
On the realisability of double-cross matrices

by polylines in the plane

Bart Kuijpers1 and Bart Moelans

Databases and Theoretical Computer Science, Hasselt University, Belgium

Abstract

We study a decision problem that emerges from the area of spatial reasoning,
but that is also of interest to the area of computational algebraic geometry.
This decision problem concerns the use of constraint calculi in qualitative
spatial reasoning. One such qualitative calculus describes polylines in the
plane by means of their double-cross matrix. In such a matrix, the rela-
tive position (or orientation) of each pairs of line segments of a polyline is
expresses by means of a 4-tuple, whose entries come from the set {−, 0,+}.
However, not any N×N matrix of 4-tuples from {−, 0,+} is the double-cross
matrix of a polyline with N line segments. This gives rise to the following
decision problem: given an N ×N matrix of 4-tuples from {−, 0,+}, decide
whether it is the double-cross matrix of a polyline with N line segments, and
if it is, given an example of a polyline that realises the matrix.

It is known that this problem is decidable, but it is NP-hard and the best,
known algorithms have exponential time complexity. In this paper, we give
polynomial time algorithms for the case where the attention is restricted to
polylines in which consecutive line segments make angles that are multiples
of 90◦ or 45◦, respectively. For the more complicated case of 45◦-polylines, we
also introduce the polar-coordinate representation of double-cross matrices.

Keywords: Spatial reasoning, Double-cross calculus, Qualitative
description of polylines, Computational algebraic geometry, Algorithmic
complexity

1Corresponding author: bart.kuijpers@uhasselt.be

Preprint submitted to Journal of Computer and System Sciences August 8, 2015

1. Introduction and summary of results

Polylines arise in Geographical Information Science (GIS) in a multitude
of ways. One recent example comes from the collection of moving object data,
where trajectories of moving persons (or animals), that carry GPS-equipped
devices, are collected in the form of time-space points that are registered
at certain (ir)regular moments in time. The spatial trace of this movement
is a collection of points in two-dimensional geographical space, that form a
polyline, when in between the measured sample points, for instance, linear
interpolation is applied (Güting and Schneider (2005)). Another example
comes from shape recognition and retrieval, which arises in domains, such
as computer vision and image analysis. Here, closed polylines or polygons,
often occur as the boundary of two-dimensional shapes or regions.

In examples, such as the above, there are, roughly speaking, two very
distinct approaches to deal with polygonal curves and shapes. On the one
hand, there are the quantitative approaches and on the other hand, there are
the qualitative approaches. Initially, most research efforts have dealt with the
quantitative methods (Bookstein (1986); Dryden and Mardia (1998); Kent
and Mardia (1986); Mokhtarian and Mackworth (1992)). Only afterwards,
the qualitative approaches have gained more attention, mainly supported by
research in cognitive science that provides evidence that qualitative models
of shape representation are much more expressive than their quantitative
counterpart and reflect better the way in which humans reason about their
environment (Gero (1999)). The principles behind qualitative approaches to
deal with polylines are also related to the field of spatial reasoning, which has
as one of its main objectives to present geographic information in a qualitative
way to be able to reason about it (see, for example, Chapter 12 in (Giannotti
and Pedreschi (2008)), also for spatio-temporal reasoning). The reason for
using a qualitative representation is that the available information is often
imprecise, partial and subjective (Freksa (1992)). If we return to the example
of trajectory data, we can see that for navigational problems, a person will
remember: “I left the station and went straight; passing a church to my right;
then taking two left turns; ...”, rather than precise metric information about
her/his spatial environment and trajectory.

One of the formalisms to qualitatively describe polylines in the plane is
given by the double-cross calculus. In this method, a double-cross matrix
captures the relative position (or orientation) of any two line segments in a
polyline by describing it with respect to a double cross based on the start-

2

ing points of these line segments (Freksa (1992); Zimmermann and Freksa
(1996)). For an overview of the use of constraint calculi in qualitative spatial
reasoning, we refer to (Renz and Nebel (2007)). In the N ×N double-cross
matrix of a polyline with N line segments (or N + 1 vertices), the relative
position (or orientation) of two (oriented) line segments is encoded by means
of a 4-tuple, whose entries come from the set {−, 0,+}.

However, not every N×N matrix of 4-tuples from {−, 0,+} is the double-
cross matrix of a polyline with N+1 vertices. This gives rise to the following
decision problem: Given an N ×N matrix of 4-tuples from {−, 0,+}, decide
whether it is the double-cross matrix of a polyline (with N + 1 vertices), and
if it is, given an example (or many examples) of a polyline that realises the
matrix.

To start with, we give a known collection of polynomial (in)equalities
on the coordinates of the vertices of a polyline, that express the information
contained in the double-cross matrix of a polyline. Since first-order logic over
the reals (or elementary geometry) is decidable (Tarski (1951)), it follows that
our decision problem is also decidable. However, we are left with the question
of its time complexity.

In computational algebraic geometry, the problem can be viewed as a
satisfiability problem of a system of quadratic equations in 2(N+1) variables.
However, the known best algorithms to solve our problem (including the
production of sample points) takes exponential time. Our decision problem
has many particularities (the polynomials are homogeneous of degree 2; they
use few monomials and each of them uses only six variables), nevertheless the
problem is known to be NP-hard. Whether or not this problem is in NP is
less obvious, since no apriori polynomial bound on the complexity of sample
points (to be guessed) is obvious. We discuss this problem in more detail in
Section 3.

In this paper, we focus on subclasses of the above decision problem for
which we can give polynomial time decision algorithms. A first subclass is
obtained by restricting the attention to polylines in which consecutive line
segments make angles that are multiples of 90◦. For this sub-problem, we
give a O(N2)-time decision procedure. Next, we turn our attention to poly-
lines in which consecutive line segments make angles that are multiples of
45◦. To solve the more complicated case of 45◦-polylines, we introduce the
polar-coordinate representation of double-cross matrices. We give two-way
translations between the Cartesian- and the polar-coordinate representations.
Using polar coordinates, our decision problem can be reduced to a linear pro-

3

gramming problem, with algebraic coefficients, however. Also here, we obtain
a polynomial time decision procedure. This result has some implications on
the convexity of the solution set consisting of all 45◦-polylines that realise a
matrix. It is not the intention of this paper to discuss implementations of
and experiments with the proposed methods.

Organization. This paper is organized as follows. Section 2 gives the defini-
tion of a polyline, the double-cross matrix of a polyline and the known results
on the algebraic interpretation of the double-cross matrix. In Section 3, we
state our decision problem in a more technical way and discuss some of
its general properties. Section 4 gives a O(N2)-time decision procedure for
the case of 90◦-polylines. In Section 5, we introduce the polar-coordinate
representation of double-cross matrices, which prepares the solution for the
45◦-case in Section 6. The paper ends with concluding remarks that include
variants of our decision problem.

2. Definition and preliminaries

In this section, we give the definitions of a polyline, an α-polyline and of
the double-cross matrix of a polyline. We also give an algebraic interpretation
of the double-cross matrix.

We start with the following notational conventions. Let R denote the
sets of the real numbers, and let R2 denote the two-dimensional real plane.
To stress that some real values are constants, we use sans serif characters:
x, y, x0, y0, x1, y1, Real variables are denoted in normal characters. For
constant points of R2, we use the sans serif characters p, p0, p1, . . .

2.1. Polylines and α-polylines

The following definition specifies what we mean by polylines. We define
polylines as a finite sequences of points in R2 (which is often used as their
finite representation). When we add the line segments between consecutive
points we obtain what we call the semantics of the polyline. We also intro-
duce some terminology about polylines.

Definition 1. A polyline (in R2) is an ordered list P = 〈(x0, y0), (x1, y1),
, . . . , (xN , yN)〉 of points in R2. We call the points (xi, yi), 0 ≤ i ≤ N , the
vertices of the polyline. We assume that no two consecutive vertices are
identical, that is: (xi, yi) 6= (xi+1, yi+1), for 0 ≤ i < N .

