An Algebra for OLAP

Peer-reviewed author version

KUIJPERS, Bart \& VAISMAN, Alejandro (2017) An Algebra for OLAP. In: Intelligent Data Analysis, 21(5), p. 1267-1300.

DOI: 10.3233/IDA-163161
Handle: http://hdl.handle.net/1942/21221

An Algebra for OLAP

Bart Kuijpers
Hasselt University, Belgium
Alejandro Vaisman*
Instituto Tecnológico de Buenos Aires, Argentina

Abstract

OLAP (On Line Analytical Processing) comprises tools and algorithms that allow querying multidimensional (MD) databases. OLAP is based on the MD model, where data can be seen as a cube, where each cell contains one or more measures of interest, that can be aggregated along dimensions. Despite the extensive corpus of work in the field, a formally defined, reference language for OLAP is still needed, as there is no well-defined, accepted semantics, for many of the usual OLAP operations. In this paper, we address the problem, and present a set of operators that manipulate a data cube, clearly define their semantics, and prove that they can be composed, yielding a language powerful enough to express complex OLAP queries. We express these operations as a sequence of atomic transformations over a fixed MD matrix whose cells contain a sequence of measures. Each atomic transformation produces a new measure. When a sequence of transformations forms an OLAP operation, additionally, a flag is produced that indicates which cells must be considered as input for the next operation. In this way, an elegant algebra is defined. Our main contribution, with respect to other similar efforts in the field is that, for the first time, a formal proof to practical problems is given, and we believe the present work will serve as a basis to build more solid practical tools for data analysis.

Keywords: OLAP, Data Warehousing, Algebra, Data Cube, Dimension Hierarchy

1. Introduction

OLAP (On Line Analytical Processing) [1] comprises a set of tools and algorithms that allow efficiently querying multidimensional (MD) databases containing large amounts of data, usually called Data Warehouses (DW). Conceptually, in the MD model, data can be seen as a cube, where each cell contains one or

[^0]more measures of interest, that quantify facts. Measure values can be aggregated along dimensions, which give context to facts. At the logical level, OLAP data are typically organized as a set of dimension and fact tables. Typically, current database technology allows alphanumerical warehouse data to be integrated for era of so-called "Big Data", the kinds of data that could be handled by data management tools, are likely to increase in the near future.

Although OLAP and Business Intelligence (BI) tools allow to manage different kinds of information, this normally requires that the user must be aware
15 of models and query languages appropriate for each data type incorporated in the process. For example, we may have alphanumerical data coming from a local DW, spatial data (e.g., temperature) coming as rasterized images, and economical data published on the semantic web. A user who needs to integrate all of these data for analysis would need to have a knowledge not only of some
20 OLAP language (or OLAP graphic tools), but also must know how to deal with spatial data, and even with SPARQL (the standard query language for the semantic web). Ideally, this user would just like to deal with what she knows well, namely the data cube, using only the classical OLAP operators, like Roll-up, Drill-down, Slice, and Dice (among other ones), regardless the cube's underlyor just alphanumerical). These data types should be handled only at the logical and physical levels, not at the conceptual level. This is the idea introduced by Ciferri et al. [2], who proposed a model independent of technologies like ROLAP (for Relational OLAP), MOLAP (for Multidimensional OLAP) or HOLAP (for conceptual level, thus providing high-level query operations for the user. Thi language, called Cube Algebra, was sketched informally in that paper. Building on this algebra, extensive examples are presented in 3], suggesting that this idea can lead to a language much more intuitive and simple than the de facto 35 standard MDX [4]. Nevertheless, these works do not give (since this was not their goal) any evidence of the correctness of the languages and operations proposed, other than examples with various degrees of comprehensiveness. In fact, surprisingly, and in spite of the extensive corpus of work in the field, a formally defined, reference language for OLAP is still needed 5. There is not even a ${ }^{0}$ well-defined, accepted semantics, for many of the usual OLAP operations.

1.1. Contributions

In this paper we address the problem introduced above. To this end, we:

- introduce a collection of operators that manipulate a data cube, and clearly define their semantics;
- prove, formally, that our operators can be composed, yielding a language powerful enough to express complex queries and cube navigation (" $\grave{a} l a$ OLAP") paths.

We achieve the above representing the data cube as a fixed d-dimensional matrix, and a set of k measures, and expressing each OLAP operation as a typical operations composition.

Macedo and Oliveira 8 present an approach that can be considered close to ours, since they represent MD data as a matrix, with the idea of expressing
90 OLAP operations in linear algebra (LA). The paper's motivation is, like in our case, to fill the theoretical gap in the field. The proposal expresses some simple OLAP operations, mainly cross tabulations, as a combination of matrix multiplication, transposition, and a variant of the Kronecker product. However, this proposal is very preliminary, as the author's acknowledge, since no justification ${ }_{95}$ of the approach is provided. Further, as it is, the work is oriented to Excel
spreadsheets rather than to OLAP, and it has yet to be incorporated into a typical MD model for OLAP.

In a more OLAP-oriented approach, Vassiliadis 9] presented a classic MD model, which includes the concepts of dimensions, hierarchies, and cubes. The author also proposes a set of operators based on the notion of a base cube, e.g., a cube at the finest granularity level. These operations are: level climbing, packing, function application, projection, navigation, slicing, and dicing. Again, no formal language is presented. Ravat et al. [10] also propose an OLAP algebra at the conceptual level, trying to overcome their drawbacks, although no formal semantics is defined for the algebra presented by the authors.

Some works have already made use of the cube algebra proposed in [2]. Gómez el al. 11 used cube algebra to manipulate different kinds of spatial data, namely discrete data and continuous fields implemented in several different ways, like Voronoi diagrams and rasterized data. They implemented cube algebra at a conceptual level, and all the needed machinery to manipulate the heterogeneous cubes at the logical and physical levels. Similar work, but with semantic web data, is presented in 12. We envision that applications like these, are likely to grow in number and variety, for which a formalization of this algebra, like the one proposed in this paper, is clearly needed.

Many proposals also exist in the OLAP literature, defining several different sets of operators to handle MD data, although none of them abstract from the logical level and thus, do not provide high-level query operations for the user. For a comprehensive survey, we refer the reader to 2$]$.

1.3. Paper Organization

The remainder of the paper is organized as follows. In Section 2 , we present our MD data model, on which we base the rest of our work. Section 3 presents the atomic transformations that we use to build the OLAP operations. In Section 4 we discuss the classical OLAP operations in terms of the transformations, show how they can be composed to address complex queries, and give proofs of all of our claims. We conclude in Section 5. Additional proofs are given in the appendix.

2. The OLAP data model

In this section, we describe the OLAP data model, which is the multidimensional data cube. Before we give the definition of the data cube, we define what we mean by its matrix. The "empty" matrix serves as a placeholder for the measures that are contained in the data cube. We also define the notions of dimension schema (with hierarchies and levels) and dimension instance (level instance, hierarchy instance and dimension graph). We end this section with a discussion of ordered domains and the representation of higher-level objects.

2.1. Multidimensional Matrix

In this section, we give the definitions of a multidimensional matrix schema and a multidimensional matrix instance. In the following definition and throughout this paper, d is a natural number, with $d \geq 1$, which represents the number of dimensions of a data cube.

Definition 1 (Matrix Schema). A d-dimensional matrix schema is a sequence $\left(D_{1}, D_{2}, \ldots, D_{d}\right)$ of d dimension names.

140 Dimension names can be considered to be strings. As illustrated in the following example, we use the notational convention to start dimension names with a capital letter.

Example 1. Our running example deals with sales information of certain products, at certain locations, at certain moments in time. For this purpose, we use the 3-dimensional matrix schema $\left(D_{1}, D_{2}, D_{3}\right)=($ Product, Location, Time $)$.

Definition 2 (Matrix Instance). A d-dimensional matrix instance (or a matrix, for short) over the d-dimensional matrix schema $\left(D_{1}, D_{2}, \ldots, D_{d}\right)$ is a product

$$
\operatorname{dom}\left(D_{1}\right) \times \operatorname{dom}\left(D_{2}\right) \times \cdots \times \operatorname{dom}\left(D_{d}\right)
$$

where, for $i=1,2, \ldots, d, \operatorname{dom}\left(D_{i}\right)$ is a non-empty, finite, ordered set, called the domain, that is associated with the dimension name D_{i}. For all $i=1,2, \ldots, d$, we denote by $<$, the order that we assume on the elements of $\operatorname{dom}\left(D_{i}\right)$. For $a_{1} \in \operatorname{dom}\left(D_{1}\right), a_{2} \in \operatorname{dom}\left(D_{2}\right), \ldots, a_{d} \in \operatorname{dom}\left(D_{d}\right)$, we call the tuple ($a_{1}, a_{2}, \ldots, a_{d}$) a cell of the matrix.

The cells of a matrix serve as placeholders for the measures that are contained in the data cube (see Definition 7). The role of the order $<$ is discussed further in Section 2.4.

We use the notational convention to start elements of the domains $\operatorname{dom}\left(D_{i}\right)$ with a lower case letter, as it is illustrated in the following example.

Example 2. For the 3-dimensional matrix schema $\left(D_{1}, D_{2}, D_{3}\right)=$ (Product, Location, Time) of Example 1, the non-empty sets $\operatorname{dom}\left(D_{1}\right)=\{$ lego, brio, apples, oranges $\}$, dom $\left(D_{2}\right)=\{$ antwerp, brussels, paris, marseille\}, and $\operatorname{dom}\left(D_{3}\right)=\{1 / 1 / 2014, \ldots, 31 / 1 / 2014\}$ give rise to the matrix instance

$$
\operatorname{dom}\left(D_{1}\right) \times \operatorname{dom}\left(D_{2}\right) \times \operatorname{dom}\left(D_{3}\right)
$$

This matrix is shown in Figure 3. The cells of the matrix contain the sales figures for each combination of values in the domain. On $\operatorname{dom}\left(D_{2}\right)$, we have, for
instance, the order antwerp $<$ brussels $<$ paris $<$ marseille. On the dimension Time, we would typically have the temporal order.

2.2. Level Instance, Hierachy Instance and Dimension Graph

In this section, we define the notions of dimension schema (with hierarchies

Definition 3 (Dimension Schema, Hierarchy and Level). Let D be a dimension name. A dimension schema $\sigma(D)$ for D is a lattice with a unique topnode, called All (which has only incoming edges) and a unique bottom-node, called Bottom (which has only outgoing edges), such that all maximal-length paths in the graph go from Bottom to All.

Any path from Bottom to All in a dimension schema $\sigma(D)$ is called a hierarchy of $\sigma(D)$. Each node in a hierarchy (or in a dimension schema) is called a level (of $\sigma(D)$).

We use the notational convention to start level names with a capital letter. We remark that the Bottom node is often renamed, depending on the application, as is illustrated in the following example. This example also introduces a non-graphical notation for hierarchies.

Example 3. Figure 1 gives examples of dimension schemas σ (Location) and σ (Time) for the dimensions Location and Time from Example 1 .

For the dimension Location, we have Bottom $=$ City and there is only one hierarchy, which we denote as

$$
\text { City } \rightarrow \text { Region } \rightarrow \text { Country } \rightarrow \text { All. }
$$

The node Region is an example of a level in this hierarchy.
For the dimension Time, we have Bottom $=$ Day and we have two hierarchies, namely Day \rightarrow Month \rightarrow Semester \rightarrow Year \rightarrow All and Day \rightarrow Week \rightarrow All.

We remark that for the dimension Location, we have a linear lattice as a dimension schema. In this example, this is not the case for the dimension Time.

(a)

(b)

Figure 1: Dimension schemas for the dimensions Location, in (a), and Time, in (b).

Definition 4 (Level Instance, Hierachy Instance, Dimension Graph).

 Let D be a dimension with schema $\sigma(D)$, and let ℓ be a level of $\sigma(D)$. A level instance of ℓ is a non-empty, finite set $\operatorname{dom}(D . \ell)$. If $\ell=A l l$, then $\operatorname{dom}(D . A l l)$ is the singleton $\{a l l\}$. If $\ell=B o t t o m$, then $\operatorname{dom}(D . B o t t o m)$ is the the domain of the dimension D, that is, $\operatorname{dom}(D)$ (as in Definition 2).A dimension graph (or instance) $I(\sigma(D)$) over the dimension schema $\sigma(D)$ is a directed acyclic graph with node set

$$
\bigcup_{\ell} \operatorname{dom}(D \cdot \ell)
$$

where the union is taken over all levels in $\sigma(D)$. The edge set of this directed acyclic graph is defined as follows. Let ℓ and ℓ^{\prime} be two levels of $\sigma(D)$, and let $a \in \operatorname{dom}(D . \ell)$ and $a^{\prime} \in \operatorname{dom}\left(D \cdot \ell^{\prime}\right)$. Then, only if there is a directed edge from ℓ to ℓ^{\prime} in $\sigma(D)$, there can be a directed edge in $I(\sigma(D))$ from a to a^{\prime}.

If H is a hierarchy of $\sigma(D)$, then the hierarchy instance (relative to the dimension instance $I(\sigma(D)))$ is the subgraph of $I(\sigma(D))$ with nodes from $\operatorname{dom}(D . \ell)$, for ℓ appearing in H. This subgraph is denoted by $I_{H}(\sigma(D))$.

