
Made available by Hasselt University Library in https://documentserver.uhasselt.be

An Algebra for OLAP

Peer-reviewed author version

KUIJPERS, Bart & VAISMAN, Alejandro (2017) An Algebra for OLAP. In: Intelligent

Data Analysis, 21(5), p. 1267-1300.

DOI: 10.3233/IDA-163161

Handle: http://hdl.handle.net/1942/21221

An Algebra for OLAP

Bart Kuijpers

Hasselt University, Belgium

Alejandro Vaisman∗

Instituto Tecnológico de Buenos Aires, Argentina

Abstract

OLAP (On Line Analytical Processing) comprises tools and algorithms that
allow querying multidimensional (MD) databases. OLAP is based on the MD
model, where data can be seen as a cube, where each cell contains one or more
measures of interest, that can be aggregated along dimensions. Despite the
extensive corpus of work in the field, a formally defined, reference language for
OLAP is still needed, as there is no well-defined, accepted semantics, for many of
the usual OLAP operations. In this paper, we address the problem, and present
a set of operators that manipulate a data cube, clearly define their semantics,
and prove that they can be composed, yielding a language powerful enough to
express complex OLAP queries. We express these operations as a sequence of
atomic transformations over a fixed MD matrix whose cells contain a sequence
of measures. Each atomic transformation produces a new measure. When a
sequence of transformations forms an OLAP operation, additionally, a flag is
produced that indicates which cells must be considered as input for the next
operation. In this way, an elegant algebra is defined. Our main contribution,
with respect to other similar efforts in the field is that, for the first time, a
formal proof to practical problems is given, and we believe the present work will
serve as a basis to build more solid practical tools for data analysis.

Keywords: OLAP, Data Warehousing, Algebra, Data Cube, Dimension
Hierarchy

1. Introduction

OLAP (On Line Analytical Processing) [1] comprises a set of tools and algo-
rithms that allow efficiently querying multidimensional (MD) databases contain-
ing large amounts of data, usually called Data Warehouses (DW). Conceptually,
in the MD model, data can be seen as a cube, where each cell contains one or5

∗Corresponding author
Email addresses: bart.kuijpers@uhasselt.be (Bart Kuijpers), avaisman@itba.edu.ar

(Alejandro Vaisman)

Preprint submitted to Information Systems March 2, 2016

more measures of interest, that quantify facts. Measure values can be aggregated
along dimensions, which give context to facts. At the logical level, OLAP data
are typically organized as a set of dimension and fact tables. Typically, current
database technology allows alphanumerical warehouse data to be integrated for
example, with geographical or social network data, for decision making. In the10

era of so-called “Big Data”, the kinds of data that could be handled by data
management tools, are likely to increase in the near future.

Although OLAP and Business Intelligence (BI) tools allow to manage dif-
ferent kinds of information, this normally requires that the user must be aware
of models and query languages appropriate for each data type incorporated in15

the process. For example, we may have alphanumerical data coming from a
local DW, spatial data (e.g., temperature) coming as rasterized images, and
economical data published on the semantic web. A user who needs to integrate
all of these data for analysis would need to have a knowledge not only of some
OLAP language (or OLAP graphic tools), but also must know how to deal with20

spatial data, and even with SPARQL (the standard query language for the se-
mantic web). Ideally, this user would just like to deal with what she knows well,
namely the data cube, using only the classical OLAP operators, like Roll-up,
Drill-down, Slice, and Dice (among other ones), regardless the cube’s underly-
ing data type (as we explained, spatial discrete, continuous, a graph data type,25

or just alphanumerical). These data types should be handled only at the logical
and physical levels, not at the conceptual level. This is the idea introduced by
Ciferri et al. [2], who proposed a model independent of technologies like ROLAP
(for Relational OLAP), MOLAP (for Multidimensional OLAP) or HOLAP (for
Hybrid OLAP), and has an associated query language based exclusively on the30

conceptual level, thus providing high-level query operations for the user. This
language, called Cube Algebra, was sketched informally in that paper. Building
on this algebra, extensive examples are presented in [3], suggesting that this
idea can lead to a language much more intuitive and simple than the de facto
standard MDX [4]. Nevertheless, these works do not give (since this was not35

their goal) any evidence of the correctness of the languages and operations pro-
posed, other than examples with various degrees of comprehensiveness. In fact,
surprisingly, and in spite of the extensive corpus of work in the field, a formally
defined, reference language for OLAP is still needed [5]. There is not even a
well-defined, accepted semantics, for many of the usual OLAP operations.40

1.1. Contributions

In this paper we address the problem introduced above. To this end, we:

• introduce a collection of operators that manipulate a data cube, and
clearly define their semantics;

• prove, formally, that our operators can be composed, yielding a language45

powerful enough to express complex queries and cube navigation (“à la
OLAP”) paths.

We achieve the above representing the data cube as a fixed d-dimensional
matrix, and a set of k measures, and expressing each OLAP operation as a

2

sequence of atomic transformations. Each transformation produces a new mea-50

sure, and, additionally, when a sequence forms an OLAP operation, a flag that
indicates which are the cells that must be considered as input for the next op-
eration. This formalism allows us to elegantly define an algebra as a collection
of operations, whose proof of correctness we provide in the paper. In this paper
we limit ourselves to the most usual operators, namely slice, dice, roll-up and55

drill-down, which constitute the core of all practical OLAP tools. This allows us
to focus on our main interest, which is, to prove the feasibility of the approach.
Other not-so-usual operations, and operations between two or more cubes, are
left for future work.

The main contribution of our work, with respect to other similar efforts60

in the field is that, for the first time, a formal proof to practical problems is
given, so the present work will serve as a basis to build more solid tools for data
analysis. As we show in the next section, existing work either lacks of formalism,
or of applicability, and no work of any of these kinds give sound mathematical
prove of its claims.65

1.2. Related Work

In spite that the need of an algebra for OLAP has long been acknowledged in
the literature (see for example [5]), just a few works have addressed this problem
so far, and in a limited way.

The multidimensional model (MD) proposed by Gyssens and Lakshmanan [6]70

defines a data manipulation language that can express a so-called cube operator.
The authors propose an algebra (and an equivalent calculus), which includes set
operators (like selection, projection, cartesian product), operators for summa-
rization, and re-structuring operators (fold and unfold). This model largely
simplifies typical MD models for OLAP (for example, dimension hierarchies are75

considered in a very limited way), and the operations proposed only address
simple cases.

Along similar lines, Agrawal et al. [7] proposed a data model that supports
multiple hierarchies along each dimension, and the possibility of performing ad-
hoc aggregates. They also define a minimal set of algebraic operators that is80

composed of the following operators: push and pull, destroy dimension, restric-
tion (slice and dice), join, and associate. These operations are introduced in an
informal way.

The proposals above are not appropriate for composing operations in practi-
cal cases, since they make implicit assumptions that do not apply in real world85

scenarios. On the contrary, we show that our approach can be applied to address
typical operations composition.

Macedo and Oliveira [8] present an approach that can be considered close
to ours, since they represent MD data as a matrix, with the idea of expressing
OLAP operations in linear algebra (LA). The paper’s motivation is, like in our90

case, to fill the theoretical gap in the field. The proposal expresses some simple
OLAP operations, mainly cross tabulations, as a combination of matrix multi-
plication, transposition, and a variant of the Kronecker product. However, this
proposal is very preliminary, as the author’s acknowledge, since no justification
of the approach is provided. Further, as it is, the work is oriented to Excel95

3

spreadsheets rather than to OLAP, and it has yet to be incorporated into a
typical MD model for OLAP.

In a more OLAP-oriented approach, Vassiliadis [9] presented a classic MD
model, which includes the concepts of dimensions, hierarchies, and cubes. The
author also proposes a set of operators based on the notion of a base cube,100

e.g., a cube at the finest granularity level. These operations are: level climbing,
packing, function application, projection, navigation, slicing, and dicing. Again,
no formal language is presented. Ravat et al. [10] also propose an OLAP algebra
at the conceptual level, trying to overcome their drawbacks, although no formal
semantics is defined for the algebra presented by the authors.105

Some works have already made use of the cube algebra proposed in [2].
Gómez el al. [11] used cube algebra to manipulate different kinds of spatial
data, namely discrete data and continuous fields implemented in several differ-
ent ways, like Voronoi diagrams and rasterized data. They implemented cube
algebra at a conceptual level, and all the needed machinery to manipulate the110

heterogeneous cubes at the logical and physical levels. Similar work, but with
semantic web data, is presented in [12]. We envision that applications like
these, are likely to grow in number and variety, for which a formalization of this
algebra, like the one proposed in this paper, is clearly needed.

Many proposals also exist in the OLAP literature, defining several different115

sets of operators to handle MD data, although none of them abstract from the
logical level and thus, do not provide high-level query operations for the user.
For a comprehensive survey, we refer the reader to [2].

1.3. Paper Organization

The remainder of the paper is organized as follows. In Section 2, we present120

our MD data model, on which we base the rest of our work. Section 3 presents
the atomic transformations that we use to build the OLAP operations. In Sec-
tion 4 we discuss the classical OLAP operations in terms of the transformations,
show how they can be composed to address complex queries, and give proofs of
all of our claims. We conclude in Section 5. Additional proofs are given in the125

appendix.

2. The OLAP data model

In this section, we describe the OLAP data model, which is the multidi-
mensional data cube. Before we give the definition of the data cube, we define
what we mean by its matrix. The “empty” matrix serves as a placeholder for130

the measures that are contained in the data cube. We also define the notions
of dimension schema (with hierarchies and levels) and dimension instance (level
instance, hierarchy instance and dimension graph). We end this section with a
discussion of ordered domains and the representation of higher-level objects.

2.1. Multidimensional Matrix135

In this section, we give the definitions of a multidimensional matrix schema
and a multidimensional matrix instance. In the following definition and through-
out this paper, d is a natural number, with d ≥ 1, which represents the number
of dimensions of a data cube.

4

Definition 1 (Matrix Schema). A d-dimensional matrix schema is a sequence

(D1, D2, ..., Dd) of d dimension names. ut

Dimension names can be considered to be strings. As illustrated in the140

following example, we use the notational convention to start dimension names
with a capital letter.

Example 1. Our running example deals with sales information of certain prod-

ucts, at certain locations, at certain moments in time. For this purpose, we use

the 3-dimensional matrix schema (D1, D2, D3) = (Product, Location, T ime).

ut

Definition 2 (Matrix Instance). A d-dimensional matrix instance (or a ma-

trix, for short) over the d-dimensional matrix schema (D1, D2, ..., Dd) is a prod-

uct

dom(D1)× dom(D2)× · · · × dom(Dd),

where, for i = 1, 2, ..., d, dom(Di) is a non-empty, finite, ordered set, called the

domain, that is associated with the dimension name Di. For all i = 1, 2, ..., d,

we denote by <, the order that we assume on the elements of dom(Di). For

a1 ∈ dom(D1), a2 ∈ dom(D2), ..., ad ∈ dom(Dd), we call the tuple (a1, a2, ..., ad)

a cell of the matrix. ut

The cells of a matrix serve as placeholders for the measures that are contained
in the data cube (see Definition 7). The role of the order < is discussed further
in Section 2.4.145

We use the notational convention to start elements of the domains dom(Di)
with a lower case letter, as it is illustrated in the following example.

Example 2. For the 3-dimensional matrix schema (D1, D2, D3) = (Product,

Location, T ime) of Example 1, the non-empty sets dom(D1) = {lego, brio,

apples, oranges}, dom(D2) = {antwerp, brussels, paris, marseille}, and

dom(D3) = {1/1/2014, ..., 31/1/2014} give rise to the matrix instance

dom(D1)× dom(D2)× dom(D3).