4

p0 p1

p2

p3

p4

p0 p1
p2

p4

p3

P1

P2

Figure 1: An example of two polylines, P1 and P2, of size 4 (the dots) and their semantics
(the lines).

The vertices (x0, y0) and (xN , yN) are respectively called the start and
end vertex of P . The line segments connecting the points (xi, yi) and (xi+1,
yi+1), for 0 ≤ i < N , are called the (line) segments of the polyline P . The
semantics of P , denoted sem(P), is the union of the line segments of P . We
call N , the number of line segments, the size of the polyline P . �

Figure 1 gives an example of two polylines, P1 and P2, of size 4 and their
semantics. Further on, we will loosely use the term polyline also to refer to
the semantics of a polyline, although, stricto sensu, a polyline is a ordered
list of points in R2.

We remark that, by the above definition, two polylines with a different
number of vertices, may have the same semantics. We also remark that the
line segments, appearing in the semantics, may intersect in points which may
or may be not vertices. Finally, we remark that it is reasonable to assume
that polylines coming from GIS applications have vertices with rational co-
ordinates (or that are finitely representable in some other way).

We use the following additional notational conventions. As a standard,
for vertices of a polyline, we abbreviate (xi, yi) by pi. The (located) vector 2

from pi to pj is denoted by −−→pipj. The counter-clockwise angle (expressed in
degrees) measured from −−→pipj to −−→pipk is denoted by ∠(−−→pipj,−−→pipk), as illustrated
in Figure 2.

2By the located vector from p to q, we mean an ordered pair (p, q) of points of R2,
which we denote −→pq. We use this concept to represent the oriented line segment between
p and q.

5

\(��!pipj ,
��!pipk)

pj

pi

pk

Figure 2: The counter-clockwise angle ∠(−−→pipj ,−−→pipk) from −−→pipj to −−→pipk.

In this paper, we use 45◦- and 90◦-polylines, which are special cases of
α-polylines

Definition 2. Let α, 0◦ < α < 360◦, be an angle such that 360◦

α
= kα is

a natural number. Let P = 〈p0, p1, . . . , pN〉 be a polyline. We call P an
α-polyline if all angles ∠(−−−→pipi−1,

−−−→pipi+1) are multiples of α, for 0 < i < N ,
that is, if ∠(−−−→pipi−1,

−−−→pipi+1) is of the form niα, with ni ∈ {0, 1, ..., kα}. �

Figure 3 shows the 90◦-polyline P1 and the 45◦-polylines P1 and P2. In-
deed, in the polyline P1, for instance, the consecutive angles are 90◦, 90◦, 270◦

and 270◦, assuming that the start vertex is at the left bottom.

P1 P2

Figure 3: An example of a 90◦-polyline (P1) and two 45◦-polylines (P1 and P2).

2.2. The double-cross matrix of a polyline

As mentioned in the Introduction, in the double-cross formalism, the
relative position (or orientation) of two (located) vectors of a polyline is
encoded by means of a 4-tuple, whose entries come from the set {−, 0,+}
(Freksa (1992); Zimmermann and Freksa (1996)). Such a 4-tuple expresses
the relative orientation of two vectors with respect to each other.

6

In this section, we define the double-cross matrix of a polyline. We as-
sociate to a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉, with pi = (xi, yi),
the (located) vectors −−→p0p1,−−→p1p2, . . . ,−−−−−→pN−1pN , representing the oriented line
segments between the consecutive vertices of P . Because of the assumption
in Definition 1, the vectors −−→p0p1,−−→p1p2, . . . ,−−−−−→pN−1pN all have a strictly positive
length. In the double-cross formalism, the relative orientation between −−−→pipi+1

and −−−→pjpj+1 is given by means of a 4-tuple (C1 C2 C3 C4) ∈ {−, 0,+}4. We
follow the traditional notation of this 4-tuple without commas. To determine
C1, C2, C3 and C4, for pi 6= pj, first of all, a double cross is defined for the
vectors −−−→pipi+1 and −−−→pjpj+1, determined by the following three lines:

• the line Lij through pi and pj;

• the line Piji through pi, perpendicular on Lij; and

• the line Pijj through pj, perpendicular on Lij.

These three lines are illustrated in Figure 4. These three lines determine
a cross at pi and a cross at pj. Hence the name “double cross.” The entries
C1, C2, C3 and C4 express in which quadrants or on which half lines pi+1 and
pj+1 are located with respect to the double cross.

pi+1

pi

pj

pj+1
PijjPiji

Lij

����!pjpj+1

����!pipi+1

Figure 4: The double cross (in blue): the lines Lij , Piji and Pijj .

We now define this more formally and follow the historical use of the
double cross. In this definition, an interval (a, b) of angles, represents the
open interval between a and b on the counter-clockwise oriented circle.

7

Definition 3. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline, with
pi = (xi, yi), for 0 ≤ i ≤ N , and with associated vectors−−→p0p1,−−→p1p2, . . . ,−−−−−→pN−1pN .
For −−−→pipi+1 and −−−→pjpj+1 with 0 ≤ i, j < N , i 6= j and pi 6= pj, we define

DC(−−−→pipi+1,
−−−→pjpj+1) = (C1 C2 C3 C4)

as follows:

C1 =

− if ∠(−−→pipj,−−−→pipi+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pipj,−−−→pipi+1) ∈ {−90◦, 90◦}
+ else

C2 =

− if ∠(−−→pjpi,−−−→pjpj+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pjpi,−−−→pjpj+1) ∈ {−90◦, 90◦}
+ else

C3 =

− if ∠(−−→pipj,−−−→pipi+1) ∈ (0◦, 180◦)
0 if ∠(−−→pipj,−−−→pipi+1) ∈ {0◦, 180◦}
+ else

C4 =

− if ∠(−−→pjpi,−−−→pjpj+1) ∈ (0◦, 180◦)
0 if ∠(−−→pjpi,−−−→pjpj+1) ∈ {0◦, 180◦}
+ else.

For −−−→pipi+1 and −−−→pjpj+1, with pi = pj, we define, for reasons of continuity,3

DC(−−−→pipi+1,
−−−→pjpj+1) = (0 0 0 0).

The double-cross matrix of P , denoted DCM(P), is the N × N matrix
with the entries DCM(P)[i, j] = DC(−−−→pipi+1,

−−−→pjpj+1), for 0 ≤ i, j < N . �

So, in particular, when i = j, we have DC(−−−→pipi+1,
−−−→pjpj+1) = (0 0 0 0).

We remark that the values C1 and C3 describe the location of the point
pi+1 or, equivalently, the orientation of the vector −−−→pipi+1 with respect to the
cross at pi (formed by the lines Lij and Piji). We see that each of the four
quadrants and four half lines determined by the cross at pi are determined
by a unique combination of C1 and C3 values. Similarly, the values C2 and

3This argumentation is given in (Forbus (1990)).

8

C4 describe the location of the point pj+1 or, equivalently, the orientation
of the vector −−−→pjpj+1 with respect to the cross at pj (formed by the lines
Lij and Pijj). The quadrants and half lines where C1, C2, C3 and C4 take
different values are graphically illustrated in Figure 5. For example, the 4-
tuple DC(−−−→pipi+1,

−−−→pjpj+1) for the vectors −−−→pipi+1 and −−−→pjpj+1, shown in Figure 4,
is (+ − − −).

pi pj

C1

C3

C2

C4

+

� �

0�

�

0+

0

+

�

�

0

0

+

+

0 0

+ +

�� +

0

0

�

+

Lij

Piji Pijj

�

�

+

+�

+

0 0 0

Figure 5: The quadrants and half lines where C1, C2, C3 and C4 take different values.

For example, the entries of the double-cross matrix of the polylines P1 and
P2 of Figure 1 are given in Table 1. Polylines, such as P1 and P2 of Figure 1,
that have the same double-cross matrix, are called double-cross similar.

This first example can be used to illustrate some properties of this ma-
trix (Kuijpers et al. (2006)). First, we observe that on the diagonal always
(0 0 0 0) appears. We also see that there is a certain degree of symmetry
along the diagonal. If DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4), then we have
DC(−−−→pjpj+1,

−−−→pipi+1) = (C2 C1 C4 C3). These two observations imply that it
suffices to know a double-cross matrix above its diagonal.

