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Abstract

We study the double-cross matrix descriptions of polylines in the two-dimensional
plane. The double-cross matrix is a qualitative description of polylines in which exact,
quantitative information is given up in favour of directional information. First, we give
an algebraic characterization of the double-cross matrix of a polyline and derive some
properties of double-cross matrices from this characterisation. Next, we give a geometric
characterization of double-cross similarity of two polylines, using the technique of local
carrier orders of polylines. To end, we identify the transformations of the plane that
leave the double-cross matrix of all polylines in the two-dimensional plane invariant.

Keywords: Spatial reasoning; Double-cross matrix; Qualitative spatial models; Polylines;
Trajectory and Moving Object Data.

1 Introduction and summary of results

Polylines arise in Geographical Information Science (GIS) in a multitude of ways. One
recent example comes from the collection of moving object data, where trajectories of moving
persons (or animals), that carry GPS-equipped devices, are collected in the form of time-
space points that are registered at certain (ir)regular moments in time. The spatial trace of
this movement is a collection of points in two-dimensional space. There are several methods
to extend the trajectory in between the measured sample points, of which linear interpolation
is a popular method (Güting & Schneider, 2005). The resulting curve in the two-dimensional
geographical space is a polyline.

Another example comes from shape recognition and retrieval, which arises in domains,
such as computer vision, image analysis and GIS, in general. Here, closed polylines (where
the starting point coincides with the end point) or polygons, often occur as the boundary of
two-dimensional shapes or regions. Shape recognition and retrieval are central problems in
this context.

In examples, such as the above, there are, roughly speaking, two very distinct approaches
to deal with polygonal curves and shapes. On the one hand, there are the quantitative ap-
proaches and on the other hand there are the qualitative approaches. Initially, most research
efforts have dealt with the quantitative methods (Bookstein, 1986; Dryden & Mardia, 1998;
Kent & Mardia, 1986; Mokhtarian & Mackworth, 1992). Only afterwards, the qualitative ap-
proaches have gained more attention, mainly supported by research in cognitive science that
provides evidence that qualitative models of shape representation are much more expressive
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than their quantitative counterpart and reflect better the way in which humans reason about
their environment (Gero, 1999). Polygonal shapes and polygonal curves are very complex
spatial phenomena and it is commonly agreed that a qualitative representation of space is
more suitable to deal with them (Meathrel, 2001).

Within the qualitative approaches to describe two-dimensional movement or shapes, two
major approaches can be distinguished: the region-based and the boundary-based approach.
The region-based approach, using concepts such as circularity, orientation with respect to
the coordinate axis, can only distinguish between shapes with large dissimilarities (Schlieder,
1996). The boundary-based, using concepts such as extremes in and changes of curvature of
the polyline representing the shape, gives more precise tools to distinguish polylines and poly-
gons. Examples of the boundary-based approaches are found in (Gottfried, 2003; Jungert,
1993; Kulik & Egenhofer, 2003; Latecki & Lakämper, 2000; Leyton, 2000; Meathrel, 2001;
Schlieder, 1996).

The principles behind qualitative approaches to deal with polylines are also related to
the field of spatial reasoning. Spatial reasoning has as one of its main objectives to present
geographic information in a qualitative way to be able to reason about it (see, for exam-
ple, Chapter 12 in (Giannotti & Pedreschi, 2008), also for spatio-temporal reasoning) and
it can be seen as the processing of information about an spatial environment that is imme-
diately available to humans (or animals) through direct observation. The reason for using
a qualitative representation is that the available information is often imprecise, partial and
subjective (Freksa, 1992). If we return to the example of trajectory data, we can see that
if a person orients her- or himself at a certain location in a city and then moves away from
this location, she or he remembers her or his current location by using a mental map that
takes the relative turns into account with respect to the original starting point, rather than
the precise metric information about her or his trajectory. For such navigational problems,
a person will for instance remember: “I left the station and went straight; passing a church
to my right; then taking two left turns; ...”

One of the formalisms to qualitatively describe polylines in the plane is given by the
double-cross calculus. In this method, a double-cross matrix captures the relative position
of any two line segments in a polyline by describing it with respect to a double cross based
on the starting points of these line segments. The double-cross calculus was introduced
as a formalism to qualitatively represent a configuration of vectors in the plane (Freksa,
1992; Zimmermann & Freksa, 1996). For an overview of the use of constraint calculi in
qualitative spatial reasoning, we refer to (Renz & Nebel, 2007). In the double-cross formalism,
the relative position (or orientation) of two (located) vectors is encoded by means of a 4-
tuple, whose entries come from the set {0,+,−}. Such a 4-tuple expresses the relative
orientation of two vectors with respect to each other. The double-cross formalism is used,
for instance, in the qualitative trajectory calculus, which, in turn, has been used to test
polyline similarity with applications to query-by-sketch, indexing and classification (Kuijpers,
Moelans, & Van de Weghe, 2006).

Two polylines are called double-cross similar if their double-cross matrices are identical.
Two polylines, that are quite different from a quantitative or metric perspective, may have
the same double-cross matrices, as we illustrate below. The idea is that they follow a simi-
lar pattern of relative turns, which reflects how humans visualize and remember movement
patterns.

In this paper, we provide an extensive algebraic and geometric interpretation of the
double-cross matrix of a polyline and of double-cross similarity of polylines. To start with,
we give a collection of polynomial constraints (polynomial equalities and inequalities) on the
coordinates of the measured points of a polyline (its vertices) that express the information
contained in the double-cross matrix of a polyline. This algebraic characterisation can be used
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to effectively verify double-cross similarity of polylines and to generate double-cross similar
polylines by means of tools from algebraic geometry, implemented, for instance, in software
packages like Mathematica (Wolfram Research, 2015). This algebraic characterization of
the double-cross matrix also allows us to prove a number of properties of double-cross matri-
ces. As an example, we mention a high degree of symmetry in the double-cross matrix along
its main diagonal.

Next, we turn to a geometrical interpretation of double-cross similarity of two polylines.
This geometrical interpretation is based on local geometric information of the polyline in
its vertices. This information is called the local carrier order and it uses (local) compass
directions in the vertices of a polyline to locate the relative position of the other vertices.
Our main result in this context says that two polylines are double-cross similar if and only
if they have the same local carrier order structure.

From the definition of the doubtle-cross matrix of a polyline it is clear that this matrix
remains the same if, for instance, we translate or rotate the polyline in the two-dimensional
plane. In a final part of this paper, we identify the exact set of transformations of the
two-dimensional plane that leave double-cross matrices invariant. Our main (and rather
technical) result states that the largest group of transformations of the plane, that is double-
cross invariant consist of the similaritiy transformations of the plane onto itself. Grosso
modo, the similarities of the plane are the translations, rotations and homotecies (scalings)
of the plane. This result allows us, for instance, to prove any statement about double-cross
matrices of a polyline, only for polylines start in the origin of the two-dimensional plane and
have a unit length first line segment.

Organization. This paper is organized as follows. Section 2 gives the definition of a
polyline, the double-cross matrix of a polyline and double-cross similarity of two polylines.
Section 3 gives our algebraic characterization of the double-cross matrix of a polyline. In
Section 4, we derive a number of properties of double-cross matrices from the algebraic char-
acterisation. In Section 5, we give a geometric characterization of the double-cross similarity
of two polylines in terms of the local carrier order. And finally, in Section 6, we character-
ize the double-cross invariant transformations of the plane. In this section, we identify the
transformations of the plane that leave the double-cross matrix of all polylines invariant.

2 Definitions and preliminaries

In this section, we give the definitions of a polyline, of the double-cross matrix of a polyline
and of double-cross similarity of two polylines.

2.1 Polylines in the plane

Let R denote the sets of the real numbers, and let R2 denote the two-dimensional real plane.
To stress that some real values are constants, we use sans serif characters: x, y, x0, y0, x1, y1,
. . . . Real variables are denoted in normal characters. For constant points of R2, we use the
sans serif characters p, p0, p1, . . .

The following definition specifies what we mean by polylines. We define polylines as a
finite sequences of points in R2 (which is often used as their finite representation). When we
add the line segments between consecutive points we obtain what we call the semantics of
the polyline. We also introduce some terminology about polylines.

