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Chapter 1
Introduction

In medical and biomedical areas, binary and binomial, counts, and times to event

outcomes are very common. The generalized linear model family (Agresti, 2002;

Nelder and Wedderburn, 1972) offers, among others, a suitable modeling framework.

When such data are collected longitudinally from a given subject repeatedly overtime,

this results in clustering of the observations within subjects.

Suppose that rij is a longitudinal binary outcome for subject i at the jth time

point, such that each subject has ni measurements. The sum Yi =
∑ni

j=1 rij follow a

binomial distribution. It is well known that, while i.i.d Bernoulli do not contradict

the prescribed mean-variance relation, i.i.d. binomial data can exhibit extra variabil-

ity beyond the binomial model, leading to so-called overdispersion in the latter, in

addition to the correlation emanating from the repeated measures nature. In the past,

overdispersion and correlation have been handled separately. To deal with overdis-

persion, the beta-binomial model is a popular and analytically tractable alternative

to the binomial model, which accounts for the overdispersion not accommodated in

the binomial model, thereby allowing for a better fit to the observed data (Hinde

and Demétrio, 1998a; Hinde and Demétrio, 1998b). On the other hand, correlation is

accommodated by making use of generalized linear mixed models (Engel and Keen,

1992; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993), which combine the

general exponential family models with normally distributed random effects. These

are attractive for repeated measurements. Molenberghs et al. (2010) formulated a

model for correlated and overdispered repeated binary data using Gaussian and beta

random effects simultaneously, which they termed the combined model .

In longitudinal studies, count data are encountered in a variety of fields, including

1
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biological, public health, medical, and social studies. For example, in entomological

research, as we focus on in this thesis, mosquito counts are collected repeatedly in

time to study the abundance and species composition of the vector over time so

as to regulate and monitor the status of the ecosystem and design an appropriate

intervention strategy, whenever necessary. However, statistical modeling of such data

poses several challenges. This is because repeatedly measured insect counts often

exhibit three features: first, correlated observations per subject, which results from the

clustering of measurements within subjects; second, the variance exceeds the mean,

leading to so-called overdispersion; and third, occurrence of an excessive number of

zeros beyond what can be expected based on the commonly used count distributions.

For the researcher or statistician, who wants to model data with these forms of

complexity, different options are not always straight-forward to choose from. Indeed,

there already exists a number of possibilities, e.g., non-Gaussian clustered data, such

as counts, are frequently modeled by making use of generalized linear mixed-effects

models, which extend the broad class of generalized linear models by adding a subject-

specific random effect, often of a Gaussian type, to capture the correlation between

the repeated measurements per subject (Engel and Keen, 1992; Breslow and Clayton,

1993; Wolfinger and O’Connell, 1993; Molenberghs and Verbeke, 2005).

On the other hand, overdispersion is dealt with by including a gamma random

effect in the Poisson model, leading to the negative-binomial model (McCullagh and

Nelder, 1989). In the combined model framework of Molenberghs et al. (2010) a

Gaussian and a gamma random effect are employed at once to model both correlation

and overdispersion.

Also, to account for the excessive proportion of zeros, either the hurdle or zero-

inflated model are often used. The former is a two-part conditional model, using a

zero mass and a truncated-at-zero count distribution, while the latter is a way of

modeling excessive zeros by mixing a discrete point mass and a count distribution.

Mullahy (1986) studied the hurdle model for univariate count data. An extension

for longitudinal or clustered count data with excessive zeros was considered by Min

and Agresti (2005). A separate strand of literature is devoted to zero-inflated model.

Lambert (1992) and Greene (1994) studied zero-inflation for cross-sectional count

data, and the multi-level extension was the focus of Lee et al. (2006). Min and

Agresti (2005) and Lee et al. (2006) introduced two separate and possibly correlated

subject-specific random effects, one in the count and the other in the zero-inflation

part.

Many longitudinal studies involve collecting data on more than one outcome from

a given subject repeatedly in time. These outcomes include, but are not limited
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to continuous, count, and binary data. For example, in HIV studies, seropositive

patients are monitored until they develop AIDS or die, and their immune system is

regularly measured using markers such as the CD4 lymphocyte count, the estimated

viral load, or whether viral load is below detectable limits. In the case of the Jimma

Infant Growth study, described in the next section, a continuous outcome, such as

body weight is measured repeatedly from each infant. At the same time, the health

condition of a child was also assessed to see if the child has experienced a specific

disease, like diarrhea, whereby the number of days of illness, as a count outcome, was

recorded so as to measure the magnitude of the disease burden.

Extensive literature is available on the analysis of each longitudinal outcome sep-

arately. For a Gaussian longitudinal response, the linear mixed model is very popular

(Laird and Ware, 1982; Verbeke and Molenberghs, 2000). Subject-level random-

effects, that are of a Gaussian type, are introduced in such a model to capture the

within-subject correlation.

Many applications demand modeling of two or more longitudinal outcomes jointly

to get better insight into their joint evolution so as to address certain real world

problems. A lot of literature is available on joint modeling of a longitudinal outcome

and time to an event (Tsiatis and Davidian, 2004). Horrocks and van den Heuvel

(2009) consider the problem of predicting the achievement of successful pregnancy,

in a population of women undergoing treatment for infertility, based on longitudinal

measurements of adhesiveness. For this purpose, they used a joint model, consisting

of a linear mixed-effects sub model for the longitudinal adhesion outcome and a gen-

eralized linear sub model for the primary binary endpoint. Molenberghs and Verbeke

(2005) discuss a number of techniques that jointly model continuous and discrete

outcomes.

Joint modeling of longitudinal continuous and count sequences, the latter possibly

overdispersed and zero-inflated, requires to assemble aspects coming from each one of

them into one single model. These include the correlation from the continuous, as well

as the correlation, overdispersion, and zero-inflation features from the count sequence.

The model is relatively complex because it combines various features; nevertheless, it

can be implemented in standard software, such as the SAS procedure NLMIXED.

For non-Gaussian outcomes, such as counts, random-effect models provide pa-

rameter estimates having a subject-specific interpretation (Molenberghs and Verbeke,

2005). Heagerty (1999) and Heagerty and Zeger (2000) proposed a marginalized

multilevel model (MMM), and simultaneously specified a marginal mean and a con-

ditional mean by making use of the so called connector function, yielding marginally

interpretable covariate effects. Molenberghs et al. (2010) derived marginal expres-
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sions of the combined model by integrating the hierarchically specified model over the

random effects for a variety of settings, including count data. Such partial marginal-

ization proceeds by integrating first with the overdispersion random effects, leaving

the normal random effects untouched. The so resulting marginal means may not pro-

vide readily interpretable parameter estimates for covariate effects. Hence, Iddi and

Molenberghs (2012) merged the concepts of the combined model of Molenberghs et al.

(2010) and marginalized multilevel model (MMM) of Heagerty (1999) and proposed a

corresponding marginal combined model, so that the resulting estimates have a direct

marginal inferences. Lee et al. (2011) considered marginalized hurdle model as an

extension of Heagerty (1999) for clustered count data with excessive zeros.

In Chapter 2, we briefly describe the datasets that have been used in this work.

This will be followed by a review of basic terminology, concepts and the standard

models for analysis of binary and count data, as outlined in Chapter 3.

Clustered binary data is subject to overdispersion in addition to the correlation

due to the data hierarchy. The combined modeling approach of Molenberghs et al.

(2010) for repeated binary data and its implementation in a Bayesian setting, as an

alternative estimation technique, is studied in Chapter 4. Two longitudinal binary

data sets, collected in south western Ethiopia: the Jimma infant growth study, where

the child’s early growth is studied, and the Jimma longitudinal family survey of youth

where the adolescent’s school attendance is studied over time, are considered. In ad-

dition to the combined model, the commonly used methods for binary and binomial

data, such as the simple logistic, which accounts neither for the overdispersion nor the

correlation, the beta-binomial model, and the logistic-normal model, which accom-

modate only for the overdispesion, and correlation, respectively, are also considered

for comparison purposes.

In Chapter 5, an extension of the zero-inflation modeling framework to deal

also with zero-inflation, in addition to overdispersion and correlation is presented and

applied. Section 5.4 deals with a simulation study to investigate the importance of

accounting for clustering, overdispersion, and a preponderance of zero counts.

In Chapter 6, we will employ the combined model idea of Molenberghs et al.

(2010) and marginalized multilevel model Heagerty (1999) with concepts of hurdle

or zero-inflated models, and present a unified marginalized hurdle combined model

as well as a marginalized zero-inflated combined model, as two alternative modeling

strategies for overdispersed and correlated count data with excessive zeros. The former

was also studied by Lee et al. (2011), where the logit link function was used for

the zero-inflation. We considered both logit and probit link functions, whereby the

latter leads to closed-form expressions. In addition, instead of using only one of
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the logit or the probit, we make use of the connection between them (Griswold and

Zeger, 2004), and specified a logit link for the marginal model, and a probit for the

conditional model, so that the odds ratio interpretation is still retained, while taking

computational advantage of the probit link.

Joint modeling of longitudinal continuous and count sequences, the latter possibly

overdispersed and zero-inflated, requires to assemble aspects coming from each one of

them in one single model. These include the correlation from the continuous, as well

as the correlation, overdispersion, and zero-inflation features from the count sequence,

which will be the topic of Chapter 7. In the case of the Jimma Infant Growth study,

described in the next section, a continuous outcome, such as body weight is measured

repeatedly from each infant is correlated. At the same time, the health condition of

a child was also assessed to see if the child has experienced a specific disease, like

diarrhea, whereby the number of days of illness, as a count outcome, were recorded so

as to measure the maginitude of the disease burden. These two outcomes are jointly

modeled and studied. Further, a simulation study is also reported in Section 7.5.

Finally, discussions and concluding remarks are given in Chapter 8.





Chapter 2
Motivating Examples

In this chapter, the data sets that will be used as key examples throughout this thesis

are introduced. In Section 2.1, we introduce the Jimma Infant Growth study, con-

ducted to investigate early growth characteristics of children, to establish risk factors

affecting infant survival, and to study socio-economic, maternal, and infant-rearing

factors that contribute most to the child’s early survival. A longitudinal entomolog-

ical study that aims to investigate the abundance and distribution of An. mosquito,

around a hydroelectric dam, is introduced in Section 2.2. Section 2.3 introduces the

Jimma Longitudinal Family Survey of Youth, where school attendance, involvement

in work, sexual behaviour of adolescents, among others are studied. The epileptic data

set, obtained from a randomized, double-blind, parallel group multi-center study for

the comparison of placebo with a new anti-epileptic drug (AED), in combination with

one or two other AED’s is introduced in Section 2.4.

2.1 The Jimma Infant Growth Study

The Jimma Infant Survival Differential Longitudinal Growth Study is an Ethiopian

study, set up to establish risk factors affecting infant survival and to investigate socio-

economic, maternal, and infant-rearing factors that contribute most to the child’s

early survival. Children born in Jimma, Keffa and Illubabor, located in Southwestern

Ethiopia were examined for their first year growth characteristics. At baseline, there

were a total of 7969 infants enrolled in the study, whereby 4317, 1494, and 2158 were

from rural, urban, and semi-urban areas, respectively. The children were followed-up

every two months, until the age of one year. Of special interest in this thesis is the

7
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Table 2.1: Jimma Infant Growth Study. Percentage of overweight male and female infants

by place of residence for each of the seven follow-up times.

rural urban semi-urban

Time female male female male female male

0 11.5 12.2 16.5 14.5 20.3 21.5

2 12.1 12.7 13.4 13.5 20.6 22.4

4 12.1 12.4 12.7 16.4 22.5 20.2

6 13.4 12.3 13.8 14.9 18.3 21.0

8 12.7 11.8 14.9 19.5 20.2 23.1

10 13.4 11.4 14.9 14.9 19.5 22.6

12 13.8 14.1 16.9 16.0 17.6 18.2

risk factor for overweight in children. Overweight, among infants, is associated with

various risk factors.

It is of particular interest to identify these risk factors in early life through weight

and height measurements, which helps in prevention and treatment of overweight and

obesity to reduce incidence of several adulthood diseases (Freedman et al., 1999). This

outcome is defined by dichotomization of the Body Mass Index (BMI), with a BMI

over the 85th percentile for his or her age referring to overweight. The 85th percentile

for age- and sex-specific BMI classification of overweight is used based on Center for

Disease Control (CDC) recommendation (Mei et al., 2002). The question of interest

is whether the percentage of overweight infants changes over time, and whether the

evolution differs for gender, place of residence (rural, urban and semi-urban), as well

as breast feeding behavior. Table 2.1 gives a summary of the percentage of overweight

infants as a function of gender, location and follow-up time (age). The second question

of interest in the survey is to assess the diarrheal disease burden. It is investigated

whether the number of days of diarrheal illness in the two months period prior to each

visit, changes over time (i.e., age), whether the evolution differs for gender (male or

female), place of residence (urban or rural), medical care (medical help given or not)

and breast feeding behavior (breast or artificial feeding). Of the total 49,000 observa-

tions, only about 8,000 (i.e., roughly 85%), observations are non-zero, indicating that

there is a non-negligible dominance of zero counts (Table 2.2).
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Table 2.2: Jimma Infant Growth Study. The mean number of days of illness and standard

deviation at each of the seven follow-up times.

Time Mean Std. Dev.

0 0.01 0.19

2 0.91 4.24

4 1.28 4.62

6 1.56 4.87

8 2.14 5.93

10 2.63 6.66

12 2.67 6.95

Figure 2.1 shows profiles of number of days of illness for 30 randomly selected

subjects. We observe that the profiles touch the zero-axis many times. In addition,

the observed values as well as the between subject variation seems to be higher at

later ages. The average evolution, as displayed in Figure 2.2, indicates an increase in

number of days of illness with increasing age.

Thirdly, two outcome variables, namely (1) body weight (kg), measured longitu-

dinally from each infant and (2) number of days of diarrheal illness recorded at each

visit to assess the diarrheal disease burden will be studied jointly (Table 2.3).

Figure 2.3 shows subject specific profiles of body weight for randomly selected

infants, implying considerable between and within subjects variability. In addition,

the average profiles, as shown in Figure 2.4, suggest that average weight increases

with increasing age, as expected. It is then useful to assess the connection between

body weight and days of illness, by studying their association. This can be addressed

in the context of so-called Joint models.

2.2 Anopheles Mosquito Data

A longitudinal entomological study was conducted between September 2007 to 2009

(for three years) around the Gilgel-Gibe hydroelectric Power Dam, south-western

Ethiopia, to investigate if the dam has influenced abundance and species composition

of An. mosquito. For this purpose, all villages surrounding the dam (within a ten

km radius) were classified into two (at risk and control) according to their distance

from the dam i.e., villages within three kilometers from the dam identified as test (at
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Figure 2.1: Jimma Infant Growth Study. Selected profiles of number of days of illness per

month per child.

Table 2.3: Jimma Infant Growth Study. Mean and standard deviation of weight and days

of illness at each of the seven follow-up times.

Age Mean weight (s.d.) Mean days of illness (s.d.)

0 3.11(0.52) 0.01(0.19)

2 4.88(0.78) 0.91(4.24)

4 5.97(0.99) 1.28(4.62)

6 6.67(1.12) 1.56(4.87)

8 7.13(1.21) 2.14(5.93)

10 7.50(1.26) 2.63(6.66)

12 7.84(1.28) 2.67(6.95)

risk) villages and the remaining villages, five to ten kilometers away from the dam
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Figure 2.2: Jimma Infant Growth Study. Average number of days of illness per month per

child.

were identified as controls and from each of these two groups of villages, 8 villages

were selected based on various comparability factors for the study. Distance from the

dam being the major attribute for considering a village as either at risk or control,

the villages were intended to be similar in every other characteristics, such as similar

eco-topography, access to health facilities, without major impounded water nearby

and homogeneous with respect to socio-cultural and daily economic activities. The

study area and setting is described in Yewhalaw et al. (2010).

2.2.1 Indoor Resting Collection (IRC)

One aspect of the research consists of the collection of mosquito at each month for

the three study years using indoor resting collection (IRC). Ten houses were selected

randomly from each selected at risk and control village, and then one room was

selected in each house. All collected mosquitoes were counted and sorted based on
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Figure 2.3: Jimma Infant Growth Study. Individual profiles of weight versus age in months.

their species type. Of the total nine mosquito species identified, An. gambiae is the

most dominant one which constitutes above 95% of the total counts for every year in

each village type and therefore is the species we focus on here. Table 2.4 shows the

mean, standard deviation and proportion of zero counts among at risk and control

villages over the three years. The larger proportion of zero observations and the

relatively higher variances compared to the mean, imply that the data are likely to

be subject to zero-inflation and overdispersion, in addition to the correlation due to

the repeated measures. In this work, it is investigated whether the mean An. gambiae

count changes over time (months), differ among village type (at risk vs control), and

season (wet vs dry).

The individual profiles for randomly selected houses are displayed in Figure 2.5,

and the mean evolution, per village type, are plotted in Figure 2.6. The average

profiles indicate that at risk villages are consistently higher than the control villages.
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Figure 2.4: Jimma Infant Growth Study. Average weight of infants versus age in months.

Table 2.4: IRC Data. Mean (s.d), and percentage of zeros of An. gambiae by village type

and year of collection.

control at risk

Year mean(s.d) % of zeros mean(s.d) % of zeros

One 1.48(5.39) 80.2 7.00(16.24) 66.3

Two 2.29(8.50) 80.7 9.20(24.85) 65.5

Three 1.03(4.14) 88.4 4.57(11.28) 74.8

Overall 1.62(6.43) 83.6 6.92(18.76) 69.2

Of course, at this point it is not yet possible to decide on the significance of this

difference. Both the individual profiles and average evolution suggest an oscillatory

pattern with the observed values attaining higher values at wet seasons and lower
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Figure 2.5: IRC Data. Selected profiles of An. gambaie counts per house per month.

values at dry seasons, which augment the result in Table 2.4.

2.2.2 CDC Light Trap Catches (CDC)

The alternative approach used to collect An. mosquito was the CDC light trap. Two

houses were selected from each at risk and control villages included in the study

based on their relative location in the village. One house located at the center of the

village, whereas the second located at the periphery. The two houses served as sentinel

stations for the study involving light trap catches (LTCs) using CDC light traps.

Subject specific profiles for randomly selected houses are displayed in Figure 2.7, and

the mean evolution, per village type, are plotted in Figure 2.8, conveying similar

pattern with the IRC data except that the mean profiles in the CDC suggest that

year one has a higher value, while it is year two in the case of the IRC, though it is

not possible to generalize about the significance of time effect in both cases at this
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Figure 2.6: IRC Data. Average number of An. gambaie counts per house per month.

stage.

The mean, standard deviation and proportion of zero counts among at risk and

control villages over the three years are shown in Table 2.5. These results also suggest

presence of excessive zeros and a higher sample variance relative to the mean.

2.3 Jimma Longitudinal Family Survey of Youth

The Jimma Longitudinal Family Survey of Youth (JLFSY) is another Ethiopian study

where data were collected from households. The study began in 2005, and was re-

peated in 2007. More than 90% of the study subjects present at baseline were visited

and willing to respond in the second round. The study population is representative

of the relatively large town of Jimma, the small towns of Yebu, Serbo, and Sheki, and

nearby rural areas. The sample includes 3700 households as well as 700 adolescents.

The outcome of interest is the adolescents’ current school attendance coded as 0 (not
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Figure 2.7: CDC Data. Selected profiles of An. gambaie counts per house per month.

Table 2.5: CDC Data. Mean (s.d), and percentage of zeros of An. gambiae by village type

and year of collection.

control at risk

Year mean(s.d) % of zeros mean(s.d) % of zeros

One 1.59(4.01) 68.8 5.05(12.69) 64.2

Two 0.56(1.88) 81.8 2.10(6.20) 66.5

Three 0.93(3.08) 72.7 1.87(3.99) 58.0

Overall 0.94(2.96) 75.3 2.67(7.65) 62.7

currently attending) or 1 (currently attending). Current school attendance was 90.2%

and 91.1% in the first round survey and 93.5% and 92.8% in the second round for male

and female adolescents, respectively. The research question is to examine whether or
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Figure 2.8: CDC Data. Average number of An. gambaie counts per house per month.

not the percentage of school attendance depends on adolescents involvement in work

to support themselves or their families to earn money, whether they are living in

urban towns or rural areas, as well as on gender and age (Belachew et al., 2011).

Another outcome studied in the survey is the adolescents’ average number of days

of work per week measured repeatedly three times. Mean (s.d.) for year one, year

two, and year three are 1.12(2.12), 0.95(2.01) and 1.15(2.23), respectively. The data

exhibit higher proportion of zeros: year one (72.4%), year two (77.9%), and year three

(76.2%). The research question is to examine whether or not the average number of

days of work changes over time, and depends on adolescents age and sex.

2.4 A Clinical Trial in Epileptic Patients

The epileptic data set considered here is obtained from a randomized, double-blind,

parallel group multi-center study for the comparison of placebo with a new anti-
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epileptic drug (AED), in combination with one or two other AED’s. The study is

described in full detail in Faught et al. (1996) and Molenberghs and Verbeke (2005).

In the study, 45 patients were randomized to the placebo group and 44 to the active

(new) treatment group. The number of epileptic seizures were measured on a weekly

basis during a 16 weeks period. After this period, patients were entered into a long-

term open-extension study, which contains follow-up measurements of patients up to

27 weeks. The key research question is whether or not the additional new treatment

reduces the number of epileptic seizures.

The average and median evolutions are shown in Figure 2.9 and Figure 2.10,

respectively, suggesting presence of extreme values. The unstable behaviour is also

the result of the very little observations available at some of the time-points, especially

past week 20 (Molenberghs and Verbeke, 2005). Zero observations account for 33%

of the data, with sample average and standard deviation 3.18 and 6.14, respectively.

Thus, there is a large proportion of zeros, as well as evidence of overdispersion and

correlation stemming from the longitudinal aspect in this data set.
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Figure 2.9: Epilepsy Data. Average number of epileptic seizures versus time.
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Figure 2.10: Epilepsy Data. Median number of epileptic seizures versus time.



Chapter 3
Basic Concepts and Models

In this chapter, we review the basic and frequently used models for continuous, bi-

nary and count data. First, we will present briefly the generalized linear models in

Section 3.1, focusing on count and binary data, which is followed by overdispersion

models, in Section 3.2. Linear mixed models (LMM) and generalized linear mixed

models (GLMM) will be the topics of Section 3.3 and Section 3.4, respectively. Sec-

tion 3.5 is devoted to models combining overdispersion and correlation. Marginalizing

random effect models in modeling hierarchical count data will presented in Section 3.6.

Section 3.7 deals with the commonly used models to adjust for an excess of zeros in

count data analysis. In Section 3.8, generalized estimating equations (GEE) will be

reviewed. Finally, in Section 3.9, a Bayesian implementation of GLMM of Section 3.4

is shown briefly.

3.1 Generalized Linear Models

Generalized linear models (GLMs) are often employed for modeling a univariate non-

Gaussian data extending ordinary regression models. GLMs include a wider range

of statistical models that relate outcome variables such as, counts, binary, rates and

ratios, etc to a linear combination of predictor variables (McCullagh and Nelder,

1989; Agresti, 2002; Molenberghs and Verbeke, 2005). Three components specify a

generalized linear model: A random component identifies a vector of observations of

Y and its probability distribution; a systematic component is a specification for the

vector µ in terms of a vector of p fixed unknown parameters ξ; and a link function

specifies the function of E(Y ) that the model equates to the systematic component.

21
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A family of probability density functions is called an exponential family distribu-

tion if it can be expressed as

f(y) ≡ f(y|η, φ) = exp
{
φ−1[yη − ψ(η)] + c(y, φ)

}
, (3.1)

where η and φ are unknown parameters, and ψ(·) and c(·, ·) are known functions. η

and φ are termed ‘natural parameter’ (or ‘canonical parameter’) and ‘scale parameter,’

respectively.

3.1.1 Binary Data

Suppose that for each value of the response Y , there are two possible values denoted

by 0 and 1. We may write pr(Yi = 0) = 1 − π; pr(Yi = 1) = π for ‘failure’ and

‘success’ probabilities, respectively.

For binary responses, the model of interest is: Y ∼ Bernoulli(π). We want to

explain variability between outcome values based on covariate values with density

function

f(y|η, φ) = πy(1− π)1−y = exp

[
y ln

(
π

1− π

)
+ ln(1 − π)

]
. (3.2)

The mean is given by µ = π and the variance, var(µ) = π(1 − π) (Nelder and Wed-

derburn, 1972).

When collecting a set of data, let Y1, . . . , YN be a set of independent binary out-

comes, and let x1, . . . ,xN represent the corresponding p-dimensional vectors of co-

variate values. With a logit link function, ln
(

πi

1−πi

)
= xi

′ξ is the logistic regression

model with ξ a vector of unknown regression coefficients.

Choices of link functions, g(πi), with g(πi) = ηi = xi
′ξ are available. The com-

monly used functions are:

• the logit or logistic function

g1(π) = ln

(
π

1− π

)
;

• the probit or inverse Normal

g2(π) = Φ−1(π);

• the complementary log-log function

g3(π) = ln{− ln(1− π)}.
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For N independent observations, Y1, . . . , YN , let Li = log f(yi|ηi, φ) denote the

contribution of yi to the log likelihood. Hence, the log-likelihood function L is

L(ξ) =

N∑

i=1

Li =

N∑

i=1

log f(yi|ηi, φ),

where f(yi|ηi, φ) is as defined by (3.2) for observation i. A general-purpose iterative

methods, such as Newton-Raphson or Fisher Scoring, can be applied to obtain the

maximum likelihood estimates of unknown model parameters (Agresti, 2002; McCul-

lagh and Nelder, 1989).

3.1.2 Count Data

Count data are very common in many applications. The number of days of illness

data and An. mosquito counts, described in Sections 2.1 and 2.2, respectively, are

examples of such data. The Poisson distribution belongs to the exponential family

and is the simplest and commonly used distribution for analysis of count data. For

count responses, the model of interest is: Y ∼ Poisson(λ). We want to explain

variability between outcome values based on covariate values with density function

f(y) =
e−λλy

y!
. (3.3)

A key feature of the Poisson distribution is that its mean equals its variance, i.e., the

mean is given by µ = λ and the variance, var(µ) = λ, scale parameter φ = 1.

Suppose Y1, . . . , YN is a set of independent count outcomes, and let x1, . . . ,xN

represent the corresponding p-dimensional vectors of covariate values. The Poisson

regression model with ξ a vector of p fixed, unknown regression coefficients is given

by log(λi) = xi
′ξ.

For observation yi the contribution to the log-likelihood Li is yi logµi − µi; that

is for a vector of independent observations Y1, . . . , YN , the log-likelihood function L

becomes (McCullagh and Nelder, 1989)

L(ξ) =

N∑

i=1

Li =

N∑

i=1

(yi logµi − µi).

Here also, one can apply the Newton-Raphson or Fisher Scoring to obtain the max-

imum likelihood estimates of unknown model parameters (Agresti, 2002; McCullagh

and Nelder, 1989).



24 Chapter 3. Basic Concepts and Models

3.2 Overdispersion Models

In practice, many types of outcomes using standard models within the GLMs for their

analysis, such as binomial and count observations, often exhibit variability exceeding

what is predicted by binomial or Poisson (Molenberghs et al., 2010).

The standard Bernoulli model assumes that the mean and variance depend on a

single parameter. Though a set of i.i.d. Bernoulli data cannot contradict the mean-

variance relationship, it may not hold true for data having a hierarchical structure of

the form zi successes out of ni trials, such as in cluster and longitudinal studies. To

illustrate this, let us consider an example given in Agresti (2002). Suppose that in

an experiment pregnant mice are exposed to a toxin and then the number of fetuses

in each mouse’s litter that show signs of malformations are observed after a week.

Each fetus is nested in each mice. Let zi are the number of fetuses that show signs

of malformation out of ni fetuses for mouse i. The mice also may vary according to

other unmeasured characteristics, such as weight, overall health, and genetic makeup.

These will then induce extra variability in the probability of malformation from litter

to litter than expected for the binomial distribution. One possible way to deal with

overdispersion for counts based on binary data is to allow for the overdispersion

parameter φ 6= 1 and only specify a relation between the mean and the variance,

and then apply quasi-likelihood estimation (Wedderburn, 1974). A simple quasi-

likelihood approach uses the variance function, var(πi) = φπi
(1−πi)

ni
. In this context,

if φ > 1, overdispersion is said to occur. An elegant way to account for overdispersion

in clustered binary and binomial data is through inclusion of beta random-effects,

leading to the so-called beta-binomial model, in which the Bernoulli model is combined

with a beta distribution (Molenberghs and Verbeke, 2005; Skellam, 1948; Hinde and

Demétrio, 1998a; Hinde and Demétrio, 1998b; Kleinman, 1973).

A key assumption of the GLM Poisson model is that the variance is equal to the

mean, var(µ) = µ = λ. However, in many applications with count data, the observed

variance is higher than the mean, leading to overdispersion (Agresti, 2002). In the

An. mosquito data described in Section 2.2, suppose that Yij denote the number

of An. gambae counts collected from house i at time j. These counts may vary

from house to house based on factors such as distance of houses from the dam and

month of collection (dry or wet), which in turn will induce heterogeneity, leading to

more variation in the data than predicted by the Poisson model. Like the clustered

binary and binomial data, one can apply quasi-likelihood estimation (Wedderburn,

1974). Here also, if φ > 1, overdispersion is said to occur. An alternative approach

to modeling overdispersion in count data is combining a Poisson distribution with
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a random effect λi to account for the unobserved heterogeneity. Then, Yi/λi ∼
Poisson(λiµi). Since λi is unobserved, it is common to assume a gamma distribution,

so that the uncondition distribution of the outcome turns out to be a negative binomial

distribution (Breslow, 1984; Hinde and Demétrio, 1998a; Hinde and Demétrio, 1998b).

The negative binomial distribution has mean, E(Y ) = µ and variance, Var(Y ) =

µ(1 + σ2), where σ2 is the variance of the unobserved term. If σ2 > 0, the variance

is larger than the mean, implying negative binomial allows for overdispersion. When

σ2 = 0, then the Poisson model results as a special case.

3.3 A Model for Longitudinal Continuous Data

For a longitudinal Gaussian outcome, the linear mixed model provides a general

and flexible modeling framework based on a random-effects approach (Verbeke and

Molenberghs, 2000). Suppose Yij is the jth continuous outcome measured for subject

i = 1, . . . , N , j = 1, . . . , ni. A linear mixed-effects model is given as

Yij = x′
ijβ + z′

ijbi + εij , (3.4)

where xij and zij p-dimensional and q-dimensional vectors of known covariate values,

β a p-dimensional vector of unknown fixed regression coefficients, bi the q-dimensional

vector of the random effects, and εi, an ni-dimensional vector of residual variation.

