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Chapter 1

Introduction

1.1 Quality of Life Studies

The first publications on quality of quality of life (QL) of cancer patients in clinical trials
appeared about two decades ago. Most of the early efforts, in the eighties, involved instru-
ment development with the intention of producing psychometrically sound instruments for
assessing QL. In 1986, the European Organization for Research and Treatment of Cancer
(EORTC) initiated a research programme to develop an integrated, modular approach for
evaluating the QL of patients participating in international clinical trials. This research
resulted in the development of a core questionnaire which is referred to as the EORTC
QLQ-C30 (Aaronson et al 1993). The QLQ-C30 incorporates nine multi-item scales: five
functional scales (physical, role, cognitive, emotional and social); three symptom scales (fa-
tigue, pain and nausea/vomiting); and a global health and QL scale. Six single-item scales
are also included (dyspnoea, insomnia, appetite loss, constipation, diarrhoea and financial
difficulties). The QLQ-C30 has been found to meet the requisite standards of validity (mea-
suring what it is intended to measure), reliability (measuring with sufficient precision) and
responsiveness (ability to detect changes) (Aaronson et al 1993). Many other questionnaires
have also been developed for assessing QL in cancer clinical trials (e.g., Rotterdam Symptom
Checklist (RSCL, de Haes et al 1990), Functional Assessment of Cancer Therapy (FACT,
Cella et al 1993)).

Although all of these questionnaires were designed to produce psychometrically sound in-

1



struments for assessing QL they introduced other statistical dilemmas due to the nature of
the data collected. QL instruments tend to be multidimensional and usually consist of a
series of items (i.e., questions) with ordinal response categories. The items may be collapsed
subsequently into a number of scales or domains, such as: physical, role, emotional and cog-
nitive functioning. QL data tend to be longitudinal with the questionnaire administered at
regular intervals during treatment and subsequent follow-up of patients in a trial. QL data
differ from clinical data in several ways. In particular, clinical data may often be collected
retrospectively, e.g., from the patient’s medical charts. However, once a patient has missed
a QL assessment the retrospective collection of the data is hampered by the recall abilities
of the patient.

1.2 The Impact of Incompleteness

Difficulties with data collection and compliance appear to be the most important barriers to
the successful implementation of QL assessments in clinical research. Kiebert et al (1998)
discussed the various reasons for missing data in EORTC cancer clinical trials. The authors
noted that although certain sources of missing data are unavoidable, such as attrition because
of death and withdrawal from the study due to progressive disease or treatment-related
toxicities, other sources of missing data can be minimized if procedures and infrastructure
are in place. In QL research we encounter two main types of missing data: (1) item non-
response (missing data in a questionnaire where a response has not been provided for a
question); and (2) unit non-response (the whole questionnaire is missing for a patient). This
latter category may be further subdivided into three categories: (a) intermittent missing
forms, (b) dropout from the study and (c) late entry into the study (Curran et al 1998a).
In particular, dropout may be problematic in QL studies since it is likely that patients
with the poorest QL scores drop out earlier, especially in cancer clinical trials in patients
with advanced disease (Hopwood et al 1994). Rubin (1976) described three missing data
mechanisms: missing completely at random (MCAR: dropout is independent of observed
and unobserved scores), missing at random (MAR: dropout is independent of unobserved
scores but dependent on observed scores) and missing not at random (MNAR: dropout is
dependent on at least one unobserved score). Section 2.5 provides a more formal definition
of the various missing data mechanisms.

The effect of missing data is best seen by means of the following hypothetical example
(see Figure 1.1). Suppose 20 patients are entered into a longitudinal randomized study
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Figure 1.1: Hypothethical Example I. Plots of individual patient profiles a) Drug A b) Drug B.

comparing two drugs in patients with advanced cancer (10 patients receive drug A and
10 drug B). Suppose treatment does not influence QL but patients in treatment arm A
tend to dropout earlier than patients in treatment arm B suggesting that drug B is more
effective than drug A. Now suppose the dropout depends on the previously observed scores
with patients with lower scores dropping out earlier in both treatment arms. Under the
assumption of MCAR we could base our estimates of the mean score in both arms and the
treatment effect on the complete cases. For example, based on a cross-sectional analysis at
time point 7 the mean score in treatment arm A is 83.0 compared with 67.7 in treatment arm
B suggesting that QL is better in treatment arm A. Thus, the treatment comparison is biased
in favour of the inferior drug. However, under the assumption of MAR, the point estimates
for the means at time point 7 are 53.9 and 54.0 in arms A and B, respectively. Thus, if the
assumption of MAR is true, unbiased estimates may be obtained using appropriate models
and corresponding software (e.g., PROC MIXED in SAS). Now suppose, as in Figure 1.2,
that QL scores decrease after dropout, indicated by the dotted lines. Due to the nature of
dropout these scores are not observed. This phenomenon may occur in clinical trials where
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Figure 1.2: Hypothethical Ezample II. Plots of individual patient profiles a) Drug A
b) Drug B.

QL scores decrease once the disease has progressed to such a level that patients begin to suffer
from disease-related symptoms. The dropout mechanism is dependent on these unobserved
scores (i.e., dropout is MNAR). If the scores had been observed the complete-data point
estimates at time point 7 would be 41.4 and 49.1 in arms A and B, respectively suggesting
that drug B results in a better QL score.

In addition, considering only patients who complete questionnaires using a cross-sectional
analysis at time point 7, leads to too optimistic a view of both treatments under study with
respect to the QL of patients (Olschewski et al 1995). The magnitude of potential bias in
standard analyses depends strongly on the reasons why patients do not participate. Possible
reasons include: administrative failure to distribute the questionnaire, the patient thought
the questionnaire was a violation of privacy or that it was inconvenient (takes too much
time), patient refusal or withdrawal, the patient felt too ill, or disease progression. At the
time of analysis certain assumptions regarding the missing data have to be made. Such



assumptions can be made with more confidence if the reasons why patients did not complete
the forms are known.

Not only do missing data lead to potentially biased results but there can be a severe loss of
power if the proportion of missing data is high. In extreme cases this may mean that there
is insufficient data to draw any useful conclusions from the study.

1.3 Simple ad hoc Methods for Dealing with Incomplete
Data

Two simple, common approaches to analysis are (1) to discard subjects with incomplete
sequences and (2) simple imputation. The first approach has the advantage of simplicity, al-
though the wide availability of more sophisticated methods of analysis renders this approach
inappropriate. It is also an inefficient use of information. It is not difficult to envisage situa-
tions where it can be very misleading, and examples of this exist in the literature (Wang-Clow
et al 1995).

There are several forms of simple imputation. For example, a cross-sectional approach
replaces a missing observation by the average of available observations at the same time
from other subjects with the same covariates and treatment. A simple longitudinal approach
carries the last available measurement from a subject forwards replacing the entire sequence
of missing values. A more sophisticated version predicts the next missing value using a
regression relationship established from available past data. These methods share the same
drawbacks, although not all to the same degree. Under certain dropout mechanisms the
process of imputation may recover the actual marginal behaviour required while under other
mechanisms it may be wildly misleading, and it is only under the simplest and most ignorable
mechanisms that the relationship between imputation procedure and assumption is easily
deduced. Little (1994) gives two simple examples where the relationship is clear. A further
minor point is that, without further elaboration, the analysis of the completed dataset will
underestimate the true variability of the data.

In conclusion, we see that when there are missing values simple methods of analysis do
not necessarily imply simple, or even accessible, assumptions and without understanding
properly the assumptions being made in an analysis we are not in a position to judge its
validity or value. It has been argued that while any particular ad hoc analysis may not



represent the true picture behind the data, a collection of such analyses should provide a
reasonable envelope within which the truth might lie. This points to the desirability of a
sensitivity analysis. However, without a clear formulation of the assumptions being made we
are not in a position to interpret such an envelope, and are certainly not justified in assuming
that its coverage is in some practical sense inclusive. One way to proceed is to consider a
formal framework for the missing value problem, and this leads us to Rubin’s classification.

1.4 Modeling Incompleteness

In order to incorporate incompleteness into the modeling process, we need to reflect on the
nature of the missing value mechanism and its implications for statistical inference. As de-
scribed in Section 1.2 Rubin (1976) and Little and Rubin (1987, Ch. 6) make important
distinctions between different missing values processes: MCAR, MAR and MNAR. A formal
definition of these concepts is given in Chapter 2. If a dropout process is random, then a
valid analysis can be obtained through a likelihood-based analysis that ignores the dropout
mechanism, provided the parameters describing the measurement process are functionally
independent of the parameters describing the dropout process, the so-called parameter dis-
tinctness condition. This situation is termed ignorable by Rubin (1976) and Little and Rubin
(1987). This leads to considerable simplification in the analysis.

Often, the reasons for dropout are many and varied and it is therefore difficult to justify on a
priori grounds the assumption of random dropout. Arguably, in the presence of non-random
dropout, a wholly satisfactory analysis of the data is not feasible.

One approach is to estimate from the available data the parameters of a model representing
a non-random dropout mechanism. It may be difficult to justify the particular choice of
dropout model, and it does not necessarily follow that the data contain information on the
parameters of the particular model chosen, but where such information exists the fitted
model may provide some insight into the nature of the dropout process and of the sensitivity
of the analysis to assumptions about this process. This is the route taken by Diggle and
Kenward (1994) in the context of continuous longitudinal data; see also Diggle, Liang and
Zeger (1994, Ch. 11). Further approaches are proposed by Laird, Lange, and Stram (1987),
Wu and Bailey (1988, 1989), Wu and Carroll (1988), and Greenlees, Reece, and Zieschang
(1982). An overview of the different modeling approaches is given by Little (1995).



Also the case of categorical outcomes has received considerable attention. See for exam-
ple Baker and Laird (1988), Stasny (1986), Baker, Rosenberger, and DerSimonian (1992),
Conaway (1992, 1993), Park and Brown (1994), and Molenberghs, Kenward, and Lesaffre
(1997).

One feature common to all of the more complex approaches is that they rely on untestable
assumptions about the relation between the measurement process and the dropout process.
One should therefore avoid missing data as much as possible, and if dropout occurs, infor-
mation should be collected about the reasons for dropping out. Because different models
imply different untestable assumptions that may affect the statistical inferences of interest,
it is always advisable to perform a sensitivity analysis.

1.5 Overview

In Chapter 2 terminology is introduced to facilitate discussion of the subject of incomplete
longitudinal QL data. The various missing data mechanisms as described by Rubin (1976)
are explained. Concepts such as ignorability, separability and bias are also discussed.

Chapter 3 provides a review of the literature. Numerous methods for handling incomplete
data are introduced starting with the ‘classical’ techniques, such as complete case and avail-
able case analyses and then progressing to imputation techniques. Both single and multiple
imputation methods are described. This is followed by a discussion of likelihood based
approaches to analysis of both continuous and categorical data.

Chapter 4 introduces the longitudinal sets of data which will be used throughout the thesis.
Chapter 5 focuses upon the issues involved in handling questionnaires which contain one or
more missing items and reviews several procedures for dealing with missing items: (1) case
deletion (2) simple mean imputation and (3) general imputation methods. Simple mean
imputation is the most widely used method of imputation of missing items since it is based
on traditional psychometric approaches to scale design and analysis. Examples are provided
where this method may not be appropriate and alternative imputation methods may be
considered.

Chapter 6 presents various techniques which have appeared in the literature and which may
be described globally as summary measures and summary statistics. These techniques are



illustrated using data from an EORTC clinical trial (EORTC 10921) in locally advanced
breast cancer. For EORTC trial 10921 it is shown that by choosing different techniques
different conclusions may be drawn concerning the QL outcome. This chapter illustrates
the limitations of using these procedures, i.e., they are wasteful since they do not use all
available information and they may provide biased results since they do not take into account
the missing data or the process which creates missing data.

In Chapter 7 two methods of identifying the types of missingness in quality of life (QL) data
in cancer clinical trials are explored. The first approach involves collecting information on
why the QL questionnaires were not completed. Based on the reasons provided one may be
able to distinguish the mechanisms causing missing data. The second approach is to model
the missing data mechanism and perform hypothesis testing to determine the missing data
processes. Two methods of testing if missing data are missing completely at random (MCAR)
are presented and applied to incomplete longitudinal QL data obtained from international
multicenter cancer clinical trials. The first method (Ridout 1991) is based on a logistic
regression and the second method (Park and Davis 1993) is based on an adaptation of
weighted least squares. In one application (advanced breast cancer) missing data was not
likely to be MCAR. In the second application (adjuvant breast cancer) the missing data
mechanism was and was not likely to be MCAR depending on the scale being studied (‘hair
loss’ and ‘anxiety’ scales). MCAR and missing at random (MAR) have distinct consequences
for data analysis. Therefore it is relevant to distinguish between them. Distinguishing
between MAR and missing not at random (MNAR) is not trivial and relies on fundamentally
untestable assumptions (Glynn, Laird and Rubin 1986).

Chapters 8 and 9 focus on continuous outcomes. Two alternative approaches to modeling
longitudinal data with incomplete measurements have frequently been proposed in the lit-
erature, selection models (Diggle and Kenward 1994) and pattern-mixture models (Little
1993, Little 1995 and Hogan and Laird 1997). These modeling frameworks approach the
issue of dropout in two distinct ways: in selection models the dropout probability is con-
ditional on the measurement process, whereas in pattern-mixture models the measurement
model is conditional on the dropout pattern. Selection models are often used as a sensitiv-
ity analysis tool to investigate the (treatment) effect under various assumptions about the
dropout mechanism. When fitting selection models assumptions are made which are not
fundamentally testable, e.g., the dependence of the dropout process on measurements which
have not been obtained. In contrast, in pattern-mixture models the model for the miss-
ingness process is usually kept fairly simple, and can reduce to a multinomial distribution,
describing the proportion of patients in the different patterns. Also, fitting a selection model
may be computationally cumbersome. For pattern-mixture models, the only requirement is



that there are sufficient data in the various patterns to achieve reliable estimates. One then
only needs relatively straightforward, non-iterative code to determine marginal quantities
such as treatment effect. In Chapter 8 we compare pattern-mixture models with selection
models using two datasets: the milk protein content trial described by Diggle and Kenward
(1994) and a QL example from an EORTC clinical trial.

The natural parameters of selection models and pattern-mixture models have a different
meaning, and transforming a probability model into one of the other frameworks is in general
not straightforward, even for normal measurement models. When a selection model is used,
as mentioned earlier, one has to make untestable assumptions about the relationship between
dropout and missing data (discussion of Diggle and Kenward 1994, Molenberghs, Kenward,
and Lesaffre 1997). In pattern-mixture models, it is explicit which parameters cannot be
identified. Little (1993) suggests the use of identifying relationships between identifiable
and non-identifiable parameters. Thus, even though these identifying relationships are also
unverifiable (Little 1995), the advantage of pattern-mixture models is that the verifiable and
unverifiable assumptions can easily be separated. In Chapter 9 we present a new strategy for
fitting pattern mixture models which leads naturally into the field of sensitivity analysis. We
explore the idea of extrapolating incomplete patterns using various identifying restrictions.
This idea of extrapolating incomplete patterns was first suggested by Hogan (1999).

QL data not only involves repeated measures but is also usually collected on ordered categor-
ical scales. In the recent statistical literature increasing attention is given to methods that
can handle non-continuous outcomes in the presence of missing data. The aim of Chapter 10
is to investigate the effect on statistical conclusions of applying different modeling techniques
to QL data generated from an EORTC phase IIT trial. Chapter 10 focuses on selection mod-
els. For information on the use of pattern-mixture models in categorical data we refer to
Michiels, Molenberghs, and Lipsitz (1999). In Chapter 10 we first fit a random-effects model,
relating a binary longitudinal response (derived from the physical functioning scale of the
QLQ-C30) to several covariates. In a second approach, marginal models are fitted, retaining
the response variable and the mean structure used before. The fitted marginal models differ
with respect to the estimation procedure: generalized estimating equations (GEE), weighted
generalized estimating equations (WGEE) and maximum likelihood (ML).



Chapter 2

Terminology

2.1 Introduction

In QL research two major types of missing data may be identified. Firstly, there can be
missing items within a form, where a patient may have answered some of the questions but
has failed to provide responses to other questions on the same form (Fayers et al 1998).
We shall describe this situation as ‘missing items’. Secondly, patients may fail to complete
and return some of the questionnaires that were due during the study period (Curran et al
1998a). We will call this ‘missing forms’. We will describe each of these situations separately.

2.2 Quality of Life Scales and Items

Most QL instruments consist of a number of questions or items, some or all of which are
frequently combined to form scores for a number of scales or subscales. We will focus
on the QLQ-C30 and the RSCL (de Haes et al 1990) as the basis for our examples. As
mentioned in Section 1.1, the QLQ-C30 is a 30-item questionnaire consisting of 5 functional
scales (physical, role, cognitive, emotional and social), 3 symptom scales (fatigue, pain, and
nausea-and-vomiting), a global health status QL scale, a number of single items assessing
additional symptoms commonly reported by cancer patients, and perceived financial impact

10
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Table 2.1: Emotional Functioning Scale. Adapted from the EORTC QLQ-C30 Scoring Man-
ual (Fayers et al., 1999):In the QLQ-C30, emotional functioning (EF) is assessed by 4 items
corresponding to questions 21 to 24, each on a 4—point scale.

Not at A Quite Very
all little a bit much

Did you feel tense? 1 2 3 4
Did you worry? 1 2 3 4
Did you feel irritable? 1 2 3 4
Did you feel depressed? 1 2 3 4

of the disease. Most items are 4-point scales graded ‘not at all’; ‘a little’, ‘quite a bit’ and
‘very much’. The first section of the RSCL (de Haes et al 1990) comprises 30 items with 4-
point scales, covering four domains of physical symptom distress and psychological distress;
the second section is an eight-item activity level scale, and finally there is an overall life
quality scale. The physical symptom distress scale is further broken down into four sub-scales
representing fatigue, gastro-intestinal symptoms, pain related symptoms and chemotherapy
related symptoms. In both the QLQ-C30 and the RSCL, as is common with QL instruments,
the scales are scored by first summing their constituent items, followed by a simple linear
transformation to produce a 0 - 100 standardised score. Such scales are often known as
(standardised) Likert Summated Scales (Mclver and Carmines 1981). An example of a
summated scale from the EORTC QLQ-C30 is provided in Table 2.1.

The method of calculation for such a scale is as follows. Let us call the n questions con-
tributing to a scale ();, where in this example n = 4 questions which are QJs1, (22, @23, Q24.
If no items are missing, then the ‘Raw Score’ is calculated as the average of the items:

Raw Score = Y @Qi/n = (Qa1 + Q22 + Qa3 + Q24)/4. (2.1)

In what follows we shall for brevity refer to standardised summated scales simply as ‘scales’,
whilst the individual items will be called ‘items’. Since different scales include items with a
different range of values, they will have various minimum and maximum values; these items
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are on 4-point scales and thus the ‘Raw Score’ lies between 1 and 4. Range is the difference
between the maximum and minimum values (here, range = 4-1=3)

Therefore, a linear transformation is applied, to standardise the score to 0 to 100; also, this
scale is reversed so that high scores indicate a high or healthy level of functioning.

Standardised Score = {1 — (Raw Score — 1)/range} x 100
= {1 — (Raw Score — 1)/3} x 100. (2.2)

In the presence of missing items within a scale and provided that at least half of the items were
completed, the EORTC recommends the following procedure: the scale score is calculated
using the completed items which were present for that respondent. Suppose Q22 were missing.
The ‘Raw Score’ becomes

Raw Score = Y Q;/n = (Qa1 + Qaz + Q24)/3. (2.3)

Equation 2.2 for transforming the ‘Raw Score’ to the final Score remains unchanged. Chap-
ter 5 discusses several methods of handling missing items. The more complex situation of
missing forms is the main focus of this thesis.

2.3 Missing Forms

In virtually all longitudinal studies the issues of unbalancedness and missing data arise. Some
studies are designed such that the number of measurements (e.g., QL forms) per subject is
variable or even random. The measurement times themselves can vary across subjects and
can be random as well. We term these studies unbalanced. In such unbalanced studies it is
usually not possible to identify missingness, unless measurement times have been recorded,
even for occasions at which no measurement was actually taken. In contrast, in a balanced
study the number of measurements per subject is fixed and the measurements are usually
taken at an approximately common set of occasions. QL data are generally collected at fixed
assessment time points and as such can be considered as balanced. In this situation, missing
observations can be identified without ambiguity. The specific case of dropout (i.e., a subject
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is completely observed until a certain point in time, after which no more measurements are
taken) can be handled in the unbalanced case as well. The treatment of dropout in both
balanced and unbalanced cases is very similar. In QL research we distinguish between three
types of missing forms:

a. intermittent missing forms,
b. dropout from the study,

c. late entry into the study.

Intermittent missing forms occur when a patient misses an assessment but is later observed.
Dropout (or monotone missingness) occurs when a patient, once missing an assessment, is
never observed again. Late entry into the study occurs when a complete set of forms is not
yet available due to a patient recently being registered in the study, but additional forms
are expected in the future.

The main concern when analyzing incomplete QL data is that of bias. Consider the case
of a randomized clinical trial where we wish to estimate the overall QL score of patients at
one time point on treatment A. Suppose the proportion of patients who respond (return a
completed form) is P and so the proportion of patients who do not respond is P:. We
assume that the responders (r) and the non responders (nr) may have different means. Let
12 be the mean score of responders and g be the mean score of non-responders in treatment
A if they had responded. The mean QL score for all patients in treatment A is
ph = PRt + Pty

However, as our sample only contains information on responders, the mean of the observed
scores is u# and so the bias in treatment arm A by using only the responders is

Bias, = p#—pu?
= PAut+ Poph — i

= Dol — ).

Thus the bias is proportional to the difference in mean QL score between responders and non-
responders and to the proportion of non-responders. This bias is not reduced by increasing
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the sample size. In a two arm trial there will be a similar expression for the bias in treatment
arm B.

In a clinical trial, the objective is usually to investigate the difference in QL between treat-
ment arms, i.e., § = u* — pB. However, the observed difference is 6, = u — uP and so the
bias in the treatment (T) difference caused by the missing forms is:

BiasT = (5—57«
= (p* —uP) — (! — p1?)

= BiasA — BiasB

Therefore, the bias in a treatment comparison is equal to the difference in the bias observed
in each treatment arm. A treatment comparison is therefore unbiased if the bias is the
same in both treatment arms. Although one may calculate the proportion of responders
in both treatment arms, it is generally not possible to calculate the difference in mean
QL score between responders and non-responders. Identifying the dropout mechanism and
incorporating it in the model may produce less biased results. We will introduce some
formal notation and terminology to facilitate and streamline the treatment of the subject of
incomplete longitudinal QL data.

2.4 Notation

In this section we build on the standard framework for missing data, which is largely due to
Rubin (1976) and Little and Rubin (1987).

Let ¢ = (1,...,n) index patients. In most clinical trials, a fixed number of repeated QL
assessments is planned at fixed times: let these times be denoted by (t1,...,t7). The
QL score for patient ¢ at time j is denoted by Y;;; patient ¢ has T possible measurements
(Y1, ... ,Yir). Since some of the data are missing, it is useful to assign a series of indicators
(Rih NN RiT), where

R — 1 it Y}; observed,
Y] 0 otherwise.

The missing data indicators R;; are grouped into a vector R; which is, of course, of the same
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length as Y;.

Let Y7 and Y" denote the observed and missing values of (Y1, ..., Yir), respectively. Ma-
trices X; and Z; are design matrices for fixed and random effects, respectively. X; will
generally include the times of measurement (t1,...,tr) as well as treatment indicators and
other fixed covariates such as age, sex, and performance status.

The following terminology is adopted:

Complete data Y ;: the scheduled measurements. This is the outcome vector that would
have been recorded if there were no missing data.

Missing data process R;. The process generating R; is referred to as the missing data
process.

Full data (Y;, R;): the complete data, together with the missing data indicators. Note
that, unless all components of R; equal 1, the full data components are never jointly
observed.

Observed data Y.
Missing data Y".

Some confusion might arise between the terms complete data introduced here and complete
case analysis. While the former refers to the (hypothetical) data set that would arise if there
were no missing data, ‘complete cases’ refers to deletion of all subjects for which at least one
component is missing.

Note that one observes the measurements Y, together with the dropout indicators R;.

Statistical modeling begins by considering the full data density
f(ym r’i’X’ia Zi7 07 ’lp),

where @ and v are vectors that parameterize the joint distribution. We will use @ and %) to
describe the measurement and missingness processes, respectively.

In considering the full data density two alternative factorizations can be used to facilitate
modeling. Conditioning on R; results in a pattern-mixture model, while conditioning on Y;
results in a selection model; both are discussed by Little (1995).
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Pattern-mixture models are written as

f(ym ri’Xia Zia 07 ’lp) = f(yz’Xh Zia O)f(r1’y17 Xiaw)a (24)

That is, the model for the responses depends on the particular missingness pattern, and the
overall distribution of the longitudinal measurements is a mixture of the conditional distrib-
utions. Parameters describing the model for Y'; are estimated in each stratum (determined
by R;), and the overall parameters are a weighted average of these estimates, weighted by
the proportion of subjects in each stratum. The parameters describing the distribution of
the missingness indicators themselves are generally considered a nuisance, and usually a form
for f(ri|y;, Xi, 1) is not specified. This is in some sense an advantage, since model checking
for a specific missing data mechanism is difficult. However, a drawback arises because the
conditional distributions for f(y,;|X;, Z;, @) are not fully identifiable, with the exception of
the pattern where no observations are missing. This problem can be reduced by combin-
ing some of the missing data patterns to create a smaller number of strata. For example,
patients might be stratified into groups based on the length of their follow-up; an example
of this type of pattern-mixture model is given by Fairclough, Peterson and Chang (1998a).
When this coarser grouping is used, standard software can often be used to fit the stratified
models.

Selection models are written as

f(ym ri’Xia Zia 07 ’lp) = f(yz’Xh Zia O)f(r1’y17 Xiaw)a (25)

An underlying distribution is assumed for the complete longitudinal measurements, and
the missingness mechanism is modeled as a function of those measurements. This is a
joint distribution for the complete data; as with the pattern-mixture model, there may be
problems of identifiability. To avoid this, a likelihood for the observed data is obtained by
starting with the complete data likelihood and integrating out the unobserved responses,
according to the specified underlying distribution.

Rubin (1976) defined a taxonomy to describe the various missing data mechanisms using the
following terminology based on selection models. The missingness probabilities are denoted
by m; = P(riy; = lly;, Xs,¢), modeled as a function of covariates X;, which are related
to the missingness probabilities through the parameters @. Note that in some cases the
‘covariates’ may also include current or previous values of the response variable Y ;. The
density f(ri;|y;, Xi, ¥) is that of a Bernoulli random variable with probability 7;;.
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2.5 Missing Data Mechanisms

Missing data is often described as either ‘dropout’ or ‘intermittent’. The mechanism of miss-
ing data also varies: Rubin (1976) and Little and Rubin (1987) make distinctions among
different missing value processes (completely random, random, or not at random) as de-
scribed informally in the introduction.

2.5.1 Missing Completely at Random (MCAR)

An observation is said to be missing completely at random if the missingness probability is
independent of all previous, current, and future assessments. Thus the distribution of the
missing data mechanism reduces to f(r;|y;, X;, ¥) = f(r;| X;,¢). Notice, however, that the
missingness mechanism may depend on the values of fixed covariates. In particular, if the
covariate matrix includes treatment as a variable then dropout rates may vary by treatment.
Covariate dependent dropout is illustrated by Fairclough, Peterson and Chang (1998a) using
initial performance status and survival at 6 months for patients with advanced non-small
cell lung cancer. Curran et al (1998b) provide examples where the missing data were, and
were not, likely to be MCAR. In their first example, in an advanced disease setting, the
probability of missingness was dependent on the previous QL score; in the second example,
in an adjuvant treatment setting, different QL scales yielded different results: more anxiety
was observed in patients with incomplete data, but there was no sgnificant difference in
burden of hair loss scores between completers and non-completers.

2.5.2 Missing at Random (MAR)

Data are missing at random if the missingness probability does not depend on the missing val-
ues Y[" but depend on the observed measurements Y7, i.e., f(r;|y;, Xi, ¥) = f(ri|y?, X, ¥).
Thus, as with MCAR, when data are MAR the missing data mechanism may be modeled
using only the available data and any inference on Y may be based solely on the observed
data. An example in which the missing data depend on Y is given by Fairclough, Peter-
son and Chang (1998a). The authors show that the medians of the observed scores on the
Perceived Adjustment to Chronic Illness Scale were higher for patients who completed more
assessments, suggesting that the probability of a missing assessment was dependent on the
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observed values of the outcome.

2.5.3 Missing Not at Random (MNAR)

Finally, when the missingness probability depends on the missing values Y, the process is
referred to as missing not at random. A MNAR process is also allowed to depend on Y7,
ie. f(rily, Xi,¥) = f(ri|y?, vy, Xi, ). A MNAR missing data mechanism often seems
plausible in QL studies: subjects who have worse QL, due to increased toxicity, disease
progression, may be more likely to miss assessments. If information concerning the reasons
for missingness is collected and included in the missing data model, it may be possible to
reduce the mechanism from MNAR to MAR or even MCAR.

2.6 Ignorability

Rubin (1976) addressed the issue of what assumptions are necessary to justify ignoring the
missing data mechanism. He established that the extent of ignorability depends on the
inferential framework. The full data likelihood contribution for subject ¢ assumes the form

L*(0,9|X;, Zi, y;,rs) < fly;, il Xs, Z;,0,4).

Since inference has to be based on what is observed, the full data likelihood L* has to be
replaced by the observed data likelihood L:

L(0,%|Xi, Zi, y;,ri) o< f(y7,7i] Xi, Z4,0,)
with
T ri0,9) = [y vl X, 2,6, 9)dy;"
— [ 72y X, 26, 0) (il w, X, )y

Under an MAR process, we obtain

flyi, il ) = /f (02, 97" |Xi, 2, 0) £ (rily, X, )y
= yz’X“Z“ ) (r’l"yzaXZa’lp) (26)
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i.e., the likelihood factorizes into two components of the same functional form as the general
factorization of the complete data. If further @ and %) are disjoint in the sense that the
parameter space of the full vector (6',1)’)’ is the product of the individual parameter spaces
then inference can be based on the marginal observed data density only. This technical
requirement is referred to as the separability condition. In conclusion, when the separability
condition is satisfied, within the likelihood framework, ignorability is equivalent to the union
of MAR and MCAR. Hence, non-ignorability and ‘non-randomness’ are synonyms in this
context. A formal derivation is given in Rubin (1976), where it is also shown that the same
requirements hold for Bayesian inference, but that frequentist inference is ignorable only
under MCAR. Even when likelihood or Bayesian inference is applied it may be necessary to
distinguish between MCAR and MAR depending on the research questions. For example,
if Y follows a multivariate Gaussian distribution, then under MCAR the mean structure
of Y coincides with the conditional mean structure of Y given no missing data, but this
is not so under MAR, except in the generally unrealistic case of uncorrelated Y ;. Thus,
if the research question involves determining the conditional mean structure of Y given no
drop-out, it is necessary to distinguish between MCAR and MAR.

Classical examples of the more stringent condition with frequentist methods are ordinary
least squares and the generalized estimating equations approach of Liang and Zeger (1986).
These GEE define an unbiased estimator only under MCAR. Robins, Rotnizky, and Zhao
(1995) have established that some progress can be made under MAR and even under informa-
tive processes. Their method is based on including weights that depend on the missingness
probability, proving the point that at least some information on the missingness mechanism
should be included and thus that ignorability does not hold.

To determine which methods of statistical analysis will be appropriate, one should initially
distinguish the pattern of missing data and identify the mechanism that generates missing
data.



Chapter 3

Literature Review

3.1 Introduction

From Chapter 1 it is clear that the issue of incomplete QL data is an important one and needs
careful attention. This attention should be focused on two goals: (1) improving compliance
and hence reducing the proportion of missing questionnaires and (2) using appropriate statis-
tical techniques to deal with incomplete QL data. However, the QL literature contains very
few methodological papers handling the problem of missing data. Also, very few published
clinical trial results indicate clearly the extent of missing forms or how they are handled.
Zwinderman (1992) proposed a number of solutions to the problem of missing forms and
provided some computer programming code in BMDP and SAS for modeling the data using
repeated measures analysis of variance, assuming that missing data are missing at random.
Zee and Pater (1991) suggested that one method of analyzing incomplete quality of life data
is to use a growth curve model, in conjunction with the EM (Expectation-Maximization)
algorithm. Beacon and Thompson (1996) illustrated the potential of multi-level modeling in
analysing QL data.

A vast amount of work on missing data has been carried out in other research fields such
as agriculture, (Diggle and Kenward 1994) clinical trials (Molenberghs and Lessafre 1994,
Lessafre, Molenberghs and Dewulf 1996) and survey sampling (Madow, Nissleson and Olkin
1983, Rubin 1987). A lot of this work focused on longitudinal settings. An earlier, very
important review was provided by Laird and Ware (1982). Little (1995) provides a systematic

20
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account, also covering the more recent work. Both review articles treat methods for MCAR,
MAR, and MNAR.

3.2 Quick Methods

The easiest, but least desirable, approach to a missing data situation is to remove the pa-
tients with missing forms from the analysis (Little and Rubin 1987). In QL studies, especially
in advanced disease this generally means deleting an unacceptable amount of information.
It does however mean that standard complete case methods of analysis can be used (e.g.,
MANOVA). When forms are MCAR, the reduced data represent a randomly drawn subsam-
ple of the original dataset and thus inferences about the values of the population parameters
are consistent (Little and Rubin 1987). However, in QL research in cancer clinical trials
patients who are in a generally good condition would be expected to have more complete
follow-up. Therefore this method has two distinct disadvantages: (1) it reduces the sample
size and (2) it may produce biased results if missing data are not MCAR.

An alternative to complete case analysis is to use all available forms. For example, in a clinical
trial we may wish to compare two treatments with respect to QL at individual time points.
A possible available case analysis would calculate a treatment difference (and standard error)
at every time point separately. Wei and Johnson (1985) proposed a test which allows the
per time point test statistics to be combined into one overall test statistic. This method still
requires the missing data mechanism to be MCAR to yield unbiased estimates. An available
case likelihood analysis can be conducted, whereby every subject contributes its available
(observed) measurements. For example, such an analysis can be conducted with the SAS
procedure MIXED, where subjects with some missing measurements are also included in the
analysis.

A widely used method for analysis of data collected serially over time is to reduce the data
on each patient to a single summary (Tannock et al 1996, Fairclough and Gelber 1996)
that reflects some important aspect of the response (e.g., mean, median, min or max). For
example, in clinical trials, data on toxicity is usually summarized by taking the worst value
recorded during the treatment period. Summary measures are valid only under a MCAR
mechanism. Even when data are MCAR, a biased estimate of the treatment effect may be
obtained if the number of completed forms is not equivalent in both treatment arms.



22

Some of these simple methods have been subject to heavy criticism in the scientific literature
(Little and Rubin 1987, Curran et al 2000a) but are still commonly used in many areas of
applied statistical research. For example, many clinical trial reports include a complete case
analysis and a last observation carried forward (LOCF) analysis. The limitations of these
methods are discussed further in Chapter 6.

3.3 Imputation

Whereas a complete case analysis removes the problem of incomplete sequences by removing
them, imputation strategies achieve the same goal by filling in values for the unknown
measurements. In survey sampling a large literature has developed on imputing missing
items (Madow, Nissleson and Olkin 1983, Pregibon 1977). Methods of imputation include
last observation carried forward (LOCF), mean imputation, hot deck imputation, cold deck
imputation, and regression imputation (Rubin 1987, Little and Rubin 1987)

3.3.1 Single Imputation

Last observation value carried forward (LOCF) replaces the missing value with the last
observation, thereby assuming a constant score over time. Very strong and often unrealistic
assumptions have to be made to ensure validity of this method. First, one has to believe that
a subject’s measurement stays at the same level from the moment of drop out onwards (or
during the period they are unobserved in the case of intermittent missingness). In a cancer
clinical trial setting, one might believe that the patient’s QL scores decrease after dropout.

The LOCF depends uniquely on the measurements of the individual for which an imputation
has to be generated. As such, we could term it horizontal imputation. Next, we will discuss
a strategy where the imputed value depends uniquely on the other subjects, i.e., a vertical
strategy. Simple (or unconditional) mean imputation generally refers to substitution of
the mean scores of a group of patients with observed data for the score of patients with
unobserved data. A result of simple mean imputation is that the estimate of the variance
will be artificially reduced. A more promising form of imputation is to substitute means
that are conditioned on other variables or previously observed scores. This method has
the advantage that it combines both ‘horizontal’ and ‘vertical’ information in creating the
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imputations. The method was initially proposed by Buck (1960). He showed that under
mild regularity conditions the method is valid for MCAR mechanisms. Little and Rubin
(1987) added that the method is valid under certain types of MAR mechanisms. Even
though the distribution of the observed components is allowed to differ between complete and
incomplete observations, it is very important that the regression of the missing components
on the observed ones is constant across missingness patterns.

Hot deck imputation refers to selecting at random a score from patients with available data
and substituting it for the patient with missing information. The hot deck literally refers to
the deck of responses of patients with available data from which we may select a score. Hot
deck imputation may involve very elaborate schemes for selecting responses for substitution.
For example, one might select a response from only those patients with matching patient
covariates (e.g., treatment, sex, age group, performance status, previous QL scores).

A special case of the hot deck procedure is given by ‘nearest neighbour hot deck’, where a
distance measure is defined between patients. For example, a regression analysis is performed
to identify which factors are associated with QL. Based on the parameter estimates weights
are placed on the values of each covariate to obtain a distance score for each patient. If a
patient has a missing QL score then the QL score from the ‘nearest’ patient with available
data is taken. Curran et al (1998c) illustrated how both the hot deck and ‘nearest neighbour
hot deck’ procedures could be used in a trial in prostate cancer.

Cold deck imputation refers to replacing a missing value by a constant value from an external
source, such as a value from a previous study. A more detailed desciption of these imputation
processes may be found elsewhere (Rubin 1987, Little and Rubin 1987).

As with complete case analysis, a major advantage of imputation is that, once the values
have been filled in, standard complete data methods of analysis can be used. In contrast,
other approaches to missing data require new and specialized computer programs. Of great
importance also is that acceptance and understanding of statistical conclusions may be lost
if sophisticated mathematical techniques are used for analysis. The choice and the design of
an imputation technique allows the user’s prior knowledge and experience to be incorporated
in the imputation process. Consequently, theoretically sound methods of imputation may be
advantageous as the imputation method may be easily applied and at the same time yield
easily comprehensible conclusions.

Some problems do exist using single imputation. Dempster and Rubin (1983) write ‘The
idea of imputation is both seductive and dangerous. It is seductive because it can lull the
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user into the pleasurable state of believing that the data are complete after all, and it is
dangerous because it lumps together situations where the problem is sufficiently minor that it
can be legitimately handled in this way and situations where standard estimators applied to
the real and imputed data have substantial biases.” Several pitfalls of imputation techniques
in a longitudinal context are discussed in Verbeke and Molenberghs (1997). In addition,
by treating the imputed values as actual information, the estimated standard errors will
generally be too small. This problem can be overcome using multiple imputation.

