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Chapter 1

Introduction

Correlated data are common in many health sciences studies, where clustered, mul-

tivariate, longitudinal, hierarchical and spatially organized data are frequently ob-

served. In clustered data, subjects within the same group are likely to be more

similar than subjects among different groups. When several outcomes of interest are

measured on the same individual, these multivariate outcomes are likely to be corre-

lated. Associations in spatial data are due to spatial proximity. In all these cases, the

observations under study share some common characteristics and statistical analysis

requires taking such associations into account. There exist many ways to deal with

these correlation structures, ranging from the most naive one of ignoring the associ-

ations to approaches that correct for correlations or model the clustering. Failure to

account for the effect of clustering can result in erroneous estimation of the variability

of the parameter estimates, and hence in misleading inference. Therefore, appropriate

statistical techniques for the analysis of correlated measurements are of interest.

An important consideration in the statistical modelling of correlated data concerns

the type of outcome. Methods for clustered or multivariate continuous data are widely

available, where the normal distribution with its elegant properties plays a prominent

role. However, when the outcome variable is discrete or categorical, techniques for

correlated data are less standard, because of the lack of a discrete analogue to the

multivariate normal distribution. In general, one might record more than one outcome

for each individual, with outcomes of a different type and individuals clustered within

groups or spatially correlated.

In this thesis, several scientific disciplines where clustering of categorical data are

encountered are topic of interest. Main focus is on risk analysis modelling in develop-

mental toxicity studies. Each of the research areas discussed involves a different study

1
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design, leading to unique and interesting statistical problems. In the next sections,

we briefly describe the research areas considered in this thesis, where correlated data

arise naturally in different ways.

1.1 Developmental Toxicity Studies

One of the most common worries for expectant parents is that something will be

wrong with their baby. Across Europe, just over 2 per cent of the newborn babies

have a defect that will affect their ability to survive or function normally. Such adverse

effects include foetal death, altered foetal growth, and structural changes. Defects of

limbs, heart and spinal cord represent about half of all abnormalities. Often, defects

in the development of foetuses are consequent to exposure of the pregnant women

to a toxic substance. Perhaps the most prominent example of a drug that caused

defects on the developing foetus is Thalidomide. Thalidomide, a sedative specifically

prescribed for pregnant women to combat symptoms associated with morning sick-

ness, was brought on the market in 1957 after inadequate testing. It caused severe

congenital malformation of the limbs of children whose mothers had used this drug in

the early stages of pregnancy. Following this, much stricter rules about drug testing

were introduced, and regulatory agencies, such as the U.S. Environmental Protection

Agency (EPA) and the Food and Drug Administration (FDA) stimulated reproduc-

tive and developmental toxicity research to better protect people against exposures to

agents that cause developmental toxicity, such as drugs, harmful chemicals and other

environmental hazards.

Developmental toxicity studies are necessary to investigate the potential risk of

exposures on fertility, birth defects, and developmental abnormalities, and play an

important role in the regulation of adverse exposures for human health. In this

area however, it is unethical to deliberately expose humans to potentially damaging

substances. In addition, the complexity and inherent variability of human populations

complicates the evaluation of adverse environmental effects. For this reason, the

field of toxicology has traditionally relied heavily on controlled studies in laboratory

animals (Williams and Ryan 1996). Since laboratory studies involve considerable

amounts of time and money, as well as huge numbers of animals, it is essential that

the most appropriate and efficient statistical models be used. Standard experimental

protocols for conducting developmental toxicity studies were established by the U.S.

FDA. Teratology studies are specifically designed to investigate the effects of exposure

on the development of the foetuses. In a typical teratology study with a Segment II
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design, the pregnant dams are exposed to a compound of interest during the critical

period of major organogenesis and structural development. Dose levels for this design

typically consist of a control group and three or four exposed groups, each involving

20 to 30 pregnant animals. The dams are sacrificed just prior to normal delivery,

at which time the uterus is removed and the contents are thoroughly examined for

the occurrence of defects. The number of dead and resorbed foetuses is recorded.

Viable foetuses are measured for birth weight and examined carefully for the presence

of malformations. An overview of the available data from developmental toxicity

studies is given in Figure 1.1.

An important issue in developmental toxicity is the risk assessment. Risk assess-

ment is the process by which scientific judgments are made concerning the potential

adverse health consequences of exposure to a toxic agent. The National Research

Council (1983) has defined risk assessment as including some or all of the following

components: hazard identification, dose-response assessment, exposure assessment,

and risk characterization. Hazard identification and dose-response evaluation involves

examining all available experimental data to determine if an agent causes develop-

mental toxicity. One component of the risk assessment is the examination of the

dose-response relationship, i.e., the dependence of a particular outcome (e.g. the

number of dead foetuses or the risk of a malformed foetus) on the dose that is admin-

istered to the dam. Another important component is the determination a safe level of

exposure, i.e., quantitative risk assessment. The exposure assessment identifies human

populations exposed or potentially exposed to an agent and the magnitude, duration,

and spatial extent of the exposure. In risk characterization, the hazard identifica-

tion, dose-response evaluation and the exposure assessment for given populations are

combined to estimate some measure of the risk for developmental toxicity.

We concentrate on the hazard identification and dose-response evaluation of devel-

opmental toxicity. However, the analysis of developmental toxicity data as described

above, raises a number of challenges (Aerts et al. 2002).

• Multivariate Outcomes. The developmental toxicity studies typically result in

multiple outcomes of interest. Developmental toxicity may record both mal-

formation outcomes (binary or ordinal) and birth weight (continuous) on each

embryo, as both have been found to be indicative of a toxic effect. In ad-

dition, correlation between these outcomes exists (Ryan et al. 1991). Thus,

jointly modelling the outcomes might be an appropriate statistical analysis.

This involves a multivariate method to jointly analyse continuous and discrete

outcomes.
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• Litter Effect. Correlation among the foetuses within litters is very likely to

be present because of the genetic similarity and same treatment conditions for

offspring of the same mother. The heterogeneity between clusters introduces an

additional source of variation and complicates the analysis (Kupper et al. 1986,

Chen and Kodell 1989).

• Hierarchy. Since the events of interest can occur at several point in develop-

ment, methods for handling the hierarchically related outcomes (such as death

and malformation) are also of interest. Ultimately, a model should take the hi-

erarchical structure of the data into account: (i) a toxic insult early in gestation

may result in an resorbed foetus; (ii) thereafter an implant is at risk of foetal

death; (iii) foetuses that survived the entire gestation period are still at risk of

low birth weight and/or malformations.

Accounting for the clustering of offspring within a litter and the multiplicity of out-

comes has led to interesting statistical research topics, which are addressed in this

thesis. Aside from the basic challenges of developing good multivariate models, par-

ticularly in the clustered data setting, additional technical challenges arise in applying

these models in real data settings. For example, correlation structures are likely to

change with exposure (Kupper et al. 1986). Determining how to use a complex model

for risk assessment purposes, for example, calculating the benchmark dose, is another

area of interest. In addition, proper flexible predictor models have to be used to fit

the data appropriately.

1.2 Other Complex Studies

Challenging issues arise in various other settings as well. Each research area has its

own specific purposes. The choice of the probability model used to analyse the data

depends merely on the research questions and peculiarities of that setting. In every

setting, flexible predictor models should be used to describe the data appropriately.

In neurophysiology one studies the function of the nervous system. One of the

techniques used in neurophysiology is electrophysiology, which records the electrical

activity produced by neurons. A version of this technique records the activity of

single cells in the form of action potentials, or spikes, which typically last about 1 ms.

Although the nature of the neural code is not clear at the present time, the firing

of spike rates of neurons and its temporal evolution is considered a measurement of

sensory, motor or behavioural activity. Since the frequency code is the way by which

neurons communicate, it is important to the physiologist to assess the neural firing
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rate. Another way to transmit information about the characteristics of a stimulus

is via synchronization of the neurons. Therefore, it is also of interest to describe

how ‘synchronous’ two spike trains are. This study results in multivariate binary

observations that are correlated in time. In this study one needs an appropriate

measure of synchrony of two neurons; a model that allows to analyse the firing rate

for each neuron separately; a model that accounts for the correlation between the

neurons; and a model that accounts for the correlation due to the longitudinal nature

of the observations of neuronal activity during the experiment. In Chapter 8, we will

propose a model that satisfies these properties.

In veterinary epidemiology one wants to investigate the occurrence of a disease in

animals, to identify causes that may explain the occurrence of the disease, and ulti-

mately to prevent or reduce the occurrence of that disease. When studying a specific

infectious disease it is important to estimate the rate at which susceptible individ-

uals acquire infection at different ages, i.e., the force of infection. Often however,

animals in a study are grouped within herds. Once an infection is introduced in a

herd, animals within the same herd have a high chance to get infected too. Thus,

correlations between the animals arise naturally due to the grouping of animals in

herds. In addition, not only the population force of infection can be important, but

also the herd-specific force of infection is of interest. Chapter 9 describes possible

models in this setting.

Gastroenterology is the branch of medicine dealing with the study of disorders

affecting the stomach, intestines, and associated organs. The gastrointestinal tract is

a tube, along which contents are pushed by the coordinated movements of its muscular

wall. These movements are controlled mainly by the enteric nervous system, an

extensive network of nerve cells that lies in the wall of the mammalian gastrointestinal

tract. In neuro-gastroenterology one studies the functioning of the neurons in the

intestines. Until now, there is no information as to the behaviour of spikes of neurons

in successive slow waves. In Chapter 10, both the spatial and temporal determination

of spikes are studied. In this setting, a flexible method for the spatial as well as

longitudinal analysis of neural activity is investigated.

1.3 Organization of Subsequent Chapters

Throughout the present work, we focus mainly on quantitative risk analysis in devel-

opmental toxicity studies. Emphasis is on the choice of a flexible predictor model,

on a correct choice of the probability model, and on efficient and computationally
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attractive estimation method.

In Chapter 2, we present all data sets that are used throughout this work. The Na-

tional Toxicology Program data are presented in Section 2.1. The electrophysiological

experiment, investigating the synchrony of neurons in the brain of awake behaving

animals, is introduced in Section 2.2. Section 2.3 describes the bovine herpesvirus

study. The data investigating the spike patches in cat duodenum are presented in

Section 2.4.

In Chapter 3 a review of possible statistical models for clustered binary data is

given. Several types of model families exist. Possible probability models for clustered

binary data are the marginal beta-binomial model (Williams 1975) and the conditional

model of Molenberghs and Ryan (1999). Often however, complete specification of the

joint distribution of the response vector can become problematic and fully likelihood-

based estimation methods are awkward when dealing with complex data problems.

Alternative estimation methods, such as pseudo-likelihood (Arnold and Strauss 1991)

and generalized estimating equations (Liang and Zeger 1986, Zeger and Liang 1986),

are described. There is also a wide class of possible predictor models describing the

model parameters as function of variables of interest, ranging from linear to non-linear

functions and from parametric to non-parametric models.

Two important components of the risk assessment process in developmental tox-

icity studies are the hazard identification and safe dose determination. Chapter 4

deals with the safe dose determination, whereas Chapter 5 focuses on the hazard

identification. In both chapters, we restrict attention to clustered binary outcomes

(malformation), and investigate the use of a flexible predictor model. In Chapter 4

the effect of misspecification of the dose-response model to assess a safe level of ex-

posure is investigated. Although classical polynomials are very customary, they are

often inadequate, especially when low dose extrapolation is envisaged. In order to get

a reliable estimate of a safe level of exposure, the model should fit the data well in

all respects. A very elegant alternative approach to classical polynomials, which falls

within the realm of (generalized) linear methods, are fractional polynomials as pro-

posed by Royston and Altman (1994). The behaviour of fractional polynomials in the

context of quantitative risk assessment is investigated through extensive simulations.

The fractional polynomials are much more flexible to attain the correct benchmark

dose than conventional polynomials. It is shown how fractional polynomial predictors

resolves possible probability model misspecification and may thus yield more reliable

estimates.

Hazard identification in the risk assessment process deals with testing for dose

trend. Also in this setting it is important that the model describes the data well.
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Another alternative specification to the conventional linear predictor is given by a

non-linear model (Davidian and Giltinan 1995). Nonlinear models pose non-trivial

methodological challenges. For example, a classical power model α+βdγ , where d de-

notes dose and α, β, and γ are unknown parameters, suffers from lack of identifiability

under the null hypothesis of no dose effect, since this null hypothesis corresponds to

both β = 0 with γ arbitrary, as well as to γ = 0 with β arbitrary. A Bayesian method

to test for no dose trend is topic of interest in Chapter 5.

Often however, the malformation type is recorded as an ordinal variable and the

foetal birth weight is given, both being important measures of teratogenicity. A mul-

tivariate probability model reflecting the type of outcomes is required. In Chapter 6, a

modelling approach for the joint analysis of ordinal and continuous outcomes in a clus-

tered data setting is proposed. The model is motivated by dose-response modelling

of malformation and foetal weight data from developmental toxicology experiments

to be used for quantitative risk assessment. We introduce a likelihood-based method

that is an extension of the Plackett-Dale approach. Specification of the full likelihood

will be avoided using pseudo-likelihood methodology. The estimation of safe dose

levels as part of quantitative risk assessment is illustrated based on a developmental

toxicity experiment of diethylene glycol dimethyl ether in mice.

In previous chapters, focus was on the outcomes measured on the viable foetuses.

However, also the number of viable foetuses in a dam, i.e., the litter size, is affected

by the dose of a toxic agent. Therefore, a method that acknowledges the stochastic

nature of the litter size is necessary. This is the topic of research in Chapter 7. A

major problem in constructing a model for the full data structure is the intractability

of the marginal likelihood. Due to this problem, formulation of the models is difficult.

An interesting alternative is offered by Bayesian methods. A model to analyse the

hierarchical data structure is proposed.

So far, methods were illustrated using developmental toxicity studies, but their

relevance is far beyond this area. Other settings, each with their own research ques-

tions and design issues, are explored in the next chapters of this thesis. Chapter 8

deals with bivariate binary data, measured over time, in the context of electrophys-

iology. To describe how ‘synchronous’ two spike trains are, a variety of association

measures can be used. We propose a new measure of synchrony, the conditional syn-

chrony measure, which is the probability of firing together given that at least one of

the two neurons is active. Focus is on the specification of a flexible marginal model

for multivariate correlated binary data together with a pseudo-likelihood estimation

approach, to adequately and directly describe the measures of interest. A joint model

must allow different time- and covariate-depending firing rates for each neuron, and
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must account for the association between them. The association between neurons

might depend on covariates as well.

The next research area of interest is the veterinary epidemiology. Specific interest

is in the force of infection in infectious diseases, or the rate at which susceptible

individuals become infected. Often in this area, clustering arises due to the natural

grouping of cattle within herds. So far however, one has always ignored the clustering

when investigating the force of infection. The effect of clustering on the force of

infection of the bovine herpesvirus-1 in Belgian cattle is investigated in Chapter 9.

Both population-averaged and herd-specific patterns of disease are studied. Since the

herdsize is related with the prevalence of the disease in this study, methods accounting

for the non-ignorable cluster size are inspected.

Another type of correlated data is given by spatially organized data. In Chap-

ter 10, the spatial location of neuron spikes in part of the small intestines is investi-

gated. In addition, measurements are repeated in time. A flexible model describing

the two-dimensional surface is investigated in Chapter 10. We explore the use of

generalized linear mixed model for smoothing purposes. A major advantage of the

mixed model approach is that it can handle smoothing together with grouping (or

other types of correlations) in a unified model.
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Chapter 2

Motivating Examples

2.1 National Toxicology Program Data

The National Toxicology Program (NTP) develops scientific information about poten-

tially toxic chemicals that can be used for protection of public health and prevention

of chemically induced diseases. One of the goals is to determine the developmental

toxicity of chemicals to which a wide segment of the population is exposed. In this

case, that population consists of pregnant women. Since it is difficult to assess expo-

sure to potential developmental toxicants and outcomes of exposure within this group,

well-controlled animals studies must provide a basis for human risk assessment.

In this section we introduce three developmental toxicity studies conducted by

the Research Triangle Institute under contract to the National Toxicology Program

of the U.S. These studies investigate the effects in mice of different chemicals: ethylene

glycol (EG) (Price et al. 1985), diethylene glycol dimethyl ether (DYME) (Price et

al. 1987) and theophylline (THEO) (Lindstrom et al. 1990).

2.1.1 Ethylene Glycol

Ethylene glycol (EG) is also called 1,2-ethanediol and can be represented by the

chemical formula HOCH2CH2OH. EG is a high-volume industrial chemical with

diverse applications. It is used to make antifreeze and de-icing solutions for cars,

airplanes, and boats, to make polyester compounds, and is used as a solvent in the

paint and plastics industries. EG is employed as an ingredient in photographic devel-

oping solutions, hydraulic brake fluids and in the formulation of several types of inks.

Furthermore, one uses EG as a softening agent for cellophane and in the synthesis of

11
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Table 2.1: Summary data from an EG experiment in mice.

Dose Dams, ≥ 1 Viable Adverse Effect

(mg/kg/day) impl. viab. Nr. Mean Malf. Death

0 25 25 297 11.9 4.0 68.0

750 24 24 276 11.5 66.7 62.5

1500 23 22 229 10.4 81.8 73.9

3000 23 23 226 9.8 95.7 91.3

various chemical products, such as plasticizers, synthetic fibers and waxes (Windholz

1983).

While EG may not be hazardous to humans in normal industrial handling, it can

become dangerous when used at elevated temperatures or when ingested. Exposure to

large amounts of ethylene glycol can damage the kidneys, heart, and nervous system.

In addition, ingestion of antifreeze products, which consist for approximately 95% of

EG, is toxic and may result in death (Price et al. 1985).

Price et al. (1985) describe a study in which timed-pregnant CD-1 mice were

dosed by gavage with EG in distilled water. Dosing occurred during the period of

major organogenesis and structural development of the foetuses (gestational days 6

through 15). The doses selected for the study were 0, 750, 1500 or 3000 mg/kg/day,

with 25, 24, 23 and 23 timed-pregnant mice randomly assigned to each of these dose

groups, respectively. Table 2.1 presents for each dose group the number of dams in

the study containing at least one implant, as well as the number of dams having at

least one viable foetus.

When interest in the risk of EG on the litter of a dam, the probability that at least

one foetus in that litter has the adverse event under consideration is crucial. Table 2.1

summarizes the adverse event for a litter. For each dose group, the number of viable

foetuses, the mean litter size, the percentage of malformed litters, and the percentage

of dams with at least one dead foetus are displayed. It suggests clear dose-related

trends for all outcomes.

Instead of considering a collapsed outcome, indicating whether a dam has at least

one abnormal foetus, one can investigate the adverse event of having an abnormal

foetus in a cluster. A summary of the data is presented in Figure 2.1. The dots

represent the probability of an affected foetus per cluster. The stars represent the
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Figure 2.1: EG study. Observed and averaged malformation rates, foetal death rates

and average foetal birth weights.
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average risk of an affected foetus per dose group. The data show clear dose-related

trends for both the malformation outcome, as well as for foetal death. The observed

malformation rate in the dose groups increases quickly from 0.3% in the control group

to 57.1% in the highest dose group. The risk of a dead foetus rises slowly with

increasing dose, from 10.8% up to 20.1%. Also the foetal birth weight is pictured in

Figure 2.1. The average foetal weight decreases monotonically with dose, declining

from 0.972 g in the control group to 0.704 g in the highest dose group.

The EG data is used in Chapters 4 and 5, where alternative predictor models

to the classical polynomials are studied, and in Chapter 7, where focus is on the

specification of a model accounting for the hierarchical nature of the data.

2.1.2 Diethylene Glycol Dimethyl Ether

Diethylene glycol dimethyl ether (DYME), also referred to as diglyme, bis(2-methoxy-

ethyl) ether or dimethyl carbitol, belongs to the group of ethylene glycol ethers. The

molecular structure of DYME can be represented as (CH3OCH2CH2)2O. DYME is

mainly used as a solvent, as an inert reaction medium in chemical synthesis, and as

a separating agent in distillations. As a solvent it is widely used in the manufacture

of textile dyes, cosmetics and protective coatings such as lacquers, metal coatings,

baking enamels, etc. (Baumann and Muth 1997).

Although to date, several attempts have proven inadequate to evaluate the poten-

tial of glycol ethers to produce human reproductive toxicity, structurally related com-

pounds have been identified as reproductive toxicants in several mammalian species,

producing testicular toxicity and embryotoxicity. Price et al. (1987) describe a study

in which DYME was administered by gavage in distilled water to timed-pregnant

mice during major organogenesis (gestational days 6 through 15). The doses selected

for the study were 0, 62.5, 125, 250, and 500 mg/kg/day with 21, 20, 24, 23 and 23

pregnant dams randomly assigned to each of these dose groups, respectively. In this

experiment, each viable foetus is examined further for the occurrence of a malfor-

mation and for the birth weight. The malformation status is recorded on an ordinal

scale: normal, a minor malformation or full malformation.

Table 2.2 shows, for each dose group, the number of dams having at least one

implant, the number of dams having at least one viable foetus, the number of live

foetuses, the mean litter size, the percentage of dams having at least one foetus with

a full malformation, the percentage of dams having at least one foetus with a minor

or full malformation and the percentage of dams with at least one dead foetus. The

data show clear dose-related trends.
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Figure 2.2: DYME study. Observed and averaged malformation rates (left: full mal-

formation, right: minor or full malformation), observed and averaged foetal death

rates and average foetal birth weights.
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Table 2.2: Summary data from a DYME experiment in mice.

Dose Dams, ≥ 1 Viable Malformations

(mg/kg/day) impl. viab. Nr. Mean Full Minor or Full Death

0.0 21 21 282 13.4 4.8 23.8 47.6

62.5 20 20 225 11.3 0.0 15.0 60.0

125 24 24 290 12.1 25.0 66.7 62.5

250 23 23 261 11.3 82.6 95.7 69.6

500 23 23 141 6.1 100.0 100.0 100.0

The adverse effects of the possibly toxic chemical DYME on the foetus is presented

in Figure 2.2. The data show clear dose-related trends for all outcomes. There is a

pronounced dose-related reduction in foetal weight, with the highest administration

of DYME resulting in roughly half of the mean weight in control animals. The average

foetal birth weight declines from 1.000 g in the lowest dose group to 0.554 g in the

highest dose group. The malformation data also exhibit trends with dose. The

rate of a minor malformation increases at the lower doses, while the rate of full

malformations shows strong increase at the highest doses. As a consequence, the rate

of any malformation (minor or full) increases monotonically with dose, ranging from

2.9% in the control group to 93.6% in the highest dose group. The foetal death rate

increases from 4.9% in the control group to 50.4% in the highest dose group.

The DYME data is used in Chapters 6, where focus is on the specification of a

probability model which accounts for the complex data structure in developmental

toxicity studies.

2.1.3 Theophylline

Theophylline is structurally classified as a methylxanthine. The molecular formula

of anhydrous theophylline is C7H8N4O2. It occurs as a white, odourless, crystalline

powder with a bitter taste. Theophylline is a natural component in tea, coffee and

chocolate. Further, it is widely used in the pharmacy. It is one of the most commonly

used medications for the treatment of the symptoms of chronic asthma. Its most

important actions are to prevent the signs and symptoms of asthma, especially during

the night, and to reduce the need for cortisone type medication. Theophylline has

been shown to cross the human placenta and is secreted in breast milk.
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Table 2.3: Summary data from a THEO experiment in mice.

Dose Dams, ≥ 1 Viable Adverse Effect

(mg/kg/day) impl. viab. Nr. Mean Malf. Death

0 26 25 296 11.8 4.0 65.4

282 26 25 278 11.1 8.0 69.2

372 33 29 300 10.3 17.2 90.9

396 23 17 197 11.6 17.6 78.3

The oral intake of theophylline (THEO) was evaluated for toxic and teratogenic

effects in mice. Lindstrom et al. (1990) expose the dams to the concentrations 0,

0.075, 0.15 and 0.2%, corresponding to 0, 282, 372 and 396 mg/kg/day respectively.

THEO was administered continuously in the feed on gestational days 6 through 15.

The probability of an affected cluster, i.e., having a dam with at least one affected

foetus, is investigated. Results are summarized in Table 2.3. The table suggests

gradually increasing dose-related trends in the malformation and death rate.

Also the risk that a foetus exhibits the adverse event under investigation is crucial.

The malformation rate, death rate and birth weights of the foetuses are displayed in

Figure 2.3. There is a slight increase of the risk of a malformed foetus, from 0.3% in

the control group to 2.5% in the highest dose group. The death rate rises gradually,

from 8.4% until 23.6%. The foetal birth weight decreases from 1.036 g in the control

group down to 0.917 g in the highest dose group.

This data set is used in Chapter 5, where it is investigated whether THEO has a

toxic effect on the developing foetus.

2.2 Electrophysiological Data

Neurons can transmit information about the characteristics of a stimulus via the spike

rate of neurons and via synchronization of the neurons. Therefore, it is of interest

to describe how ‘synchronous’ two spike trains are. A fundamental methodology

to investigate the activity of some neurons is electrophysiology which records the

electrical signals produced by individual neurons within the brain of awake behaving

animal.

This work is motivated by electrophysiological experiments carried out in two
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Figure 2.3: THEO study. Observed and averaged malformation rates, foetal death

rates and average foetal birth weights.
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Figure 2.4: Electrophysiological study. Temporal sequence of the discrimination task.

male behaving monkeys (Macaca mulatta). The monkeys were trained to discriminate

line orientations (Vazquez, Cano and Acuña 2000). Monkeys had their head fixed,

and looked binocularly at a monitor screen placed at 114 cm from their eyes, and

during the task their right arm operated a lever. A panel with two switches was in

front of the monkey, at hand reach. The left and right switches were used in the

discrimination task to signal orientations of the visual stimulus to the left and right,

respectively. Figure 2.4 shows the temporal sequence of the discrimination task during

the experiment.

The trial begins when the monkey presses a key lever, and visually fixates a short

vertical bar (FT) at the center of the monitor screen. The monkey should maintain the

fixation during the trial, otherwise the trial is aborted. Then two stimuli, reference

and test, each of 500 ms duration, were presented in sequence, with a fixed inter-

stimulus interval (ISI: 1000 ms). The stimuli were stationary bright lines, and three

different reference orientations were used (90◦, 95◦, 85◦). Different test lines, ten per

reference stimulus, were presented clockwise or counter clockwise to the reference line

in steps of 1◦. At the end of the second stimulus the monkey released the key (KU),

and pressed one of two switches (PB) indicating whether the orientation of the second

stimulus was clockwise or counter clockwise to the first stimulus. A and B are two

examples of the stationary bright lines used as stimulus. Monkeys were rewarded with

a drop of water for correct discrimination.

The activity of neurons in the primary visual cortex was recorded simultaneously,

through the insertion of different microelectrodes into the monkey’s brain, while the

monkey performed the visual discrimination task. To study the synchrony between



20 Chapter 2

cell pairs the analysis was restricted to the effect of the three reference stimuli (500

ms). The 200 ms before the reference stimulus comes on can be taken as control

(baseline cell activity), due to the fact that during this period there was no visual

stimulus whatsoever. Another period of 200 ms out of the 1000 ms of the Inter-

Stimulus Interval (ISI) was also taken as control, i.e., recovery of the cell activity. We

emphasized the fact that the monkey has to attend to the reference stimuli, otherwise

the monkey could not solve the task (Vazquez et al. 2000). Per trial, every action

potential is recorded during these 900 ms, resulting in 900 binary outcomes. We

examine data from 19 trials, with stimuli at different orientations.

Data from two particular neurons are shown in Figure 2.5. On the time axes,

0 ms corresponds to the appearance of the stimulus and 500 ms to the removal of the

stimulus. The raster plot shows the spike trains for each of the trials on separate lines.

The peristimulus time histogram (PSTH) displays the number of spikes per second

occurring within 10 ms bins, averaged over all trials. The solid curve is a smoothed

version of the counts obtained with a kernel density estimator. After the appearance

of the stimulus, the intensity of spikes increases rapidly up to some maximum, and

then remains high. After removal of the stimulus, the intensity of spikes gradually

drops back. The intensity of spikes in the first neuron is higher than in the second

neuron.

In Chapter 8, we introduce a measure describing the ‘synchrony’ of two spike

trains. Focus is on the specification of a flexible marginal model for multivariate

correlated binary data together with a pseudo-likelihood estimation approach (Arnold

and Strauss 1988), to adequately and directly describe the measures of interest.

2.3 Bovine Herpesvirus-1 Data

Bovine herpesvirus-1 (BHV) is a worldwide-distributed infection in cattle. To inves-

tigate BHV-1 prevalences in the Belgian cattle population, a survey was conducted

from December 1997 to March 1998 in all provinces of Belgium. In each province, 1%

of the total number of herds was randomly sampled, yielding a study sample of 309

unvaccinated herds. The number of cattle per herd varied from 1 to 294. In the se-

lected herds, all animals were blood sampled. It was investigated whether the animal

had, or had not, antibodies towards the gB antigen of the bovine herpesvirus-1. The

age, sex and purchase (purchased or homebred) of the animal were recorded. Also

the herdtype (dairy, mixed or beef) and size of herds were registered. As such, a total

of 11284 cattle were investigated. An overview of the variables in the study is given
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Figure 2.5: Electrophysiological study. Raster plot (left) of spikes and corresponding

peristimulus time histogram (right) for neuron 1 (top) and neuron 2 (bottom).
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Table 2.4: Bovine Herpesvirus-1 study. Overview of the different variables in the

data.

Variable Description

gb infected or not

herd identification umber of the herd

animal identification number of the animal

province province (Belgium has 10 provinces)

herdtype dairy, mixed or beef

herdsize size of the herd (number of cattle)

densanim density of cattle population (number of cattle/km2 )

densherd density of herds in the municipalities (number of herds/km2) )

age age of the animal (in months)

sex gender of the animal

purchase purchased or homebred

Figure 2.6: Bovine Herpesvirus-1 study. Prevalence of gB as a function of age

(months).
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in Table 2.4.

In Figure 2.6 the prevalence of gB-antibodies against the age of the animal is

displayed. There is a clear increase of the prevalence of the virus with age. In the

analysis, only animals older than 6 months are considered, since high sero-prevalence

in young animals are not necessarily due to high prevalence of the bovine herpesvirus-

1. Animals less than 6 months old typically have high sero-prevalence of gB-antibodies

because the maternal antibodies are hereditable. It is worthwhile to investigate this

relationship in future research. We refer to Boelaert et al. (2000) and Speybroeck et

al. (2003) for details about the study design.

In Chapter 9 we present methods to derive cluster-specific and population averaged

force of infection estimates, while accounting for the complex study design. Also the

prevalence of the bovine herpesvirus-1 is investigated using flexible predictor models

such as fractional polynomials and penalized splines.

2.4 Isolated Cat Duodenum Data

The small intestine finishes the process of digestion, absorbs the nutrients, and passes

the residue on to the large intestine. It is the longest section of the digestive tube.

In most animals, the length of the small intestine is roughly 3.5 times body length.

The small intestine of a cat is about 1 to 1.5 meters in length. It is divided into the

duodenum, jejunum and ileum. The duodenum is the beginning portion of the small

intestine, starting at the lower end of the stomach and extending to the jejunum.

Coordinated contractions of smooth muscle participate in several ways to facilitate

digestion and absorption of food in the small intestine. This is controlled predomi-

nantly by signals from the enteric nervous system. Two basic patterns of electrical

activity are important: the slow waves and spike potentials. Slow waves in the in-

testines are the basic electrical rhythm of the gut, sweeping along the digestive tube

for long distances. The slow wave is thought to act as a pacemaker signal that in-

duces the muscle layers to contract. Such slow waves occur 10 to 20 times per minute

in the muscle of the small intestine. Action potentials superimposed on slow waves

determine the force and duration of muscle contraction.

There is a considerable amount of information about the temporal and spatial

organization of slow waves and action potentials (spikes) in the small intestine. In

the spatial dimension, it is of interest to determine whether or not spikes are restricted

to certain areas (i.e., spike patches). In addition, there is no information as to the

behaviour of spikes in successive slow waves. If spikes had occurred during a particular
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Figure 2.7: A look at the number of spikes on a grid in the intestine of a cat, during

six successive slow waves.
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slow wave, what are then the temporal and spatial characteristics of spikes and spike

patches during the next slow waves? Understanding these patterns can help to clarify

the mechanisms involved in their generation and propagation, and also the processes

that underly the different types of small intestine movement.

In this study, a segment of the proximal small intestine from seven mongrel cats

had been removed and transferred to a tissue bath. Spontaneous electrical activities

on the surface were recorded. Simultaneous recordings were performed during one-

minute periods using 240 extracellular electrodes (24 × 10 array; 2 mm interelectrode

distance) positioned onto the serosal surface. The locations of successive spike patches

occurring during 12 to 16 successive slow waves were recorded. Figure 2.7 shows the

data for the grid of a cat at 6 successive slow waves. The size of the dots represents

the number of spikes at that location. The number of spikes at a certain location

varies between 0 and 4. Details of the experiment can be found in Lammers et al.

(1996, 2000). In Chapter 10, the spatial and temporal characteristics of the spikes

are investigated.
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Chapter 3

Issues in Flexible Modelling

Each of the datasets described in the previous chapter deals with the analysis of

correlated categorical data. In this chapter we present a toolbox of methods known

in literature, which are used throughout this thesis.

In general, to build a flexible model for a complex data setting, some choices

have to be made concerning the probability model, the estimation method and the

predictor model. We will discuss each of them in turn.

• Probability Model. The probability model should reflect the nature of the data,

i.e., the type of outcome, the data structure, etc. Different types of modelling

approaches (marginal, conditional, random effects models) are available. The

choice between the different model families should mainly depend on the re-

search questions one is willing to answer. However, since each model family

requires its own analysis and software tools, also the availability of computa-

tional algorithms is important in making the appropriate choice.

• Estimation Method. Based on the model formulation, the appropriate estima-

tion method should be chosen. Estimation methods range from full likelihood to

pseudo-likelihood, quasi-likelihood and generalized estimating equations. Like-

lihood methods enjoy many desirable properties, such as efficiency under ap-

propriate regularity conditions and the ability to calculate functions of interest

based on the proposed parametric model (Edwards 1971). However, not only

the specification of the likelihood function can be cumbersome, but also esti-

mation of the parameters can be computationally intensive. In addition, fully

specifying the joint probability model comes at risk of possible misspecifications.

Therefore, alternative estimation methods can be desirable.

27
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• Predictor Model. The predictor model describes the relationship between the

model parameters and some explanatory variables. High order polynomials offer

a wide range of curves, but often fit badly at the extremes. A flexible predictor

model is needed to describe the functional form. Both parametric and more

non-parametrically inspired approaches can provide flexibly shaped curves.

A flexible predictor model, in combination with the model families and different esti-

mation methods, yields a broad framework to model clustered binary data. All three

aspects of the model will contribute to the flexibility of the model. In this chapter,

we present some methodologies for the analysis of clustered binary data in terms of

the developmental toxicity studies. However, the methodology is applicable in general

clustered binary data settings.