Input matrices, that do not posses these symmetry properties, are there-
for, apriori, not realisable.

2.3. An algebraic interpretation of the double-cross matrix

In this section, we give an algebraic interpretation of the double-cross
matrix. In the following theorem, taken from (Kuijpers et al. (2006)), we use

9

−−→p0p1 −−→p1p2 −−→p2p3 −−→p3p4−−→p0p1 (0 0 0 0) (− + 0 +) (− + + +) (− + + +)
−−→p1p2 (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +)
−−→p2p3 (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +)
−−→p3p4 (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0)

Table 1: The entries of the double-cross matrix of the polylines P1 and P2 of Figure 1.

the function

sign : R→ {−, 0,+} : x 7→ sign(x) =

− if x < 0;
0 if x = 0; and
+ if x > 0.

We also work with the following convention concerning signs: −− is +;
−0 is 0; and −+ is −.

Theorem 1. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline and let
pi = (xi, yi), for 0 ≤ i ≤ N . Then, DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4) with

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

�

3. Problem statement and discussion

In this section, we state the decision problem, already given in the Intro-
duction, more formally and we devote some theoretical discussion to it.

3.1. Problem statement

In this papers, we address the following decision problem (relative to some
class P of polylines in the plane R2).

Problem 1 (Realisability). Given is an N ×N matrix M of 4-tuples

(C1 C2 C3 C4) ∈ {−, 0,+}4.

10

(a) Decide whether M is the double-cross matrix of some polyline (from a
class P) in R2 of size N ; and

(b) If the answer to question (a) is yes, then produce an example (or many
examples) of a polyline P with DCM(P) = M . �

Initially, we take the class of polylines P as broad as possible. For in-
stance, when we look at polylines that have, as first line segment, the unit
interval on the x-axis of R2, it is sufficient to look at all polylines whose
vertices have algebraic coordinates.

3.2. Discussion

By Theorem 1, the entries of an input matrix M to Problem 1 can be
translated into sign conditions on quadratic polynomial equalities and in-
equalities. Therefor, Problem 1 is equivalent to deciding the first-order sen-
tence

∃x0∃y0∃x1∃y1 · · · ∃xN∃yN

∧
0≤i<j≤N

(xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi) αij 0
(xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj) βij 0
(xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi) γij 0
(xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj) δij 0

where αij, βij, γij, δij ∈ {=, <,>}, for 0 ≤ i < j ≤ N are determined by the
input matrix M , over the reals. The minus signs before the equations for C1

and C3 are assumed to be incorporated in the αij and γij. We remark that
the above sentence expresses the entries of the input matrix strictly above
its diagonal (as we can apriori discard non-symmetric input matrices).

The 4N(N−1)
2

equalities and inequalities describe a semi-algebraic subsets
of R2(N+1) (Bochnak et al. (1998)). We make the following observations
about this system:

• there are 2N(N−1) (in)equalities in 2(N+1) variables x0, y0, ..., xN , yN ;

• each polynomial uses 6 variables from x0, y0, x1, y1, ..., xN , yN and has
at most 8 monomial terms;

• each of the polynomials is homogeneous of degree 2;

• all the coefficients of the polynomials are 0, 1 or −1.

11

The first-order theory of the real ordered field is decidable (Tarski (1951))
and various implementations of decision procedures, that are based on Cylin-
drical Algebraic Decomposition (Collins (1975)) or other techniques, for this
theory exist. We refer to QEPCAD (Hong (2000)), Redlog (Dolzmann
and Sturm (1997)) and and Mathematica (Wolfram Research (2015)) as
a few examples. This type of software could be used, in theory, to answer
Problem 1 (a) in practice. If there is a solution, these implementations also
provide, as a byproduct of the above decision problem, sample points, thus,
also, effectively answering question Problem 1 (b). But it is also known that
the above mentioned implementations are slow and fail in practice to pro-
duce answers as soon as the number of variables increases. This is due to
the intrinsic high time complexity of quantifier elimination in the ordered
field of the reals (Heintz et al. (2013)). The theory of computational alge-
braic geometry gives an upper complexity bound. In particular, Theorem
13.13 in (Basu et al. (2006)) gives an upper bound on determining realisable
sign conditions of a collection of polynomials. When applied to our decision
problem, we obtain that there exists an algorithm to compute the set of all
realisable sign conditions of the above system of polynomial (in)equalities
with complexity (2N(N − 1))2N+3 · 2O(N). The complexity of deciding the
satisfiability of the system is the same, as well as that of generating a sam-
ple point in case of non-emptiness. The use of alternative data structures
to codify the polynomials can improve the time complexity, but not below
exponential time (Giusti and Heintz (2001)). For a more recent discussion
on lower bounds of the complexity, we refer to (Heintz et al. (2013)).

However, we have the following, negative result: Problem 1 (a) is NP-
hard (Scivos and Nebel (2001); Renz and Nebel (2007)). Whether or not
this problem is in NP is less obvious. It is known that if there is a solution
to the above system of polynomial (in)equalities, there is also an solution
with algebraic coordinates (Basu et al. (2006)). We could, for instance,
try to guess the coordinates of the vertices of a polyline and then verify
whether it satisfies the above system. Guessing algebraic coordinates could
be implemented by guessing a polynomial and a root of this polynomial.
However, an apriori polynomial bound on the complexity of sample points (to
be guessed) is not obvious (Basu et al. (2006)). Above, we have observed that
each polynomial uses at most 6 variables from x0, y0, x1, y1, ..., xN , yN and has
at most 8 monomial terms. This implies our problem is part of the field of
“fewnomials” (Khovanskii (1991)), where problems are notoriously difficult.
And our problem and the production of sample points, is not covered by the

12

known solutions there.
On the positive side, we can remark that, from the definition of the

double-cross matrix in Section 2.2, it is clear that translations, rotations
and scalings of a polyline do not change its double-cross matrix. Double-
cross matrices are, in fact, invariant under similarities of R2. Thus, we can
conclude, that if Problem 1 (a) has a positive answer, we can always find a
polyline, to witness this fact, that starts of with the vertices (x0, y0) = (0, 0)
and (x1, y1) = (1, 0) and in which the other vertices have coordinates that
are algebraic numbers.

4. A realisability test for 90◦-polylines

In this section, we give an efficient solution for a special case of Problem 1,
for P = P90◦ , the class of 90◦-polylines (again with vertices with algebraic
coordinates). As we have remarked, for the problem of realisability, we may
assume, without loss of any generality, that the polyline that realises a matrix
M , if it exists, starts with the unit interval on the x-axis, that is, p0 =
(x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0).

The following, straightforward, property gives a first necessary condition
for the input to our decision problem, the matrix M .

Property 1. Let P = 〈p0, p1, p2, ..., pN〉 be a polyline. A necessary and suf-
ficient condition for P to be a 90◦-polyline is that for all i, 0 ≤ i < N − 1,
DC(−−−→pipi+1,

−−−−−→pi+1pi+2) =

• (− − 0 0) (reverse turn);

• (− 0 0 −) (right turn);

• (− + 0 0) (straight); or

• (− 0 0 +) (left turn). �

Since we take p0 = (x0, y0) = (0, 0) and p1 = (x1, y1) = (1, 0), all line
segments of the polyline, realising M , should be or horizontal or vertical in
R2 with respect to the standard coordinate axes. In fact, we have for each
i, 0 ≤ i < N that xi = xi+1 ∧ (yi < yi+1 ∨ yi > yi+1) or yi = yi+1 ∧ (xi <
xi+1 ∨ xi > xi+1). Here, for 0 ≤ i < N , we are in exactly one of the following
four situations (always with `i+1 > 0):

13

{
xi+1 = xi + `i+1

yi+1 = yi;

{
xi+1 = xi − `i+1

yi+1 = yi;

{
xi+1 = xi
yi+1 = yi + `i+1;

{
xi+1 = xi
yi+1 = yi − `i+1.