3



Definition 1 A polyline (in R2) is an ordered list P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 of
points in R2. We call the points (xi, yi), 0 ≤ i ≤ N , the vertices of the polyline. We assume
that no two consecutive vertices are identical, that is: (xi, yi) 6= (xi+1, yi+1), for 0 ≤ i < N .

We call N is the size of the polyline P . The vertices (x0, y0) and (xN , yN ) are respectively
called the start and end vertex of P . The line segments connecting the points (xi, yi) and
(xi+1, yi+1), for 0 ≤ i < N , are called the (line) segments of the polyline P . The semantics
of P , denoted sem(P ), is the union of the line segments of P . ut

So, the semantics, sem(P ), is the following union of line segments:

N−1⋃
i=0

{
(x, y) ∈ R2 | ∃λ ∈ [0, 1] : (x, y) = λ · (xi, yi) + (1− λ) · (xi+1, yi+1)

}
,

which is a polygonal curve in R2. Further on, we will loosely use the term polyline also to
refer to the semantics of a polyline, although, stricto sensu, a polyline is a ordered list of
points in R2.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

( 5
2 , 1)

P2

(0, 0) (2, 0) (3, 0) (4, 0)

( 5
2 , 1)

P1

Figure 1: An example of a polyline P1 = 〈(0, 0), (2, 0), ( 5
2 , 1), (3, 0), (4, 0)〉 and a polyline

P2 = 〈(0, 0), (1, 0), (2, 0), ( 5
2 , 1), (3, 0), (4, 0)〉. Although they have a different vertex set and a

different size, still sem(P1) = sem(P2).

We remark that two polylines with a different number of vertices, may have the same
semantics. Figure 1 gives an example of such polylines. We also remark that the line
segments, appearing in the semantics, may intersect in points which may or may be not
vertices, as is illustrated by the polyline shown in Figure 2. A polyline where the start and
end vertex coincide and which has no other self-intersections in its semantics is a polygon.
Finally, we remark that it is reasonable to assume that polylines coming from GIS applications
have vertices with rational coordinates.

Below, we stick to the notation introduced in the above definitions. Furthermore, as a
standard, we abbreviate (xi, yi) by pi. We also use the following notational conventions. The
(located) vector1 from pi to pj is denoted by −−→pipj . The counter-clockwise angle (expressed in
degrees) measured from −−→pipj to −−→pipk is denoted by ∠(−−→pipj ,−−→pipk), as illustrated in Figure 3.

1By the located vector from p to q, we mean an ordered pair (p, q) of points of R2, which we denote −→pq.
We use this concept to represent the oriented line segment between p and q.
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(0, 0)

(0, 1)

(1, 0)

(2, 1)

(3, 0)

(4, 2)

(4, 0)

Figure 2: An example of a polyline P = 〈(0, 0), (0, 1), (2, 1), (3, 0), (4, 2), (1, 0), (4, 0)〉 and its
semantics sem(P ). We see that two of the line segments of its semantics intersect in a point
that is not a vertex. The last line segment of the polyline intersects two other line setments
in a vertex.

\(��!pipj ,
��!pipk)

pj

pi

pk

Figure 3: The counter-clockwise angle ∠(−−→pipj ,−−→pipk) from −−→pipj to −−→pipk.

2.2 The double-cross matrix of a polyline

In this section, we define the double-cross matrix of a polyline.

2.2.1 The double-cross value of two (located) vectors

The double-cross calculus was introduced as a formalism to qualitatively represent a con-
figuration of vectors in the plane R2 (Freksa, 1992; Zimmermann & Freksa, 1996). In this
formalism, the relative position (or orientation) of two (located) vectors is encoded by means
of a 4-tuple, whose entries come from the set {0,+,−}. Such a 4-tuple expresses the relative
orientation of two vectors with respect to each other.

We associate to a polyline P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉, with pi = (xi, yi), the
(located) vectors −−→p0p1,

−−→p1p2, . . . ,
−−−−−→pN−1pN , representing the oriented line segments between

the consecutive vertices of P . Because of the assumption in Definition 1, the vectors −−→p0p1,−−→p1p2, . . . ,
−−−−−→pN−1pN all have a strictly positive length. In the double-cross formalism, the

relative orientation between −−−−→pipi+1 and −−−−→pjpj+1 is given by means of a 4-tuple

(C1 C2 C3 C4) ∈ {−, 0,+}4.

We follow the traditional notation of this 4-tuple without commas. To determine C1, C2, C3

and C4, for pi 6= pj , first of all, a double cross is defined for the vectors −−−−→pipi+1 and −−−−→pjpj+1,
determined by the following three lines:

• the line Lij through pi and pj ;

• the line Piji through pi, perpendicular on Lij ; and
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• the line Pijj through pj , perpendicular on Lij .

These three lines are illustrated in Figure 4. These three lines determine a cross at pi
and a cross at pj . Hence the name “double cross.” The entries C1, C2, C3 and C4 express in
which quadrants or on which half lines pi+1 and pj+1 are located with respect to the double
cross.

pi+1

pi

pj

pj+1
PijjPiji

Lij

����!pjpj+1

����!pipi+1

Figure 4: The double cross (in blue): the lines Lij , Piji and Pijj .

We now define this more formally and follow the historical use of the double cross (see, for
instance, (Freksa, 1992; Zimmermann & Freksa, 1996). In this definition, an interval (a, b) of
angles, represents the open interval between a and b on the counter-clockwise oriented circle.

Definition 2 Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline, with pi = (xi, yi), for
0 ≤ i ≤ N , and with associated vectors −−→p0p1,

−−→p1p2, . . . ,
−−−−−→pN−1pN . For −−−−→pipi+1 and −−−−→pjpj+1 with

0 ≤ i, j < N , i 6= j and pi 6= pj , we define

DC(−−−−→pipi+1,
−−−−→pjpj+1) = (C1 C2 C3 C4)

as follows:

C1 =

 − if ∠(−−→pipj ,−−−−→pipi+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pipj ,−−−−→pipi+1) ∈ {−90◦, 90◦}
+ else

C2 =

 − if ∠(−−→pjpi,−−−−→pjpj+1) ∈ (−90◦, 90◦)
0 if ∠(−−→pjpi,−−−−→pjpj+1) ∈ {−90◦, 90◦}
+ else

C3 =

 − if ∠(−−→pipj ,−−−−→pipi+1) ∈ (0◦, 180◦)
0 if ∠(−−→pipj ,−−−−→pipi+1) ∈ {0◦, 180◦}
+ else

C4 =

 − if ∠(−−→pjpi,−−−−→pjpj+1) ∈ (0◦, 180◦)
0 if ∠(−−→pjpi,−−−−→pjpj+1) ∈ {0◦, 180◦}
+ else.

For −−−−→pipi+1 and −−−−→pjpj+1, with pi = pj , we define, for reasons of continuity,2

DC(−−−−→pipi+1,
−−−−→pjpj+1) = (0 0 0 0).

2This argumentation is given in (Forbus, 1990).
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ut

So, in particular, when i = j, we have DC(−−−−→pipi+1,
−−−−→pjpj+1) = (0 0 0 0).

We remark that the values C1 and C3 describe the location of the point pi+1 or, equiv-
alently, the orientation of the vector −−−−→pipi+1 with respect to the cross at pi (formed by the
lines Lij and Piji). We see that each of the four quadrants and four half lines determined by
the cross at pi are determined by a unique combination of C1 and C3 values. Similarly, the
values C2 and C4 describe the location of the point pj+1 or, equivalently, the orientation of
the vector −−−−→pjpj+1 with respect to the cross at pj (formed by the lines Lij and Pijj).

The quadrants and half lines where C1, C2, C3 and C4 take different values are graphically
illustrated in Figure 5. For example, the 4-tuple DC(−−−−→pipi+1,

−−−−→pjpj+1) for the vectors −−−−→pipi+1

and −−−−→pjpj+1, shown in Figure 4, is (+ − − −).

pi pj

C1

C3

C2

C4

+

� �

0�

�

0+

0

+

�

�

0

0

+

+

0 0

+ +

�� +

0

0

�

+

Lij

Piji Pijj

�

�

+

+�

+

0 0 0

Figure 5: The quadrants and half lines where C1, C2, C3 and C4 take different values.