Consider an experiment involving N litters (pregnant dams), the ith of which

contains ni individuals, each of whom are examined for the presence or absence of

a malformation. Suppose Yij = 1 indicates whether the jth individual in cluster

i is abnormal, and 0 otherwise. Then, define Zi =
∑ni

j=1 Yij , the total number of

malformations in cluster i. Covariates of interest are the treatment or dosing di given

to cluster i. Further, we assume exchangeability within a litter.

3.1 Probability Model

A dose-response model describing developmental toxicity data must take the structure

of the data into account. Interest goes to the risk of observing a malformation, binary

coded as absent/present. Further, we must account for the litter effect induced by the

clustering of offspring within litters. Different types of probability models are available

for correlated binary data, and can be grouped into conditional, marginal and cluster-

specific models. A thorough review is given in Pendergast et al. (1996) and Aerts

et al. (2002). As examples of full likelihood methods for univariate clustered binary

data, we selected the beta-binomial model (Skellam 1948, Williams 1975), which can

be viewed as a marginalized random effects model, and the conditional exponential

family model (MR) of Molenberghs and Ryan (1999).

3.1.1 A Random Effects Likelihood Model

The beta-binomial model assumes that, conditional on litter size ni and malformation

probability of any foetus in litter i, the number of malformations Zi in the ith cluster

follows a binomial distribution. To account for the litter effect, i.e., the cluster effect,
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the underlying malformation probabilities are assumed to vary within a litter accord-

ing to a beta distribution with mean πi. This leads to the beta-binomial distribution

of the number of malformations Zi in cluster i, and its probability density function is

given by

f(zi;πi, ρi, ni) =

(
ni

zi

)
B

(
πi(ρ

−1
i − 1) + zi, (1 − πi)(ρ

−1
i − 1) + ni − zi

)

B
(
πi(ρ

−1
i − 1), (1 − πi)(ρ

−1
i − 1)

) , (3.1)

where B(., .) denotes the beta function (Skellam 1948, Kleinman 1973). The associa-

tion parameter ρi in this model indicates the correlation between two binary responses

of litter i. The moments of this distribution can then be expressed as

E(Zi) = niπi,

Var(Zi) = niπi(1 − πi)
[
1 + ρi(ni − 1)

]
.

It can be shown that the contribution of the ith cluster to the log-likelihood is given

by

(
ni

zi

)
+

zi−1∑

r=0

ln
(
πi +

rρi

1 − ρi

)
+

ni−zi−1∑

r=0

ln
(
1 − πi +

rρi

1 − ρi

)
−

ni−1∑

r=0

ln
(
1 +

rρi

1 − ρi

)
,

with i = 1, . . . , N . Note that this expression reduces to the familiar binomial log-

likelihood when ρi = 0. Further, the parameters πi and ρi of the beta-binomial model

have a marginal interpretation. A disadvantage of the beta-binomial model is that

it incorporates only positive (extrabinomial) correlation. Prentice (1986), however,

points out that it is possible to allow for slightly negative values of the correlation

parameter as well.

To model the marginal parameters πi and ρi we use a composite link function. An

appropriate choice is given by the following generalized linear regression relations


ln

(
πi

1−πi

)

ln
(

1+ρi

1−ρi

)

 ≡ ηi = Xiβ, (3.2)

where Xi is a design matrix and β is a vector of unknown parameters. However,

other link functions, such as the probit link, the log-log link or the complementary

log-log link for the mean parameter, could be chosen too. A frequently used model

in literature is

Xi =


1 di 0

0 0 1


 and β =




β0

βd

βa


 (3.3)
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with a logit-linear dose trend for the mean parameter, and a constant association

parameter ρ. Obviously, this model can be extended by adapting the design matrix

and the vector of regression parameters, such that the logit of πi depends on dose via,

e.g., a quadratic or higher order polynomial function. Also, the association parameter

ρi can be modelled as some function of dose, using a suitable link function.

3.1.2 A Conditional Likelihood Model

Molenberghs and Ryan (1999) proposed a likelihood-based model for clustered binary

data, based on a multivariate exponential family model (Cox 1972). The model

describes the probability of an outcome given values for the other outcomes, and

therefore is conditional in nature. Molenberghs and Ryan (MR) considered Yij = 1

if the jth foetus in cluster i exhibits the adverse event of interest, and -1 otherwise.

This coding is preferred above the 1/0 coding, since it provides a parameterisation

that more naturally leads to desirable properties when the roles of success and failure

are reversed (Cox and Wermuth 1994). They proposed the distribution of zi, the

number of individuals from cluster i with positive response, as

f(zi; θi, δi, ni) = exp
{

θizi − δizi(ni − zi) − A(θi, δi, ni)
}

, (3.4)

with θi the main parameter, δi the association parameter describing the association

between pairs of individuals within the ith cluster and A(θi, δi, ni) the normalizing

constant. The parameters θi and δi can be modelled as (θi, δi)
′ = Xiβ with Xi and

β as in (3.3). Note that, as with the beta-binomial model, this model reduces to the

logistic regression model in the absence of clustering.

Due to the popularity of marginal and random-effects models for correlated binary

data, the conditional models have received little attention, especially in the context

of multivariate clustered data. Molenberghs, Declerck and Aerts (1998) and Aerts,

Declerck and Molenberghs (1997) have compared marginal, conditional and random-

effects models. Their results are encouraging for the conditional models, since they

are competitive for the dose effect testing and for benchmark dose estimation, and

because they are computationally fast and stable. In addition, the conditional model

provides a natural framework for quantitative risk assessment. Indeed, from a biolog-

ical perspective, one might argue that it is important to take into account the health

of the entire litter when modelling risk as a function of dose. The conditional model

allows direct calculation of quantities such as the probability that at least one litter-

mate is affected, i.e., the probability of an affected litter. The MR model benefits

from the elegance and simplicity of exponential family theory. More details about
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model properties and inference can be found in Molenberghs and Ryan (1999).

3.2 Estimation Method

What method is used to fit the data depends on the assumptions one is willing to make.

However, also the availability of computational algorithms needs to be incorporated.

If one is willing to fully specify the joint probabilities, maximum likelihood methods

can be adopted. In some situations however, full likelihood becomes very complex

and computationally demanding, especially with large within-unit replications. As a

consequence, alternative methods have been in demand and one has to rely on non-

likelihood methods such as generalized estimating equations (Liang and Zeger 1986)

or pseudo-likelihood methods (Arnold and Strauss 1991), which are easier and much

less time consuming. In addition, since these methods allow certain aspects of the

model to be unspecified, and hence not misspecified, often at a reasonable low cost of

efficiency, they are more robust in nature.

3.2.1 Generalized Estimating Equations

Liang and Zeger (1986) and Zeger and Liang (1986) introduced generalized estimating

equations (GEEs) to account for the correlation between observations in generalized

linear regression models. Instead of specifying the full distribution, generalized es-

timating equations require only the correct specification of the univariate marginal

distributions and a covariance structure of the correlated observations on a given

subject.

Definition

Let Y i = (Yi1, . . . , Yini
)T be the vector of binary outcomes for subject i (i = 1, . . . , N).

Suppose that the mean and variance of each observation is thought to satisfy a gen-

eralized linear model

E(Y i) = µi = g(Xiβ),

Var(Y i) = v(µi),

but that the observations within a subject are correlated. In above equations Xi is a

design matrix, β is a vector of unknown parameters, g is a link function and v(µi) is

a known function of the marginal mean. Liang and Zeger (1986) proposed generalized
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estimating equations of the form

S(β) =

N∑

i=1

∂µi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − µi) = 0, (3.5)

where Ai is a diagonal matrix with the marginal variances v(µi) on the main diagonal

and Ri a correlation matrix of Y i, often referred to as the ‘working’ correlation

matrix. Usually, the marginal covariance matrix Vi = A
1/2
i RiA

1/2
i is a function of the

pairwise association parameters α. There are a variety of possible working correlation

structures. Some of the more popular choices are:

• Independence: The simplest choice is the working independence model, i.e.,

Corr(Yij , Yik) = 0 (j 6= k).

• Exchangeable: For datasets with clustered observations such as in developmental

toxicity studies, there may be no logical ordering for the observations within a

cluster, and an exchangeable correlation structure (or equicorrelated structure)

may be most appropriate:

Corr(Yij , Yik) = α (j 6= k).

• Unstructured : A totally unspecified correlation matrix is given by

Corr(Yij , Yik) = αjk (j 6= k).

As such, Liang and Zeger estimate the parameters associated with the marginal ex-

pected value of an individual’s vector of binary responses and phrase the working

assumptions about the association between pairs of outcomes in terms of marginal

correlations. There are two approaches to estimation, called GEE1 and GEE2 re-

spectively. In the GEE1 approach the method combines estimating equations for the

regression parameters β with moment-based estimation for the correlation parameters

entering the working assumption. In the GEE2 approach, the problem is reformulated

as a regression problem involving both the first two moments.

Consistency and Asymptotic Normality of the GEE Estimator

Assuming that the marginal mean µi has been correctly specified as h(µi) = Xiβ,

then (under mild regularity conditions):

• the GEE estimator β̂, obtained from solving (3.5) converges in probability to

the true parameter β0
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• the GEE estimator β̂ is asymptotically normally distributed with mean β and

with covariance matrix I−1
0 I1I

−1
0 , where

I0 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i

∂µi

∂β′

)
, (3.6)

I1 =

(
N∑

i=1

∂µ′
i

∂β
V −1

i Var(yi)V
−1
i

∂µi

∂β′

)
. (3.7)

In practice, Var(yi) in (3.7) is replaced by (yi−µi)(yi−µi)
′, which is unbiased on

the sole condition that the mean was again correctly specified. Valid inferences can

now be obtained for the mean structure, only assuming that the model assumptions

with respect to the first-order moments are correct. The model based estimator of

Cov(β̂) is given by I−1
0 . The empirically corrected variance estimator (Liang and

Zeger 1986) takes the form I−1
0 I1I

−1
0 . Note also that, although arising from a likeli-

hood approach, the GEE equations in (3.5) cannot be interpreted as score equations

corresponding to some full likelihood for the data vector yi.

Despite the robustness and flexibility of generalized estimating equations, there

are some situations where care is needed. When dealing with missing observations

in the data, GEE might be no longer valid. Only if the missingness can be thought

of as being completely at random in the sense of Little and Rubin (1987), then the

consistency results established by Liang and Zeger (1986) hold. When data are missing

at random, one can reduce bias in the parameter estimates by the use of a weighted

GEE (Robins et al. 1995, Fitzmaurice et al. 1995). A closely related problem

occurs when the cluster size is related with the response. The GEE method implicitly

assumes that the size of the cluster is unrelated to the parameters under study, i.e.,

is noninformative (Hoffman et al. 2001). However, in many applications this may not

be true. This problem is discussed in Chapter 9.

3.2.2 Pseudo-Likelihood

The principal idea of the pseudo-likelihood methodology is to replace the numerically

challenging joint density by a simpler function. The method is well described by

Arnold and Strauss (1991), and also found in Conolly and Liang (1988), Liang and

Zeger (1986) and Le Cessie and Van Houwelingen (1994). While the method achieves

important computational economies by changing the method of estimation, it provides

consistent and asymptotical normal estimates (Arnold and Strauss 1991) and it does

not affect model interpretation. An overview of the pseudo-likelihood methodology is

given in this section.
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Definition

Let Y i be the vector of binary outcomes for subject i (i = 1, . . . , N). Without loss

of generality we can assume that Y i has constant dimension L. The extension to

variable lengths of Y i is straightforward. Define S as the set of all 2L − 1 vectors of

length M , consisting solely of zeros and ones, with each vector having at least one

nonzero entry. Denote by y
(s)
k the subvector of yk corresponding to the components

of s ∈ S that are nonzero. The associated joint density is written as fs(y
(s)
k ;Θk),

with Θk = Xkβ. Specify a set δ = {δs|s ∈ S} of 2L − 1 real numbers, with at least

one nonzero component and define the log pseudo-likelihood as:

pℓ =

N∑

i=1

∑

s∈S

δs ln fs(y
(s)
i ;Θi), (3.8)

where some (thought not all) of the δs’s may be negative. This must correspond to

a product of marginal and conditional densities. Some examples of possible pseudo-

likelihood functions are given:

• Classical maximum likelihood corresponds to δs = 1 for s = 1L and zero other-

wise, where 1L is a vector of ones.

• Another typical choice is δ1L
= l and δsk

= −1 for k = 1, . . . , l where sk

consists of ones every where, except for the kth entry. This particular choice is

referred to as the ‘full conditional’ pseudo-likelihood function. It has the effect

of replacing the joint density function by a product of l univariate conditional

density functions, thus avoiding the incorporation of a possibly complicated

normalizing constant which typically arises in exponential family models.

• Another convenient pseudo-likelihood function is found by replacing the joint

density by the product of all pairwise likelihoods. This idea can be put into the

pseudo-likelihood framework by choosing δsk,l
as a vector consisting of zeros ev-

erywhere, except for the entries k and l, for each pair k 6= l. For all other vectors

s, δs equals zero. We refer to this choice as the pairwise pseudo-likelihood.

The pseudo-likelihood methodology is very general and flexible. It can be found in

many applications and fields of interest. It has been most advantageously used in the

spatial data context, where the full likelihood distribution is typically cumbersome

(Hjort 1993, Guyon 1995). But also in the context where maximum likelihood meth-

ods are not feasible, e.g. due to excessive computational requirements, the pseudo-

likelihood is an appealing methodology.
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Consistency and Asymptotic Normality of the Pseudo-Likelihood Estima-

tor

Let (Y 1, . . . ,Y N ) be independent and identically distributed with common density

with parameter Θ0, then (under regularity conditions):

• the pseudo-likelihood estimator Θ̂N , defined as the maximizer of (3.8), converges

in probability to Θ0.

•
√

N(Θ̂N−Θ0) converges in distribution to Np

(
0, J(Θ0)

−1K(Θ0)J(Θ0)
−1

)
with

J = J(Θ0) defined by

Jkl = −
∑

s∈S

δsEΘ

(∂2 ln fs(y
(s);Θ)

∂θkθl

)

and K = K(Θ0) by

Kkl =
∑

s,t∈S

δsδtEΘ

(∂ ln fs(y
(s);Θ)

∂θk

∂ ln fs(y
(s);Θ)

∂θl

)

While the idea of the GEE approach is to simplify the estimation method by replacing

the complicated first derivatives of the log-likelihood function, the pseudo-likelihood

approach replaces the complicated log-likelihood function directly. Geys, Molenberghs

and Lipsitz (1998) compared pairwise pseudo-likelihood with other estimating equa-

tions approaches (GEE1 and GEE2) in marginally specified odds ratio models with

exchangeable association structure. The efficiency of the pseudo-likelihood estimators

for the main effects is comparable to the efficiency of GEE estimators. Yet, pseudo-

likelihood allows the estimation of both main effect parameters and association pa-

rameters, whereas GEE1 is restricted to main effect parameters. Even though GEE1

produces estimates of the working correlation structure, they should be handled with

caution. Indeed, the strength of GEE1 is that the working correlation structure can

be misspecified, without jeopardizing inferences about the mean structure. However,

the consequence of this asset is that no formal inferences should be undertaken about

the working correlation structure, and even interpretation ought to be done carefully,

unless there is enough evidence that the working structure is sufficiently trustworthy.

While GEE2 includes second order association parameters as well and is slightly more

efficient than both GEE1 and PL, it is computationally much more complex and be-

comes cumbersome for large cluster sizes. In contrast, pseudo-likelihood can be used

with very large clusters.
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Pseudo-Likelihood Ratio Test Statistic

An important advantage of the pseudo-likelihood approach is the close connection

with likelihood, which enabled Geys, Molenberghs and Ryan (1999) to construct

pseudo-likelihood ratio test statistics that have easy-to-compute expressions and in-

tuitively appealing limiting distributions.

Extensions of the Wald, score or likelihood ratio test statistics to the pseudo-

likelihood framework were proposed by Geys, Molenberghs and Ryan (1999). We re-

strict attention to the pseudo-likelihood ratio test statistic. Suppose we are interested

in testing the null hypothesis H0 : γ = γ0, where γ is an r-dimensional subvector of

the p-dimensional vector of regression parameters β and write β as (γT , δT )T . Then,

the pseudo-likelihood ratio test statistic, defined by

G∗2
a = 2

[
pℓ(β̂N ) − pℓ(γ0, δ̂(γ0))

]
/λ̄,

is approximately χ2
r distributed. In this definition, β̂N is the pseudo-likelihood param-

eter estimate of β and δ̂(γ0) denotes the maximum pseudo-likelihood estimator in the

subspace where γ = γ0. Further, λ̄ is the mean of the eigenvalues of (Jγγ)−1Σγγ ,

where Jγγ is the r × r submatrix of the inverse of J and Σγγ is the submatrix of

Σ = J−1KJ−1.

3.2.3 Bayesian Method

When random-effects models are used, the likelihood function involves the integration

over the random-effects distribution. In case responses are normally distributed, the

marginal likelihood can be derived analytically. However, this property of normal

models does not extend to the case of non-normal distributions, where in general, no

closed forms are available. Estimation methods then either employ an approximation

of the integrand or uses numerical integration techniques. The need for complex

numerical integration can be avoided by casting the random-effects model into a

Bayesian framework, and resort to the Gibbs sampler (Zeger and Karim 1991). Gibbs

sampling offers a Monte Carlo approach.

Definition Gibbs Sampler

Within the Bayesian framework, the unknown parameters are estimated by the poste-

rior mean. In order to obtain such estimates, we can approximate the full conditional

distributions using Markov Chain Monte Carlo (MCMC) methods (Gilks et al. 1996)

and generate samples from the full conditional distributions using the Gibbs sampler.

The sample averages are taken as the posterior means of the parameters of interest.
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Suppose that we partition β into r subvectors β = (β1, β2, . . . , βr), where for each

k it is easy to sample from the full conditional distribution p(βk|β1, . . . , βk−1, βk+1, . . . ,

βr,y) with y = (y1, . . . ,yN ). Iteration i of the Gibbs sampler starts with β(i) =

(β
(i)
1 , β

(i)
2 , . . . , β

(i)
r ) and makes the transition to β(i+1) via the following scheme:

Sample β
(i+1)
1 from p(β1|β(i)

2 , β
(i)
3 , . . . , β

(i)
r ,y)

Sample β
(i+1)
2 from p(β2|β(i+1)

1 , β
(i)
3 , . . . , β

(i)
r ,y)

...

Sample β
(i+1)
r from p(βr|β(i+1)

1 , β
(i+1)
2 , . . . , β

(i+1)
r−1 ,y)

The process of updating each of the r blocks, as indicated above, produces one com-

plete iteration of the Gibbs sampler. The sequence of vector produced by this scheme,

β(0),β(1), . . . ,β(t), . . ., are a Markov chain. Under weak assumptions, this chain con-

verges in distribution to a stationary distribution that is the posterior p(β|y) (Tierney

1994).

Deviance Information Criterion

A model selection procedure is needed in order to compare between models and to

select the best fitting model. Goodness-of-fit and complexity of the models can be

assessed using the deviance information criterion (DIC) as proposed by Spiegelhalter

et al. (1998, 2002) and recently used by Erkanli et al. (2000), Rahmann et al. (1999)

and Gelfand et al. (2000) for model selection within the Bayesian framework.

The deviance is defined as the posterior distribution of the log likelihood:

D = −2 log(p(y|β)) + 2 log f(y),

with f(y) a standardizing term that does not affect model comparison. The goodness

of fit of the model is then summarized by the posterior expectation of the deviance:

Eβ|y [D].

Spiegelhalter et al. (1998, 2002) suggested to measure the complexity of the model

by the difference between the posterior expectation of the deviance and the deviance

evaluated at the posterior expectation of β, that is

pD = Eβ|y [D] − D(Eβ|y [β]) (3.9)

= D̄ − D̂, (3.10)
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where pD can be interpreted as the effective number of parameters in the model.

These are combined to give the overall DIC:

DIC = D̄ + pD,

where the first term represents the goodness of fit and the second term represents

the model complexity (the effective number of parameters). Smaller values of DIC

indicate a better fitting model. The attraction of using this measure is that it is

trivial to compute when performing MCMC on the model. All that needs to be done

is to take samples of the deviance D(β) along with samples of β and the terms can

be calculated to give the DIC.

3.3 Predictor Model

Parametric statistical models are widely used to describe the relationship between a

response variable and several factors or explanatory variables. Also clustered binary

data have been analysed mainly in a parametric way. However, the selection of the

proper functional forms describing the dependence of all main and association param-

eters in a specific probability model is not always an easy task. In general, parametric

models assume that certain model assumptions hold. Because of these assumptions,

parametric models are always prone to possible misspecification. Therefore, there is

a clear need for flexible parametric models and, in case the design allows, for semi-

and nonparametric approaches.

3.3.1 Fractional Polynomials

Although classical polynomial predictors are still very customary, they are often in-

adequate. A very elegant alternative approach to classical polynomials, which falls

within the realm of (generalized) linear methods, is given by fractional polynomials.

They provide a much wider range of functional forms. Let us briefly describe this

procedure, advocated by Royston and Altman (1994).

For a given degree m and an argument d > 0 (e.g., dose), fractional polynomials

are defined as

ηm(d;β,p) = β0 +

m∑

j=1

βjd
pj , (3.11)

where the β = (β0, . . . , βm) are regression parameters and d0 ≡ ln(d) and the powers

p1 < . . . < pm are positive or negative integers or fractions. The full definition

includes possible “repeated powers” which involve powers of ln(d). For example, a
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fractional polynomial of degree m = 3 with powers (-1,-1,2) is of the form β0 +

β1d
−1 +β2d

−1 ln(d)+β3d
2 (Royston and Altman 1994, Sauerbrei and Royston 1999).

Royston and Altman (1994) argue that polynomials with degree higher than 2 are

rarely required in practice and further restrict the powers of d to a small predefined set

of possibly non-integer values: Π = {−2,−1,−1/2, 0, 1/2, 1, 2, . . . ,max(3,m)}. For

example, setting m = 2 generates:

(1) 4 “quadratics” in powers of d, represented by

- (1/d, 1/d2) : β0 + β11/d + β21/d2,

- (1/
√

d, 1/d) : β0 + β11/
√

d + β21/d,

- (
√

d, d) : β0 + β1

√
d + β2d,

- (d, d2) : β0 + β1d + β2d
2,

(2) a quadratic in ln(d): β0 + β1 ln(d) + β2 ln(d)2, and

(3) other curves which have shapes different from those of conventional low degree

polynomials.

For given m, we consider as the best set of transformations, the one producing

the highest log (pseudo)-likelihood. For example, the best first degree fractional

polynomial is the one with the highest log (pseudo)-likelihood among the eight models

with one regressor (d−2, d−1, . . . , d3). As with conventional polynomials, the degree m

is selected either informally on a priori grounds or by increasing m until no worthwhile

improvement in the fit of the best fitting fractional polynomial occurs. In the above

discussion, it is assumed that d is strictly positive. If d can take zero values, a

preliminary transformation of x is needed to ensure positivity (e.g., d + 1).

A particular feature of the fractional polynomials is that they provide a wide class

of functional forms, with only a small number of terms (Royston and Altman 1994,

Sauerbrei and Royston 1999). Even with one predictor they provide a rich class of

possible forms, in many cases leading to a reasonable fit to the data. Moreover, the

conventional polynomials are included as a subset of this extended family.

In Chapter 4, the fractional polynomials are the topic of interest, where they are

used for dose-response modelling as a basis for quantitative risk assessment. This

chapter illustrates how fractional polynomials offer great flexibility in modelling clus-

tered data.
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3.3.2 Power Models

Fractional polynomial models are linear in the parameters. Next to fractional polyno-

mial models, there are other interesting parametric approaches. One such technique

is the nonlinear power model (Cox and Hinkley 1978, Davidan and Giltinan 1995):

η(d;β) = β0 + β1d
β2 , (3.12)

with β = (β0, β1, β2) the unknown regression coefficients. Such nonlinear models form

another interesting family of models, offering a lot of flexibility. Notice that by setting

β2 ≡ 1, this model simplifies to a linear model.

The use of power models invokes some interesting statistical issues. First, the

effect of dose d can be investigated via testing the null hypothesis H0 : β1β2 = 0. If

the dose effect is absent, then the regression parameters of the power model under

consideration are non-identifiable. Secondly, fitting models with power predictors

might be complicated if the dose effect is weak, since convergence problems can be

expected in that case.

In Chapter 5 the power model is used to test for trend in the context of develop-

mental toxicity studies.

3.3.3 Penalized Splines

The previously defined models are flexible but essentially parametric and user-defined.

More nonparametrically inspired approaches, fully data driven, can also be very useful.

In an explorative way, a parametric model can be graphically compared with its

nonparametric alternative. A relatively straightforward extension of linear models is

the penalized splines model.

A piecewise linear smoother proposed by Freedman and Silverman (1989) has the

form

η(di;β) = β0 +

K∑

k=1

βkφk(di), (3.13)

where di are the design points, and φk(.), k = 1, . . . ,K, are known functions. Note

that for K = 1 and φ1(d) = d the model reduces to a simple linear regression model.

The piecewise linear model assumes that the basis function φk(d) has the form

φk(d) = (d − κk)+ =





0, d ≤ κk

d − κk, d > κk.
(3.14)



Issues in Flexible Modelling 41

The linear piecewise model consists of K knots where κk, k = 1, 2 . . . ,K is the location

of the kth knot. The basis function represents a broken line with the knots κk as a

joint point. Note that for κ1 = 0 the piecewise linear model can be written as

η(di;β) = β0 + β1di +
K∑

k=2

βk(di − κk)+. (3.15)

Next, define two design matrices, an n × 2 design matrix for which the ith row

is Xi = [1, di] and an n × (K − 1) matrix for which the ith row is Zi = [(di −
κ2)+, . . . , (di − κK)+]. Then, the model in (3.15) can be rewritten as

η(di;β, b) = Xβ + Zb, (3.16)

with β = (β0, β1) and b = (β2, . . . , βK). When using a large set of knots, this model

has much flexibility. However, when fitting the model using ordinary least squares,

this method might overfit the data, following random fluctuations in the data as well

as the main features. To overcome this problem, the spline function (3.16) can be

fit as a mixed model (Ruppert, Wand and Carroll 2003), with normally distributed

random effects b ∼ N(0, σ2
b I(K−1)×(K−1)). Ordinary least squares correspond to

σb = ∞, where the bk are unrestricted. When σb is finite, this tends to shrink the bk

with a smooth fit as a result. Note that in this model the unknown smooth function

is modelled with two components. The linear part, which is the fixed effects Xβ, and

the smooth part Zb, being the random part. The conditional mean of y, given the

fixed and the random effects, is E(y|β, b) = Xβ + Zb.

The representation of the penalizes spline as a mixed model, with ML or REML

used to select the amount of smoothing, is very appealing since it allows smoothing

to be done using mixed model methodology and software. Moreover, they allow a

Bayesian way of inference, which makes it also very attractive to be used in this

setting.

In Chapter 10 a general design of mixed models is investigated, with penalized

splines as one building block of the model.
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Chapter 4

Use of Fractional Polynomials

for Quantitative Risk

Assessment in Developmental

Toxicity Studies

Developmental toxicity studies are designed to assess the potential adverse effects of an

exposure on developing foetuses. One major objective in the risk assessment process

is to determine a safe dose level of exposure, i.e., quantitative risk assessment. Safe

dose levels can be determined using dose-response modelling. However, dose-response

modelling is complicated by the hierarchical, clustered and multivariate nature of the

data. As a consequence, a multitude of modelling strategies have been proposed in

literature, as demonstrated in previous chapter. Such choices are often subjective and

can affect the quantitative risk assessment based on the fitted models. Therefore it is

important to study the possible effects of misspecifying the dose-response model on

quantitative risk assessment.

In this chapter, it is shown how important it is to select an adequate predictor

model in the context of quantitative risk assessment. Section 4.1 describes a possible

method for safe dose determination in developmental toxicity studies, based on the

dose-response model. Since quantitative risk assessment is based on the fitted dose-

response relationship, the model should fit the data well. This has implications for

both the model family, as well as for the form of the predictor model (Section 4.2).

43
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Classical polynomial predictors are often of poor quality, thus there is a clear need

for alternative specifications of the predictors. Here, focus is on fractional polynomi-

als (Royston and Altman 1994), which provide a wide class of functional forms. In

the remaining sections of this chapter, we discuss the use of fractional polynomials

to obtain a proper estimation of the safe dose level. In particular, Sections 4.4 and

4.5 show, by means of simulations, that fractional polynomial predictors may resolve

possible model misspecifications and may thus yield more reliable estimates of the

benchmark dose. Focus is on clustered binary data, concentrating on the malforma-

tion outcome in a typical developmental toxicity study. The content of this chapter

is mainly based on the paper of Faes et al. (2003a).

4.1 Quantitative Risk Assessment

An important issue in developmental toxicity is the risk assessment. Risk assessment

can be defined as “the use of available information to evaluate and estimate exposure

to a substance and its consequent adverse health effects” (Roberts and Abernathy

1996), and thus deals with safety issues and regulation of exposures with potential

adverse effects. An important goal in this risk assessment process is the determination

of a safe level of exposure, i.e., quantitative risk assessment (QRA).

Different approaches to estimate a safe dose are used in literature. Quantita-

tive risk assessment can be performed via the “No Observable Adverse Effect Level”

(NOAEL) approach, which is the dose immediately below that deemed statistically or

biologically significant when compared with controls. This methodology assumes that

the substance induces toxicity only after a particular dose level is exceeded. However,

many substances appear to have no threshold of effect, meaning that any exposure

can cause an adverse effect. In addition, the NOAEL has been criticized for its poor

statistical properties (Leisenring and Ryan 1992, Williams and Ryan 1996). The es-

timation of the NOAEL depends on the design of the experiment, on the sample size

and on the number of dose groups, and it does not allow calculating a measure of

variability of the estimation.

An alternative strategy is to base the QRA on a fitted dose-response model (Crump

1984). The standard approach to quantitative risk assessment based on dose-response

modelling requires the specification of an adverse event, along with its risk expressed

as a function of dose. For developmental toxicity studies where offspring are clustered

within litters, there are several ways to define the concept of an adverse effect. First,

one can state that an adverse effect has occurred if a particular offspring is abnormal
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(foetus based). Alternatively, one might conclude that an adverse effect has occurred

if at least one offspring from the litter is affected (litter based). From a biological

perspective one might argue that it is important to take into account the health of the

entire litter when modelling risk as a function of dose (Declerck et al. 2000). In this

chapter, we focus on the risk function r(d) representing the probability of observing

a malformation at dose level d for at least one foetus within the litter, i.e., the litter

based approach. Based on this probability, a common measure for the excess risk over

background is given by

r∗(d) =
r(d) − r(0)

1 − r(0)
, (4.1)

where greater weights are given to outcomes with larger background risk. Assuming

that the chemical results in more adverse effects at non-zero dose d compared to dose

level 0, the excess risk ranges from 0 to 1. This definition of the excess risk measures

the relative increase in risk above background. The benchmark dose is then defined

as the dose corresponding to a very small increase in risk over background. More

formally, the benchmark dose (BMDq) is defined as the dose satisfying

r∗(d) = q, (4.2)

where q corresponds to a pre-specified level of increased response and is typically

specified as 0.01, 1, 5 or 10% (Crump 1984). Of course, the use of dose-response

models to set a safe limit of exposure is far more complicated than determining a

NOAEL, but it offers a number of important advantages. It allows adding a measure

of variability to the point estimation of a safe dose, it can incorporate special features

of the structure of developmental toxicity studies, etc. (Williams and Ryan 1996).

Because of the disadvantages of the NOAEL approach, and because of the benefits of

basing quantitative risk assessment on dose-response modelling, the latter approach

will be considered here.

Because the dose-response curve is estimated from the data and has inherent

variability, the benchmark dose itself is only an estimate of the true dose that would

result in the specified level of excess risk q. This sampling uncertainty for the model on

which the benchmark dose is based can be acknowledged, by replacing the benchmark

dose by a lower confidence limit. Several approaches exist (Williams and Ryan 1996,

Kimmel and Gaylor 1988, Crump and Howe 1983). A well-known approach is the

use of the lower effective dose, where an upper limit for the risk function is used to

determine a safe dose level. The lower effective dose (LEDq) is thus defined as the

solution of

r̂∗(d) + 1.645

√
V̂ar

(
r̂∗(d)

)
= q, (4.3)
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where q corresponds with the pre-specified level of increased response. Assume that

β is the vector of parameters included in the dose-response model, then the variance

of the estimated increased risk function r̂∗(d) is estimated as

V̂ar
(
r̂∗(d)

)
=

(∂r∗(d)

∂β

)T

Ĉov(β̂)
(∂r∗(d)

∂β

)∣∣∣
β=β̂

, (4.4)

with Ĉov(β̂) the estimated covariance matrix of β̂.

Of course, to get trustworthy results, models should fit the data well in all respects.

Therefore, it is important to investigate the effect of misspecifications of the dose-

response relationship on the estimation of a safe level of exposure.

4.2 Misspecification of the Dose-Response Model

When performing risk assessment based on the fitted dose-response model, the model

should fit the data well. This has implications for both the model family chosen (the

probability model), as well as for the form of the predictors. While the probability

model can take special features of the data into account, the predictor model must

take care of the flexibility of the model.

4.2.1 Probability Model

Developmental toxicity studies in rodents are faced with the fairly involved data struc-

ture of clustered binary outcomes. As a consequence, it is often not clear which prob-

ability model is generating the particular data. Different types of models (marginal,

conditional, random effects models) are available to model clustered binary data (see

Chapter 3). In this chapter we restrict attention to full likelihood models, and se-

lect the beta-binomial model, which can be viewed as a marginalized random effects

model, and the conditional model (MR) of Molenberghs and Ryan (1999). We inves-

tigate, when using a misspecified probability model, the estimation of a safe level of

exposure. Note that although models of quite different structure are being contrasted,

the problem we are looking at really makes a lot of sense. It is exactly what happens

in daily practice, since one (almost) never can be sure about the probability model

generating the set of data at hand.

Both the beta-binomial model and the conditional model of Molenberghs and

Ryan (1999) can easily handle litter-based risks, as shown below.
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The Beta-Binomial Model

For the beta-binomial model, the probability that at least one foetus in a litter of size

ni is abnormal (i = 1, . . . , N), is

q(ni; d) = 1 − B
(
πi(ρ

−1
i − 1), (1 − πi)(ρ

−1
i − 1) + ni

)

B
(
πi(ρ

−1
i − 1), (1 − πi)(ρ

−1
i − 1)

) .

It can be shown that this expression equals

q(ni; d) = 1 −
ni−1∏

k=0

(
1 − πi +

kπiρi

1 + (k − 1)ρi

)
.