We use the notational convention to start the names of objects from a set $\operatorname{dom}(D . \ell)$ with a lower case character.

We remark that a hierarchy instance $I_{H}(\sigma(D))$ is always a (directed) tree, since a hierarchy is a linear lattice. We also use the following terminology. If a and b are two nodes in a hierarchy instance $I_{H}(\sigma(D))$, such that (a, b) is in the transitive closure of the edge relation of $I_{H}(\sigma(D))$, then we say that a rolls-up to b and we denote this by $\rho_{H}(a, b)$ (or $\rho(a, b)$ if H is clear from the context).

The following example illustrates these concepts.

Example 4. We continue with Example 3 and focus on the dimension Location, whose dimension schema, σ (Location), is given in Figure 1 (a). From Example 2, we have $\operatorname{dom}($ Location $)=\{$ antwerp, brussels, paris, marseille $\}$, which is dom(Location.Bottom), or dom(Location.City). For the levels Region and Country, we have dom(Location.Region) $=\{$ flanders, capital, north, south $\}$, and $\operatorname{dom}($ Location.Country $)=\{$ belgium, france $\}$, respectively. An example of a dimension instance $I(\sigma($ Location $))$ is depicted in Figure 2 . This example expresses, for instance, that the city brussels is located in the region capital which is part of the country belgium. This means that brussels rolls-up to capital and to belgium, that is, $\rho($ brussels, captial $)$ and ρ (brussels, belgium).
We also remark that the dimension instance of Figure 2 is indeed a tree.

Figure 2: An example of a dimension graph (or instance) $I(\sigma($ Location $)$).
In a dimension graph with multiple hierarchies, elements in some levels may be reachable from elements in the Bottom level, in multiple ways. However, formalised by the concept of "sound" dimension graph.

Definition 5 (Sound Dimension Graph). Let $I(\sigma(D)$) be a dimension graph (as in Definition 4). We call this dimension graph sound, if for any level ℓ in
$\sigma(D)$ and any two hierarchies H_{1} and H_{2} that reach ℓ from the Bottom level and any $a \in \operatorname{dom}(D)$ and $b_{1}, b_{2} \in \operatorname{dom}(D . \ell)$, we have that $\rho_{H_{1}}\left(a, b_{1}\right)$ and $\rho_{H_{2}}\left(a, b_{2}\right)$ imply that $b_{1}=b_{2}$.

In this paper, we assume that dimension graphs are always sound (as specified in Definition 7).

2.3. Multidimensional Data Cube

 schema and a data cube instance. Essentially, a data cube is a matrix in which the cells are filled with measures that are taken from some value domain Γ. For many applications, Γ will be the set of real or rational numbers. But we may also think of applications where Γ includes spatial regions or other geometric objects, for instance.Definition 6 (Data Cube Schema). A d-dimensional data cube schema consists of

- a d-dimensional matrix schema $\left(D_{1}, D_{2}, \ldots, D_{d}\right)$; and
- a hierarchy schema $\sigma\left(D_{i}\right)$ for each dimension D_{i}, with $i=1,2, \ldots, d$.

Definition 7 (Data Cube Instance). Let Γ be a non-empty set of "values".
A d-dimensional, k-ary data cube instance (or data cube, for short) \mathcal{D} over the d-dimensional matrix schema $\left(D_{1}, D_{2}, \ldots, D_{d}\right)$ and hierarchy schemas $\sigma\left(D_{i}\right)$ for D_{i}, for $i=1,2, \ldots, d$, with values from Γ, consists of

- a d-dimensional matrix instance over the matrix schema $\left(D_{1}, D_{2}, \ldots, D_{d}\right)$, denoted $M(\mathcal{D})$;
- for each $i=1,2, \ldots, d$, a sound dimension graph $I\left(\sigma\left(D_{i}\right)\right)$ over $\sigma\left(D_{i}\right)$;
- k measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$, which are functions from $\operatorname{dom}\left(D_{1}\right) \times \operatorname{dom}\left(D_{2}\right) \times$ $\cdots \times \operatorname{dom}\left(D_{d}\right)$ to the value domain Γ; and
- a flag φ, which is a function from $\operatorname{dom}\left(D_{1}\right) \times \operatorname{dom}\left(D_{2}\right) \times \cdots \times \operatorname{dom}\left(D_{d}\right)$ to the set $\{0,1\}$.

For the remainder of this paper, we assume that $\Gamma=\mathbf{Q}$, the set of the rational numbers. For most applications, this suffices. Also, as a notational convention, we use calligraphic characters, like \mathcal{D}, to represent data cube instances.

The flag φ can be considered as a $(k+1)$-st measure that is Boolean. The role of φ is to indicate which of the matrix cells are currently "active". The active cells have a flag value 1 and the others have a flag value 0 . When we operate over a data cube, flags are used to indicate the input or output parts of the matrix of the cube. Typically, in the beginning of the operations, all cells have a flag value of 1 . The role of flags will become more clear in the next sections, when we discuss OLAP transformations and operations.

Figure 3: An example of a data cube with one measure: $\mu_{1}=$ sales.

Example 5. We build on the previous examples. Figure 3 shows a 3-dimenional 1-ary data cube instance over the matrix schema (Product, Location, Time) and dimension schema σ (Product), σ (Location), and σ (Time) (two of which were given in Example 3 , with the set of the rational numbers as value domain. The matrix cells contain one measure, namely $\mu_{1}=$ sales, which expresses the sales amount per product, per location and per time instant. Initially, the flag φ may be, for instance, 1 for all matrix cells (not indicated in Figure 3), telling that all cells of the matrix are currently active.

2.4. Ordered domains and the representation of higher-level objects

In the process of performing OLAP transformations and operations, we may need to store aggregate information about certain measures at some level above the Bottom level. We do nor foresee extra space for this in the data cube. We use the available cells of the original data cube to store this aggregate information,
yielding a more elegant solution, since this allows us to manipulate always the same cube schema while we perform a sequence of operations over the cube, as 225 we will see later.

Recall that in Definition 2 we have assumed an order $<$ for the domains $\operatorname{dom}\left(D_{i}\right)$. We make use of this order for the representation of high-level objects by Bottom-level objects. The following definition specifies how this is achieved.

Definition 8. Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{d}\right\}$ be an arbitrary dimension with domain $\operatorname{dom}(D)=\operatorname{dom}(D$. Bottom $)$. Let ℓ be a level of $\sigma(D)$. An element $b \in \operatorname{dom}(D . \ell)$ is represented by the smallest element $a \in \operatorname{dom}(D)$ (according to $<$) for which $\rho(a, b)$. We denote this as $\operatorname{rep}(b)=a$ and say that a represents b.

We remark, that since we assume dimension graphs to be sound, this notion 230 of representation is well defined, because the smallest element of the bottom level will always reach the same element in any level, regardless of the path traversed.

The following example illustrates the concept of representation.

Example 6. Continuing the previous examples, we consider the dimension
${ }_{235}$ Location with dom(Location) $=\{$ antwerp, brussels, paris, marseille $\}$, which is dom(Location.City). On this set, we assume the order antwerp $<$ brussels $<$ paris $<$ marseille. For this dimension, we have the hierarchy City \rightarrow Region \rightarrow Country \rightarrow All, and we consider the dimension instance $I(\sigma($ Location $)$), given in Figure 2.

At the Bottom = City level, cities represent themselves. On higher levels, regions and countries are represented by their "first" city in dom(Location) (according to $<$). This means that flanders and belgium are represented by antwerp, france is represented by paris, while south is represented by marseille. Let us explain further explain this. For the level Region, we have $\operatorname{dom}($ Location.Region $)=\{$ flanders, capital, north, south $\}$. At this level, antwerp represents flanders and marseille represents south, since they are the first (and, in this case only) domain elements that roll-up to these regions. So, we have rep(flanders $)=$ antwerp. For the level Country, we have dom $($ Location.Country $)=\{$ belgium, france $\}$. At this level antwerp represents belgium and paris represents france, since they are the first (but not
only) domain elements that roll-up to these countries. At the level All, we have antwerp that represents all.

Later, we use this convention, to encode outputs of OLAP transformations and operations at different levels. That means, in our running example, if we want to represent an output at the Country level, we will flag antwerp and paris to represent belgium and france. The idea is to store aggregate information for higher-level objects in the cells of their Bottom-level representatives. In an output cube that contains this aggregate information, we have these representatives flagged 1 and other cells flagged 0.

Remark 1. However, there remains a problem, as the previous example illustrates. In this example, if we have aggregate information at the level Region, with dom(Location.Region) $=$ \{flanders, capital, north, south $\}$, then all cities of $\operatorname{dom}($ Location $)=\{$ antwerp, brussels, paris, marseille $\}$ are flagged. At this point, it would not be clear if the cube contains information at the level

City or at the level Region. If we keep a log of the OLAP operations that are performed, this log makes the level of aggregation clear.

The following property shows how the order on the Bottom level induces and order on higher levels. This property depends on the soundness of the dimension graph. Its proof is straightforward and we omit it.

Property 1. Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{d}\right\}$ be a dimension of a data cube \mathcal{D} and let ℓ be a level in the dimension schema $\sigma(D)$. The order $<$ on $\operatorname{dom}(D)$ induces an order (also denoted $<$) on $\operatorname{dom}(D . \ell)$ as follows. If $b_{1}, b_{2} \in \operatorname{dom}(D . \ell)$, then $b_{1}<b_{2}$ if and only if $\operatorname{rep}\left(b_{1}\right)<\operatorname{rep}\left(b_{2}\right)$.

3. OLAP transformations and operations

A typical OLAP user manipulates a data cube by means of well-known operations. Just to mention the most popular ones, Roll-Up aggregates measures up to a certain level in a dimension, Drill-Down disaggregates measures up to a certain level in a dimension, Slice drops a whole dimension, and Dice keeps tions, which we will formally define later in this paper, actually express queries over the data cube, usually submitted using some graphic tool, and translated into an underlying query language. The result is typically displayed in graphic or tabular format. An OLAP query can then be considered as a sequence of these individual operations, which receive a cube as input, and return a cube as output. For instance, using our running example, an apparently simple query
like "Total sales by region, for regions in Belgium or France", is actually expressed as a sequence of operations, whose semantics should be clearly defined, and which can be applied in different order (with the same result). For exam- ple, we can first apply a Roll-Up to the Country level, and once at that level apply a Dice operation, which keeps the tuples corresponding to Belgium or France. Finally, a Drill-Down disaggregates the sales down to the level Region, returning the desired result. Note that since the sales not occurred in Belgium and France have been eliminated, this last operation must only consider the remaining members in Country. Thus, the Drill-Down operation is not a just an undo of the previous Roll-Up, as it is sometimes considered to be. Note that, in practice, this problem appears regardless of the processing type, that is, whether the operation sequence is submitted as an expression in a query language, or is processed during the user's navigation through a graphic tool.

In what follows, we regard OLAP operations as the result of sequences of "atomic" OLAP transformations, which are measure-creating updates to a data cube. First, we give the definition of an OLAP transformation. Next, we show how these transformations can be combined into OLAP operations and how OLAP operations can be composed, along the lines explained at the beginning of this section. Finally, we give an overview of our arsenal of atomic OLAP transformations.

We start this section with an informal description of atomic OLAP transformations, OLAP operations and their composition.

3.1. Introduction to OLAP transformations and operations

An atomic OLAP transformation acts on a data cube instance, by adding a measure to the existing data cube measures. OLAP operations like the ones informally introduced above are defined, in our approach, as a sequence of transformations. The process of OLAP transformations starts from a given input data cube $\mathcal{D}_{\text {in }}$. We assume that this original data cube has k given measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ (as in Definition 7). These k measures have a special status in the sense that they are "protected" and can never be altered (see Section 3.3). However, there is one exception to this protection. These original measures can be "destroyed" in some cells (see further on and Section 3.2), for instance, as the result of slice- or dice-operations, which are destructive by nature. Operations of these types destroy the content of some matrix cells and remove even the protected measures in it.

Typically, the input-flag φ of the original data cube $\mathcal{D}_{i n}$ is set to 1 in every cell and signals that every cell of $M\left(\mathcal{D}_{i n}\right)$ is part of the input cube.

On data cubes, atomic OLAP transformations can be applied. They add (or create) new measures to the sequence of existing measures by adding new measure values in each cell of the data cube's matrix. At any moment in this process, we may assume that the data cube \mathcal{D} has $k+l$ measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{1}, \ldots, \tau_{l}$, where the first k are the original measures of $\mathcal{D}_{i n}$ and where the last l (with $l \geq 0$) measures have been created subsequently by l OLAP transformations. A next OLAP transformation adds a new measure τ_{l+1} to the matrix cells.