3.3.2 Multiple Imputation

Multiple imputation was formally introduced by Rubin (1978). Rubin (1987) provides a
comprehensive treatment. Several other sources, such as Rubin and Schenker (1986), Little
and Rubin (1987), Tanner and Wong (1987), and Schafer’s (1997) book give excellent and
easy-to-read descriptions of the technique. Efron (1994) discusses connections between mul-
tiple imputation and the bootstrap. An important review, containing an extensive list of
references and a large bibliography, is given in Rubin (1996). The idea of multiple imputa-
tion (Rubin 1987) is that several values, m say, are imputed instead of just one. As a result
m datasets are created. In current imputation practice m is often small (e.g., m = 5, Meng
1994). Conducting a multiple imputation analysis requires repeating the same standard
complete data analysis several times, e.g., calculating the summary statistic and variance for
each of the m imputed datasets. The m separate analyses may then be combined into one
inference using the rules given by Rubin (1987). With the rapid development of computer
technology this has become relatively straightforward. Thus, multiple imputation retains the
ability to perform complete-data analysis as in single imputation whilst at the same time
reflecting the uncertainty of the imputed value. Multiple imputation also has the advantage
that the accuracy of the standard errors is improved. By imputing several values for a single
missing component, this uncertainty is explicitly acknowledged.

Rubin (1987) points to another very useful application of multiple imputation. Rather than
merely accounting for sampling uncertainty, the method can be used to incorporate model
uncertainty. Indeed, when a measurement is missing but the researcher has a good idea
about the probabilistic measurement and missingness mechanisms, then constructing the
appropriate distribution from which to draw imputations is, at least in principle, relatively
straightforward. In practice there may be considerable uncertainty about some parts of the
joint model. In that case, several mechanisms for drawing imputations might seem equally
plausible. They can be combined in a single multiple imputation analysis. As such, multiple
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imputation can be used as a tool for sensitivity analysis. Multiple imputation is described
in more detail in Chapter 9.

3.4 Likelihood Based Methods

Longitudinal analysis of repeated measurements with incomplete data is a relatively new
research area. In 1976 Rubin’s revolutionary paper introduced a taxonomy to describe the
various processes which generate missing data. In the subsequent twenty years this method-
ology has flourished and many mathematical and statistical techniques have been developed
in the pursuit of correct and efficient methods of handling incomplete data. These methods
vary widely in their ease of implementation, their robustness to modeling assumptions, and
their ability to handle different kinds of missingness patterns and missingness mechanisms.
Recently a few books have emerged covering these developments (Diggle, Liang and Zeger
1994, Verbeke and Molenberghs 1997). Most of the methods focus on multivariate normal
data with less attention given to categorical outcomes.

3.4.1 Continuous Outcomes

As mentioned in Chapter 2, the extent of ignorability depends on the inferential framework.
For likelihood or Bayesian inference when missing data are MCAR or MAR, it follows that
an ignorable analysis is valid (Rubin 1976). This means that the likelihood contribution of
a given subject is proportional to the density (or probability mass) associated with its set
of observed measurements. Such a feature is particularly appealing since it avoids explicit
modeling of the non-response mechanism, as well as imputing values for the missing mea-
surements. The only requirement is that the actual implementation used to maximize the
observed data (log-)likelihood is capable of handling observed sets of repeated measures of
varying length. When assessments are missing, there are usually different sample sizes at
different assessment times. Some software packages do not allow measurement sequences of
unequal length; notable exceptions include SAS PROC MIXED, BMDP-5V, MLWiN and
SPlus which allow mixed models with missing data to be fitted. Intermittent missing data
patterns are allowed. The mixed model contains fixed and random effects and usually takes
the following form:
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where X; and Z; are design matrices for fixed and random effects, respectively, a are fixed
effects and a; are random-effects parameters with a; ~ N(0, D). Further, w; are realizations
of a Gaussian stochastic process and g; is a vector of normally distributed error terms.
Various covariance structures for the association of repeated measures can be assumed;
autoregressive, compound symmetry, or unstructured forms are common choices.

Missing data in the context of the linear mixed model is extensively treated in Verbeke
and Molenberghs (1997). Several extensions to standard mixed models have been proposed
in the context of longitudinal measurements in clinical trials. Zee (1998) proposed growth
curve models where the parameters relating to the polynomial in time are allowed to differ
according to the various health states experienced by the patient (e.g., on treatment, off
treatment, post-relapse, etc.).

While less attention has been devoted to MNAR, there has been a growing literature on
the subject, in particular when missingness is confined to dropout. For Gaussian data, the
landmark paper of Diggle and Kenward (1994) as well as its discussion deserves attention.
The procedure consists of specifying a linear mixed model for the measurements, together
with a logistic regression to describe the dropout process. It has been implemented in the
suite of SPlus functions termed OSWALD (Smith, Robertson and Diggle 1996). Random
effects based approaches are discussed in Wu and Bailey (1989) and Wu and Carroll (1988).

Schluchter (1992) proposed a joint mixed effects model for the longitudinal assessments and
the time to dropout. Suppose the time to dropout, or censoring, is denoted by 7;. The joint
model allows the T; (or a function of the T;, in this case the log) to be correlated with the
random effects a;. The model is as follows:

{IQTJ”N(“HB D

For example, patients with steeper rates of decline in measurements over time (as measured
by the random effects a;) may be more likely to fail early. This model allows MNAR data in
the sense that the time of dropout is allowed to depend, through the covariance parameter
opt, on the rate of change in the underlying measurements. Intermittent missing data are
assumed to be MCAR.
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3.4.2 Categorical Outcomes

Less research is devoted to repeated categorical data (binary or ordinal data). Standard log-
linear models are particularly easy to fit but are less useful since they are not reproducible
or upward compatible (Liang, Zeger and Qadish 1992). A model for a vector of repeated
measures Y is said to be reproducible if the corresponding model for a subvector of Y is
described by a subset of the parameter vector of which the elements retain their meaning.
This is not true for the log-linear model since, for example, the main effects are interpreted as
conditional logits. Thus, passing to a subvector changes the subset on which one conditions
and hence changes the meaning of the parameters. Therefore, so-called marginal models are
promising in this respect.

Generalized estimating equations (GEE) (Liang and Zeger 1986, Zeger, Liang and Albert
1988) appear to be of interest. The method is attractive because, rather than having to
make full distributional assumptions, the researcher can suffice with specifying the marginal
expectation of the repeated measures (as in a cross-sectional study, using a generalized linear
model). The correlation structure is accounted for by working assumptions. This procedure
yields consistent and asymptotically normal point estimates. When the so-called robust or
sandwich estimator is used for the asymptotic covariance matrix, valid standard errors are
also obtained. However, this method is frequentist in nature. This implies that the technique
can only be used with incomplete data if the missingness process is MCAR. Proposals have
been made to overcome this problem by appropriately weighting the terms in the estimating
equations (Robins, Rotnitzky and Zhao 1995). This adaptation of GEE is valid under MAR
and even with MNAR.

Molenberghs, Kenward and Lesaffre (1997) developed a method for ordinal longitudinal
data. They coupled a model for repeated categorical data with a logistic regression for the
dropout process and maximized the resulting likelihood by means of the EM algorithm. The
multivariate Dale model (Lesaffre and Molenberghs 1994), also called the multivariate odds
ratio model, was used to model the repeated measurements. These authors show that their
model can be used with MCAR and MAR processes. An extension to the informative case is
given in Molenberghs, Kenward, and Lesaffre (1997). These authors used the EM algorithm
to estimate the model parameters, which include the measurement parameters (marginal
logits, odds ratios to describe the association, and logistic regression parameters to describe
the dropout probability, given both observed and missing measurements). This method was
compared to ordinary and weighted estimating equations (Robins, Rotnitzky and Zhao 1995)
in Fitzmaurice, Laird and Lipsitz (1994). Other marginal models for categorical data are
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given in Lang and Agresti (1994) and Glonek and McCullagh (1995).

3.4.3 Remarks

Although, much has been achieved in the last few decades there is still considerable potential
for research in missing data methods in QL settings. Many methods have been developed
in the general statistical literature but few of these techniques have been applied to QL ex-
amples. This thesis endeavours to collate and contrast existing methods of handling missing
data for both continuous and categorical outcomes. We investigate the assumptions that
are required to ensure validity of results. In addition, we explore further the use of pattern
mixture models as an alternative to selection models in the continuous data setting.



Chapter 4

Datasets

This chapter introduces the longitudinal sets of data which will be used throughout this
thesis. EORTC trial 10921, a study of locally advanced breast cancer is presented in Sec-
tion 4.1. STIAK (Schweizerisches Institut fuer Angewandte Krebsforschung) study 20/90,
comparing the effectiveness and toxicity of 4-OH-Androstenedione with Megestrol acetate
as second line hormonal treatment in advanced breast cancer patients is described in Sec-
tion 4.2. Section 4.3 is devoted to IBCSG study VI-14 which was designed to investigate
adjuvant chemotherapy and/or endocrine treatment in patients with operable breast cancer.
The Milk Protein Content Trial, a study frequently used in analysis of longitudinal data with
dropout, is presented in Section 4.4. Sections 4.5 and 4.6 introduce two prostate studies from
the EORTC Genito-Urinary Tract Cancer Co-operative Group.

4.1 EORTC 10921: Locally Advanced Breast Cancer
Trial

EORTC trial 10921 (Therasse et al 1998) is an international, intergroup dose-intensified
study. This randomized phase III study was designed to compare six four-weekly cycles of
CEF (cyclophosphamide, epirubicin and 5FU) versus six two-weekly cycles of dose-intensified
EC (epirubicin and cyclophosphamide) + G-CSF (growth colony stimulating factor) in pa-
tients with locally advanced/inflammatory breast cancer. The expected duration of standard
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treatment was 24 weeks compared with 12 weeks in the intensified treatment arm. Between
June, 1993 and April, 1996, 448 patients were entered in the trial with 224 patients being
randomized into the CEF arm and 224 into the EC+G-CSF arm. The main endpoint of
the trial was progression-free-survival. To date, duration of survival and progression-free
survival are not significantly different between the two treatment arms.

QL was considered to be a mandatory part of the protocol. The QL assessment consisted of 2
generic questionnaires, the EuroQoL (The EuroQoL Group 1990) and the RAND MOS (Ware
and Sherbourne 1992), a cancer-specific questionnaire, the EORTC QLQ-C30 (Aaronson et
al 1993), and a study-specific breast module. The global health status/QL scale from the
EORTC QLQ-C30 was specified as the QL domain on which the main analysis would be
performed. This scale was constructed using the scoring procedures for the EORTC Core
Quality of Life Questionnaire EORTC QLQ-C30 version 1.0 (Fayers et al 1999), i.e., the scale
score was calculated by averaging items within the scale and transforming the average score
linearly to a 0 to 100 scale, with higher scores representing a better global health status/QL.

The planned schedule of assessment in both treatment arms was as follows: at random-
ization, every month for the first three months, every three months for the first year, at
18 months and every eight months thereafter until disease progression. The current analy-
sis concentrates on the QL assessments during the first year. A window (time frame) for
acceptance of questionnaires was defined for each assessment. To allow for some delay in
the schedule of treatment (and hence QL assessment) more time was allowed after than
before the scheduled assessment point (e.g., at week 4 questionnaires were accepted if they
were completed within one week before and up to 2 weeks after the scheduled assessment).
This reduces the possibility of patients being omitted from the analysis because of delayed
chemotherapy cycles.

Of the 448 patients included in the trial 11 patients were considered ineligible (8 due to
disease stage, 1 due to prior treatment for breast cancer and 2 due to previous or concurrent
malignancy). For 2 patients eligibility was not verifiable due to inadequate source docu-
mentation. Seventeen patients from two institutions were excluded from the QL study, as
officially translated EORTC QLQ-C30 questionnaires were not available for these languages
during the study. A further 15 patients were excluded because they were judged unfit to
complete the QL questionnaires (9 in the CEF arm and 6 in the EC+G-CSF arm). A to-
tal of 403 patients were eligible for the QL analysis, 199 in the CEF arm and 204 in the
EC+G-CSF arm.

The compliance with the QL assessments during the first 12 months of the study is presented
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Table 4.1: EORTC Trial 10921. Compliance with QL assessment by treatment arm.

CEF

Months 0 1 2 3 6 9 12
Expected 199 199 199 195 179 167 155
Received 169 157 148 156 124 114 103
% 8 79 T4 8 69 68 66

EC+G-CSF

Months 0 1 2 3 6 9 12
Expected 204 204 202 199 194 185 170
Received 173 169 158 141 133 127 104
% 8 83 78 71 69 69 61

in Table 4.1. Some patients completed more than one valid QL questionnaire within a given
time window. For these patients the questionnaire which was completed first during this
period was retained. The main reason for patients going off study was progression of disease.
Table 4.2 presents the patterns of completed questionnaires. Ninety-three patients completed
QL questionnaires at all seven assessment time points. Monotone dropout patterns (i.e., a
complete series of questionnaires before dropout) were observed in 189 cases (this includes
the latter 93 patients). Intermittent missing questionnaires was also a problem with 115
patients having exactly 1 missing questionnaire and the remaining 94 patients having more
than 1 missing questionnaire in a series before dropout. Five patients did not complete any
questionnaires during this period.

4.2 SIAK 20/90: Postmenopausal Advanced Breast
Cancer Study

One hundred and seventy-seven postmenopausal advanced breast cancer patients were ac-
crued into a multicenter randomized phase III trial (STAK 20/90), which aimed at comparing
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Table 4.2: EORTC Trial 10921. Patterns of missing data.

Months

Months
6 O

12 Frequency

2 3 6 9

1

12 Frequency 0

3

2

ENAN AN ANANANANANANNANANN v rd v v v rf v ] v v ] rf v e v ] ] vf ] e v e ]

+ + + +++ + + + + + + +++ ++
++ + + ++ + + ++++ ++ +

+ + + + ++++ ++ + ++ + ++ + ++++

+ +++++ + + ++ ++ +++ +

+++++ ++ + ++ +++++ ++++++

+++ +++ +++ ++++++++++
+++++++ +++++++
R R G T 0 S T D T oo~ I~ OO O <H < < H 0D 0D 0D 0D D 0D O AT AN A N A N O N O
+ +++ ++ + ++ + ++ ++ ++ + +++ +
++ ++ +++ ++ + +++++++ ++++++4+ +
+++ + + +++++ + + + ++++ ++++
++++ +++++ + +++ +4++++ ++ + + +++
+++++ +++ +++ + ++ + ++ + ++ ++++ +++
++++++ ++ ++++++++++ +++ + ++ + ++ +++

e o o I e e e e S S e s




33

the effectiveness and toxicity of 4-OH-Androstenedione (arm A, 91 patients) vs Megestrol
acetate (arm B, 86 patients) as second line hormonal treatment. QL data were collected to
evaluate secondary endpoints such as impact of treatment on QL and QL as a prognostic fac-
tor for time to treatment failure. Patients were treated continuously until treatment failure,
i.e., disease progression, unacceptable toxicity, death or patient refusal. The clinical visits
were scheduled at week 2, months 1, 2, 3, then every 2 months and at treatment failure. QL
assessments were collected during clinical visits at randomization (baseline), months 1, 3,
5,7, 9 and 11. Thus, patients who did not have a premature treatment failure (i.e., before
month 11) should have completed 7 QL assessments.

QL was measured by 7 Linear Analogue Self-Assessment (LASA) scales, ranging from 0 to
100, for physical well-being, mood, fatigue, appetite disturbance, hot flushes, dizziness and
perceived adjustment to chronic illness (PACIS). Reasons for the missingness of QL ques-
tionnaires were documented if available and classified as ‘administrative problems’, ‘patient
refusal’, ‘language problems’ and ‘others’ (e.g., physician refusal, no clinical visit). For this
thesis, only the PACIS scale was considered. For ease of interpretation the original scores
were reversed (100 - original score), so that higher scores represent better QL.

The reasons for missing values for each patient sometimes differed from assessment to assess-
ment. For example, consider a patient who completed assessments at time points 1, 2 and 4.
The missing value at time point 3 was intermittently missing and caused by administrative
problems, while the missing values at time points 5, 6 and 7 were due to missing PACIS
score within the received QL questionnaire (i.e., item non-response), and to dropout caused
by patient refusal and premature treatment failure, respectively.

The dominant type of missingness in this example was dropout. Table 4.3 presents the
number of dropouts at each time point and the cumulative dropout rates. About half of
the patients dropped out before month 5, which was consistent with the median times to
treatment failure of 120 days in arm A and 111 days in arm B. Most of the dropouts were
caused by premature treatment failure; however, 20% of patients (17% in arm A and 23%
in arm B) dropped out for reasons other than treatment failure. For the latter subgroup
Table 4.4 lists the number of dropout values (before treatment failure) per patient and the
reasons for missingness. Intermittent missing values were relatively infrequent. The number
of intermittent missing values per patient varied between 0 and 4. Most cases involved
missing at baseline. Table 4.5 lists the number of intermittent missing values per patient
and the reasons for missingness.

Eight patients (2 in arm A and 6 in arm B) did not give any data on their QL, i.e., were
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Table 4.3: SIAK Trial 20/90. Number of patients with dropout-missing values and cumulative
dropout rates.

Arm A (91 pts) Arm B (86 pts)
Dropout No. of pts Cumulative No. of pts Cumulative
time dropped out dropout dropped out dropout
due to rate (%) due to rate (%)
Treatment  Other Treatment  Other
failure reasons failure reasons
Baseline 0 2 2.2 0 § 7.0
Month 1 7 4 14.3 14 2 25.6
Month 3 28 1 46.2 21 1 51.2
Month 5 9 1 57.1 10 1 64.0
Month 7 6 0 63.7 8 2 75.6
Month 9 10 1 75.8 4 1 81.4
Month 11 3 4 83.5 3 5 90.7
Total 63 13 60 18

Table 4.4: SIAK Trial 20/90. Number of before-treatment-failure dropout-missing values per
patient and the causes of their missingness among patients who dropped out for reasons other
than premature treatment failure.

No. of dropout Arm A Arm B Cause of Arm A Arm B

missing values (13 pts) (18 pts) missingness (18 values) (29 values)

per patient

1 8 12 Administrative 7 11

2 5 2 Patient refusal 6 7

3 0 3 Language problems 2 0

4 0 1 Other 1 9
Missing PACIS 2 2
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Table 4.5: SIAK Trial 20/90. Number of intermittent-missing values per patient and the
reasons for missingness.

No. of intermittent Arm A Arm B Cause of Arm A Arm B
missing values (15 pts) (16 pts)  missingness (20 values) (23 values)
per patient

1 10 12 Administrative 9 11

2 5 2 Patient refusal 3 2

3 0 1 Others 3 6

4 0 1 Missing PACIS 5 4

not compliant (see Table 4.3), and thus were excluded from the analysis. The reasons for
the missingness of their QL questionnaires were ‘administrative problems’ (n = 4), ‘patient
refusal’ (n = 2), ‘language problems’ (n = 1) and ‘others’ (n = 1).

4.3 IBCSG VI-14: Operable Breast Cancer Study

Two hundred and nineteen patients randomized into International Breast Cancer Study
Group (IBCSG) studies VI-14 (Sabbioni et al 1996) and also participating in an ancil-
lary study of immunological and psychosocial evaluation were observed for a minimum of
6 months (during adjuvant chemotherapy and/or endocrine treatment for operable breast
cancer). Clinical factors (age, menopausal and nodal status), sociodemographic factors (level
of education, language) and assigned treatment were investigated. Immunological and QL
assessments were planned at day 1 (baseline), months 3, 6, 12 and 24. At the time of the
clinical visit, patients were given self-administered questionnaires and interviews. The QL
questionnaries included LASA (IBCSG) and a series of ordered categorical scales. Some
scales were single- and others multi-item. We prospectively selected for this example: ‘anxi-
ety’ (summary score as an average of 5 items each with 6 ordered response categories ranging
from 0=no to 5=very much), and ‘burden related to hair loss’ (1 item with 6 ordered cate-
gories, the same as for anxiety). When an item belonging to a multi-item scale was missing,
the total scale value was defined as missing. The reasons for missing QL questionnaires
were ‘prospectively’ collected and defined as: ‘local organization problems’, ‘patient refusal’,
‘language problems’, ‘health related problems’, ‘relapse/death’ and ‘others’.

One-hundred and seventy patients had node negative (78%) breast cancer, 140 (64%) were
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pre-menopausal and 163 (74%) were younger than 60 years. Five patients (2%) did not
participate in the psychosocial-QL part of the investigation because of refusal (3), local
administrative (1) or language problems (1).

The analysis was based on 642 questionnaires covering the QL assessment in the first 6
months. There were few missing QL questionnaires (18/642, 3%; 4 local problems, 5 refusals,
2 health related problems, 6 relapses or deaths and 1 for other reasons). In this highly
compliant group, the small amount of missing data was a mixture of intermittent-missing
questionnaires and dropouts (due to relapse or death and refusal).

4.4 The Milk Protein Content Dataset

The ¢ Milk Protein Content Dataset’ is used frequently as a sample dataset for longitudinal
data with dropout. Diggle (1990) and Diggle and Kenward (1994) analyzed the data after
taking it from Verbyla and Cullis (1990) who in turn had discovered the data at a workshop
at Adelaide University in 1989. The data consist of assayed protein content of milk samples
taken weekly during 19 weeks from 79 Australian cows. The cows entered the experiment
after calving and were randomly allocated to one of three diets: barley, mixed barley-lupins
and lupins alone, with 25, 27 and 27 animals in the three groups, respectively. All cows
remained on study during the first fourteen weeks, whereafter the sample reduced to 59, 50,
46, 46, and 41, respectively, due to dropout. This means that dropout was as high as 48% by
the end of the study. Table 4.6 shows the number of cows per arm and per dropout pattern.

4.5 EORTC 30893: Poor Prognosis Prostate Cancer
Trial

EORTC trial 30893 was designed as a prospective multicenter randomized phase IIT study
comparing orchidectomy and orchidectomy plus mitomycin C (15 mg/m? intravenously every
six weeks until progression) in patients with poor prognosis metastatic prostate cancer. The
main endpoint of the trial was survival.
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Table 4.6: Milk Protein Content Trial. Number of cows per arm and per dropout pattern.

Diet
Dropout week Barley Mixed Lupins
Week 15 6 7 7
Week 16 2 3 4
Week 17 2 1 1
Week 18
Week 19 2 2 1
Completers 13 14 14
Total 25 27 27

A shortened version of the EORTC QLQ-C30 supplemented by disease and treatment specific
items was used to assess QL. Scale scores were constructed using the standard procedures
recommended by the EORTC Quality of Life Study Group (Fayers et al 1999), i.e., scores
were calculated by averaging items within scales and transforming average scores linearly to
a 0 to 100 scale, with higher scores representing a higher level of functioning or a higher level
of symptoms. In Chapter 8 Sections 8.2 and 8.5 we focus on the global health/QL scale as
the primary QL outcome whereas in Chapter 10 the physical functioning scale is the primary
scale of interest. Further details on the clinical analysis and the QL analysis are described
elsewhere (de Reijke et al 1999, Fossa et al 1999). The planned schedule of assessment in
both treatment arms was as follows: at randomization, every six weeks during the first nine
months, every three months thereafter until progression of disease and at the time of disease
progression.
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Figure 4.1: EORTC Trial 30893. Progression free survival by treatment arm.
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Between February 1990 and May 1995, 189 patients were entered into EORTC trial 30893
(93 patients were randomized into the orchidectomy alone (Orch) treatment arm and 96
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into the orchidectomy + mitomycin C (Orch+MMC) treatment arm.) Figure 4.1 presents
a Kaplan-Meier plot of progression-free survival and a table of QL assessment compliance.
The median duration of progression free survival was 10.1 and 11.5 months in the Orch
and the Orch+MMC arms, respectively. The main reason for patients going off-study was
progression or death. As may be seen in Figure 4.1, the attrition of patients is substantial
in both treatment arms. The compliance rate is lower at baseline than at later points in
the study. This is explained in part by the fact that although baseline QL should have
been completed before orchidectomy, for 40 (21%) patients orchidectomy was performed
prior to randomization and hence these patients did not complete a questionnaire before
randomization.

4.6 EORTC 30903: Hormone-Resistant Prostate Can-
cer Trial

EORTC trial 30903 was designed as a prospective multicenter randomized phase IIT study
comparing flutamide versus prednisone in hormone resistant metastatic prostate cancer pa-
tients. The main endpoint of the trial was survival. Flutamide and prednisone were adminis-
tered daily until progression after which patients were treated according to the investigators
discretion. Progression was defined as either: an increase in pain score by > 1 category; an
increase in daily analgesic dose by > 25%; any need to give additional anti-pain treatment,
e.g., radiotherapy; deterioration of WHO performance status by > 1 category. Quality of
life should have been evaluated at randomization, 3 and 6 weeks later, and at subsequent six
weekly intervals. Because it was not clearly defined in the protocol most institutions did not
perform QL assessments after progression. The EORTC QLQ-C30 was used to assess QL.
In this report we focus on the Global health status/QL scale of the EORTC QLQ-C30. The
scale scores were constructed using the standard procedures recommended by the EORTC
Quality of Life Study Group (Fayers et al 1999), i.e., scores were calculated by averaging
items within scales and transforming average scores linearly to a 0 to 100 scale, with higher
scores representing a better QL.
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Figure 4.2: EORTC Trial 30903. Progression free survival by treatment arm.
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Between January 1992 and March 1998, 201 patients were entered into EORTC trial 30903
(101 patients were randomized into the prednisone treatment arm and 100 into the flutamide
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treatment arm.) Figure 4.2 presents a Kaplan-Meier plot of progression-free survival and a
table of QL assessment compliance. The median duration of progression free survival was
3.4 and 2.3 months in the prednisone and flutamide arms, respectively. The main reason for
patients going off-study was progression or death. As may be seen in Figure 4.2, the attrition
of patients is substantial in both treatment arms. For this reason, only the assessments up
until 24 weeks were used in this analysis. Table 4.7 shows the various missingness patterns.
Twenty patients completed QL questionnaires at all five assessment time points. Monotone
dropout patterns (i.e., a complete series of questionnaires before dropout) were observed in
104 cases. Intermittent missing questionnaires was also a problem with 46 patients having
exactly 1 missing questionnaire and the remaining 11 patients having more than 1 missing
questionnaire in a series before dropout.

As the main objective was to investigate (a) differences between treatment groups during
treatment and (b) change from baseline it was decided to analyze change scores from baseline
i.e., observed scores — baseline scores. This transformation resulted in response scores which
were approximately normally distributed and more continuous in nature than the original
QL score.

4.7 Remarks

The datasets described above exhibit the main characteristics of QL datasets, e.g. QL is as-
sessed longitudinally with measurements missing both intermittently and due to dropout of
patients from the study. These characteristics will be explored further in the ensuing chap-
ters. The milk dataset was chosen as an ideal example to illustrate some of the limitations
of selection models in dropout matters, see Chapters 8 and 9.



Table 4.7: EORTC Trial 30903. Patterns of missing data.

Weeks
3 6 12 18 24 >24 N Percent

+ + + + + 4+ 16 9.9
+ 4+ + 4+ + 4 2.5
+ 4+ + + + 3 1.9
+ 4+ + + 8 5.0
+ 4+ + + 4+ 4 2.5
+ 4+ + + 4 2.5
+ 4+ + 20 124
+ + + + 4+ 6 3.7
+ + +  + 1 0.6
+ + + 5 3.1
+ + 28 174
+ + + + + 2 1.2
+ + + + 2 1.2
+ +  + 2 1.2
+ + + 4+ 1 0.6
+ + 3 1.9
+ + + 4+ 3 1.9
+ +  + 1 0.6
+ + 1 0.6
+ 28 174
+ + 4+ + 4+ 2 1.2

+ + + + 3 1.9

+ + 4+ 2 1.2

+ + + 4+ 1 0.6

+ + 1 0.6

+ + + 4+ 1 0.6

+ + + 1 0.6

+ 5 3.1

+ + 1 0.6

+ 1 0.6

+ + 4+ 1 0.6




Chapter 5

Missing Items

5.1 Introduction

The problem of missing items was described briefly in Chapter 2. A search of the literature
reveals very few papers handling the problem of missing items, e.g. the extent of missing
items or how missing values were treated in the analyses. Morris and Coyle (1994) recom-
mend estimating summary scale scores using the mean of the other observed scale items
(simple mean imputation, described in Section 2.2). As with missing forms, when items are
missing the central statistical issues are bias and power:

1. For example, it might be the case that more ill patients, or patients with more prob-
lems, are less willing or less able to complete the questionnaires satisfactorily, or that
patients with no problems are less convinced about the need to return comprehensive
information. Thus any analyses which ignore the presence of missing data may result
in biased conclusions about the changing QL of patients.

2. Even with a small proportion of missing values for each item, the cumulative effect
can result in a substantial proportion of patients having one or more missing items
during the follow-up period. Analyses based solely upon those patients for whom
complete data are available may have severe loss of power because cumulative exclusion
of patients results in too few patients remaining in the final analyses.

43
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This chapter considers the implications of and possible solutions for missing items, and
proposes some specific solutions for imputing values of missing items. Some widely advocated
and commonly adopted procedures are shown to be inappropriate under certain conditions,
and alternative methods are suggested for these situations.

5.2 Extent of the Problem

Medical Research Council (MRC) and European Organization for Research and Treatment
of Cancer (EORTC) experience in a variety of trials suggests that for most items between
0.5% and 2% of values will be missing from returned QLQ-C30 forms, and similar figures
apply to most of the items on the RSCL. Thus, overall, the problem of missing items might
be regarded as unimportant. However, there are two important considerations. Firstly,
as already stated, since each questionnaire contains about 30 questions, a 1% missing rate
would, if it occurred at random, imply that about a quarter of patients (1-.99%° = 26%)
could have a missing item on their initial QL assessments whilst even a 0.5% rate could
result in 14% missing. Furthermore, at each subsequent assessment there will be additional
missing data and thus many patients are likely to have some degree of missing data. Thus
any method of analysis which excludes patients who have missing values may result in a
seriously reduced data set. However, analysis of the patterns of missingness reveal that
it does not occur randomly. Patients who omit answers to one question are more likely
to omit answers to other questions, and often there is a pattern of non-response to several
consecutive questions, despite the successive questions usually being unrelated to each other.
This leads to far fewer forms containing missing values than would be expected by chance
alone. Review of 7000 forms in 6 MRC trials indicates that 92% of forms contained complete
information regarding 29 out of the 30 questions in the first section of the RSCL, although
one question (as explained below) presented particular problems. The proportion of forms
with missing data varied considerably from study to study, from 4% to 14%.

Secondly, some items may present particular problems. In particular, the RSCL question
“(to what extent have you been bothered by) Decreased sexual interest” produces far more
serious problems with patient compliance and for that reason was excluded when estimating
the overall missing item rate of 1%. This and similar questions addressing sexuality issues
on the QLQ-C30 supplementary modules frequently present high rates of missing values. In
all MRC trials, females were far more likely to avoid this question than males - for example,
in a trial of palliative radiotherapy for advanced bladder cancer (BA09), 35% of females had
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missing data but only 16% of males. In the RSCL the only question apart from ‘decreased
sexual interest’ which showed a significant gender difference was ‘loss of hair’ (p=0.005),
with twice as many females (1.5%) to males (0.8%) avoiding this question. Several questions
manifested age effects, with older patients being more likely to leave questions unanswered.
Dividing the data about the median age of 65, these included ‘shortness of breath’ with 1.2%
of older patients, versus 0.3% of younger patients (p=0.001); ‘sore mouth’, 1.4% v. 0.4%
(p=0.001) ; ‘shivering’, 1.1% v. 0.4% (p=0.001); ‘acid indigestion’, 1.2% v. 0.6% (p=0.003);
‘feeling tense’, 1.0% v. 0.4% (p=0.007); ‘burning eyes’, 1.1% v. 0.5% (p=0.008); and most
items on the activity scale. These associations with gender and age suggest that at least for
some items the missingness is covariate-dependent. Missingness may even be MNAR, with
patients experiencing problems being less likely to admit to them.

5.3 Reasons for Missing Data

It is important to consider the reasons underlying the occurrence of missing data, since this
may indicate which methods of analysis are plausible and realistic. Some items may be
MCAR while others are MAR or MNAR. Unfortunately there are several potential reasons
for missing items. The following are likely to be the principal causes in QL studies.

PATIENT FORGOT

Patients may forget to complete, or may overlook, a few questions. Many newer protocols
instruct staff to check forms for completeness, and to ask the patient to fill in any missing
items.

PATIENT FELT ToO ILL / TOO DISTRESSED

Patients may wish to avoid some questions which are embarrassing or cause distress. For
example, questions relating to sexual activity, performance and ability are often avoided.
However, there are also issues about interpretation and applicability of such questions to
those who are very elderly or living alone. This type of missingness is unlikely to be MCAR
and may even be MNAR.
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QUESTIONS NOT UNDERSTOOD OR ‘NOT APPLICABLE’

Some questions may be badly worded, and the patient may not know how to respond. For
example, ‘do you have trouble going up stairs?’ might be left blank by patients that (a) live in
ground floor apartments, or (b) have such severe trouble climbing stairs that they no longer
attempt to do so. In (a) this may be considered as ‘not applicable’ and equivalent to MCAR,
whilst (b) may be considered to be ‘not applicable’ but is definitely not MCAR. Few QL
instruments have provision for patients to indicate that an item has been left blank because
it is not applicable, and even fewer provide space for the reasons to be given. Without such
information it is difficult to identify if missing data is MCAR.

5.4 Estimation of Scale Scores

When individual items are missing there are problems in calculating values for the summated
scales. For a scale that is based upon a number of items, of which one or more is missing,
there are in general three main methods that may be adopted.

5.4.1 'Treat the Score for the Scale as Missing

If any of the constituent items are missing, the scale-score for that patient is excluded or
treated as missing for all statistical analyses (often referred to as listwise deletion or complete
case analysis). This method is the simplest and most naive approach to the analysis but
results in overall loss of data.

5.4.2 Simple Mean Imputation

The scale score can be estimated from the mean of those items which are available. This is
a widely adopted approach which is very simple to implement (Fayers et al 1999, de Haes et
al 1990, Ware et al 1993). There are two mathematically equivalent ways of describing this
method. Suppose two items are missing from a five-item scale. The mean of the three known
results may be calculated, and this mean is then used to replace the two missing values. The
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scale score can then be estimated. This is equivalent to calculating the scale score using only
those three items for which we do have known values. In its most common form, application
of this rule is usually restricted to cases where the respondent has completed at least half of
the items in the scale. Section 2.2 describes how to implement simple mean imputation for
the emotional functioning scale of the QLQ-C30.

5.4.3 General Imputation Methods

The objective of imputation is to replace the missing data by estimated values which preserve
the relationships between items and which reflect as far as possible the most likely true value.
If properly carried out, imputation should reduce the bias that can arise by ignoring non-
response. By filling in the gaps in the data, it also restores balance to the data and permits
simpler analyses. Hence imputation is an attractive procedure - provided one can be sure
that the conditions are appropriate and that unintended bias is not being introduced. As
was mentioned in Chapter 3 a variety of techniques have been proposed, some of which
are mathematically and computationally quite difficult to apply. Perhaps as a consequence,
general imputation methods do not appear to have been widely used with QL instruments.

5.5 Psychometric Theory

Conventional psychometric theory holds that scales should ideally be unidimensional; that
is, a scale (or a subscale) should measure a single underlying construct. This theory states
that any observed score X is the sum of two components, a true score T' and an error €:
X=T+c¢
where € is randomly distributed with mean zero and variance o2. The distribution of € is
assumed to be independent of T'. The assumption of independence between T and € implies
that
0'?( = 0'% + of

Let two tests have observed scores X; = T +¢; and Xy, = Th+ €5 that satisfy the assumptions
of the theory. Then the tests are said to be ‘parallel’ (Nunnally and Bernstein 1994) if
T. = T, and 02 = o02,. The logical justification for adding items lies in the intuitively
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appealing notion that for any pair of parallel items, their sum is more reliable than any
single item. Consider a series of k parallel items Y; for which Y; = T + ¢;, and let

which leads to
oy = k*03 + ko? (5.1)

As seen from (5.1), for a sum of items, the weight of the variance of the true score is
the square of the weight of the variance of the error. Therefore, increasing the number of
items decreases the weight of the error variance compared with the true score variance, thus
providing a more reliable estimate of the true score.

In practice, all items contributing to a scale should show reasonably strong correlation with
the overall scale, and only weak correlations with other scales. This additionally implies that
items should be highly correlated with other items in the same scale. These assumptions
arise because many areas of psychometric research attempt to measure postulated ‘latent
constructs’ such as intelligence, educational attainment, or personality. For these latent
constructs the aim is to devise test items which fulfil the requirements of ‘parallel tests’.
Under this concept, each item is expected to be an equally good measure of an underlying
latent construct for the scale. This principle underpins the use of summated or ‘Likert’
scales, and justifies using a simple sum of the individual items as a summary scale score.
The scale score provides an estimate of the supposed latent construct. The parallel items
in a psychometric questionnaire will show correlation with each other by virtue of the fact
that they are all measuring the same underlying latent construct or subject’s ability. If
they are good measures of the latent construct, the correlation will appear to be high. This
correlation should be entirely a consequence of the latent construct, and not influenced by
other factors. Therefore, if one conditions upon the value of the latent construct, the test
items should be independent of each other and of all other factors (Nunnally and Bernstein
1994). This concept of parallel test items also underpins the measures of reliability, such as
Cronbach’s alpha:

k ZiO'%/,
= 1- t 5.2

Cronbach’s alpha is proportional to the part of the variance of X (the sum) which comprises
the covariance of each pair of items. Under traditional test theory, all items should be parallel
tests and should be highly correlated, leading to high values of alpha reliability. Under the
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conditions of parallel tests simple mean imputation will be adequate. This follows because
if the tests are truly parallel, each item is by definition an equally good estimator of the
scale score. Therefore the score for a scale can be estimated using the available non-missing
items, and the main consequence of missing items will be a lack of precision. If there are
high correlations between the items, as manifested by a high Cronbach’s alpha reliability
measure, the imputed value will provide a good and precise estimate of the scale score. Even
when the items are not strictly parallel tests, the use of simple mean imputation may still
be a reasonable procedure. However, in some situations this form of imputation may be
unsuitable for use with QL scales, and examples of these are described below. In such cases
simple mean imputation may be inefficient or may lead to biased estimates of the score
values.

5.6 Statistical Considerations

In most clinical trials the number of missing items will be only a small percentage of the
total data. However, when this percentage becomes large simple mean imputation will tend
to result in underestimation of the variance or standard deviation. This arises because all
missing values are being estimated as being equal to the mean, whilst in reality the true
data values would have been scattered around the mean value and are subject to variability.
Hence, under simple mean imputation, there will be a tendency to estimate confidence
intervals and percentiles which are too narrow. When large amounts of data are missing it
may be appropriate to consider adding random variability or ‘noise’ to the imputed values,
so as to ensure the standard deviation remains at the expected level.

More serious implications arise when the missing data does not occur completely at random;
this may lead to biased comparisons which compromise the treatment comparisons of a trial.
Unfortunately it is usually difficult to distinguish values which are missing completely at
random from those which are not. The main indications of the need to use more sophisticated
methods involve testing the missing data mechanism, and also checking whether there are
grounds for suspecting that the data may not be missing completely at random.
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5.6.1 Treat the Score for the Scale as Missing

This method is the simplest and most naive approach to the analysis. Thus careful con-
sideration should be given before using it. When data are missing completely at random
treating the score for the scale as missing results in a reduced data set which represents a
randomly drawn sub-sample of the full data set. Hence inferences about the values of QL for
the trial patients can be considered reasonable. Provided the missingness rate is low (e.g.,
<2%) this approach may be considered since the effect on overall results will probably be
negligible. However, if the missingness rate is higher then it becomes important to identify
the reasons for missingness and the missing data mechanism. This may be done either by
collecting the reasons for missingness or by testing the missing data mechanism as described
in Chapter 7. However, testing the missing data mechanism may be problematic if the pro-
portion of missingness is small since the power to detect a difference between responders and
non-responders may be low. As such, although the null hypothesis of MCAR is not rejected
it may not be possible to completely rule out a MAR or even MNAR process.