This matrix is shown in Figure 3. The cells of the matrix contain the sales

figures for each combination of values in the domain. On dom(D2), we have, for

5

instance, the order antwerp < brussels < paris < marseille. On the dimension

Time, we would typically have the temporal order. ut

2.2. Level Instance, Hierachy Instance and Dimension Graph

In this section, we define the notions of dimension schema (with hierarchies
and levels) and dimension graph (or dimension instance).150

Definition 3 (Dimension Schema, Hierarchy and Level). Let D be a di-

mension name. A dimension schema σ(D) for D is a lattice with a unique top-

node, called All (which has only incoming edges) and a unique bottom-node,

called Bottom (which has only outgoing edges), such that all maximal-length

paths in the graph go from Bottom to All.155

Any path from Bottom to All in a dimension schema σ(D) is called a hier-

archy of σ(D). Each node in a hierarchy (or in a dimension schema) is called a

level (of σ(D)). ut

We use the notational convention to start level names with a capital letter.
We remark that the Bottom node is often renamed, depending on the applica-
tion, as is illustrated in the following example. This example also introduces a
non-graphical notation for hierarchies.

Example 3. Figure 1 gives examples of dimension schemas σ(Location) and160

σ(Time) for the dimensions Location and Time from Example 1.

For the dimension Location, we have Bottom = City and there is only one

hierarchy, which we denote as

City → Region→ Country → All.

The node Region is an example of a level in this hierarchy.

For the dimension Time, we have Bottom = Day and we have two hier-

archies, namely Day → Month → Semester → Y ear → All and Day →

Week → All.165

We remark that for the dimension Location, we have a linear lattice as a

dimension schema. In this example, this is not the case for the dimension Time.

ut

6

All

Y ear

Semester

Month

Week

Day

All

Country

Region

City

(a) (b)

Figure 1: Dimension schemas for the dimensions Location, in (a), and T ime , in (b).

Definition 4 (Level Instance, Hierachy Instance, Dimension Graph).

Let D be a dimension with schema σ(D), and let ` be a level of σ(D). A level

instance of ` is a non-empty, finite set dom(D.`). If ` = All, then dom(D.All)

is the singleton {all}. If ` = Bottom, then dom(D.Bottom) is the the domain

of the dimension D, that is, dom(D) (as in Definition 2).170

A dimension graph (or instance) I(σ(D)) over the dimension schema σ(D)

is a directed acyclic graph with node set⋃
`

dom(D.`),

where the union is taken over all levels in σ(D). The edge set of this directed

acyclic graph is defined as follows. Let ` and `′ be two levels of σ(D), and let

a ∈ dom(D.`) and a′ ∈ dom(D.`′). Then, only if there is a directed edge from

` to `′ in σ(D), there can be a directed edge in I(σ(D)) from a to a′.

If H is a hierarchy of σ(D), then the hierarchy instance (relative to the di-

mension instance I(σ(D))) is the subgraph of I(σ(D)) with nodes from dom(D.`),

for ` appearing in H. This subgraph is denoted by IH(σ(D)). ut

We use the notational convention to start the names of objects from a set175

dom(D.`) with a lower case character.

7

We remark that a hierarchy instance IH(σ(D)) is always a (directed) tree,
since a hierarchy is a linear lattice. We also use the following terminology. If a
and b are two nodes in a hierarchy instance IH(σ(D)), such that (a, b) is in the
transitive closure of the edge relation of IH(σ(D)), then we say that a rolls-up180

to b and we denote this by ρH(a, b) (or ρ(a, b) if H is clear from the context).
The following example illustrates these concepts.

Example 4. We continue with Example 3 and focus on the dimension Location,

whose dimension schema, σ(Location), is given in Figure 1 (a). From Exam-

ple 2, we have dom(Location) = {antwerp, brussels, paris, marseille}, which

is dom(Location.Bottom), or dom(Location.City). For the levels Region and

Country, we have dom(Location.Region) = {flanders, capital, north, south},

and dom(Location.Country) = {belgium, france}, respectively. An example

of a dimension instance I(σ(Location)) is depicted in Figure 2. This example

expresses, for instance, that the city brussels is located in the region capital

which is part of the country belgium. This means that brussels rolls-up to

capital and to belgium, that is, ρ(brussels, captial) and ρ(brussels, belgium).

We also remark that the dimension instance of Figure 2 is indeed a tree. ut

all

belgium

flanders

antwerp

france

capital north south

brussels paris marseille

Figure 2: An example of a dimension graph (or instance) I(σ(Location)).

In a dimension graph with multiple hierarchies, elements in some levels may
be reachable from elements in the Bottom level, in multiple ways. However,
it is important that rolling-up in different ways gives the same results. This is185

formalised by the concept of “sound” dimension graph.

Definition 5 (Sound Dimension Graph). Let I(σ(D)) be a dimension graph

(as in Definition 4). We call this dimension graph sound, if for any level ` in

8

σ(D) and any two hierarchies H1 and H2 that reach ` from the Bottom level and

any a ∈ dom(D) and b1, b2 ∈ dom(D.`), we have that ρH1
(a, b1) and ρH2

(a, b2)

imply that b1 = b2. ut

In this paper, we assume that dimension graphs are always sound (as speci-
fied in Definition 7).

2.3. Multidimensional Data Cube

In this section, we give the definitions of a (multidimensional) data cube190

schema and a data cube instance. Essentially, a data cube is a matrix in which
the cells are filled with measures that are taken from some value domain Γ. For
many applications, Γ will be the set of real or rational numbers. But we may
also think of applications where Γ includes spatial regions or other geometric
objects, for instance.195

Definition 6 (Data Cube Schema). A d-dimensional data cube schema con-

sists of

• a d-dimensional matrix schema (D1, D2, ..., Dd); and

• a hierarchy schema σ(Di) for each dimension Di, with i = 1, 2, ..., d. ut

Definition 7 (Data Cube Instance). Let Γ be a non-empty set of “values”.

A d-dimensional, k-ary data cube instance (or data cube, for short) D over the200

d-dimensional matrix schema (D1, D2, ..., Dd) and hierarchy schemas σ(Di) for

Di, for i = 1, 2, ..., d, with values from Γ, consists of

• a d-dimensional matrix instance over the matrix schema (D1, D2, ..., Dd),

denoted M(D);

• for each i = 1, 2, ..., d, a sound dimension graph I(σ(Di)) over σ(Di);205

• k measures µ1, µ2, ..., µk, which are functions from dom(D1)×dom(D2)×

· · · × dom(Dd) to the value domain Γ; and

• a flag ϕ , which is a function from dom(D1)× dom(D2)× · · · × dom(Dd)

to the set {0, 1}. ut

9

For the remainder of this paper, we assume that Γ = Q, the set of the rational
numbers. For most applications, this suffices. Also, as a notational convention,
we use calligraphic characters, like D, to represent data cube instances.210

The flag ϕ can be considered as a (k + 1)-st measure that is Boolean. The
role of ϕ is to indicate which of the matrix cells are currently “active”. The
active cells have a flag value 1 and the others have a flag value 0. When we
operate over a data cube, flags are used to indicate the input or output parts
of the matrix of the cube. Typically, in the beginning of the operations, all215

cells have a flag value of 1. The role of flags will become more clear in the next
sections, when we discuss OLAP transformations and operations.

...

antwerp
brussels

marseille

Product

T
im

e
 (

D
a

y
)

lego

2/1/2014

1/1/2014

paris

apples

orangesbrio

Lo
ca

tio
n

31/1/2014

Figure 3: An example of a data cube with one measure: µ1 = sales.

Example 5. We build on the previous examples. Figure 3 shows a 3-dimenional

1-ary data cube instance over the matrix schema (Product, Location, T ime)

and dimension schema σ(Product), σ(Location), and σ(Time) (two of which

were given in Example 3) with the set of the rational numbers as value domain.

The matrix cells contain one measure, namely µ1 = sales, which expresses the

sales amount per product, per location and per time instant. Initially, the flag

ϕ may be, for instance, 1 for all matrix cells (not indicated in Figure 3), telling

that all cells of the matrix are currently active. ut

2.4. Ordered domains and the representation of higher-level objects

In the process of performing OLAP transformations and operations, we may
need to store aggregate information about certain measures at some level above220

the Bottom level. We do nor foresee extra space for this in the data cube. We use
the available cells of the original data cube to store this aggregate information,

10

yielding a more elegant solution, since this allows us to manipulate always the
same cube schema while we perform a sequence of operations over the cube, as
we will see later.225

Recall that in Definition 2 we have assumed an order < for the domains
dom(Di). We make use of this order for the representation of high-level objects
by Bottom-level objects. The following definition specifies how this is achieved.

Definition 8. LetD ∈ {D1, D2, ..., Dd} be an arbitrary dimension with domain

dom(D) = dom(D.Bottom). Let ` be a level of σ(D). An element b ∈ dom(D.`)

is represented by the smallest element a ∈ dom(D) (according to <) for which

ρ(a, b). We denote this as rep(b) = a and say that a represents b. ut

We remark, that since we assume dimension graphs to be sound, this notion
of representation is well defined, because the smallest element of the bottom230

level will always reach the same element in any level, regardless of the path
traversed.

The following example illustrates the concept of representation.

Example 6. Continuing the previous examples, we consider the dimension

Location with dom(Location) = {antwerp, brussels, paris, marseille}, which235

is dom(Location.City). On this set, we assume the order antwerp < brussels <

paris < marseille. For this dimension, we have the hierarchy City → Region→

Country → All, and we consider the dimension instance I(σ(Location)), given

in Figure 2.

At the Bottom = City level, cities represent themselves. On higher levels,

regions and countries are represented by their “first” city in dom(Location)

(according to <). This means that flanders and belgium are represented

by antwerp, france is represented by paris, while south is represented by

marseille. Let us explain further explain this. For the level Region, we have

dom(Location.Region) = {flanders, capital, north, south}. At this level,

antwerp represents flanders and marseille represents south, since they are

the first (and, in this case only) domain elements that roll-up to these re-

gions. So, we have rep(flanders) = antwerp. For the level Country, we have

dom(Location.Country) = {belgium, france}. At this level antwerp repre-

sents belgium and paris represents france, since they are the first (but not

11

only) domain elements that roll-up to these countries. At the level All, we have

antwerp that represents all. ut

Later, we use this convention, to encode outputs of OLAP transformations240

and operations at different levels. That means, in our running example, if we
want to represent an output at the Country level, we will flag antwerp and paris
to represent belgium and france. The idea is to store aggregate information for
higher-level objects in the cells of their Bottom-level representatives. In an out-
put cube that contains this aggregate information, we have these representatives245

flagged 1 and other cells flagged 0.

Remark 1. However, there remains a problem, as the previous example illus-

trates. In this example, if we have aggregate information at the level Region,

with dom(Location.Region) = {flanders, capital, north, south}, then all

cities of dom(Location) = {antwerp, brussels, paris, marseille} are flagged.

At this point, it would not be clear if the cube contains information at the level

City or at the level Region. If we keep a log of the OLAP operations that are

performed, this log makes the level of aggregation clear. ut

The following property shows how the order on the Bottom level induces and
order on higher levels. This property depends on the soundness of the dimension
graph. Its proof is straightforward and we omit it.