We have said that we use OLAP transformations to compute OLAP operations. In this sense, we can see that many of the measures $\tau_{1}, \tau_{2}, \ldots, \tau_{l}$ added by
the transformations in a process, may represent the result of intermediate computations that are not really relevant to the output of an OLAP operation. We

Summarizing the above, after an OLAP operation of output arity m is completed on some cube \mathcal{D}, the measures in the cells of the output data cube $\mathcal{D}^{\prime}=O(\mathcal{D})$ are of the form

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{l-m+1}, \tau_{l-m+2}, \ldots, \tau_{l} ; \varphi_{O}^{(m)}}
$$

In the previous expression, the underlining indicates the protected status of these measures. After each OLAP operation, we do a "cleaning" by renaming the unprotected measures with the symbols $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ and the output measures become

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k}} ; \tau_{1}, \tau_{2}, \ldots, \tau_{m} ; \varphi_{O}^{(m)} .
$$

A next OLAP operation O^{\prime} can then act on \mathcal{D}^{\prime} and use in its computation all the measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{1}, \tau_{2}, \ldots, \tau_{m} ; \varphi_{O}^{(m)}$. When O^{\prime} finishes its computation after adding l^{\prime} measures $\tau_{m+1}, \tau_{m+2}, \ldots, \tau_{m+l^{\prime}}$ and producing a m^{\prime}-ary output, the new measures in the cells will look like

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k} ;} \tau_{m+l^{\prime}-m^{\prime}+1}, \tau_{m+l^{\prime}-m^{\prime}+2}, \ldots, \tau_{m+l^{\prime}} ; \varphi_{O^{\prime}}^{\left(m^{\prime}\right)}
$$

The last m^{\prime} measures before the flag are renamed $\tau_{1}, \tau_{2}, \ldots, \tau_{m^{\prime}}$, again. In this way, the composition of OLAP operations should be viewed.

We remark that the dimensions, the hierarchy schemas and instances of \mathcal{D} remain unaltered during the entire OLAP process.

We end this description of our view of OLAP transformations, OLAP operations and their composition, with a remark on destructors. Destructors are similar to flags, in the sense that they are computed by some sequence of atomic OLAP transformations and that they are Boolean. A destructor, optionally, precedes the creation of an output flag. A destructor δ takes the value 1 for some cells of the matrix of a data cube, and 0 on other cells. When δ is invoked (and activated by the output flag that follows it) on a data cube \mathcal{D} with measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{1}, \tau_{2}, \ldots, \tau_{m}$ and flag $\varphi_{O}^{(m)}$, it empties all cells for which the value of the destructor δ is 0 by removing all measures from them, even the protected ones, thereby effectively "destroying" these cells. This is the only case where the protected measures are altered.

For example, this happens when the OLAP operation is a slice or a dice. Operations of this type destroy part of the cube and make them inaccessible for further use. In this context, the output of a destructive operation O looks like

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k}} ; \tau_{1}, \tau_{2}, \ldots, \tau_{l} ; \delta ; \varphi_{O}^{(m)}
$$

in which the destructor precedes the output flag. The effect of the presence of a destructor is the following. A cell such that $\delta=0$ is emptied, after which it contains no more measures and flag. For cells with $\delta=1$, the sequence of measures $\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k}} ; \tau_{1}, \tau_{2}, \ldots, \tau_{l} ; \delta ; \varphi_{O}^{(m)} ;$ is transformed to $\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{l-m+1},}$ $\tau_{l-m+2}, \ldots, \tau_{l} ; \varphi_{O}^{(m)}$; which is renamed as $\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{1}, \tau_{2}, \ldots, \tau_{m} ; \varphi ;$ before the next transformation takes place. This transformation will act, cell per cell, on the matrix of a cube, with the understanding that it does nothing with emptied cells. That is, no new measure can ever be added to a destroyed cell.

3.2. OLAP transformations

The following definition specifies how an OLAP transformation acts on a data cube. The atomic OLAP operations that appear in this definition are specified further on in this section.

Definition 9 (OLAP Transformation). Let \mathcal{D} be a d-dimensional, $(k+l)$ ary data cube instance with given (or protected) measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$, created measures $\tau_{1}, \ldots, \tau_{l}$ (with $l \geq 0$) and flag φ over some value domain Γ. An OLAP transformation T, applied to \mathcal{D}, results in the creation of a new measure τ_{l+1} in \mathcal{D}. The transformation T adds the measure τ_{l+1} to non-empty cells of $M(\mathcal{D})$. The measure τ_{l+1} is produced from

- $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ (in non-empty cells);
- φ (in non-empty cells);
- $\tau_{1}, \tau_{2}, \ldots, \tau_{l}$ (in non-empty cells) and
- the hierarchy schemas and instances of \mathcal{D}
and belongs to one of the following classes:

1. Arithmethic transformations (see Definition 11);
2. Boolean transformations (see Definition 12);
3. Selectors (see Definition 13);
4. Counting, sum, and min-max (see Definitions 14 and 19);
5. Grouping (see Definition 18);

An OLAP transformation can also result in the creation of a measure that is
and to indicate that it is a flag of arity m, we use the reserved symbol $\varphi^{(m)}$ instead of τ_{l+1}.

An output flag $\varphi^{(m)}$ may (optionally) be preceded by a destructor δ (which is created following the same rules as for other measures, but which has a special status, expressed by the reserved symbol δ). This should be a measure with a Boolean value (to indicate which cells are desroyed). We use the reserved symbol δ instead of τ_{l+1}.

The effect of output flags and destructors is discussed in Section 3.1. We remark that atomic OLAP transformations update the cells of the matrix $M(\mathcal{D})$ cell per cell and that empty cells of $M(\mathcal{D})$ are unaffected by transformations.

3.3. OLAP operations and their composition

Before we give the definition of an OLAP operation, we describe the input to the OLAP process, which may involve multiple OLAP operations. This input is a d-dimensional, k-ary data cube instance $\mathcal{D}_{i n}$, with measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ and flag φ. These measures are protected in the sense that they remain the first k measures throughout the entire OLAP process and are never altered or removed unless they are destroyed in some cells. The cube $\mathcal{D}_{i n}$ has also a Boolean flag φ, which typically is 1 in all of the cells of $M\left(\mathcal{D}_{\text {in }}\right)$, indicating that all the matrix cells are relevant for the input. So, the measures of the input cube $\mathcal{D}_{\text {in }}$ are denoted as follows:

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k}} ; \varphi
$$

After applying some OLAP operations to $\mathcal{D}_{\text {in }}$, we obtain a data cube \mathcal{D}. We refer to \mathcal{D} in the following definition.

Definition 10. Let \mathcal{D} be a d-dimensional, $(k+l)$-ary input data cube instance with given measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$, computed measures $\tau_{1}, \ldots, \tau_{l}$ and flag φ. The data cube \mathcal{D} acts as the input of an OLAP operation O (of arity m), which consists of a sequence of n consecutive OLAP transformations that create the additional measures $\tau_{l+1}, \ldots, \tau_{l+n}$, followed by the creation of an m-ary flag $\varphi_{O}^{(m)}$ (possibly preceded by a destructor δ). As the result of the creation of $\varphi_{O}^{(m)}$, the measures in the cells of the data cube are changed from

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{1}, \ldots, \tau_{l} ; \varphi ; \tau_{l+1}, \ldots, \tau_{l+n}}
$$

to

$$
\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{l+n-m+1}, \ldots, \tau_{l+n} ; \varphi_{O}^{(m)}
$$

which become

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k}} ; \tau_{1}, \ldots, \tau_{m} ; \varphi
$$

after renaming. The output cube $\mathcal{D}^{\prime}=O(\mathcal{D})$ has the same dimensions, hierarchy followed, except for the cells of $M(\mathcal{D})$ for which δ takes the value 0 . These cells of $M(\mathcal{D})$ are emptied, contain no measures, and become inaccessible for future transformations or operations.

We remark that the output $\mathcal{D}^{\prime}=O(\mathcal{D})$ of the OLAP operation O on input \mathcal{D} can serve as input to a next OLAP operation. We illustrate the composition of two operations in Example 11 and other examples.

3.4. Atomic OLAP transformations

In this section, we define our arsenal of atomic OLAP transformations, divided in five classes, as described in Definition 9 .

In the remainder of this section, we use the following notational convention. For a measure α, we write $\alpha\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ to indicate the value of α in the cell $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \operatorname{dom}\left(D_{1}\right) \times \operatorname{dom}\left(D_{2}\right) \times \cdots \times \operatorname{dom}\left(D_{d}\right)$. We remark that $\alpha\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ does not exist for empty cells and is therefore not considered in computations (such as sums). Also, we assume that we have protected measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ and computed measures $\tau_{1}, \ldots, \tau_{l}$ in the non-empty cells and that the next measure we compute is called τ_{l+1}.

Throughout this section, we continue with the examples given in Section 2 , that talk about the measure $\mu_{1}=$ sales of certain products, at certain locations, at certain moments in time, contained in a data cube \mathcal{D} over the 3 -dimensional matrix schema $\left(D_{1}, D_{2}, D_{3}\right)=($ Product, Location, Time $)$.

3.4.1. Arithmethic transformations

Definition 11 (Arithmetic Transformations). The following creations of a new measure τ_{l+1} are arithmetic transformations:

1. (Rational constant) $\tau_{l+1}=\alpha$, with $\alpha \in \mathbf{Q}$, a rational number.
2. $(\mathbf{S u m}) \tau_{l+1}=\alpha+\beta$, with $\alpha, \beta \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$.
3. (Product) $\tau_{l+1}=\alpha \cdot \beta$, with $\alpha, \beta \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$.
4. (Quotient) $\tau_{l+1}=\alpha / \beta$, with $\alpha, \beta \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$. Here, we agree that $a / 0:=a$ for all $a \in \mathbf{Q}$.

Example 7. If $\mu_{1}=$ sales is the only measure, the following transformations compute the 10% of the sales:

- $\tau_{1}=0.1$ (rational constant);
- $\tau_{2}=\tau_{1} \cdot \mu_{1}$ (product).

Next, if we want to create a Boolean measure that indicates whether a cell contains non-zero sales, we can write

- $\tau_{3}=\mu_{1} / \mu_{1}$ (quotient).

The value of τ_{3} is 1 if sales >0 and 0 if sales $=0$ (our definition of quotient says that $0 / 0=0$).

3.4.2. Boolean transformations

Definition 12 (Boolean Transformations). The following creations of a new measure τ_{l+1} are Boolean transformations:

1. (Equality test on measures) $\tau_{l+1}=(\alpha=\beta)$, with $\alpha, \beta \in\left\{\mu_{1}, \mu_{2}, \ldots\right.$, $\left.\mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$. Here, the result of the comparison $(\alpha=\beta)$ is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix).
2. (Comparison test on measures) $\tau_{l+1}=(\alpha<\beta)$, with $\alpha, \beta \in\left\{\mu_{1}\right.$, $\left.\mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$. Here, the result of the comparison $(\alpha<\beta)$ is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix).
3. (Equality test on levels) For ℓ a level in the dimension schema $\sigma\left(D_{i}\right)$ of dimension D_{i} and $c \in \operatorname{dom}\left(D_{i} \cdot \ell\right)$ a constant object $\tau_{l+1}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=$ $(\ell=c)$ is an "equality" test. Here, the result of the comparison $(\ell=c)$ is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix) such that $\tau_{l+1}\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is 1 if and only if x_{i} rolls-up to c at level ℓ, that is $\rho\left(x_{i}, c\right)$.
4. (Comparison test on levels) For ℓ a level in the dimension schema $\sigma\left(D_{i}\right)$ of dimension D_{i} and $c \in \operatorname{dom}\left(D_{i} . \ell\right)$ a constant object, $\tau_{l+1}\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{d}\right)=\left(\ell<_{\ell} c\right)$ is a "comparison" test. The result of the comparison $\left(\ell<_{\ell} c\right)$ is a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix), such that $\tau_{l+1}\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is 1 if and only if x_{i} rolls-up to an object b at level ℓ for which $b<_{\ell} c$. The order $<_{\ell}$ can be any order that is defined on level ℓ. The transformation $\tau_{l+1}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\left(c<_{\ell} \ell\right)$ is defined similarly.

We remark that the above equality test are superfluous since they can be expressed as a Boolean combination of comparison tests, but we include them for obvious practical reasons. Indeed, $a=b$ is equivalent to $\neg(a<b \vee b<$ $a)$. Finally, we remark that the comparison test on levels uses the order $<_{\ell}$, which may be the order (derived from) <, but, in practice, it will often be a lexicographical or alphabetical order, particular to the level domain.

Example 8. We illustrate the use of Boolean transformations by means of a sequence of transformations that implement a "dice" (see Section 4.2 for more details). The query

$$
\operatorname{DICE}(\mathcal{D}, \text { sales }>50)
$$

asks for the sales values in the matrix of \mathcal{D} which contain sales that are higher than 50. Again, we assume that $\mu_{1}=$ sales is the only available measure in the input cube. So, the measures in the cells are sales; φ. This query can be implemented by the following sequence of transformations:

- $\tau_{1}=49.99$ (rational constant);
- $\tau_{2}=\left(\tau_{1}<\right.$ sales $)$ (comparison test on measures);
- $\tau_{3}=\mu_{1} \cdot \tau_{2}$ (product);
- $\delta=\tau_{2}$ (destructor); and
- $\varphi^{(1)}=\tau_{2}$ (unary flag)

The measure τ_{3} contains the sales values larger than or equal to 50 (and a 0 if the sales are lower). The flag $\varphi^{(1)}$ selects all cells from the input as output cells and concludes the $\operatorname{DICE}(\mathcal{D}$, sales $>50)$ operation. The output of this operation is sales $; \tau_{3} ; \varphi^{(1)}$, which is then renamed to sales $; \tau_{1} ; \varphi$.