Further on, we will sometimes use the notation DC(−−−−→pipi+1,
−−−−→pjpj+1)[k] to indicate Ck, for

k = 1, 2, 3, 4. Obviously, this notation does not hide the dependence on i and j.

Remark. Since C1, C2, C3 and C4 take values from the set {−, 0,+}, it may seem that
there are 34 = 81 possible values for the tuples (C1 C2 C3 C4).

However, some combinations are not possible because of the assumption in Definition 1,
that says that two consecutive vertices of a polyline have to be different. This means that
C1 and C3 cannot be both 0 and that C2 and C4 cannot be both 0, in each case with the
exception of C1, C2, C3 and C4 all being 0, that is (C1 C2 C3 C4) = (0 0 0 0). So, we have
81− 8− 8 = 65 possible values for (C1 C2 C3 C4).

This number of 65 possible values for the tuples (C1 C2 C3 C4) can also be reached in
another way. The point pi+1 can be in one of four quadrants around pi or on one of four
half lines starting in pi. These are 8 possible locations for pi+1. Similarly, we have 8 possible
locations for pj+1 in the quadrants and half lines starting in pj . This gives 8×8 = 64 possible
combinations. Together with the case (C1 C2 C3 C4) = (0 0 0 0), we reach a total number
of 65 possibilities. ut

2.2.2 The double-cross matrix of a polyline

Based on the definition of DC(−−−−→pipi+1,
−−−−→pjpj+1), we now define the double-cross matrix of a

polyline.
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−−→p0p1
−−→p1p2

−−→p2p3
−−→p3p4

−−→p4p5−−→p0p1 (0 0 0 0) (− − 0 +) (− + + −) (− − + −) (− + − +)
−−→p1p2 (− − + 0) (0 0 0 0) (− − 0 +) (− + + +) (− − + +)
−−→p2p3 (− − − +) (− − + 0) (0 0 0 0) (− + 0 −) (− − − +)
−−→p3p4 (− − − +) (+ − + +) (+ − − 0) (0 0 0 0) (− − 0 +)
−−→p4p5 (+ − + −) (− − + +) (− − + −) (− − + 0) (0 0 0 0)

Table 1: The entries of the double-cross matrix of the polyline of Figure 6.

Definition 3 Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline, with pi = (xi, yi), for
0 ≤ i ≤ N , and with associated vectors −−→p0p1,

−−→p1p2, . . . ,
−−−−−→pN−1pN . The double-cross matrix of

P , denoted DCM(P ), is the N×N matrix with the entries DCM(P )[i, j] = DC(−−−−→pipi+1,
−−−−→pjpj+1),

for 0 ≤ i, j < N . ut

For example, the entries of the double-cross matrix of the polyline of Figure 6 are given
in Table 1. This first example can be used to illustrate some properties of this matrix
that are proven in Section 4. First, we observe that on the diagonal always (0 0 0 0)
appears. We also see that there is a certain degree of symmetry along the diagonal. If
DC(−−−−→pipi+1,

−−−−→pjpj+1) = (C1 C2 C3 C4), then we have DC(−−−−→pjpj+1,
−−−−→pipi+1) = (C2 C1 C4 C3).

These two observations imply that it suffices to know a double-cross matrix above its diagonal.

p0
p1

p2

p3

p4 p5

Figure 6: An example of a polyline.

2.3 Double-cross similarity of polylines

We now define double-cross similarity of two polylines of equal size.

Definition 4 Let P and Q be polylines of the same size. We say that P and Q are double-
cross similar if DCM(P ) = DCM(Q). ut

We stress that Definition 4 requires that the two polygons have to be of the same size
before we can speak of their double-cross similarity.

Figure 7 depicts two polylines, P and Q, which are double-cross similar. The entries of
their double-cross matrices are given in Table 2. In polyline P of Figure 7, at each vertex,
the polyline bends around 10 degrees to the left. In polyline Q, this is only around 2 degrees.
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p0 p1

p2

p3

p4

p5

p0 p1
p2

p4

p5

p3

P

Q

Figure 7: The polylines P and Q are double-cross similar.

−−→p0p1
−−→p1p2

−−→p2p3
−−→p3p4

−−→p4p5−−→p0p1 (0 0 0 0) (− + 0 +) (− + + +) (− + + +) (− + + +)
−−→p1p2 (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +) (− + + +)
−−→p2p3 (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +) (− + + +)
−−→p3p4 (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0) (− + 0 +)
−−→p4p5 (+ − + +) (+ − + +) (+ − + +) (+ − + 0) (0 0 0 0)

Table 2: The entries of the double-cross matrix of the polylines of Figure 7.

Nevertheless, all relative positions of oriented line segments remain the same. As the most
extreme example, if we compare −−→p0p1 and −−→p4p5 in both polylines, we see that −−→p4p5 almost
makes a 90◦ left angle with the central line of the double cross in the polyline P , whereas,
this is only some 10◦ in the polyline Q. Still, both P and Q have the same double-cross entry
for −−→p0p1 and −−→p4p5.

3 An algebraic characterization of the double-cross ma-
trix of a polyline

In this section, we give an algebraic characterization of the entries in the double-cross matrix
of a polyline. This algebraic characterisation can be used to effectively verify double-cross
similarity of polylines.

Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline and let pi = (xi, yi), for 0 ≤ i ≤ N .
Theorem 1 gives algebraic expressions to calculate the entries DC(−−−−→pipi+1,

−−−−→pjpj+1) of a double-
cross matrix in terms of the x- and y-coordinates of the points pi, pi+1, pj and pj+1. Further

9



on, we use this theorem extensively to prove properties of double-cross matrices.
Before stating and proving this theorem, we recall some elementary notations from algebra

and some formula’s in the following remark.

Remark. The well-known formula to calculate the (counter-clockwise) angle θ between two

vectors3 ~a and ~b in R2 (and also, in general, in Rn) is

cos θ =
~a ·~b
|~a| · |~b|

.

Here, the · in the numerator denotes the inner product4 of two vectors and |~a| is the norm
or length of ~a (and the · in the denominator is the product of real numbers).

The above formula implies that we have cos θ = 0 if and only if ~a ·~b = 0 if and only if
θ ∈ {90◦,−90◦}. So, ~a ·~b = 0 means that ~a is perpendicular to ~b. On the other hand, we

have cos θ > 0 and thus ~a ·~b > 0, when θ ∈ (−90◦, 90◦). And finally ~a ·~b < 0 is equivalent to
θ ∈ (90◦, 270◦).

If ~a = (a, b) ∈ R2, then ~a⊥ = (−b, a) is the unique vector, perpendicular to ~a and of the
same length of ~a, such that the (counter-clockwise) angle from ~a to ~a⊥ is 90◦. ut

In the following theorem, we use the function

sign : R→ {−, 0,+} : x 7→ sign(x) =

 − if x < 0;
0 if x = 0; and
+ if x > 0.

We also work with the following convention concerning signs: −− is +; −0 is 0; and −+
is −.

Theorem 1 Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline and let pi = (xi, yi), for
0 ≤ i ≤ N . Then, DC(−−−−→pipi+1,

−−−−→pjpj+1) = (C1 C2 C3 C4) with

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

Proof. We have pi = pj if and only if xj − xi = 0 and yj − yi = 0 and in this case the four
(instantiated) polynomials in the statement of the theorem evaluate to zero.

Next, we assume pi 6= pj . We consider the following vectors in R2:

• −→uij = (xj − xi, yj − yi);

• −→uji = (xi − xj , yi − yj);

• −→vi = (xi+1 − xi, yi+1 − yi); and

• −→vj = (xj+1 − xj , yj+1 − yj).

3Now, we are not talking about located vectors like before, but vectors in the common sense.
4The inner product is also called scalar product.
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We remark that −→uij = −−→uji and that the vectors −→uij , −→vi and −→vj (in the common sense of the
word vector) are the (located) vectors −−→pipj , −−−−→pipi+1 and −−−−→pjpj+1 translated to the origin of R2.