Before we give an efficient solution to Problem 1 for for P = P90◦ , we
prove a lemma that explains in which quadrant, determined by a horizontal
or vertical line segment of a polyline, a vertex of a polyline is located. For
clarity, we state and prove the lemma for horizontal and vertical segments of
a polyline that coincide with the unit interval on the x- and y-axis (or their
negatives), but the lemma can be easily extended and applied to any hori-
zontal and vertical polyline segments after applying a scaling and translation
of R2.

Lemma 1. Let P = 〈p0, p1, , . . . , pN〉 be a polyline and assume that pi =
(0, 0) and pi+1 = (±1, 0) or pi = (0, 0) and pi+1 = (0,±1). Let pj = (xj, yj),
for 0 ≤ i ≤ N and i + 1 < j. From the first and third component of
DC(−−−→pipi+1,

−−−→pjpj+1), we can determine sign(xj) and sign(yj).

Proof. First, let pi = (0, 0) and pi+1 = (±1, 0). From Theorem 1 it is
clear that C1 = −sign((xj − 0) · ±1 + yj · 0) = −sign(±xj) and that C3 =
−sign(xj · 0− yj · ±1) = sign(±yj).

Secondly, let pi = (0, 0) and pi+1 = (0,±1). Similarly, Theorem 1 implies
C1 = −sign((xj − 0) · 0 + yj · ±1) = −sign(±yj) and that C3 = −sign(xj ·
±1− yj · 0) = −sign(±xj). �

Theorem 2. It can be decided in time O(N2) whether a N × N matrix M
of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 is the double-cross matrix of some
90◦-polyline in R2 of size N . If M this is the case, also witnesses to this can
be produced in time O(N2).

Proof. We now describe a decision procedure for Problem 1: in a first step,
we determine the relationship (<,=, >) between coordinates of consecutive
vertices. In a second step, we do it for all remaining vertices

Let M be a N × N matrix of 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4. In
a first step, we determine the relationship (<,=, >) between coordinates of
consecutive vertices. In a second step, we do it for all remaining vertices. As
an apriori step, we check whether M doesn’t have (0 0 0 0) entries on its

14

diagonal or doesn’t have the “symmetry” properties, discussed in Section 2.2.
If M fails this symmetry-test, we can already answer no, else we proceed.

Step 1. First, we inspect all entries M [i, i + 1], 0 ≤ i < N of M . They
should all be of the form

• (− − 0 0) (reverse turn);

• (− 0 0 −) (right turn);

• (− + 0 0) (straight); or

• (− 0 0 +) (left turn).

If this is not the case, we can already answer no. In the other case, we deduce
the arrangement4 of xi and xi+1 of the coordinates of candidate vertices of a
polyline. We do the same for yi and yi+1 and determine whether yi < yi+1,
yi = yi+1 or yi > yi+1. Then we proceed to Step 2.

Step 2. Now, we inspect all entries M [i, j], 1 ≤ i + 1 < j < N of M . Now,
per entry, two cases have to be considered.
Case 1 (xi = xi+1): Taking into account, yi < yi+1 or yi > yi+1, and yj < yj+1

or yj > yj+1, we can use the vertical version of Lemma 1, to determine the
quadrant in which (xj, yj) is located compared to the vertical line segment
that connects pi and pi+1. This gives us the the arrangement of xj and xi on
the one hand and yj and yi on the other hand.
Case 2 (yi = yi+1): This case is analogous to the previous one. We can get
the arrangement of xj and xi on the one hand and yj and yi on the other
hand, but now using the horizontal version of version of Lemma 1.

Now, we have now complete information on how the x-coordinate val-
ues x0, x1, ..., xN are arranged (or ordered) and how the y-coordinate values
y0, y1, ..., yN are arranged (since, form the definition of the double-cross ma-
trix, the length of the last line segment is irrelevant, one of xN and yN may be
undetermined, but we know the direction of the final line segment). We can
store this arrangement information in two matrices (similarly to the double-
cross matrix). The first matrix can be used to verify whether an ordering
of x0, x1, ..., xN is possible. To this purpose, we scan the first matrix column
per column. The first column will allow us to place x0 and x1 on the real line

4By arrangement, we mean which of the cases xi < xi+1, xi = xi+1 and xi > xi+1 holds.

15

(according to their arrangement). This results in at most five locations to
place x2 (before; between; after; or on x0 and x1). The second column of the
matrix tells us where. We repeat this process until all the candidate values
x0, x1, ..., xN are placed on the real line. Then, we use the second matrix to
place the y-coordinate values y0, y1, ..., yN on the y-axis. If, in this process,
we find it impossible to find a location to place one of the xi or yi (due to a
contradiction), we answer no. If we have never found a contradiction ad all
x- and y-values can be ordered, we are ready to answer yes. This ordering
process takes O(N2) time.

If we have found kx different values x0, x1, ..., xN and ky different values
y0, y1, ..., yN , we can draw an example of a polyline that realises M on the
grid {0, 1, ..., kx − 1} ×R ∪R× {0, 1, ..., kx − 1}, with vertices belonging to
{0, 1, ..., kx − 1} × {0, 1, ..., kx − 1}. This drawing serves aa a sample point
and answers Problem 1 (b).

It is clear that the above inspection of the matrix M takes O(N2) time.
The reconstruction of a polyline can be done in the same amount of time.
This completes the proof. �

5. The polar coordinate representation of a polyline

In this section, we define the polar coordinate representation of a polyline
and we describe how to go from the Cartesian coordinate representation to
the polar coordinate representation and vice versa.

Definition 4. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline (in
Cartesian coordinate representation) and let pi = (xi, yi), 0 ≤ i ≤ N . The
polar coordinate representation of the polyline P is the list

〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉,
where `i is the length of the line segment pi−1pi and θi is the counter-clockwise
angel at pi between the line connecting pi and pi−1 and the line connecting
pi and pi+1. �

If at pi, the polyline turns to the left or goes straight, θi = 180◦ −
∠(−−−→pipi−1,

−−−→pipi+1) and if at pi, the polyline turns to the right or returns,
θi = 180◦ + ∠(−−−→pipi−1,

−−−→pipi+1).
So, θi captures the (counter-clockwise) change in direction when going

from the line segment pi−1pi to the line segment pipi+1. This is illustrated in
Figure 6.

16

p0
p1

p2

p3

p4
p5

θ1

θ2 θ3

θ4

�1

�2

�3

�4

�5

Figure 6: The polar coordinates 〈`1, θ1, `2, θ2, `3, θ3, `4, θ4, `5〉 (in red) of the polyline
〈p0, p1, p2, p3, p4, p5〉 (in black).

5.1. From the Cartesian coordinate to the polar coordinate representation

To convert a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 given by the
Cartesian coordinates of its vertices to polar coordinate representation is
easy. For `i, we take the length of the line segment pi−1pi. By definition
θi = 180◦ − ∠(−−−→pipi−1,

−−−→pipi+1) if the polyline turns to the left or goes straight
and θi = 180◦+∠(−−−→pipi−1,

−−−→pipi+1) if the polyline turns to the right or returns.
Therefore, the angle θi is given by the formula

π − arccos (
(xi−1 − xi, yi−1 − yi) · (xi+1 − xi, yi+1 − yi)

|(xi−1 − xi, yi−1 − yi)| · |(xi+1 − xi, yi+1 − yi)|
)

if the polyline turns to the left or goes straight, and by

π + arccos (
(xi−1 − xi, yi−1 − yi) · (xi+1 − xi, yi+1 − yi)

|(xi−1 − xi, yi−1 − yi)| · |(xi+1 − xi, yi+1 − yi)|
)

if the polyline turns to the right or returns.5

5Here, the · in the numerator denotes the inner product of two vectors and the · in the
denominator is the product of norms.

17

5.2. From the polar coordinate to the Cartesian coordinate representation

Now, we turn to transforming the polar coordinate representation into
the classical Cartesian coordinate representation, which is more laborious.
Here, we can use some techniques that are also known in the description of
robot arms with multiple joints (see, for instance, Chapter 6 of (Cox et al.
(1997))).