If the reasons for missingness or the model for the missingness suggest that the missing data
is not MCAR or is covariate-dependent then treating the scale score as missing may lead to
serious bias in particular when values are MNAR. An example is the decreased sexual interest
item on the RSCL, as discussed above. Since one plausible assumption is that patients
experiencing problems are likely to be more reticent concerning this question, missing items
may occur more frequently when there are sexual problems. Thus ‘missing’ might frequently
imply ‘very much’ problem. If this assumption is correct, simply excluding the scores for
these patients with missing values could result in misleading and biased conclusions about
the prevalence and severity of problems.

One warning sign of a potential problems is the rate of missing data. MRC and EORTC
experience suggests that 0.5% or 2% are common random missing rates, and therefore if
an item has an appreciably higher missing value rate there may be some consistent reason
which should be explored. One example where higher percentages of values may be missing
is activities of daily living scales which include an item about ‘able to go to work’ - this is
frequently missing amongst elderly patients, suggesting that they may ignore the preliminary
covering sentence ‘we do not want to know whether you actually do these, only whether you
are able to at the moment’. In this case simple mean imputation is suspect and alternative
methods should be considered.
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5.6.2 Simple Mean Imputation

The following checks should be made before using simple mean imputation. Most of these
checks fall into two broad categories. Firstly, is the probability of missingness dependent
on either covariates or observed QL scores? Secondly, for patients in whom the item is not
missing, does the item in question behave differently from other items in the same subscale
or is it correlated with items external to its own scale?

Patients With Missing Items Should be Similar to Other Patients

Patients with missing items may be different from those with data available. For example, if
older male patients tend to omit responses to questions about social functioning, it might be
doubtful whether simple mean imputation remains unbiased. As mentioned in the previous
section it is useful to test if missingness is dependent on either demographic or clinical
covariates or observed QL scores from both the item of interest and other items. In addition,
the correlations of ‘decreased social functioning’ with sex and age may hint at MNAR.
Unfortunately it is not possible to distinguish MNAR on this basis alone. In particular,
when the response is missing it may well be indicative of poor social functioning. If the
missingness is covariate-dependent or dependent on observed QL scores, the estimated score
should reflect this in some way.

Item-Means and Item-Variances Within a Scale Should be Similar

If items within a scale do not have the same means then the use of mean imputation may
not be justied. We will provide an example where the means and variances within a scale
are different using pre-treatment data taken from MRC colorectal trial CR04.

EXAMPLE

This study used the subscale for chemotherapy-related symptoms, which is formed by sum-
ming the 5 items shown in Table 5.1. From the table we see that 43% of patients experienced
some problems with heartburn / belching (item $22), but at most 15% of patients had prob-
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Table 5.1: MRC Trial CR04. RSCL Chemotherapy-related symptoms subscale, from pre-
treatment data.

Ttem Not at all A little Moderately Very much

1 2 3 4

% % % % Mean*
22:Heartburn / belching 57 27 10 6 22
24:Tingling hands / feet 85 12 1 2 7
26:Pain in mouth when swallowing 95 2 2 1 3
27:Loss of hair 90 8 1 1 4
28:Burning eyes 93 ) 2 0 3

* The mean scores have been standardised to lie between 0 and 100, as in Equation 2.2.

lems with each of the other items. The mean score for $22 is 22, which is very different from
that of the other items. If there are missing values for s22, it would be a mistake to use the
average of the other non-missing items, since this would consistently tend to underestimate
the problems that we know are experienced by nearly half of all patients. Equally, if one
of 824, 26, s27 or s28 is missing, we should not base the estimate upon calculations incor-
porating s22 since that would tend to overestimate the score for those patients. Similarly,
the variance of s22 is different from the other items. A ‘proper’ imputation procedure would
take into account the entire distribution of scores in this example.

Sometimes the treatment or disease may be expected to result in a high frequency of par-
ticular symptoms (such as heartburn/belching), in which case this data may also have been
collected on a toxicity report form; it may then be possible to impute missing values from
these forms. Examination of correlations and cross tabulations of variables may also be
useful in suggesting alternative imputation rules.

It should be noted that the between-item correlation may be high despite items having
different mean values. Cronbach’s alpha may also be high. Hence high correlations and
alphas are not sufficient to justify the use of mean imputation; they are necessary, but not
sufficient.
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Table 5.2: Physical Functioning Scale. Adapted from the EORTC QLQ-C30 (version 2.0).

No Yes

1 Do you have any trouble doing strenous activities, like

carrying a heavy shopping bag or a suitcase? 1 2
2 Do you have any trouble taking a

long walk? 1 2
3 Do you have any trouble taking a

short walk? 1 2
4 Do you have to stay in a bed or a chair

for most of the day? 1 2
5 Do you need help with eating, dressing,

washing yourself or using the toilet? 1 2

The Scale Should Not be Ordered, Hierarchical or a Guttman Scale

Some scales are ‘hierarchical’ and have an implicit ordering of responses. An example of
this is the QLQ-C30 scale for physical functioning, which is based upon questions 1 to 5
(Table 5.2). If a patient replies ‘Yes’ to Question 3, about trouble taking a short walk, it
would not be sensible to base a missing value for Question 2 on the average of the answered
items; clearly those who have difficulty with short walks would have even greater problems
with a long walk. In this case the structure of the questionnaire may imply that the replies
to some questions will restrict the range of plausible answers to other questions. Ordered
scales are often called Guttman scales, although technically this description only applies to
a particular type of hierarchical scale.

Hierarchical or ordered scales are different in nature from the more usual psychometric scales.
The items are not ‘parallel tests’ with similar expected mean values, but are chosen such
that different items correspond to different levels of functioning. Mean scores for one level
cannot be used as estimates of missing values for another level. These scales also violate the
assumption that all items contributing to the scale should have high correlations with all
other items in the scale (Nunnally and Bernstein 1994). Finally, hierarchical scales contain
additional information which should be considered when estimating the scale score. Simple
mean imputation is not suitable for such scales. If we consider the ‘long walk’ and ‘short
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walk’ questions, two simple cases are straightforward: (a) Assume the answer to ‘long walk’
is missing. If the patient has trouble taking short walks, then it would seem reasonable
to assume that long walks would cause difficulty too; we therefore impute a value of ‘yes’
for trouble taking long walks. (b) Assume ‘short walk’ is missing. If the patient has no
difficulty with long walks, we may assume there is unlikely to be difficulty with short walks;
we therefore impute a value of ‘no’ trouble for short walks. One simple extension to the
within-patient imputation in this situation is to consider across patients: if the individual in
question had no difficulty with short walks, a missing value for long walks could be estimated
by calculating the proportion of patients who could take short walks and were also able to
manage long walks and impute a value from a Bernouli distribution.

Items Within a Scale Should be Strongly Correlated

The fundamental rationale for simple mean imputation is that a missing item is best esti-
mated by using the values of the other items within the same scale, and that other items and
factors may be ignored. This is only sensible if there are reasonably high positive correlations
between the items. For a valid and homogeneous scale it is expected that all the component
items will be fairly highly correlated with each other. Thus psychometric theory commonly
advocates within-scale items should be strongly correlated (but not too strongly correlated,
or else there is redundancy). Section 5.5 indicated that Cronbach’s alpha is closely related
to between-item correlation. As such, a high alpha coefficient is an indication that all items
are highly correlated. An alpha less than 0.35 indicates that mean imputation is unreliable,
whilst an alpha greater than 0.85 supports its use.

However, correlations may be weak for items within some QL scales, especially with more
heterogeneous symptom scales. Therefore it is important to check the magnitude of corre-
lations before using imputation rules. As an example where it would be dangerous to use
mean imputation, we consider the QLQ-C30. A combined data set of 178 patients from MRC
studies TE17 (adjuvant chemotherapy for high risk stage 1 teratoma) and LU16 showed a
correlation of 0.40 between items Q20 and Q25 of the EORTC QLQ-C30 cognitive func-
tioning scale which contains two items: Q20 - ‘Have you had difficulty concentrating on
things like reading a newspaper or watching television?’; and Q25 - ‘Have you had difficulty
remembering things?’ Thus it is dubious whether Q20 can be imputed from Q25 and vice
versa.

Furthermore, to justify using simple mean imputation in preference over other methods, not
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only should items within a scale be strongly correlated with each other, but in addition
correlations with items in other scales, and with external factors, should be low relative
to the within-scale correlations; otherwise more efficient methods of imputation would be
preferable. An example of the influence of external factors and variables might be the
association of performance status with physical functioning; if a patient is known to have
a very poor performance status, it would be wise to take that into account if the value for
‘able to take long walks’ is missing. If the within-scale correlations are weak or if there are
strong correlations with other items or factors, simple mean imputation becomes increasingly
suspect.

Item ‘Not Applicable’

It is unclear how to estimate scale scores when some constituent items are missing through
not being applicable. When patients return missing for ‘Do you have any trouble doing
strenuous activities like carrying a heavy shopping bag or a suitcase’ because they never
try to perform such activities. The decision how best to allow for non-applicable items
will depend partly upon the scientific question being posed. In the example cited, it might
be arguable that ‘not applicable’ represents major problems in terms of QL implications.
Therefore, it is important to provide a facility for patients to respond ‘not applicable’ in
situations when they wish deliberately to leave a response blank. Too many questionnaires
fail to distinguish between ‘missing’ and ‘not applicable’ responses.

5.6.3 General Imputation Procedures

One simple form of imputation is ‘last value carried forward’ which takes the previously com-
pleted value for that patient. However, this assumes that the patient score remains constant
over time. As mentioned in Section 3.3 this assumption is very strong and is not likely to
be valid in cancer clinical trials in advanced disease. Other forms of imputation which allow
shifts in the patient score over time may be considered more appropriate. Conditional mean
imputation is an attractive alternative.
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Conditional Mean Imputation

Conditional mean imputation allows one to substitute means that are conditioned on other
variables or previously observed scores, and therefore also allows for shifts in the general
population over time. The method was initially proposed by Buck (1960). Let us describe it
first for a single multivariate normal sample. The first step is to estimate the mean vector p
and the covariance matrix X from the complete cases. This step builds on the assumption
that Y ~ N(p,X). For a subject with missing components, the regression of the missing
components (Y") on the observed ones (Y7) is

YIYY ~ N(u™ + S7(2%) 7 (Y] - ), 277 - SRS (53)

Superscripts o and m refer to ‘observed’ and ‘missing’ components respectively. The second
step calculates the conditional mean from this regression and substitutes it for the missing
values. In this way, ‘vertical’ information (estimates for g and X) is combined with ‘horizon-
tal’ information (Y77) thus allowing both within and between subject data to be taken into
account. In general it yields consistent point estimates when the missingness mechanism
is MCAR and it is also valid under certain types or MAR mechanisms (Little and Rubin
1987). Even though the distribution of the observed components is allowed to differ between
complete and incomplete observations, it is very important that the regression of the missing
components on the observed ones is constant across missingness patterns.

EXAMPLE

EORTC trial 10850 (Curran et al 1998d) was designed as a phase III trial to compare
mastectomy versus breast conserving surgery in operable breast cancer patients. The QL
questionnaire contained a scale assessing body image of which one question focused on being
self conscious when seen nude in front of a husband/partner. There was a 13% non-response
rate, with non-responders tending to be older.

The Cronbach’s alpha reliability coefficient was 0.79 for the body image scale. All item-
scale correlations (corrected for overlap) exceeded the 0.40 criterion for item-convergent
validity for both multi-item scales. Scaling successes were observed in all cases; that is,
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Figure 5.1: EORTC Trial 10801. Distribution of scores for ‘nude’ question: (1) observed
scores, (2) imputed simple mean scores, (3) imputed conditional mean scores.

all items correlated significantly higher with their own scale (corrected for overlap) than
with other scales. All item means and variances were similar suggesting that simple mean
imputation may be appropriate. Figure 5.1 displays the observed score and imputed scores
using both simple mean imputation and conditional mean imputation. The precise wording
of the question was ‘I feel self conscious about being seen nude by my husband /partner’ with
possible response categories: (1) all of time (2) most of the time (3) some of the time (4) little
of the time (5) none of the time. Conditional mean imputation was performed taking the
observed scores for other items in the body image scale and covariates age and randomized
treatment into account. Although imputed scores correlated highly (Pearson’s Rho=0.635),
the imputed conditional mean scores indicated a shift towards more problems than was
seen by the scores obtained using simple mean imputation. Although differences were small
there is an indication that taking covariates into account may be useful, particularly if
the proportion of missing items is high. In this study QL was assessed cross-sectionally,
preventing us from incorporating within patient repeated scores in the imputation procedure.
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Off course, conditional mean scores assumes that the scores for the item come from an
approximately normal conditional distribution. This may not be true for all items. However,
this method is easy to implement, takes into account the previous score and also allows for
a shift in the distribution of scores.

Categorical Data Imputation

An improvment to the methods described above is to use methods specifically designed for
categorical data. Schaffer developed a set of algorithms for imputing incomplete categorical
data using saturated multinomial models in conjunction with the EM algorithm. Although
the algorithms are conceptually simple the notation required to describe them is somewhat
intricate. The main advantage of the EM algorithm is that the general theory (Dempster,
Laird and Rubin 1977) assures that each iteration increases the likelihood. The EM algorithm
consists of an ezpectation step (E step) and a mazimization step (M step). Given the current
value of the parameter vector, the E step computes the expected value of the complete
data log-likelihood, given the observed data and the current parameters, which is called
the objective function. Next, the M step determines the parameter vector maximizing the
objective function. One then iterates between the E and M steps until convergence.

Curran et al (1998c) used the ‘nearest neighbour hot deck’ to impute missing QL scores
taking clinical factors into account. The authors showed how a ’distance’ score could be
calculated for each patient using the parameter estimates from a logistic regression.

Comments

The imputation methods reviewed here are not the only ones. Little and Rubin (1987)
and Rubin (1987) mention several others. Almost all imputation techniques suffer from the
following limitations:

1. The performance of imputation techniques is unreliable. Situations where they do
work are difficult to distinguish from situations where they prove misleading.

2. Imputation often requires ad hoc adjustments to yield satisfactory point estimates.

3. The methods fail to provide simple correct precision estimators.
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Section 9.5 describes the procedure of multiple imputation in detail. By imputing several
values for a single missing component, the uncertainty due to missing data is explicitly
acknowledged.

5.7 Remarks

Missing items frequently arise in QL studies, and are a nuisance in that they can affect com-
putation of subscales. There is also the question as to whether values are missing completely
at random. Simple mean imputation is one of the most widely practiced methods of allowing
for missing values. However, there are many conditions which should be satisfied for this.
Several checks have been proposed, which should be applied before deciding how to handle
missing items. With few exceptions prescriptive values for these checks are not provided,
since any value is subjective and also suitable values may vary according to the nature of
the data set.

Given the number of assumptions underlying mean imputation, one might be tempted to
assume that it is rarely of value. Nevertheless, provided the scales are unidimensional and
constructed in accordance with standard psychometric theory, most of the conditions should
in theory be well satisfied. In some cases it may seem likely that the scales are reasonably
homogeneous, and also that items may be MCAR. Unfortunately, QL scales are more fre-
quently heterogeneous than most psychometric scales, including as they do items relating
to disease symptoms and treatment side effects. Thus it is especially important to consider
whether the attributes of well-behaved psychometric scales are realised.

Fortunately, apart from particular questions such as those about sexuality, the proportion
of missing items is usually small. Rarely do more than one or two percent of patients omit
any particular item. Nonetheless, procedures should be instituted whereby the forms are
checked for completeness as soon as they are received. It should be emphasised to patients
that they should complete all questions if at all possible. However, missing items are always
likely to occur, and the issues have to be addressed. It is disappointing to note that reports
of assessments of QL in clinical trials frequently ignore the problems of biases arising from
non-random patterns of missing data. Presumably one reason this issue may be ignored is
that it is not clear how to analyse such data! However, at the very least a sensitivity analysis
should be conducted by examining the potential impact of different levels of bias upon the
inferences drawn from the observed data.



Chapter 6

Summary Measures and Summary
Statistics

6.1 Introduction

Quality of life assessment has rapidly become an integral part of clinical research resulting
in many studies yielding vast quantities of data. However, the question as to what is the
best way to analyze and present the results has not been sufficiently addressed. Researchers
have sought a practical solution to the conflict of complexity of QL datasets and the desire
to simplify presentation of results. Nevertheless, controversies surrounding quality of life
analyses have remained, mainly due to the fact that a standard questionnaire consists of
numerous categorical scales, assessed at frequent time points during the study, and also
because patients may drop out of the study at various times.

Summary measures have been widely accepted as useful methods for reporting results from
longitudinal studies (Matthews 1993, Fairclough 1997). In essence a summary measure
collapses the complete set of measurements of an individual into a single number. A summary
measure should be chosen to reflect some important aspect of the repeated measurements.
For example, in cancer clinical trials, data on toxicity is often summarized by taking the
worst value recorded for each patient during the entire treatment period.
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Within clinical trials, QL is usually reported at repeated time-points before, during and
after treatment. Summary measures may be useful for simplifying the repeated structure
of the data. A few such measures that could be considered are the mean, median, and the
minimum or maximum score recorded for each individual patient. The summary measures
for all patients are then analyzed using an appropriate univariate method.

Tannock et al (1996) in a clinical trial in prostate cancer patients, used two summary mea-
sures in analyzing the QL data. Each patient’s score for each QL domain was summarized
using the median and the best score. These were subsequently converted to median and best
change scores by subtracting the patient’s baseline score. Differences in the summary scores
between the two treatment groups were assessed with the Wilcoxon rank-sum test.

A distinction should be made between summary measures and summary statistics. A sum-
mary measure reduces the measurements for one individual to one single number whereas a
summary statistic reduces the measurements of a group of individuals to one number. Sim-
ilarly, a summary statistic may be a summary of the group differences in QL between two
treatment strategies. For example, several authors have compared treatments with respect
to QL at individual time points (e.g., using a t-test or a Wilcoxon test). Seymour et al
(1996) in a study of colorectal cancer patients, presented summary statistics at each time
point for each treatment group and used exact x? tests to compare the QL scores in the
two treatment groups. Although the sample size may vary at each time point, this method
makes use of all available data. However, there are problems with using this method (see
Section 6.3.1 of this Chapter).

Using a practical example from an EORTC clinical trial (see Section 4.1), we investigated
a number of methods of analysis that have been presented in the literature. A number of
summary measures and summary statistics are discussed and it is shown how the choice of
method of analysis influences the study results. Examples are provided to show where it
may be useful to include summary statistics and measures to reflect an important aspect
of the study. The advantages and disadvantages of each method and the basic assumptions
that are required when using these methods are discussed.

In 1996 the steering committee for EORTC trial 10921 drew up an analysis plan for the
study. It was decided that the primary analysis would be based on an Area Under the Curve
(AUC) analysis. This was mainly due to the expectation that the intensified treatment would
initially result in a reduced QL but patients would recover more rapidly due to the shorter
duration of treatment whereas patients in the standard arm would experience side-effects of
treatment over a longer period of time. Therefore it was assumed that the most appropriate
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method of balancing the short-term side effects of intensified treatment (EC+GCSF) with the
extended side-effects of the standard treatment (CEF) was to perform an AUC analysis. In
this chapter we respect the original analysis plan while examining other methods of analysis
which have been presented in the literature.

6.2 Summary Measures

Several types of summary measures may be employed in the analysis of QL data. These can
be categorized as follows: (1) simple summary measures, e.g., minimum, maximum, median
or mean QL score for a patient; (2) time to occurrence of event where, for example, the time
to observation of the first minimum or maximum score is taken; (3) area under the curve
where both time and QL are summarized into one single number for each individual.

6.2.1 Simple Summary Measures

In cancer clinical trials where a new experimental chemotherapy is being investigated one may
wish to investigate if the experimental treatment is less toxic than the standard treatment
while achieving equivalent efficacy results. In such trials where there is an interest in reducing
toxicity and maintaining an acceptable QL, the worst symptom score may be of particular
importance as a summary measure.

In contrast, in clinical trials involving patients with advanced disease (e.g., symptomatic
disease), the treatment provided may be palliative in nature, i.e., directed at symptom
relief. In such trials, where the primary objective may be to reduce the patient’s suffering
and thus improve the quality of remaining life, a useful summary measure could be the best
score with respect to symptom relief or the best QL score.

In EORTC trial 10921, a trial designed to show superiority, a plot of the individual patient
scores (not shown) indicated a good deal of variation in within-patient scores in both treat-
ment arms. Therefore, it was thought that the mean or median score over all sequences
would provide useful insight into the patients’ QL. The mean score also gives an indication
of the frequency of episodes or intensity of problem over time. For example, two treatment
groups may have comparable best or worst scores but one treatment group may have consis-
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Figure 6.1: EORTC Trial 10921. Summary measures for the global health status/QL score.

Note: for presentation purposes the scores have been grouped into equally spaced intervals with midpoints 0,
17, 33, 50, 67, 83, 100. The X axis represents the % of patients with scores in each interval.

tently lower scores. Since the mean is an average of all observed scores it would reflect this
phenomenon. On the other hand, when two means are being compared it is also important
to investigate the spread of scores (i.e., variance). If two treatments provide similar means
but the variance is significantly larger in one treatment group, from a conservative point of
view one might prefer the treatment which provides more consistent results as it minimizes
worst case scenarios.

Figure 6.1 presents these summary measures for patients in trial 10921 during the first year.
The Wilcoxon rank-sum test was used to compare QL scores in the two treatment groups. A
significant group difference was observed in terms of minimum (p < 0.001), mean (p = 0.016)
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and median QL scores (p = 0.041) during the first year in favor of the CEF treatment arm.
Note that the differences in mean QL score and median QL score, although statistically
significant, were relatively small. The null hypothesis of no treatment difference could not
be rejected for the maximum summary measure. These results would suggest that there is
a dip in the QL score during the first year in the EC+G-CSF arm.

6.2.2 Time to Occurrence of a Summary Measure

Time to event analyses are frequently used in cancer clinical trials. In most cases the event
is death or disease progression and the associated time periods are referred to as duration of
survival and time to disease progression, respectively. Some trials have also investigated time
to a certain increase in a tumor marker such as prostate specific antigen (PSA) in prostate
cancer. In QL research it may also be useful to use this approach to investigate the time at
which QL is at its worst or at its best, or when a certain decline in QL scores is observed.

In the analysis plan of trial 10921 it was hypothesized that QL would initially deteriorate in
both treatment arms due to treatment toxicity, but that it would increase thereafter due to
relief of symptoms related to the tumor. One might expect that this increase would occur
more rapidly in the intensified treatment arm due to the shorter duration of treatment and
the fact that treatment included G-CSF. Thus an interesting question was to investigate
at what point in time, during the first year, patients reported their maximum QL score.
Towards this end, the maximum QL score during the first year was obtained for each patient.
An event was defined as a maximum QL score greater than the patient’s baseline QL score.
If the patient’s maximum score was not greater than that at baseline or if the patient
dropped out before observing a maximum score greater than that at baseline the patient
was censored at the time of the last available assessment during the first year. The time to
event was defined as the time to the first maximum QL score. In Figure 6.2, maximum QL
scores tended to be observed earlier in the CEF arm. However, at months 6 and 9, there
was a greater tendency for maximums to be reached in the EC4+G-CSF arm. No significant
difference was observed between the two treatment groups (p = 0.507). Approximately, 50%
of patients in both treatment arms observed a maximum score greater than baseline during
the first year.

In the above approach, due to the original categorical nature of the EORTC global health
status/QL scale, a score greater than baseline can be interpreted as an improvement of at
least 8 points on a 0-100 scale. A similar approach would be to define a specific minimum
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Figure 6.2: EORTC Trial 10921. Time to mazimum QL score.

level of improvement in QL (e.g., a change of 20 points or 0.5 of a standard deviation) and
to define the time to event as the time to reaching such a minimal improvement.

6.2.3 Area Under the Curve

The area under the curve is calculated by summing areas under the graph between each
pair of consecutive observations. Thus, the AUC is a weighted average of the QL scores at
each individual time point weighted by the time between observations. Using the trapezium
rule (hence assuming linear change over time between assessment points) the area under the
curve for a patient ¢ is calculated as

1 n—1

AUC; = 2 > (i — 1) (Wig + Yijr), (6.1)

=0
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Figure 6.3: EORTC Trial 10921. Global health status/QL score during the first year for an
individual patient.

where y;; represents the individual’s scale score at time ¢; € {0,1,2,3,6,9,12 months}. It is
a weighted average of the QL scores at each individual time point, weighted by the spacing
of the assessments.

In QL analysis, time may be considered as discrete or continuous, i.e., the time of assessment
may be taken as the planned time of assessment (e.g., time points 0, 1, 2 months which is
discrete) or as the actual observed assessment time points (e.g., -1, 29, 61 days which is
continuous). In trial 10921 we chose to treat time as a continuous variable. The AUC
was compared between the two treatment groups using the Wilcoxon rank sum test. No
significant difference was observed between the two groups (p = 0.882).

One of the advantages of the AUC method is that a sensitivity analysis may easily be per-
formed to investigate the change in QL between two consecutive assessments. For example,
in trial 10921 QL was assessed at months 1, 2 and 3 and then at months 6, 9 and 12. Of
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particular importance was the question ‘Did patients recover rapidly after treatment with
EC+G-CSF?’ Generally, the AUC is calculated assuming a linear change in QL scores be-
tween consecutive assessment time points. However, the formula for calculating the AUC
may be changed to allow the rate of change between assessments to occur non-linearly (see
also Figure 6.3) as follows.

AUC; = ni (tjpr — t)(min(yi j, (Yij41) + o (Yig — Yigs1) 1)), (6.2)

J=0

For the special case where p = 1/2, Equations (6.1) and (6.2) are equivalent. A sensitivity
analysis may be performed to investigate if changing the parameter p modifies the conclusions
with respect to treatment effect. An alternative sensitivity analysis would be to investigate
the effect of dropout, analogous in principle to the approach taken by Hollen et al (1997)
who imputed a score of 0 on the day of death.

Note, the AUC method should give approximately the same results as taking the mean as
a summary measure if the time between assessments is equal. When using the mean each
score is given equal weight whereas the AUC method weights the scores according to the
time between assessments. We used the trapezium rule to calculate the AUC and compared
the resulting summary measures using the Wilcoxon rank sum test. No significant difference
was observed between the two treatment arms. Recall that when the mean was used as
a summary measure there was a significant difference between the two treatment groups
(p = 0.016). When using the AUC, the area under the curve between baseline and month
3, which contains four assessments, is given the same weight as the AUC between months
6 and 9, which contains two assessments. Thus, the area under the curve provides a more
balanced estimate of the overall QL during the first year than does the mean.

6.2.4 Limitations of Summary Measures

When using summary measures, as with any type of statistical analysis, care has to be taken
that bias is not being introduced. For example, where the worst score for a symptom is taken
as a summary measure, the results may be biased if patients with a high level of a symptom
are unable to complete a self assessment questionnaire and are thus not able to report their
worst level of symptoms. This would lead to a biased estimate of the level of symptoms in
each treatment arm. Similarly, this may result in a biased estimate of the relative effect of
one treatment versus the other.
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When using summary measures, bias may be introduced into the comparison if the follow-
up periods are not similar in the two treatment arms. Additionally, the rates of completing
questionnaires should be high and equivalent across treatment arms. In trial 10921 the
progression-free survival and QL compliance were similar in the two treatment arms. Sum-
mary measures may not be appropriate in studies where dropout of patients is high as they
ignore the problem of incomplete data.

In ‘time to occurrence of event’ analyses there may be some difficulty in defining an event
and defining censoring. In the above analysis, it was assumed that the majority of patients
would observe the event of interest during the first year and thus censoring would have less
impact on the treatment comparison. However, if the timing of censored observations is
different between the two groups there may be problems with interpretation of results.

Generally, summary measures such as the minimum and maximum score are very sensitive
to outliers (i.e., extreme observations). When analyzing categorical data this may not be
a problem. However, for continuous data one might consider using more robust estimators
(e.g., mean or median).

6.3 Summary Statistics

Since QL measurements are typically obtained via repeated assessments over time, it is gen-
erally assumed that QL data should be analyzed as such, taking the repeated measurements
into account. However, this is often hampered by the structure of the data; i.e., QL data are
usually measured on ordered categorical response scales and a proportion of questionnaires
will be missing both intermittently and due to dropout of patients from the study. Statistical
techniques for longitudinal, ordered categorical, incomplete data are limited. This has led
QL researchers to perform separate analyses at each assessment time point. This method of
analysis is usually referred to as cross-sectional analysis or available case analysis as it uses
all available data at each assessment time point.
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6.3.1 Cross-sectional Analysis

If the distribution of QL scores is approximately normally distributed, it may be appropriate
to perform simple t-tests within each cross-sectional analysis. Often non-parametric tests,
such as Wilcoxon or Mann-Whitney tests, may be more appropriate, in that many QL
questionnaires yield skewed distributions with notable ceiling or floor effects (i.e., proportion
of patients with either none or severe problems). If there is a large difference in the mean QL
score between the two treatment groups one might also expect that the variance may be quite
different in both treatment groups, particularly with skewed distributions, suggesting that if
a standard t-test is to be performed the variance in each group should first be investigated.

In trial 10921 we compared the two treatments with respect to global health status/QL score
at each time point using a Wilcoxon test. The results are presented graphically in Figure 6.4.
The plot indicates that, compared to the standard regimen, the intensified regimen had a
significant negative impact on QL during the first three months. At month 6 the QL score
returned to pre-treatment levels in the intensified arm, while patients in the standard arm
tended to have a poorer QL score. No significant differences were observed between the two
groups at months 9 and 12.

The main disadvantage of this method is that different sets of patients contribute at different
time points depending on the pattern of missing data. Thus, this method yields problems
of comparability across time points. Additionally, it does not control for any potential
biases in the treatment comparisons which may occur due to dropout of patients. The
procedure of examining differences between groups of patients at each assessment time point
also leads to inflated Type I and II errors due to multiple testing. An adequate adjustment
of the significance level of each test (Pocock, Geller and Tsiatis 1987, Hochberg 1988), or
a combination of individual test statistics into a global statistic (Wei and Johnson 1985) is
then essential. If many statistical tests are being performed, it is possible to use a more
restrictive significance value such as P<0.01 or 0.001, thereby reducing the risk of Type I
errors. In the next section, we will discuss the Wei-Johnson (1995) procedure which allows
the per time point test statistics to be combined into one overall test statistic.
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Figure 6.4: EORTC Trial 10921. Cross sectional analysis of global health status/QL score
during the first year.

6.3.2 Wei-Johnson

Overall tests of significance are generally preferable to comparisons per time point. Over-
all tests allow general statements about effects, are statistically more powerful and provide
a safeguard against multiple comparisons. When overall tests yield statistically significant
results, they can be followed by exploratory comparisons per time point. Wei and John-
son (1985) proposed a test, which allows cross-sectional tests to be combined in an overall
treatment comparison. They illustrated how cross-sectional Wilcoxon tests, t-tests or tests
for 2x2 tables could be combined. In trial 10921 cross-sectional analysis to compare the
QL scores between the two treatments at each of the timepoints were performed using the
Mann-Whitney test. These were then combined using the Wei-Johnson method as follows.
Let U; be the Mann-Whitney test statistic obtained for each cross-sectional analysis j, then
the Wei-Johnson statistic is defined as:

w'U

W= 22
(w'Vaw)t/?’
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where V' is the covariance matrix of U= (Uy,--- ,U;) and w; are weights representing the
weight given to each cross-sectional analysis j. They are usually chosen to yield a test which
maximizes certain local asymptotic powers. No particular parametric model of dependence
is imposed on the repeated measurements of each individual. Although it is mentioned by
Wei and Johnson (1985) that an MCAR process is assumed, a simulation study performed
by Chirwa (1996) suggested that the Wei-Johnson test was fairly powerful, irrespective of
the underlying missingness mechanism.

The estimate of the Wei-Johnson test statistic, when taking equal weights for each time point
(i.e., w; =1 for all j), is WJ=3.404 (p < 0.001). Defining the weights relative to the time
period between measurements for the six assessments at 1, 2, 3, 6, 9, and 12, respectively
yields w = (0.5,0.5,0.5,1.5,1.5,1.5). Note the average of all the weights (w}) should be 1
(since the first 3 assessments are taken 1 month apart they receive a weight of 0.5 and the last
3, taken 3 months apart, receive a weight 1.5). In this setting, the Wei-Johnson test statistic
is WJ = 1.812 (p < 0.070). Various alternative techniques for estimating weights could be
employed including estimating weights based on the number of patients contributing to the
analysis at each time point.

Note, the Wei-Johnson procedure has all the disadvantages of the cross-sectional analysis
presented in Section 6.3.1 except that it produces an overall test and therefore reduces
the number of statistical comparisons. Although the Wei-Johnson procedure allows one to
analyse the data in a longitudinal fashion, it does not tell us anything about the correlation
structure. For example, one might expect that QL measurements taken close together are
strongly correlated while measurements taken at larger intervals are less correlated. While
cross-sectional studies are useful in describing between-patient variability, explaining within-
patient variability necessitates the study of the repeated assessments over time.

6.4 Categorical Data

Although all of the above methods were illustrated using the global health status/QL scale,
most of the methods (perhaps with the exception of the AUC method) can be applied to
the other scales which have fewer potential categories such as the single item scales of the
EORTC QLQ-C30. For single item scales with binary or ordered categorical response scales
another summary measure could be the frequency of events. This could be particularly
useful for scales assessing symptoms or toxicity. For example, in the QLQ-C30 one might
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be interested in the number of times patients responded that they had ‘Quite a bit’ or ‘Very
much’ trouble sleeping during the treatment period.

When performing cross-sectional analyses with ordinal response categories a useful approach
is to compare proportions of patients with a certain category. For example, instead of
comparing the distribution of insomnia scores between the two treatment groups, one could
calculate the proportion of patients in each group who report having ‘Quite a bit’ or ‘Very
much’ trouble sleeping. A proportion is one summary statistic that is easy to describe and
facilitates understanding of results. Additionally, two proportions can easily be compared
using a chi-square test. Cumulative proportions are of particular relevance when dealing
with ordinal data and may be analyzed using odds ratios. The Wei-Johnson procedure may
also be used to combine tests of proportions at several time points into one overall test.

6.5 Remarks

The main differences between the two treatments groups occurred during the first 3 months
where QL scores are significantly lower in the EC4+G-CSF arm (illustrated by the cross-
sectional analysis and minimum scores). The scores are borderline significantly different
at 6 months in favor of the EC4+G-CSF probably due to the fact that patients were still
receiving treatment in the CEF arm whereas patients in the EC+G-CSF arm had recovered
from treatment toxicities. At later time points there are no significant differences between
the two groups. As the summary measures: minimum, maximum, mean and median attach
equal weight to each assessment they ignore the time between assessments. The Wei-Johnson
method allows one to explore how associating different weights to the various assessments
yields different conclusions. The AUC method yields an overall score for each patient, which
is calculated as a cumulative weight of all QL scores weighted according to the time between
assessments. Thus, the difference between methods can be explained in part by the weighting
of time, e.g., short term differences versus overall differences.

Due to the complicated nature of QL datasets, care should be taken when choosing a method
for analysis since there is a risk of drawing incorrect conclusions if inappropriate statistics
are used. In this Chapter, we illustrated that the conclusions drawn may differ depending on
the type of analysis performed. By definition summary measures and statistics do not use all
the data collected and as such they may be considered wasteful, e.g. they do not take into
account how patients’ scores change over time. Due to this, study conclusions should not
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be based solely on one summary measure or summary statistic, but should be supported by
additional analyses in the form of a sensitivity analysis. Although, performing a sensitivity
analysis using summary measures and summary statistics provides more insight and a better
understanding of the data it may not lead to a complete picture of events. In general,
summary measures and summary statistics assume that there is no bias in the treatment
comparisons due to intermittent missing data or due to patients dropping out of the study.
This may not be the case if patients do not complete the questionnaire because they are
unfit to do so or if they dropout of the study due to progressive disease or worsening clinical
condition. In practice it is usually impossible to conclude definitively whether dropout causes
a bias in the treatment comparison or not, since the required information is not available.
It is therefore important to prospectively collect the reasons for missing QL assessments.
Chapters 2 and 7 discuss how the bias due to dropout may be investigated and how it may
affect the study results. Curran et al (1998a) concluded that it is important to identify
whether there is differential dropout in the two groups. This is likely to occur when the
clinical outcomes (e.g., time to progression or progression-free survival) differ between the
two treatment groups.

Recently, much attention is being given to longitudinal (repeated measures) analyses with
possibly intermittent missing data and missing data due to dropout of individuals from a
study (Diggle and Kenward 1994, Diggle, Liang and Zeger 1994, Molenberghs, Kenward
and Lesaffre 1997). Chapter 8 illustrates how graphical techniques may be used to explore
the longitudinal structure of the repeated measurements followed by statistical modeling of
the longitudinal measurements using selection models and pattern-mixture models. Unlike
summary measures and summary statistics longitudinal data analysis approaches make more
use of the available data.



Chapter 7

Identifying the Types of Missingness
in QL Data

7.1 Introduction

In the previous chapter we noted that summary measures and summary statistics do not
take into account the dropout process. Using longitudinal data techniques as described
later in Chapters 8, 9 and 10 the need for exploring the dropout process becomes more
explicit. Identifying the missing data mechanisms can be viewed from two complementary
perspectives: (1) collecting information on why the QL questionnaires were not completed
and (2) hypothesis testing of the missing data processes. The first approach is a pragmatic
one and is based on prospectively collecting as much information as possible to determine the
reasons why questionnaires are missing. From these it may be possible to decide if ignoring
the missing questionnaires will bias the analysis. The second approach is based on modeling
the missing data mechanism to test if the data are MCAR, MAR or MNAR. Two methods
from the literature for testing MCAR are presented with application to QL data from clinical
trials. The first method is based on fitting a logistic regression whereas the second method
is based on an adaptation of weighted least squares (WLS). Testing MNAR is also discussed.
An argument is provided to illustrate that it may not be possible to test this hypothesis.
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7.2 Why Has the QL Questionnaire Not Been Com-
pleted?

One advantage of studying QL as an integral part of a clinical trial is that additional clinical
information is collected at each visit. In the past, information related to the patients’ survival
status, disease status, symptoms and toxicity was useful in determining retrospectively why
further QL data had not been obtained. However, this information was useful for explaining
only a portion of the missing questionnaires. Therefore, more recently researchers have
prospectively included questions on the clinical case report forms (CRF’s, e.g., treatment
and follow-up forms) in an attempt to capture more information on why questionnaires were
missing. These questions generally have the following format: Has the patient filled in the
current quality of life questionnaires, 0=no, 1=yes. If no, please state the main reason

1 = patient felt too ill

2 = clinician or nurse felt the patient was too ill

3 = patient felt it was inconvenient, takes too much time

4 = patient felt it was a violation of privacy

5 = patient did not understand the actual language / illiterate

6 = administrative failure to distribute the questionnaire to the patient

7 = other, please specify
The survival and disease status of the patient are also collected on the CRF’s. Initially,
attempts to distinguish between treatment toxicity and disease related symptoms were made.

However, as a nurse or a data manager usually administers the QL questionnaire it may be
difficult for him or her to distinguish between the two.

