriptions for an oral dose of J01A or J01F (treatment AF) and J01C

or J01D (treatment CD), obtained from the pharmacy, and respiratory tract sam-

ples of Streptococcus pyogenes (bacteria PY) and Streptococcus pneumoniae (bacteria

PN) tested for resistance against penicillin (J01CE01) or erythromycin (J01FA01).

Samples tested for resistance against penicillin were linked with the most recent CD

prescription and samples tested for resistance against erythromycin were linked with

the closest AF prescription. Because resistance to penicillin and erythromycin involve

different mechanisms, we did not study penicillin resistance after treatment with AF

or erythromycin resistance after treatment with CD (Descheemaeker, 2000; Dever and

Dermody, 1991). We selected samples for which time between antimicrobial consump-

tion and sampling was at least four days (95% of isolates), to ensure that all patients

could have started taking the purchased antimicrobial. The final data used in this

thesis contain information on resistance status for 451 test results for 363 patients

(Table 1.4). A summary of observed test results is given in Table 1.5.

Table 1.4: Number of tests conducted per patient in the Bacterial Susceptibility Data

Number of observations Number of

per patient patients

1 288

2 67

3 5

4 2

6 1
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Table 1.5: Resistance status for isolates in the Bacterial Susceptibility Data

Resistance status Bacteria Treatment Number of isolates

Susceptible PN CD 150

AF 33

PY CD 148

AF 37

Non-susceptible PN CD 38

AF 26

PY CD 6

AF 13

AF: treatment with macrolides or tetracyclines

CD: treatment with penicillins or cephalosporins.

PY: Streptococcus pyogenes; PN: Streptococcus pneumoniae

In Chapter 8, we will assess the difference in persistence of resistance after treatment

with penicillins or cephalosporins versus macrolides or tetracyclines. Other studies

have suggested that resistance in oral streptococci lasts for more than six months af-

ter exposure to macrolides, while it is estimated to be much shorter after exposure to

penicillins (Chung et al., 2007; Malhotra-Kumar et al., 2007, 2016). Because design-

ing a new study for every drug-bug combination is expensive and time-consuming,

an additional aim of Chapter 8 will be to assess whether routinely collected data

on resistance and antibiotic use at the level of the individual patient can confirm

the conclusions reached in the studies conducted by Malhotra-Kumar et al. (2007),

Malhotra-Kumar et al. (2016) and Chung et al. (2007) and hence could serve as a

proxy to study other drug-bug combinations.
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1.2.7 Hospital Stays Data

Data on hospital stays in acute care hospitals in Belgium were collected yearly between

1999 and 2010 for pathology-based financing purposes by a collaboration of the ”Na-

tional Institute for Health and Disability Insurance” and the ”Federal Government

Finances”. Each entry was classified according to the ”all patient refined diagnosis

related groups” (APR-DRG) system (3M Health Information Systems, 2003) and in-

cludes information on the patient, the hospital, the antimicrobial consumption and

the stay itself. Two APR-DRGs with the highest degree of antimicrobial consumption,

being APR-DRG 302 (major lower limb surgery without trauma) and APR-DRG 139

(simple pneumonia), were selected for further study. Included explanatory variables

are listed in Table 1.6.

Table 1.6: Overview of explanatory variables in the Hospital Stays Data.

Variable Description

Age Age of the patient

Gender Gender of the patient (male, female)

Los Length of stay in days

Time Year of stay (with 1999 = 1)

Sev Severity of the stay (level 1− 4)

ICU Stay at intensive care (yes, no)

Size Number of stays in one year

Pt ori Patient origin (home, long term care, other hospital, unknown)

Dis st Discharge status (dead, alive)

Comp Compliance to guidelines for limb surgery

OP Ratio of oral versus parenteral antimicrobial use during the stay

DDDhosp Number of defined daily doses consumed during the stay
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For major lower limb surgery, the outcome of interest was compliance to guidelines

at patient level. Compliance was defined as use of the correct antimicrobial (i.e. ce-

fazolin) in the correct dose range (i.e. 2− 8g) while no other antimicrobial was given.

Hospital stays with secondary infectious diagnoses or with severity of illness levels 3

or 4 were excluded from the analysis to ensure that the antimicrobial was prescribed

purely for prophylaxis.

For pneumonia, the data did not allow an assessment of the appropriateness of the

antimicrobial use on stay level. Therefore, the information on hospital stays was

aggregated at hospital level. Aggregating the explanatory variables was done by

using the median for continuous outcomes and using the distribution of the stays

(%) according to the levels of the categorical variables. The outcomes of interest

at hospital level were the number of total DDD per 100 hospital days (excluding

penicillins)(DDDhosp) and the ratio of oral versus parenteral DDD (OP). Figure 1.3

shows that there is a lot of variability between hospitals for both pneumonia out-

comes. This suggests that there is a need for subject-specific intercepts and slopes.

Outliers were detected using box plots with an observation lying below the lower far

fence (25th percentile −3IQR) or above the upper far fence (75th percentile +3IQR)

being labelled outlying and discarded.
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Figure 1.3: Observed hospital-specific changes in DDD per 100 hospital days (left)

and ratio oral/parenteral antimicrobial use (right).

In Chapter 9, the Hospital Stays Data will be used to assess the impact of Belgian

policies on antimicrobial consumption.
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Chapter 2

Predicting poor prognosis in

patients presenting to

primary care with acute

cough

Existing prognostic prediction rules have been derived to predict mortality in pa-

tients presenting to the emergency department with community-acquired pneumonia

(CAP). The Pneumonia severity index (PSI), developed by Fine et al. (1997), uses

two steps to classify patients in five groups according to their risk of mortality (more

information in Figure A1). The final score used to classify patients in risk groups is

however not easily computed as it combines 20 different variables. Online tools have

been made available to improve usability of PSI (e.g. www.internisten.nl/jniv/

calculatoren/longziekten/items/pneumonia-severity-index-of-fine-score). Another

way to circumvent this computation is to focus on the first step, separating the pa-

tients that are suitable for home management from those at risk of mortality. An

alternative rule used to predict mortality in patients presenting to the emergency de-

partment with CAP, is the CRB score, which was developed by the British Thoracic

Society and later modified to the CURB score by Neill et al. (1996) (more information

in Figure A2). This prediction rule uses three (for CRB) or four (for CURB) easily

measurable clinical features to distinguish between severe and non-severe pneumonia.

Extensions of the CRB and CURB score, which combine usability and stratification

into several risk groups, are, respectively, the CRB-65 and CURB-65 score, which

17
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were developed by Lim et al. (2003) (more information in Figure A2).

Using a meta-analytic approach, Loke et al. (2010) and Akram et al. (2011) demon-

strated that CRB-65, CURB-65 and PSI can be used to predict mortality from CAP

in outpatients. However, since both death from CAP and CAP itself are very uncom-

mon in outpatients, several authors have suggested to consider other outcomes (Bont

et al., 2008; Francis et al., 2012; Vugt et al., 2012).

In this chapter, we will use information within the Acute Cough Data (Section 1.2.1)

that is readily available on the day of consultation to construct a framework for the

prediction of poor prognosis in patients presenting to primary care with acute cough.

Additionally, we will assess the added value of including information on biomarkers

CRP and BUN, and compare the performance of the new prediction rule to the per-

formance of five existing prediction rules (PSI, CRB, CURB, CRB-65 and CURB-65).

2.1 Imputation of missing values

Only seven out of the 97 explanatory variables that were available on the day of con-

sultation were complete. For the remaining 90 variables, between 0.03% and 21.71%

of records were missing. These missing values were imputed using predictive mean

matching, which fits a regression model for each variable with missing observations,

conditional on the other variables. The imputed value for a subject that has its record

missing is the observed value for the subject with the closest predicted value. Because

we expect observations within one country to be more similar than observations be-

tween different countries, missing values were imputed per country. To ensure that

the uncertainty on the missing values is represented in the imputed observations, we

used multiple imputations (available as R package mice) (Rubin, 1987; Van Buuren

and Groothuis-Oudshoorn, 2011). After the imputation of missing values, the im-

puted and observed values were combined into five imputed datasets. All analyses

were repeated for each imputed dataset, after which results were pooled.

In order to evaluate the added value of the inclusion of biomarkers, missing values

for CRP (35.11%) and BUN (37.68%) were imputed, conditional on the imputed

country-specific datasets.
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2.2 Development of new prediction rule

To account for the difference in baseline risk of poor prognosis, countries were grouped

according to the observed proportion of patients with poor prognosis (A: < 15%, B:

15−25%, C: > 25%) and group-specific prediction rules were constructed. In a second

stage, we used these group-specific prediction rules to construct a general prediction

rule.

2.2.1 Construction of a group-specific prediction rule

We selected the most important variables for each imputed dataset using a forest of

conditional inference trees (available as R package cforest) (Hothorn et al., 2006).

This method was preferred over the random forest approach to avoid bias towards

variables with more categories (more elaborately discussed in Section 2.7). The con-

ditional forest approach draws ntree bootstrap samples from the original sample and

fits a conditional inference tree using mtry explanatory variables to each of the boot-

strapped samples. At the beginning of each tree, a test statistic is computed for

the null hypothesis of independence between each explanatory variable and the re-

sponse. The explanatory variable rendering the lowest univariate p-value is then used

to implement a split. This process repeats itself, until the null hypothesis can no

longer be rejected. The importance of the variables in a forest is then represented

by the decrease in mean accuracy. This variable importance measure is computed by

comparing the prediction accuracy (i.e. the number of observations correctly classi-

fied) before and after randomly permuting the predictor of interest. If there is an

association between the predictor and the response, the prediction accuracy will de-

crease substantially by permuting the predictor and the decrease in mean accuracy

will therefore be high.

Within each tree, we considered 10 explanatory variables. Within each forest, we

used 1000 trees, to eliminate instability of an individual tree. Variance importance

measures were then averaged over 100 forests to eliminate instability of an individual

forest.
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After selection of the important variables, a logistic regression model using these

variables was fitted for each imputed dataset. This imputation-specific model can be

presented as:

log

(
πi

1− πi

)
= β0 +

K∑
k=1

βkXki,

where πi is the probability of poor prognosis for patient i (with i = 1, ..., n), Xki is

the kth covariate, β0 is the intercept, βk are the coefficients for the covariates Xki

and K is the number of included covariates.

Insignificant fixed effects (α = 0.10) were removed using backwards model building

based on p-values obtained by the likelihood ratio test. In a next step, interaction

terms between the remaining fixed effects were included whenever the interaction term

did not contain sparse levels, and a second round of backwards elimination (α = 0.05)

was performed.

Variables which were significant in at least two imputation-specific models were re-

tained. The final group-specific model was obtained after a final round of backwards

elimination (α = 0.05) using p-values obtained by the pooled likelihood ratio test

(Meng and Rubin, 1992). This test statistic is defined as:

DL =
d̄L

k(1 + rL)
,

with

rL =
m+ 1

k(m− 1)
(d̄′m − d̄L),

where m is the number of imputations, d̄′m is the likelihood ratio averaged over m im-

putations, d̄L is the likelihood ratio averaged over m imputations and evaluated using

θ̄F and θ̄R, which are the pooled parameter estimates for the full and reduced model,

respectively, and k is the number of parameters of interest. In order to determine

significance of test statistic DL, it is compared to an F distribution with numerator

degrees of freedom equal to k and denominator degrees of freedom equal to ν, which

can be calculated as:

ν = 4 + (km− k − 4)

[
1 +

(
1− 2

km− k

)
1

rL

]2

.

The final group-specific model was then fitted to each of the imputed datasets and

results were pooled over the five imputations.
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2.2.2 Construction of the general prediction rule

In a second stage, the five imputed datasets were combined into five completed

datasets. All variables which were significant in at least one group-specific model

were used to construct a general model. This model can be represented as:

log

(
πij

1− πij

)
= β0j +

K∑
k=1

βkXkij , (2.1)

where πij is the probability of poor prognosis for patient i (with i = 1, ..., nj) in group

j (with j = A, B or C), nj are the number of patients within group j, Xkij is the kth

covariate, β0j is the group-specific intercept, βk are the coefficients for the covariates

Xkij and K is the number of included covariates.

The final general model was obtained after a final round of backwards elimination

(α = 0.05) using p-values obtained by the pooled likelihood ratio test. This model

was then fitted to each completed dataset after which the results were pooled over

the five datasets.

The model’s ability to discriminate between observations at high and low risk was

evaluated using a receiver operating characteristic (ROC) curve. This is a plot of

sensitivity (i.e. true positive rate) versus 1-specificity (i.e. false positive rate) at dif-

ferent cut-off values. The closer the curve gets to the left top border of the graph,

the more accurate the model (i.e. high sensitivity and specificity). The ROC curve

can be summarized by the area under the curve (AUC), which reflects the probability

that the score for a case exceeds the score for a control in a random case-control pair.

It can range from 0.5, corresponding to no discriminative ability, to 1, corresponding

to perfect discrimination (Hosmer and Lemeshow, 2000).

The predicted probability of poor prognosis was obtained by filling in the pooled

parameter estimates into Equation 2.1 and taking the inverse-logit. If the predicted

probability is higher than a cut-off value c, the patient is at high risk of poor progno-

sis. If it is lower than that cut-off value, the patient is at low risk of poor prognosis.

Selection of the cut-off value holds an intrinsic trade-off between high sensitivity (for

a low cut-off value) and high specificity (for a high cut-off value). We determined

the optimal cut-off value c using the Youden index, which maximizes the distance

between the ROC curve and the identity line by maximizing the sum of sensitivity

and specificity (Figure 2.1)(Youden, 1950).
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Figure 2.1: Illustration of a ROC curve and its Youden index (J), which maximizes

the sum of sensitivity and specificity (C = optimal Youden cut-off point).

Taken from Zaletel-Kragelj and Boz̆ikov (2010)

2.3 Extension of the new prediction rule

The new prediction rule focusses on information that is available at the moment of

consultation. However, a GP can order and even perform additional testing during

the consultation e.g. determination of CRP. This biomarker is believed to have a high

predictive value for pneumonia when combined with signs and symptoms (Van Vugt

et al., 2013). Another biomarker that is currently used to distinguish between severe

and non-severe pneumonia is BUN.

To assess the relevance of CRP and BUN in predicting poor prognosis, we included

them in the final general model (separately) and computed their pooled p-values. The

improvement in discriminative ability was assessed using their AUC values.
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2.4 Cross-validation of the new prediction rule

We used a cross-validation approach to evaluate the stability of the new prediction

rule. For this procedure, the completed datasets were split in three sets of equal size.

The number of cross-validations was chosen ad hoc, after considering the size of the

dataset (2604).

Cross-validation 1:

Use set 1 and 2 as learning sample, and set 3 as test sample.

Cross-validation 2:

Use set 2 and 3 as learning sample, and set 1 as test sample.

Cross-validation 3:

Use set 1 and 3 as learning sample, and set 2 as test sample.

Next, we iterated through the following steps for each Cross-validation:

• Using the learning sample, reduce the full general model through backwards

elimination and obtain pooled parameter estimates.

• Using these pooled estimates fit the reduced model on the test sample and

determine its AUC.

2.5 Comparison to existing prediction rules

Existing prediction rules include PSI, CRB, CURB, CRB-65 and CURB-65. For PSI,

we focussed on the first step, and used variables Age, Heart fail yn,

Other fine diseases, Conf disor, Beats min, Breaths min, Syst bp and Oral temp to

obtain a 0/1 categorisation (according to Figure A1). Scores for CRB, CURB, CRB-65

and CURB-65 were obtained using variables Conf disor (C), BUN (U), Breaths min

(R), Syst bp and Diast bp (B) and Age (65) (according to Figure A2).

The overall performance of the underlying models for the new and existing prediction

rules was evaluated using their AUC values. The performance of the prediction rules

themselves, with cut-off values determined by maximizing the Youden index, was

compared using this index, which provides an objective means of comparing prognos-

tic tests and is calculated as sensitivity + specificity − 1 (Youden, 1950).
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2.6 Results

2.6.1 Development of a group-specific prediction rule

The most important variables for each imputed dataset were obtained using forests

of conditional inference trees. Afterwards, logistic regression was used to obtain

imputation-specific models. Using variables that were significant in at least two

imputation-specific models, the group-specific models were constructed.

The resulting variable importance plots are shown in Figures 2.2 to 2.4. The pa-

rameter estimates and standard errors for the final group-specific prediction rules are

reported in Tables 2.1 to 2.3. For completeness, we show both imputation-specific and

pooled results. Our main interest however are the pooled results, where the standard

error accounts for variability both within and between imputations.
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Group A

The variable importance plots for the five imputed datasets for group A are given in

Figure 2.2.
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Figure 2.2: Variable importance plots for group A with the top seven predictors.
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Group B

The variable importance plots for the five imputed datasets for group B are given in

Figure 2.3.
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Figure 2.3: Variable importance plots for group B with the top ten predictors.



28 Chapter 2

F
ro

m
th

e
va

ri
ab

le
im

p
or

ta
n

ce
p

lo
ts

(F
ig

u
re

2
.3

),
w

e
se

le
ct

ed
th

e
to

p
te

n
p

re
d

ic
to

rs
.

T
h

is
n
u

m
b

er
w

a
s

ch
o
se

n
a
d

h
o
c,

a
ft

er
in

sp
ec

ti
o
n

of
th

e
p

lo
ts

an
d

co
n

si
d

er
in

g
th

e
n
u

m
b

er
of

o
b

se
rv

a
ti

o
n

s
in

g
ro

u
p

B
(i

.e
.

1
8
2
1
).

U
si

n
g

th
is

se
t

o
f

se
le

ct
ed

p
re

d
ic

to
rs

,
w

e
co

n
st

ru
ct

ed

fi
ve

im
p

u
ta

ti
on

-s
p

ec
ifi

c
m

o
d

el
s.

V
ar

ia
b

le
s

th
a
t

w
er

e
si

g
n

ifi
ca

n
t

in
a
t

le
a
st

tw
o

im
p

u
ta

ti
o
n

-s
p

ec
ifi

c
m

o
d

el
s

w
er

e
u

se
d

to
co

n
st

ru
ct

a

gr
ou

p
-s

p
ec

ifi
c

lo
gi

st
ic

re
gr

es
si

on
m

o
d

el
.

T
h

e
fi

n
a
l

g
ro

u
p

-s
p

ec
ifi

c
m

o
d

el
w

a
s

fi
tt

ed
to

ea
ch

im
p

u
te

d
d

a
ta

se
t,

a
ft

er
w

h
ic

h
th

e
re

su
lt

s

w
er

e
p

o
ol

ed
.

P
ar

am
et

er
es

ti
m

at
es

an
d

st
an

d
a
rd

er
ro

rs
a
re

re
p

o
rt

ed
in

T
a
b

le
2
.2

.

T
ab

le
2.

2:
P

ar
am

et
er

es
ti

m
a
te

s
(s

ta
n

d
a
rd

er
ro

rs
)

fo
r

th
e

fi
n

a
l

g
ro

u
p

-s
p

ec
ifi

c
m

o
d

el
fo

r
g
ro

u
p

B
.

P
ar

am
et

er
Im

p
u

ta
ti

on
1

Im
p

u
ta

ti
o
n

2
Im

p
u

ta
ti

o
n

3
Im

p
u

ta
ti

o
n

4
Im

p
u

ta
ti

o
n

5
P

o
o
le

d
re

su
lt

s

In
te

rc
ep

t
-0

.9
69

(0
.3

79
)

-1
.0

1
3

(0
.3

8
3
)

-1
.1

3
0

(0
.3

8
5
)

-1
.0

4
2

(0
.3

8
2
)

-1
.0

4
2

(0
.3

8
4
)

-1
.0

3
9

(0
.3

8
8
)

B
en

z
ad

y
n

-0
.4

55
(0

.1
81

)
-0

.4
3
9

(0
.1

8
1
)

-0
.4

2
1

(0
.1

8
2
)

-0
.4

5
1

(0
.1

8
2
)

-0
.4

5
1

(0
.1

8
1
)

-0
.4

4
3

(0
.1

8
2
)

U
su

al
ac

ti
v
it

ie
s

(2
)

0.
36

6
(0

.1
23

)
0.

40
7

(0
.1

2
4
)

0
.4

7
8

(0
.1

2
4
)

0
.4

1
2

(0
.1

2
4
)

0
.4

1
2

(0
.1

2
4
)

0
.4

1
5

(0
.1

3
1
)

U
su

al
ac

ti
v
it

ie
s

(3
)

0.
52

2
(0

.2
16

)
0.

71
9

(0
.2

1
8
)

0
.7

8
2

(0
.2

1
5
)

0
.7

4
1

(0
.2

1
1
)

0
.7

4
1

(0
.2

1
2
)

0
.7

0
1

(0
.2

4
2
)

D
ay

1
p

h
le

gm
(1

)
-0

.3
81

(0
.2

46
)

-0
.4

6
0

(0
.2

5
5
)

-0
.5

4
9

(0
.2

6
4
)

-0
.3

3
4

(0
.2

6
0
)

-0
.3

3
4

(0
.2

4
8
)

-0
.4

1
2

(0
.2

7
4
)

D
ay

1
p

h
le

gm
(2

)
-0

.0
65

(0
.2

25
)

-0
.0

5
1

(0
.2

2
5
)

-0
.0

2
1

(0
.2

2
9
)

-0
.0

7
8

(0
.2

2
4
)

-0
.0

7
8

(0
.2

2
8
)

-0
.0

5
9

(0
.2

2
8
)

D
ay

1
p

h
le

gm
(3

)
0.

17
8

(0
.1

92
)

0.
20

6
(0

.1
9
5
)

0
.2

3
2

(0
.1

9
7
)

0
.1

9
2

(0
.1

9
2
)

0
.1

9
2

(0
.1

9
8
)

0
.2

0
0

(0
.1

9
6
)

D
ay

1
p

h
le

gm
(4

)
0.

50
9

(0
.2

01
)

0.
49

2
(0

.2
0
0
)

0
.5

9
6

(0
.2

0
2
)

0
.5

8
3

(0
.1

9
7
)

0
.5

8
3

(0
.2

0
3
)

0
.5

5
2

(0
.2

0
7
)

D
ay

1
p

h
le

gm
(5

)
0.

54
8

(0
.2

33
)

0.
58

8
(0

.2
3
8
)

0
.4

7
2

(0
.2

3
9
)

0
.5

1
9

(0
.2

4
3
)

0
.5

1
9

(0
.2

4
1
)

0
.5

2
9

(0
.2

4
3
)

D
ay

1
p

h
le

gm
(6

)
0.

13
2

(0
.3

02
)

-0
.0

3
8

(0
.3

2
0
)

0
.0

9
7

(0
.3

1
7
)

0
.0

7
7

(0
.3

1
2
)

0
.0

7
7

(0
.3

1
7
)

0
.0

6
9

(0
.3

2
2
)

S
to

p
sm

ok
e

0.
00

7
(0

.0
02

)
0.

00
6

(0
.0

0
2
)

0
.0

0
7

(0
.0

0
2
)

0
.0

0
7

(0
.0

0
2
)

0
.0

0
7

(0
.0

0
2
)

0
.0

0
7

(0
.0

0
2
)

F
or

p
at

ie
n
ts

in
gr

ou
p

B
,

th
e

o
d

d
s

of
p

o
or

p
ro

g
n

o
si

s
is

im
p

a
ct

ed
b
y

th
e

u
se

o
f

a
n
ti

d
ep

re
ss

a
n
ts

(p
=

0.
0
2
0
4
),

th
e

ti
m

e
si

n
ce

th
e

p
at

ie
n
t

la
st

sm
ok

ed
(p

=
0.

00
69

),
th

e
se

v
er

it
y

o
f

in
te

rf
er

en
ce

w
it

h
d

a
il

y
a
ct

iv
it

ie
s

(p
=

0.
0
0
1
6
)

a
n

d
th

e
se

ve
ri

ty
o
f

p
h

le
gm

a
s

as
se

ss
ed

b
y

th
e

p
at

ie
n
t

in
it

s
d

ia
ry

(p
=

0.
0
0
0
5
).



Predicting poor prognosis in acute cough patients 29

Group C

The variable importance plots for the five imputed datasets for group C are given in

Figure 2.4.
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Figure 2.4: Variable importance plots for group C with the top five predictors.
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In general, the odds of poor prognosis is impacted by the baseline risk for poor progno-

sis (group, p < 0.0001), the presence of crackles during the GPs physical examination

(p = 0.0117), the severity of phlegm as assessed by the patient (p = 0.0047), the

severity of interference with daily activities (p < 0.0001), the time since the patient

last smoked (p = 0.0045) and the patient’s diastolic blood pressure (p = 0.0020).

The AUC values for the final general and group-specific models fitted using their

pooled parameter estimates are given in Table 2.5. The ROC curves for the final

general model are visualised in Figure 2.5. Both AUC values and ROC curves show

that the discriminative power of the new prediction rule is acceptable, although there

is still room for improvement.

Table 2.5: Area under the curve for the final group-specific and general models.

Group-specific models General

Imputation Group A Group B Group C model

1 0.66 0.61 0.71 0.60

2 0.64 0.62 0.69 0.61

3 0.65 0.63 0.70 0.61

4 0.63 0.64 0.69 0.62

5 0.67 0.62 0.70 0.60

The new prediction rule was obtained by filling in the final general model’s pooled

parameter estimates (Table 2.4 last column) into Equation 2.1 and taking the inverse-

logit. The optimal cut-off value, averaged over the five completed datasets, was 0.182.

The new prediction rule hence classifies a patient to be at high risk for poor prognosis

when the predicted probability is over 0.182, and classifies the patient to be at low

risk for poor prognosis when the predicted probability is below this threshold. At this

threshold, sensitivity and specificity, averaged over the five completed datasets, equal

0.701 and 0.450, respectively.
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Figure 2.5: ROC curves for the general model fitted to the five completed datasets.
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2.6.3 Extension of the new prediction rule

CRP and BUN were added to the final general model separately. Pooled p-values

for both predictors however showed that they were redundant (p-value= 0.5497 and

0.9964, respectively). AUC values for the final general model before and after inclusion

of either CRP or BUN are reported in Table 2.6. The AUC values verify that neither

CRP nor BUN considerably improved the final general model used to construct the

new prediction rule.

Table 2.6: Area under the curve for the final general model both before and after

inclusion of either CRP or BUN.