Hereto, we first need some technical results. Let P = 〈(x0, y0), (x1, y1),
, . . . , (xN , yN)〉 be a polyline and let pi = (xi, yi), 0 ≤ i ≤ N . In each
vertex (xi, yi), we create a local coordinate system (Xi, Yi). The origin of this
coordinate system is (xi, yi) and the positive Xi-axis is points from (xi, yi) to
(xi+1, yi+1). The Yi-axis is perpendicular to the Xi-axis in (xi, yi) in the usual
way. This is illustrated in Figure 7.

pi−1

pi

pi+1

θi

�i

X
i−

1

Y i−
1

X
i

Yi

�i+1

Figure 7: The local coordinate systems (Xi−1, Yi−1) (in blue) and (Xi, Yi) (in green) on
the vertices pi−1 and pi of a polyline.

The following property is well known from linear algebra and also from
the field of multiple joint robot arms (see, Chapter 6, page 262, in Cox et al.
(1997)).

Property 2. Let pi−1, pi and pi+1 be three consecutive vertices on a polyline
P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 with pi = (xi, yi), 0 ≤ i ≤ N . If a
point q in R2 has coordinates (ai−1, bi−1) and (ai, bi), respectively, in the
local coordinate systems (Xi−1, Yi−1) and (Xi, Yi), respectively, then

18

 ai−1
bi−1

1

 =

 cos θi − sin θi `i
sin θi cos θi 0

0 0 1

 ·
 ai

bi
1

 .

�

For a polyline P , given by its polar coordinate representation 〈`1, θ1, `2,
θ2, ..., `N−1, θN−1, `N〉, we set

Pi =

 cos θi − sin θi `i
sin θi cos θi 0

0 0 1

 .

From now on, we only consider polylines with (x0, y0) = (0, 0) and (x1,
y1) = (1, 0), such that (X0, Y0) is the standard coordinate system.

The following property, based on the previous property, has a straight-
forward induction proof.

Property 3. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline. If a
point q in R2 has coordinates (ai, bi) in the local coordinate system (Xi, Yi),
then it has absolute Cartesian coordinates (a0, b0) in (X0, Y0), with a0

b0
1

 = P1 · P2 · · ·Pi ·

 ai
bi
1

 .

�

The following property tells us what the matrix product P1 ·P2 · · ·Pi looks
like.

Property 4. For 1 ≤ i < N , we have

P1 · P2 · · ·Pi =

 cos Θi
1 − sin Θi

1

∑i
j=1 `j cos Θj−1

1

sin Θi
1 cos Θi

1

∑i
j=1 `j sin Θj−1

1

0 0 1

 ,

where Θj
i abbreviates θi + θi+1 + · · ·+ θj, for i ≤ j.

19

Proof. We proceed by induction on i. For i = 1, we have `1 cos 0 = `1 and
`1 sin 0 = 0, which clearly gives P1.

Now, we proceed from i to i+1. By the induction hypothesis, P1·P2 · · ·Pi·
Pi+1 equals cos Θi

1 − sin Θi
1

∑i
j=1 `j cos Θj−1

1

sin Θi
1 cos Θi

1

∑i
j=1 `j sin Θj−1

1

0 0 1

 ·
 cos θi+1 − sin θi+1 `i+1

sin θi+1 cos θi+1 0
0 0 1

 ,

which is a11 a12 a13
a21 a22 a23
a31 a32 a33

with

• a11 = cos Θi
1 · cos θi+1 − sin Θi

1 · sin θi+1 = cos (Θi
1 + θi+1) = cos (Θi+1

1);

• a12 = − cos Θi
1·sin θi+1−sin Θi

1·cos θi+1 = − sin (Θi
1 + θi+1) = − sin (Θi+1

1);

• a13 = `i+1 cos Θi
1 +

∑i
j=1 `j cos Θj−1

1 =
∑i+1

j=1 `j cos Θj−1
1 ;

• a21 = sin Θi
1 · cos θi+1 + cos Θi

1 · sin θi+1 = sin (Θi
1 + θi+1) = sin (Θi+1

1);

• a22 = − sin Θi
1 ·sin θi+1+cos Θi

1 ·cos θi+1 = cos (Θi
1 + θi+1) = cos (Θi+1

1);

• a23 = `i+1 sin Θi
1 +

∑i
j=1 `j sin Θj−1

1 =
∑i+1

j=1 `j sin Θj−1
1 ;

• a31 = 0 + 0 + 0 = 0;

• a32 = 0 + 0 + 0 = 0; and

• a33 = 0 + 0 + 1 = 1;

where we have used the well-known formulas for cosinus and sinus of the sum
of angles. This gives the desired matrix and concludes the proof. �

The following theorem tells us how to translate from polar coordinates to
Cartesian coordinates.

20

Theorem 3. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 be a polyline that is
given by its polar coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉.
If we assume that (x0, y0) = (0, 0) and (x1, y1) = (1, 0), then{

xi =
∑i

j=1 `j cos (θ1 + · · ·+ θj−1)

yi =
∑i

j=1 `j sin (θ1 + · · ·+ θj−1)

for 2 ≤ i ≤ N .

We remark that we could also have written{
xi = 1 +

∑i
j=2 `j cos (θ1 + · · ·+ θj−1)

yi =
∑i

j=2 `j sin (θ1 + · · ·+ θj−1)

in the statement of this theorem, since `1 = 1, cos 0 = 1 and sin 0 = 0. For
esthetic reasons, we will stick to the earlier expressions.

Proof. In the local coordinate system (Xi−1, Yi−1), the coordinates op pi =
(xi, yi) are (`i, 0). By Property 3, the coordinates of pi in the standard coor-
dinate system (X0, Y0) are given by xi

yi
1

 = P1 · P2 · · ·Pi−1 ·

 `i
0
1

 .

By Property 4, this means

 xi
yi
1

 =

 cos Θi−1
1 − sin Θi−1

1

∑i−1
j=1 `j cos Θj−1

1

sin Θi−1
1 cos Θi−1

1

∑i−1
j=1 `j sin Θj−1

1

0 0 1

 ·
 `i

0
1

or

{
xi = `i cos Θi−1

1 +
∑i−1

j=1 `j cos Θj−1
1 =

∑i
j=1 `j cos Θj−1

1

yi = `i sin Θi−1
1 +

∑i−1
j=1 `j sin Θj−1

1 =
∑i

j=1 `j sin Θj−1
1

which concludes the proof. �

21

5.3. The double-cross conditions for polar coordinates

For a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN)〉 with pi = (xi, yi), 0 ≤
i ≤ N , Theorem 1, gives us sign conditions on polynomials for C1, C2, C3 and
C4 in DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4). Now, if the polyline P = 〈(x0, y0),
(x1, y1), , . . . , (xN , yN)〉 is given by its polar coordinate representation 〈`1, θ1,
`2, θ2, ..., `N−1, θN−1, `N〉, Theorem 1 allows us to translate these conditions
into polar coordinates.

Where needed, we use the abbreviations{
ci = cos Θi

1 = cos (θ1 + · · ·+ θi);
si = sin Θi

1 = sin (θ1 + · · ·+ θi).

to control the length of the expressions.
The following theorem gives the double-cross conditions in polar form.

Theorem 4. If now the polyline P = 〈p0, p1, . . . , pN〉 is given by its polar
coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉, and if we assume
that p0 = (0, 0) and p1 = (1, 0), then DC(−−−→pipi+1,

−−−→pjpj+1) = (C1 C2 C3 C4),
for 0 ≤ i < j < N , are expressed in polar coordinates as follows:

C1 = − sign(
∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+1 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)),

where we agree that the empty sum of angles equals 0.