7.3 Hypothesis Testing for MCAR

Recall from Chapter 2, when likelihood and Bayesian inference is used and when only the
measurement model parameters are of interest then the distinction between MCAR and MAR
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is of minor concern. Although there are still a few issues related to the estimation of standard
errors (Molenberghs and Kenward 1997). In addition, even when likelihood and Bayesian
inference is applied it may be neccessary to distinguish between MCAR and MAR, depending
on the research questions. For example, if Y; follows a multivariate Gaussian distribution,
then under MCAR the mean structure of Y, coincides with the conditional mean structure
of Y; given no dropout, but this is not so under MAR, except in the generally unrealistic
case of uncorrelated Y';;. Thus, if the research question involves determining the conditional
mean structure of Y; given no dropout it is necessary to distinguish between MCAR, and
MAR. Moreover, frequentist techniques, such as generalized estimating equations (Liang and
Zeger 1986) are only valid under MCAR. It is then crucial to discriminate between MCAR
and MAR.

In the literature a number of methods have been described for testing the hypothesis of
MCAR (Little 1988, Diggle 1989, Ridout 1991, Park and Davis 1993, Lipsitz, Laird and
Harrington 1994, Heitjan and Basu 1996). Two methods are presented and discussed in
this chapter. The first method proposed by Ridout (1991) is based on a logistic regression,
whereas the second method proposed by Park and Davis (1993) is based on an adaptation of
weighted least squares (WLS). Some applications are provided in the context of incomplete
longitudinal QL data obtained from international multicenter cancer clinical trials.

7.3.1 Ridout Method

In 1991 Ridout proposed a method for testing completely random dropout using a logistic
regression (Cox 1970). This method assumes a monotone pattern of missing data, i.e.,
that the baseline assessment is available for all patients and at subsequent assessments a
proportion of patients drop out and never complete the questionnaire again (see Figure 7.1).
Thus intermittent-missing questionnaires are not taken into account in this method.

For each time point T}, identify the subset of patients Sy (collection of patients ¢ such that
i=1,---,n) for whom an assessment is available at that time point and identify the subset
of patients s; for whom it is the final assessment before they drop out of the study. The
subset of patients s consists of the patients ¢ such that ng; < i < ny (see Figure 7.1).
Testing for completely random dropout involves testing the assumption that the scores from
the sx patients are a random sample of the scores from the Sy patients. The pool of S}s
constitute the sample for the regression. The response variable is dropout or not at time k.
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Figure 7.1: Hypothetical Example. A monotone pattern of missing data.

The logistic regression model is given by:

logit[pr(dropout)] = a + (X, Y)3,

7

where « is the intercept, § is a vector of parameters, X is an array consisting of covariates
such as treatment and time of assessment and Y is an array of observed QL scores. Note: for
MCAR the dropout mechanism may depend on the values of fixed covariates. In particular, if
the covariate matrix includes time and/or treatment as a variable then the model allows the
dropout rates to vary over time and/or treatments. This is usually referred to as ‘covariate
dependent dropout’ (Little 1995). A logistic regression may be performed using standard

statistical software such as the LOGISTIC procedure in SAS.

Example

We will illustrate testing for missingness with the logistic model using QL data collected in a
postmenopausal advanced breast cancer trial conducted by the Swiss group. See Section 4.2

for details on the dataset.
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Let k£ denote the possible times for dropping out where k = 1, - - - | 6 corresponding to months
1, 3, 5, 7, 9 and 11, respectively. The assessments of PACIS were used in 3 different ways
as an explanatory variable (expressed as Y in the logistic equation below): Model 1 — the
last assessment at time k — 1, Y;_1; Model 2 — the difference between baseline and the last
assessment, (Y;_; —Yp); Model 3 — the last 2 assessments at times k£ — 1 and k — 2, expressed
as (Yx—1 + Yi_2) and (Yi—1 — Yix—2) Note that for models 2 and 3 only those patients who
had not dropped out by month 1 were included in the analysis, thus £k = 2,--- , 6.

Three other factors, i.e., treatment arm (Trt), cause of dropout (CD, for the first dropout-
missing value), and dropout time (Time, for the first dropout-missing value), were suspected
to have an influence on the missing mechanism and thus also included in the full regression
model. The full model was

logit(Pr(dropout)) = o+ arrXrr + acpXop + 0rime Xrime + ByY
+ﬁTrt(XTrt X Y) + ﬁC’D(XC’D X Y) + ﬁTime(XTime X Y)7

where « is the overall mean, X are the dummy variables for Trt (1 variable), CD (1 vari-
able), and Time (5 variables for Model 1, 4 variables for Models 2 and 3), and G are the
corresponding coefficients of Y and the interaction terms.

The results of the regression analysis are presented in Table 7.1. Comparing line 2 with
line 1 of Model 1 by likelihood ratio test indicates that the interaction terms were not
important. Lines 3 and 4 showed that treatment arm and the cause of dropout were not
important either. However line 5 indicated the significance of dropout time. Comparing line
2 with 8 and line 4 with 6 suggested covariate Y;_; should not be ignored; thus, the missing
mechanism of dropouts was very probably not completely at random. The result of Model 2
was a little different. Comparison of lines 2, 3, 4 and 5 with line 1 showed that the interaction
terms, cause of dropout, treatment and dropout time were all not significant. Nevertheless,
comparing line 2 with 8 and line 5 with 7 also suggested that covariate (Yj_; —Yp) should not
be ignored and the missing mechanism of dropouts was probably not completely at random.
Model 3 with (Y;_1 + Yi_2) and (Yix_1 — Yi_2) showed results similar to Model 2.

There was no significant difference in clinical effectiveness in terms of response rate and
time to treatment failure between the two arms. From the above results one can see that
the difference in probability of dropping out for PACIS between arms was not significant.
Although 20% of the patients dropped out for other reasons before treatment failure, this was
not a significant factor for the missing mechanism of dropouts, which might be explained as
being confounded with other factors, e.g., dropout time. As seen in Table 4.3, the increase in
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Table 7.1: SIAK Trial 20/90. Results of logistic regression analysis.

Null hypothesis

Full model

Brre = Bop = Prime*=0

acp = Prrt = Bop = Brime =0

acp = e = Pree = Bop = Prime =0

QCD = QTrt = QTime* = Brrt = Pop = Brime* =0

acp = ore = by = Bree = Bop = Prime™=0

Qop = Qrpt = Qpime* = by = Brre = Bop = Brime*=0

By = Bree = Bop = Brime*=0
Model 1 (N=573) Model 2 (N=399) Model 3 (N=399)
df -2 log LL df -2 log LL df** -2 log LL
1 557 606.374 385 458.824 378 452.560
2 564 608.310 391 468.175 390 463.051
3 565 609.675 392 472.425 391 465.989
4 566 612.155 393 473.030 392 467.256
5 971 636.744 397 479.761 396 473.269
6
7
8

o~ O O = W N =

567 624.598 - - - -
- - 398 484.554 398 484.554
565 621.581 392 474.509 392 474.509
* Corresponding to 5 dummy variables in Model 1
and 4 dummy variables in Model 2.

** Because of 2 Y variables in Model 3 the number of 3
parameters are doubled when compared with Model 2.

cumulative dropout rate between months 1 and 3 was much larger than in other consecutive
time intervals; therefore, it was not a surprise to see the significance of dropout time in
Model 1. All 3 models suggested the dropout mechanism was probably not completely at
random.
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Table 7.2: IBCSG Study VI-14. Number of patients by response profiles (Anziety scale).

Response category (baseline, 3rd month, 6th month):
N= No anxiety, Y = anxiety, M =missing

N NNNYYYY Y Y Y NNNDNMMMM
NNY Y NNYY Y MMYMMMY Y NN
N Y NY NYNYMYMMYNMYNNM
73 10 9 10 16 7 8 57 4 4 3 1 1 3 1 4 1 1 1

Table 7.3: IBCSG Study VI-14. Proportion with ‘Anziety’.

Baseline 3rd month 6th month
Incomplete data (n=24)  0.647 0.833 0.643
Complete data (n=190)  0.463 0.442 0.442

7.3.2 Park and Davis Method

The weighted least square (WLS) methods proposed by Grizzle, Starmer and Koch (GSK) in
1969 have been further developed for the analysis of incomplete longitudinal categorical data
(Stanish, Gillings and Koch 1978, Woolson and Clarke 1984). These methods assume that
the missingness mechanism is completely at random (MCAR). When the response variable
is categorical (with few response categories), the number of measurement times is small and
the sample size is relatively large within each category of the cross-classification of response
and time, a general linear models approach based on WLS can be used to produce Wald
statistics for testing hypotheses. Park and Davis (PD) (1993) proposed a simple test of the
missing data mechanism in incomplete repeated categorical data in the framework of the
GSK method.

The test is an extension of the test of Little (1988) and uses a test criterion given in general
form by Wald. The method is briefly summarized as follows: consider a single response vari-
able that has ¢ response categories (including the category for missing or unknown response)
and n subjects with the response variable measured at ¢ time points. Each of the subjects
has a response profile belonging to one of ¢! — 1 possible categories (examples: YYN is a
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response profile corresponding to response ‘yes’, ‘yes’ and ‘no’ at 3 time points for a binary
variable; YNM is a response profile corresponding to response ‘yes’, ‘no’ and ‘missing’ at 3
time points). We may define H strata according to the missing data patterns, and for the
hi* pattern the regression models are defined as:

E[F(pn)] = XnPh

with p, being the vector of sample proportions, F'(py) a vector of uy functions of p,, X},
is a u; model matrix and 3, is a n X 1 vector of unknown parameters. The model allows
different estimators of 3, for h=1,--- H.

The missing data mechanism can be examined by testing the homogeneity of model para-
meters using the Wald statistic for Hy : 1 = -+ = Og. If Hp holds, then the distribution
of F}, does not depend on h and the missing data process may be considered MCAR. If Hy
does not hold, then the distribution of Fj, is likely to depend on the missing data patterns
and the missing data process is probably not MCAR. In addition to testing the missing data
mechanism, the model allows other linear hypotheses to be tested for (3.

The PD method requires at least moderately large samples for each stratum so that the
estimates of coefficients are approximately normally distributed. When there are many
strata and/or the strata sample sizes are considerably different, it is better to use a 2-
strata approach (i.e., ‘complete’ data at all time points versus ‘incomplete’ with at least
one missing observation). In settings where there is a dominant missing data pattern or a
monotone missing data pattern this may be a reasonable approach. Its advantages are: it
is useful for specific missing data patterns, it is flexible and easy to apply and reduces the
number of parameters to be estimated. PD methodology can be implemented using standard
statistical software such as the CATMOD procedure in SAS (Davis 1992). An application of
this approach in longitudinal incomplete categorical QL data obtained from an international
multicenter clinical trial is given below.

Example

We will use data from a study in operable breast cancer to demonstrate how the PD method
may be used in a QL setting. See Section 4.3 for details of the dataset. Due to the rather
small amount of missing data, we categorized the 2 QL variables as binary outcome (anx-
ious, not anxious) plus a third category for missing and used a 2 strata approach: ‘complete’
vs ‘incomplete’. We were mainly interested in formally testing if the parameter estimates
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for the ‘complete’ were significantly different from the ‘incomplete’ data. We modeled the
marginal probability of ‘anxiety’ (defined as a scale score >1) or ‘burden related to hair
loss’ (defined as a scale score >1) at each time point. The vector of response functions was
Di = (Poc, P3es Déc, Poi» P3is Pei) Where the subscript ‘¢’ is for ‘complete’ data and ‘4’ for ‘incom-
plete’ data and the numbers represent the time (months). When the data are incomplete,
the components of p; must be calculated as ratios of sums of the multinomial proportions
corresponding to the response profiles. In PROC CATMOD, these operations are specified as
a series of linear, logarithmic and exponential transformations of the elements of the vector
pi of multinomial proportions. In general, a composite link function is used:

pi = eXp(A2 10:‘3;(1412?%k ))-

The matrix A; has ct rows and as many columns as there are observed response profiles and
Ay is a (¢ — 1)t X ¢t matrix.

In both examples, we fitted a saturated model with separate intercepts and linear and
quadratic time effects for the 2 strata of ‘complete’ and ‘incomplete’. A 3 degrees of freedom
contrast was used to test whether the parameter estimates for the ‘complete’ differ signifi-
cantly from those for the ‘incomplete’. We did not explore any further model reduction.

The following were the results for the ‘anxiety’ scale (214 patients). Overall, the proportion
with ‘anxiety’ was 0.48 at baseline (207 patients) and was rather stable for the subsequent
2 assessments (0.47 at 3" and 0.46 at 6™ month respectively). Anxiety scale compliance
was not significantly associated with clinical or sociodemographic factors. Twenty-four of
the two hundred and fourteen (11%) patients had at least one missing value in the 3 QL
assessments and defined the stratum of incomplete data, the other 190 had complete data.
Since the outcome measure had three possible values (no, yes or missing) and was assessed
at 3 time points, there were ¢t —1 = 27 — 1 = 26 possible response patterns (8 for ‘complete’
and 18 for ‘incomplete’). We observed 11 missing response patterns (and 5 distinct missing
patterns, see Table 7.2) with missing at the 3"¢ month being the most frequent. The observed
proportions with ‘anxiety’ at each time point are presented in Table 7.3. At each time point
the proportion with ‘anxiety’ was higher in patients with ‘incomplete’ data, in particular
at the 3" month. The saturated model results showed that there was no significant time
effect and the Wald statistic indicated a highly significant difference between ‘complete’ and
‘incomplete’ cases (2 13.09, 3 df, p = 0.0044).

We considered also the ‘subjective burden related to hair-loss’ scale (214 patients). Overall,
the proportion with‘burden’ was 0.09 at baseline (202 patients) and increased to 0.57 and
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Table 7.4: IBCSG Study VI-14. Number of patients by response profiles (Burden related to
hair loss).

Response category (baseline, 3rd month, 6th month):
N= No burden, Y = burden, M =missing

N NNNYYYYY YNDNNNDNMMMMMM
NNY YNNYYYMYNMMMY Y NN
NY NYNYNYMMMMYNMY N Y N
62 15 23 71 4 1 4 7 1 1 3 1 2 4 3 6 2 1 3

Table 7.5: IBCSG Study VI-14. Proportion with ‘Burden related to hair loss’.

Baseline 3rd month 6th month
Incomplete data (n=27)  0.133 0.706 0.500
Complete data (n=187)  0.086 0.562 0.503

0.50 in the subsequent 2 assessments. Scale compliance was not significantly associated with
clinical or sociodemographic factors. Twenty seven of the two-hundred and fourteen (13%)
patients had at least one missing value and defined the stratum of ‘incomplete’ (11 distinct
missing response patterns, see Table 7.4). Missing at baseline was the most frequent. The
observed proportions with ‘burden’ at each time point are presented in Table 7.5. At each
time point, except at 3" month, the proportion with ‘burden’ was similar in patients with
‘complete’ or ‘incomplete’ data. As before, we were interested in modeling the probability
of ‘burden’ at different time points in the 2 strata. The saturated model results showed that
there was a significant time effect and the Wald statistic indicated that the parameters for
‘complete’ and ‘incomplete’ cases were not significantly different (x? 1.73, 3 df, p = 0.63).

7.4 Hypothesis Testing for MNAR

Molenberghs, Goetghebeur and Lipsitz (1997) demonstrated that testing the assumptions of
MAR or alternatively for MNAR is not trivial. The authors suggest that testing will almost
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always rest on strong assumptions which are often untestable. Glynn, Laird and Rubin
(1986) developed an argument to illustrate these issues. An illustration of this argument for
QL data is given below.

Suppose in a clinical trial QL is assessed at two time points, e.g., pre-treatment Y; and post-
treatment Y. Assume Y] is always observed and Y3 is either observed (¢t = 2) or missing
(t =1). Let us further simplify the notation by suppressing dependence on parameters and
additionally adopting the following conventions:

g(t’yhyz) = f(t’?h,yz),
p(t) = f(¥),
filyi,2) = flyr,12[t).

Equating the selection model and pattern-mixture model factorizations yields:

fy,2)9(d = 2[y1,v2) = folyr, y2)p(t = 2),
fy,y2)9(d =1y, y2) = filyr, y2)p(t = 1).

Since we have only two patterns, this simplifies further to

fyn,y2)9(w,y2) = folyr, v2)p,
f(ybyz)[l—g(ybyz)] = f1(y1,y2)[1—p],

of which the ratio yields:

1—g(y1,p2) »p
9(,y2) 1—p

fi(y1,12) = Fa(y1, y2).

All selection model factors are identified, as are the pattern-mixture quantities on the right
hand side. However, the left hand side is not entirely identifiable. We can further separate
the identifable from the non-identifiable quantities:

_ L—g(y1,32) p folyn)
f1(y2’y1) = fz(y2!y1) g(yl,yg) 1 —pf1(y1)'

(7.1)

In other words, the conditional distribution of the second measurement given the first one,
in the incomplete first pattern, about which there is no information in the data, is identified
by equating it to its counterpart from the complete pattern, modulated via the ratio of the
“prior” and “posterior” odds for dropout (p/(1—p) and g(y1,y2)/(1—g(y1, y2)), respectively),
and via the ratio of the densities for the first measurement.
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Table 7.6: EORTC Trial 08925. Cross tabulation of QL scores by dropout pattern.

R=2 R=1

Y, Y,
Yi No Yes Y Missing
No 12 7 No 3
Yes 8 19 Yes 5

Table 7.7: EORTC Trial 08925. Predicted counts for the MAR and MNAR models respec-
tively.

MAR MNAR

Y, Y,
Y: No Yes Y: No  Yes
No 1.89 1.11 No 1.53 1.47

Yes 1.48 3.52 Yes 1.02 3.98

Thus, while an identified selection model is seemingly less arbitrary than a pattern-mixture
model, it incorporates implicit restrictions. Indeed, precisely these are used in (7.1) to
identify the component for which there is no information.

This clearly illustrates the need for sensitivity analysis. Due to the different nature of the
selection and pattern-mixture models, specific forms for each of the two contexts will be
presented in Chapters 8 and 9, respectively. In Chapter 8 we will describe a general strategy
for fitting pattern-mixture models. Chapter 9 is devoted to a formal juxtaposition of several
strategies for pattern-mixture modeling.

Let us consider the following example: the EORTC QLQ-C30 includes the question ‘Are
you limited in any way in doing either your work or doing household jobs?’ with possible
response categories ‘no’ and ‘yes’. Suppose the QLQ-C30 was assessed at baseline Y; and
post-treatment Y5. In total, 54 patients had a baseline QL questionnaires in EORTC study
08925. Forty-six patients had assessments at both baseline and at the first assessment during
treatment while the remaining 8 patients completed only the first questionnaires. The results
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are presented in Table 7.6.

Factorizing the joint distribution of Y1, Y» and R and fitting a logistic model for the missing
data mechanism yields

e(/@o-l-,@lYl-l-,@zYz)
14+ e(/@o-l-,@lYl-l-,@zYz)

fn, Yz, R=1) = f(1h,Y2)

We consider 2 particular cases: f; = 0 (MAR) and 7 = 0 (MNAR). Such restrictions are
necessary to ensure a unique solution. Both models are saturated in the sense that the
predicted counts coincide with the observed data. The predicted counts for both the MAR
and MNAR models are given in Table 7.7. Although differences are small in this case, there
is no formal way to discriminate between the two models in terms of observed data.

Little (1995) suggests that underidentifiability is a serious problem with non-ignorable miss-
ing data models. There may be a problem in estimating the parameters of the missing data
mechanism simultaneously with the parameters of the complete data model. Molenberghs,
Goetghebeur and Lipsitz (1997) provided examples where models provided almost similar
fits to the observed data, but yielded completely different predictions for the unobserved
data.

7.5 Remarks

Two approaches of identifying the types of missing data in QL research have been discussed:
(1) collecting information on why the QL questionnaires were not completed and (2) hypoth-
esis testing of the missing data process. Both have their intrinsic difficulties. For example,
in the first approach it may be difficult to collect information on the clinical CRF’s on why
questionnaires are missing. Often clinical CRF’s are completed retrospectively by retrieving
data from the patient’s medical chart. If the information is not recorded in the patient’s
chart then it may be irretrievable. In addition, the person responsible for completing the
clinical CRF’s is seldom responsible for administering the QL questionnaire. Some cancer
research organisations include a cover sheet with the QL questionnaire which includes ques-
tions requesting the reasons for missing questionnaires. However, if the patient does not
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complete the QL questionnaire due to inadequate administrative procedures in the hospital
then it is likely that the cover sheet will not be completed either.

Two methods for testing between MCAR and MAR have been implemented. The first
method, based on a logistic regression analysis, was applied in the setting of postmenopausal
advanced breast cancer where the efficacy of two second line hormonal treatments were
compared. The focus was on the perceived adjustment to chronic illness scale (PACIS). In
this advanced disease setting where the focus was on a health related scale, the hypothesis
of MCAR was rejected, i.e., the probability of dropout was dependent on the previous QL
score. The second method, based on an adaptation of WLS, was applied in an adjuvant
setting in patients with operable breast cancer. The focus was on anxiety and burden
related to hair loss. In this setting, more anxiety was observed in patients with incomplete
data and thus missingness was related to the anxiety score, i.e., data were not likely to be
MCAR. However, for the burden of hair loss scale no significant difference was observed
between completers and non-completers indicating that the hypothesis of MCAR, could not
be rejected. Thus, one would conclude that the missing data mechanism may depend on the
scale under investigation. It is important to check the assumptions about missingness on
scale level, since on a questionnaire level there could be more than one coexisting missing
data process. The missing data process may also vary between disease settings. For example,
it may be more likely that missing data are MCAR or MAR in adjuvant settings whereas in
advanced diseases the missing data may often be MAR or MNAR.

Heitjan and Basu (1996) investigated the consequences of mis-specifying the missing data
mechanism. They demonstrated that MCAR and MAR have distinct consequences for data
analysis. Distinguishing between the missing data mechanisms is necessary to determine
which types of analysis are appropriate. For example, in the situation where data are not
MCAR, analyses such as complete case analyses may be biased. In addition, graphical
presentations of summary statistics (e.g., means or proportions) of available cases over time
may be misleading since scores at later time periods may be seriously biased. In the logistic
regression example the change score between the two previous assessments was predictive
of dropout indicating that patients with a decreasing score were more likely to dropout.
Thus, in this example imputation methods such as last value carried forward described in
Section 3.3.1 are not suitable.

Both the logistic regression and PD approaches are based on modeling the missing data
mechanism and may be sensitive to the model specification. They are both easy to apply
in practice with existing software. The logistic regression is more suitable if the primary
objective of the analysis is to investigate the dropout mechanism (e.g., dropout or not as
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in the first example). The PD approach allows one to test if the ‘completers’ are different
from the ‘non-completers’. The PD approach requires at least moderately large samples for
each stratum, and thus a two strata approach, which in fact also requires moderate to large
sample sizes, was used.

In the PD approach the patient setting was represented by a ‘healthy’ patient population
scheduled to attend regular appointments for adjuvant chemotherapy administration or visits
during adjuvant endocrine therapy. The patient group size and the observed high compli-
ance may not provide the ideal setting to test hypotheses about the missing data process.
In addition, since power may be low, it is important to remember that accepting Hy of
homogeneity of stratum-specific parameters does not imply its correctness.

An alternative 2-step WLS approach has been studied by Lipsitz, Laird and Harrington
(1994). The first step (estimates of multinomial probabilities) uses maximum likelihood.
The second step (noniterative WLS) is the same as the PD. It has the advantage of not
being model dependent, but, it must be carried out separately in each covariate stratum.
They also provide a test for the null hypothesis of MCAR versus the alternative of MAR.
Stratification according to missing data patterns has been considered also by Dawson (1994)
(continuous outcome, stratification of summary statistic tests). He found that stratifica-
tion of the analysis tends to result in an increase of power and improves the robustness to
violations of missing data.

Analysis of longitudinal data is even more complex when data may be missing for several
reasons. In the two examples provided above it was shown that in some situations QL data
were unlikely to be MCAR. This is not surprising as in cancer clinical trials, especially in
advanced disease, one would expect patients with a poorer health related QL to complete
fewer QL questionnaires because they are too ill or because they drop out of the study early.
In some cases it may be possible to determine the QL scores of a random sample of patients
by using alternative modes of administration such as telephone interview or by obtaining
proxy scores from members of the patients family.

Molenberghs, Goetghebeur and Lipsitz (1997) showed that sensitivity to model specification
may be a serious problem. When fitting a model certain assumptions have to be made
about the relationship of the missing data process and the unobserved data. Since these
assumptions are fundamentally untestable it is prudent to calculate estimates on a variety
of models, rather than relying exclusively on one model, especially when the amount of
missingness is considerable.



Chapter 8

Continuous Longitudinal Data

8.1 Introduction

Building on the methodology for incomplete data developed in Chapter 2, the current chapter
presents two examples of analyzing longitudinal continuous measurements with incomplete
data. In Chapter 6 we studied longitudinal data using both summary measures and summary
statistics. However, we concluded that these methods were wasteful and did not account
for dropout adequately. In this Chapter we focus on the linear mixed model. We illustrate
its use when considering two alternative factorizations of the complete data (Y;, R;). As
introduced in Chapters 2 and 3, conditioning on R; results in a pattern-mixture model, while
conditioning on Y; results in a selection model; both are discussed by Little (1995).

In Section 8.2, we present a selected set of plots to underpin the model building. We
distinguish between two modes of display: (1) individual profiles and (2) averaged over
(sub)populations. Both ways are used to present three fundamental aspects of the longi-
tudinal structure: (1) the average evolution; (2) the variance function, (3) the correlation
structure. FEach of those will be discussed in turn. In addition, the variogram will be dis-
cussed.

In Section 8.3, we describe the linear mixed model and show how it may be extended for use

in either a selection or pattern-mixture modeling framework. In Section 8.4 we introduce
the milk dataset, a commonly used dataset in the statistical literature. We show how both

89
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pattern-mixture and selection modeling frameworks can be used to analyze the data and
we illustrate how an informal sensitivity analysis on incomplete longitudinal data may be
conducted. In Section 8.5 we show how the definition of QL fits in with the analysis of longi-
tudinal data. We illustrate how additional information may be obtained using longitudinal
modeling techniques.

8.2 Graphical Exploration

8.2.1 Introduction

With longitudinal data it is useful to explore the data using graphical techniques before
advancing to model fitting (Diggle, Liang, and Zeger 1994). These may include both graph-
ical exploration of individual responses and means plotted against time, and an exploration
of the variance-covariance structure using residual plots, scatter plots and the variogram
(Diggle, Liang and Zeger 1994).

8.2.2 Example

As an illustration of the use of graphical exploration of longitudinal continuous measure-
ments, we used the data reported in Section 4.5.

Individual profiles and means

An obvious plot to consider when exploring longitudinal data is a plot of the response
variable against time. Although the QLQ-C30 Global health status score is on a 0 to 100
scale, it is derived from two seven point categorical response items. As a result, in a graphical
exploration of individual profiles patients with identical profiles will be superimposed which
may result in a misleading plot. To overcome this problem one could generate random
numbers 7; from a uniform distribution (e.g., —3 to 3 points) for each individual patient
(jittering). Let Y;; represent the QL score for patient ¢ (¢ = 1,---,N) at time point j
(j =1,---,T) . The generated random numbers r; are then added to the QL scores for
each individual patient ¢, i.e., G;; = Y;; + r; for all time points j. Even with the attributes
of the jittered score, in clinical trials that include many patients the plot may become too
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Figure 8.1: FORTC Trial 30893. Individual profiles by dropout pattern and treatment: Top:
Orchidectomy, Bottom: Orchidectomy + mitomycin C.

cluttered. One solution is to divide patients into subgroups. In Figure 8.1 the modified scores
G;; are presented over time j according to treatment group and dropout pattern. Note there
is considerable variation in between-patient and within-patient scores. Figure 8.2 presents
the mean profiles by dropout time and treatment group. For the majority of subgroups,
except for those including patients who drop out at week 6, there is an increase in mean QL
scores between baseline and week 6. This is in line with clinical experience which suggests
that cancer-related symptoms such as fatigue are often alleviated within a few days after
orchidectomy leading to a better QL score. The QL scores in the orchidectomy alone arm
appear to increase initially for all subgroups and only decrease before patients dropout of
the study. The QL scores in the orchidectomy + MMC arm do not appear to increase to the
same extent as those for the orchidectomy alone arm which is probably due to the toxicity
observed with MMC.
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Figure 8.2: EORTC Trial 30893. Mean profiles by dropout pattern and treatment a) or-
chidectomy b) orchidectomy + mitomycin C.

Variance-covariance structure

The variance-covariance structure was investigated using several methods. Initially, an 8-
dimensional scatter plot matrix of the data was generated as shown in Figure 8.3. The
diagonal elements display the distribution of QL scores at each assessment time point. For
presentation purposes the scores were divided into categories (<10, 10-30, 30-50, 50-70, 70-
90, >90). The histograms confirm the earlier finding of an initial improvement in QL scores
at week 6. Thereafter, the distributions are similar, allowing for the decreasing number of
patients contributing to plots at later time points. The scatter plots (off diagonal) of assess-
ments taken closer together (e.g., near the diagonal) appear to exhibit larger correlations
than those taken further apart, suggesting perhaps an autoregressive covariance structure.
Standardized residuals were obtained using ordinary least squares estimates. Similar plots
as for Figures 8.1 and 8.3 were generated using the standardized residuals (data not shown).
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Figure 8.3: EORTC Trial 30893. FEight dimensional scatter plot matriz.

Variogram
Diggle (1994) and Diggle, Liang and Zeger (1994) promote the so-called semi-variogram to
picture the variance components: measurement error, serial correlation, and random effects.
It is easily estimated even with irregular observation times (but in such cases may require
some smoothing). Given a stationary mean-zero stochastic process Y(t), where ¢ denotes
time, with constant variance, the variogram is defined as

1

V() = zE{[V(®) - Y(t - u)’}.

A specific form is discussed in Appendix A.1.

We constructed the sample variogram for our setting in Figure 8.4. The intercept of the
variogram provides a rough estimate of the measurement error. This shows that it represents
about 40% of the total process variance (indicated by the full horizontal line). The variogram
increases over time indicating a decrease in correlation as time increases. This decay in serial
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Figure 8.4: EORTC Trial 30893. Variogram.

correlation was confirmed in the scatterplot matrix: moving farther from the diagonal (for
observations that are further apart in time), the degree of correlation appears to decrease.
The variogram appears to level off at lag 4 and increases again at lags 6 and 7. The latter
increase is unreliable due to the small numbers of observations (illustrated by the size of
the dot). The difference between the estimate of the variogram at lag 4 and the total
variance (i.e., the process variance), provides an estimate of the subject-level component of
the variability (i.e., the random effect). In summary, the variogram suggests a random effect,
a serial decay in correlation and measurement error. However, since the variogram was built
on just 8 repeated measures with few observations at lags 5, 6 and 7 the aforementioned
components are difficult to assess. Nevertheless, the construction of the variogram is an
important tool to formulate an initial model, and in particular the variance components
therein.
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8.3 Linear Mixed Model

8.3.1 Introduction

A continuous outcome, or an appropriate transformation of it, is often regarded as drawn
from an approximately normal distribution. For such outcomes, the linear mixed model
(Laird and Ware 1982) is well developed. Let Y;;, grouped into vector Y;, represent the QL
score for patient ¢ (¢ = 1,--- , N) at time point j (j = 1,---,T). The mixed-effects model
can be written as

where X; and Z; are design matrices for fixed and random effects, respectively, a are fixed

effects and a; are random-effects parameters with a; ~ N(0, D). Further, w; are realizations

of a Gaussian stochastic process and €; represents measurement error. The variance is
Var(Y;) = Z;DZ, + o> H; + 21,

where o2 refers to the variance of the serially correlated process, H; = (hjr) = (p(t;,tx))

to the associated correlation matrix, 72 pertains to the measurement error variability and
finally I is a T' x T identity matrix.

Let D; = d identify dropout time, where D; = T + 1 if the sequence of measurements is
complete.

8.3.2 Selection Model

As discussed in Section 2.4 selection models arise when the joint likelihood of the measure-
ment process and the dropout process is factorized as:

f(yi, D; | Xi,0,%) = f(y: | Xi,0)f(D; | ys, Xi, )

where the first factor is the marginal density of the measurement process and the second one
is the density of the missingness process, conditional on the measurements. The linear mixed-
effects model is used to model the responses, as in (8.1), together with a logistic regression
to describe the dropout process. Let g;(yi;, hij) represent the conditional probability of
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dropout at time j given the measurement at time j and the history of the measurement
process h;; = (Yi1,Yia, -+, Yij—1) up until time j — 1. Modeling the dropout mechanism may
be simplified by allowing dropout to depend on the current measurement and immediately
preceding measurement only with corresponding regression coefficients 1, and ;. This leads
to the logistic expression

logit(g;(yis, hij)) = Yo + Xip, + V1Yij + Yayij—1

where 1)y represents the intercept and . is a vector of parameters for covariates X;. A
likelihood ratio test is used to test the hypothesis of ¢); = 0 (i.e., MAR) and similarly to test
the hypothesis of ¢¥); = ¥ = 0 (i.e., MCAR). Informative dropout models which combine
a linear mixed model for the measurements, together with a logistic regression were fitted
in OSWALD (a suite of macros written in SPlus) (Smith, Robertson and Diggle 1996) and
a study specific program written in GAUSS, a modified version of a program written by
Verbeke and Molenberghs (1997) and Thijs, Molenberghs and Verbeke (1999).

8.3.3 Pattern-Mixture Model

In contrast with selection models, pattern-mixture models result when the joint distribution
of Y; and D; is factorized as

flyi, D; | X;,0,4) = f(D; | D;, X;,0)f(D; | X;,).

Thus, the model for the responses is written as a conditional model, depending on the
particular missingness pattern. The marginal distribution of the longitudinal measurements
is a mixture of the conditional distributions, given the pattern of missingness. Parameters
describing the model for Y; are estimated in each stratum (determined by D;), and the
overall parameters are obtained using a weighted average of these estimates, weighted by the
proportion of subjects in each stratum. The parameters describing the distribution of the
missingness indicators themselves are generally considered a nuisance, and in fact a model
for

f(Di | Xi, )
can be relatively simple. Indeed, since the measurement process is not involved, a model
is often based merely on the multinomial probabilities of occurrence of the various dropout

patterns. The parameter vectors @ and 1) describe the measurement and missing process
respectively.
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Since the measurement model is dependent on dropout, the equation given in (8.1) is modified
to reflect this:

Y. = Xia(d;) + Zia; + wi(t) + €4,
a; ~ N(0, D(dy)), (8.2)
& ~ N(0,5:(d:)).

Thus, a priori, the fixed effects as well as the covariance parameters are allowed to vary
unconstrained according to the dropout pattern. In models where a particular effect, such
as treatment effect or treatment-by-baseline interaction, is pattern dependent an additional
calculation is required to obtain the marginal effect. Let us illustrate this for the marginal
treatment effect. Let 7, represent the parameters for the treatment effect in pattern d
(d=1,---,P), and let w4 denote the proportion of patients in each of the P patterns. Then
the estimate of the marginal treatment effect § is given by:

P
B=>_(yama). (8.3)

d=1
The variance is obtained using the delta method. Precisely, the matrix of derivatives of 3 is

given by:
A = op

8(717727"' y VP, T, T2, 0 77TP)

= (7T17 T2, = TPy Y1, V2, " 77P)'

An asymptotic variance expression of the treatment parameter is

Var(g) = AVAT, (8.4)
where Var )‘ 0
B ar(~y
V= ( 0 |Var(m) ) :

The estimate of the variance-covariance matrix of the estimates 4, is obtained from standard
statistical software (e.g., the SAS procedure MIXED). Since the proportions of patients in
each dropout pattern form a multinomial distribution the covariance matrix can be estimated
as follows: Var(w) = [diag(w) — wm']/n where ® = (71,7, - ,7p) . A Wald statistic for
the hypothesis of no treatment effect § = 0 is then given by B[AVA]|7!43’, which follows
approximately a x3 null distribution.
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8.4 The Milk Protein Content Trial

8.4.1 Introduction

The primary objective of the milk protein experiment was to describe the effects of diet on
the mean response profile of milk protein content over time. Previous analyses of the same
data are reported by Diggle (1990, Chapter 5), Verbyla and Cullis (1990), Diggle, Liang,
and Zeger (1994), and Diggle and Kenward (1994), under different assumptions and with
different modeling of the dropout process. Diggle (1990) assumed random dropout whereas
Diggle and Kenward (1994) concluded that dropout was non-random, based on their selection
model. It has already been noted in Chapter 7 that appropriate care should be taken with
non-random selection models for their reliance on unverifiable assumptions.

In addition to the usual problems with this type of models, serious doubts have been raised
about even the appropriateness of the “dropout” concept in this study. Cullis (1994) warned
that the conclusions inferred from the statistical model are very unlikely since usually there
is no relation between dropout and a relatively low level of milk protein content. In the
discussion of the Diggle and Kenward (1994) paper one is informed by Cullis that Valen-
tine, who originally conducted the experiment, had previously revealed the real reasons for
dropout. The explanation elucidates that the experiment terminated when feed availabil-
ity declined in the paddock in which animals were grazing. Thus, this would imply that
a non-random dropout mechanism is very implausible. A non-random dropout mechanism
would wrongly relate dropout to response while on the contrary dropout depends on food
availability only. Thus, there are actually no dropouts but rather five cohorts representing
the different starting times. Together with Cullis (1994) we conclude that especially with
incomplete data a statistical analysis should not proceed without a thorough discussion with
the experimenters.

The complex and somewhat vague history of the dataset probably is the main cause for so
many conflicting issues related to the analysis of the milk data. At the same time, it becomes
a perfect candidate for sensitivity analysis. Modeling will be based upon the linear mixed
effects model with serial correlation (8.1), introduced in Section 8.3. In Section 8.4.2 we
examine the validity of the conclusions made in Diggle and Kenward (1994) by incorporating
subject matter information into the method of analysis. As dropout was due to design
the method of analysis should reflect this. We will investigate two approaches. The first
approach involves restructuring the dataset and then analyzing the resulting dataset using a
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selection modeling framework, whereas the second method involves fitting pattern-mixture
models taking the missingness pattern into account. Both analyses consider the sequences
as unbalanced in length rather than as a formal instance of dropout.

8.4.2 Informal Sensitivity Analysis

Since there has been some confusion about the actual design employed we cannot avoid mak-
ing subjective assumptions such as the following: several matched paddocks are randomly
assigned to one of three diets: barley, lupins or a mixture of the two. The experiment starts
as the first cow experiences calving. At the end of the first five weeks, all 79 cows have
entered their randomly assigned, randomly cultivated paddock. By week 19, all paddocks
appear to approach the point of exhausting their food availability (in a synchronous fashion)
and the experiment is terminated for all animals simultaneously.

All previous analyses assumed a fixed date for entry into the trial and the crucial issue
then becomes how the dropout process should be handled and analyzed. However, it seems
intuitive that since entry into the study was at random time points (i.e., after calving) and
since the experiment was terminated at a fixed time point, that this time point should be the
reference for all other time points. It is therefore also appealing to reverse the time axis and
to analyze the data backwards, starting from time of dropout. Under the aforementioned
assumptions we have found a partial solution to the problem of potentially non-random
dropout since dropout has been replaced by ragged entry. Note however that a crucial
simplification arises: since entry into the trial depends solely on calving and gestation it can
be thought of as totally independent of the unobserved responses.