Imputation number

1 2 3 4 5

Final general model 0.60 0.61 0.61 0.62 0.60

Final general model + CRP 0.63 0.63 0.64 0.65 0.63

Final general model + BUN 0.63 0.63 0.64 0.64 0.63

2.6.4 Cross-validation of the new prediction rule

A three-fold cross-validation approach was used to validate the new prediction rule.

For each of the three learning samples, we reduced the full general model using back-

wards elimination. Pooled parameter estimates and standard errors for the full and

the reduced models are reported in Tables A3 and A4. Using the pooled parameter

estimates, we computed the AUC of the reduced model fitted to the respective test

data (Table 2.7).

Table 2.7: Area under the curve for the three cross-validations.

Imputation number

1 2 3 4 5

Cross-validation 1 0.59 0.60 0.60 0.60 0.59

Cross-validation 2 0.60 0.59 0.60 0.60 0.59

Cross-validation 3 0.59 0.60 0.60 0.61 0.61
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Out of the nine predictors present in the full general model, similar variables were

kept in the final general model and all three reduced models. The top three predictors

(i.e. predictors with the lowest p-value in the final general model) were present in

all three reduced models. This indicates that the new prediction rule is quite stable.

AUC values for all reduced models were comparable to the AUC of the final general

model (averaged AUC = 0.61), verifying that the model’s stability is acceptable.

2.6.5 Comparison of available prediction rules

We compared the performance of the underlying models for the new and existing

prediction rules (PSI, CRB, CURB, CRB-65 and CURB-65) using their AUC values.

The optimal cut-off value for each prediction rule was determined by averaging the

optimal cut-off over the five completed datasets. Performance of the prediction rules

was compared using the Youden index at this averaged cut-off point. Both compar-

ative measures are reported in Table 2.8. The results show that the new prediction

rule outperformed the existing prediction rules in the prediction of poor prognosis in

patients presenting to primary care with acute cough.

Table 2.8: Area under the curve (AUC) and Youden index for the new and existing

prediction rules.

Imputation number

1 2 3 4 5

New
AUC 0.60 0.61 0.61 0.62 0.60

Youden 0.15 0.14 0.16 0.15 0.15

PSI
AUC 0.51 0.51 0.51 0.51 0.51

Youden 0.03 0.03 0.02 0.03 0.02

CRB
AUC 0.53 0.53 0.53 0.53 0.53

Youden 0.06 0.06 0.06 0.05 0.06

CURB
AUC 0.53 0.54 0.53 0.54 0.54

Youden 0.05 0.07 0.06 0.07 0.08

CRB-65
AUC 0.53 0.53 0.53 0.53 0.54

Youden 0.06 0.06 0.06 0.06 0.07

CURB-65
AUC 0.53 0.54 0.53 0.53 0.54

Youden 0.05 0.06 0.05 0.05 0.07
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2.7 Discussion

Currently there are no prognostic prediction rules to predict poor prognosis in pa-

tients presenting to primary care with acute cough. The only alternative available

is the use of prognostic prediction rules that were developed to predict mortality in

patients presenting to the emergency department with CAP (e.g. PSI and CRB-65)

(Fine et al., 1997; Neill et al., 1996). Although the use of these prediction rules has

been demonstrated to predict mortality in outpatients (Akram et al., 2011; Loke et al.,

2010), we showed that they perform poorly when predicting poor prognosis.

In this chapter, we set out to develop a new prognostic prediction rule to more accu-

rately predict poor prognosis in patients presenting to primary care with acute cough.

In order to account for the fact that there is a different baseline probability to expe-

rience poor prognosis in different countries, countries were grouped according to this

baseline risk (in three groups: < 15%, 15−25% and > 25%). To take into account that

different predictors might be important when baseline probability of poor prognosis

differs, we started by constructing three group-specific models. Important predictors

for poor prognosis in group A are the presence of lung diseases other than asthma

or chronic obstructive pulmonary disorder, the presence of coughing attacks and the

presence of crackles during the GPs physical examination. Important predictors for

group B are the use of antidepressants, the time since the patient last smoked, the

severity of interference with daily activities and the severity of phlegm as assessed

by the patient. Important predictors for poor prognosis in group C are the patient’s

diastolic blood pressure and smoking status. These three group-specific models were

then combined into a general model, including a group-specific intercept to correct

for difference in baseline risk of poor prognosis. Important predictors in the general

model are the presence of crackles during the GPs physical examination, the severity

of phlegm as assessed by the patient, the severity of interference with daily activities,

the time since the patient last smoked and the patient’s diastolic blood pressure.

Discriminative power of both the group-specific and the general final models were

adequate, although there is still room for improvement. In an attempt to improve

the discriminative power of the final general model, measurements of CRP or BUN

were included. Both variables however were not significant upon addition to the final

model and did not improve the discriminative power.



Predicting poor prognosis in acute cough patients 37

The final prediction rule was obtained using the pooled parameter estimates for the

final general model. The discriminative power and Youden index were compared be-

tween the new prediction rule and five existing prediction rules (PSI, CRB, CURB,

CRB-65 and CURB-65). In this comparison, we deliberately did not compare sensi-

tivity and specificity as such, because they are highly affected by the choice of the

cut-off value and could give a misleading idea. The Youden index was chosen as an

alternative because it was maximized in determining the optimal cut-off value, which

ensures that we are comparing the optimal Youden values, and was developed to serve

as an objective manner to compare between different prognostic tests (Youden, 1950).

The comparison between the new and existing prediction rules showed that although

there is room for improvement in the new prediction rule, it already outperforms the

available prediction rules and hence is the most reliable option to determine the risk

for poor prognosis to date.

2.7.1 Conditional versus random forest approach

Both the conditional and the random forest approach have the same basis. They

both start by taking a bootstrap sample from the original sample and then use this

bootstrap sample and a small random selection of predictor variables to fit an un-

pruned classification tree. To avoid instability of an individual tree caused by small

changes in the bootstrap sample, multiple trees are combined into a forest. The dif-

ference between both packages lies in the method used to construct an individual tree.

The random forest tree computes a split criterion for each possible cut-point within

the range of a predictor. The variable selected for the next split is the one that pro-

duces the highest criterion value (e.g. Gini impurity) in its best cut-point. Variables

with more potential cut-points (i.e. more categories) are more likely to produce a

good criterion value by chance alone. Because of this, random forests show a prefer-

ence for variables with more categories.

The conditional inference tree computes a test statistic for conditional independence

between each predictor and the response. The variable selected for the next split is

the one that produced the lowest univariate p-value. Because this test statistic in-

corporates the number of categories in its degrees of freedom, bias towards variables

with many categories is avoided.

For this reason, random forests are not reliable in situations where predictors have dif-

ferent number of categories and conditional forests were used in this chapter (Hothorn

et al., 2006; Strobl et al., 2007).



38 Chapter 2

Additionally, Strobl et al. (2007) showed that a small preference towards predictors

with a higher number of categories still occurs when bootstrapping with replacement

while this is not observed when bootstrapping without replacement. We therefore

followed their recommendation and used bootstrapping without replacement in the

construction of our conditional forests. An explanation for this bias is that, even if

sampled under the null hypothesis of complete independence, samples that are boot-

strapped with replacement might either exclude or multiply include certain observa-

tions by chance, which causes the bootstrap sample distribution to deviate slightly

from the null hypothesis. This effect is more pronounced for variables with more

categories, because in larger cross-tables the absolute cell counts are smaller than in

smaller cross-tables, which enlarges the impact of excluding or doubling observations.



Chapter 3

Performance of the linear

multi-level model in the

presence of sparseness at the

lowest level

Data that are collected in e.g. medical sciences often have a hierarchical structure.

This means that units at a lower level (secondary units) are nested within units at a

higher level (primary units) (Snijders and Bosker, 1999). Some well-known examples

of such hierarchies include patients nested within hospitals, workers nested within fac-

tories and animals nested within litters. Multi-level hierarchies also occur frequently

(e.g. students nested within classes within schools within cities within countries). As

subjects that are nested within one unit tend to be more alike than subjects from

different units, the observations are typically no longer independent. Ignoring depen-

dency will usually cause a downward bias in the standard errors, resulting in possible

misinterpretation of the effect of predictor variables (Garson, 2013; Hox, 1998; Kreft

and De Leeuw, 1998; Moulton, 1986). To account for the hierarchical nature of the

data, multi-level models, also known as linear mixed models, are often used (Gold-

stein, 2003).

In this chapter, we will study the impact of an increasing proportion of singletons

(i.e. units containing only one subunit) on different aspects of the multi-level model,

focussing on a two-level setting and including explanatory variables both at the pri-

39
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mary and at the secondary level. We will assess whether, when high proportions of

singletons are present, the model’s performance improves by ignoring the dependency

within units or by removing or grouping the singletons.

3.1 The linear multi-level model

The multi-level model can be used to model hierarchical data with a dependent vari-

able defined at the lowest level (usually the subject) and explanatory variables at

all levels. For example, suppose we have gathered data from J hospitals, with nj

patients in the jth hospital (with j = 1, ..., J). We have a dependent variable Yij (e.g.

antibiotic intake for patient i in hospital j), an explanatory variable Xij (e.g. age)

at the level of the patient and an explanatory variable Zj (e.g. hospital size) at the

level of the hospital.

At the level of the patient, a regression equation can be set up to predict the outcome

from the explanatory variables:

Yij = β0j + β1jXij + εij , (3.1)

where Yij and Xij are respectively the antibiotic intake and age of patient i in hospital

j, β0j and β1j are the intercept and slope and εij is the residual error term. The

intercept β0j and slope β1j are hospital-dependent and hence can be split into an

overall mean and a hospital-dependent deviation:

β0j = β0 + β2Zj + b0j , (3.2)

β1j = β1 + β3Zj + b1j , (3.3)

where β0 and β1 represent the overall means, β2 and β3 are the deviations from the

mean caused by the explanatory variable hospital size Zj and b0j and b1j represent

the hospital-specific deviations from the mean.

We can rewrite the model by substituting Equations (3.2) and (3.3) into Equation

(3.1):

Yij = [β0 + β2Zj + β1Xij + β3ZjXij ] + [b0j + b1jXij + εij ]. (3.4)

In this model two parts can be distinguished: a fixed part, which contains the re-

gression coefficients and their associated variables [β0 + β1Xij + β2Zj + β3ZjXij ]

and a random part, which contains the hospital-specific and residual error terms

[b0j +b1jXij + εij ]. The patient-level errors (εij) and the hospital-level errors (b0j and
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b1j) are assumed to be mutually independent and follow a normal distribution.

In this chapter, we will focus on a random intercepts model where the intercept β0j

is hospital-dependent while the slope β1j is not. This implies that Equation (3.4)

simplifies to:

Yij = [β0 + β1Xij + β2Zj ] + [b0j + εij ]. (3.5)

In general there will be P explanatory variables at the level of the patient and Q

variables at the level of the hospital, hence Equation (3.5) generalizes to:

Yij =

β0 +

P∑
p=1

βpXpij +

Q∑
q=P+1

βqZqj

+ [b0j + εij ] ,

where β0 is the intercept, βp (with p = 1, ..., P ) represent the fixed effects at the level

of the patient, βq (with q = P + 1, ..., Q) represent the fixed effects at the level of the

hospital, b0j is a random effect for hospital and εij is the residual error term.

Fitting such models can be done with a statistical software package such as SAS.

A description on the use of the SAS PROC MIXED procedure to fit multi-level models

is given by Littell et al. (2006) and Singer (1998). For a comprehensive elaboration

on multi-level models we refer to the books by Snijders and Bosker (1999), Goldstein

(2003), Raudenbush and Bryk (2002), Hox (2010), and Wang et al. (2012). For some

illustrations of the application of multi-level models to hierarchical data we refer to

Goldstein et al. (1993), Renard et al. (1998) and Lee (2000).

Multi-level settings usually consist of a small number of units that tend to be quite

large. However, several specific but frequently studied settings, mainly in longitudi-

nal and family research, involve a large number of units that tend to be quite small.

When the unit contains only one element, it is referred to as a singleton. An example

of such a setting can be found in the Ceftriaxone Data (Section 1.2.2), where pre-

scribed doses of ceftriaxone (expressed in mg/kg/day) are reported for 329 children,

divided over 124 departments as illustrated in Figure 3.1. Here, 47% of the included

departments are singletons (i.e. contain only one child). Regardless of sparseness,

hierarchical data are generally analysed with a multi-level model.
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Figure 3.1: Size of the departments included in the Ceftriaxone Data.

Several studies to determine the impact of small sample sizes on different aspects of

the multi-level model showed that both residual and random effects variance were

biased when the number of subjects within the units is small. The impact on fixed

effects appeared to be smaller, as both fixed effects estimates and their standard error

were unbiased in the presence of small clusters (Bell et al., 2014; Clarke, 2008; Maas

and Hox, 2005).

Although the small sample setting has been extensively studied and renders promis-

ing results, we are specifically interested in the setting with different proportions of

singletons. To our knowledge, only a few studies assessed the impact of singletons on

the multi-level model. Pickering and Weatherall (2007) investigated a setting with

15% of singletons and found that fixed effects estimates and standard errors were

unbiased. Sauzet et al. (2012) studied a setting with 80 − 99% of singletons and

found that parameter estimates for fixed effects were biased when the percentage of

singletons became extreme.

While these studies already give an idea about the impact of the presence of single-

tons, they focus on specific singleton proportions (either very high or fairly low) and

use rather simple models only containing explanatory variables at the lowest level

of the hierarchy. We will study the impact of an increasing proportion of singletons



The linear multi-level model with sparseness at the lowest level 43

(0− 95%) on different aspects of the multi-level model, using a two-level setting with

explanatory variables at both levels of the hierarchy.

3.2 Simulation study

We set up a simulation study, based on an analysis of the Ceftriaxone Data (Section

1.2.2) where the association between prescribed dose and department size, reason for

treatment and age was studied (three covariates model). For this analysis, the vari-

able Beds was categorized, based on the distribution of beds in the Ceftriaxone Data,

into small (< 17 beds), medium (17− 26 beds) and large (> 26 beds).

The three covariates model can be presented as follows:

Yij = β0 + b0j + β1Size1j + β2Size2j + β3Ageij + β4Reason1ij

+ β5Reason2ij + β6Reason3ij + εij ,
(3.6)

where Yij represents the ceftriaxone dose prescribed to child i (i = 1, ..., nj) in depart-

ment j (j = 1, ..., J), nj is the number of children in department j, J is the number

of included departments, β0 is the general intercept, b0j is the department-specific

intercept, Size1j is 1 if department j is large, Size2j is 1 if department j is medium,

Ageij is the age of child i, Reason1ij is 1 if the reason for treatment is different,

Reason2ij is 1 if the reason for treatment is mild, Reason3ij is 1 if the reason for

treatment is moderate, β1 up to β6 are the respective coefficients for the listed pa-

rameters and εij is the residual error term. We assume that the random effect follows

a normal distribution with mean zero and variance σ2
RE and that the error terms are

independent and follow a normal distribution with mean zero and variance σ2
Res.

Parameter estimates and standard errors for the fitted model are reported in Table 3.1.

Because the structure of the Ceftriaxone Data was rather elaborate, we considered

a simplified version with 350 children divided over 50 departments. As in the Cef-

triaxone Data, all simulated datasets contained 16 large, 18 medium and 16 small

departments. The percentage of singleton departments ranged from 0 to 95% (in

steps of 5%). The number of singleton departments was rounded upwards (e.g. 5%

of singletons implies 2.5 departments containing only one child. Hence, for 5% of

singletons, we included 3 departments with one child).
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Table 3.1: Parameter estimates and standard errors for the fixed effects in the three

covariates model.

Parameter Estimate Std. error

Intercept 82.9514 4.5132

Size1j −3.2239 4.7705

Size2j 4.4692 4.7473

Ageij −2.0599 0.3383

Reason1ij −8.2539 4.3193

Reason2ij −21.9945 7.4318

Reason3ij −5.5856 3.5735

σ2
RE 180.3700 47.1385

σ2
Res 489.5100 44.7563

For each scenario, 1000 datasets were simulated according to the following procedure:

1. Sample a random intercept from a normal distribution with mean zero and

standard deviation σRE for each of the 50 included departments.

2. Group the combination of age and reason for treatment for the 329 children in

the Ceftriaxone Data based on the size of the department they are treated in.

Then, conditional on the size of the department, sample a combination of age

and reason for treatment for 350 children.

3. Sample a residual error term from a normal distribution with mean zero and

standard deviation σRes for each of the 350 included children.

4. Simulate the prescribed dose for each child using Equation 3.6 and parameter

estimates reported in Table 3.1.
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3.3 Models fitted

All simulated datasets were analysed with the three covariates model.

For each scenario, we assessed the performance of the fitted model using four perfor-

mance characteristics. The first is the relative difference between the mean parameter

estimate and the true parameter (RDM). The second characteristic is the relative dif-

ference between the mean estimated standard error and the empirical standard error

(RDE). Here, the estimated standard error reflects the uncertainty within the sim-

ulations while the empirical standard error (SES) reflects the uncertainty between

simulations. The first is calculated as the mean of the obtained standard errors while

the latter is calculated as the standard deviation of obtained parameter estimates. The

third performance characteristic is the mean length of the confidence interval. The

last performance characteristic is the coverage of the confidence interval, calculated

as the percentage of times the true parameter falls within the estimated confidence

interval. The stability of the F test was assessed using the number of times the null

hypothesis was rejected (rejection rate).

Because some of the simulated scenarios contain a fairly high proportion of singletons,

one might doubt the need to correct for clustering. Therefore, we studied the same

performance characteristics for models that handle the singletons in three different

ways. The first method that comes to mind to handle the singletons is to simply

ignore the dependence within departments (i.e. ignoring singletons). This is done by

fitting a model containing fixed effects for reason for treatment, age and department

size, but no random effect. Other options to deal with a high proportion of singletons

are to discard the singletons from the data (i.e. dropping singletons) or to group the

singletons into an artificial unit (i.e. regrouping singletons). Both approaches were

evaluated by fitting the three covariates model to all simulated datasets either after

dropping or after regrouping the included singletons.
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3.4 Results

3.4.1 The three covariates model

All simulated datasets were analysed with the three covariates model (Equation 3.6).

We report the mean parameter estimate together with an assessment of its uncertainty

(SES) and the four performance characteristics for the multi-level model. These

characteristics are reported for one fixed effect at the level of the child and one fixed

effect at the level of the department in Tables 3.2 and 3.3, respectively. Performance

characteristics for the other fixed effects can be consulted in Tables A5 up to A9.

Stability of the F test for parameters at the level of the child (Age and Reason) and

at the level of the department (Size) is reported in Table 3.4. Accuracy of the random

effects variance and the residual variance is presented in Table 3.5.

Table 3.2: Performance characteristics for the fixed effect Reason1ij in the three

covariates model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 -8.047 3.720 -2.5 3.7 15.171 95.8

5 -7.981 3.729 -3.3 3.2 15.148 94.5

10 -8.281 3.790 0.3 1.4 15.116 94.7

15 -8.354 3.784 1.2 1.7 15.143 95.2

20 -8.130 3.826 -1.5 -0.4 14.999 95.0

25 -8.093 3.860 -1.9 -1.1 15.023 94.5

30 -7.929 3.807 -3.9 0.5 15.050 94.8

35 -8.331 3.862 0.9 -1.2 15.018 95.5

40 -8.204 3.901 -0.6 -2.2 15.021 94.3

45 -8.421 3.848 2.0 -0.6 15.042 94.7

50 -8.189 3.746 -0.8 1.3 14.936 95.1

55 -8.139 3.842 -1.4 -1.4 14.907 95.0

60 -8.355 3.827 1.2 -0.6 14.961 95.2

65 -8.144 3.813 -1.3 -0.7 14.891 94.5

70 -8.151 3.756 -1.2 1.1 14.942 94.6

75 -8.149 3.798 -1.3 0.2 14.972 94.3

80 -8.122 3.718 -1.6 1.8 14.892 94.8

85 -8.199 3.860 -0.7 -2.5 14.804 94.0

90 -8.183 3.903 -0.9 -2.4 14.990 94.7

95 -8.230 3.969 -0.3 -1.2 15.426 94.7

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error



The linear multi-level model with sparseness at the lowest level 47

The difference between the estimated and the true parameter (RDM) for the fixed

effect at the level of the child (Reason1ij) was not affected by the percentage of

singletons and was consistently small (Table 3.2). This indicates that the parameter

is estimated well regardless of the percentage of singletons present in the data. The

difference between the estimated and true standard error (RDE) was small throughout

the simulation study, indicating that the standard error accurately estimated the true

standard error for the three covariates model. Both the true standard error and the

length of the confidence interval experienced minor fluctuations. This however did

not seem to be related to the increase in the percentage of singleton departments.

Coverage of the confidence interval was around 95% throughout the simulation study.

Similar findings were reported for other covariates at the level of the child (results

shown in Tables A5 to A7).

Table 3.3: Performance characteristics for the fixed effect Size1j in the three covari-

ates model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 -3.323 5.605 3.1 -0.4 22.438 95.2

5 -3.496 5.732 8.4 -2.8 22.428 94.4

10 -3.466 5.736 7.5 -1.2 22.812 95.9

15 -3.226 5.821 0.1 -1.0 23.230 95.3

20 -3.484 5.859 8.1 -1.9 23.176 95.2

25 -3.452 5.850 7.1 0.5 23.721 94.6

30 -3.252 6.022 0.9 -2.0 23.852 94.5

35 -3.063 6.053 -5.0 -0.9 24.254 95.1

40 -2.905 6.045 -9.9 2.5 25.058 96.1

45 -3.313 6.346 2.8 -0.7 25.513 95.8

50 -3.031 6.512 -6.0 -2.7 25.716 93.5

55 -3.243 6.888 0.6 -5.6 26.419 94.1

60 -2.796 6.547 -13.3 -0.1 26.632 94.9

65 -3.321 6.501 3.0 4.4 27.686 96.3

70 -3.373 7.186 4.6 -2.5 28.563 94.9

75 -2.780 7.753 -13.8 -6.5 29.633 94.3

80 -3.137 7.798 -2.7 -4.3 30.611 93.9

85 -3.083 8.242 -4.4 -6.2 32.048 94.6

90 -3.255 8.296 0.9 -4.0 33.245 94.9

95 -3.591 9.047 11.4 -5.5 35.352 93.6

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error
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The RDM for the fixed effect at the level of the department (Size1j) was slightly

higher than for a covariate at the level of the child, but fluctuated regardless of

the percentage of singletons (Table 3.3). This indicates that the parameter is not

optimally estimated. Also the RDE was slightly higher than for a covariate at the

level of the child, indicating that the standard error estimated the true standard error

less accurately. Both the true standard error and the length of the confidence interval

increased with an increasing percentage of singletons. Coverage of the confidence

interval remained around 95% throughout the simulation study.

Similar findings were reported for other covariates at the level of the department

(results shown in Tables A8 and A9).

Table 3.4: F test rejection rate for the fixed effects in the three covariates model under

an increasing percentage of singletons.

Singletons (%) Age Reason Size Singletons (%) Age Reason Size

0 1000 829 216 50 1000 861 185

5 1000 841 236 55 1000 865 161

10 1000 839 221 60 1000 867 163

15 1000 846 197 65 1000 853 156

20 1000 843 205 70 1000 859 161

25 1000 843 190 75 1000 865 159

30 1000 833 199 80 1000 835 168

35 1000 843 180 85 1000 858 149

40 1000 833 195 90 1000 885 140

45 1000 853 183 95 1000 902 159

The F test for the effect at the level of the child is quite stable regardless of the

percentage of singletons in the data. The F test for an effect at the level of the de-

partment decreased slightly with an increasing proportion of singletons.

The RDM for both the random effects variance and the residual variance was small

throughout the simulation study (Table 3.5 and 3.6). This indicates that generally, in

the presence of singletons, the estimated variances approach the true variances quite

well.
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Table 3.5: Performance characteristics for the random effects variance in the three

covariates model with an increasing percentage of singletons.

Singletons (%) Mean RDM (%) Singletons (%) Mean RDM (%)

0 178.660 -0.9 50 177.770 -1.4

5 176.120 -2.4 55 178.470 -1.1

10 177.420 -1.6 60 174.890 -3.0

15 178.660 -0.9 65 179.550 -0.5

20 175.120 -2.9 70 177.630 -1.5

25 178.160 -1.2 75 175.210 -2.9

30 176.450 -2.2 80 181.920 0.9

35 175.750 -2.6 85 177.610 -1.5

40 181.350 0.5 90 180.110 -0.1

45 178.940 -0.8 95 178.590 -1.0

RDM: relative difference between estimated and true mean

Table 3.6: Performance characteristics for the residual variance in the three covariates

model with an increasing percentage of singletons.

Singletons (%) Mean RDM (%) Singletons (%) Mean RDM (%)

0 483.980 -1.1 50 484.290 -1.1

5 484.230 -1.1 55 482.610 -1.4

10 483.720 -1.2 60 484.990 -0.9

15 484.570 -1.0 65 481.800 -1.6

20 481.280 -1.7 70 482.590 -1.4

25 482.570 -1.4 75 483.300 -1.3

30 485.050 -0.9 80 487.220 -0.5

35 484.220 -1.1 85 482.980 -1.3

40 483.420 -1.2 90 483.470 -1.2

45 484.200 -1.1 95 482.620 -1.4

RDM: relative difference between estimated and true mean

3.4.2 Handling the singletons

Next to the analysis with the three covariates model, the simulated datasets were

analysed with a model containing fixed effects for age, reason for treatment and de-

partment size without correction for clustering (ignoring singletons). Additionally,

the three covariates model was fitted to the datasets where singletons were removed

(dropping singletons) or grouped into an artificial department (regrouping singletons).
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Obtained performance measures for one fixed effect at the level of the child and

one fixed effect at the level of the department are visualized in Figures 3.2 and 3.3.

Performance characteristics for the other fixed effects can be consulted in Figures A3

up to A7. F test rejection rates for one fixed effect at the level of the child and one

fixed effect at the level of the department are shown in Figure 3.4. Rejection rates

for the additional fixed effect at the level of the child can be consulted in Figure A8.