The subject-specific random effect bi and the residual error εi are independent, and

assumed to follow a normal distribution, i.e. bi ∼ N(0, D), and εi ∼ N(0,Σi),

respectively.

The implied marginal model is given by Yi ∼ N(X iβ,ZiDZ ′
i + Σi) (Laird and

Ware, 1982; Verbeke and Molenberghs, 2000).

The standard way to inference is based on maximizing the marginal likelihood

function in (3.5) with respect to ω (Verbeke and Molenberghs, 2000).

L(ω) =
N∏

i=1

{
(2π)−ni/2|Vi(ζ)|−

1

2 × exp
(
− 1

2
(Yi−Xiβ)

′Vi
−1(ζ)(Yi −Xiβ)

)}
, (3.5)

where ζ is the vector of all variance and covariance components in Vi = ZiDZ ′
i +Σi,

and ω = (β′, ζ′) is the vector of all parameters in the marginal model for Yi.

Maximum likelihood (ML) and restricted maximum likelihood (REML) are the

commonly used parameter estimation methods (Laird and Ware, 1982; Verbeke and

Molenberghs, 2000).
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3.4 Generalized Linear Mixed Models

When non-Gaussian data are hierarchically organized (repeated measures or cluster-

ing), the GLM is usually extended to generalized linear mixed models (GLMMs),

with a subject-specific random effect, usually a Gaussian type, added in the linear

predictor to capture the correlation (Engel and Keen, 1992; Molenberghs and Ver-

beke, 2005; Pinheiro and Bates, 2000) or multilevel models are considered (Goldstein,

2002). GLMMs combine the properties of two statistical frameworks that are widely

used, linear mixed models and generalized linear models.

Suppose that Yij is an outcome for the ith subject measured at the jth time point,

and bi are assumed to be normally distributed with mean 0 and variance-covariance

matrix D, that is bi ∼ N(0, D), with E(bi) = 0 and Var(bi) = D. Then, it is assumed

that the conditional distribution of the response, Yij |bi is independent and belongs

to the following exponential family density

fi(yij |bi, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(y, φ)

}
. (3.6)

The expectation is, E(Yij |bi) = µij = η−1(x′
ijξ + z′

ijbi), where η(.) is a known

link function, xij is a p-dimensional design matrix of the fixed effect parameters ξ,

and zij is a q-dimensional design matrix of the random effects bi.

The likelihood contribution of subject i is

fi(yij |ξ, bi, φ) =
∫ ni∏

j=1

fij(yij |ξ, bi, φ)f(bi|D)dbi. (3.7)

From this the likelihood for ξ, D and φ is given as

L(ξ, D, φ) =
N∏

i=1

∫ ni∏

j=1

fij(yij |ξ, bi, φ)f(bi|D)dbi, (3.8)

In general, expression (3.8) does not have analytical solution, and hence numerical

approximations are needed. An extensive overview of different approximations is

available in Molenberghs and Verbeke (2005) and Skrondal and Rabe-Hesketh (2004).

In some cases, such as the linear mixed models for continuous outcomes, as given

in Section 3.3, the expression in (3.7) takes an ni-dimensional multivariate normal

distribution, which can be solved analytically.

For the case of binary data Yij , we assume that

Yij ∼ Bernoulli(πij = κij), (3.9)

κij =
exp

(
x′
ijξ + z′

ijbi
)

1 + exp
(
x′
ijξ + z′

ijbi
) . (3.10)
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Turning to count data, let Yij be the value of the count variable for subject i and

time point j. We assume that

Yij ∼ Poi(λij), (3.11)

with the conditional mean λij modeled as

λij = exp
(
x′
ijξ + z′

ijbi
)
. (3.12)

3.5 Models Combining Overdispersion with Normal

Random-Effects

In practice, both overdispersion and correlation can happen together, and this led

Molenberghs et al. (2010) to formulate a flexible and unified modeling framework,

which they termed the combined model , to simultaneously capture overdispersion and

correlation for a wide range of clustered data, including count, binary and time-to-

event. These authors brought together two sets of random effects. The normally

distributed subject specific-random effects capture the correlation, while a conjugate

measurement-specific random effect on the natural parameter, is used to accommodate

overdispersion. The latter leads to the beta-binomial model for binary data and the

negative-binomial model for count data. A detailed overview of the model can be

found in Molenberghs et al. (2010).

In line with Molenberghs et al. (2010), the combined model having both the

overdispersion and normal random effects takes the form

fi(yij |bi, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(y, φ)

}
, (3.13)

The expectation is, E(Yij |bi) = µij = θijκij , where θij ∼ gij(ϑij , σij
2), ϑij and

σij
2 are mean and variances of θij , respectively. The likelihood contribution of subject

i is

fi(yi|ϑ, D,ϑi,Σi) =

∫ ni∏

j=1

fij(yij |ϑ, bi, θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi.

From this, the likelihood is given as:

L(ϑ, D,ϑ,Σ) =

N∏

i=1

fi(yi|ϑ, D,ϑi,Σi)

=

N∏

i=1

∫ ni∏

j=1

fij(yij |ϑ, bi, θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi.
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For the case of binary data, we assume that

Yij ∼ Bernoulli(πij = θijκij), (3.14)

κij =
exp

(
x′
ijξ + z′

ijbi
)

1 + exp
(
x′
ijξ + z′

ijbi
) . (3.15)

Explicitly considering θij ∼ Beta(α, β), then φ = α/(α+ β), and

σ2
ij = σi,jj =

αβ

(α+ β)2(α+ β + 1)
, σi,jk = ρijk

αβ

(α+ β)2(α+ β + 1)
.

The model combining overdispersion and correlation for binary outcome will be

considered in more detain both in likelihood and Bayesian framework in Chapter 4.

For count data, let Yij be the jth outcome measured for subject i = 1, . . . , N ,

j = 1, . . . , ni. The Poisson model with normal and gamma random effects can be

specified as

Yij ∼ Poi(λij = θijκij), (3.16)

with the conditional mean λij modeled as θijκij and

κij = exp
(
x′
ijξ + z′

ijbi
)
, (3.17)

where bi ∼ N(0, D), and θij ∼ Gamma(α, β), xij and zij p-dimensional and q-

dimensional vectors of known covariate values, and ξ a p-dimensional vector of un-

known fixed regression coefficients.

Molenberghs et al. (2007) and Molenberghs et al. (2010) marginalized the com-

bined model analytically over the gamma random effect, whereby this partially

marginalized model takes the form:

f(yij |b1i, ξ) =

∫
f(yij |b1i, ξ, θij)f(θij |αj , βj)dθij

=

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij .

Then further numerical integration over the normal random effects can be made

to obtain the maximum likelihood estimates.

Details of the marginal expressions for the mean vector E(Yij) and variance-

covariance of Yi are given in Molenberghs et al. (2007) and Molenberghs et al. (2010).

Note that the Poisson-normal GLMM results as special case of the combined

model, when overdispersion random effects θij are omitted, with a conditional mean

given by:

Yij ∼ Poi(κij). (3.18)
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We apply the following notational convention. The model that brings both features

together, i.e., the combined model, is denoted as (PNG), where the first symbol ‘P’

refers to basic Poisson model, the second symbol ‘N’ is for normal random effects and

the final one for gamma random effects. The special case, which follows by leaving

out the gamma random-effects structures, i.e., the Poisson-normal GLMM is denoted

as (PN-), and omitting only the normal-random effects by (P-G). The simplest case

arises when both random-effects are dropped, leading to Poisson GLM model (P--).

3.6 Marginalized Multilevel Models

The (PN-) and (PNG) models of Section 3.4 and Section 3.5, respectively, are specified

conditional upon the random effects, which yield subject-specific interpretations for

parameter estimates. In practice, however, interest could be on the marginal or

population-averaged effects of covariates. In this section, we present marginalized

versions of (PN-) and (PNG). We use the superscripts ‘m’ and ‘c’ to refer to marginal

and conditional, respectively.

Marginalizing (PN-) leads to M(PN-) (Zeger et al., 1988; Molenberghs et al., 2007):

E(Yij) =

∫
ex

′

ijξ+z
′

ijbif(bi)dbi (3.19)

= ex
′

ijξ
m
+ 1

2
z′

ijDzij

= κmij .

where f is the zero-mean normal density with variance-covariance matrix D. Then,

the marginalized combined model, denoted as M(PNG), with slight modification of

(3.19), takes a marginal mean of the form:

E(Yij) =

∫

b

∫

θ

θije
x′

ijξ+z
′

ijbidΘθf(bi)dbi (3.20)

= E(θij)e
x′

ijξ
m
+ 1

2
z′

ijDzij

= elnE(θij)+x′

ijξ
m
+ 1

2
z′

ijDzij

= λmij .

Based on work of Griswold and Zeger (2004) for (PN-), employing the connector

function ∆ij and log-log-normal specification, we find:

ex
′

ijξ
m

=

∫
e∆ij+z′

ijbif(bi)dbi (3.21)

= e∆ij+
1

2
z′

ijDzij .
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From (3.19) and (3.21), ∆ij becomes:

∆ij = x′
ijξ

m − 1

2
z′
ijDzij . (3.22)

As shown in Iddi and Molenberghs (2012), for (PNG) with overdispersion random

effect θij and marginal mean λmij , the connector follows from the integral equation

given by:

λmij =

∫

b

∫

θ

θije
∆ij+z′

ijbidΘθf(bi)dbi. (3.23)

Then, from (3.20) and (3.23), the connector ∆ij for (PNG) becomes:

∆ij = lnE(θij) + x′
ijξ

m − 1

2
z′
ijDzij (3.24)

= − ln(αβ) + x′
ijξ

m − 1

2
z′
ijDzij .

3.7 Models for Excessive Zero Observations

In many applications with count data, a larger proportion of zero values than what

would be expected under distributional assumptions is common. Such data are often

fitted by using either a hurdle model (Mullahy, 1986; Greene, 1994) or a zero-inflated

model (Lambert, 1992).

The hurdle model is a way of modeling count data using a two-part approach,

whereby the first part is a binary model for the count value zero or positive. Given

the value is positive, a count distribution, say fi, is truncated-at-zero and fitted for

the second part. Suppose Yi is a univariate count outcome, and πi is probability of

the ith observation to be in the zero state. The hurdle model assumes Yi fulfills a

distribution given by

p(Yi = yi) =

{
πi if yi = 0,

(1− πi)
fi(yi|λi)
1−fi(0|λi)

if yi > 0.
(3.25)

An alternative approach to account for excessive zeros is a zero-inflated model,

which assumes zeros to come from two processes. The first process generates only

zeros with probability, say πi for observation i, and the second process generates

counts with probability, say (1 − πi). In a zero-inflated model, Yi follows a zero-

inflation probability distribution given by

p(Yi = yi) =

{
πi + (1− πi)fi(0|λi) if yi = 0,

(1− πi)fi(yi|λi) if yi > 0.
(3.26)
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πi and λi are functions of covariates. Link functions, such as logit or probit, can

be used for πi, and the common log link is used for λi.

For clustered count data, exhibiting overdipserson, correlation, and zero-inflation,

one can assemble the above concepts of the hurdle and zero-inflated models, with the

(PNG) model of Section 3.5, and the M(PNG) model of Section 3.6, to further account

for the excess of zeros. Hence, the hurdle and zero-inflated extensions of M(PNG)

will be the topics of Section 6.1 and Section 6.2, respectively.

3.8 Generalized Estimating Equations

Generalized estimating equations (GEE) is a popular and widely used method in

modeling repeated non-Gaussian data when primary interest is on marginal mean

parameters. GEE was first introduced by Liang and Zeger (1986). The associa-

tion between the vector of repeated measurements taken from a given subject Yi is

captured by allowing correlation within the subject through a so-called working cor-

relation. Details can be found in Molenberghs and Verbeke (2005). The marginal

expectations E(Yij) = µij can be directly modeled in terms of known covariates. For

count data, for example, ln(µij) = x′ijξ.

The GEE approach assumes a working correlation matrix Ri = Ri(α) for Yi where

α is a vector of nuisance parameters.

The score equations take the form

U(ξ) =

N∑

i=1

∂µi

∂ξ′
Vi

−1(yi − µi) = 0, (3.27)

where Vi is the covariance matrix of Yi, written as Vi = Vi(ξ,α) = φAi
1/2RiAi

1/2,

φ being an overdispersion parameter and Ai is a matrix with marginal variances on

the main diagonal and zero elsewhere.

The estimator ξ̂ is the solution of (3.27). Liang and Zeger (1986) showed that

when the marginal mean µij has been correctly specified and when mild regularity

conditions hold, ξ̂ is consistent and asymptotically normally distributed with mean ξ

and variance covariance matrix

Var(ξ̂) = I0
−1I1I0

−1, (3.28)

where

I0 =

N∑

i=1

∂µi
′

∂ξ
Vi

−1 ∂µi

∂ξ′
, (3.29)
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I1 =

N∑

i=1

∂µi
′

∂ξ
Vi

−1Var(Yi)Vi
−1 ∂µi

∂ξ′
. (3.30)

I0
−1 and I0

−1I1I0
−1 are referred to as the ‘model based’ and ‘empirically cor-

rected’ variance estimators, respectively, and the latter, also known as ‘sandwich

estimator’, is the one to be used.

Often, working correlation matrix, such as exchangeable, autoregressive and un-

structured are assumed. The advantage of GEE is that, even with incorrect speci-

fication of the variance function, one can still estimate ξ consistently. However, for

missing data, bias can arise in the estimates unless the data are missing completely

at random (MCAR).

3.9 Hierarchical Bayesian Model

Consider the GLMM model of Section 3.4 for Yij as an outcome for the ith subject

measured at the jth time point, and bi are assumed to be normally distributed with

mean 0 and variance-covariance matrix D, that is bi ∼ N(0, D), with E(bi) = 0

and Var(bi) = D. Recall that the conditional distribution of the response, Yij |bi is

independent and belongs to the following exponential family density

fi(yij |bi, φ) = exp
{
φ−1[yijθij − ψ(θij)] + c(y, φ)

}
, (3.31)

For the full Bayesian treatment of this model, ξ is not known and thus has its own

prior distribution, p(ξ). The joint prior distribution is (Gelman et al., 2004)

p(ξ, bi) = p(ξ)p(ξ|bi), (3.32)

and the joint posterior distribution is

p(ξ, bi|y) = p(ξ, bi)p(y|ξ). (3.33)

For the case of binary data Yij , we assume that

Yij ∼ Bernoulli(πij = κij), (3.34)

κij =
exp

(
x′
ijξ + z′

ijbi
)

1 + exp
(
x′
ijξ + z′

ijbi
) . (3.35)

The following prior distributions can be used for ξ and bi: ξi ∼ N(0, 10−6),

bi ∼ N(0, τi), as also suggested in the literature (Gilks et al., 1996; Gelman et al.,
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2004). For the hyper parameters τi, the inverse-Gamma prior IG(0.001, 0.001), can

be used (Gelman et al., 2004).

Estimation is based on the popular Markov chain Monte Carlo (MCMC) technique.

Samples are drawn from the posterior distribution, which is defined by the prior

distributions for the parameters and the likelihood function for the data.





Chapter 4
Modeling Overdispersed

Longitudinal Binary Data Using a

Combined Beta and Normal

Random-effects Model

For hierarchical binary data, such as clustered or longitudinal, the so-called general-

ized linear mixed models is very popular (Engel and Keen, 1992; Breslow and Clayton,

1993; Wolfinger and O’Connell, 1993; Molenberghs and Verbeke, 2005). While, i.i.d.

binary data do not violate the prescribed mean-variance relationship, this is not the

case in clustered or longitudinal binary data. To deal with overdispersion, Hinde

and Demétrio (1998a) and Hinde and Demétrio (1998b) considered a random-effects

approach, leading to beta-binomial model (Skellam, 1948; Kleinman, 1973). In prac-

tice, such data may exhibit both overdispersion and correlation aspects at once. This

led Molenberghs et al. (2010) to propose a flexible family of models, termed as the

combined model, to deal with both features simultaneously through two separate sets

of random effects, not only for binary and binomial data, but also for count and

time-to-event outcomes.

For binary and binomial data, Kassahun et al. (2012) studied the combined model

in the Bayesian framework. In this setting, the possibility to specify prior distribu-

tion will be an advantage, especially when conjugate priors are used (Spiegelhalter

35
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et al., 2002). The full likelihood approach similar to Molenberghs et al. (2010) is also

considered for comparison purposes.

The outline of this chapter is as follows. In Section 4.1, the model combining

overdispersion and normal random effects is reviewed. Estimation techniques both in

the likelihood and Bayesian setting are provided in Section 4.2. Results of the Jimma

Infant Growth data and Jimma Family Survey of Youth are presented in Sections 4.3.1

and 4.3.2, respectively, with the results of the two estimation techniques compared in

Section 4.3.3. Finally, a brief discussion and some concluding remarks are provided

in Section 4.4. The contribution of this chapter has been published in Kassahun et al.

(2012).

4.1 Models Combining Conjugate and Normal Ran-

dom Effects

Combining both the overdispersion effects (Section 3.2) as well as the normal ran-

dom effects (Section 3.4) into the generalized linear model framework, produces the

following general family (Molenberghs et al., 2010):

fi(yij |bi, ξ, θij , φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij , φ)

}
, (4.1)

with notation similar to the one used in (3.31), but now with conditional mean

E(Yij |bi, ξ, θij) = µc
ij = θijκij , (4.2)

where the random variable θij ∼ Gij(ϑij , σ
2
ij), κij = g(x′

ijξ + z′
ijbi), ϑij is the mean

of θij and σ2
ij is the corresponding variance. Finally, as before, bi ∼ N(0, D). Write

ηij = x′
ijξ + z′

ijbi. Unlike in Section 3.4, we now have two different notations, ηij

and λij , to refer to the linear predictor and/or the natural parameter. The reason is

that λij encompasses the random variables θij , whereas ηij refers to the ‘GLMM part’

only. A detailed overview of the model can be found in Molenberghs et al. (2010).

For the case of binary data, we assume that

Yij ∼ Bernoulli(πij = θijκij), (4.3)

κij =
exp

(
x′
ijξ + z′

ijbi
)

1 + exp
(
x′
ijξ + z′

ijbi
) , (4.4)

where θij ∼ Beta(α, β). Indeed, this model also intuitively seems useful, as overdis-

persion and correlation due to the data hierarchy can occur simultaneously.
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The model is a two-level model with two types of random effects: (a) the bi, to

accommodate correlation among repeated measures (and some overdispersion); (b)

the θij for additional overdispersion. While (a) turns the model into a two-level

model, rather than a one-level one, (b) does not further add a level, because it merely

accommodates overdispersion. This is to be compared with a classical generalized

linear model, where also overdispersion random effects can be taken into account

(e.g., beta in the Bernoulli model to yield the beta-binomial; gamma in the Poisson

model to yield the negative binomial; etc.), while keeping the so-resulting models

remain one-level models.

Further, because the θij follow a conjugate distribution, they do not have an

impact on the shape of the regression function (like the normal random effects in a

linear mixed model), hence there is greatly reduced sensitivity to assumptions about

the random effects. This is one of the elegant properties of conjugate random effects.

4.2 Estimation

In the likelihood framework, estimation proceeds by integration. Recall from Sec-

tion 3.5, the likelihood contribution of subject i is

fi(yi|ϑ, D,ϑi,Σi) =

∫ ni∏

j=1

fij(yij |ϑ, bi, θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi. (4.5)

From this, the likelihood is given as:

L(ϑ, D,ϑ,Σ) =

N∏

i=1

fi(yi|ϑ, D,ϑi,Σi)

=

N∏

i=1

∫ ni∏

j=1

fij(yij |ϑ, bi, θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi. (4.6)

Here, ϑ groups all parameters in the conditional model for Y i. In the binomial

case, the expression takes the form:

f(zij |nij , bi) =

nij−zij∑

t=0

(−1)tκ
zij+t
ij

nij !

zij !t!(nij − zij − t)!
· B(zij + t+ αj , βj)

B(αj , βj)
, (4.7)

with

κij =
exp

(
x′
ijξ + z′

ijbi
)

1 + exp
(
x′
ijξ + z′

ijbi
) .
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It is straightforward to obtain the fully marginalized probability by numerically inte-

grating over the normal random effects, and using a tool such as the SAS procedure

NLMIXED that allows for normal random effects in arbitrary, user-specified models.

More details can be found in Molenberghs et al. (2010). As an alternative estimation

method, we turn to the Bayesian paradigm, combined with the popular Markov Chain

Monte Carlo (MCMC) technique, making analyses of real-world complex data feasi-

ble (Gilks et al., 1996). In the Bayesian approach, prior distributions are assigned to

the parameters and the random effects to adjust for parameter uncertainty. Bayesian

inference for estimation of parameter θ is based on the posterior distribution, which

is proportional to the likelihood multiplied with the prior distribution.

The Jimma longitudinal studies are characterized by clustering, resulting from the

repeated measurements, leading to both correlation and overdispersion. When model-

ing such data, incorporating prior distributions for model parameters, including that

of subject and observation specific random effects, will better handle the underlying

uncertainties, instead of assuming that they are fixed. With the same model spec-

ification as in the likelihood framework, the parameters ξ, bi, and θij are taken to

be a priori independent, i.e., p(ϑ, D,ϑi,Σi) = p(ϑ)p(D)p(ϑi)p(Σi) and the following

prior distributions are used: ξ ∼ N(0, 10−6), bi ∼ N(0, τi), as also suggested in the

literature (Gilks et al., 1996; Gelman et al., 2004) and θij ∼ Beta(α, β), is unimodal

and concave, when α > 1, β > 1 (Agresti, 2002). For the hyper parameters τi, the

inverse-Gamma prior IG(0.001, 0.001), and for α and β, an improper uniform prior

is used, as also suggested by Gelman et al. (2004).

Note that the beta-binomial distribution is a compound distribution of the bino-

mial and its conjugate beta, which can be used to capture overdispersion in binomial

data. The beta-binomial approximates the binomial distribution arbitrarily well when

its two non-negative parameters, α and β, determining its shape, are sufficiently large.

If one or both of these parameters are less than 1, then the probability mass function

will go to infinity near its boundaries, 0 and 1, and hence not concave. As a result, the

mode does not exist, leading to computational problems in MCMC. For this reason,

we used the restriction α > 1, β > 1, such that the density is always concave and

unimodal whereby it is always finite over the support [0, 1], as shown in Kassahun

et al. (2012). An example SAS and WinBugs implementation of the combined model

is shown in Appendix A.

Spiegelhalter et al. (2002) suggest use of the so-called Deviance Information Crite-

rion for model comparison in Bayesian inference. Assume a probability model P (y|θ).
The effective number of parameters with respect to a model with parameter Θ is

given by pD{y,Θ, θ̃(y)} = Eθ|y[−2 log p(y|θ)] + 2 log[p{y|θ̃(y)}]. We shall usually
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drop the arguments {y,Θ, θ̃(y)} from notation. Generally, we take θ̃(y) = E(θ|y),
the posterior mean of the parameters. For f(y) being a fully specified standard-

izing term that is a function of the data alone, pD, defined as a ‘mean deviance

minus the deviance of the means,’ is given by pD = E[D(θ|y)] − D(E[θ|y]), where
D(θ) = −2 logP (y|θ) + 2 log f(y) is the Bayesian deviance, used as a measure for

goodness of fit. The deviance information criterion (DIC), defined as the classical es-

timate of fit plus twice the effective number of parameters DIC = D(E[θ|y])+2pD =

E[D(θ|y)] + pD is used for model comparison. According to this criterion, the model

with the smallest DIC is to be preferred. pD and DIC are easily computed using

the available MCMC output by taking the posterior mean of the deviance to obtain

E[D(θ|y)] and the plug-in estimate of the deviance D(E[θ|y]) using the posterior

means E[θ|y] of the parameter θ. In non-hierarchical models, pD approximates the

effective number of parameters to be estimated. However, for hierarchical models,

pD is a measure of model complexity instead of being merely the number of effective

parameters to be estimated. In general, it is difficult to say what would constitute

an important difference in DIC for model comparison. Spiegelhalter et al. (2002)

suggested models receiving DIC within 1-2 of the ‘best’, deserve consideration, and

3-7 have considerably less support. These rules of thumb appear to work reasonably

well. For the best model preferred based on DIC, the important risk factors could be

identified looking the credible intervals. In the case of a single parameter and data

that can be summarised in a single sufficient statistic, the credible interval and the

confidence interval can be treated equivalently. Hence, to identify, the risk factor, we

considered whether zero is in or outside of the credible interval.

We also attempted to fit the beta-binomial marginal density, although it is not one

commonly encountered in software packages like WinBugs, where an observation xi

contributes a likelihood term Li. We used the so-called zero trick, a Poi(φ) observation

of zero has likelihood exp(−φ), so if our observed data is a set of 0’s, and φi is set to

− log(Li), we would obtain the correct likelihood contribution (Spiegelhalter et al.,

2003). This zero trick allows for arbitrary sampling distributions and is particularly

suitable when, say, dealing with truncated distributions. However, our case studies

showed that this method can be very inefficient and give a very high Monte Carlo

error.

In terms of parameter interpretation, we would like to refer back to the beneficial

properties that come with the conjugacy property. Indeed, because the θij follow a

conjugate distribution, the interpretation of the parameters is the same as in a classical

generalized linear mixed model. Precisely, this means that the effect on the regression

parameters only comes from the normal random effects in the linear predictor, a fact
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well documented. For a review, see, for example, Molenberghs and Verbeke (2005).

4.3 Results

For the Jimma infants study, assuming independence, the sample average probability

of success and the sample variance are 0.150 and 0.128, respectively, indicating that

the prescribed mean-variance link is maintained. In contrast, in the binomial setting,

taking the hierarchical structure into account, the sample average and the sample

variances are 0.141 and 2.107, respectively, implying that the sample contradicts the

mean-variance relationship for these data.

Similar exploratory analyses on the Jimma Longitudinal Family Survey of Youth

were undertaken. For the binomial response, taking the two repeated measurements

results in sample average probability of success 0.919 and sample variance 0.168 in-

dicating that the results are in line with the prescribed mean-variance relationship

which is known to be always true for the Bernoulli case. This may suggest, at first

sight, that these data are not prone to exhibit strong overdispersion, even in the hier-

archical binomial setting. In addition to the exploratory analysis, we also conducted

tests for overdispersion. The commonly used approach is to compute the ratio of the

residual deviance to the residual degrees of freedom, which approximates the overdis-

persion parameter (φ̂). When the ratio is appreciably larger than 1, overdispersion is

said to occur. It is pointed out that this approach could be misleading when nipi is

not sufficiently large, where pi is the probability of the success event. This is because

it is based on asymptotic theory. As a result, a better approach is based on a quasi-

binomial model, which allows extra dispersion (Skellam, 1948). The approximated

overdispersion (φ̂ = 2.37) computed as the ratio of the residual deviance to the resid-

ual degrees of freedom in the binomial, and the one estimated in the quasi-binomial

model (φ̂ = 2.47) for the Jimma Infants Growth data are very similar, both suggest-

ing the presence of strong ovderdispersion. However, a similar analysis for the Jimma

Family Survey data, does not suggest a considerable overdispersion, with values 0.765

and 1.129, approximated by the ratio of the residual deviance to the residual degrees

of freedom in the binomial, and estimated by the quasi-binomial, respectively.
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4.3.1 The Jimma Infant Growth Study

We will analyze the binary BMI data. The following model is assumed for the mean

structure: Yij |bi ∼ Bernoulli(πij), for subject i and measurement j, and

logit(πij) = ξ0 + b0i + (b1i + ξ1)Tij + ξ2Gi + ξ3P1i + ξ4P2i + ξ5Bij

+ξ6GiTij + ξ7P1iTij + ξ8P2iTij + ξ9BijTij , (4.8)

where Gi is a gender indicator, P1i and P2i are dummy variables for place of residence

corresponding to rural and urban areas and using semi-urban areas as a reference. Tij

is the time point at which the jth measurement is taken for the ith subject, which is

centered at month six. Bij denotes whether the ith infant is breast fed or not at time

j. The random intercept bi ∼ N(0, D).

The Infant Growth dataset is analyzed with a simple logistic model, a beta-

binomial model introducing only an overdispersion parameter, a random-effects lo-

gistic model that introduces a random-effects term to take the repeated structure of

the data into account, and finally the combined model, which allows for both overdis-

persion and a random-effects term. Parameter estimates of the logistic model and the

beta-binomial model are presented in Table 4.1 and the corresponding estimates of

the logistic-normal model and the combined model are given in Table 4.2. Clearly, the

logistic-normal model is an important improvement, in terms of likelihood, relative

to both the ordinary logistic model and the beta-binomial. Moreover, considering

the combined model, there is a very strong improvement in fit when the beta and

normal random effects are simultaneously allowed for. The overdispesion term in the

combined model is significant (p < 0.001), implying the presence of considerable ex-

tra variability due to the grouped nature of the data, which is beyond what can be

accommodated by the commonly used logistic-normal model.

The logistic-normal model ignores the overdispersion that results from the grouped

nature of the data. On the other hand, the beta-binomial model accommodates

overdispersion which is assumed independent, implying independence between re-

peated measurements. Again, this is not realistic and therefore the combined model

is the more viable candidate, supported further by the aforementioned likelihood com-

parison.

The combined model suggests that the intercept, the time effect, main effects

of place of residence and breastfeeding are significant, which is also true for time

interaction with rural place of residence and breast feeding. However, main effect and

slope of gender were not significant, implying that proportion of overweight seems to

be invariant among male and female infants over time. Infants living in rural and
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Table 4.1: Jimma Infant Growth Study. Parameter estimates, standard errors, and p-

values for the regression coefficients in (1) the logistic model, (2) the beta-binomial model.

Estimation was done by maximum likelihood using numerical integration over the normal

random effect, if present.