3.4.3. Selectors

445 Definition 13 (Selector Transformations). The following creations of a new measure τ_{l+1} are selector transformations (or selectors) and their definition is (as always) cell per cell of $M(\mathcal{D})$:

1. (Constant selector) For a level ℓ in the dimension schema $\sigma\left(D_{i}\right)$ of a dimension D_{i} and $c \in \operatorname{dom}\left(D_{i} \cdot \ell\right), \tau_{l+1}$ can be a constant-selector for c, denoted $\sigma_{D_{i} . \ell=c}$, and it corresponds to the equality test on levels $\tau_{l+1}\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{d}\right)=(\ell=c)$.
2. (Level selector) For a level ℓ in the dimension schema $\sigma\left(D_{i}\right)$ of a dimension D_{i}, τ_{l+1} can be a level-selector for ℓ, denoted by $\sigma_{D_{i} \cdot \ell}$, which means that we have, for all $x_{j} \in \operatorname{dom}\left(D_{j}\right)$ with $j \neq i$,

$$
\tau_{l+1}\left(x_{1}, \ldots, x_{i_{1}}, a, x_{i+1}, \ldots, x_{d}\right)= \begin{cases}1 & \text { if } a=\operatorname{rep}(b) \\ & \text { for some } b \in \operatorname{dom}\left(D_{i} . \ell\right) \\ 0 & \text { otherwise }\end{cases}
$$

The constant selector in the Definition 13, corresponds to the equality test on levels (see 3. in Definition 12). Here, this transformation appears with a different functionality and we reserve a special notation for it. This is the ${ }_{455}$ reason why it was repeated. Also, we remark that the level selector selects all representatives (at the Bottom level) of objects at level ℓ of dimension D_{i}.

Example 9. As a second example of a dice operation, we look at the query

$$
\operatorname{DICE}(\mathcal{D}, \text { Location.City }=\text { antwerp })
$$

which asks for the sales in the city of antwerp. This operation is destructive, since it destroys all the information in cells that do not belong to antwerp. This query can be implemented by the following sequence of transformations:

- $\tau_{1}=\sigma_{\text {Location.City=antwerp }}$ (constant selector);
- $\tau_{2}=\tau_{1} \cdot \mu_{1}$ (product);
- $\delta=\tau_{1}$ (destroys the cells outside antwerp);
- $\varphi^{(1)}=\tau_{1}$ (unary flag creation).

The output arity of the query $\operatorname{DICE}(\mathcal{D}$, Location.City $=$ antwerp $)$ is 1 . The measure τ_{2} selects the sales in antwerp only. And the flag $\varphi^{(1)}$ is a selector on the constant antwerp. The destructor δ, that precedes the flag, empties the cells outside antwerp.

Example 10. As a next example, we look at the query
$\operatorname{DICE}(\mathcal{D}$, Location.City $=$ antwerp $O R$ Location.City $=$ brussels $)$,
which asks for the sales in the cities of antwerp and brussels. This query can be implemented by the following sequence of transformations:

- $\tau_{1}=\sigma_{\text {Location.City=antwerp }}$ (constant selector);
- $\tau_{2}=\sigma_{\text {Location.City=brussels }}$ (constant selector);
- $\tau_{3}=\tau_{1}+\tau_{2}($ sum $) ;$
- $\tau_{4}=\tau_{3} \cdot \mu_{1}($ product $) ;$
- $\delta=\tau_{3}$ (destroys the cells outside antwerp and brussels);
- $\varphi^{(1)}=\tau_{3}$ (unary flag creation).

The logical connective $O R$ is implemented by the sum in τ_{3}, which can take values 0 or 1, since the cities antwerp and brussels do not overlap. Thus, this sum implements their union. Then, measure, φ_{4} selects the sales in antwerp and brussels only. The flag $\varphi^{(1)}$ is a selector on the constants antwerp and brussels and indicates that the cells of both these cities belong to the output. The destructor δ, that precedes the flag, empties the cells outside antwerp and brussels.

Note that in the two previous examples, the flag and the destructor do the same double work. However, this will not be the case in most situations, and, in practice, it would not have impact.

We continue with a dicing example, that also illustrates the composition of OLAP operations.

Example 11. We consider the query

$$
\operatorname{DICE}(\mathcal{D}, \text { sales }>50 \text { AND Location.City }=\text { brussels })
$$

We can implement this by the operation $\operatorname{DICE}(\mathcal{D}$, sales $>50)$ followed by the operation $\operatorname{DICE}(\mathcal{D}$, Location.City $=$ brussels $)$. The following implementation is a slight modification of Examples 8 and 9 . Let sales; φ be the input measures. The query $\operatorname{DICE}(\mathcal{D}$, sales $>50)$ is taken from Example 8. The output of this operation is sales; $\tau_{3} ; \varphi^{(1)}$, which is then renamed to sales; $\tau_{1} ; \varphi$. Next, the query $\operatorname{DICE}(\mathcal{D}$, Location, City $=$ brussels $)$ is implemented as

- $\tau_{2}=\sigma_{\text {Location.City=brussels }}$ (constant selector);
- $\tau_{3}=\tau_{2} \cdot \mu_{1}($ product $) ;$
- $\delta=\tau_{2}$ (destroys the cells outside brussels);
- $\varphi^{(1)}=\tau_{2} \cdot \varphi$ (product and unary flag creation).

The output of this operation is sales; $\tau_{3} ; \varphi^{(1)}$, which, as above, is then renamed to sales; $\tau_{1} ; \varphi$.

Remark that the query can also be implemented as $\operatorname{DICE}(\mathcal{D}$, Location.City $=$ brussels) followed by $\operatorname{DICE}(\mathcal{D}$, sales $>50)$. Also in this order of operations, the appropriate cells are destroyed.

3.4.4. Counting, sum and min-max

Now, we give transformations for counting different measure values, for summing all values of a measure in a matrix, and for determining the minimum and maximum value of a measure in a matrix. Later on, in Definition 19, we give extensions of the counting and min-max transformations.

Definition 14 (Counting, Sum and Min-Max Transformations). The following creations of a new measure τ_{l+1} are counting, sum and min-max transformations:

1. (Count-Distinct) $\tau_{l+1}=\#_{\neq}(\alpha)$, with $\alpha \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$ counts the number of different values of the measure α in the complete matrix $M(\mathcal{D})$ of the data cube.
2. (d-dimensional sum)

$$
\tau_{l+1}=\sum_{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in M(\mathcal{D})} \alpha\left(x_{1}, x_{2} \ldots, x_{d}\right)
$$

with $\alpha \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$, gives the sum of the measure α over all non-empty matrix cells. We abbreviate this operation by writing

$$
\tau_{l+1}=\operatorname{SUM}_{d}(\alpha)
$$

and call this transformation the d-dimensional sum.
3. (min-max) $\tau_{l+1}=\min (\alpha)$, with $\alpha \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$, gives the smallest value of the measure α in non-empty cells of the matrix $M(\mathcal{D})$. Similarly, $\tau_{l+1}=\max (\alpha)$, gives the largest value of the measure α in the matrix $M(\mathcal{D})$.

We remark that the above transformations create the same new measure value for all cells of the matrix $M(\mathcal{D})$.

We now give two examples of the use of d-dimensional sum. Examples of the use of $\#_{\neq}(\alpha)$ are given in the following sections.

Example 12. Let us consider the query "(grand total) average sales". This amount is the total sales (over all cities, products and dates), divided by the total number of cells in the matrix of the data cube. This query can be computed as follows, given $\mu_{1}=$ sales:

- $\tau_{1}=\mathrm{SUM}_{3}\left(\mu_{1}\right)$ (this is the grand total of sales);
- $\tau_{2}=\sigma_{\text {Location.All }}$ (this puts a 1 in every cell of the matrix)
- $\tau_{3}=\mathrm{SUM}_{3}\left(\tau_{2}\right)$ (this is the grand total of cells in the matrix);
- $\tau_{4}=\tau_{1} / \tau_{3}$ (this is the average);
- $\varphi^{(1)}=\sigma_{\text {Location.Botom }}$ (this flag creation selects all cells of the matrix).

The output measures are sales $; \tau_{4} ; \varphi^{(1)}$, which are renamed sales; $\tau_{1} ; \varphi$. This means that the grand total of average sales is now available in every cell of the matrix of the cube.

Example 13. Now, we look at the query "total sales in antwerp". This query is asking for the total sales (over all products and dates) in the city of antwerp. The query can be computed as follows, given $\mu_{1}=$ sales:

- $\tau_{1}=\sigma_{\text {Location.City=antwerp }}($ constant selector on antwerp $)$;
- $\tau_{2}=\tau_{1} \cdot \mu_{1}$ (product that selects the sales in antwerp)
- $\tau_{3}=\mathrm{SUM}_{3}\left(\tau_{2}\right)$ (this is the total sales in antwerp in every cell);
- $\tau_{4}=\tau_{3} \cdot \tau_{1}$ (this is the total sales in antwerp in the cells of antwerp);
- $\varphi^{(1)}=\tau_{1}$ (this flag creation selects the cells of antwerp).

The output measures are sales $; \tau_{4} ; \varphi^{(1)}$, which are renamed sales $; \tau_{1} ; \varphi$. This means that the total of sales in antwerp is now available in every cell of antwerp. For the cells outside antwerp there is a 0 . We remark that this example can be modified with a destructor that effectively empties cells outside antwerp.

Example 14. We look at the query "maximum sales", which should return all cells containing the maximum value in the cube. This query can be computed as follows, given $\mu_{1}=$ sales:

- $\tau_{1}=\max \left(\mu_{1}\right)$ (the maximum sales amount);
- $\tau_{2}=\left(\tau_{1}=\mu_{1}\right)$ (equality test to determine if a cell reaches the maximum);
- $\tau_{3}=\tau_{2} \cdot \mu_{1}($ only the maximum sales remain; the others turn 0$)$;
- $\varphi^{(1)}=\sigma_{\text {Location.Bottom }}$ (this flag creation selects all cells).

The output measures are sales; $\tau_{3} ; \varphi^{(1)}$, which are renamed sales; $\tau_{1} ; \varphi$. We re530 mark that this example, like the previous one, can be modified with a destructor that effectively empties cells with strictly less than maximum sales.

3.4.5. Grouping

The most common OLAP operations (e.g., roll-up, slice), require grouping data before aggregating them. For example, typically we will ask queries like "total sales by city", which requires grouping facts by city, and, for each group, sum all of its sales; or, we can ask "total sales by city and day", meaning that, for each city-day combination, we sum all the sales. Therefore, we need a transformation to express "grouping". We address this issue next.

To deal with grouping, we use the concept of "prime labels" for sets and products of sets. Before giving the definition of the grouping transformations, we elaborate on prime labels and product of prime labels. As we show, these prime labels work in the context of measures that take rational values (as, in practice, is often the case).

The following definition specifies our infinite supply of prime labels.

Definition 15 (Prime Labels). Let p_{n} denote the n-th prime number, for $n \geq 1$. We define the sequence of prime labels as follows: $1, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}$, $\sqrt{11}, \ldots, \sqrt{p_{n}}, \ldots$. We denote the set of all prime labels by $\sqrt{\mathcal{P}}$.

Now, we define a prime labeling of a finite set and of a cartesian product of finite sets.

Definition 16 (Prime Labeling of Sets). Let $A, A_{1}, A_{2}, \ldots, A_{n}$ be (finite) sets. A prime labeling of the set A is an injective function $w: A \rightarrow \sqrt{\mathcal{P}}$. For $a \in A$, we call $w(a)$ the prime label of a (for the prime labeling w).

Let I be a subset of $\{1,2, \ldots, n\}$, which serves as an index set. A prime product I-labeling of the catesian product $A_{1} \times A_{2} \times \cdots \times A_{n}$ consists of prime labelings w_{i} of the sets A_{i}, for $i \in I$, that satisfy the condition that $w_{i}\left(A_{i}\right) \cap$ $w_{j}\left(A_{j}\right)$ is empty for $i, j \in I$ and $i \neq j$. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{n}$, we call $\prod_{i \in I} w_{i}\left(a_{i}\right)$ the prime product I-label of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (given the prime labelings w_{i}, for $\left.i \in I\right)$. When I is a strict subset of $\{1,2, \ldots, n\}$, we speak about a partial prime product labeling and when $I=\{1,2, \ldots, n\}$, we speak about a full prime product labeling.

In the previous definition, whenever I is clear from the context, we can omit reference to I.