RDM for both residual and random effects variance are shown in Figure 3.5.
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Figure 3.2: Performance measures for the fixed effect Reason1ij when ignoring (dot-

ted lines), dropping (dashed lines) or regrouping (dot-dashed lines) the singletons,

compared to performance measures for the three covariates model on the original

data (full lines).
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Figure 3.2 shows that the RDM, confidence interval length and coverage for the fixed

effect at the level of the child (Reason1ij) were comparable for the three covariates

model fitted to the original data and the three options to handle the singletons (ignor-

ing, dropping or regrouping). When clustering was ignored (dotted lines), the RDE

was higher compared to the three covariates model fitted to the original data (full

lines) or when dropping and regrouping the singletons (dashed and dot-dashed lines,

respectively).
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Figure 3.3: Performance measures for the fixed effect Size1j when ignoring (dotted

lines), dropping (dashed lines) or regrouping (dot-dashed lines) the singletons, com-

pared to performance measures for the three covariates model fitted to the original

data (full lines).



52 Chapter 3

Figure 3.3 shows that the RDM for the fixed effect at the level of the department

(Size1j) was comparable for the three covariates model fitted to the original data

and the three options to handle the singletons. Ignoring the singletons (dotted lines)

resulted in a decreased RDE and confidence interval length. Confidence interval

coverage was unacceptably low for all percentages of singletons. When dropping

the singletons (dashed lines), RDE and confidence interval length increased with an

increasing percentage of singletons. The coverage remained stable throughout the

simulation study. For the scenario with 95% of singletons, the plots show a severe

drop in RDE, confidence interval length and coverage. When regrouping the singletons

into an artificial department (dot-dashed lines), RDE and confidence interval length

were slightly lower than for the three covariates model fitted to the original data. The

coverage remained acceptable throughout the simulation study.
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Figure 3.4: F test rejection rates for fixed effects Reason and Size in the model when

ignoring (dotted lines), dropping (dashed lines) or regrouping (dot-dashed lines) the

singletons, compared to performance measures for the three covariates model fitted

to the original data (full lines).

Figure 3.4 shows that dropping or regrouping the singletons (dashed and dot-dashed

lines, respectively) does not influence the performance of the F test for an effect at

the level of the child. Ignoring the dependency within clusters (dotted lines) causes

the rejection rate to be slightly lower compared to the rejection rate for the three

covariates model fitted to the original data (full lines).
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Dropping and regrouping the singletons (dashed and dot-dashed lines, respectively)

cause the rejection rate for the fixed effect at the level of the department to be re-

spectively lower and higher compared to the rejection rate for the three covariates

model fitted to the original data (full lines). Ignoring the dependency within clusters

(dotted lines) causes the rejection rate to be a lot higher than the rejection rate for

the three covariates model fitted to the original data (full lines).
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Figure 3.5: Relative difference between estimated and true mean (RDM) for the

random effects variance (left) and residual variance (right) when dropping (dashed

lines) or regrouping (dot-dashed lines) the singletons, compared to their RDM in the

three covariates model fitted to the original data (full lines).

Figure 3.5 shows that when dropping the singletons (dashed lines), the residual vari-

ance stayed close to the true residual variance. The random effects variance was close

to the true random effects variance throughout the simulation study, but decreased

steeply at the end (for the scenario with 95% singletons).

When regrouping the singletons (dot-dashed lines), the residual variance was slightly

overestimated while the random effects variance was slightly underestimated, with

the difference between estimated and true variance getting bigger with an increasing

percentage of singletons.
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3.5 Discussion

We conducted a simulation study, inspired by the structure of the Ceftriaxone Data, to

investigate the impact of an increasing percentage of singletons on different aspects

of the linear multi-level model. This impact was assessed using four performance

characteristics and revealed that neither the RDM nor the RDE were affected by the

percentage of singletons in the data. They were consistently low, with RDM and

RDE for an effect at the level of the child being slightly lower than RDM and RDE

for an effect at the level of the department. This might be explained by the number of

independent observations that are available to estimate both effects, with this number

being considerably lower for the effect at the level of the department. Both the SES

and width of the confidence interval fluctuated for an effect at the level of the child,

while they increased with the percentage of singletons for an effect at the level of the

department. This increase goes hand in hand with a decrease in the rejection rate for

the F test and can be explained by the more stable estimation of the average dose for

a department when the number of children in that department is larger. The coverage

approached 95% for explanatory variables at both levels and varying percentages of

singletons.

Because some of the simulated datasets contain a fairly high proportion of singletons,

one might decide to either ignore the dependency within clusters (ignoring single-

tons), remove the singletons from the data (dropping singletons) or group them into

an artificial department (regrouping singletons). A simulation study was conducted

to investigate the consequences of these three options on different aspects of the multi-

level model. Impact on the level of the child was minor, while impact on the level

of the department was more clear. As mentioned before, this can be explained by

the number of independent observations available. When ignoring the singletons, the

RDE and confidence interval length were lower while the rejection rate for the F test

was higher compared to the three covariates model fitted to the original data. This

can be explained by the consistent underestimation of the standard error when ignor-

ing clustering. Confidence interval coverage was unacceptably low for all percentages

of singletons, indicating that ignoring the dependency within the clusters is never a

good idea. When dropping the singletons, the RDE and confidence interval length

were higher while the rejection rate for the F test was lower compared to the three

covariates model fitted to the original data, with these differences increasing when

the proportion of singletons increases. This can be explained by the increase in stan-

dard error due to the decrease in number of remaining departments. For the scenario
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with 95% of singletons, there is a severe drop in RDE, confidence interval length and

coverage together with a steep increase in F test rejection rate, which is explained

by the presence of only one large department in this scenario. The low coverage and

narrow confidence intervals resulting from both ignoring and dropping the singletons

force us to conclude that both worsen the performance of the multi-level model.

When regrouping the singletons into an artificial department, the RDE and confidence

interval length were slightly lower while the rejection rate for the F test was slightly

higher compared to the three covariates model fitted to the original data. The resid-

ual variance was slightly overestimated while the random effects variance was slightly

underestimated, with the difference between estimated and true variance increasing

with an increasing percentage of singletons. All these findings can be explained by

the grouping of singletons that are not actually related, which decreases the variance

between included departments and causes a slight underestimation of the true stan-

dard error for the effect at the level of the department. Although regrouping is an

option that might be considered when the data at hand contain a high percentage of

singletons, the regular multi-level model performs better even when the percentage

of singletons increases.

An alternative that could be used in the presence of sparseness at the lowest level of

the hierarchy is to select a more convenient clustering level to model the prescribed

dose (e.g. hospital in which the department is situated) (Cortiñas Abrahantes et al.,

2004). Although this strategy would improve the model’s stability, it was not consid-

ered here because we wanted to preserve the possibility to obtain department-specific

estimates.
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Chapter 4

Performance of the F test in a

linear multi-level model

setting with sparseness at the

highest level

In Chapter 3, we evaluated the stability of the multi-level model in the presence of

singletons at the lowest level. While a typical hierarchical setting will encompass at

least a small percentage of singletons at the lowest level, it will often also include

singletons at the highest (i.e. primary) level of the hierarchy. This implies that units

at the primary level contain only one secondary unit while this unit tends to be quite

large. When a primary unit contains a small number of secondary units, this is re-

ferred to as primary unit sparseness.

An example of primary unit sparseness can be found in the Ceftriaxone Data (Section

1.2.2), where prescribed doses of ceftriaxone (expressed in mg/kg/day) are reported

for 329 children, divided over 20 countries within 10 UN macro-geographical regions

according to Table 4.1. Here, some regions only contain one country, while all but one

country contain more than ten children. Regardless of such primary unit sparseness,

hierarchical data are generally analysed with multi-level models.

57
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Table 4.1: The number of countries and children per region in the Ceftriaxone Data.

Region number 1 2 3 4 5 6 7 8 9 10

Number of countries 1 1 1 1 3 1 4 1 2 5

Number of children 4 31 24 11 32 61 43 16 80 27

There are several methods to assess significance of fixed effects in a linear multi-level

model. A first option is the Wald test with the test statistic for testing the hypothesis

H0 : Lβ = 0 versus Ha : Lβ 6= 0 (for any known matrix L) defined as:

t =
(
β̂ − β

)′
L′

L( N∑
i=1

X ′iV
−1
i (α̂)Xi

)−1

L′

−1

L
(
β̂ − β

)
, (4.1)

where β is a vector of fixed effects and β̂ a vector of its estimates, N is the number

of included observations, Xi is a vector of known covariates and Vi(α̂) is the variance

components matrix. This test statistic asymptotically follows a chi-squared distribu-

tion with rank(L) degrees of freedom. A disadvantage of the Wald test is the use

of standard errors which ignore the variability introduced by estimating the variance

components (Dempster et al., 1981). This downward bias can be resolved by using

an approximate F test with the test statistic for testing the hypothesis H0 : Lβ = 0

versus Ha : Lβ 6= 0 (for any known matrix L) defined as t/rank(L). This test statis-

tic follows an approximate F-distribution with rank(L) numerator degrees of freedom

and denominator degrees of freedom estimated from the data. A third option is the

likelihood ratio test which compares the likelihood of the model under H0 with the

likelihood of the full model. This test statistic asymptotically follows a chi-squared

distribution with degrees of freedom equal to the difference in the two models’ dimen-

sions (Verbeke and Molenberghs, 2009).

As both the Wald and the likelihood ratio test follow an asymptotic distribution while

the F test follows an exact distribution, we chose to discuss the Wald and likelihood

ratio test briefly and put the main focus of this chapter on the F test. The Sattert-

waithe procedure, which uses the matrices of random and fixed effects itself, is used

to determine the denominator degrees of freedom for the F test (Kutner et al., 2005;

Verbeke and Molenberghs, 1997).

Inference on the fixed effects is usually based on maximum likelihood (ML) esti-

mation, where the likelihood is maximized jointly for the fixed effects and variance

components. The ML estimator can however be biased downwards, as it does not take

into account the loss in degrees of freedom from estimating the fixed effects (Harville,
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1977; Searle et al., 1992). Restricted maximum likelihood (REML) estimation does

account for this by maximizing a set of error contrasts rather than the joint maximum

likelihood (Patterson and thompson, 1971). For this reason, REML is often preferred

over ML (Lee and Kapadia, 1984; McCulloch and Searle, 2001).

The difference between REML and ML estimation usually is rather small. When the

number of primary units is small, as often occurs in multi-level modelling, the bias in

ML estimation can become substantial (Hox, 1998; Swallow and Monahan, 1984). As

a result, the difference between REML and ML estimation will be more pronounced

and the preference for REML estimation more outspoken (Kreft and De Leeuw, 1998).

This is seen when assessing significance of the fixed effects in the Ceftriaxone Data

using a model containing a random effect for country and fixed effects for age, rea-

son, department type and region (four covariates model)(Table 4.2, discussed in more

detail in Section 4.1). The substantial difference between REML and ML motivated

the study of the performance of the F test under REML and ML in the presence

of a decreasing number of secondary units within the primary units (i.e. increasing

primary unit sparseness).

Table 4.2: Significance of the fixed effects in the four covariates model obtained using

F tests under ML and REML.

ML REML

Effect F-value P-value F-value P-value

Age 35.77 <0.0001 32.86 <0.0001

Reason 2.14 0.0097 1.86 0.0307

Department type 3.60 0.0005 4.18 <0.0001

Region 4.86 <0.0001 0.80 0.6385

In this chapter, we will focus on a setting consisting of three levels in which the

primary units contain a very small number of secondary units. We will point out

that it is necessary to be cautious when dealing with such sparse multi-level data and

provide guidelines on how to handle similar situations.
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4.1 Motivating example

The four covariates model was fitted to the Ceftriaxone Data (Section 1.2.2), both

under REML and ML. Significance of all fixed effects was assessed using F tests with

approximate degrees of freedom obtained through the Sattertwaithe procedure (Kut-

ner et al., 2005; Verbeke and Molenberghs, 1997) (Table 4.2). This resulted in a

difference in significance, which is most striking for the fixed effect Region. Table 4.3

shows that also the parameter estimates and standard errors for Region are affected.

This was also observed for the other fixed effects but not shown here.

Table 4.3: Parameter estimates (standard errors) for Region in the four covariates

model under ML and REML.

Effect ML estimate (s.e.) REML estimate (s.e.)

Intercept 51.475 (17.286) 53.071 (18.766)

Region 1 13.708 (13.034) 13.122 (18.768)

2 5.645 (6.782) 4.610 (14.851)

3 39.058 (7.293) 37.163 (15.161)

4 1.299 (8.637) 0.786 (15.878)

5 -0.196 (6.538) 3.070 (11.917)

6 8.176 (5.684) 6.883 (14.378)

7 12.109 (6.491) 11.254 (11.123)

8 11.628 (8.819) 10.844 (15.939)

9 8.952 (5.647) 11.700 (12.199)

10 0 (.) 0 (.)

The differences between results obtained under REML and under ML motivated the

study of the performance of the F test in the presence of increasing primary unit

sparseness. This study started by identifying the most basic yet problematic setting,

which is a model with a random effect for country and a fixed effect for region (one

covariate model). In this model, the F test for the effect of Region was still highly

significant under ML (p-value < 0.0001) while it was non-significant under REML

(p-value = 0.3649). Differences in parameter estimates and standard errors remained

considerable (values not reported here). This basic setting and the Ceftriaxone Data

were used to set up a simulation study which is described in more detail in the next

section.
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4.2 Simulation study

The setting that was identified as most basic, yet problematic and used in setting up

the simulation study can be presented using centred parametrisation as follows:

Yijk = µjk + εijk,

µjk = µk + εjk,

where Yijk represents the dose for child i (i = 1, ..., Ijk) in country j (j = 1, ..., Jk)

within region k (k = 1, ...,K), K is the number of regions, Jk is the number of coun-

tries in region k and Ijk is the number of children in country j within region k, µjk

represents the average dose for country j in region k, εijk represents the child-specific

deviation from µjk, µk represents the average dose for region k and εjk represents

the country-specific deviation from µk. In this setting, we assume that εijk follows a

normal distribution with mean zero and variance vjk, and that εjk follows a normal

distribution with mean zero and variance vk. This setting is further simplified by

assuming that vjk and vk are both constants.

Data were simulated under the null hypothesis (H0), assuming that Region has no

effect on dose, as well as under a specific alternative hypothesis (Ha). As the structure

of the Ceftriaxone Data was rather elaborate, we considered a simplified version with

240 children equally divided over five regions. The number of countries in the regions

differed over nine different scenarios as presented in Table 4.4.

Note that Table 4.4 contains some extreme situations which were included merely to

illustrate the worsening problems. In practice however, one would generally not fit

a model including a random effect for country and a fixed effect for region in such

situations.

For each scenario 1000 datasets were simulated, under H0 and under Ha, according

to the following procedure:

1. Simulate µjk from a normal distribution with mean µk and variance vk

2. Simulate Yijk from a normal distribution with mean µjk and variance vjk

As we aim to mimic the Ceftriaxone Data, a simulated value represents a child’s

dose, which can never be negative. For this reason, the negative values (on

average 1.4% of the simulated values per scenario) are simulated again from the

same distribution until all are positive. This implies that the simulated datasets

are obtained from a truncated normal distribution, but as the percentage of

truncation is very small this does not affect the inference.



62 Chapter 4

Table 4.4: Different scenarios with a varying number of countries per region.

Number of countries in region Total number

Scenario 1 2 3 4 5 of countries

1 1 1 1 1 1 5

2 2 1 1 1 1 6

3 2 2 1 1 1 7

4 2 2 2 1 1 8

5 2 2 2 2 1 9

6 2 2 2 2 2 10

7 3 3 3 3 3 15

8 4 4 4 4 4 20

9 8 8 8 8 8 40

The values that were used for µk, vk and vjk were inspired by the Ceftriaxone Data.

For vk we used the variance of the average dose for countries in the largest region

(i.e. Western Europe containing five countries), being 225.169 and for vjk we used

the variance of the dose for children in the largest country (i.e. Georgia containing

73 children), being 785.984. Under H0 the value for µk was set equal to the overall

average dose (70.676) while under Ha average doses for five out of ten associated re-

gions were used (57.081 (lowest average), 62.860, 70.676 (overall average), 84.675 and

98.783 (highest average)).

In a tenth scenario, data that very closely reflect the structure of the Ceftriaxone

Data were simulated. These datasets contained 329 children divided unequally over

20 countries within ten regions (Table 4.1). As this scenario covered ten regions rather

than five, µk (under Ha) consisted of the average doses for all ten associated regions

(69.534, 69.173, 98.783, 57.081, 59.966, 71.611, 65.484, 84.675, 70.955 and 62.859).

4.3 Models fitted

Based on the Ceftriaxone Data and following a rule of thumb (Snijders and Bosker,

1999), which states that a group-effect should be considered as a fixed effect when the

number of levels is small (< 10), region was modelled as a fixed effect and country

was modelled as a random effect. Therefore all simulated datasets (Scenarios 1-10)
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were analysed with a model containing a random effect for country and a fixed effect

for region.

The variability across the regions can be represented by:

S∑
s=1

Ks∑
k=1

(µ̂ks − ¯̂µs)
2

Ks − 1

S
, (4.2)

where µ̂ks represents the estimate for the effect of region k (k = 1, ...,Ks) in simulated

dataset s (s = 1, ..., S), Ks is the number of regions in simulated dataset s, S is the

number of simulated datasets and ¯̂µs is the average of all µ̂ks in simulated dataset s.

The variability across regions that was used in the simulation procedure (true vari-

ability) can be calculated from equation (4.2), by replacing µ̂ks by µk (given in Section

4.2). The true variability under Ha equals 286.563 for Scenarios 1-9 and 152.996 for

Scenario 10.

The performance of the F test for the effect of Region was studied at the 5% sig-

nificance level. The first performance characteristic that is presented is the type I

error rate, which is computed as the number of times the null hypothesis is rejected

in the datasets that were simulated under H0. A second characteristic of interest is

the power, which is computed as the number of times the null hypothesis is rejected

in the datasets that were simulated under Ha. The last characteristic is the corrected

power of the test which uses a corrected p-value obtained from comparing the test

statistic to the distribution of test statistics simulated under H0. Plots of the observed

versus the expected p-values (following a uniform distribution between 0 and 1) were

created for a scenario with primary unit sparseness (Scenario 3). Under Ha, both

observed and corrected p-values were used.

Since the simulated datasets contained information on only five levels, region was

modelled as a fixed effect. But as the regions in the simulated datasets are a sample

of the regions in the original dataset, which are a sample of all regions worldwide,

region could also be considered a random effect. Therefore, a model with a random ef-

fect for both country and region was fitted to the simulated datasets (Scenarios 1-10).

For these models, presentation of the results is somewhat altered. Variability is repre-

sented by the variance of the random intercepts for Region averaged over all simulated

datasets. The effect of Region can no longer be assessed with an F test as the true
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parameter value now lies on the boundary of the parameter space (Verbeke and Molen-

berghs, 1997). Instead, we studied the performance of a likelihood ratio test for the

effect of Region based on a 50:50 mixture of a χ2
0 and a χ2

1 distribution.

As the simulation setting consists of scenarios with a high number of singletons,

we investigated different ways to handle the singletons. The first method that comes

to mind to handle the singletons is to eliminate them. However, a country that is

alone in a region could contain a lot of children (e.g. Region 6 from the motivating

example (Table 4.1)). As this implies that discarding the singletons would result in

the elimination of a large percentage of collected data, this option would generally

not be accepted. For illustration purposes, the singletons in Scenarios 3 and 10 were

dropped. This implied that the dropped datasets (Scenarios 3b and 10b) contained 96

rather than 240 and 182 rather than 329 children, respectively. Due to dropping, Sce-

nario 3b included two instead of five regions while Scenario 10b included four instead

of ten regions. An alternative method to handle the singletons is to regroup them into

one big region (Scenarios 3c and 10c). Due to regrouping, Scenario 3c included three

instead of five regions while Scenario 10c included five instead of ten regions. A third

option to deal with singletons is to split each single region into two artificial countries

hence decreasing primary unit sparseness (Scenarios 3d and 10d). Due to splitting,

Scenario 3d included ten instead of seven countries while Scenario 10d included 26

instead of 20 countries. The total number of children that were used in the analysis

did not change by regrouping or splitting.

These additional scenarios (Scenarios 3b-d, 10b-d) were analysed with a linear multi-

level model containing a random effect for country and a fixed effect for region. Vari-

ability is reported as in Equation 4.2, with true variability under Ha equal to 16.698

for Scenarios 3b and 3d, 21.829 for Scenarios 10b and 10d, 212.385 for Scenario 3c

and 40.551 for Scenario 10c. Performance of the F test is presented by the type I

error rate, power and corrected power.

Some well-known alternatives to the F test for the effect of Region include the Wald

test (under REML or ML) and the likelihood ratio test. We assessed the performance

of these tests in a scenario with primary unit sparseness (Scenario 3). Plots of the

observed versus expected p-values (following a uniform distribution between 0 and 1)

were created. Under Ha, corrected p-values were added to the plots.

We also studied a non-parametric alternative to the F test for the effect of Region, be-

ing the permutation test. This procedure is used to determine statistical significance

of a parameter by rearranging the data (Lehmann, 2006). For each simulated dataset
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in Scenario 3 a permutation test (for the effect of Region) was set up according to the

following steps (Chihara and Hesterberg, 2011):

1. Reallocate countries to regions by sampling without replacement.

Note that we permute countries rather than children to retain the hierarchical

structure.

2. Use a linear multi-level model containing a random effect for country and a

fixed effect for region to obtain the F statistic for the effect of Region in the

permuted dataset.

3. Repeat steps 1 and 2 1000 times.

4. Calculate the permutation p-value as the proportion of times the F statistics

obtained from the permuted datasets were at least as extreme as the F statistic

obtained from the simulated dataset.

Plots of the permutation p-values versus expected p-values (following a uniform dis-

tribution between 0 and 1) were created for a scenario with primary unit sparseness

(Scenario 3). Under Ha, corrected p-values were added to the plots.

4.4 Results

4.4.1 Region as a fixed effect

The simulated datasets for Scenarios 1-10 were analysed with a model containing a

random effect for country and a fixed effect for region. Variability, type I error rate,

power and corrected power under REML and ML are given in Table 4.5.

The variability under REML and ML was similar but the type I error rate was con-

sistently higher under ML than under REML. The same was true for both power and

corrected power. When all regions contained at least two countries, the difference

in corrected power between REML and ML disappeared. When focussing on Scenar-

ios 1-9, it can be seen that the variability decreased towards the true variability as the

number of countries increased. When the number of countries was large, the type I

error rate reached the nominal 5% level under REML, but not under ML. The power

was high for datasets without singletons. Scenario 1 had an extremely high power

and type I error rate.
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Average parameter estimates and standard deviations for the fixed effects are given

in Table A10 (for Scenarios 1-9) and A11 (for Scenario 10). These tables show that

the estimates under REML and ML were very similar under Scenario 10 and identical

under Scenarios 1-9.

Plots of the observed versus the expected p-values (Scenario 3; Figure 4.1) demon-

strate that under H0 the p-values under REML are closer to the uniform distribution

than under ML, which confirms that REML performs better than ML. Under Ha,

we can see that ML greatly outperforms REML. After correction for the distribution

of test statistics simulated under H0, REML and ML are comparable with ML still

doing slightly better.
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Figure 4.1: Observed versus expected p-values for the F test under H0 (left) and

Ha (right) with p-values obtained under REML and ML represented by dotted and

dashed lines, respectively. Corrected p-values are represented by bold lines.

4.4.2 Region as a random effect

The simulated datasets for Scenarios 1-10 were also analysed with a model containing

a random effect for both country and region. Variability, type I error rate, power and

corrected power under REML and ML are given in Table 4.6.
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The variability was systematically larger under REML than under ML. Under H0, the

variability decreased and the power increased as the number of countries increased.

The combination of the decrease in variability and the increase in power indicates

that the null hypothesis was correctly rejected more often in the absence of single-

tons. The corrected power became identical under REML and ML as soon as the

regions contained at least two countries. The type I error rate was rather unstable.

When we compare the model containing region as a random effect (Table 4.6) with

the model containing region as a fixed effect (Table 4.5), we see that the variability

was substantially lower in the model with region as a random effect. As long as the

regions contained two countries or less, the corrected power was larger for the model

containing region as a fixed effect. When all regions contained more than two coun-

tries, the corrected power was equal under REML and ML, as well as for both models.

This indicates that intrinsically the power is equal under REML and ML and for both

models.

4.4.3 Handling the singletons

Different strategies to handle the singletons gave rise to six additional scenarios (i.e.

3b, 10b, 3c, 10c, 3d and 10d). These scenarios were analysed with a model containing

a random effect for country and a fixed effect for region. Variability, type I error

rate, power and corrected power under REML and ML are given in Table 4.7. Both

dropping the singletons from the analysis (Scenarios 3b and 10b) and regrouping the

singletons into one big region (Scenarios 3c and 10c) resulted in a decreased variabil-

ity, power and corrected power. The type I error rate dropped under REML and ML

but reached the nominal 5% level only under REML. Splitting the regions into two

artificial countries (Scenarios 3d and 10d) resulted in an increased type I error rate,

power and corrected power.

Estimates and standard deviations for the fixed effects in the three additional scenar-

ios are given in Tables A12 to A15.
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4.4.4 Alternatives to the F test

As an alternative to th F test, we studied the performance of the Wald test, likelihood

ratio test and permutation test for a scenario with a small number of countries per

region (Scenario 3). Plots of observed versus expected p-values for the Wald test and

the likelihood ratio test (Figure 4.2) indicate that under H0 the p-values were far from

the uniform distribution, with the Wald test under REML doing slightly better than

the two others. Under Ha,we can see that, after correction for the distribution of test

statistics simulated under H0, all are comparable with the Wald test under ML doing

slightly better. Plots of permutation p-values versus expected p-values (Figure 4.3)

show that under H0 the p-values for REML were much closer to the uniform distri-

bution than for ML, which illustrates that also the permutation test performs better

under REML. Under Ha, the performance of the permutation test under REML and

ML is comparable, with ML doing slightly better than REML.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Expected p−value

O
bs

er
ve

d 
p−

va
lu

e

Under H0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Expected p−value

O
bs

er
ve

d 
p−

va
lu

e

Under HA

REML ML REML corrected ML corrected

Figure 4.2: Observed versus expected p-values for the Wald test (black lines) and the

likelihood ratio test (grey lines) under H0 (left) and Ha (right) with p-values obtained

under REML and ML represented by dotted and dashed lines, respectively. Corrected

p-values are represented by bold lines.
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When comparing the Wald and likelihood ratio tests (Figure 4.2) to the F test (Fig-

ure 4.1), we can conclude that under H0 neither the Wald nor the likelihood ratio

test are valid alternatives to the F test, while under Ha all are comparable. When

comparing the permutation test (Figure 4.3) to the F test (Figure 4.1), it can be seen

that, both under REML and under ML, the permutation test outperforms the F test.