Property 1. Let D ∈ {D1, D2, ..., Dd} be a dimension of a data cube D and

let ` be a level in the dimension schema σ(D). The order < on dom(D) induces

an order (also denoted <) on dom(D.`) as follows. If b1, b2 ∈ dom(D.`), then

b1 < b2 if and only if rep(b1) < rep(b2). ut

3. OLAP transformations and operations250

A typical OLAP user manipulates a data cube by means of well-known op-
erations. Just to mention the most popular ones, Roll-Up aggregates measures
up to a certain level in a dimension, Drill-Down disaggregates measures up to
a certain level in a dimension, Slice drops a whole dimension, and Dice keeps
only the cells in a cube satisfying a certain Boolean condition. These opera-255

tions, which we will formally define later in this paper, actually express queries
over the data cube, usually submitted using some graphic tool, and translated
into an underlying query language. The result is typically displayed in graphic
or tabular format. An OLAP query can then be considered as a sequence of
these individual operations, which receive a cube as input, and return a cube as260

output. For instance, using our running example, an apparently simple query

12

like “Total sales by region, for regions in Belgium or France”, is actually ex-
pressed as a sequence of operations, whose semantics should be clearly defined,
and which can be applied in different order (with the same result). For exam-
ple, we can first apply a Roll-Up to the Country level, and once at that level265

apply a Dice operation, which keeps the tuples corresponding to Belgium or
France. Finally, a Drill-Down disaggregates the sales down to the level Region,
returning the desired result. Note that since the sales not occurred in Belgium
and France have been eliminated, this last operation must only consider the
remaining members in Country. Thus, the Drill-Down operation is not a just270

an undo of the previous Roll-Up, as it is sometimes considered to be. Note
that, in practice, this problem appears regardless of the processing type, that
is, whether the operation sequence is submitted as an expression in a query
language, or is processed during the user’s navigation through a graphic tool.

In what follows, we regard OLAP operations as the result of sequences of275

“atomic” OLAP transformations, which are measure-creating updates to a data
cube. First, we give the definition of an OLAP transformation. Next, we show
how these transformations can be combined into OLAP operations and how
OLAP operations can be composed, along the lines explained at the beginning
of this section. Finally, we give an overview of our arsenal of atomic OLAP280

transformations.
We start this section with an informal description of atomic OLAP trans-

formations, OLAP operations and their composition.

3.1. Introduction to OLAP transformations and operations

An atomic OLAP transformation acts on a data cube instance, by adding285

a measure to the existing data cube measures. OLAP operations like the ones
informally introduced above are defined, in our approach, as a sequence of trans-
formations. The process of OLAP transformations starts from a given input
data cube Din. We assume that this original data cube has k given measures
µ1, µ2, ..., µk (as in Definition 7). These k measures have a special status in290

the sense that they are “protected” and can never be altered (see Section 3.3).
However, there is one exception to this protection. These original measures can
be “destroyed” in some cells (see further on and Section 3.2), for instance, as the
result of slice- or dice-operations, which are destructive by nature. Operations
of these types destroy the content of some matrix cells and remove even the295

protected measures in it.
Typically, the input-flag ϕ of the original data cube Din is set to 1 in every

cell and signals that every cell of M(Din) is part of the input cube.
On data cubes, atomic OLAP transformations can be applied. They add (or

create) new measures to the sequence of existing measures by adding new mea-300

sure values in each cell of the data cube’s matrix. At any moment in this process,
we may assume that the data cube D has k+ l measures µ1, µ2, ..., µk; τ1, ..., τl,
where the first k are the original measures of Din and where the last l (with
l ≥ 0) measures have been created subsequently by l OLAP transformations. A
next OLAP transformation adds a new measure τl+1 to the matrix cells.305

We have said that we use OLAP transformations to compute OLAP opera-
tions. In this sense, we can see that many of the measures τ1, τ2, ..., τl added by

13

the transformations in a process, may represent the result of intermediate com-
putations that are not really relevant to the output of an OLAP operation. We
indicate that the computation of an OLAP operation O is finished by creating a310

m-ary output flag ϕ
(m)
O . This output flag is a Boolean measure, that is created

like other measures via atomic OLAP transformations. It indicates which of the
cells of M(D) should be considered as belonging to the output of O. It is m-ary
in the sense that it keeps the last m created measures τl−m+1, τl−m+2, ..., τl and
“trashes” τ1, τ2, ..., τl−m. It also removes the previous flag, which it replaces.315

The initial measures µ1, µ2, ..., µk of the input data cube Din are never removed
(unless they are “destroyed” in some cells). They are “protected” and remain in
the cube throughout the process of applying one OLAP operation after another
to Din. So, at any stage, we can use the given measures µ1, µ2, ..., µk (except in
destroyed cells).320

Summarizing the above, after an OLAP operation of output arity m is com-
pleted on some cube D, the measures in the cells of the output data cube
D′ = O(D) are of the form

µ1, µ2, ..., µk; τl−m+1, τl−m+2, ..., τl;ϕ
(m)
O .

In the previous expression, the underlining indicates the protected status of
these measures. After each OLAP operation, we do a “cleaning” by renaming
the unprotected measures with the symbols τ1, τ2, ..., τm and the output mea-
sures become

µ1, µ2, ..., µk; τ1, τ2, ..., τm;ϕ
(m)
O .

A next OLAP operation O′ can then act on D′ and use in its computation all

the measures µ1, µ2, ..., µk; τ1, τ2, ..., τm;ϕ
(m)
O . When O′ finishes its computation

after adding l′ measures τm+1, τm+2, ..., τm+l′ and producing a m′-ary output,
the new measures in the cells will look like

µ1, µ2, ..., µk; τm+l′−m′+1, τm+l′−m′+2, ..., τm+l′ ;ϕ
(m′)
O′ .

The last m′ measures before the flag are renamed τ1, τ2, ..., τm′ , again. In this
way, the composition of OLAP operations should be viewed.

We remark that the dimensions, the hierarchy schemas and instances of D
remain unaltered during the entire OLAP process.

We end this description of our view of OLAP transformations, OLAP op-325

erations and their composition, with a remark on destructors. Destructors are
similar to flags, in the sense that they are computed by some sequence of atomic
OLAP transformations and that they are Boolean. A destructor, optionally, pre-
cedes the creation of an output flag. A destructor δ takes the value 1 for some
cells of the matrix of a data cube, and 0 on other cells. When δ is invoked (and330

activated by the output flag that follows it) on a data cube D with measures

µ1, µ2, ..., µk; τ1, τ2, ..., τm and flag ϕ
(m)
O , it empties all cells for which the value

of the destructor δ is 0 by removing all measures from them, even the protected
ones, thereby effectively “destroying” these cells. This is the only case where
the protected measures are altered.335

14

For example, this happens when the OLAP operation is a slice or a dice.
Operations of this type destroy part of the cube and make them inaccessible for
further use. In this context, the output of a destructive operation O looks like

µ1, µ2, ..., µk; τ1, τ2, ..., τl; δ;ϕ
(m)
O ,

in which the destructor precedes the output flag. The effect of the presence of
a destructor is the following. A cell such that δ = 0 is emptied, after which it
contains no more measures and flag. For cells with δ = 1, the sequence of mea-

sures µ1, µ2, ..., µk; τ1, τ2, ..., τl; δ;ϕ
(m)
O ; is transformed to µ1, µ2, ..., µk; τl−m+1,

τl−m+2, ..., τl;ϕ
(m)
O ; which is renamed as µ1, µ2, ..., µk; τ1, τ2, ..., τm;ϕ; before the340

next transformation takes place. This transformation will act, cell per cell, on
the matrix of a cube, with the understanding that it does nothing with emptied
cells. That is, no new measure can ever be added to a destroyed cell.

3.2. OLAP transformations

The following definition specifies how an OLAP transformation acts on a345

data cube. The atomic OLAP operations that appear in this definition are
specified further on in this section.

Definition 9 (OLAP Transformation). Let D be a d-dimensional, (k + l)-

ary data cube instance with given (or protected) measures µ1, µ2, ..., µk, created

measures τ1, ..., τl (with l ≥ 0) and flag ϕ over some value domain Γ. An OLAP350

transformation T , applied to D, results in the creation of a new measure τl+1 in

D. The transformation T adds the measure τl+1 to non-empty cells of M(D).

The measure τl+1 is produced from

• µ1, µ2, ..., µk (in non-empty cells);

• ϕ (in non-empty cells);355

• τ1, τ2, ..., τl (in non-empty cells) and

• the hierarchy schemas and instances of D

and belongs to one of the following classes:

1. Arithmethic transformations (see Definition 11);

2. Boolean transformations (see Definition 12);360

3. Selectors (see Definition 13);

4. Counting, sum, and min-max (see Definitions 14 and 19);

15

5. Grouping (see Definition 18);

An OLAP transformation can also result in the creation of a measure that is

an output flag ϕ(m) or arity m. This should be a measure with a Boolean value365

and to indicate that it is a flag of arity m, we use the reserved symbol ϕ(m)

instead of τl+1.

An output flag ϕ(m) may (optionally) be preceded by a destructor δ (which is

created following the same rules as for other measures, but which has a special

status, expressed by the reserved symbol δ). This should be a measure with

a Boolean value (to indicate which cells are desroyed). We use the reserved

symbol δ instead of τl+1. ut

The effect of output flags and destructors is discussed in Section 3.1. We
remark that atomic OLAP transformations update the cells of the matrix M(D)
cell per cell and that empty cells of M(D) are unaffected by transformations.370

3.3. OLAP operations and their composition

Before we give the definition of an OLAP operation, we describe the input to
the OLAP process, which may involve multiple OLAP operations. This input is
a d-dimensional, k-ary data cube instance Din, with measures µ1, µ2, ..., µk and
flag ϕ. These measures are protected in the sense that they remain the first k
measures throughout the entire OLAP process and are never altered or removed
unless they are destroyed in some cells. The cube Din has also a Boolean flag ϕ,
which typically is 1 in all of the cells of M(Din), indicating that all the matrix
cells are relevant for the input. So, the measures of the input cube Din are
denoted as follows:

µ1, µ2, ..., µk;ϕ.

After applying some OLAP operations to Din, we obtain a data cube D. We
refer to D in the following definition.

Definition 10. Let D be a d-dimensional, (k+ l)-ary input data cube instance

with given measures µ1, µ2, ..., µk, computed measures τ1, ..., τl and flag ϕ. The

data cube D acts as the input of an OLAP operation O (of arity m), which

consists of a sequence of n consecutive OLAP transformations that create the

additional measures τl+1, ..., τl+n, followed by the creation of an m-ary flag ϕ
(m)
O

(possibly preceded by a destructor δ). As the result of the creation of ϕ
(m)
O , the

measures in the cells of the data cube are changed from

µ1, µ2, ..., µk; τ1, ..., τl;ϕ; τl+1, ..., τl+n

16

to

µ1, µ2, ..., µk; τl+n−m+1, ..., τl+n;ϕ
(m)
O ,

which become

µ1, µ2, ..., µk; τ1, ..., τm;ϕ,

after renaming. The output cube D′ = O(D) has the same dimensions, hierarchy

schemas and instances as D, but has measures µ1, µ2, ..., µk; τ1, ..., τm;ϕ.375

In the case where ϕ
(m)
O is preceded by a destructor δ, the same procedure is

followed, except for the cells of M(D) for which δ takes the value 0. These cells

of M(D) are emptied, contain no measures, and become inaccessible for future

transformations or operations. ut

We remark that the output D′ = O(D) of the OLAP operation O on input
D can serve as input to a next OLAP operation. We illustrate the composition
of two operations in Example 11 and other examples.

3.4. Atomic OLAP transformations

In this section, we define our arsenal of atomic OLAP transformations, di-380

vided in five classes, as described in Definition 9.
In the remainder of this section, we use the following notational convention.

For a measure α, we write α(x1, x2, ..., xd) to indicate the value of α in the
cell (x1, x2, ..., xd) ∈ dom(D1) × dom(D2) × · · · × dom(Dd). We remark that
α(x1, x2, ..., xd) does not exist for empty cells and is therefore not considered in385

computations (such as sums). Also, we assume that we have protected measures
µ1, µ2, ..., µk and computed measures τ1, ..., τl in the non-empty cells and that
the next measure we compute is called τl+1.

Throughout this section, we continue with the examples given in Section 2,
that talk about the measure µ1 = sales of certain products, at certain locations,390

at certain moments in time, contained in a data cube D over the 3-dimensional
matrix schema (D1, D2, D3) = (Product, Location, T ime).