Proof. Let P be as in the statement of the theorem. From Theorem 3, we
get {

xi =
∑i

k=1 `k cos (θ1 + · · ·+ θk−1)

yi =
∑i

k=1 `k sin (θ1 + · · ·+ θk−1),

22

for 0 ≤ i ≤ N . So, we obtain, for 0 ≤ i < j < N ,

xj − xi =
∑j

k=1 `k cos (θ1 + · · ·+ θk−1)−
∑i

k=1 `k cos (θ1 + · · ·+ θk−1)

=
∑j

k=i+1 `k cos (θ1 + · · ·+ θk−1)

yj − yi =
∑j

k=1 `k sin (θ1 + · · ·+ θk−1)−
∑i

k=1 `k sin (θ1 + · · ·+ θk−1)

=
∑j

k=i+1 `k sin (θ1 + · · ·+ θk−1)

xi+1 − xi =
∑i+1

k=1 `k cos (θ1 + · · ·+ θk−1)−
∑i

k=1 `k cos (θ1 + · · ·+ θk−1)
= `i+1 cos (θ1 + · · ·+ θi)

yi+1 − yi =
∑i+1

k=1 `k sin (θ1 + · · ·+ θk−1)−
∑i

k=1 `k sin (θ1 + · · ·+ θk−1)
= `i+1 sin (θ1 + · · ·+ θi)

xj+1 − xj =
∑j+1

k=1 `k cos (θ1 + · · ·+ θk−1)−
∑j

k=1 `k cos (θ1 + · · ·+ θk−1)
= `j+1 cos (θ1 + · · ·+ θj)

yj+1 − yj =
∑j+1

k=1 `k sin (θ1 + · · ·+ θk−1)−
∑j

k=1 `k sin (θ1 + · · ·+ θk−1)
= `j+1 sin (θ1 + · · ·+ θj).

If we plug these identities in the equations of Theorem 1, we get

C1 = − sign(
∑j

k=i+1 `k(cick−1 + sisk−1)

= − sign(
∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k(cjck−1 + sjsk−1)

= sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+1 `k(sick−1 − cisk−1)

= − sign(
∑j

k=i+1 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k(sjck−1 − cjsk−1)

= sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)).
In the last equalities we used the well-known formulas sin (α± β) =

sinα cos β ± cosα sin β and cos (α± β) = cosα cos β ∓ sinα sin β. This con-
cludes the proof. �

We remark that all the double-cross conditions in the above theorem
are linear expressions in the lengths `1, ..., `N−1. We also remark that an
alternative way to write these conditions is

C1 = − sign(`i+1 +
∑j

k=i+2 `k cos (θi+1 + · · ·+ θk−1));

C2 = sign(
∑j

k=i+1 `k cos (θk + · · ·+ θj));

C3 = − sign(
∑j

k=i+2 `k sin (θi+1 + · · ·+ θk−1)); and

C4 = sign(
∑j

k=i+1 `k sin (θk + · · ·+ θj)).

23

We end this section with a remark about the double cross entries for
consecutive line segments.

Because of the special location of (x0, y0) = (0, 0) and (x1, y1) = (1, 0), we
look at a special case of this theorem, namely i = 0 and j = 1. Here, we
have DC(−−→p0p1,−−→p1p2) = (C1 C2 C3 C4), with

C1 = − sign(1) = −;
C2 = sign(`1 + `2c1 − 1) = sign(`2c1);
C3 = − sign(0) = 0; and
C4 = sign(`2s1);

Because, by the assumption in Definition 1, two consecutive vertices in
a polyline are never identical, we have `2 > 0, we can simplfy conditions C2

and C4 and we get

C1 = −
C2 = sign(cos θ1)
C3 = 0 and
C4 = sign(sin θ1).

More generally, we look at the following special case of consecutive line
segments of a polyline.

Corollary 1. If now the polyline P = 〈p0, p1, . . . , pN〉 is given by its polar
coordinate representation 〈`1, θ1, `2, θ2, ..., `N−1, θN−1, `N〉, and if we assume
that p0 = (0, 0) and p1 = (1, 0), then DC(−−−→pipi+1,

−−−−−→pi+1pi+2) = (C1 C2 C3 C4),
for 0 ≤ i < N − 1, are expressed in polar coordinates as follows:

C1 = −;
C2 = sign(cos θi+1);
C3 = 0;
C4 = sign(sin θi+1).

�

6. A realisability test for 45◦-polylines and some remarks on con-
vexity

In this section, we describe how it can be decided whether a given N ×N
matrix is realisable in the plane by a 45◦-polyline. So, we look at Problem 1

24

for P = P45◦ , the class of 45◦-polylines (again with vertices with algebraic
coordinates). At the end of this section, we discuss some implications of our
result on the convexity of the solution set, determined by a matrix that is
realisable in the plane by a 45◦-polyline.

6.1. A realisability test for 45◦-polylines

For the problem of realisability, here again, we may assume, without loss
of any generality, that the polyline that realises a matrix M , if it exists,
starts with the unit interval on the x-axis, that is, p0 = (x0, y0) = (0, 0) and
p1 = (x1, y1) = (1, 0). This also permits us, to use the results on the polar
representation from the previous section.

Theorem 5. It can be decided in polynomial time whether an N×N matrix
Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4 is the double-cross matrix of some
45◦-polyline of size N in R2. If this is the case, also witnesses to this can be
produced in polynomial time.

Proof. We now describe a decision procedure that solves Problem 1 for
P = P45◦ . Let M be a N × N input matrix of 4-tuples (C1 C2 C3 C4)
∈ {−, 0,+}4. In a first step, we determine the polar angles of the polyline,
we attempt to construct. In a second step, we see if appropriate lengths
of line segments can be found. As an apriori step, we check whether M
doesn’t have (0 0 0 0) entries on its diagonal or doesn’t have the “symmetry”
properties, discussed in Section 2.2. If M fails this symmetry-test, we can
already answer no, else we proceed.

Step 1 (Determining the angles θ1, θ2, ..., θN−1). First, we inspect the
entries M [i, i + 1], 0 ≤ i < N of M . Hereto, we use Corollary 1. So, C1

should be − and C3 should be 0. If this is not the case, we can already
answer no. From C2 and C4 in all entries M [i, i + 1], we can determine the
angles θi as is shown in the following table.

25

C2 C4 θi

0 0 answer no
0 + 270◦

0 − 90◦

+ 0 180◦

+ + 225◦

+ − 135◦

− 0 0◦

− + 315◦

− − 45◦

Obviously, if both C2 = sign(cos θi) and C4 = sign(sin θi) (see Corollary 1)
are 0, we have an impossible situation. So, at this point, or we have answered
no, or we know all the angles θ1, θ2, ..., θN−1 of a possible realisation of M .
In the latter case, we proceed to Step 2.

Step 2 (Determining `1, `2, ..., `N). Once, we have determined the an-
gles θ1, θ2, ..., θN−1, we can compute all the values cos (θi+1 + · · ·+ θk−1),
cos (θk + · · ·+ θj), sin (θi+1 + · · ·+ θk−1) and sin (θk + · · ·+ θj) that appear
in the expressions given in Theorem 4. Since all these sums of angles are
multiples of 45◦, these cosines and sines will take values as shown in the
following table.

α cosα sinα

0◦ 1 0

45◦
√
2
2

√
2
2

90◦ 0 1

135◦ −
√
2
2

√
2
2

180◦ −1 0

225◦ −
√
2
2
−
√
2
2

270◦ 0 −1

315◦
√
2
2

−
√
2
2

This means that the double-cross conditions given by Theorem 4, together
with the constraints that the `i are strictly positive lengths, can be seen as
linear constraint conditions in `1, `2, ..., `N of the form

26

− ∑j

k=i+1 `k cos (θi+1 + · · ·+ θk−1) αij 0 (0 ≤ i < j < N)∑j
k=i+1 `k cos (θk + · · ·+ θj) βij 0 (0 ≤ i < j < N)

− ∑j
k=i+1 `k sin (θi+1 + · · ·+ θk−1) γij 0 (0 ≤ i < j < N)∑j
k=i+1 `k sin (θk + · · ·+ θj) δij 0 (0 ≤ i < j < N)

`i > 0 (0 < i ≤ N)

(∗)

with αij, βij, γij, δij ∈ {=, <,>} determined by the entries of the matrix

M . Since all cosines and sines take values in the set {0, 1,−1,
√
2
2
,−
√
2
2
},

all these conditions are linear in `1, `2, ..., `N . Therefore, (∗) can be seen
as a linear programming problem, or at least almost. Normally in a linear
programming problem, linear polynomial conditions of the form

a1`1 + a2`2 + · · ·+ aN`N ≥ 0,

with the coefficients ai rational numbers are expected to appear together
with the additional conditions

`i ≥ 0 (0 ≤ i ≤ N).