In practice, to label a set $A_{1} \times A_{2} \times \cdots \times A_{n}$, we use consecutive, available labels from $\sqrt{\mathcal{P}}$ to label the sets $A_{1}, A_{2}, \ldots, A_{n}$, as is illustrated by the following example. Further on, we apply this labeling to domains of dimensions (possibly

Example 15. Let $A_{1}=\left\{a_{1}, a_{2}, a_{3}\right\}, A_{2}=\left\{b_{1}, b_{2}\right\}$ and $A_{3}=\left\{c_{1}, c_{2}\right\}$. To create a full prime product label for the elements of $A_{1} \times A_{2} \times A_{3}$, we can use the prime labelings w_{1}, w_{2} and w_{3}, defined as follows: $w_{1}\left(a_{1}\right)=1, w_{1}\left(a_{2}\right)=\sqrt{2}, w_{1}\left(a_{3}\right)=$ $\sqrt{3}, w_{2}\left(b_{1}\right)=\sqrt{5}, w_{2}\left(b_{2}\right)=\sqrt{7}, w_{3}\left(c_{1}\right)=\sqrt{11}$ and $w_{3}\left(c_{3}\right)=\sqrt{13}$. We remark order or natural numbers). These labelings give the tuple $\left(a_{2}, b_{2}, c_{1}\right)$ the label $w_{1}\left(a_{2}\right) \cdot w_{2}\left(b_{2}\right) \cdot w_{3}\left(c_{1}\right)=\sqrt{2} \cdot \sqrt{7} \cdot \sqrt{11}=\sqrt{154}$. Each cell in $A_{1} \times A_{2} \times A_{3}$ gets a unique prime product label.

To create a partial prime product label for $I=\{1,2\}$, we can use w_{1} and w_{2}, as given above. In this case, for any $a \in A_{1}$ and $b \in A_{2}$, the cells $\left(a, b, c_{1}\right)$ and (a, b, c_{2}) get the same (partial) prime product label.

If we view a cartesian product $A_{1} \times A_{2} \times \cdots \times A_{n}$ as a finite matrix, whose cells contain rational-valued measures, we can use prime (product) labelings as follows in the aggregation process. Let us assume that the cells of $A_{1} \times A_{2} \times$ $\cdots \times A_{n}$ contain rational values of a measure μ and let us denote the value of this measure in the cell $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ by $\mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. If we have a full prime product labeling on $A_{1} \times A_{2} \times \cdots \times A_{n}$, then we can consider the sum over this cartesian product of the product of the prime product labels with the value of μ :

$$
\begin{equation*}
\sum_{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{n}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot w_{1}\left(a_{1}\right) \cdot w_{2}\left(a_{2}\right) \cdots w_{n}\left(a_{n}\right) . \tag{1}
\end{equation*}
$$

Since each cell of $A_{1} \times A_{2} \times \cdots \times A_{n}$ has a unique prime product label, and since these labels are rationally independent (as we show in Property 2), this sum enables us to retrieve the values $\mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

If we have a partial prime product labeling on $A_{1} \times A_{2} \times \cdots \times A_{n}$, determined by an index set I, then, again, we can consider the sum over this cartesian product of the product of the partial prime product labels with the value of μ :

$$
\begin{equation*}
\sum_{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{n}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot \prod_{i \in I} w_{i}\left(a_{i}\right) . \tag{2}
\end{equation*}
$$

Now, all cells in $A_{1} \times A_{2} \times \cdots \times A_{n}$ above a cell in the projection of $A_{1} \times$ $A_{2} \times \cdots \times A_{n}$ on its components with indices in I receive the same prime label. This means that these cells are "grouped" together and the above sum allows us to retrieve the part of the sum that belongs to each group.

To make this clearer, we can write $\left(\dagger_{2}\right)$ as

$$
\begin{equation*}
\sum_{x_{i \in I} A_{i}}\left(\sum_{\times_{i \in I^{c}} A_{i}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \cdot \prod_{i \in I} w_{i}\left(a_{i}\right) \tag{2}
\end{equation*}
$$

where the outer sum ranges over the components of $A_{1} \times A_{2} \times \cdots \times A_{n}$ whose index belongs to I and where the inner sum ranges over the components of $A_{1} \times A_{2} \times \cdots \times A_{n}$ whose index belongs to $I^{c}:=\{1,2, \ldots, n\} \backslash I$. The above statement says that (\dagger_{2}) allows us to uniquely determine the sums

$$
\sum_{\times_{i \in I^{c}} A_{i}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right) .
$$

We remark that this last sum is the same for all cells above a cell in the projection of $A_{1} \times A_{2} \times \cdots \times A_{n}$ on the components whose index is in I.

The following definition gives a name to the above sums.

Definition 17 (Prime Sums). We call sums of type (\dagger_{1}) full prime sums and sums of type (\dagger_{2}) partial prime sums (over I).

The following property can be derived from the well-known fact that the $\left.a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{Q}\right\}$ has degree 2^{n} over \mathbf{Q} and corollaries of this property (see Chapter 8 in [13]). No square root of a prime number is a rational combination of square roots of other primes.

Property 2. Let $n \geq 1$ and let $A_{1} \times A_{2} \times \cdots \times A_{n}$ be a cartesian product of finite sets. We assume that the cells $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of this set contain rational values $\mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of a measure μ. Let I be a subset of $\{1,2, \ldots, n\}$ and let w_{i} be prime labelings of the sets A_{i}, for $i \in I$, that form a prime product I-labeling (see Definition 16). Then we have that the prime sum $\left(\dagger_{2}\right)$ uniquely determines the values $\sum_{\times_{i \in I^{c}} A_{i}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for all cells of $A_{1} \times A_{2} \times \cdots \times A_{n}$.

We give the proof of this property in Appendix Appendix A

Remark 2. We remark that we use these prime (product) labels in a purely symbolic way without actually calculating the square root values in them. The square roots are treated as symbolic entities in the computations.

Given these facts about prime (product) labels, we are ready to define atomic OLAP operations that allow us to implement grouping. In what follows, we apply these prime labels to the case where the sets A_{i} in $A_{1} \times A_{2} \times \cdots \times A_{n}$ are domains of dimensions or domains of dimensions at some level.

Definition 18 (Grouping Transformations). The following creations of a new measure τ_{l+1} are grouping transformations:

1. (Prime labels for groups in one dimension) Let D_{i} be a dimension and ℓ a level in the dimension schema $\sigma\left(D_{i}\right)$ of a dimension D_{i}. Let $\operatorname{dom}\left(D_{i} \cdot \ell\right)=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ with induced order $b_{1}<b_{2}<\cdots<b_{m}$ (see Property 11. If the prime labels $w_{1}, w_{2}, \ldots, w_{k}$ have been used by previous transformations, then for all j, with $j \neq i$, and all $x_{j} \in \operatorname{dom}\left(D_{j}\right)$, we have $\tau_{l+1}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)=w_{k+l}$ if $\rho\left(x_{i}, b_{l}\right)$. We denote this transformation by $\gamma_{D_{i} . \ell}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)$ or $\gamma_{D_{i} . \ell}$, for short, and call the result of such a transformation a prime labeling.
2. (Projection of a prime sum) If the result of some previous transformation τ_{m} is a (full or partial) prime sum $\sum_{i=k}^{k+l} a_{i} \cdot w_{i}$ (over the complete $\operatorname{matrix} M(\mathcal{D})$) in which prime (product) labels $w_{k}, w_{k+1}, \ldots, w_{k+l}$ (computed in a previous transformation τ_{n}) are used, then τ_{l+1} is a new measure that "projects" on the appropriate component from the prime sum, that is, $\tau_{l+1}\left(x_{1}, x_{2} \ldots, x_{d}\right)=a_{k+l}$ if the prime (product) label $\tau_{n}\left(x_{1}, x_{2} \ldots, x_{d}\right)=$ w_{k+l}. We denote this projection transformation by $\left.\tau_{m}\right|_{\tau_{n}}$.
Now, we give some examples about (basic) counting. As always, we use sales information for certain products, at certain locations, at certain time moments. This is important in OLAP practice, since many times we need to compute the number of elements in a dimension level. That is, we perform an aggregation without operating on measures.

Example 16. We look at the query "total number of cities", which asks to count the number of cities appearing at the Bottom level of the dimension Location. We can implement this query using Count-Distinct and prime labels, given $\mu_{1}=$ sales, as follows:

- $\tau_{1}=\gamma_{\text {Location.City }}$ (gives each city a different prime label);
- $\tau_{2}=\#_{\neq}\left(\tau_{1}\right)$ (counts the number of different prime labels and thus the number of cities);
- $\varphi^{(1)}=\sigma_{\text {Location.Bottom }}$ (this flag creation selects all cells of the matrix).

The output measures are sales; $\tau_{2} ; \varphi^{(1)}$, which are renamed sales; $\tau_{1} ; \varphi$. This means that the total number of cities is now available in every cell of the matrix $M(\mathcal{D})$.

Example 17. We look at the query "total number of countries", which asks to count the number of countries appearing at the Country level of the dimension Location. We can implement this query using Count-Distinct and prime labels, given $\mu_{1}=$ sales, as follows:

- $\tau_{1}=\gamma_{\text {Location.Country }}$ (gives each country a different prime label);
- $\tau_{2}=\#_{\neq}\left(\tau_{1}\right)$ (counts the number of different prime labels and thus the number of countries);
- $\varphi^{(1)}=\sigma_{\text {Location.Bottom }}$ (this flag creation selects all cells of the matrix).

The output measures are sales; $\tau_{2} ; \varphi^{(1)}$, which are renamed sales; $\tau_{1} ; \varphi$. This means that the total number of countries is now available in every cell of the matrix.

Note that, like in tghe previous example, we are operating on the dimensions, and we are not aggregating measures, which shows the generality of our approach. The next example goes further into this issue, since it uses grouping within the same dimension.

Example 18 below, uses two prime labels on the dimension Location. One prime labeling is at the Country level and the second prime labeling is at the City or Bottom level. This construction fits in the given prime product labeling concept if we consider $A_{1}=\operatorname{dom}\left(\right.$ Location.Country) and $A_{2}=$ dom(Location.City).

Example 18. Consider the query "for each country, give the total number of cities". Again, we assume that $\mu_{1}=$ sales is the only available measure. This query can be implemented as follows (we explain the details below):

- $\tau_{1}=\gamma_{\text {Location.Country }}$ (this gives each country a prime label);
- $\tau_{2}=\gamma_{\text {Location.City }}$ (this gives each city a (fresh) prime label);
- $\tau_{3}=\tau_{1} \cdot \tau_{2}$ (this gives each city a product of prime labels);
- $\tau_{4}=\operatorname{SUM}_{3}\left(\tau_{3}\right)$;
- $\tau_{5}=\gamma_{\text {Product.Bottom }}$ (gives each product a different prime label);
- $\tau_{6}=\#_{\neq}\left(\tau_{5}\right)$ (counts the number of products-see Example 16];
- $\tau_{7}=\gamma_{\text {Time.Bottom }}$ (gives each time moment a different prime label);
- $\tau_{8}=\#_{\neq}\left(\tau_{7}\right)$ (counts the number of moments in time - see Example 16);
- $\tau_{9}=\tau_{6} \cdot \tau_{8}$ (is the number of products times the number of time moments);
- $\tau_{10}=\tau_{4} / \tau_{9}$ (normalisation of the sum);
- $\tau_{11}=\left.\tau_{10}\right|_{\tau_{2}}$; (projection over the prime labels of city);
- $\tau_{12}=\operatorname{SUM}_{3}\left(\tau_{11}\right)$ (3-dimensional sum);
- $\tau_{13}=\tau_{12} / \tau_{9}$ (normalisation of the sum);
- $\tau_{14}=\left.\tau_{13}\right|_{\tau_{1}}$ (projection over the prime labels of country);
- $\varphi^{(1)}=\sigma_{\text {Location.Bottom }}$ (this flag creation selects all cells of the matrix).

We now discuss this example, using the data given in Example 4 Transformation τ_{1} gives each country a next available prime label. Since no labels have been used yet, belgium gets label 1 and france gets label $\sqrt{2}$. Transformation τ_{2} gives each city a next available prime label. Since 1 and $\sqrt{2}$ have been used, antwerp gets label $\sqrt{3}$, brussels gets label $\sqrt{5}$, paris gets label $\sqrt{7}$ and marseille gets label $\sqrt{11}$.

Transformation τ_{3} gives antwerp the value $\sqrt{3}$ (i.e., $1 . \sqrt{3}$, brussels the value $\sqrt{5}(1 \cdot \sqrt{5})$, paris the value $\sqrt{14}(\sqrt{2} \cdot \sqrt{7})$ and marseille the value $\sqrt{22}(\sqrt{2} \cdot \sqrt{11})$. If there are 10 products and 100 time moments, then τ_{4} puts the value $10 \cdot 100 \cdot$ $(\sqrt{3}+\sqrt{5}+\sqrt{14}+\sqrt{22})$ in each cell of the matrix $M(\mathcal{D})$.

Transformations τ_{6} and τ_{8} count the number of products and the number of time moments (using fresh prime labels). In τ_{10}, τ_{3} is divided by their product and τ_{10} puts $\sqrt{3}+\sqrt{5}+\sqrt{14}+\sqrt{22}$ in every cell of the matrix.

Transformation τ_{11} is a projection on the prime labels of City. Since $\sqrt{3}, \sqrt{5}$, $\sqrt{7}$ and $\sqrt{11}$ are the prime labels for the cities, and since $\sqrt{3}+\sqrt{5}+\sqrt{14}+\sqrt{22}=$ $1 \cdot \sqrt{3}+1 \cdot \sqrt{5}+\sqrt{2} \cdot \sqrt{7}+\sqrt{2} \cdot \sqrt{11}$, this will put 1 in the cells of antwerp and brussels and $\sqrt{2}$ in the cells of paris and marseille.