Now, consider all possible values of ni with corresponding probability P (ni). The

litter-based risk, corresponding to some specified dose d, is given by

r(d) =

∞∑

ni=0

P (ni)q(ni; d),

which is an average of the probabilities q(ni; d) with weights P (ni). The excess risk

can be computed as

r∗(d) = 1 −

∞∑
ni=0

P (ni)
ni−1∏
k=0

(
1 − πi(d) + kπi(d)ρi/(1 + (k − 1)ρi)

)

∞∑
ni=0

P (ni)
ni−1∏
k=0

(
1 − πi(0) + kπi(0)ρi/(1 + (k − 1)ρi)

) .

A Conditional Model

The exponential model of Molenberghs and Ryan (1999) also allows easy calculation

of quantities such as the probability that at least one littermate is affected. Given

the number of viable foetuses ni, the probability of observing at least one abnormal

foetus in a cluster is

q(ni; d) = 1 − exp
(
−Ani

(Θi)
)
,

with Ani
(Θi) the normalizing constant as is 3.4. Integrating over all possible values

of ni, we obtain the risk function

r(d) =

∞∑

ni=0

P (ni)
[
1 − exp

(
−Ani

(Θi)
)]

,

where P (ni) is the probability of observing ni viable foetuses in a pregnant dam.

Using this equation, calculation of the excess risk r∗(d) is straightforward.
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4.2.2 Predictor Model

A frequently used predictor model in literature is the classical polynomial model.

However, higher order conventional polynomials often fit the data badly at the ex-

tremes. Moreover, they do not have asymptotes and fit the data poorly whenever

asymptotic behaviour is expected. Since low dose extrapolation is of primary interest

in developmental toxicity studies, there is a clear need for alternative specifications in

this setting. A very elegant alternative approach to classical polynomials, which falls

within the realm of (generalized) linear methods, is given by fractional polynomials

(Royston and Altman 1994). They are defined in Section 3.3.1. Fractional polyno-

mials provide much more flexibly shaped curves than conventional polynomials, but

in cases where the extension is not necessary, this family essentially reduces to con-

ventional polynomials. It can be expected that the predictor model might have an

important impact on the estimation of a safe dose of exposure. Thus, use of a flexible

method is strongly recommended for an important public health matter such as the

determination of safe limits for human exposure to potentially hazardous agents.

4.3 Use of Fractional Polynomials: An Example

In this chapter, fractional polynomials are used for dose-response modelling as basis

for quantitative risk assessment. A similar application is illustrated in Aerts et al.

(2002).

4.3.1 EG Study

Consider the EG study, as described in Section 2.1.1. In order to analyse the data from

the EG study different modelling strategies are available such as the beta-binomial

probability model or the conditional model of Molenberghs and Ryan. Tradition-

ally one relies on a linear dose-trend for the main effect parameter, and a constant

association. Figure 4.1 shows the observed frequencies of malformed litters at the

selected dose levels (dots) and the dose-response curves based on the beta-binomial

and conditional model with a linear d trend on the main effect (dotted and dashed

line, respectively). These models are clearly too restrictive to adequately describe

the dose-response relationship. The beta-binomial model gives an estimate of the

benchmark dose equal to 375 mg/kg/day (corresponding to a 10% increase of risk

over background). The MR model with a conventional linear polynomial results in a

benchmark dose of 366 mg/kg/day. It can be questioned what the consequences are

of using such restrictive models to assess a safe limit of the dosing. In this respect,
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Figure 4.1: EG study. Dose-response curves based on models 1, 2 and 3.

one can try to further improve the fit by using a more flexible model with a fractional

polynomial predictor in the MR model.

We select a suitable set of dose transformations on the main effect parameter,

based on the fractional polynomial approach. We consider as the best set of transfor-

mations, the one producing the smallest Akaike’s Information Criterion (AIC, Akaike

1974). Table 4.1 shows the best first and second degree models on the main effect

parameters of the MR model. Among all models, the quadratic represented by (
√

d, d)

yields the smallest AIC. The clustering parameter is kept constant. The correspond-

ing dose-response model is pictured in Figure 4.1 (full line). The MR model with the

fractional polynomial predictor yields a benchmark dose of 94 mg/kg/day. Clearly,

there is a large difference between the safe dose levels based on the linear predictor

and on the fractional polynomial predictor. The fractional predictor yields a substan-

tially lower (and thus more conservative) estimate of the safe dose compared with the

conventional linear predictors in d, thanks to the better fitting dose-response curve.

4.3.2 DYME Study

Consider the DYME study from the NTP developmental experiments in mice, as

described in Section 2.1.2. We restrict attention to the effect of DYME on the proba-

bility of having a full malformation. We select a suitable dose transformation to model
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Table 4.1: EG study. Selection procedure for the main effect parameter in the MR

model, describing the trend of the malformation outcome.

m = 1 m = 2

transformation AIC transformation AIC

1/d2 737.49 (1/d, d2) 722.99

1/d 745.66 (1/d, 1/d2) 720.95

1/
√

d 749.80 (1/d, d) 722.23

ln(d) 753.82 (
√

d, d) 720.30
√

d 741.76 (d, d2) 724.38

d 761.14 (ln(d), ln(d)2) 722.37

d2 776.79 (
√

d, d2) 720.49

d3 782.73 (1/
√

d, 1/d2) 721.101

Table 4.2: DYME study. Selection procedure for the main effect parameter in the

MR model, describing the trend of the malformation outcome.

m = 1 m = 2

transformation AIC transformation AIC

1/d2 399.67 (1/d, d2) 400.24

1/d 398.24 (1/d, 1/d2) 400.23

1/
√

d 398.52 (1/d, d) 400.24

ln(d) 399.47 (
√

d, d) 402.05
√

d 400.22 (d, d2) 400.15

d 403.39 (ln(d), ln(d)2) 400.21

d2 426.14 (ln(d), d2) 400.17

d3 443.02 (d, ln(d)) 400.19
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the developmental outcome. Table 4.2 shows the best first and second degree models

on the main effect parameters of the MR model. Using the MR model, the polynomial

represented by (1/d) yields the smallest AIC among all first and second degree mod-

els. The clustering parameter is kept constant. The benchmark dose BMD10 from

the beta-binomial model is equal to 107 mg/kg/day. The MR model with a conven-

tional linear predictor yields 76 mg/kg/day, and the fractional polynomial predictor

gives a benchmark dose of 85 mg/kg/day. Here, the difference between the use of a

linear predictor in d or a transformed 1/d in the MR model, is much smaller than

in the previous study. Use of the fractional polynomial predictor yields a lower, and

thus more conservative, benchmark dose than the beta-binomial model with a linear

predictor. The MR model with a linear predictor yields an overly conservative safe

dose estimate, compared with the fractional polynomial model.

4.4 Asymptotic Simulation Study

In this section we perform an asymptotic simulation study to investigate the effect of

model misspecifications on quantitative risk assessment. In addition, we investigate

to what extent the use of flexible predictor models based on fractional polynomials

can correct for such misspecification.

In order to obtain asymptotic information on the effect of model misspecification,

we follow the particular recommendations of Rotnitzky and Wypij (1994). An arti-

ficial sample is constructed, where each possible realization is weighted according to

its true probability under a given true model. In our case, we need to consider all

realizations of the form (ni, zi, di), and have to specify: (1) f(di), the relative fre-

quencies of the dose groups, as prescribed by the design; (2) f(ni|di), the probability

with which each cluster size can occur, possibly depending on the dose level (we will

assume f(ni|di) = f(ni)), and (3) f(zi|ni, di), the actual model probabilities. We as-

sume that there are 4 dose groups, with one control group (di = 0) and three exposed

groups (di = 0.25, 0.5, 1.0), and that each dose group has an equal probability of oc-

currence (i.e., f(di) = 1/4). A typical distribution of the number ni of viable foetuses

per cluster is given in Kupper et al. (1986), and can be considered representative of

that encountered in actual experimental situations. Here, the cluster frequencies are

assumed to follow a local linear smoothed version of these relative frequencies, as

described in Aerts, Declerck and Molenberghs (1997) (Table 4.3).

Data are generated from the beta-binomial model with a given non-linear predictor

for the mean parameter. Different dose trends on the mean parameter π of the true
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Table 4.3: Local linear smoothed cluster frequencies.

ni f(ni) ni f(ni)

1 0.0046 11 0.1179

2 0.0057 12 0.1529

3 0.0099 13 0.1605

4 0.0139 14 0.1424

5 0.0147 15 0.0975

6 0.0148 16 0.0542

7 0.0225 17 0.0207

8 0.0321 18 0.0086

9 0.0475 19 0.0030

10 0.0766

model can be considered. Here, we look at two different models. The first model

(Model A) is defined as

logit(π) = β0 + βd sinh2(d),

the second model (Model B) as

logit(π) = β0 + βd cos(d).

In both models, the association parameter ρ is kept constant

ln
(1 + ρ

1 − ρ

)
= βa.

We use parameter settings that were encountered in real data sets (Price et al. 1985,

1987). The parameter settings are summarized in Table 4.4. In the beta-binomial

model the baseline risk is a function of both the intercept and association param-

eter. In model A, an association parameter βa of 0.1, 0.3 and 0.5 correspond to a

background rate of respectively 3%, 2% and 1% (for intercept -6), and 16%, 11%, 9%

(for intercept -4). The Fisher’s z-transformed correlation of 0.1, 0.3 and 0.5 corre-

sponds to respectively a correlation ρ of about 0.05, 0.15 and 0.24. The parameters

of model B correspond with a baseline malformation rate of about 15% and 11% for

an association parameter βa of 0.1 and 0.3 respectively. The Fisher’s z-transformed

correlation of 0.1 and 0.3 is used (correlation of respectively 0.05 and 0.15). Figure
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Table 4.4: Parameter settings of the true (beta-binomial) model.

parameter Model A Model B

sinh2(d) cos(d)

intercept β0 -4,-6 2k

dose effect βd 3, 4, . . . , 8 −4 − 2k

(k = 0, 1, . . . , 7)

association βa 0.1, 0.3, 0.5 0.1, 0.3
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Figure 4.2: Simulation setting. Dose-response models with sinh2(d) or cos(d) trend

on the main parameter.

4.2 shows examples of both models to give some idea of the variety of dose-response

models considered here.

For each model under study, we estimate the benchmark dose corresponding to a

10% extra risk over background (q = 0.10). The “true” benchmark dose is found by

fitting the correct model, i.e., the model under which the data were generated, and

by calculating the purely model-based benchmark dose. In real situations, the true

benchmark dose can only be estimated based on an assumed model. Here, the tech-

nique introduced by Rotnitzky and Wypij (1994) is tailored to compute “asymptotic”

values of the estimated benchmark dose. The benchmark dose is determined for the

artificial sample under three different models:

- Model 1: the beta-binomial model (BB), with a conventional linear predictor

for the mean π and a constant association ρ;
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- Model 2: the conditional model of Molenberghs and Ryan (MR), with a con-

ventional linear predictor for the main parameter θ and a constant association

parameter δ;

- Model 3: the conditional model of Molenberghs and Ryan (MR), with the best

fitting fractional polynomial predictor for the main parameter θ and a constant

association parameter δ.

Different misspecifications occur in the above models. In the first model, the pre-

dictor model is misspecified. This often occurs in practice, when one uses a linear

polynomial predictor. In the second model, the probability model is misspecified. Be-

cause the true probability model is unknown in general, this is what often happens in

daily practice. And also in the third model, the predictor model is misspecified, but

here we try to correct for misspecification of the probability model using a fractional

polynomial predictor. Finding a suitable fractional polynomial predictor for the beta-

binomial model is hard to accomplish. This involves the fitting of several different

models, which in the case of a beta-binomial model often fail to converge (Molen-

berghs et al. 1998, Aerts et al. 1997). Therefore, we only use fractional polynomials

for the conditional model and not for the beta-binomial model.

In choosing the optimal fractional polynomial, we follow the ideas of Royston and

Altman (1994). Fractional polynomials of degree one and two, with powers of dose

restricted to the set of values Π = {−2,−1,−1/2, 0, 1/2, 1, 2, 3}, are investigated.

After fitting this set of dose transformations, only models that show a monotonic

behaviour are kept as candidate models (assuming that the chemical results in more

adverse effects when dose increases). Finally, the best fractional polynomial is chosen

as the one producing the smallest value of Akaike’s Information Criterion. Note

that the penalizing constant cancels out in case of an asymptotic setting. Although

we restrict attention to the AIC, alternative test statistics, such as the Bayesian

Information Criterion (BIC, Schwarz 1978), could be investigated too. Some other

selection procedures are described in Sauerbrei and Royson (1999).

Results of the simulation study are summarized in Tables 4.5 (Model A) and 4.6

(Model B), and visualized in Figures 4.3 and 4.4. Let us first have a look at the

results when data are generated under Model A. It can be noted that none of the

estimated benchmark doses are equal to the true benchmark dose. This of course

is due to the misspecification of the model. The estimated benchmark doses based

on the MR model with a conventional linear polynomial (Model 2, dashed line) are

very small compared with the true benchmark doses (dots). However, when the dose-

parameter increases, there is also a small decrease in the asymptotic bias. But still,
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Table 4.5: Asymptotic estimation of benchmark dose (q=0.10), when true model is

Model A.

(β0, βd, βa) True Model Model 1 Model 2 Model 3

(-4,4,0.1) 0.344 0.228 0.178 0.310

(-4,6,0.1) 0.283 0.241 0.169 0.257

(-4,8,0.1) 0.246 0.216 0.160 0.229

(-4,4,0.3) 0.390 0.262 0.186 0.354

(-4,6,0.3) 0.321 0.263 0.173 0.276

(-4,8,0.3) 0.279 0.239 0.160 0.242

(-6,4,0.1) 0.616 0.479 0.455 0.563

(-6,6,0.1) 0.513 0.446 0.414 0.481

(-6,8,0.1) 0.449 0.433 0.380 0.420

(-6,4,0.3) 0.660 0.523 0.465 0.585

(-6,6,0.3) 0.550 0.474 0.422 0.526

(-6,8,0.3) 0.482 0.453 0.379 0.435

Table 4.6: Asymptotic estimation of benchmark dose (q=0.10), when true model is

Model B.

(β0, βd, βa) True Model Model 1 Model 2 Model 3

(0,-4,0.1) 0.502 0.298 0.261 0.484

(2,-6,0.1) 0.408 0.229 0.204 0.401

(4,-8,0.1) 0.353 0.204 0.179 0.351

(6,-10,0.1) 0.315 0.197 0.165 0.315

(8,-12,0.1) 0.288 0.199 0.155 0.283

(0,-4,0.3) 0.573 0.380 0.289 0.517

(2,-6,0.3) 0.466 0.287 0.222 0.431

(4,-8,0.3) 0.402 0.251 0.191 0.381

(6,-10,0.3) 0.360 0.237 0.173 0.286

(8,-12,0.3) 0.328 0.233 0.161 0.266
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Figure 4.3: Asymptotic estimation of benchmark dose (q=0.10), when true model is

Model A.
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Figure 4.4: Asymptotic estimation of benchmark dose (q=0.10), when true model is

Model B.
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the estimated doses stay far apart from the true benchmark dose. Also the beta-

binomial model (Model 1, dotted line) yield too small benchmark doses for most

of the parameter settings. In contrast, benchmark dose estimates based on the MR

model with a fractional polynomial predictor (Model 3, full line) are much closer to the

true benchmark dose. This seems to indicate that fractional polynomials are much

more flexible to attain the correct benchmark dose than conventional polynomials.

While the use of small doses seems cautious, Morgan (1992) warns that safe dose

determination should be tempered by common sense. For example, blind use of an

overly conservative procedure has been regarded as scientifically indefensible by the

Scientific Committee of the British Food Safety Council (1980), since it may produce

unrealistically low safe doses.

When data are generated under Model B, the conclusions are similar and even

more encouraging for the fractional polynomial model. The estimated benchmark

doses for the beta-binomial model with a linear predictor are far from the true bench-

mark doses. This is due to the misspecification of the polynomial predictor. And

also the estimated benchmark doses for the model of Molenberghs and Ryan with

a conventional linear predictor are at a distance. Again, the fractional polynomials

seem to partly correct for the model misspecification.

In order to investigate whether these conclusions also hold for classical random

samples, a small sample simulation study was performed.

4.5 Small Sample Simulation Study

In the small sample simulation study, we reconstruct some realistic situations from

developmental toxicity studies. The same models and parameter combinations as in

the asymptotic study are investigated (Table 4.4), all of these might occur in practical

experiments. For each of the selected models, 1000 datasets of 30 observations per

dose group were generated. The estimated benchmark doses were averaged at the end

of the run. Results are summarized in Tables 4.7 and 4.8, and pictured in Figures 4.5

to 4.6.

Similar to the asymptotic simulation results, benchmark dose estimates based

on the conventional polynomial predictor are far from the true benchmark dose, for

both the beta-binomial as well as the conditional model. In contrast, the fractional

polynomial predictor yields benchmark dose estimates that are much closer to the true

benchmark dose. Although, compared to the asymptotic sample setting, an increase

in bias can be observed. This is especially true when the true model has a higher
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Table 4.7: Small sample estimation of benchmark dose (MSE), when true model is

Model A.

(β0, βd, βa) True Model Model 1 Model 2 Model 3

(-4,4,0.1) 0.344 0.229 (0.014) 0.186 (0.026) 0.295 (0.005)

(-4,6,0.1) 0.283 0.241 (0.003) 0.179 (0.012) 0.259 (0.002)

(-4,8,0.1) 0.246 0.217 (0.002) 0.167 (0.007) 0.235 (0.001)

(-4,4,0.3) 0.390 0.267 (0.017) 0.194 (0.040) 0.288 (0.019)

(-4,6,0.3) 0.321 0.263 (0.004) 0.186 (0.024) 0.260 (0.012)

(-4,8,0.3) 0.279 0.243 (0.003) 0.170 (0.013) 0.241 (0.003)

(-6,4,0.1) 0.616 0.487 (0.017) 0.469 (0.022) 0.554 (0.004)

(-6,6,0.1) 0.513 0.448 (0.004) 0.421 (0.008) 0.495 (<0.001)

(-6,8,0.1) 0.449 0.433 (<0.001) 0.395 (0.003) 0.434 (<0.001)

(-6,4,0.3) 0.660 0.516 (0.021) 0.470 (0.036) 0.577 (0.007)

(-6,6,0.3) 0.550 0.485 (0.004) 0.477 (0.011) 0.515 (0.001)

(-6,8,0.3) 0.482 0.453 (0.001) 0.404 (0.006) 0.432 (0.003)

Table 4.8: Small sample estimation of benchmark dose (MSE), when true model is

Model B.

(β0, βd, βa) True Model Model 1 Model 2 Model 3

(0,-4,0.1) 0.502 0.400 (0.015) 0.274 (0.054) 0.400 (0.029)

(2,-6,0.1) 0.408 0.233 (0.032) 0.209 (0.040) 0.337 (0.014)

(4,-8,0.1) 0.353 0.207 (0.022) 0.185 (0.029) 0.308 (0.008)

(6,-10,0.1) 0.315 0.201 (0.014) 0.170 (0.022) 0.269 (0.007)

(8,-12,0.1) 0.288 0.200 (0.009) 0.161 (0.017) 0.245 (0.006)

(0,-4,0.3) 0.573 0.401 (0.030) 0.316 (0.066) 0.479 (0.009)

(2,-6,0.3) 0.466 0.296 (0.030) 0.234 (0.054) 0.384 (0.007)

(4,-8,0.3) 0.402 0.258 (0.021) 0.200 (0.041) 0.326 (0.006)

(6,-10,0.3) 0.360 0.243 (0.014) 0.181 (0.032) 0.268 (0.008)

(8,-12,0.3) 0.328 0.243 (0.007) 0.172 (0.024) 0.215 (0.013)
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Figure 4.5: Small sample estimation of benchmark dose (q=0.10), when true model is

Model A.
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Figure 4.6: Small sample estimation of benchmark dose (q=0.10), when true model is

Model B.
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correlation, which is not so surprising because in this case the asymptotic results

already indicated a misspecification bias.

In Figure 4.7, we present a scatterplot matrix of the estimated benchmark doses,

for all generated datasets under Model A with parameters (-4,6,0.1). In this graph,

the benchmark doses based on the beta-binomial model, the conventional MR model

and the fractional MR model are compared, and also the true benchmark dose is

marked (by a “T”). For this parameter setting, a dose trend d2 is chosen as the best

fractional polynomial in 42% of the cases, a
√

d trend in 34% of the cases, d2+d2 ln(d)

in 16% of the cases, and several other trends. Since powers are restricted to a finite

set of values, we can see a subgroup in the cloud of benchmark dose estimates based

on the fractional polynomials. Most benchmark doses in this small group correspond

to fractional polynomials with a
√

d + d2 trend. Although the correlation between

benchmark dose estimates of model 1 and 2 is high, these models yield unrealistically

low benchmark dose estimates. It is clear that Model 3 is the most flexible model in

attaining the correct benchmark dose.

The price that we have to pay for higher flexibility is precision. Use of a more

flexible model yields higher standard errors. However, the increase in variability is

less severe than the increase in bias. To acknowledge the sampling uncertainty for the

model on which the benchmark dose is based, we replace the benchmark dose (BMD)

by the lower effective dose (LED). Table 4.9 summarizes the LED estimates for model

B. Results for Model A are similar. For both conventional and fractional polynomial

predictors in the conditional model of Molenberghs and Ryan (Model 2 and 3), we

show the (mean) estimated LED, the percentage of the LED’s smaller than the true

BMD, the mean difference of the LED’s smaller than the true BMD and the mean

distance of the LED’s larger than the true BMD.

The estimated LED’s using fractional polynomial predictors seem to behave quite

well for realistic datasets. Around 95% of the lower effective doses of the 1000 gen-

erated samples are smaller than the true BMD, while the distance from the true safe

dose stays small. Also the small percentage of estimated doses that are larger than

the true benchmark dose are very close to the true BMD. When using Model 2, all

estimated doses are smaller than the true benchmark dose; moreover the distance

with the true safe dose is large. This confirms the conclusion that the estimated dose

is too small when using the conventional linear predictor. In contrast, the fractional

polynomials provide satisfactory results.

In summary, it is very important that the dose-response model fits the data well

in order to determine a safe limit of exposure. This has implications for both the

model family chosen as well as for the form of the predictors. Even when the prob-
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Figure 4.7: Scatterplot matrix of the 1000 BMD’s, estimated under Model 1, 2 and 3.
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Table 4.9: Lower effective dose estimation when true model is Model B.

True Model Model 2 Model 3

parameters LED perc < dist < LED perc < dist < dist >

(0,-4,0.1) 0.229 100 0.273 0.357 97.4 0.150 0.018

(2,-6,0.1) 0.174 100 0.235 0.302 96.4 0.111 0.013

(4,-8,0.1) 0.153 100 0.200 0.275 94.2 0.084 0.013

(6,-10,0.1) 0.140 100 0.175 0.238 94.6 0.082 0.013

(8,-12,0.1) 0.134 100 0.154 0.215 94.8 0.078 0.016

(10,-14,0.1) 0.153 100 0.139 0.195 98.2 0.073 0.010

(12,-16,0.1) 0.127 100 0.122 0.184 98.7 0.066 0.009

(14,-18,0.1) 0.126 100 0.109 0.176 99.2 0.059 0.005

ability model is known, unreliable and unrealistically safe doses can be found. This

demonstrates the importance of the shape of the predictors. In practice however, the

true dose-response model is not known. Moreover, the choice between different dose-

response models is often subjective and can affect the quantitative risk assessment.

Use of a flexible polynomial predictor, such as a fractional polynomial, can partly

solve the effects of model misspecification on quantitative risk assessment.

4.6 Discussion

Quantitative risk assessment is based on the relationship between dose and response

to derive a safe dose. In this chapter, the effect of misspecifying the dose-response

model on safe dose determination for clustered binary data was investigated. Both

the probability model and the predictor model are important building blocks of a

dose-response model, and are possibly subject to misspecification.

Simulation studies show that blind use of conventional linear predictors in the

dose-response model can yield unrealistically low or unreliable safe doses, even when

the probability model is well specified. As an alternative, fractional polynomial models

were investigated. These flexible parametric models cannot only correct for misspec-

ification of the predictor model, they can even partly correct for possible misspeci-

fication of the probability model. Therefore, the fractional polynomial approach is
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important when searching for safe limits for human exposure to hazardous agents.

One concern, often raised for developmental toxicity studies is the danger of po-

tential overfitting. Indeed, a standard teratology study typically involves no more

than 4 or 5 different dose levels. Therefore, we have restricted ourselves to a (small)

discrete set of fractional polynomials, with degree one or two. In general however,

more design points would be desirable, but, from a practical point of view, such ex-

periments are hard to manage in the developmental toxicity context. Other flexible

parametric models could be considered too, such as models based on non-linear pre-

dictors and penalized splines. In contrast to the fractional polynomials, which are

easy to handle with, nonlinear methods pose non-trivial methodological challenges.

They are subject of interest in Chapter 5.

In this chapter, focus was on the risk of malformed litters. However, as observed

from the data sets, the dose level also influences the foetal birth weight and number of

viable foetuses in a dam, i.e., the litter size. Thus, extensions of the probability model,

accounting for the multivariate outcomes and acknowledging the stochastic nature of

the litter size would be more appropriate. These are topics of interest in Chapters 6

and 7. Also there, fractional polynomials are used to provide an appropriate fit to

the data in order to obtain a safe level of exposure.
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Chapter 5

Bayesian Testing for Trend in

a Power Model for Clustered

Binary Data

In the United States, more than 80000 chemicals are registered for commercial use

and an estimated 2000 new ones are introduced annually for use in everyday items

such as foods, personal care products, prescription drugs, household cleaners, etc.

The effects of many of these chemicals on our health are still unknown (NTP 2003).

However, the importance of hazard identification should not be disregarded. For

safeguarding public health, one needs to identify the potential toxic exposures that

cause adverse effects on developing foetuses. Secondly, if a specific substance is found

toxic to the developing foetus, one should determine a safe dose of exposure. Recent

techniques for risk assessment in this area are based on fitting dose-response models.

As outlined before, the complexity of such studies implies a number of non-trivial

challenges for model development and also the construction of dose-related trend

tests, including the hierarchical structure of the data, litter effects inducing extra

variation, the functional form of the dose-response curve, the adverse event at dam or

at foetus level, the inference paradigm, etc. Whereas Chapter 4 dealt with estimation

of a safe level of exposure, this chapter concentrates on testing whether a chemical

exhibits a dose trend.

Tests for trend are often applied to toxicological data in order to assess possible

65
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dose effects. The dose effect is investigated via testing the null hypothesis

H0 : no dose effect (5.1)

versus the alternative hypothesis that there is a dose effect. Results can only be

reliable when the alternative hypothesis model fits the data well (Williams and Ryan

1996, Aerts et al. 2002). Linear predictors of the type g(ξi) = β0+β1di are widely used

to describe the model parameters, with g some link function, ξi a model parameter

and di a covariate associated with individual i. However, in the context of dose-

related trend tests, linear predictors can be too restrictive to adequately describe

the relationship of interest in real applications. As an alternative to a polynomial

model, the class of predictors can be enlarged by the use of fractional polynomials,

as described in Chapter 4, or by including non-linear predictors. Since the latter

approach invokes some interesting statistical issues when testing for trend, we will

concentrate on the family of non-linear models in this chapter. We focus on the

subgroup of power trend models. More specifically, power predictors of the following

type are studied in this chapter:

g(ξi) = α + βdγ
i , (5.2)

with (α, β, γ) the unknown regression parameters. These power models allow very

flexible modelling, in spite of the parsimonious number of parameters (Davidan and

Giltinan 1995). Section 5.1 illustrates the use of power model in dose-response mod-

elling and quantitative risk assessment procedure.

However, power models invoke some critical statistical issues when used for testing

purposes. The key item is linked with the effect of the covariate, e.g., dose given to a

dam, on the non-linear predictor. The power model suffers from lack of identifiability

under the null hypothesis of no dose effect, turning the testing problem into a non-

trivial one. Performing a test of no dose effect can be approached from a frequentist

point of view. Section 5.2 shows that this approach leads to complications that are due

to the non-identifiability of the parameters. Therefore, the feasibility of a Bayesian

approach to perform a trend test of no dose effect is investigated. Section 5.3 describes

a Bayesian framework for testing the null hypothesis of no dose effect on the predictor

g(ξi). In case of clustered data, a modification of the Schwarz criterion (Schwarz

1978) is needed. This is presented in Section 5.4. We study and compare dose-related

trend tests on litter and on foetus level, taking into account clustering within litters.

Simulations show the performance of the method over a number of samples generated

under typical experimental conditions (Sections 5.5 and 5.6). In addition, a data

example shows the applicability of the Bayesian approach in developmental toxicity



Bayesian Testing for Trend in a Power Model 67

studies. As in previous chapter, focus is on binary data from a developmental toxicity

study. Most of the presented results can be found in Faes et al. (2004b).

5.1 Use of Power Models: An Example

In this section, the potential dose effect of ethylene glycol (EG) and of theophylline

(THEO), as discussed in Section 2.1, are examined. When focus is on the risk of having

an affected litter, in the sense that at least one of the foetuses in the litter has an

adverse effect, the units under investigation are independent and binary observations.

However, when focus is on the risk of having an affected foetus, units are clustered

within litters. Here, the use of power models is investigated for both settings.

Independent Data

First, the adverse event of having a dam with at least one abnormal (i.e., dead or

malformed) foetus will be taken as an illustration. In this respect, focus is on a

binomial likelihood with a logit link function. The power model can be represented

by

logit(πi) = α + βdγ
i .

Here, doses are rescaled first to the [0, 1] interval and then shifted to [1, 2]. The

latter recoding is done in order to avoid numerical problems when fitting the power

model, arising from the evaluation of the non-linear predictor when the control group

is considered and γ ≤ 0. Based on the parameters of the power model, the probability

that a dam has at least one abnormal foetus can be estimated for each dose level.

These probabilities are represented in Table 5.1. The Pearson goodness-of-fit statistic

is used to check model fit. This approach shows no evidence of model lack of fit. Often,

one uses a linear dose trend instead of a more flexible model. The corresponding

model fits are given in Table 5.1. The observed malformation rates are displayed in

Tables 2.1 and 2.3. One can see that the power model has more flexibility to adapt

to the data compared with the linear model, as expected.

Clustered Data

Let us now investigate the adverse event of having an affected foetus. In that case,

methods that account for the heterogeneity among litters are needed. An attractive

approach is the use of the exponential model of Molenberghs and Ryan (1999). This

method is a likelihood-based model for clustered binary data, based on a multivariate
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Table 5.1: NTP studies. Estimated frequency based on power model and linear model.

EG THEO

Malf. Death Malf. Death

4.4 65.3 3.9 64.3

63.7 67.2 8.6 73.8

86.6 71.8 15.8 82.9

P
ow

er
M

o
d
el

93.7 91.4 19.3 85.8

Pearson X2: 0.683 0.372 0.087 2.860

(df=1)

15.7 61.3 3.3 63.5

49.4 69.8 10.9 78.3

83.6 77.1 15.6 82.0

L
in

ea
r

M
o
d
el

99.3 87.8 17.1 82.9

Pearson X2: 9.902 1.476 0.318 3.422

(df=2)

exponential family model (Cox 1972), as described in Section 3.1.2. The main param-

eter θi is modelled using a power model (5.2). Results are displayed in Figure 5.1.

The dots are the observed malformation or death rates in a cluster. The stars are the

average malformation or death rates in a dose group. The line corresponds with the

fitted power model. It is clear that the power model allows much flexibility on the

dose-response curve.

As seen in previous examples, a power model is a flexible approach to fit the data

with only a small number of parameters. It seems that power models are commonly

implemented primarily in order to get a better fit to the data, rather than for testing

purposes. However, in this chapter, the emphasis is on the latter aspect. Section 5.5

discusses the results of a Bayesian trend test for these NTP data when the adverse

event is defined on the dam (litter) level. In Section 5.6, we test for a dose-related

trend in case the risk is defined on foetus level. In both cases the outcomes are binary,

but in the latter case, all outcomes of foetuses within the same litter are correlated.

This has to be taken into account in the statistical model and in the Bayesian trend

test (see Section 5.4).
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Figure 5.1: NTP studies. Left: EG study. Right: THEO study. Observed and fitted

malformation and foetal death rates, based on power model.
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5.2 Frequentist Testing

Use of power models leads to some critical statistical issues when testing hypotheses

in a frequentist framework. Indeed, the case of no effect of dose di on the model

parameter ξi can be rephrased as either β = 0 or γ = 0. This corresponds to the

union of two planes in the parameter space of (α, β, γ), i.e., the planes with equation

β = 0 or γ = 0. Furthermore, the condition that β = 0 or γ = 0 is equivalent with

βγ = 0. As a consequence, the restriction put on the null model by implying no dose

effect, is no longer linear in the parameters. Also, note that the regression parameters

are not identifiable under the null hypothesis of no dose effect. The parameter γ is

not identifiable if β = 0, since the model then reduces to g(ξi) = α. If γ = 0, the

model simplifies to g(ξi) = α+β. In that case, one cannot identify α and β separately,

although their sum is identifiable.

When performing a test of no dose effect from a frequentist point of view, there

are severe complications due to the non-identifiability. Indeed, consider the likelihood

ratio test

Λn =
supθ∈Θ0

L(θ; y1, . . . , yn)

supθ∈ΘL(θ; y1, . . . , yn)
,

where y1, . . . , yn are the binary responses and θ = (α, β, γ)T . The (unconstrained)

parameter space Θ consists of all parameter vectors θ ∈ IR3, while the (constrained)

parameter space Θ0 contains all θ ∈ IR3 for which βγ = 0. The likelihood of the

null model (numerator of Λn) reaches its maximum for some value of ξ, say ξ∗, or

equivalently, some value of g(ξ) equal to g(ξ∗) ≡ δ. For regular cases, −2 ln Λn has

an asymptotic χ2 null distribution. However, in the setting considered here, there is

obviously a problem. Indeed, transforming the value ξ∗ to the regression parameters,

the maximum of the likelihood under the null model is obtained for

all θ for which α = g(ξ∗), β = 0

and

all θ for which α + β = g(ξ∗), γ = 0.

As a consequence, under the hypothesis of no dose effect, the likelihood is maximized

at any parameter combination on these two intersecting lines. Thus, standard like-

lihood theory no longer holds and the asymptotic null distribution is unknown. For

these reasons, the frequentist approach will not be pursued further. In contrast, a

Bayesian approach leads to a more appealing approach.
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5.3 Bayesian Testing

Let y = (y1, . . . , yn) denote the binary response. Several Bayesian testing procedures

have been proposed in the literature (Kass and Raftery 1995). Bayesian hypothesis

testing can be performed by means of Bayes factors.