• C1: Now, we apply the above cosine-formula to −→a = −→uij and
−→
b = −→vi to obtain an

expression for C1. Because C1 is negative towards pj , we get the minus-sign in the following
expression for C1:

C1 = −sign(−→uij · −→vi )
= −sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)).

• C2: Next, we apply the cosine-formula to −→a = −→uji and
−→
b = −→vj to obtain an expression for

C2. Again, because C2 is negative towards pi, we get the minus-sign in C2 = −sign(−→uji · −→vj ).
This means that

C2 = sign(−→uij · −→vj )
= sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj)).

• C3: Here, we apply the cosine-formula to −→a = −→uij⊥ and
−→
b = −→vi and get C3 = −sign(−→uij⊥ ·−→vi ). We have a minus-sign here, because C3 = − in the direction of −→uij⊥. Since −→uij⊥ =

(−(yj − yi), xj − xi), we get

C3 = −sign(−→uij⊥ · −→vi )
= sign((yj − yi) · (xi+1 − xi)− (xj − xi) · (yi+1 − yi)).

• C4: Finally, we apply the cosine-formula to −→a = −→uji⊥ and
−→
b = −→vj . Since C4 = − in the

direction of −→uji⊥, we have C4 = −sign(−→uji⊥ · −→vj ). Since −→uji⊥ = (yj − yi,−(xj − xi)), we get

C4 = −sign(−→uji⊥ · −→vj )
= sign(−(yj − yi) · (xj+1 − xj) + (xj − xi) · (yi+1 − yi)).

This concludes the proof. ut

In the following property, we show that the double-cross value (0 0 0 0), which, for
reasons of continuity, is the value in the case pi = pj (see Definition 2), can only occur in
that exceptional case.

Proposition 1 Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline and let pi = (xi, yi).
Then, DC(−−−−→pipi+1,

−−−−→pjpj+1) = (0 0 0 0) if and only if pi = pj.

Proof. As already observed in the proof of Theorem 1, pi = pj implies xj − xi = 0 and
yj − yi = 0 and in this case the four (instantiated) polynomials of Theorem 1 evaluate to
zero. This implies that DC(−−−−→pipi+1,

−−−−→pjpj+1) = (0 0 0 0).
For the converse, we have to show that if the four polynomials evaluate to zero, then

pi = pj . We prove this by assuming pi 6= pj and deriving a contradiction. If pi 6= pj , then
xj − xi 6= 0 or yj − yi 6= 0. First, we consider the case xj − xi 6= 0.

As a first subcase, we consider the case yj − yi = 0. Then we get from the equations
C1 = 0 and C3 = 0 that (xj − xi) · (xi+1 − xi) = 0 and (xj − xi) · (yi+1 − yi) = 0. Since
xj − xi 6= 0 is assumed, this implies that xi+1 − xi = 0 and yi+1 − yi = 0. This contradicts
the assumption in Definition 1, which says that no two consecutive vertices of a polyline are
identical.

As a second subcase, we consider the case yj − yi 6= 0. Then we get from C1 = 0 that

xi+1 − xi =
−(yj − yi) · (yi+1 − yi)

xj − xi
=

(xj − xi) · (yi+1 − yi)

yj − yi
.
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From C3 = 0, we get (xj − xi) · (yi+1 − yi) = (yj − yi) · (xi+1 − xi).
Combined, these two equalities imply ((xj − xi)

2 + (yj − yi)
2) · (yi+1 − yi) = 0. Since

in this case (xj − xi)
2 + (yj − yi)

2 > 0, we conclude yi+1 − yi = 0. But then, again using
the equation for C1, we get (xj − xi) · (xi+1 − xi) = 0, or xi+1 − xi = 0. So, we have both
xi+1 − xi = 0 and yi+1 − yi = 0, which again contradicts the assumption in Definition 1.
We have contradiction in all cases and this concludes the proof of the first case. The case
yj−yi 6= 0 has a completely analogous proof, now using C2 = 0 and C4 = 0 instead of C1 = 0
and C3 = 0. This concludes the proof. ut

We end this section by remarking that all the factors appearing in the algebraic expres-
sions, given by the theorem, that is xj−xi, xi+1−xi, yj−yi, yi+1−yi, xj+1−xj and yj+1−yj
are differences in x-coordinate or differences in y-coordinate values.

4 Some properties of double-cross matrices that can be
derived from their algebraic characterisation

In this section, we give some basic properties of double-cross matrices of polylines. In most
cases, these properties can be derived from the algebraic characterization of the entries of a
double-cross matrix, that we presented in previous section.

4.1 Symmetry in the double-cross matrix of a polyline

In Section 2.2.2, we have already announced by the example polyline given in Figure 6
with its double-cross matrix given in Table 1, that a double-cross matrix exhibits symmetry
properties. We prove these properties in this section. The first property is by definition, the
second needs some inspection of polynomials. The conclusion is that it is enough to know a
double-cross matrix above its diagonal.

Proposition 2 If P = 〈p0, p1, , . . . , pN 〉 is a polyline, then DC(−−−−→pipi+1,
−−−−→pipi+1) = (0 0 0 0),

for 0 ≤ i < N . ut

The following property says how DC(−−−−→pjpj+1,
−−−−→pipi+1) can be derived from DC(−−−−→pipi+1,

−−−−→pjpj+1)
in a straightforward way.

Proposition 3 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. If DC(−−−−→pipi+1,
−−−−→pjpj+1) = (C1 C2 C3 C4),

then DC(−−−−→pjpj+1,
−−−−→pipi+1) = (C2 C1 C4 C3).

Proof. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline and let pi = (xi, yi). We
use the polynomials given in Theorem 1 to prove this result. Essentially, what we do is to
interchange the role of i and j. If i = j, nothing has to be shown. So, we assume i 6= j. If
we interchange in

C1 = − sign((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi));
C2 = sign((xj − xi) · (xj+1 − xj) + (yj − yi) · (yj+1 − yj));
C3 = − sign((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)); and
C4 = sign((xj − xi) · (yj+1 − yj)− (yj − yi) · (xj+1 − xj)).

the role of i and j, we get DC(−−−−→pjpj+1,
−−−−→pipi+1) = (C ′1 C

′
2 C
′
3 C
′
4), with
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C ′1 = − sign((xi − xj) · (xj+1 − xj) + (yi − yj) · (yj+1 − yj));
C ′2 = sign((xi − xj) · (xi+1 − xi) + (yi − yj) · (yi+1 − yi));
C ′3 = − sign((xi − xj) · (yj+1 − yj)− (yi − yj) · (xj+1 − xj)); and
C ′4 = sign((xi − xj) · (yi+1 − yi)− (yi − yj) · (xi+1 − xi)).

It is easy to see that C ′1 = C2, C ′2 = C1, C ′3 = C4 and C ′4 = C3. ut

These two properties imply that only the N ·(N−1)
2 entries above the diagonal of the

double-cross matrix of a polyline are significant.

4.2 The double-cross value of consecutive line segments

The following property says what the entries in the double-cross matrix of two successive
line segments −−−−→pipi+1 and −−−−−→pi+1pi+2 in a polyline P = 〈p0, p1, . . . , pN 〉 look like. These values
correspond to entries in the double-cross matrix just above (or below) its diagonal.

Proposition 4 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. Of DC(−−−−→pipi+1,
−−−−−→pi+1pi+2) the entries

C1 and C3 are fixed to − and 0. That is,

DC(−−−−→pipi+1,
−−−−−→pi+1pi+2) = (− C2 0 C4),

for any 0 ≤ i < N − 1.

Proof. Let 0 ≤ i < N − 1. We start with the entry DC(−−−−→pipi+1,
−−−−−→pi+1pi+2)[1] = −sign((xi+1 −

xi) · (xi+1− xi) + (yi+1− yi) · (yi+1− yi)) = −sign((xi+1− xi)
2 + (yi+1− yi)

2). Because of the
assumption in Definition 1, we have (xi+1− xi)

2 + (yi+1− yi)
2 > 0 and we can conclude that

DC(−−−−→pipi+1,
−−−−−→pi+1pi+2)[1] = −.

For the third entry we have DC(−−−−→pipi+1,
−−−−−→pi+1pi+2)[3] = −sign((xi+1 − xi) · (yi+1 − yi) −

(yi+1 − yi) · (xi+1 − xi)) = −sign(0) = 0. This concludes the proof. ut

The following property shows that more values depend on one another.