Next, τ_{12} puts $10 \cdot 100 \cdot(2 \cdot 1+2 \cdot \sqrt{2})$ in every cell of the cube and τ_{13} puts $2 \cdot 1+2 \cdot \sqrt{2}$ in every cell of the cube. Finally, τ_{14} projects on the prime labels of countries, which are 1 and $\sqrt{2}$. This puts a 2 in every cell of a Belgian city and a 2 in every cell in a French city. This is the result of the query, as the flag indicates, that is returned in every cell. Now every cell of a city in belgium has the count of 2 cities, as has every city in france.

3.4.6. Counting and min-max revisited

Now that we know prime (product) labelings, we can give extensions of the counting and min-max transformations of Definition 14 . Here, the counting, the minimum and the maximum are taken over cells which share a common prime (product) label.

Definition 19. The following creations of a new measure τ_{l+1} are generalisations of the counting and min-max transformations:

1. (Count-Distinct) If the result of some previous transformation τ_{m} is a prime (product) labeling of the cells of $M(\mathcal{D})$, then $\tau_{l+1}\left(x_{1}, x_{2} \ldots, x_{d}\right)=$ $\left.\#_{\neq}\right|_{\tau_{m}}(\alpha)$, with $\alpha \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$ counts the number of different values of the measure α in cells of the matrix $M(\mathcal{D})$ that have the same prime product label as $\tau_{m}\left(x_{1}, x_{2} \ldots, x_{d}\right)$.
2. (Min-Max) If the result of some previous transformation τ_{m} is a prime (product) labeling of the cells of $M(\mathcal{D})$, then $\tau_{l+1}\left(x_{1}, x_{2} \ldots, x_{d}\right)=\left.\min \right|_{\tau_{m}}$ (α), with $\alpha \in\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \tau_{1}, \tau_{2}, \ldots, \tau_{l}\right\}$, gives the the smallest value of the measure α in cells of the matrix $M(\mathcal{D})$ that have the same prime product label as $\tau_{m}\left(x_{1}, x_{2} \ldots, x_{d}\right)$. And $\tau_{l+1}\left(x_{1}, x_{2} \ldots, x_{d}\right)=\left.\max \right|_{\tau_{m}}(\alpha)$ is defined similarly.

We remark that when there is only one prime label (for instance, 1) throughout the matrix $M(\mathcal{D})$, then the above gneralisation of the counting and min-max transformations correspond to the version of Definition 14

4. The classical OLAP operations

In this section, we show how the classical OLAP operations can be expressed using the OLAP transformations from Section 3. As we mentioned in that section, these classic operations can be combined to express complex analytical queries. The classical OLAP operations are of \mathcal{D}. A Boolean condition on the cells of $M(\mathcal{D})$ is a function ϕ from $M(\mathcal{D})$ to $\{0,1\}$. We say that the cells of $M(\mathcal{D})$ in the set $\phi^{-1}(\{1\})$ are selected by ϕ.

We say that a Boolean condition ϕ is transformation-expressible if there is a sequence of OLAP transformations $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ such that $\phi\left(x_{1}, x_{2}, \ldots, x_{d}\right)=$ $\tau_{k}\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in M(\mathcal{D})$.

Lemma 1. If ϕ, ϕ_{1}, ϕ_{2} are transformation-expressible Boolean conditions on cells, then NOT ϕ, ϕ_{1} AND ϕ_{2} and ϕ_{1} OR ϕ_{2} are transformation-expressible Boolean conditions on cells.

We give the proof in Appendix Appendix B

4.2. Dice

Intuitively, the Dice operation selects the cells in a cube \mathcal{D} that satisfy a Boolean condition ϕ on the cells. The syntax for this operation is

$$
\operatorname{DICE}(\mathcal{D}, \phi),
$$

where ϕ is a Boolean condition over level values and measures. The resulting cube has the same dimensionality as the original cube. The dice operation is
analogous to a selection in the relational algebra. In a data cube, it selects the cells that satisfy the condition ϕ by flagging them 1 in the output cube.

The Dice operation has been already illustrated in Examples 8, 9, 10 and 11. There, we have queries such as

$$
\operatorname{DICE}(\mathcal{D}, \text { Location.City }=\text { antwerp } O R \text { Location.City }=\text { brussels }) .
$$

But, we also allow equality and order constraints on objects at certain levels and in different dimensions, as illustrated by the example
$\operatorname{DICE}(\mathcal{D}$, Location.Country $=$ belgium AND Time.Day $>15 / 1 / 2014)$.
We also consider equality and order constraints over measures, as is illustrated by the query

$$
\operatorname{DICE}(\mathcal{D}, \text { sales }>50)
$$

of Example 8. Therefore, our approach covers all typical cases in real-world 705 OLAP [3]. We next formalize the operator's definition in terms of our transformation language.

Definition 21 (Dice). Given a data cube \mathcal{D}, the operation $\operatorname{DICE}(\mathcal{D}, \phi)$, selects all cells of the matrix $M(\mathcal{D})$ that satisfy the Boolean condition ϕ by giving them a 1 flag in the output. The Boolean condition ϕ on the cells of $M(\mathcal{D})$ is a Boolean combination of conditions of the form:

- a selector on a value b at a certain level ℓ of some dimension D_{i};
- a comparison condition at some level ℓ from a dimension schema $\sigma\left(D_{i}\right)$ of a dimension D_{i} of the cube of the form $\ell<c$ or $c<\ell$, where c is a constant (at that level ℓ);
- an equality or comparison condition on some measure α of the form $\alpha=c$, $\alpha<c$ or $c<\alpha$, where c is a (rational) constant.

Property 3. Let \mathcal{D} be a data cube en let ϕ be a Boolean condition on the cells of $M(\mathcal{D})$ (as in Definition 21). The operation $\operatorname{DICE}(\mathcal{D}, \phi)$ is expressible as an OLAP operation.

Proof 1. Since $\operatorname{DICE}(\mathcal{D}, \phi)$ is a cell-selecting operation, it suffices, by Lemma 1 , to show that $\operatorname{DICE}(\mathcal{D}, \phi)$ is expressible in the OLAP algebra for an atomic Boolean cell-selection condition ϕ (without logical connectives).

We have to consider the three cases of Definition 21 ,
For the first case, $\operatorname{DICE}(\mathcal{D}, \phi)$ is simply expressed by the selector $\tau_{l+1}=$ $\sigma_{D_{i}, \ell=b}$, which is the output flag that indicates the appropriate cells of $M(\mathcal{D})$.

For the second case, if ℓ is a level from a dimension schema $\sigma\left(D_{i}\right)$ of a dimension D_{i} and $c \in \operatorname{dom}\left(D_{i} . \ell\right)$ and ϕ is of the form $\ell<c$ or $c<\ell$, then the comparison test on levels $\tau_{l+1}=\left(\ell<_{\ell} c\right)$ or $\tau_{l+1}=\left(c<_{\ell} \ell\right)$ express $\operatorname{DICE}(\mathcal{D}, \phi)$. Again, τ_{l+1} specifies the output flag.

For the third case, if α is some measure, then $\tau_{l+1}=c$ (rational constant), followed by $\tau_{l+2}=(\alpha=c), \tau_{l+2}=(\alpha<c)$ or $\tau_{l+2}=(\alpha>c)$ (equality or comparison test on a measure), respectively, express $\operatorname{DICE}(\mathcal{D}, \phi)$. Once again, τ_{l+2} can serve as the output flag. This concludes the proof.

4.3. Slice

Intuitively, the Slice operation takes as input a d-dimensional, k-ary data cube \mathcal{D} and a a dimension D_{i} and returns as output $\operatorname{SLICE}\left(\mathcal{D}, D_{i}\right)$, which is a " $(d-1)$-dimensional" data cube in which the original measures μ_{1}, \ldots, μ_{k} are replaced by their aggregation (sum) over different values of elements in $\operatorname{dom}\left(D_{i}\right)$. In other words, dimension D_{i} is removed from the data cube, and, if this operation is part of a sequence of OLAP ones, D_{i} will not be visible in the next operations. That means, for instance, that we will not be able to dice on the levels of the removed dimension. As we will see, the "removal" of dimensions are, in our approach, implemented by means of the destroyer measure δ. We remark that the aggregation above is due to the fact that, in order to eliminate a dimension D_{i}, this dimension should have exactly one element [7], therefore performed.

For example, if $\left(D_{1}, D_{2}, D_{3}\right)=($ Product, Location,Time $)$, and we consider

$$
\operatorname{SLICE}(\mathcal{D}, \text { Location }),
$$

then we obtain a cube with (Product, Time)-cells which contain the sums of the given measures for certain products and times, but summed over all locations (for that product and that time).

Obviously, in our philosophy, we keep the d-dimensional data cube and store identical aggregate values for all locations, in the cells above some product-time combination. Next, we destroy all locations, except the representative for all in the Location dimension. As explained in Example 6, antwerp represents all and we only keep the cells for antwerp, where we keep the aggregate values. We formalize this next.

Definition 22 (Slice). Given a data cube \mathcal{D} and one of its dimensions D_{i}, the operation $\operatorname{SLICE}\left(\mathcal{D}, D_{i}\right)$ "replaces" the measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ by their aggregation (sum) $\mu_{n}{ }^{\Sigma_{i}}$ (for $1 \leq n \leq k$) as follows:

$$
\mu_{n}^{\Sigma_{i}}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)=\sum_{x_{i} \in \operatorname{dom}\left(D_{i}\right)} \mu_{n}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)
$$

for all $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right) \in M(\mathcal{D})$. The operation $\operatorname{SLICE}\left(\mathcal{D}, D_{i}\right)$ destroys all cells except those of the representative of all for dimension D_{i}. We abbreviate the above 1-dimensional sum as $\operatorname{SUM}_{D_{i}}\left(\mu_{n}\right)$.

Property 4. Let \mathcal{D} be a data cube and let D_{i} be one of its dimensions. The operation $\operatorname{SLICE}\left(\mathcal{D}, D_{i}\right)$ is expressible as an OLAP operation.

Before we give the proof of Property 4 , we give a simple example that captures the idea of the proof.

Example 19. Consider our running example with dimensions $\left(D_{1}, D_{2}, D_{3}\right)=$ (Product,Location, Time) and measure $\mu_{1}=$ sales, and consider the query

$$
\operatorname{SLICE}(\mathcal{D}, \text { Location })
$$

This query returns a cube with (product, time)-cells which contain the sums of μ_{1} for each product-time combination, over all locations (for that product and that time). At the end, all cells not belonging to the representative of all in the dimension Location, that is, antwerp, are destroyed.

The query $\operatorname{SLICE}(\mathcal{D}$, Location $)$ is the result of the following transformations

- $\tau_{l+1}=\gamma_{\text {Product.Bottom }}$ (prime labels on products);
- $\tau_{l+2}=\gamma_{\text {Time.Bottom }}$ (fresh prime labels on time moments);
- $\tau_{l+3}=\tau_{l+1} \cdot \tau_{l+2}$ (product of two prime labels);
- $\tau_{l+4}=\mu_{1} \cdot \tau_{l+3}$ (product);
- $\tau_{l+5}=\operatorname{SUM}_{3}\left(\tau_{l+4}\right)$ (3-dimensional sum);
- $\tau_{l+6}=\left.\tau_{l+5}\right|_{\tau_{l+3}}$ (projection on prime product labels);
- $\tau_{l+7}=\sigma_{\text {Location.All }}$ (selects the representative of all in the dimension Location);
- $\delta=\tau_{l+7}$ (destroys all cells apart from the representative of all in the dimension Location);
- $\varphi^{(1)}=\sigma_{\text {Location.All }}$ (this flag creation selects the relevant cells of the matrix).

The transformation τ_{l+4} gives each (product,time)-combination a unique prime product label. This label is multiplied with the sales in each cell. We then make the global sum over $M(\mathcal{D})$ in τ_{l+5}. The transformation $\tau_{l+6}=\left.\tau_{l+5}\right|_{\tau_{l+3}}$ is the projection on the prime product labels for (product,time)-combinations. This gives each cell above some fixed (product,time)-combination the sum of the sales (over all locations) for that (product,time)-combination. All cells of $M(\mathcal{D})$ that do not belong to antwerp (selected in τ_{l+7}), which represents all, are destroyed by δ.