This is especially clear when comparing the tests under H0, where the p-values from

the permutation test matched the expected values quite well while the p-values from

the F test did not. Under Ha, the permutation p-values were close to the corrected

p-values, indicating an equivalent performance of the permutation test and the cor-

rected F test.
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Figure 4.3: Observed versus expected p-values for the permutation test under H0

(left) and Ha (right) with p-values obtained under REML and ML represented by

dotted and dashed lines, respectively. Corrected p-values are represented by bold

lines.
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4.5 Revisiting the motivating example

The four covariates model fitted to the Ceftriaxone Data used an F test under both

REML and ML to determine significance of the fixed effects (results reported in Table

4.2). The difference in significance of the fixed effect for Region under REML and

ML was striking.

Here, we assess significance of the fixed effects in the four covariates model using

a Wald test, a likelihood ratio test and a permutation test rather than an F test.

Significance of the fixed effects is reported in Table 4.8. To illustrate the principle

of the permutation test, the simulated null distributions (under REML) are shown

in Figure 4.4. Note that we used 1000 permutations and that a permutation test for

the effect of region involves permuting countries (as all children in one country come

from the same region) while a permutation test for the effect of department type, age

and reason all involve permuting children (as each child could have a different age or

be treated in a different type of department or for a different reason).

Similar to the p-values obtained using F tests, the p-values obtained using Wald tests

under REML and ML were in strong disagreement. However, the p-values obtained

using permutation tests under REML and ML were all in agreement. Therefore,

using the permutation test allowed for a solid conclusion on the significance of the

parameters in the model.

Table 4.8: Significance of the fixed effects in the four covariates model obtained using

permutation tests under ML and REML.

Permutation test Wald test Likelihood ratio test

Effect ML REML ML REML ML

Age <.001 <.001 <.001 <.001 <.001

Reason 0.020 0.029 0.008 0.026 0.011

Department type <.001 <.001 <.001 <.001 <.001

Region 0.402 0.675 <.001 0.615 0.029

Note that permutation p values are based on 1000 permutations.
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Figure 4.4: Null distributions used in the permutation tests. True F value are high-

lighted by a dashed line.

4.6 Discussion

A data example on ceftriaxone consumption in hospitalized children illustrated that

significance of the fixed effects determined using F tests under REML and ML can

differ substantially when there is sparseness at the level of the primary unit. We

conducted a simulation study, based on the structure of this data example, to inves-

tigate the effect of increasing primary unit sparseness on the performance of the F test.

Fitting a model with region as a fixed effect to all scenarios showed that the variabil-

ity across regions was similar whether the model was fitted under REML or under

ML. Type I error rate, power and corrected power were higher under ML than un-

der REML, which can be explained by the downward bias in the estimates for the

variance components under ML (Harville, 1977; Searle et al., 1992). When the pri-

mary unit sparseness decreased, the variability decreased towards the true variability,

which can be explained by the more stable estimation of the average for a region
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when the number of countries in that region is larger. For scenarios without primary

unit sparseness, the power was high while the type I error rate reached the nominal

5% level under REML, but not under ML. This indicates that without primary unit

sparseness, the F test does perform well. In scenarios with primary unit sparseness,

type I error rate was high and power low. The high type I error rate implies that

the null hypothesis is too often incorrectly rejected. The combination of a low power

with high variability indicates that the null hypothesis is not often correctly rejected.

These findings suggest that performance of the F test in the presence of primary unit

sparseness is inadequate and there is need for an alternative approach.

Scenario 1, which consists of only singletons, has a very high type I error rate and

power. This indicates that the null hypothesis got rejected regardless of the under-

lying truth. An explanation for this behaviour is that the simulated region averages

equal the simulated country averages and hence they could by chance be far from the

original average dose and far from each other. When a region contains several coun-

tries the simulated region averages are the average of the simulated average doses for

the countries included in that region and the variability between countries is averaged

out. This results in region averages that are closer to the original average dose for

that region.

Fitting a model with region as a random effect to all scenarios showed that the

variability was systematically larger under REML than under ML which can again

be explained by the downward bias in the ML estimates for the variance components

(Harville, 1977; Searle et al., 1992). The variability decreased when the number of

countries increased which is a result of the average dose for regions getting closer to

the original average when more countries are included.

When comparing the model with region as a random effect to the model with region

as a random effect, it is clear that the variability was substantially lower in the model

with region as a random effect. This can be explained by shrinkage, which causes

the variance of the random effects to underestimate the true variability (Verbeke and

Molenberghs, 1997, 2009).

To reduce primary unit sparseness and hence improve the performance of the F test,

we considered deleting singletons, regrouping them into one big region or splitting

them into two artificial countries. Dropping the singletons resulted in a decrease in

variability, which can be explained by the removal of small regions, retaining only

those regions that contain several countries. Also regrouping the singletons resulted

in a decrease in variability, which can be explained by the removal of small regions by
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including them into one big artificial region. Both dropping and regrouping single-

tons resulted in a decreased power, corrected power and type I error rate. Splitting

the singletons resulted in an increase in type I error rate, power and corrected power.

This can be explained by the resemblance of two artificial countries within one region,

which reduces within-region variability considerably and hence increases the overall

rejection rate. Therefore, the three options could solve either the problem of a high

type I error rate or the problem of low power, whilst worsening the other. This forces

us to conclude that neither method acts as a solution to the poor performance of the

F test in the presence of singletons.

As an alternative to the F test, we studied the performance of the Wald test, the

likelihood ratio test and the permutation test. While performance of the Wald and

likelihood ratio test were comparable to performance of the F test, the permutation

test outperformed the F test both under REML and ML.

As we have highlighted the problems that arise with sparseness at the level of the

primary unit, a small note should be made with regard to study design. If possible,

one should strive to avoid inclusion of singletons in the sample when setting up a

study by including at least two secondary units within each primary unit. If the

presence of singletons in the sample is unavoidable, one should be careful in using

the Wald test, F test or likelihood ratio test and the permutation test (under REML)

should be considered whenever different test statistics are in disagreement.

Note that we only considered the three-level setting with children nested within coun-

tries nested within regions. We do however believe that the results discussed in this

chapter can be generalized to other and more complex settings and that if problems

arise in a rather simple setting, they will surely surface in more complex settings.



Chapter 5

Variation in doses of β-lactam

antibiotics prescribed to

hospitalized children

β-Lactam antibiotics are one of the oldest and most popular classes of antibacte-

rial agents. They contain a β-lactam ring in their molecular structure and include

penicillins, cephalosporins, monobactams and carbapenems. The β-lactam antibiotics

work by inhibiting the last stage of the cell wall synthesis, causing the cell wall to

rupture and the bacteria to die (Neu and Gootz, 1996).

Because the different β-lactam antibiotics have a similar pharmacological profile, we

would expect the reasons for deviating from the recommended dose to be similar and

the variability in prescribed dose to be rather small. However, large variability in

prescribed β-lactam doses is observed in the Inpatient Antibiotic Use Data (Section

1.2.3).

In this chapter, we will study the causes of variation in the individual β-lactam antibi-

otics and use this information in the construction of a meta-model to assess whether

factors causing variation in individual β-lactam antibiotics impact all β-lactam an-

tibiotics in the same manner. This meta-model will then also be used to test whether

higher doses were prescribed to children treated for a severe infection compared to

children treated for a mild or moderate infection, with severity of infection classified

as shown in Table 1.3.

77
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5.1 Assessing the causes of variation in prescribed

doses for a single β-lactam antibiotic

We used the multi-level model to identify the causes of variation in prescribed doses

of the 12 individual β-lactam antibiotics. The full model contained a random in-

tercept for the department (Id dep), the hospital (Id ins) and the country. Other

explanatory variables (listed in Table 1.2) were included as fixed effects. Due to the

high correlation between age and weight, and because dosing guidelines are weight-

based rather than age-based, we included weight rather than age in the starting model.

The multi-level model can be presented as follows:

Yijkl = β0+βRXRl+b0l+βHXHkl+b0kl+

M∑
m=3

βmXmjkl+b0jkl+

P∑
p=M+1

βpXpijkl+εijkl,

where Yijkl represents the dosage prescribed to child i (i = 1, ..., nj) in department j

(j = 1, ..., nk) in hospital k (k = 1, ..., nl) in country l (l = 1, ..., N), nj are the number

of children in department j, nk are the number of departments in hospital k, nl are

the number of hospitals in country l and N are the number of participating countries.

XRl is a covariate at country-level (i.e. region), XHkl is a covariate at hospital-level

(i.e. hospital type), Xmjkl is covariate m (m = 1, ...,M) at department-level (e.g.

department type), M is the number of covariates at department-level, Xpijkl is co-

variate p (p = 1, ..., P ) at child-level (e.g. gender), P is the number of covariates

at child-level, βR, βH , βm and βp are the respective coefficients for the listed pa-

rameters, β0 is the general intercept and εijkl is the residual error term. b0l is the

country-specific random intercept, b0kl is the hospital-specific random intercept and

b0jkl is the department-specific random intercept.

Box plots were constructed to identify outlying observations at each level of the hi-

erarchy (i.e. for prescribed doses in children, departments, hospitals and countries.

Outliers were assumed to be either recording errors or extreme cases and were there-

fore removed from the analysis (4.4% of included observations). To avoid estimation

problems, we removed observations whenever there were less than three observations

in a category (0.4% of included observations).
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Exploratory plots of total dose (expressed in mg/kg/day) versus weight (expressed in

kg) revealed that some doses were prescribed according to and others independent of

weight (Figure 5.1). To account for this, weight was included in the model as follows:

Iijklw
2
ijkl + (1− Iijkl)wijkl,

with wijkl the weight for child i in department j in hospital k in country l.

Here,

Iijkl =



0 if dose occurrence ≤ 1%

oc
5 if 1% < dose occurrence < 5%

1 if dose occurrence ≥ 5%

with oc representing the percentage of times a specific dose occurs in the Inpatient

Antibiotic Use Data.

The covariance structure of the starting model was reduced under REML in a back-

wards fashion using likelihood ratio tests based on a 50:50 mixture of a χ2
0 and a χ2

1

distribution. Afterwards, the mean structure was reduced in a backwards fashion.

This was done, as advocated in Chapter 4, by selecting a variable for removal from

the model under REML and verifying this action under ML. Whenever there was

disagreement between REML and ML, a permutation test under REML was used to

decide on the removal of the variable from the model. In a next step, interaction terms

between the remaining fixed effects were included whenever the interaction term did

not contain sparse levels and a second round of backwards elimination was performed.

5.2 Differentiating between two prescribing styles

The most frequently prescribed antimicrobial in the Inpatient Antibiotic Use Data is

parenteral ceftriaxone (ATC code J01DD04; 18.9%). The exploratory plot of total

ceftriaxone dose (expressed in mg/kg/day) versus weight (expressed in kg) showed

that prescriptions were given according to two different styles, i.e. one according to

and one independent of the childs weight (Figure 5.1).
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Figure 5.1: Scatter plot of total dose (expressed in mg/kg/day) versus weight (ex-

pressed in kg) for ceftriaxone prescriptions in children.

To identify patient characteristics that differentiate between the two styles of pre-

scribing, we constructed a generalized linear mixed model using an indicator, with 1

being a dose prescribed independent of weight, as outcome variable and a logit link.

We included a random intercept for country, for hospital (Id ins) and for department

(Id dep) and fixed effects for the other explanatory variables listed in Table 1.2. Be-

cause there was a high correlation between age and weight (0.88), we conducted this

analysis once when including age and once when including weight.

To avoid convergence issues while including three random effects in the generalized

linear mixed model, we used a Laplace approximation. The covariance structure of

the model was reduced in a backwards fashion using likelihood ratio tests based on

a 50:50 mixture of a χ2
0 and a χ2

1 distribution. Afterwards, the mean structure was

reduced in a backwards fashion using F tests.
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5.3 Assessing causes of variation in prescribed doses

for the class of β-lactam antibiotic

In Section 5.1, we constructed a final antibiotic-specific model for each of the included

β-lactam antibiotics (listed in Section 1.2.3). Using variables (fixed effect, random

effect or two-way interaction) that were significant in at least one of these antibiotic-

specific models, we build a meta-model. To allow for heterogeneity across antibiotics,

we included a fixed effect for the type of antibiotic and an interaction between each

included fixed effect and the effect for the type of antibiotic. To avoid estimation prob-

lems, we removed observations whenever there were less than five observations in a

category (0.8% of included observations). The covariance structure of the meta-model

was reduced under REML using likelihood ratio tests based on a 50:50 mixture of a

χ2
0 and a χ2

1 distribution. The mean structure was reduced by selecting a variable for

removal from the model under REML and verifying this action under ML. Whenever

there was disagreement between REML and ML, a permutation test under REML

was used to decide on the removal of the variable from the model. Goodness of fit for

both the final antibiotic-specific models and the final meta-model was represented by

R2 and adjusted R2.

Using this meta-model, we set out to answer the question whether higher doses are

prescribed to children treated for more severe infections than to children treated for

less severe infections, with reason for treatment classified as shown in Table 1.3. An-

swering this question involves testing the following two hypotheses:

µSevere > µModerate,

µSevere > µMild,

with µSevere, µModerate and µMild representing the average dose prescribed to a child

for a severe, moderate or mild infection, respectively. Because answering this ques-

tion requires testing two comparisons using the same data, the significance level was

adjusted (α = 0.025).
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5.4 Results

In this section, we will elaborately discuss the results for the β-lactam antibiotic that

was most frequently prescribed to hospitalized children in the Inpatient Antibiotic

Use Data, being parenteral ceftriaxone (ATC code J01DD04; 18.9%). This is a third-

generation cephalosporin that is administered parenterally and has broad-spectrum

activity against Gram-positive and Gram-negative bacteria.

Results for the other included β-lactam antibiotics (listed in Section 1.2.3) will not

be discussed in detail but will be used in the construction of the meta-model.

5.4.1 Causes of variation in prescribed doses of ceftriaxone

Likelihood ratio tests indicated that the random effect for hospital could be removed

from the model. The random effects for country and department had to be retained.

Parameter estimates for the final model are given in Table 5.1. It can be seen that

lower doses were prescribed for empiric (compared to targeted) treatment and for

children with a lower weight. All pairwise comparisons for the variable Reason are

reported in Table 5.2. These comparisons show that, as expected, higher doses were

prescribed for more severe infections.

Table 5.1: Parameter estimates and standard errors for the fixed effects in the final

model for prescribed doses of parenteral ceftriaxone.

Effect Estimate Std. error

Intercept 87.7490 2.9389

Type treat (empiric) −4.9700 2.0765

Weight −0.1627 0.0681

Weight2 −0.0121 0.0008

Reason (different) −11.5444 2.3526

Reason (mild) −16.2708 2.8619

Reason (moderate) −6.4410 1.6168
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Table 5.2: Estimates, standard errors and Tukey-adjusted p-values for pairwise com-

parisons for Reason in the final model for prescribed doses of parenteral ceftriaxone.

A versus B Estimate Std. error P-value

Different Mild 4.7264 3.1946 0.4503

Different Moderate −5.1033 2.1183 0.0760

Different Severe −11.5444 2.3526 <0.0001

Mild Moderate −9.8297 2.6585 0.0013

Mild Severe −16.2708 2.8619 <0.0001

Moderate Severe −6.4410 1.6168 0.0004

5.4.2 Reasons for prescribing ceftriaxone independent of weight

Likelihood ratio tests indicated that the random effect for hospital could be removed

from the model. The random effects for country and department had to be retained.

The only explanatory variable that was associated with the indicator was either age or

weight, depending on which variable was included in the starting model. Parameter

estimates for both models are reported in Table 5.3. These results show that the higher

the age (or weight), the higher the odds of receiving a dose prescribed independent

of weight. This finding is illustrated in Figure 5.2.

Table 5.3: Estimates and standard errors for the fixed effect in the final model for

receiving a prescription independent of weight.

Parameter Estimate Std. error

Intercept −0.9386 0.2033

Age 0.1576 0.0204

Intercept −1.0978 0.2164

Weight 0.047 01 0.0064
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Figure 5.2: Percentage of children receiving a dose of ceftriaxone dependent (black)

or independent (grey) of weight according to their age (left) and weight (right).

The need for a random intercept for country (and department) indicates that the

preference for one of the two prescribing styles is fairly different between included

countries (and departments), as can be seen in Figure 5.3.
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Figure 5.3: Percentage of children receiving a dose of ceftriaxone dependent (black)

or independent (grey) of weight in participating countries for which at least 10 cef-

triaxone prescriptions were recorded.
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5.4.3 Causes of variation in prescribed doses for the class of

β-lactam antibiotics

Likelihood ratio tests indicated that none of the random effects could be removed

from the model. The mean structure was reduced using backwards model building.

There was disagreement on the removal of the interaction between presence of a pri-

mary underlying diagnosis and type of antibiotic. The permutation test under REML

however showed that the interaction needed to be kept in the model. Significance of

the fixed effects in the final meta-model is reported in Table 5.4.

Table 5.4: Significance of the fixed effects in the final meta-model for 12 β-lactam

antibiotics.

Variable P-value Variable P-value

Type hosp 0.0452 Type treat 0.0011

Atb < 0.0001

Beds 0.1174 Beds*atb 0.0044

Gender 0.0096 Gender*atb 0.0298

Type dep 0.0141 Type dep*atb 0.0005

Vent 0.7299 Vent*atb 0.0466

Ud1 0.9953 Ud1*atb 0.0624

W1 0.2026 W1*atb 0.0495

W2 0.3364 W2*atb < 0.0001

Prev 0.1423 Prev*atb 0.0024

Reason 0.4265 Reason*atb < 0.0001

Region 0.0054 Region*atb < 0.0001

Indic 0.0006 Indic*atb <0.0001

W2*indic 0.1931 W2*indic*atb 0.0072

Prev*region 0.1891 Prev*region*atb 0.0384

W1*reason 0.0876 W1*reason*atb <0.0001
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The residual plot does not show a clear structure, indicating that the variables in the

model explain most of the variation in the data (Figure 5.4). The final meta-model

has an R2 value of 0.8326 and an adjusted R2 value of 0.8175, which implies that the

model explains about 82% of the variability in the data and hence verifies that the

model fits the data reasonably well.
re
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Figure 5.4: Scatter plot of the residuals (dots) and smoothed average trend (solid

line) from fitting the final meta-model.

Table 5.4 shows that most variables have an antibiotic-specific influence. Only type

of treatment and type of hospital the child was treated in influenced all β-lactam

antibiotics in a similar fashion, with higher β-lactam doses prescribed for targeted

treatment and in tertiary or specialized hospitals. Parameter estimates for these

variables are reported in Table 5.5.

Table 5.5: Parameter estimates and standard errors for the effect of type of treatment

and type of hospital on the 12 included β-lactam antibiotics.

Category Estimate Std. error

Primary or secondary versus −4.5839 2.2811

tertiary or specialized hospital

Targeted versus
5.2327 1.6073

empiric treatment
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5.4.4 Difference in prescribed doses of β-lactam antibiotics ac-

cording to reason for treatment

Using the meta-model, we assessed whether higher doses of β-lactam antibiotics were

prescribed to children treated for a severe infection compared to children treated for

a mild or moderate infection. Because the interaction between reason for treatment

and type of antibiotic was significant, this question was answered for each antibiotic

separately (Table 5.4). None of the children included in the PPS was treated for a

severe infection with oral amoxicillin. Therefore, this question could not be answered

for this antibiotic. Because the interaction between weight, antibiotic and reason for

treatment was significant as well, this question was answered for a child with average

weight (i.e. 20kg). The indicator value was set to 0.5.

The results show that doses given for treatment of severe infections were significantly

higher than doses given for treatment of mild infections, only when using parenteral

ampicillin, benzylpenicillin, cefotaxime or ceftriaxone. Doses given for treatment of

severe infections were significantly higher than doses given for treatment of moderate

infections, only when using parenteral ampicillin or cefotaxime.
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5.5 Discussion

In this chapter, we illustrated that a β-lactam antibiotic is prescribed according to

or independent of weight. We demonstrated that the choice between both styles of

prescribing depends solely on weight itself (or age), with a higher chance of getting

a prescription independent of weight for children with a higher weight (or age). We

identified variables that cause variation in prescribed ceftriaxone doses using a hi-

erarchical model and showed that lower doses were prescribed to children receiving

empiric treatment, with a lower weight and with a less severe reason for treatment.

Although the model presented in this chapter has identified several reasons for the

observed variation in prescribed ceftriaxone doses, a large proportion of the variation

remains unexplained (adjusted R2 = 0.5524). As very diverse variables, playing at dif-

ferent levels of the hierarchy (child-department-hospital-country) have been included

in the starting model, this finding suggests that ceftriaxone doses might be prescribed

based on a physician’s personal idea rather than based on existing guidelines.

When combining antibiotic-specific models for 12 β-lactam antibiotics, the meta-

model explained a large proportion of the variation in the data (adjusted R2 = 0.8175).

We showed that the variation in β-lactam antibiotics is attributed to a large subset

of variables. Although we would expect the reasons for deviating from the aver-

age, which should correspond to the recommended dose, to be common for the 12

included β-lactam antibiotics, most variables appeared to act antibiotic-specifically.

The variables type of treatment and type of hospital did affect all 12 included β-lactam

antibiotics in a similar fashion.
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Modelling outpatient

antibiotic use in defined daily

doses and packages

Analyses of data on antibiotic consumption collected by ESAC between 1997 and

2009 revealed that total outpatient antibiotic use expressed in DID increased signifi-

cantly over time while showing a significant seasonal fluctuation that decreased over

time (Adriaenssens et al., 2011a). Analyses of the eight pharmacological subgroups

reached similar conclusions (Adriaenssens et al., 2011b,c; Coenen et al., 2011; Faes

et al., 2011; Versporten et al., 2011a,b).

Expressing outpatient antibiotic use in DID is however not always optimal, e.g. when

the number of DDD per package differs substantially between countries or within a

country over time. For this reason ESAC proposed PID as an additional outcome

measure (Adriaenssens et al., 2011a; Coenen et al., 2014). Recently, Coenen et al.

(2014) showed that PID is a good proxy for the number of treatments, and a more

appropriate measure than DID when assessing antibiotic use over time in Belgium.

In this chapter, we will use the Outpatient Antibiotic Use Data (Section 1.2.4) to com-

plement analyses of European outpatient antibiotic consumption expressed in DID by

analyses of data expressed in PID, assess the agreement between both measures and

study changes in the number of DDD per package over time.

91



92 Chapter 6

6.1 Analysis of DID and PID separately

Because measurements for each country were taken quarterly, within-country corre-

lation has to be accounted for and hence mixed models are an adequate tool to study

the trends in the data. Mixed models include fixed effects, which here represent the

average trend in Europe based on the countries in the sample, and random effects,

which here represent the deviation of individual countries from this average trend

(Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2009). The seasonal

fluctuation in the data can be modelled using a sinusoidal component which can be

included when using a non-linear mixed model.

As a starting model, we used the non-linear mixed model previously applied in the

analyses of the ESAC data (Minalu et al., 2011). The model is defined as:

Yij = (β0 + b0i) + (β1 + b1i)tij + (β2 + b2i + (β3 + b3i)tij)sin(ωtij + δ) + εij ,

where Yij represents the antibiotic consumption (expressed in DID or PID) in coun-

try i at time point tij (j = 1, 2, ..., ni), ni is the number of observations in country

i, tij = 1 corresponds to the first measurement (first quarter of 2000), β0 and b0i are

fixed and random intercepts (reflecting antibiotic consumption for tij = 1), β1 and

b1i are fixed and random slopes (reflecting the change in antibiotic consumption over

time), β2 and b2i are fixed and random amplitudes for the sine function (reflecting

the height of the upward winter and downward summer peaks), β3 and b3i are fixed

and random changes in the amplitude over time, ω is the frequency in which the sine

function repeats itself (= 2π/T with T = 4 quarters), δ is the phase shift which is an

unknown parameter and εij is the measurement error. We assumed that the vector of

the random effects (bi) follows a normal distribution with mean zero and covariance

matrix D(4x4) and that the error terms are independent and normally distributed

with mean zero and covariance matrix Σi, which was taken equal to σ2Ini
with Ini

the ni-dimensional identity matrix.

Because convergence could not be obtained when fitting the model with an unstruc-

tured covariance matrix, we set the covariances between b3i and the other random

effects equal to zero.

The need for random effects was tested with a likelihood ratio test based on the

comparison of the maximized likelihoods for the model with and without the random

effect of interest. As the null hypothesis for this test was situated on the boundary of

the parameter space, classical likelihood inference based on a single χ2 distribution

could not be used and a mixture of two equally weighted (weight= 0.5) χ2 distri-
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butions with k and k + 1 degrees of freedom had to be used instead (Verbeke and

Molenberghs, 2009). After removal of each random effect we tested whether the ac-

companying fixed effect could be removed using a likelihood ratio test based on a

single χ2 distribution.

6.2 Analysis of DID and PID jointly

The agreement between DID and PID was investigated by combining their final mod-

els into a joint non-linear mixed model. To avoid convergence problems, the variance

estimates for PID were rescaled (by multiplication with factor 10). Correlations be-

tween matching random effects, used to assess the agreement between DID and PID,

were estimated using the covariance matrix. To ease convergence, a covariance matrix

containing only covariances between matching random effects was used. A squared

version of the Wald test was used to test for a perfect correlation (Kutner et al., 2005).

As a correlation is restricted to lie between −1 and +1, the null hypothesis was again

situated on the boundary of the parameter space and an equally weighted mixture of

a χ2 distribution with one and zero degrees of freedom had to be used instead of a

single χ2 distribution.