5.3.1 Bayes Factor

The Bayes factor can be defined as the ratio of the observed probability densities of

y under both hypotheses:

B10 =
P (y|H1)

P (y|H0)
, (5.3)

where H0 and H1 are defined in (5.1) and (5.2). From this definition, it follows that

the Bayes factor can be viewed as measuring the relative success of H0 and H1 at

predicting the data (Kass and Raftery 1995). Representing the a priori probabilities

of the null and alternative hypotheses by P (H0) and P (H1), respectively, one notes

that

B10
P (H1)

P (H0)
=

P (H1,y)

P (H0,y)
=

P (H1|y)

P (H0|y)
,

i.e., the Bayes factor multiplied by the prior odds results in the posterior odds. As-

suming the prior information is ‘neutral’ between competing models, i.e., P (H0) =

P (H1) = 0.5 (e.g., Berger 1985), the Bayes factor B10 equals P (H1|y)/P (H0|y), the

posterior odds in favor of H1.

The two components of the Bayes factor, i.e., P (y|H0) and P (y|H1), are computed

by integrating the joint density of the data and the regression parameters of the cor-

responding model, over its parameters. Hence, the probability P (y|H0) is calculated

by means of the expression

P (y|H0) =

∫

Θ0

P (y, δ|H0)dδ =

∫

Θ0

P (y|δ,H0)ω(δ|H0)dδ,

where Θ0 is the parameter space of δ and where ω(δ|H0) is the prior density of δ in

the null model. The probability P (y|H1) is found in an analogous way:

P (y|H1) =

∫

Θ1

P (y|θ1,H1)ω(θ1|H1)dθ1,

with θ1 the parameter vector under the alternative model, i.e., θ1 = (α, β, γ)t, with

Θ1 the parameter space of θ1 and with ω(θ1|H1) the prior density of θ1 in the al-

ternative model. The two components of the Bayes factor are also called marginal
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Table 5.2: Categories for the Bayes Factor, expressing the evidence against the null

hypothesis (Kass and Raftery 1995).

B10 2 ln B10 Evidence against H0

< 1 < 0 negative (supports H0)

1 to 3 0 to 2 not worth more than a bare mention

3 to 20 2 to 6 positive

20 to 150 6 to 10 strong

> 150 > 10 very strong

likelihoods or integrated likelihoods (Kass and Raftery 1995). The marginal likeli-

hood is a weighted average of the likelihood, using the prior distribution as a weight

function. In a limited number of cases, the marginal likelihood can be evaluated an-

alytically. However, in most cases, the integrals are intractable and thus, numerical

methods are needed to approximate the marginal likelihood. In the literature, an

extensive number of numerical methods have been proposed (Kass and Raftery 1995,

Carlin and Louis 1996, Gilks et al. 1996).

The Bayes factor is a summary of the evidence of one hypothesis as opposed to

another hypothesis, provided by the data. Kass and Raftery (1995) provide categories

for the Bayes factor, based on Jeffreys (1961), expressing the evidence against the null

hypothesis. Table 5.2 lists classes for B10, as well as for 2 ln B10, which is on the same

scale as, e.g., the likelihood ratio test statistic. These categories produce a rough

descriptive statement about standards of evidence in scientific investigation (Kass

and Raftery 1995). By comparing the computed Bayes factor of a data analysis with

the classes of Table 5.2, one can draw a conclusion about the effect of dose di on the

predictor g(ξi).

For expressing evidence in favour of, or against, a model, the Bayes factor is desi-

rable because of its direct interpretation. However, the Bayes factor requires specifi-

cation of prior distributions on the parameters appearing in the null and alternative

hypothesis models. In principle, these priors represent available information or some

prior knowledge or belief. But in practice, proper priors must be chosen that may be

perceived as subjective or ad hoc. For estimation problems ‘flat’ (uniform) priors on

the parameters of interest are often used, but in testing such a prescription leads to

serious difficulties. Thus, a first concern is how to choose a prior distribution to rep-
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resent available information. Another important issue is the sensitivity of the Bayes

factors to the prior distributions (Aitkin 1991, Kass and Wasserman 1995, Pauler

1998, Kass and Raftery 1995, Sinharay and Stern 2002). This will be illustrated in

Section 5.5.

5.3.2 Schwarz Criterion

Because of the difficulties of assessing an appropriate prior under the nonlinear re-

strictions, and the computation of the required integrals, an approximation to the

Bayes factor is attractive. The Schwarz criterion is easy to compute, and does not

require explicit introduction of prior distributions. It is defined as

S = ln
P (y|θ̂1,H1)

P (y|θ̂0,H0)
− 1

2

(
dim(Θ0) − dim(Θ1)

)
ln(n), (5.4)

where θ̂k is an ML estimate of θk under Hk (with k = 0, 1), dim(Θk) is the di-

mension of Θk and n is the sample size. Under the null hypothesis, there is only

one non-redundant parameter, the constant success probability. Under the alterna-

tive hypothesis, there are three parameters of interest. The Schwarz criterion can be

viewed as a rough approximation to the natural logarithm of the Bayes factor B10

(Kass and Raftery 1995). Hence, the Bayes factor B10 can be estimated by exp(S).

In the setting considered here,

S = ln
P (y|θ̂1,H1)

P (y|δ̂,H0)
− ln(n), (5.5)

with θ̂1 = (α̂, β̂, γ̂)t. Thus, it follows that

B10 ≈ P (y|θ̂1,H1)

nP (y|δ̂,H0)
(5.6)

and that twice the Schwarz criterion equals the usual likelihood ratio test statistic

minus twice the natural logarithm of the sample size. Keeping in mind the rough in-

terpretation of the Bayes factor on the logarithmic scale of Table 5.2, it can be shown

that in large samples, the Schwarz criterion should provide a reasonable indication of

the evidence (Kass and Raftery 1995). Also, this procedure requires only the value of

the likelihood ratio statistic and the number of parameters in both models. Further-

more, no prior distributions are needed. Nevertheless, several issues deserve further

comments. An important point of concern regarding the use of Schwarz criterion is

the sample size determination n in the case of clustered data. This is discussed in

Section 5.4.
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5.4 Effective Sample Size for Clustered Binary Data

When observations are not independent, it is not clear which sample size must be

taken in the definition of the Schwarz criterion. In the context of developmental tox-

icity studies, exposure is often administered to the dam, rather than directly to the

developing foetuses. Because of genetic similarity and the same treatment conditions,

foetuses of the same mother behave more alike than those of another mother, inducing

positive correlation (Chen and Kodell 1989, Kupper et al. 1986). One approach is to

take the number of foetuses as the sample size in the definition of Schwarz criterion.

As an alternative, one can take the number of clusters as the sample size. While

the second one penalizes the effect too much, the first version of Schwarz does not

sufficiently penalize. Discussions concerning the appropriate constant can be found

in Kass and Wasserman (1995) and in Pauler (1997). Several extensions of Schwarz

approximation are given by Haughton and Dudley (1992) and Kass and Vaidyanathan

(1992). But, even with a supposedly well-specified method such as the Schwarz cri-

terion, which depends only on the likelihood, the dimensions of the parameters and

the sample size, there is considerable uncertainty as to how to define the sample size

once one departs from i.i.d. situations. The determination of the effective sample

size when dealing with more complex situations, such as in developmental toxicity

studies, is a topic of interest.

Consider an experiment involving N litters (pregnant dams), the ith of which con-

tains ni viable foetuses. Suppose yij indicates whether the jth individual in dam i is

malformed. Then, zi =
∑ni

j=1 yij is the total number of malformations in cluster i. Let

us focus on the information contributed by a cluster. Assuming the experiment was

conducted with independence within clusters, observations can be seen as binomial

counts with

E
( zi

ni

)
= πi

Var
( zi

ni

)
=

1

ni
πi(1 − πi).

However in general, offspring of the same mother behave more alike than those of

another mother. As a result, responses on different foetuses within a cluster are likely

to be correlated, indicating extra variation in the data relative to those associated

with the common binomial distribution. This extra variation must be taken into
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account (Chen and Kodell 1989, Kupper et al. 1986). The variance equals

Var
( zi

ni

)
=

1

n2
i




ni∑

j=1

Var(yij) + 2
∑

j<j′

Cov(yij , yij′)




=
1

n2
i

[
niπi(1 − πi) + ni(ni − 1)ρiπi(1 − πi)

]

=
1

ni
πi(1 − πi)[1 + ρi(ni − 1)],

with ρi the correlation among the observations in litter i. The effective sample size

ñi, or the number of independent samples contained in a litter, can be calculated by

equating the variance under the assumption of independence with the true variance

of a litter:

1

ñi
πi(1 − πi) =

1

ni
πi(1 − πi)[1 + ρi(ni − 1)],

yielding

ñi =
ni

1 + ρi(ni − 1)
. (5.7)

Note that the correction for the effective sample size is different for different litters.

The effective sample size Neff for the whole sample equals
∑N

i=1 ñi, giving

Neff =
N∑

i=1

ni

1 + ρi(ni − 1)
. (5.8)

There are some interesting special cases:

• When foetuses are independent within a litter (ρi = 0), the effective samples

size equals

Neff =
N∑

i=1

ni.

This is equal to the number of foetuses.

• In case the foetuses are perfectly correlated (ρi = 1), the effective sample size

equals the number of litters, since

Neff =

N∑

i=1

ni

ni
= N.
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• When the outcomes are continuous and normally distributed, and the compound-

symmetry model

yij = µij + bi + ǫij ,

with bi ∼ N(0, d) and ǫij ∼ N(0, σ2) applies, exactly the same formula is

obtained with ρ = d
d+σ2 .

The expression of the effective sample size yields insight into the amount of infor-

mation contained in a cluster. When observations are correlated, a larger sample size

is needed to achieve the same accuracy as with an independent sample. The larger

the sample size, the more information and the better the accuracy. There is, however,

a limit of information in a cluster:

lim
ni→+∞

ni

1 + ρ(ni − 1)
=

1

ρ
(5.9)

Only when observations are independent, the information limit is infinite. When

foetuses are correlated within a litter, there is a maximum amount of information

that you can get for that cluster.

Above derivations are made for positive correlations. In general, the effective

sample size is only positive for correlations ρ > −1
n−1 . Thus, our argument can be used

for mildly negative correlation, up to this bound. This is not dissimilar from negative

correlation in the context of a positive definite variance-covariance matrix.

5.5 Independent Data

In this section, focus is on the risk of having a dam with at least one abnormal (i.e.,

dead or malformed) foetus. For each dam in the study, a binary response indicates

whether there is an abnormality in the litter. Thus, the outcomes of interest are

independent and binary observations. The effect of the choice of the prior on the

Bayes factor and the performance of the Schwarz criterion are investigated in an

analysis of the NTP data and in a simulation study.

5.5.1 Illustration: NTP Data

We investigate the effects in mice of the chemicals ethylene glycol and theophylline,

as described in Section 5.1. For each adverse event under consideration, an approxi-

mation of the Bayes factor is computed in order to test for no dose effect in the power

model.
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Table 5.3: NTP studies. Three approximation of Bayes Factor (BF).

EG THEO

malf death malf death

log-likel. (H0) -63.0 -54.8 -34.2 -58.4

log-likel. (H1) -35.3 -51.7 -32.5 -56.3

#dams 94 95 96 108

Schwarz 23.2 -1.53 -2.85 -2.54

BF(Schwarz) 1.15*1010 0.216 0.058 0.079

BF(uniform, Var 1) 3.66*107 0.373 119.51 0.093

BF(normal, Var 1) 2.81*107 0.463 0.174 0.107

BF(uniform, Var 2) 2.18*108 0.557 0.236 0.275

BF(normal, Var 2) 9.33*107 2.278 0.559 0.702

Three methods are selected for the estimation of the Bayes factor. Besides the

Schwarz criterion, the Bayes factor is approximated by computing the marginal like-

lihoods P (y|H0) and P (y|H1) numerically. Two types of prior distributions are con-

sidered: a uniform and a normal prior. The aim is to express some prior knowledge

about the parameter estimates in this model. Therefore, the maximum likelihood

estimates of a similar developmental toxicity study (Tyl et al. 1988) are used as a

suggestion for the parameter estimates. The selected prior distribution for the pa-

rameter δ of the null model has mean 2, while the variance of δ equals 3. For the

alternative model α + βdγ , the mean vector and the variance-covariance matrix of

(α, β, γ), is (0.5,0.5,5) and 3 times the identity matrix respectively.

Table 5.3 displays the components of the Schwarz criterion, i.e., the log-likelihood

of the power and null model and the number of dams. Also, the Schwarz criterion and

the resulting estimate of the Bayes factor are given. Furthermore, the approximations

of the Bayes factors obtained by computing the marginal likelihoods numerically using

the aforementioned uniform or a normal prior distribution, are added to this table

(Var 1). The results can be interpreted using Table 5.2.

For the effects of EG on foetal death, the results of the different approximations

are similar. There seems to be no evidence against the null hypothesis of no dose

effect of EG on the foetal death probability. For the effects of EG on the presence
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of a malformation, there is very strong evidence against the null hypothesis. For the

effects of THEO on the presence of a malformation, there is a striking discrepancy

between the different methods. Depending on the method, there is negative to very

strong evidence against the null hypothesis. Finally, there seems to be no evidence of

an effect of THEO on the foetal death probability.

Other prior distributions could be considered. In order to express no prior knowl-

edge, we could enlarge the variance of the prior distribution. As a sensitivity analysis,

we calculated the Bayes factors under a uniform and normal prior with the same mean

value, but with twice the variance of previously used priors (Var 2). Note that some

of the conclusions change by the use of different prior distribution. This indicates

that the Bayes factor can be very sensitive to the choice of the priors, and results

should be interpreted with care.

Since the frequentist likelihood ratio test statistic is no longer appropriate to test

the null hypothesis of no dose effect in case of a power model and the Bayes factor is

very sensitive to the choice of the prior distribution, the Schwarz criterion based on

the classes in Table 5.2 is an attractive alternative.

5.5.2 Simulation Setting

This section illustrates the finite sample behaviour of the Schwarz criterion and the

Bayes Factor. We examine the performance of different approximations to the Bayes

factor for the no dose effect null hypothesis. The adverse event under investigation is

again a dam with at least one abnormal foetus.

In the simulation we reconstruct some realistic situations from developmental

toxicity studies. A typical toxicological experiment includes one control group and

some active dose groups. For the simulations we selected dose levels 0.000, 0.125,

0.250, 0.500 and 1.000. Several parameter settings were investigated, all of these

might occur in practical settings. For each of the selected models, the Schwarz crite-

rion and Bayes factor approximation using a uniform and normal prior are considered.

Two different variances of the prior distribution are chosen: (1) for the first prior we

use 3 times the identity matrix (these prior distributions are referred to as uniform

1 and normal 1, respectively), (2) for the second prior we use 6 times the identity

matrix (these prior distributions are displayed as uniform 2 and normal 2).

An equal number of 30 clusters were assigned to each dose group. Thus, for each

dose level, 30 binary data values are generated, representing the health status of the

group of dams. A value of zero indicates a dam without abnormal foetuses. For each

parameter setting, 1000 datasets were generated.
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5.5.3 Simulation Results

Several values of the parameter vector (α, β, γ) of the underlying power model are

considered. In this study, a chosen combination of these parameters is α = 0.5, β = 0.5

and γ = 5, which is comparable to the estimates of the EG study. Starting from the

parameter vector (α, β, γ) = (0.5, 0.5, 5) one approaches the null hypothesis of no dose

effect via three paths.

Results are presented in Tables 5.4 to 5.6. For each method, the percentages

of simulations falling in the different categories of the Bayes factor, as indicated

in Table 5.2, are given. For the estimation of the Bayes factor using the Schwarz

criterion, the procedure for the estimation of the parameters in the power model did

not always lead to convergence of the results. Careful choice of the starting points

is needed in order for the model to converge. A tedious search for starting values is

feasible for a single data analysis but it is impossible to always guarantee convergence

in case of an extensive simulation study. Therefore the actual number of datasets for

which convergence was reached is reported.

As expected, the distribution of the Bayes factor shifts to the left when ap-

proaching the null hypothesis. When generating data from the null hypothesis, i.e.,

(α, β, γ) = (0.5, 0, 5), (0.5, 0.5, 0) or (0.5, 0, 0), almost all runs lead to values of the

Bayes factor smaller than one, implying that there is no evidence against the null

hypothesis. When the underlying model is a power model, the distribution of the

number of runs over the classes is similar for the uniform and the normal prior den-

sity. However, differences are seen between prior distributions with different variances.

For the Schwarz criterion, the percentages of the number of runs in the classes with

smaller values of the Bayes factor are larger than in case of the methods using prior

distributions.

Use of Bayes factor and Schwarz criterion seems an attractive approach for testing

the null hypothesis of no dose effect in a power model. However, there are some

difficulties in choosing the prior distribution.

5.6 Correlated Data

In previous section, the litter effect issue is avoided by modelling the probability of

an affected cluster via a logistic regression model. Here we consider the adverse event

of having an affected foetus. Failure to account for the clustering in the data can

seriously affect the test for trend. Thus, appropriate methods that account the het-

erogeneity among litters must be used. We restrict attention to the Schwarz criterion
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Table 5.4: Distribution of the Bayes Factor obtained from small sample simulations

in which the Schwarz criterion is used to approximate the Bayes Factor, in addition

to integrations over a grid using a uniform or a normal prior density function. Several

values of the parameter β of the underlying power model are considered.

α β γ method # runs ≤ 1 1 < . ≤ 3 3 < . ≤ 20 20 < . ≤ 150 > 150

0.5 0.5 5 Schwarz 579 7.9 5.4 19.9 21.1 45.8

uniform 1 1000 0.4 1.4 10.9 17.8 69.5

normal 1 1000 0.2 1.4 9.8 14.2 74.4

uniform 2 1000 0.7 3.3 13.7 20.6 61.7

normal 2 1000 0.1 1.8 11.5 21.8 64.8

0.5 0.4 5 Schwarz 640 13.0 6.1 18.3 20.2 42.5

uniform 1 1000 0.5 2.0 9.1 17.2 71.2

normal 1 1000 0.3 1.9 8.1 15.6 74.1

uniform 2 1000 1.1 2.4 12.6 21.1 62.8

normal 2 1000 0.2 2.3 8.8 21.3 67.4

0.5 0.3 5 Schwarz 790 12.0 5.1 19.5 20.8 42.7

uniform 1 1000 0.6 1.9 9.6 20.9 67.0

normal 1 1000 0.5 1.7 9.0 19.8 69.0

uniform 2 1000 1.2 3.5 13.4 23.7 58.2

normal 2 1000 0.0 1.3 8.9 23.8 66.0

0.5 0.2 5 Schwarz 898 22.0 3.3 15.1 24.2 35.3

uniform 1 1000 0.5 2.1 11.6 24.7 61.1

normal 1 1000 0.5 1.9 10.1 23.9 63.6

uniform 2 1000 1.3 4.0 18.9 24.2 51.6

normal 2 1000 0.2 0.6 7.9 30.1 61.2

0.5 0.1 5 Schwarz 871 34.6 10.6 17.8 16.9 20.2

uniform 1 1000 7.8 10.4 22.7 23.6 35.5

normal 1 1000 7.4 8.9 23.1 23.4 37.2

uniform 2 1000 8.3 12.6 26.7 25.4 27.0

normal 2 1000 2.3 4.9 20.8 27.5 44.5

0.5 0 5 Schwarz 552 99.8 0.2 0.0 0.0 0.0

uniform 1 1000 99.8 0.2 0.0 0.0 0.0

normal 1 1000 99.3 0.6 0.1 0.0 0.0

uniform 2 1000 98.4 1.3 0.3 0.0 0.0

normal 2 1000 95.5 3.9 0.6 0.0 0.0
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Table 5.5: Distribution of the Bayes Factor obtained from small sample simulations

in which the Schwarz criterion is used to approximate the Bayes Factor, in addition

to integrations over a grid using a uniform or a normal prior density function. Several

values of the parameter γ of the underlying power model are considered.

α β γ method # runs ≤ 1 1 < . ≤ 3 3 < . ≤ 20 20 < . ≤ 150 > 150

0.5 0.5 5 Schwarz 579 7.9 5.4 19.9 21.1 45.8

uniform 1 1000 0.4 1.4 10.9 17.8 69.5

normal 1 1000 0.2 1.4 9.8 14.2 74.4

uniform 2 1000 0.7 3.3 13.7 20.6 61.7

normal 2 1000 0.1 1.8 11.5 21.8 64.8

0.5 0.5 4 Schwarz 747 22.2 9.5 25.7 19.3 23.3

uniform 1 1000 1.5 4.2 17.1 24.7 52.5

normal 1 1000 1.2 3.7 17.0 23.2 54.0

uniform 2 1000 2.3 5.8 23.1 26.0 42.8

normal 2 1000 0.8 3.8 17.5 28.9 49.0

0.5 0.5 3 Schwarz 771 40.5 12.1 23.5 13.0 11.0

uniform 1 1000 16.4 13.5 22.4 22.5 25.2

normal 1 1000 15.0 12.7 22.6 22.4 27.3

uniform 2 1000 15.1 16.6 25.9 22.7 19.7

normal 2 1000 9.0 12.8 25.3 28.5 24.4

0.5 0.5 2 Schwarz 809 84.1 6.4 5.1 3.0 1.5

uniform 1 1000 72.5 10.8 9.8 4.1 2.8

normal 1 1000 71.0 10.0 11.6 4.3 3.1

uniform 2 1000 64.5 15.3 13.7 4.3 2.2

normal 2 1000 57.3 17.2 17.3 5.2 3.0

0.5 0.5 1 Schwarz 549 98.0 0.5 1.1 0.4 0.0

uniform 1 1000 96.7 1.8 1.1 0.3 0.1

normal 1 1000 96.2 2.1 1.3 0.3 0.1

uniform 2 1000 94.8 3.0 1.8 0.3 0.1

normal 2 1000 87.4 8.4 3.3 0.6 0.3

0.5 0.5 0 Schwarz 607 99.2 0.5 0.2 0.2 0.0

uniform 1 1000 99.1 0.5 0.3 0.1 0.0

normal 1 1000 99.1 0.6 0.3 0.0 0.0

uniform 2 1000 98.8 0.9 0.2 0.1 0.0

normal 2 1000 96.8 2.5 0.5 0.2 0.0
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Table 5.6: Distribution of the Bayes Factor obtained from small sample simulations

in which the Schwarz criterion is used to approximate the Bayes Factor, in addition

to integrations over a grid using a uniform or a normal prior density function. Several

values of the parameter β and γ of the underlying power model are considered.

α β γ method # runs ≤ 1 1 < . ≤ 3 3 < . ≤ 20 20 < . ≤ 150 > 150

0.5 0.5 5 Schwarz 579 7.9 5.4 19.9 21.1 45.8

uniform 1 1000 0.4 1.4 10.9 17.8 69.5

normal 1 1000 0.2 1.4 9.8 14.2 74.4

uniform 2 1000 0.7 3.3 13.7 20.6 61.7

normal 2 1000 0.1 1.8 11.5 21.8 64.8

0.5 0.4 4 Schwarz 837 25.6 7.8 22.2 20.0 24.5

uniform 1 1000 2.4 6.7 14.9 26.2 49.8

normal 1 1000 1.8 6.0 15.0 25.0 52.2

uniform 2 1000 4.2 7.6 20.9 26.1 41.2

normal 2 1000 0.8 4.4 15.9 30.6 48.3

0.5 0.3 3 Schwarz 852 61.7 11.2 13.7 7.7 5.6

uniform 1 1000 44.3 12.8 20.1 12.4 10.4

normal 1 1000 40.4 14.7 21.0 12.8 11.1

uniform 2 1000 35.1 19.4 24.3 12.6 8.6

normal 2 1000 25.7 20.2 25.0 17.3 11.8

0.5 0.2 2 Schwarz 837 97.0 1.4 1.4 0.1 0.0

uniform 1 1000 95.5 2.6 1.5 0.3 0.1

normal 1 1000 94.6 3.0 2.0 0.3 0.1

uniform 2 1000 91.9 5.2 2.3 0.6 0.0

normal 2 1000 83.2 10.5 5.3 0.9 0.1

0.5 0.1 1 Schwarz 837 99.1 0.6 0.1 0.1 0.0

uniform 1 1000 99.2 0.5 0.2 0.1 0.0

normal 1 1000 99.0 0.7 0.2 0.1 0.0

uniform 2 1000 98.2 1.3 0.4 0.1 0.0

normal 2 1000 97.7 1.7 0.4 0.2 0.0

0.5 0 0 Schwarz 552 99.8 0.2 0.0 0.0 0.0

uniform 1 1000 99.8 0.2 0.0 0.0 0.0

normal 1 1000 99.3 0.6 0.1 0.0 0.0

uniform 2 1000 98.4 1.3 0.3 0.0 0.0

normal 2 1000 95.5 3.9 0.6 0.0 0.0
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and investigate the effect of the modified Schwarz criterion, as defined in Section 5.4.

The NTP data are reconsidered and a simulation study shows finite sample power

characteristics.

5.6.1 Illustration: NTP Data

In this section, interest is in the effect of the chemicals EG and THEO on the proba-

bility of an abnormal foetus, instead of on the probability of an abnormal cluster.

In a first step, we ignore the clustering by treating the littermates as if they were

independent and focus on independent binary responses. Results of the analysis are

tabulated in Table 5.7. Again, we see that the Bayes factor is very sensitive to the

choice of the prior distribution. In addition, it is not clear what prior distribution is an

appropriate choice. Therefore, in what follows, we advocate the use of the Schwarz

criterion for Bayesian testing in this setting. Based on Schwarz criterion, there is

strong evidence that the chemical EG has an effect on the developing foetus, in the

sense that more foetuses will be malformed. In contrast, there is no evidence that

EG will affect the risk of foetal death. For the effect of THEO, there is very strong

evidence that this chemical has an effect on the risk of foetal death, but not on the

malformation risk. But, treating the littermates as being independent is in general a

very strong assumption. Therefore, results must be interpreted with care.

In a second step, the clustering is taken into account using the exponential model

of Molenberghs and Ryan (1999), as described in Section 3.1.2. Note that it is not

immediately clear which sample size must be taken in the definition of the Schwarz

criterion. The number of foetuses can be taken as the sample size, but also the number

of clusters. While the second one penalizes the effect too much, the first version of

Schwarz does not penalize enough. When dealing with clustered binary data, the

effective sample size discussed in Section 5.4 can be used.

Results of the analysis are presented in Table 5.7. For the malformations, the

information obtained from the EG experiment is similar to what would be obtained

from 596 independent foetuses. For the death outcome, the information obtained

from the EG experiment is similar to what would be obtained from 782 independent

foetuses. The larger the correlation in the litters, the smaller the effective sample size

of the experiment. This is also illustrated in Figure 5.2 for the EG (death) data. For

the EG (death) experiment, the information limit is equal to 2196.6, corresponding

to approximately 23.4 per cluster. Hence, in the EG (death) data, a litter can never

contribute more information, regarding the average (probability of success) within

the cluster, than would be obtained from about 23.4 independent littermates. For the
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Table 5.7: NTP Studies. Approximations of Bayes Factor.

Account Method Penalizing EG THEO

Cluster constant malf death malf death

no Schwarz
∑N

i=1 ni 158.33 -0.465 -3.25 12.48

BF (Schwarz) 5.79*1068 0.628 0.0388 2.63*105

BF (unif, var1) 6.35*1055 10.36 202.79 3.11*106

BF (norm, var1) 1.99*1059 29.24 1.32 4.29*106

BF (unif, var2) 2.38*1064 47.52 1.28 3.36*106

BF (norm, var2) 5.01*1066 0.46 4.54 3.54*1011

yes Schwarz1 N 43.41 -1.57 -1.42 0.746

Bayes 7.23*1018 0.208 0.242 2.1090

Schwarz2
∑N

i=1 ni 41.02 -4.10 -3.83 -1.74

Bayes 6.51*1017 0.017 0.022 0.175

Schwarz3 Neff 41.56 -3.68 -3.79 -0.655

Bayes 1.12*1018 0.025 0.022 0.519

EG THEO

malf death malf death

Neff(ρ = 0) 1028 1192 1071 1302

Neff(ρ = ρ̂) 596 782 1028 438

Neff(ρ = 1) 94 95 96 108

Information Limit 22666.5 2196.6 44231.7 771.2
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Figure 5.2: EG Study (death outcome). Relationship between the effective sample size

and the correlation in a litter.

THEO (death) data, the information limit of a cluster is approximately equal to 7.1

independent littermates.

For the EG experiment, the three versions of the Schwarz criterion give similar

results. There is no evidence that the chemical EG has an effect on the foetal death

rate. But, there is very strong evidence against the null hypothesis of no dose effect

of EG on the probability of a malformations in a litter. For the chemical THEO,

there seems to be no evidence for an effect on the malformation risk. For the effects

of THEO on the foetal death rate however, the differences in the penalizing constant

affect the conclusions. The Schwarz criterion based on the effective sample size lies

in between the naive values of the Schwarz criterion. Based on the effective sample

size, there is no evidence that THEO affects the foetal death rate.

Comparing these results (accounting for clustering) with previous results (ignor-

ing the clustering), we see that the Bayes factor is much smaller when accounting

for clustering. When ignoring the clustering, the Bayes factor seems to favour the

alternative hypothesis. Indeed, failure to account for the clustering in the data can

lead to serious inflation of the test statistic.
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5.6.2 Simulation Setting

A small sample simulation is performed, generating clustered binary data, to inves-

tigate the effect of the Bayes factor when approaching the null hypothesis in case of

clustering, and to compare the Bayes factors under different probability models.

Data are generated following the ideas of Rotnitzky and Wypij (1994). An artifical

sample is constructed where each possible realization of dose d, clustersize n, number

of abnormal foetuses z is weighted according to the probability in the underlying

model. An equal number of 30 clusters were assigned to each dose group. Again,

the doses 0.000, 0.125, 0.250, 0.500 and 1.000 are considered when generating the

asymptotic sample. The cluster sizes are random, according to a local linear smoothed

version of the relative frequencies given in Kupper et al. (1986) (see Table 4.3).

5.6.3 Simulation Results

The parameters α and γ are kept fixed, equal to -2 and 4 respectively. We use the MR

model (taking clustering into account) and the foetus-based logistic model (ignoring

clustering). Because of the problems related to the choice of the prior distribution, we

considered only the Schwarz criterion. Results are summarized in Tables 5.8 to 5.10.

When dose effect decreases, the distribution of the Bayes factor shifts to the left.

This indicates that a smaller dose trend yields smaller Bayes factors, in line with

expectation. The logistic model often yields larger Bayes factors compared with the

Bayes factor when accounting for clustering. Thus, when testing for dose effect, it

is important to use the most correct model. We should not ignore clustering when

it is present, since it might influence the results. When accounting for clustering,

different penalizing constants could be chosen. Note however that the second version

of Schwarz (based on number of foetuses) penalizes the effect too much, while the first

version of Schwarz (based on number of litters) does not sufficiently penalize. The

distribution of the Bayes factors based on the effective sample size is close to the one

based on the number of foetuses. However, when the clustering parameter increases,

the differences get larger. This is in agreement with our expectations. Thus, use of

the effective sample size in case of dependent data is an easy solution with attractive

features.

5.7 Discussion

In this chapter, focus has been on testing for a dose-related trend based on a power

model. The null hypothesis of no dose effect is equivalent with setting the product of
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Table 5.8: Distribution of the Bayes Factor obtained from small sample simulations

in which the Schwarz criterion is used to approximate the Bayes Factor. Simulated

data are clustered binary observations. Different penalizing factors are used in the

Schwarz criterion. The association is only minor.

β δ model penaliz. ≤ 1 1 < . ≤ 3 3 < . ≤ 20 20 < . ≤ 150 150 ≥ .

0.3 0.15 MR litter 0 0 0 0 100

MR foetus 0 0 0 0 100

MR eff.ss. 0 0 0 0 100

LOG foetus 0 0 0 0 100

0.1 0.15 MR litter 2 1 0 0 97

MR foetus 3 0 0 0 97

MR eff.ss. 3 0 0 0 97

LOG foetus 1 1 0 0 97

0.05 0.15 MR litter 58 10 18 8 6

MR foetus 82 5 7 5 1

MR eff.ss. 82 5 7 5 1

LOG foetus 71 7 8 5 8

two regression parameters equal to zero. This non-linear restriction of the parameters

in the null model results in parameter unidentifiability in case the effect of dose is

absent. To avoid the computation of the distribution of the likelihood ratio test

statistic in this setting, a Bayesian approach using Bayes factors is considered.

In the context of developmental toxicity studies, we examined the effect of dose on

an adverse event, which can be defined on foetus or litter level. The results of both

approaches, as given in Tables 5.3 and 5.7, are in line with each other. The results at

foetus and litter level are consistent. However, failure to account for the clustering in

the data can lead to serious inflation of the test statistic.

One of the methods applied to approximate the Bayes factor is based on the

Schwarz criterion. Another method estimated the Bayes factor by integrating the

marginal likelihoods numerically, using a uniform or normal prior distribution. How-

ever, the Bayes factor is very sensitive to the choice of the prior densities. Obviously,

many other techniques for the calculation of the Bayes factor can be applied. One
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Table 5.9: Distribution of the Bayes Factor obtained from small sample simulations

in which the Schwarz criterion is used to approximate the Bayes Factor. Simulated

data are clustered binary observations. Different penalizing factors are used in the

Schwarz criterion. The association in the data is moderate.

β δ model penaliz. ≤ 1 1 < . ≤ 3 3 < . ≤ 20 20 < . ≤ 150 150 ≥ .

0.3 0.30 MR litter 0 1 1 6 92

MR foetus 2 3 3 1 91

MR eff.ss. 0 1 4 4 91

LOG foetus 0 0 0 0 100

0.1 0.30 MR litter 26 11 15 11 37

MR foetus 50 3 13 16 18

MR eff.ss. 45 8 10 18 19

LOG foetus 32 7 6 7 48

0.05 0.30 MR litter 98 2 0 0 0

MR foetus 100 0 0 0 0

MR eff.ss. 100 0 0 0 0

LOG foetus 100 0 0 0 0

can also approximate the marginal likelihood by the simple Monte Carlo estimate or

apply the technique of importance sampling. Furthermore, Kass and Raftery (1995)

propose other methods for the calculation of the Bayes factor, e.g., Laplace’s method.

The Schwarz criterion is a nice alternative to the Bayes factor, to test the null

hypothesis of no dose effect in case of a power model. Although there are some issues

concerning the penalizing constant, it is a good approximation. The investigation

about the sample size and penalizing constant in case of dependent data gave us an

easy solution, with attractive features, and might be used in other settings as well.
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Table 5.10: Distribution of the Bayes Factor obtained from small sample simulations

in which the Schwarz criterion is used to approximate the Bayes Factor. Simulated

data are clustered binary observations. Different penalizing factors are used in the

Schwarz criterion. The association in the data is high.

β δ model penaliz. ≤ 1 1 < . ≤ 3 3 < . ≤ 20 20 < . ≤ 150 150 ≥ .