3.4.1. Arithmethic transformations

Definition 11 (Arithmetic Transformations). The following creations of a

new measure τl+1 are arithmetic transformations:395

1. (Rational constant) τl+1 = α, with α ∈ Q, a rational number.

2. (Sum) τl+1 = α+ β, with α, β ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}.

3. (Product) τl+1 = α · β, with α, β ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}.

17

4. (Quotient) τl+1 = α/β, with α, β ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}. Here, we

agree that a/0 := a for all a ∈ Q. ut

Example 7. If µ1 = sales is the only measure, the following transformations

compute the 10% of the sales:400

• τ1 = 0.1 (rational constant);

• τ2 = τ1 · µ1 (product).

Next, if we want to create a Boolean measure that indicates whether a cell

contains non-zero sales, we can write

• τ3 = µ1/µ1 (quotient).405

The value of τ3 is 1 if sales > 0 and 0 if sales = 0 (our definition of quotient

says that 0/0 = 0). ut

3.4.2. Boolean transformations

Definition 12 (Boolean Transformations). The following creations of a new

measure τl+1 are Boolean transformations:

1. (Equality test on measures) τl+1 = (α = β), with α, β ∈ {µ1, µ2, ...,

µk, τ1, τ2, ..., τl}. Here, the result of the comparison (α = β) is a Boolean410

1 or 0 (cell per cell in the non-empty cells of the matrix).

2. (Comparison test on measures) τl+1 = (α < β), with α, β ∈ {µ1,

µ2, ..., µk, τ1, τ2, ..., τl}. Here, the result of the comparison (α < β) is a

Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix).

3. (Equality test on levels) For ` a level in the dimension schema σ(Di) of415

dimension Di and c ∈ dom(Di.`) a constant object τl+1(x1, x2, ..., xd) =

(` = c) is an “equality” test. Here, the result of the comparison (` = c) is

a Boolean 1 or 0 (cell per cell in the non-empty cells of the matrix) such

that τl+1(x1, x2, ..., xd) is 1 if and only if xi rolls-up to c at level `, that is

ρ(xi, c).420

18

4. (Comparison test on levels) For ` a level in the dimension schema

σ(Di) of dimension Di and c ∈ dom(Di.`) a constant object, τl+1(x1,

x2, ..., xd) = (` <` c) is a “comparison” test. The result of the comparison

(` <` c) is a Boolean 1 or 0 (cell per cell in the non-empty cells of the

matrix), such that τl+1(x1, x2, ..., xd) is 1 if and only if xi rolls-up to an425

object b at level ` for which b <` c. The order <` can be any order that

is defined on level `. The transformation τl+1(x1, x2, ..., xd) = (c <` `) is

defined similarly.

ut

We remark that the above equality test are superfluous since they can be
expressed as a Boolean combination of comparison tests, but we include them430

for obvious practical reasons. Indeed, a = b is equivalent to ¬(a < b ∨ b <
a). Finally, we remark that the comparison test on levels uses the order <`,
which may be the order (derived from) <, but, in practice, it will often be a
lexicographical or alphabetical order, particular to the level domain.

Example 8. We illustrate the use of Boolean transformations by means of a

sequence of transformations that implement a “dice” (see Section 4.2 for more

details). The query

DICE(D, sales > 50)

asks for the sales values in the matrix of D which contain sales that are higher435

than 50. Again, we assume that µ1 = sales is the only available measure in

the input cube. So, the measures in the cells are sales;ϕ. This query can be

implemented by the following sequence of transformations:

• τ1 = 49.99 (rational constant);

• τ2 = (τ1 < sales) (comparison test on measures);440

• τ3 = µ1 · τ2 (product);

• δ = τ2 (destructor); and

• ϕ(1) = τ2 (unary flag)

19

The measure τ3 contains the sales values larger than or equal to 50 (and

a 0 if the sales are lower). The flag ϕ(1) selects all cells from the input as

output cells and concludes the DICE(D, sales > 50) operation. The output of

this operation is sales; τ3;ϕ(1), which is then renamed to sales; τ1;ϕ. ut

3.4.3. Selectors

Definition 13 (Selector Transformations). The following creations of a new445

measure τl+1 are selector transformations (or selectors) and their definition is

(as always) cell per cell of M(D):

1. (Constant selector) For a level ` in the dimension schema σ(Di) of a

dimension Di and c ∈ dom(Di.`), τl+1 can be a constant-selector for c,

denoted σDi.`=c, and it corresponds to the equality test on levels τl+1(x1,450

x2, ..., xd) = (` = c).

2. (Level selector) For a level ` in the dimension schema σ(Di) of a dimen-

sion Di, τl+1 can be a level-selector for `, denoted by σDi.`, which means

that we have, for all xj ∈ dom(Dj) with j 6= i,

τl+1(x1, ..., xi1 , a, xi+1, ..., xd) =

1 if a = rep(b)

for some b ∈ dom(Di.`),

0 otherwise.

ut

The constant selector in the Definition 13, corresponds to the equality test
on levels (see 3. in Definition 12). Here, this transformation appears with
a different functionality and we reserve a special notation for it. This is the
reason why it was repeated. Also, we remark that the level selector selects all455

representatives (at the Bottom level) of objects at level ` of dimension Di.

Example 9. As a second example of a dice operation, we look at the query

DICE(D, Location.City = antwerp),

which asks for the sales in the city of antwerp. This operation is destructive,

since it destroys all the information in cells that do not belong to antwerp. This

query can be implemented by the following sequence of transformations:

20

• τ1 = σLocation.City=antwerp (constant selector);460

• τ2 = τ1 · µ1 (product);

• δ = τ1 (destroys the cells outside antwerp);

• ϕ(1) = τ1 (unary flag creation).

The output arity of the query DICE(D, Location.City = antwerp) is 1. The

measure τ2 selects the sales in antwerp only. And the flag ϕ(1) is a selector

on the constant antwerp. The destructor δ, that precedes the flag, empties the

cells outside antwerp. ut

Example 10. As a next example, we look at the query

DICE(D, Location.City = antwerp OR Location.City = brussels),

which asks for the sales in the cities of antwerp and brussels. This query can

be implemented by the following sequence of transformations:465

• τ1 = σLocation.City=antwerp (constant selector);

• τ2 = σLocation.City=brussels (constant selector);

• τ3 = τ1 + τ2 (sum);

• τ4 = τ3 · µ1 (product);

• δ = τ3 (destroys the cells outside antwerp and brussels);470

• ϕ(1) = τ3 (unary flag creation).

The logical connective OR is implemented by the sum in τ3, which can take

values 0 or 1, since the cities antwerp and brussels do not overlap. Thus, this

sum implements their union. Then, measure, ϕ4 selects the sales in antwerp

and brussels only. The flag ϕ(1) is a selector on the constants antwerp and

brussels and indicates that the cells of both these cities belong to the output.

The destructor δ, that precedes the flag, empties the cells outside antwerp and

brussels. ut

21

Note that in the two previous examples, the flag and the destructor do the
same double work. However, this will not be the case in most situations, and,
in practice, it would not have impact.

We continue with a dicing example, that also illustrates the composition of475

OLAP operations.

Example 11. We consider the query

DICE(D, sales > 50 AND Location.City = brussels).

We can implement this by the operation DICE(D, sales > 50) followed by the

operation DICE(D, Location.City = brussels). The following implementation is

a slight modification of Examples 8 and 9. Let sales;ϕ be the input measures.

The query DICE(D, sales > 50) is taken from Example 8. The output of this480

operation is sales; τ3;ϕ(1), which is then renamed to sales; τ1;ϕ. Next, the query

DICE(D, Location,City = brussels) is implemented as

• τ2 = σLocation.City=brussels (constant selector);

• τ3 = τ2 · µ1 (product);

• δ = τ2 (destroys the cells outside brussels);485

• ϕ(1) = τ2 · ϕ (product and unary flag creation).

The output of this operation is sales; τ3;ϕ(1), which, as above, is then renamed

to sales; τ1;ϕ.

Remark that the query can also be implemented as DICE(D, Location.City =

brussels) followed by DICE(D, sales > 50). Also in this order of operations, the

appropriate cells are destroyed. ut

3.4.4. Counting, sum and min-max
Now, we give transformations for counting different measure values, for sum-490

ming all values of a measure in a matrix, and for determining the minimum and
maximum value of a measure in a matrix. Later on, in Definition 19, we give
extensions of the counting and min-max transformations.

Definition 14 (Counting, Sum and Min-Max Transformations). The fol-

lowing creations of a new measure τl+1 are counting, sum and min-max trans-495

formations:

22

1. (Count-Distinct) τl+1 = # 6=(α), with α ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}

counts the number of different values of the measure α in the complete

matrix M(D) of the data cube.

2. (d-dimensional sum)

τl+1 =
∑

(x1,x2,...,xd)∈M(D)

α(x1, x2..., xd),

with α ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}, gives the sum of the measure α over

all non-empty matrix cells. We abbreviate this operation by writing

τl+1 = SUMd(α)

and call this transformation the d-dimensional sum.500

3. (min-max) τl+1 = min(α), with α ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}, gives the

smallest value of the measure α in non-empty cells of the matrix M(D).

Similarly, τl+1 = max(α), gives the largest value of the measure α in the

matrix M(D). ut

We remark that the above transformations create the same new measure
value for all cells of the matrix M(D).

We now give two examples of the use of d-dimensional sum. Examples of
the use of # 6=(α) are given in the following sections.

Example 12. Let us consider the query “(grand total) average sales”. This505

amount is the total sales (over all cities, products and dates), divided by the to-

tal number of cells in the matrix of the data cube. This query can be computed

as follows, given µ1 = sales:

• τ1 = SUM3(µ1) (this is the grand total of sales);

• τ2 = σLocation.All (this puts a 1 in every cell of the matrix)510

• τ3 = SUM3(τ2) (this is the grand total of cells in the matrix);

• τ4 = τ1/τ3 (this is the average);

• ϕ(1) = σLocation.Botom (this flag creation selects all cells of the matrix).

23

The output measures are sales; τ4;ϕ(1), which are renamed sales; τ1;ϕ. This

means that the grand total of average sales is now available in every cell of the

matrix of the cube. ut

Example 13. Now, we look at the query “total sales in antwerp”. This query

is asking for the total sales (over all products and dates) in the city of antwerp.515

The query can be computed as follows, given µ1 = sales:

• τ1 = σLocation.City=antwerp (constant selector on antwerp);

• τ2 = τ1 · µ1 (product that selects the sales in antwerp)

• τ3 = SUM3(τ2) (this is the total sales in antwerp in every cell);

• τ4 = τ3 · τ1 (this is the total sales in antwerp in the cells of antwerp);520

• ϕ(1) = τ1 (this flag creation selects the cells of antwerp).

The output measures are sales; τ4;ϕ(1), which are renamed sales; τ1;ϕ. This

means that the total of sales in antwerp is now available in every cell of antwerp.

For the cells outside antwerp there is a 0. We remark that this example can be

modified with a destructor that effectively empties cells outside antwerp. ut

Example 14. We look at the query “maximum sales”, which should return all

cells containing the maximum value in the cube. This query can be computed

as follows, given µ1 = sales:

• τ1 = max(µ1) (the maximum sales amount);525

• τ2 = (τ1 = µ1) (equality test to determine if a cell reaches the maximum);

• τ3 = τ2 · µ1 (only the maximum sales remain; the others turn 0);

• ϕ(1) = σLocation.Bottom (this flag creation selects all cells).