Proof 2 (of Property 4). Let \mathcal{D} be a data cube and let D_{i} be one of its dimensions. The operation $\operatorname{SLICE}\left(\mathcal{D}, D_{i}\right)$ is expressible in the OLAP algebra by the following sequence of transformations:

- $\tau_{l+1}=\gamma_{D_{1} . \text { Bottom }}\left(\right.$ prime labels on dimension $\left.D_{1}\right)$;
- ...
- $\tau_{l+1+i-2}=\gamma_{D_{i-1} . \text { Bottom }}$ (prime labels on dimension D_{i-1});
- $\tau_{l+1+i-1}=\gamma_{D_{i+1} \text { Bottom }}$ (prime labels on dimension D_{i+1});
- ...
- $\tau_{l+1+d-2}=\gamma_{D_{d} \cdot B o t t o m}$ (prime labels on dimension D_{d});
- $\tau_{l+1+d-1}=\tau_{l+1} \cdot \tau_{l+1+1}$;
- $\tau_{l+1+d}=\tau_{l+1+d-1} \cdot \tau_{l+1+2}$;
- ...
- $\tau_{l+1+2 d-4}=\tau_{l+1+d-1} \cdot \tau_{l+1+d-2}$ (product of all prime labels);
- $\tau_{l+1+2 d-3}=\mu_{1} \cdot \tau_{l+1+2 d-4}$ (product of measure with product of all prime labels);
- ...
- $\tau_{l+1+2 d+k-4}=\mu_{k} \cdot \tau_{l+1+2 d-4}$ (product of measure with product of all prime labels);
- $\tau_{l+1+2 d+k-3}=\operatorname{SUM}_{d}\left(\tau_{l+1+2 d-3}\right)$ (d-dimensional sum);
- ...
- $\tau_{l+1+2 d+2 k-4}=\operatorname{SUM}_{d}\left(\tau_{l+1+2 d+k-4}\right)(d$-dimensional sum $)$;
- $\tau_{l+1+2 d+2 k-3}=\left.\tau_{l+1+2 d+k-3}\right|_{\tau_{l+1+2 d-4}}$ (projection on product labels);
- ...
- $\tau_{l+1+2 d+3 k-4}=\left.\tau_{l+1+2 d+2 k-4}\right|_{\tau_{l+1+2 d-4}}$ (projection on product labels);
- $\tau_{l+1+2 d+3 k-3}=\sigma_{D_{i} . A l l}$ (selects the representative of all for dimension $\left.D_{i}\right)$;
- $\delta=\tau_{l+1+2 d+3 k-3}$ (destroyer);
- $\varphi^{(k)}=\tau_{l+1+2 d+3 k-3}$ (output flag).

Transformations $\tau_{l+1}, \ldots, \tau_{l+1+d-2}$ create (fresh) prime labels for each of the dimensions $D_{1}, \ldots, D_{i-1}, D_{i+1}, \ldots, D_{d}$. Transformation $\tau_{l+1+2 d-4}$ gives the product of all these prime labels. This means that every $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) \in$ $\operatorname{dom}\left(D_{1}\right) \times \cdots \times \operatorname{dom}\left(D_{i-1}\right) \times \operatorname{dom}\left(D_{i+1}\right) \times \cdots \times \operatorname{dom}\left(D_{d}\right)$ has a unique prime product label, that is shared by all cells above the projected cell $\left(x_{1}, \ldots, x_{i-1}\right.$, $\left.x_{i+1}, \ldots, x_{d}\right)$ in the direction of the dimension D_{i}. Transformations $\tau_{l+1+2 d-3}, \ldots$, $\tau_{l+1+2 d+k-4}$ multiply the measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ with the prime product label. Transformations $\tau_{l+1+2 d+k-3}, \ldots, \tau_{l+1+2 d+2 k-4}$ make partial prime sums of the tions $\tau_{l+1+2 d+2 k-3}, \ldots, \tau_{l+1+2 d+3 k-4}$ project on the prime-product-labels giving each cell above $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)$ the sum of the k measures above it. Finally, the destroyer δ and the output flag $\varphi^{(k)}$ select the representative of all for dimension D_{i} and make sure that the other cells of $M(\mathcal{D})$ are destroyed.

The output, for cells that are not destroyed, is

$$
\underline{\mu_{1}, \mu_{2}, \ldots, \mu_{k}} ; \tau_{l+1+2 d+2 k-3}, \ldots, \tau_{l+1+2 d+3 k-4} ; \varphi^{(k)}
$$

which is renamed to

$$
\mu_{1}, \mu_{2}, \ldots, \mu_{k} ; \tau_{1}, \ldots, \tau_{k} ; \varphi
$$

For $1 \leq n \leq k, \tau_{n}=\mu_{n}{ }^{\Sigma_{i}}$ is the desired aggregate value. This concludes the proof.

4.4. Slice and Dice

A particular case of the Slice operation occurs when the dimension to be removed already contains a unique value at the bottom level. Then, we can avoid the roll-up to All, and define a new operation, called Slice-and-Dice. Although this can be seen as a Dice operation followed by a Slice one, in practice, in 25 these situations, they are usually applied at the same time.

Definition 23. Given a data cube \mathcal{D}, one of its dimensions D_{i} and some value
 cells in the matrix $M(\mathcal{D})$ such that the value of the dimension D_{i} equals a. All other cells are destroyed.

Property 5. Let \mathcal{D} be a data cube, D_{i} on of its dimensions en let $a \in \operatorname{dom}\left(D_{i}\right)$. The operation $\operatorname{SLICE}-\operatorname{DICE}\left(\mathcal{D}, D_{i}, a\right)$ is expressible as an OLAP operation.

Proof 3. Let \mathcal{D} be a data cube, D_{i} on of its dimensions en let $a \in \operatorname{dom}\left(D_{i}\right)$. The selector $\sigma_{D_{i} . \text { Bottom=a }}$ is the transformation that serves as destroyer and output flag and that expresses $\operatorname{SLICE}-\operatorname{DICE}\left(\mathcal{D}, D_{i}, a\right)$. This concludes the proof.

Example 20. For our running example, $\operatorname{SLICE}-\operatorname{DICE}(\mathcal{D}$, Location, antwerp) is implemented by the output flag $\sigma_{\text {Location.City=antwerp }}$.

4.5. Roll-Up and Drill-Down

We now address two key operations in typical OLAOP practice, namely
along a dimension up to a certain level. The latter, disagregates measure values along a dimension, down to a certain level. However, as we already commented, although at first sight it may appear that Drill - Down is the inverse of Roll $U p$, like stated in [7, this is not necessarily the case, particularly when we are by a $S L I C E$ or a $D I C E$. In these cases, we cannot just undo the Roll $-U p$, but we need to account for the cells that have been eliminated on the way.

More precisely, the Roll-Up operation takes as input a data cube \mathcal{D}, a dimension D_{i} and a subpath h of a hierarchy H over D_{i}, starting in a node ℓ^{\prime} and up to level ℓ for some of the input measures $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$.

The roll-up operation uses one of the following classic SQL aggregation functions, applied to the indicated protected and computed measures $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$

- sum (SUM);
- average (AVG);
- minimum and maximum (MIN and MAX);
- count and count-distinct (COUNT and COUNT-DISTINCT).

We remark that, usually, measures have an associated default aggregation func-
${ }_{850}$ tion. The typical aggregation function for the measure sales, for instance, is SUM.

We denote the above roll-up operation as

$$
\operatorname{ROLL}-U P\left(\mathcal{D}, D_{i}, H\left(\ell^{\prime} \rightarrow \ell\right),\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right),
$$

where f_{i} is one of the above aggregation functions that is associated to α_{i}, for $i=1,2, \ldots, r$. Since we are mainly interested in the expressibility of this operation as a sequence of atomic transformations, we remark that only the destination node ℓ in the path h is relevant. Indeed, the result of this roll-up remains the same if the subpath h is extended to start from the Bottom node of dimension D_{i}. So, we can abbreviate the above notation to

$$
\operatorname{ROLL}-U P\left(\mathcal{D}, D_{i}, H(\ell),\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right)
$$

and assume that the roll-up starts at the Bottom level.
The Drill-down operation takes as input a data cube \mathcal{D}, a dimension D_{i} and a subpath h of a hierarchy H over D_{i}, starting in a node ℓ and ending in a node ℓ^{\prime} (at a lower level in the hierarchy), and returns the aggregation of the original cube along D_{i} from the bottom level up to level ℓ^{\prime}. The drill-down uses the same type of aggregation functions as the roll-up. Again, since we are only interested in expressibility of this operation, we remark that the drill-down operation

$$
\operatorname{DRILL-DOWN}\left(\mathcal{D}, D_{i}, H\left(\ell^{\prime} \leftarrow \ell\right),\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right),
$$

has the same output as ROLL-UP $\left(\mathcal{D}, D_{i}, H\left(\ell^{\prime}\right),\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right)$. Therefore, for expressibility, we can limit the further discussion in this section to the roll-up.

We remark that, since we assume, by definition, that dimension graphs are sound, we can also omit reference to the hierarchy H in the above notation and simply write $\operatorname{ROLL}-\operatorname{UP}\left(\mathcal{D}, D_{i}, \ell,\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right)$ and $\operatorname{DRILL-DOWN}(\mathcal{D}$, $\left.D_{i}, \ell^{\prime},\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right)$, for these OLAP operations.

Definition 24 (ROLLUP). Given a data cube \mathcal{D}, one of its dimensions D_{i}, and a hierarchy H over D_{i}, ending in a node ℓ, the operation

$$
\operatorname{ROLL-UP}\left(\mathcal{D}, D_{i}, H(\ell),\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right)
$$

computes the aggregation of the measures α_{i} by their aggregation functions f_{i}, for $i=1,2, \ldots, r$, as follows:

$$
\begin{aligned}
& \alpha_{i}^{f_{i}}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)= \\
& \quad f_{i}\left(\left\{\alpha_{i}\left(\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{d}\right) \mid y_{i} \in \operatorname{dom}\left(D_{i}\right) \text { and } \rho_{H}\left(y_{i}, b\right)\right\}\right),\right.
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right) \in M(\mathcal{D})$, for which $\rho_{H}\left(y_{i}, b\right)$, for some $b \in$ $\operatorname{dom}\left(D_{i} \cdot \ell\right)$. This roll-up flags all representative Bottom-level objects for elements of $\operatorname{dom}\left(D_{i} \cdot \ell\right)$ as active.

Property 6. Let \mathcal{D} be a data cube, let D_{i} be one of its dimensions, and let H be a hierarchy over D_{i} ending in a node ℓ. Let $\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}$ be a set of selected measures (taken from the protected measures $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ and the computed measures $\tau_{1}, \ldots, \tau_{k}$ of $\left.\mathcal{D}\right)$, with their associated aggregation functions. The operation $\operatorname{ROLL}-\operatorname{UP}\left(\mathcal{D}, D_{i}, H(\ell),\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}\right)$ is expressible as an OLAP operation.

Proof 4. Let \mathcal{D} be a data cube, let D_{i} be one of its dimensions, and let H be a hierarchy over D_{i} ending in a node ℓ. Let $\left\{\left(\alpha_{i}, f_{i}\right) \mid i=1,2, \ldots, r\right\}$ be a set of selected measures with their associated aggregation functions.

We start by remarking that the aggregations of the measures α_{i} by the functions f_{i}, can be computed consecutively for $i=1,2, \ldots, r$. At the end their results are copied as the last r computed measures and an output flag of type $\varphi^{(r)}$, which is a selector $\sigma_{D_{i} . \ell}$, returns these r aggregation results as output.

Now, it remains to be shown how the SQL aggregation functions SUM, AVG, MIN, MAX, COUNT and COUNT-DISTINCT can be implemented as sequences of atomic OLAP transformations for an arbitrary measure α.
(1) SUM: We give a description of the implementation of the SUM by a sequence of atomic OLAP transformations. Since a detailed description of a similar procedure is given in the proof of Property 4, we refer to that proof for details.

Here, we first create prime labels $\gamma_{D_{j} \text {.Bottom }}$ for all $j \neq i$ and, for dimen${ }_{880}$ sion D_{i}, prime labels $\gamma_{D_{i}, \ell}$ at the level ℓ. Next, we create a measure that is the product of all these prime labels. This prime product label gives each cell $\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{d}\right)$ of the matrix a unique label, modulo rollingup to the same object at level ℓ for the dimension D_{i}. This implies that $\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{d}\right)$ and $\left(x_{1}, \ldots, x_{i-1}, y_{i}^{\prime}, x_{i+1}, \ldots, x_{d}\right)$, for which there is ${ }_{885}$ a $b \in \operatorname{dom}\left(D_{i}, \ell\right)$ such that $\rho_{H}\left(y_{i}, b\right)$ and $\rho_{H}\left(y_{i}^{\prime}, b\right)$, get the same prime product label. Then we take the d-dimensional sum of the product of this prime product label with α. The projection on the prime product label, gives the desired result. That is, the cells $\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{d}\right)$ and $\left(x_{1}, \ldots, x_{i-1}, y_{i}^{\prime}, x_{i+1}, \ldots, x_{d}\right)$, for which there is a $b \in \operatorname{dom}\left(D_{i} \cdot \ell\right)$ such that $\rho_{H}\left(y_{i}, b\right)$ and $\rho_{H}\left(y_{i}^{\prime}, b\right)$, get the same aggregation (sum) value of α over all objects that roll-up to b. For a detailed description, we refer to the proof of Property 4 and for an illustration, we refer to Example 21 .
(2) COUNT: Here, we proceed in a similar way as in the case of SUM, with the modification that before taking the sum, we do not multiply the prime product labels with α, but with 1 .

If we are interested in counting the cells for which α is non-zero, we can achieve this by multiplying the prime product labels by the quotient α / α, rather than by 1 . We remark that by the definition of quotient $0 / 0=0$, which implies that the cells with a zero value for α are not counted.
(3) AVG: The aggregation function AVG can be implemented by the implementation of SUM, followed by the implementation of COUNT (counting all or all non-zeroes) and then computing the quotient of these two values.
(4) MIN and MAX: As in the case of SUM, we create prime product labels for all cells of $M(\mathcal{D})$. Let us call this prime product labels τ_{m}. Then we form of the Count-Distinct.