A problem with the alignment lies in the fact that virtually all cows showed a very steep
decrease in milk protein content immediately after calving, lasting until the third week
into the experiment. This behavior could be due to a special hormone regulation of milk
composition following calving which lasts only for a few weeks. Such a process is likely to be
totally independent of diet and, probably, can also be observed in the absence of food, to the
expense of the animal’s natural reserves. Since entry is now ragged, the process is spread and
influences mean response level during the first eight weeks. Of course one might construct an
appropriate model for the first three weeks with a separate model specification, in analogy to
the one used in Diggle and Kenward (1994). Instead, we prefer to ignore the first three weeks,
analogous in spirit to the approach taken in Verbyla and Cullis (1990). Hence, we have time
series of length 16, with some observations missing at the beginning. Figure 8.5 displays
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Figure 8.5: Milk Protein Content Trial. Data manipulations on § selected cows. (a) Raw
profiles; (b) Right aligned profiles; (c) Deletion of the first three observations; (d) Profiles
with time reversal.

the data manipulations for 5 selected cows. In Figure 8.5a the raw profiles are shown. In
Figure 8.5b the plots are right aligned. Figure 8.5c illustrates the protein content levels for
the 5 cows with the first three observations deleted and Figure 8.5d presents these profiles
when time is reversed. In order to explore the patterns after transformation, we plotted the
newly obtained mean profiles. Figures 8.6a and 8.6b display the mean profiles before and
after the transformation, respectively. Notice that the mean profiles have become parallel in
Figure 8.6b. To address the issue of correlation we shall compare the two variograms (see also
Section 8.2). The two pictures shown in Figure 8.7 are very similar although slight differences
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Figure 8.6: Milk Protein Content Trial. Mean response profiles on the original data and
after aligning and reverting.

can be noted in the estimated process variance which is slightly lower after transformation.
Complete decay of serial correlation appears to happen between time lags 9 and 10 in both
variograms. There is virtually no evidence of random effects as the serial correlation levels
off towards the process variance.

Table 8.1 presents the maximum likelihood estimates for the Diggle and Kenward MCAR
model and the corresponding estimates after aligning and reverting. Analogous in principle to
Diggle and Kenward (1994), time was taken as linear in the model. We notice that the mean
parameters and standard errors remain similar. Although they are, strictly speaking, not
directly comparable, the random intercept, already suspected to be negligible after studying
the variogram, can be excluded after looking at the random intercept estimate which is
very close to zero. Following Diggle and Kenward (1994), no attempt to model an increase
towards the end of the experiment is made. Indeed the newly obtained profiles would rather
suggest a decrease. As in the Diggle and Kenward (1994) paper we observed that the mean
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Table 8.1: Milk Protein Content Trial. Mazimum likelihood estimates (standard errors) of
random and non-random dropout models, fitted to the milk protein contents data. Dropout
starts from week 15 onwards.

DK After aligning
(CRD) and reverting
(CRD)
Mean parameters
Intercept 3.56 (0.04) 3.45 (0.06)
Lupins -0.21 (0.05) -0.21 (0.08)
Mixed -0.10 (0.05) -0.12 (0.08)

Variance parameters
Variance random intercept 1.424e-008 1.167e-008

Serial variance 0.094 0.135
Measurement error variance 0.020 0.015
Serial process parameter 0.211 0.097

protein response profile for the barley diet was consistently higher than for the mixed diet
and similarly the mean protein response profile for the mixed diet was consistently higher
than for the lupins diet. We reject the null hypothesis of no diet effect (F=1.98 on 32 d.f.,
P=0.001).

The analysis using aligned and reverted data shows little difference if compared to the original
analysis by Diggle and Kenward (1994). It would be interesting to know what mechanisms
determined the systematic increase and decrease observed for the three parallel profiles
illustrated in Figures 8.6b and 8.8. It is difficult to envisage that the parallelism of the profiles
and their systematic peaks and troughs shown in Figures 2b and 4 are due entirely to chance.
Indeed, many of the previous analyses debated the influence on variability of factors common
to the paddocks cultivated with the three different diets (e.g. meteorological factors) that
had not been reported by the experimenter. These factors may account for a large amount
of variability in the data. Hence, the data exploration performed in this analysis may prove
to be a useful tool in gaining insight into the response process. For example, we notice that
after transformation, the inexplicable trend towards an increase in milk protein content,
as the paddocks approach exhaustion has, in fact, vanished or even reverted to a possible
decrease. This was also confirmed in the stratified analysis where the protein level content
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Figure 8.7: Milk Protein Content Trial. Variogram for the original data and after aligning
and reverting.

tended to decrease prior to termination of the experiment (see Figure 8.8).

An alternative method of analysis is based on the premise that the protein content levels
form distinct homogenous subgroups of cows based on their dropout pattern. This leads
very naturally to pattern-mixture models. Parameters in (8.1) are now made to depend on
pattern, as in (8.2). In its general form, the fixed effects as well as the covariance parameters
are allowed to vary unconstrained according to the dropout pattern. Alternatively, simpli-
fications can be sought. For example, diet effect can vary linearly with pattern or can be
pattern-independent. In the latter case, this effect becomes marginal. When the diet effect
is pattern dependent, an extra calculation is necessary to obtain the marginal diet effect.
Precisely, the marginal effect can be computed as in (8.3) while the delta method variance
expression is given by (8.4).

Denoting the parameter for diet effect £ = 1,2 (difference with the barley group) in pattern
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t =1,2,3 by G and letting 7 be the proportion of cows in pattern ¢, then the matrix A
assumes the form

- 8(51752)
A = 8(5117512751375217522752377(177(277(3) (85)
_ (771 m w3 0 0 0 pPu [ 513) (8.6)
0 0 0 m m m Pu B2 B3 )’ '

Note that the simple multinomial model for the dropout probabilities could be extended
when additional information concerning the dropout mechanism is available. For example,
if covariates are known or believed to influence dropout, the simple multinomial model can
be replaced by logistic regression or time-to-event methods (Hogan and Laird 1997).

Table 4.6 presents the dropout pattern by time in each of the three diet groups. As few
dropouts occured in weeks 16, 17 and 19 these three dropout patterns were collapsed into
a single pattern. Thus three patterns remain with 20, 18 and 41 cows, respectively. The
corresponding pattern probabilities are

7 = (0.253160.227850.51899)’, (8.7)

with asymptotic covariance matrix

- 0.00239 —-0.00073 —0.00166
Var(®) = | 0.00073  0.00223 —0.00150 | . (8.8)
0.00166 —0.00150  0.00316

These figures, apart from giving an indication of the relative importance of the various
patterns, will be needed to calculate marginal effects (such as marginal treatment effect)
from pattern-mixture model parameters.

The model fitting results are presented in Table 8.2. The most complex model for the mean
structure assumes a separate mean for each diet by time by dropout pattern combination.
As the variogram indicated no random effects the covariance matrix was taken as first order
autoregressive with a residual variance term o, = 02pli=*. Also the variance-covariance
parameters are allowed to vary according to the dropout pattern. This model is equivalent
to including time and diet as covariates in the model and stratifying for dropout pattern and
provides a starting point for model simplification through backward selection. The protein
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Figure 8.8: Milk Protein Content Trial. Mean response level per diet and per dropout pattern.

content levels over time are presented by pattern and diet in Figure 8.8. Note that the
protein content profiles appear to vary considerably according to missingness pattern and
time. Additionally, Diggle and Kenward (1994) suggested an increase in protein content level
towards the end of the experiment. This observation is not consistent for the three plots in
Figure 8.8. In fact, there is a tendency for a decrease in all diet by pattern subgroups prior
to dropout.

To simplify the covariance structure presented in Model 1, Model 2 assumes the residual
covariance parameter is equal in the three patterns. The likelihood ratio test indicates
that Model 2 compares favorably with Model 1, suggesting a common residual variance
(measurement error component) parameter (2 for the three groups; see Table 8.2 for details).
However, comparing Model 3 with Model 2 we reject a common variance-covariance structure
in the three groups.

Next, we investigate the mean structure. In Model 4, the three-way interaction between
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Table 8.2: Milk Protein Content Trial. Model fit summary for pattern-mizture models.

Mean Covar
1 Full interaction AR1(d), meas(t)
2 Full interaction AR1(d), meas
3 Full interaction AR(1), meas
4 Two-way interactions AR1(d), meas
5 diet, time, pattern, dietxtime, diet xpattern AR1(d), meas
6 diet, time, pattern, dietxtime, timex pattern AR1(d), meas
7  diet, time, pattern, dietxpattern, timexpattern AR1(d), meas
8 time, pattern, timexpattern AR1(d), meas
9 time, diet(time) AR(1), meas
10 time, diet AR(1), meas
par —2¢/ Ref G* df P
1 162 -474.93
2 160 -470.49 1 444 2 0.109
3 156 -428.26 2 42.23 4 <0.001
4 100 -439.96 2 30.53 60  0.999
5 70 -202.40 4 23756 30 <0.001
6 96 -430.55 4 941 4 0.052
7 64 -405.04 4 3592 36  0.520
8 b8 -378.22 7 26.82 6 <0.001
6 52.33 38  0.061
9 60
10 24
Covar:  Covariance model df: Degrees of freedom
Par: Number of parameters P: P-value
—2¢: -2 times log-likelihood AR(1): Autoregresive order 1
Ref: Reference model d: By dropout pattern
G?: Likelihood ratio test statistic

pattern, time, and diet is removed. This simplified model is acceptable when contrasted
to Model 2, based on p = 0.999. Models 5, 6 and 7 are fitted to investigate the pairwise
interaction terms. Comparing Models 5 and 4 suggests a strong interaction between dropout
pattern and time. Model 6 results in a borderline decrease in goodness of fit (p = 0.052).
From Table 8.2 we observe that Model 7 is a plausible simplification of Model 4. Moreover,
there is an apparent lack of fit for Model 8, which only includes one interaction term, time
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and pattern, when compared to Model 7. In conclusion, among the models presented, Model
7 is the preferred one to summarize the data as it is the simplest model consistent with
the data. However, Model 6 should be given some attention as well. In analogy to Diggle
and Kenward (1994), we attempted to include time as a separate linear factor for the first
three weeks and the subsequent 16 weeks. These models did not improve the fit (results not
shown).

The objective of the experiment was to assess the influence on diet on protein content level.
With selection models, the corresponding null hypothesis of no effect can be tested using, for
example, the standard F' tests on two numerator degrees of freedom as provided by the SAS
procedure MIXED or similar software. In the pattern-mixture framework, such a standard
test can be used only if the treatment effects do not interact with pattern. Otherwise, the
marginal treatment (diet) effect has to be determined as in (8.3) and the delta method can
be used to test the hypothesis of no effect. In Model 6 the diet effect is independent of
pattern while the reverse holds for Model 7. Reparameterizing Model 6 by including the
diet effect and diet and time interaction as one effect in the model provides us with an
appropriate I test for the three diet profiles. The F' test rejects the null hypothesis of no
diet effect (F' = 1.57 on 38 degrees of freedom, p = 0.015). In the corresponding selection
model, Model 9, we remove all the terms from Model 6 which include pattern. In that case,
the F' test is not significant (F' = 1.26 on 38 degrees of freedom, p = 0.133). The difference
in the tests may be explained by the variance parameters which were larger in the selection
model in the absence of stratification for pattern, thereby effectively diluting the strength
of the difference. Additionally, the standard errors for the estimates of the fixed effects
were slightly smaller in the pattern-mixture model. This is not surprising as in the model
fitting we found that the means and variance parameters were dependent on pattern. Thus,
stratifying for pattern results in more homogenous subgroups of cows reducing the variance
within each group and subsequently providing more precise estimates for the diet effect.

Using Model 7, we test the global null hypothesis of no diet effect in any of the patterns.
This analysis can be seen as a stratified analysis where a diet effect is estimated separately
within each pattern. This model results in a significant F' test for the diet effect (F' = 6.05,
on 6 degrees of freedom, p < 0.001). Alternatively, we can consider the pooled estimate for
the diet effect, provided by equation (8.3), and calculate the test statistic using the delta
method. This test also indicates a significant diet effect (F' = 17.82 on 2 degrees of freedom,
p < 0.001) as does the corresponding selection model, Model 10 (F = 8.51 on 2 degrees of
freedom, p < 0.001).

Figure 8.9 presents the diet by time parameter estimates for selection Model 10, for the
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Figure 8.9: Milk Protein Content Trial. Diet effect over time for the selection model (SM),
the corresponding pattern-mizture model (PMM), and the estimate obtained after weighting
the PMM contributions using the delta method (DM).

corresponding pattern-mixture Model 7 and the weighted average estimates used in the
delta method. The estimates for the selection model and the pattern-mixture model appear
to differ only slightly. Since the model building within both families is done separately, this
is a very reassuring sensitivity analysis outcome.

In conclusion, including pattern in the model improves the model fit significantly. In partic-
ular, the time by pattern and diet by pattern interactions are maintained in Model 7, which
is considered to be the most parsimonius model consistent with the data (Figure 8.8). In
addition, the covariance parameters are also dependent on the missingness pattern. Dividing
cows into more homogenous groups based on their missingness patterns reduces the unex-
plained variation in the data and subsequently provides more precise parameter estimates.

The analyses discussed here provide an alternative to those obtained by Diggle and Kenward
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(1994) but generally do not contradict them. Rather, they convey the message that the use
of sensitivity analysis should become standard practice when dropout occurs. We strongly
stress the importance of careful data verification to be undertaken prior to any statistical
analysis. To this end we might add that the effect of an erroneous initial description of
a dataset should not be underestimated as it can lead to subsequent mis-modeling of the
data, thus adding confusion to an already complex undertaking of analyzing longitudinally
measured observations.

Our analysis of the correlation structure appears to agree with the general conclusions re-
tained in the Diggle and Kenward (1994) analysis. Particularly, it is interesting to notice the
absence of random effects. We do not completely share the surprise expressed by Diggle and
Kenward (1994) since it should be noted that the study animals are highly selected through
centuries of cow eugenics and race selection. Had we dealt with wild animals, the role played
by random effects would most likely have been much more substantial. To explain the ab-
sence of random effects we may assume that there were additional eligibility criteria for the
trial (e.g., a specific breed of cow), which made random effects even more unlikely.

Analyzing a dataset using various approaches to answer a particular question is seen as
a simple and informal way of sensitivity analysis, as is supplementing the main analysis
with additional ones to gain extra insight. Each method used requires certain assumptions
about the measurement process and the dropout process. In particular, pattern-mixture
models and selection models approach the issue of dropout in different ways. It may also be
useful to investigate the fundamental assumptions concerning the design of the experiment
since dropout may be design driven. This example, and in particular the absence of gen-
uine dropout, illustrates once more that care has to be taken when analyzing longitudinal
outcomes with a non-rectangular structure.

8.5 EORTC Trial 30893

8.5.1 Introduction

The definition of QL which is universally accepted, is that QL is: (1) multidimensional
(i.e., it comprises elements of a patient’s emotional, social and physical well being); (2) it
is a process (i.e., subject to change over a patient’s lifetime); and (3) it is subjective (relies
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primarily on the patient’s own judgement). These three points all need to be taken into
account in the design and the analyses of QL data in clinical trials.

Although QL is considered to be multidimensional, frequently one QL scale or domain is
taken as the primary QL endpoint and is analysed as such. The other scales are then
considered secondary in nature and analysed in an exploratory fashion. For example, when
the EORTC QLQ-C30 is included in a clinical trial the global health/QL scale may be taken
as the primary QL endpoint to answer the question ‘Is there a difference in QL between two
or more treatment groups?’ For the remaining scales an exploratory, hypothesis-generating
analysis may then be performed where the objective is to explore the data rather than to
draw definitive conclusions from the results. Alternatively, if several scales are thought to
be equally important, it is possible to base conclusions on multiple comparisons, using a
more restrictive significance level (e.g., P<0.01 or 0.001) in order to reduce the risk of Type
I errors (Hochberg 1988).

The second point in the definition of QL illustrates that it is a process and consequently it
is subject to change over time, depending on the effects of random occurrences or planned
interventions in an individual’s life. To understand QL it is necessary to understand how it
changes over time. One might consider that QL measurements that are taken close together
may be strongly correlated while measurements that are taken at larger intervals may be
less correlated. Statistically, we refer to this notion as serial correlation (Diggle, Liang
and Zeger 1994). While cross-sectional studies (see Section 6.3.1) are useful in describing
between-patient variability, explaining within-patient variability necessitates the study of
repeated assessments over time.

The last point alluded to the patients’ self assessment of QL. Since some patients may
report consistently high scores and others consistently low scores, it is useful to capture this
subject-specific effect in the statistical model. In a broad part of the literature, this concept
is referred to as random effects (Diggle, Liang and Zeger 1994).

In this section we illustrate how the issues raised above may be taken into account in the
analysis of QL datasets with missing data. This is done using as an example EORTC
trial 30893 (see Sections 4.5 and 8.2.2) fitting both pattern-mixture and selection models.
Choosing an appropriate model in both families and comparison of the results can be viewed
as a sensitivity analysis.
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8.5.2 Pattern-Mixture Model

As few dropouts occurred at weeks 6 and 12, these patients were grouped into one dropout
pattern (see Figure 8.1). Similarly, patients who drop out at either week 24 or week 30
were collapsed into a single pattern. Thus five patterns remain with 19, 22) 28, 25 and 72
patients in the five patterns, respectively. Of course, the actual measurement times were
preserved even in the collapsed patterns. Several baseline clinical variables were considered
as covariates in the model. These included demographic variables: age, WHO performance
status (see Appendix A.2), presence of chronic disease and pain assessed by the clinician;
and disease descriptive variables: T stage, N stage and tumor grade (see Appendix A.3).
In a univariate analysis WHO performance status and presence of chronic disease were
significantly correlated with QL while there was a (non-significant) trend for an association
between QL and age. As age is a known prognostic factor in patients with prostate cancer
which could also influence the underlying dropout process, it was decided to keep it in the
model. All other variables were not significantly correlated with QL scores. The model
fitting results are presented in Table 8.3. The most complex model (model I) for the means
structure includes the main effects of the clinical variables and assumes a separate mean
for each treatment-by-time-by-dropout pattern combination. As suggested by the variogram
the covariance matrix was taken as autoregressive order 1 with o, = 02p"~*l with a residual
covariance term ¢? and a random-effects component v2. The variance-covariance parameters
are allowed to vary according to the dropout pattern. This model is equivalent to including
time and treatment as covariates in the model statement and stratifying for dropout pattern.
It provides a starting point for model simplification through backward selection. To simplify
the covariance structure presented in Model I, in Model II the random-effect component is
omitted. The likelihood ratio test indicates that Model II compares favourably with Model 1.
An explanation for this may be that the random effect is partially explained by the baseline
covariates included in the model (age, WHO performance status and presence of chronic
disease). Comparing Model ITI and IV with Model IT indicates that the covariance structure
cannot be simplified further.

In Model V we removed the 3-way interaction term between pattern, time and treatment.
This model yields a significant likelihood ratio test statistic (p=0.003) when compared with
Model I1, rejecting the hypotheses of no 3-way interaction. To reduce the mean structure fur-
ther we examined the graphical presentations in order to generate hypotheses. As mentioned
earlier in Section 8.2.2, the QL scores appeared to increase immediately after orchidectomy
and remained stable thereafter until the assessment prior to dropout. Thus we generated two
indicator variables to achieve this: Ty (0: Time= 0; 1: Time> 0) and Tx (1: Time= D — 1;
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Table 8.3: EORTC' Trial 30893. Model fit summary for pattern-mixture models.

Mean Covariance model
I  BCV + patxtimextrt AR(1)d+v*+¢%d
II  BCV + patxtimextrt AR(1)d+¢%d
IIT  BCV + patxtimextrt AR(1)d+¢?
IV BCV + patxtimextrt AR(1)+¢%d
V  BCV + trt time trtxpat trt xtime patxtime AR(1)d+¢*d
VI BCV + trt Ty Tx trtxpat trtxTy patxToxtrt trtxTy patxTxxtrt  AR(1)d-+¢d
VII BCV trt Ty Ty trtxpat trtx Ty patxTyxtrt trtx Ty patxTyx AR(1)d+¢*d
VIII BCV trt Ty Tx trtxpat trtxTy patxTp trtxTx patxTy AR(1)d+¢%d
IX BCV trt Ty Tx trtxpat trtxTy patxTyxtrt trtx Ty AR(1)d+¢2d
X BCV trt Ty Tx trtxpat trtxTy patxTpxtrt patxTy AR(1)d+¢*d

par —2/ Ref G? df P

I 75 7000.73
II 74 700037 1 036 1 0.549
111 70 702052 II 20.15 4 <0.001
v 66 702952 II 2915 8 <0.001
A% 54 704159 II 41.22 20 0.003
VI 48 7028.05 II 27.68 26 0.374
VII 44 7029.69 VI 1.64 4 0.802
VIII 40 7051.74 VII 2205 4 <0.001
IX 40 7043.35 VII 1366 4 0.008
X 43 7032.09 VII 2.40 1 0.121
Par: Number of parameters P: P-value
—2¢: -2 times log-likelihood AR(1): Autoregresive order 1
Ref:  Reference model d: By dropout pattern
G?:  Likelihood ratio test statistic BCV: Baseline clinical variables
df: Degrees of freedom pat: Pattern, trt: Treatment

0: otherwise, where D represents time of dropout). All possible treatment-by-pattern-by-
time indicator combinations were included in Model VI. From Table 8.3 we observe that
model VI is indeed a plausible simplification of model II. To further simplify the model we
fitted models VII to X. These model fits suggested that the three way interaction between
Tx, pattern and treatment and the 2-way interaction T'x-by-treatment could be omitted.
However a three way interaction between Ty, pattern and treatment could not be rejected.
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In conclusion, among the models presented, model X is the preferred one to summarize the
data as it is the simplest model consistent with the data.

As there is an interaction between treatment effect and pattern, the delta method (see
Equation 8.3) was used to test the marginal treatment effect. There appeared to be an
imbalance in baseline QL score between the two groups. For this reason we performed two
analyses, one adjusting for the baseline difference and the other ignoring the imbalance at
baseline. We reparametrized model X by including the two way interaction terms pattern-by-
Ty and pattern-by-treatment in the model, thus obtaining directly interpretable estimates for
the treatment effect for each pattern (i.e., pattern-by-treatment) and the 3-way interaction
terms Ty-by-pattern-by-treatment. Note, since T} is coded 0 at baseline and 1 thereafter the
interaction term Ty-by-pattern-by-treatment provides us with treatment effects by pattern
adjusted for differences at baseline. For both the unadjusted and adjusted analyses, we
obtained the pooled estimate for the treatment effect using equation (8.3), and calculated a
test statistic using the delta method.

For the unadjusted analysis, the marginal treatment effect § was given by (8.3). Thus

B = mé1+ 7202+ v3P3 + Yads + V505
—6.64(19,/166) — 3.50(22/166) — 5.02(28,/166) — 15.28(25/166) — 5.81(72/166)
= —6.89

The asymptotic estimate of the variance of the treatment effect is

— Var(Yia)s | 0 B
Var(3) = A ( 0 dJid VarGa)a ) AT =551

A Wald test is x2 = 8.61 on 1 d.f which gives p = 0.003.

However, adjusting for the baseline imbalance resulted in an estimated treatment effect

~

B =—5936 (Var(8) = 13.57, F = 2.60, on 1 d.f., with p = 0.107).

8.5.3 Selection Model

The final model as selected in Section 8.5.2 was used as a starting point for the measurement
model, excluding the pattern terms. Additionally, the term Tx was omitted as this term is
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pattern dependent. Including this term would result in fitting a pseudo-likelihood model,
ie, f(Y/D)f(D/Y). The model proposed by Diggle and Kenward (1994) and fitted in
Oswald was primarily developed for monotone dropout. Therefore, due to poor compliance
at baseline and our primary interest of examining the dropout mechanism, we omitted the
baseline assessment from the analysis.

As is often the case with fitting (non-random) selection models, attaining convergence was
not straightforward and we think it is useful to report on the problems encountered. A clear
indication of convergence when fitting selection models is that the parameters for fixed effects
for MAR and MCAR are identical. Initially the baseline covariates WHO performance status,
age and presence of chronic disease were included in the measurement model. Increasing the
number of iterations substantially did not result in convergence. The model was fitted
using a program written in GAUSS to allow more flexibility in terms of exploration of the
fitted variance-covariance matrix, the hessian matrix and residuals. After convergence of the
MNAR model the inverse of the hessian matrix was not positive definite. An examination
of the eigenvalues indicated a negative value for age indicating a potential saddle point.
Plotting the profile likelihood indicated that the profile likelihood was relatively flat close
to 0 which may have resulted in difficulties in estimation of the hessian matrix. As the
maximum likelihood estimate of the age parameter was close to 0, we removed age from the
model. Refitting the model in Oswald yielded consistent results, but still not fully convergent,
between the MCAR and MAR models. Further simplification of the measurement model was
not justifiable.

The variance parameters were included based on the results of the variogram. In contrast
to the pattern-mixture model, the selection model indicated that the random intercept con-
tributed significantly to the model (P<0.001). The measurement error appeared to be larger
in the MNAR model than for the MCAR and MAR models whereas the serial variance para-
meter estimate was smaller in the MNAR model. For the dropout model we used a forward
selection procedure initially fitting an MCAR model including covariates age, WHO perfor-
mance status, presence of chronic disease and time. The model fits suggested that only time
be kept in the model. Table 8.5.3 presents the final model fits for the three models: MCAR,
MAR, and MNAR. In the MCAR model the parameters 1; and ¥ are set to 0 indicating
no dependence on the current measurement and immediately preceding measurement. Com-
paring the MAR model with the MCAR model using the likelihood ratio test we reject the
null hypothesis of a MCAR, dropout process (likelihood ratio test statistic of 21.98 on 1 d.f.,
p < 0.001). In addition, a comparison between the MNAR, and MAR models yields a likeli-
hood ratio test statistic of 0.76 (P=0.383). The treatment effect for the MAR model, -6.06



Table 8.4: EORTC' Trial 30893. Model fit summary for selection models.
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Parameter MCAR MAR MNAR
Intercept 79.49 4.54 79.38 4.45 83.82
Presence of chronic disease -4.56 2.79 -4.45 2.73 -6.79
WHO performance status -4.752.30 -4.76 2.25 -5.56
Treatment -2.96 1.65 -3.03 1.63 -3.80
Time -0.82 0.28 -0.83 0.28 -0.43
Time by treatment -0.43 0.28 -0.41 0.28 -0.44
Random intercept (v?) 121.31 115.37 140.37
Measurement error (o?) 213.71 218.30 169.00
Serial variance (72) 91.72 93.36 106.35
serial correlation exp (¢) 0.27 0.26 0.41
o -3.80 -2.20 -4.06
Diime 0.47 0.45 0.53
Y1 0 0 0.06
Py 0 -0.02 -0.06
Deviance 9396.24 9374.26 9373.50
Likelihood ratio test statistic 21.98 0.76

(-3.03 x 2: treatment is coded 1, -1) is significant(p = 0.011) and similar in magnitude to
the estimate obtained by the MNAR model and the pattern-mixture model not adjusted for
baseline difference. The dropout parameters in the MNAR model suggest that the dropout
increases when the prevailing QL scores are low ((1; + 12)/2 = 0.0) and when there is an
increase in QL score after dropout ((¢; — ¥2)/2 = 0.12). From a QL researchers point of
view this is not logical since one might expect in an advanced cancer clinical trial that QL
scores would continue to decrease after dropout. The final model, most consistent with the
data, suggested a linear change in QL over time as shown in Figure 8.10 which presents
both the observed and predicted profiles for patient 16. As the measurement model specified
a linear, approximately horizontal, change over time it is not surprising that the expected
value at the time of dropout indicates an increase from the previous value as illustrated by
the dropout parameter estimates. This result suggests over-specification in the model. It
is impossible to fit the decrease before dropout as presented in Figure 8.2 using a selection
model as this decrease is spread over the various assessment time points dependent on the
dropout time. Accordingly, its effect on the measurement parameter estimates in a selection
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Figure 8.10: FORTC Trial 30893. A selected patient profile and its fitted values using a
selection model.

model is diluted.

8.5.4 Remarks

The purpose of this section was to present the analysis of a QL study taking into account
the definition of QL and the inherent structure of the dataset caused by attrition of patients.
Section 8.2 presented the initial data exploration using graphical techniques. This step was
revealing for a number of reasons. First, the mean structure indicated that the QL scores
varied according to dropout pattern and treatment group, suggesting that a pattern-mixture
model could be appropriate. Second, the mean structure suggested an initial increase after
randomization followed by a stable period thereafter until the assessment prior to dropout.
This information was employed to generate hypotheses during model fitting which resulted
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in a simplified mean structure for the measurements.

The covariance structure suggested by the variogram and the scatter plots led us quickly to
the appropriate covariance structure. Although the variogram suggested a random effect,
the pattern-mixture model fit did not confirm this. Since the variogram is geared towards
the selection model, this finding is not surprising. It may be explained by the inclusion
of dropout pattern as a covariate and also by including pattern dependent variance com-
ponents explaining a proportion of the variation which may otherwise have been ascribed
to a subject-level component. Many authors have analysed QL data using cross-sectional
methods ignoring the longitudinal structure of the data. However, the AR(1) covariance
structure highlights the correlation between measurements taken at separate time points,
particularly when assessments are made close together. Neglecting to analyze the data in a
longitudinal fashion would therefore be wasteful and result in a loss of information.

The pattern-mixture model indicated that the measurement process was dependent on
dropout pattern and treatment.The delta method was used to obtain an appropriate test
statistic for the treatment effect. As there was an imbalance in QL scores between the two
treatment groups at baseline we performed two analyses. The first analysis ignored the
baseline difference and resulted in a significant treatment effect in favor of the orchidectomy
alone arm. However, in the second analysis, which took into account the baseline imbalance,
a significant treatment difference could not be detected. Since randomization between the
two treatment arms was performed using the minimization technique stratifying for poten-
tially important factors such as institution and WHO performance status, any imbalance
in QL scores may have been entirely due to chance. Therefore, adjusting for a random oc-
currence may result in a biased analysis. On the other hand, although the imbalance may
have occurred due to chance, it may be interesting to observe the impact of adjusting for
the imbalance. The adjusted analysis may be seen as a sensitivity analysis.

An estimate of the marginal effect was obtained using a weighted average of the parameter
estimates, weighted by the proportion of subjects in each dropout pattern. In this study the
dropout rates were similar in both treatment groups. However, if the dropout rates vary
between the two treatment arms then it may be advisable to weight the estimates according
to the proportion of patients in each treatment by pattern subgroup to reduce the potential
bias in the estimation of the marginal treatment effect.

This analysis is a sensitivity analysis in the sense that the data were analyzed under different
assumptions about the measurement and dropout process. Although selection models and
pattern-mixture models are considered to be probabilistically equivalent, they shed different
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light in the context of a real data analysis. For example, in pattern-mixture models the overall
distribution of the longitudinal measurements is a mixture of the conditional distributions,
given the pattern of missingness. Therefore, the overall distribution may not necessarily be
multivariate normal. Additionally, a pattern-mixture analysis has the flavour of an analysis
stratified by dropout pattern, yielding homogenous groups resulting in smaller standard
errors within each pattern leading to more precise estimates of the overall treatment effect.
In addition it allows one to correct for the potentially confounding effect of dropout pattern.

The use of selection models in QL settings appears to be intuitive because the dropout
process is thought of as being dependent on the measurement process. In contrast, the
interpretation of pattern-mixture models is not so obvious since it implies that the QL scores
for an individual are dependent on the time that patient will drop out (i.e., in the future).
However, for pattern-mixture models, the assumptions which are made during model fitting
are clearer, e.g., in pattern-mixture models patients only contribute to parameter estimates
prior to dropout, whereas in selection models all patients contribute to the model at all time
points whether they have dropped out or not. Additionally, in selection models the likelihood
for both the dropout model and measurement models are maximized simultaneously resulting
in a maximized joint likelihood during which some assumptions are made which are not
fundamentally testable, e.g., the dependence of the dropout process on measurements which
have not been obtained. In contrast, in pattern-mixture models the missingness process is
usually fairly simple, and can reduce to a multinomial distribution, describing the proportion
of the different patterns. Also, fitting a selection model may be computationally cumbersome.
For pattern-mixture models, the only requirement is that there are sufficient data in the
various patterns to achieve reliable estimates. One then only needs fairly straightforward
non-iterative code to determine marginal quantities.

Model building using pattern-mixture models does not allow one to test if the dropout
process is MNAR, although Molenberghs et al (1998) derived identifying restrictions which
can be used in a pattern-mixture context to correspond to MAR (see Section 9.2). With
selection models, the dropout probability is estimated conditional on the measurements,
allowing the dropout process to be tested. Several authors have suggested that caution be
exercised when fitting MNAR models (Glynn, Laird and Rubin 1986, Molenberghs et al
1998) as assumptions are made in model fitting which are untestable, namely regarding the
relationship between non-response and the missing measurements. However, Verbeke and
Molenberghs (1997) argue that restricting the model building exercise to a MAR mechanism
is equally dangerous since the MAR assumption is itself fundamentally untestable. The
selection model suggested that the missing data were not MNAR. The treatment effects
under both MAR and MNAR were similar, supporting the earlier conclusions regarding the
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unadjusted treatment comparisons. In the analyses of QL data with dropout it is advisable
to fit both families of models to examine the extent of agreement in results.



Chapter 9

Sensitivity Analysis for
Pattern-Mixture Models

9.1 Introduction

Chapter 8 illustrated the use of pattern-mixture models in QL settings. As demonstrated
they provide an alternative formulation for the common selection model factorization. In
Chapter 7 we observed that pattern-mixture models are underidentified, which is clearly
seen by means of the Glynn, Laird, and Rubin (1986) ‘paradox’ (Section 7.4). Consequently,
Little (1993, 1994, 1995) suggested the use of so-called identifying restrictions to overcome
this under-identification: inestimable parameters of the incomplete patterns are set equal
to (functions of) the parameters describing the distribution of the completers. Little (1993)
shows how these constraints can be used to identify all the parameters in the model and so
obtain estimates for these and the marginal probabilities. For example, complete case missing
value (CCMV) restrictions (Little 1993) essentially equate conditional distributions beyond
time %, i.e., those unidentifiable from this dropout group, with the same conditional distrib-
utions from the completers. All in all, while some authors perceive this under-identification
as a drawback, we believe it is an asset since it forces one to reflect on the assumptions
made. On the other hand, neither of the two examples in Chapter 8 (the milk dataset in
Section 8.4 and the QL study in Section 8.5) made use of identifying restrictions. For the
milk protein trial it was suggested that the experiment terminated when feed availability
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declined in the paddock in which animals were grazing. If this is true then we are not inter-
ested in what happened after the experiment terminated and we do not need to extrapolate
our results further. For the QL study we may wish to answer two scientific questions: (1)
what is the difference with respect to QL between the two treatment groups while patients
remain on-study (progression-free)? or (2) what is the difference with respect to QL be-
tween the two treatment groups while patients remain alive? To answer the latter question
we need to extrapolate our results. This may be done using identifying restrictions. Thus,
we have two strategies to build a full data model in the pattern-mixture context: identifying
restrictions, and the inclusion of pattern as a covariate as shown in Chapter 8. We will show
in this chapter how using different identifying restrictions can serve as a starting point for
sensitivity analysis.

While identifying restrictions impose a careful reflection on the unidentified part of the
distribution, including pattern as a covariate is more implicit about the assumptions made
to identify the full distribution. In this respect, identifying restrictions are open to some of
the criticism of selection models. The identifying restrictions strategy is harder to implement,
unless in fairly simple settings, such as for a single normal sample or for contingency tables
(Little 1993, 1994). This chapter provides a tool to conduct such a strategy in realistic
longitudinal settings.

Section 9.2 describes the relationship between MAR and the pattern-mixture framework and
Section 9.3 discusses the use of sensitivity analysis when fitting pattern-mixture models. The
identifying restriction strategy is described in detail in Section 9.4. Multiple imputation, a
tool used in the identifying restrictions strategy, is reviewed in Section 9.5. Application to
the milk dataset and a QL dataset are discussed in Sections 9.6 and 9.7 respectively. Some
remarks and suggestions for alternative routes of sensitivity are offered in Section 9.8.

9.2 Pattern-Mixture Models and MAR

The missing data taxonomy is usually presented in the selection modeling framework rather
than in the pattern-mixture context. Here we show that pattern-mixture models can be clas-
sified similarly, and further that the intermediate MAR category is connected to particular
kinds of restrictions on the parameters of a pattern-mixture model in the case of monotone
missingness.
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Assume a complete measurement sequence is of length n. Recall that the classical taxonomy
considers the structure of f(d|y). The missing data are MAR if a subject’s missingness
mechanism depends on its observed outcomes only, f(d = t + Lly1,...,yn) = f(d =t +
yi, ..., ), fort =1,... n.

We will now show how pattern-mixture models can be classified using exactly the same
taxonomy as is used for selection models. Furthermore, we establish a link between this
classification and the identifying restrictions proposed in Little (1993). Clearly, selection
models and pattern-mixture models coincide under the MCAR assumption. Next, we show
that MAR can be expressed in a pattern-mixture framework through restrictions, related to
the complete case missing value (CCMV) restrictions (Little 1993), which we will call avail-
able case missing value (ACMV) restrictions. Little’s CCMV restrictions set a conditional
density of unobserved components given a particular set of observed components equal to
the corresponding conditional density in the subgroup of completers. ACMV restrictions
equate this conditional density to the one calculated from the subgroup of all patterns for
which all required components have been observed.

In our setting of longitudinal data with dropouts, CCMV can be defined formally as the
condition that for each ¢ > 2 and for j < ¢

f(yt’yla"'ayt—lad:j_l_l):f(yt’yla"'ayt—lad:n_l_1)7

whereas ACMV is the condition that for all £ > 2 and j < t:

f(yt’yla s 7yt—17d = ] + 1) - f(yt’ylv s 7yt—17d > t)' (91)

If there are only 2 time points (n = 2), then ACMV and CCMV coincide. With these
definitions, Molenberghs et al (1998) have shown that, for longitudinal data with dropouts,
MAR <= ACMV.

An interesting aside of this theorem is that, since MAR corresponds to a set of (untestable)
restrictions (ACMYV) in the pattern-mixture framework, MAR itself is also untestable. Pre-
cisely, given MAR, standard (observed data) methods can be used but the assumption of
MAR itself cannot be tested. This fact is often overlooked in the selection framework.

The restrictions discussed here will be incorporated in strategies to fit pattern-mixture mod-
els in Sections 9.6 and 9.7.
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9.3 Pattern-Mixture Models and Sensitivity Analysis

Pattern-mixture models have gained renewed interest in recent years (Little 1993, 1994,
Hogan and Laird 1997). Several authors have contrasted selection models and pattern-
mixture models. This is done either (1) to answer the same scientific question, such as
marginal treatment effect or time evolution, based on these two rather different modeling
strategies, or (2) to gain additional insight by supplementing the selection model results
with those from a pattern-mixture approach. Examples can be found in Verbeke, Lesaffre,
and Spiessens (1998), Curran, Pignatti, and Molenberghs (2000b), and Michiels et al (1999)
for continuous outcomes. The categorical outcome case has been treated in Molenberghs,
Michiels, and Lipsitz (1999), and Michiels, Molenberghs, and Lipsitz (1999). Further ref-
erences include Ekholm and Skinner (1998), Molenberghs, Michiels, and Kenward (1998),
Little and Wang (1996), Hedeker and Gibbons (1997), and McArdle and Hamagani (1992).

Sensitivity analysis for pattern-mixture models can be conceived in many different ways.
Crucial aspects are whether pattern-mixture and selection modeling are to be contrasted with
one another as presented in Chapter 8 or whether the pattern-mixture modeling is the central
focus of interest. It is natural to conduct sensitivity analysis within the pattern-mixture
family. The key area where sensitivity analysis should be focused is on the unidentified
components of the model and the way(s) in which this is handled.

Little (1993, 1994) advocated the use of identifiying restrictions and presented a number of
examples. We will outline a general framework for identifying restrictions in Section 9.4, with
CCMV (introduced by Little 1993), ACMV, and neighboring case missing value restrictions
(NCMV) as important special cases. Recall that ACMV is the natural counterpart of MAR,
in the PMM framework. This provides a way to compare ignorable selection models with
their counterpart in the pattern-mixture setting. Michiels, Molenberghs, Lipsitz (1999) took
up this idea in the context of binary outcomes, with a marginal global odds ratio model to
describe the measurement process (Molenberghs and Lesaffre 1994).