Logistic Beta-binomial

Effect Parameter Estimate (s.e., p) Estimate (s.e., p)

Intercept ξ0 −1.896(0.128, 0.001) −0.448(1.099, 0.683)

Time ξ1 0.127(0.031, 0.001) 0.188(0.090, 0.037)

Gender:Male ξ2 0.027(0.025, 0.294) 0.029(0.039, 0.456)

Place rural ξ3 −0.602(0.029, 0.001) −0.949(0.501, 0.058)

Place urban ξ4 −0.376(0.037, 0.001) −0.628(0.381, 0.099)

Breast feeding ξ5 0.545(0.128, 0.001) 0.788(0.347, 0.023)

Slope Gender:Male ξ6 −0.003(0.006, 0.602) −0.007(0.011, 0.534)

Slope rural ξ7 0.018(0.007, 0.014) 0.029(0.020, 0.161)

Slope urban ξ8 0.016(0.009, 0.097) 0.026(0.022, 0.251)

Slope Breast feeding ξ9 −0.133(0.031, 0.001) −0.199(0.098, 0.041)

Std. dev. random intercept
√
d0 — —

Std. dev. random slope
√
d1 — —

Ratio α/β — 1.827(1.622, 0.259)

−2log-likelihood 41,286 41,286

urban areas are at lower risk of overweight as compared to those in semi-urban ares

with (ξ̂3 = −1.058, p = 0.001), and (ξ̂4 = −0.689, p = 0.001), respectively. Further,

early initiation of breastfeeding has a protective effect against the risk of overweight

in late infancy (ξ̂9 = −0.167, p = 0.001), as shown in Table 4.2.

4.3.2 Jimma Longitudinal Family Survey of Youth

We will now analyze current school attendance. For the logit, consider the model:

Yij |bi ∼ Bernoulli(πij), with

logit(πij) = ξ0 + bi + ξ1Aij + ξ2Gi + ξ3P1ij + ξ4P2ij + ξ5Wij + ξ6Rij , (4.9)

where Aij is the age of the ith subject at the jth visit, Gi is the gender of the ith

subject. P1ij and P2ij denote the two dummy variables for place of residence of the
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Table 4.2: Jimma Infant Growth Study. Parameter estimates, standard errors, and p-values

for the regression coefficients in (1) the logistic-normal model, and (2) the combined model.

Estimation was done by maximum likelihood using numerical integration over the normal

random effect, if present.

Logistic-normal Combined

Effect Parameter Estimate (s.e., p) Estimate (s.e., p)

Intercept ξ0 −2.741(0.186, 0.001) −2.661(0.215, 0.001)

Time ξ1 0.132(0.042, 0.002) 0.147(0.049, 0.003)

Gender:Male ξ2 0.010(0.054, 0.852) 0.020(0.064, 0.751)

Place rural ξ3 −0.908(0.064, 0.001) −1.058(0.082, 0.001)

Place urban ξ4 −0.581(0.082, 0.001) −0.689(0.099, 0.001)

Breast feeding ξ5 0.635(0.179, 0.001) 0.764(0.209, 0.001)

Slope Gender:Male ξ6 −0.003(0.010, 0.728) −0.005(0.012, 0.660)

Slope rural ξ7 −0.015(0.011, 0.167) 0.024(0.014, 0.085)

Slope urban ξ8 −0.011(0.014, 0.432) 0.015(0.017, 0.377)

Slope Breast feeding ξ9 −0.149(0.044, 0.001) −0.167(0.049, 0.001)

Std. dev. random intercept
√
d0 1.774(0.034, 0.001) 2.107(0.088, 0.001)

Std. dev. random slope
√
d1 0.193(0.007, 0.001) 0.237(0.014, 0.001)

Ratio α/β — 0.234(0.045, 0.001)

−2log-likelihood 37,000 36,971

ith subject on the jth visit, which are urban, semi-urban, and rural by taking rural as

a reference. Wij indicates whether the ith adolescent is engaged in some work for the

family or help support on the jth visit. Finally, Rij is the jth round or measurement

occasion of the ith subject, and bi ∼ N(0, d).

Results from fitting all four models (with/without normal random effect;

with/without beta random effect) can be found in Tables 4.3 and 4.4. Likelihood

comparison of the beta-binomial with the standard logistic model shows no improve-

ment in fit, implying absence of strong evidence for overdispersion. This can be noted

from likelihood comparisons of the simple logistic and the beta-binomial on the one

hand, as well as the logistic-normal and the combined, on the other. One can easily

see, however, that the commonly used logistic-normal and the combined models are

significant improvements over the standard logistic model. We further observe, while
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Table 4.3: Jimma Longitudinal Family Survey of Youth. Parameter estimates, standard

errors, and p-values for the regression coefficients in (1) the logistic model, (2) the beta-

binomial model. Estimation was done by maximum likelihood using numerical integration

over the normal random effect, if present.

Logistic Beta-binomial

Effect Parameter Estimate (s.e., p) Estimate (s.e., p)

Intercept ξ0 1.171(0.626, 0.061) 1.155(0.702, 0.099)

Age ξ1 0.039(0.049, 0.414) 0.044(0.055, 0.421)

Place urban ξ2 0.971(0.148, 0.001) 1.089(0.266, 0.001)

Place semi-urban ξ3 0.979(0.159, 0.001) 1.104(0.284, 0.001)

Gender:Female ξ4 −1.111(0.123, 0.001) −1.226(0.237, 0.001)

Work ξ5 0.134(0.122, 0.274) 0.146(0.138, 0.288)

Round ξ6 0.341(0.141, 0.016) 0.390(0.178, 0.029)

Std. dev. random effect
√
d — —

Ratio α/β — 0.009(0.014, 0.528)

−2log-likelihood 1987.7 1987.4

the logistic-normal model suggests a significant intercept (p = 0.045), that the same

does not emerge when the combined model is considered (p = 0.099) implying the beta

random effect has some impact on the p-values. For these data, with two repeated

measures per subject, the logistic-normal model seems adequate and the overdisper-

sion term in the combined model is not significant (p = 0.29), strengthening what has

been mentioned in the earlier sections. Further extension by adding random slope did

not improve the fit of neither the logistic-normal nor the combined models (details

not shown).

Based on the logistic-normal model in Table 4.4, adolescents living in urban and

semi-urban areas have higher school attendance than those living in rural areas, with

(ξ̂2 = 1.098, p = 0.001), and (ξ̂3 = 1.092, p = 0.001), respectively. Gender is also

significantly associated with school attendance, where female adolescents are lower

(ξ̂4 = −1.241, p = 0.001). There is evidence that school attendance increases in the

second round visit compared to the first (ξ̂6 = 0.398, p = 0.010).
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Table 4.4: Jimma Longitudinal Family Survey of Youth. Parameter estimates, standard

errors, and p-values for the regression coefficients in (1) the logistic-normal model, and (2)

the combined model. Estimation was done by maximum likelihood using numerical integration

over the normal random effect, if present.

Logistic-normal Combined

Effect Parameter Estimate (s.e., p) Estimate (s.e., p)

Intercept ξ0 1.443(0.719, 0.045) 1.463(0.888, 0.099)

Age ξ1 0.046(0.056, 0.408) 0.058(0.070, 0.408)

Place urban ξ2 1.098(0.178, 0.001) 1.379(0.393, 0.001)

Place semi-urban ξ3 1.092(0.189, 0.001) 1.339(0.368, 0.001)

Gender:Female ξ4 −1.241(0.147, 0.001) −1.499(0.339, 0.001)

Work ξ5 0.153(0.144, 0.287) 0.189(0.182, 0.296)

Round ξ6 0.398(0.155, 0.010) 0.519(0.237, 0.028)

Std. dev. random effect
√
d 1.138(0.188, 0.001) 1.342(0.318, 0.001)

Ratio α/β — 0.013(0.013, 0.293)

−2log-likelihood 1972.9 1972.1

4.3.3 Comparison Between Estimation Methods

For comparison with the previously applied estimation method in the likelihood frame-

work, we again apply the same models to the two surveys, but now in the Bayesian

framework. After generating 70,000 MCMC samples for the combined, and 50,000

MCMC samples for the logistic-normal, beta-binomial, and simple logistic, the first

10,000 samples are discarded and treated as so-called burn-in samples. The remain-

ing samples are used to summarize the posterior estimates. Two distinct chains were

used to check sensitivity to the initial values, and convergence was met. Convergence

was checked using the Gelman-Rubin diagnostic as well as by visual inspection of the

trace and QQ plots (Brooks and Gelman, 1998).

The posterior summaries of logistic and beta-binomial for the Jimma Infants

Growth dataset are given in Table 4.5, while the corresponding estimates of the

logistic-normal and combined models are presented in Table 4.6. Similarly, for the

Jimma Longitudinal Family Survey of Youth, estimates of these four models are shown

in Tables 4.7 and 4.8. The parameter estimates are fairly similar to what was obtained

previously in the likelihood approach in both cases, except for differences in the case
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of the beta-binomial for the Jimma Infants data in Table 4.5 when compared with

Table 4.1.

In terms of significance of the parameters, the same conclusion is reached for the

two case studies in both approaches, except that the beta-binomial for the intercept

and time effects in the Jimma infants study shows significance in the likelihood frame-

work as given in Section 4.3.1, while the same does not emerge from the Bayesian anal-

ysis, as observed from the 95% credible interval which include zero for these effects.

We compared the various models using the DIC criterion. For both studies, there is a

significant reduction in the DIC of the logistic-normal and the beta-binomial, as com-

pared to the simple logistic. We observe a rather high degree of model improvement

by combining beta and normal random effects simultaneously, to allow for both the

overdispersion and the data hierarchy. Moreover, the logistic and the beta-binomial

ignore the correlation stemming from the data hierarchy on the one hand, and the

logistic-normal does not allow for the overdispersion, on the other, which altogether

make the combined model the preferred one.

According to Spiegelhalter et al. (2002), in comparing complex hierarchical models

where the number of parameters is not clearly defined, pD is the difference between

the posterior mean of the deviance and the deviance at the posterior means of the

parameters of interest, not only measures the effective number of parameters but

also the model complexity. These authors further noted that the contribution pDi

of each observation i turned out its leverage, defined as the relative influence that

each observation has on its own fitted value. For yi conditionally independent given

θ, pDi, shows its interpretation as the difficulty in estimating θ with yi. This shows

the connection between the sample size, the parameters to be estimated, and the pD.

The Jimma infants (n = 7969) and the Jimma Longitudinal family survey (n = 2100)

data have large number of subjects followed longitudinally, where each subject was

measured seven and two times, respectively. For these reasons, the pD values, as

presented in Table 4.6 and Table 4.8, appeared to be larger as the by-product of the

MCMC estimation to obtain leverage of each observation. The two competing models,

i.e., the logistic-normal and the combined models resulted relatively in larger values

of pDs in both of our case studies.

Unlike the Jimma infants study in Table 4.6, pD of the combined model for the

Jimma Longitudinal Family Survey of Youth in Table 4.8, (pD = 211.9), is lower

than that of the logistic-normal (pD = 241.5). This implies that, for the Jimma

Longitudinal Family Survey of Youth, the combined model is less complex to fit than

the logistic-normal, although this is not what we usually expect, as the combined

model seems more complex, since it includes both beta and normal random effects,
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Table 4.5: Jimma Infant Growth Study. Estimated posterior mean and standard deviation

in (1) the logistic model, (2) the beta-binomial model.

Logistic Beta-binomial

Effect Mean(s.d.) Mean(s.d.)

Intercept ξ0 −1.894(0.123) − 1.486(1.488)

Time ξ1 0.126(0.031) 0.155(0.207)

Gender:Male ξ2 0.027(0.026) 0.003(0.066)

Place rural ξ3 −0.602(0.029) −2.486(1.290)

Place urban ξ4 −0.377(0.037) −1.973(1.210)

Breast feeding ξ5 0.543(0.123) 1.126(0.294)

Slope Gender:Male ξ6 −0.003(0.006) −0.015(0.016)

Slope rural ξ7 0.018(0.007) 0.160(0.178)

Slope urban ξ8 0.015(0.009) 0.1610.182)

Slope Breast feeding ξ9 −0.132(0.030) −0.289(0.097)

Std. dev. random intercept
√
d0 — —

Std. dev. random slope
√
d1 — —

Ratio α/β — 3.222(0.524)

DIC 41,310.0 40,390.0

pD 9.9 2511.0

while the logistic-normal includes only the normal random effects. However, for these

specific data, this resulted likely because there is less conflict between the specific

data set, and the prior distributions which could be associated to the conjugacy of

the beta random effects, as well as the peculiar data features including number of

subjects and repeated measurements per subject. The posterior densities for these

two models are provided in Appendix E.

4.4 Discussion

In this chapter, we have presented a model that integrates normal and beta random

effects into a single model, termed the combined model. Our work builds upon that of

Molenberghs et al. (2010), who brought together normal random effects to induce as-
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Table 4.6: Jimma Infant Growth Study. Estimated posterior mean and standard deviation

in (1) the logistic-normal model, and (2) the combined model.

Logistic-normal Combined

Effect Mean(s.d.) Mean(s.d.)

Intercept ξ0 −2.773(0.191) −2.755(0.258)

Time ξ1 0.137(0.042) 0.169(0.062)

Gender:Male ξ2 0.020(0.054) 0.026(0.069)

Place rural ξ3 −0.915(0.065) −1.115(0.085)

Place urban ξ4 −0.606(0.083) −0.749(0.103)

Breastfeeding ξ5 0.666(0.185) 0.903(0.253)

Slope Gender:Male ξ6 −0.003(0.010) −0.006(0.012)

Slope rural ξ7 0.015(0.011) 0.026(0.015)

Slope urban ξ8 0.011(0.014) 0.017(0.018)

Slope Breastfeeding ξ9 −0.144(0.041) −0.192(0.061)

Std. dev. random intercept
√
d0 1.783(0.035) 2.212(0.074)

Std. dev. random slope
√
d1 0.193(0.007) 0.250(0.013)

Ratio α/β — 0.288(0.031)

DIC 33,605.1 33,377.6

pD 5400.7 6218.3

sociation between repeated binary and binomial data, and a beta-binomial distributed

random factor in the log-linear predictor to fine tune the overdispersion.

Maximum likelihood estimation was considered by integrating over the random

effects using the SAS procedure NLMIXED.

Further, Bayesian inference has been applied. Prior information about the parame-

ters induces correlation, which then leads to reduced effective dimensionality although

the reduction depends on the available data (Spiegelhalter et al., 2002). Complexity

reflects the difficulty in fit and hence it seems reasonable that the measure of com-

plexity may depend on both the prior information concerning the parameters under

scrutiny and the specific data that are observed. This can be elucidated from the

Jimma Longitudinal Family Survey of Youth result, where the combined model is less

complex in fit, which likely results from the conjugacy of the beta random effect and

the number of subjects as well as the repeated measurements per subject (Kassahun
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Table 4.7: Jimma Longitudinal Family Survey of Youth. Estimated posterior mean and

standard deviation in (1) the logistic model, (2) the beta-binomial model.

Logistic Beta-binomial

Effect Mean(s.d.) Mean(s.d.)

Intercept ξ0 1.185(0.624) 1.151(0.731)

Age ξ1 0.039(0.049) 0.047(0.057)

Place urban ξ2 0.977(0.148) 1.134(0.183)

Place semi-urban ξ3 0.987(0.161) 1.161(0.202)

Gender:Female ξ4 −1.113(0.123) −1.266(0.148)

Work ξ5 0.133(0.122) 0.154(0.140)

Round ξ6 0.343(0.142) 0.404(0.165)

Std. dev. random effect
√
d — —

Ratio α/β — 0.0111(0.0029)

DIC 2002.0 2001.0

pD 6.97 13.77

et al., 2012).

Analysis of the case studies show that, in the presence of overdispersion and clus-

tering, the combined model results in improvement in model fit, which is similar to

the finding in Molenberghs et al. (2010).

This study revealed that early breastfeeding lowers the risk of overweight at late

infancy. This finding is in line with Bergmann et al. (2003), who showed that breastfed

infants had lower BMI after 3 months from birth than bottlefed infants, though the

BMIs at birth were nearly identical in both groups. Owen et al. (2005), who reviewed

sixty-one studies, states that initial breastfeeding protects against obesity in later

life, although the precise magnitude of the association remains unclear. Unlike Owen

et al. (2005), the present study showed that infants in the breastfed group were fatter,

at birth, as compared to those who were not breastfed. This is likely because of

the unmeasured maternal history, such as maternal BMI, and socio-cultural aspects,

which are considered to be the risk factors of overweight in children (Gillman et al.,

2006). In addition, it is a common practice in the study area that mothers provide

additional liquid or solid food starting from early infancy, in addition to breastfeeding.
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Table 4.8: Jimma Longitudinal Family Survey of Youth. Estimated posterior mean and

standard deviation in (2) the logistic-normal model, and (2) the combined model.

Logistic-normal Combined

Effect Mean(s.d.) Mean(s.d.)

Intercept ξ0 1.452(0.732) 1.272(0.953)

Age ξ1 0.047(0.057) 0.077(0.078)

Place urban ξ2 1.107(0.180) 1.427(0.270)

Place semi-urban ξ3 1.104(0.192) 1.382(0.269)

Gender:Female ξ4 −1.247(0.149) −1.528(0.214)

Work ξ5 0.155(0.145) 0.199(0.184)

Round ξ6 0.401(0.157) 0.521(0.203)

Std. dev. random effect
√
d 1.148(0.203) 1.417(0.266)

Ratio α/β — 0.013(0.003)

DIC 1943.0 1915.0

pD 241.5 211.9

This is probably because they believe that a child with more weight is considered as

healthy, which is likely to have its own impact on the BMI in the early infancy. In

this study, it is also shown that place of residence does not have a long term effect

in the risk of overweight, instead it is the mode of feeding which is more important.

The baseline differences observed in the risk of overweight among infants living in

urban, semi-urban areas might be attributable to other family related factors like

social class, family income, educational level of the parents, and other socio-cultural

variables, which are indicated to affect the nutrition of young children and women in

Ethiopia (Macro., 2008).

In investigating school attendance among adolescents, this study showed that girls

have a lower rate of current school attendance than boys, which is a common situation

in most Sub-Saharan African Countries. According to the World Health Organiza-

tion (WHO, 2009), there was a clear gender gap observed in primary or secondary

school enrollment when the Gender Parity Index (GPI), the ratio of female to male

enrollment, is considered. Between the years 1999 and 2003, GPI was found to be

0.7, indicating that there were only 7 girls enrolled at primary schools for every 10
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boys. This gender gap increases with increasing level of education. This study also

showed that adolescents in urban and semi-urban area have a higher rate than those

in the rural areas, which is in line with report of the World Bank (2005), where it was

stated that among children in rural areas with a school in the neighborhood, less than

44 % registered for school; in urban areas, the percentage is much higher up to 86

%. According to the report, distance to the nearest school, household characteristics,

and learning environment were among the possible reasons of the gap in the school

attendance.

Future studies on early growth of children could benefit from careful measurement

of a wider range of potential confounders of overweight.

Further efforts should be made to fill the gap in school attendance among boys

and girls, as well as urban and rural areas by focusing on the potential causes, such

as lagging experience in primary schooling, which is then exacerbated by such factors

as the practice of early marriage among Ethiopian women, families’ reluctance to

invest in girls’ education. Situating schools closer to children’s homes in rural areas,

and improvement of the quality of the services is necessary. Longitudinal studies

with better number of repeated measurements per subject should be conducted to

get better insight on the trends of school enrollment and survival of adolescents.





Chapter 5
A Zero-Inflated Overdispersed

Hierarchical Poisson Model

Count data are most commonly modeled using the Poisson model. Very often, exten-

sions of this model are being considered, for a variety of reasons: (1) a hierarchical

structure in the data, e.g., due to clustering in the data, repeated measurements of

the outcome, etc.; (2) the occurrence of overdispersion, meaning that the variabil-

ity in the data is not equal to the mean, as prescribed by the Poisson distribution;

and (3) the occurrence of extra zeros beyond what a Poisson model allows for. The

first issue is often accommodated through the inclusion of random subject-specific

effects. Though not always, one conventionally assumes such random effects to be

normally distributed (Engel and Keen, 1992; Breslow and Clayton, 1993; Wolfinger

and O’Connell, 1993; Molenberghs and Verbeke, 2005). Overdispersion is often dealt

with through an overdispersion model, such as, for example, the negative-binomial

model for count data (Breslow, 1984; Lawless, 1987), where the natural parameter is

assumed to follow a gamma distribution. An excessive number of zeros is regularly

accounted for using so-called zero-inflated models, and studied for univariate count

data by Lambert (1992) and Greene (1994), with an extension for hierarchical setting

studied in Min and Agresti (2005) and Lee et al. (2006).

This chapter proposes a general modeling framework in which correlation, overdis-

persion and zero-inflation (ZI) can appear together. The proposal is an extension of

the modeling approach defined by Molenberghs et al. (2010) in which clustering and

overdispersion are accommodated for through two separate sets of normal and gamma

53
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random effects in a Poisson model (PNG). Adjustment for the excessive zeros assumes

that zeros may come from two processes: a point-mass or a Poisson-normal-gamma

process, as a mixture, leading to ZI(PNG) model. This chapter is organized as follows.

In Section 5.1, the ZI(PNG) model is described, followed by the estimation technique

given in Section 5.2. The ZI(PNG) and its special cases, are applied and compared

based on two real data sets, with the results given in Section 5.3. Furthermore, a simu-

lation study to study the behaviour of the model and the bias in parameter estimates,

which might result from omitting of one or more of the overdispersion, correlaion and

excessive zeros is presented in Section 5.4. Some concluding remarks are given in

Section 5.5. The contribution of this chapter is based on Kassahun et al. (2014a).

5.1 Zero-inflated Models

In zero-inflated count models, it is assumed that there are two processes that can

generate zeros: zeros may come from both a point mass (process 1) as well as from

the count component (process 2). It is assumed that for observation i at time j,

process 1 is chosen with probability πij and process 2 with probability 1− πij (Hinde

and Demétrio, 1998a; Hinde and Demétrio, 1998b). Process 1 generates only zeros,

whereas process 2, fi(yij |b1i, ξ, θij), generates counts from a Poisson, a negative-

binomial model, a Poisson-normal GLMM, or a Poisson-gamma-normal combined

model. In its most general form, the zero-inflated Poisson-gamma-normal model is

given as the following mixture:

Yij ∼
{

0 with probability πij ,

fi(yij |b1i, ξ, θij) with probability 1− πij ,
(5.1)

leading to the probabilities p(Yij = yij |b1i, ξ, θij , πij) given by

p(Yij = yij |b1i, ξ, θij , πij) =
{

πij + (1− πij)fi(0|b1i, ξ, θij) if yij = 0,

(1− πij)fi(yij |b1i, ξ, θij) if yij > 0.
(5.2)

The zero-inflation component πij = π(x′
2ijγ + z′

2ijb2i) is modeled using a Bernouilli

model: in the simplest case with only an intercept, but potentially containing known

regressors x2ij and z2ij , a vector of zero-inflation coefficients γ to be estimated, as

well as random effects b2i. Common link functions, such as the logit or probit, can

be used. Note that xij , zij , and bi in Section 3.5 are now replaced by x1ij , z1ij ,

and b2ij , respectively, for the non-zero count part. The regressors in the count and

zero-inflation component can either be overlapping, a subset of the regressors can be
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used for the zero-inflation, or entirely different regressors for the two parts can be

used. In many cases, but of course not always, a simple random-intercept model is

adequate, where b1i = b1i, b2i = b2i, and z1ij = z2ij = 1. Assuming that the random

effects are normally distributed and possibly correlated with correlation parameter ρ,

the variance-covariance matrix is

D =

(
d1 ρ

√
d1
√
d2

ρ
√
d1
√
d2 d2

)
.

The model is denoted as ZI(PNG), as an obvious extension with earlier notational

conventions. Three obvious special cases are ZI(PN-), ZI(P-G), and ZI(P--). Also,

all four models without zero inflation are special cases as well. The conditional mean

and variance of the ZI(PNG) are:

E(Yij |b1i, ξ, θij) = θijκij(1− πij), (5.3)

Var(Yij |b1i, ξ, θij) = θijκij(1− πij)[1 + θijκij(πij + 1/α)]. (5.4)

It can be seen that the conditional variance is inflated as a result of either overdis-

persion in the data (parameter α), or as a result of zero-inflation (parameter πij), or

both.

5.2 Estimation

Likelihood estimation of the (PNG) is done by integrating over the random effects,

assembling the marginal likelihood, and maximizing it in the usual way. Molenberghs

et al. (2007) and Molenberghs et al. (2010) marginalized analytically over the gamma

random effect, with then further numerical integration over the normal random effects.

This enables the use of a flexible normal random-effects tool such as the SAS procedure

NLMIXED. From Section 3.5, the partially marginalized (PNG) takes the form:

f(yij |b1i, ξ) =

∫
f(yij |b1i, ξ, θij)f(θij |αj , βj)dθij (5.5)

=

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij . (5.6)

This idea extends in a straightforward fashion to the ZI(PNG):

f(yij |b1i, ξ, b2i,γ)
= I(yij = 0)πij

+(1− πij)

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,
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with πij = π(x′
2ijγ + z′

2ijb2i). A sample SAS implementation code is given in Ap-

pendix B.

5.3 Results

5.3.1 The Jimma Infant Growth Study

We will fit the ZI(PNG) to the data, introduced in Section 2.1, and compare it to its

special cases: (P--), (P-G), (PN-) (PNG), ZI(P--), ZI(PN-), and ZI(P-G). We model

κij as

ln(κij) = ξ0 + b1i + ξ1Ri + ξ2Ui + ξ3Tij + ξ4Gi + ξ5Bij + ξ6Hij + ξ7RiTij

+ξ8UiTij + ξ9GiTij + ξ10BijTij + ξ11HijTij

and the zero-inflation probability (πij) as

logit(πij) = γ0 + b2i + γ1Ri + γ2Ui + γ3Tij + γ4Gi + γ5Bij + γ6Hij ,

with Ri an indicator for rural residence and Ui for urban residence. The semi-urban

residence category is taken as the reference. Further, Gi is a gender indicator and

Tij is the time point at which the jth measurement is taken for the ith subject; Bij

and Hij denote, respectively, whether or not the ith infant is breastfed and given any

medication between the (j − 1)st and jth measurement occasions.

Clearly, as can be observed from Tables 5.1 and 5.2, the zero-inflated models per-

formed much better, resulting in a substantial improvement in fit, hence implying that

the extra zeros need to be accommodated, which is expected given the excessive zero

counts in these data as shown in Section 2.1. The ZI(PN-) model is an important

improvement, in terms of likelihood, relative to the ZI(P--), while much more im-

provement is gained in the case of the ZI(P-G). Moreover, considering the ZI(PNG),

there is a strong improvement in fit when the gamma and normal random effects, in

addition to zero-inflation, are simultaneously included. A similar observation can be

made for the non-zero-inflated models. There is a very strong improvement in fit of

the ZI(P-G), when compared to the ZI(PN-). It points to the fact that overdispersion

is more important an effect than the repeated-measures nature, hence the ZI(P-G) is

able to perform better from the start. It underscores, once more, that overdispersion

with count data is a very common situation. Eventually, both are needed. The zero-

inflation regression coefficients are similar in all models, statistically significant, and

can be interpreted as model coefficients for the proportion of extra zeros. ZI(PNG)
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and ZI(P-G) exhibit similar fits, not only in terms of parameter estimates but also

in inference, except that gender is significant in the former (p = 0.0311) while this

is not the case for the latter (p = 0.0922). Both models suggest that medical help,

breast feeding, main effect of rural place of residence are significant; the same is true

for time interactions with breast feeding and urban place of residence.

5.3.2 Epilepsy Data

We analyze the epilepsy data, introduced in Section 2.4. Let Yij represent the number

of epileptic seizures that patient i experiences during week j of the follow-up period.

Also, let tij be the time-point at which Yij has been recorded. Consider the combined

model (3.16)–(7.3), with parameterization similar to the one in Molenberghs et al.

(2010), but now accounting for zero inflation, assuming that counts are generated

from a (PN-) process with mean λij :

ln(λij) =

{
(ξ00 + b1i) + ξ01tij if placebo,

(ξ10 + b1i) + ξ11tij if treated.
(5.7)

or from a (PNG) process with mean λij = θijκij :

ln(κij) =

{
(ξ00 + b1i) + ξ01tij if placebo,

(ξ10 + b1i) + ξ11tij if treated,
(5.8)

The zero-inflation probability (πij) is modeled as logit(πij) = γ0 + b2i + γ1tij . The

data are analyzed with the ZI(PNG), ZI(P-G), ZI(PN-), ZI(P--). For the sake of

comparison, also the non-zero-inflated counterparts are fitted. Parameter estimates

and predicted probabilities of zeros are presented in Table 5.3. Clearly, in terms of

likelihood comparison, the zero-inflated versions performed much better, resulting in

a substantial improvement in fit.

The ZI(P-G) is an important improvement relative to the ZI(P--), while much

more improvement is gained in the case of the ZI(PN-). Moreover, the ZI(PNG)

leads to a substantially improved fit. Further, we observe that, omitting either the

overdispersion or the correlation underestimates the predicted probability of zeros,

which becomes worse when both are omitted at the same time. The ZI(PNG), fitted

without random effects in the zero-inflation part, results in -2log-likelihood of 5386.8,

and predicted probability of zeros equal to 0.3271. This implies that inclusion of

random effects in the zero-inflation part tends to have little impact on the predicted

probability of zeros. However, based on likelihood comparison, model fit improves
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considerably. This same phenomenon is also evident in the ZI(PN-) fitted with ran-

dom effects included only in the non-zero count part (-2log-likelihood is 5971.9, and

predicted probability of zeros 0.3112).

None of the zero-inflated models suggests evidence of significance in slope difference

and slope ratio, except for the ZI(P--), where significance is maintained for the slope

difference (p = 0.004). However, the latter, unrealistically, omits correlation and

overdispersion. The zero-inflation regression coefficients can be interpreted as model

coefficients for the proportion of extra zeros, and are statistically significant.

5.4 Simulation Study

In this section, we report on a simulation study set up to examine the bias in es-

timating the regression parameters when dealing with overdispersed, longitudinal

count data with excess zeros. For such data, the bias is likely to result from not

appropriately accounting for the excess zero counts, misspecification of the overdis-

persion, which is a very common situation for count data in a way that the prescribed

mean-variance link is violated and misspecification of the correlation results from the

repeated-measurements nature of the data.

5.4.1 Simulation Setting

Data are generated along a design inspired by the Jimma Infant Study. Age in months,

status of getting medical help, and breast feeding behavior were among the covariates

of interest in the study, and are used in the simulation study as well.