The output measures are sales; τ3;ϕ(1), which are renamed sales; τ1;ϕ. We re-

mark that this example, like the previous one, can be modified with a destructor530

that effectively empties cells with strictly less than maximum sales.

ut

24

3.4.5. Grouping
The most common OLAP operations (e.g., roll-up, slice), require grouping

data before aggregating them. For example, typically we will ask queries like
“total sales by city”, which requires grouping facts by city, and, for each group,535

sum all of its sales; or, we can ask “total sales by city and day”, meaning
that, for each city-day combination, we sum all the sales. Therefore, we need a
transformation to express “grouping”. We address this issue next.

To deal with grouping, we use the concept of “prime labels” for sets and
products of sets. Before giving the definition of the grouping transformations,540

we elaborate on prime labels and product of prime labels. As we show, these
prime labels work in the context of measures that take rational values (as, in
practice, is often the case).

The following definition specifies our infinite supply of prime labels.

Definition 15 (Prime Labels). Let pn denote the n-th prime number, for

n ≥ 1. We define the sequence of prime labels as follows: 1,
√

2,
√

3,
√

5,
√

7,
√

11, ...,
√
pn, We denote the set of all prime labels by

√
P. ut

Now, we define a prime labeling of a finite set and of a cartesian product of545

finite sets.

Definition 16 (Prime Labeling of Sets). Let A, A1, A2, ..., An be (finite)

sets. A prime labeling of the set A is an injective function w : A →
√
P. For

a ∈ A, we call w(a) the prime label of a (for the prime labeling w).

Let I be a subset of {1, 2, ..., n}, which serves as an index set. A prime

product I-labeling of the catesian product A1 ×A2 × · · · ×An consists of prime

labelings wi of the sets Ai, for i ∈ I, that satisfy the condition that wi(Ai) ∩

wj(Aj) is empty for i, j ∈ I and i 6= j. For (a1, a2, ..., an) ∈ A1×A2× · · · ×An,

we call
∏
i∈I wi(ai) the prime product I-label of (a1, a2, ..., an) (given the prime

labelings wi, for i ∈ I). When I is a strict subset of {1, 2, ..., n}, we speak about

a partial prime product labeling and when I = {1, 2, ..., n}, we speak about a

full prime product labeling . ut

In the previous definition, whenever I is clear from the context, we can omit550

reference to I.
In practice, to label a set A1 ×A2 × · · · ×An, we use consecutive, available

labels from
√
P to label the sets A1, A2, ..., An, as is illustrated by the following

example. Further on, we apply this labeling to domains of dimensions (possibly
at different levels).555

25

Example 15. Let A1 = {a1, a2, a3}, A2 = {b1, b2} and A3 = {c1, c2}. To create

a full prime product label for the elements of A1×A2×A3, we can use the prime

labelings w1, w2 and w3, defined as follows: w1(a1) = 1, w1(a2) =
√

2, w1(a3) =
√

3, w2(b1) =
√

5, w2(b2) =
√

7, w3(c1) =
√

11 and w3(c3) =
√

13. We remark

that we have used consecutive elements of
√
P (with respect to the natural560

order or natural numbers). These labelings give the tuple (a2, b2, c1) the label

w1(a2) ·w2(b2) ·w3(c1) =
√

2 ·
√

7 ·
√

11 =
√

154. Each cell in A1×A2×A3 gets

a unique prime product label.

To create a partial prime product label for I = {1, 2}, we can use w1 and

w2, as given above. In this case, for any a ∈ A1 and b ∈ A2, the cells (a, b, c1)

and (a, b, c2) get the same (partial) prime product label. ut

If we view a cartesian product A1 ×A2 × · · · ×An as a finite matrix, whose
cells contain rational-valued measures, we can use prime (product) labelings as
follows in the aggregation process. Let us assume that the cells of A1 × A2 ×
· · · × An contain rational values of a measure µ and let us denote the value of
this measure in the cell (a1, a2, ..., an) by µ(a1, a2, ..., an). If we have a full prime
product labeling on A1×A2× · · · ×An, then we can consider the sum over this
cartesian product of the product of the prime product labels with the value of
µ: ∑

(a1,a2,...,an)∈A1×A2×···×An

µ(a1, a2, ..., an) · w1(a1) · w2(a2) · · ·wn(an). (†1)

Since each cell of A1 ×A2 × · · · ×An has a unique prime product label, and
since these labels are rationally independent (as we show in Property 2), this565

sum enables us to retrieve the values µ(a1, a2, ..., an).
If we have a partial prime product labeling on A1×A2×· · ·×An, determined

by an index set I, then, again, we can consider the sum over this cartesian
product of the product of the partial prime product labels with the value of µ:∑

(a1,a2,...,an)∈A1×A2×···×An

µ(a1, a2, ..., an) ·
∏
i∈I

wi(ai). (†2)

Now, all cells in A1 × A2 × · · · × An above a cell in the projection of A1 ×
A2× · · · ×An on its components with indices in I receive the same prime label.
This means that these cells are “grouped” together and the above sum allows
us to retrieve the part of the sum that belongs to each group.570

To make this clearer, we can write (†2) as

∑
×i∈IAi

 ∑
×i∈IcAi

µ(a1, a2, ..., an)

 ·∏
i∈I

wi(ai), (†′2)

26

where the outer sum ranges over the components of A1 ×A2 × · · · ×An whose
index belongs to I and where the inner sum ranges over the components of
A1 × A2 × · · · × An whose index belongs to Ic := {1, 2, ..., n} \ I. The above
statement says that (†2) allows us to uniquely determine the sums∑

×i∈IcAi

µ(a1, a2, ..., an).

We remark that this last sum is the same for all cells above a cell in the projection
of A1 ×A2 × · · · ×An on the components whose index is in I.

The following definition gives a name to the above sums.

Definition 17 (Prime Sums). We call sums of type (†1) full prime sums and

sums of type (†2) partial prime sums (over I). ut

The following property can be derived from the well-known fact that the
field extension Q(

√
2,
√

3, ...,
√
pn) = {a0 + a1

√
2 + a2

√
3 + · · · + an

√
pn |575

a0, a1, a2, ..., an ∈ Q} has degree 2n over Q and corollaries of this property (see
Chapter 8 in [13]). No square root of a prime number is a rational combination
of square roots of other primes.

Property 2. Let n ≥ 1 and let A1 × A2 × · · · × An be a cartesian product of

finite sets. We assume that the cells (a1, a2, ..., an) of this set contain rational580

values µ(a1, a2, ..., an) of a measure µ. Let I be a subset of {1, 2, ..., n} and let wi

be prime labelings of the sets Ai, for i ∈ I, that form a prime product I-labeling

(see Definition 16). Then we have that the prime sum (†2) uniquely determines

the values
∑
×i∈IcAi

µ(a1, a2, ..., an) for all cells of A1 ×A2 × · · · ×An.

We give the proof of this property in Appendix Appendix A.585

Remark 2. We remark that we use these prime (product) labels in a purely

symbolic way without actually calculating the square root values in them. The

square roots are treated as symbolic entities in the computations. ut

Given these facts about prime (product) labels, we are ready to define atomic
OLAP operations that allow us to implement grouping. In what follows, we
apply these prime labels to the case where the sets Ai in A1×A2×· · ·×An are
domains of dimensions or domains of dimensions at some level.

Definition 18 (Grouping Transformations). The following creations of a590

new measure τl+1 are grouping transformations:

27

1. (Prime labels for groups in one dimension) Let Di be a dimension

and ` a level in the dimension schema σ(Di) of a dimension Di. Let

dom(Di.`) = {b1, b2, ..., bm} with induced order b1 < b2 < · · · < bm (see

Property 1). If the prime labels w1, w2, ..., wk have been used by previous595

transformations, then for all j, with j 6= i, and all xj ∈ dom(Dj), we

have τl+1(x1, ..., xi−1, xi, xi+1, ..., xd) = wk+l if ρ(xi, bl). We denote this

transformation by γDi.`(x1, ..., xi−1, xi, xi+1, ..., xd) or γDi.`, for short, and

call the result of such a transformation a prime labeling.

2. (Projection of a prime sum) If the result of some previous transfor-

mation τm is a (full or partial) prime sum
∑k+l
i=k ai ·wi (over the complete

matrix M(D)) in which prime (product) labels wk, wk+1, ..., wk+l (com-

puted in a previous transformation τn) are used, then τl+1 is a new measure

that “projects” on the appropriate component from the prime sum, that

is, τl+1(x1, x2..., xd) = ak+l if the prime (product) label τn(x1, x2..., xd) =

wk+l. We denote this projection transformation by τm |τn . ut

Now, we give some examples about (basic) counting. As always, we use sales600

information for certain products, at certain locations, at certain time moments.
This is important in OLAP practice, since many times we need to compute the
number of elements in a dimension level. That is, we perform an aggregation
without operating on measures.

Example 16. We look at the query “total number of cities”, which asks to605

count the number of cities appearing at the Bottom level of the dimension

Location. We can implement this query using Count-Distinct and prime labels,

given µ1 = sales, as follows:

• τ1 = γLocation.City (gives each city a different prime label);

• τ2 = # 6=(τ1) (counts the number of different prime labels and thus the610

number of cities);

• ϕ(1) = σLocation.Bottom (this flag creation selects all cells of the matrix).

The output measures are sales; τ2;ϕ(1), which are renamed sales; τ1;ϕ. This

means that the total number of cities is now available in every cell of the matrix

M(D). ut

28

Example 17. We look at the query “total number of countries”, which asks to

count the number of countries appearing at the Country level of the dimension

Location. We can implement this query using Count-Distinct and prime labels,615

given µ1 = sales, as follows:

• τ1 = γLocation.Country (gives each country a different prime label);

• τ2 = # 6=(τ1) (counts the number of different prime labels and thus the

number of countries);

• ϕ(1) = σLocation.Bottom (this flag creation selects all cells of the matrix).620

The output measures are sales; τ2;ϕ(1), which are renamed sales; τ1;ϕ. This

means that the total number of countries is now available in every cell of the

matrix. ut

Note that, like in tghe previous example, we are operating on the dimen-
sions, and we are not aggregating measures, which shows the generality of our
approach. The next example goes further into this issue, since it uses grouping
within the same dimension.

Example 18 below, uses two prime labels on the dimension Location. One625

prime labeling is at the Country level and the second prime labeling is at
the City or Bottom level. This construction fits in the given prime prod-
uct labeling concept if we consider A1 = dom(Location.Country) and A2 =
dom(Location.City).

Example 18. Consider the query “for each country, give the total number of630

cities”. Again, we assume that µ1 = sales is the only available measure. This

query can be implemented as follows (we explain the details below):

• τ1 = γLocation.Country (this gives each country a prime label);

• τ2 = γLocation.City (this gives each city a (fresh) prime label);

• τ3 = τ1 · τ2 (this gives each city a product of prime labels);635

• τ4 = SUM3(τ3);

• τ5 = γProduct.Bottom (gives each product a different prime label);

• τ6 = #6=(τ5) (counts the number of products—see Example 16);

29

• τ7 = γTime.Bottom (gives each time moment a different prime label);

• τ8 = #6=(τ7) (counts the number of moments in time—see Example 16);640

• τ9 = τ6 ·τ8 (is the number of products times the number of time moments);

• τ10 = τ4/τ9 (normalisation of the sum);

• τ11 = τ10 |τ2 ; (projection over the prime labels of city);

• τ12 = SUM3(τ11) (3-dimensional sum);

• τ13 = τ12/τ9 (normalisation of the sum);645

• τ14 = τ13 |τ1 (projection over the prime labels of country);

• ϕ(1) = σLocation.Bottom (this flag creation selects all cells of the matrix).

We now discuss this example, using the data given in Example 4. Trans-

formation τ1 gives each country a next available prime label. Since no labels

have been used yet, belgium gets label 1 and france gets label
√

2. Transfor-650

mation τ2 gives each city a next available prime label. Since 1 and
√

2 have

been used, antwerp gets label
√

3, brussels gets label
√

5, paris gets label
√

7

and marseille gets label
√

11.