6.3 Change in dose per package

The dose per package was calculated by dividing DID by PID and expressed in number

of DDD per package. As DID and PID measure the same seasonal fluctuation, dividing

both measures cancelled out most of the seasonality. For this reason, a non-linear term

was no longer required to model the change in dose per package over time and a linear

mixed model was used. This model is defined as:

Yij = (β0 + b0i) + (β1 + b1i)tij + εij ,

where Yij represents the dose per package in country i at time point tij (j = 1, 2, ..., ni),

ni is the number of observations in country i, tij = 1 corresponds to the first measure-

ment (first quarter of 2000), β0 and b0i are fixed and random intercepts (reflecting the

dose per package for tij = 1), β1 and b1i are fixed and random slopes (reflecting the

change in dose per package over time) and εij is the measurement error. We assumed

that the vector of random effects (bi) follows a normal distribution with mean zero

and covariance matrix D(2x2) and that the error terms are independent and normally

distributed with mean zero and covariance matrix Σi. A first order autoregressive

(AR(1)) covariance matrix was used with the covariances equal to σ2ρ|td|, where σ2
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is the error variance, ρ is the autocorrelation and td reflects the time (in number of

quarters) between two time points.

The need for random effects was assessed with likelihood ratio tests based on a mix-

ture of two equally weighted χ2 distributions with k and k + 1 degrees of freedom.

The need for inclusion of fixed effects was tested using likelihood ratio tests based on

a single χ2 distribution.

6.4 Results

In this section, a detailed description of the results for J01 will be given. Results for

other antibiotic subgroups will be summarized briefly.

6.4.1 Analysis of DID and PID separately

Likelihood ratio tests indicated that the random change in amplitude (b3i) could be

removed from the starting model for both DID and PID. Other random and fixed

effects had to be retained. Parameter estimates for the final models are given in

Table 6.1.

Table 6.1: Parameter estimates for the fixed effects in the non-linear mixed model for

J01 use in Europe; ∗ : P < 0.05,∗∗ : P < 0.0001.

β0 β1 β2 β3

DID 14.2404∗∗ 0.1037∗∗ 3.0858∗∗ 0.0187∗

PID 3.1006∗∗ −0.0061 0.6608∗∗ −0.0033

In DID, antibiotic use increased significantly over time with a significant seasonal

fluctuation that increased significantly over time. In PID, antibiotic use decreased

non-significantly over time with a significant seasonal fluctuation that did not change

significantly over time. These results indicate that conclusions based on DID and PID

could be contradictory.

The estimates for the variance components are:

DID:


46.1383 −0.1754 12.0934

0.0323 0.0667

3.8900

 and σ2 = 2.9932
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PID:


2.2574 −0.0133 0.4839

0.0013 −0.0029

0.1193

 and σ2 = 0.1152

The correlation between random effects in the model for antibiotic use expressed in

DID was estimated to be −0.1438 (between random intercept and random slope),

0.9027 (between random intercept and random amplitude) and 0.0570 (between ran-

dom slope and random amplitude) (Figure 6.1 left panel). The correlation between

random effects in the model for antibiotic use expressed in PID was estimated to

be −0.2455 (between random intercept and random slope), 0.9325 (between random

intercept and random amplitude) and 0.2329 (between random slope and random

amplitude) (Figure 6.1 right panel).

The high correlation between random intercept and random amplitude, for both DID

and PID, indicates that countries with a high antibiotic intake at baseline (in 2000)

tend to have a stronger absolute seasonal effect.
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Figure 6.1: Correlation between random intercepts and random slopes (top), between

random intercepts and random amplitudes (middle) and between random slopes and

random amplitudes (bottom) obtained from the final non-linear mixed model for

antibiotic use expressed in DID (left) and PID (right).
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Figure 6.2 shows that the models for both DID and PID fit the data reasonably well

since observed and predicted outcomes are close together.
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Figure 6.2: Predicted average (full line) and country-specific (Belgium (dashed line)

and Netherlands (dotted line)) and observed (filled circles, triangles and stars, respec-

tively) outpatient antibiotic use expressed in DID (left) and PID (right).

Plots of the residuals for both models show no clear structure so we assume that the

random effects and the sine wave explain most of the variation in the data (Figure

6.3).
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Figure 6.3: Scatter plot of residuals (dots) and smoothed average trend (solid line)

from fitting the final non-linear mixed model for outpatient antibiotic use expressed

in DID (left) and PID (right).
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Parameter estimates for the final models for the other antibiotic subgroups are given

in Table 6.2. The seasonal fluctuation with its upward winter peak is significant for all

but one subgroup (J01X) whether expressing the consumption in DID or PID. Both

in DID and PID the use and seasonal fluctuation increased significantly over time for

J01CR and J01M, and decreased significantly for J01A and J01E. The use, but not

the seasonal fluctuation, increased significantly over time for J01X in DID and PID.

The use and seasonal fluctuation increased significantly over time in DID but not

in PID for J01C and J01F while use and seasonal fluctuation decreased significantly

over time in PID but not in DID for J01CA and J01BGR. For J01D, no significant

changes over time are observed in DID or PID. These results verify that conclusions

based on DID and PID can be contradictory.

Table 6.2: Parameter estimates for the fixed effects in the non-linear mixed models

for outpatient antibiotic use in Europe expressed in DID and PID; ∗ : P < 0.05,∗∗ :

P < 0.0001.

DID PID

β0 β1 β2 β3 β0 β1 β2 β3

J01C 5.9694∗∗ 0.0649∗∗ 1.3531∗∗ 0.0116∗ 1.3529∗∗ −0.0037 0.2866∗∗ −0.0016

J01CA 3.6967∗∗ 0.0113 0.9633∗∗ - 0.6533∗∗ −0.0040∗ 0.1645∗∗ −0.0015∗

J01CR 2.0284∗∗ 0.0506∗∗ 0.4515∗∗ 0.0098∗∗ 0.3486∗∗ 0.0037∗ 0.0797∗∗ 0.0007∗

J01F 2.1834∗∗ 0.0270∗ 0.5906∗∗ 0.0114∗∗ 0.4543∗∗ 0.0006 0.1334∗∗ -

J01M 1.1847∗∗ 0.0178∗ 0.0858∗ 0.0021∗ 0.2012∗∗ 0.0026∗ 0.0153∗ 0.0003∗

J01D 1.8794∗∗ 0.0125 0.5247∗∗ 0.0007 0.5268∗∗ 0.000014 0.1446∗∗ −0.0009

J01A 1.8911∗∗ −0.0106∗ 0.3660∗∗ −0.0047∗ 0.2371∗∗ −0.0026∗ 0.0442∗∗ −0.0008∗∗

J01E 0.9900∗∗ −0.0089∗ 0.1560∗∗ −0.0024∗ 0.1876∗∗ −0.0021∗∗ 0.0331∗∗ −0.0006∗∗

J01X 0.0357 0.0018∗ −0.0029 - 0.0187∗ 0.00056∗ −0.00054 -

J01BGR 0.1179∗ −0.0017 0.0072∗ - 0.1302∗ −0.0018∗ 0.0179∗ −0.0005∗

6.4.2 Analysis of DID and PID jointly

A joint model was constructed based on the final models for antibiotic use expressed

in DID and PID. The correlation between matching random effects for DID and PID

was estimated to be 0.7743 (between random intercepts), 0.8647 (between random

slopes) and 0.9571 (between random amplitudes) (Figure 6.4). All correlations were

high and positive, indicating that there is an agreement between the random effects.
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This means that when a random effect is above average in DID, it will also be above

average in PID, and vice versa. The correlations between random intercepts and

slopes were imperfect while the correlation between the random amplitudes seemed

close to perfect.
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Figure 6.4: Correlation between matching intercepts (top left), slopes (top right) and

amplitudes (bottom).

For the other antibiotic groups, the correlation between random intercepts for DID

and PID and between random slopes for DID and PID were both positive but imper-

fect. The correlation between the amplitudes for DID and PID was positive for all

but one subgroup (i.e. J01BGR) and seemed close to perfect for J01CR, J01F and

J01BGR.
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6.4.3 Change in dose per package

Likelihood ratio tests indicated that none of the random effects could be removed

from the starting model for all but one antibiotic group (J01X). In the model for

J01X, likelihood ratio tests indicated that both random effects were redundant. The

need for random effects in all but one subgroup suggests that the average dose per

package in 2000 and the change in dose per package over time differed substantially

between the countries. Parameter estimates for all final models are given in Table 6.3.

Table 6.3: Parameter estimates for the fixed effects in the linear mixed models for the

dose per package; ∗ : P < 0.05,∗∗ : P < 0.0001.

β0 β1

J01 4.9149∗∗ 0.0436∗∗

J01C 4.8265∗∗ 0.0617∗∗

J01CA 6.6670∗∗ 0.0573∗∗

J01CR 5.8891∗∗ 0.0693∗∗

J01F 4.9924∗∗ 0.0390∗∗

J01M 6.1181∗∗ 0.0105

J01D 3.9906∗∗ 0.0428∗

J01A 9.2237∗∗ 0.0433∗

J01E 5.2627∗∗ 0.0083∗

J01X 1.0179∗ 0.0086∗

J01BGR 1.1447∗ 0.0778∗

The average number of DDD per package in 2000 ranged between 1 and 9. Over

time, the number of DDD per package increased with the size of this increase varying

between 0.01 and 0.08 DDD which translates to a yearly increase between 0.04 and

0.32 DDD per package. This increase was significant for all but one antibiotic group

studied (J01M).
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6.5 Discussion

In this chapter, we used a non-linear mixed model to complement analyses of the

trend in antibiotic use for 31 countries expressed in DID, by analyses of data ex-

pressed in PID. We showed that antibiotic use and its seasonal fluctuation increased

significantly over time in DID while they did not change significantly in PID and

hence demonstrated that conclusions based on both measures can be contradictory.

For all antibiotic groups studied, the correlation between the random intercept and

the random amplitude was high, indicating that countries with a high antibiotic use

at baseline tend to experience strong absolute seasonal fluctuations.

A strong correlation between measurements in DID and the number of prescriptions

at one time point has previously been described by Monnet et al. (2004). This finding

was corroborated here, as strong correlations between the random intercepts for DID

and PID were found for all antibiotic groups studied. The correlations did however

not seem perfect, implying that when the average antibiotic consumption expressed in

DID and PID is known, country-specific information on either measure is not sufficient

to obtain information on the other measure. The correlations between random slopes

in DID and PID and between random amplitudes in DID and PID were also strong,

with only the latter seeming to be close to perfect for J01, J01CR, J01F and J01BGR.

The number of DDD per package increased significantly over time for all antibiotic

groups studied, except for J01M for which the dose per package did not change signif-

icantly over time. Both the number of DDD per package in 2000 and the increase of

this number over time differed substantially between countries and between studied

antibiotic groups.

6.5.1 Non-linear mixed models under REML or ML

Estimates for mixed models are usually ML-based, where the likelihood is maximized

jointly for fixed effects and variance components. The ML estimators can however be

biased downwards and for this reason REML estimates are often preferred. Rather

than maximizing the joint likelihood, REML maximizes a set of error contrasts that

are independent of the fixed effects.

Likelihood ratio tests can be based on ML or REML when checking if a random effect

can be left out of the model. When checking the need for a fixed effect, the likelihood

ratio test should however always be ML-based. Here REML is no longer valid as



102 Chapter 6

a different mean structure goes together with different error contrasts (Molenberghs

and Verbeke, 2005; Verbeke and Molenberghs, 2009).

To determine whether it was required to use REML rather than ML in reducing the

covariance structure, a likelihood ratio test for the removal of random amplitudes (b2i)

was conducted under both REML and ML. Parameter estimates and standard errors

for fixed effects were the same for both methods. Variance components were slightly

different with ML estimates being consistently smaller than REML estimates hence

confirming the downward bias. However, we concluded that the bias was so small

that it was not necessary to use REML rather than ML. The likelihood ratio tests

under REML and ML resulted in the same conclusions and the test statistics were

very similar. For the reasons mentioned above and for our convenience, as SAS proc

NLMIXED does not contain the option to specify REML, all models in this chapter

were fitted under ML.



Chapter 7

Exploring the association

between resistance and

antibiotic use expressed in

defined daily doses or

packages

In the previous chapter, we have shown that expressing outpatient antibiotic use in

DID or PID could lead to contrasting conclusions. Therefore, we recommended to

consider both when monitoring outpatient antibiotic use over time. Although the

number of DDD is internationally used to quantify antibiotic use, the number of

packages seems to be a better proxy for the number of antibiotic treatments given

and the number of individual patients treated (Coenen et al., 2014). To date, it is

not clear which measurement unit correlates best with antibiotic resistance. DID is

used most often, but a study that assessed the association between proportions of

ENSP and the use of tetracycline, macrolide, lincosamide and streptogramin (TMLS)

in Belgium found that expressing use in PID and including a time lag between use

and resistance provided the best-fitting model (Van Heirstraeten et al., 2012).

In this chapter, we will use the Yearly Antimicrobial Resistance Data (Section 1.2.5)

to explore the association between European outpatient antibiotic use, expressed in

103
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either DID or PID, and non-susceptibility against penicillin or erythromycin. We will

assess whether both DID and PID should be accounted for when modelling antibiotic

resistance and whether including a time lag would improve model fit.

7.1 Analysis of the association between antibiotic

use and resistance

Because country-specific information on resistance is gathered annually, within-country

correlation has to be accounted for and hence mixed models are an adequate tool to

study the trends in the data. The mixed model used here consists of a fixed compo-

nent, which represents the average trend in Europe based on the included countries,

and a random component, which represents the country-specific deviation from this

average trend (Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2009).

Because resistance status is a binomial response, a generalized linear mixed model

employing a logit link was used (Molenberghs and Verbeke, 2005). This model can

be presented as follows:

log

(
πij

1− πij

)
= (β0 + b0i) + (β1 + b1i)tij + β2X

DID
ij + β3X

PID
ij ,

where πij represents the proportion of PNSP or ENSP in country i at time-point

tij(j = 1, ..., ni), ni is the number of observations from the ith country, tij = 1 corre-

sponds to the start of the study (year 2000), β0 is the global intercept, β1 is the global

slope, β2 and β3 are the effects of DID and PID in country i at time-point tij and

bi = (b0i, b1i) is a vector of country-specific random effects (for intercept and slope)

for which we assume bi v N(0,D). The matrix D is an unstructured matrix with

d11 the variance of the random intercept b0i, d22 the variance of the random slope b1i

and d12 the covariance between the random intercept and the random slope.

In a first step, we selected the most appropriate time lag (time lag = 0, 1 or 2)

by comparing goodness-of-fit statistics for the model fitted to the common part of

the three datasets. Statistics that were used in this selection procedure included the

Akaike Information Criterion (AIC), the Pearson Chi-square statistic and the pseudo-

R2 statistic which is defined as:

1− L(θ̂)

L(0)
,

with L(θ̂) the likelihood for the model containing all parameters and L(0) the likeli-

hood for the model containing only a general intercept.
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A good model fit is reflected by a low AIC value, a high pseudo-R2 value and a low

Chi-square value.

In a second step, we used the same goodness-of-fit statistics to determine whether

to include both DID and PID, only DID or only PID. Because these statistics were

not always in agreement, we continued by using backwards model selection to obtain

a final model. The need for random intercepts and slopes was assessed with likelihood

ratio tests based on a mixture of equally weighted χ2
1 and χ2

2 distributions. A likeli-

hood ratio test based on a χ2
1 distribution was used to assess whether the covariance

structure could be simplified from an unstructured to a simple structure and to test

the need for inclusion of the fixed effects.

Using the full model, we predicted the proportion of PNSP and ENSP if β-lactam or

TMLS use expressed in DID, PID or both were to be lower (0− 70% in steps of 5%)

than the value reported for the last observed year (2007 for time lag = 0, 2008 for

time lag = 1 and 2009 for time lag = 2).

7.2 Results

7.2.1 β-Lactam use and PNSP

When exploring the association between PNSP and β-lactam use, the best model fit

was found for a model without time lag (Table 7.1).

Table 7.1: Goodness-of-fit statistics for the model for PNSP including a time lag.

Time lag AIC Pseudo-R2 Chi-square

0 889.99 0.79 167.46

1 897.38 0.79 171.65

2 896.80 0.79 177.63

While AIC suggested using PID alone, Pearson Chi-square suggested using DID alone

(Table 7.2). Likelihood ratio tests indicated that none of the random effects could

be removed while a simplification of the covariance matrix was allowed. DID was

removed from the model while PID had to be retained.
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Table 7.2: Goodness-of-fit statistics for the model for PNSP including both DID and

PID, only DID and only PID.

AIC Pseudo-R2 Chi-square

DID & PID 1146.55 0.82 207.37

DID 1157.03 0.82 201.67

PID 1144.64 0.82 207.28

From the final model containing only PID, it can be concluded that the odds of PNSP

increased significantly with increasing β-lactam use expressed in PID while it did not

change significantly over time (Table 7.3).

Table 7.3: Parameter estimates for the final model for PNSP.

Estimate Std.error Odds ratio (95% CI)

Time −0.003 0.013 0.997 (0.970, 1.025)

PID 0.673 0.111 1.959 (1.574, 2.439)

7.2.2 TMLS use and ENSP

When exploring the association between ENSP and TMLS use, the best model fit was

found for a model with a 1 year time lag (Table 7.4).

Table 7.4: Goodness-of-fit statistics for the model for ENSP including a time lag.

Time lag AIC Pseudo-R2 Chi-square

0 893.70 0.80 95.08

1 889.28 0.80 94.66

2 890.94 0.80 95.31

Both AIC and Pearson Chi-square suggested using both DID and PID (Table 7.5).

Likelihood ratio tests indicated that none of the random effects could be removed. A

simplification of the covariance matrix was not allowed. Neither DID nor PID could

be removed from the model.
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Table 7.5: Goodness-of-fit statistics for the model for ENSP including both DID and

PID, only DID and only PID.

AIC Pseudo-R2 Chi-square

DID & PID 1216.22 0.80 170.35

DID 1220.09 0.80 176.89

PID 1221.84 0.80 179.07

From the final model, it can be concluded that the odds of ENSP increased signifi-

cantly with increasing TMLS use expressed in PID and with decreasing TMLS use in

DID, while it did not change significantly over time (Table 7.6).

Table 7.6: Parameter estimates for the final model for ENSP.

Estimate Std.error Odds ratio (95%CI)

Time 0.005 0.016 1.005 (0.973, 1.039)

DID −0.250 0.091 0.779 (0.650, 0.933)

PID 1.304 0.540 3.683 (1.265, 10.719)

7.2.3 Predictions of antibiotic resistance

The average predicted proportion of PNSP isolates associated with β-lactam use was

based on all countries that had resistance data in 2007 (all but Slovakia; Figure 7.1,

top). The average predicted proportion of ENSP isolates associated with TMLS use

was based on all countries that had resistance data in 2008 (all but Slovakia and

Switzerland; Figure 7.1, bottom). Figure 7.1 illustrates that PNSP proportions are

predicted to decrease substantially with a decrease in β-lactam use expressed in PID

alone or in both DID and PID, but are predicted to remain stable when β-lactam use

expressed in DID decreases. ENSP proportions are predicted to decrease if TMLS use

expressed in PID decreases, but are predicted to increase with a decrease in TMLS

use expressed in DID alone or in both DID and PID.
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7.3 Discussion

Exploring the association between outpatient antibiotic use and resistance in Europe

revealed that including a time lag might improve model fit. While the association

between β-lactam use and PNSP was modelled best without a time lag, the asso-

ciation between TMLS use and ENSP benefited from including a one year time lag

between antibiotic use and resistance. This difference corresponds to the differences

in persistence of resistance, which is much longer after exposure to TMLS (e.g. clar-

ithromycin or azithromycin) than after exposure to β-lactams (e.g. ampicillin) (Chung

et al., 2007; Malhotra-Kumar et al., 2007).

The results also demonstrated that use data expressed in DID alone might not pro-

vide the best-fitting models. To assess ENSP proportions, TMLS use expressed in

both DID and PID was needed, while for PNSP proportions, β-lactam use expressed

in PID was sufficient. Also predictions of resistance after a decrease in use of TMLS

were driven by both DID and PID while predictions after a decrease in β-lactam use

were driven by PID alone. Due to these findings, we recommend to adopt the number

of packages as an additional outcome to better understand outpatient antibiotic use

and its relation to resistance.

The predictions discussed in Section 7.2.3 illustrate that PNSP decreases when de-

creasing β-lactam use in PID (alone or together with a decrease in DID), while it is

not altered when decreasing β-lactam use in DID alone. A possible explanation lies in

the difference in dosing schedules with β-lactams generally being dosed higher (both

in PID and in DID) than TMLS (Table 6.1). If β-lactam use decreases both in PID

and DID, this will most likely reflect a decrease in the number of patients exposed to a

consistent (and appropriate) antibiotic dose. However, if β-lactam use decreases only

in PID (with use expressed in DID remaining constant), this would suggest that fewer

patients are exposed to antibiotics, but that these patients are receiving a higher dose

per treatment due to an increase in DDD per package. In contrast, if β-lactam use

decreases only in DID (with use expressed in PID remaining constant), this is likely

to be due to a decrease in dose per treatment (decrease in DDD per package) while

this lower dose may remain appropriate to prevent emergence of resistance.

ENSP decreases only when decreasing TMLS use in PID alone, while it increases

when decreasing TMLS use in DID (alone or together with a decrease in PID). A

possible explanation could be that if TMLS use decreases only in PID (with use ex-

pressed in DID remaining constant), fewer patients are exposed to a higher dose of

TMLS. However, if TMLS use decreases both in PID and DID, this would suggest
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that fewer patients are exposed to a consistent (and inappropriate) antibiotic dose.

When TMLS use decreases in DID alone (with use expressed in PID remaining con-

stant), this would suggest that the same number of patients are exposed to a lower

(and even more inappropriate) dose.

7.3.1 Disagreement between goodness-of-fit statistics

When assessing the need to include β-lactam use expressed in both DID and PID

in the model for PNSP, there was a disagreement in the goodness-of-fit statistics.

While the Pearson Chi-square statistic suggested using DID alone, the AIC value

suggested using PID alone. This disagreement can be explained by the nature of

the goodness-of-fit statistics used in this chapter. The Pearson Chi-square statistic

is constructed by summing all Pearson residuals and hence assesses the fit of the

conditional distribution. The AIC value on the other hand assesses the overall fit of the

model. This implies that in general, including β-lactam use expressed in PID should

be used to study penicillin resistance. However, when the distribution of random

effects (intercept and slope) around the average is known, β-lactam use expressed in

DID could be used to study penicillin resistance.



Chapter 8

Persistence of antimicrobial

resistance in respiratory

streptococci

In the previous chapter, we illustrated that resistance is associated with antibiotic

consumption. Malhotra-Kumar et al. (2007, 2016) and Chung et al. (2007) showed

that persistence of resistance can differ based on the antimicrobial that was used.

They have illustrated that persistence of resistance in oropharyngeal streptococci af-

ter exposure to macrolides lasts for more than six months (Malhotra-Kumar et al.,

2007), while it is estimated to be much shorter after exposure to penicillins (Chung

et al., 2007; Malhotra-Kumar et al., 2016). In this chapter, we will assess the differ-

ence in persistence of resistance after exposure to penicillins or cephalosporins (CD)

and macrolides or tetracyclins (AF) using the Bacterial Susceptibility Data (Section

1.2.6).

Getting a thorough understanding of persistence of resistance for different combina-

tions of bacteria and antibiotics would require a huge number of RCTs. Because this

is rather expensive and time consuming, we will assess whether routinely collected

data on resistance and antibiotic use at the level of the individual patient confirm the

conclusions reached in the studies conducted by Malhotra-Kumar et al. (2007, 2016)

and Chung et al. (2007) and hence could serve as a proxy to study other drug-bug

combinations.

111
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8.1 Persistence of resistance

To assess persistence of resistance (i.e. non-susceptible resistance status), we con-

structed a multiple logistic regression model using resistance status as the binary

outcome and a logit link function. We used an automatic forward selection procedure

(with α = 0.15) to reach a model including all significant explanatory variables and

two-way interactions.

Because multiple samples were taken from some patients, information obtained from

the same patient was expected to be correlated. Ignoring correlation would typically

result in underestimation of the standard errors and hence wrongfully retaining vari-

ables in the model (Agresti, 2002; Molenberghs and Verbeke, 2005). Therefore, we

constructed a GEE model (Liang and Zeger, 1986) including explanatory variables

that were present in the final logistic regression model and an independence working

correlation. Note that although this working correlation might be incorrect, param-

eter estimates and empirical standard errors are deemed consistent due to the use of

a sandwich estimator in the GEE approach (Molenberghs and Verbeke, 2005).

The data used in this study contain information on 14 samples taken from patients

that did not survive 2005. Because the studies conducted by Malhotra-Kumar et al.

(2007) and Chung et al. (2007) reported no deaths, we repeated the analysis described

above after exclusion of these samples to optimize comparability.

8.2 Baseline resistance

Both the logistic regression model and the GEE model implicitly assume that the

proportion of non-susceptible isolates in the population falls back to zero when the

timespan between antibiotic consumption and sampling becomes large enough. Sev-

eral authors however found a non-zero proportion of non-susceptible isolates at base-

line (i.e. baseline resistance (BR)) (Malhotra-Kumar et al., 2007; Putnam et al., 2005;

Raum et al., 2008; Shackcloth et al., 2004). Therefore, we relaxed this assumption

and adjusted the link function accordingly:

log

(
p

1− p

)
→ log

(
p

g − p

)
with g = 1−BR,

where p represents the proportion of susceptible individuals. We allowed this baseline

resistance to differ by treatment (CD or AF) and by type of bacteria (PY or PN) to

avoid wrongfully concluding significant differences between treatments and bacteria

types caused by the difference in BR.
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8.3 Results

8.3.1 Baseline resistance rates

Because estimates for BR in this specific setting were not available, we calculated

BR as the proportion of non-susceptible samples within a sliding 6 month time frame

between t − 186 and t (with t = 186, 187, . . . , 372) and studied the evolution of this

estimate for BR over time (Figure 8.1). Because the BR estimates did not stabilize,

we conducted a sensitivity analysis in which we fitted the adjusted GEE model using

different BR estimates (for t = 248 (BR 3-8 months), for t = 310 (BR 5-10 months)

and for t = 372 (BR 7-12 months)) (Table 8.1). After dropping samples from patients

that did not survive 2005, BR estimates were recalculated (Table 8.2).