We randomly generated 200 data sets from the zero-inflated combined model for

2000 subjects with 10 measurements per subject. The response vector yi for the

ith subject was generated as a correlated and overdispersed count from a negative-

binomial process subject to zero-inflation. That is, for each subject, Yij ∼ NB(ψij , θ),

where θ = 1 with ψij = (1 + κij/θ)
−1

and where κij = exp {ξ0 + bi + ξ1tij + ξ2Hij}
for i = 1, . . . , 2000 and j = 1, . . . , 10. Further, tij represents the time point at which

the jth measurement is recorded for the ith subject andHij denotes whether or not the

ith subject is given any medication help at the jth measurement occasion, generated

from a Bernoulli process with p = 0.9. Correlation is induced via a subject-specific

random intercept bi generated from a normal distribution with mean 0 and variance

0.8. Then, zero inflation is added by defining the final response vector Y ∗
i to have

components Yij
∗ = (1 − uij)Yij , where the uij are Bernoulli random variables with

parameters πij and logit(πij) = γ0 + γ1tij .
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Three different scenarios were considered for data generation: S1: without excess

zeros; S2: with an excess of zeros of around 20%; S3: with an excess of zeros of

roughly 40%. The corresponding total zero percentages are 48%, 68%, and 88%,

respectively. This was achieved, for each scenario, by appropriately choosing the

zero-inflation coefficients. The true parameter values used to generate the data were

ξ = (1.12, 0.13,−1.89)T . Similarly, for the zero-inflation part, γ = (−1,−1)T , γ =

(1,−0.25)T and γ = (1.8,−0.1)T were used for S1, S2, and S3, respectively.

5.4.2 Simulation Results

The simulated data are analyzed by the ZI(PNG), ZI(P-G), ZI(PN-), and ZI(P--),

as well as by their non-zero-inflated counterparts. Mean, relative bias (rbias) and

predicted probabilities of zero counts are summarized for the three scenarios in Ta-

bles 5.4–7.10, respectively.

Parameter estimates of the ZI(PNG) were in agreement with their true model in

all scenarios. This shows that the different components: zero-inflation, overdispersion,

and correlation, can be well separated in practice, in settings like the ones considered

here. The zero-inflated model converged for almost all simulated sets of data.

Under S1, as shown in Table 5.4, the ZI(PNG) and the (PNG) performed well and

fairly similar in terms of relative bias, except for the intercept ξ0 for which a larger

bias is observed in the (PNG). The percentage of zero counts (48%) is nearly equally

predicted in both cases. But, severe impact starts to emerge in the non zero-inflation

models when excess zero counts are present, but not accounted for, as evidenced in

Tables 7.9 and 7.10. The predicted number of zero counts is largely underestimated

in the non-zero-inflated models. When many zeros are allowed for, as in S3, the effect

is more pronounced in the intercept term and the negative-binomial parameter α as

compared to S2. Moreover, the bias in the standard deviation of the random-effects,

for instance, in the ‘true’ model tends to increase in S3, which gets substantially

higher for models with neglected zero-inflation component, such as the (PNG) and

(PN-).

The impact of omitting the overdispersion is remarkable. This can be clearly

observed, for example, from the considerable increment in the relative bias of the

ZI(PN-). When overdispersion is omitted, the zero-inflation component will try to

recover part of the overdispersion.

When the correlation stemming from the repeated measurements is misspecified,

substantial impact appears in inferences of the ZI(P-G), which gets even worse in

the (P-G), as evidenced quite clearly from the larger relative bias of the intercept
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term. When correlation is omitted from the model, the overdispersion term will try

to recover for this misspecification.

Unlike in S1, the ZI(PNG) significantly beats the (PNG), confirming the impor-

tance of accounting for the excess zeros in addition to the repeated measures nature

and the overdispersion.

We conclude that failure to account for excess zeros, overdispersion, and/or corre-

lation has a substantial impact on bias and predicted probabilities. This was clearly

shown on such key model parameters as the intercept term, the overdispersion pa-

rameter, and the variance of the random effects. All scenarios suggest that the zero-

inflated combined model is the preferred one in terms of relative bias and predicted

probabilities of zeros.

5.5 Discussion

In this chapter, we have described a modeling strategy for a hierarchical count data

where excessive zeros correlation and overdispersion can happen together and assem-

bled in one single model. Our work extends Molenberghs et al. (2010) who combined

gamma and normal random effects to account for overdispersion and correlation. Such

extension to further deal with zero-inflatation provides a parsimonious yet useful ap-

proach. Molenberghs et al. (2007) and Molenberghs et al. (2010), brought together

normal random effects to induce association between repeated Poisson data, and a

gamma distributed random factor in the log-linear predictor to fine-tune the overdis-

persion. Their model produces the standard negative-binomial and Poisson-normal

models as special cases, when there are repeated measures as well as with univariate

outcomes.

In terms of estimation, we have focused on maximum likelihood estimation. This

can be done by integrating over the random effects, either fully analytically, using

the explicit expressions derived, or by combining analytic and numeric techniques.

The latter has been implemented in the SAS procedure NLMIXED, for the Poisson,

binary, and survival cases, and applied to a case study (Molenberghs et al., 2010).

Of course, with the considerations of not only one but multiple sets of random

effects comes the obligation to reflect on the precise nature of such latent structures.

As underscored by Verbeke and Molenberghs (2010), full verification of the adequacy

of a random-effects structure is not possible based on statistical considerations alone,

because there is a many-to-one map from hierarchical models to the implied marginal

model. Of course, this should not stop the user from considering such models, but
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rather issues a word of caution.

Two real data sets with count outcome characterized by zero-inflation, overdis-

persion and correlation features were studied, one with higher proportion of zeros

(Jimma Infant Growth Study) and another with moderate zero percentages (Epilepsy

Study). Both case studies suggest that the model assembling all these features at once

is the most preferred one. In addition, a simulation study was conducted to further

investigate the impact of omitting each or a combination of zero-inflation, overdisper-

sion and correlation. We learned that omitting such features, while actually preset,

introduced considerable bias in parameter estimates and hence may lead to incorrect

inferences.
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Table 5.1: Jimma Infant Growth Study. Parameter estimates and standard errors for the regression coefficients in (P--), (P-G), (PN-), and

(PNG).

(P--) (PN-) (P-G) (PNG)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 3.4198(0.0648) 2.0652(0.0744) 3.6443(0.3573) 5.7541(0.4567)

Rural ξ1 0.2209(0.0229) 0.2209(0.0291) 0.1674(0.0906) −0.0733(0.1231)

Urban ξ2 −0.1850(0.0331) −0.5266(0.0399) −0.1185(0.1157) −0.3000(0.1600)

Time ξ3 −0.1477(0.0073) −0.1307(0.0078) −0.1870(0.0425) −0.3287(0.0506)

Gender ξ4 0.1681(0.0182) 0.2478(0.0241) 0.2351(0.0767) 0.2444(0.1041)

Breast feeding ξ5 −1.5710(0.0614) −1.4554(0.0664) −1.8120(0.3066) −3.1539(0.4151)

Help ξ6 −3.2198(0.0196) −2.9870(0.0230) −3.7025(0.1784) −6.1493(0.1896)

Slope Rural ξ7 −0.0085(0.0027) −0.0090(0.0029) −0.0033(0.0139) 0.0182(0.0158)

Slope Urban ξ8 0.0461(0.0037) 0.0542(0.0039) 0.0397(0.0174) 0.0797(0.0202)

Slope Gender ξ9 −0.0011(0.0021) −0.0061(0.0023) −0.0033(0.0114) 0.0063(0.0129)

Slope Breast feeding ξ10 0.1583(0.0069) 0.1441(0.0072) 0.1988(0.0359) 0.3213(0.0453)

Slope Help ξ11 0.1641(0.0023) 0.1324(0.0081) 0.2326(0.0221) 0.3448(0.0219)

Std. dev random effect
√
d — 1.9612(0.0267) — 1.6847(0.0433)

Negative-binomial parameter α — — 0.0641(0.0009) 0.1045(0.0021)

−2log-likelihood 281,126 203,981 91,370 90,274
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Table 5.2: Jimma Infant Growth Study. Parameter estimates and standard errors for the regression coefficients in ZI(P--), ZI(P-G), ZI(PN-),

and ZI(PNG).

ZI(P--) ZI(PN-) ZI(P-G) ZI(PNG)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 2.2148(0.0636) 1.3877(0.1205) 2.2200(0.1571) 2.0388(0.1616)

Rural ξ1 0.2610(0.0252) 0.3880(0.0400) 0.2536(0.0577) 0.2804(0.0586)

Urban ξ2 −0.1049(0.0364) −0.0945(0.0549) −0.1096(0.0842) −0.1301(0.0858)

Time ξ3 −0.0289(0.0072) 0.0331(0.0119) −0.0302(0.0176) −0.0213(0.0178)

Gender ξ4 0.0835(0.0199) 0.1338(0.0321) 0.0797(0.0473) 0.1027(0.0477)

Breast feeding ξ5 −0.3430(0.0593) 0.0644(0.1138) −0.3370(0.1481) −0.3384(0.1528)

Help ξ6 0.2378(0.0211) 0.3312(0.0298) 0.2028(0.0498) 0.2225(0.0507)

Slope Rural ξ7 −0.0047(0.0030) −0.0202(0.0042) −0.0043(0.0071) − 0.0060(0.0070)

Slope Urban ξ8 0.0222(0.0041) 0.0178(0.0059) 0.0223(0.0096) 0.0227(0.0096)

Slope Gender ξ9 −0.0010(0.0023) −0.0100(0.0032) −0.0003(0.0056) − 0.0035(0.0054)

Slope Breast feeding ξ10 0.0372(0.0066) − 0.0011(0.0113) 0.0375(0.0164) 0.0345(0.0167)

Slope Help ξ11 0.0087(0.0059) 0.0019(0.0035) 0.0087(0.0059) 0.0084(0.0058)

Std. dev. non-zero part random effect
√
d1 — 0.5856(0.0075) — 0.4311(0.0112)

Negative-binomial parameter α — — 0.4797(0.0099) 0.2807(0.0086)

Inflation intercept γ0 −6.0412(0.6933) −6.0163(0.5759) −6.0608(0.6255) −6.0241(0.5656)

Inflation Rural γ1 0.1231(0.0396) 0.1222(0.0467) 0.1331(0.0398) 0.1306(0.0469)

Inflation Urban γ2 −0.1380(0.0475) −0.1578(0.0569) −0.1368(0.0478) −0.1578(0.0571)

Inflation Time γ3 −0.1835(0.0045) −0.1941(0.0048) −0.1834(0.0045) −0.1942(0.0048)

Inflation Gender γ4 −0.1606(0.0328) −0.1658(0.0388) −0.1582(0.0329) −0.1675(0.0389)

Inflation Breast feeding γ5 0.2056(0.0814) 0.2394(0.0940) 0.1960(0.0821) 0.2285(0.0945)

Inflation Help γ6 9.3894(0.6877) 9.6095(0.5680) 9.3833(0.6192) 9.6145(0.5576)

Std. dev. zero part random effect
√
d2 — 0.7575(0.0333) — 0.7604(0.0335)

Correlation of random effects ρ — −0.0907(0.0402) — −0.1127(0.0566)

−2log-likelihood 100,780 80,555 74,489 73,570
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Table 5.3: Epilepsy Study. Parameter estimates and standard error in ZI(P--), ZI(P-G), ZI(PN-), ZI(PNG), (P--), (P-G), (PN-), and

(PNG).

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept placebo ξ00 0.9467(0.1665) 0.9113(0.1755) 1.2361(0.1100) 1.2594(0.0.1119)

Slope placebo ξ01 −0.0162(0.0075) −0.0248(0.0077) −0.0072(0.0113) −0.0126(0.0111)

Intercept treatment ξ10 0.8361(0.1716) 0.6557(0.1782) 1.3974(0.1098) 1.4750(0.1093)

Slope treatment ξ11 −0.0061(0.0074) −0.0118(0.0075) −0.0219(0.0112) −0.0352(0.0101)

Negative-binomial parameter α1 0.2449(0.0253) 2.4640(0.2113) 1.7874(0.1004) 0.5274(0.0255)

Std. dev. non-zero part random effect
√
d1 0.9974(0.0854) 1.0625(0.0871) − −

Inflation intercept γ0 −4.5813(0.6405) − −7.1064(1.3344) −
Inflation slope γ1 0.0921(0.0339) − 0.2921(0.0655) −
Std. dev. zero part random effect

√
d2 2.5327(0.4396) - − −

Correlation of random effects ρ −0.0961(0.1534) − − −
Predicted prob. zeros 0.3522 0.3206 0.1849 0.1583

−2log-likelihood 5317.9 5417.0 6318.9 6326.1

ZI(PN-) (PN-) ZI(P--) (P--)

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept placebo ξ00 0.9027(0.1552) 0.8179(0.1677) 1.4205(0.0439) 1.2662(0.0424)

Slope placebo ξ01 −0.0042(0.0047) −0.0143(0.0044) 0.0061(0.0045) −0.0134(0.0043)

Intercept treatment ξ10 0.9078(0.1590) 0.6475(0.1701) 1.7608(0.0402) 1.4531(0.0383)

Slope treatment ξ11 −0.0074(0.0045) −0.0120(0.0043) −0.0153(0.0041) −0.0328(0.0038)

Std. dev. non-zero part random effect
√
d1 0.9713(0.0824) 1.0755(0.0857) − −

Inflation intercept γ0 −3.7123(0.5003) − −1.2879(0.1203) −
Inflation slope γ1 0.0952(0.0249) − 0.0593(0.0109) −
Std. dev. zero part random effect

√
d2 2.2215(0.3434) − − −

Correlation of random effects ρ −0.1541(0.1574) − − −
Predicted prob. zeros 0.3384 0.2627 0.3316 0.0459

−2log-likelihood 5845.1 6271.9 9760 11590
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Table 5.4: Simulation study under scenario S1. Mean, standard error, and relative bias of the parameter estimates in ZI(PNG), ZI(P-G),

ZI(PN-), ZI(P--), and its non-zero-inflated counterparts.

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.068(0.003) 0.046 0.991(0.004) 0.115 1.277(0.003) 0.139 2.404(0.005) 1.147

Time ξ1 0.13 0.125(0.001) 0.040 0.136(0.001) 0.046 0.125(0.001) 0.040 0.133(0.001) 0.026

Help ξ2 −1.89 −1.794(0.002) 0.051 −1.796(0.002) 0.049 −1.705(0.002) 0.098 −1.708(0.002) 0.096

Negative-binomial parameter α 1.00 0.953(0.002) 0.047 0.995(0.002) 0.005 1.774(0.003) 0.774 0.552(0.001) 0.448

Std. dev random effect
√
d 0.80 0.780(0.001) 0.025 0.779(0.001) 0.026 − − − −

Inflation intercept γ0 −1.00 −0.856(0.099) 0.104 − − −0.265(0.123) 0.725 − −
Inflation time γ1 −1.00 −1.049(0.098) 0.049 − − −1.698(0.122) 0.687 − −
Predicted prob. zeros 0.48 0.493 0.481 0.359 0.291

Frequency of convergence 199 200 200 200

ZI(PN-) (P-N) ZI(P--) (P--)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.216(0.003) 0.086 0.892(0.003) 0.204 1.661(0.003) 0.483 1.250(0.003) 0.116

Time ξ1 0.13 0.101(0.001) 0.225 0.127(0.001) 0.026 0.089(0.001) 0.318 0.124(0.001) 0.043

Help ξ2 −1.89 −1.467(0.002) 0.224 −1.693(0.002) 0.104 −1.275(0.002) 0.326 −1.682(0.002) 0.109

Std. dev random effect
√
d 0.80 0.796(0.001) 0.005 0.861(0.001) 0.076 − − − −

Inflation intercept γ0 −1.00 −0.386(0.005) 0.614 − − 0.247(0.003) 1.247 − −
Inflation time γ1 −.00 −0.094(0.001) 0.906 − − −0.094(0.001) 0.906 − −
Predicted prob. zeros 0.48 0.473 0.365 0.483 0.255

Frequency of convergence 200 200 200 200
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Table 5.5: Simulation study under scenario S2. Mean, standard error, and relative bias of the parameter estimates in ZI(PNG), ZI(P-G),

ZI(PN-), ZI(P--), and its non-zero-inflated counterparts.

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.079(0.004) 0.037 1.833(0.005) 0.637 1.089(0.005) 0.027 2.796(0.006) 1.497

Time ξ1 0.13 0.123(0.001) 0.052 0.239(0.001) 0.839 0.125(0.001) 0.040 0.225(0.001) 0.730

Help ξ2 −1.89 −1.766(0.003) 0.066 −1.776(0.003) 0.060 −1.671(0.003) 0.116 −1.703(0.003) 0.099

Negative-binomial parameter α 1.00 0.908(0.004) 0.093 0.372(0.001) 0.628 2.379(0.008) 1.379 0.266(0.001) 0.734

Std. dev random effect
√
d 0.80 0.772(0.002) 0.035 0.754(0.002) 0.058 − − − −

Inflation intercept γ0 1.00 1.056(0.005) 0.056 − − 0.993(0.006) 0.003 − −
Inflation time γ1 −0.25 −0.246(0.001) 0.014 − − −0.354(0.001) 0.416 − −
Predicted prob. zeros 0.68 0.696 0.398 0.549 0.367

Frequency of convergence 200 200 200 200

ZI(PN-) (P-N) ZI(P--) (P--)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.183(0.004) 0.056 −0.235(0.004) 1.210 1.666(0.004) 0.488 0.215(0.004) 0.808

Time ξ1 0.13 0.099(0.001) 0.235 0.212(0.001) 0.633 0.087(0.001) 0.329 0.210(0.001) 0.613

Help ξ2 −1.89 −1.444(0.003) 0.236 −1.679(0.003) 0.112 −1.261(0.002) 0.420 −1.664(0.003) 0.120

Std. dev random effect
√
d 0.80 0.834(0.001) 0.042 0.976(0.001) 0.220 − − − −

Inflation intercept γ0 1.00 1.473(0.004) 0.473 − − 1.816(0.003) 0.816 − −
Inflation time γ1 −0.25 −0.209(0.001) 0.163 − − −0.202(0.001) 0.193 − −
Predicted prob. zeros 0.68 0.677 0.520 0.682 0.422

Frequency of convergence 200 200 200 200
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Table 5.6: Simulation study under scenario S3. Mean, standard error, and relative bias of the parameter estimates in ZI(PNG), ZI(P-G),

ZI(PN-), ZI(P--), and its non-zero-inflated counterparts.

ZI(PNG) (PNG) ZI(P-G) (P-G)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.076(0.007) 0.039 4.005(0.009) 2.828 0.980(0.009) 0.125 4.494(0.008) 3.012

Time ξ1 0.13 0.125(0.001) 0.042 0.216(0.001) 0.658 0.121(0.001) 0.070 0.202(0.001) 0.554

Help ξ2 −1.89 −1.757(0.005) 0.070 −1.765(0.005) 0.067 −1.676(0.005) 0.113 −1.701(0.005) 0.100

Negative-binomial parameter α 1.00 0.887(0.007) 0.112 0.088(0.001) 0.912 3.041(0.034) 2.041 0.076(0.001) 0.924

Std. dev random effect
√
d 0.80 0.765(0.003) 0.043 0.609(0.004) 0.239 − − − −

Inflation intercept γ0 1.80 1.862(0.006) 0.034 − − 1.487(0.009) 0.174 − −
Inflation time γ1 −0.10 −0.102(0.001) 0.017 − − −0.118(0.001) 0.177 − −
Predicted prob. zeros 0.88 0.884 0.590 0.807 0.604

Frequency of convergence 200 200 200 200

ZI(PN-) (P-N) ZI(P--) (P--)

Effect Parameter True mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias mean (s.e.) rbias

Intercept ξ0 1.12 1.051(0.008) 0.061 −1.515(0.007) 2.353 1.660(0.006) 0.482 −0.631(0.007) 1.563

Time ξ1 0.13 0.104(0.001) 0.203 0.195(0.001) 0.502 0.088(0.001) 0.323 0.193(0.001) 0.487

Help ξ2 −1.89 −1.473(0.005) 0.221 −1.669(0.005) 0.117 −1.257(0.004) 0.335 −1.661(0.005) 0.121

Std. dev random effect
√
d 0.80 0.941(0.002) 0.176 1.416(0.002) 0.769 − − − −

Inflation intercept γ0 1.80 2.205(0.005) 0.225 − − 2.629(0.004) 0.382 − −
Inflation time γ1 −0.10 −0.112(0.001) 0.122 − − −0.127(0.001) 0.271 − −
Predicted prob. zeros 0.88 0.876 0.756 0.877 0.675

Frequency of convergence 200 200 200 200





Chapter 6
Marginalized Multilevel Hurdle and

Zero-Inflated Models for

Overdispersed and Correlated Count

Data with Excess Zeros

In statistical modeling of hierarchical non-Gaussian outcomes, such as clustered or

longitudinal count data, generalized linear mixed models (GLMMs) are very popu-

lar (Engel and Keen, 1992; Breslow and Clayton, 1993; Wolfinger and O’Connell,

1993; Molenberghs and Verbeke, 2005). In most practical settings, such hierarchically

organized count data are characterized not only by association, resulting from the re-

peated measures per subject or clustering of observations with in a subject, but also

by overdispersion and excessive zero features. In Chapter 5, a ZI(PNG) model was

studied to simultaneously deal with correlation, overdispersion and excessive zeros

simultaneously. In this modeling strategy, we assume that zeros may come from two

sources: from a point-mass, which generates only zeros, and from a Poisson-normal-

gamma model, where counts are generated from a Poisson-normal-gammaprocess. An

alternative route to deal with excessive zeros in hierarchcial and overdispersed count

data is to combine the hurdle idea of Mullahy (1986) with (PNG) model of Molen-

berghs et al. (2010). The hurdle specification is based on a two-part conditional model,

using a zero mass and a truncated-at-zero count distribution. Adjustment based on

69
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Chapter 6. Marginalized Multilevel Hurdle and Zero-Inflated Models for

Overdispersed and Correlated Count Data with Excess Zeros

the hurdle specification proceeds by using a truncated Poisson-normal-gamma process

for non-zero counts, leading to H(PNG) model as a hurdle counterpart of ZI(PNG)

of Chapter 5.

The GLMM (Engel and Keen, 1992; Breslow and Clayton, 1993; Wolfinger and

O’Connell, 1993; Molenberghs and Verbeke, 2005) and its extention for overdispersion

(Molenberghs et al., 2010) and data hierarchy and zero-inflation (Min and Agresti,

2005) do not automatically provide population averaged interpretation for regression

parameters, while such results are very often needed in practice. A marginalized mul-

tilevel model (MMM) is proposed by Heagerty (1999) and Heagerty and Zeger (2000)

by simultaneously defining a marginal mean and a conditional mean by making use of

so-called connector function, yielding marginally interpretable covariate effects. Iddi

and Molenberghs (2012) extend the the combined modeling concepts of Molenberghs

et al. (2010) with marginalized multilevel model (MMM) idea of Heagerty (1999) and

proposed a marginalized combined model. Furthermore, the connections between

bridge distributions, marginalized multilevel models, and generalized linear mixed

models is explored in Molenberghs et al. (2013), by placing particular attention on

binary and count data, for several commonly used link function choices.

In this Chapter, we will employ the combined model idea of Molenberghs et al.

(2010) and the marginalized multilevel model of Heagerty (1999), in conjunction with

concepts of hurdle or zero-inflated models, and we will present a marginalized hurdle

combined model as well as a marginalized zero-inflated combined model, as two al-

ternative modeling strategies for overdispersed and correlated count data with excess

zeros. The former was also studied by Lee et al. (2011), where the logit link function

was used for the zero-inflation. We considered both logit and probit link functions,

whereby the latter leads to closed-form expressions. In addition, instead of using only

one of the logit or probit links, we make use of them simultaneously (Griswold and

Zeger, 2004), and specify a logit link for the marginal model, and a probit for the

conditional model, so that the odds ratio interpretation is still retained, while taking

computational advantage of the probit link. Population averaged interpenetration is

possible not only for the positive count component, but also for zero-inflation com-

ponent. This chapter is organized as follows. In Section 6.1, the marginalized version

of H(PNG) model, denoted as MH(PNG) is described, followed by marginalized ZI

version, MZI(PNG) model in Section 6.2, with the estimation technique given in Sec-

tion 6.3. The MH(PNG) and MZI(PNG) and their special cases, are applied and

compared based on three real data sets, namely: the An. mosquito data sets collected

through IRC and CDC techniques, and the Jimma Longitudinal Family Survey of

Youth, as described in Sections 2.2.1, 2.2.2, 2.3, respectively, with the results pre-
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sented in Section 6.4. Finally, some concluding remarks are provided in Section 6.5.

The contribution of this chapter is based on Kassahun et al. (2014b).

6.1 Marginalized Hurdle Combined Model

Merging ideas of the combined model of (Molenberghs et al., 2010) and the hurdle

model (Mullahy, 1986), a two-part hurdle combined model is considered to deal with

zero-inflated overdispersed clustered count data. While the first part models only

the zero state with probability πc
ij or πm

ij , the second part handles non-zero counts,

which are assumed to follow a truncated-at-zero probability mass function, such as,

in this case, a truncated Poisson-normal-gamma model. The superscripts c and m

are used to emphasize the conditional and marginal nature of the specifications to

follow. The zero-inflation component πc
ij is modeled using a Bernoulli model, through

an appropriate link function, such as the probit or logit, potentially containing known

regressors as well as random effects. For clustered binary data, it is well documented

that, unlike the logit link, the probit link leads to closed form solutions (Zeger et al.,

1988; Griswold and Zeger, 2004; Molenberghs et al., 2010). This leads to a conditional

model specified as:

p(Yij = yij |bi, ξ, θij , φ, πc
ij) =





πc
ij if yij = 0,

(1− πc
ij)

fi(yij|λc
ij ,θij)

1−fi(0|λc
ij
,θij)

if yij > 0,

where πc
ij = Φ(∆ij1 + z′

ij1bi1), λ
c
ij = θij exp(∆ij2 + z′

ij2bi2), bi = (bi1, bi2)
′ ∼

N(0, D), and θij ∼ Gamma(α, β). Further, ∆ij1 and ∆ij2 are connector functions of

the zero part and the positive count part, corresponding to the random vectors bi1

and bi2 and regressors zij1 and zij2, respectively. The marginal specification is

p(Yij = yij) =





πm
ij if yij = 0,

(1− πm
ij )

fi(yij |λm
ij )

1−fi(0|λm
ij
) if yij > 0,

where logit(πm
ij ) = x′

ij1γ
m and ln(λmij ) = x′

ij2ξ
m, with known regressors xij1 and xij2

and a vector of zero-inflation coefficients γ and ξ. Based on Griswold and Zeger (2004)

and Iddi and Molenberghs (2012), specifying a logit link for the marginal model and

a probit link for the conditional model leads to computational advantages from the

probit-normal relationship, with the marginal parameters still having the odds-ratio

interpretation. Hence, the connector functions, as shown in Iddi and Molenberghs

(2012) are as follows. For the logit:

∆ij1ℓ =
√
1 + z′

ij1Dzij1Φ
−1[expit(x′

ij1γ
m)],
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with

expit(x′
ij1γ

m) =

∫
Φ(∆ij1 + z′

ij1bi1)f(bi1)dbi1;

for the probit:

∆ij1p =
√
1 + z′

ij1Dzij1Φ
−1[Φ(x′

ij1γ
m)].

In line with Section 3.6, the connector function for the positive counts part is:

∆ij2 = lnE(θij) + x′
ij2ξ

m − 1

2
z′
ij2Dzij2. (6.1)

In cases where a simple random-intercept model is adequate, i.e., when b1i = b1i,

b2i = b2i, and z1ij = z2ij = 1, D takes the simple form:

D =

(
d21 ρd1d2

ρd1d2 d22

)
. (6.2)

We denote the conditional hurdle combined model by H(PNG)ℓ, H(PNG)p, and the

marginal as MH(PNG)ℓ, MH(PNG)p, where the subscripts ‘ℓ’ and ‘p’ refer to the logit

and probit link functions used in the zero inflation part, respectively, and ‘M’ stands

for the marginalized version. Some special cases, such as the MH(PN-)ℓ, M(PNG),

(PNG), M(PN-), and (PN-) immediately follow.

6.2 Marginalized Zero-Inflated Combined Model

As a counterpart to the hurdle formulation of the previous section, the zero-inflated

model assumes that data are generated from two processes as a mixture, in line with

Section 3.7. Recall that the first process generates only zeros, while count observations

are generated from the second (Lambert, 1992; Greene, 1994). These ideas can be

well extended to the combined model of Molenberghs et al. (2010) from Section 3.5,

assuming a mixing probability πc
ij of zeros from process one and counts from a Poisson-

gamma-normal process with probability 1 − πc
ij . This leads to a conditional zero-

inflated combined model given by:

p(Yij = yij |bi, ξ, θij , φ, πc
ij) =

{
πc
ij + (1 − πc

ij)fi(0|λcij , θij) if yij = 0,

(1− πc
ij)fi(yij |λcij , θij) if yij > 0.

The marginal formulation is:

p(Yij = yij) =

{
πm
ij + (1− πm

ij )fi(0|λmij ) if yij = 0,

(1− πm
ij )fi(yij |λmij ) if yij > 0,
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where πc
ij , λ

c
ij , bi, π

m
ij , λ

m
ij , as well as their corresponding connector functions, ∆ij1ℓ,

∆ij1p and ∆ij2, have similar expressions as those presented in Section 6.1.

The notational convention employed is as outlined at the end of the previous

section, with now ‘ZI’ replacing ‘H’. For example, the conditional zero-inflated com-

bined model is denoted as ZI(PNG)ℓ or ZI(PNG)p, depending on the first-process link

function used.

6.3 Estimation

Consider first the models with zero-inflation but without marginalization. Then, the

probability resulting from H(PNG)ℓ or H(PNG)p, marginal over θij but still condi-

tional upon the normal random effect bi, is:

f(yij |bi, ξ, θij , φ, πij) = I(yij = 0)πc
ij + (1− πc

ij)g1(bi), (6.3)

where

g1(bi) =

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κcijβj

)yij

·
(

1

1 + κcijβj

)αj

κcij
yij · 1

1−
(

1
1+κc

ij
βj

)αj
,

either

logit(πc
ij) = x′

1ijγ + z′
ij1bi1 (6.4)

or

probit(πc
ij) = x′

1ijγ + z′
ij1bi1, (6.5)

and

κcij = exp
(
x′
2ijξ + z′

ij2bi2
)
. (6.6)

The likelihood function for H(PNG) is given by:

L(ξ,γ, D, φ) =

N∏

i=1

∫ ni∏

j=1

πc
ij(bi)

I(yij=0)

{
(1− πc

ij)(bi)g1(bi)

}1−I(yij=0)

(6.7)

×φ(bi|D)dbi.

Because (6.7) does not have a closed-form solution, we propose the application of

numerical techniques to obtain the maximum likelihood estimates, using the adaptive

Gauss-Hermite quadrature in SAS NLMIXED. Equivalent flexible non-linear mixed

model optimizers can be employed as well, of course.