0.3 0.45 MR litter 0 0 8 2 90

MR foetus 6 3 1 1 89

MR eff.ss. 0 0 10 1 89

LOG foetus 0 0 0 0 100

0.1 0.45 MR litter 76 12 7 2 3

MR foetus 94 2 2 1 1

MR eff.ss. 92 3 3 1 1

LOG foetus 70 0 11 6 13

0.05 0.45 MR litter 98 0 2 0 0

MR foetus 99 1 0 0 0

MR eff.ss. 99 1 0 0 0

LOG foetus 98 2 0 0 0
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Chapter 6

Modelling Combined

Continuous and Ordinal

Outcomes in a Clustered

Setting

In previous chapters we have concentrated on the clustered binary data setting. How-

ever, in the study of teratology and developmental toxicity, both the probability that

a live foetus is malformed (ordinal) or of low birth weight (continuous) are important

measures of teratogenicity. While multivariate methods for the analysis of continuous

outcomes are well known (Johnson and Wichern 1992), methods for joint continuous

and discrete outcomes are less familiar, especially with clustering. Nevertheless, mea-

surements of both continuous and categorical outcomes appear in many statistical

problems.

Some attempts have been made towards a joint distribution of binary and con-

tinuous responses within a litter. A frequent approach is to apply a conditioning

argument that allows the joint distribution to be factorized in a marginal component

and a conditional component, where the conditioning can be done on either the bi-

nary or continuous response (Catalano and Ryan 1992, Cox and Wermuth 1992, Cox

and Wermuth 1994, Fitzmaurice and Laird 1995, Olkin and Tate 1961). Catalano

(1997) extended the idea to model simultaneously ordinal and continuous outcomes.

A description of this model is given in Section 6.1.

91
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Alternative methods for joint binary and continuous outcomes were proposed by

Regan and Catalano (1999a,b) and Geys et al. (2001). The first ones introduce a

probit approach, where an underlying continuous variable is assumed for each binary

outcome, following a normal distribution. The second approach is based on a Plackett-

Dale approach (Plackett 1965), assuming a Plackett latent variable to model bivariate

endpoints in which one component is continuous and the other is binary. The bivariate

latent variable models are fundamentally different in the way the association between

both variables is described. The probit approach uses a correlation coefficient, while

the Plackett-Dale approach makes use of an odds ratio. The correlation coefficient

of the bivariate normal induces constant local association (Holland and Wang 1987),

while the odds ratio is a measure of constant global association (Dale 1986, Lapp,

Molenberghs and Lesaffre 1998). However, extensions to joint ordinal and continuous

outcomes are in demand. We propose a likelihood-based method that is an extension

of the Plackett-Dale approach. Specification of the full likelihood will be avoided

using pseudo-likelihood methodology. An advantage of the Plackett distribution is the

flexibility with which the marginal densities can be chosen. In this case, a multinomial

and a normal distribution are used, both being a common choice for the ordinal and

continuous variable, respectively. Other related methods, using latent variable and

shared random effect models, can be found in Sammel, Ryan and Legler (1997),

Dunson (2000) and Gueorguieva and Agresti (2001).

In this chapter, we propose a new method for modelling combined continuous

and ordinal outcomes in a clustered setting, as presented in Faes et al. (2004a).

Section 6.1 introduces a factorization model for the joint analysis of an ordinal and

a continuous outcome. In Section 6.2 a joint continuous-ordinal model based on

a Plackett distribution is proposed. In a first step, the model is described under

an independence assumption, and is then extended to deal with the clustering of

outcomes within litters. The ultimate goal of developmental toxicity studies is to

perform risk assessment, i.e., to set safe limits of exposure, based on the fitted model

(Crump 1984). This will be discussed in Section 6.3. In Section 6.4, our method is

applied to the developmental toxicity data as introduced in Chapter 2.

Let us extend previous notations. Consider an experiment involving N clusters,

the ith of which contains ni individual foetuses. Each viable individual is examined for

two outcomes, the degree of malformation (e.g. none, minor, severe) and the foetal

weight. Let Mij be the random variable representing the status of malformation

(m = 1, 2, . . . , c) of the jth individual in litter i, and Wij the continuous weight

outcome. Together with this vector of two responses Y ij = (Wij ,Mij)
T , a vector of

covariates Xij is observed.
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6.1 Factorization Model

Catalano (1997) proposed a joint model for combined ordinal and continuous out-

comes. He assumes that the ordinal outcome Mij has an associated unobservable

continuous latent variable M∗
ij such that

Mij =





1 if M∗
ij ≤ h1, normal

2 if h1 < M∗
ij ≤ h2, minor malformation

3 if M∗
ij > h2, full malformation

where h1 and h2 (h1 < h2) are some threshold values. Then, it is assumed that the

continuous outcome and the latent variable share a joint normal distribution. Let

Wi = (Wi1, . . . ,Wini
)T and M∗

i = (M∗
i1, . . . ,M

∗
ini

)T be the ni × 1 vectors of observed

continuous and unobserved latent variables in the ith cluster. The 2ni × 1 vector

of observed and latent outcomes (WT
i ,M∗T

i )T is assumed to follow a multivariate

normal distribution with means µwij
and µmij

among the foetal weights and latent

malformations, respectively. The assumed covariance structure allows for a constant

correlation ρ between observations on the same foetus (intrafoetus) and separate

correlations between observations on littermates (intralitter), resulting in the following

block equicorrelated covariance matrix:

Cov(WT
i ,M∗T

i )T =


 σ2

w[(1 − ρw)Ii + ρwJi] σwσm[(ρ − ρwmIi + ρwmJi)]

σwσm[(ρ − ρwmIi + ρwmJi)] σ2
m[(1 − ρ∗m)Ii + ρ∗mJi]


 ,

with ρw and ρ∗m the intra-litter correlations for the continuous and unobserved la-

tent outcomes, and ρwm the correlation between weight and the latent malformation

variable for different animals in the same litter.

The bivariate distribution of the combined outcomes is derived by factorizing the

joint density as the product of the marginal density for the continuous outcome and

the conditional density of the ordinal outcome given the continuous outcome:

fWij ,Mij
(w,m) = fWij

(w)fMij |Wij
(m|w).

Both the marginal and conditional distribution can be conveniently characterized.

First, following from multivariate normal theory, the conditional distribution of the

malformation latent variables given the foetal weight vector M∗
ij |Wij is also normal

with mean:

µm|wij
= µmij

+
(σm

σw

)(ρ + (ni − 1)ρwm

1 + (ni − 1)ρw

)
ēwi

+
(σm

σw

)(ρ + ρwm

1 − ρw

)
(ewij

− ēwi
)
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which depends upon the average litter weight residual, ēwi
= (W̄i − µwij

), and the

individual foetal weight residuals, ewij
− ēwi

, where ewij
= (Wij − µwij

). As a re-

sult, the conditional distribution for the observed malformation indicator given foetal

weights can be described by a correlated probit model:

P (Mij = 3|Wij) = P (M∗
ij > h2|Wij)

= 1 − Φ
(h2 − µm|wij

σm|wi

)
,

P (Mij = 2 or Mij = 3|Wij) = P (M∗
ij > h1|Wij)

= 1 − Φ
(h1 − µm|wij

σm|wi

)
,

where µm|wij
and σm|wi

are the mean and variance of M∗
ij |Wij . Not all parameters of

this model are estimable, but the model can be reparameterised to a fully estimable

form:

P (Mij = 3|Wij) = Φ
(
β01 + β1di + β2ēwi

+ β3(ewij
− ēwi

)
)
,

P (Mij = 2 or Mij = 3|Wij) = Φ
(
β02 + β1di + β2ēwi

+ β3(ewij
− ēwi

)
)
.

where average litter weight and individual weight residuals are included naturally as

covariates in the model. The interpretation of this model is that both the cluster

average and the animal-specific residuals from the continuous outcome determine the

ordinal probabilities if one allows for separate intra-cluster and intra-animal correla-

tions in the latent variable formulation. The parameters β in the conditional probit

model are directly related to variance and correlation parameters in the underlying

latent variable model. A drawback, however, is that the β parameters do not have a

marginal interpretation in the probit model.

Parameter estimation of the bivariate model proceeds in two steps, applying the

GEE methodology to each component of the conditional model separately. First, a

correlated regression of foetal weight on dose and other covariates is fit. Next, a

correlated probit regression of malformation conditional on weight with dose, average

and individual foetal weight residuals and other covariates is fit.

6.2 Model for Bivariate Data of a Mixed Nature

In this section we describe a model for simultaneously observed continuous and ordinal

endpoints, based on a Plackett-Dale approach. The Plackett-Dale idea has been used

by Molenberghs, Geys and Buyse (2001) to assess the validation of surrogate endpoints
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in randomized experiments with a binary surrogate and a continuous true endpoint

or vice versa. Geys et al. (2001) extended this idea to the context of teratology

experiments where rodents are clustered within litters. We propose an extension of

the Plackett-Dale idea to jointly model ordinal and continuous outcomes in a clustered

framework.

6.2.1 No Clustering

First, suppose that all littermates are independent. Let us denote the continuous

cumulative distribution of the weight outcome as FWij
, and the discrete cumulative

distribution of the malformation outcome as FMij
. We assume a normal distribution

for the continuous outcome Wij with mean µij and variance σ2
ij , and a multino-

mial distribution for the ordinal outcome Mij with πl,ij the cumulative probability

P (Mij ≤ l) of observing a malformation of degree smaller or equal to l. The depen-

dence between malformation status and foetal weight can be defined using a global

cross-ratio at cutpoint (w,m):

ψij(w,m) =
FWij ,Mij

(w,m)
[
1 − FWij

(w) − FMij
(m) + FWij ,Mij

(w,m)
]

[
FWij

(w) − FWij ,Mij
(w,m)

][
FMij

(m) − FWij ,Mij
(w,m)

] .

Using this relationship, the joint cumulative distribution FWij ,Mij
can be written as

function of the marginal distributions and the global cross-ratio (Plackett 1965):

FWij ,Mij
(w,m) =





1+
[
FWij

(w)+FMij
(m)

]
[ψij−1]−S

(
FWij

(w),FMij
(m),ψij

)
2[ψij−1] ψij 6= 1,

FWij
(w)FMij

(m) ψij = 1,

with

S(FWij
, FMij

, ψij) =

√[
1 + (ψij − 1)(FWij

+ FMij
)
]2

+ 4ψij(1 − ψij)FWij
FMij

.

Note that, for every cutpoint (w,m), a global cross-ratio ψij is obtained

(m = 1, . . . , c − 1). And thus, for every cutpoint (w,m), a different underlying

Plackett distribution is assumed. Assuming a constant odds ratio ψij(w,m) ≡ ψij ,

there is a single underlying Plackett distribution.

Based on the cumulative distribution function FWij ,Mij
(w,m), a bivariate Plack-

ett density function gij(w,m) for joint continuous-ordinal outcomes is derived. Let

fWij |Mij
(w|m) = ∂P (Wij ≤ w|Mij = m)/∂w, for every m = 1, . . . , c, be the con-

ditional density of the continuous outcome given the ordinal outcome. Defining
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gij(w,m) = fWij |Mij
(w|m) × P (Mij = m), or

gij(w,m) =





∂
∂w

(
FWij ,Mij

(w, 1)
)

m = 1,

∂
∂w

(
FWij ,Mij

(w,m)
)
− ∂

∂w

(
FWij ,Mij

(w,m − 1)
)

m = 2, . . . , c − 1,

fWij
(w) − ∂

∂w

(
FWij ,Mij

(w, c − 1)
)

m = c,

leads to specifying the density function gij(w,m) by:

gij(w,m) =





fWij
(w)

2

[
1 − d(w,m)

]
m = 1,

fWij
(w)

2

[
d(w,m − 1) − d(w,m)

]
m = 2, . . . , c − 1,

fWij
(w)

2

[
1 + d(w,m − 1)

]
m = c.

with

d(w,m) =
1 + FWij

(w)(ψij − 1) − FMij
(m)(ψij + 1)

S(FWij
(w), FMij

(m), ψij)
. (6.1)

One can show that the function gij(w,m) satisfies the classical density properties:

(i) gij(w,m) ≥ 0 for all possible values of w and m,

(ii)
∫ ∑c

m=1 gij(w,m)dw =
∫

fWij
(w)dw = 1.

Further, note that the density function gij(w,m) also factorizes as a product of the

marginal density of the continuous variable fWij
(w) and the conditional density of

the ordinal outcome given the continuous variable fMij |Wij
(m|w). For illustration,

we displayed the joint density function gij(w,m) in Figure 6.1 for different values

of the odds ratio ψ, in case the continuous outcome is normally distributed with

mean µ = 1.0 and standard deviation σ = 0.02 and the ordinal outcome has three

levels (m = 1, 2, 3) with probability 0.3, 0.5 and 0.2, respectively. Some interesting

special cases are obtained when the two outcomes are independent (ψij = 1), perfectly

negatively associated (ψij = 0) and perfectly positively associated (ψij = ∞).

1. In the first case, when weight and malformation are independent, the function

gij(w,m) reduces to:

gij(w,m) = fWij
(w)fMij

(m).
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Figure 6.1: Joint density function of a normally distributed continuous outcome W

with mean µ = 1.0 and standard deviation σ = 0.02 and an ordinal outcome M

(m = 1, 2, 3) with probabilities P (M = 1) = 0.3, P (M = 2) = 0.5, P (M = 3) = 0.2,

for different dependencies between the two outcomes.
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2. When weight and malformation are perfectly negative correlated, then the func-

tion S(FWij
(w), FMij

(m), ψij) reduces to |1 − FMij
(m) − FWij

(w)| and as a

result:

gij(w, 1) =





0 if 1 − FMij
(1) ≥ FWij

(w),

fWij
(w) if 1 − FMij

(1) < FWij
(w),

gij(w,m) =





0 if 1 − FMij
(m) ≥ FWij

(w),

fWij
(w) if 1 − FMij

(m) < FWij
(w)

and 1 − FMij
(m − 1) > FWij

(w),

0 if 1 − FMij
(m − 1) ≤ FWij

(w),

gij(w, c) =





fWij
(w) if 1 − FMij

(c − 1) > FWij
(w),

0 if 1 − FMij
(c − 1) ≤ FWij

(w).

Thus, foetuses with no malformation have high probability to have a high birth

weight, while foetuses with a full malformation are more likely to have a low

birth weight.

3. In the last case, when weight and malformation are perfectly positive correlated

(ψij = ∞), define ψ∗ = 1/ψ. The function S(FWij
, FMij

, ψij) can be rewritten

using this reparameterization as:

S(FWij
, FMij

, ψij) =

√(
ψ∗

ij + (1 − ψ∗
ij)(FWij

+ FMij
)
)2

+ 4(ψ∗
ij − 1)FWij

FMij
/ψ∗

ij

= S∗(FWij
, FMij

, ψ∗
ij)/ψ∗

ij

Using this expression, we can now calculate

gij(w, 1) = lim
ψ∗

ij
→0

fWij
(w)

2

(
1 −

ψ∗
ij + FWij

(w)(1 − ψ∗
ij) − FMij

(1)(1 + ψ∗
ij)

S∗(FWij
(w), FMij

(1), ψ∗
ij)

)

=
fWij

(w)

2

(
1 − FWij

(w) − FMij
(1)

|FWij
(w) − FMij

(1)|
)

=





0 if FWij
(w) > FMij

(1),

fWij
(w) if FWij

(w) ≤ FMij
(1).
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And analogously,

gij(w,m) =





0 if FWij
(w) > FMij

(m),

fWij
(w) if FWij

(w) ≤ FMij
(m)

and FMij
(m − 1) ≤ FWij

(w),

0 if FWij
(w) ≤ FMij

(m − 1),

gij(w, c) =





fWij
(w) if FWij

(w) > FMij
(c − 1),

0 if FWij
(w) ≤ FMij

(c − 1).

In this case, the joint distribution reflects that small values for the ordinal

outcome correspond with small values for the continuous outcome, while high

values for the ordinal outcome are very likely linked with high values for the

continuous outcome.

Dose-response models that incorporate litter- and foetus-specific covariates can

be considered for each of the parameters by using appropriate link functions. The

parameters µij , σ
2
ij , πl,ij and ψij for individual j in cluster i can be modelled by:

ηij ≡




µij

ln(σ2
ij)

logit(π1,ij)
...

logit(πc−1,ij)

ln(ψij)




= Xijβ, (6.2)

where Xij is a design matrix for the jth foetus in the ith cluster and β is a vector

of unknown regression parameters. A key difference between the factorization model

and the plackett-dale model is that one gets an estimate of the association in the latter

approach. In addition, this method allows to directly model the bivariate intrafoetus

association as function of exposure and other covariates of interest. The generality of

the design matrix is an important advantage of this approach, as the assumption of

constant variance and constant association are often not tenable. Indeed, in real data

settings, correlation structures are likely to change with exposure (Kupper, Portier,

Hogan and Yamato 1986) and ignoring this can lead to bias in the estimates or loss

of efficiency (Ryan 2000).
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6.2.2 Clustered Outcomes

Often however, littermates are not independent, but clustered within litters. In the

case of clustering, we use a pseudo-likelihood function, rather than considering the

full likelihood. The pseudo-likelihood approach was proposed by Arnold and Strauss

(1991), and also found in Connolly and Liang (1988), Liang and Zeger (1986) and

Le Cessie and Van Houwelingen (1994). The principal idea is to replace a numer-

ically challenging joint density by a simpler function that is a suitable product of

ratios of likelihoods of subsets of the variables. As such, a working correlation struc-

ture is introduced and we avoid the computational complexity of the full likelihood

distribution of each cluster i, i.e., f(wi1, . . . , wini
,mi1, . . . ,mini

). In addition, the

pseudo-likelihood method provides a way to deal with nuisance parameters (Liang

and Zeger 1989, Arnold and Strauss 1991). Arnold and Strauss (1991) established

consistency and asymptotic normality of the pseudo-likelihood estimator. Thus, valid

inference can be obtained from such models.

First Definition

In a first step, the association between weight and malformation outcomes for an

individual foetus is modelled explicitly, but for outcomes from different littermates

independence is taken as a working assumption.

pℓ1 =

N∑

i=1

ni∑

j=1

ln g(wij ,mij). (6.3)

This leads to consistent estimates (Arnold and Strauss 1991, Geys, Molenberghs and

Lipsitz 1998, le Cessie and Van Houwelingen 1994). A sandwich variance estimator

is then used to adjust for potential overdispersion due to intralitter correlation. This

approach acknowledges the fact that, while the association between different outcomes

on the same littermate is often of scientific interest, the association due to clustering

within litters is usually considered a nuisance. Indeed, in quantitative risk assessment

primary interest lies in the probability that a foetus is affected, either by malformation

or by low birth weight. This probability is a function only of the mean parameters

and the bivariate intrafoetus association.

Estimates of the regression parameters are obtained by solving the estimating

equations U(β) = 0. Grouping all parameters µij , σ
2
ij , πl,ij and ψij for individual j

in cluster i in a vector θij , and grouping all vectors θij and ηij for the ith cluster in



Mixed Continuous-Ordinal Model 101

θi and ηi, respectively, the estimating equations can be written as:

U(β) =
N∑

i=1

U i(β) =
N∑

i=1

ni∑

j=1

(∂ηi

∂β

)T (∂ηi

∂θi

)−T (∂ ln gij(w,m)

∂θi

)

=

N∑

i=1

ni∑

j=1

XT
ij(T

−1
ij )T

(∂ ln gij(w,m)

∂θi

)
= 0,

where

T−1
ij =




1 0 0 . . . 0 0

0 σ2 0 . . . 0 0

0 0 π1(1 − π1) 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 πc−1(1 − πc−1) 0

0 0 0 . . . 0 ψi




.

The first derivatives of ln gij(w,m) with respect to the parameters θi are obtained

by combining the derivatives of d(w,m), as defined in (6.1), with those of S(w,m,ψ).

Expressions for the derivatives are given below. For simplicity, we have omitted the

cluster-level index i and the foetus-level index j:

∂fW (w)

∂µ
= fW (w)

(w − µ)

σ2

∂fW (w)

∂σ2
=

fW (w)

2

( (w − µ)2 − σ2

σ4

)

∂FW (w)

∂µ
=

∫ x

−∞

fW (w)
(w − µ)

σ2
dw

= −fW (w)

∂FW (w)

∂σ2
=

∫ x

−∞

fW (w)

2

( (w − µ)2 − σ2

σ4

)
dw

= −
( (w − µ)

σ2

)fW (w)

2
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∂FM (m)

∂πk
=





1 if k ≤ m

0 if k > m

∂S

∂µ
=

1

2S

[
2[1 + (ψ − 1)(FW + FM )](ψ − 1)

∂FW

∂µ
+ 4ψ(1 − ψ)

∂FW

∂µ
FM

]

∂S

∂σ2
=

1

2S

[
2[1 + (ψ − 1)(FW + FM )](ψ − 1)

∂FW

∂σ2
+ 4ψ(1 − ψ)

∂FW

∂σ2
FM

]

∂S

∂pk
=

1

2S

[
2[1 + (ψ − 1)(FW + FM )](ψ − 1)

∂FM

∂pk
+ 4ψ(1 − ψ)FW

∂FM

∂pk

]

∂S

∂ψ
=

1

2S

[
2[1 + (ψ − 1)(FW + FM )](FW + FM )

+4(1 − ψ)FW FM − 4ψFW FM

]

∂d(w,m)

∂µ
=

1

2

∂fW (w)

∂µ

{
1 − 1 + FW (w)(ψ − 1) − FM (m)(ψ + 1)

S(FW (w), FM (m), ψ)

}

−fW (w)

2S

{∂FW (w)

∂µ
(ψ − 1)

}

+
fW (w)

2S2

∂S

∂µ

{
1 + FW (w)(ψ − 1) − FM (m)(ψ + 1)

}

∂d(w,m)

∂σ2
=

1

2

∂fW (w)

∂σ2

{
1 − 1 + FW (w)(ψ − 1) − FM (m)(ψ + 1)

S(FW (w), FM (m), ψ)

}

−fW (w)

2S

{∂FW (w)

∂σ2
(ψ − 1)

}

+
fW (w)

2S2

∂S

∂σ2

{
1 + FW (w)(ψ − 1) − FM (m)(ψ + 1)

}

∂d(w,m)

∂πk
=

fW (w)

2S

{∂fM (m)

∂πk
(ψ + 1)

}

+
fW (w)

2S2

∂S

∂πk

{
1 + FW (w)(ψ − 1) − FM (m)(ψ + 1)

}

∂d(w,m)

∂ψ
= −fW (w)

2S

{
FW (w) − FM (m)

}

+
fW (w)

2S2

∂S

∂ψ

{
1 + FW (w)(ψ − 1) − FM (m)(ψ + 1)

}
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Arnold and Strauss (1991) showed that under regularity conditions, the pseudo-

likelihood estimator β̂, obtained by maximizing the log-pseudo likelihood function (6.3)

is consistent and asymptotically normal with estimated covariance matrix:

Ĉov(β̂) =
( N∑

i=1

∂U i

∂β

)−1( N∑

i=1

U i(β)U i(β)T
)( N∑

i=1

∂U i

∂β

)−1∣∣∣
β=

ˆβ
.

Obviously, the advantage of the proposed pseudo-likelihood function lies in the fact

that the association parameters of interest to the researchers are included while others

can be ignored, and as such, adds to the computational simplicity of the methodology.

Using ideas of robust inference, the proposed method is consistent and asymptotically

normal.

Second Definition

If one is interested in the amount of clustering as well, the pseudo-likelihood func-

tion (6.3) can be extended by including the products of the bivariate probabilities

of (i) two weight outcomes for two different individuals in the same cluster, (ii) two

malformation outcomes for two different individuals in the same cluster and (iii) a

weight and malformation outcome for two different individuals in the same cluster.

This leads to the following log-pseudo likelihood function:

pℓ2 =

N∑

i=1

ni∑

j=1

ln g1(wij ,mij) +

N∑

i=1

∑

j<k

ln g2(wij , wik)

+

N∑

i=1

∑

j<k

ln g3(mij ,mik) +

N∑

i=1

ni∑

j 6=k

ln g4(wij ,mik), (6.4)

with for example g1, g3, g4 bivariate Plackett distributions, characterized by poten-

tially different odds ratios, and g2 a bivariate normal distribution. The four different

types of contributions captured in the model are depicted in Figure 6.2. A non-

equivalent specification of pseudo-likelihood (6.4) is

pℓ∗2 =

N∑

i=1

1

3

ni∑

j=1

ln g1(wij ,mij) +

N∑

i=1

1

3(ni − 1)

∑

j<k

ln g2(wij , wik)

+

N∑

i=1

1

3(ni − 1)

∑

j<k

ln g3(mij ,mik) +

N∑

i=1

1

3(ni − 1)

ni∑

j 6=k

ln g4(wij ,mik). (6.5)

The factors before each contribution in the log-pseudo-likelihood function (6.5) cor-

rects for the fact that each response occurs several times in the ith contribution of
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Figure 6.2: Four different types of contributions for the pseudo-likelihood.

the pseudo-likelihood. It ensures that the pseudo-likelihood reduces to full likelihood

under independence. Indeed, under independence, (6.5) simplifies to:

pℓ∗2 =

N∑

i=1

ni∑

j=1

ln fW (wij)fM (mij).

When all clusters are equal in size, the pseudo-likelihood estimator β and its variance-

covariance matrix remain the same, no matter whether we use the pseudo-likelihood

function pℓ2 or pℓ∗2. However, when ni is random, we have to assume that ni and

(wij ,mij) are independent, given dose level di for the ith cluster, to ensure that the

expected value of U∗
i (β) =

∂pℓ∗
2i

∂β
equals zero. Geys, Molenberghs and Lipsitz (1998)

recommend to correct for the number of times each response occurs in the pseudo-

likelihood definition, and thus to use pℓ∗2 rather than pℓ2, when interest lies in the

marginal parameters. Asymptotically, pℓ∗2 is more efficient than pℓ2 for estimating

main effects. For estimating the association parameter however, the use of pℓ2 is

advised. If interest is combined, and one type of analysis should be chosen, pℓ2

might be preferable above pℓ∗2. A simulation study to investigate the efficiency of the

pseudo-likelihood in this setting is interest of further research.
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6.3 Application to Quantitative Risk Assessment

In the area of developmental toxicity, an important goal is the quantitative risk as-

sessment, i.e., deriving a safe dose of exposure. Recent techniques for risk assessment

are based on fitting dose-response models and estimating the dose corresponding to

a certain increase in risk of an adverse effect over background, i.e., benchmark dose.

In case of multiple outcomes, the outcomes are often examined individually, using

appropriate methods to account for correlation, and regulation of exposure is then

based on the most sensitive outcome. This approach assumes that protecting against

the most sensitive outcomes protects against all adverse outcomes. It has been found,

however, that a clear pattern of correlation exists between weight and malformation

outcomes (Ryan et al. 1991), so that risk assessment based on a joint model may

be more appropriate. For risk assessment purposes, the joint probability that an

individual foetus is malformed and/or of low foetal weight must be characterized.

The standard approach to quantitative risk assessment based on dose-response

modelling requires the specification of an adverse event, along with its risk expressed

as a function of dose. The risk function r(d) can be defined as the probability that a

foetus has a high malformation level or a low birth weight at dose level d. In other

words, for the jth foetus in the ith cluster:

r(d) = P (Wij ≤ Wc or Mij ≥ Mc|d),

where Wc and Mc, respectively, denote some cutoff values that determines foetal

weight low enough and malformation severe enough to be considered adverse. This

expression can be rewritten using the univariate discrete distribution function FMij

and the joint continuous-discrete distribution function FWij ,Mij
:

r(d) = 1 − FMij
(Mc − 1) + FWij ,Mij

(Wc,Mc − 1).

Based on this probability, a common measure for the excess risk over background can

be calculated, which is used to estimate a safe level of exposure, i.e., the benchmark

dose or lower effective dose estimation.

The main advantage of the Plackett-Dale model is that it lends itself in a natural

way to quantitative risk assessment, since it allows separate dose-response models for

the malformation and weight outcomes, while taking into account the correlation due

to clustering as well as the intrafoetus association.
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6.4 Illustration: DYME Data

In this section we illustrate the methods described through the analysis of develop-

mental toxicity data from a study of diethylene glycol dimethyl ether (DYME) in

mice. The data are described in Chapter 2. Scientific interest lies in the effects of

dose on the overall risk due to malformation and low birth weight, i.e., the probability

that an individual foetus is malformed or of low birth weight.

The methodology used to analyse the data is as follows. The joint distribution

of malformation and low birth weight is described using the Plackett-Dale model.

Parameter estimates are obtained through the pseudo-likelihood function (6.3), to

account for clustering within litters. To fit the data well, a selection procedure to

obtain proper functional forms to describe the dependence of all main and association

parameters is considered. The final model is used to estimate the univariate and joint

risks due to the dose exposure. Based on this risk estimate, safe dose levels of exposure

are calculated.

Model Selection

For risk assessment to be reliable, models should fit the data well. A stepwise approach

for model selection is a standard methodology. To select the most parsimonious model

for the DYME data, we rely on the adjusted pseudo-likelihood ratio test statistic,

defined by Geys, Molenberghs and Ryan (1999) and described in Chapter 3. The

most complex model that we considered is:

µi = α0 + α1di + α2(ni − n̄),

logit(π1,i) = β0 + β1di + β2(ni − n̄),

logit(π2,i) = γ0 + γ1di + γ2(ni − n̄),

ln(σ2
i ) = δ0I(di = 0) + δ1I(di = 62.5) +

δ2I(di = 125) + δ3I(di = 250) + δ4I(di = 500),

ln(ψi) = κ1I(m = 1) + κ2I(m = 2) + κ3di,

where µi is the mean weight outcome and πm,i = P (Mij ≤ m), m = 1, 2, the

cumulative malformation probabilities. For model fitting, doses di are rescaled to

the [0, 1] interval. Possibly, foetal weight and malformation are affected by litter size.

Therefore, to adjust for the litter size, a covariate for the deviation of the overall

average litter size (ni − n̄) is incorporated into the model. Note that the considered

model is more flexible than the standard proportional odds model. However, a careful
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Table 6.1: DYME study. Model selection procedure for DYME study in mice.

Model Description # pars. pl

1. Different weight variances across doses; 17 -553.48

Common d trend on ψ;

Different ψ depending on cutpoint m

2. Linear d trend on σ2; Common d trend on ψ; 14 -551.09

Different ψ depending on cutpoint m

3. Constant σ2; Common d trend on ψ; 13 -540.73

Different ψ depending on cutpoint m

4. Linear d trend on σ2; 13 -549.99

Different ψ depending on cutpoint m

5. Linear d trend on σ2; Constant ψ 12 -546.53

Comparison df λ̄ G2∗
a (p-value)

1-2 4 6.46 0.74 (0.946)

2-3 1 6.64 3.12 (0.077)

2-4 1 0.74 0.73 (0.393)

4-5 1 2.97 9.16 (0.002)

modelling approach has to be considered with constraints on the parameters in order

to ensure that π1,i ≤ π2,i. In order to estimate the parameters, the pseudo-likelihood

function is maximized using a general nonlinear optimisation method with general

nonlinear constraints on the parameters.

The model not only specifies dose trends on the mean parameters, but also al-

lows dose effects on weight variability (σ2
i ) and odds ratio (ψi) between weight and

malformation. Different models on σ2
i and ψi are considered, in order to find the

most appropriate model. In Table 6.1, a summary of model selection is presented.

Initially, different weight variances for each of the dose groups were assumed, but a

more parsimonious model with a linear dose trend on the weight variance is accepted

(Model 2: ln(σ2
i ) = δ0 + δ1di). The dose effect parameter on the variances is only

borderline significant (Model 3 vs Model 2), but will be kept in the model. The linear
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dose trend on the log odds ratio can be deleted without substantial decrease in fit

(Model 4). In contrast, the use of different log odds ratios, depending on the malfor-

mation cutpoint is a significant improvement of the fit (ln(ψi) = ζ0 + ζ1I(m = 2)).

Hence, the model can be reduced to Model 4. Other parameters cannot be removed

without a substantial decrease in fit. Therefore, we accept Model 4 as the final model

on the foetal weight variance σ2
i and odds ratio ψi.

Final Model

The results of fitting the clustered bivariate model to the DYME data, using the final

Model 4, are summarized in Table 6.2, in the column labelled Plackett-Dale. The

table displays the parameter estimates, standard errors and Z scores for the average

weight (µi) and cumulative malformation probabilities (πm,i), the weight variance

(σ2
i ) and odds ratio (ψi). For foetal weight, the dose coefficient is significantly neg-

ative, but there appears to be little effect of litter size on weight. The foetal weight

variance also decreases with dose. The dose coefficient for the cumulative malfor-

mation probabilities is significantly negative, and the significantly positive coefficient

of litter size suggests that larger litters have a smaller malformation risk. The esti-

mated odds ratios are less than 1, indicating a negative association between weight

and malformation; the small value reflects the strength of the association. Having no

malformation is about 2.5 times as likely as having a minor or full malformation, for

foetuses with a normal birth weight. Having a full malformation is about 4 times as

likely as having no or a minor malformation, for foetuses with a low birth weight.

Observed and predicted values in Figure 6.3 (a)-(b) show how the model fits the

dose-specific averages for both univariate outcomes. The predicted weight outcome fits

the data quite well. The lower points and curve denote, respectively, the observed and

predicted probability of full malformation (Mc = 3) and the upper points and curve

correspond to the probabilities of minor or full malformation (Mc = 2). Estimates for

both malformation outcomes are in strong agreement with the observed probabilities.

Comparison with Factorization Model

Results can be compared with these of Catalano (1997), which are displayed in Ta-

ble 6.2, in the column labeled Cond-C. Catalano (1997) used a factorization model

that conditions on the continuous outcome. Three main differences are noted. First,

in the factorization model, different intercepts and common slope parameters for the

malformation model are assumed, as in the proportional odds model. Different slopes

on the probit scale would complicate the model. Secondly, the regression parameters
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Table 6.2: DYME study. Model fitting results from different approaches. Estimates

(standard errors; Z values).