9.4 Identifying Restriction Strategies

We restrict attention to monotone patterns. In general, let us assume we have t =1,...,7T
dropout patterns where the dropout indicator is d = t + 1. For pattern ¢, the complete data
density is given by

ft(yh s 7yT) = ft(yh s 7yt)ft(yt+17 s 7yT’y17 s 7yt)' (92)
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The first factor is clearly identified from the observed data, while the second factor is not. It
is assumed that the first factor is known or, more realistically, modeled using the observed
data. Then identifying restrictions are applied in order to identify the second component.

While, in principle, completely arbitrary restrictions can be used by means of any valid
density function over the appropriate support, strategies which relate back to the observed
data deserve privileged interest. One can base identification on all patterns for which a given
component, ys say, is identified. A general expression for this is

T
fiWslyn, - ysm1) = 2w fiWslys, - gemr), s=t 41, T. (9:3)
j=s

We will use w, as shorthand for the set of w,;’s used. Every w, which sums to one provides
a valid identification scheme.

Let us incorporate (9.3) into (9.2):
T—t-1 T
ft(yla"'ayT) = ft(yla"'ayt) H Z wT—S,jfj(?JT—S’?Jl?“'7yT—s—1) . (94)

s=0 |j=T-s

Expression (9.4) clearly shows which information is used to complement the observed data
density in pattern t in order to establish the complete data density.

Let us consider three special but important cases. Little (1993) proposes CCMV which uses
the following identification:

filyslur, - ys—1) = frlysly, - ys—1), s=t+1,...,T. (9.5)

In other words, information which is unavailable is always borrowed from the completers.
This strategy can be defended in cases where most of the subjects are complete and only
small proportions are assigned to the various dropout patterns. Also, extension of this
approach to non-monotone patterns is particularly easy.

Alternatively, the nearest identified pattern can be used:

filyslur, - ys—1) = fs(uslya, - - - Us—1), s=t+1,...,T. (9.6)

We will refer to these restrictions as neighboring case missing values or NCMV.
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The third special case of (9.3) will be ACMV of which the definition is presented in (9.1).
Thus, ACMV is reserved for the counterpart of MAR, in the PMM context. Let us derive
the corresponding w; vectors. Expression (9.3) can be restated as

Te(yslyn, - -5 ¥s—1) = fooWslyr, -, ¥s—1), (9.7)

for s=t+1,...,T. Here, f>5(.].) = f(.|.,d > s), with d an indicator for time of dropout,
which is one more than the length of the observed sequence. Now, we can transform (9.7)
as follows:

Jeslyn, - - ys—1)
f(Zs)(ys’yla s 7ys—1)
s aifilys, - - vs)

9.8
Z‘,‘72‘1:5 ajfj(ylv"'ayS—l) ( )
T

ajfj(?h, cee 7ys—1)
= Filslyn, - - -5 ys—1)- 9.9
jgsz?:sajfj(yla---,ys—l) J( ’ 1 1) ( )

Next, comparing (9.9) to (9.3) yields:

Wsj = ajfj(yh ceny ys—l) (910)

B Z%:s afff(yla sy ys—l) .

We have now derived two equivalent explicit expressions of (9.1). Expression (9.8) is the
conditional density of a mixture, whereas (9.3) with (9.10) is a mixture of conditional den-
sities. Clearly, w defined by (9.10) consists of components which are nonnegative and sum
to one. In other words, a valid density function is defined.

Restrictions (9.3), with the CCMV, NCMV, and ACMV forms as special cases, can be
incorporated in a comprehensive strategy to fit pattern-mixture models.

9.4.1 Strategy Outline

We will briefly sketch the strategy. Several points which require further specification will be
discussed in subsequent sections.

1. Fit a model to the pattern-specific identifiable densities: fi(y1, ..., y:). This results in
a parameter estimate, ¥,.
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. Select an identification method of choice.

. Using this identification method, determine the conditional distributions of the unob-
served outcomes, given the observed ones:

felYes1, - yrlyn, -, Ye)- (9.11)

. Using the methodology outlined in Section 9.5, draw multiple imputations for the
unobserved components, given the observed outcomes and the correct pattern-specific
density (9.11).

. Analyze the multiply-imputed sets of data using the method of choice. This can be
another pattern-mixture model, but also a selection model or any other desired model.

. Inferences can be conducted in the way described in Sections 9.5.1 and 9.5.2.

SPECIAL CASE: 3 MEASUREMENTS

In this case, there are only three patterns and identification (9.4) takes the following form:

fa(yi,y2,3) = f3(yr, v2,93), (9.12)
Fo(yr,v2,93) = folyn, v2) fs(yslyn, v2), (9.13)
filyun,y2,u3) = filyn) [wha(elyn) + (1 — w) f3(y2ly1)]

X f3(ysly1, y2)- (9.14)

Since f3(y1,y2, y3) is completely identifiable from the data, and for fo(y1, y2,y3) there is only
one possible identification, given (9.3), the only place where a choice has to be made is for
pattern 1. Setting w = 1 corresponds to NCMV, while w = 0 implies CCMV. Using (9.10)
in this particular case, ACMV corresponds to

w— Oézfz(?h)
s fo(yr) + asfa(yr)

(9.15)

The conditional density fi(y2|y1) in (9.14) can be rewritten as

s fa(yr, y2) + 043f3(y1,y2).

filyalyn) = axfa(y1) + asfs(yr)
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9.4.2 Drawing from the Conditional Densities

In the previous section, we have seen how general identifying restrictions (9.3), with CCMV,
NCMV, and ACMV as special cases, lead to the conditional densities for the unobserved
components, given the observed ones. This came down to deriving expressions for w, such
as in (9.10) for ACMV. This endeavor corresponds to items 2 and 3 of the strategy outline
(9.4.1). In order to carry out item 4, we need to draw imputations from these conditional
densities.

Let us proceed by studying the special case of three measurements first. To this end, we
consider identification scheme (9.12)—(9.14) and we start off by avoiding the specification of
a parametric form for these densities. The following steps are required:

1. Estimate the parameters of the identifiable densities: f3(y1,v2,y3), f2(vy1,¥2), and
fi(y1). Then, for each of the m imputations, we have to execute the following steps.

2. Draw from the parameter vectors as in the first step on page 130. It will be assumed
that in all densities from which we draw, this parameter vector is used.

3. For pattern 2. Given an observation in this pattern, with observed values (y1,y2),
calculate the conditional density f3(ys|y1,y2) and draw from it.

4. For pattern 1. We now have to distinguish three substeps.

(a) Given y;, and the proportions as and as of observations in the second and third
patterns, respectively, determine w. Every w in the unit interval is valid. Special
cases are:

e For NCMV, w=1.
e For CCMV, w=0.
e For ACMV, w is calculated from (9.15). Note that, given y;, this is a constant.

Generate a random uniform variate, U say. (Note that, strictly speaking, this
draw is unnecessary for the boundary NCMV and CCMV cases.)

(b) If U < w, calculate fo(ys|y;) and draw from it. Otherwise, do the same based on
f3(w2lys)-

(¢) Given the observed y; and given y» which has just been drawn, calculate the
conditional density f3(ys|y1,y2) and draw from it.



128

All steps but the first one have to be repeated M times, to obtain the same number of
imputed datasets. Inference then proceeds as outlined in Sections 9.5.1 and 9.5.2.

When the observed densities are estimated using linear mixed models, f5(y1, y2,¥3), f2(y1,¥2),
and fi(y1) produce fixed-effect and variance parameters. Let us group all of them in ~ and
assume a draw is made from their distribution, 4* say. To this end, their precision estimates

need to be computed. These are easily obtained in most standard software packages, such
as SAS.

Let us illustrate this procedure for (9.13). Let us assume that the ith subject has only two
measurements, and hence belongs to the second pattern. Let its design matrices be X; and
Z; for the fixed effects and random effects, respectively. Its mean and variance for the third
pattern are:

pi(3) = XiB°(3), (9.16)
Vi(3) = ZD*(3)Z; + %i(3), (9.17)

where (3) indicates that the parameters are specific to the third pattern.

Now based on (9.16)—(9.17), and the observed values y; = (vi1, yi2)’, the parameters for the
conditional density follow immediately:

"‘l’i,2|1(3) = "‘l’i,2(3) + Vi,21(3)[vi,11(3)]_1(yi - M,Q(g)),
Vign(3) = Viaa(3) — Vi (3)[Vi11(3)] 7' Vi12(3),

where a subscript 1 indicates the first two components and a subscript 2 refers to the third
component. Draws from every other conditional density are entirely similar.

In several cases, the conditional density is a mixture of normal densities. Then, drawing
from (9.3) consists of two steps:

e Draw a random uniform variate U to determine which of the n — s+ 1 components one
is going to draw from. Specifically, the kth component is chosen if

k—1 k
dwe U< wy,
i=s i=s

where k = s,...,n. Note that if £ = 1, the left hand sum is set equal to zero.
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e Draw from the kth component.

All of these steps have been combined in a SAS macro.

9.5 Multiple Imputation

In Section 9.4 multiple imputation was used as a tool in developing identifying restrictions
strategies. The concept of multiple imputation refers to replacing each missing value with
more than one imputed value. The goal is to combine the simplicity of imputation strategies,
with unbiasedness in both point estimates and measures of precision. In Section 3.3.1 we
noted that some simple imputation procedures may yield inconsistent point estimates as soon
as the missingness mechanism surpasses MCAR. This could be overcome to a large extent
with conditional mean imputation, but the problem of underestimating the variability of the
estimators is common to all methods since they all treat imputed values as observed values.
By imputing several values for a single missing component, this uncertainty is explicitly
acknowledged.

Rubin (1987) points to another very useful application of multiple imputation. Rather
than merely accounting for sampling uncertainty, the method can be used to incorporate
model uncertainty. Indeed, when a measurement is missing but the researcher has a good
idea about the probabilistic measurement and missingness mechanisms, then constructing
the appropriate distribution to draw imputations from is, at least in principle, relatively
straightforward. In practice there may be considerable uncertainty about some parts of the
joint model. In that case, several mechanisms for drawing imputations might seem equally
plausible. They can be combined in a single multiple imputation analysis. As such, multiple
imputation can be used as a tool for sensitivity analysis.

Suppose we have a sample of N, i.i.d. nx1 random vectors Y ;. Our interest lies in estimating
some parameter vector @ of the distribution of Y;. Assume notation is as in Chapter 2.4.
Multiple imputation fills in Y™ using the observed data Y°, several times, and then the
completed data are used to estimate 6.

As discussed by Rubin and Schenker (1986), the theoretical justification for multiple impu-
tation is most easily understood using Bayesian concepts, but a likelihood-based treatment
of the subject is equally possible. If we knew the joint distribution of Y; = (Y7, Y") with
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parameter vector v say, then we could impute Y by drawing a value of Y " from the
conditional distribution

F@i"lyi, ). (9.18)

Note that we explicitly distinguish the parameter of scientific interest 8 from the parameter
4 in (9.18). Since v is unknown, we must estimate it from the data, say 4, and presumably
use

f@ilv?, %) (9.19)

to impute the missing data. In Bayesian terms, - in (9.18) is a random variable of which
the distribution is a function of the data. In particular, we first obtain the distribution of
~ from the data, depending on 4. The construction of model (9.18) is referred to by Rubin
(1987) as the Modeling Task.

After formulating the distribution of =y, the imputation algorithm is:

1. Draw ~* from the distribution of ~.
2. Draw Y™ from f(y!"|y?,~*).

3. Using the completed data, (Y°, Y™"), and the method of choice (i.e., maximum like-
lihood, restricted maximum likelihood, method of moments, partial likelihood), es-
timate the parameter of interest § = @(Y) = @(Y°,Y™) and its variance (called
within-imputation variance) U = Var(@).

4. Independently repeat steps 1-3, M times. The M datasets give rise to é(m) and U™,
form=1,..., M.

Steps 1 and 2 are referred to as the Imputation Task. Step 3 is the Estimation Task. Of
course, one wants to combine the M inferences into a single one. Parameter and precision
estimation and hypothesis testing will be discussed next.
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9.5.1 Parameter Estimation

The M within-imputation estimates for @ are pooled to give the multiple imputation esti-
mate:

2o 1 X
(7] _MW;IO .

Suppose that complete-data inference about, @ would be made by (6 — 8) ~ N(0,U). Then
one can make normal-based inferences for 8 based upon

@—8") ~N(0,V), (9.20)
where
. (M4 .

= B 21
V— W+ ( ~ ) , (9.21)

. wM_pm)
L 9.22
i (9.22)

is the average within-imputation variance, and

B: m=1
M-1

is the between-imputation variance (Rubin 1987). Rubin and Schenker (1986) report that
a small number of imputations (M = 2, 3) already yields a major improvement over single
imputation. Upon noting that the factor (M + 1)/M approaches 1 for large M, (9.21) is
approximately the sum of the within and the between imputations variability.

o'y

(9.23)

Multiple imputation is most useful in situations where ~ is an easily estimated set of parame-
ters characterizing the distribution of Y';, while @ is complicated to estimate in the presence
of missing data, and/or when obtaining a correct estimate for the variance is non-trivial with
incomplete data.

9.5.2 Hypothesis Testing

Testing hypotheses could be based on the asymptotic normality results (9.20) and (9.21).
However, the rationale for using asymptotic results and hence y? reference distributions is not
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just a function of the sample size, N, but also of the number of imputations, M. Therefore,
Li, Raghunathan, and Rubin (1991) propose the use of an F' reference distribution. Precisely,
to test the hypothesis Hy : @ = 6, they advocate the following method to calculate p values:

p= P(Fyw > F), (9.24)

where £ is the length of the parameter vector, Fy ,, is an F' random variable with k£ numerator
and w denominator degrees of freedom, and

(6" — 8,)YW1(6" — 0,)

F= k(1 +7) ’ (925)
w o= 4—|—(7‘—4)[1—|—(1_TL_1)]2,

ro= % (1 + %) tr(BW ™), (9-26)
T = k(M-1).

It is interesting to note that, when M — oo, the reference distribution of F' approaches an
Fy0o = x?/k distribution, in line with intuition. Good operational characteristics of this
procedure are reported in Li, Raghunathan, and Rubin (1991).

Clearly, procedure (9.24) can be used as well when not the full vector @, but one component, a
subvector, or a set of linear contrasts, is the subject of hypothesis testing. When a subvector
is of interest (a single component being a special case), the corresponding submatrices of B
and W need to be used in (9.25) and (9.26). For a set of linear contrasts L@, one should use
the appropriately transformed covariance matrices: W = LWL/, B= LBL',and V = LVL/'.

9.6 Analysis of the Milk Data

In order to illustrate the methodology described in this chapter, we will apply it to the milk
data. As was described in Sections 4.4 and 8.4, 79 cows were included in the study. Three
dropout patterns were defined with 20, 18 and 41 cows, respectively.

We will apply each of the identifying restriction strategies presented in Section 9.4, to these
data. First, starting models will be fitted (Section 9.6.1). Second, it will be illustrated
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how hypothesis testing can be performed, given the pattern-mixture parameter estimates
and their estimated covariance matrix (Section 9.6.2). Third, model simplification will be
discussed and applied (Section 9.6.3).

9.6.1 Fitting a Model

In order to apply the identifying restriction strategy, one needs to fit a model to the observed
data first. We opted for a complex model for the mean structure, while keeping the variance-
covariance structure relatively simple. The mean structure was defined as a full interaction
model, i.e., time by diet and the variance-covariance structure was defined as first-order
autoregressive with a residual variance term as suggested in Section 8.4. A model was fitted
separately within each pattern thus providing parameters specific to each pattern. Of course,
not all parameters are estimable. For example, in the first pattern the time effects at 15-19
weeks are unidentified. This initial model provides a basis for identifying restriction models.
Using the methodology detailed in Section 9.4.1, a SAS macro, was written to conduct the
multiple imputation, fitting of imputed datasets, and combination of the results into a single
inference.

The initial multiple imputation results are presented graphically: Figure 9.1 presents the
mean response profiles for the multiply imputed datasets using the identifying restrictions
CCMV, ACMV and NCMYV. For patterns 1 and 2 there is some variability in the estimated
profiles across the three restrictions towards the end of the study, although this may be in
part due to random variation. Since the data in pattern 3 are complete, there is of course no
difference between the profiles obtained with each of the identifying restriction techniques.
Notice that in pattern 3 the profiles tend to increase over time from week five onwards for
all patterns, in particular for Barley, and then level off at the end of the study. In contrast,
the profiles in pattern 1 tend to decrease. Notice also that using the CCMV identifying
restriction results in an increase in the Barley diet group for pattern 1 which is consistent
with imputation taking information from the complete cases in pattern 3. Restrictions using
ACMYV and NCMV tend to provide lower mean responses than for CCMV. This is shown
more clearly in Figure 9.2. Recall that pattern 1 includes dropouts at week 15 only, pattern 2
includes dropouts occuring in weeks 16, 17 and 19 and pattern 3 includes completers. Thus,
NCMYV restrictions use information from pattern 2 to impute missing values for both patterns
1 and 2 up until week 18, ACMV randomly chooses between patterns 2 and 3 depending on
(9.10), whereas CCMV always takes information from the complete cases in pattern 3. Note
at week 19 it is only possible to impute data using the conditional distribution obtained
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Figure 9.1: Milk Protein Content Trial. Mean response profiles for the multiply imputed
datasets using the identifying restrictions CCMV, ACMV and NCMV. Full line: Barley,
Broken Line: Mized, Dotted line: Lupins

from the complete cases in pattern 3.

In general, CCMV extrapolates rather towards a rise whereas NCMV and ACMV seem to
predict lower mean responses. This conclusion needs to be considered carefully. Note, the
results obtained by Diggle and Kenward (1994) suggested that there was highly significant
evidence indicating a MNAR, dropout process and suggesting that the probability of dropout
increased when either the prevailing level of protein content was low or when the increment
between the last and current protein content was high. This would suggest an increase
in protein content level after dropout which is consistent with the results obtained from
the CCMV identifying restrictions. However Curran, Pignatti and Molenberghs (2000b)
suggested that this result was contradictory and might be taken as an indicator that there
was need for reflection on the model for the dropout mechanism.
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Figure 9.2: Milk Protein Content Trial. Mean response profiles for the multiply imputed
datasets using the identifying restrictions CCMV, ACMV and NCMYV. Full line: CCMV,
Dotted line: ACMYV, Broken line: NCMV

The ACMV and NCMYV predictions look more plausible since the mean scores show some
declining profiles. Should one want to explore the effect of assumptions beyond the range of
(9.3), one can allow w, to include components outside of the unit interval. In that situation,
one has to ensure that the resulting density is still non-negative over its entire support.
Finally, completely different restrictions can be envisaged as well.

9.6.2 Hypothesis Testing

For ease of exposition, let us assume we are interested in a single effect such as treatment
effect. In the particular case of the milk data, this translates into the timexdiet interaction
parameter. For simplicity and for future use, we will generically refer to the parameter
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of interest as treatment effect. In the simplest case of a single parameter for the effect of
interest, the corresponding selection model would contain exactly this single treatment effect
parameter, turning the hypothesis testing task into a very straightforward one. If there were
several treatment effect parameters, such as in a three-armed trial such as the milk study or
in an analysis where interactions between treatment and other effects are included, standard
hypothesis testing theory could be applied.

Some pattern-mixture models will have a treatment effect parameter specific to each pattern.
This was the case in Sections 8.4 and 8.5. Let us note in passing that this does not need
be the case. We will show in Section 9.6.3 that treatment effect is reduced to two single
parameters independent of pattern. In such cases, the assessment of treatment effect is no
more difficult than in a corresponding selection model. Therefore, this section will focus on
the situation where there are pattern-dependent treatment effects.

It is useful to point out a strong analogy with post-hoc stratification, where pattern plays
the role of a stratifying variable. A selection model corresponds to a pooled analysis, where
data from all patterns (strata) are pooled, without correction for the “confounding effect”
stemming from heterogeneity across dropout patterns. A pattern-mixture model on the
other hand does correct for pattern and hence, in a sense, for the confounding effect arising
from pattern. If treatment effect does not interact with pattern, such as in Section 9.6.3,
then a simple, so-called corrected, treatment effect estimate is obtained. Finally, if treatment
effect interacts with pattern there is heterogeneity of treatment effect across patterns (cf.
heterogeneity of the relative risks in epidemiological studies).

One can calculate the same quantity as would be obtained in the corresponding selection
model. Then, the marginal treatment effect is calculated, based on the pattern-specific
treatment effects and the weighting probabilities, perhaps irrespective of whether the treat-
ment effects are homogenous across patterns or not. This was done using equation 8.3 in
Chapter 8.

Precisely, let [y represent the treatment-effect parameter estimates £ = 1,..., g (assuming
there are g + 1 groups) in pattern ¢ = 1,...,n and let 7, be the proportion of patients in
pattern £. Then, the estimates of the marginal treatment effects 3, are:
Be=> Bum, L£=1,...,9. (9.27)
=1

The variance is obtained using the delta method. Precisely, it assumes the form
Var(f,...,3,) = AVA, (9.28)
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where
o Var(Bu)| O
V= ( (& e ) (9.29)
and
A 8(517 ey ﬁg) (930)

- 8(5117"'7ﬁngaﬂ-17"'7ﬂ-n).

The estimate of the variance-covariance matrix of the Bgt is obtained from statistical soft-
ware (e.g., the ‘covb’ option in the MODEL statement of the SAS procedure MIXED). The
multinomial quantities are obtained from the pattern-specific sample sizes. In the case of
the milk data, these quantities are presented in (8.7) and (8.8). A Wald test statistic for the
null hypothesis Hy : 81 = - -+ = B4 = 0 is then given by

,6()(14‘/14/)_11607 (931)
where By = (61, ...,0,).

We will now apply both testing approaches to the milk dataset. The CCMV case will be
discussed in detail. The two other restriction types are entirely similar.

There are six treatment effects, one for each pattern by diet effect (k = 2) as in Equation (8.5)
of Section 8.4. Hence, multiple imputation produces 5 vectors of 6 treatment effects which
are averaged to produce a single treatment effect vector. In addition, the within, between,
and total covariance matrices are calculated:

B.. = (0.1413,0.0692, 0.3506, 0.0523, 0.1765, 0.0555)’, (9.32)
0.0100 —1E—18 2E—19 00051 —1E—18 2E—19
~1E 18 0.0071 —5E—19 —1E—18 0.0036 —7E — 19
_ 2E—19 —5E—19 0.0037 6E—20 —5E-—19 0.0018
Wee = 0.0051 —1E—18 6E —20 00101 —1E-18 1E-19 |> (9.33)
~1E 18 0.0036 —5E—19 —1E—18 0.0071 —7E —19
2E—19 —TE—19 0.0018 1E—19 —TE-—19 0.0036

0.0070 0.0018 0.0001 0.0069 0.0020 0.0001
0.0018 0.0014 9EF -6 0.0012 0.0001 1E-5
B _ 0.0001 9E—-6 B8E-7 00001 2E-5 BE-7 (9 34)
co — 0.0069 0.0012 0.0001 0.0076 0.0020 4E -5 ’ :
0.0020 0.0001 2E -5 0.0020 0.0010 B8E -6
0.0001 1E-—-5 BE-7 4E—-5 8E—-6 bBE-7
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Table 9.1: Milk Protein Content Trial. Tests of treatment effect for CCMV, NCMV, and
ACMYV restrictions.

Parameter CCMV NCMV ACMV

Stratified analysis:

k 6 6 6
T 24 24 24
denominator d.f. w 360.7 332.0 166.3
r 0.284 0.301 0.496
F' statistic 4.64 4.48 3.79
p value < 0.001 < 0.001 0.001

Marginal Analysis:

Marginal effects (s.e.) 0.233(0.003) 0.233(0.004) 0.226(0.004)
0.117(0.003) 0.134(0.003) 0.121(0.004)

k 2 2 2
T 8 8 8
denominator d.f. w 49.3 45.3 24.1
T 0.317 0.339 0.604
F' statistic 8.48 8.46 6.72
p value 0.001 0.001 0.005

and

0.0194 0.0022 0.0001 0.0133 0.0024 0.0001
0.0022 0.0088 1E -5 0.0015 0.0036 2E—-5
T, — 0.0001 1E -5 0.0037 0.0001 3FE -5 0.0018 (9 35)
cC 0.0133 0.0015 0.0001 0.0192 0.0024 0.0001 : :
0.0024 0.0036 3E -5 00024 00083 9E—-6
0.0001 2E -5 0.0018 0.0001 9F -6 0.0036

In the stratified case, we want to test the hypothesis Hy : 3 = 0. Using (9.32)—(9.34), we
can apply the multiple imputation results described in Section 9.5.2.

Note that, even though the analysis is done per pattern, the between and total matrices have
non-zero off-diagonal elements. This is because imputation is done based on information
from other patterns, hence introducing inter-pattern dependence. Results are presented in
Table 9.1. All results are significant, in line with earlier evidence from Section 8.4 .
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For the marginal parameter, the situation is more complicated here than in Section 8.4.
Indeed, the theory of Section 9.5.2 assumes inference is geared towards the original vector, or
linear contrasts thereof. Formula (8.3) displays a non-linear transformation of the parameter
vector and therefore needs further development. First, consider 7 to be part of the parameter
vector. Since there is no missingness involved in this part, it contributes to the within matrix,
but not to the between matrix. Then, using (9.28), the approximate within matrix for the
marginal treatment effect is

Wy = AW A + B'Var(w)(3,
with, for the between matrix, simply
By = A'BA.

The latter formula consists of one term only, since there is no between-variance for w. Note
A is provided in Equation (8.5).

The results are presented in the second panel of Table 9.1. All three p values are similar
and all agree on the significance of the treatment effect. The reason for the small differences
observed in significance is to be found in the way the treatment effect is extrapolated beyond
the period of observation. Indeed, the highest p value is obtained for NCMYV restriction and,
from Figure 9.1, we see that the differences between diet groups is less pronounced for this
restriction method.

9.6.3 Model Reduction

Standard model building guidelines for the linear mixed-effects model can be used without
any problem in a selection model context, but the pattern-mixture case is more complicated.
Of course, the same general principles can be applied, taking into account the intertwining
between the mean or fixed-effects structure and the components of variability.

In addition to these principles, one has to reflect on the special status of pattern in a pattern-
mixture model. Broadly, we can distinguish between two cases as presented in Chapter 8
where pattern was included as a covariate or using identifying restrictions as presented in
this chapter. In fact, the identifying restriction strategy leaves the method of analysis to
be used after imputation unspecified, as mentioned in the strategy outline (Section 9.4.1).
In our analysis, we have chosen to conduct a per-pattern global analysis, using pattern as
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Table 9.2: Milk Protein Content Trial. F-tests for multiple imputation estimates for CCMYV,
NCMYV, and ACMYV restrictions.

Effect F K DDF P
CCMV

3-way interaction 0.360 72 3946.6  0.999
diet xtime 0.907 36 1584.7  0.626
diet X pattern 1.626 4 2015 0.169
time X pattern 5.318 36 3143.0 <0.001
diet effect 9.881 2 52.0 <0.001
ACMV

3-way interaction 0.316 72 2140.3 1.000
diet xtime 0.762 36 938.6  0.844
diet x pattern 1.427 4 193.0  0.227
time X pattern 4.745 36 2394.3 <0.001
diet effect 8.880 2 34.5 0.001
NCMV

3-way interaction 0.256 72 1742.2 1.000
diet xtime 0.624 36 564.2  0.959
diet X pattern 1482 4 117.0 0.212
time X pattern 4421 36 971.7 <0.001
diet effect 5.536 2 15.9 0.015

a covariate, but it is possible to conduct a per-pattern analysis or even to use selection
modeling. The only requirement is that the proper nature of the imputation is preserved
(Rubin 1987).

As mentioned in Section 9.6.1 the most complex model for the means structure in conjunc-
tion with an autogressive covariance structure and a residual covariance component was
fitted in each pattern. The estimates from the model fitting were then used to extrapolate
the incomplete patterns. Although in model simplification we could initially begin with a
complex model for the covariance structure we decided to use the covariance structure as
suggested in Section 8.4, i.e., a separate autoregressive structure per pattern and a residual
component common to all patterns. It is useful to note that the parameter vector may be
quite large in pattern-mixture models especially when all parameters are allowed to depend
on pattern. Indeed, Hogan and Laird (1997) noted that in order to estimate the large number
of parameters in general pattern-mixture models, one has to make the awkward requirement
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Figure 9.3: Milk Protein Content Trial. Parameter estimates for the time effects for all three
patterns using the identifying restrictions CCMV, ACMV and NCMYV. Full line: CCMV,
Dotted line: ACMYV, Broken line: NCMV

that each dropout pattern occurs sufficiently often. In the milk dataset we grouped cows
who dropout out at weeks 16, 17 and 19 to reduce problems of estimation.

Our initial model fitted to the imputed data contained all 3-way interactions between diet,
time and pattern. Model reduction was performed using the procedures defined in Sec-
tion 9.5.2. The details concerning model simplification for all identifying restrictions are
presented in Table 9.2. From a sensitivity analysis viewpoint it is comforting that model
simplification under all 3 identifying restictions led to the same final model. This is probably
not surprising since the proportion of dropout was small and restricted towards the end of
the study. In addition there were only three dropout patterns with most observations in the
complete cases. However, some differences were observed with respect to the F statistics and
the denominator degrees of freedom. In contrast, with model fitting results in Section 8.4
the interaction between diet and pattern is excluded. This is mainly due to the fact that a
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different parameterization was used in Model IV and VI of Section 8.4, i.e., the main effect
for diet was not included in the model while interaction terms were allowed. As can be seen
from Table 9.1 where the same parameterization was used consistent results are obtained. In
the models described in Table 9.2 all main effects, two-way interaction terms and the 3-way
interaction were included initially thus allowing straightforward interpretation of tests. For
completeness, as the diet effect was not dependent on pattern in the final model we tested
the diet effect on 2 degrees of freedom. Similar results were obtained to those shown in
Table 9.1. The NCMYV procedure demonstrated the least significant p value. This again
illustrates that the NCMYV restriction results in extrapolations which are consistent with the
observed data for patterns 1 and 2 as shown in Figure 9.1.

The final parameter estimates for the time effects for all three patterns by identifying re-
strictions are presented in Figure 9.3. The remaining parameter estimates are presented
in Table 9.3. Small differences in precision may be observed with the NCMV restrictions
resulting in less precise estimates.

9.7 Analysis of QL Data

In Section 9.6 we applied the methodology developed for identifying restrictions to the milk
data. In this section we will show how this approach may be used in the analysis of longi-
tudinal QL data. QL data in longitudinal studies may be missing for a variety of reasons
including progression of disease, treatment toxicity or patient refusal. However, most meth-
ods of analysis focus on a single dropout mechanism and do not take into account multiple
reasons for dropout or patterns of missing data. In addition, these methods are based on
strong assumptions which are not fundamentally testable because of the missing data. Us-
ing the identifying restriction strategy described in Section 9.4 to impute missing data, thus
extrapolating incomplete patterns, we can incorporate both the reasons for missingness and
the patterns of missingness into the imputation process. Employing several identifying re-
strictions allows us to perform a sensitivity analysis thus adressing the uncertainty caused
by dropout. These concepts will be illustrated using an example from an EORTC trial.

EORTC trial 30903 was designed as a prospective multicenter randomized phase IIT study
comparing flutamide versus prednisone in hormone resistant metastatic prostate cancer.
Quality of life should have been evaluated at randomization, 3 and 6 weeks later, and at
subsequent six weekly intervals. For more information on the data see Section 4.6. As illus-



143

Table 9.3: Milk Protein Content Trial. Multiple imputation estimates and standard errors
for CCMV, NCMYV, and ACMYV restrictions.

t. Dev.

CCMV

INTERCEPT 3.09 0.110 14.2 <0.001
Diet 1 0.23 0.054 57.2 <0.001
Diet 2 0.12 0.053 52.1 0.029
Pattern 0.20 0.105 281 0.068
Pattern 1 0.02 0.120 24.7 0.850
Variance Pattern 3 0.06 0.008 2759.6 <0.001
AR(1) Pattern 3 0.87 0.030 326.0 <0.001
Variance Pattern 1 0.05 0.013 321.3 <0.001
AR(1) Pattern 1 0.94 0.029 13.8 <«<0.001
Variance Pattern 2 0.07 0.014 102.7 <0.001
AR(1) Pattern 2 0.80 0.057 66.1 <0.001
Residual 0.02 0.002 31.1 <0.001
ACMV

INTERCEPT 2.98 0.123 10.8 <«<0.001
Diet 1 0.23 0.061 22.8 0.001
Diet 2 0.13 0.053 59.7 0.014
Pattern 3 0.31 0.118 16.8 0.018
Pattern 1 0.03 0.104 184.2 0.739
Variance Pattern 3 0.05 0.009 2948.7 <0.001
AR(1) Pattern 3 0.88 0.026 2798.1 <0.001
Variance Pattern 1 0.06 0.016 25.8 0.002
AR(1) Pattern 1 0.92 0.035 19.4 <0.001
Variance Pattern 2 0.07 0.014 57.2 <0.001
AR(1) Pattern 2 0.80 0.050 2521.2 <0.001
Residual 0.03 0.002 304.6 <0.001
NCMV

INTERCEPT 2.98 0.111 14.2 <0.001
Diet 1 0.22 0.076 9.9 0.017
Diet 2 0.12 0.065 15.1 0.095
Pattern 3 0.32 0.098 57.8 0.002
Pattern 1 -0.02 0.142 12.6 0.875
Variance Pattern 3 0.06 0.009 191.6 <0.001
AR(1) Pattern 3 0.88 0.029 104.9 <0.001
Variance Pattern 1 0.05 0.014 46.7 0.001
AR(1) Pattern 1 0.92 0.036 17.4 <0.001
Variance Pattern 2 0.07 0.016 24.2 <0.001
AR(1) Pattern 2 0.80 0.052 285.6 <0.001

Residual 0.02 0.003 15.6  <0.001
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Figure 9.4: EORTC Trial 30903. Mean profiles by dropout pattern and treatment a) pred-
nisone b) flutamide.

trated in Section 8.2 it is useful to explore longitudinal QL data using graphical techniques
before advancing to model fitting. Initially we plotted the mean responses against time by
treatment group and dropout pattern (see Figure 9.4). The dropout patterns were defined
based on the dropout times, i.e., 3, 6, 12, 18, 24 and >24 weeks. However, as only 16 and
18 patients dropped out at week 24 and 30, respectively, patterns 4 and 5 were collapsed
into 1 pattern. From Figure 9.4 it appears that the scores in the prednisone arm increase
from baseline to 3 weeks, but tend to decrease just before dropout suggesting that dropout
is not completely at random. In contrast the mean scores in the flutamide arm show very
little change during the treatment period. The variance-covariance structure was investi-
gated using several methods. A 5-dimensional scatter plot matrix of the data was generated
as shown in Figure 9.5. The diagonal elements display the distribution of QL scores at each
assessment time point. For presentation purposes the scores were divided into categories
using midpoints: —100,—75,—50,—25, 0, 25, 50, 75, 100. The scatter plots (off diagonal)
of assessments taken closer together (e.g., near the diagonal) appear to exhibit larger cor-
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Figure 9.5: EORTC Trial 30903. Scatterplot of change scores from baseline.

relations than those taken further apart, suggesting an autoregressive covariance structure.
As change scores were of interest no attempt was made to estimate the variogram. Thus
the hypothesized variance structure was considered to be autoregressive with measurement
error.

9.7.1 Pattern Mixture Model Fitted to Observed Data

We will fit a pattern-mixture model to the observed data and use standard model simplifi-
cation techniques as presented in Chapter 8 to obtain a final model. This will be compared
with the final models obtained using the identifying restrictions in Section 9.7.3.

Several baseline clinical variables were considered as covariates in the model. These included
demographic variables: age, WHO performance status and pain assessed by the clinician.
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The model fitting results are presented in Table 9.4. The most complex model (model I)
for the means structure includes the main effects of the clinical variables and assumes a
separate mean for each treatment-by-time-by-dropout pattern combination. As suggested
by the scatterplot the covariance matrix was taken as autoregressive order 1 (o, = o2pli=*)
with a residual covariance term (¢?). A random intercept was not included as the response
variable of interest was change score from baseline. The variance-covariance parameters are
allowed to vary according to the dropout pattern. This model is equivalent to including time
and treatment as covariates in the model statement and stratifying for dropout pattern. It
provides a starting point for model simplification through backward selection. In models
IT and IIT we attempted to simplify the variance-covariance structure. Comparing models I
and IT indicated that indeed the residual covariance term could be considered equal between
patterns. However, comparing model III with model II indicates that the AR1 term is
significantly different between patterns.

In model IV we removed the 3-way interaction term between pattern, time and treatment.
This model yields a non-significant likelihood ratio test statistic (p=0.086) when compared
with model IT suggesting that the means structure could be simplified further. To reduce
the mean structure further we fitted models V to VIIL. In conclusion, among the models
presented, model VI is preferred as it is the simplest model consistent with the data.

9.7.2 Fitting Models to the Imputed Data

The models used for the imputation process included baseline covariates and an interaction
between time and treatment for the means model while the variance-covariance was defined
as unstructured. As was described in Section 9.6.1 a separate model was fitted within
each pattern. The resulting parameter estimates and their estimated asymptotic covariance
matrices were used to extrapolate the patterns as described in Section 9.4.2. The multiple
imputation, fitting of imputed datasets, and combination of the results into a single inference
was performed using the SAS macro.

Although the macro automatically imputed scores for patients after death, for those patients
who died before week 24, we subsequently deleted these imputed values. Some authors
recommend imputation of values after death as they reduce bias caused by death (Hollen et
al 1997). Imputation of scores after death is a controversial issue. We prefer not to impute
values after death for the following reasons:
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Table 9.4: EORTC Trial 30903. Model fit summary for pattern-mixture models.

Mean Covariance model
1 Full interaction AR1(d), meas(d)
2 Full interaction AR1(d), meas
3 Full interaction AR(1), meas
4 Two-way interactions AR1(d), meas
5 BCV, trt, time, pattern, trtkpattern, timespattern AR1(d), meas
6 BCV, trt, time, pattern, timexpattern AR1(d), meas
7 BCV, trt, time, pattern AR1(d), meas
par  —2¢ Ref G?* df p

1 61 3851.54

2 56 3855.74 1 4.2 5 0.521

3 46 3913.28 2 57.54 10 0.001

4 46 3872.24 2 16.5 10 0.086

5) 42 3873.82 4 1.58 4 0.812

6 37 3880.32 5 6.5 5 0.261

7 27 392087 6 40.55 10 0.001

Par: Number of parameters P: P-value

—2¢: -2 times log-likelihood AR1: Autoregresive order 1

Ref:  Reference model (d): By dropout pattern

G?:  Likelihood ratio test statistic BCV: Baseline clinical variables

df: Degrees of freedom tre: Treatment

1. It is difficult to justify any imputed value after death

2. Various studies using utility measures have shown that on average patients are only
willing to give up small amounts of survival time in exchange for much improved QL
(Rosendahl et al 1999). If survival times are similar between treatment groups then
the bias in parameter estimation due to death will be small. If survival times are
significantly different between two groups then QL is generally considered to be a
secondary issue. In addition, studies which demonstrate a significant survival benefit
may also show an improvement in QL due to reduction in symptoms related to disease.
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Figure 9.6: FORTC Trial 30903. Mean response profiles for the multiply imputed datasets
using the identifying restrictions CCMV, ACMV and NCMYV. Full line: Prednisone, Dotted
line: Flutamide

In Section 4.6 it was shown that there was a considerable number of intermittent missing
values, i.e., 46 patients had exactly 1 missing questionnaire and 11 patients had more than
1 missing questionnaire. Intermittent missing values were imputed using information from
a patient’s own missing data pattern. This is preferable to using information from other
patterns since the patterns contain homogenous groups of patients as illustrated in Sec-
tion 9.7.1 where it was demonstrated that the means model and the covariance structure
were pattern dependent. On the other hand linear mixed models in the longitudinal setting
treat intermittent missing values as MAR. Therefore, in theory it is not necessary to impute
intermittent missing values if one considers MAR to be a valid assumption. However, if the
reasons for missingness are available then this information can be included in the imputation
process thus resulting in less biased estimates.