Turning to the MH(PNG)ℓ or MH(PNG)p, we make use of the connector functions

∆ij1ℓ, ∆ij1p, and/or ∆ij2, as shown in Section 6.1. The above approach for maximum
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likelihood estimation can be used, upon replacing x′
1ijγ with ∆ij1ℓ or ∆ij1p in (6.4)

and (6.5), respectively, and x′
2ijξ with ∆ij2 in (6.6).

For the ZI(PNG)ℓ or ZI(PNG)p, we slightly modify (6.3) to

f(yij |bi, ξ, θij , φ, πij) = I(yij = 0)πc
ij + (1− πc

ij)g2(bi), (6.8)

with likelihood

L(ξ,γ, D, φ) =
N∏

i=1

∫ ni∏

j=1

{
πc
ij(bi) + (1− πij)

c(bi)g3(bi)

}I(yij=0)

×
{
(1 − πc

ij)(bi)g2(bi)

}1−I(yij=0)

φ(bi, D)dbi,

where

g2(bi) =

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κcijβj

)yij

·
(

1

1 + κcijβj

)αj

κcij
yij ,

g3(bi) =

(
1

1 + κcijβj

)αj

.

Here also, it is straightforward to get MZI(PNG)ℓ or MZI(PNG)p, by employing the

connector functions and making similar replacements in πc
ij and κcij , like that in the

hurdle combined model. The SAS implementation for the more general situations are

given in Appendix C.

6.4 Data Analysis

6.4.1 IRC Data

We will analyze the IRC data as described in Section 2.2.1. Let Yij represent the

number of An. gambiae counts for house i during month j of the follow-up period.

Also, let tij be the time point (months) at which Yij has been measured, tij =

1, 2, . . . ni until at most ni = 32, and sij denote season coded as (1: wet; 0: dry) for

house i during month j. Further, vi is the village of house i coded as (1: at risk; 0:

control). We transformed tij to t′ij = tij/12 (years). The marginal mean model for

the Poisson process is given by

ln(κmij ) = ξ0 + ξ1t
′
ij + ξ2vi + ξ3sij + ξ4t

′
ijvi.

The combined model assuming that counts are generated from a Poisson-normal-

gamma process has mean λcij = θijκij with θij ∼ Gamma(α, 1/α). The marginal
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Table 6.1: IRC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) ZI(PNG)ℓ, (2) MZI(PNG)ℓ with logit link for zero-inflation.

ZI(PNG)ℓ MZI(PNG)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.0085(0.1639) 0.0340(0.1594)

Time ξ1 0.0061(0.0988) 0.0051(0.0983)

Village ξ2 0.9824(0.1688) 0.9851(0.1684)

Season ξ3 2.2418(0.0982) 2.2427(0.0979)

Village×Time ξ4 −0.0524(0.1163) −0.0528(0.1159)

Overdispersion α 1.4472(0.1126) 1.4390(0.1112)

Std. dev. random intercept count d1 0.2856(0.0677) 0.2840(0.0669)

Inflation intercept γ0 2.2771(0.1634) 2.0152(0.1475)

Inflation time γ1 0.0172(0.0568) 0.0118(0.0495)

Inflation village γ2 −1.0145(0.1486) −0.8975(0.1287)

Inflation season γ3 −1.3816(0.1039) −1.2174(0.0917)

Std. dev. random intercept inflation d2 0.8597(0.0814) 0.5107(0.0471)

Corr. random effects ρ −0.4583(0.2058) −0.4430(0.2084)

−2log-likelihood 12,817 12,815

AIC 12,843 12,841

model for the zero-inflation probability is modeled as a function of time, village, and

season:

F (πm
ij ) = γ0 + γ1t

′
ij + γ2vi + γ3sij ,

where F (·) is either the logit or probit function. The corresponding conditional models

introduce a normally distributed random intercept, b1i in the Poisson model, and b2i

in the binomial model, such that the random effects are assumed jointly normal and

possibly correlated ρ, the variance-covariance matrix is given by (6.2).

The data were first analyzed using the zero-inflation models ZI(PNG)ℓ, ZI(PNG)p,

MZI(PNG)ℓ, and MZI(PNG)p. Results are shown in Tables 6.1 and 6.2. Comparing

ZI(PNG)ℓ and MZI(PNG)ℓ as well as ZI(PNG)p and MZI(PNG)p, parameter esti-

mates and the corresponding standard errors of the count part appear similar except

for slight differences in ξ0. This follows from the nature of the connector function.
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Table 6.2: IRC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) ZI(PNG)p, (2) MZI(PNG)p with probit link for zero-inflation.

ZI(PNG)p MZI(PNG)p

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.0080(0.1640) 0.0338(0.1598)

Time ξ1 0.0098(0.0989) 0.0090(0.0989)

Village ξ2 0.9816(0.1687) 0.9797(0.1687)

Season ξ3 2.2426(0.0983) 2.2423(0.0983)

Village×Time ξ4 −0.0553(0.1164) −0.0541(0.1164)

Overdispersion α 1.4442(0.1119) 1.4441(0.1119)

Std. dev. random intercept count d1 0.2835(0.0669) 0.2834(0.0669)

Inflation intercept γ0 1.3387(0.0936) 1.1917(0.0833)

Inflation time γ1 0.0152(0.0340) 0.0135(0.0303)

Inflation village γ2 −0.5954(0.0879) −0.5300(0.0772)

Inflation season γ3 −0.8099(0.0592) −0.7210(0.0527)

Std. dev. random intercept inflation d2 0.5119(0.0474) 0.5120(0.0474)

Corr. random effects ρ −0.4394(0.2097) −0.4388(0.2098)

−2log-likelihood 12,817 12,817

AIC 12,843 12,843

However, estimates corresponding to the zero-inflation component, such as γ0, γ2, γ3

and d2 show some difference. This is expected due to the change of link function. For

example, the ratio of the logit-based parameters and their probit-based counterparts

is almost everywhere close to 16/15 · π/
√
3 ≃ 1.70 (Molenberghs and Verbeke, 2005).

Further, the marginalized counterparts, for zero-inflation, employ a combination of

logit and probit links, explaining that marginalization induces differences in the ZI

portion of the models. ZI(PNG)ℓ, ZI(PNG)p, MZI(PNG)ℓ, and MZI(PNG)p produce

very similar fits, as follows from both the deviance and the AIC. While models are

formally non-nested, they have the same number of parameters, so the deviance of-

fers some indication as well. As expected, the zero-inflation estimates are affected by

the link function used. Observe that ZI(PNG)p and MZI(PNG)p yield very similar

estimates for d2, as shown in Table 6.2, which is also true for MZI(PNG)ℓ, but the
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corresponding estimate in ZI(PNG)ℓ is relatively larger as given in Table 6.1. This

same phenomenon appears for the correlation parameter ρ. In terms of parameter

significance, all four models give similar results such that all parameters are found to

be significant, except time and village-time interaction in the counts, and time effect

in the zero-inflation. In addition, all four models suggest that standard deviations

of the random intercepts of the positive counts and the excess zeros, overdispersion

parameter, zero-inflation intercept and zero-inflation coefficients of village and season

are statistically significant, implying strong evidence for all phenomena: correlation

stemming from the data hierarchy, overdispersion, and excess zeros beyond what the

(PNG) allows for. In addition, the correlation parameter ρ is negative and statistically

significant across the models, suggesting that the two processes generating counts on

the one hand and merely zeros on the other are in an inverse relationship.

Second, as an alternative modeling strategy, the hurdle models H(PNG)ℓ,

H(PNG)p, MH(PNG)ℓ, and MH(PNG)p were fitted. Results are shown in Tables 6.3

and 6.4. Similar to what was observed for the ZI models, some differences are ob-

served among H(PNG)ℓ and MH(PNG)ℓ as well as among H(PNG)p and MH(PNG)p

in the ZI parameter estimates, while the estimates of the count part remain simi-

lar, except for the intercept. Again, based on AIC and deviance, all four models fit

the data equivalently and suggest strong evidence of correlation, overdispersion and

excess zeros. Also here, ρ is negative.

While few new messages emanate from the hurdle models next to their ZI counter-

parts, or vice versa, the agreement is actually comforting and can be seen as a simple

form of sensitivity analysis. That said, there is a small reduction in fit statistics in the

hurdle version, which evidently may not always be the case. Parameter estimates as

well as the associated inferences for the count process are similar, except for a small

difference in the value of ξ0. However, estimates for the zero-inflation part, such as

γ0, γ2, γ3, and d2 show some differences, even with the same link function, which

stems from the fact that the ZI models combine a model for the count with an atom

at zero as a mixture, while the hurdle model separately handles the zero observations

and the positive counts. Min and Agresti (2005) showed that the hurdle model works

well both in zero-inflation and zero-deflation settings, while zero-inflated models are

suitable only for handling zero-inflation. These authors further indicated that, when

a data set is subject to zero-deflation at a level of a factor, the estimates of the corre-

sponding parameter may be unstable in ZI models. To investigate this, we make use

of a special form of the hurdle model, also known as the zero-altered model, which

requires the same covariates as well as the same distributional forms in the two parts,
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as suggested by Min and Agresti (2005). The model is:

ln[−ln(1 − πij)] = a1 + a2(ξ0 + ξ1tij + ξ2vi + ξ3sij),

ln(κmij ) = ξ0 + ξ1tij + ξ2vi + ξ3sij .

By setting a2 = 1, and testing whether a1 = 0, one can test for zero-inflation. If a1 < 0

(a1 > 0), then the data are zero-inflated (zero-deflated). Fitting the zero-altered

combined model shows strong evidence of zero-inflation (a1 = −2.0771, likelihood

ratio test statistic 13 on 1 degree of freedom, p < 0.001). On the other hand, Todem

et al. (2012) propose an extension of the ZI models to handle both zero-inflation

and deflation. Details can be found in Todem et al. (2012). Briefly, in our context,

the proposal is based on a suitable transformation of πij to, say, ζij of the form

πij = (ζij − f(0))(1− f(0))
−1

, where f is a Poisson-normal-gamma model, and ζij

is specified as function of covariates, ζij = (1 + αexp(x′
ijγ))

−1

α , and α, xij and γ as

before. We applied this extended zero-modified model on the IRC data to test for zero-

inflation. Again, strong evidence of zero-inflation results (a1 = −2.6901, likelihood

ratio test statistic 186 on 1 degree of freedom, p < 0.001). Todem et al. (2012) noted

that the mixing probability πij is allowed to take both positive (zero-inflation) and

negative (zero-deflation) values only when specified marginally, and negative πij do

not allow for hierarchical interpretation of the mixture model, as πij have a probability

definition in the latter. In general and in line with common wisdom, it is suggested

that when choosing among zero-inflated and hurdle models, in addition to statistical

fit criteria, it is prudent to reflect upon the data generation processes. In this regard,

if zeros are expected from both parts, then the zero-inflated model could be preferred

(Neelon et al., 2010). Min and Agresti (2005) listed a number of advantages of the

hurdle model: it works well both in zero-inflation and zero-deflation situations, as

stated above; it can be used to test for evidence of zero-inflation; it is easier to fit as

it separately handles the count and the zero processes.

Generally, the marginalized models led to estimates relatively superior in precision.

The MZI(PNG)ℓ and MH(PNG)ℓ models, as given in Tables 6.1 and 6.3, respectively,

provide marginally meaningful estimates, with the additional advantage of an odds-

ratio interpretation for the ZI parameters. Further, MH(PNG)ℓ results in the smallest

AIC and deviance values, though differences are modest. The MH(PNG)ℓ model as

shown in Table 6.3 suggests that villages at risk had higher expected An. gambaie

log-counts (1.0553, p < 0.0001) as compared to the controls. Further, log-counts in

the wet season were higher than in the dry season (2.2496, p < 0.0001). However,

no statistically significant association was observed for time effect (p = 0.5703); the

same is true for the village-time interaction (p = 0.4109). The zero-inflation estimate
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Table 6.3: IRC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) H(PNG)ℓ, (2) MH(PNG)ℓ with logit link for zero-inflation.

H(PNG)ℓ MH(PNG)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.0823(0.1666) −0.0423(0.1626)

Time ξ1 0.0548(0.0987) 0.0561(0.0986)

Village ξ2 1.0548(0.1704) 1.0553(0.1703)

Season ξ3 2.2479(0.0970) 2.2496(0.0972)

Village×Time ξ4 −0.0958(0.1182) −0.0974(0.1181)

Overdispersion α 1.4343(0.1105) 1.4348(0.1105)

Std. dev. random intercept count d1 0.2888(0.0687) 0.2878(0.0686)

Inflation intercept γ0 2.9793(0.1402) 2.6807(0.1303)

Inflation time γ1 0.0094(0.0488) 0.0067(0.0438)

Inflation village γ2 −1.1114(0.1361) −0.9970(0.1205)

Inflation season γ3 −1.7893(0.0841) −1.6221(0.0783)

Std. dev. random intercept inflation d2 0.8006(0.0707) 0.4630(0.0401)

Corr. random effects ρ −0.4732(0.1882) −0.4708(0.1890)

−2log-likelihood 12,814 12,810

AIC 12,840 12,836

corresponding to village (γ̂2 = −0.9970, p < 0.0001) with exp(γ̂2) = 0.37 implies

that the odds of zeros in the at-risk villages is nearly one third of what is expected

in the control villages. In addition, it was found that the odds of zeros in the wet

season is much smaller than that of the dry season (γ̂3 = −1.6221, p < 0.0001). The

correlation of the random effects is negative and significant (ρ̂ = −0.4708, p = 0.0137),

suggesting the presence of a strong inverse relationship between the count and zero-

inflation processes. Further, both processes are influenced by covariates such as season

and village, differently, in such a way that parameter estimates corresponding to

the positive counts are positive in sign, while negative for the zero-inflation part.

Altogether, these results suggest that village type (at risk versus control), classified

based on distance from the dam and season (wet versus dry), belong to the potential

operating factors affecting An. gambaie density.

Two special cases were considered for comparison’s purpose. These are (PN-)
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Table 6.4: IRC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) H(PNG)p, (2) MH(PNG)p with probit link for zero-inflation.

H(PNG)p MH(PNG)p

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.0851(0.1670) −0.0435(0.1627)

Time ξ1 0.0560(0.0986) 0.0560(0.0986)

Village ξ2 1.0566(0.1704) 1.0566(0.1704)

Season ξ3 2.2499(0.0972) 2.2498(0.0972)

Village×Time ξ4 −0.0973(0.1181) −0.0973(0.1181)

Overdispersion α 1.4347(0.1105) 1.4347(0.1105)

Std. dev. random intercept count d1 0.2881(0.0686) 0.2881(0.0686)

Inflation intercept γ0 1.7058(0.0780) 1.5473(0.0697)

Inflation time γ1 0.0144(0.0286) 0.0131(0.0259)

Inflation village γ2 −0.6358(0.0785) −0.5767(0.0702)

Inflation season γ3 −1.0208(0.0463) −0.9260(0.0426)

Std. dev. random intercept inflation d2 0.4639(0.0402) 0.4639(0.0402)

Corr. random effects ρ −0.4742(0.1888) −0.4742(0.1888)

−2log-likelihood 12,812 12,812

AIC 12,838 12,838

and (PNG), with their marginalized counterparts; recall that the first omits overdis-

persion and ZI, while the second omits ZI only. Results are shown in Tables 6.5

and 6.6. Clearly, we observe that both models fit the data poorly as compared to

the MZI(PNG)ℓ, MZI(PNG)p, MH(PNG)ℓ and MH(PNG)p models. Because of the

marginal interpretation, M(PN-) and M(PNG) can be compared to MH(PNG)ℓ. We

see that both fixed-effect and variance component estimates were severely affected due

to the simplified models’ misspecification; evidently also, inferences are affected. For

example, the village effect in M(PN-) is 2.6861 (p < 0.0001), which is above twofold

of the estimate from MH(PNG)ℓ. In addition, the intercept ξ0, season effect ξ3, and

standard deviation of the random effects d1 are highly affected. We observe similar

issues for the M(PNG), even though it is more general than the M(PN-). Impact is

severe on ξ0, ξ2, ξ3, and d1. As a result, based on M(PNG), ξ0 is highly significant,

and based on M(PN-), ξ0 are ξ1 are highly significant, which was not the case with the
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Table 6.5: IRC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) (PNG), (2) M(PNG).

(PNG) M(PNG)

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −2.3547(0.2113) −1.8221(0.2051)

Time ξ1 −0.1320(0.1095) −0.1321(0.1095)

Village ξ2 1.6262(0.2592) 1.6264(0.2592)

Season ξ3 3.2641(0.1030) 3.2640(0.1030)

Village×Time ξ4 0.0783(0.1436) 0.0782(0.1436)

Std. dev. random intercept count d1 1.0320(0.1086) 1.0319(0.1085)

Overdispersion α 7.7575(0.3102) 7.7567(0.3102)

−2log-likelihood 13,188 13,188

AIC 13,202 13,202

MZI(PNG)ℓ and MH(PNG)ℓ. Further, the estimate of the overdispersion parameter

(α̂ = 7.7567) in the M(PNG) is relatively large as compared to the corresponding value

of MH(PNG)ℓ, underscoring strong zero-inflation present in the data. Because of this,

α is trying to recover from this misspecification. In addition, from Table 6.6, param-

eter estimates of GEE are affected as a result of these misspecification, and appear

similar to the corresponding estimates of M(PN-), except ξ2, though the estimates in

M(PN-) are superior in precision. Altogether, these results imply that when dealing

with longitudinal count data where correlation, overdispersion, and excess zeros are

likely to appear at the same time, failure to model these three features simultaneously

can have a serious impact on the marginal parameter estimates. Inevitably, incorrect

inferences may follow.

Predicted probability of zeros among the control and at risk villages is computed

for (PN-); M(PNG); ZI(PNG)ℓ, MZI(PNG)ℓ, ZI(PNG)p, MZI(PNG)p; H(PNG)ℓ,

MH(PNG)ℓ, H(PNG)p, MHPNG)p. The Observed percentage of zeros and the ones

predicted by the aforementioned models are summarized in Table 6.7. Clearly, the

hurdle versions lead to predicted probabilities almost the same as the observed ones.

The ZI versions are also doing well, though the zero percentages are slightly under

predicted. These results, once again, imply that the hurdle models are doing better

in these data, in line with what has been suggested by the model fit statistics. For
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Table 6.6: IRC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) (PN-), (2) M(PN-), (3) Generalized estimating equations (GEE).

(PN-) M(PN-)

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −3.1636(0.1321) −2.1254(0.1739)

Time ξ1 0.0484(0.0189) 0.0484(0.0189)

Village ξ2 2.6862(0.0926) 2.6861(0.0926)

Season ξ3 3.0704(0.0331) 3.0704(0.0331)

Village×Time ξ4 −0.0231(0.0212) −0.0232(0.0212)

Std. dev. random intercept count d1 1.4409(0.0943) 1.4410(0.0943)

−2log-likelihood 53,791 53,791

AIC 53,803 53,803

GEE

Effect Parameter Estimate (s.e.)

Intercept ξ0 −2.0809(0.1836)

Time ξ1 0.0763(0.0635)

Village ξ2 1.6040(0.1722)

Season ξ3 3.0716(0.1144)

Village×Time ξ4 −0.0588(0.0747)

(PN-) and M(PNG), both of which ignore excessive zeros, the percentage of zeros are

poorly predicted.

The observed and predicted percentage of zeros by MH(PNG)ℓ model and

MZI(PNG)ℓ model versus month of collection are displayed in Figure 6.1, and for

M(PNG) Model and M(PN-) Model, are plotted in Figure 6.3. Clearly, MH(PNG)ℓ

model and MZI(PNG)ℓ model behave very similar and predict percentage of zeros

well. This same phenomenon also holds true for MH(PNG)ℓ model and MZI(PNG)ℓ

model, as shown in Figure 6.2. However, M(PNG) model and M(PN-) model predict

very poorly in such a way that the percentages of zeros are highly under predicted.

Table 6.8 shows predicted mean and standard deviation by M(PN-), M(PNG),

MZI(PNG)ℓ with logit link for zero-inflation, MZI(PNG)p with probit link for zero-

inflation, MH(PNG)ℓ with logit link for zero-inflation, MHPNG)p with probit link for
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Table 6.7: IRC Data. Observed and Predicted Probability of Zeros in M(PN-); M(PNG);

ZI(PNG)ℓ, MZI(PNG)ℓ; ZI(PNG)p, MZI(PNG)p; H(PNG)ℓ, MH(PNG)ℓ; H(PNG)p,

MHPNG)p.

control at risk

Model observed predicted observed predicted

M(PN-) 83.6 58.0503 69.2 32.3362

M(PNG) 83.6 55.5497 69.2 34.6017

ZI(PNG)ℓ 83.6 81.9047 69.2 66.4544

MZI(PNG)ℓ 83.6 82.0633 69.2 66.6333

ZI(PNG)p 83.6 81.9591 69.2 66.6191

MZI(PNG)p 83.6 81.9600 69.2 66.6193

H(PNG)ℓ 83.6 83.8038 69.2 69.3673

MH(PNG)ℓ 83.6 83.9369 69.2 69.5185

H(PNG)p 83.6 83.8615 69.2 69.5688

MH(PNG)p 83.6 83.8615 69.2 69.5691

zero-inflation. Clearly, M(PN-) and M(PNG) over predict the mean, especially in the

at risk village. This is likely because these models under predict zeros, which in turn

will affect the mean. The hurdle and ZI models predict the mean very well, with the

standard deviations getting smaller as compared to the observed ones. This is mainly

because the extra variability in the observed data is captured by the overdispersion

parameter, the random effects as well as the zero-inflation component.

6.4.2 CDC Data

In this section, results of the CDC An. mosquito data, as described in Section 2.2.2,

are presented. We considered ZI(PNG)ℓ, MZI(PNG)ℓ, ZI(PNG)p, and MZI(PNG)p,

H(PNG)ℓ, MH(PNG)ℓ, H(PNG)p, and MH(PNG)p. With the same model parame-

terizations like Section 6.4.1, the results for ZI(PNG)ℓ, MZI(PNG)ℓ and ZI(PNG)p,

MZI(PNG)p are shown in Table 6.9 and Table 6.10, respectively. Similarly, the results

for H(PNG)ℓ, MH(PNG)ℓ and H(PNG)p, MH(PNG)p are shown in Table 6.11 and Ta-

ble 6.12, respectively. Similar to the IRC data, the hurdle versions resulted in smallest

fit statistics. Again, in line with MH(PNG)ℓ of the IRC data in Table 6.3, the CDC

data in Table 6.11 also suggested that at risk village and wet season resulted in higher
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Figure 6.1: IRC Data. Observed and predicted percentage of zeros by MH(PNG)ℓ and

MZI(PNG)ℓ versus Month of collection.

expected An. gambaie log-counts. These results obtained from two different collection

types, once again, underscore that village type and season are important covariates

of An. gambaie density around the Gilgel-Gibe dam. Furthermore, overdispersion,

standard deviations of the positive counts and excessive zero parts, and correlation

parameters were found to be statistically significant. MH(PNG)ℓ in the CDC data

of Table 6.11 suggest that the intercept, time and time-village interaction were not
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Figure 6.2: IRC Data. Observed and predicted percentage of zeros by MH(PNG)p and

MZI(PNG)p versus Month of collection.

statistically significant, and this is similar to what we have obtained in Table 6.3 of

the IRC data. The only exception is that, while the effect of time in the zero-inflation

part γ1 in the CDC data is significant, this is not the case in the IRC collection.

As shown in Tables 6.13 and 6.14, the special cases, M(PN-) and M(PNG), not only

fit the data poorly relative to MH(PNG)ℓ in Table 6.11 and MH(PNG)p in Table 6.12,

but also the corresponding parameter estimates and the associated inferences are
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Figure 6.3: IRC Data. Observed and predicted percentage of zeros by M(PNG) and M(PN-)

versus Month of collection.

highly affected, similar to the IRC data, as shown in Section 6.4.1. Furthermore,

from Table 6.14, we observe the impact of this misspecification on the GEE estimates

as well, which appear similar with the corresponding estimates of M(PN-) model,

thought the latter led to estimates better in precision. These results, once again,

convey the important message that overdispersion and/or ZI are common phenomenon

of An. mosquito count data, whereby omitting any one of them or both may lead to
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Table 6.8: IRC Data. Observed and Predicted Mean and Standard deviation in M(PN-),

M(PNG), MZI(PNG)ℓ, MZI(PNG)p, MH(PNG)ℓ, MHPNG)p.

control at risk

Mean Std. dev. Mean Std. dev.

Observed 1.616 6.427 6.916 18.760

M(PN-) 1.379 1.300 19.764 18.542

M(PNG) 1.829 1.776 10.183 9.742

MZI(PNG)ℓ 1.516 1.446 6.565 6.136

MZI(PNG)p 1.548 1.482 6.504 6.062

MH(PNG)ℓ 1.513 1.435 6.756 6.349

MH(PNG)p 1.540 1.473 6.685 6.254

erroneous conclusion.

Table 6.15 contains the observed percentage of zeros and the ones predicted

by (PN-); M(PNG); ZI(PNG)ℓ, MZI(PNG)ℓ, ZI(PNG)p, MZI(PNG)p; H(PNG)ℓ,

MH(PNG)ℓ, H(PNG)p, MHPNG)p. In line with results of the IRC data in Table 6.7,

the hurdle versions are doing better than the ZI models, where the zero percentages

are again under predicted in the latter.

6.4.3 Jimma Longitudinal Family Survey of Youth

Turning to the Jimma Longitudinal Family survey of Youth, described in Section 2.3,

let Yij represent the number of days of work for subject i during time j (year). Also,

let tij = 1, 2, 3 be the time point (in years) at which Yij has been measured, aij the

age (in years) of subject i at time j, and si sex (1: male; 0: female). The marginal

mean models for the Poisson process and marginal ZI probability are given by:

ln(κmij ) = ξ0 + ξ1tij + ξ2si + ξ3aij ,

logit(πm
ij ) = γ0 + γ1tij + γ2si + γ3aij .

Results from fitting the ZI(PN-)ℓ and MZI(PN-)ℓ are shown in Table 6.17, and from

the H(PN-)ℓ and MH(PN-)ℓ in Table 6.18. Likely because of lack of overdispersion,

the (PNG) and M(PNG) do not fit well. Further, in contrast to the previous case

study, there is a much smaller number of repeated measures per subject in this case.
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Table 6.9: CDC Data. Parameter estimates (standard errors) for the regression coefficients

in (1) ZI(PNG)ℓ, (2) MZI(PNG)ℓ with logit link for zero-inflation.

ZI(PNG)ℓ MZI(PNG)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.2440(0.3696) −0.1484(0.3635)

Time ξ1 −0.2219(0.1524) −0.2233(0.1525)

Village ξ2 1.0292(0.3629) 1.0261(0.3617)

Season ξ3 1.2046(0.2183) 1.2067(0.2188)

Village×Time ξ4 −0.1291(0.1937) −0.1302(0.1939)

Overdispersion α 2.1351(0.3558) 2.1654(0.3596)

Std. dev. random intercept count d1 0.4533(0.1308) 0.4507(0.1306)

Inflation intercept γ0 2.4515(0.4972) 2.1370(0.4345)

Inflation time γ1 −1.0794(0.2975) −0.9728(0.2668)

Inflation village γ2 −0.4539(0.4839) −0.3488(0.4287)

Inflation season γ3 −2.5478(0.4781) −2.2458(0.4037)

Std. dev. random intercept inflation d2 0.8957(0.2767) 0.5391(0.1629)

Corr. random effects ρ −0.7667(0.3811) −0.7738(0.3786)

−2log-likelihood 2495.2 2494.9

AIC 2521.2 2520.9

This phenomenon is further scrutinized by fitting and comparing ZI(P--)ℓ with ZI(P-

G)ℓ, as well as H(P--)ℓ with H(P-G)ℓ. Estimates of the overdispersion parameter, its

p-value, and model fit statistics are summarized in Table 6.16. The larger p-values

of the overdispersion term as well as the poor model fit statistic of ZI(P-G)ℓ and

H(P-G)ℓ, compared to the ZI(P--)ℓ and H(P--)ℓ, suggest the relative unimportance

of the overdispersion term, once the excess zeros have been taken in to account.

This implies that the normal random effects, combined with either a hurdle or zero-

inflation component, are sufficient to describe the data. The random effects’ standard

deviation change substantially among conditional and marginal models, as can be

seen from both Tables 6.17 and 6.18, leading to non-negligible differences in the zero-

inflation estimates as well. MZI(PNG)ℓ and MH(PNG)ℓ suggest similar inferences

for all covariate effects, such that all were found to be statistically significant, except

for the correlation ρ. We observed that, though the effect of time is positive both in
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Table 6.10: CDC Data. Parameter estimates (standard errors) for the regression coeffi-

cients in (1) ZI(PNG)p, (2) MZI(PNG)p with probit link for zero-inflation.

ZI(PNG)p MZI(PNG)p

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.2430(0.3676) −0.1426(0.3613)

Time ξ1 −0.2244(0.1526) −0.2242(0.1525)

Village ξ2 1.0273(0.3620) 1.0273(0.3620)

Season ξ3 1.2027(0.2177) 1.2029(0.2177)

Village×Time ξ4 −0.1286(0.1939) −0.1288(0.1939)

Overdispersion α 2.1623(0.3553) 2.1611(0.3550)

Std. dev. random intercept count d1 0.4491(0.1304) 0.4489(0.1303)

Inflation intercept γ0 1.4713(0.2877) 1.2954(0.2499)

Inflation time γ1 −0.6499(0.1705) −0.5718(0.1480)

Inflation village γ2 −0.2777(0.2869) −0.2446(0.2517)

Inflation season γ3 −1.5339(0.2722) −1.3503(0.2275)

Std. dev. random intercept inflation d2 0.5375(0.1616) 0.5374(0.1616)

Corr. random effects ρ −0.7824(0.3758) −0.7816(0.3760)

−2log-likelihood 2494.6 2494.6

AIC 2520.6 2520.6

the non-zero counts and the extra zeros, the covariates age and sex have a positive

effect on the non-zero counts model, while negative in the zero-inflation component.

Based on MH(PN-)ℓ, male adolescents have higher involvement in work as compared

to their female counterparts (p = 0.0023) and higher age has a positive effect for work

involvement (p = 0.018).

Next, we omitted the zero-inflation components and considered (PN-) andM(PN-).

Results are shown in Table 6.19. Clearly, considering likelihood and AIC values, these

models fit the data poorly, implying that accommodating for extra zeros cannot be

circumvented. Further, parameter estimates for ξ0, ξ2, ξ3, and d1 are highly affected

by this misspecification.