Plackett-Dale Cond-C

Coefficient Estim. (s.e.; Z-score) Estim. (s.e.; Z-score)

Weight Model:

Intercept 1.014 (0.014; 72.4) 1.024 (0.019;55.3)

Dose -0.444 (0.028;-15.9) -0.472 (0.035;-13.6)

Litter Size 0.0002 (0.003; 0.1) -0.002 (0.004;-0.6)

Malformation Status Model:

π1: Intercept 3.462 (0.357; 9.7) 2.30 (0.207;11.12)

Dose -5.677 (0.987;-5.8) -4.05 (0.452;-4.47)

Litter Size 0.106 (0.060; 1.8) 0.076 (0.039;1.91)

π2: Intercept 5.021 (0.323; 15.5) 2.78 (0.215;12.90)

Dose -7.236 (0.623;-11.6) -4.05 (0.452;-4.47)

Litter Size 0.106 (0.100; 1.1) 0.076 (0.039;1.91)

Mean weight resid. - - 3.93 (1.200;3.27)

Weight resid. - - 2.12 (1.091;1.94)

Mean weight resid. × litter size - - 0.068 (0.390;0.17)

Foetal Weight Variance:

Dose 0.000 0.014 (0.002; 6.1) - -

0.125 0.013 (0.002; 7.6) - -

0.250 0.012 (0.001; 9.4) - -

0.500 0.010 (0.001; 9.4) - -

1.000 0.007 (0.002; 4.1) - -

Foetal Weight / Malformation Association:

ψ1: 0.405 (0.222; 1.8) - -

ψ2: 0.250 (0.188; 1.3) - -

a The dose unit is mg/kg/day/500
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Figure 6.3: DYME study. Observed and estimated outcomes. From top to bottom,

(a) foetal weight model, (b) malformation status model, (c) joint weight-malformation

risk model.
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of the malformation model do not have a direct marginal interpretation because of the

non-linearity of the link function relating the conditional mean of the ordinal response

to the covariates. The Plackett-Dale model allows separate dose-response models for

malformation and weight outcomes, while taking into account the correlation due to

clustering as well as the intrafoetus association. Finally, the model induces associa-

tion by adding the residuals from the marginal model as covariates in the conditional

model, however these association parameters are not directly interpretable. Thus,

while taking into account the dependence between weight and malformation, the con-

ditional models do not directly specify a measure of association. To overcome this

problem, one needs a joint model that incorporates the correlation between outcomes

directly, such as the proposed Plackett-Dale model. The Plackett-Dale model uses

the odds ratio as intrafoetus measure of association, which is readily interpretable.

Extended Pseudo-Likelihood

Note that because of the working independence assumption, there is no estimated

intralitter correlation for foetal weight or for malformation. Although, when interested

in these associations, the model could be extended by use of the pseudo-likelihood

function (6.4) or (6.5). In these expression, the function g1 is defined as before.

The function g2 is assumed a bivariate normal density. We define g3 as a Plackett

density for two ordinal outcomes, with a constant odds ratio ψ2. Also g4 is specified

as a bivariate Plackett distribution for a mixed continuous/ordinal outcome, with a

constant odds ratio ψ3. Parameter estimates with robust standard errors, arising from

the different pseudo-likelihood definitions (6.3,6.4,6.5), are displayed in Table 6.3.

All parameter estimates arising from the extended pseudo-likelihood function, are

similar to the ones obtained with the simpler version that assumes independence

between the littermates (pℓ1). In general, we gain some efficiency when using the

extended pseudo-likelihood, which is computationally more complex. In line with the

conclusions of Geys, Molenberghs and Lipsitz (1998), we see that the pℓ∗2 is more

efficient for main effects in comparison with pℓ2. On the contrary, pℓ2 turns out

to be superior for the estimation of the association parameters. With the extended

version, some additional parameter estimates are obtained: the odds ratio between

two malformation outcomes for two different individuals from the same cluster is

estimated as 2.397; the correlation ρ between two weight outcomes for two different

individuals in the same litter is 0.569; and the odds ratio between a weight and

malformation outcome for two different individuals in the same cluster is estimated

as 0.527. Note that the assumption of a constant odds ratio in g3 and g4 can be
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Table 6.3: DYME study. Parameter estimates with robust standard errors, obtained

from different pseudo-likelihood functions.

pl1 pl2 pl∗2

Effect Param. Estim. (s.e.) Estim. (s.e.) Estim. (s.e.)

µ α0 1.014 (0.014) 1.008 (0.018) 1.014 (0.005)

α1 -0.444 (0.028) -0.430 (0.032) -0.446 (0.012)

α2 0.0002 (0.003) 0.002 (0.004) 0.0002 (0.001)

σ2 δ0 -4.293 (0.164) -4.363 (0.144) -4.301 (0.060)

δ1 -0.659 (0.354) -0.648 (0.309) -0.639 (0.137)

π1 β0 3.462 (0.357) 3.378 (0.220) 3.480 (0.207)

β1 -5.677 (0.987) -5.461 (0.586) -5.720 (0.505)

β2 0.106 (0.060) 0.111 (0.051) 0.100 (0.043)

π2 γ0 5.021 (0.323) 5.051 (0.306) 5.056 (0.302)

γ1 -7.236 (0.623) -7.134 (0.410) -7.295 (0.600)

γ2 0.106 (0.100) 0.111 (0.078) 0.100 (0.059)

ψ1 κ1 -0.904 (0.348) -0.867 (0.746) -0.899 (0.282)

κ2 -0.482 (0.151) -0.495 (0.579) -0.481 (0.297)

ρ ζ - - 1.216 (0.135) 1.292 (0.128)

ψ2 ν - - 0.869 (0.114) 0.874 (0.507)

ψ3 ι - - -0.613 (0.227) -0.641 (0.269)
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relaxed by assuming the odds ratio to depend on the malformation cutpoint.

Quantitative Risk Assessment

In order to calculate a benchmark dose based on the joint model, we first need to

specify the risk of an adverse effect, i.e., the probability that an individual foetus

is malformed or of low birth weight. Therefore, we need to define a weight below

which a foetus can be considered as being of “low foetal weight”. However, there

is no standard definition. A common approach is to specify the cutoff point Wc as

two standard deviations below the control average foetal weight. As such, the cutoff

level for determining low foetal weight is equal to Wc = 0.7816 g, corresponding to a

1.77% low birth weight rate in control animals. Further, we consider two definitions

of risk, depending on the cutpoint Mc for what is considered as a “malformed” foetus.

Either we define it as the probability that a foetus has a minor or full malformation

(Mc = 2), or a low foetal weight. Alternatively, we define it as the probability that a

foetus has a full malformation (Mc = 3), or has a low foetal weight. These two risk

functions are displayed in Figure 6.3 (c). The risks are evaluated at the average litter

size (ni = n̄). The lower points and curve in this graph correspond to the probability

P (W ≤ Wc,M ≥ 2). The higher points and curve correspond to the probability

P (W ≤ Wc,M ≥ 3). In case of the first definition, the estimated risk function is

higher and steeper compared with risk when defined under the second definition.

But, for both definitions of “risk”, the risk functions seem to fit the data very well.

Note that the definition of the risk is very important for the estimation of a safe dose.

In Figure 6.4 it is displayed how different definitions of the risk, based on different

cutpoints for the weight and malformation outcome, can affect the estimation of the

benchmark dose.

Table 6.4 shows the benchmark doses corresponding to the 1% and 10% excess

risk for Model 4, as well as the 1% and 10% lower limit LED. We also added the

corresponding quantities, calculated from univariate versions of the model. We can

compare the joint modelling approach with the traditional approach for multiple

outcomes in which the lower of the individual malformation and foetal weight LEDs

is used as an overall LED. The minimum of the two LEDs is more than 20% higher

than those obtained using the bivariate methods that incorporate the relationship

between the two outcomes. Since both univariate outcomes suffer from a substantial

risk, focusing attention to a single response or a collapsed outcome would overestimate

the safe dose. The joint model yields higher risks, since it accounts for the correlation

between both outcomes. Thus, ignoring the correlation between the two outcomes
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Figure 6.4: DYME study. Benchmark dose estimation (q=1%) as function of the

cutpoints for weight and malformation in the definition of the risk.

leads to too high and hence inappropriate safe doses.

Note that joint outcome models based on factorization, such as the model of

Catalano (1997), do not provide a clear way to compute joint benchmark doses (Geys

et al. 2001, Regan and Catalano 1999) because there is no direct access to the

marginal distributions. This is the major drawback of the conditional models, since

the joint benchmark doses are of primary interest. In contrast, the Plackett-Dale

approach models the marginal distributions directly, lending itself in a natural way

to quantitative risk assessment.

6.5 Discussion

In this chapter, a modelling approach for the analysis of clustered data with both

continuous and ordinal outcomes has been considered. The model was applied to

a developmental toxicity study (DYME in mice), and used for quantitative risk as-

sessment. The Plackett-Dale method uses a global odds ratio as intrafoetus measure

of association. The association between foetal weight and malformation are directly

modelled, and can be modelled in a general way, including covariate information.

A problem in the quantitative risk assessment, that has received only minor at-

tention, is the choice of suitable cutpoints. For binary outcomes, the definition of an
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Table 6.4: DYME study. Benchmark dose and lower effective dose estimation

(mg/kg/day).

MC = 2 MC = 3

q Model BMDq LEDq BMDq LEDq

1% Joint 13.91 12.66 20.05 17.72

Continuous 23.70 23.37 23.70 23.37

Ordinal 26.26 25.52 66.90 60.26

10% Joint 88.64 83.88 108.13 101.85

Continuous 118.99 118.26 118.99 118.26

Ordinal 136.00 133.71 199.59 193.29

adverse health effect is intuitively clear. This is less the case for continuous and/or

ordinal responses. We considered a dichotomised version of the continuous outcomes

to determine a benchmark dose, after fitting the dose-response model based on the

continuous outcome. The risk of low foetal weight was based on a cutoff level for

determining a low weight extreme enough to be considered an adverse event. Because

of arbitrariness of the cutpoint, estimating a BMD from a continuous response has

led to much discussion (Bosch et al. 1996, Crump 1984, 1995, Gaylor and Slikker

1990, Kavlock et al. 1995, Kodell and West 1993). Several efforts have been made to

develop risk assessment for continuous outcomes (West and Kodell 1993). However,

the used definition of risk, defined in terms of the tail of the background (control)

distribution, seems quite plausible.

Although the method is presented in the specialized field of developmental toxicity,

the methodology is applicable in a general clustered or even correlated data setting

with a continuous and ordinal outcome. Thus, use of the proposed modelling approach

is far beyond the developmental toxicity context.
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Chapter 7

A Hierarchical Modelling

Approach for Risk

Assessment in Developmental

Toxicity Studies

In the previous chapter, interest lied in the joint analysis of clustered multiple out-

come data, motivated by developmental toxicity applications (Fitzmaurice and Laird

1995, Gueorguieva and Agresti 2001, Molenberghs and Ryan 1999, Regan and Cata-

lano 1999, Aerts et al. 2002). So far however, we have restricted ourselves to the

outcomes on the viable foetuses only. Ideally, a model should take the complete

correlated hierarchical structure of the data into account. A hierarchical Bayesian

method is proposed to this effect. Such a model can serve as a basis for quantitative

risk assessment.

The analysis of developmental toxicity data raises a number of challenges (Molen-

berghs et al. 1998), as indicated before. Since deleterious events can occur at several

points in development, an interesting aspect lies in the staging or hierarchy of possible

adverse foetal outcomes (Williams and Ryan 1996). Figure 1.1 illustrates the data

structure. Because of the toxic insult, the developing foetus is at risk of foetal death.

If the foetus survives the entire gestation period, growth reduction such as low birth

weight may occur. The foetus may also exhibit one or more types of malformation. In

addition, as mentioned before, offspring of the same mother behave more alike than

117
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those of another mother, i.e., the litter or cluster effect. Thus, responses on different

foetuses within a cluster are likely to be correlated.

Ultimately, analysis of the developmental toxicity data must account for the entire

hierarchical, multivariate and clustered nature of the data. So far, one has tackled the

challenges in this setting only partly each time making different restrictive assump-

tions, e.g., restricting to viable foetuses only. However, litters with a lot of malformed

foetuses are likely to have more death foetuses than litters with good foetal health.

As a result, litter size (number of viable foetuses) may be informative. A classical

way to account for the litter size is to include it as a covariate in modelling the re-

sponse rates (Williams 1987, Rai and Van Ryzin 1985, Catalano et al. 1993) and

then calculating a safe dose at an “average” litter size, thereby avoiding the need for

direct adjustment. However, several perspectives for modelling these data in a direct

way can be considered. One may look at the hierarchical structure, and consider

cluster size as a random variable. Xu and Prorok (2003) developed a non-parametric

procedure for the analysis of exchangeable clustered binary data when the cluster size

is a random variable. As such, one acknowledges the stochastic nature of the litter

size. Indeed, variation in the litter size is an extra source of variability in the data

that must be accounted for. We may also consider a missing data model, because the

unformed foetuses are not observable. Dunson (1998) proposed a multiple imputa-

tion scheme to estimate the number of missing foetuses. In this context, the random

cluster size perspective seems more natural than does the missing data perspective.

Alternatively, Williamson et al. (2003) proposed a weighted generalized estimating

equation approach for fitting marginal models to clustered data when litter size is

informative. Although this method accounts for the cluster size, it does not allow for

modelling the cluster size as a function of covariates of interest.

In this chapter, we propose a Bayesian model dealing with the hierarchical struc-

ture in two stages. At the first stage, we express the probability that a foetus is

non-viable. At the second stage, we model the probability that a viable foetus has

a malformation and/or suffers from low birth weight. At each stage we account for

the intralitter correlation. The intractability of the likelihood function has led vari-

ous authors to propose a host of alternative estimation methods rather than carrying

out maximum likelihood estimation. A full likelihood procedure can be replaced by

quasi-likelihood methods (McCullagh and Nelder 1989), pseudo-likelihood (Arnold

and Strauss 1991) or generalized estimating equations (Liang and Zeger 1986). Gen-

eralized linear random-effects models or hierarchical Bayesian models (McCulloch and

Searle 2001) are attractive alternative modelling appraoches. We opted for the latter

approach and used Gibbs sampling (Zeger and Karim 1991) to deal with complex
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integrations. The contents of this chapter can also be found in Faes et al. (2004c).

7.1 Modelling Approach

We propose a Bayesian hierarchical modelling framework for the joint analysis of

foetal death and malformation/weight among the viable foetuses. Let L denote the

total number of dams, and hence litters, in the study. For the ith litter (i = 1, . . . , L),

let ki be the number of implants. Let ri indicate the number of foetal deaths in cluster

i. The number of viable foetuses, i.e., the litter size, is ni ≡ ki − ri. The outcome

measured on the viable foetuses is denoted yij = (wij ,mij), j = 1, . . . , ni, with wij

the foetal birth weight and mij = 1 when foetus j in cluster i has a malformation, 0

otherwise.

To define a model for the developmental toxicity data, the underlying hierarchy

of the data is used. At the bottom level, the foetuses surviving the entire gestation

period are at risk for low birth weight and/or malformation. Assume that yij satisfies

yij |ni ∼ F (yij |ζ, ni),

i.e., conditional on the litter size, yij follows a pre-specified distribution F , possibly

depending on covariates, such as the dose level, and parameterised through a vector

ζ of unknown parameters. Further, the litter size ni is a random variable, possibly

depending on the dose level and other covariates of interest. Indeed, a toxic insult

may result in a foetal death. The litter size ni can be modelled through modelling the

number of non-viable foetuses ri ≡ ki−ni. Assume the number of non-viable foetuses

ri to follow a distribution G depending on a vector ψ of unknown parameters, i.e.,

ri ∼ G(ri|ψ, ki).

Let f(yij |ζ, ni) and g(ri|ψ, ki) denote the density functions corresponding to the

distributions F and G, respectively.

Because of the hierarchy in the model, it lends itself naturally to estimate the

parameters using Bayesian techniques (Box and Tiao 1992, Gelman 1995). In the

Bayesian framework, unknown parameters are also considered as random, and all

inference is based on their distribution conditional on the observed data, i.e., the

posterior distribution.

It is obvious that different choices for F and G will lead to different models. The

distribution G is crucial in the calculation of the marginal model for yij . Next, a

possible choice for the distributions F and G in the developmental toxicity setting is

given.
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7.1.1 Stage 1: A Model for the Death Outcome

In the first step, a toxic insult early in gestation may result in a foetal death. This

effect of dose di on cluster i with ki implants can be described using the density

g(ri|ψ, ki). Considering the foetuses within a litter as independent, one could assume

that ri satisfies a binomial density
(

ki

ri

)
πri

Ri
(1 − πRi

)ki−ri ,

with πRi
the probability of a dead foetus in litter i, depending on the dose. To account

for clustering, a random effects model in which each litter has a random parameter

is considered. Skellam (1948), Kleinman (1973) and Williams (1975) assume the

probability of death πRi
of any foetus in litter i to come from a beta distribution with

parameters ai and bi:

πai−1
Ri

(1 − πRi
)bi−1

B(ai, bi)
, (0 ≤ πRi

≤ 1),

where B(., .) denotes the beta function. This leads to the well-known beta-binomial

distribution.

The probability mass function g(ri|ψ, ki) can be expressed directly in terms of the

mean and correlation parameters, i.e., g(ri|πRi
, ρRi

, ki). The mean of this distribution

is

µRi
= kiπRi

= ki
ai

ai + bi
,

and the variance is

σ2
Ri

= kiπRi
(1 − πRi

)[1 + ρRi
(ki − 1)],

with ρRi
the intra-litter correlation, which is the correlation between two binary

responses of litter i.

7.1.2 Stage 2: A Model for Malformation and Weight

When a foetus survives the entire gestation period, it is still at risk for low foetal

weight and malformation. A distribution for the combined continuous and binary

outcomes, i.e., f(wij ,mij |ζ, ni) must be specified. Based on the mixed outcome probit

model of Regan and Catalano (1999), we propose the following model.

First, assume that littermates are independent. Under a probit model for the

binary response Mij , one assumes a latent variable M∗
ij to be normally distributed

with mean γmij
and unit variance, so that

πmij
= P (Mij = 1) = P (M∗

ij > 0) = Φ(γmij
),
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where Φ(.) denotes the standard normal cumulative distribution function. The prob-

ability of malformation is related to covariates by expressing γmij
as some parame-

terised function of the predictors, e.g., the dose level, and the litter size.

For the bivariate response (Wij ,Mij), a bivariate normal distribution is assumed

for the observed weight and the latent malformation variable for foetus j in litter i:

f(wij ,m
∗
ij) = φ2(wij ,m

∗
ij |µwij

, σ2
wij

, γmij
, 1, ρmwij

),

where ρmwij
is the intrafoetus correlation between the latent malformation and the

weight outcomes. As a result, the joint distribution of the bivariate foetal weight and

binary malformation outcome can be written as

f(wij , zij) = fw(wij) × fm|w(mij |wij)

= φ(wij |µwij
, σ2

wij
) × π

Mij

m|wij
(1 − πm|wij

)1−Mij ,

where πm|wij
= Φ(γm|wij

) is the conditional expectation of the binary malformation

outcome E(Mij |Wij). From bivariate normal theory,

γm|wij
=

γmij
+ ρmwij

wij−µwij

σwij

(1 − ρ2
mwij

)1/2
,

with πmij
= Φ(γmij

) the marginal expectation E(Mij).

In case of clustering, litter-specific parameters are considered to account for the

correlation among the outcomes. Random effects on the mean foetal birth weight

µwij
and on the malformation parameter γmij

are introduced

µwij
∼ N(µWi

, σ2
µi

)

γmij
∼ N(γMi

, σ2
γi

),

such that the bivariate distribution for foetal weight and binary malformation equals

f(wij ,mij) = fw(wij) × fm|w(mij |wij)

= φ(wij |µWi
, σ2

wij
+ σ2

µi
) × π

Mij

M |Wij
(1 − πM |Wij

)1−Mij ,

with πM |Wij
= Φ(γM |Wij

) the conditional expectation for the binary malformation

outcome E(Mij |Wij). We can derive that

γM |Wij
=

γMi√
1+σ2

γi

+ ρMWij

wij−µWi√
σ2

wij
+σ2

µi

(1 − ρ2
MWij

)1/2
,
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with ρMWij
the intrafoetus correlation between the latent malformation and the

weight outcomes. The marginal expectation for the binary malformation outcome

E(Mij) equals πZi
= Φ(γMi

/(1+σ2
γi

)). The intra-litter correlation among the weight

outcomes equals ρWi
= σ2

µi
/(σ2

µi
+σ2

wij
). The intra-litter correlation among the latent

malformation outcomes equals ρMi
= σ2

γi
/(1 + σ2

γi
).

7.1.3 Dose-Response Model

Dose-response models are specified for the marginal outcomes of interest, i.e., the

foetal weight, the probability of malformation, and the probability of death. Each of

the univariate outcomes are allowed to vary as functions of dose and other covariates.

The dose-response models can generally be written as

µWi
= X ′

aij
α + (ni − n̄)γa,

γMi
= X ′

bij
β + (ni − n̄)γb,

πRi
= exp(X ′

cij
δ)/(1 + exp(X ′

cij
δ)),

where {Xaij
,Xbij

,Xcij
} are the foetus- and/or litter-specific covariates with regres-

sion parameters θ = {α,β, δ}. Often with developmental toxicity data, the assump-

tion that variances and correlations are constant across dose groups is not appro-

priate. Therefore we allow the variances and correlations to vary with dose and

possible other covariates as well. Thus, dose-response models for the parameters

{ρR, ρMW , σw, σµ, σγ} can be written as well, using appropriate transformations:

ρij = (exp(X ′
tij

τ ) − 1)/(exp(X ′
tij

τ ) + 1),

σij = exp(X ′
sij

ζ),

with ρij = {ρR, ρMW } and σij = {σw, σµ, σγ}.
The need for numerical integration can be avoided by casting the model into a

Bayesian framework and by resorting to the Gibbs sampler (Zeger and Karim 1991).

In addition to the specified model, hyperprior distributions for the regression parame-

ters need to be selected. We follow the recommendations of Besag, Green, Higdon and

Mengersen (1995) in using proper but highly dispersed hyperprior distributions. The

hyperpriors chosen on the regression parameters for this analysis were N(0, 106). We

expect these priors to have minimal influence on the final conclusions of our analysis.
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7.2 Application to Quantitative Risk Assessment

The primary goal of these studies is to determine a safe level of exposure. We define

the combined risk due to a toxic effect as the probability that a foetus is dead or a

viable foetus is malformed and/or suffers from low birth weight. This risk can be

expressed as

r(d) = P (death|d) + P (viable|d) × P (malformed or low weight|viable, d)

= P (R = 1|d) + (1 − P (R = 1|d)) × P (M = 1 or W < Wc|N ≥ 1, d)

= πR + (1 − πR) × P (M = 1 or W < Wc|N ≥ 1, d).

For simplicity, we have omitted the cluster-level index i and the foetus-level index j.

The joint probability of a malformation or low birth weight is equal to:

P (M = 1 or W < Wc|N ≥ 1, d)

=

∫ ∞

1

P (M = 1 or W < Wc|N = n, d)P (N = n|d)dn

and

P (M = 1 or W < Wc|N = n, d)

= 1 −
∫ −τ

−∞

∫ ∞

Wc

φ2(Wij ,M
∗
ij ;µW (d), 0, σw(d)2 + σ2

µ, 1 + σ2
γ , ρMW (d))dWijdM∗

ij

= Φ(τ) + Φ2(−τ, ω; ρMW (d)),

where τ = γM (d)/
√

1 + σ2
γ(d) and ω = (Wc − µW (d))/

√
σw(d)2 + σµ(d)2 and Φ2 is

the standard bivariate normal distribution function.

The benchmark dose is defined as the level of exposure corresponding to an ac-

ceptably small excess risk over background, i.e., the dose satisfying

r∗(d) =
r(d) − r(0)

1 − r(0)
= q,

with q the prespecified level of increased risk over background, typically specified as

0.01, 1, 5, or 10% (Crump 1984). In the frequentist framework, the benchmark dose

calculation is based on the estimated dose-response curve. In the Bayesian approach

one could choose to base the benchmark dose calculation on the mean posterior risk

curve. This method is illustrated in Figure 7.1. The full line corresponds with the

mean posterior risk. But, benchmark dose calculations are no more precise than the

data on which they are based. Therefore, rather than calculating a point estimate of

the safe dose, one might be interested in the entire posterior distribution of the safe
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Figure 7.1: Definition of benchmark dose (BMD) and lower effective dose (LED) at

q% of increased risk over background.

dose. In this way, the researcher could get an idea of the precision of the estimate.

Often, one is interested in an upper bound of the benchmark dose to set a safe level

of exposure. One can construct a 95% upper credibility limit of the risk function and

base the safe dose calculation upon this upper limit. In analogy with the frequentist

approach, the lower effective dose is defined as the dose such that the 95% upper

credibility limit of the excess risk is equal or greater than the predefined level q. This

is illustrated in Figure 7.1. The dashed line corresponds to the 95% upper credibility

limit of the posterior risk.

7.3 Illustration: EG Data

Dose-Response Modelling

For risk assessment to be reliable, the dose-response model should fit the data well in

all respects. As described in Chapter 4, fractional polynomials are very useful both

in the context of dose-response modelling and quantitative risk assessment (Geys et

al. 1999, Faes et al. 2003). With the aim on low dose extrapolation, fractional

polynomials are used in this setting.

In order to select a parsimonious model for the data we select a suitable set of

dose transformations for each of the three outcomes separately. Model selection is

performed using the deviance information criterion (DIC) as proposed by Spiegelhal-

ter et al. (1998, 2002) and described in Chapter 3. Smaller values of DIC indicate a

better fitting model. Table 7.1 shows that a fractional polynomial of degree m = 1,
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Table 7.1: EG study. Deviance Information Criterion for the best first and second

order fractional polynomials to model the malformation parameter γm.

m = 1 m = 2

tranformation DIC transformation DIC

1/d2 678.4 (
√

d, d) 677.8

1/d 679.9 (d, d2) 678.4

1/
√

d 681.0 (ln(d), ln2(d)) 678.0

ln(d) 682.2 (1/
√

d, 1/d) 677.9
√

d 678.1 (1/d, 1/d2) 678.1

d 685.3 (d, d ln(d)) 678.5

d2 692.0 (
√

d, ln(d)) 677.2

d3 693.6

whether represented by 1/d2, 1/d, 1/
√

d, ln(d), d, d2 or d3, is unacceptable as opposed

to a fractional polynomial of degree m = 2 to model the malformation parameter

γMi
. Table 7.1 tabulates only a selection of the considered two-degree fractional poly-

nomials. None of the other combinations provided a substantial improvement. The

fractional polynomial represented by (
√

d, ln(d)) yields the smallest DIC. A similar

approach, applied to the death outcome and weight outcome, suggest a d2 trend on

πRi
and a ln(d) trend on µWi

.

The resulting set of transformations is then used to construct more elaborate

models that can be scrutinized further by means of the DIC. The most complex model

we considered (Model 1) allows the following trends on the malformation, weight and

death outcomes:

µWi
= β0W + β1W ln(d + 1) + β2W (n − n̄),

γMi
= β0Z + β1Z

√
d + β2Z ln(d + 1) + β3Z(n − n̄),

logit(πRi
) = β0R + β1Rd2,

where d is the dose, rescaled to the [0, 1] interval. Further, linear d trends on the

association parameters

ρRi
, σ2

γi
, σ2

µi
, ρMW ,

are considered. Table 7.2 summarizes the model selection procedure on the associa-
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Table 7.2: EG study. Model selection on the association parameters. A ‘*’ indicates

a linear d trend on that parameter. All other effects are kept constant.

Model ρdth σ2
µ σ2

γ ρMW DIC

1 * * * * -1356.870

2 * * * · -1358.310

3 * * · · -1358.490

4 * · · · -1357.950

5 · * · · -1360.470

6 · · · · -1359.540

tion parameters. Based on the deviance information criterion, there is evidence for

choosing a model with a constant association between weight and malformation and a

constant malformation variance (Model 3). In contrast, there is evidence for choosing

a model with a d trend on the weight variance (Model 4). Finally, there seems to be

no evidence for the linear d trend on the correlation among death outcomes. As such,

we choose Model 5.

Final Model

Parameter estimates obtained from fitting the final model are displayed in Table 7.3.

The dose coefficient is significantly negative for foetal birth weight, and the negative

coefficient of litter size suggests that larger litters had a higher risk of low foetal birth

weight, which is not unexpected due to competition for food resources. The intralitter

correlation for weight is substantial, and increases from 0.441 in the control group to

0.644 in the highest dose group. For malformation, there is an increasing dose effect,

and there appears to be little effect of litter size on malformation. The intralitter

correlation for malformation is also large. The correlation between malformation and

birth weight appears to be negative, indicating that foetal malformations are asso-

ciated with lower foetal weights. For foetal death, there is a significantly positive

effect with dose. The intralitter correlation for foetal death is also significantly pos-

itive. The 2-dimensional plots in Figures 7.2 to 7.4 show the posterior mean curves

together with the 95% credibility intervals of the univariate dose-response curves. All

the univariate fits are acceptable. The 3-dimensional plots show the posterior density

of the univariate dose-response curves.
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Table 7.3: EG study. Posterior mean and standard deviation of the parameters in

the final model.

Effect Mean (StDev)

Foetal Weight:

Mean: intercept 0.980 (0.013)

log(dose) -0.433 (0.037)

ni − n̄ -0.011 (0.003)

Correlation: 0.000 0.441 (0.063)

0.250 0.492 (0.047)

0.500 0.545 (0.043)

1.000 0.644 (0.069)

Malformation:

Mean: intercept -3.857 (0.631)
√

dose 6.062 (2.529)

log(dose) -2.664 (2.995)

ni − n̄ -0.002 (0.049)

Correlation: 0.691 (0.048)

Foetal Weight / Malformation:

Correlation: -0.018 (0.005)

Foetal Death:

Mean: intercept -2.099 (0.153)

dose2 0.730 (0.258)

Correlation: 0.069 (0.024)

a The dose unit is mg/kg/day/3000
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Figure 7.2: EG study. Estimated malformation rates.
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Figure 7.3: EG study. Estimated foetal weight.
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Figure 7.4: EG study. Estimated death rate.
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Table 7.4: EG study. Benchmark dose and lower effective dose estimation

(mg/kg/day).

BMD LED

Model q = 0.01 q = 0.05 q = 0.01 q = 0.05

Joint 37 190 17 126

Malf 56 299 19 163

Weight 106 383 77 312

Death 1055 2209 878 1843

Quantitative Risk Assessment

To calculate the risk of low birth weight, we need to define a weight below which a

foetus can be considered as being of “low foetal weight”. Because of the arbitrariness

of the cutpoint, estimating a benchmark dose from a continuous response has led

to much discussion (Bosch et al. 1996, Crump 1984). We specify the cutoff point

Wc as two standard errors below the control average foetal weight (Catalano and

Ryan 1992). By means of this definition, foetuses that weighed less than 0.777 g

are considered to be of low foetal weight, which corresponds to a 3.4% rate in the

control animals. The posterior density of the combined risk due to a foetal death,

a malformation or low foetal weight is pictured in Figure 7.5. The risk gradually

increases when dams are exposed to larger quantities of the toxic substance, before

finally reaching an asymptote.

Table 7.4 shows the benchmark dose and lower effective dose corresponding to a

1% and 5% excess risk over background, respectively based upon the posterior mean

and 95% upper credibility limit of the risk curve. We also added the corresponding

quantities, calculated from univariate risks. The joint model yields more conservative

doses. Often, a safe level of exposure is determined separately for each outcome and

the lower of the individual outcomes is used as an overall benchmark dose. It is

clear that this approach would yield too high estimated safe doses. Therefore, it is

necessary to model the full hierarchical data structure when searching for a safe level

of exposure.

Instead of calculating a point estimate of the benchmark dose, we can derive the

full posterior distribution of the benchmark dose. The posterior distribution of the

benchmark dose corresponding to a 1% increase in risk over background is pictured in
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Figure 7.6. The posterior mode equals 35 mg/kg/day. Previously obtained estimate

of the benchmark dose based on the posterior mean of the risk curve (37 mg/kg/day)

lies in between the mode (35 mg/kg/day) and mean (43 mg/kg/day) of the posterior

distribution of the benchmark dose. The 95% lower credibility limit of the posterior

benchmark dose is equal to 17 mg/kg/day. Calculation of the posterior distribution

of the benchmark dose does not only give information about the estimated safe level

of exposure, but also its uncertainty and shape of the distribution.

7.4 Discussion

Developmental toxicity studies are complicated by the hierarchical, clustered and

multivariate nature of the data. As a consequence, a multitude of modelling strategies

have been proposed in literature. Often, focus is only on the outcomes measured on

the viable foetuses. However, as observed from the data sets, the number of viable

foetuses in a dam, i.e., the litter size, also decreases with increasing dose levels. Thus,

a method that acknowledges the stochastic nature of the litter size is in demand. A

major problem in constructing a model for the full data structure is the intractability

of the marginal likelihood. Due to this problem, formulating the models is difficult.

An interesting alternative lies in the use of Bayesian methods. Markov Chain Monte

Carlo methods are very flexible with respect to the structure of the models that can

be considered. In this setting, a Bayesian random effects model was proposed. All
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outcomes of the developmental toxicity study were analysed simultaneously. The

main advantage of the proposed methodology is the flexibility in which all stages of

the data can be modelled.

The model was applied to a developmental toxicity study (EG in mice), and used

for quantitative risk assessment. When interested in a safe level of exposure, it is

important to account for all possible adverse effects. Often however, focus is only

on the outcome that is most sensitive to the exposure when performing quantitative

risk assessment. But, use of univariate methods to determine a safe dose level can

yield unreliable, and thus unsafe, dose levels. This acknowledges the importance of a

model that accounts for the full data structure.

A Bayesian estimation of a safe level of exposure provides an attractive alterna-

tive to the commonly used frequentist approaches. The posterior distribution of the

benchmark dose does not only give a point estimate, but reflects also the uncertainty

associated with this estimate.



Chapter 8

Modelling Synchrony in

Neuronal Firing

As indicated in Chapter 1, many sets of data collected in biological sciences have

a correlated data structure. In this chapter, we consider a study in the area of

neurophysiology.

Neural assemblies can transmit information about the characteristics of a stimu-

lus via the spike rate of neurons, and there is evidence for association between spike

rate and psychophysical performance (Newsome et al. 1989, Mountcastle et al. 1990,

Romo and Salinas 1999). Another information processing strategy in the brain is the

temporal structure, or relative timing of spike trains, between functional assemblies

(Abeles 1982, Shadlen and Newsome 1994, Singer 1999). Synchronization refers to

near simultaneous neural activity (spikes) provoked by a stimulus, and it is hypothe-

sized that it should be correlated to perceptual grouping of the feature (Abeles 1982,

Malsburg 1999, Usrey and Reid 1999).

There is a growing interest in the search for statistical methods for detecting and

testing synchronized neural activity. Conventional approaches are based on the use

of cross-correlation techniques, usually applied to the activity of pairs of neurons

recorded under appropriate stimulus conditions. In this context, the basic tool is

the cross-correlogram, representing a time-averaged correlation among the spiking

events of the participating neurons. Extensions of this analysis are the Gravitational

Clustering (Gerstein and Aertsen 1985) and the Joint-Peristimulus Time Histogram

(JPSTH; Aertsen et al. 1989), which address the dynamics of the correlation between

cells on a very short time scale. However, although the dynamics of synchronicity can

135
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be observed as a function of time by averaging over trials, with these approaches it is

not possible to analyse individual spike coincidences on a trial-by-trial basis.

Recent investigations have focused on the detection of individual instances of syn-

chronized activity between groups of two or more neurons. One of the most commonly

used methods for this task is the Unitary-Event (UE) analysis (Grün 1996, Grün et

al. 1999, Grün, Diesmann, and Aertsen 2002a, 2000b, Riehle et al. 1997). This ap-

proach allows us to ascertain the statistical significance of brief epochs of synchronous

spiking. The statistical null-hypothesis is formulated in terms of the individual fir-

ing probabilities of the participating neurons. This method searches recordings from

multiple single neurons for epochs with distinctly more (approximately-)coincident

spikes than expected from independent neurons obeying Poissonian spike statistics.