Proposition 5 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline and let 1 ≤ i < N − 1. If DC(−−−−→pi−1pi,−−−−→pipi+1) = (− C2 0 C4), with C2 = + or 0, then DC(−−−−→pi−1pi,
−−−−−→pi+1pi+2) = (− C ′2 C4 C

′
4), for

some C ′2, C
′
4 ∈ {−, 0,+}.

Proof. Let DC(−−−−→pi−1pi,
−−−−−→pi+1pi+2) be (C ′1 C

′
2 C
′
3 C
′
4). We have the following expressions:

C2 = sign((xi − xi−1) · (xi+1 − xi) + (yi − yi−1) · (yi+1 − yi))
C4 = sign((xi − xi−1) · (yi+1 − yi)− (yi − yi−1) · (xi+1 − xi))
C ′1 = −sign((xi+1 − xi−1) · (xi − xi−1) + (yi+1 − yi−1) · (yi − yi−1))
C ′3 = −sign((xi+1 − xi−1) · (yi − yi−1)− (yi+1 − yi−1) · (xi − xi−1))

Let us abbreviate the first two expression as C2 = sign(c2) and C4 = sign(c4) and the
latter two as C ′1 = −sign(c′1) and C ′3 = −sign(c′3).

Then we have c′1 = ((xi+1 − xi) + (xi − xi−1)) · (xi − xi−1) + ((yi+1 − yi) + (yi − yi−1)) ·
(yi − yi−1) = (xi − xi−1)2 + (yi − yi−1)2 + c2. Since, by assumption c2 ≥ 0, it follows from
the assumption in Definition 1 that c′1 > 0 and thus C ′1 = −sign(c′1) = −.

Further, we have c′3 = ((xi+1 − xi) + (xi − xi−1)) · (yi − yi−1)− ((yi+1 − yi) + (yi − yi−1)) ·
(xi − xi−1) = −c4. So, C ′3 = −sign(c′3) = −sign(−c4) = C4. This concludes the proof. ut
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q2q1

q0

Figure 8: Two polylines that differ in the length of their third segment.

4.3 On the length of line segments of a polyline

The following properties shows that changing the length of segments in a polyline may or
may not influence certain entries in its double-cross matrix.

Proposition 6 Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline and let pi = (xi, yi),
for 0 ≤ i ≤ N . Changing the length of −−−−→pipi+1 and −−−−→pjpj+1 does not influence the value of
DC(−−−−→pipi+1,

−−−−→pjpj+1).

Proof. If we take DC(−−−−→pipi+1,
−−−−→pjpj+1) = (C1 C2 C3 C4) and DC(

−−−−→
pip
′
i+1,
−−−−→
pjp
′
j+1) = (C ′1 C

′
2 C
′
3 C
′
4),

where
−−−−→
pip
′
i+1 is −−−−→pipi+1 scaled by a factor c, with c > 0 and

−−−−→
pjp
′
j+1 is −−−−→pjpj+1 scaled by a factor

d, with d > 0, then we first observe that p′i+1 = (xi + c · (xi+1 − xi), yi + c · (yi+1 − yi) and
p′j+1 = (xj + c · (xj+1 − xj), yj + c · (yj+1 − yj). If we abbreviate It is then easily verified
that C ′1 = −sign(c · c1) = −sign(c1) = C1, since c > 0. Similarly, we get C ′2 = sign(d · c2) =
sign(c2) = C2, C ′3 = −sign(c · c3) = −sign(c3) = C3 and C ′4 = sign(d · c4) = sign(c4) = C4,
since also d > 0. This concludes the proof. ut

The length of the last segment of a polyline does not influence the double-cross matrix.
Only its direction matters. This follows straightforwardly from the definition.

Proposition 7 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. Changing the length of −−−−−→pN−1pN does
not change DCM(P ). ut

For segments, that differ from the last, this is not the case, as the following property
shows.

Proposition 8 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. Changing the length of −−−−→pipi+1 , for
0 ≤ i < N − 1, may change DCM(P ). ut

Proof. Consider the polylines P = 〈p0, p1, p2, p3, p4〉 and Q = 〈q0, q1, q2, q3, q4〉 of Figure 8.
They only differ in the length of their third segment. For P , we have DC(−−→p0p1,

−−→p3p4) =
(− − − −), whereas for Q, we have DC(−−→q0q1,

−−→q3q4) = (+ + − −). ut
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4.4 The quadrant of points of a polyline

In Section 6, we will see that we can apply a similarity transformation to a polyline without
changing its double-cross matrix. Without loss of generality, we may therefore assume that
the first line segment of the polyline is the unit interval of the x-axis, that is, p0 = (0, 0) and
p1 = (1, 0).

The following property states that we can derive the quadrants in which all the other
points are located from the double-cross matrix.

Proposition 9 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline and assume that p0 = (0, 0) and
p1 = (1, 0). Let pi = (xi, yi) for 2 ≤ i ≤ N . From DC(−−→p0p1,

−−−−→pipi+1), we can determine
sign(xi) and sign(yi).

Proof. It is clear that C1 = −sign((xi − 0) · 1 + yi · 0) = −sign(xi) and that C3 = −sign(xi ·
0 + yi · 1) = −sign(−yi). ut

5 A geometric characterization of the double-cross sim-
ilarity of two polylines

In this section, we define the local carrier order of a polyline. This is a geometric concept and
the main result of this section is a characterization of double-cross similarity of two polylines
in terms of their local carrier orders.

5.1 The local carrier order of a polyline

Here, we give the definition of the local carrier order of a polyline. First, we introduce some
notation for half-lines.

Definition 5 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline in R2 and let 0 ≤ i < N . If pi 6= pj ,
the (directed) half-line starting in pi through pj will be denoted by pipj . The half-line, also
starting in pi, but in the opposite direction is denoted −pipj . The half-lines pipj and −pipj ,
for 0 ≤ j ≤ N with j 6= i and pj 6= pi, are called the carriers at pi.

The perpendicular half-line on pipi+1 starting in pi directing to the right of pipi+1 (that
is, making a 90◦ clockwise angle with pipi+1) as pi

⊥r and the opposite perpendicular half-line
starting in pi as pi

⊥` . The half-lines pi
⊥r and pi

⊥` are called the perpendiculars at pi. ut

For 0 ≤ i < N , the vertex pi has 2N carriers and 2 perpendiculars. For an illustration of
the half-lines of and of this single cross between pi and pi+1, we refer to Figure 9.

Now, we define the local carrier order of a vertex pi of a polyline P , for 0 ≤ i < N . This
local carrier order consists of nine sets. One keeps track which pj ’s are equal to pi and the
other eight are corresponding to eight directions of a compass card. We use the image of a
8-point compass with the northern cardinal direction in the direction of the half-line pipi+1

to name these sets.
In the following definition, we say that a half-line ` is strictly between the two perpen-

dicular half-lines `1 and `2, if they all have the same starting point and ` is in the quadrant
determined by `1 and `2 (following the counter-clockwise direction).

Definition 6 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline in R2. For 0 ≤ i < N , we define the
following nine sets for the vertex pi:
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pi

pj

p?r
i

p?`
i

pipj�pipj

pi+1

Figure 9: An example the half-lines pipj (in blue), −pipj (in green) and the two perpendicular
half-lines pi

⊥r and pi
⊥` (in red).

• N(pi) is the set of pipj equal to pipi+1;

• NE(pi) is the set of pipj strictly between pipi+1 and pi
⊥r ;

• E(pi) is the set of pipj equal to pi
⊥r ;

• SE(pi) is the set of pipj strictly between pi
⊥r and −pipi+1;

• S(pi) is the set of pipj equal to −pipi+1;

• SW(pi) is the set of pipj strictly between −pipi+1 andpi
⊥` ;

• W(pi) is the set of pipj equal to pi
⊥` ; and

• NW(pi) is the set of pipj strictly between pi
⊥` and pipi+1,

with 0 ≤ j < i or i < j < N . Finally, Eq(pi) is the set of pj that are equal to pi. The local
carrier order of P in its vertex pi, for 0 ≤ i < N , denoted as LCO(P, pi), is the list of sets

〈Eq(pi),N(pi),NE(pi),E(pi),SE(pi),S(pi),SW(pi),W(pi),NW(pi)〉

and the local carrier order of P is the the list

〈LCO(P, p0), LCO(P, p1), ..., LCO(P, pN−1)〉.

ut

We remark that if pj ∈ Eq(pi), then the half-line pipj makes no sense and therefor does
not appear in any of the sets N(pi), ..., NW(pi).