So, we are left with three problems:

(1) we have `i > 0 for 0 < i ≤ N and not the traditional `i ≥ 0;

(2) we have αij, βij, γij, δij ∈ {=, <,>} and not the traditional ≥; and

(3) we have irrational coefficients
√
2
2

, −
√
2
2

.

The linear polynomial condition

a1`1 + a2`2 + · · ·+ aN`N = 0

is obviously equivalent to

a1`1 + a2`2 + · · ·+ aN`N ≥ 0 and a1`1 + a2`2 + · · ·+ aN`N ≤ 0.

This solves the case of equality. Obviously,

a1`1 + a2`2 + · · ·+ aN`N < 0

27

is equivalent to
−a1`1 − a2`2 − · · · − aN`N > 0.

So, we are left with a1`1 + a2`2 + · · · + aN`N > 0. To solve the problem of
the strict inequalities in (1) and (2), there is a known trick from the linear
programming literature that we can use (see page 22 of Matousek (2007)).
We introduce a new variable δ, which stands for the “gap” between the left
and the right side of each inequality and we try to make this gap as large as
possible. Then a1`1 + a2`2 + · · ·+ aN`N > 0 is equivalent to

maximize δ
subject to a1`1 + a2`2 + · · ·+ aN`N − δ ≥ 0

and δ ≥ 0.

And this single δ can be used to deal with several strict inequalities all at
once. Indeed, the linear program has now an extra variable δ and the optimal
δ is strictly positive exactly when the original system with strict inequalities
has a solution.

Let us write the first 2N(N − 1) linear polynomials appearing in (∗) as

P
σij
ij (`1, `2, ..., `N) σij 0,

with 0 ≤ i < j < N and σij ∈ {αij, βij, γij, δij}.
We define the sets

S= := {(i, j, σij | 0 ≤ i < j < N, σij ∈ {αij, βij, γij, δij} and σij ==};
S> := {(i, j, σij | 0 ≤ i < j < N, σij ∈ {αij, βij, γij, δij} and σij =>}; and
S< := {(i, j, σij | 0 ≤ i < j < N, σij ∈ {αij, βij, γij, δij} and σij =<}.

Now, we can see that (∗) can be converted to the following linear pro-
gramming problem:

maximize δ
subject to P

σij
ij (`1, `2, ..., `N) ≥ 0 for (i, j, σij) ∈ S=

−P σij
ij (`1, `2, ..., `N) ≥ 0 for (i, j, σij) ∈ S=

P
σij
ij (`1, `2, ..., `N)− δ ≥ 0 for (i, j, σij) ∈ S>

−P σij
ij (`1, `2, ..., `N)− δ ≥ 0 for (i, j, σij) ∈ S<

`i − δ ≥ 0 for 0 < i ≤ N
and δ ≥ 0.

28

What remains is Problem (3), namely that we may have the irrational

coefficients
√
2
2

and −
√
2
2

in our linear programming problem. However, a
result by Adler and Beling (Adler and Beling (1994)) shows that linear pro-
gramming with algebraic coefficients also has a time complexity that is a
polynomial of

(i) the “rank” of the linear system of inequalities, which applied to our
example is O(N2);

(ii) the degree of the extension of the rationals in which we work, which is
in our case 2, since (Q(

√
2) : Q) = 2; and

(iii) a quantity related to the conjugate norm of the linear system, which in
our case is O(N2 logN).

So, we can conclude that our linear programming problem can be solved
in polynomial time in N . This completes the proof. �

6.2. Convexity properties of 45◦-polylines

From Step 1 of the proof of Theorem 5, it follows that a matrix M that is
realisable by a 45◦-polyline determines the angles θi uniquely for 0 < i < N .
This proves the following corollary.

Corollary 2. If an N ×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realisable by two 45◦-polylines P1 and P2, that start with the line segment
connecting (0, 0) and (1, 0) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ′N−1, `′N〉, respectively,
then θi = θ′i for 0 < i < N . �

Also from the proof of Theorem 5, the following property follows.

Corollary 3. If an N ×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realisable by two 45◦-polylines P1 and P2, that start with the line segment
connecting (0, 0) and (1, 0) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ′N−1, `′N〉, respectively,
then for any real numbers α1, α2 > 0, the 45◦-polyline given by the polar
coordinate representation 〈α1 · `1 +α2 · `′1, θ1, α1 · `2 +α2 · `′2, θ2, ..., α1 · `N−1 +
α2 · `′N−1, θN−1, α1 · `N + α2 · `′N〉 also realises M .

29

Proof. Corollary 2 takes care of the angles. From Step 2 of the proof of the
previous theorem it follows that if P1 and P2 are realisations of a matrix M
their lengths satisfy the same set of linear conditions of the form a1`1+a2`2+
· · ·+ aN`N α 0, with α ∈ {<,=, >}. Suppose that we have

{
a1`1 + a2`2 + · · ·+ aN`N > 0 and
a1`
′
1 + a2`

′
2 + · · ·+ aN`

′
N > 0

for P1 and P2, for any of these linear conditions. Since both α1 > 0 and
α2 > 0, we also have

{
α1 · (a1`1 + a2`2 + · · ·+ aN`N) > 0 and
α2 · (a1`′1 + a2`

′
2 + · · ·+ aN`

′
N) > 0.

So, also the sum of the two left hand sides,

α1 · (a1`1 + a2`2 + · · ·+ aN`N) + α2 · (a1`′1 + a2`
′
2 + · · ·+ aN`

′
N)

will be strictly larger than 0. The same argument hold when α is = or <.
This completes the proof. �

We end this chapter with the following convexity property for 45◦-polylines.

Corollary 4. If an N ×N matrix Mof 4-tuples (C1 C2 C3 C4) ∈ {−, 0,+}4
is realisable by two 45◦-polylines P1 and P2, that start with the line segment
connecting (0, 0) and (1, 0) and have polar-coordinate representations 〈`1,
θ1, `2, θ2, ..., `N−1, θN−1, `N〉 and 〈`′1, θ′1, `′2, θ′2, ..., `′N−1, θ′N−1, `′N〉, respectively,
then for any λ, with 0 ≤ λ ≤ 1, the 45◦-polyline given by the polar coordinate
representation

〈λ · `1 + (1− λ) · `′1, λ · θ1 + (1− λ) · θ′1,
λ · `2 + (1− λ) · `′2, λ · θ2 + (1− λ) · θ′2, ..., λ · `N−1 + (1− λ) · `′N−1,

λ · θN−1 + (1− λ) · θ′N−1, λ · `N + (1− λ) · `′N〉

also realises M .

30

Proof. From Corollary 2, it is clear that λ · θi + (1 − λ) · θ′i = θi = θ′i for
0 < i < N .

For λ with 0 ≤ λ ≤ 1, we observe that if we take λ = 0, we get P2 and
if we take λ = 1, we get P1. This leaves us with the case 0 < λ < 1. But
here, both λ and 1−λ are strictly larger than 0 and Corollary 3 applies with
α1 = λ and α2 = 1− λ. This completes the proof. �

7. Conclusion and discussion

We have studied the decision problem that asks whether a N ×N matrix
of 4-tuples from {−, 0,+} is the double-cross matrix of a polyline with N line
segments. This problem is, in general, NP-hard. In this paper, we have given
a conceptually easy O(N2)-time algorithms for the case where the attention
is restricted to polylines in which consecutive line segments make angles that
are multiples of 90◦. Next, we have given a more complicated algorithm
that solves the question for 45◦-polylines. For this more complicated case
of 45◦-polylines, we have introduce the polar-coordinate representation of
double-cross matrices.