The initial multiple imputation results are presented graphically. Figure 9.6 shows the mean
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Figure 9.7: FORTC Trial 30903. Mean response profiles for the multiply imputed datasets
using the identifying restrictions CCMV, ACMV and NCMYV. Full line: CCMYV, Dotted line:
ACMYV, Broken line: NCMV

response profiles for the multiply imputed datasets using the identifying restrictions CCMV,
ACMYV and NCMV. For patterns 1 to 4 there is some variability in the estimated profiles
across the three restrictions. Using the CCMV identifying restriction results in an increase
in both treatment arms in pattern 1, whereas using ACMV and NCMYV restrictions results
in the scores in the flutamide arm remaining approximately the same over time while in the
prednisone arm they tend to decrease towards the fourth and fifth assessment. In general
ACMYV and NCMYV tend to provide lower mean responses than for CCMV.

Figure 9.7 displays an alternative way of presenting the mean scores. Roughly speaking,
CCMV extrapolates rather towards a rise whereas NCMV seems to predict more of a decline.
Further, ACMV predominantly indicates a steady state. This conclusion needs to be consid-
ered carefully. Since these patients drop out mainly because they progress, a rise in QL seems
unlikely. Hence, it is possible that the dropout mechanism is not CCMV, since this strategy
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always refers to the ‘best’ group, in the sense that it groups patients who stay longer in the
study and hence have on average a better prognosis. ACMV, which compromises between
all strategies may be more realistic, but NCMV may be even better since information is
borrowed from the nearest pattern, which is then based on the nearest patients in terms of
dropout time and perhaps prognosis and quality of life evolution. However, recall that the
identification is done sequentially, and hence even under NCMV, the parameter estimates
for pattern 1 are identified borrowing from the remaining patterns chronologically.

9.7.3 Model Reduction

Using the knowledge gained from Section 9.7.1 we decided to define the covariance structure
allowing a separate autoregressive structure per pattern and a residual component common
to all patterns. The means model was initially defined using the baseline covariates and an
interaction between time, treatment and pattern. Table 9.5 displays the F-tests obtained
during model simplification. All 3 identifying strategies resulted in the same final model
(except for ACMV) as was found in Section 9.7.1. The time by pattern interaction was
not significant in the ACMV model. As stated before, the ACMYV restriction extrapolated
patterns predominantly indicating a steady state thus reducing the interaction between time
and pattern.

Although all the restrictions did not yield the same final model we prefer to show the
parameter estimates based on the model including the time by pattern interaction. The
final parameter estimates for the time effects for this model are presented in Figure 9.8. The
remaining parameter estimates are presented in Table 9.6.

In the ‘imputation’ step we included only baseline covariates and an interaction between time
and treatment term. The model used for imputing the missing values will generally differ
from the model used in the analysis. The primary objective in the ‘imputation’ model is
to incorporate enough information in the model to ensure unbiased estimates of the missing
values. For example, time dependent covariates such as performance status, disease status,
weight loss, cumulative dose and treatment toxicity may be included in the ‘imputation’
model. Of course, these factors should not be included in the ‘analysis’ model as they are
factors which are influenced by treatment and may confound the treatment comparisons.
As was mentioned in Section 9.7 information concerning the reasons for dropout may be
useful to identify homogenous groups of patients who dropout for the same reason. In 1995,
the EORTC began collecting reasons for missing QL questionnaires in all phase III cancer
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Table 9.5: FEORTC Trial 30903. F-tests for multiple imputation estimates for CCMYV,
NCMYV, and ACMYV restrictions.

Effect F K DDF P
CCMV

3-way interaction 0.760 16 406.6 0.731
trt1*pat 0.886 4 438.8 0.472
trt1*time 0.598 4 50.7 0.666
time*pat 2.590 16 266.2 0.001
ACMV

3-way interaction 0.671 16 513.8 0.824
trt1*pat 0.712 4 904.7 0.584
trt1*time 1.241 4 305.5 0.293
time*pat 1.591 16 275.4 0.070
NCMV

3-way interaction 1.461 16 601.1 0.109
trt1*pat 0.48 4 771.5 0.746
trt1*time 0.578 4 56.8 0.680
time*pat 2.589 16 599.8 0.001

clinical trials which include a QL component. The usefulness of this extra information has
not been investigated as these studies have yet to mature.

9.8 Remarks

In this chapter, we have illustrated three distinct strategies to fit pattern-mixture models.
In this way, we have brought together several existing practices. Little (1993, 1994a) pro-
posed identifying restrictions, which we formalized here using the connection with MAR
(Section 9.2) and multiple imputation (Section 9.5).

By contrasting these strategies on a single set of data, one obtains a range of conclusions
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Figure 9.8: FORTC Trial 30903. Parameter estimates for the time effects for all three
patterns using the identifying restrictions CCMV, ACMV and NCMYV. Full line: CCMV,
Dotted line: ACMYV, Broken line: NCMV

rather than a single one, which provides insight into the sensitivity to the assumptions made.
Especially with identifying restrictions, one has to be very explicit about the assumptions
and moreover this approach offers the possibility to consider several forms of restrictions.
Special attention should go to the ACMYV restrictions, since they are the MAR counterpart
within the pattern-mixture context.

In addition, a comparison between the selection and pattern-mixture modeling approaches
is useful to obtain additional insight into the data and/or to assess sensitivity. This has
been done, informally, in Chapter 8 using both the milk data set and a QL example. While
these methods are computationally simple, it is important to note that there is a price to
pay. Indeed, simplified models, qualified as “assumption rich” by Sheiner, Beale and Dunne
(1997), are also making untestable assumptions, just as in the selection model case. Indeed,
using the fitted profiles to predict the evolution, within a pattern, past the time of dropout
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Table 9.6: FORTC Trial 30903. Multiple imputation estimates for CCMV, NCMV, and
ACMYV restrictions.

CCMV ACMV NCMV
EFFECT EST S.D. P EST S.D. P EST S.D. P
INTERCEPT 15.27 13.95 0.274 14.46 13.78 0.294 3.55 12.88 0.783
MAGE -0.64 2.98 0.830 -1.73 3.05 0.570 -4.35 277 0.118
WHO 1 4.19 4.31 0.331 4.79 4.29 0.264 4.88 4.16 0.245
WHO 2 7.42 5.28 0.161 6.42 5.71 0.264 2.83 5.90 0.637
WHO 3 9.88 8.17 0.227 8.90 7.97 0.264 8.77 7.95 0.275
Pain 4 -10.86  13.10 0.408 -10.56  12.65 0.404 3.62  11.82 0.760
Pain 1 -17.48  13.16 0.185 -17.22 12,79 0.179 -2.24  11.04 0.839
Pain 2 -10.86  12.83 0.397 -9.70 1311 0.460 093 1161 0.936
Pain 0 -20.18  13.70 0.141 -17.66  14.36 0.221 -3.42 1279 0.789
Trt 7.62 2.98 0.011 6.60 2.97 0.027 4.75 3.02 0.123
Pattern 1 -8.21 8.75 0.349 -29.79  12.52 0.032 -36.21 9.62 <0.001
Pattern 4 -20.35 5.29  <0.001 -25.81 5.63 <0.001 -29.45 5.27 <0.001
Pattern 3 -18.71 7.28 0.014 -20.73 7.51 0.008 -26.75 7.57 0.001
Pattern 2 -9.15 5.77 0.114 -18.82 7.69 0.024 -30.81 7.98 0.001
Variance Pattern 1 599.82  230.92 0.016 643.66 253.14 0.024 444.35 155.39 0.015
AR(1) Pattern 1 0.90 0.14 0.001 0.82 0.14 <0.001 0.24 0.39 0.567
Variance Pattern 4 354.59 107.21 0.002 362.92 116.86 0.007 309.94  88.72 0.001
AR(1) Pattern 4 0.88 0.17 0.004 0.81 0.21 0.013 0.83 0.08 <0.001
Variance Pattern 3 322.84 13441 0.031 393.74  136.94 0.015 31272 7828 <0.001
AR(1) Pattern 3 0.84 0.24 0.021 0.64 0.24 0.036 0.51 0.14 <0.001
Variance Pattern 2 280.15 137.43 0.077 380.93 134.42 0.018 373.58  83.16 <0.001
AR(1) Pattern 2 0.83 0.21 0.010 0.69 0.19 0.008 0.39 0.17 0.041
Variance Pattern 5 311.52 109.58 0.014 344.94  90.62 0.001 33343 8221 <0.001
AR(1) Pattern 5 0.94 0.15 0.003 0.88 0.18 0.007 0.95 0.04 <0.001
Residual 128.23  79.59 0.178 90.35  90.62 0.373 119.34 2445 <0.001

is based on extrapolation. Still, the need for assumptions and their implications are more
obvious. It is not possible for example to assume an unstructured time trend in incomplete
patterns, except if one restricts attention to the time range from onset until dropout. In
contrast, assuming a linear time trend allows estimation in all patterns containing at least
two measurements. However, it is less obvious what the precise nature of the dropout
mechanism is, whereas in the identifying restrictions setting the assumptions are clear from
the start.

The identifying restrictions strategy provides further opportunity for sensitivity analysis,
beyond what has been presented here. Indeed, since CCMV and NCMYV are extremes, it is
very natural to consider the idea of ranges in the allowable space of w,. Clearly, any wy
which consists of non-negative elements that sum to one is allowable, but also the idea of
extrapolation could be useful, where negative components are allowed, given they provide
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valid conditional densities.



Chapter 10

Longitudinal Categorical Data

10.1 Introduction

Generally QL is assessed using self-report questionnaires containing items (questions) with
ordinal or binary response categories. Some of these items are subsequently collapsed into
subscales which are also discrete in nature. In the literature these scales are frequently ana-
lyzed using the assumption of normality (possibly after transformation) or alternatively using
non-parametric methods in cross-sectional analysis ignoring the longitudinal characteristics
of the data. In this Chapter we analyze the physical functioning scale (PF) of the QLQ-C30
(version 1.0), which is a linear combination of five binary response items transformed to
a 0 to 100 scale, with higher scores representing a higher level of functioning. The data
were obtained from EORTC trial 30893, which was designed as a prospective multicenter
randomized phase III study comparing orchidectomy and orchidectomy plus mitomycin C
(15 mg/m? intravenously every six weeks until progression) in patients with poor prognosis
metastatic prostate cancer. For more information on the dataset see Sections 4.5 and 8.2.

Most methods based on generalized linear models methodology (i) are useful for both discrete
and continuous outcomes, (ii) do not require a constant number of repeated measurements
per experimental unit, (iii) allow for differing measurement times across subjects and flexible
covariate structures (discrete or continuous, time-independent or -dependent), and (iv) can
accommodate missing data (MCAR).

155
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Generalized linear models for longitudinal data can be categorized into three families. Firstly,
the generalized linear model can be expressed as a marginal model where the marginal ex-
pectation p;; = E(y;) (i =1,---, N refers to an experimental unit and t = 1,- -+ n; refers
to a measurement time) is directly modelled in terms of covariates of interest, the marginal
expectation being the average response over the subpopulation that shares a common value
of the covariate vector. Associations among repeated observations are modelled separately.
Secondly, it can be expressed as a random-effects model. Here the outcomes are modelled
conditional on an unobserved (latent) random effect or a set of random effects. Subject-
specific random effects are assumed to account for all the within-subject correlation that is
present in the data. The individual-specific effects are used to explicitly model the hetero-
geneity among individuals. Thirdly, we mention conditional models in which an outcome is
modelled conditional on the other outcomes or at least a set of other outcomes. For instance
in transition (Markov) models, the conditional expectation of a current response, given past
responses, is assumed to follow a generalized linear model.

In the linear model case, a marginal interpretation can be given to regression coefficients
arising from each of the three approaches. However, whenever a nonlinear link function is
imposed (e.g., in the case of binary outcome variables), the three approaches give different
interpretations for the regression coefficients. More specifically, marginal models are most
appropriate for making inferences about population averages. They are often applied in
a clinical trial setting, since there the focus is generally on assessing average differences
between treatment arms. Whereas marginal models follow a so-called population-averaged
approach, random-effects models adopt a subject-specific approach. In the latter situation,
regression coefficients have interpretations in terms of the influence of covariates on both
an individual’s response and the average response of the population. In transition models,
different assumptions about time-dependence generally imply different interpretations of the
regression coefficients.

As outlined in Chapter 2 models may be further classified into selection and pattern-mixture
models. In this chapter we focus on selection models. For additional information on pattern-
mixture models see Chapters 8 and 9. In this chapter the emphasis is on marginal models
for a binary response. Given the initial goals of the clinical trial, this type of model is
the most reasonable one. In particular, the expectation of the binary response at time ¢ is
related to a time trend and a set of covariates by the known linear logistic link function.
Various methods for estimating the parameters of these (marginal) models are examined:
likelihood based or using alternatives to likelihood theory. Within the likelihood framework,
we propose a model which parameterizes the association in terms of marginal odds ratios
(Molenberghs and Lesaffre 1994). Alternatively, we estimate the parameters of proposed
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marginal models by using the generalized estimating equation approach (GEE) and by using
weighted generalized estimating equations (WGEE). For technical details of model definitions
and estimation procedures see Section 10.2.

10.2 Model Formulation and Estimation Procedures

Univariate generalized linear models have three components: (i) a random component iden-
tifying the response variable Y = (Y7, ...,Y,) in assuming a specific probability distribution
for Y, e.g., normal or binomial, (ii) a systematic component specifying the explanatory
variables used as predictors in the model, e.g., age, treatment and time, and (iii) a link
function which describes the functional relationship between the systematic component and
the expected value of the random component. For some specific functions a(.), b(.), and ¢(.)
(McCullagh and Nelder 1989), we assume that the independent random variables Y7, ..., Y,
arise from the distribution

y6 — b(8)
a(¢)

This implies that if ¢ is known, the random component is determined by an exponential
family model with canonical parameter 6.

f(y;0,9) ZeXp{ +0(y,¢>)}-

Means and variances of Y are found using properties of the score function

0 A C))
= %{1(0,¢>,y)} =)

with [(6, ¢; y) denoting the log-likelihood function as a function of 6 and ¢. It is easily shown
that E(Y) = ¥ (6) and Var(Y) = b"(0)a(¢).

U (10.1)

In situations where it is not possible to construct a likelihood function (e.g., because the
specific random mechanism by which the data are generated is unknown or the mean-variance
relationship is different from the one implied by the model), quasi-likelihood can be used as
a method for statistical inference. Whereas the random component of a generalized linear
model assumes a specific distribution for the response Y;, quasi-likelihood assumes only a
form for the functional relationship between the mean and the variance.

More specifically, we assume that Y; (¢ = 1,...,n) has mean u;(3), with 8 = (5, ...0,) the
parameters of interest. Moreover, we set Var(Y') = ¢V (u), where V() is a known function,



158

V(p) = diag{V(u1), ..., V(ttn)}, and ¢ a possibly unknown scale parameter. Note that ¢ is
assumed to be constant for all individuals and does not depend on 3, and that Var(Y;) only
depends on u;: Var(Y;) = ¢V ().

Taking
Y —
U, = ) 10.2
¢V (11:) (10:2)
it follows that
E(U;) = 0, (10.3)
Var(U;) = —— (10.4)
ru;) = y .
PV (14)
and
E (ZZ) — _Var(Uy), (10.5)

properties that also hold for log-likelihood derivatives (see Equation (10.1)). The quasi-
likelihood for u; based on the data y; is defined by
Moy — t

Qs ys) = 5 ¢>V—(t)dt’

and behaves like a log-likelihood function for y; (provided the integral exists).

Extending the theory to the longitudinal setting, a generalized linear model needs to account
for correlations among the multiple observations for an individual. The description of the
model minimally requires specification of (i) a linear component n; = X;3, with 3 a p-vector
of (usually) unknown parameters, and (ii) a monotonic differential (vector) link function g
(e.g., logit functions) describing how the expected value of Y;, denoted by p;, is related to
the linear predictor n; = g(p; ). The variance of Y; is given by

Var(y;) — V(B (10.6)

w;

where the dispersion parameter ¢ is a (possibly unknown) constant, w; is a known weight for
each observation, and V() is a known variance function. The correlation structure among
the different time points is accounted for through a separate parameter vector « in

Corr(Y;) = R().
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Note that the response vectors Y; are independent for ¢ = 1,--- , N, and that information
retrieved from Var(Y;) and Corr( Y;) can be merged into one matrix V;(e, ;).

A random-effects model is a generalized linear model accounting for both fixed effects 3 and
random-effects parameters b; as in

Note that now

Var(Y; | b;) = d)V(Hi) and Corr(Y; | b;) = R(x)

(3

and that the parameter vector b; satisfies the moment assumptions
E(b;)=0 and Cov(b;) =G,
with G being a general covariance matrix. This model is fitted in Section 10.5.1.

The score equation for a generalized linear model in the longitudinal setting, is given by

0(0) = 3 (T ) ™ (Ven ) ¥ - ) = 0. (10.7

In the full likelihood case, the variance-covariance structure of Y; is completely determined.
In practice however, Var(Y;) is often a function of u; (via Equation (10.6)), and therefore
unknown in advance. Hence Liang and Zeger (1986) proposed the GEE approach where
besides the variance description as given in Equation (10.6) with w; = 1, the form of a so-
called working correlation matrix R needs to be specified. This working correlation matrix
may depend on a vector of unknown parameters a, which is the same for all subjects. In
fact, v is called a working correlation matrix because with non-normal responses the actual
correlation among a subject’s outcomes may depend on the mean values. Although the
matrix R can differ from subject to subject, we commonly use a working correlation matrix
that approximates the average dependence among repeated observations over subjects.

Non-Likelihood Based Estimation The generalized estimating equations (GEE) approach is
one of the most popular approaches to the analysis of correlated binary data (Liang and
Zeger 1986, Zeger and Liang 1986, Zeger, Liang and Albert 1988). It is an extension of
quasi-likelihood to longitudinal data analysis. The method is semi-parametric in that the
estimating equations are derived without full specification of the joint distribution of a sub-
ject’s observations. Only the likelihood for the (univariate) marginal distributions and a



160

working covariance matrix for the vector of repeated measurements from each subject need
to be specified. The GEE’s are solved by iterating between quasi-likelihood methods for
estimating B3 and a robust (i.e., empirically based) method for estimating «, using the sand-
wich estimator, as a function of 3. It yields consistent estimates for 3 and the corresponding
variances, even with misspecification of the structure of the covariance matrix. The efficiency
loss relative to maximum likelihood methods is often minimal.

Zhao and Prentice (1990) and Liang, Zeger and Qaqish (1992) extended the GEE method
(GEE2) while simultaneously estimating regression parameters 3 and covariance parameters
a. In practice, this requires modeling the third and fourth moments of y;;, instead of
just modeling the mean and variance as in the previous case (also referred to as GEE1).
Lipsitz and Kim (1994) extended Liang and Zeger’s method to models for the correlation
between repeated nominal and ordinal categorical responses; in particular, when the repeated
responses are binary, their methods reduce to Liang and Zeger’s method.

Since GEE’s applied to incomplete data lead to valid estimates only if the missingness process
is MCAR (this is often unrealistic for QL data), extensions of the method were investigated
in the literature. In the weighted GEE approach (WGEE) proposed by Robins, Rotnitzky
and Zhao (1995) an individual’s contribution to the usual GEE is re-weighted by the inverse
estimated probability of drop-out at the time of attrition through w; in Equation (10.6). It
leads to consistent estimates even with MAR. Troxel, Lipsitz and Troyen (1996) proposed
weighted estimating equations (using the GEE structure of Liang and Zeger 1986) for data
with non-ignorable non-response. Another class of weighted estimating equations was in-
troduced by Robins, Rotnitzky and Zhao (1995): inverse probability of censoring weighted
estimators in semi-parametric regression models.

Several marginal models are fitted, implementing weighted generalized estimating equations
(Section 10.5.2) and generalized estimating equations (Section 10.5.3). Since the covariance
matrix V(e p;) is usually not fully known (note that variances follow from specifications for
the mean structure), we can only make a plausible guess, leading to a so-called working cor-
relation matriz. Based on this plausible guess for V; (e, p;), the estimating equations (10.7)
are solved, using a multivariate version of the iteratively weighted least squares algorithm.
Note that for the weighted generalized estimating equations, specification of the weights w;
has the effect of weighting the contributions of the likelihood function by their value. The
weights are obtained from a logistic regression for dropout.

Likelihood-Based Estimation
Within a likelihood-based analysis, the important question is to distinguish between missing
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at random (MAR) and missing not at random (MNAR). Standard likelihood-based methods
that ignore a MNAR dropout mechanism (such as the MIXED procedure in SAS developed
for continuous outcomes) are subject to bias. Even when questions involving the dropout
pattern are in place, for example if we condition on not having dropped out, then the
dropout mechanism is important and even a shift between MCAR and MAR will change the
conclusions. For multivariate categorical responses, likelihood-based regression models can
be grouped into random-effects models, marginal models and conditional models.

Random effects based approaches are discussed in Wu and Carroll (1988) and Wu and
Bailey (1989). Wu, Hunsberger and Zucker (1994) found that the ‘conditional linear model’
estimators of Wu and Bailey compared favorably in simulations with ML estimation under
random dropout and also with nonparametric rank procedures described by e.g., Wei and
Lachin (1984). Pulkstenis, Ten Have and Landis (1998) presented a selection model for
binary data where response and dropout are independent conditional on the random effect.

Molenberghs and Lesaffre (1994) developed a full likelihood method for the analysis of ordinal
categorical responses, allowing time-varying and subject-specific covariates: the multivariate
Dale model, which is a marginal model. The model is based on an extension of the two-
dimensional Plackett distribution (Plackett 1965) and on the bivariate global cross-ratio
model described by Dale (1986) and McCullagh and Nelder (1989). The latter generalized
linear model incorporates the multivariate Dale model (Molenberghs and Lesaffre 1994) in
the case of the logit link for the marginal mean functions. McCullagh and Nelder (1989)
expressed the link function in terms of joint probabilities X3 = n = Cln(Ap), with X a
design matrix, g the vector of joint probabilities, A a matrix consisting zeros and ones, so
that Ap contains the marginal probabilities of all orders: the probabilities of each outcome
separately, the probabilities for the cross-classification of all pairs of outcomes, for all triples,
etc. Contrasts of log-probabilities are equated to a vector of linear predictors 7 using the
contrast matrix C' (of which elements are either 0, 1, or —1). The multivariate Dale model
specifies the joint distribution by combining (proportional odds) logistic models for each
outcome separately, with pointwise and higher order global odds ratios to describe pairwise
and higher order associations (Molenberghs and Lesaffre 1994). Consequently patients can
drop out at random without biasing the parameter estimates. The resulting likelihood is
maximized by means of the EM algorithm.

In Section 10.5.4 we adopt this full maximum likelihood approach while fitting a multivariate
Dale model. Further useful references which illustrate the method are Kenward, Lesaffre and
Molenberghs (1994) (dealing with missing cases at random) and Molenberghs, Kenward and
Lesaffre (1997) (covering non-random dropout).
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Fitzmaurice, Laird and Lipsitz (1994) described a likelihood-based method for analysing
balanced but incomplete longitudinal binary responses that are assumed to be missing at
random. Following the approach outlined in Zhao and Prentice (1990), they focused on
marginal models in which the marginal expectation of the response variable is related to a
set of covariates. The association between binary responses is modeled in terms of conditional
log odds-ratios (a hybrid Marginal-Conditional Model). The maximum likelihood estimates
are obtained via an EM algorithm.

10.3 Exploratory Analysis

We now turn to the data introduced in Sections 4.5 and 8.2. In this Chapter, we choose to
collapse the possible categories of PF into a binary outcome (PF < 60 versus PF > 60). In
Section 8.5 where the global health status/QL score of the QLQ-C30 was the response of
interest, which has a minimum of 13 potential categories, the assumption of normality was
made. However, for the PF score the necessity of acknowledging the categorical nature of the
response is more pertinent and applying normal theory is less appropriate since the PF score
may have at most 6 levels and the distribution of scores is notably more skewed. In order to
get an idea of a plausible mean and correlation structure between repeated measurements,
we initially treat PF as if continuous. We apply standard analysis techniques described in
Section 8.2 for formulating the common mean structure in all models and for proposing (a)
plausible covariance structure(s).

For our purposes, it is felt appropriate to focus on QL assessments during the first year only,
as the majority of patients had dropped out before this time point. Briefly, an exploratory
data analysis (residual profile plots, variogram function, scatterplot matrix,- - - ) was followed
by a continuous longitudinal analysis to reduce an initial (possibly over-elaborated) structure.
Evidence was found to explain part of the total variability by a subject-level component (a
random intercept), a decaying serial correlation and so-called measurement error.

Based on model fit results obtained by temporarily treating PF as if continuous, besides
effects for time and treatment, we included in all further models a time-treatment interaction
effect as well as effects for the dichotomized baseline characteristics age (1: age < 68, 0:
else), WHO performance status (0: WHO PS 0 or 1, 1: WHO PS 2, see Appendix A.2)
and chronic disease status (1: yes, 0: no). In addition to their association with the PF
score, the selected baseline characteristics are also known prognostic factors for patients
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with metastatic prostate cancer. Note that since they influence survival time, they might
affect underlying dropout processes.

In the remainder, time will be treated as categorical. The original 8 assessment time points
of interest are collapsed into the following 4 time categories: baseline, 6-12 weeks, 18-24-
30 weeks, 36-52 weeks. Combining the various time points was done for several reasons:
reduction in the number of parameters, thus improving the estimation process and reducing
the number of tests to be performed; limiting problems occurring due to sparse data.

10.4 Evidence Against MCAR

Chapter 2 introduced the various missing data mechanisms and noted that for a frequentist-
likelihood approach such as the GEE approach of Liang and Zeger (1986) unbiased estimators
are obtained only under MCAR. A WGEE approach or a likelihood-based method is valid
under MAR as well. Hence, since the validity of a method depends on the inferential frame-
work, we first investigated the type of dropout in our data set. Using the logistic regression
model described in Chapter 7 we tested MCAR against MAR taking baseline covariates in
to account:
logit(pr(dropout at time ¢ + 1);) = a + (X3, Y3)3,

where « is the intercept, 3 is a vector of parameters, X; is a matrix consisting of covariates
for patient ¢ such as treatment and time of assessment and Y; is a vector of observed physical
functioning scores.

Table 10.1 displays results of various logistic regression models for the probability of dropout
given time (as continuous class variable), a treatment indicator and the PF score. The
first fitted model includes 15 dummy variables representing the 16 possible time/treatment
combinations and the physical functioning score PF. Models 2, 3, 7 and 8 are submodels of
Model 1. Note that from Model 4 onwards time is treated as continuous. Comparisons of
Models 1 and 2, 2 and 3, 1 and 3, 7 and 8, suggest that the dropout rate does not depend on
treatment. Comparing Models 2 and 7, 3 and 8, provides strong evidence that the dropout
rate varies with time. The validity of the proportional odds assumption for dropout over
time is supported by comparing Models 3 and 6.

We further investigate, in Model 10, if the probability of dropout depends on the change
from the current to the previous observed PF score and/or the sum of the two most recently
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Table 10.1: FORTC Trial 30893. Logistic regression results for testing the dropout mecha-

nisMm.

Model 2InL df
1 Timeclass | Treatment + Y} 609.455 822
2 Timeclass + Treatment + Y} 613.462 829
3 Timeclass + Y} 613.462 830
4 Time | Treatment + Y} 623.918 834
5  Time + Treatment + Y} 623.999 835
6 Time+Y; 623.999 836
7  Treatment + Y} 678.364 836
8 Y 678.445 837
9 Time+Y; 441.212 579
(= 582-3)
10 Time + (Y; — Y; 1) + (Y +Y; 1) 435.168 578
(= 582-4)

Comparisons G? df p-value

1-2 4.007 7 0.779

2-3 0.000 1 >0.999

1-3 4.007 8 0.856

7-8 0.081 1 0.776

2-7 64.902 7 <0.001

3-8 64.983 7 <0.001

3-6 10.537 6 0.104

9-10 6.044 1 0.014

observed scores. The estimated Model 10 is

logit(Pr(dropout at time ¢t + 1)) =

—1.788 + 0.050¢ — 0.026(Y; — Y;_1)

— 0.000(Y; + Yi.y),

(10.8)

where both the effect for (Y; —Y;_1) and (Y; +Y;_1) are highly significant (p-values of 0.0001
and 0.0002, respectively). Equation (10.8) indicates that the probability of dropout increases
with time, with a decrease of PF (Y; —Y}_1), and with a low overall score (Y; + Y;_1). This
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Figure 10.1: FORTC Trial 30895. Average profile lines per treatment and time.

is fully in line with graphical observations (Figure 10.1). In fact, the probability of dropping
out, increases by a factor 0.597 (95% Wald confidence limits: [0.470,0.758] for every increase
of 20 points in the change (Y} — Y;_1). Similar calculations with respect to (Y; + Y;_1)
give an estimated factor of 0.830 with confidence limits [0.751,0.916]. Comparing this with
Model 9, the likelihood ratio test suggests an improved model fit by accounting for the last
but one observed PF score also (chi-square of 6.044, p-value = 0.014). Note that the number
of observations in Model 9 was reduced, in contrast with Model 6, to ensure comparability
with Model 10.

Hence, we strongly reject the hypothesis of MCAR. The latter observation is very important
in the framework of model building and selection. Indeed, as mentioned in Diggle and Ken-
ward (1994), if dropouts are not MCAR, we need to think carefully what are the relevant
inferences. Modeling the dropout process also in this context allows the researcher to an-
swer a richer class of inferential questions. The assessment of treatment differences among
completers is such a question.
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10.5 Different Approaches to Model Longitudinal QL
Data

10.5.1 Random-Effects Models

Restricting attention to binary outcomes, we fit a random-effects model to our data using
the GLIMMIX macro in SAS. Software such as MLWIN, Egret and MIXOR would also have
served the same purpose. Based on the strong evidence to allow for a serial correlation
(Section 10.3), and our interest in random effects, the covariance structure is specified by a
random component and a serial correlation structure of the first order autoregressive type
AR(1). The binary response (1: physical functioning score PF > 60, 0: otherwise) is related
to the covariates mentioned before, using the logit link function. We additionally investigate
the effect of covariance structures with either a serial component and measurement error or
only taking the serial component into account. Resulting parameter estimates and standard
errors are listed in Table 10.2.

It is important to realize that all estimates listed in Table 10.2 are defined on the logit
function scale. Hence, the intercept estimate (0.7642) in Model 3 is interpreted as the log
odds of having a better PF score for patients younger than 68 in the orchidectomy arm
with a relatively good physical performance status at baseline and no associated chronic
disease. For fixed effects estimates as for WHO PS, the estimate (-0.6628) in Model 3 is
interpreted as the decrease with respect to the previously mentioned log odds for patients
with an associated worse performance status at baseline. Note, the parameter estimates
are in line with clinical experience suggesting that old age, poor WHO PS and presence
of chronic disease negatively influence PF. Additionally, PF increases after orchidectomy
reflecting the known effect with respect to symptom relief.

Compared to Models 1 and 2, Model 3 leads to the most precise estimates for treatment,
age, WHO PS and chronic disease. Parameters involving time levels of T are estimated with
the highest precision in Model 2. All parameter estimates in Model 1 have larger associated
standard errors compared to Models 2 and 3. Note the effect of having fewer observations
at 36 or 52 weeks on the precision of the estimates involving these time points. All three
models can pick up a significant effect for baseline chronic disease status. For example, the
odds of having a physical functioning score > 60 is reduced by a factor exp(-0.8832) = 0.41
in Model 1 for patients with an associated chronic disease at baseline compared to those
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Table 10.2: FORTC Trial 50893. Glimmiz Estimates.

Model 1 Model 2
AR(1) + random intercept AR(1) + measurement error
Effect Estimate s.e. t p-value Estimate Std. Error t p-value
INTERCEPT 1.0757  0.4085 2.6333 0.0092 0.8112 0.3166 2.5622 0.0113
Trt -0.4823 0.4838 -0.9969 0.3192 -0.4613 0.3720 -1.2401 0.2167
Age -0.4745 0.3555  -1.3347 0.1825 -0.2889 0.2637 -1.0956 0.2747
WHO PS -0.8272  0.5275 -1.5682 0.1173 -0.6678 0.3972 -1.6813 0.0946
Chronic disease -0.8832 0.3642 -2.4250 0.0156 -0.7011 0.2689 -2.6073 0.0100
T(36-52) 0.0253  0.3936 0.0643 0.9487 0.1325 0.3288  0.4030 0.6871
T(18-30) 0.6391 0.3459 1.8476 0.0651 0.4336 0.2833 1.5305 0.1263
T(6-12) 0.6493 0.3148 2.0626 0.0396 0.4252 0.2512 1.6927 0.0910
Trt*T(36-52) -0.8141 0.5609 -1.4514 0.1471 -0.5982 0.4683 -1.2774 0.2019
Trt*T(18-30) -1.3642  0.4756  -2.8684 0.0043 -0.8280 0.3878 -2.1351 0.0331
Trt*T(6-12) -0.7301 0.4336 -1.6838 0.0927 -0.4397 0.3426 -1.2834 0.1997
Diff at baseline 0.4823  0.4838 1.0000 0.3192 0.4613 0.3720 1.2401 0.2154
Trt Diff 6-12Wks 1.2123  0.4083 2.9691 0.0031 0.9010 0.3096 2.9102 0.0037
Trt Diff 18-30Wks 1.8465 0.4115 4.4872 0.0001 1.2893 0.3171 4.0659 0.0001
Trt Diff 36-52Wks 1.2964 0.4947  2.6206 0.0090 1.0594 0.3812 2.7791 0.0056
Model 3
AR(1)

Parameters Estimate  Std. Error t  p-value

INTERCEPT 0.7642 0.3036 2.5171 0.0128

Trt -0.4265 0.3651 -1.1682 0.2443

Age -0.2682 0.2377  -1.1283 0.2608

WHO PS -0.6628 0.3597  -1.8426 0.0672

Chronic disease -0.6298 0.2435 -2.5864 0.0106

T(36-52) 0.1649 0.3571 0.4618 0.6443

T(18-30) 0.4687 0.3120 1.5022 0.1336

T(6-12) 0.4322 0.2572 1.6804 0.0934

Trt*T(36-52) -0.5484 0.5058 -1.0842 0.2787

Trt*T(18-30) -0.8741 0.4259  -2.0524 0.0405

Trt*T(6-12) -0.4361 0.3523  -1.2379 0.2162

Diff at baseline 0.4265 0.3651 1.1682 0.2431

Trt Diff 6-12Wks 0.8626 0.3048 2.8301 0.0048

Trt Diff 18-30Wks 1.3007 0.3098  4.1985 0.0001

Trt Diff 36-52Wks 0.9749 0.3830 2.5454 0.0111

Trt=Treatment; T(36-52)=Time referring to 36 and 52 weeks; Trt*T(36-52)= effect of treatment at T(36-52); Diff at baseline=
treatment difference at baseline; Trt Diff 6-12Wks= treatment difference at T(6-12) (similar definitions for T(18-30) and T(6-12),
Trt*T(18-30) and Trt*T(6-12), Trt Diff 18-30Wks, Trt Diff 36-52Wks).

without. The decrease in WHO PS is borderline significant, with a p-value of 0.067. The
decreasing p-values associated with WHO PS, from Model 1 over 2 to Model 3, seem to
indicate that the random variability at baseline and measurement error are taken over by
WHO PS in Model 3. This is not surprising, since the baseline physical functioning score
and WHO PS are known to be strongly correlated.
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Using a contrast statement significant treatment differences at 6-12 weeks, at 18-30 weeks
and at 36-52 weeks are detected for all models. The mean baseline physical functioning
score in the orchidectomy treatment arm is 71.44 compared to 64.02 in the orchidectomy
plus Mitomycin C arm. This apparent difference is not significant in each of the three
models. Performing analyses using change scores from baseline, is not appropriate for these
data, since only 113 patients provided a PF score at baseline. However, we did take into
account the differences at baseline in comparing treatment differences at a specific time point
with baseline treatment differences (see also Table 10.1). For these data, both adjusted and
unadjusted analysis for the baseline difference are to be recommended and may be seen as a
type of sensitivity analysis. Note that considering treatment differences at a specific point
in time implies drawing conclusions within a cross-sectional analysis only. In all models,
treatment differences at 18-30 weeks appeared to be significantly different from baseline
differences.

The fact that substantive conclusions remain the same over the three models suggests that
a reasonable level of fit is reached by all models. We note that these results were similar to
those from the linear mixed model with PF as continuous response (not shown).

10.5.2 Weighted Generalized Estimating Equations

As in section 10.4 we propose a logistic model for the dropout such that
logit(pr(dropout);) = o 4+ X7 3,

where X7 is a matrix of covariates, initially including PF as binary, time as continuous,
treatment, age, chronic disease, WHO PS as well as a time-treatment interaction term.
Using 5% as a significance level, we can subsequently omit WHO PS, the interaction term,
age and chronic disease status. We choose to keep treatment in the model (although the
relatively high p-value of 0.826 strongly suggests no relationship between treatment and the
probability of dropout). Subjects at a specific point in time are then inversely weighted by
their estimated probability of being observed (w; in Equation 10.6). Those patients who
are unlikely to be observed in the sample are given increased weight in order to compensate
for the other subjects with low observation probability who are in fact not observed. The
parameter estimates obtained under AR(1), unstructured (UN) and exchangeable (EXCH)
assumptions, are given in Table 10.3.

Parameter estimates seem to be less comparable over the three correlation structures com-



Table 10.3: FORTC Trial 30893. Weighted GEFE Estimates.