As an illustration we use the polyline P depicted in Figure 10. Here, the local carrier
orders in the vertices are given by:

• LCO(P, p0) = 〈{}, {p0p1}, {p0p2, p0p4}, {}, {}, {}, {}, {}, {p0p3}〉

• LCO(P, p1) = 〈{}, {p1p2}, {}, {}, {p1p0}, {}, {}, {}, {p1p3, p1p4}〉

• LCO(P, p2) = 〈{}, {}, {p2p4}, {}, {}, {}, {p2p0}, {}, {p2p3}〉
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p0

p4

p1

p3

p2

Figure 10: A polyline P = 〈p0, p1, , p2, , p3, p4〉 with its carriers (in green) and its perpendic-
ulars (in red).

• LCO(P, p3) = 〈{}, {p3p4}, {p3p2}, {}, {p3p1, p3p0}, {}, {}, {}, {}〉

We now define the notion of local-carrier-order similarity of two polylines.

Definition 7 Let P = 〈p0, p1, , . . . , pN 〉 and Q = 〈q0, q1, , . . . , qN 〉 be polylines of equal
size. We say that P and Q are local-carrier-order similar if LCO(P, pi) = LCO(Q, qi) for all
i = 0, 1, ..., N − 1, that is, if LCO(P ) = LCO(Q) (always, modulo changing pi in qi). ut

5.2 An algebraic characterization of the local carrier order of a poly-
line

In this section, we give algebraic conditions to express the local carrier order of a polyline.
Hereto, it suffices to give for each vertex pi, with 0 ≤ i < N , in the polyline P = 〈p0, p1,
. . . , pN 〉 characterizations of the sets in the list

〈Eq(pi),N(pi),NE(pi),E(pi),SE(pi),S(pi),SW(pi),W(pi),NW(pi)〉.

The following property gives this characterization. The proof of this property uses the
same algebraic tools as the proof of Theorem 1 and we will skip the (straightforward) details.

We remark that, obviously, the algebraic characterisation of Eq(pi) is given by equalities
on the coordinates.

Proposition 10 Let P = 〈(x0, y0), (x1, y1), , . . . , (xN , yN )〉 be a polyline and let pi = (xi, yi),
for 0 ≤ i ≤ N . For 0 ≤ j < i or i < j < N , the following table gives algebraic conditions for
the halfline pipj to belong to X(pi) with X ∈ {N,NE,E,SE,S,SW,W,NW}:
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X = pipj ∈ X(pi) is equivalent to

N −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) = 0

NE −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

E −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) = 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

SE −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) < 0

S −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) = 0

SW −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) > 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

W −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) = 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

NW −((xj − xi) · (xi+1 − xi) + (yj − yi) · (yi+1 − yi)) < 0
and
−((xj − xi) · (yi+1 − yi)− (yj − yi) · (xi+1 − xi)) > 0

ut

5.3 A characterization of double-cross similarity of polylines in terms
of their local carrier order

In this section, we give a geometric characterization of double-cross similarity of polylines
in terms of their local carrier orders. The main theorem that we prove in this section is the
following.

Theorem 2 Let P and Q be polylines of equal size. Then, P and Q are double-cross similar
if and only if they are local-carrier-order similar. That is

DCM(P ) = DCM(Q) if and only if LCO(P ) = LCO(Q).

The two directions of this theorem are proven in Lemma 1 and Lemma 2 (or their imme-
diate Corollaries 1 and 2).

Lemma 1 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline. For i, j with 0 ≤ i ≤ j < N , we can derive
the value of the 4-tuple DCM(P )[i, j] = (C1 C2 C3 C4) from LCO(P, pi) and LCO(P, pj).

Proof. Let P = 〈p0, p1, , . . . , pN 〉 be a polyline of size N . If pj ∈ Eq(pi), then DCM(P )[i, j] =
(0 0 0 0). This is in particular true if i = j.

If pj 6∈ Eq(pi), then the following twelve easily observable facts show how to determine
C1, C2, C3 and C4 (for instance, by a detailed inspection of Figure 5).
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C1 is equivalent to

0 pipj ∈W(pi) ∪ E(pi)
+ pipj ∈ SE(pi) ∪ S(pi) ∪ SW(pi)
− pipj ∈ NW(pi) ∪ N(pi) ∪ NE(pi)

C2 is equivalent to

0 pjpi ∈W(pj) ∪ E(pj)
+ pjpi ∈ SE(pj) ∪ S(pj) ∪ SW(pj)
− pipj ∈ NW(pi) ∪ N(pi) ∪ NE(pi)

C3 is equivalent to

0 pipj ∈ N(pi) ∪ S(pi)
+ pipj ∈ SW(pi) ∪W(pi) ∪ NW(pi)
− pipj ∈ NE(pi) ∪ E(pi) ∪ SE(pi)

C4 is equivalent to

0 pipj ∈ N(pj) ∪ S(pj)
+ pipj ∈ SW(pj) ∪W(pj) ∪ NW(pj)
− pipj ∈ NE(pi) ∪ E(pi) ∪ SE(pi)

This concludes the proof. ut

This lemma has the following immediate corollary.

Corollary 1 Let P be a polyline in R2. Then, the matrix DCM(P ) can be reconstructed
from the local carrier order LCO(P ).

Proof. Properties 2 and 3 show that it is sufficient to know a double-cross matrix of a polyline
on and above its diagonal in order to complete it below its diagonal. And Lemma 1 shows
how the local carrier order gives the double-cross matrix on and above its diagonal. This
concludes the proof. ut

Now, we turn to the other implication of Theorem 2.

Lemma 2 Let P = 〈p0, p1, , . . . , pN 〉 be a polyline in R2 of size N . If 0 ≤ i < j < N , then
DCM(P )[i, j] contains enough information to derived to which set of LCO(P, pi) the half-lines
pipj belong and to which set of LCO(P, pj) the half-lines pjpi belong.

Proof. Let DCM(P )[i, j] = (C1 C2 C3 C4), for 0 ≤ i < j < N . Again, the following facts are
easily observable (for instance, by a detailed inspection of Figure 5).

C1 C3 is equivalent to

− − pipj ∈ NE(pi)
− 0 pipj ∈ N(pi)
− + pipj ∈ NW(pi)
0 − pipj ∈ E(pi)
0 0 pi = pi+1 is excluded
0 + pipj ∈W(pi)
+ − pipj ∈ SE(pi)
+ 0 pipj ∈ S(pi)
+ + pipj ∈ SW(pi)

C2 C4 is equivalent to

− − pjpi ∈ NE(pj)
− 0 pjpi ∈ N(pj)
− + pjpi ∈ NW(pj)
0 − pjpi ∈ E(pj)
0 0 pj = pj+1 is excluded
0 + pjpi ∈W(pj)
+ − pjpi ∈ SE(pj)
+ 0 pjpi ∈ S(pj)
+ + pjpi ∈ SW(pj)
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This concludes the proof. ut

This lemma has the following immediate corollary.

Corollary 2 Given DCM(P ), LCO(P, pi) can be constructed for all 0 ≤ i < N . ut

Combined, Corollaries 1 and 2 prove Theorem 2.

6 A characterization of the double-cross invariant trans-
formations of the plane

In this section, we identify the transformations5 of the plane R2 that leave the double-cross
matrix of all polylines invariant.

If α : R2 → R2 is a transformation and if p and q are points in R2, then we write α(−→pq)

for
−−−−−−→
α(p)α(q).
What do we mean by applying a transformation of the plane to a polyline? The following

definition says that we mean it to be the polyline formed by the transformed vertices.