Transformation τ3 gives antwerp the value
√

3 (i.e., 1.
√

3, brussels the value
√

5(1.
√

5), paris the value
√

14 (
√

2.
√

7) and marseille the value
√

22 (
√

2.
√

11).655

If there are 10 products and 100 time moments, then τ4 puts the value 10 · 100 ·

(
√

3 +
√

5 +
√

14 +
√

22) in each cell of the matrix M(D).

Transformations τ6 and τ8 count the number of products and the number of

time moments (using fresh prime labels). In τ10, τ3 is divided by their product

and τ10 puts
√

3 +
√

5 +
√

14 +
√

22 in every cell of the matrix.660

Transformation τ11 is a projection on the prime labels of City. Since
√

3,
√

5,
√

7 and
√

11 are the prime labels for the cities, and since
√

3+
√

5+
√

14+
√

22 =

1 ·
√

3 + 1 ·
√

5 +
√

2 ·
√

7 +
√

2 ·
√

11 , this will put 1 in the cells of antwerp and

brussels and
√

2 in the cells of paris and marseille.

30

Next, τ12 puts 10 · 100 · (2 · 1 + 2 ·
√

2) in every cell of the cube and τ13 puts

2 · 1 + 2 ·
√

2 in every cell of the cube. Finally, τ14 projects on the prime labels

of countries, which are 1 and
√

2. This puts a 2 in every cell of a Belgian city

and a 2 in every cell in a French city. This is the result of the query, as the flag

indicates, that is returned in every cell. Now every cell of a city in belgium has

the count of 2 cities, as has every city in france. ut

3.4.6. Counting and min-max revisited665

Now that we know prime (product) labelings, we can give extensions of the
counting and min-max transformations of Definition 14. Here, the counting, the
minimum and the maximum are taken over cells which share a common prime
(product) label.

Definition 19. The following creations of a new measure τl+1 are generalisa-670

tions of the counting and min-max transformations:

1. (Count-Distinct) If the result of some previous transformation τm is a

prime (product) labeling of the cells of M(D), then τl+1(x1, x2..., xd) =

6= |τm (α), with α ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl} counts the number of

different values of the measure α in cells of the matrix M(D) that have675

the same prime product label as τm(x1, x2..., xd).

2. (Min-Max) If the result of some previous transformation τm is a prime

(product) labeling of the cells of M(D), then τl+1(x1, x2..., xd) = min |τm
(α), with α ∈ {µ1, µ2, ..., µk, τ1, τ2, ..., τl}, gives the the smallest value of

the measure α in cells of the matrix M(D) that have the same prime

product label as τm(x1, x2..., xd). And τl+1(x1, x2..., xd) = max |τm (α) is

defined similarly. ut

We remark that when there is only one prime label (for instance, 1) through-
out the matrix M(D), then the above gneralisation of the counting and min-max
transformations correspond to the version of Definition 14.

4. The classical OLAP operations680

In this section, we show how the classical OLAP operations can be expressed
using the OLAP transformations from Section 3. As we mentioned in that
section, these classic operations can be combined to express complex analytical
queries. The classical OLAP operations are

31

• Dice (see Section 4.2);685

• Slice (see Section 4.3);

• Slice-and-Dice (see Section 4.4);

• Roll-Up (see Section 4.5); and

• Drill-Down (see Section 4.5).

Throughout this section, we assume that the input data cube Din has k
given measures µ1, µ2, ..., µk (as in Definition 7) and that at some point in the
OLAP process this cube is transformed to a cube D, having measures

µ1, µ2, ..., µk; τ1, τ2, ..., τl;ϕ,

where τ1, τ2, ..., τl, with l ≥ 0, are created measures and ϕ is an input/output690

flag.

4.1. Boolean cell-selection condition

In this section, we give the definition of a Boolean cell-selection condition.
We also give a lemma about its expressibility that is used throughout Section 4.

Definition 20. LetM(D) = dom(D1)×dom(D2)×· · ·×dom(Dd) be the matrix695

of D. A Boolean condition on the cells of M(D) is a function φ from M(D) to

{0, 1}. We say that the cells of M(D) in the set φ−1({1}) are selected by φ.

We say that a Boolean condition φ is transformation-expressible if there is

a sequence of OLAP transformations τ1, τ2, ..., τk such that φ(x1, x2, ..., xd) =

τk(x1, x2, ..., xd) for all (x1, x2, ..., xd) ∈M(D). ut

Lemma 1. If φ, φ1, φ2 are transformation-expressible Boolean conditions on

cells, then NOT φ, φ1 AND φ2 and φ1 OR φ2 are transformation-expressible

Boolean conditions on cells. ut

We give the proof in Appendix Appendix B

4.2. Dice

Intuitively, the Dice operation selects the cells in a cube D that satisfy a
Boolean condition φ on the cells. The syntax for this operation is

DICE(D, φ),

where φ is a Boolean condition over level values and measures. The resulting700

cube has the same dimensionality as the original cube. The dice operation is

32

analogous to a selection in the relational algebra. In a data cube, it selects the
cells that satisfy the condition φ by flagging them 1 in the output cube.

The Dice operation has been already illustrated in Examples 8, 9, 10 and
11. There, we have queries such as

DICE(D, Location.City = antwerp OR Location.City = brussels).

But, we also allow equality and order constraints on objects at certain levels
and in different dimensions, as illustrated by the example

DICE(D, Location.Country = belgium AND Time.Day > 15/1/2014).

We also consider equality and order constraints over measures, as is illustrated
by the query

DICE(D, sales > 50)

of Example 8. Therefore, our approach covers all typical cases in real-world
OLAP [3]. We next formalize the operator’s definition in terms of our transfor-705

mation language.

Definition 21 (Dice). Given a data cube D, the operation DICE(D, φ), selects

all cells of the matrix M(D) that satisfy the Boolean condition φ by giving them

a 1 flag in the output. The Boolean condition φ on the cells of M(D) is a Boolean

combination of conditions of the form:710

• a selector on a value b at a certain level ` of some dimension Di;

• a comparison condition at some level ` from a dimension schema σ(Di)

of a dimension Di of the cube of the form ` < c or c < `, where c is a

constant (at that level `);

• an equality or comparison condition on some measure α of the form α = c,

α < c or c < α, where c is a (rational) constant. ut

Property 3. Let D be a data cube en let φ be a Boolean condition on the cells715

of M(D) (as in Definition 21). The operation DICE(D, φ) is expressible as an

OLAP operation.

Proof 1. Since DICE(D, φ) is a cell-selecting operation, it suffices, by Lemma 1,

to show that DICE(D, φ) is expressible in the OLAP algebra for an atomic

Boolean cell-selection condition φ (without logical connectives).720

33

We have to consider the three cases of Definition 21.

For the first case, DICE(D, φ) is simply expressed by the selector τl+1 =

σDi.`=b, which is the output flag that indicates the appropriate cells of M(D).

For the second case, if ` is a level from a dimension schema σ(Di) of a

dimension Di and c ∈ dom(Di.`) and φ is of the form ` < c or c < `, then the725

comparison test on levels τl+1 = (` <` c) or τl+1 = (c <` `) express DICE(D, φ).

Again, τl+1 specifies the output flag.

For the third case, if α is some measure, then τl+1 = c (rational constant),

followed by τl+2 = (α = c), τl+2 = (α < c) or τl+2 = (α > c) (equality or

comparison test on a measure), respectively, express DICE(D, φ). Once again,

τl+2 can serve as the output flag. This concludes the proof. ut

4.3. Slice

Intuitively, the Slice operation takes as input a d-dimensional, k-ary data
cube D and a a dimension Di and returns as output SLICE(D, Di), which is730

a “(d − 1)-dimensional” data cube in which the original measures µ1, ..., µk
are replaced by their aggregation (sum) over different values of elements in
dom(Di). In other words, dimension Di is removed from the data cube, and, if
this operation is part of a sequence of OLAP ones, Di will not be visible in the
next operations. That means, for instance, that we will not be able to dice on735

the levels of the removed dimension. As we will see, the “removal” of dimensions
are, in our approach, implemented by means of the destroyer measure δ. We
remark that the aggregation above is due to the fact that, in order to eliminate
a dimension Di, this dimension should have exactly one element [7], therefore
a roll-up (which we explain later in Section 4.5) to the level All in D − i is740

performed.
For example, if (D1, D2, D3) = (Product, Location, T ime), and we consider

SLICE(D, Location),

then we obtain a cube with (Product, T ime)-cells which contain the sums of the
given measures for certain products and times, but summed over all locations
(for that product and that time).

Obviously, in our philosophy, we keep the d-dimensional data cube and store745

identical aggregate values for all locations, in the cells above some product-time
combination. Next, we destroy all locations, except the representative for all
in the Location dimension. As explained in Example 6, antwerp represents all
and we only keep the cells for antwerp, where we keep the aggregate values. We
formalize this next.750

34

Definition 22 (Slice). Given a data cube D and one of its dimensions Di, the

operation SLICE(D, Di) “replaces” the measures µ1, µ2, ..., µk by their aggrega-

tion (sum) µn
Σi (for 1 ≤ n ≤ k) as follows:

µn
Σi(x1, ..., xi−1, xi, xi+1, ..., xd) =

∑
xi∈dom(Di)

µn(x1, ..., xi−1, xi, xi+1, ..., xd),

for all (x1, ..., xi−1, xi, xi+1, ..., xd) ∈ M(D). The operation SLICE(D, Di) de-

stroys all cells except those of the representative of all for dimension Di. We

abbreviate the above 1-dimensional sum as SUMDi
(µn). ut

Property 4. Let D be a data cube and let Di be one of its dimensions. The

operation SLICE(D, Di) is expressible as an OLAP operation.

Before we give the proof of Property 4, we give a simple example that cap-
tures the idea of the proof.

Example 19. Consider our running example with dimensions (D1, D2, D3) =

(Product, Location, T ime) and measure µ1 = sales, and consider the query

SLICE(D, Location).

This query returns a cube with (product, time)-cells which contain the sums of755

µ1 for each product-time combination, over all locations (for that product and

that time). At the end, all cells not belonging to the representative of all in the

dimension Location, that is, antwerp, are destroyed.

The query SLICE(D, Location) is the result of the following transformations

• τl+1 = γProduct.Bottom (prime labels on products);760

• τl+2 = γTime.Bottom (fresh prime labels on time moments);

• τl+3 = τl+1 · τl+2 (product of two prime labels);

• τl+4 = µ1 · τl+3 (product);

• τl+5 = SUM3(τl+4) (3-dimensional sum);

• τl+6 = τl+5 |τl+3
(projection on prime product labels);765

35

• τl+7 = σLocation.All (selects the representative of all in the dimension

Location);

• δ = τl+7 (destroys all cells apart from the representative of all in the

dimension Location);

• ϕ(1) = σLocation.All (this flag creation selects the relevant cells of the770

matrix).

The transformation τl+4 gives each (product, time)-combination a unique

prime product label. This label is multiplied with the sales in each cell. We then

make the global sum over M(D) in τl+5. The transformation τl+6 = τl+5 |τl+3

is the projection on the prime product labels for (product, time)-combinations.775

This gives each cell above some fixed (product, time)-combination the sum of

the sales (over all locations) for that (product, time)-combination. All cells of

M(D) that do not belong to antwerp (selected in τl+7), which represents all,

are destroyed by δ.

ut

Proof 2 (of Property 4). Let D be a data cube and let Di be one of its780

dimensions. The operation SLICE(D, Di) is expressible in the OLAP algebra by

the following sequence of transformations:

• τl+1 = γD1.Bottom (prime labels on dimension D1);

• ...

• τl+1+i−2 = γDi−1.Bottom (prime labels on dimension Di−1);785

• τl+1+i−1 = γDi+1.Bottom (prime labels on dimension Di+1);

• ...