This concludes the proof.
Now, we illustrate the roll-up implementation, using our running example.

Example 21. In this example we simulate the roll-up operation, using prime (product) labels, sums and projections together with the 3-dimensional sum. We look at the query "total sales per country". We use the simplified syntax, only indicating the level to which we roll-up on the Location dimension (i.e., Country). The query

$$
\text { ROLL-UP }(\mathcal{D}, \text { Location, Country, }\{(\text { sales, SUM })\})
$$

is the result of the following transformations, given the measure $\mu_{1}=$ sales:

1. $\tau_{\ell+1}=\gamma_{\text {Product.Bottom }}$ (prime labels on products);
2. $\tau_{\ell+2}=\gamma_{\text {Time.Bottom }}$ (prime labels on time moments);
3. $\tau_{\ell+3}=\gamma_{\text {Location.Country }}$ (prime labels on countries);
4. $\tau_{\ell+4}=\tau_{\ell+1} \cdot \tau_{\ell+2} \cdot \tau_{\ell+3} ;$ (prime product label - in one step);
5. $\tau_{\ell+5}=\mu_{1} \cdot \tau_{\ell+4}$ (product of labels with sales);
6. $\tau_{\ell+6}=\mathrm{SUM}_{3}\left(\tau_{\ell+5}\right)$ (3-dimensional sum);
7. $\tau_{\ell+7}=\left.\tau_{\ell+5}\right|_{\tau_{\ell+4}}$ (projection on prime product labels);
8. $\varphi^{(1)}=\sigma_{\text {Location.Country }}$ (output flag on country-representatives).

Transformation $\tau_{\ell+4}$ gives every product-date-country combination a unique prime product label. Normally this product takes more steps. Above, we have abbreviated it to one transformation.

The transformation $\tau_{\ell+7}$ gives the aggregation result and $\varphi^{(1)}$ is the flag that says that only the cities antwerp and paris, which represent the level Country, are active in the output (and nothing else of the original cube).

We continue with another example of a roll-up operation. We only give high-level descriptions of its implementation as a sequence of atomic OLAP transformations.

Example 22. Let us consider a rather complex, although usual query in data analysis in real-world situations: "city-average sales, for cities whose average

4.6. The composition of classical OLAP operations

In this paper, we have proven the following theorem about the completeness of the proposed algebra.

Theorem 1. The classical OLAP operations and their composition are expressible by OLAP operations (that is, as sequences of atomic OLAP transformations).

The proof of this theorem follows immediately from the properties in this section and the results in Section 3 .

We conclude this section with an example that illustrates the power and generality of our approach, combining a sequence of OLAP operations, and expressing them as a sequence of OLAP transformations.

Example 23. Let us consider an OLAP user, who is analyzing sales in different countries and regions. She wants to analyze and compare sales in the north of Belgium (the Flanders region), and in the south of France (which we, generically, have denoted south in our running example). She starts navigating the cube (as we said, indistinctly this can be done through a query language or with a graphic tool), and first filters the cube, keeping just the cells of the two desired regions. This is done with the following expression:
$\operatorname{DICE}(\mathcal{D}$, Location.Region $=$ flanders $O R$ Location.Region $=$ south $)$.

As we showed, this can be implemented as a sequence of atomic OLAP transformations. Now the user has a cube with the cells that do not have been destroyed. Next, within the same navigation process, she obtains the total sales, in France and Belgium, only considering the desired regions, by means of:

$$
\text { ROLL-UP }(\mathcal{D}, \text { Location, Country, }\{(\text { sales }, \mathrm{SUM})\}) .
$$

This will only consider the valid cells for rolling up. After this, our user only wants to keep the sales in France (since she is within the same process, she will obviously obtain the sales in the south of France). Thus, she writes (or "clicks"):

$$
\operatorname{DICE}(\mathcal{D}, \text { Location.Country }=\text { france }) .
$$

Finally, she wants to go back to the details, one level below in the hierarchy (that is, the sales in the south of France, the latter being the country she is at, at this stage of her navigation). For this, she does:

DRILL-DOWN(\mathcal{D}, Location, Region, $\{($ sales, SUM $)\})$

In our approach, this will be a roll-up from the bottom level to the Region level, but only considering the cells that have not been destroyed.

5. Conclusion and discussion

We have presented a formal, mathematical approach, to solve a practical problem, which is, to provide, for the first time, a formal semantics to a collection of OLAP operations, frequently used in real-world practice. Although OLAP is a very popular field in data analytics, this is the first time a formalization like this is given. The need for this formalization is clear: in a world being flooded 55 by data of different kinds, users must be provided with tools allowing them to have an abstract "cube view" and cube manipulation capabilities, regardless of the underlying data types. Without a solid basis and unambiguous definition of cube operations, the former could not be achieved. We claim that our work is the first one of this kind, and will serve as a basis to build more robust practical tools to address the forthcoming challenges in this field.

We have addressed the four core OLAP operations: slice, dice, roll-up, and drill-down. This does not harm the value of the work. On the contrary, this approach allows us to focus on our main interest, that is, to study the formal basis of the problem. Intuitively, although of course, we must prove this, our line of work can be extended to address other kinds of OLAP queries, like queries involving more complex aggregate functions like moving averages, rankings, and the like. Further, cube combination operations, like drill-across, must be included in the picture. We believe that our contribution provides a solid basis upon which, a complete OLAP theory can be built.

Acknowledgements: Alejandro Vaisman was supported by a travel grant from Hasselt University (Korte verblijven-inkomende mobiliteit, BOF15KV13). He was also partially supported by PICT-2014 Project 0787.

References

[1] R. Kimball, The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouse, Wiley, 1996.
[2] C. Ciferri, R. Ciferri, L. Gómez, M. Schneider, A. Vaisman, E. Zimányi, Cube algebra: A generic user-centric model and query language for OLAP cubes, International Journal of Data Warehousing and Mining 9 (2) (2013) 39-65.
[3] A. Vaisman, E. Zimányi, Data Warehouse Systems: Design and Implementation, Springer, 2014.
[4] S. Harinath, R. Pihlgren, D.-Y. Lee, J. Sirmon, R. Bruckner, Professional Microsoft SQL Server 2012 Analysis Services with MDX and DAX, Wrox, 2012.
[5] O. Romero, A. Abelló, On the need of a reference algebra for OLAP, in: Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery, DaWaK'07, Regensburg, Germany, 2007, pp. 99-110.
[6] M. Gyssens, L. Lakshmanan, A foundation for multi-dimensional databases, in: Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB'97, Athens, Greece, 1997, pp. 106-115.
[7] R. Agrawal, A. Gupta, S. Sarawagi, Modeling multidimensional databases, in: Proceedings of the 15th International Conference on Data Engineering (ICDE'97), IEEE Computer Society, Birmingham, UK, 1997, pp. 232-243.
[8] H. D. Macedo, J. N. Oliveira, A linear algebra approach to OLAP, Formal Asp. Comput. 27 (2) (2015) 283-307.
[9] P. Vassiliadis, Modeling multidimesional databases, cubes and cube operations, in: Proceedings of the 10th International Conference on Scientific and Statistical Database Management, SSDBM'98, Capri, Italy, 1998, p. 53.
[10] F.Ravat, O. Teste, R. Tournier, G. Zurfluh, Algebraic and graphic languages for OLAP manipulations, IJDWM 4 (1) (2008) 17-46.
[11] L. Gómez, S. Gómez, A. Vaisman, A generic data model and query language for spatiotemporal OLAP cube analysis, in: Proceedings of the 15th International Conference on Extending Database Technology, EDBT 2012, Berlin, Germany, 2012, pp. 300-311.
[12] J. Varga, L. Etcheverry, A. Vaisman, O. Romero, T. B. Pedersen, C. Thomsen, Enabling OLAP on statistical linked open data, in: Proceedings of the 32nd International Conference of Data Engineering (ICDE 2016) (accepted, to appear).
[13] J.-P. Escofier, Galois Theory, Vol. 204 of Graduate Texts in Mathematics, Springer-Verlag, 2001.

Appendix A. Proof of Property 2

We now give the proof of Property 2. We repeat the property here, to

Property 2. Let $n \geq 1$ and let $A_{1} \times A_{2} \times \cdots \times A_{n}$ be a cartesian product of finite sets. We assume that the cells $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of this set contain rational values $\mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of a measure μ. Let I be a subset of $\{1,2, \ldots, n\}$ and let w_{i} be prime labelings of the sets A_{i}, for $i \in I$, that form a prime product I-labelling (see Definition 16). Then we have that the prime sum (\dagger_{2}) uniquely determines the values $\sum_{\times_{i \in I^{c}} A_{i}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for all cells of $A_{1} \times A_{2} \times \cdots \times A_{n}$.

Proof 5. First, we assume I contains one element. Without loss of generality, we may assume that $I=\{1\}$. Then the prime sum (over I) is

$$
\begin{gathered}
\sum_{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{n}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot w_{1}\left(a_{1}\right)= \\
\sum_{a_{1} \in A_{1}}\left(\sum_{\left(a_{2}, \ldots, a_{n}\right) \in A_{2} \times \cdots \times A_{n}} \mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \cdot w_{1}\left(a_{1}\right) .
\end{gathered}
$$

Let us assume this sum is equal to

$$
\sum_{a_{1} \in A_{1}}\left(\sum_{\left(a_{2}, \ldots, a_{n}\right) \in A_{2} \times \cdots \times A_{n}} \mu^{\prime}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \cdot w_{1}\left(a_{1}\right)
$$

for some measure μ^{\prime} and that there exists a $a_{0} \in A_{1}$ such that

$$
\sum_{\left(a_{2}, \ldots, a_{n}\right) \in A_{2} \times \cdots \times A_{n}} \mu\left(a_{0}, a_{2}, \ldots, a_{n}\right) \neq \sum_{\left(a_{2}, \ldots, a_{n}\right) \in A_{2} \times \cdots \times A_{n}} \mu^{\prime}\left(a_{0}, a_{2}, \ldots, a_{n}\right)
$$

Since all $\mu\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mu^{\prime}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are assumed to be rational numbers, this implies that $w_{1}\left(a_{0}\right)$ is a rational combination of the other labels $w_{1}\left(a_{1}\right)$, with $a_{1} \in A_{1} \backslash\left\{a_{0}\right\}$. Since the labels $w_{1}\left(a_{1}\right)$, with $a_{1} \in A_{1}$, are square roots of different prime numbers, this leads to a contradiction, since the field extension $\mathbf{Q}\left(\sqrt{2}, \sqrt{3}, \ldots, \sqrt{p_{n}}\right)$, for any n, has degree 2^{n} over \mathbf{Q}. In other words, the square roots $\sqrt{2}, \sqrt{3}, \ldots, \sqrt{p_{n}}$ (together with 1) are linearly independent over Q (see Chapter 8 in [13]).

When the cardinality of I is strictly larger than 1 , we can use a similar argumentation. Then we work with prime product labels of the form $\prod_{i \in I} w_{i}\left(a_{i}\right)$. Because of the restrictions on these products, imposed by Definition 16 (injectivity of the labelling function per dimension and disjointness of labels between dimensions), we see that these product labels differ one from the other by at least one prime factor (under the square root). Therefore, these labels are also linearly independent over $\mathbf{Q}[13]$. This completes the proof.

Appendix B. Proof of Lemma 1

Proof 6. Obviously, a Boolean combination of Boolean conditions is a Boolean condition. Let us assume that ϕ, ϕ_{1} and ϕ_{2} are transformation-expressible by sequences of OLAP transformations that end in $\tau_{k}, \tau_{k_{1}}$ and $\tau_{k_{2}}$, respectively. Then ϕ_{1} AND ϕ_{2} can be expressed by the transformation $\tau_{m}=\tau_{k_{1}} \cdot \tau_{k_{2}}$, which is 1 on cells if and only if both ϕ_{1} and ϕ_{2} give 1 on those cells.

For the negation, we have the following sequence of additional transformations:

- $\tau_{m}=1$ (rational constant);
- $\tau_{m+1}=-1$ (rational constant);
- $\tau_{m+2}=\tau_{m+1} \cdot \tau_{k}$ (product); and
- $\tau_{m+3}=\tau_{m}+\tau_{m+2}$ (sum).

Here, we simulate substraction using the sum. The transformation τ_{m+3} equals $\tau_{m}-\tau_{k}$ and turns $\tau_{k}=0$ into 1 and a $\tau_{k}=1$ into 0 . So, the transformation τ_{m+3} expresses NOT ϕ.

Via de Morgan's law, we can express ϕ_{1} OR ϕ_{2} using conjunction and negation. An alternative implementation of the OR is given by $\tau_{m}=\tau_{k_{1}}+\tau_{k_{2}}$ (this sum gives 0,1 or 2); and $\tau_{m+1}=\tau_{m} / \tau_{m}$. This last transformation maps 1 and 2 on 1 and 0 on 0 (in Definition 11, we defined $0 / 0$ to be 0).

[^0]: * Corresponding author

 Email addresses: bart.kuijpers@uhasselt.be (Bart Kuijpers), avaisman@itba.edu.ar (Alejandro Vaisman)