Table 8.1: Estimates (95% confidence intervals) of baseline resistance (BR) based on

all samples (n = 451).

Frame 3-8 months Frame 5-10 months Frame 7-12 months

BR8 BR10 BR12

PY AF 0.2414 (0.1222, 0.4211) 0.0625 (0.0032, 0.2833) 0.0909 (0.0047, 0.3774)

PY CD 0.0400 (0.0137, 0.1111) 0.0000 (0.0000, 0.0664) 0.0000 (0.0000, 0.0989)

PN AF 0.2727 (0.1315, 0.4815) 0.2500 (0.1119, 0.4687) 0.2632 (0.1181, 0.4879)

PN CD 0.2083 (0.1405, 0.3157) 0.1081 (0.0429, 0.2471) 0.1304 (0.0454, 0.3213)

AF: treatment with macrolides or tetracyclines

CD: treatment with penicillins or cephalosporins.

PY: Streptococcus pyogenes; PN: Streptococcus pneumoniae

Table 8.2: Estimates (95% confidence intervals) of baseline resistance (BR) based on

samples from patients surviving 2005 (n = 437).

Frame 3-8 months Frame 5-10 months Frame 7-12 months

BR8 BR10 BR12

PY AF 0.2414 (0.1222, 0.4211) 0.0625 (0.0032, 0.2833) 0.0909 (0.0047, 0.3774)

PY CD 0.0400 (0.0137, 0.1111) 0.0000 (0.0000, 0.0664) 0.0000 (0.0000, 0.989)

PN AF 0.2727 (0.1315, 0.4815) 0.2222 (0.0900, 0.4521) 0.1875 (0.0659, 0.4301)

PN CD 0.1618 (0.0928, 0.2669) 0.1081 (0.0429, 0.2471) 0.1364 (0.0475, 0.3333)

AF: treatment with macrolides or tetracyclines

CD: treatment with penicillins or cephalosporins.

PY: Streptococcus pyogenes; PN: Streptococcus pneumoniae
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Figure 8.1: Evolution of the proportion of non-susceptible samples within a sliding 6

month time frame between t− 186 and t (with t = 186, 187, . . . , 372) over time based

on all samples (bold line: estimate, dashed lines: 95% confidence interval) for isolates

of Streptococcus pyogenes (PY; left) and Streptococcus pneumoniae (PN; right) after

treatment with macrolides or tetracyclines (AF; top) and penicillins or cephalosporins

(CD; bottom).
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8.3.2 Difference in persistence of resistance by treatment

The final logistic regression model contained treatment (AF or CD), bacteria (PY

or PN), survival status (did the patient die in 2005 or not), log(time) with time the

distance between consumption and sampling, the interaction between survival status

and log(time) and the interaction between treatment and bacteria type. These vari-

ables were used in fitting a GEE model, unadjusted for BR. Based on this model, we

can conclude that the odds of being susceptible was significantly lower for treatment

with AF and significantly higher for PY isolates (Table 8.3). After correcting for

baseline resistance, parameter estimates changed and the odds of being susceptible

no longer differed significantly by bacteria type (for any of the three BR estimates

used). Parameter estimates differed when using different BR estimates, which stresses

the need for the sensitivity analysis.

Table 8.3: Parameter estimates for the GEE models on persistence of overall resis-

tance using different estimates for baseline resistance (BR) obtained by forward model

building.

Parameter estimate

Parameter no BR BR8 BR10 BR12

3-8 months 5-10 months 7-12 months

Intercept 1.1015 1.0448 1.1622 1.1460

Treat AF -1.3204∗∗ -2.3710 -1.3231∗∗ -1.4705∗∗

Bacteria PY 1.6892∗∗ 2.9179 0.8955 0.6923

Death no -1.9274 -3.5075 -2.1480 -2.0767

Log(time) -0.2928 -0.0649 -0.2409 -0.2142

Log(time) * death no 0.8777 1.7286 1.0982 1.1159

Treat AF * bacteria PY -1.1129 -1.9666 -1.0507 -0.7902

AF: treatment with macrolides or tetracyclines; PY: Streptococcus pyogenes.

*: p-value < 0.05; **: p-value < 0.01

Further backward model reduction (α = 0.05) resulted in a model including treatment,

log(time) and survival status (Table 8.4). Based on the final models, we can conclude

that the odds of being susceptible was significantly lower after treatment with AF

while it was significantly higher when surviving 2005 and with increasing time since

antibiotic consumption. The evolution of resistance over time however did not differ

by treatment. Including an interaction between log(time) and treatment in the final

models resulted in p-values of 0.1147 (BR8), 0.3394 (BR10) and 0.3104 (BR 12).

These findings are illustrated in Figure 8.2.
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Table 8.4: Parameter estimates for the GEE models on persistence of overall resis-

tance using different estimates for baseline resistance (BR) after final backward model

reduction.

Parameter estimate

Parameter BR8 BR10 BR12

Intercept -2.4517 -2.6359 -2.6159

Treat AF -3.2705∗∗ -1.9071∗∗ -1.9512∗∗

Death no 3.3138∗ 2.5573∗ 2.6152∗

Log(time) 0.9926∗ 0.7445∗∗ 0.7613∗∗

AF: treatment with macrolides or tetracyclines.

*: p-value < 0.05; **: p-value < 0.01

Figure 8.2 shows that there was a difference between patients that did and those

that did not survive 2005, which was found to be significant (Table 8.4). Because

of this significant difference and because the studies conducted by Malhotra-Kumar

et al. (2007) and Chung et al. (2007) reported no deaths, we repeated the analysis on

samples from patients that did survive 2005 to optimize comparability.

Based on the final models for patients surviving 2005, we can conclude that the odds

of being susceptible was significantly lower for treatment with AF while it was sig-

nificantly higher with increasing time since antibiotic consumption (Table 8.5). The

evolution of resistance over time however did not differ by treatment. Including an

interaction between log(time) and treatment in the final models resulted in p-values

of 0.1035 (BR8), 0.7040 (BR10) and 0.7095 (BR 12). These findings are illustrated

in Figure 8.3.

Figure 8.3 also shows that the proportion of susceptible isolates stabilized more quickly

after treatment with CD than after treatment with AF. We considered the proportion

of susceptible isolates to be stable when it increased with less than 0.05% per day.

Table 8.6 demonstrates that resistance after treatment with AF persisted about three

times as long as after treatment with CD.
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Table 8.5: Parameter estimates for the GEE models on persistence of resistance for

patients surviving 2005 using different estimates for baseline resistance (BR) after

final backward model reduction.

Parameter estimate

Parameter BR8 BR10 BR12

Intercept -1.3733 -0.5764 -0.5080

Treat AF -2.6361∗∗ -1.9909∗∗ -2.1492∗∗

Log(time) 1.4817∗ 0.8850∗∗ 0.9111∗∗

AF: treatment with macrolides or tetracyclines.

*: p-value < 0.05; **: p-value < 0.01

Table 8.6: Number of days needed for the proportion of susceptible isolates to stabi-

lize based on the final adjusted GEE model on persistence of resistance for patients

surviving 2005 using different estimates for baseline resistance (BR).

BR8 BR10 BR12

PY CD 44 71 66

PN CD 44 71 66

PY AF 125 195 194

PN AF 125 195 194

AF: treatment with macrolides or tetracyclines

CD: treatment with penicillins or cephalosporins.

PY: Streptococcus pyogenes; PN: Streptococcus pneumoniae

8.4 Discussion

In this chapter, we used routinely collected data on antibiotic use and resistance at

the level of the individual patient to assess persistence of resistance after exposure to

macrolides and tetracylines or penicillins and cephalosporins. The use of routinely

collected data is both a strength, as individuals were not exposed to an additional in-

tervention (e.g. new treatment or placebo control), and a limitation of the study, as we

had no control over prescribed dose, duration of treatment and treatment adherence.

Major advantages of studying routinely collected data are that real field conditions

are met (e.g. co-morbidities) and that it is less labour-intensive and expensive than

conducting e.g. a RCT. Ethical and insurance concerns are also of another dimension

given the retrospective concept of analysing routinely collected data. This analysis
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would however benefit from including more samples, which would make BR estimates

more reliable and might make a sensitivity analysis redundant.

In the GEE analysis, we acknowledged that the proportion of non-susceptible sam-

ples taken from a population not treated with antibiotics does not necessarily equal

zero and adjusted the model to account for a baseline resistance level (using BR). We

calculated BR as the proportion of non-susceptible isolates within a sliding 6-month

time frame and recognized that nominating one time frame would be extremely chal-

lenging. We would argue against a BR estimate based on the early time frames, as

resistance due to antibiotic use might still persist and distort the estimate. How-

ever, we would also argue against a BR estimate based on the late time frames, as

confidence intervals got wider at later time points and estimates less reliable. Since

BR estimates were unstable and confidence intervals wide, a sensitivity analysis using

three different BR estimates (for time frames 3 − 8, 5 − 10 and 7 − 12 months) was

conducted.

BR estimates for Streptococcus pneumoniae calculated using samples from patients

treated with AF and CD were slightly lower than the resistance rates reported by

EARS-Net. A possible explanation is that we calculated BR based on a population

of individuals that did not take any antibiotics during the last 3− 8, 5− 10 or 7− 12

months (for BR8, BR10 and BR12 respectively) while EARS-Net calculated resis-

tance rates based on the population of individuals that have their resistance against

antibiotics tested in practice. In the future, it would be interesting to report both

an estimate for resistance rate with and without previous antibiotic treatment to get

a more complete picture of the resistance rate in the general population. Baseline

resistance rates, together with a measure of the persistence of this resistance, could

guide clinicians in prescribing antibiotics at low risk of treatment failure.

The analysis conducted in this chapter showed that the odds of being susceptible

increased significantly when time between consumption and sampling increased for

the respiratory streptococci under study. We also found that the rate of this increase

did not differ significantly between isolates from patients treated with CD or AF. This

implies that when the proportion of susceptibility directly after treatment is compa-

rable, persistence of resistance to these antimicrobial agents will likely not differ. A

reasonable assumption would be that the proportion of susceptibility directly after

treatment equals 0%. Malhotra-Kumar et al. (2007) however found 18% susceptible

isolates after treatment with macrolides. Therefore, we did not make this assumption
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and allowed for different variables to influence the adjusted GEE models intercept.

The analysis including all patients showed that the intercept differed significantly by

treatment group and survival status. The analysis focussing on patients surviving

2005 revealed that the intercept differed significantly by treatment group.

While Malhotra-Kumar et al. (2007) showed that persistence of resistance to macrolides

lasts for up to six months, Chung et al. (2007); Malhotra-Kumar et al. (2016) indi-

cated a much shorter persistence of resistance to penicillins. We showed that the rate

of increase in the odds of being susceptible did not differ between the two studied

treatment groups while the proportion of susceptible isolates directly after treatment

was significantly lower for AF than for CD. Therefore, it would take longer for the

proportion of susceptible isolates to recover after treatment with AF than after treat-

ment with CD hence confirming the differences found by Malhotra-Kumar et al. (2007,

2016) and Chung et al. (2007). The difference in persistence of resistance is illustrated

in Figure 8.2 and Table 8.6.

The findings reported in this chapter suggest the equivalence of the use of routinely

collected data and carefully designed studies to answer research questions on the per-

sistence of resistance after antibiotic consumption. However, before drawing such a

strong conclusion, there is need for additional validation of these findings using other

drug-bug combinations.



122 Chapter 8



Chapter 9

Using change-points to study

the impact of Belgian policies

on antimicrobial use

The main goal of the Belgian Antibiotic Policy Coordination Committee (BAPCOC),

founded in 1999, is to reduce resistance by improving antimicrobial consumption

(Goossens et al., 2008). One of their well-known initiatives consists of providing

hospitals with both financial and technical support in hiring a manager for an an-

timicrobial management team (AMT). This initiative was piloted in 37 voluntary

hospitals in 2002, extended to another 24 hospitals in 2006 and to the final 55 hos-

pitals in 2007. Apart from funding, the intervention included technical guidance and

advanced specialist training for the formal establishment and follow-up of AMTs.

In this chapter, we will use the Hospital Stays Data (Section 1.2.7) to assess the

impact of the introduction of AMTs in hospitals, the first antibiotic awareness cam-

paign organized by BAPCOC in 2001 and the change in financing mechanisms for

hospital-drugs for pneumonia in 2006.

123
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9.1 Assessment of the impact of national policies

on three selected quality indicators in Belgian

hospitals

Longitudinal data are generally modelled using a generalized linear mixed model

(Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2009). A somewhat

abrupt change in the evolution of the outcome over time can be modelled using a

change-point component (Muggeo, 2003). A change-point can be presented as:

βCPk
(tij − CPk)+,

where x+ = max(x, 0), βCPk
is the kth global difference in the linear trend before

and after a change-point and CPk is the kth change-point.

The significance of such a change-point can be assessed by testing the hypothesis

βCPk
= 0, which implies that there is no difference in the slope before and after the

change-point.

Based on expert advice, three change-points were included in the model. The first

change-point is 2001 which is the year the first large antimicrobial awareness cam-

paign was launched in Belgium.

This change-point can be modelled as:

βAC(tij − 2001)+,

The second change-point is the year the hospital got funding for its antimicrobial

management team (AMT) (2002, 2006 or 2007).

This change-point can be modelled as:

(βAMTIN02(tij − 2002)+)XAMT02

+ (βAMTIN06(tij − 2006)+)XAMT06

+ (βAMTIN07(tij − 2007)+)XAMT07,

with XAMT02 = 1 if AMT was implemented in 2002 and 0 otherwise, XAMT06 = 1

if AMT was implemented in 2006 and 0 otherwise, and XAMT07 = 1 is AMT was

implemented in 2007 and 0 otherwise.
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The third change-point is 2006 which is the year a new funding mechanism for

hospital-drugs for pneumonia was launched. This change-point was included only

for pneumonia-related outcomes and can be modelled as:

βFIN (tij − 2006)+.

9.1.1 Lower limb surgery

Because compliance to guidelines at patient level is a binary response, we used a

logit link to model the data. The starting model contained fixed effects for the pa-

tient’s gender, age, severity of surgery, stay on an intensive care unit and length of

stay, change-point variables AMTIN and AC, all two-way interactions between the

change-point variables and the fixed effects, time, all two-way interactions between

time and the fixed effects, an indicator for AMT and the interaction between the

AMT indicator and time. Because there was a lot of between-hospital variability,

random intercepts and slopes were included in the model.

As a first step in building the final model, we used likelihood ratio tests to assess

whether the change-point (together with all its two-way interactions) was required

in the model. If the change-point was redundant, it was removed from the model

together with all its two-way interactions. Afterwards, we used a likelihood ratio test

based on an equally weighted mixture of χ2 distributions to verify the need for the

random effects. In a final step, the mean structure of the model was reduced in a

backwards hierarchical fashion using F tests. In order to assess whether the size of

the hospital (number of patients treated for the same APR-DRG) affects compliance

to guidelines, we added size and all its two-way interactions with the included fixed

effects to the final model and used a likelihood ratio test to compare the model with

and without the size component.

As a measure for goodness of fit, the pseudo-R2 for the final model was calculated as

follows:
1−

(
LR(θ̂)

LR(0)

)
with LR(θ̂) the likelihood for the model including all parameters and LR(0) the like-

lihood for the model containing only the general intercept. The contribution of the

fixed effects was determined by calculating the pseudo-R2 for the model containing

only fixed effects and dividing it by the pseudo-R2 for the final model. The contribu-

tion of the random effects was calculated by subtracting the fixed effects contribution

from 100%.
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9.1.2 Pneumonia

Because both outcomes of interest (DDDhosp and OP) were continuous outcomes, we

used an identity link to model the data. The starting model contained fixed effects for

the median los and the distribution of severity, of gender, of stay on an intensive care

unit, of patient origin, of discharge status and of age group, change-point variables

AMTIN, FIN and AC, all two-way interactions between the change-point variables

and the fixed effects, time, all two-way interactions between time and the fixed ef-

fects, an indicator for AMT and the interaction between the AMT indicator and time.

Because there was a lot of between-hospital variability, random intercepts and slopes

were included in the model. Because hospitals were observed yearly and we assumed

that observations closer in time were more alike than observations further apart, we

used an autoregressive (AR(1)) residual structure. Because the outcomes were ag-

gregated by hospital and year, all information on the number of patients treated for

pneumonia in the hospital was lost. For this reason, we weighted the observations

according to hospital size (i.e. number of patients treated for the same APR-DRG).

We used likelihood ratio tests to assess whether the change-point (together with all its

two-way interactions) was redundant and hence could be removed from the model. A

likelihood ratio test based on a χ2
1 distribution was used to test if the AR(1) structure

could be simplified. Afterwards, we used a likelihood ratio test based on an equally

weighted mixture of χ2 distributions to verify the need for random intercepts and

random slopes. In a final step, the mean structure of the model was reduced in a

backwards hierarchical fashion using F tests. In order to assess whether the size of

the hospital affects DDDhosp or OP, we added size and all its two-way interactions

with the included fixed effects to the final model and used a likelihood ratio test to

compare the model with and without the size component.

As a measure for goodness of fit, the adjusted R2 was calculated as follows:(
1−

∑n
i=1

{
sizei(yi − fi)2

}∑n
i=1 {sizei(yi − ȳ)2}

)(
n− 1

n−m

)

with sizei being the number of patients treated for the same APR-DRG in the hospi-

tal, yi the observed outcome, fi the predicted outcome, ȳ the weighted average of the

observed outcomes, n the number of observations and m the number of parameters.

The contribution of the fixed effects was determined by calculating the adjusted R2

for the model containing only fixed effects and dividing it by the adjusted R2 for the
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final model. The contribution of the random effects was calculated by subtracting the

fixed effects contribution from 100%.

9.2 Inclusion of hospital-specific time lags

In order to account for the fact that the impact of policies might already be noticed

before implementation or be delayed after implementation, a time lag (± 1 year) was

included. The time lag was modelled by a hospital-specific shift in time, which could

range from −1 year before to +1 year after the fixed change-point. In order to test

the need for a hospital-specific time lag, we fitted a model containing a fixed and

random intercept, a fixed and random slope, all change-points and a random time lag

for each change-point. Variances were set equal to 1 and covariances to 0 in order

to reach convergence. Because this model failed to converge for the data on lower

limb surgery, we fitted two models containing a fixed and random intercept, fixed and

random slope and one specific change-point with its time lag. The likelihoods for the

models with and without time lags were compared in order to assess the need for time

lags.

9.3 Results

9.3.1 Need for a hospital specific time lag

Likelihood ratio tests showed that, when studying compliance to guidelines for limb

surgery (at patient level), DDDhosp for pneumonia (at hospital level) or OP for

pneumonia (at hospital level), inclusion of hospital-specific time lags was not required.

This implies that the fact that not all hospitals are impacted by the studied changes

at the exact same moment is negligible.

9.3.2 Limb surgery: compliance at patient level

Because likelihood ratio tests indicated that both change-points (AMTIN and AC)

and both random effects were required to study the evolution of compliance over time,

all were kept in the model. A fixed effect representing the size of the hospital was

required and hence was added to the final model. Significance of all fixed effects in

the final model is shown in Table 9.1. This model appeared to fit the data reasonably

well (Figure 9.1).
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Table 9.1: Significance of fixed effects in the final model for compliance at patient

level for limb surgery.

Variable P-value Variable P-value Variable P-value

Age 0.1324 Time*age 0.0010 AC*icu < 0.0001

Los < 0.0001 Time*sev 0.0016 AMTIN < 0.0001

AMT 0.6488 Time*gender 0.0020 AMTIN*sev < 0.0001

Sev < 0.0001 AC 0.0092 AMTIN*icu 0.0001

Gender 0.0028 AC*age 0.0005 Size < 0.0001

Icu < 0.0001 AC*los 0.0009 Time*size < 0.0001

Time 0.9848 AC*sev 0.0633 AC*size < 0.0001

AC*gender 0.0012 AMTIN*size < 0.0001

The final model had a pseudo-R2 value of 0.1927. Although R2 values for models on

binary outcomes are typically much lower than for models on continuous outcomes,

this R2-value indicates that there still is a lot of residual variability that is unexplained

by the model. Note that 17% of the explained variability comes from the fixed effects

while 83% comes from the random effects.
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Figure 9.1: Average observed (solid line) and predicted (dotted line) evolution of the

proportion of compliers over time: overall (top left), for patients treated in a hospital

with AMT in 2002 (top right), with AMT in 2006 (bottom left) and with AMT in

2007 (bottom right).
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9.3.3 Pneumonia: DDDhosp at hospital

Because likelihood ratio tests showed that change-point AMTIN was redundant (p =

0.4659), it was removed from the model. In a next step, likelihood ratio tests indicated

that both change-points (FIN and AC) and both random effects were required in

the model and that the AR(1) structure could not be simplified. After weighting

the observations for the size of the hospital, a fixed effect for size was redundant.

Significance of all fixed effects in the final model are shown in Table 9.2. This model

appeared to fit the data well (Figure 9.2), which was verified by an adjusted R2 value

of 0.8072. Note that 33% of the variability is explained by the fixed effects while 67%

is explained by the random effects.

Table 9.2: Significance of fixed effects in the final model for the number of DDD per

100 hospital days.

Variable P-value Variable P-value

Sev 0.0258 FIN 0.0022

Pt ori 0.3328 FIN*los 0.0026

Dis st 0.4272 FIN*pt ori 0.0736

Age 0.0202 FIN*dis st 0.0263

Los 0.4639 FIN*age 0.0026

Time 0.6995 AC 0.0010

Time*sev 0.0792 AC*pt ori 0.0093

Time*dis st 0.0432 AC*age 0.0054

Time*age 0.0326
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9.3.4 Pneumonia: OP at hospital level

Because likelihood ratio tests indicated that change-point AC was redundant (p =

0.9884), it was removed from the model. In a next step, likelihood ratio tests indicated

that change-point AMTIN was also redundant (p = 0.0972). Therefore, also this

change-point was removed from the model. Afterwards, likelihood ratio tests indicated

that the remaining change-point (FIN) and both random effects were required to

model the evolution of OP over time. The AR(1) residual structure could not be

simplified and a fixed effect for size was redundant. Significance of all fixed effects

in the final model are shown in Table 9.3. This model appeared to fit the data well

(Figure 9.3), which was confirmed by an adjusted R2 value of 0.7559. Note that

14% of the variability is explained by the fixed effects while 86% is explained by the

random effects.

Table 9.3: Significance of fixed effects in the final model for the ratio of oral versus

parenteral antimicrobial use at hospital level.

Variable P-value Variable P-value

Sev 0.1038 Time*sev 0.0031

Gender 0.5360 Time*los 0.0111

Dis st < 0.0001 FIN 0.0047

Age 0.0420 FIN*gender 0.0041

Los 0.2625 FIN*los 0.0022

Time 0.0006
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Figure 9.2: Observed (solid line) and predicted (dotted line) evolution in the number
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9.4 Discussion

In this chapter, we used a change-point model to assess the impact of Belgian policies

on antimicrobial consumption in hospitals. We showed that the proportion of com-

pliant antibiotic prescriptions for limb surgery at patient level was changed suddenly

by both the establishment of AMTs and the 2001 antimicrobial awareness campaign.

The number of DDD per 100 hospital days for pneumonia (at hospital level) was

changed suddenly by both the 2001 antibiotic awareness campaign and the new fi-

nancing mechanism in 2006. The ratio of oral over parenteral DDD use for pneumonia

(at hospital level) was changed suddenly by the new financing mechanism in 2006.

Although all these sudden changes were statistically significant, only the decrease in

the number of DDD per 100 hospital days for pneumonia seen in 2001 was steep

enough to be clinically relevant.

There are several possible explanations for the lack of sudden change caused by the

year of implementation of an AMT in hospitals. The selected outcomes are topics

that were likely addressed at different time points, fully or largely independent from

the implementation of the AMT. Also, AMTs were not given specific targets and

hence might have chosen other priorities for interventions than the outcomes under

study here, although these were the indications with the highest volume of patients

receiving an antimicrobial. It is also possible that the AMT funding was not always

used directly for AMT implementation. This cannot be verified as no data on the

actual use of funding within hospitals exist.

Our findings do not question the need for AMTs, nor the need for continuation of

AMT funding, but do suggest the need for transparency in the use of AMT funding

and more guidance in terms of identifying priorities for action.

The major strength of this study is the use of exhaustive patient-based data spanning

12 years and including all Belgian hospitals. Although we study the two APR-DRGs

accounting for the largest number of patients receiving an antimicrobial in hospital,

only three outcomes for two APR-DRGs were studied which does not provide a com-

plete picture of trends in quality of antimicrobial use in Belgian hospitals. This study

should therefore ideally be complemented by other APR-DRGs, which might result

in different conclusions than the ones reached in this study.
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Chapter 10

Concluding remarks

In this thesis, we studied antibiotic use in hospitalized children and outpatients, re-

sistance in outpatients, and the link between antibiotic consumption and resistance.

Additionally, we developed a prediction rule to assist GPs in accurately identifying

patients that would, or would not, benefit from antibiotic treatment, and assessed

the impact of policies aimed at reducing resistance rates by optimizing antibiotic con-

sumption.

In Chapter 2, we developed a new prediction rule to predict poor prognosis in patients

presenting to primary care with acute cough. We identified the country’s baseline risk

for poor prognosis, the presence of crackles during physical examination, the severity

of phlegm as assessed by the patient, the severity of interference with daily activi-

ties, the time since the patient last smoked and the patient’s diastolic blood pressure

to be important predictors for poor prognosis. CRP and BUN did not improve the

discriminative power of the new prediction rule. Cross-validations showed that the

new prediction rule is quite stable, and comparison to five existing prediction rules

showed that the new prediction rule outperforms all, although there is still room for

improvement. Therefore, our recommendation to GPs is not to use any of the existing

prediction rules to predict poor prognosis in patients presenting to primary care with

acute cough but to use this newly developed prediction rule instead.

In Chapter 3, we conducted a simulation study to investigate the impact of an increas-

ing percentage of singletons at the lowest level of the hierarchy on different aspects of

the linear multi-level model. We showed that ignoring and dropping singletons should

be avoided as they come with low coverage and wide confidence intervals, respectively.