• τl+1+d−2 = γDd.Bottom (prime labels on dimension Dd);

• τl+1+d−1 = τl+1 · τl+1+1;

• τl+1+d = τl+1+d−1 · τl+1+2;790

36

• ...

• τl+1+2d−4 = τl+1+d−1 · τl+1+d−2 (product of all prime labels);

• τl+1+2d−3 = µ1 · τl+1+2d−4 (product of measure with product of all prime

labels);

• ...795

• τl+1+2d+k−4 = µk · τl+1+2d−4 (product of measure with product of all

prime labels);

• τl+1+2d+k−3 = SUMd(τl+1+2d−3) (d-dimensional sum);

• ...

• τl+1+2d+2k−4 = SUMd(τl+1+2d+k−4) (d-dimensional sum);800

• τl+1+2d+2k−3 = τl+1+2d+k−3 |τl+1+2d−4
(projection on product labels);

• ...

• τl+1+2d+3k−4 = τl+1+2d+2k−4 |τl+1+2d−4
(projection on product labels);

• τl+1+2d+3k−3 = σDi.All (selects the representative of all for dimension Di);

• δ = τl+1+2d+3k−3 (destroyer);805

• ϕ(k) = τl+1+2d+3k−3 (output flag).

Transformations τl+1, ..., τl+1+d−2 create (fresh) prime labels for each of the

dimensions D1, ..., Di−1, Di+1, ..., Dd. Transformation τl+1+2d−4 gives the prod-

uct of all these prime labels. This means that every (x1, ..., xi−1, xi+1, ..., xd) ∈

dom(D1)× · · · × dom(Di−1)× dom(Di+1)× · · · × dom(Dd) has a unique prime810

product label, that is shared by all cells above the projected cell (x1, ..., xi−1,

xi+1, ..., xd) in the direction of the dimension Di. Transformations τl+1+2d−3, ...,

τl+1+2d+k−4 multiply the measures µ1, µ2, ..., µk with the prime product label.

Transformations τl+1+2d+k−3, ..., τl+1+2d+2k−4 make partial prime sums of the

37

measures µ1, µ2, ..., µk over the complete matrix M(D). The last k transforma-815

tions τl+1+2d+2k−3, ..., τl+1+2d+3k−4 project on the prime-product-labels giving

each cell above (x1, ..., xi−1, xi+1, ..., xd) the sum of the k measures above it.

Finally, the destroyer δ and the output flag ϕ(k) select the representative of all

for dimension Di and make sure that the other cells of M(D) are destroyed.

The output, for cells that are not destroyed, is

µ1, µ2, ..., µk; τl+1+2d+2k−3, ..., τl+1+2d+3k−4;ϕ(k),

which is renamed to

µ1, µ2, ..., µk; τ1, ..., τk;ϕ.

For 1 ≤ n ≤ k, τn = µn
Σi is the desired aggregate value. This concludes the

proof. ut

4.4. Slice and Dice820

A particular case of the Slice operation occurs when the dimension to be
removed already contains a unique value at the bottom level. Then, we can avoid
the roll-up to All, and define a new operation, called Slice-and-Dice. Although
this can be seen as a Dice operation followed by a Slice one, in practice, in
these situations, they are usually applied at the same time.825

Definition 23. Given a data cube D, one of its dimensions Di and some value

a in the domain dom(Di), the operation SLICE-DICE(D, Di, a) contains all the

cells in the matrix M(D) such that the value of the dimension Di equals a. All

other cells are destroyed. ut

Property 5. Let D be a data cube, Di on of its dimensions en let a ∈ dom(Di).

The operation SLICE-DICE(D, Di, a) is expressible as an OLAP operation.

Proof 3. Let D be a data cube, Di on of its dimensions en let a ∈ dom(Di).

The selector σDi.Bottom=a is the transformation that serves as destroyer and

output flag and that expresses SLICE-DICE(D, Di, a). This concludes the proof.

ut

Example 20. For our running example, SLICE-DICE(D, Location, antwerp) is

implemented by the output flag σLocation.City=antwerp. ut

38

4.5. Roll-Up and Drill-Down

We now address two key operations in typical OLAOP practice, namely
Roll−Up and Drill−Down. Intuitively, the former aggregates measure values830

along a dimension up to a certain level. The latter, disagregates measure values
along a dimension, down to a certain level. However, as we already commented,
although at first sight it may appear that Drill−Down is the inverse of Roll−
Up, like stated in [7], this is not necessarily the case, particularly when we are
composing several OLAP operations, and, for example, a Roll− Up is followed835

by a SLICE or a DICE. In these cases, we cannot just undo the Roll − Up,
but we need to account for the cells that have been eliminated on the way.

More precisely, the Roll-Up operation takes as input a data cube D, a di-
mension Di and a subpath h of a hierarchy H over Di, starting in a node `′ and
ending in a node `, and returns the aggregation of the original cube along Di840

up to level ` for some of the input measures α1, α2, ..., αr.
The roll-up operation uses one of the following classic SQL aggregation func-

tions, applied to the indicated protected and computed measures α1, α2, ..., αr
(selected from µ1, µ2, ..., µk; τ1, ..., τl;ϕ):

• sum (SUM);845

• average (AVG);

• minimum and maximum (MIN and MAX);

• count and count-distinct (COUNT and COUNT-DISTINCT).

We remark that, usually, measures have an associated default aggregation func-
tion. The typical aggregation function for the measure sales, for instance, is850

SUM.
We denote the above roll-up operation as

ROLL-UP(D, Di, H(`′ → `), {(αi, fi) | i = 1, 2, ..., r}),

where fi is one of the above aggregation functions that is associated to αi,
for i = 1, 2, ..., r. Since we are mainly interested in the expressibility of this
operation as a sequence of atomic transformations, we remark that only the
destination node ` in the path h is relevant. Indeed, the result of this roll-up
remains the same if the subpath h is extended to start from the Bottom node
of dimension Di. So, we can abbreviate the above notation to

ROLL-UP(D, Di, H(`), {(αi, fi) | i = 1, 2, ..., r}),

and assume that the roll-up starts at the Bottom level.
The Drill-down operation takes as input a data cube D, a dimension Di and

a subpath h of a hierarchy H over Di, starting in a node ` and ending in a node
`′ (at a lower level in the hierarchy), and returns the aggregation of the original
cube along Di from the bottom level up to level `′. The drill-down uses the same
type of aggregation functions as the roll-up. Again, since we are only interested
in expressibility of this operation, we remark that the drill-down operation

DRILL-DOWN(D, Di, H(`′ ← `), {(αi, fi) | i = 1, 2, ..., r}),

39

has the same output as ROLL-UP(D, Di, H(`′), {(αi, fi) | i = 1, 2, ..., r}). There-
fore, for expressibility, we can limit the further discussion in this section to the
roll-up.855

We remark that, since we assume, by definition, that dimension graphs are
sound, we can also omit reference to the hierarchy H in the above notation and
simply write ROLL-UP(D, Di, `, {(αi, fi) | i = 1, 2, ..., r}) and DRILL-DOWN(D,
Di, `

′, {(αi, fi) | i = 1, 2, ..., r}), for these OLAP operations.

Definition 24 (ROLLUP). Given a data cube D, one of its dimensions Di,

and a hierarchy H over Di, ending in a node `, the operation

ROLL-UP(D, Di, H(`), {(αi, fi) | i = 1, 2, ..., r})

computes the aggregation of the measures αi by their aggregation functions fi,

for i = 1, 2, ..., r, as follows:

αi
fi(x1, ..., xi−1, xi, xi+1, ..., xd) =

fi({αi((x1, ..., xi−1, yi, xi+1, ..., xd) | yi ∈ dom(Di) and ρH(yi, b)}),

for all (x1, ..., xi−1, xi, xi+1, ..., xd) ∈ M(D), for which ρH(yi, b), for some b ∈

dom(Di.`). This roll-up flags all representative Bottom-level objects for ele-

ments of dom(Di.`) as active. ut

Property 6. Let D be a data cube, let Di be one of its dimensions, and let H860

be a hierarchy over Di ending in a node `. Let {(αi, fi) | i = 1, 2, ..., r} be a set

of selected measures (taken from the protected measures µ1, µ2, ..., µk and the

computed measures τ1, ..., τk of D), with their associated aggregation functions.

The operation ROLL-UP(D, Di, H(`), {(αi, fi) | i = 1, 2, ..., r}) is expressible as

an OLAP operation.865

Proof 4. Let D be a data cube, let Di be one of its dimensions, and let H be

a hierarchy over Di ending in a node `. Let {(αi, fi) | i = 1, 2, ..., r} be a set of

selected measures with their associated aggregation functions.

We start by remarking that the aggregations of the measures αi by the

functions fi, can be computed consecutively for i = 1, 2, ..., r. At the end their870

results are copied as the last r computed measures and an output flag of type

ϕ(r), which is a selector σDi.`, returns these r aggregation results as output.

40

Now, it remains to be shown how the SQL aggregation functions SUM, AVG,

MIN, MAX, COUNT and COUNT-DISTINCT can be implemented as sequences

of atomic OLAP transformations for an arbitrary measure α.875

(1) SUM: We give a description of the implementation of the SUM by a sequence

of atomic OLAP transformations. Since a detailed description of a similar pro-

cedure is given in the proof of Property 4, we refer to that proof for details.

Here, we first create prime labels γDj .Bottom for all j 6= i and, for dimen-

sion Di, prime labels γDi.` at the level `. Next, we create a measure that880

is the product of all these prime labels. This prime product label gives each

cell (x1, ..., xi−1, yi, xi+1, ..., xd) of the matrix a unique label, modulo rolling-

up to the same object at level ` for the dimension Di. This implies that

(x1, ..., xi−1, yi, xi+1, ..., xd) and (x1, ..., xi−1, y
′
i, xi+1, ..., xd), for which there is

a b ∈ dom(Di.`) such that ρH(yi, b) and ρH(y′i, b), get the same prime product885

label. Then we take the d-dimensional sum of the product of this prime product

label with α. The projection on the prime product label, gives the desired result.

That is, the cells (x1, ..., xi−1, yi, xi+1, ..., xd) and (x1, ..., xi−1, y
′
i, xi+1, ..., xd),

for which there is a b ∈ dom(Di.`) such that ρH(yi, b) and ρH(y′i, b), get the

same aggregation (sum) value of α over all objects that roll-up to b. For a890

detailed description, we refer to the proof of Property 4 and for an illustration,

we refer to Example 21.

(2) COUNT: Here, we proceed in a similar way as in the case of SUM, with the

modification that before taking the sum, we do not multiply the prime product

labels with α, but with 1.895

If we are interested in counting the cells for which α is non-zero, we can

achieve this by multiplying the prime product labels by the quotient α/α, rather

than by 1. We remark that by the definition of quotient 0/0 = 0, which implies

that the cells with a zero value for α are not counted.

(3) AVG: The aggregation function AVG can be implemented by the implemen-900

tation of SUM, followed by the implementation of COUNT (counting all or all

non-zeroes) and then computing the quotient of these two values.

41

(4) MIN and MAX: As in the case of SUM, we create prime product labels

for all cells of M(D). Let us call this prime product labels τm. Then we

multiply this prime product labels by α, resulting in the measure τm+1. Next,905

we apply the generalised form of the maximum (or minimum) transformation

max |τm (τm+1) to obtain the maximum value of α per prime product label.

Similarly, min |τm (τm+1) gives the desired minimal values.

(5) COUNT-DISTINCT: We proceed as in the case of MIN and MAX, but now we

obtain the result by the transformation #6= |τm (τm+1), which is the generalized910

form of the Count-Distinct.

This concludes the proof. ut

Now, we illustrate the roll-up implementation, using our running example.

Example 21. In this example we simulate the roll-up operation, using prime

(product) labels, sums and projections together with the 3-dimensional sum.