The observed percentages of zeros among the three years and those predicted

by (PN-); M(PN-); ZI(PN-)ℓ, MZI(PN-)ℓ; H(PN-)ℓ, MH(PN-)ℓ are summarized in

Table 6.20. We observe that both the ZI and hurdle model versions give similar
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Table 6.11: CDC Data. Parameter estimates (standard errors) for the regression coeffi-

cients in (1) H(PNG)ℓ, (2) MH(PNG)ℓ with logit link for zero-inflation.

H(PNG)ℓ MH(PNG)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.5412(0.4766) −0.4783(0.4806)

Time ξ1 −0.1685(0.1950) −0.1688(0.1950)

Village ξ2 1.1770(0.4123) 1.1962(0.4119)

Season ξ3 1.2189(0.2459) 1.2222(0.2460)

Village×Time ξ4 −0.3213(0.2524) −0.3220(0.2524)

Overdispersion α 3.7028(1.5452) 3.7105(1.5558)

Std. dev. random intercept count d1 0.3970(0.1482) 0.3959(0.1492)

Inflation intercept γ0 2.9483(0.2870) 2.7615(0.2714)

Inflation time γ1 −0.4095(0.1037) −0.3787(0.0951)

Inflation village γ2 −0.8590(0.2787) −0.8275(0.2587)

Inflation season γ3 −1.9473(0.1706) −1.8112(0.1593)

Std. dev. random intercept inflation d2 0.6544(0.1281) 0.3892(0.0748)

Corr. random effects ρ −0.8324(0.2834) −0.8348(0.2838)

−2log-likelihood 2488.9 2487.7

AIC 2514.9 2513.7

results, and hence are working well equally. These results further strengthen the fact

that the hurdle and the ZI models fit to the data equivalently, observing the similar

fit statistics values, as shown in Tables 6.17 and 6.18.

6.5 Discussion

In this chapter, we have presented marginalized modeling strategies for hierarchical

count data, characterized by correlation, overdispersion, and excess zeros: a marginal-

ized hurdle Poisson-normal-gamma model and a marginalized zero-inflated Poisson-

normal. These models bring together the marginalization concept that Heagerty

(1999) applied to multilevel models, adjustment for an excess of zero counts based

on the hurdle model or the zero-inflated model (Mullahy, 1986; Lambert, 1992) and
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Table 6.12: CDC Data. Parameter estimates (standard errors) for the regression coeffi-

cients in (1) H(PNG)p, (2) MH(PNG)p with probit link for zero-inflation.

H(PNG)p MH(PNG)p

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.5439(0.4772) −0.4648(0.4796)

Time ξ1 −0.1696(0.1950) −0.1696(0.1950)

Village ξ2 1.1774(0.4125) 1.1773(0.4125)

Season ξ3 1.2221(0.2461) 1.2222(0.2461)

Village×Time ξ4 −0.3207(0.2525) −0.3297(0.2525)

Overdispersion α 3.7090(1.5502) 3.7090(1.5502)

Std. dev. random intercept count d1 0.3979(0.1486) 0.3979(0.1486)

Inflation intercept γ0 1.7363(0.1626) 1.6189(0.1480)

Inflation time γ1 −0.2452(0.0612) −0.2286(0.0570)

Inflation village γ2 −0.4912(0.1638) −0.4580(0.1515)

Inflation season γ3 −1.1469(0.0965) −1.0693(0.0901)

Std. dev. random intercept inflation d2 0.3877(0.0745) 0.3878(0.0745)

Corr. random effects ρ −0.8319(0.2838) −0.8319(0.2837)

−2log-likelihood 2488.6 2488.6

AIC 2514.6 2514.6

the combined modeling framework for overdispersion and correlation (Molenberghs

et al., 2010). Two normally distributed random-effects vectors, possibly correlated,

were included such that one of them captures the correlation in the positive counts

profile, while the other does the same in the excess zero model component. The cor-

relation between these random effects can be interpreted as the correlation between

the data generation processes of the zero state and the positive counts. A marginal,

population-averaged interpretation is possible not only for the positive counts part,

but also for the zero-inflation component, where the latter has the usual odds ratio

interpretation. Link functions, such as the logit or probit link, can be used for the

zero-inflation part. The marginal density using the latter has a closed-form solution,

while this is not the case for the former and an iterative numerical approximation

may be required. Based on Griswold and Zeger (2004), instead of using only one

of the logit or the probit links, we considered a logit link for the marginal model,
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Table 6.13: CDC Data. Parameter estimates (standard errors) for the regression coeffi-

cients in (1) (PNG), (2) M(PNG).

(PNG) M(PNG)

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −1.9183(0.3157) −1.6405(0.3172)

Time ξ1 0.1109(0.1513) 0.1109(0.1513)

Village ξ2 0.9664(0.3915) 0.9664(0.3915)

Season ξ3 2.2044(0.1685) 2.2044(0.1685)

Village×Time ξ4 −0.0612(0.2025) −0.0612(0.2025)

Std. dev. random intercept count d1 0.7455(0.1355) 0.7454(0.1355)

Overdispersion α 3.7465(0.3297) 3.7465(0.3297)

−2log-likelihood 2540.0 2540.0

AIC 2554.0 2554.0

and a probit one for the conditional model, thus retaining the odds-ratio interpre-

tation of the covariate effects, while taking computational advantage of the probit

link. Though these models seem relatively complex, they can be conveniently and

effectively implemented in available software packages, such as the SAS NLMIXED

procedure.

We analyzed the IRC and CDC data described in Section 2.2.1 and Section 2.2.2,

respectively. Both the MH(PNG) model and MZI(PNG) model worked well. The two

models differ mainly in their zero-inflation parameter estimates, which is likely because

of the difference in the way they handle extra zeros. Furthermore, the MH(PNG)

model performed better in prediction of the zero percentages than that of MZI(PNG)

in both the IRC and CDC data when prediction is made in terms of village type (at

risk versus control). On the other hand, both models performed similar in predicating

percentage of zeros with month of collection. This difference is likely because the

effect of village type on percentage of zeros is much stronger than that of time. The

data analysis showed that distance from the dam and season were the two main

operating factors of the An. gambaie density around the Gilgel-Gibe hydroelectric

dam. However, when the excess zeros and overdispersion are unrealistically omitted,

the covariate time showed a significant association, though this was not the case

based on the MH(PNG)ℓ, which was the most preferred one. On the other hand, in
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Table 6.14: CDC Data. Parameter estimates (standard errors) for the regression coeffi-

cients in (1) (PN-), (2) M(PN-), (3) Generalized estimating equations (GEE).

(PN-) M(PN-)

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −2.0430(0.2394) −1.6740(0.2402)

Time ξ1 −0.0225(0.0577) −0.0225(0.0577)

Village ξ2 1.5194(0.3023) 1.5194(0.3023)

Season ξ3 2.1517(0.0762) 2.1517(0.0762)

Village×Time ξ4 −0.2882(0.0677) −0.2882(0.0677)

Std. dev. random intercept count d1 0.8590(0.1174) 0.8590(0.1174)

−2log-likelihood 4892.8 4892.8

AIC 4904.8 4904.8

GEE

Effect Parameter Estimate (s.e.)

Intercept ξ0 −1.6875(0.3747)

Time ξ1 −0.0425(0.1747)

Village ξ2 1.4569(0.4348)

Season ξ3 2.1545(0.2282)

Village×Time ξ4 −0.2223(0.2331)

the presence of modest overdispersion, as observed in the Jimma Longitudinal Family

Survey of Youth, it appears that overdispersion and the excess zero aspects may

not be well separated, and hence the Poisson-normal GLMM with only zero-inflation

adjustment was sufficient. This might be due to the relatively modest overdispersion

present in the data, once accounting for excess zeros. Relatively larger sample sizes

and higher number of repeated measures per subject (like in the IRC data), evidently

facilitate model fitting. In addition, analysis of the case studies showed that the model

omitting the ZI feature, i.e., M(PN-) model, predicted the proportion of zeros poorly

as compared to the MH(PN-) model and MZI(PN-) model.

Building upon Molenberghs et al. (2010), we argue that the normal and non-

normal random effects, the latter often of a gamma type, can usefully be integrated

together into a single model to induce association between repeated Poisson data and
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Table 6.15: CDC Data. Observed and Predicted Probability of Zeros in (PN-); M(PNG);

ZI(PNG)ℓ, MZI(PNG)ℓ; ZI(PNG)p, MZI(PNG)p; H(PNG)ℓ, MH(PNG)ℓ; H(PNG)p,

MHPNG)p.

control at risk

Model observed predicted observed predicted

M(PN-) 75.3 56.9345 62.7 37.3252

M(PNG) 75.3 56.5168 62.7 39.8834

ZI(PNG)ℓ 75.3 65.4972 62.7 52.4098

MZI(PNG)ℓ 75.3 65.2125 62.7 52.1915

ZI(PNG)p 75.3 65.3748 62.7 52.0533

MZI(PNG)p 75.3 65.3838 62.7 52.0639

H(PNG)ℓ 75.3 75.5102 62.7 62.8561

MH(PNG)ℓ 75.3 75.6469 62.7 63.0136

H(PNG)p 75.3 75.4138 62.7 63.1263

MH(PNG)p 75.3 75.4138 62.7 63.1263

Table 6.16: Jimma Longitudinal Family Survey of Youth. Overdispersion parameter, and

model fit statistics for ZI(P--)ℓ, ZI(P-G)ℓ, H(P--)ℓ, and H(P-G)ℓ.

ZI(P--)ℓ ZI(P-G)ℓ H(P--)ℓ H(P-G)ℓ

Overdispersion (pvalue) - 0.0037(0.7470) - 0.0062(0.6227)

−2log-likelihood 13302 13417 13302 14751

AIC 13318 13435 13318 14769

to correct for the overdispersion, in addition to the ‘Hurdle’ or the ‘ZI’ adjustments to

account for an excess of zeros. We considered AIC and deviance statistics for model

comparison. As a result, the hurdle models showed better fit to the data, and lead

to parameter estimates relatively superior in precision. Further, in terms of predicted

percentage of zeros, in general, the hurdle versions performed better, regardless of the

link function used, either probit or logit. In a univariate setting, one might employ a

likelihood based approach as proposed by Vuong (1989) for comparison of non-nested

models, like H(P--) and ZI(P--). Min and Agresti (2005), based on their simulation
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Table 6.17: Jimma Longitudinal Family Survey of Youth. Parameter estimates (standard

errors) for the regression coefficients in (1) ZI(PN-)ℓ, (2) MZI(PN-)ℓ.

ZI(PN-)ℓ MZI(PN-)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 0.8620(0.1440) 0.8685(0.1441)

Time ξ1 0.0673(0.0179) 0.0672(0.0179)

Sex ξ2 0.0840(0.0272) 0.0842(0.0273)

Age ξ3 0.0288(0.0092) 0.0288(0.0092)

Std. dev. random intercept count d1 0.1197(0.0321) 0.1198(0.0321)

Inflation intercept γ0 2.2627(0.3858) 2.0132(0.3472)

Inflation time γ1 0.1862(0.0463) 0.1634(0.0417)

Inflation sex γ2 −0.4227(0.0731) −0.3807(0.0654)

Inflation age γ3 −0.0605(0.0251) −0.0540(0.0225)

Std. dev. random intercept inflation 0.8010(0.0689) 0.4719(0.0403)

Corr. random effects ρ −0.1329(0.2888) −0.1334(0.2944)

−2log-likelihood 13,242 13,242

AIC 13,264 13,264

study, mentioned a number of advantages of the hurdle model: it works well both

in zero-inflation and zero-deflation situations, it can be used to test for evidence of

zero-inflation, it is easier to fit as it separately handles the count part and the zero

part. On the other hand, the extended ZI model based on Todem et al. (2012) can

handle both zero-inflation and zero-deflation, though the proposed link function does

not have the computational flexibility of the probit link. Furthermore, this model can

be used to assess assumption of excessive zeros in a given data, and might lead to

comparable results with the zero-altered model studied by Min and Agresti (2005).

One might expect a marked difference among the hurdle and the ZI models when the

percentage of excess zeros is moderate or low, whereby the former is likely to perform

better. In general, it is suggested that in choosing among zero-inflated and hurdle

models, in addition to statistical fit criteria, , such as, deviance and AIC, it is better

to consider the data generation processes. According to Neelon et al. (2010), if zeros

are expected from both parts, a zero-inflated model is preferred.
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Table 6.18: Jimma Longitudinal Family Survey of Youth. Parameter estimates (standard

errors) for the regression coefficients in (1) H(PN-)ℓ, (2) MH(PN-)ℓ.

H(PN-)ℓ MH(PN-)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 0.8657(0.1437) 0.8720(0.1438)

Time ξ1 0.0675(0.0179) 0.0674(0.0178)

Sex ξ2 0.0829(0.0271) 0.0831(0.0272)

Age ξ3 0.0286(0.0092) 0.0287(0.0092)

Std. dev. random intercept count d1 0.1201(0.0320) 0.1202(0.0320)

Inflation intercept γ0 2.3408(0.3830) 2.0853(0.3451)

Inflation time γ1 0.1792(0.0460) 0.1573(0.0415)

Inflation sex γ2 −0.4285(0.0726) −0.3864(0.0651)

Inflation age γ3 −0.0632(0.0249) −0.0565(0.0224)

Std. dev. random intercept inflation d2 0.7987(0.0681) 0.4692(0.0397)

Corr. random effects ρ −0.1316(0.2807) −0.1362(0.2893)

−2log-likelihood 13,241 13,242

AIC 13,263 13,264

Table 6.19: Jimma Longitudinal Family Survey of Youth. Parameter estimates (standard

errors) for the regression coefficients in (1) (PN-)ℓ, (2) M(PN-)ℓ.

(PN-)ℓ M(PN-)ℓ

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 −0.5359(0.3149) 0.8642(0.3300)

Time ξ1 0.0559(0.0253) 0.0559(0.0253)

Sex ξ2 0.5365(0.0869) 0.5365(0.0869)

Age ξ3 −0.0465(0.0206) −0.0465(0.0206)

Std. dev. random intercept count d1 1.6734(0.0485) 1.6734(0.0485)

−2log-likelihood 20,109 20,109

AIC 20,119 20,119
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Table 6.20: Jimma Longitudinal Family Survey of Youth. Observed and Predicted Prob-

ability of Zeros in (PN-); M(PN-); ZI(PN-)ℓ, MZI(PN-)ℓ with logit link for zero-inflation;

H(PN-)ℓ, MH(PN-)ℓ with logit link for zero-inflation.

year one year two year three

Model observed predicted observed predicted observed predicted

M(PN-) 72.4 54.4197 77.9 55.1338 76.2 54.0556

M(PNG) 72.4 54.4197 77.9 55.1338 76.2 54.0556

ZI(PN-)ℓ 72.4 75.2293 77.9 76.1590 76.2 79.1744

MZI(PN-)ℓ 72.4 75.2621 77.9 76.1361 76.2 79.1000

H(PN-)ℓ 72.4 75.2650 77.9 76.1975 76.2 79.1832

MH(PN-)ℓ 72.4 75.2984 77.9 76.1734 76.2 79.1069
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Chapter 7
A Joint Model for Hierarchical

Continuous and Zero Inflated

Overdispersed Count Data

Many applications in public health, medical and biomedical or other studies demand

modelling of two or more longitudinal outcomes jointly to get better insight into

their joint evolution. In this regard, a joint model for a longitudinal continuous and

a count sequence, the latter possibly overdispersed and zero-inflated (ZI), will be

specified that assembles aspects coming from each one of them into one single model.

For the continuous sequence, the linear mixed models (LMM) provide a general and

flexible modeling framework where a subject-specific random effect, assumed to follow

a normal distribution, is included to account for the correlation (Laird and Ware,

1982; Verbeke and Molenberghs, 2000). On the other hand, for the count outcome,

clustering and overdispersion are accommodated through two distinct sets of random

effects in a generalized linear model as proposed by Molenberghs et al. (2010); one is

normally distributed, the other conjugate to the outcome distribution. An excessive

number of zero counts is often accounted for by using a so-called ZI or hurdle model.

ZI models combine either a Poisson or negative-binomial model with an atom at zero

as a mixture, while the hurdle model separately handles the zero observations and the

positive counts. A unified ZI(PNG) model to simultaneously allow for the correlation,

overdispersion and zero-inflation in the count sequence was studied in Chapter 5.

The marginalized versions of ZI(PNG) and a hurdle counterpart H(PNG), denoted

99
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as MZI(PNG) and MH(PNG) were the focus of Chapter 6. Recently Kassahun et al.

(2013), extended Molenberghs et al. (2010) and studied a joint modeling strategy

to simultaneously deal with: (1) correlation coming from the continuous sequence;

(2) correlation, overdispersion and zero-inflation of the count sequence, where for

the zero-inflation either the ZI or the hurdle models are considered as alternative

approaches.

In this chapter, we propose a general joint modelling framework in which correla-

tion from the count sequence as well as correlation, overdispersion and zero-inflation

from the count sequence can appear together. The association among the two se-

quences is captured by correlating the normal random effects describing the continu-

ous and count outcome sequences, respectively. This chapter is organized as follows.

In Section 7.1, two alternative joint modeling strategies are described, followed by

their marginalized versions in Section 7.2, with the estimation technique given in Sec-

tion 7.3. The models are applied and compared based on the Jimma Infant data as

introduced in Section 2.1, with the results presented in Section 7.4. In addition, these

models are further studied in a simulation study which is presented in Section 7.5,

Finally, some concluding remarks are given in Section 7.6. The contribution of this

chapter has been published in Kassahun et al. (2013).

7.1 A Joint Combined Model for Continuous and

Zero-inflated Count Data

Let Yij denote a longitudinal continuous outcome, and Zik an overdispersed count out-

come with excessive number of zeros, with densities f1i(yij) and f2i(zik), respectively

(i = 1, . . . , N , j = 1, . . . , n1i, and k = 1, . . . , n2i). Formulation of a joint model could

be based on the random-effects approach. Yij and Zik are modeled separately by in-

cluding subject-specific random-effects b1i and b2i, respectively. Conditionally upon

the random-effects, the two outcomes are assumed independent. Hence, the associa-

tion between Yij and Zik is captured by letting b1i and b2i to correlate (Molenberghs

and Verbeke, 2005). A special case is the so-called shared parameter model, where

the same set of random-effects is assumed for all outcomes. However, this approach

has the disadvantage that it is based on strong assumptions about the association of

the two outcomes, and hence may not be valid (Molenberghs and Verbeke, 2005).

Combining model elements from the linear mixed model of Sections 3.3, and the

zero-inflated combined model of Section 3.7, in one single model, the so resulting zero-

inflated joint combined model, conditional upon the random effects, has the following
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distribution:

fi(yij , zik|b1i, b2i,β, ξ, θik, φ, πik) = f1i(yij |b1i,β)× f2i(zik|b2i, ξ, θik, φ, πik), (7.1)

where b1i and b2i are assumed to follow a multivariate normal distribution and cor-

related,

bi = (b1i, b2i)
′ ∼MVN

([
0

0

]
,

[
D11 D12

D12

′ D22

])

D11, D12, and D22 are unknown positive-definite matrices. For the continuous

outcome, f1i(yij |b1i,β), is the linear mixed model, as discussed in Section 3.3, and

for the count sequence, f2i(zik|b2i, ξ, θik, φ, πik) is the zero-inflated combined model

given as:

Zik ∼
{

0 with probability πik,

fi(zik|b1i, ξ, θij) with probability 1− πik,
(7.2)

leading to the probabilities p(Zik = zik|b2i, ξ, θik, πik) given by

p(Zik = yik|b2i, ξ, θik, πik) =
{
πik + (1− πik)fi(0|b2i, ξ, θik) if zik = 0,

(1− πik)fi(zik|b2i, ξ, θik) if zik > 0.
(7.3)

as defined in Section 5.1. Similarly, for the hurdle joint combined model, we combine

the linear mixed model and the hurdle combined model, where f2i(zik|b2i, ξ, θik, φ, πik)
is:

Zik ∼
{

0 with probability πik,

fi
∗(zik|b1i, ξ, θij) with probability 1− πik,

(7.4)

where fi
∗ is a truncated-at-zero Poisson-gamma-normal model, leading to probabili-

ties given by:

p(Zik = zik|b2i, ξ, θik, φ, πik) =
{

πik if zik = 0,

(1− πik)
fi(zik|λik,θik)
1−fi(0|λik,θik)

if zik > 0,

as shown in Section 6.1. The resulting model becomes ZI(NN-)(PNG) or H(NN-

)(PNG).

7.2 Marginalized Joint H(NN)(PNG) and

ZI(NN-)(PNG) Models

In this section a marginalized version of the joint model for hierarchical continuous and

overdisperesed and zero-inflated count data, shown in Section 7.1 will be considered.
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First, for a longitudinal Gaussian outcome, the linear mixed models, as shown in

Section 3.3 is very popular. The implied marginal model is given by:

Yi ∼ N(Xiβ,ZiDZ ′
i +Σi)

(Laird and Ware, 1982; Verbeke and Molenberghs, 2000). Note that

E(yij) = E(yij/b1i) = x′
ijβ

and hence conditional and marginal parameters of β in ( 7.1) are equal (Verbeke and

Molenberghs, 2000).

Second, for the count sequence (PNG) to deal with correlation and overdispersion,

with extensions H(PNG) and ZI(PNG) to further account for excessive zeros were

shown in Section 7.1. A marginalized formulation of (PNG), denoted as M(PNG)

in Section 3.6. Similarly, details of marginal expressions and estimation techniques

for H(PNG) and ZI(PNG), with notations MH(PNG) and MZI(PNG) are shown in

Sections 6.1– 6.3.

Fully marginalized joint models, i.e., MH(NN-)(PNG) and MZI(NN-)(PNG) easily

follow in a straight forward fashion by simply replacing H(PNG) and ZI(PNG) models

in f2i of ( 7.1) with MH(PNG) of Section 6.1 and MZI(PNG) of Section 6.2.

7.3 Estimation

Let us consider the count component. We will make use of the partial marginalization

for parameter estimation, as presented in Molenberghs et al. (2010). By this we

refer to integrating the likelihood over the gamma random effects only, leaving the

normal random effects untouched. The corresponding conditional probability for the

combined model of Section 4.1 model is:

f(yij |bi, ξ, θij , φ) =

∫
f(yij |bi, ξ, θij , φ)f(θij |αj , βj)dθij

=

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,

where κij is as in (3.17). For the zero-inflated Poisson-gamma-normal combined case:

f(yij |bi, ξ, θij , φ, πij)
= I(yij = 0)πij

+(1− πij)

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij ,
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with πij = π(x′
2ijγ). Note that, with this approach, we assume that the gamma

random effects are independent within a subject. This is fine, given the correlation is

induced by the normal random effects.

Applying the above result to the joint combined model in (7.1), the zero-inflated

joint combined model, conditional upon the random effects, is:

fi(yij , zik|b1i, b2i,β, ξ, θik, φ, πik)

=
1

(2π)
ni
2 |Σi|

1

2

e−
1

2
(y

i
−Xiβ−Zib1i)

′Σi
−1(y

i
−Xiβ−Zib1i)

×
∏

k

f(zik|b2i, ξ, θik, φ, πik).

Similarly, the hurdle Poisson-gamma-normal combined model, say f∗(yij), using a

truncated-at-zero Poisson-gamma-normal model, as discussed in Section 6.1 is:

f∗(yij |bi, ξ, θij , φ, πij)
= I(yij = 0)πij

+(1− πij)

(
αj + yij − 1

αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij

ij

× 1

1−
(

1
1+κijβj

)αj
.

Consequently, the partially marginalized form for the H(NN-)(PNG) is:

fi(yij , yik|b1i, b2i,β, ξ, θik, φ, πik)

=
1

(2π)
ni
2 |Σi|

1

2

e−
1

2
(y

i
−Xiβ−Zib1i)

′Σi
−1(y

i
−Xiβ−Zib1i)

×
∏

k

f∗(yik|b2i, ξ, θik, φ, πik).

Estimation of the fully marginalized joint models is straightforward by replac-

ing H(PNG) by MH(PNG), leading to MH(NN-)(PNG) model and ZI(PNG) by

MZI(PNG), leading to MZI(NN-)(PNG) model.

For all of these, it is straightforward to obtain the fully marginalized probability

by numerically integrating over the normal random effects, and using a tool such as

the SAS procedure NLMIXED that allows for normal random effects in arbitrary,

user-specified models. While the SAS procedure NLMIXED is equipped with default

starting values, it is advisable to provide user-defined starting values instead. These

can be obtained, for example, from models without random effects, with some trial
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and error. It is equally wise to ensure that both the outcome values as well as the

covariates have magnitudes that are neither very large nor extremely small, because

this may jeopardize stability of the iterative process. Also, it is useful, for example,

to first first fit the individual models and use the output as starting values for the

joint model. Against this background, our data analysis proceeded without difficulty.

Example NLMIXED code is provided in Appendix D for both the data analysis and

the simulation study.

7.4 Analysis of the Jimma Infant Growth Study

We analyze the Jimma Infant data as introduced in Section 2.1, where body weight

as well as number of days of diarrheal illnesses were measured repeatedly for each

infant. The two outcomes will be modeled jointly to capture association between them.

Denote by Yij and Yik weight and number of days of illness measurements for the ith

infant at the jth and kth visit. We formulate a ZI(NN-)(PNG) or a H(NN-)(PNG)

model for these data. The means are µij and κik, respectively. We model these as

µij = β0 + b1i + β1Aij + β2Aij
2, and κik as ln(κik) = ξ0 + b2i + ξ1Aik. To account for

excess zeros, the zero-inflation probability πik is written as logit(πik) = γ0 + γ1Aik.

Here, Aij is the age of the ith infant at the jth visit. Further, b1i and b2i represent

subject-specific intercepts, assumed normally distributed and possibly correlated with

mean and variance-covariance matrix given by

(b1i, b2i)
′ ∼ N

[(
0

0

)
,

(
d1 ρ

√
d1
√
d2)

ρ
√
d1
√
d2 d2

)]
.

We examine the zero-inflation as well as the overdispersion aspect. The first issue can

be addressed using a special type of the hurdle model, also known as the zero-altered

model (Min and Agresti, 2005). These authors consider the testing problem for zero-

inflation. This model requires the same covariates as well as the same distributional

forms in the two parts. Explicitly, we assume,

ln[−ln(1− πik)] = a1 + a2(ξ0 + ξ1Aik) + b2i,

ln(κik) = ξ0 + ξ1Aik + b2i.

By setting, a2 = 1, and testing whether a1 = 0, one can test for zero-inflation. If a1 <

0, then the data are zero-inflated; If a1 > 0, the data are zero-deflated. Fitting the

zero-altered combined model showed strong evidence of zero-inflation (a1 = −2.0689,

likelihood ratio test statistic = 3343, on one degree of freedom).
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We also fitted the H(NN-)(PN-) and compared it with the H(NN-)(PNG). The

difference in deviance is 94, 181 − 86, 379, which evidently is extremely significant.

This strongly underscores the presence of the overdispersion parameter α.

Parameter estimates for the (NN-), (PNG), and (NN-)(PNG) models are presented

in Table 7.1. Technically, the separate models were fitted for the two outcomes to-

gether anyway, but assuming that ρ = 0, which is entirely equivalent to fitting the

models separately. Clearly, body weight and number of days of diarrheal illness show

strong inverse relationship as evidenced by the correlation of the random effects in

the (NN-)(PNG). In addition, likelihood comparison shows a convincing improvement

in model fit, when random effects are allowed to correlate. Comparing the separate

and joint models, while parameter estimates for the continuous outcome remain the

same, small changes are observed in the count part. All parameters are statistically

significant in all models considered.

Table 7.2 gives the hurdle counterparts to the models in Table 7.1, i.e., (NN-),

H(PNG), and H(NN-)(PNG). Evidently, the linear mixed model (NN-) is left unal-

tered because the hurdle aspect applies to the count process only. Similarly, Table 7.3

shows the ZI counterparts, (NN-), ZI(PNG), and ZI(NN-)(PNG). We deduce that

the fit is improved quite a bit further, implying that the excess zeros need to be ac-

commodated in the model. The aforementioned inverse relationship remains. While

accounting for the excess zeros does not bring changes in the parameters for the con-

tinuous process, this is not the case for the counts, where the estimates change, with

their corresponding standard errors getting relatively smaller. When the excess zeros

are accounted for, the negative binomial parameter α gets much smaller in Tables 7.2

and 7.3, as compared to the corresponding value in Table 7.1. This underscores, once

again, the connection between the zero-inflation and overdispersion phenomena. In-

deed, when ZI is unaccounted for, the overdispersion aspect of the models captures a

certain amount of this effect.

Turning to Tables 7.1 – 7.3 with an eye on the overdispersion parameter α, we

see that it drops drastically when comparing Table 7.1 with Tables 7.2 and 7.3.

Because in our parameterization larger values for α imply more pronounced overdis-

persion effects, it is clear that accounting for excess zeros explains a good amount

of apparent overdispersion. The amount explained is relatively invariant to whether

the two processes are estimated jointly or rather separately. The reduction also holds

regardless of whether either a ZI or a hurdle correction is made. Finally, even after

correction for excess zeros, there convincingly remains an amount of overdispersion.

This underscores that both overdispersion as well as excess zeros need to be accounted

for.
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Table 7.1: Jimma Infant Growth Study. (NN-), (PNG), and (NN-)(PNG) models.

Effect Parameter (NN-) & (PNG) (NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2768(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev random effect
√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 −1.1567(0.0557) −1.2094(0.0551)

Age ξ1 0.2246(0.0072) 0.2279(0.0072)

Std. dev random effect
√
d2 0.3654(0.0507) 0.4611(0.0435)

Negative-binomial parameter α 17.9605(0.2914) 17.6345(0.2858)

Common parameter

Corr. random effect ρ — −0.6282(0.0565)

−2log-likelihood 172,241 172,054

From Tables 7.2 and 7.3, we further observe that the H(NN-)(PNG) and the

ZI(NN-)(PNG) are very similar, not only in terms of parameter estimates but also as

far as resulting inferences go. In count data modeling, the choice among zero-inflated

and hurdle models should be based not only on model fit but also on assumptions

about the underlying data generation process (Neelon et al., 2010). If zeros are ex-

pected to come from both the point mass and the count component, then zero-inflated

models may be preferable. In addition, in the presence of strong evidence of zero-

inflation, zero-inflation models may provide better fit. On the other hand, Min and

Agresti (2005) discuss why the hurdle model is, in general, preferred to the zero-

inflated model: it allows to test for zero-inflation, it works also in the zero-deflation

setting, and its two parts are separate.