The core of UE analysis consists of computing the probabilities (joint p-values) for

the occurrence of a given minimum number of coincident spikes in short time seg-

ments, under the null hypothesis of independence. Segments with a joint p-value

below a fixed level of significance are identified as significant epochs where the null

hypothesis is rejected. Gütig, Aertsen and Rotter (2002) reformulated the statistical

test underlying this method using a coincidence count distribution based on empirical

spike counts rather than on estimated spike probabilities. Recently, Kass, Ventura

and Cai (2003) considered a more general framework that could handle problems of

alternative structures avoiding the assumption that spike trains are Poisson processes

and suggest a (simulation-based) significance test for synchrony, in which p-values are

calculated by using bootstrap techniques.

Alternative procedures to assess synchrony were suggested recently and lie within

the general regression framework. Models for multivariate correlated binary data can

be grouped into different classes along the distinction between conditionally specified

models, marginal models and cluster-specific models. The answer to the question

which model family is to be preferred principally depends on the research question(s)

to be answered. Conditional models describe the distribution of the outcomes con-

ditional on (a subset of) the other outcomes. Well-known members of this class of

models are log-linear models. Martignon et al. (2002) introduced a log-linear model

for representing firing rates on a set of neurons and showed that nonzero coefficients or

effects of these models are a natural measure for synchronous firing. Advantages of the

log-linear model are that it provides a relatively simple representation of association:

the main effect terms may be taken to be smooth functions of time using regression

splines and then the model may be fitted by using standard software for generalized

linear models. In this way, standard likelihood-based estimation and testing of the

interaction coefficients provide an assessment for association. Generalization to more
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than two neurons involving two-way interactions is easy. Higher order interactions

may also be examined, and in a sense this is an attractive feature of the approach. On

the other hand there are obvious complexities in including large numbers of terms.

Another disadvantage of this approach is that the main effect terms are not inter-

pretable as marginal firing rates. Indeed, as many authors have pointed out (e.g.

McCullagh and Nelder 1989) the lack of compatibility between marginal models and

joint models is a general feature of loglinear models.

In this chapter, we will consider an alternative approach based on a marginal model

for multivariate correlated binary data. This model was designed to (i) describe the

individual activity of the neurons involved and (ii) detect correlations of any order in

a unified way. This method allows to jointly analyse the firing rates of the individual

neurons as well as the synchrony between the neurons. Both the temporal evolution,

as well as trial-specific covariates, can be investigated in a flexible way. In addition,

the extension to more than two neurons is also possible.

Section 2.2 introduces the electrophysiological experiment. The chapter is struc-

tured as follows. In Section 8.1 we describe some measures of synchrony that are used

in the literature and offer a new methodology to measure the neuronal synchrony.

Section 8.2 discusses specific and general issues in modelling the data. In Section 8.3,

specific tools for analysis will be exemplified. This work is also presented in Faes et

al. (2004d).

8.1 Measure of Synchrony

Synchrony refers to the observation that action potentials emitted from different neu-

rons are emitted at the same time, or very close in time. In this paper, two neurons

are considered to discharge in synchrony if they fire together in a 1 ms window. How-

ever, methods can easily be extended to less precise coincidences. First, focus is on

the synchrony of two neurons only. Later, an extension of the methodology to more

than two neurons is proposed. To describe how ‘synchronous’ two spike trains are, a

variety of methods can be used. Let us first introduce the necessary notation.

Let Yitj be the binary outcome of the ith neuron at time t (t = 1, 2, . . . , T ) for

trial j (j = 1, 2, . . . , N). The frequency of matches and mismatches over the different

trials for neurons i and k at time point t can be written in the form of a contingency

table, such as displayed in Table 8.1. In this table, n11 represents the frequency

of 1 − 1 matches (at time t), n10 is the frequency of 1 − 0 matches, and so forth.

The matching rate for neuron 1 and neuron 2 at different time points are pictured
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Table 8.1: A contingency table of the number of matches and mismatches for two

neurons at a certain time point.

Neuron k

1 0 Totals

Neuron i
1 n11 n10 n11 + n10

0 n01 n00 n01 + n00

Totals n11 + n01 n10 + n00 N = n11 + n10 + n01 + n00
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Figure 8.1: Raster plot (left) of spike coincidence of neurons 1 and 2, and correspond-

ing joint peristimulus time histogram with smoothed (kernel) version of the counts

(right).

in Figure 8.1. The probability of coincidence increases rapidly after appearance of

the stimulus and decreases gradually after removal of the stimulus. Note however

that one has to be careful in interpreting the increase in the number of synchronous

events, since a certain number of synchronous events would always occur due to purely

random coincidence.

In the next section, we give an overview of possible synchrony measures.

8.1.1 Odds Ratio

One possible measure for synchrony is the odds ratio, indicating the association be-

tween two neurons. The odds ratio is often a measure of choice to capture the asso-
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Figure 8.2: Plot of odds ratio (left panel) and dependence ratio (right panel) between

neuron 1 and neuron 2.

ciation in a contingency table. The odds ratio at time t is defined as

ψ(t) =
n11n00

n10n01
=

π11(t)
[
1 − π1(t) − π2(t) + π11(t)

]
[
π11(t) − π1(t)

][
π11(t) − π2(t)

] , (8.1)

with π11(.) the joint probability of 2 neurons to fire and π1(.) and π2(.) the marginal

probabilities. Using this relationship, the joint distribution of neuron 1 and 2 can be

written as function of the marginal probabilities and the odds ratio (Plackett 1965):

π11(t) =





1+[π1(t)+π2(t)][ψ(t)−1]−R(π1(t),π2(t),ψ(t))
2[ψ(t)−1] , if ψ 6= 1,

π1(t)π2(t), otherwise,
(8.2)

with

R(π1, π2, ψ) =
√

[1 + (π1 + π2)(ψ − 1)]2 + 4ψ(1 − ψ)π1π2. (8.3)

The Plackett-Dale distribution has been used extensively in the modelling of many

biomedical applications. For example, it turned out to be very useful in the modelling

of clustered binary data together with a pseudo-likelihood estimation approach (Geys,

Molenberghs, and Lipsitz 1998). In Chapter 6 it is shown how the Plackett-Dale model

can be utilized to jointly model a continuous and an ordinal outcome.

A plot of the odds ratio between neurons 1 and 2 as function of time is given

in the left panel of Figure 8.2. All values are higher than 1, indicating a positive

association between the two neurons. But, in contrast with the probability of joint

firing, there is a decrease at the start of the stimulus, and a small increase at the

end of the stimulus. The elevated odds ratios before the appearance of the stimulus
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might be explained by the low activity rate, or high number of 0 − 0 matches, in

this time interval (Figure 2.5). Note however that synchrony is a process happening

only during activity of the neurons. Thus, although the odds ratio is an attractive

measure to describe the association between neurons, as a measure of synchrony it

suffers from being symmetric, treating the 1 − 1 matches and 0 − 0 matches equally,

inflating the odds ratio at the start of the trial. In this context, a 1 − 1 match is a

stronger indication of synchrony than a 0 − 0 match. This must be reflected in the

measure of synchrony.

8.1.2 Dependence Ratio

As an alternative, synchrony can be measured as the proportion of observed num-

ber of synchronous events to the expected number from two independent stochastic

processes. This measure expresses to which extent the probability of having a spike

simultaneously for two neurons is different from the product of the marginal proba-

bilities. This idea was exploited by several authors (Gütig, Aertsen and Rotter 2002,

Grün et al. 1999, Riehle et al. 1997).

Based on the same idea, Ekholm (1995) defined the dependence ratio as

τ(t) =
π11(t)

π1(t)π2(t)
. (8.4)

It is easy to see that (τ − 1) × 100 indicates the increase (as %) in probability for

both neuron 1 and neuron 2 to have a spike, compared to what it would be under

independence; that τ = 1 if and only if neurons 1 and 2 are independent; and that

the following relationship between τ and ψ holds:

ψ =
τ − 1

(1 − τπ1)(1 − τπ2)
+ 1. (8.5)

In Figure 8.2, the dependence ratio between neurons 1 and 2 is depicted. The

τ -curve is almost identical to the plot of the odds ratio. There is a downward shift

of about 0.2. Similar to the odds ratio, it seems that the dependence ratio is highly

affected by the small number of spikes at the start and end of the experiment. Further,

note that when neurons are dependent, they are not necessarily in synchrony. For

example, consider two neurons with the following spikes during several trials:

neuron 1: 110011101001,

neuron 2: 001100010110.
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Table 8.2: Some possible similarity measures in terms of frequencies.

Measure Rationale

n11

n11+n10+n01

No 0−0 matches in numerator or denominator. The 0−0 matches

are treated as irrelevant.

2n11

2n11+n10+n01

No 0 − 0 matches in numerator or denominator. Double weight

for 1 − 1 matches.

n11

n11+2(n10+n01)

No 0 − 0 matches in numerator or denominator. Double weight

for unmatched pairs.

n11

n10+n01

Ratio of matches to mismatches with 0 − 0 matches excluded.

These neurons are asynchronous (none of the events collapse), although the neurons

are dependent (π11 6= π1π2). Thus, one should be cautious with the use of indepen-

dence as a basis for a measure of synchrony.

8.1.3 Conditional Synchrony Measure

A measure of synchrony is to be regarded as a specific measure of ‘closeness’, or ‘sim-

ilarity’, and should treat a 1 − 1 match as a stronger indication of similarity than

a 0 − 0 match. Indeed, the evidence that two neurons react is stronger evidence of

synchrony than the absence of a spike in both neurons. Thus, it might be reason-

able to discount the 0 − 0 matches or even disregard them entirely. Table 8.2 lists

some similarity measures in terms of the frequencies. The first three measures are

monotonically related (Johnson and Wichern 1998).

The different measures of similarity are pictured in Figure 8.3. These plots all

give the same idea of synchrony. After the stimulus is given, there is an increase in

synchrony. After the end of the stimulus, there is a decrease.

An attractive measure of similarity, which could be used in the context of neuronal

synchrony, is the first one from Table 8.2. The main advantage is the absence of the

nuisance (0, 0) pairs. The conditional probability of firing together, given there is a

spike in one of the neurons, could be used to measure the ‘strength’ of synchrony. This

measure, which we call the Conditional Synchrony Measure (CSM), reflects how much

the neurons fire together during activity in one of the two neurons. It can be written
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Figure 8.3: From left to right and from top to bottom: a plot of similarity measures

proposed in Table 1, for neuron 1 and neuron 2.
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as a function of the joint probability of firing and the two marginal probabilities:

CSM(t) =
π11(t)

π1(t) + π2(t) − π11(t)
, (8.6)

estimated by

ĈSM(t) =
n11

n10 + n01 + n11
. (8.7)

The CSM has an easy to understand interpretation, and is based on the definition of

synchrony. The top left panel in Figure 8.3 shows a plot of the CSM for neurons 1

and 2. This plot shows an increase of synchrony after the stimulus, and a decrease of

synchrony after the end of stimulus.

In the sequel, we will use the CSM as a measure of synchrony. In Section 8.2,

a model based on the conditional probability is described, and is combined with

a pseudo-likelihood estimation method. Section 8.3 describes the analysis of the

experiment.

8.2 Model Formulation and Pseudo-Likelihood

8.2.1 The Model

Suppose that for each neuron i (i = 1, 2) under study a vector of binary responses

{Yit, t = 1, . . . , T} is observed, together with a vector of covariates x. First, assume

that observations at different time points are independent. We want to establish the

dependence of each of the two neurons on the covariate vectors, taking the correlation

between both responses into account.

The model arises from the decomposition of the joint probabilities

πj1j2(t) = P (Y1t = j1, Y2t = j2|x), (j1, j2 = 0, 1),

into ‘main effects’ and ‘effect of synchrony’. Let the marginal probabilities of neurons 1

and 2 at time t be π1(t) and π2(t), respectively. The Conditional Synchrony Measure,

or conditional probability of observing two spikes at time t, given there is a spike in

at least one of the two neurons equals

CSM(t) =
π11(t)

π1(t) + π2(t) − π11(t)
. (8.8)

Formally, the decomposition of the joint probabilities πj1j2 is given by

h1

(
π1(t)

)
= βT

1 x,

h2

(
π2(t)

)
= βT

2 x,

h3

(
CSM(t)

)
= βT

3 x,
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with h1, h2, and h3 link functions in the generalized linear model sense. As such, the

marginal structure can be modelled in a flexible fashion: the marginal probabilities

can be fitted within the generalized linear models framework. And also the synchrony

can be modelled in a general way, including time-varying covariates as well as trial-

specific covariates.

Solving these equations for the joint probability πj1j2(t) yields:

π11(t) =
CSM(t)

1 + CSM(t)

[
π1(t) + π2(t)

]
.

Based upon this probability, we can derive the joint density function

g(y1t, y2t) =





π11(t) if y1 = 1 and y2 = 1,

π1(t) − π11(t) if y1 = 1 and y2 = 0,

π2(t) − π11(t) if y1 = 0 and y2 = 1,

1 − π1(t) − π2(t) + π11(t) if y1 = 0 and y2 = 0.

(8.9)

The above model can be generalized to model M neurons simultaneously in the

presence of explanatory variables x. Let {Yit, t = 1, . . . , T} be the random vector

for neuron i (i = 1, 2, . . . ,M). The synchrony of 3 neurons can be defined as the

conditional probability of joint firing in the three neurons, given there is activity in

at least one of the neurons. The joint probability

πj1j2j3 = P (Y1t = j1, Y2t = j2, Y3t = j3|x),

can be decomposed into ‘main effects’, ‘synchrony between two neurons’ and ‘syn-

chrony between three neurons’:

πj1j2j3 =
CSM123

1 − CSM123

[
π1

1 − CSM12CSM13

(1 + CSM12)(1 + CSM13)

+π2
1 − CSM12CSM23

(1 + CSM12)(1 + CSM23)
+ π3

1 − CSM13CSM23

(1 + CSM13)(1 + CSM13)

]
.

As such, one can jointly investigate the firing rates in the three neurons and the

synchronous activity between two or three neurons. A generalization to more than

three neurons is also possible.

8.2.2 Pseudo-Likelihood Estimation Method

Arguably, observations at different time points are not independent. Three different

types of associations, depicted in Figure 8.4, can be present: the association between
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Figure 8.4: Four different types of contributions for the pseudo-likelihood.

two different time points from the same neuron (ω), the association between two

neurons at the same time point (δ), and the association between two neurons at two

different time points (γ). Although there is only one association of direct interest,

namely the association between two neurons at the same time point, the other associa-

tions cannot be neglected. Indeed, ignoring the associations in the data overestimates

precision and hence underestimates standard errors and lengths of confidence inter-

vals. One can treat such associations as a nuisance, correcting for them to obtain

suitable variance estimates. In such a case, we can use pseudo-likelihood, rather than

considering full likelihood. The full likelihood function for trial j (j = 1, . . . , N), i.e.,

fj(y11j , . . . , y1Tj , y21j , . . . , y2Tj), can be replaced by

pℓj =
T∑

t=1

ln g(y1tj , y2tj). (8.10)

As such, we avoid the computational complexity of the full likelihood distribution

of each trial. The value of the parameters that maximize the log pseudo-likelihood

function pℓ =
∑N

j=1 pℓj are the pseudo-likelihood estimates.

Arnold and Strauss (1991) presented a formal and more general definition of the

pseudo-likelihood estimation method, and established consistency and asymptotic

normality of the pseudo-likelihood estimator. Similar in spirit to generalized estimat-
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ing equations (Liang and Zeger 1986), the asymptotic normality result provides an

easy way to consistently estimate the asymptotic covariance matrix:

Ĉov(β̂) = J−1KJ−1 =
( N∑

j=1

∂U j

∂β

)−1( N∑

j=1

U j(β)U j(β)T
)( N∑

j=1

∂U j

∂β

)−1∣∣∣
β=

ˆβ
(8.11)

with U j the pseudo-likelihood estimating equations

U j(β) =
∂ ln g(y1tj , y2tj)

∂β
. (8.12)

This approach acknowledges the fact that, while the synchrony between different

neurons on the same time point is often of scientific interest, the association between

different time points is usually considered a nuisance. The sandwich variance estima-

tor (8.11) is then used to adjust for potential bias in the variance estimator. Geys,

Molenberghs and Lipsitz (1998) compared pairwise likelihood with other estimation

equation approaches in marginally specified odds ratio models with exchangeable as-

sociation structure, and showed that the efficiency of pseudo-likelihood estimators

was comparable to the efficiency of GEE estimators.

8.2.3 Test for Synchrony

A possible information processing strategy in the nervous system is the use of syn-

chrony between neurons. In this mechanism, the selection of specific sensory infor-

mation is implemented by increasing the synchrony between neurons that represent

the information. Therefore, it is of interest to test whether there is an increase of

synchrony during the task.

A sensible approach is to compare the CSM during the experiment with the CSM

at baseline (CSM0):

H0 : CSM(t) = CSM0.

The period before the stimulus comes on (time −200 ms until −1 ms) can be used to

estimate the baseline cell activity. The condition to be checked is very simple: is the

ĈSM(t) different from the estimated baseline ĈSM
0
:

H0 : CSM(t) − CSM0 = 0.

Often, one thinks about synchrony in terms of the probability of joint firing.

However, one needs to be careful in interpreting the mechanisms of joint firing. An

increase of joint firing might be induced by an increase of synchronous action poten-

tials or might be a byproduct of the increased firing rates. We can translate the above



Modelling Synchrony in Neuronal Firing 147

methodology to test for synchrony in terms of the joint firing probability. Assume

the stimulus has no effect on the Conditional Synchrony Measure, and is equal to

the background CSM0. Then, the probability of joint firing at time t, under the null

hypothesis of a constant CSM, equals

πH0

11 (t) =
CSM0

1 + CSM0

[
π1(t) + π2(t)

]
.

By comparing this joint probability πH0

11 (t) with the true probability of joint firing

π11(t), one can test whether the increase of joint firing is due to an increase of syn-

chronous action potentials. The null hypothesis, in terms of the probability of joint

firing, is

H0 : τ(t) = π11(t) − πH0

11 (t) = 0. (8.13)

Based on the estimated values τ(t), it can be checked whether there is a difference. Of

course, the sampling uncertainty of the estimate should be acknowledged. Therefore,

a (1 − α)100% (e.g., α = 0.05) confidence interval around τ(t) is derived, and it is

checked whether the 0 lies within this interval. Using the delta method, the pointwise

confidence intervals of τ(t) under the null are determined by

τ̂(t) ± z1−α

√
V̂ar

(
τ̂(t)

)
, (8.14)

and the variance of the joint probability of firing is estimated as

V̂ar
(
τ̂(t)

)
=

(∂τ(t)

∂β

)T

Ĉov(β)
(∂τ(t)

∂β

)∣∣∣
β=β̂

, (8.15)

with Ĉov(β̂) the estimated covariance matrix of β̂. Since multiple comparisons are

of interest in this situation (one test for each time point), the Bonferroni method can

be used. Here, the use of α/m is recommended instead of α, with m the number of

comparisons to be made. This methodology will be illustrated in the next section.

8.3 Data Analyses

In neurophysiology, interest is in the temporal evolution of the firing rate and the syn-

chrony between certain neurons, both being important neural mechanisms to transmit

information about the characteristics of a stimulus. Further, one wants to investigate

the effect of the stimulus properties (in this case, different orientations of the stimulus)

on the firing rate and synchrony.
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Table 8.3: A description and comparison of models. The pseudo-likelihood value is

displayed, together with the number of parameters in the model and the pseudo-

likelihood AIC value.

Model Description degree pℓ # par AIC

1 orthonormal polynomials 5 -16661.13 18 -16679.13

2 orthonormal polynomials 10 -16623.70 33 -16656.70

3 piecewise-cubic splines 5 -16646.77 18 -16664.77

4 piecewise-cubic splines 10 -16604.55 33 -16637.55

8.3.1 Time Course

As a first application of the model, we jointly investigate the temporal structure of

spike trains and spike coincidences of neurons 1 and 2. Flexible models to describe the

time trends are needed. For both the marginal probabilities as well as the synchrony,

the model will be fit in a generalized linear models framework

logit
(
π1(t)

)
= f1(t), (8.16)

logit
(
π2(t)

)
= f2(t), (8.17)

logit
(
CSM(t)

)
= f3(t), (8.18)

with f1(t), f2(t) and f3(t) some functions of time. Both parametric and semi-

parametric methods are used: a parametric polynomial with an orthonormal basis

and a semi-parametric piecewise cubic spline are considered. As a model selection

criterion, we suggest to use the pseudo-likelihood AIC = pℓ − r, with r the number

of parameters in the model. Larger values of AIC indicate a better fitting model. A

summary of model fit is given in Table 8.3. The piecewise-cubic spline of degree 10

(corresponding with 9 knots) seems to give the best fit.

The estimated firing rate of a spike, i.e., the number of spikes per seconde, and

the conditional synchrony measure, based on the piecewise cubic spline of degree 10,

is shown in Figure 8.5. The solid lines correspond to the estimated model. The

smoothed observed curve is represented by the dotted line. From the plots it is seen

that the natural splines has much flexibility to closely follow the data.

Based on this model, several quantities of interest can be investigated. Both the

firing rates in the two neurons, as well as the firing synchrony change during the

discrimination task. Reactions on the stimulus are reflected in growing firing rates
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Figure 8.5: Model 4. The top and middle panel presents the estimated firing rate

for neuron 1 and 2, respectively. The bottom panel presents the estimated synchrony

between neurons 1 and 2.
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Figure 8.6: Test for synchrony. Left: joint firing rates (per second) under the null

and alternative hypothesis. Right: test based on the probability of joint firing.

and increasing synchrony between the two neurons. After removal of the stimulus,

the firing rates of both neurons and the synchrony drop back to the initial state. The

maximal firing rate of neuron 1 appears 125 ms after the start of the stimulus, with

a firing rate of 0.31. The maximal firing rate of neuron 2 appears already at 100 ms

after the start of the stimulus, with a firing rate of 0.27.

To test whether the neurons are firing in synchrony, we use the test as proposed in

Section 8.2.3. In the left panel of Figure 8.6, the joint firing rates (per second) under

the null and alternative hypothesis are displayed. The full line is the estimated joint

firing rate in the experiment. The dotted line represents the joint firing rate assuming

the CSM stays constant during the experiment, equal to the baseline CSM. The joint

probability of firing, under the null hypothesis of a constant conditional synchrony

measure CSM=CSM0 changes over time, due to the varying firing probabilities of the

two neurons individually.

To test for synchrony, we compare the true probability of joint firing with the

null hypothesis of joint firing with a background CSM, as displayed in the right

panel of Figure 8.6. The bold line is the estimated difference (τ(t)) in probability of

joint firing under the null and alternative of a constant CSM, as defined in (8.13).

The 95% confidence bounds (grey band) and Bonferroni corrected confidence bounds

(dotted lines) are displayed. By comparing the confidence bounds with 0, one can see

that there is a there is a significant increase of synchrony almost immediately after

the stimulus is shown (after 53 ms), which disappears again at 11 ms after removal

of the stimulus. Note however that the Bonferroni method is highly conservative
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and may miss real differences, since the multiple tests are possibly highly correlated.

Therefore we will consider both the corrected and uncorrected confidence bounds.

Other multiple testing procedures are subject of further research.

8.3.2 Orientation

The orientation of the stimulus (85◦, 90◦ or 95◦) can have an important effect on

the firing rate and on the synchronization of the neurons. One goal of this study

is to quantitatively determine and formally compare how the temporal patterns of

neuronal activity are affected by the different orientations of the stimuli.

Consider a model with inclusion of the orientation (Model 5):

f(t, α) = β1 +

5∑

i=1

β1+if1(t) + β7I85 +

5∑

i=1

β7+iI85f2(t)

+β13I95 +

5∑

i=1

β13+iI95f3(t), (8.19)

where I85 and I95 are dummy variables corresponding to orientations of 85◦ and 95◦,

respectively, and f1(t), f2(t) and f3(t) are natural splines in time t of degree 5. Results

are presented in Figure 8.7.

The solid line corresponds to 90◦, the dotted line with 85◦, and the dashed line

with 95◦. The firing rates in neurons 1 and 2 are slightly different for stimuli with

orientations of 85◦ or 95◦, but they are quite different for the 90◦ oriented line. In

the primary visual cortex the receptive field position and its orientation preference

changes across the visual space. For that reason, a long oriented line, such as the ones

used in the experiment, will provoke different responses in each cell. This explains

the differences seen in the graph.

A pseudo-likelihood ratio test statistic, as proposed in Section 3.2.2, is calculated

to test whether the effects of different orientations are different. Table 8.4 displays

the pseudo-likelihood ratio test statistic G2
a and the corresponding p-value for the null

hypothesis that the orientations have the same effect on π1, π2 and CSM. The effect

of a 90◦ stimulus on the firing rate of the neurons is significantly different from the

effect of a 85◦ or 95◦ stimulus (all p-values < 0.001). In contrast, there is no evidence

for a difference between a 85◦ or 95◦ stimulus (p-value > 0.05). The differences on

the synchrony are less pronounced, with only a different effect between stimuli of 85◦

and 90◦.

In Figure 8.8, it is displayed whether there is a significant increase in the number of

joint coincidences due to the stimulus, for each of the orientations separately. Based
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Figure 8.7: Model 5. The top and middle panel presents the estimated firing rate

of neuron 1 and 2, respectively. The bottom panel presents the estimated synchrony

between neurons 1 and 2.
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to top: orientations 85, 90 or 95 degrees.
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Table 8.4: Pseudo-likelihood ratio test statistic G2
a and corresponding p-value for all

pairwise comparisons on π1, π2 and CSM.

Comparison π1 π2 CSM

85◦ = 90◦ 25.58 (<0.001) 21.06 (0.002) 19.49 (0.003)

95◦ = 90◦ 17.08 (0.009) 20.03 (0.003) 7.76 (0.256)

85◦ = 95◦ 4.59 (0.597) 5.05 (0.538) 1.44 (0.964)

85◦ = 95◦ = 90◦ 32.04 (0.001) 31.13 (0.002) 16.36 (0.175)

on the 95% confidence bound, we see that there is an immediate increase of joint

firing when a stimulus of 85◦ or 95◦ is given. For a stimulus of 90◦, the reaction is

somewhat later in time. The difference between observed and expected probability

of synchronous spikes may be explained by postulating a common input or some

other form of functional connectivity due to the stimulus. When we carry out the

Bonferroni correction, a significant increase in joint firing is seen for a 85◦ stimulus,

whereas there is almost no evidence for a difference when a 90◦ or 95◦ stimulus is

given. However, note that the power of the Bonferroni test is diminished due to

the lack of independence between the tests, and thus possibly does not detect true

differences in the population.

8.4 Discussion

In this chapter, we defined synchrony as the observation that action potentials emitted

from different neurons are emitted at the same time. But, there is no “true” definition

of synchrony, this term is dependent on the question and experimental situation.

Synchrony can be defined at different temporal resolutions, e.g., 1, 3 and 5 ms. That

is, spikes in one neuron were considered synchronous if they occurred at 0, ±1, or

±2 ms, relative to spikes in the second neuron, respectively. The proposed conditional

synchrony measure is flexible enough to allow extensions of the definition.

The conditional synchrony measure is the probability of firing together, given

that at least one of the two neurons is active. The advantage of the CSM is that

it is robust against the high number of (0, 0) matches, since these do not provide

information about synchrony. While most association measures treat both (0, 0) and

(1, 1) matches as synchronous events, the Conditional Synchrony Measure only uses
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the (1, 1) match as relevant synchronous event.

If one assumes that two spike trains have a certain background CSM, then the

number of coincidences will depend on the firing rates of the neurons (this number will

increase as the rates increase). Therefore, one cannot just compare the probability

of joint firing with the baseline probability of joint firing, but one needs to include

the firing rates of the neurons separately. By use of the CSM, one corrects for the

probability that there is activity at a certain time point. Thus, comparing the CSM

with the baseline value is a justifiable comparison.

Neurons of the visual cortex respond to oriented lines by modifying their firing

rate, and the reaction to the stimulus depends on the position of the line over the

receptive field of the cell. A long oriented line that falls on several receptive fields

provokes different reactions. However, although each cell might respond differently

and transmit different information, neighboring cells might synchronize their activity

to such common stimulus and therefore constitute an assembly (Abeles 1982). CSM

analysis of activity of two simultaneously recorded neurons reveals that the strength

and temporal course of synchrony is modulated by the orientation of a common stim-

ulus. This dynamic engagement of neural assemblies might transmit additional in-

formation about common features of a stimulus (Singer and Gray 1995, Shadlen and

Movshon 1999).

Although the method is presented in the specialized field of neurophysiology, the

methodology is applicable in other medical and epidemiological areas where the sim-

ilarity of a rare binary outcome among subjects is of interest (for example, twins

studies).
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Chapter 9

Modelling Force of Infection

in Veterinary Study

Another research area where one is often confronted with the collection of clustered

data is veterinary epidemiology. Veterinary epidemiology deals with the investiga-

tion of diseases in animals. It is used to identify factors that may affect the disease

occurrence. Ultimately, this information is then used to prevent or reduce the dis-

ease problem. Quantification of the disease pattern can be based on the prevalence,

describing the probability that an animal from the population has the disease. An-

other measure of interest is the age-specific force of infection, i.e., the rate at which

susceptible animals acquire infection at different ages.

Clustering occurs, for example, when data from different European countries are

collected or due to the grouping of animals within herds. So far, one has always

ignored the clustering in the data to calculate the force of infection. However, one

cannot ignore the possibility of animals within herds or individuals within countries

being more alike than between herds or countries, respectively. In this case, both the

cluster-specific and the population-averaged prevalence and force of infection will give

some information about the pattern of the disease.

In this chapter focus is on a sero-prevalence survey of the bovine herpesvirus-1

(BHV-1) in Belgian cattle, as introduced in Section 2.3. The BHV-1 infection is a

transmissible disease in cattle, which is of economic importance and significance to

international trade. It is distributed worldwide. We focus on the description of the

age-specific disease pattern. In Section 9.1, the force of infection is introduced. As is

done frequently, a logistic regression is performed in Section 9.2. Nevertheless, once an

157
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infection is introduced in a herd, animals within the same herd have an increased risk

to get infected too. Thus, individual responses are more homogeneously distributed

within herds than in the whole population. There are several ways to deal with such

clustering (Aerts et al. 2002), some of which estimate marginal, population-averaged

measures of effect (Pendergast et al. 1996) and some of which estimate the subject-

specific measures of effect, e.g., random effects models (Laird and Ware 1982). We

will discuss each of them in turn. In Section 9.3, a marginal model is considered. A

random effects approach is considered in Section 9.4. A definition of the herd-specific

force of infection is proposed in Section 9.4.1.

9.1 Force of Infection

Primary interest in the analysis of infectious diseases is the force of infection, or the

rate at which susceptible animals become infected, at different ages. The force of in-

fection can be estimated from an age-specific cross-sectional prevalence sample, where

instead of observing the age of infection, we observe a binary response indicator Yi

taking the value 1 if subject i had experienced infection before age a, and 0 otherwise.

Let π(a) be the probability to be infected before age a. In general, the sero-prevalence

π(a) is modelled as

π(a) = h−1(η(a)) = g(η(a)), (9.1)

where η(a) is a linear predictor and h is a link function. If it is assumed that the

disease is in a steady state, i.e., time independent, then the age-dependent force of

infection ℓ(a) can be modelled according to equation (Anderson and May 1991)

d

da
q(a) = −ℓ(a)q(a), (9.2)

with q(a) = 1 − π(a). The differential equation (9.2) describes the change in the

fraction of susceptible individuals with the age of the host. Consequently, the force

of infection can be expressed as

ℓ(a) =
π′(a)

1 − π(a)
. (9.3)

When a logit link is considered, the force of infection reduces to

ℓ(a) = π(a)η′(a). (9.4)

In literature, the predictor η(a) is often chosen to be a linear or higher order

polynomial as function of age a. However, selection of the proper functional forms
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describing the dependence of the parameters in the probability model is crucial to

obtain correct estimates of the force of infection. Although classical polynomial pre-

dictors are still very customary, they are often inadequate. In this setting, there is

a clear need for more flexible models, describing the relationship between age and

infection of the animal (Shkedy, Aerts and Molenberghs 2003). In this chapter we

illustrate how fractional polynomials offer great flexibility in modelling the force of

infection based on clustered data. For the fractional polynomials, we consider as the

best set of transformations, the one producing the lowest Akaike’s Information Cri-

terion (AIC, Akaike 1974), while being monotone in age. The latter is necessary to

ensure that the force of infection is positive. The estimate for the force of infection is

negative whenever η′(a) < 0, since π(a) is strictly positive. Therefore, one should fit

the fractional polynomials subject to the constraint that η′(a) ≥ 0, for all ages a in

the predefined range.

The model for the force of infection as discussed above is derived for a fixed effects

model. In Section 9.4.1 we discuss equivalent models for the force of infection in case

that random effects are included in the model.

9.2 Logistic Regression

First, we ignore the clustering by treating the animals as if they were all independent.

In this case, we can assume a logistic regression model for the binary variable Yij

Yij ∼ Bernouilli(πij)

ηij = log
( πij

1 − πij

)
= f(aij), (9.5)

with Yij = 1 when animal j of herd i has antibodies to glycoprotein B of BHV-1, and

0 otherwise, and f(aij) a functional form describing the dependence of the parameters

in the probability model with age, e.g., a fractional polynomial as defined in (3.11).

For the logistic regression model, the fractional polynomial f(aij) = β0 + β1aij +

β2a
1.2
ij is selected as the best fitting predictor model. The fractional polynomial is fit

subject to the constraint of monotonicity. Parameter estimates are summarized in

Table 9.1 (p1 = 1, p2 = 1.2). The estimated model, with 95% confidence intervals, are

shown in the left panel of Figure 9.1. The dots represent the observed prevalence of

an infected animal, per age class (month), ignoring the clustering of animals within

herds. The prevalence of BHV-1 antibodies increases with age. The force of infection

can be derived from equation (9.3), and is depicted in the right panel of Figure 9.1.

The maximal force of infection (0.089) is obtained at 37 months of age.
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Table 9.1: Analysis of maximum likelihood estimates of a logistic regression using a

fractional polynomial with p1 = 1, p2 = 1.2.

Parameter Estimate S.E. t Value Pr > |t|
Intercept -1.7526 0.05871 -29.85 <0.0001

agep1 0.9083 0.04557 19.93 <0.0001

agep2 -0.4347 0.02181 -19.93 <0.0001

Figure 9.1: From left to right: The fitted prevalence and force of infection according

to the logistic regression model.

Although this model seems to fit the data quite well, we have overlooked certain

aspects in the data. First, the assumption that animals within herds are independent

will in general be too strong. While this typically leaves the consistency of point

estimation intact, the same is not true for measures of precision. In case of a “positive”

clustering effect (i.e., animals within a herd are more alike than between herds), then

ignoring this aspect of the data overestimates precision and hence underestimates

standard errors and lengths of confidence intervals. This might result in spuriously

‘significant’ results. Secondly, the outcome of interest is related to the cluster size.