It is not easy to see how the techniques, developed for the 45◦-case can
be generalized to, for instance the reliability question for of 30◦-polylines. In
Step 1 of the proof of Theorem 5, we would have to consider two possibilities
per quadrant of the double cross (essentially corresponding to 30◦ and 60◦).
It is not clear how an exponential blow-up in N can be avoided.

It was not the intention of this paper to implement the proposed methods
for 90◦-polylines and 45◦-polylines and experiment with them. But, we have
some experiments in a related setting. The question of a N × N matrix of
4-tuples from {−, 0,+} being realisable in restricted classes of polylines also
has other variants. Instead of taking the angles from a fixed set of angles,
we can also take the lengths of the line segments in the polyline to come
from a set of fixed lengths. One particular case of this is where we ask if
a matrix is realisable by polylines in which all line segments have a fixed
length L > 0. It turns out that in this setting the reconstruction task is
also considerably simplified as is demonstrated by the following experiment.
For a given polyline P of size N , we compute the double-cross matrix M of
size N by N ; we set the desired lengths of the line segments L > 0; and the
granularity (the number of candidates to be generated) s. The reconstruction
algorithm works as follows. In the first step, the algorithm creates a line of

31

length L with as start vertex (0, 0) and end vertex (L, 0). In the second step,
the algorithm creates a set of candidate second line segments. By looking
at M [1, 2], we know what the minimum and maximum angle is between the
first and the second line segment. There are two possibilities: the minimum
angle is equal to maximum angle; or it is not. In the first case, there is a
unique solution to position the second line segment. In the other case, we
create s candidate solutions, equally distributed between the minimum and
maximum angle.

In the i-th step of the algorithm (i ≤ N), we take one by one the polylines
created in the (i − 1)-th step, and create new polylines by adding s possi-
ble last line setments (as we did in the second step). The only difference
now is that when we have a candidate polyline Pnew, we first check whether
DCM(Pnew) corresponds to the given matrix M . If this is not the case, this
candidate is pruned. Only when this is the case, Pnew is further considered
as possible realisation of M .

Given the double-cross matrix in Table 2, which is the double-cross matrix
of the polyline in Figure 8, the output of the algorithm with L = 3 and s = 10,
in the second step looks like the polyline in Figure 9.

Table 2: The double-cross matrix (only the part strictly above the diagonal is shown) of
the polyline in Figure 8.

−+ 0+−+ ++−+ +−−−++−−++ −−+- −−+++ + ++
−+ 0+−+ +−−−++−−++−−++−+ +++ + +−

−− 0−−−−+−+−+−−++−+ ++−+ +−
−− 0+−−+++−+++ +−−+ +−−

−+ 0+−−++−+ +−−+ +−
−− 0+−+ +−−+ +−

−− 0−−−−−
−+ 0−

Given the double-cross matrix in Table 2, which is the double-cross matrix
of the polyline in Figure 8, the output of the algorithm with L = 3 and s = 10,
in the second step are the polylines given in Figure 9.

Figure 10 gives all output polylines that have the double-cross matrix of
Table 2 (and thus are double-cross similar to the polyline of Figure 8). In this
experiment, the output consists of 632 polylines, satisfying the double-cross
matrix of Table 2. They were created in approximately 3 seconds on a Apple

32

Figure 8: The original polyline

Figure 9: The output after the second step of the algorithm using the double-cross matrix
in Table 2.

33

Figure 10: A complete set of output polylines.

Macbook with 2.16 GHz Intel Core 2 Duo processor and 1 GB RAM.
It should be clear that the described algorithm is not guaranteed to find

a sample polyline, even when one exists. By creating s candidate solutions,
equally distributed between the minimum and maximum angle, we might
find no solution, but miss an existing solution.

34

Adler, I., Beling, P. A., 1994. Polynomial algorithms for linear programming
over the algebraic numbers. Algorithmic 12 (6), 436–457.

Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geom-
etry (Algorithms and Computation in Mathematics). Springer-Verlag New
York, Inc.

Bochnak, J., Coste, M., Roy, M.-F., 1998. Real Algebraic Geometry. Vol. 36
of Ergebenisse der Mathematik und ihrer Grenzgebiete. Folge 3. Springer-
Verlag.

Bookstein, F. L., 1986. Size and shape spaces for landmark data in two
dimensions. Statistical Science 1, 181–242.

Collins, G., 1975. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In: Automata Theory and Formal Languages.
Vol. 33 of Lecture Notes in Computer Science.

Cox, D. A., Little, J., O’Shea, D., 1997. Ideals, varieties, and algorithms
- an introduction to computational algebraic geometry and commutative
algebra (2. ed.). Undergraduate texts in mathematics. Springer.

Dolzmann, A., Sturm, T., 1997. Redlog: Computer algebra meets computer
logic. ACM SIGSAM Bulletin 32 (2), 2–9, (see also redlog.dolzmann.de/).

Dryden, I., Mardia, K. V., 1998. Statistical Shape Analysis. Wiley.

Forbus, K. D., 1990. Qualitative physics: past present and future. In: Read-
ings in qualitative reasoning about physical systems. Morgan Kaufmann,
pp. 11–39.

Freksa, C., 1992. Using orientation information for qualitative spatial rea-
soning. In: Spatio-Temporal Reasoning (GIS’92). pp. 162–178.

Gero, J. S., 1999. Representation and reasoning about shapes: cognitive and
computational studies in visual reasoning in design. In: et al., K. (Ed.),
Proceedings of the International Conference on Spatial Information Theory
(COSIT’99). Vol. Lecture Notes in Computer Science, 2825. Springer, pp.
315–330.

Giannotti, F., Pedreschi, D., 2008. Mobility, Data Mining and Privacy.
Springer.

35

Giusti, M., Heintz, J., 2001. Kronecker’s smart, little black boxes. In: De-
Vore, R., A., I., Suli, E. (Eds.), Foundations of Computational Mathemat-
ics. Cambridge University Press, Cambridge, pp. 69–104.

Güting, R. H., Schneider, M., 2005. Moving Objects Databases. Morgan
Kaufmann.

Heintz, J., Kuijpers, B., Paredes, A. R., 2013. Software engineering and
complexity in effective algebraic geometry. Journal of Complexity 29 (1),
92–138.

Hong, H., 2000. QEPCAD. www.usna.edu/CS/qepcadweb/B/QEPCAD.html.

Kent, J. T., Mardia, K. V., 1986. Shape, procrustes tangent projections and
bilateral symmetry. Biometrika 88, 469–485.

Khovanskii, A., 1991. Fewnomials. Translations of mathematical mono-
graphs. American Mathematical Society.

Kuijpers, B., Moelans, B., Van de Weghe, N., 2006. Qualitative polyline sim-
ilarity testing with applications to query-by-sketch, indexing and classifi-
cation. In: Proceedings of the 14th annual ACM International Symposium
on Advances in Geographic Information Systems. ACM, pp. 11–18.

Matousek, J., G. B., 2007. Understanding and Using Linear Programming.
No. v. 36 in Universitext. Springer.

Mokhtarian, F., Mackworth, A. K., 1992. A theory of multiscale, curvature-
based shape representation for planar curves. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI) 14, 789–805.

Renz, J., Nebel, B., 2007. Qualitative spatial reasoning using constraint cal-
culi. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (Eds.), Handbook
of Spatial Logics. Springer.

Scivos, A., Nebel, B., 2001. Double-crossing: Decidability and computational
complexity of a qualitative calculus for navigation. In: Spatial Information
Theory: Foundations of Geographic Information Science, International
Conference, COSIT 2001. pp. 431–446.

Tarski, A., 1951. A Decision Method for Elementary Algebra and Geometry.
University of California Press.

36

Wolfram Research, 2015. Mathematica 9. www.wolfram.com.

Zimmermann, K., Freksa, C., 1996. Qualitative spatial reasoning using ori-
entation, distance, and path knowledge. Applied Intelligence 6 (1), 49–58.

37