The fully marginalized models, i.e., (NN-) & M(PNG), M(NN-)(PNG), (NN-) &

MH(PNG), (NN-) & MZI(PNG), and MZI(NN-)(PNG), are also fitted, leading to
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Table 7.2: Jimma Infant Growth Study. (NN-), H(PNG), and H(NN-)(PNG) models.

Effect Parameter (NN-) & H(PNG) H(NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2767(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev random effect
√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 2.0437(0.0251) 2.0225(0.0251)

Age ξ1 0.0185(0.0028) 0.0199(0.0028)

Std. dev random effect
√
d2 0.4374(0.0118) 0.4392(0.0118)

Negative-binomial parameter α 0.3271(0.0104) 0.3259(0.0103)

Inflation intercept γ0 2.8383(0.0290) 2.8383(0.0290)

Inflation Age γ1 −0.1687(0.0035) −0.1687(0.0035)

Common parameter

Corr. random effect ρ — −0.2255(0.0246)

−2log-likelihood 165,475 165,395

population-average interpretation for all fixed effects.

Parameter estimates for (NN-) & M(PNG), M(NN-)(PNG) are shown in Table 7.4,

the results being very similar to that of (NN-) & (PNG), (NN-)(PNG) in Table 7.1,

except a slight difference in ξ0. Similarly, marginalized hurdle versions (NN-) &

MH(PNG) and (NN-) & MH(PNG), as shown in Table 7.5, again, suggested that

these data are subject to overdispersion, correlation and zero-inflation features, with

parameter estimates as well as model fit statistics very similar to (NN-) & H(PNG)

and (NN-) & H(PNG) as reported in Table 7.2, except some difference in ξ0. This same

phenomenon also holds true for (NN-) & MZI(PNG) and (NN-) & MZI(PNG) given

in Table 7.6 as compared to (NN-) & H(PNG) and (NN-) & H(PNG) of Table 7.2.

Across the models, we observe that the intercept of the count sequence ξ0 shows
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Table 7.3: Jimma Infant Growth Study. (NN-), ZI(PNG), and ZI(NN-)(PNG) models.

Effect Parameter (NN-) & ZI(PNG) ZI(NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2767(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev. error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev. random effect
√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 2.0270(0.0259) 2.0020(0.0260)

Age ξ1 0.0190(0.0029) 0.0205(0.0029)

Std. dev. random effect
√
d2 0.4464(0.0123) 0.4500(0.0123)

Negative-binomial parameter α 0.3259(0.0104) 0.3261(0.0104)

Inflation intercept γ0 2.8071(0.0292) 2.8051(0.0292)

Inflation Age γ1 −0.1686(0.0035) −0.1685(0.0035)

Common parameter

Corr. random effect ρ — −0.2409(0.0245)

−2log-likelihood 165,461 165,369

little difference as a result of the marginalization. On the other hand all parameter

estimates and standard errors in the continuous sequence are strikingly very similar,

implying that whether a marginal or hierarchical formulation employed, parameters

retain both their interpretation as well as their magnitude. Further, marginally, the

correlation parameter of the random effects is, once again negative and significant,

suggesting that body weight and number of days of illness are inversely associated,

with the estimates similar to the corresponding conditional models.
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Table 7.4: Jimma Infant Growth Study. (NN-), M(PNG), and M(NN-)(PNG) models.

Effect Parameter (NN-) & M(PNG) M (NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2768(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev random effect
√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 −1.0899(0.0459) −1.1031(0.0454)

Age ξ1 0.2246(0.0072) 0.2279(0.0072)

Std. dev random effect
√
d2 0.3654(0.0507) 0.4611(0.0435)

Negative-binomial parameter α 17.9606(0.2914) 17.6342(0.2857)

Common parameter

Corr. random effect ρ — −0.6282(0.0565)

−2log-likelihood 172,241 172,054

7.5 Simulation Study

A simulation study is conducted to assess the impact of not appropriately accounting

for the excess zero counts as well as misspecification of the overdispersion in joint

modeling of hierarchical continuous and count outcome. We choose to conduct this

study following three different settings.

7.5.1 Simulation Settings

Data are generated in the spirit of the design and outcomes of the data in Section 2.1,

which consist of body weight and counts of the number of days of diarrheal disease

illnesses among infants measured repeatedly over time. Age in months is considered

as the time variable.

A random sample of 250 data sets are generated under three scenarios. S1:
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Table 7.5: Jimma Infant Growth Study. (NN-), MH(PNG), and MH(NN-)(PNG) models.

Effect Parameter (NN-) & MH(PNG) MH(NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2767(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev random effect
√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 2.1421(0.0250) 2.1189(0.0249)

Age ξ1 0.0183(0.0028) 0.0199(0.0028)

Std. dev random effect
√
d2 0.4378(0.0118) 0.4392(0.0118)

Negative-binomial parameter α 0.3270(0.0104) 0.3259(0.0103)

Inflation intercept γ0 2.8378(0.0290) 2.8383(0.0290)

Inflation Age γ1 −0.1687(0.0035) −0.1687(0.0035)

Common parameter

Corr. random effect ρ — −0.2256(0.0246)

−2log-likelihood 165,475 165,395

from a ZI(NN-)(PNG); S2 from a ZI(NN-)(PN-); S3 from a (NN-)(PNG). Model

fitting is based on these three models, supplemented with others: ZI(NN-)(PNG),

H(NN-)(PNG), or (NN-)(PNG); also, the versions without overdispersion are consid-

ered: ZI(NN-)(PN-), H(NN-)(PN-), or (NN-)(PN-).

We consider 200 subjects with 10 measurements per subject. The continuous

response Yij is modeled as Yij = β0 + β1Aij + β2Aij
2 + b1i + εij . The subject-

specific random intercept b1i and the residual error εi are assumed independent,

and generated from normal distribution with mean 0 and standard deviations 2

and 0.6, respectively. The count outcome Yik is modeled using predictor function

κik = exp {ξ0 + b2i + ξ1Aik}. When there is overdispersion, the outcome is generated

directly from a negative-binomial process with Yik ∼ NB(ψik, θ), where θ = 1 and
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Table 7.6: Jimma Infant Growth Study. (NN-), MZI(PNG), and MZI(NN-)(PNG) models.

Effect Parameter (NN-) & MZI(PNG) MZI(NN-)(PNG)

Estimate (s.e.) Estimate (s.e.)

Continuous process (Weight)

Intercept β0 3.2767(0.0112) 3.2767(0.0112)

Age β1 0.7680(0.0026) 0.7680(0.0026)

Age×Age β2 −0.0335(0.0002) −0.0335(0.0002)

Std. dev. error σ 0.6298(0.0022) 0.6298(0.0022)

Std. dev. random effect
√
d1 0.8298(0.0072) 0.8299(0.0072)

Count process (Days of illness)

Intercept ξ0 2.1266(0.0256) 2.1027(0.0256)

Age ξ1 0.0190(0.0029) 0.0206(0.0029)

Std. dev. random effect
√
d2 0.4464(0.0123) 0.4500(0.0123)

Negative-binomial parameter α 0.3259(0.0104) 0.3261(0.0104)

Inflation intercept γ0 2.8071(0.0292) 2.8053(0.0292)

Inflation Age γ1 −0.1686(0.0035) −0.1685(0.0035)

Common parameter

Corr. random effect ρ — −0.2405(0.0245)

−2log-likelihood 165,461 165,369

ψik = (1+ κik/θ)
−1. As before, Aij represents the age at which the jth measurement

is taken for the ith subject. Practically, age is generated from the empirical distribu-

tion observed in the Jimma Infact Growth Study. The random intercept b2i follows a

mean-zero normal with variance 1.5. When zero-inflation is present, this is added by

defining the final response vector Y ∗
i with components Yik

∗ = (1−uik)Yik, where the
uik are Bernoulli random variables with parameters πik and logit(πik) = γ0 + γ1Aik.

To correlate the two processes, the random intercepts b1i and b2i are allowed to cor-

relate with one another, with ρ = −0.5. When generating data, the true parameter

values were β = (3.3, 0.77,−0.03)T , ξ = (2, 0.02)T , and γ = (2,−0.2)T .
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7.5.2 Simulation Results

The results under S1 are summarized in Tables 7.7 and 7.8. Clearly, the ZI(NN-)(PNG)

and the H(NN-)(PNG) result in estimates very close to the true values. However, as

can be seen from the (NN-)(PNG), omitting zero-inflation highly affects the esti-

mates in the count component, with a non-negligible amount of bias loaded on the

correlation parameter. Further, when both zero-inflation and overdispersion are mis-

specified, by fiting the (NN-)(PN-), as shown in Table 7.8, a similar phenomenon is

evident, where now the random-effects variance tries to recover from mis-specifying

the overdispersion.

Under scenario S2, the results of which are presented in Table 7.9, the impact of

omitting the extra zeros is still evident, though the overdispersion parameter α in the

(NN-)(PNG) seems to help recover from misspecification. Further, we also note that

correlation is overestimated as a result of the misspecification. These results, once

more, underscore the necessity of models appropriately accounting for the excessive

zeros.

Scenario 1 leads to about 75% of zeros, with a similar fraction (72%) in Scenario

2. Scenario 3 is qualitatively different, with roughly 18% of zeros. Comparing mean

and standard deviation shows that all three are overdispersed. Under Scenarios 1 and

2, this stems to a large part from extra zeros, whereas in Scenario 3 this is “pure”

overdispersion. When data are overdispersed, but not subject to considerable zero-

inflation as in S3, fitting models allowing for extra zeros is less important. As shown

in Table 7.10, the (NN-)(PNG), which is the true model, performs well. In addition,

we observe that the (NN-)(PN-) model is also doing well, but this probably may not

be the case when data are subject to much higher levels of overdispersion than those

considered here.

In addition, across our simulation study, we learned that the zero-inflated models

are relatively harder to fit when compared to the hurdle models, where convergence

of models is never an issue, with convergence guaranteed for the latter. Further, in

scenarios S1 and S2, though data are generated from the ZI(NN-)(PNG), the H(NN-

)(PNG) is also performing very well. In addition, across our simulation study, we

learned that the zero-inflated models are relatively harder to fit when compared to

the hurdle models, where convergence of models is never an issue, with convergence

guaranteed for the latter. Further, in scenarios S1 and S2, though data are generated

from the ZI(NN-)(PNG), the H(NN-)(PNG) is also performing very well.
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Table 7.7: Simulation study under scenario S1. Mean and Relative bias (RB) of the pa-

rameter estimates in the ZI(NN-)(PNG), H(NN-)(PNG), and (NN-)(PNG).

Effect Parameter True ZI(NN-)(PNG) H(NN-)(PNG) (NN-)(PNG)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.297(-0.001) 3.297(-0.001) 3.297(-0.001)

Age β1 0.77 0.772(0.002) 0.772(0.002) 0.772(0.002)

Age×Age β2 −0.03 −0.030(0.003) −0.030(0.003) −0.030(0.003)

Std. dev. error σ 0.6 0.599(-0.001) 0.599(-0.001) 0.599(-0.001)

Std. dev. random effect
√
d1 2 1.988(-0.006) 1.987(-0.006) 1.988(-0.006)

Count process

Intercept ξ0 2 1.977(-0.012) 2.145(0.073) −0.169(-1.085)

Age ξ1 0.02 0.023(0.145) 0.022(0.100) 0.218(9.885)

Std. dev. random effect
√
d2 1.5 1.478(-0.015) 1.341(-0.106) 1.311(-0.126)

Negative-binomial parameter α 1 0.992(-0.008) 1.051(0.051) 11.895(10.895)

Inflation intercept γ0 2 1.996(-0.002) 2.209(0.105) —

Inflation Age γ1 −0.2 −0.198(-0.009) −0.188(-0.062) —

Common parameter

Corr. random effect ρ −0.5 −0.503(0.006) −0.501(0.001) −0.563(0.126)

Frequency of convergence 250 250 250

7.6 Discussion

In this chapter, we have presented a joint modeling strategy for a hierarchical con-

tinuous and count outcome, where the latter is subject to zero-inflation as well as

overdispersion. We show that zero-inflation, and overdispersion features in count

data modeling could also be well extended to a joint modeling framework such that

model fit is improved and inference refined. However, any failure to appropriately

account for such features appropriately may result in a substantial impact on the

parameter estimates and precision estimates. When zero-inflation is omitted in the

model, the overdispersion term will try to recover for this mis-specification, though

both are eventually needed.

Fitting a ZI(NN-)(PNG) model, even when correctly specified, is relatively more

complex than a H(NN-)(PNG). The latter has several additional advantages, in par-

ticular the possibility to test for zero inflation. In the real data analysis, there were

no model convergence issues, which is reassuring. Of course, as we learned from

analyzing these data, both overdispersion as well as additional zero inflation were
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Table 7.8: Simulation study under scenario S1. Mean and Relative bias (RB) of the pa-

rameter estimates in the ZI(NN-)(PN-), H(NN-)(PN-), and (NN-)(PN-).

Effect Parameter True ZI(NN-)(PN-) H(NN-)(PN-) (NN-)(PN-)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.284(-0.005) 3.292(-0.002) 3.296(-0.0012)

Age β1 0.77 0.772(0.002) 0.772(0.002) 0.772(0.0021)

Age×Age β2 −0.03 −0.030(0.007) −0.030(0.003) −0.030(0.003)

Std. dev. error σ 0.6 0.599(-0.001) 0.599(-0.001) 0.599(-0.001)

Std. dev. random effect
√
d1 2 1.988(-0.006) 1.988(-0.006) 1.988(-0.006)

Count process

Intercept ξ0 2 1.134(-0.433) 2.016(0.008) −0.4531(-1.2266)

Age ξ1 0.02 0.025(0.270) 0.026(0.290) 0.162(7.085)

Std. dev. random effect
√
d2 1.5 1.566(0.044) 1.426(-0.049) 1.794(0.196)

Negative-binomial parameter α 1 — — —

Inflation intercept γ0 2 1.972(-0.014) 2.209(0.1044) —

Inflation Age γ1 −0.2 −0.195(-0.027) −0.188(-0.062) —

Common parameter

Corr. random effect ρ −0.5 −0.446(0.108) −0.436(0.128) −0.406(-0.188)

Frequency of convergence 233 250 250

convincingly present. Furthermore, the set of data was very large. These are com-

fortable conditions to reach convergence. In the simulation study, the hurdle model

was at an advantage when it came to model fit. Practically, readers may consider

both approaches, hurdle and ZI, and perhaps use the relevant parameters from the

hurdle model as starting values for the ZI fit.

In terms of estimation, we have focused on maximum likelihood estimation. This

can be done by integrating over the random effects, using a combination of analyt-

ical and numerical techniques. Precisely, the likelihood was integrated analytically

over the conjugate (gamma) random effect, using techniques outlined in Molenberghs

et al. (2010). The so-resulting likelihood, still conditional on the normal random ef-

fect, is integrated numerically over the said random effect using the SAS procedure

NLMIXED.

In conclusion, we note that our approach corrects for overdispersion and/or al-

lows for joint modeling. In our example, both phenomena were present, although

overdispersion results in a larger deviance reduction than joint modeling. One lesson
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Table 7.9: Simulation study under scenario S2. Mean and Relative bias (RB) of the pa-

rameter estimates in the ZI(NN-)(PN-), H(NN-)(PN-), and (NN-)(PNG).

Effect Parameter True ZI(NN-)(PN-) H(NN-)(PN-) (NN-)(PNG)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.325(0.008) 3.294(-0.002) 3.296(-0.001)

Age β1 0.77 0.769(-0.001) 0.7711(0.001) 0.771(0.001)

Age×Age β2 −0.03 −0.030(0.000) −0.030(0.003) −0.030(0.003)

Std. dev. error σ 0.6 0.599(-0.001) 0.599(-0.001) 0.599(-0.001)

Std. dev. random effect
√
d1 2 1.985(-0.008) 1.986(-0.007) 1.986(-0.007)

Count process

Intercept ξ0 2 1.230(-0.385) 2.051(0.025) 0.083(-0.958)

Age ξ1 0.02 0.020(0.020) 0.020(0.015) 0.195(8.740)

Std. dev. random effect
√
d2 1.5 1.502(0.001) 1.424(-0.050) 1.219(-0.187)

Negative-binomial parameter α 0 — — 9.9406

Inflation intercept γ0 2 1.884(-0.058) 2.089(0.0445) —

Inflation Age γ1 −0.2 −0.204(-0.019) −0.196(-0.023) —

Common parameter

Corr. random effect ρ −0.5 −0.495(-0.009) −0.489(0.022) −0.613(-0.225)

Frequency of convergence 241 250 250

to be drawn from this is that the user should carefully assess whether one or the

other correction, both of them, or perhaps none of the two is necessary. Note also

that joint modeling may be of interest in its own right. For example, one may be

interested in measuring the strength of the association between both processes (esti-

mating one or more correlation parameters) or in assessing its significance. Also, it

is possible to derive prediction equations for an outcome or set of outcomes in one

sequence, based on the outcomes in the other sequence and/or earlier measurements

of the same sequence.
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Table 7.10: Simulation study under scenario S3. Mean and Relative bias (RB) of the

parameter estimates in the H(NN-)(PNG), (NN-)(PNG), and (NN-)(PN-).

Effect Parameter True H(NN-)(PNG) (NN-)(PNG) (NN-)(PN-)

Mean (RB) Mean (RB) Mean (RB)

Continuous process

Intercept β0 3.3 3.294(-0.002) 3.295(-0.002) 3.295(-0.002)

Age β1 0.77 0.772(0.003) 0.772(0.003) 0.772(0.003)

Age×Age β2 −0.03 −0.030(0.007) −0.030(0.007) −0.030(0.007)

Std. dev. error σ 0.6 0.599(-0.001) 0.599(-0.001) 0.599(-0.001)

Std. dev. random effect
√
d1 2 1.987(-0.006) 1.988(-0.006) 1.988(-0.006)

Count process

Intercept ξ0 2 2.063(0.031) 1.995(-0.002) 1.954(-0.023)

Age ξ1 0.02 0.019(-0.055) 0.019(-0.030) 0.018(-0.125)

Std. dev. random effect
√
d2 1.5 1.414(-0.057) 1.485(-0.009) 1.5223(0.015)

Negative-binomial parameter α 1 1.008(0.008) 1.0012(0.0012) —

Inflation intercept γ0 0 −1.448 — —

Inflation Age γ1 0 −0.016 — —

Common parameter

Corr. random effect ρ −0.5 −0.496(-0.007) −0.499(-0.003) −0.486(-0.027)

Frequency of convergence 250 250 249



Chapter 8
General Conclusions

In a lot of applied research, binary and count outcome frequently appear, next to

continuous data. Statistical modeling of such data lies within the framework of expo-

nential family distributions (McCullagh and Nelder, 1989; Agresti, 2002; Molenberghs

and Verbeke, 2005). The resulting generalized linear models (GLMs) contain three

components: a random component that identifies a vector of observations of the out-

come and its probability distribution; a systematic component, i.e., a specification

for the mean vector in terms of a vector of fixed unknown parameters and known

covariate values; and a link function which specifies the function of expectation that

the model equates to the systematic component with known link functions, such as

the logit and log functions for binary and count data, respectively.

Generally, exponential family distributions are well known for the restrictive as-

sumption that the mean and variance are related. For example, in the case of count

data, the Poisson distribution assumes that the mean and the variance are equal.

Similarly, for binomial data, the variance and the mean are functions of a single pa-

rameter. However, in most practical settings, these mean-variance relationships do

not hold for a sample data, say, the variance of a count outcome exceeds its mean,

leading to the so-called overdispersion (McCullagh and Nelder, 1989; Agresti, 2002;

Molenberghs and Verbeke, 2005). When data are hierarchically organized, such as in

clustered or longitudinal settings, correlation will be induced in the data which comes

from the repeated measures nature for a given subject (Verbeke and Molenberghs,

2000; Molenberghs and Verbeke, 2005). Very often, count data are also characterized

by the presence of excessive zero observations beyond what can be allowed for by a

standard count distribution, such as Poisson distribution (Mullahy, 1986; Lambert,

117



118 Chapter 8. General Conclusions

1992; Greene, 1994). Many applications in public health, medical and biomedical or

other studies demand modeling of two or more longitudinal outcomes or time-to-event

data jointly to get better insight about their joint evolution. In this regard, a joint

modeling of a longitudinal outcome and a hierarchical, overdispersed and zero-inflated

count outcome can be an objective of a statistical investigation.

One possible route to deal with overdispersion is to introduce an overdispersion

parameter and only specify a relationship between the mean and the variance, and

then apply quasi-likelihood, whereby the extra variability in the data will be captured

by the dispersion parameter (Wedderburn, 1974). In clustered binary and binomial

data, an elegant way to account for overdispersion is through inclusion of beta random-

effects, leading to the so-called beta-binomial model, in which the Bernoulli model is

combined with a beta distribution (Molenberghs and Verbeke, 2005; Skellam, 1948;

Hinde and Demétrio, 1998a; Hinde and Demétrio, 1998b; Kleinman, 1973). Turning

to count data, it is common to combine Poisson distribution with a gamma distributed

random effect, so that the unconditional distribution of the outcome turns out to be

a negative binomial distribution (Breslow, 1984; Hinde and Demétrio, 1998a; Hinde

and Demétrio, 1998b). On the other hand, focusing on hierarchical data, the GLM is

usually extended to generalized linear mixed models (GLMMs), with a subject-specific

random effect, usually a Gaussian type, added in the linear predictor to capture a

hierarchy-induced association or to account for overdispersion (Engel and Keen, 1992;

Molenberghs and Verbeke, 2005; Pinheiro and Bates, 2000). Molenberghs et al. (2010)

proposed a flexible and unified modeling framework, termed the combined model , to

simultaneously capture overdispersion and correlation for a wide range of clustered

data, including count, binary and time-to-event. These authors brought together

two sets of random effects. The normally distributed subject specific-random effects

capture the correlation, while a conjugate measurement-specific random effect on the

natural parameter, is used to accommodate overdispersion.

Tsiatis and Davidian (2004) studied joint modeling of longitudinal outcome and

time-to-event data. Horrocks and van den Heuvel (2009) consider a joint model,

consisting of a linear mixed-effects submodel for the longitudinal outcome and a gen-

eralized linear submodel for the primary binary endpoint. Molenberghs and Verbeke

(2005) discuss a number of techniques that jointly model continuous and discrete out-

comes. A joint model for a longitudinal continuous and a count sequence, the latter

possibly overdispersed and zero-inflated, requires to assemble aspects coming from

each one of them in one single model. On the one hand, a subject specific random-

effect is included to account for the correlation in the continuous component. For the

count outcome, on the other hand, clustering and overdispersion are accommodated
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through two separate sets of random effects in a generalized linear model as defined

by Molenberghs et al. (2010). The association among the two sequences could be

captured through subject-specific random-effects which are allowed to correlate. An

excessive number of zero counts is often accounted for using the so called zero-inflated

or hurdle model.

In this thesis, we studied and proposed different statistical modeling strategies of

hierarchical data allowing for overdispersion for binary data (Chapter 4), and both

overdispersion and zero-inflation, for count data (Chapters 5 and 6). In addition,

a joint modeling framework for longitudinal continuous outcome and a hierarchical,

overdispersed and zero-inflated count data was proposed (Chapter 7). A brief overview

of the resulting conclusions for the pertinent chapters is now presented.

In Chapter 4, we have shown modeling of overdispersed hierarchical binary data.

We considered both the likelihood, similar to the combined model of Molenberghs

et al. (2010), and proposed its implementation in the Bayesian paradigm. The Beta-

binomial distribution, which is a compound distribution of the binomial and its con-

jugate beta, was employed to capture overdispersion, and Gaussian random effects

were included in the linear predictor, to capture correlation due to the data hierarchy.

In the Bayesian approach, the ability to specify prior distribution helped to incorpo-

rate more information in inference, especially for complex models, like the combined

model, that attempt to capture overdispersion and clustering using two separate sets

of random effects (Spiegelhalter et al., 2002). Beta-binomial approximates the bi-

nomial distribution arbitrarily well when its two non-negative parameters, α and β,

determining its shape, are sufficiently larger (Gelman et al., 2004). If one or both of

these parameters are less than 1, then the probability mass function will go to infinity

near its boundaries, 0 and 1, and hence not concave. As a result, the mode does not

exist, leading to computational problems in MCMC. For this reason, we used the re-

striction α > 1, β > 1, such that the density is always concave and unimodal whereby

it is always finite over the support [0, 1]. We considered two real world data sets and

analyzed, first in the likelihood context, and then in the Bayesian, which could also

be considered as sensitivity analysis (Kassahun et al., 2012).

Two longitudinal binary data sets, collected in south western Ethiopia: the Jimma

infant growth study, where the child’s early growth is studied, and the Jimma longitu-

dinal family survey of youth where the adolescent’s school attendance is studied over

time, were considered. One of the key indicators of infant growth is Body Mass Index

(BMI). Many studies suggest that Breastfeeding status, and socio-economic condi-

tion of the parents, among others, are potential risk factors of BMI (Macro., 2008;

WHO, 2009). School attendance among adolescents varies among gender groups in a
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way that girls are at higher risk of school absentism as compared to boys. Moreover,

adolescents living in urban areas have have a better school attendance rate, unlike

those in the rural setting similar to Freedman et al. (1999). The analysis showed that

the combined model results in model improvement in fit, and hence the preferred

one, based on likelihood comparison, and DIC criterion. This implies that instead of

accounting for overdispersion, and correlation separately, both can be accommodated

simultaneously, by allowing two separate sets of the beta, and the normal random ef-

fects at once. Further, the two estimation approaches result in fairly similar parameter

estimates and inferences in both of our case studies. Our data analysis showed that

early initiation of breastfeeding has a protective effect against the risk of overweight in

late infancy, while proportion of overweight seems to be invariant among males and

females overtime. Gender is significantly associated with school attendance, where

girls have a lower rate of attendance as compared to boys.

In Chapter 5, we extended the combined modeling idea of Molenberghs et al.

(2010) for hierarchical count data, who brought together normal random effects to

induce association between repeated Poisson data, and a gamma distributed random

factor in the log-linear predictor to account for the overdispersion, i.e., (PNG) to

further deal with an excess of zero observations. A zero-inflation extension of such

model, ZI(PNG), assumes that there are two processes as sources of zeros: zeros may

come from the point-mass or from the poisson-normal-gamma process as a mixture.

Two real world count data sets characterized by correlation, overdispersion as well as

excessive zeros were considered: the Jimma Infant growth study, where the number

of days of diarrheal illness were studied, and the Epilepsy study, where the number of

epileptic seizures that patients experience were the focus of investigation. Further, a

simulation study was conducted based on the Jimma Infants data in three scenarios:

without excessive zeros, moderate excessive zeros and higher proportion of excessive

zeros. Both the real data sets and the simulated data were analyzed with (PNG) and

ZI(PNG) and their special cases. We found that, when correlation, overdispersion

as well as excessive zeros are appearing at once, the ZI(PNG) is the most preferred

one. Any failure to account for excess zeros, overdispersion, and/or correlation has

a substantial impact on bias and predicted probabilities. This was clearly shown on

such key model parameters as the intercept term, the overdispersion parameter, and

the variance of the random effects. In the simulated study, all scenarios suggest that

the ZI(PNG) is the preferred one in terms of relative bias and predicted probabilities

of zeros.

Chapter 6 was devoted to marginalized modeling strategies for hierarchical count

data, characterized by correlation, overdispersion, and excess zeros: a marginalized



121

hurdle Poisson-normal-gammamodel and a marginalized zero-inflated Poisson-normal

model. In these framework, the marginalization concept that Heagerty (1999) applied

to multilevel models, adjustment for an excess of zero counts based on the hurdle

model or the zero-inflated model (Mullahy, 1986; Lambert, 1992), and the combined

modeling framework for overdispersion and correlation (Molenberghs et al., 2010) are

merged together in one single model. Two Gaussian distributed random-effects vec-

tors, possibly correlated, were included such that one of them captures the correlation

in the positive counts profile, while the other does the same in the excess zero model

component. The correlation between these random effects can be interpreted as the

correlation between the data generation processes of the zero state and the positive

counts.

In terms of link function choices for the zero-inflation, we considered logit link

for the marginal model, and a probit one for the conditional model, thus retaining

the odds-ratio interpretation of the covariate effects, while taking computational ad-

vantage of the probit link. Marginal interpretation is possible not only for the count

part, but also for the ZI component. Two real data sets on An. mosquito, collected

through two techniques: IRC and CDC near to a hydroelectric dam (at risk) and

away from the dam (control) were studied. We found that MH(PNG) model and

MZI(PNG) model worked well. We considered AIC and deviance statistics for model

comparison. As a result, the hurdle models showed better fit to the data, and lead

to parameter estimates relatively superior in precision. Furthermore, when the per-

centage of zeros is subject to change with a given covariate, MH(PNG) tends to give

a better prediction. In both case studies, the covariates village and season are affect-

ing the positive counts part and the ZI part oppositely, implying the two processes

are operating inversely. This was observed further from the negative sign of the cor-

relation parameter of the two random effects. On the other hand, in the presence

of modest overdispersion, as observed in the Jimma Longitudinal Family Survey of

Youth, it appears that overdispersion and the excess zero aspects may not be well

separated, and hence the Poisson-normal GLMM with only zero-inflation adjustment

was sufficient. In a univariate setting, one might employ a likelihood based approach

as proposed by Vuong (1989) for comparison of non-nested models, such as H(P--)

and ZI(P--). Min and Agresti (2005) suggested a number of advantages of the hurdle

model, including its flexibility to work well both in zero-inflation and zero-deflation

situations and the possibility to test for evidence of zero-inflation. On the other hand,

Todem et al. (2012) suggest an extended ZI model that can handle both zero-inflation

and zero-deflation, though the proposed link function does not have the computa-

tional flexibility of the probit link. Furthermore, this model can be used to assess
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assumption of excessive zeros in a given data. One might expect a marked difference

among the hurdle and the ZI models when the percentage of excess zeros is moderate

or low, whereby the former is likely to perform better.

Chapter 7 proposes a general joint modeling framework for a longitudinal con-

tinuous sequence and an overdispersed, zero-inflated hierarchical count data. For the

continuous end point, a Gaussian distributed subject specific random-effect is included

to account for the correlation in the continuous component. For the count outcome,

on the other hand, clustering and overdispersion are accommodated through inclusion

of a Gaussian and gamma distributed random effects in a generalized linear model

as proposed by Molenberghs et al. (2010). An excessive number of zero counts is

accounted for using the so called zero-inflated or hurdle model adjustments. The as-

sociation among the two sequences is captured through subject-specific random-effects

which are allowed to correlate.