Definition 8 Let α : R2 → R2 be a transformation. Let P = 〈(x0, y0), (x1, y1), , . . . , (xN ,
yN )〉 be a polyline. We define α(P ) to be the polyline 〈α(x0, y0), α(x1, y1), , . . . , α(xN , yN )〉.

ut

We remark that since a transformation α is a bijective function, the assumption in Defi-
nition 1, which says that no two consecutive vertices of a polyline are identical, will hold for
α(P ) if it holds for the polyline P .

We now define the notion of double-cross invariant transformation of the plane.

Definition 9 Let α : R2 → R2 be a transformation. Let P be a polyline. We say that α
leaves P invariant if P and α(P ) are double-cross similar, that is, if DCM(P ) = DCM(α(P )).

We say that α is a double-cross invariant transformation if it leaves all polylines invariant.
A group of transformations of R2 is double-cross invariant if all its members are double-cross
invariant transformations. ut

The main aim of this section is to prove the following theorem, which says that the
largest group of transformations that is double-cross invariant consists of the translations,
rotations and homotecies (or scalings)6 of the plane. The elements of this group are called
the similarities of R2.

Theorem 3 The largest group of transformations of R2, that is double-cross invariant con-
sist of the similarity transformations of the plane onto itself, that is, transformations of the
form

α : R2 → R2 :

(
x
y

)
7→ c ·

(
a −b
b a

)
·
(
x
y

)
+

(
d
e

)
,

where a, b, c, d, e ∈ R, c 6= 0 and a2 + b2 = 1. ut
5A transformation is a continuous, bijective mapping of the plane R2 onto itself.
6A homotecy of the plane is a transformation of the form αc : R2 → R2 : (x, y) 7→ c · (x, y), where c ∈ R

and c 6= 0.
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We remark that the condition a2 + b2 = 1 implies that a and b cannot be both zero. In
fact, we can see a as cosϕ and b as sinϕ, where ϕ is the angle of the rotation expressed by
the matrix.

We prove this theorem by proving three lemma’s. Lemma 3 proves soundness and
Lemma 5 proves completeness. Lemma 4 is a purely technical lemma.

Lemma 3 The translations, rotations and homotecies of the plane (that is, the transforma-
tions given in Theorem 1) are double-cross invariant transformations.

Proof. We consider the three types of transformations separately, since we can apply them
one after the other. In all cases, we use the algebraic characterization, given by Theorem 1.

1. Translations. We have already remarked that all the factors appearing in the algebraic
expressions, given by given by Theorem 1, that is (xj − xi), (xi+1 − xi), (yj − yi), (yi+1 − yi),
(xj+1 − xj) and (yj+1 − yj) are differences in x-coordinates or differences in y-coordinates.
A translation τ(d,e) : R2 → R2 : (x, y) 7→ (x + d, y + e), therefore leaves these differences
unaltered. For instance, (xj − xi) is transformed to (xj +d− (xi +d)), which is, of course, the
original value (xj − xi). None of the expressions given by Theorem 1 are therefore changed
and the double-cross condition remain the same.

2. Rotations. Let

ρ(a,b) : R2 → R2 :

(
x
y

)
7→
(

a −b
b a

)
·
(
x
y

)
,

with a2 + b2 = 1, be a rotation (that fixes the origin).
The expression for C1 is transformed to

(a · (xj − xi)− b · (yj − yi)) · (a · (xi+1 − xi)− b · (yi+1 − yi)) +

(b · (xj − xi) + a · (yj − yi))) · (b · (xi+1 − xi) + a · (yi+1 − yi)),

which simplifies to (a2 +b2) ·((xj−xi) ·(xi+1−xi)+(yj−yi) ·(yi+1−yi)), which is the original
polynomial since a2 + b2 = 1. For C2, C3 and C4, a similar straightforward computation
shows that the polynomials remain the same.

3. Homotecies. A homotecy αc : R2 → R2 : (x, y) 7→ c · (x, y), transforms the differences
(xj − xi), (xi+1 − xi), (yj − yi), (yi+1 − yi), (xj+1 − xj) and (yj+1 − yj) to (c · xj − c · xi),
(c · xi+1 − c · xi), (c · yj − c · yi), (c · yi+1 − c · yi), (c · xj+1 − c · xj) and (c · yj+1 − c · yj).
This means that the polynomials given by Theorem 1 are multiplied by c2, which is strictly
larger than zero, for c 6= 0. The signs of these polynomials are therefore unaltered. And the
double-cross value of the scaled polyline is the same as the original one. ut

Before we can turn to completeness, we need the following technical lemma.

Lemma 4 Let f : R→ R : t 7→ f(t) be a strictly monotone increasing function. If

f(
s+ t

2
) =

f(s) + f(t)

2

for any s, t ∈ R, then f(t) = (f(1)− f(0)) · t+ f(0).
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Proof. Suppose that f is a function as described and suppose that there is a t0 ∈ R such
that f(t0) 6= (f(1)− f(0)) · t0 + f(0). We remark that therefore t0 cannot be 0 or 1.

If f(−t0) = (f(1) − f(0)) · (−t0) + f(0), then it follows from 2 · f(0) = 2 · f( t0−t0
2 ) =

f(t0) + f(−t0) that also f(t0) = (f(1)− f(0)) · t0 + f(0). We may therefore assume 0 < t0.
If f( t0

2 ) = (f(1)− f(0)) · ( t0
2 ) + f(0), then it follows from 2 · f( 0+t0

2 ) = f(0) + f(t0) that
also f(t0) = (f(1)− f(0)) · t0 + f(0). We may therefore assume 0 < t0 < 1.
Claim. For any n ∈ N and any k, with 0 ≤ k ≤ 2n, we have that

f(
k

2n
) = (f(1)− f(0)) · k

2n
+ f(0).

We first prove this claim (by induction on n). For n = 0, and k = 0, 1, we respectively
have f(0) = (f(1)− f(0)) · 0 + f(0) and f(1) = (f(1)− f(0)) · 1 + f(0).

Assume now that the claim is true for n. We prove it holds for n + 1. We consider
k

2n+1 and distinguish between the cases, 0 ≤ k ≤ 2n and k = k′ + 2n with 0 < k′ ≤ 2n.

If 0 ≤ k ≤ 2n, then f( k
2n+1 ) = f( 1

2 (0 + k
2n )) = 1

2 (f(0) + f( k
2n )), which by the induction

hypothesis equals 1
2 (f(0) + (f(1)− f(0)) · k

2n + f(0)) or (f(1)− f(0)) · k
2n+1 + f(0).

If k = k′ + 2n with 0 < k′ ≤ 2n, then f( 2n+k′

2n+1 ) = f( 1
2 (1 + k′

2n )) = 1
2 (f(1) + f( k′

2n )),

which by the induction hypothesis equals 1
2 (f(1) + (f(1) − f(0)) · k′

2n + f(0)) which equals
1
2 (f(1)− f(0)) + (f(1)− f(0)) · k′

2n+1 + f(0) or (f(1)− f(0)) · k′+2n

2n+1 + f(0) which is (f(1)−
f(0)) · k

2n+1 + f(0). This concludes the proof of the claim. ut
To conclude the proof, let 0 < t0 < 1 and assume first that f(t0) > (f(1)−f(0))·t0+f(0).

This means that t0 <
f(t0)−f(0)
f(1)−f(0) . We remark that since f is assumed to be strictly monotone,

f(1)− f(0) 6= 0 and therefore the division is allowed. Choose k and n such that

k

2n
≤ t0 <

k + 1

2n
<
f(t0)− f(0)

f(1)− f(0)
,

with 0 ≤ k ≤ 2n. Then f(k+1
2n ) = (f(1) − f(0)) · k+1

2n + f(0) < f(t0), although t0 <
k+1
2n ,

which contradicts the fact that f is strictly monotone increasing.

If we assume f(t0) < (f(1)− f(0)) · t0 + f(0) on the other hand, we have f(t0)−f(0)
f(1)−f(0) < t0.

Choose k and n such that

f(t0)− f(0)

f(1)− f(0)
<

k

2n
< t0 ≤

k + 1

2n
,

with 0 ≤ k ≤ 2n. Then f( k
2n ) = (f(1) − f(0)) · k

2n + f(0) > f(t0), although k
2n < t0,

which contradicts the fact that f is strictly monotone increasing. In both cases, we obtain a
contradiction and this concludes the proof. ut

The following lemma proves completeness.