Empirical- based

Model -based

Parameter Estimate  Std Err Z Pr>|Z| Std Err Z  Pr>|Z|
WGEE - exchangeable
INTERCEPT 0.6164 0.3084 1.9990 0.0456 0.3346 1.8423 0.0654
Trt at baseline -0.4234 0.3790 -1.1170 0.2640 0.4038 -1.0490 0.2944
Age -0.2714 0.2881 -0.9421 0.3461 0.2670 -1.0160 0.3094
WHO PS -0.7026 0.4414 -1.5920 0.1114 0.4067 -1.7270 0.0841
Chronic disease -0.7593 0.2836 -2.6770 0.0074 0.2733  -2.7790 0.0055
T(36-52) 0.0227 0.3521  0.0643 0.9487 0.3215  0.0705 0.9438
T(18-30) 0.6221 0.3693  1.6848 0.0920 0.3187  1.9518 0.0510
T(6-12) 0.5532 0.3187  1.7358 0.0826 0.3117  1.7747 0.0759
Trt*T(36-52) -0.4499 0.4758  -0.9457 0.3443 0.4548  -0.9893 0.3225
Trt*T(18-30) -0.9373 0.4591  -2.0420 0.0412 0.4321 -2.1690 0.0301
Trt*T(6-12) -0.3806 0.4022 -0.9462 0.3440 0.4271 -0.8910 0.3729
WGEE - AR(1)
INTERCEPT 0.7016 0.3136  2.2374 0.0253 0.3380  2.0757 0.0379
Trt at baseline -0.5571 0.3803 -1.4650 0.1429 0.4124 -1.3510 0.1768
Age -0.2274 0.2904 -0.7829 0.4337 0.2558 -0.8888 0.3741
WHO PS -0.7793 0.4521 -1.7240 0.0847 0.3912 -1.9920 0.0463
Chronic disease -0.7618 0.2869 -2.6550 0.0079 0.2623  -2.9040 0.0037
T(36-52) 0.0241 0.3642  0.0662 0.9472 0.3780  0.0638 0.9491
T(18-30) 0.5441 0.3630  1.4988 0.1339 0.3645  1.4928 0.1355
T(6-12) 0.4708 0.3171 1.4849 0.1376 0.3109 1.5142 0.1300
Trt*T(36-52) -0.4345 0.4856  -0.8948 0.3709 0.5337 -0.8143 0.4155
Trt*T(18-30) -0.8161 0.4545  -1.7960 0.0726 04941 -1.6520 0.0986
Trt*T(6-12) -0.2344 0.4077 -0.5749 0.5653 0.4252  -0.5512 0.5815
WGEE - Unstructured

INTERCEPT 0.4140 0.3152 1.3131 0.1891 0.3380 1.2248 0.2207
Trt at baseline -0.2693 0.3836  -0.7020 0.4827 0.4080 -0.6601 0.5092
Age -0.3190 0.2920 -1.0930 0.2745 0.2820 -1.1310 0.2579
WHO PS -0.7514 0.4478 -1.6780 0.0933 0.4400 -1.7080 0.0877
Chronic disease -0.7070 0.2860 -2.4720 0.0134 0.2897 -2.4410 0.0147
T(36-52) -0.0232 0.3432  -0.0676 0.9461 0.2933  -0.0790 0.9370
T(18-30) 0.6093 0.3689  1.6518 0.0986 0.3357  1.8152 0.0695
T(6-12) 0.6328 0.3163  2.0008 0.0454 0.3126  2.0243 0.0429
Trt*T(36-52) -0.5375 0.4820 -1.1150 0.2647 0.4111 -1.3080 0.1910
Trt*T(18-30) -0.9896 0.4650 -2.1280 0.0333 0.4607 -2.1480 0.0317
Trt*T(6-12) -0.5071 0.4059 -1.2490 0.2115 0.4306 -1.1780 0.2389
Note:

INTERCEPT: Orchidectomy effect at baseline
Trt at baseline: Adjuvant chemotherapy effect at baseline
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pared to the associated empirical-based standard errors. Note for instance the estimated
intercept term and treatment effect parameter. Moreover, the parameter associated with
T(36-52) appears to change direction in affecting the probability of having a high (> 60) PF
score when changing UN (-0.023, s.e. 0.343) into AR(1) (0.024, s.e. 0.364) or EXCH (0.023,
s.e. 0.352). This however should not be overemphasized since this effect is non-significant
(see standard errors) and is probably due to random variation only.
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No straightforward choice between either correlation structures can be made solely based on
comparisons between model- and empirical based variance-covariance matrices (not shown).
However, at the end of Section 10.5.1, we concluded that a reasonable level of fit was reached
by all models and that the exclusion of subject-specific variability (the random intercept)
seemed to lead to a more significant WHO PS effect. Note that under EXCH in the WGEE
approach, the WHO PS effect has an associated p-value of 0.112, compared to 0.085 under
AR(1) and 0.093 under UN. In addition, the fixed effects parameter estimates appear to
differ considerably dependent on the correlation structures used (see Table 10.3).

There appears to be no effect for age or WHO PS. Under all correlation structures, a signifi-
cant effect for chronic disease CD can be detected. No differences in treatments at 6-12 weeks
compared to baseline, nor at 36-52 weeks compared to baseline are observed. Treatment dif-
ferences at the joint time points 18, 24, 30 weeks turn out to be significantly different from
baseline treatment differences under UN and EXCH (p = 0.033 and 0.041, respectively).
Under AR(1), only marginal evidence is found (p = 0.072).

10.5.3 Generalized Estimating Equations

In Section 10.4, evidence was found against MCAR and thus, strictly speaking, GEE is not
valid. The GEE models fitted here are contrasted with the WGEE models of Section 10.5.2
to assess the sensitivity of inference on the missingness mechanism. Results of the GEE
analysis are given in Table 10.4. Relying on earlier considerations, we focus on a first order
autoregressive and an unstructured (working) correlation. For completion we compared the
results obtained with those under the exchangeable working assumption. It is seen from
Table 10.4 that the fixed effects parameter estimates are quite comparable over the various
working assumptions, in contrast with the WGEE approach where much less similarity was
detected. Deviations between the WGEE and GEE analysis might be expected, since the
latter applied to incomplete data only leads to unbiased estimates if the missingness process
is MCAR (which is a stronger assumption than MAR).

There is no significant effect for age, WHO PS or for treatment effect. It should be noted
though that for WHO PS, similar p-values as in models 2 and 3 of section 10.5.1 are obtained
(0.076, 0.088 and 0.094 respectively for AR(1), UN or EXCH). The effect for chronic disease
at baseline turned out to be more significant under all working assumptions, compared to
the random-effects models in Section 10.5.1. No differences in treatments at 6-12 weeks
compared to baseline, nor at 36-52 weeks compared to baseline, are observed. The odds of
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Table 10.4: FORTC Trial 30895. GEE Estimates.

Empirical- based Model -based
Parameter Estimate  Std Err Z Pr>|Z| Std Err Z  Pr>|Z|
GEE - exchangeable
INTERCEPT 0.8485 0.3174  2.6731 0.0075 0.3222 2.6339 0.0084
Trt at baseline -0.4625 0.3809 -1.2140 0.2246 0.3767 -1.2280 0.2195
Age -0.2833 0.2827  -1.0020 0.3162 0.2692 -1.0520 0.2927
WHO PS -0.7399 0.4419 -1.6740 0.0941 0.3961 -1.8680 0.0617
Chronic disease -0.7724 0.2799  -2.7600 0.0058 0.2724 -2.8360 0.0046
T(36-52) 0.2300 0.3485  0.6601 0.5092 0.3340  0.6887 0.4910
T(18-30) 0.7635 0.3781 2.0195 0.0434 0.3227  2.3663 0.0180
T(6-12) 0.6138 0.3265 1.8797 0.0601 0.3042 2.0177 0.0436
Trt*T(36-52) -0.4045 0.4675 -0.8652 0.3869 04735  -0.8542 0.3930
Trt*T(18-30) -0.9227 0.4636  -1.9900 0.0466 0.4305 -2.1430 0.0321
Trt*T(6-12) -0.3525 0.4086  -0.8627 0.3883 0.4127 -0.8541 0.3931
GEE - AR(1)
INTERCEPT 0.8517 0.3185 2.6740 0.0075 0.3219 2.6461 0.0081
Trt at baseline -0.5561 0.3810 -1.4590 0.1445 0.3824  -1.4540 0.1459
Age -0.2410 0.2851  -0.8456 0.3978 0.2578  -0.9349 0.3498
WHO PS -0.7867 0.4436  -1.7740 0.0761 0.3809 -2.0660 0.0389
Chronic disease -0.7630 0.2821 -2.7050 0.0068 0.2618 -2.9140 0.0036
T(36-52) 0.3123 0.3583  0.8716 0.3834 0.3912 0.7983 0.4247
T(18-30) 0.7536 0.3702 2.0360 0.0418 0.3644 2.0683 0.0386
T(6-12) 0.5723 0.3227  1.7733 0.0762 0.2999 1.9084 0.0563
Trt*T(36-52) -0.4448 0.4751  -0.9363 0.3491 0.5508 -0.8075 0.4194
Trt*T(18-30) -0.8350 0.4581 -1.8230 0.0683 0.4866 -1.7160 0.0862
Trt*T(6-12) -0.2357 0.4117 -0.5724 0.5671 0.4068 -0.5793 0.5624
GEE - Unstructured

INTERCEPT 0.8547 0.3185 2.6836 0.0073 0.3235 2.6424 0.0082
Trt at baseline -0.4890 0.3795  -1.2890 0.1975 0.3748  -1.3050 0.1919
Age -0.2807 0.2829  -0.9921 0.3211 0.2777 -1.0110 0.3121
WHO PS -0.7502 0.4393 -1.7080 0.0877 0.4088 -1.8350 0.0665
Chronic disease -0.7731 0.2807 -2.7540 0.0059 0.2810 -2.7510 0.0059
T(36-52) 0.1914 0.3423  0.5591 0.5761 0.3221 0.5942 0.5524
T(18-30) 0.7448 0.3747  1.9879 0.0468 0.3364 2.2140 0.0268
T(6-12) 0.6073 0.3246 1.8708 0.0614 0.2823 2.1514 0.0314
Trt*T(36-52) -0.3959 0.4579  -0.8646 0.3872 0.4553  -0.8696 0.3845
Trt*T(18-30) -0.8907 0.4597  -1.9380 0.0527 0.4497 -1.9810 0.0476
Trt*T(6-12) -0.3369 0.4101 -0.8215 0.4113 0.3829  -0.8799 0.3789
Note:

INTERCEPT: Orchidectomy effect at baseline
Trt at baseline: Adjuvant chemotherapy effect at baseline

having a higher physical functioning score PF in treatment arm 2 now tends to decrease by
approximately 25% compared to the first treatment arm, for the joint time points 18, 24, 30
weeks.

As in Section 10.5.2, no correlation structure can be preferred above the other on the basis of
efficiency in the parameter estimates nor on closeness between model-based and empirical-
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based correlations and/or covariances (not shown).

10.5.4 Maximum Likelihood Estimation

In this section we fit a multivariate Dale model relating the same covariates as before to
the PF as binary response variable. The fitting programs can only handle a relatively small
number of assessment times. The relationship between response and the covariates CATAGE,
chronic disease status CD and WHO PS, are held constant across time points. We allow
different effects for Trt. For reasons of comparison we fix the three-order associations as well
as the four-way association to unity (Intas = Intiay = Inthyzs = Inthogy = Inhyazy = 0).
The association structure is completed as follows:

Iny1s =Intes = =G
Ints =1Inisy = Gy
Inyna = Bio

We fit

logit(p;) = o + A XcATAGE + B2 XWHO Ps + B XcD + BariXmnt, 5 = 0,7+, 3.

The symbol pg refers to the marginal probability of having a PF score > 60 at the first of
the four considered time categories (this is at baseline). The indices 1, 2, 3 refer to T(6-12),
T(18-30) and T(36-52) respectively.

Studying the parameter estimates listed in Table 10.5 shows no apparent effect for CATAGE.
Note the highly significant effect for CD and the borderline significant effect of having a
relatively low WHO PS at baseline. The odds of having a better physical functioning score
under the orchidectomy plus MMC treatment at T(18-30) weeks, is significantly decreased by
a factor of exp(-1.381) ~ 25% compared to treatment 1. We further notice the significant p-
value with respect to T(6-12) and T(36-52) weeks (p = 0.035 and 0.021, respectively). There
appears to be a highly significant treatment difference associated with T(18-36). Also the
two-way associations are highly significant. The associations between the responses appear
to be smaller between assessments which are more than 1 time point apart.
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Table 10.5: FORTC Trial 30893. Multivariate Dale Model Estimates.

Parameter Estimate Std Err Z Pr>|Z|
INTERCEPT baseline 0.8656  0.3217 2.6907  0.0071
INTERCEPT T(6-12) 1.4160 0.3066 4.6187  0.0000
INTERCEPT T(18-30) 1.5949  0.3255 4.9002  0.0000
INTERCEPT T(18-30) 1.1202  0.3335 3.3592  0.0008

Age -0.2865  0.2769 -1.0346  0.3008
Chronic disease -0.7771  0.2808 -2.7675  0.0056
WHO PS -0.7590  0.4034 -1.8816  0.0599
Trt*baseline -0.4688  0.3721 -1.2598  0.2078
Trt*T(6-12) -0.7294  0.3451 -2.1134  0.0346
Trt*T(18-30) -1.3811  0.3641 -3.7937  0.0001
Trt*T(36-52) -0.9316  0.4040 -2.3058  0.0211
2-Way Ass Dist 1 26503  0.3278 8.0860  0.0000
2-Way Ass Dist 2 1.7008  0.3882 4.3812  0.0000
2-Way Ass Dist 3 21387 0.6071 3.5227  0.0004
Diff 6-12 and Base -0.2606  0.3776 -0.6901  0.4901
Diff 18-30 and Base -0.9123  0.4354 -2.0953  0.0361
Diff 36-52 and Base -0.4328  0.4549 -1.0174  0.3090

Trt*baseline= treatment effect at baseline; 2-Way Ass Dist 1= 2-way associations between responses that
are consecutive in time; Diff 6-12 and Base= comparison of treatment difference at 6-12 with treatment
difference at baseline (similar definitions for Trt*T(6-12), Trt*T(18-30), Trt*T(36-52), 2-Way Ass Dist 2,
2-Way Ass Dist 3, Diff 18-30 and Base, Diff 36-52 and Base).

10.6 Remarks

We used various approaches to analyze this QL data, preceded by a graphical exploratory
analysis. The main purpose of this detective work is to structure the huge amount of in-
formation generally contained in a longitudinal data set. More specifically, the exploratory
analysis is used to formulate ideas with respect to measurement and covariance structures.

There are two viewpoints within the exploration. The first looks at the individual level, the
second considers averages. For each view, specific techniques for continuous responses are
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Table 10.6: EORTC Trial 30893. Comparison of Treatment Differences (Baseline Refer-
ence).

Type Parameter Estimate Std error Z Pr>|Z]
Diff at baseline WGEE - AR(1) -0.5571 0.3803 -1.4650  0.1429
GEE - AR(1) -0.5561 0.3810 -1.4590  0.1445
DALE -0.4688 0.3721 -1.2598  0.2078
Diff 6-12 and Base ~ WGEE - AR(1) -0.2344 0.4077 -0.5749  0.5653
GEE - AR(1) -0.2357 0.4117 -0.5724  0.5671
DALE -0.2606 0.3776 -0.6901  0.4901
Diff 18-30 and Base WGEE - AR(1) -0.8161 0.4545 -1.7960  0.0726
GEE - AR(1) -0.8350 0.4581 -1.8230  0.0683
DALE -0.9123 0.4354 -2.0953  0.0361
Diff 36-52 and Base WGEE - AR(1) -0.4345 0.4856 -0.8948  0.3709
GEE - AR(1) 0.4448 04751 -0.9363  0.3491
DALE -0.4328 0.4549 -1.0174  0.3090

readily available to study mean trends, variance and covariances (see Section 8.2). Physical
functioning is strictly speaking not a continuous variable, but it has at least 6 levels, and
hence continuous methods seem justified for exploration. Individual profile plots may be
useful to distinguish cross-sectional from longitudinal patterns. Care has to be taken when
heterogeneous populations are involved. For larger data sets (leading to ‘busy’ individual
profiles) and in the presence of many important covariates, average profile plots may be more
straightforward to assess average trends.

Residual profiles can be studied to see whether there is constant variability over time, in
which case we would not include other random effects than intercepts in our model. Stan-
dardized residual plots may highlight the importance of certain variance components. Note
that the total variability can be split into a subject-level component, a serial component
and measurement error variability. Based on the variance function, it seemed plausible to
assume a constant variance over time. We therefore studied the variogram which showed
that the most important part of the process variance should be ascribed to a decaying serial
correlation. A scatter plot matrix of residuals with lowess estimated trends, may also be
helpful in studying the correlation structure.

Relying on the exploratory analysis, we assumed that every individual profile could be mod-
eled with time as a linear effect. Data reduction from the pool of potential covariates was
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performed using a backward selection procedure. To this end, the model fit statistics of the
SAS procedure MIXED were used.

We emphasized the importance of studying the underlying missing data processes. An
advantage of likelihood methods is that they can handle various types of incomplete data.
When the mechanism of missingness is MCAR both likelihood and frequentist methods can
be applied. With MAR missingness likelihood methods can be applied, while this does not
necessarily hold true for frequentist methods. It is therefore important to gather as much
information as possible about the missingness mechanisms in the data.

Compound symmetry is seldom an appropriate covariance structure in longitudinal data
derived from cancer clinical trials. Nevertheless, we retained it in most of the non-likelihood
analyses to assess the sensitivity of specifying different covariance structures (compound
symmetry, first-order autoregressive, unstructured covariance matrix) on the results. Note
that a random-effects model allows us to ascribe part of the variability in the data to random
effects. Therefore, generalized linear mixed models may also contribute to such a sensitivity
analysis.

Several estimation procedures (likelihood based or not) were considered and evaluated in a
second type of sensitivity analysis. Note that the performed GEE analyses must be seen as
sensitivity analyses, since evidence against MCAR was found. The GEE method is attractive
because, rather than having to make full distributional assumptions, it suffices to specify
the marginal expectation of the repeated measures (as in a cross-sectional study, using a
generalized linear model). The loss in efficiency (Liang and Zeger 1986) caused by replacing
the true correlation matrix by a working correlation matrix is, in most cases, negligible. This
may be explained by the use of the sandwich estimator which provides empirical estimates
of the standard errors and results in consistent estimates even under mis-specification of the
working correlation matrix.

Although the full data set was rather small, a reasonable consistency was observed between
the various models. However, minor shifts were detected in the significance valuation of
certain covariates and/or the precision by which they could be estimated, when comparing
estimation approaches. In particular, the significance of the treatment differences at the
various time points deviated from those obtained with other modeling approaches. This
could partially be explained by the fact that the estimation procedure for convergence had
to be weakened. Choosing one of the several existing approaches is primarily based on the
scientific objective of the study, combined with the need to describe the data adequately.
Where primary interest lies in inferences about the marginal parameters, as is normally the
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case in clinical trials, methods such as GEE and weighted GEE are appropriate. However,
a weighted GEE approach should be applied for analyzing data with dropouts not missing
completely at random. When interest lies in prediction and classification, good estimates of
the joint probabilities are required and a likelihood-based approach (such as the multivariate
Dale model) is to be preferred.

Where the correlation structure is of primary interest, a random-effects model might be
a more powerful tool. Although random-effects modeling can be extended to non-normal
responses, some uncertainty exists as to the proper interpretation of the random effects
estimated in such a setting (Breslow and Clayton 1993). If the response is non-normal
and the correlation or covariance parameters are of primary interest, a range of alternative
approaches exist which may be preferable (Breslow and Clayton 1993, Neuhaus 1992). These
include solutions based upon Markov chain Monte Carlo methods including Gibbs sampling
(Zeger and Karim 1991). A feature of the technique, especially in the light of longitudinal
QL data, is that it leads to valid estimates only if the missing data process is MAR.

The WGEE approach only requires specification of the missing data mechanism and the
marginal mean (not the associations), rather than the joint distribution of the missing data
indicators and the response vector of interest, which is an advantage over maximum likelihood
estimation. Used on incomplete data, the method yields consistent estimators when the
responses are MAR.

The multivariate Dale model, as used in Section 10.5.4, is a marginal model, based on cu-
mulative probabilities of (latent) continuous variables. Dependence between the outcomes is
taken into account via (generalized) global cross-ratios. As not only the marginal distribu-
tions and the bivariate cross-ratios are taken into account, the model gives rise to a complete
specification of the joint probabilities. Another strength of the multivariate Dale model is
its ability to deal with multi-categorical responses.

Software Used

The exploratory analysis of Section 10.3 was mainly performed in S-plus. The continuous
longitudinal analysis that followed was performed using PROC MIXED in SAS. Tt allows
for unbalanced data and can fit a wide range of models and covariance structures. The
additional GLIMMIX macro in SAS was used to fit a generalized linear mixed model. Note
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however that GLIMMIX produces model statistics such as the deviance and the scaled
deviance (defined as the deviance divided by the extra-dispersion parameter) that treat all
outcomes as if they were independent! In addition, the model-fitting information provided
by the PROC MIXED output is based on a linear transformation of the original data. Its
use is therefore questionnable. A fast and user-friendly implementation of the GEE method
is provided by the SAS procedure GENMOD. Model fit can be assessed using the scaled
deviance. Also the WGEE approach is easy to implement. We used PROC GENMOD again
and specified the missing data mechanism by calling the SAS option SCWGT w;. It has
the effect of multiplying the contributions of the log-likelihood function, the gradient, and
the hessian matrix by w;. Fixed effect parameters are estimated using estimating equations,
whereas estimates for the correlations are moment-based. Fitting a multivariate Dale model
is computationally somewhat more cumbersome and special attention has to be given to
specifying the association structure and/or starting values for the estimation procedure.
Computations are in general more time consuming than for instance the GEE approach of
Liang and Zeger (1986) or the weighted GEE approach. For a proper performance of the
available programs written in the statistical package GAUSS, a limited number of covariates
and time points is recommended. Additional software is available to combine the multivariate
Dale model with a logistic regression model for dropout. The latter however still needs further
development in order to be accessible to a wider audience.
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Discussion

Successful integration of QL endpoints into clinical trials requires a comprehensive approach
to research design, study implementation and statistical analysis. Much attention has been
devoted to the latter two issues, however study design has received less focus. In Chapter 4
several QL studies were described. In most of these studies it was planned to assess QL until
progression of disease, treatment failure or death, which ever occurred first. As such, most
dropouts were design driven. If the primary objective of a study is to compare the effect of
several palliative treatments on QL without expecting to prolong progression-free survival
then collecting QL while patients remain on treatment or progression-free may be entirely
appropriate. However, if the main objective of the trial is to extend the time to progression
or duration of survival it is vital that QL is assessed until death in order to examine the
overall impact of treatment on QL.

Further attention needs to be devoted to handling cases that are missing due to death.
These data are ‘missing’ in a very special way; they are not actually missing but are no
longer available since the subject is no longer alive. It is not sensible to treat their ‘missing’
values in the same way as those missing because of other reasons. Various studies using utility
measures have shown that on average patients are only willing to give up small amounts of
survival time in exchange for much improved QL (Rosendahl et al 1999). If survival times are
similar between treatment groups then the bias in treatment comparisons due to death will
be small. If survival times are significantly different between two groups then QL is generally
considered to be a secondary issue. Thus, performing a conditional analysis conditioning on
survival status appears to be a possible solution.

178
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As with the design of the QL component of a study, sufficient care and attention should be
taken at the beginning of a study to ensure an adequate infrastructure, including appropriate
personnel and material to carry out the study. No matter how well the analysis is thought
out and how accurate assumptions are about missing data mechanisms, inferences in the
presence of incomplete data are not as convincing as inferences based on a complete dataset.

Although, summary measures and summary statistics have been used extensively in QL re-
search to-date, they are limited for various reasons. Longitudinal data analyses make more
use of the available data. For example, they allow one: to examine the correlation structure
between repeated assessments during model fitting; to describe the between-patient variabil-
ity and within-patient variability; to take into account that patients with poorer scores may
be more likely to dropout earlier, and therefore produce potentially less biased results. In
addition, the dropout rate may be conditional on covariates such as treatment group. It is
not necessary to assume linear change of QL scores over time and analyzing the data lon-
gitudinally can circumvent the problems that arise when the treatment schedule, and thus
the QL assessment schedule, is not synchronized for treatment arms. Thus more sophisti-
cated techniques provide a clearer overall picture of the impact of disease and treatment
on the QL of patients. Although longitudinal techniques require a higher level of statistical
sophistication from the analyst the results can easily be disseminated and interpreted by a
non-statistical audience.

The use of selection models in QL settings appears to be intuitive because the dropout
process is thought of as being dependent on the measurement process. In contrast, the in-
terpretation of pattern-mixture models is not so obvious since it implies that the QL scores
for an individual are dependent on the time that patient will drop out. With selection
models assumptions need to be made concerning the dependence of the dropout process
on measurements which have not been obtained. Similarly, in Chapter 7 we observed that
pattern-mixture models are underidentified. The missing data taxonomy is usually presented
in the selection modeling framework rather than in the pattern-mixture context. Using the
terminology developed by Rubin (1976) the dropout process may be classified as MCAR,
MAR or MNAR. In Chapter 9 we showed that pattern-mixture models can be classified simi-
larly, and further that the intermediate MAR category is equivalent to the ACMYV restriction
in the case of monotone missingness. Using identifying restrictions all the parameters in the
model may be identified and so estimates for these parameters and the marginal probabili-
ties may be obtained. This provides a way to compare ignorable selection models with their
counterpart in the pattern-mixture setting.

Although selection models and pattern-mixture models are considered to be probabilistically
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equivalent, they shed different light in the context of a real data analysis. For example,
in pattern-mixture models the overall distribution of the longitudinal measurements is a
mixture of the conditional distributions, given the pattern of missingness. Therefore, the
overall distribution may not necessarily be multivariate normal.

In Chapter 9 we outlined a general framework for identifying restrictions in Section 9.4,
with particular attention being given to CCMV, ACMV and NCMV as special cases. We
illustrated that ACMV and NCMYV may be of particular interest in QL settings. The CCMV
strategy borrows information from the the ‘best’ group in the sense that it groups patients
who stay longer in the study and hence have on average a better prognosis. ACMV, which
compromises between all strategies may be more realistic, but NCMV may be even better
since information is borrowed from the nearest pattern, which is then based on the nearest
patients in terms of dropout time and perhaps prognosis and quality of life evolution.

Using the procedure described in Chapter 9 the analysis is performed in a series of steps. This
is advantageous as useful information such as the reasons for missingness, the patterns of
missingness and time dependent-covariates may be incorporated into the imputation process.
Multiple imputation accounts for sampling uncertainty leading to unbiasedness in terms of
both point estimates and measures of precision. Once the data is imputed inference may be
performed in any number of ways provided the proper nature of the imputation is preserved
(Rubin 1987). For example, one could conduct a per-pattern global analysis using pattern
as a covariate or even use selection modeling.

By contrasting these strategies on a single set of data, one obtains a range of conclusions
rather than a single one, which provides insight into the sensitivity to the assumptions made.
The identifying restrictions strategy provides further opportunity for sensitivity analysis,
beyond what has been presented here. Indeed, since CCMV and NCMV are extremes for
the w, vector in (9.3), it is very natural to consider the idea of ranges in the allowable space
of w,. Clearly, any w, which consists of non-negative elements that sum to one is allowable,
but also the idea of extrapolation could be useful, where negative components are allowed,
given they provide valid conditional densities.

As with many areas in statistical research we focused on the continuous data setting. How-
ever, an extension of the identifying restrictions strategies developed here to the categorical
data situation deserves further research. The approach presented here was developed into a
SAS macro. One of the priorities for analysis of QL measurements with missing data must
be improvement of the computational aspects of the methodology and widespread dissemi-
nation of usable software. Without tools of this sort, even the most effective method will be
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rendered useless—if a method is too difficult to implement, it will not be routinely used and
will eventually fail. Development of faster and easier software will facilitate the accumulation
of expereince with models for MNAR missing data, and will make feasible more extensive
testing of the methods, especially to determine the effects of model mis-specification.

The problem of missing data in quality of life research in clinical trials research is by no
means a trivial one, and while some solutions have begun to appear, a great deal of work
remains to be done. The work performed in this thesis constitute a step in the journey
toward a valid and complete analysis of quality of life data.



Chapter 12

Nederlandse Samenvatting

Dit werk richt zich op longitudinale gegevens uit data die levenskwaliteit bestuderen. Zulke
studies zijn onderhevig aan onvolledigheid in het algemeen en uitval ter wille van een ver-
scheidenheid aan redenen in het bijzonder. In Hoofdstuk 1 wordt een overzicht gegeven van
de eigenheid van studies m.b.t. levenskwaliteit. Onvolledigheid komt niet alleen vaak voor,
ze heeft ook verstrekkende gevolgen voor data manipulatie en analyse. Gedurende de laatste
decennia werden een aantal eenvoudige ad hoc methoden voorgesteld om het probleem van
onvolledige datasets te ondervangen. Een aantal hiervan worden overlopen en de gevaren
ervan worden onderstreept. Naast eenvoudige technieken, zoals een analyse van de volledige
gegevens en avatlable case analyse, wordt er recent meer werk gemaakt van het expliciet
modelleren van onvolledigheid. Sectie 1.4 geeft hiervan een overzicht.

In Hoofdstuk 2 wordt notatie en terminologie ingevoerd om het spreken over onvolledige
longitudinale studies te vergemakkelijken, in de context van levenskwaliteit. De familie van
missing data mechanismen zoals ingevoerd door Rubin (1976) worden voorgesteld, alsook
begrippen zoals ignorability, separabiliteit en vertekening.

Hoofdstuk 3 behelst een literatuurstudie. Verscheidene methoden voor het omgaan met on-
volledige gegevens worden ingevoerd, te beginnen met de klassieke methoden, zoals volledige
en beschikbare gegevens, om te vervolgen met imputatietechnieken. Zowel enkelvoudige als
meervoudige imputatie worden beschreven. Hierop aansluitend geven we een overzicht van
likelihood methoden, zowel voor continue als voor discrete respons variabelen.
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Hoofdstuk 4 introduceert de longitudinale datasets welke doorheen dit werk gebruikt worden.
Hoofdstuk 5 legt nadruk op het manipuleren van vragenlijsten die één of meer onvolledige
items bevatten. Methoden om de analyse hiervan mogelijk te maken worden besproken: (1)
case deletion (2) eenvoudige imputatie van het gemiddelde en (3) algemene imputatiemetho-
den. Eenvoudige imputatie van het gemiddelde is de meest verbreide methode en is gebaseerd
op traditionale psychometrische methoden voor het ontwerpen van schalen en de analyse er-
van. We geven voorbeelden van situaties waar deze aanpak niet aangewezen is en alternatieve
imputatiemethoden dienen beschouwd.

Hoofdstuk 6 bestudeert verscheidene technieken, voorgesteld in de literatuur, gekend onder
de termen summary measures en summary statistics. Deze methoden worden geillustreerd
m.b.v. data, verzameld in EORTC klinische studie 10921, in lokaal geavanceerde borstkanker.
In het bijzonder tonen we aan dat verschillende methoden tot verschillende conclusies leiden
m.b.t. kwaliteit van het leven. De beperkingen van deze methoden worden aangegeven:
(1) informatie gaat verloren omdat niet alle observaties gebruikt worden en (2) ze kunnen
vertekening veroorzaken omdat ze geeen rekening houden met ontbrekende gegevens en de
mechanismen die hiervoor verantwoordelijk zijn.

In Hoofdstuk 7 worden twee methoden voor het identificeren van het type van onvolledigheid
in levenskwaliteit onderzocht. De eerste aanpak is gebaseerd op het verzamelen van infor-
matie over waarom de gegevens niet volledig verzameld werden. Dit kan als basis dienen
om een onderscheid te maken tussen verschillende mechanismen. De tweede methode is erop
gericht het missing data mechanisme te modelleren en, hierop gebaseerd, een onderscheid
te maken tussen mechanismen via het toetsen van hypothesen. Twee methoden voor het
onderzoeken of de onvolledige gegevens missing completely at random (MCAR) zijn worden
voorgesteld en toegepast op onvolledige levenskwaliteit gegevens uit internationale multicen-
trische kankerstudies. De eerste methode (Ridout 1991) is gebaseerd op logistische regressie
en de tweede methode (Park en Davis 1993) vertrekt vanuit een modificatie van gewogen
kleinste kwadraten. In één toepassing (geavanceerde borstkanker) was het MCAR zijn niet
plausibel. In de tweede applicatie (vroeg stadium borstkanker) hing het al of niet MCAR
zijn af van de gebruikte schaal (haarverlies; anxiety). MCAR en MAR (missing at random)
hebben verschillende implicaties voor data analyse. Het is daarom van belang er een on-
derscheid tussen te maken. Discriminatie tussen MAR en missing not at random (MNAR)
is niet evident en vereist veronderstelling die fundamenteel niet kunnen getoetst worden
(Glynn, Laird en Rubin 1986).

Hoofdstukken 8 en 9 bestudeert continue respons variabelen. Twee alternatieve kaders voor
het modelleren van onvolledige longitudinale gegevens zijn in omloop: selectiemodellen (Dig-
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gle en Kenward 1994) en pattern-mixture modellen (Little 1993, Little 1995 en Hogan en
Laird 1997). Zij benaderen het probleem van dropout op een verschillende manier: in een
selectiemodel wordt de dropout kans beschreven, conditioneel op het meetproces. In een
pattern-mixture model worden de responsen gemodelleerd, conditioneel op dropout. Se-
lectiemodellen kunnen gebruikt worden in een sensitiviteitsanalyse om de invloed van ver-
scheidene veronderstellingen op, bijvoorbeeld, het effect van behandeling te onderzoeken.
Selectiemodellen vereisen veronderstellingen die fundamenteel niet kunnen getoetst worden.
In een pattern-mixture model wordt het dropout mechanisme gewoonlijk eenvoudig gemod-
elleerd, eventueel via een multinomiale verdeling om de proportie van de patiénten in een
bepaald patroon te beschrijven. De vereiste hierbij is dat er voldoende subjecten per pa-
troon zijn om efficiént schatten mogelijk te maken. Het aanpassen van een selectiemodel
kan tamelijk complexe vormen aannemen. Een pattern-mixture model leidt, eens aangepast,
op een voor de hand liggende manier tot marginale grootheden, zoals het marginale effect
van behandeling. In Hoofdstuk 8 worden beide methoden vergeleken a.h.v. twee datasets:
de milk protein content trial (Diggle en Kenward 1994) en levenskwaliteit in een EORTC
klinische studie.

De natuurlijke parameters in selectiemodellen en pattern-mixture modellen hebben een ver-
schillende betekenis en het ene kader in het andere vertalen is niet voor de hand liggend,
zelfs niet voor normaal verdeelde gegevens. Zoals eerder aangehaald, dienen niet verifieerbare
veronderstellingen gemaakt te worden m.b.t. de relatie tussen missing data en respons (dis-
cussie van Diggle en Kenward 1994, Molenberghs, Kenward, en Lesaffre 1997). In pattern-
mixture modellen is het expliciet zichtbaar welke parameters niet identificeerbaar zijn. Little
(1993) suggereert het gebruik van identificerende verbanden tussen identificeerbare en niet-
identificeerbare parameters. Dus, ondanks het feit dat zulke relaties zelf niet kunnen gev-
erifieerd worden (Little 1995), het voordeel is een grote duidelijkheid over welke informatie
vervat is in de data en welke niet. In Hoofdstuk 9 stellen we een nieuwe strategie voor voor
het aanpassen van pattern-mixture modellen die natuurlijk leiden tot sensitiviteitsanalyse.
We verkennen het idee van het exploreren van onvolledige patronen onder verscheidene as-
sumpties. Dit idee werd eerder gesuggereerd door Hogan (1999).

Levenskwaliteit wordt niet alleen longitudinaal opgetekend maar ook gebruik makend van
ordinale schalen. In de recente literatuur wordt meer en meer aandacht gegeven aan dit
soort van gegevens wanneer ze ook onderhevig zijn aan onvolledigheid. Het doel van Hoofd-
stuk 10 is het nagaan van verschillen in statistische conclusies wanneer verschillende mod-
ellen gebruikt worden. Dit wordt geillustreerd aan de hand van een EORTC faze III studie.
Hoofdstuk 10 legt de klemtoon op selectiemodellen. Voor informatie m.b.t. pattern-mixture
modellen verwijzen we naar Michiels, Molenberghs, en Lipsitz (1999). In Hoofdstuk 10 fit-
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ten we eerst een random-effects model om een binaire longitudinale respons (afgeleid van
de fysische functioneringsschaal van de QLQ-C30) te linken aan verscheidene covariaten. In
een tweede aanpak worden marginale modellen aangepast gebaseerd op de eerder afgeleeide
gemiddelde structuur. Het aangepaste marginale model verschilt m.b.t. de schattingsmeth-
ode: generalized estimating equations (GEE), weighted generalized estimating equations
(WGEE) en maximum likelihood (ML).



Appendix

A.1 Variogram

Specializing (8.1) to random intercept only, D simplifies to a scalar, d say, and it is easy to
show (Diggle 1990) that the variogram equals

V(u) =0® + 71— p(w)),

where u = t;;—t;, is the time lag between both measurements and p(u) is the serial correlation
between two measurements with the specified lag, calculated for example from

tij —t; ot
COI‘I‘(tij, t’/,k) = exp (—’j%ﬂ) = ,0|t” t”“', (1)
where p = exp(—1/¢) or from the Gaussian counterpart:
tij — tin)? ot )?

with p = exp(—1/¢?).

Note that V(0) = 02 and V(c0) = 02 + 72. Plotting the process variance,

Var(Yy) = v* + o> 4+ 72,
as a horizontal line and the variogram as a curve, the three components of variability are easy
to retrieve. The measurement error is V(0), the random intercept variance is the difference
between the process variance and V(oo), and the variance of the serial process is seen as
the band, occupied by the variogram, which increases from V(0) to V(oco). With irregularly

spaced data, it is usually necessary to smooth the variogram. The shape of the variogram
conveys information about the structure of the serial correlation function.
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A.2 WHO Performance Status

The WHO Performance Status is determined by a medical doctor when conducting a patient
examination.

Grade  Performance status
0 Able to carry out all normal activity without restriction.

1 Restricted in physical strenuous activity but ambulatory
and able to carry out light work.

2 Ambulatory and capable of all self-care but unable to carry out
any work: up and about more than 50% of waking hours.

3 Patient is up and about <50% of waking hours.

4 Complete disabled; cannot carry on any self-care,
totally confined to bed or chair.
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A.3 Prostate (ICD-0O 185); T, N, M and G Categories

Rules for Classification
The classification applies only to carcinoma. There should be histological confirmation of
the disease. The following are the procedures for assessment of the T, N and M categories:

T categories Physical examination, imaging, endoscopy and biopsy
N categories  Physical examination and imaging
M categories Physical examination, imaging, skeletal studies and biochemical tests

Regional Lymph Nodes

The regional lymph nodes are the nodes of the true pelvis which essentially are the pelvic
nodes below the bifurcation of the common iliac acteries. Laterality does not effect the N
classification.

TNM Clinical Clasification

T - primary tumour

TX primary tumour
TO no evidence of primary tumour
T1 Tumour is incidential histological finding
Tla 3 or fewer microscopic foci of carcinoma
T1b More than 3 microscopic foci of carcinoma
T2 Tumour present clinically or grossly, limited to the gland
T2a Tumour 1.5 cm or less in greatest dimension with
normal tissue on at least three sides
T2b Tumour more than 1.5 cm in greatest dimension or
in more than one lobe
T3 Tumour invades into the prostatic apex or into or
beyond the prostatic capsule or bladder neck or semonal vesical,
but is not fixed
T4 Tumour is fixed or invades adjacent structures other than those listed in T3
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N-regional lymph nodes

The definitions of the N categories apply to all urological sites except penis. There are:

NX Regional lymph nodes cannot be assessed
NO  No regional lymph node metastasis
N1 Metastasis in a single lymph node 2 cm or less in greatest dimension
N2  Metastasis in a single lymph node more than 2 cm but

not more than 5 cm in greatest dimension,

or multiple lymph nodes, none more than 5 cm in greatest dimension
N3  Metastasis in a lymph node more than 5 cm in greatest dimension

M-distant metastasis
The definitions of the M categories for all urological tumours are:

MX Presence of distant metastasis cannot be assessed
MO No distant metastasis
M1 distant metastasis

The categories M1 and pM1 may be further specefied according to the following notation:

Pulmonary PUL  Bone marrow MAR

Osseous 0SS Pleura PLE
Hepatic HEP Peritoneum PER
Brain BRA  Skin SKI

Lymph nodes LYM  Other OTH

PTNM Pathological Classification

The pT, pN and pM categories correspond to the T, N and M categories.
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G Histopathological Grading

GX Grade of differentiation cannot be assessed

Gl  Well differentiated, slight anaplasia

G2  Moderately differentiated, moderata anaplasia

G3-4 Poorly differentiated-undifferentiated, marked anaplasia
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