135
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Regrouping the singletons into an artificial department might be considered, although

the regular linear multi-level model performed better even when the percentage of sin-

gletons increased. As always, it is recommended to avoid the inclusion of singletons

in the sample when designing a study. If, due to circumstances, high proportions

of singletons do appear at the lowest level, the linear multi-level model can be used

safely. There is no need for, and we would even advise against, grouping of the sin-

gletons into an artificial unit. Removing the singletons from the analysis or ignoring

the dependency within clusters is not advisable and should be avoided.

In Chapter 4, we conducted a simulation study to investigate the impact of increasing

primary unit sparseness on the performance of the F test. We showed that the F test

performed well when there is no primary unit sparseness, with REML outperform-

ing ML. In the presence of primary unit sparseness, the performance of the F test

was inadequate. We considered dropping, regrouping or splitting the singletons as

ways to reduce primary unit sparseness. They could all solve either the problem of

a high type I error or the problem of low power, whilst worsening the other, which

forces us to conclude that neither method acts as a solution to the poor performance

of the F test in the presence of primary unit sparseness. As an alternative to the

F test, we studied the performance of the Wald test, the likelihood ratio test and the

permutation test. While the performance of the Wald and likelihood ratio test were

comparable to the performance of the F test, the permutation test outperformed the

F test both under REML and ML. Therefore, we recommend the use of a permutation

test (under REML) to determine significance of a fixed effect at the primary level in a

multi-level model with a continuous outcome suffering from primary unit sparseness.

Ideally, a permutation test should also be used to determine the significance of fixed

effects at lower levels. However, if computing time is an issue, it is advisable to check

if the F test under REML and ML agree on the significance of the parameters and to

conduct a permutation test under REML if there is disagreement.

In Chapter 5, we illustrated that β-lactam antibiotics are prescribed either according

to or independent of weight, with the odds of prescribing independent of weight being

higher for children with a higher weight (or age). We showed that lower doses of

parenteral ceftriaxone were prescribed to children receiving empiric treatment, with a

lower weight and with a less severe reason for treatment. Although we expected rea-

sons to deviate from the average prescribed β-lactam dose, which should correspond

to the recommended dose, to be common for the 12 included β-lactam antibiotics,

most predictors were antibiotic-specific. Only type of treatment and type of hospital

affected all included β-lactam antibiotics in a similar fashion, with lower doses being

prescribed in primary or secondary hospitals and for empiric treatment.
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Evolution of antibiotic doses prescribed to outpatients over time was studied in Chap-

ter 6. We showed that conclusions based on antibiotic use expressed in DID and in

PID are contradictory, with antibiotic use expressed in DID showing a significant

increase over time while antibiotic use expressed in PID did not change significantly

over time. Matching random effects were shown to be highly correlated, albeit not

perfect, which implies that both DID and PID should be reported when studying an-

tibiotic consumption. Additionally, we showed that the number of DDD per package

increased significantly over time for all antibiotics except for quinolones.

In Chapter 7, we showed that while the association between β-lactam antibiotics and

resistance could be modelled using PID alone, the association between TMLS use and

resistance needed both DID and PID. Additionally, we showed that the association

between β-lactam antibiotics and resistance was modelled best without a time lag,

while the the association between TMLS use and resistance needed a one year time

lag, reflecting a possible difference in persistence of resistance.

In Chapter 8, we demonstrated that persistence of resistance is longer after treatment

with AF than after treatment with CD. We hereby confirmed the differences found

by Malhotra-Kumar et al. (2007) and Chung et al. (2007), suggesting that routinely

collected data could serve as a proxy in assessing differences in persistence of resis-

tance.

The impact of policies to limit antimicrobial resistance by reducing antibiotic con-

sumption was assessed in Chapter 9. The proportion of compliant antibiotic prescrip-

tions for limb surgery at patient level was changed suddenly by both the establishment

of AMTs and the 2001 antimicrobial awareness campaign. The number of DDD per

100 hospital days for pneumonia (at hospital level) was changed suddenly by both the

2001 antibiotic awareness campaign and the new financing mechanism in 2006. The

ratio of oral over parenteral DDD use for pneumonia (at hospital level) was changed

suddenly by the new financing mechanism in 2006. Although all these sudden changes

were statistically significant, only the decrease in the number of DDD per 100 hospital

days for pneumonia seen in 2001 was steep enough to be clinically relevant.

10.1 Topics for further research

The prediction rule, developed in Chapter 2, was shown to outperform the existing

prediction rules, although there is still room for further improvement. Possible exten-

sions could include addition of aetiology of the underlying infection (viral or bacterial)
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and interpretation of a chest radiograph. The prediction rule currently includes both

variables assessed by the patient (severity of phlegm) and variables assessed by the

GP (presence of crackles). It would however be more objective and practical for the

prediction rule to only include variables assessed by the GP. Information on variables

assessed by the GP are included in the Acute Cough Data, and could replace variables

assessed by the patient when they are shown to be in agreement.

Although the new prediction rule has been validated using internal validation (cross-

validation), external validation using an independent dataset on the same subject

remains desirable.

In Chapters 3 and 4, we focussed on a multi-level mode with a continuous outcome,

which was applied in Chapter 5. Further research could focus on exploring the be-

haviour of tests for the significance of fixed effects in the presence of singletons when

the outcome variable is for example binary or follows a Poisson distribution.

In Chapter 5, we focussed on β-lactam antibiotics and constructed a meta-model to

assess one specific hypothesis. Using the Inpatient Antibiotic Use Data, the same

strategy could be used to assess other hypotheses on the use of β-lactam antibiotics,

to study other frequently used antibiotics (e.g. parenteral gentamicin) and to study

antibiotic use in neonates.

In Chapters 6 and 7, we studied the use of antibiotics in outpatients and its link with

resistance. Further research would benefit from the inclusion of characteristics re-

lated to outpatients and prescribers, as this would provide a more clear and thorough

image of the variability in antibiotic consumption patterns both between and within

countries.

The strategy developed in Chapter 8 could be used to assess other drug-bug combi-

nations for which information is contained in the Bacterial Susceptibility Data, while

the strategy developed in Chapter 9 could be used to assess the impact of policies on

other APR-DRGs.
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Supplementary information

Table A1: Inclusion criteria for further analysis of the Acute Cough data.

Inclusion criterion
Number of

violations

Older than 18 years 1

Presence of acute cough 0

First consultation for this episode 0

Not included in this study before 2

Capable to fill in study material 0

Written consent for participation 0

Immunocompetent 0

Not treated with antibiotics in the past month 6

Not pregnant 1

Note that one patient can violate multiple inclusion criteria.
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Table A2: Variables included in the Acute Cough data.

Variable Description

CRF - exclusion criteria

Alergic penicill Presence of penicillin allergy

Hist physical exam Physical exam suggestive for pneumonia

CRF - interview by the GP

Cough Severity of cough (5-point scale)

Phlegm Severity of phlegm (5-point scale)

Breath Severity of breathlessness (5-point scale)

Wheeze Severity of wheezing (5-point scale)

Runn nose Severity of running nose (5-point scale)

Fever Severity of fever (5-point scale)

Chest pain Severity of chest pain (5-point scale)

Muscle ach Severity of muscle ache (5-point scale)

Headache Severity of headache (5-point scale)

Sleep Severity of sleeping problems (5-point scale)

Gen unwell Severity of general unwellness (5-point scale)

Interf act Severity of interference with daily activities (5-point scale)

Conf disor Severity of confusion (5-point scale)

Diarhh Severity of diarrhoea (5-point scale)

Phlegm colour Colour of phlegm (no colour, white, yellow, green, red, none

produced)

Dur pr illness Duration of present illness (in days)

Dur pr cough Duration of present cough (in days)

CRF - examination by the GP

Norm consc yn Normal consciousness
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Table A2 Continued.

Variable Description

Gen tox yn Sick impression

Dim vesic breaht yn Presence of diminished vesicular breath

Wheeze2 yn Presence of wheezing

Crackles2 yn Presence of crackles

Rhonchi2 yn Presence of rhonchi

Beats min Number of heart beats per minute

Breahts min Number of breaths per minute

Prol exp Prolonged expiration

Syst bp Systolic blood pressure

Diast bp Diastolic blood pressure

Oral temp Oral temperature

Suspected pneumonia Suspicion pneumonia

Prescr med yn Medication prescribed

Nr meds Number of prescribed drugs

Location Location the patient was seen (practice, home)

CRF - History taking by the GP

Copd yn Presence of chronic obstructive pulmonary disorder

Asthma yn Presence of asthma

Lung other yn Presence of other lung diseases

Heart fail yn Presence of heart failure

Isch heart yn Presence of ischemic heart disease

Other heart yn Presence of other heart diseases

Diabetes yn Presence of diabetes

Prev hosp resp yn Previously hospitalized for pulmonary disorder

Ab treat yn Treated with antibiotics in the past six months



152 Supplementary information

Table A2 Continued.

Variable Description

Allergic disease yn Presence of allergies (e.g. hay fever)

Other fine diseases Presence of other FINE disease

Ethic backgr Ethnic background (Caucasian, African, Asian, other)

Smoke Smoking status (never, past, now)

Smoke per day Number of cigarettes smoked per day

Smoke years Number of years smoked (up till now)

Inh bronch yn Use of inhaled bronchodilators

Inh ster yn Use of inhaled steroids

Or ster yn Use or oral steroids

Or agent diab yn Use of oral agents for diabetes

Insulin yn Use of insulin

Ant hyp yn Use of anti-hypertensives/diuretics

Non ster yn Use of non-steroidal anti-inflammatory drugs (oral)

Benz ad yn Use of benzodiazepines/antidepressants

Infl vacc yn Vaccination with flu vaccine

Patient diary - general questions

Age Age of the patient

Sex Gender of the patient

Longterm illness yn Presence of long-term illness

Fever eczema Ever experienced hay fever or eczema

Asthma family Presence of asthma in the family

Cough 2wksplus Number of cough episodes lasting longer than one week (in

the past year)

Chest wheez Presence of wheeze in past year

Chest tightness Presence of chest tightness in the past year
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Table A2 Continued.

Variable Description

Attack coughing Presence of coughing attacks in the past year

Smokestat Smoking status (current, past, never)

Smokeyears Year smoked (up till now)

Smokedays Number of cigarettes smoked per day

Stopsmoke Number of years stopped smoking

Day unwell Number of days unwell before consultation

Counter meds Consumption of over-the-counter drugs

Nr c meds Number of different over-the-counter drugs consumed

Other remedies cough Use of other cough remedies

Patient Diary - day 1

Mobility Inference with mobility (i.e. walking) (3-point scale)

Self care Interference with self care (e.g. getting dressed) (3-point

scale)

Usual activities Interference with usual activities (e.g. work) (3-point scale)

Pain discomfort Severity of discomfort (3-point scale)

Anxiety depression Severity of depression (3-point scale)

Day1 cough Severity of cough on day 1 (7-point scale)

Day1 phlegm Severity of phlegm on day 1 (7-point scale)

Day1 sh breath Severity of shortness of breath on day 1 (7-point scale)

Day1 wheeze Severity of wheezing on day 1 (7-point scale)

Day1 runny nose Severity of runny nose on day 1 (7-point scale)

Day1 chestpain Severity of chest pain on day 1 (7-point scale)
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Table A2 Continued.

Variable Description

Day1 fever Severity of fever on day 1 (7-point scale)

Day1 musc ache Severity of muscle ache on day 1 (7-point scale)

day1 head ache Severity of headache on day 1 (7-point scale)

Day1 dist sleep Severity of disturbed sleep on day 1 (7-point scale)

Day1 gen unwell Severity of general unwellness on day 1 (7-point scale)

Day1 int normact Severity of interference with normal activities on day 1 (7-

point scale)

day1 int socact Severity of interference with social activities on day 1 (7-

point scale)

Worsenewadmit Admission to hospital or reconsultation (with new or worse

complaints)

Country Country

Intervention Receiving amoxicillin or not

Season Season (winter,summer)

CRP Concentration of C-reactive protein (in mg/l)

BUN Concentration of blood urea nitrogen (in mg/dl)

GP: general practitioner

3-point scale: no problem, moderate problem, severe problem

5-point scale: absent, no problem, mild problem, moderate problem, severe problem

7-point scale: absent, very small problem, small problem, moderate problem,severe

problem, very severe problem, could not be worse
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Step 1 
 

 Age > 50 
 Congestive heart failure 
 Other FINE disease (e.g. neoplastic disease, renal disease, liver disease, …) 
 Confusion 
 Pulse ≥ 125 beats/min 
 Respiratory rate ≥ 30 breaths/min 
 Systolic blood pressure < 90 mm Hg 
 Oral temperature < 35°C or ≥ 40°C 

 

None of these characteristics present => risk class I 
Otherwise  proceed to step 2 

 

Step 2 
 

Characteristic 

 
 

Points 
age for men 
age for women 
nursing home resident 
neoplastic disease 
liver disease 
congestive heart failure 
cerebrovascular disease 
renal disease 
altered mental status 
respiratory rate ≥ 30 breaths/minute 
systolic blood pressure < 90 mm Hg 
temperature < 35°C or ≥ 40°C 
pulse ≥ 125 beats/minute 
arterial pH < 7.35 
blood urea nitrogen ≥ 11 mmol/l  
sodium < 130 mmol/l 
glucose ≥ 14 mmol/l 
haematocrit < 30% 
partial pressure of arterial oxygen < 60 mm Hg 
or oxygen saturation <  90% on pulse oximetry 
pleural effusion 

age (years)  
age (years) – 10 
+ 10 
+ 30 
+ 20 
+ 10  
+ 10  
+ 10 
+ 20 
+ 20 
+ 20 
+ 15 
+ 10 
+ 30 
+ 20 
+ 20 
+ 10 
+ 10 
+ 10 
 
+ 10 

 

PSI score Category 
0 Class I – very low mortality 

≤ 70 Class II – low mortality 

71 - 90 Class III – intermediate mortality 

91 - 130 Class IV – high mortality 

> 130 Class V – very high mortality 

 

Figure A1: The Pneumonia Severity Index.
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Abbreviation Clinical factor Points 

C Confusion 1 

U Blood urea nitrogen > 19 mg/dl 1 

R Respiratory rate ≥ 30 breaths/min 1 

B 

Systolic blood pressure < 90 mm Hg 

   or 

Diastolic blood pressure ≤ 60 mmHg 

1 

65 Age ≥ 65 1 

 

CRB score Category 

0 or 1 Non-severe pneumonia 

2 or 3 Severe pneumonia 

 

CURB score Category 

0 or 1 Non-severe pneumonia 

2 or 3 or 4 Severe pneumonia 

 

CRB-65 score Category 

0 Low mortality – likely suitable for home treatment 

1 or 2  Intermediate mortality – likely need for hospitalisation  

3 or 4 High mortality – urgent hospitalisation  

 

CURB-65 score Category 

0 or 1 Low mortality – likely suitable for home treatment 

2  Intermediate mortality –hospital supervised treatment  

3 or 4 or 5 High mortality – manage in hospital as severe pneumonia 

 

Figure A2: The CRB, CURB, CRB-65 and CURB-65 scores.
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Table A3: Pooled parameter estimates and standard errors for the full general model

over three cross-validations.

Parameter Cross-validation 1 Cross-validation 2 Cross-validation 3

Group A -0.652 (0.623) -0.454 (0.603) 0.266 (0.591)

Group B -0.006 (0.616) 0.012 (0.597) 0.727 (0.586)

Group C 0.346 (0.641) 0.350 (0.631) 0.982 (0.618)

Crackles2 yn -0.381 (0.191) -0.310 (0.193) -0.562 (0.189)

Day1 phlegm 1 -0.625 (0.310) -0.588 (0.340) -0.616 (0.268)

Day1 phlegm 2 -0.426 (0.271) 0.239 (0.217) -0.016 (0.257)

Day1 phlegm 3 0.087 (0.222) 0.197 (0.193) -0.173 (0.206)

Day1 phlegm 4 0.263 (0.222) 0.473 (0.223) 0.063 (0.226)

Day1 phlegm 5 0.299 (0.253) 0.364 (0.258) 0.049 (0.268)

Day1 phlegm 6 -0.156 (0.359) -0.289 (0.329) -0.365 (0.300)

Usual acitvities 2 0.253 (0.145) 0.388 (0.134) 0.286 (0.135)

Usual activities 3 0.736 (0.242) 0.884 (0.239) 1.018 (0.250)

stopsmoke 0.005 (0.003) 0.006 (0.002) 0.007 (0.003)

Diast BP -0.012 (0.006) -0.015 (0.006) -0.016 (0.006)
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Table A4: Pooled parameter estimates and standard errors for the reduced general

models over three cross-validations.

Parameter Cross-validation 1 Cross-validation 2 Cross-validation 3

Group A -1.364 (0.500) -1.034 (0.481) -0.920 (0.454)

Group B -0.729 (0.485) -0.573 (0.471) -0.492 (0.437)

Group C -0.352 (0.528) 0.229 (0.519) -0.220 (0.489)

Day1 phlegm 1 -0.611 (0.307) -0.590 (0.338) -

Day1 phlegm 2 -0.412 (0.269) 0.238 (0.217) -

Day1 phlegm 3 0.105 (0.221) 0.208 (0.192) -

Day1 phlegm 4 0.289 (0.221) 0.480 (0.222) -

Day1 phlegm 5 0.308 (0.253) 0.369 (0.257) -

Day1 phlegm 6 -0.117 (0.356) -0.274 (0.328) -

Usual acitvities 2 0.251 (0.154) 0.389 (0.133) 0.289 (0.134)

Usual activities 3 0.741 (0.242) 0.903 (0.239) 1.011 (0.248)

stopsmoke 0.005 (0.003) 0.006 (0.002) 0.007 (0.003)

Diast BP -0.012 (0.006) -0.015 (0.006) -0.015 (0.005)
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Table A5: Performance characteristics for the fixed effect Ageij in the three covariates

model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 -2.030 0.288 -1.5 1.1 1.144 94.9

5 -2.041 0.280 -0.9 3.8 1.143 96.6

10 -2.034 0.283 -1.3 2.3 1.139 95.2

15 -2.046 0.287 -0.7 1.0 1.140 95.5

20 -2.044 0.284 -0.8 1.3 1.133 95.9

25 -2.046 0.296 -0.7 -2.5 1.135 94.7

30 -2.038 0.275 -1.1 5.2 1.138 96.4

35 -2.020 0.294 -1.9 -2.0 1.133 93.8

40 -2.046 0.283 -0.7 1.5 1.129 95.1

45 -2.024 0.283 -1.7 0.8 1.124 95.6

50 -2.035 0.292 -1.2 -2.0 1.127 94.1

55 -2.038 0.287 -1.1 -0.5 1.125 95.4

60 -2.024 0.274 -1.8 4.5 1.126 94.6

65 -2.048 0.289 -0.6 -1.4 1.119 95.4

70 -2.036 0.274 -1.2 2.8 1.107 95.5

75 -2.044 0.278 -0.8 0.6 1.102 94.6

80 -2.026 0.269 -1.6 4.8 1.110 95.4

85 -2.032 0.268 -1.4 4.0 1.098 96.4

90 -2.037 0.285 -1.1 -1.5 1.104 94.6

95 -2.029 0.275 -1.5 -0.7 1.075 93.9

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error
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Table A6: Performance characteristics for the fixed effect Reason2ij in the three

covariates model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 -21.724 7.006 -1.2 -0.1 27.552 95.2

5 -21.851 6.927 -0.7 0.4 27.353 94.8

10 -21.889 7.150 -0.5 -2.6 27.411 94.6

15 -21.922 7.059 -0.3 -0.6 27.605 95.5

20 -21.968 7.092 -0.1 -1.3 27.554 95.1

25 -21.595 7.003 -1.8 -0.1 27.529 94.0

30 -21.874 7.108 -0.5 -2.8 27.193 94.7

35 -21.657 6.960 -1.5 -1.0 27.103 94.9

40 -21.551 7.078 -2.0 -1.9 27.320 95.3

45 -21.965 6.761 -0.1 1.7 27.039 95.9

50 -21.842 6.716 -0.7 4.1 27.505 95.5

55 -22.068 7.268 0.3 -4.2 27.386 93.5

60 -22.106 6.655 0.5 2.9 26.954 96.4

65 -21.733 6.805 -1.2 -1.0 26.493 94.4

70 -21.932 6.778 -0.3 0.4 26.766 95.1

75 -21.867 6.717 -0.6 0.9 26.671 95.1

80 -21.647 6.935 -1.6 -0.0 27.284 95.4

85 -21.718 6.758 -1.3 2.9 27.352 96.2

90 -21.707 6.245 -1.3 3.9 25.535 96.0

95 -21.677 6.012 -1.4 0.4 23.760 95.2

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error
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Table A7: Performance characteristics for the fixed effect Reason3ij in the three

covariates model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 -5.362 3.057 -4.0 1.1 12.164 94.8

5 -5.329 3.041 -4.6 1.5 12.140 95.5

10 -5.703 3.123 2.1 -1.4 12.120 95.2

15 -5.699 3.102 2.0 -0.8 12.109 94.1

20 -5.634 3.109 0.9 -1.3 12.072 94.8

25 -5.424 3.071 -2.9 -0.1 12.070 94.1

30 -5.494 3.076 -1.6 -0.2 12.074 94.9

35 -5.515 3.108 -1.3 -1.5 12.050 94.4

40 -5.587 3.126 0.0 -2.2 12.026 94.8

45 -5.604 3.118 0.3 -2.1 12.009 94.9

50 -5.438 3.102 -2.6 -1.7 11.997 94.9

55 -5.398 3.119 -3.4 -2.6 11.954 94.5

60 -5.658 2.982 1.3 1.8 11.941 95.8

65 -5.498 3.158 -1.6 -4.2 11.900 93.8

70 -5.597 2.958 0.2 2.2 11.892 95.4

75 -5.668 3.079 1.5 -2.1 11.855 95.1

80 -5.493 3.027 -1.7 0.1 11.920 94.8

85 -5.534 3.137 -0.9 -4.2 11.821 93.9

90 -5.482 2.995 -1.8 -0.1 11.775 95.2

95 -5.619 3.074 0.6 -3.5 11.670 93.8

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error
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Table A8: Performance characteristics for the fixed intercept in the three covariates

model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 82.856 4.624 -0.1 -0.7 18.267 94.6

5 82.878 4.555 -0.1 1.4 18.380 95.4

10 83.071 4.718 0.1 -0.8 18.633 95.3

15 83.022 4.698 0.1 0.9 18.887 95.6

20 83.140 4.652 0.2 0.8 18.691 94.9

25 82.960 4.788 0.0 -0.5 19.010 95.3

30 82.807 5.025 -0.2 -3.9 19.270 93.3

35 82.840 5.024 -0.1 -2.7 19.528 94.9

40 82.752 4.929 -0.2 1.7 20.038 96.1

45 82.854 5.246 -0.1 -3.1 20.336 94.2

50 82.758 5.148 -0.2 -2.0 20.213 94.4

55 82.804 5.330 -0.2 -3.5 20.638 94.2

60 82.689 5.437 -0.3 -3.6 21.045 94.5

65 82.938 5.267 -0.0 2.7 21.755 95.3

70 82.992 5.647 0.0 -1.5 22.357 95.1

75 82.880 6.177 -0.1 -7.1 23.101 94.5

80 82.834 5.976 -0.1 -3.6 23.298 94.9

85 82.530 6.318 -0.5 -6.1 24.125 92.6

90 82.741 6.784 -0.3 -7.6 25.402 93.9

95 82.914 6.901 -0.0 -1.1 27.151 94.1

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error
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Table A9: Performance characteristics for the fixed effect Size2j in the three covariates

model with an increasing percentage of singletons.

Singletons (%) Mean SES RDM (%) RDE (%) Length CI Coverage

0 4.401 5.352 -1.5 1.5 21.840 95.9

5 4.408 5.603 -1.4 -1.5 22.190 95.7

10 4.412 5.458 -1.3 1.8 22.367 94.8

15 4.630 5.687 3.6 -0.6 22.758 94.6

20 4.327 5.546 -3.2 1.5 22.687 95.6

25 4.227 5.960 -5.4 -3.6 23.185 94.0

30 4.472 6.012 0.1 -2.8 23.575 94.8

35 4.522 6.061 1.2 -2.2 23.949 95.1

40 4.875 5.895 9.1 2.6 24.468 96.0

45 4.519 6.156 1.1 -0.2 24.871 95.3

50 4.725 6.427 5.7 -4.1 25.013 93.6

55 4.206 6.614 -5.9 -4.5 25.659 94.2

60 4.850 6.864 8.5 -6.0 26.241 93.3

65 4.411 6.584 -1.3 1.6 27.243 95.8

70 4.497 6.889 0.6 -1.6 27.661 95.2

75 4.589 7.460 2.7 -6.1 28.635 94.1

80 4.838 7.255 8.2 -1.3 29.436 95.7

85 4.742 8.013 6.1 -7.9 30.729 93.7

90 4.334 8.209 -3.0 -4.9 32.493 93.6

95 4.709 8.798 5.4 -4.7 34.498 94.2

SES: simulation standard error

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error



164 Supplementary information

0 20 40 60 80

−
10

0
−

50
0

50
10

0

Percentage of singletons (%)

R
D

M
 (

%
)

0 20 40 60 80

−
10

0
−

50
0

50
10

0

Percentage of singletons (%)

R
D

E
 (

%
)

0 20 40 60 80

0
50

10
0

15
0

Percentage of singletons (%)

C
on

fid
en

ce
 in

te
rv

al
 le

ng
th

0 20 40 60 80

0
20

40
60

80
10

0

Percentage of singletons (%)

C
on

fid
en

ce
 in

te
rv

al
 C

ov
er

ag
e

RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error

Figure A3: Performance measures for the fixed effect Ageij when ignoring (dotted

lines), deleting (dashed lines) or grouping (dot-dashed lines) the singletons, compared

to performance measures for the three covariates model on the original data (full lines).
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RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error

Figure A4: Performance measures for the fixed effect Reason2ij when ignoring (dotted

lines), deleting (dashed lines) or grouping (dot-dashed lines) the singletons, compared

to performance measures for the three covariates model on the original data (full lines).
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RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error

Figure A5: Performance measures for the fixed effect Reason3ij when ignoring (dotted

lines), deleting (dashed lines) or grouping (dot-dashed lines) the singletons, compared

to performance measures for the three covariates model on the original data (full lines).
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RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error

Figure A6: Performance measures for the fixed intercept when ignoring (dotted lines),

deleting (dashed lines) or grouping (dot-dashed lines) the singletons, compared to

performance measures for the three covariates model on the original data (full lines).
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RDM: relative difference between estimated and true mean

RDE: relative difference between estimated and true standard error

Figure A7: Performance measures for the fixed effect Size2j when ignoring (dotted

lines), deleting (dashed lines) or grouping (dot-dashed lines) the singletons, compared

to performance measures for the three covariates model on the original data (full lines).
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Figure A8: F test rejection rates for fixed effect Age in the model when ignoring

(dotted lines), dropping (dashed lines) or regrouping (dot-dashed lines) the singletons,

compared to performance measures for the three covariates model fitted to the original

data (full lines).
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Table A12: Average parameter estimates and standard deviations of the fixed effects

estimates in the three additional scenarios for Scenario 3 under ML and REML (under

H0).