We analysed the Jimma Infant data, where body weight as well as number of days

of diarrhoeal illnesses were measured repeatedly for each infant. The two outcomes

were modelled jointly to capture association between them. The two end points show

a strong inverse relationship as evidenced by the correlation of the random effects

in the (NN-)(PNG). Furthermore, model fit was improved when random effects are

allowed to correlate. Comparing the separate and joint models, while parameter

estimates for the continuous outcome remain the same, small changes are observed

in the count part. Turning to adjustments for zero-inflation either through hurdle

or ZI approaches, the linear mixed model (NN-) is left unaltered because the excess

zero adjustment aspect applies to the count process only. However, estimates of

the count process change with their corresponding standard errors getting relatively

smaller. Fitting a ZI(NN-)(PNG) model, even when correctly specified, is relatively

more complex than a H(NN-)(PNG). The latter has several additional advantages,

in particular the possibility to test for zero inflation. In the real data analysis, there

were no model convergence issues, which is reassuring. Of course, as we learned

from analysing these data, both overdispersion as well as additional zero inflation

were convincingly present. Furthermore, the set of data was very large. These are

comfortable conditions to reach convergence. In the simulation study, the hurdle

model was at an advantage when it came to model fit. Practically, one may consider

both approaches, hurdle and ZI, and perhaps use the relevant parameters from the

hurdle model as starting values for the ZI fit (Kassahun et al., 2013).

In conclusion, we note that our approach corrects for overdispersion and/or al-

lows for joint modelling. In our example, both phenomena were present, although

overdispersion results in a larger deviance reduction than joint modelling. One lesson
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to be drawn from this is that the user should carefully assess whether one or the

other correction, both of them, or perhaps none of the two is necessary. Note also

that joint modelling may be of interest in its own right. For example, one may be

interested in measuring the strength of the association between both processes (esti-

mating one or more correlation parameters) or in assessing its significance. Also, it

is possible to derive prediction equations for an outcome or set of outcomes in one

sequence, based on the outcomes in the other sequence and/or earlier measurements

of the same sequence.
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Appendix A
SAS and WinBugs Codes for

Overdispersed Hierarchical Binary

Data

A.1 A SAS Program

A SAS NLMIXED program, for the Logist-normal model and combined model:

A.1.1 Jimma infants growth study

A.1.1.1 Combined model

proc nlmixed data=infant noad qpoints=10;

parms Beta_0 =-3.23 Beta_1=0.0602 beta_2=0.0402 Beta_3=-0.8369

Beta_4 =-0.552 Beta_5 =1.7266 Beta_6=-0.003 Beta_7=-0.0262

Beta_8=-0.0184 Beta_9=-0.1584 sd1=1.3662 sd2=0.2576 const=0.0944;

eta = Beta_0+b1+ (Beta_1+b2)*time + Beta_2*sex + Beta_3*(place=1)

+Beta_4*(place=2) + Beta_5*(Bf)+ Beta_6*(sex)*time+

Beta_7*time*(place=1)+ Beta_8*time*(place=2)+ Beta_9*time*(BF);

expeta = exp(eta);

ll = -log(1+const) + BMIBIN*eta - BMIBIN*log(1+expeta)

+ (1-BMIBIN)*log((1-expeta/(1+expeta)) + const);

model BMIBIN ~ general(ll);
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random b1 b2 ~normal([0,0],[sd1**2,0,sd2**2]) subject=id;

run;

A.1.1.2 Logistic-normal model

proc nlmixed data=infant noad qpoints=10;

parms Beta_0 =-3.23 Beta_1=0.0602 beta_2=0.0402 Beta_3=-0.8369

Beta_4 =-0.552 Beta_5 =1.7266 Beta_6=-0.003 Beta_7=-0.0262

Beta_8=-0.0184 Beta_9=-0.1584 sd1=1.3662 sd2=0.2576;

eta = Beta_0+b1+ (Beta_1+b2)*time + Beta_2*sex + Beta_3*(place=1)

+Beta_4*(place=2)+Beta_5*(Bf)+ Beta_6*(sex)*time +

Beta_7*time*(place=1) + Beta_8*time*(place=2)+ Beta_9*time*(BF);

expeta = exp(eta);

p=expeta/(1+expeta) ;

model BMIBIN ~ binary(p);

random b1 b2 ~normal([0,0],[sd1**2,0,sd2**2]) subject=id;

run;

A.1.2 The Jimma Longitudinal Family Survey of Youth

A.1.2.1 Combined model

proc nlmixed data=ado noad qpoints=10 ;

parms Beta_0 =1.1652 Beta_1=0.04351 Beta_2=1.0911 Beta_3=1.1051

Beta_5=-1.2249 Beta_6=0.1471 Beta_7=0.3903 const=0.05 sd=0.5;

eta = Beta_0 +Beta_1*age+ Beta_2*(typplace=1)

+ Beta_3*(typplace=2) + Beta_5*currwork + Beta_6*sex

+Beta_7*round + b1;

expeta = exp(eta);

ll = -log(1+const) + currscho*eta - currscho*log(1+expeta)

+ (1-currscho)*log((1-expeta/(1+expeta)) + const);

model currscho ~ general(ll);

random b1~normal(0,sd*sd) subject=id ;

run;

A.1.2.2 Logistic-normal model

proc nlmixed data=ado noad qpoints=10 ;
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parms Beta_0 =1.1652 Beta_1=0.04351 Beta_2=1.0911 Beta_3=1.1051

Beta_5=-1.2249 Beta_6=0.1471 Beta_7=0.3903 sd=0.5;

eta = Beta_0 +Beta_1*age+ Beta_2*(typplace=1)

+ Beta_3*(typplace=2) + Beta_5*currwork + Beta_6*sex

+Beta_7*round + b1;

expeta = exp(eta);

p=expeta/(1+expeta) ;

model currscho ~ binary(p);

random b1~normal(0,sd*sd) subject=id ;

run;

A.2 WinBugs Implementation

A WinBugs program, for the Logist-normal model and combined model:

A.2.1 Jimma infants growth study

A.2.1.1 Combined model

model {

for (i in 1:49112) {

BMIBIN[i]~dbern(p[i])

p[i]<-kappa[i]*theta[i]

theta[i]~dbeta(a,b)

logit(kappa[i]) <- alpha0 + (s[ID[i]]+alpha1)*TIME[i]

+alpha2*SEX[i]+alpha3*RUR[i]+alpha4*URB[i]+alpha5*BF[i]

+alpha6 * SEX[i]*TIME[i]+ alpha7 * RUR[i] *TIME[i]

+ alpha8*URB[i]*TIME[i]+alpha9*BF[i]*TIME[i]

+ u[ID[i]]

}

for (j in 1:7969) {

u[j] ~ dnorm(0.0,tau1)

s[j]~ dnorm(0.0,tau2)

}



134 A. SAS and WinBugs Codes

a~dunif(3,5)

b~dunif(1.1,1.5)

c<-b/a

alpha0 ~ dnorm(0.0,1.0E-6)

alpha1 ~ dnorm(0.0,1.0E-6)

alpha2 ~ dnorm(0.0,1.0E-6)

alpha3 ~ dnorm(0.0,1.0E-6)

alpha4 ~ dnorm(0.0,1.0E-6)

alpha5 ~ dnorm(0.0,1.0E-6)

alpha6 ~ dnorm(0.0,1.0E-6)

alpha7 ~ dnorm(0.0,1.0E-6)

alpha8 ~ dnorm(0.0,1.0E-6)

alpha9~ dnorm(0.0,1.0E-6)

tau1~ dgamma(0.001,0.001)

tau2~ dgamma(0.001,0.001)

sd1<-sqrt(1/tau1)

sd2<-sqrt(1/tau2)

}

A.2.1.2 Logistic-normal model

model {

for (i in 1:49112) {

BMIBIN[i]~dbern(p[i])

p[i]<-kappa[i]

logit(kappa[i]) <- alpha0 + (s[ID[i]]+alpha1)*TIME[i]

+alpha2*SEX[i]+alpha3*RUR[i]+alpha4*URB[i]+alpha5*BF[i]

+alpha6 * SEX[i]*TIME[i]+ alpha7 * RUR[i] *TIME[i]

+ alpha8*URB[i]*TIME[i]+alpha9*BF[i]*TIME[i]

+ u[ID[i]]

}
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for (j in 1:7969) {

u[j] ~ dnorm(0.0,tau1)

s[j]~ dnorm(0.0,tau2)

}

alpha0 ~ dnorm(0.0,1.0E-6)

alpha1 ~ dnorm(0.0,1.0E-6)

alpha2 ~ dnorm(0.0,1.0E-6)

alpha3 ~ dnorm(0.0,1.0E-6)

alpha4 ~ dnorm(0.0,1.0E-6)

alpha5 ~ dnorm(0.0,1.0E-6)

alpha6 ~ dnorm(0.0,1.0E-6)

alpha7 ~ dnorm(0.0,1.0E-6)

alpha8 ~ dnorm(0.0,1.0E-6)

alpha9~ dnorm(0.0,1.0E-6)

tau1~ dgamma(0.001,0.001)

tau2~ dgamma(0.001,0.001)

sd1<-sqrt(1/tau1)

sd2<-sqrt(1/tau2)

}

A.2.2 The Jimma Longitudinal Family Survey of Youth

A.2.2.1 Combined model

Model {

for (i in 1:3815) {

SCHO[i] ~ dbern(p[i])

p[i]<-theta[i]*kappa[i]

theta[i]~dbeta(a,b)

logit(kappa[i]) <- alpha0 + alpha1*AGE[i]+alpha2*URB[i]

+alpha3*SURB[i]+alpha4*WORK[i]+alpha5 * SEX[i]

+ alpha6 * ROUND[i] + u[ID[i]]

}

for (j in 1:1956) {
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u[j] ~ dnorm(0,tau)

}

a~dunif(110,210)

b~dunif(1.1,2.2)

c<-b/a

alpha0 ~ dnorm(0.0,1.0E-6)

alpha1 ~ dnorm(0.0,1.0E-6)

alpha2 ~ dnorm(0.0,1.0E-6)

alpha3 ~ dnorm(0.0,1.0E-6)

alpha4 ~ dnorm(0.0,1.0E-6)

alpha5 ~ dnorm(0.0,1.0E-6)

alpha6 ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.001,0.001)

sd<-1/sqrt(tau)

}

A.2.2.2 Logistic-normal model

Model {

for (i in 1:3815) {

SCHO[i] ~ dbern(p[i])

p[i]<-kappa[i]

logit(kappa[i]) <- alpha0 + alpha1*AGE[i]+alpha2*URB[i]

+alpha3*SURB[i]+alpha4*WORK[i]+alpha5 * SEX[i]

+ alpha6 * ROUND[i] + u[ID[i]]

}

for (j in 1:1956) {

u[j] ~ dnorm(0,tau)

}

alpha0 ~ dnorm(0.0,1.0E-6)
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alpha1 ~ dnorm(0.0,1.0E-6)

alpha2 ~ dnorm(0.0,1.0E-6)

alpha3 ~ dnorm(0.0,1.0E-6)

alpha4 ~ dnorm(0.0,1.0E-6)

alpha5 ~ dnorm(0.0,1.0E-6)

alpha6 ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.001,0.001)

sd<-1/sqrt(tau)

}





Appendix B
A SAS Program for the Zero-Inflated

Models (Epilepsy Study)

/* y is the response variable (number of epileptic seizures) in the Epilepsy Data*/

B.1 (P--), ZI(P--)

B.1.1 (P--)

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

loglik=-lambda+y*eta-log(fact(y));

model y~ general(loglik);

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

run;

B.1.2 ZI(P--)

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 a0=0 a1=0;
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eta_prob = a0+ a1*time ;

p_0 = exp(eta_prob) / (1 + exp(eta_prob));

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

if y = 0 then loglik = log(p_0 + (1 - p_0) * exp(-lambda));

else loglik = log(1 - p_0) + y * log(lambda)- lambda - lgamma(y+1);

model y~ general(loglik);

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

run;
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B.2 (PN-), ZI(PN-)

B.2.1 (PN-)

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1;

if (trt = 0) then eta = int0 + b + slope0*time;

else if (trt = 1) then eta = int1 + b + slope1*time;

lambda = exp(eta);

loglik=-lambda+y*eta-log(fact(y));

model nseizw ~ general(loglik);

random b ~ normal(0,sigma**2) subject = id;

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

estimate "variance RIs" sigma**2;

run;

B.2.2 ZI(PN-)

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.8179 slope0=-0.014 int1=0.647 slope1=-0.012

d11=0.98 rho=0 d22=1.10 a0=-3 a1=0.1;

eta_prob = a0+ a1*time+b2 ;

p_0 = exp(eta_prob) / (1 + exp(eta_prob));

if (trt = 0) then eta = int0 + b1 + slope0*time;

else if (trt = 1) then eta = int1 + b1 + slope1*time;

lambda = exp(eta);

if y = 0 then loglik = log(p_0 + (1 - p_0) * exp(-lambda));

else loglik = log(1 - p_0) + y * log(lambda) - lambda

- log(fact(y));

random b1 b2~normal([0,0],[d11**2,rho*d11*d22,d22**2]) subject = id;

model y ~ general(loglik);

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

estimate "variance d11" d11**2;

estimate "variance d22" d22**2;

run;
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B.3 (P-G), ZI(P-G)

B.3.1 (P-G)

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 alpha=2;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

beta=1/alpha;

loglik=lgamma(alpha+y)-lgamma(alpha)+y*log(beta)-

(y+alpha)*log(1+beta*lambda)+y*eta-lgamma(y+1);

model y ~ general(loglik);

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

estimate "beta=1/alpha" 1/alpha;

run;

B.3.2 ZI(P-G)

proc nlmixed data=epilepsy qpoints=20;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 alpha=0.05 a0=-1 a1=0.1;

if (trt = 0) then eta = int0 + slope0*time;

else if (trt = 1) then eta = int1 + slope1*time;

lambda = exp(eta);

eta_prob=a0+a1*time;

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*lambda);

if y=0 then

ll = log(p_0+ (1-p_0)*(p**m));

else ll = log(1-p_0) + log(gamma(m + y)) - log(gamma(y + 1))

- log(gamma(m)) + m*log(p) + y*log(1-p);

model y ~ general(ll);

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

estimate "beta=1/alpha" 1/alpha;

run;
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B.4 (PNG), ZI(PNG)

B.4.1 (PNG)

proc nlmixed data=epilepsy qpoints=20;

bounds alpha>0,sigma>0;

parms int0=0.5 slope0=-0.1 int1=1 slope1=0.1 sigma=1 alpha=1 ;

f (trt = 0) then eta = int0 + b + slope0*time;

else if (trt = 1) then eta = int1 + b + slope1*time;

lambda = exp(eta);

beta=1/alpha;

loglik=lgamma(alpha+y)-lgamma(alpha)+y*log(beta)

-(y+alpha)*log(1+beta*lambda)+y*eta-lgamma(y+1);

random b ~ normal(0,sigma**2) subject = id ;

model y~ general(loglik);

predict lambda out=lamczc;

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

estimate "variance RIs" sigma**2;

estimate "beta=1/alpha" 1/alpha;

run;

B.4.2 ZI(PNG)

proc nlmixed data=epilepsy qpoints=20;

parms int0= 0.8511 slope0=-0.01048 int1=0.8165 slope1=-0.008 alpha=0.2937

d11=1.0810 rho=0 d22=3.19 a0=-1.78 a1=0.052;

if (trt = 0) then eta = int0 + b1 + slope0*time;

else if (trt = 1) then eta = int1 + b1 + slope1*time;

lambda = exp(eta);

eta_prob = a0+a1*time+b2 ;

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*lambda);

if y=0 then

ll = log(p_0 + (1-p_0)*(p**m));
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else ll = log(1-p_0) + log(gamma(m + y)) - log(gamma(y + 1))

- log(gamma(m)) + m*log(p) + y*log(1-p);

model y ~ general(ll);

random b1 b2 ~ normal([0,0],[d11**2,rho*d11*d22,d22**2]) subject = id;

estimate "difference in slope" slope1-slope0;

estimate "ratio of slopes" slope1/slope0;

estimate "variance d11" d11**2;

estimate "variance d22" d22**2;

estimate "beta=1/alpha" 1/alpha;

run;



Appendix C
A SAS Program for Marginalized

Models (IRC Dataset)

C.1 ZI(PNG) and MZI(PNG) Implementaion

C.1.1 ZI(PNG)ℓ

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time+b1;

lambda_c =exp(eta);

eta_prob=a0+a1*time+a2*village+a3*season+b2;

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then

ll = log(p_0 + (1-p_0)*(p**m));

else

ll = log(1-p_0)+lgamma(gamb+m)-lgamma(gamb+1)-lgamma(m) +

gamb*log(alpha*lambda_c)-(gamb+m)*log(1+alpha*lambda_c);

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;
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run;

Note: Special cases easily follow, for example, ZI(PN-)ℓ can be fitted by replacing

the above ZI(PNG)ℓ likelihood by:

if gamb=0 then

ll = log(p_0 + (1-p_0)*exp(-lambda_c));

else

ll = log(1 - p_0) + gamb * log(lambda_c) - lambda_c - log(fact(gamb));
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C.1.2 MZI(PNG)ℓ

proc nlmixed data=IRC;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

eta_prob=a0+a1*time+a2*village+a3*season;

p_eta_prob=exp(eta_prob)/(1+exp(eta_prob));

delta1=eta-sigma1*sigma1/2;

delta2=sqrt(1+(sigma2*sigma2)) * probit(p_eta_prob);

lambda_c =exp(delta1+b1);

p_0=probnorm(delta2+b2);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then

ll = log(p_0 + (1-p_0)*(p**m));

else

ll = log(1-p_0)+lgamma(gamb+m)-lgamma(gamb+1)-lgamma(m) +

gamb*log(alpha*lambda_c)-(gamb+m)*log(1+alpha*lambda_c);

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;

run;

In fitting MZI(PNG)ℓ, logit link for the marginal, and probit link for the condi-

tional model were used in the zero-inflation part, by making use of their connection,

as discussed in Section 6.1.
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C.1.3 ZI(PNG)p

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

lambda_c =exp(eta+b1);

eta_prob=a0+a1*time+a2*village+a3*season;

p_0=probnorm(eta_prob+b2);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then

ll = log(p_0 + (1-p_0)*(p**m));

else

ll = log(1-p_0)+lgamma(gamb+m)-lgamma(gamb+1)-lgamma(m) +

gamb*log(alpha*lambda_c)-(gamb+m)*log(1+alpha*lambda_c);

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;

run;
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C.1.4 MZI(PNG)p

proc nlmixed data=IRC;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

eta_prob=a0+a1*time+a2*village+a3*season;

p_eta_prob=probnorm(eta_prob);

delta1=eta-sigma1*sigma1/2;

delta2=sqrt(1+(sigma2*sigma2)) * probit(p_eta_prob);

lambda_c =exp(delta1+b1);

p_0=probnorm(delta2+b2);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then

ll = log(p_0 + (1-p_0)*(p**m));

else

ll = log(1-p_0)+lgamma(gamb+m)-lgamma(gamb+1)-lgamma(m) +

gamb*log(alpha*lambda_c)-(gamb+m)*log(1+alpha*lambda_c);

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;

run;
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C.2 H(PNG) and MH(PNG) Implementaion

C.2.1 H(PNG)ℓ

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

lambda_c =exp(eta+b1);

eta_prob=a0+a1*time+a2*village+a3*season;

p_0=exp(eta_prob+b2)/(1+exp(eta_prob+b2));

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then ll = log(p_0);

else ll = log(1-p_0) + log(gamma(m + gamb)) - log(gamma(gamb + 1))

- log(gamma(m)) + gamb*log(alpha*lambda_c)-

(gamb+m)*log(1/p)-log(1-(1/p)**(-m));

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;

run;
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C.2.2 MH(PNG)ℓ

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=1 sigma2=1 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

bounds sigma1>0,sigma2>0,alpha>0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

eta_prob=a0+a1*time+a2*village+a3*season;

p_eta_prob=exp(eta_prob)/(1+exp(eta_prob));

delta1=eta-sigma1*sigma1/2;

delta2=sqrt(1+(sigma2*sigma2)) * probit(p_eta_prob);

lambda_c =exp(delta1+b1);

p_0=probnorm(delta2+b2);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then ll = log(p_0);

else ll = log(1-p_0) + log(gamma(m + gamb)) - log(gamma(gamb + 1))

- log(gamma(m)) + gamb*log(alpha*lambda_c)-(gamb+m)*log(1/p)

-log(1-(1/p)**(-m));

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;

run;
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C.2.3 H(PNG)p

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

lambda_c =exp(eta+b1);

eta_prob=a0+a1*time+a2*village+a3*season;

p_0=probnorm(eta_prob+b2);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then ll = log(p_0);

else ll = log(1-p_0) + log(gamma(m + gamb)) - log(gamma(gamb + 1))

- log(gamma(m)) + gamb*log(alpha*lambda_c)-(gamb+m)*log(1/p)

-log(1-(1/p)**(-m));

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;

run;
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C.2.4 MH(PNG)p

proc nlmixed data=IRC6 ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma1=0.5 sigma2=0.5 alpha=1

a0=0 a1=0 a2=0 a3=0 tau=0;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

eta_prob=a0+a1*time+a2*village+a3*season;

p_eta_prob=probnorm(eta_prob);

delta1=eta-sigma1*sigma1/2;

delta2=sqrt(1+(sigma2*sigma2)) * probit(p_eta_prob);

lambda_c =exp(delta1+b1);

p_0=probnorm(delta2+b2);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

if gamb=0 then ll = log(p_0);

else ll = log(1-p_0) + log(gamma(m + gamb)) - log(gamma(gamb + 1))

- log(gamma(m)) + gamb*log(alpha*lambda_c)-(gamb+m)*log(1/p)

-log(1-(1/p)**(-m));

model gamb ~ general(ll);

random b1 b2 ~normal([0,0],[sigma1**2,tau*sigma1*sigma2,sigma2**2])

subject=id;
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C.3 M(PNG) and M(PN-) Implementaion

C.3.1 M(PNG)

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma=1 alpha=1;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

delta=eta-sigma*sigma/2;

lambda_c =exp(delta+b);

m = 1/alpha;

p = 1/(1+alpha*lambda_c);

ll = lgamma(gamb+m)-lgamma(gamb+1)-lgamma(m) +

gamb*log(alpha*lambda_c)-(gamb+m)*log(1+alpha*lambda_c);

model gamb ~ general(ll);

random b ~normal(0,sigma**2) subject=id;

run;

C.3.2 M(PN-)

proc nlmixed data=IRC ;

parms b_0=0 b_1=1 b_2=0 b_3=2 b_4=0 sigma=1;

eta = b_0 + b_1*village +b_2*time+b_3*season+b_4*Village*time;

delta=eta-sigma*sigma/2;

lambda_c =exp(delta+b);

ll=-lambda_c+gamb*log(lambda_c)- log(fact(gamb));

model gamb ~ general(ll);

random b ~normal(0,sigma**2) subject=id;

run;



Appendix D
A SAS Program for the Joint Model

/* resp is the response variable*/

/*name=‘1’ is an indicator for the count sequence

and name=‘2’ is an indicator for the continuous sequence*/

D.1 ZI(NN-)(PNG), H(NN-)(PNG) and

special cases

D.1.1 (NN-) & (PNG)

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202

beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 alpha=17;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1 ;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age+b2 ;

expeta=exp(eta);

m = 1/alpha;

p = 1/(1+alpha*expeta);
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ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1/p);

end;

model resp ~ general(ll);

random b1 b2~normal([0,0],[tau1**2,0,tau2**2]) subject=id;

run;
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D.1.2 (NN-)(PNG)

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.03359 sigma=0.7202

beta21=-1.1599 beta22=0.2250 tau1=0.6845 tau2=0.3699 rho=-0.1

alpha=17;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age+b1 ;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age+b2 ;

expeta=exp(eta);

m = 1/alpha;

p = 1/(1+alpha*expeta);

ll = lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);

end;

model resp ~ general(ll);

random b1 b2~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2])

subject=id;

run;
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D.1.3 (NN-) & H(PNG)

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 alpha=0.333

a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);

end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;

model resp ~ general(ll);

random b1 b2~normal([0,0],[tau1**2,0,tau2**2]) subject=id;

run;
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D.1.4 H(NN-)(PNG)

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 rho=-0.1

alpha=0.333 a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2])

subject=id;

run
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D.1.5 (NN-) & ZI(PNG)

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 alpha=0.333

a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age+ b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age+ b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = log(p_0 + (1-p_0)*(p**m));end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);

end;

end;

model resp ~ general(ll);

random b1 b2 ~normal([0,0],[tau1**2,0,tau2**2]) subject=id;

run;
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D.1.6 ZI(NN-)(PNG)

proc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 rho=-0.1 alpha=0.333

a0=2.04 a1=-0.037;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a0+a1*age;

expeta_prob=exp(eta_prob);

p_0=exp(eta_prob)/(1+exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = log(p_0 + (1-p_0)*(p**m));

end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta);

end;

end;

model resp ~ general(ll);

random b1 b2~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2])

subject=id;

run;
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D.2 Test of Zero-inflation

/* Comparing H(NN-)(PNG) with a1 versus H(NN-)(PNG) without a1*/

D.2.1 H(NN-)(PNG) without a1

roc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 rho=-0.1 alpha=0.333;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=beta21+beta22*age+b2;

expeta_prob=exp(eta_prob);

p_0=exp(-exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;
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model resp ~ general(ll);

random b1 b2~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2])

subject=id;

run;
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D.2.2 H(NN-)(PNG) with a1

roc nlmixed data=joint qpoints=20;

parms beta11=3.2818 beta12=0.7695 beta13=-0.033 sigma=0.76

beta21=2.0484 beta22=0.01788 tau1=0.688 tau2=0.48 rho=-0.1 alpha=0.333

a1=0;

if name = "2" then do;

mean = beta11 + beta12*age +beta13*age*age + b1;

dens = -0.5*log(3.14159265358) - log(sigma)

-0.5*(resp-mean)**2/(sigma**2);

ll = dens;

end;

if name = "1" then do;

eta = beta21 + beta22*age + b2;

expeta=exp(eta);

eta_prob=a1+beta21+beta22*age+b2;

expeta_prob=exp(eta_prob);

p_0=1-exp(-exp(eta_prob));

m = 1/alpha;

p = 1/(1+alpha*expeta);

if resp=0 then do;

ll = eta_prob-log(1+expeta_prob);end;

else do;

ll = log(1-p_0)+lgamma(resp+m)-lgamma(resp+1)-lgamma(m) +

resp*log(alpha*expeta)-(resp+m)*log(1+alpha*expeta)

- log(1 -( 1 + alpha*expeta)**(-m));

end;

end;

model resp ~ general(ll);

random b1 b2~normal([0,0],[tau1**2,rho*tau1*tau2,tau2**2])

subject=id;
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run

D.3 Simulation Study

D.3.1 Scenario One

data jointsim1;

call streaminit(1234);

do ss=1 to 250 ;

mean1=0; /*mean for b1*/

mean2=0; /*mean for b2*/

sig1=2; /*SD for b1*/

sig2=1.5; /*SD for b2*/

rho=-0.5; /*Correlation between b1 and b2*/

do kk=1 to 200;

r1 = rannor(1245);

r2 = rannor(2923);

b1 = mean1 + sig1*r1;

/*b1 random effect for continuous part*/

b2 = mean2 + rho*sig2*r1+

sqrt(sig2**2-sig2**2*rho**2)*r2;

/*b2 random effect for count part*/

do TT=1 to 10; /*10 time points*/

sim=ss;

e=rand(normal,0,0.6);

id=kk;

age=TT;

mu=3.3+0.77*age-0.03*age*age+b1+e; /* continuous part*/

kappa = exp(2 + 0.02*age+b2); /* count part*/

theta = 1;

parm1 = 1/(1+kappa/theta);

yneg = rand(NEGB,parm1,theta);

p1=2-0.2*age; /* zero-inflation part*/
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p2=exp(p1);

p=p2/(1+p2);

inf=rand(bern,p);

if inf=1 then do;

ynegzim=0;

end;

else do;

ynegzim=yneg;

end;

numdays=ynegzim;

output ;

end;

end ;

end;

data jointsim1;

set jointsim1;

run;

D.3.2 Scenario Two

data jointsim2;

call streaminit(1234);

do ss=1 to 250 ;

mean1=0; *mean for b1;

mean2=0; *mean for b2;

sig1=2; *SD for b1;

sig2=1.5; *SD for b2;

rho=-0.5; *Correlation between b1 and b2;

do kk=1 to 200;

r1 = rannor(1245);

r2 = rannor(2923);

b1 = mean1 + sig1*r1;

b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

do TT=1 to 10; /*10 time points*/

sim=ss;

e=rand(normal,0,0.6);

id=kk;
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age=TT;

mu=3.3+0.77*age-0.03*age*age+b1+e;

kappa = exp(2 + 0.02*age+b2);

ypois = rand(POISSON,kappa);

p1=2-0.2*age;

p2=exp(p1);

p=p2/(1+p2);

inf=rand(bern,p);

if inf=1 then do;

ypoiszim=0;

end;

else do;

ypoiszim=ypois;

end;

numdays=ypoiszim;

output ;

end;

end ;

end;

data jointsim2;

set jointsim2;

run;

D.3.3 Scenario Three

data jointsim3;

call streaminit(1234);

do ss=1 to 250 ;

mean1=0; *mean for b1;

mean2=0; *mean for b2;

sig1=2; *SD for b1;

sig2=1.5; *SD for b2;

rho=-0.5; *Correlation between b1 and b2;

do kk=1 to 200;

r1 = rannor(1245);

r2 = rannor(2923);
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b1 = mean1 + sig1*r1;

b2 = mean2 + rho*sig2*r1+sqrt(sig2**2-sig2**2*rho**2)*r2;

do TT=1 to 10; /*10 time points*/

sim=ss;

e=rand(normal,0,0.6);

id=kk;

age=TT;

mu=3.3+0.77*age-0.03*age*age+b1+e;

kappa = exp(2 + 0.02*age+b2);

theta = 1;

parm1 = 1/(1+kappa/theta);

yneg = rand(NEGB,parm1,theta);

numdays=yneg;

output ;

end;

end ;

end;

data jointsim3;

set jointsim3;

run;
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E. the posterior Densities for the logistic-normal and the combined

model

Figure E.1: Jimma Infants Growth Study, posterior density for the logistic-normal model

(pD= 5400.7)
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Figure E.2: Jimma Infants Growth Study, posterior density for the combined model (pD=

6218.3)
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E. the posterior Densities for the logistic-normal and the combined

model

Figure E.3: Jimma Longitudinal Family Survey, posterior density for the logistic-normal

model (pD= 211.9)
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Figure E.4: Jimma Longitudinal Family Survey, posterior density for the combined model

(pD= 241.5)