We look at the query “total sales per country”. We use the simplified syntax,

only indicating the level to which we roll-up on the Location dimension (i.e.,

Country). The query

ROLL-UP(D, Location,Country, {(sales,SUM)})

is the result of the following transformations, given the measure µ1 = sales:

1. τ`+1 = γProduct.Bottom (prime labels on products);

2. τ`+2 = γTime.Bottom (prime labels on time moments);915

3. τ`+3 = γLocation.Country (prime labels on countries);

4. τ`+4 = τ`+1 · τ`+2 · τ`+3; (prime product label – in one step);

5. τ`+5 = µ1 · τ`+4 (product of labels with sales);

6. τ`+6 = SUM3(τ`+5) (3-dimensional sum);

7. τ`+7 = τ`+5 |τ`+4
(projection on prime product labels);920

8. ϕ(1) = σLocation.Country (output flag on country-representatives).

42

Transformation τ`+4 gives every product-date-country combination a unique

prime product label. Normally this product takes more steps. Above, we have

abbreviated it to one transformation.

The transformation τ`+7 gives the aggregation result and ϕ(1) is the flag that

says that only the cities antwerp and paris, which represent the level Country,

are active in the output (and nothing else of the original cube). ut

We continue with another example of a roll-up operation. We only give925

high-level descriptions of its implementation as a sequence of atomic OLAP
transformations.

Example 22. Let us consider a rather complex, although usual query in data

analysis in real-world situations: “city-average sales, for cities whose average

sales are above the country average”.930

The query can be answered using our OLAP transformations as follows:

• Compute the total sale per country (like in Example 13);

• Compute the number of sales per country (see the proof of Property 6);

• Take the quotient of these two values;

• Flag σlocation.Country;935

• Compute the total sales over all products and all dates per city;

• Compute the total (non-zero) sales per city;

• Take the quotient of the two previous values;

• Select the cities for which this quotient exceeds the “average sale per

country”.940

• Use this last Boolean as an output flag. ut

4.6. The composition of classical OLAP operations

In this paper, we have proven the following theorem about the completeness
of the proposed algebra.

43

Theorem 1. The classical OLAP operations and their composition are express-

ible by OLAP operations (that is, as sequences of atomic OLAP transforma-

tions). ut

The proof of this theorem follows immediately from the properties in this
section and the results in Section 3.945

We conclude this section with an example that illustrates the power and
generality of our approach, combining a sequence of OLAP operations, and
expressing them as a sequence of OLAP transformations.

Example 23. Let us consider an OLAP user, who is analyzing sales in different

countries and regions. She wants to analyze and compare sales in the north of

Belgium (the Flanders region), and in the south of France (which we, generically,

have denoted south in our running example). She starts navigating the cube

(as we said, indistinctly this can be done through a query language or with a

graphic tool), and first filters the cube, keeping just the cells of the two desired

regions. This is done with the following expression:

DICE(D, Location.Region = flanders OR Location.Region = south).

As we showed, this can be implemented as a sequence of atomic OLAP transfor-

mations. Now the user has a cube with the cells that do not have been destroyed.

Next, within the same navigation process, she obtains the total sales, in France

and Belgium, only considering the desired regions, by means of:

ROLL-UP(D, Location,Country, {(sales,SUM)}).

This will only consider the valid cells for rolling up. After this, our user only

wants to keep the sales in France (since she is within the same process, she will

obviously obtain the sales in the south of France). Thus, she writes (or “clicks”):

DICE(D, Location.Country = france).

Finally, she wants to go back to the details, one level below in the hierarchy

(that is, the sales in the south of France, the latter being the country she is at,

at this stage of her navigation). For this, she does:

DRILL-DOWN(D, Location,Region, {(sales,SUM)})

44

In our approach, this will be a roll-up from the bottom level to the Region level,

but only considering the cells that have not been destroyed. ut

5. Conclusion and discussion

We have presented a formal, mathematical approach, to solve a practical950

problem, which is, to provide, for the first time, a formal semantics to a collection
of OLAP operations, frequently used in real-world practice. Although OLAP is
a very popular field in data analytics, this is the first time a formalization like
this is given. The need for this formalization is clear: in a world being flooded
by data of different kinds, users must be provided with tools allowing them to955

have an abstract “cube view” and cube manipulation capabilities, regardless of
the underlying data types. Without a solid basis and unambiguous definition of
cube operations, the former could not be achieved. We claim that our work is
the first one of this kind, and will serve as a basis to build more robust practical
tools to address the forthcoming challenges in this field.960

We have addressed the four core OLAP operations: slice, dice, roll-up, and
drill-down. This does not harm the value of the work. On the contrary, this ap-
proach allows us to focus on our main interest, that is, to study the formal basis
of the problem. Intuitively, although of course, we must prove this, our line of
work can be extended to address other kinds of OLAP queries, like queries in-965

volving more complex aggregate functions like moving averages, rankings, and
the like. Further, cube combination operations, like drill-across, must be in-
cluded in the picture. We believe that our contribution provides a solid basis
upon which, a complete OLAP theory can be built.

Acknowledgements: Alejandro Vaisman was supported by a travel grant from970

Hasselt University (Korte verblijven–inkomende mobiliteit, BOF15KV13). He
was also partially supported by PICT-2014 Project 0787.

References
975

[1] R. Kimball, The Data Warehouse Toolkit: Practical Techniques for Build-
ing Dimensional Data Warehouse, Wiley, 1996.

[2] C. Ciferri, R. Ciferri, L. Gómez, M. Schneider, A. Vaisman, E. Zimányi,
Cube algebra: A generic user-centric model and query language for OLAP
cubes, International Journal of Data Warehousing and Mining 9 (2) (2013)980

39–65.

[3] A. Vaisman, E. Zimányi, Data Warehouse Systems: Design and Implemen-
tation, Springer, 2014.

[4] S. Harinath, R. Pihlgren, D.-Y. Lee, J. Sirmon, R. Bruckner, Professional
Microsoft SQL Server 2012 Analysis Services with MDX and DAX, Wrox,985

2012.

45

[5] O. Romero, A. Abelló, On the need of a reference algebra for OLAP, in:
Proceedings of the 9th International Conference on Data Warehousing and
Knowledge Discovery, DaWaK’07, Regensburg, Germany, 2007, pp. 99–110.

[6] M. Gyssens, L. Lakshmanan, A foundation for multi-dimensional990

databases, in: Proceedings of the 23rd International Conference on Very
Large Data Bases, VLDB’97, Athens, Greece, 1997, pp. 106–115.

[7] R. Agrawal, A. Gupta, S. Sarawagi, Modeling multidimensional databases,
in: Proceedings of the 15th International Conference on Data Engineering
(ICDE’97), IEEE Computer Society, Birmingham, UK, 1997, pp. 232–243.995

[8] H. D. Macedo, J. N. Oliveira, A linear algebra approach to OLAP, Formal
Asp. Comput. 27 (2) (2015) 283–307.

[9] P. Vassiliadis, Modeling multidimesional databases, cubes and cube opera-
tions, in: Proceedings of the 10th International Conference on Scientific and
Statistical Database Management, SSDBM’98, Capri, Italy, 1998, p. 53.1000

[10] F.Ravat, O. Teste, R. Tournier, G. Zurfluh, Algebraic and graphic lan-
guages for OLAP manipulations, IJDWM 4 (1) (2008) 17–46.

[11] L. Gómez, S. Gómez, A. Vaisman, A generic data model and query lan-
guage for spatiotemporal OLAP cube analysis, in: Proceedings of the 15th
International Conference on Extending Database Technology, EDBT 2012,1005

Berlin, Germany, 2012, pp. 300–311.

[12] J. Varga, L. Etcheverry, A. Vaisman, O. Romero, T. B. Pedersen, C. Thom-
sen, Enabling OLAP on statistical linked open data, in: Proceedings of the
32nd International Conference of Data Engineering (ICDE 2016) (accepted,
to appear).1010

[13] J.-P. Escofier, Galois Theory, Vol. 204 of Graduate Texts in Mathematics,
Springer-Verlag, 2001.

46

Appendix A. Proof of Property 2

We now give the proof of Property 2. We repeat the property here, to
facilitate reading.1015

Property 2. Let n ≥ 1 and let A1 × A2 × · · · × An be a cartesian product of

finite sets. We assume that the cells (a1, a2, ..., an) of this set contain rational

values µ(a1, a2, ..., an) of a measure µ. Let I be a subset of {1, 2, ..., n} and

let wi be prime labelings of the sets Ai, for i ∈ I, that form a prime product

I-labelling (see Definition 16). Then we have that the prime sum (†2) uniquely1020

determines the values
∑
×i∈IcAi

µ(a1, a2, ..., an) for all cells of A1×A2×· · ·×An.

Proof 5. First, we assume I contains one element. Without loss of generality,

we may assume that I = {1}. Then the prime sum (over I) is∑
(a1,a2,...,an)∈A1×A2×···×An

µ(a1, a2, ..., an) · w1(a1) =

∑
a1∈A1

 ∑
(a2,...,an)∈A2×···×An

µ(a1, a2, ..., an)

 · w1(a1).

Let us assume this sum is equal to

∑
a1∈A1

 ∑
(a2,...,an)∈A2×···×An

µ′(a1, a2, ..., an)

 · w1(a1)

for some measure µ′ and that there exists a a0 ∈ A1 such that∑
(a2,...,an)∈A2×···×An

µ(a0, a2, ..., an) 6=
∑

(a2,...,an)∈A2×···×An

µ′(a0, a2, ..., an).

Since all µ(a1, a2, ..., an) and µ′(a1, a2, ..., an) are assumed to be rational

numbers, this implies that w1(a0) is a rational combination of the other labels

w1(a1), with a1 ∈ A1 \ {a0}. Since the labels w1(a1), with a1 ∈ A1, are square

roots of different prime numbers, this leads to a contradiction, since the field1025

extension Q(
√

2,
√

3, ...,
√
pn), for any n, has degree 2n over Q. In other words,

the square roots
√

2,
√

3, ...,
√
pn (together with 1) are linearly independent over

Q (see Chapter 8 in [13]).

47

When the cardinality of I is strictly larger than 1, we can use a similar ar-

gumentation. Then we work with prime product labels of the form
∏
i∈I wi(ai).

Because of the restrictions on these products, imposed by Definition 16 (injec-

tivity of the labelling function per dimension and disjointness of labels between

dimensions), we see that these product labels differ one from the other by at

least one prime factor (under the square root). Therefore, these labels are also

linearly independent over Q [13]. This completes the proof. ut

Appendix B. Proof of Lemma 1

Proof 6. Obviously, a Boolean combination of Boolean conditions is a Boolean1030

condition. Let us assume that φ, φ1 and φ2 are transformation-expressible by

sequences of OLAP transformations that end in τk, τk1 and τk2 , respectively.

Then φ1 AND φ2 can be expressed by the transformation τm = τk1 · τk2 , which

is 1 on cells if and only if both φ1 and φ2 give 1 on those cells.

For the negation, we have the following sequence of additional transforma-1035

tions:

• τm = 1 (rational constant);

• τm+1 = −1 (rational constant);

• τm+2 = τm+1 · τk (product); and

• τm+3 = τm + τm+2 (sum).1040

Here, we simulate substraction using the sum. The transformation τm+3

equals τm−τk and turns τk = 0 into 1 and a τk = 1 into 0. So, the transformation

τm+3 expresses NOT φ.

Via de Morgan’s law, we can express φ1 OR φ2 using conjunction and nega-

tion. An alternative implementation of the OR is given by τm = τk1 + τk2 (this

sum gives 0, 1 or 2); and τm+1 = τm/τm. This last transformation maps 1 and

2 on 1 and 0 on 0 (in Definition 11, we defined 0/0 to be 0). ut

48