Scenario 3 Scenario 3b Scenario 3d Scenario 3c

Intercept ML 71.75 (14.39) 72.26 (10.37) 71.75 (14.39) Intercept ML 71.71 (8.08)

REML 71.75 (14.39) 72.26 (10.37) 71.75 (14.39) REML 71.71 (8.08)

Region 1 ML 0.06 (18.04) -0.44 (14.97) 0.06 (18.04) Group 1 ML 0.10 (13.59)

REML 0.06 (18.04) -0.44 (14.97) 0.06 (18.04) REML 0.10 (13.59)

Region 2 ML 0.50 (17.65) 0.50 (17.65) Group 2 ML 0.55 (13.24)

REML 0.50 (17.65) 0.50 (17.65) REML 0.55 (13.24)

Region 3 ML -0.31 (20.86) -0.31 (20.86)

REML -0.31 (20.86) -0.31 (20.86)

Region 4 ML 0.18 (20.36) 0.18 (20.36)

REML 0.18 (20.36) 0.18 (20.36)

Note: The intercept in Scenario 3b corresponds to Region 2 from Scenario 3. .

The intercept in Scenario 3c contains all singletons from Scenario 3 .

Table A13: Average parameter estimates and standard deviations of the fixed effects

estimates in the three additional scenarios for Scenario 3 under ML and REML (under

Ha).

Scenario 3 Scenario 3b Scenario 3d Scenario 3c

Intercept ML 99.03 (15.22) 64.28 (10.20) 99.03 (15.22) Intercept ML 84.84 (8.60)

REML 99.03 (15.22) 64.28 (10.20) 99.03 (15.22) REML 84.84 (8.60)

Region 1 ML -39.44 (18.03) -4.69 (13.85) -39.44 (18.03) Group 1 ML -25.25 (12.91)

REML -39.44 (18.03) -4.69 (13.85) -39.44 (18.03) REML -25.25 (12.91)

Region 2 ML -34.75 (18.42) -34.75 (18.42) Group 2 ML -20.56 (13.18)

REML -34.75 (18.42) -34.75 (18.42) REML -20.56 (13.18)

Region 3 ML -28.19 (20.22) -28.19 (20.22)

REML -28.19 (20.22) -28.19 (20.22)

Region 4 ML -14.37 (21.88) -14.37 (21.88)

REML -14.37 (21.88) -14.37 (21.88)

Note: The intercept in Scenario 3b corresponds to Region 2 from Scenario 3. .

The intercept in Scenario 3c contains all singletons from Scenario 3 .
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Table A14: Average parameter estimates and standard deviations of the fixed effects

estimates in the three additional scenarios for Scenario 10 under ML and REML

(under H0).

Scenario 10 Scenario 10b Scenario 10d Scenario 10c

Intercept ML 71.58 (9.20) 71.57 (8.97) 71.59 (9.16) Intercept ML 71.55 (8.89)

REML 71.55 (8.86) 71.55 (8.86) 71.56 (8.91) REML 71.53 (8.84)

Region 1 ML -0.11 (21.44) -0.12 (21.41) Group 1 ML 0.12 (10.90)

REML -0.08 (21.30) -0.09 (21.32) REML 0.16 (10.83)

Region 2 ML -0.22 (17.22) -0.23 (17.20)

REML -0.19 (17.07) -0.20 (17.09)

Region 3 ML -0.37 (17.21) -0.38 (17.16)

REML -0.34 (16.94) -0.35 (16.98)

Region 4 ML 0.80 (18.34) 0.79 (18.34)

REML 0.83 (18.31) 0.82 (18.31)

Region 5 ML 0.48 (14.39) 0.45 (14.17) 0.47 (14.34) Group 2 ML 0.45 (13.94)

REML 0.42 (14.01) 0.44 (14.01) 0.44 (14.06) REML 0.42 (13.87)

Region 6 ML 0.51 (17.34) 0.51 (17.33)

REML 0.54 (17.15) 0.54 (17.20)

Region 7 ML -0.16 (13.26) -0.11 (12.82) -0.16 (13.17) Group 3 ML -0.09 (12.62)

REML -0.11 (12.56) -0.11 (12.57) -0.13 (12.68) REML -0.06 (12.51)

Region 8 ML 0.09 (17.45) 0.08 (17.44)

REML 0.12 (17.27) 0.11 (17.29)

Region 9 ML 0.68 (14.98) 0.59 (14.44) 0.63 (14.91) Group 4 ML 0.54 (14.33)

REML 0.54 (14.26) 0.55 (14.26) 0.60 (14.31) REML 0.53 (14.26)

Note: The intercept in Scenario 10b corresponds to the intercept from Scenario 10.

Group 1 in Scenario 10c contains all singletons from Scenario 10 .
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Table A15: Average parameter estimates and standard deviations of the fixed effects

estimates in the three additional scenarios for Scenario 10 under ML and REML

(under Ha).

Scenario 10 Scenario 10b Scenario 10d Scenario 10c

Intercept ML 64.75 (8.92) 64.73 (8.70) 64.74 (8.86) Intercept ML 64.75 (8.47)

REML 64.73 (8.54) 64.74 (8.55) 64.74 (8.60) REML 64.75 (8.44)

Region 1 ML 5.32 (20.61) 5.33 (20.58) Group 1 ML 12.40 (10.49)

REML 5.33 (20.46) 5.33 (20.47) REML 12.23 (10.44)

Region 2 ML 5.84 (17.02) 5.86 (17.00)

REML 5.86 (16.79) 5.86 (16.83)

Region 3 ML 34.68 (17.63) 34.69 (17.59)

REML 34.69 (17.45) 34.69 (17.49)

Region 4 ML -4.12 (17.10) -4.10 (17.06)

REML -4.10 (16.80) -4.11 (16.85)

Region 5 ML -2.53 (13.47) -2.55 (13.21) -2.52 (13.41) Group 2 ML -2.56 (13.02)

REML -2.58 (13.09) -2.59 (13.09) -2.56 (13.13) REML -2.58 (13.05)

Region 6 ML 7.40 (17.00) 7.41 (16.96)

REML 7.41 (16.82) 7.41 (16.85)

Region 7 ML 1.93 (12.76) 1.96 (12.43) 1.94 (12.68) Group 3 ML 1.95 (12.12)

REML 1.98 (12.17) 1.98 (12.17) 1.95 (12.20) REML 1.93 (12.12)

Region 8 ML 20.96 (18.03) 20.98 (18.00)

REML 20.98 (17.86) 20.97 (17.90)

Region 9 ML 6.95 (14.96) 6.91 (14.29) 6.98 (14.79) Group 4 ML 6.94 (13.83)

REML 6.92 (13.93) 6.92 (13.93) 6.94 (14.05) REML 6.92 (13.80)

Note: The intercept in Scenario 10b corresponds to the intercept from Scenario 10.

Group 1 in Scenario 10c contains all singletons from Scenario 10 .



Summary

Antibiotics are drugs that are used to treat bacterial infections. Over time, the use

and misuse of antibiotics has lead to resistance of bacteria to several antibiotics. One

part of the solution to this worldwide public health problem is to gather trustworthy

information on antibiotic use and its relationship with resistance.

With an incidence of 30 to 50 cases per 1000 patients per year, acute cough is one of

the main reasons for consulting in primary care. Although antibiotic treatment for

acute cough cases has been shown to have little or no effect, antibiotics are prescribed

to over 50% of patients. In Chapter 2, we used data on adults presenting to primary

care with acute cough in six European countries (i.e. Belgium, the Netherlands, the

UK, Germany, Poland and Spain) to develop a prediction rule for poor prognosis (i.e.

admission to hospital or reconsultation with new or worsened complaints), which will

enable general practitioners to reassure patients at low risk and provide appropriate

treatment for patients at high risk.

In order to account for the fact that different countries have a different baseline prob-

ability to experience poor prognosis, they were grouped according to this baseline risk

(in three groups: < 15%, 15− 25% and > 25%). Missing values were imputed using

multiple imputations by chained equations, and a combination of group-specific con-

ditional inference trees and logistic regression were used to construct a new prediction

rule. Important predictors were the country’s baseline risk for poor prognosis, the

presence of crackles during physical examination, the severity of phlegm as assessed

by the patient, the severity of interference with daily activities, the time since the pa-

tient last smoked and the patient’s diastolic blood pressure. Including measurements

of C-reactive protein or blood urea nitrogen in this prediction rule did not improve its

discriminative performance. The new prediction rule was shown to be quite stable in

cross-validation, and to outperform available prediction rules, although there is room

for further improvement.
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Data that are used to study antibiotic consumption in hospitalized patients often

have a hierarchical structure, with patients nested in departments, nested in hospi-

tals, nested in countries. Such a complex multi-level structure automatically gives

rise to sparseness issues caused by the low number of subunits at different levels of

the hierarchy. Whenever a higher-level unit contains only one subunit, this unit is

referred to as a singleton. In Chapter 3, we used a simulation study to evaluate the

performance of the linear multi-level model in the presence of singletons at the lowest

level (i.e. the child). Performance was assessed using four different performance char-

acteristics which revealed that neither the relative difference between the estimated

and true mean nor the relative difference between estimated and true standard error

were affected by the percentage of singletons in the data. The width of the confidence

interval fluctuated for an effect at the level of the child, while it increased with the

percentage of singletons for an effect at the level of the department. The coverage

approached 95% for explanatory variables at both levels and for varying percentages

of singletons. Because some of the simulated datasets contain a fairly high proportion

of singletons, one might decide to either ignore the dependency within clusters (ignor-

ing singletons), remove the singletons from the data (dropping singletons) or group

them into an artificial department (regrouping singletons). Using a simulation study

we showed that ignoring and dropping the singletons should be avoided as they come

with low coverage and wide confidence intervals, respectively. Regrouping the single-

tons into an artificial department might be considered, although the regular linear

multi-level model performs better even when the percentage of singletons increases.

If the data at hand contain a high percentage of singletons at the lowest level of the

hierarchy, the linear multi-level model can be used safely.

In Chapter 4, we used a simulation study to evaluate the performance of the F test

in the presence of singletons at the highest level (i.e. the macro-geographical region).

Performance was assessed using type I error rate, power and corrected power for sce-

narios simulated under the null or a specific alternative hypothesis, and showed that

the F test performs well when there are no singletons at the highest level, while it

performs inadequately when there are. We studied the impact of deleting, regrouping

or splitting the singletons and demonstrated that they could solve either the problem

of a high type I error rate or the problem of low power, while worsening the other.

As alternatives to the F test, we considered the Wald test, likelihood ratio test and

permutation test. While performance of the Wald and likelihood ratio test were com-

parable to the performance of the F test, the permutation test outperformed the F

test. We therefore recommend to use the permutation test to determine significance

of a fixed effect at the primary level in a multi-level model with a continuous outcome
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suffering from primary unit sparseness. Ideally, a permutation test should also be

used to determine the significance of fixed effects at lower levels.

In Chapter 5, we used the findings from the two previous chapters and data on antibi-

otic doses prescribed to hospitalized children to determine which factors are causing

variation in doses of β-lactam antibiotics prescribed to hospitalized children. We

used a linear multi-level model, correcting for the presence of two different prescrib-

ing styles, to determine the causes of variation in prescribed ceftriaxone doses and

showed that doses of ceftriaxone are lower when prescribed to children receiving em-

piric treatment, with lower weight and with less severe reason for treatment. Using

a meta-model for the β-lactam antibiotics that includes a fixed effect for the type of

antibiotic and an interaction between each predictor and the type of antibiotic, we

showed that most predictors acted on an antibiotic-specific basis. Variables that influ-

enced the 12 included β-lactam antibiotics in a similar fashion were type of treatment

and type of hospital, with lower doses prescribed in primary or secondary hospitals

(compared to tertiary and specialized hospitals) and for empiric treatment (compared

to targeted treatment).

One factor influencing antibiotic dosing that could not be assessed in Chapter 5

is time. In Chapter 6, we used information on outpatient antibiotic consumption

reported quarterly and expressed in the number of defined daily doses or packages

per 1000 inhabitants per day to assess the evolution of outpatient antibiotic use over

time. Using a non-linear mixed model, that includes a sine wave to model the sea-

sonal variation of antibiotic consumption, we showed that conclusions based on both

measures can be contradictory, with antibiotic use expressed in defined daily doses

showing a significant increase over time while antibiotic use expressed in packages

did not change significantly. The agreement between random effects for both models

was studied by combining the final models into one joint model, which showed that

matching intercepts, slopes and amplitudes were highly correlated, albeit not per-

fectly. Using a linear mixed model, we showed that the number of defined daily doses

per package increased significantly over time.

In Chapter 7 we linked information on outpatient antibiotic use reported yearly with

information on resistance levels reported yearly to investigate whether the number of

defined daily doses or the number of packages best explains the association. Using a

generalized linear mixed model with different time lags, we showed that the associ-

ation between β-lactam use and resistance is modelled best without a time lag and

using the number of packages alone, while the association between the use of tetracy-

cline, macrolide, lincosamide and streptogramin and resistance needs a one year time
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lag and both the number of defined daily doses and the number of packages.

In Chapter 8, we focussed on resistance profiles in streptococci which reside asymp-

tomatically in the oropharynx and compared the persistence of resistance after expo-

sure to penicillins and cephalosporins or macrolides and tetracyclines using data on

individual antibiotic consumption and resistance status. Using a generalized estimat-

ing equations model, corrected for antibiotic- and bacteria-specific baseline resistance,

we showed that the rate of increase in the odds of being susceptible did not differ after

treatment with penicillins and cephalosporins or macrolides and tetracyclines. The

proportion of susceptible isolates directly after treatment was significantly different,

which implies that it would take longer for the proportion of susceptible isolates to

recover after treatment with marcolides and tetracyclines than after treatment with

penicillins and cephalosporins.

In Belgium, several attempts have been made to lower resistance rates by optimizing

antibiotic consumption through e.g. the introduction of antimicrobial management

teams in hospitals. In Chapter 9, we fitted a generalized linear mixed model contain-

ing change-points to data on yearly antibiotic consumption within Belgian hospitals to

determine the impact of these policies on three selected quality indicators. We showed

that the proportion of compliant antibiotic prescriptions for limb surgery at patient

level was changed suddenly by both the establishment of antimicrobial management

teams and the 2001 antimicrobial awareness campaign. The number of defined daily

doses per 100 hospital days for pneumonia (at hospital level) was changed suddenly

by both the 2001 antibiotic awareness campaign and the new financing mechanism

in 2006. The ratio of oral over parenteral use for pneumonia (at hospital level) was

changed suddenly by the new financing mechanism in 2006. No additional change-

points were required in the models and a time lag for implementation of these changes

in different hospitals was redundant. Although all these sudden changes were statis-

tically significant, only the decrease in the number of defined daily doses per 100

hospital days for pneumonia seen in 2001 was steep enough to be clinically relevant.
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Antibiotica zijn geneesmiddelen die gebruikt worden om bacteriële infecties te

bestrijden. Doorheen de jaren heeft het gebruik, en misbruik, van antibiotica ertoe

geleid dat vele bacteriën resistent geworden zijn tegen bepaalde antibiotica. Een

deel van de oplossing voor dit probleem is de verzameling van betrouwbare

informatie omtrent antibioticagebruik en de relatie met resistentie.

Met een incidentie van 30 tot 50 gevallen per 1000 patiënten per jaar is acute hoest

een van de voornaamste reden om een huisarts te consulteren. Hoewel een

behandeling met antibiotica in dit geval geen tot weinig effect heeft, worden

antibiotica voorgeschreven in meer dan 50% van de gevallen. In Hoofdstuk 2,

gebruikten we data rond volwassenen die met acute hoestklachten naar de huisarts

gingen in zes Europese landen (nl. België, Nederland, het Verenigd Koninkrijk,

Duitsland, Polen en Spanje) om een predictieregel voor slechte prognose (zijnde

opname in het ziekenhuis of een tweede consultatie met nieuwe of erger geworden

klachten) te ontwikkelen, die huisartsen zal helpen om patiënten met laag risico op

slechte prognose gerust te stellen en een gepaste behandeling op te starten bij

patiënten met hoog risico op slechte prognose.

Omdat het basisrisico op slechte prognose verschilt per land, werden landen

gegroepeerd volgens dit basisrisico (in drie groepen: < 15%, 15− 25% en > 25%).

Ontbrekende observaties werden gëımputeerd, en de nieuwe predictieregel werd

opgebouwd met behulp van groep-specifieke modellen. Predictoren die belangrijk

zijn in het voorspellen van slechte prognose zijn het basisrisico op slechte prognose,

de aanwezigheid van crepitaties, de ernst van ophoesten van slijmen beoordeeld door

de patiënt, de hinder die ondervonden wordt bij het uitvoeren van dagelijkse

activiteiten (vb. werk, huishouden), de tijd sinds de patiënt stopte met roken en de

diastolische bloeddruk. Het in rekening brengen van de concentratie aan C-reactief

protëıne of ureum in het bloed verbeterden de predictieregel niet. De nieuwe

predictieregel was stabiel, en een verbetering ten opzichte van bestaande
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predictieregels, hoewel er nog ruimte is voor verdere verbetering.

Gegevens die worden gebruikt om antibioticagebruik bij gehospitaliseerde patiënten

te bestuderen hebben vaak een hiërarchisch karakter, waarbij patiënten genest zijn

binnen departementen, die genest zijn binnen hospitalen, die genest zijn binnen

landen. Zulke complexe hiërarchische structuren brengen automatisch problemen

met zich mee, veroorzaakt door het lage aantal subeenheden binnen eenheden op

verschillende niveaus in de hiërarchie. Wanneer een eenheid maar één subeenheid

bevat wordt deze eenheid een singleton genoemd. In Hoodstuk 3 evalueerden we de

stabiliteit van het multi-level model in aanwezigheid van singletons op het laagste

niveau (zijnde het kind) door middel van een simulatiestudie. Stabiliteit werd

beoordeeld door vier verschillende karakteristieken, die aantoonden dat noch het

relatieve verschil tussen het geschatte en ware gemiddelde, noch het verschil tussen

de geschatte en ware standaardfout bëınvloed werden door het percentage

singletons. De breedte van het betrouwbaarheidsinterval fluctueerde lichtjes voor

een predictor op het niveau van het kind, maar steeg met het percentage singletons

voor een effect op het niveau van het departement. De dekking van het

betrouwbaarheidsinterval benaderde 95% voor predictoren op beide niveaus en voor

verschillende percentages singletons. Omdat sommige van de gesimuleerde datasets

een redelijk hoog percentage singletons bevatten, zou men kunnen besluiten om de

afhankelijkheid binnen een unit (zijnde het departement) te negeren, de singletons

weg te laten uit de analyse of de singletons te groeperen in een artificiële unit. Wij

toonden aan dat het negeren van de afhankelijkheid binnen een unit of het weglaten

van de singletons uit de analyse ten allen tijde moet vermeden worden. Deze opties

gaan namelijk gepaard met een lage dekkingsgraad van het

betrouwbaarheidsinterval of brede betrouwbaarheidsintervallen. Het hergroeperen

van singletons in een artificiële unit kan overwogen worden, hoewel het algemene

multi-level model het beter doet, zelfs bij een toegenomen percentage singletons. Als

de beschikbare data een hoog percentage singletons op het laagste niveau bevatten,

kan het multi-level model dan ook veilig worden toegepast.

In Hoofdstuk 4, gebruikten we een simulatiestudie om de stabiliteit van de F test te

evalueren wanneer er singletons zijn op het hoogste niveau (zijnde de

macro-geografische regio). Stabiliteit werd beoordeeld aan de hand van type I fout,

power en gecorrigeerde power, voor scenarios die werden gesimuleerd onder de nul of

een specifieke alternatieve hypothese. We toonden aan dat de F test een

betrouwbare test is wanneer er geen singletons zijn, hoewel hij in de aanwezigheid

van singletons ondermaats presteert. We bestudeerden het effect van het weglaten,
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hergroeperen of opsplitsen van singletons en zagen dat deze opties een daling of een

stijging veroorzaakten van zowel type I fout als power. Als alternatieven voor de

F test bekeken we de Wald test, likelihood ratio test en permutatietest. Zowel de

Wald test als de likelihood ratio test waren vergelijkbaar met de F test, terwijl de

permutatietest veel beter deed. We raden dan ook aan om voor het testen van een

fixed effect op het hoogste niveau van het multi-level model, een permutatietest te

gebruiken. Idealiter wordt ook voor het testen van effecten op andere niveaus een

permutatietest gebruikt.

In Hoofdstuk 5, maakten we gebruik van gegevens rond antibioticagebruik bij

gehospitaliseerde kinderen om factoren die variabiliteit in voorgeschreven dosissen

van β-lactam antibiotica veroorzaken te bepalen. We gebruikten een multi-level

model, gecorrigeerd voor aanwezigheid van twee verschillende stijlen van

voorschrijven, om te bepalen welke factoren variabiliteit in voorgeschreven

ceftriaxone dosissen veroorzaakten en toonden aan dat lagere dosissen ceftriaxone

worden voorgeschreven wanneer de behandeling empirisch is, het kind minder weegt

of de reden voor behandeling niet ernstig is. Aan de hand van een meta-model voor

β-lactam antibiotica, dat een fixed effect bevat voor het type antibiotica en een

interactie tussen elke predictor en het type antibiotica, toonden we aan dat de

meeste predictoren op een antibiotica-specifieke manier werken. Predictoren die de

12 β-lactam antibiotica op eenzelfde manier bëınvloeden zijn type van behandeling

en type van hospitaal, waarbij een lagere dosis wordt voorgeschreven in primaire of

secundaire ziekenhuizen (in vergelijking met tertiaire of gespecialiseerde

ziekenhuizen) en voor empirische behandeling (in vergelijking met doelgerichte

behandeling).

Een factor die we niet konden bestuderen in Hoofdstuk 5 is tijd. In Hoofdstuk 6

gebruikten we informatie rond antibioticagebruik bij ambulante patiënten,

uitgedrukt in aantal dagelijks aanbevolen dosissen of aantal pakketjes, om de

evolutie van antibioticagebruik over de tijd te bestuderen. We gebruikten een

niet-lineair mixed model, dat een sinusfunctie bevat om seizoensvariatie te

modelleren, en toonden aan dat conclusies op basis van dosissen en pakketjes

contradictorisch zijn, aangezien gebruik uitgedrukt in aantal dosissen significant

steeg terwijl gebruik uitgedrukt in aantal pakketjes niet significant veranderde. Aan

de hand van een lineair mixed model toonden we aan dat het aantal dosissen per

pakket over de tijd significant toegenomen is.

In Hoofdstuk 7 linkten we jaarlijkse gegevens rond antibioticagebruik bij ambulante

patiënten met gegevens rond jaarlijkse resistentieniveaus. Met een generalized linear
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mixed model toonden we aan dat de associatie tussen gebruik van β-lactam

antibiotica en resistentie best gemodelleerd wordt met gegevens rond

antibioticagebruik in hetzelfde jaar uitgedrukt in aantal pakketjes, terwijl de

associatie tussen gebruik van tetracyclines, macrolides, licosamides en

streptogramins en resistentie best gemodelleerd wordt met gegevens rond

antibioticagebruik van het jaar voordien uitgedrukt in zowel aantal dosissen als

aantal pakketjes.

In Hoofdstuk 8 gebruikten we gegevens rond individueel antibioticagebruik en

resistentie om de persistentie van resistentie bij streptokokken die asymptomatisch

aanwezig zijn in de oropharynx na behandeling met penicillines en cefalosporines of

macroliden en tetracyclines te vergelijken. We gebruikten een generalized estimating

equations model, gecorrigeerd voor antibiotica- en bacterie-specifieke basisresistentie,

om aan te tonen dat de snelheid waarmee de proportie susceptibele isolaten zich

herstelt niet verschilt na behandeling met penicillines en cefalosporines of macrolides

en tetracyclines. Wat wel verschilt is de proportie susceptibele isolaten onmiddellijk

na behandeling, die lager ligt na behandeling met macroliden en tetracyclines dan

na behandeling met penicillines en cefalosporines, waardoor het na behandeling met

macroliden en tetracyclines langer duurt om het basisniveau opnieuw te bereiken.

In België werden tal van pogingen gedaan om resistentie te verlagen door

antibioticagebruik te optimaliseren, onder andere door introductie van antimicrobiële

management teams in hospitalen. In Hoofdstuk 9 gebruikten we een generalized

linear mixed model met change-points en data rond jaarlijks antibioticagebruik in

Belgische ziekenhuizen om het effect van enkele initiatieven te bepalen. We toonden

aan dat de proportie voorschriften bij operaties aan de ledematen die gebeuren

volgens richtlijnen plots veranderden na introductie van antimicrobiële management

teams en na een eerste bewustmakingscampagne in 2001. Het aantal dosissen per

100 hospitaaldagen (op hospitaalniveau) veranderde plots na de eerste

bewustmakingscampagne in 2001 en de herziening van financiering in 2006. De ratio

oraal over parenteraal gebruik voor pneumonie (op hospitaalniveau) veranderde

plots door de herziening van financiering in 2006. In geen van de andere jaren waren

er additionele change-points nodig, en het instellen van een tijdskader van +1 en −1

jaar rondom de change-points bleek overbodig. Hoewel al deze plotse veranderingen

statistisch significant waren, is enkel de daling in het aantal dosissen per 100

hospitaaldagen voor pneumonie in 2001 fors genoeg om klinisch relevant te zijn.
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