Lemma 5 The similarity transformations of the plane (given in Theorem 1) are the only
double-cross invariant transformations.

Proof. Let α : R2 → R2 be a double-cross invariant transformation.

(1) We consider polylines P = 〈p0, p1, p2〉, where p0, p1 and p2 are collinear points with
p1 between p0 and p2. By the assumption in Definition 1, p1 should be strictly between p0
and p2 The only relevant entry in the double-cross matrix of this polyline is DC(−−→p0p1,

−−→p1p2)
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p1

p2

p0

α

α(p2)α(p1)α(p1)

Figure 11: A collinearity and betweenness-preserving transformation of the plane.

which is (− + 0 0). In α(P ), DC(α(−−→p0p1), α(−−→p1p2)) should also be (− + 0 0). This implies
that α(p0), α(p1) and α(p2) should also be collinear, with α(p1) (strictly) between α(p0) and
α(p2). This means that α preserves collinearity and betweenness.

(2) We consider polylines P = 〈p0, p1, p2〉, where ∠(−−→p1p0,
−−→p1p2) = 90◦, that is, the polyline

takes a right turn at p1. The only relevant entry in the double-cross matrix of this polyline is
again DC(−−→p0p1,

−−→p1p2) which is now (− 0 0 −). In α(P ), DC(α(−−→p0p1), α(−−→p1p2)) should also be
(− 0 0 −). This means that α is a right-turn-preserving transformation. This is illustrated
in Figure 12. Similarly, α is a left-turn-preserving transformation.

p1 p2

p0

α(p1)

α(p0)

α

α(p2)

Figure 12: A right-turn-preserving transformation of the plane.

(3) We consider the polyline P = 〈p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, , p12〉, with p0 =
p4 = p7 =, p12(0, 0), p1 = p5 = (0, 1), p2 = p10 = (1, 1), p3 = p8 = (1, 0) and p6 = p9 =
( 1
2 ,

1
2 ), depicted in Figure 13. This polyline forms a square with its two diagonals after

making six 90◦ right-turns and two 90◦ left-turns . It is also closed in the sense that its start
and end vertex are equal. The transformation α, which according to (2) preserves right and
left turns, therefore has to map P again to a square with its diagonals. This means α is a
square-preserving transformation. In particular, α preserves parallel line segments. Also, p6,
which is the midpoint between p0 and p2 is mapped to α(p6), which should be the midpoint
between α(p0) and α(p2). This means α is a midpoint-preserving transformation.

Suppose α(0, 0) = (a, b). If τ(−a,−b) is the translation (x, y) 7→ (x − a, y − b), then
τ(−a,−b) ◦ α(0, 0) = (0, 0). Suppose τ(−a,−b) ◦ α(1, 0) = (c, d). Let ρ(c,d) be the rotation

with (0, 0) as center that brings (c, d) to the positive x-axis, that is, to (
√
c2 + d2, 0). We

remark that (c, d) cannot be the origin since α is assumed to be a bijective function. So, also
τ(−a,−b) ◦ α is bijective. Furthermore, let σ√c2+d2 be the scaling (x, y) 7→ 1√

c2+d2
(x, y) and

let
β = σ√c2+d2 ◦ ρ(c,d) ◦ τ(−a,−b) ◦ α.
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p2 = p10

p3 = p8

p1 = p5 = p11

p0 = p4 =
p7 = p12

p6 = p9

Figure 13: A polyline that is a square with its two diagonals. The six 90◦ right-turns are
indicated in bold.

Then we have that β(0, 0) = (0, 0) and β(1, 0) = (1, 0).
Since α is a double-cross invariant transformation, by assumption, and since σ√c2+d2 ,

ρ(c,d) and τ(−a,−b) are double-cross invariant transformations by Lemma 3, also β is a double-
cross invariant transformation. And β also inherits from α the properties of preserving
betweenness, collinearity, right- and left turns, squares, parallel line segments and midpoints.
Because β preserves squares, we also have β(0, 1) = (0, 1).

We now claim the following.

Claim: The transformation β is the identity.

The proof of this claim finishes the proof. Indeed, then we have

α = σ−1√
c2+d2

◦ ρ−1(c,d) ◦ τ−1(−a,−b),

which is of the required form.

Proof of the claim: First, we show that β is the identity on the x-axis and next we do the
same for all lines perpendicular to the x-axis. Hereto, we consider the function

βx : R→ R : x 7→ βx(x) := πx(β(x, 0)),

where πx is the projection on the first component, that is, πx(x, y) := x. Since β(0, 0) = (0, 0)
and β(1, 0) = (1, 0) and β preserves collinearity, β maps the x-axis onto the x-axis and we
have βx(0) = 0 and βx(1) = 1. Furthermore, since β and hence βx preserves betweenness, βx
is strictly monotone increasing. Indeed, let s, t ∈ R with s < t. With respect to 0 and 1, we
can consider the twelve possible locations of s and t: s < t < 0; s < t = 0 < 1; s < 0 < t < 1;
s < 0 < t = 1; s < 0 < 1 < t; s = 0 < t < 1; s = 0 < t = 1; s = 0 < 1 < t; 0 < s < t = 1;
0 < s < 1 < t; 0 < s = 1 < t; and 0 < 1 < s < t. In all cases, except s = 0 < t = 1, we
have three points. So, here we can use the fact that β preserves betweenness to show that
βx(s) < βx(t). In the case s = 0 < t = 1, we have βx(s) = βx(0) = 0 < 1 = βx(1) = βx(t).
Finally, since β preserves midpoints, also for βx, we have

βx(
s+ t

2
) =

βx(s) + βx(t)

2
,

for all s, t ∈ R. All the conditions to apply Lemma 4 are therefore fulfilled. And we get
βx(x) = (βx(1)− βx(0)) · x+ βx(0) = (1− 0) · x+ 0 = x.

Now, we fix some x0 ∈ R and consider the function

βx0,y : R→ R : y 7→ βx0,y(y) := πy(β(x0, y)),
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where πy(x, y) := y. Since β preserves parallel line segments, βx0,y maps the line with equation
x = x0 onto itself (since it maps the y-axis to itself). Since β also preserves the rectangle
given by the polyline

P = 〈(0, 0), (0, 1), (1, 1), (x0, 1), (x0, 0), (1, 0), (0, 0), (0, 1)〉

(for x0 = 1, we can omit (x0, 1) and (x0, 0) from the list) onto itself, we have again have
βx0,y(0) = 0 and βx0,y(1) = 1. The function βx0,y also inherits from β the property of
preserving midpoints and is strictly monotonic increasing on the line x = x0. So, again we
can apply Lemma 4 to show that βx0,y is the identity.

Since β(x, y) = (βx(x), βx,y(y)), we obtain that β is the identity transformation. This
finishes the proof of the claim and also of the lemma. ut

7 Conclusion

We have studied the double-cross matrix descriptions of polylines in the two-dimensional
plane from an algebraic and geometrical point of view. We have first given an algebraic
characterization of the double-cross matrix of a polyline. This algebraic characterisation
allowed us to prove some basic properties of double-cross matrices. We have give a geometric
characterization of double-cross similarity of two polylines by means of the notion of the local
carrier orders of polylines. To end, we identify the transformations of the plane that leave
the double-cross matrix of all polylines in the two-dimensional plane invariant.

Research on double-cross matrices gives rise to many questions of which we name a few
here. Firstly, variants of double crosses can be imagined, for instance, to include the temporal
dimension of moving object data. Another variant would be to rotate the double cross by
45◦. This would make notions of straight ahead, back, right and left more relative. We
can also envisage double crosses with a finer structure. Thay may have 8, 16 or more lines
determining the “crosses”.

Our algebraic characterization of the double-cross matrix of a polyline, also raises the
question of the realisability of double-cross matrices. This question adds up to the following:
given an N × N matrix of 4-tuples over the set {−, 0,+}, decide if this is the double-cross
matrix of a polyline. A matrix where (0 0 0 0) doesn’t appear on the diagonal, for instance,
cannot be the double-cross matrix of a polyline. This decision problem leads to non-trivial
problems in computational algebraic geometry.
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