This is termed ‘informative cluster size’ (Hoffman et al. 2001). Animals selected from

a large herd have higher probability to be infected compared to animals selected from

a small herd, as discussed in Section 9.3.2 and displayed in Figure 9.3. The logistic

regression model weighs each animal equally. As a result, large clusters have more

impact on the analysis in comparison with small clusters. Thus, the prevalence of
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Table 9.2: Estimates according to the generalized estimating equations model, using

an independence or exchangeable correlation matrix and a fractional polynomial with

powers p = (1.0, 1.2). Model-based and empirical standard error estimates.

Empirical Model-based

Parameter Estimate S.E. S.E.

Independence Working Correlation:

Intercept -1.775 0.278 0.089

agep1 0.954 0.312 0.142

agep1 -0.464 0.187 0.089

Exchangeable Working Correlation:

Intercept -2.519 0.261 0.176

agep1 1.306 0.296 0.113

agep2 -0.651 0.175 0.068

an infected animal will be estimated as relatively high, compared to a method that

weighs each cluster equally. In the next sections, we present alternative methods that

incorporate both aspects of the clustering.

9.3 Population-Averaged Model

A marginal model evaluates the overall, or population-averaged, trend as function

of covariates while accounting for the correlations in the data. The existence of

clustering is recognized but considered a nuisance characteristic. Marginal models

based on generalized estimating equations can be used for this purpose.

9.3.1 Generalized Estimating Equations

Liang and Zeger (1986) proposed the generalized estimating equations (see Section 3.2.1).

The GEE method requires only the correct specification of the univariate marginal

distributions provided one is willing to adopt working assumptions about the associ-

ation structure.

For binary data, one can fit the marginal logistic regression model (9.5), while

correcting the estimated standard errors for clustering. For simplicity, we assume
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Figure 9.2: From left to right: The fitted prevalence and force of infection according to

the generalized estimating equations model. Top panel presents the GEE model with

independence working correlation. The bottom panel presents the GEE model with

exchangeable correlation matrix.
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an independence working correlation matrix. This choice is justified since the GEE

method is robust against misspecification of the working correlation structure, at the

cost of efficiency of the parameter estimates. The same fractional polynomial as in

the logistic regression was fit (powers p = (1.0, 1.2)), but without the constraint of

monotonicity because of computational complexity. The results are shown in the top

panel of Figure 9.2. The dashed lines are the 95% Wald-based confidence intervals.

The maximal force of infection (0.090) occurs at 34 months of age. The model-based

and empirically corrected variance estimator, as defined in Section 3.2.1, are given in

Table 9.2. The parameter estimates are very close to the logistic regression model,

but account for the correlation in the data yielding higher standard errors. This was

expected, since ignoring correlations in the data can lead to serious underestimation

of the variances. The wide confidence intervals at the higher age levels, as seen in

Figure 9.2, are also a result of ignoring the constraint of monotonicity.

Note that the working correlation structure does not need to hit the true corre-

lation structure to obtain valid inferences. However, to increase the efficiency of the

parameter estimates it is better to choose a working correlation matrix that is close

to the true one. As another typical choice, we consider the working correlation matrix

to be exchangeable,

Corr(Yij , Yik) = α (j 6= k), (9.6)

hypothesizing that the correlation between any two animals within a herd is con-

stant. The corresponding model fit is shown in the bottom panel of Figure 9.2,

and parameter estimates are displayed in Table 9.2. The maximal force of infection

(0.089) occurs at 47 months of age. The intercept is much lower in the GEE model

with exchangeable correlation compared with the GEE model with an independence

working correlation or the logistic regression model. Indeed, also Figure 9.2 seems to

display an underfitting of the prevalence of infection. This difference needs further

explanation.

9.3.2 Informative Cluster Size

The cluster size is informative when the cluster size is related with the outcome of

interest. In the BHV-1 study, cluster sizes vary from 1 to 264 animals per herd. For

simplicity, we categorize the herdsizes in three groups:

type =





small herdsize ≤ 30;

medium 30 < herdsize < 60;

large 60 ≤ herdsize .

(9.7)
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Figure 9.3: Observed prevalence of a randomly selected animal from a herd of a specific

herdsize (small/medium/large)

The average herd size is 40. Farms with more than 60 cattle are economically viable

farms, profiting of the large investments (equipment, machinery, . . . ) needed. The

small farms, with less than 30 cattle, typically are hobby farms. In between these

two categories, there are family farms, where family members provide the majority of

the labor. The prevalence of a randomly sampled animal from the set of all animals

per age-category (month) and per type is displayed in Figure 9.3. It can be seen that

animals from large herds have a higher prevalence than animals from small herds.

When cluster size is informative, two marginal analyses can be of interest. First,

we might be interested in the probability of a randomly sampled animal from the set

of all animals. Secondly, interest can be in the probability of a random animal from a

randomly selected herd. These two marginal analyses will have the same asymptotic

parameter estimates, except when cluster size is related to the outcome.

To clarify this issue, let us give some other examples. Suppose the cluster of inter-

est is a set of pregnancy outcomes for each of a random sample of women (Hoffman et

al. 2001). The probability of spontaneous abortions is of interest. The cluster size will

be related to risk, because women at high risk of abortion need to have more pregnan-
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cies on average to achieve their desired family size. Thus, cluster size is informative.

In this example, the cluster-based analysis corresponds to the risk for a randomly-

sampled woman. In the context of the developmental toxicity studies, litters with

more foetuses are weighted more than litters with fewer foetuses (Williamson et al.

2003). When the baseline risk for a birth defect is negatively related with the cluster

size, then the GEE method will estimate the risk for a birth defect as relatively low,

compared with a method that weights each litter equally. It is clear that when cluster

size is informative, sometimes the cluster-based marginal model may be more relevant

than the observation-based model.

This also means that when interest in a marginal analysis with the herd as the

sampling unit, we may not be too confident in the plotted observed prevalences in

Figures 9.1-9.2. They do not present the probability that an animal from a randomly

chosen herd is infected, but rather the probability that an animal from the set of all

animals is infected. The latter probability is highly affected by the large herds, in

which the prevalence is higher. Both the logistic regression model and the generalized

estimating equations with independence working correlation matrix give each animal

the same weight, and consequently, provide estimates that should be interpreted as

related to a randomly sampled animal from the set of all animals. An alternative

method is of interest.

9.3.3 Cluster Weighted Generalized Estimating Equations

Williamson et al. (2003) and Hoffman et al. (2001) discuss the problem of infor-

mative cluster size, and present alternative marginal methods with the cluster as

sampling unit. Williamson et al. (2003) present a modification of the generalized

estimating equations (GEE) for handling binary response data with informative clus-

ter size. They propose the use of weighted generalized estimating equations, where

the contribution to the estimating equation from a herd is weighted by the inverse

of the cluster size, with an independence working correlation matrix. As a result,

all herds are given equal weight and individuals in large clusters are no longer over-

weighted. The marginal parameter in the cluster-weighted GEE (CWGEE) will have

a cluster-based interpretation. This is in direct contrast to GEE, where large clusters

are weighted more than small clusters.

Results are displayed in Table 9.3 and Figure 9.4. This model present the proba-

bility to be infected, for an animal from a randomly selected herd. Thus, this model

accounts for the different selection probabilities of an animal within a herd. As ex-

pected, the resulting prevalence is much lower than the one obtained from the GEE
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Table 9.3: Estimates according to the cluster weighted generalized estimating equa-

tions model, using an independence correlation matrix. Model-based and empirical

standard error estimates.

Empirical Model-based

Parameter Estimate S.E. S.E.

Intercept -2.4804 0.280 0.523

agep1 1.3189 0.383 0.793

agep2 -0.6839 0.235 0.488

Figure 9.4: From left to right: The fitted prevalence and force of infection according

to the cluster weighted generalized estimating equations model, using an independence

working correlation matrix.
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approach with independence structure. This also has an effect on the population av-

eraged force of infection, as shown in Figure 9.4. The maximal force of infection is

obtained at 31 months of age.

9.3.4 Behaviour of GEE with Exchangeable Working Correla-

tion

An explanation of the behaviour of the GEE model with an exchangeable working

correlation structure, as was shown in Figure 9.2, still needs to be given. The gener-

alized estimating equations implicitly presume that the size of the cluster is unrelated

to the parameters under study. Under the assumption that the marginal mean is

correctly specified, the GEE will produce unbiased estimates through the sandwich

estimator, even when the working correlation matrix is not equal to the true covari-

ance. Although, when an important covariate is missing in the marginal mean model,

the choice of the working correlation seems to have an important effect, even on the

estimated mean model.

In the GEE approach, the correlations in the working covariance matrix can be

seen as weights that are assigned to the data from each cluster. However, when cluster

size is informative, then weighting the data in different ways, as is done by choosing

different working correlations, can result in different marginal models. In a GEE

model with independence working correlations, each observation is given the same

weight. However, as seen in Figure 9.2, it seems that, when using an exchangeable

working correlation, large herds are down-weighted such that large herds have less

influence on the overall trend. Intuitively, one might explain the behaviour of the

GEE with exchangeable working correlation as follows. When accounting for the

correlation of animals within a herd, the effective sample size is reduced (Chapter 5).

The working correlation in the BHV study was estimated as 0.6294. According to (5.7)

a herd of size 1, 10 or 100 corresponds with an effective sample size of 1, 1.50 and 1.58,

respectively. Thus, by assuming a working correlation matrix that is different from the

independence working correlation, the GEE method seems to partly account for the

informative herdsize. Indeed, the parameter estimates of the GEE with exchangeable

correlation matrix (Table 9.2) are close to the ones obtained from the cluster-weighted

GEE (Table 9.3). An extensive simulation study is needed to fully understand the

behaviour of the GEE when dealing with informative cluster sizes.

The CWGEE seems to be a nice alternative to the GEE in case of informative

cluster sizes. However, the performance of the CWGEE with a working correlation

matrix different from the independence working correlation, is not yet understood.
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Figure 9.5: The fitted prevalence and force of infection according to the generalized

estimating equations model, corrected for herdsize (large, medium and small herdsize,

respectively). Use of independence working correlations.

The weighting scheme resulting from the inclusion of a working correlation matrix may

changes the weights given to each cluster. Therefore, another strategy to account for

the herdsize is investigated.

9.3.5 Herdsize as Covariate

Informative cluster sizes can be defined as any violation of the property that

E[Yij |Xij , ni] = E[Yij |Xij ]. Thus, one could take the herdsize as a covariate in

the model. As a first exploratory analysis, we include the herdsize as a categorical

covariate in the GEE model. The model fit is shown in Figure 9.5 and parameter

estimates are summarized in Table 9.4. There are clear differences between the small,

medium and large herdsize. The GEE model fits the data very well. The force of

infection is maximal at 37, 56 and 66 months of age, for large, medium and small

herds, respectively.

The cluster-weighted GEE and the inclusion of herdsize as a covariate are two

methods to account for the nonignorable cluster size. Both approaches yield results

that seem to be consistent in interpretation. Weighting the GEE pulls the marginal

probability downwards. The same thing happens when including cluster size as a

covariate in the model. In the BHV-1 study, we prefer the use of the herdsize as a

covariate over the cluster-weighted GEE method. Whereas the CWGEE gives us an

estimate of the probability of a randomly selected animal from a randomly selected

herd, the second method gives us an estimate of the probability of an infected animal
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Table 9.4: Estimates according to the generalized estimating equations model cor-

rected for herdsize and using an independence correlation matrix. Model-based and

empirical standard error estimates.

Empirical Robust

Parameter Estimate S.E. S.E.

Intercept -2.396 0.107 0.274

large 1.039 0.072 0.291

medium 0.402 0.079 0.260

agep1 0.820 0.146 0.323

agep2 -0.377 0.091 0.195

from a herd with a specific herdsize.

9.3.6 Overview Methods

When cluster size is a random variable or is related with the response, one needs

to be careful with a marginal analysis. There are several ways to account for an

informative herdsize. Depending on the data we consider, one method can be more

useful compared to another method. A short overview of possible approaches is given:

• A first method, as proposed by Williamson et al. (2003), is the use of a cluster

weighted generalized estimating equations. This approach has a cluster-based

interpretation. In the example of the pregnancy outcomes, a cluster-based model

may be more generalizable than an observation-based model.

• An alternative method, as proposed in Chapter 7, is to build a hierarchical model

by assuming herdsize as a random variable. In the situation of the toxicological

experiment, the litter size depends on the dose level and can be seen as an

additional response of interest. In this case, the hierarchical model approach

may be most suitable.

• Cluster size could also be included as a covariate in the model. An appealing

property of using it as a covariate is, that it gives the opportunity to predict

different probability curves for clusters with different cluster sizes. In the ex-

ample of the BHV-1 study, where there is interest in finding the risk factors for
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the disease, this method might be most appropriate.

• In some situations, clusters have a maximum number of units. In this case, the

varying cluster size can be thought of as a missing data problem. Weighted

estimating equations, such as those proposed by Robins et al. (1995) may be

used in this situation. Dunson (1998) also proposed a multiple imputation

scheme to estimate the number of missing foetuses.

9.4 Random Effects Model

In contrast to the previous view-point, one can have a genuine scientific interest

in the clustering itself. Animals belonging to a herd share the same environment

(physical location), as well as characteristics such as the type of farm (milk- or meat-

oriented) and other unobserved factors (Speybroeck et al. 2003). A random-effects,

or cluster-specific, model describes the dependencies between responses because of

shared factors in a herd. For example, one can account for intra-cluster correlation

by inducing cluster-specific effects, and study the herd-specific profiles. In this section,

a generalized linear mixed model is used to model the infection rate as function of

covariates and parameters specific to a herd.

First, consider the case where the random effects represent herd-specific intercepts.

Conditionally on the random intercepts ui, it is assumed that the individual-level

outcomes are independently distributed as:

Yij |ui ∼ Bernouilli(πij)

ηij = log
( πij

1 − πij

)
= f(aij) + ui. (9.8)

The random effects ui are assumed to be sampled from a normal distribution with

mean 0 and variance σ2
u. The herd-specific profiles are displayed in Figure 9.6. A

fractional polynomial of the form f(aij) = β0 + β1a
0.4
ij + β2a

0.6
ij was chosen as the

best fitting model. The value of σ2
u, the between-herd variance, was estimated as 8.12

(SE=1.03), indicating that there are large differences among herds. The intra-herd

correlation coefficient ρ equals 0.712 (SE=0.026). Thus, animals within herds are

highly correlated.

In case one is interested in the population-averaged risk of infection, one needs to

integrate over the random effects:

∫ +∞

−∞

exp{β0 + β1a
p1

ij + β2a
p2

ij + ui}
1 + exp{β0 + β1a

p1

ij + β2a
p2

ij + ui}
1√

2πσu

e−u2/(2σ2

u)du. (9.9)
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Figure 9.6: From left to right: The herd-specific profiles of prevalence and force of

infection according to a generalized random intercept model.

In Figure 9.7, the marginal fit is shown. The dots represent the probability that an

animal is infected, per age and per herdsize. The line represents the marginal effect,

obtained by integrating over the random effect. Note that this model has a cluster-

based interpretation, since each herd gets the same weight in the calculation of the

overall trend. This marginalized model is very close to the result obtained from the

cluster-weighted GEE. For ages above 120 months, the differences are probably due

to the limited amount of data at higher age levels.

Second, suppose that the random effects represent unit-specific intercepts as well

as linear age effects. The corresponding model is of the form:

gBij |ui ∼ Bernouilli(πij)

ηij = log
( πij

1 − πij

)
= f(aij) + u0i + u1iaij , (9.10)

with the random effects parameters sampled from a bivariate normal distribution.

The same fractional polynomial as in the random intercepts model is used. Results

are shown in Figure 9.8. Each herd has its own age-specific profile, with very large

differences among herds.

9.4.1 Cluster Specific Force of Infection

Both the logistic regression model and the marginal model discussed in the previous

sections include only fixed effects (the fractional polynomial of the age). Therefore,

the population force of infection is ℓ(a) = g(η(a))η(a)′. The generalized linear mixed

model specified in (9.8) account for possible intra-cluster correlation by including a
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Figure 9.7: Population-averaged profile of prevalence, based on a generalized mixed

model with random intercept.

Figure 9.8: From left to right: The herd-specific profiles of prevalence and force of

infection according to a generalized mixed model with random intercept and age.



Modelling Force of Infection 173

random intercept effect for the cluster. As a consequence, each cluster has a specific

force of infection. Let f(a) = β0 +
∑m

j=1 βja
pj , and consider a fractional polynomial

model with random intercept of the form

h(π(a)) = f(a) + ui, i = 1 . . . ,K,

where K is the number of clusters. Note that f(a) represent the fixed part of the

linear predictor so that η(a|ui) = f(a)+ui. The cluster-specific force of infection can

be calculated by ℓ(a|ui) = g(η(a|ui))η(a|ui)
′. For a random intercept model,

η(a|ui)
′ =

∂η(a|ui)

∂a
=

∂f(a)

∂a
= f(a)′,

and it does not involve the random intercept ui. Hence, in the general case the cluster

specific force of infection is ℓ(a|ui) = g(η(a|ui))f(a)′ and for a model with logit link

function, ℓ(a|ui) = π(a|ui)f(a)′. Thus, for a logit model with random intercept and

for two clusters with the same age

ℓ(a|uj)

ℓ(a|uk)
=

π(a|uj)

π(a|uk)
.

The cluster-specific force of infections, based on the random intercept model, are

displayed in Figure 9.6.

The population force of infection (or the marginal force of infection) can be derived

by

ℓ(a) = f(a)′
∫

g(η(a|u))du. (9.11)

Note that for a model with a logit link function the second term in the right hand

side of (9.11) is equal to the population average probability given in (9.9).

For a model with random intercept and slope as presented in (9.10), i.e., η(a|u0i, u1i)=

f(a) + u0i + u1ia, we have

∂η(a|u0i, u1i)

∂a
=

∂f(a)

∂a
+ u1i,

and the cluster-specific force of infection is

ℓ(a|u0i, u1i) =

(
∂f(a)

∂a
+ u1i

)
π(a|u0i, u1i).

Results are shown in the right panel of Figure 9.8. Large differences between herds

are seen. Both the magnitude of the force of infection, as well as the age at which the

force of infection is maximal differ among herds. These differences between herds can

be due to both observed or unobserved variables. One possible factor is the herdsize.
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In Figure 9.9, the force of infection within a herd is displayed per type: large, medium

or small herds, as defined in (9.7). Small farms show much lower force of infections,

in comparison with large herds. An extensive investigation of possible risk factors is

topic of further research.

As mentioned above, for fixed effect model, the force of infection is non negative

as long as η(a)′ ≥ 0. For a random intercept model, η(a|ui)
′ = ∂f(a)/∂a, so the force

of infection will be non negative as long as ∂f(a)/∂a ≥ 0 since π(a|uj) is a monotone

non decreasing function. The case of random intercept and slope is somewhat more

problematic since even if ∂f(a)/∂a ≥ 0 the first derivative of the linear predictor(
∂f(a)

∂a + u1i

)
is not necessarily positive, and there is no guaranty that the cluster

specific prevalence π(a|u0i, u1i) is a monotone non decreasing function with respect

to age. This can be seen in Figure 9.6 (for the random intercept model) and Figure 9.8

(for the model which include random intercept and random slope).

9.5 Discussion

The choice between population-averaged and random effects strategies may heavily

depend on the scientific goals. Population-averaged models are appropriate to evalu-

ate the overall prevalence as a function of covariates. The population averaged force

of infection can be investigated by the use of the (cluster weighted) GEE model. With

a herd-specific approach, the prevalence is modelled as a function of covariates and

parameters, specific to a herd, so that herd-specific profiles can be investigated.

So far, we have investigated the age-specific disease pattern. However, it is im-

portant to investigate which factors are of risk for the prevalence of BHV-1. We per-

formed a first model selection procedure for the random-effects model. An overview

of the model selection procedure is given in Table 9.5. Both Akaike’s Information

Criterion (AIC) and Bayesian Information Criteria (BIC) values are given. Since the

BIC accounts for the sample size in the penalizing constant, this method is preferred

for model selection. Indeed, when dealing with large surveys, weak effects can show

significant results because the large sample provides small standard errors. Thus, a

statistically significant effect need not be important in a practical sense in such case.

In addition, use of the effective sample size, or the number of independent samples

contained in each herd such as introduced in Chapter 5, might be more appropriate

in the definition of BIC (BIC(E), Faes et al. 2004b). In Table 9.5, BIC(E) represents

the BIC with the effective sample size as penalizing constant, BIC(A) is the BIC using

the number of animals in the study, and BIC(H) corresponds with the BIC corrected



Modelling Force of Infection 175

Figure 9.9: From top to bottom: The herd-specific profiles of force of infection accord-

ing to a generalized mixed model with random intercept and age for different herdsize:

large, medium and small, respectively.
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Table 9.5: Overview stepwise model selection

effect AIC BIC(E) BIC(A) BIC(H)

f(age) 5352.2 9575.8 5394.4 5374.1

+ herdsize 5343.1 5370.1 5392.3 5368.6

+ purchase 5337.5 5369.0 5393.7 5366.6

+ herdsize2 5331.8 5367.2 5395.0 5364.6

+ age*herdsize 5322.2 5361.6 5392.5 5358.6

+ age*herdsize2 5317.0 5360.3 5394.3 5357.1

for the number of herds. The final model contains the animal-level factors age and

origin (purchased or homebred), and the herd-level covariate herdsize. The model is

summarized in Table 9.6. The prevalence of gB-antibodies in cattle increases with

the age of the animal, and also with the size of the herd. Purchased animals also

have higher probability to be infected than homebred animals. An extensive analysis

of possible risk factors is topic of current research.

In the data, 2148 records of the 11284 records have at least one missing value

in response and covariates. There is a substantial amount of missingness in the

variable purchase, being an important risk factor as indicated in previous analysis.

The first issue in dealing with the problem is determining whether the missing data

mechanism has distorted the observed data. So far, we considered the complete cases

only. However, some first analysis showed that the missingness has a noticeable effect

on the estimation of prevalence and force of infection. Dealing with the missingness

in the data, together with the clustering, is under investigation.

Some other issues in this study need further attention. First, the generalized

estimating equations should be fit under the constraint of monotonicity, in order to

get a positive force of infection. Standard statistical software for fitting a GEE model

do not allow the inclusion of constraints on the parameters. Secondly, the behaviour

of the cluster-weighted GEE under a non-independence working correlation should be

investigated further.
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Table 9.6: Estimates of final logistic random-effects model.

Parameter Estimate S.E. t Value Pr > | t |
Intercept -6.953 0.925 -7.52 <0.0001

age0.4 4.655 2.040 2.28 0.0232

age0.6 -2.546 1.371 -1.86 0.0644

herdsize 0.018 0.013 1.34 0.1803

herdsize2 -0.00004 0.00007 -0.60 0.5498

age*hsize 0.01556 0.00398 3.91 0.0001

age*hsize2 -0.00006 0.00002 -2.77 0.0060

purchase 0.280 0.098 2.86 0.0046

s11 7.921 1.345 5.89 <0.0001

s12 -0.450 0.255 -1.76 0.0793

s22 0.569 0.127 4.49 <0.0001
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Chapter 10

Spatial Modelling of Spikes in

Small Intestines

Mixed models can be applied in a wide range of settings. Probably, they are most

commonly used to handle grouping in the data. Examples for this type of data

include longitudinal data, clustered data, hierarchical data, etc. In addition, mixed

models can be used for smoothing purposes as well. Speed (1991) explicitly made

the connection between nonparametric regression and mixed models. Since then, the

use of smoothing splines within the mixed model framework is becoming more and

more appreciated and the number of applications in literature is growing. Ruppert et

al. (2003), Wand (2003), Ngo and Wand (2004) all used mixed models for smoothing

purposes. In case when dealing with non-normal data, the adoption of smoothing

methods within generalized linear mixed models (GLMM) is less familiar. The main

difficulty in case of GLMMs is the high dimensional integral over the unobserved

random effects, which, in general, cannot be computed exactly. A key feature of the

mixed model approach is that it allows us to handle both correlations and smoothing

in a unified framework.

In this chapter, we consider the cat duodenum data, as described in Chapter 2.

The numbers of spikes occurring at specific locations on an isolated segment of the

small intestines of a cat are recorded during 12 to 16 successive slow waves. So

far, in both the temporal and spatial dimension, there is no information available

about the behaviour of spikes in successive slow waves. One question of interest is

whether there are areas with high spike incidence, compared with other areas. Some

preliminary analysis were performed in this context in Lammers et al. (2004) and

179
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showed important spatial effects. Another question is about the temporal and spatial

characteristics of spikes during successive slow waves. In this chapter, we summarized

the general mixed model design for discrete data as proposed by Ruppert, Wand and

Carroll (2003), and investigate how it can be used for the analysis of the cat duodenum

data.

In Sections 10.1 and 10.2 we give a brief introduction on generalized linear mixed

models and penalized quasi-likelihood. In Section 10.3, it is explained how smoothing

methods can be incorporated within the mixed models framework. First, the method

is explained for the penalized regression splines in one dimension. Later, it is extended

for smoothing purposes in two dimensions. Next to smoothing, the mixed model

is used to account for correlations in the data. The general design of GLMMs is

emphasized in Section 10.5. An illustration of the use of generalized linear mixed

models for smoothing purposes, and in addition accounting for correlations in the

data, is given in Section 10.6.

10.1 Generalized Linear Mixed Model

For a generalized response, such as a binary or count variable, the generalized linear

mixed model (GLMM) is a commonly used random effects model (McCullagh and

Nelder 1989). The GLMM is a very powerful tool, allowing many complications to

be handled. Let Y i = (Yi1, . . . , Yini
) denote the vector of all measurements for the

ith group (i = 1, . . . , N). Conditional on the random effects ui, it is assumed that

the measurements Yij of Y i are independent with density function of an exponential

family form:

fi(yij |ui) = exp
{

φ−1
[
yijηij − a(ηij)

]
+ c(yij , φ)

}
,

with ηij the natural parameter, φ an overdispersion parameter and a a function sat-

isfying

E
(
Yij |ui

)
= a′(ηij),

Var
(
Yij |ui

)
= φa′′(ηij).

A general design for GLMM, describing the relation between the conditional mean

and the covariates, can be formulated as

h
(
E(Y i|ui)

)
= Xiβ + Ziui,

where Xi and Zi are (ni × p) and (ni × q) dimensional matrices of known covariates,

β is a p-dimensional vector of regression parameters, called the fixed effects, and h is
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some link function. The random effects ui are assumed to follow a normal distribution

ui ∼ N(0,G),

with G a general (q × q) covariance matrix.

Usually, the canonical link function is used, i.e., h = (a′)−1, such that ηij =

Xijβ + Zijui. Commonly used GLMMs are the logistic-normal mixed model for

binary data (Williams 1982) which corresponds to

a(x) = log(1 + ex), c(x) = 0, φ = 1,

and the Poisson-normal mixed model for counts (Breslow 1984) corresponding to

a(x) = ex, c(x) = − log(x!), φ = 1.

The linear mixed model is a special case of the generalized linear mixed model, with

identity link function. Several other distributions (e.g., gamma, inverse Gaussian) fit

into this exponential family structure (McCullagh and Nelder 1989). In this chapter,

it is assumed that the canonical link function is used.

10.2 Penalized Quasi-Likelihood

The non-linear nature of the GLMM implies that model fitting is, in general, not

straightforward. Maximum likelihood estimation requires the marginal likelihood of

Y , which is obtained by integrating over the random effects. The contribution of the

ith group to the log marginal likelihood can be written as

ℓi(β,G) = log f(yi|β,G) = log

∫

Rni

ni∏

j=1

fi(yij |ui)φ(ui;G)dui, (10.1)

where φ(ui;G) is the normal density function N(0,G). The log marginal likelihood

ℓ(β,G) =

N∑

i=1

ℓi(β,G)

can then be maximized to obtain estimates of the parameters β and G.

In general, the above equation cannot be derived analytically, and maximum like-

lihood estimation is hindered by the presence of this ni-dimensional integral. Several

alternative methods to estimate parameters in a random effects model are available.

The integral (10.1) can be computed numerically. Different integral approximations

are available, the principal one being (adaptive) Gaussian quadrature (Anderson and
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Aitkin 1985). Alternatively, the generalized linear random effects model can be cast

into a Bayesian framework, avoiding the need for numerical integration by taking

repeated samples from the posterior distributions using Gibbs sampling techniques

(Zeger and Karim 1991). Other methods use approximations of the likelihood, to

circumvent the computational burden caused by numerical integration. A possi-

ble method involves Laplace approximation of integrals (Breslow and Clayton 1993,

Wolfinger and O’Connell 1993), which is commonly referred to as penalized quasi-

likelihood (PQL).

PQL is a relatively simple method for fitting GLMM. Approximation of the

marginal likelihood using Laplace’s method leads to estimating (β,u) by treating

the random effects u as fixed parameters, but penalizing the likelihood according

to the distribution of u. As such, (β,u) are obtained by maximizing the penalized

log-likelihood (Green 1987)

log f(y;u) − 1

2
uT G−1u,

and thus

 β̂

û


 = argmax

β,u

{
φ−1

[
yT (Xβ + Zu) − 1T a(Xβ + Zu)

]
− 1

2
uT G−1u

}
.

Implementation of the PQL algorithm involves repeatedly fitting of linear mixed mod-

els (Wolfinger and O’Connell 1993), just as generalized linear models may be fitted by

repeated calls to weighted least squares procedures (Nelder and Wedderburn 1972).

In this procedure, parameter estimates are obtained using a linearized version y∗ of

the responses y. The PQL algorithm proposed by Wolfinger and O’Connel (1993) has

been implemented in the %GLIMMIX macro in SAS.

10.3 Smoothing Discrete Data using Mixed Models

A regression curve describes a general relationship between an explanatory variable

and a response variable. It is of great interest to have some knowledge about this

relation as it may indicate whether a special sort of dependence between the two

variables is present. In this section we explain why smoothing methods that use basis

functions with penalization, can be formulated as estimators in a generalized mixed

model framework.

Consider the observed pairs (yi, xi) for each individual i (i = 1, . . . , N), with yi

a generalized response and xi a given covariate. Assume that the responses yi are
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drawn independently, and that yi has density function

f(yi; ηi, φ) = exp
{

φ−1
[
yiηi − a(ηi)

]
+ c(yi, φ)

}
,

where ηi depends on xi (McCullagh and Nelder 1989). Parametric generalized linear

models are constructed by assuming that there exist a link function h such that

h
(
E(Yi|xi)

)
= Xiβ,

with, e.g., Xi = [ 1 xi ] and β = (β0, β1)
T . In nonparametric regression, the

aim is to replace the parameterised predictor ηi = Xiβ by a general predictor ηi =

f(xi), where f is a smooth function. In the nonparametric framework the shape

of the functional relationship is determined by the data, whereas in the parametric

framework the shape is determined by the model.

In this chapter, we focus on semiparametric regression models using piecewise

regression splines or radial basis splines as described by Ruppert, Wand and Carroll

(2003). We discuss each of them in turn.

10.3.1 Penalized Regression Spline

The unknown smooth function f can be modelled as a piecewise linear smoother, as

discussed by Friedman and Silverman (1989). The piecewise linear spline model is

given as

ηi = f(xi) = β0 + β1xi +

K∑

k=1

uk(xi − κk)+,

where xi are design points (i = 1, . . . , N), κk is the location of the kth knot (k =

1, . . . ,K) and

(xi − κk)+ =





0, x ≤ κk

xi − κk, x > κk.

The basis functions represent broken lines with the knots κk as a joint point. Fig-

ure 10.1 shows an example of a linear spline basis with equally spaced knots. In ma-

trix notation, with β = (β0, β1)
T , u = (u1, . . . , uK)T , X the matrix with the ith row

Xi = [1 xi] and Z the matrix with the ith row Zi = [(xi − κ1)+, . . . , (xi − κK)+ ],

the piecewise linear spline function can be written as

f(xi) = Xiβ + Ziu.

Within the parametric regression framework, f can be estimated by maximizing the

likelihood. However, it is always possible to choose f sufficiently complicated that
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Figure 10.1: Piecewise regression spline basis function, with 9 equidistant knots. Left:

linear spline basis; Right: Cubic spline basis.

it interpolates the data, in the sense that the fitted values agree with the observed

responses yi = a′(f(xi)). Following Ruppert et al. (2003), we consider a number of

knots that is large enough (typically 5 to 20) to ensure the desired flexibility. But, to

overcome the problem of overfitting the data due to there being too many knots, we

constrain their influence. A smooth fit is obtained by maximizing

φ−1
[
yT (Xβ + Zu) − 1T a(Xβ + Zu)

]
− 1

2
λ2


 β

u


 D


 β

u


 (10.2)

with D a known positive semi-definite penalty matrix (Wahba 1978, Green and Sil-

verman 1994). The first term measures the goodness-of-fit while the second term is

the roughness penalty. The parameter λ is the smoothing parameter. Large values

of λ produce smoother curves while smaller values produce wiggly curves. A possi-

ble constrain on the parameters u is
∑

k u2
k < C, for some positive value C. This

is equivalent to choosing (β,u) to maximize the penalized log-likelihood (10.2) with

D = diag(0, 0, 1, . . . , 1). In this case, the penalized spline solution is

η̂i = Xiβ̂ + Ziû,

where


 β̂

û


 = argmax

β,u

{
φ−1

[
yT (Xβ + Zu) − 1T a(Xβ + Zu)

]
− 1

2
λ2||u||2

}
. (10.3)
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10.3.2 Connection with mixed models

An equivalent model representation of the penalized spline, in the form of a generalized

linear mixed model, can be found (Wand 2002, Ngo and Wand 2004). Specifically, for

a fixed value of λ, (10.3) is equivalent to fitting the generalized linear mixed model

fi(yi|u) = exp
{

φ−1
[
yT

i (Xiβ + Ziu) − a(Xiβ + Ziu)
]
+ 1T c(yi)

}
,

u ∼ N(0,G),

by using the penalized quasi-likelihood approach as described in Section 10.2 (Breslow

and Clayton 1993, Wolfinger and O’Connell 1993), with G = σ2
uIK×K . Given this

equivalence, the penalized spline model can be fit using existing statistical software

for generalized linear mixed models, such as the SAS macro %GLIMMIX (Wolfinger

1993). The amount of smoothing, λ = 1/σu, is automatically selected via the PQL

and REML algorithm.

10.3.3 Higher Order Spline Bases

The piecewise linear spline model is conceptually very simple, and will fit the data suf-

ficiently in many applications. However, other spline bases are also possible. Smoother

fits can be obtained by the use of higher degree truncated polynomial bases. The

truncated power spline function of degree p with fixed knots κ1, . . . , κK is given by

ηi = f(xi) = β0 + β1xi + . . . + βpx
p
i +

K∑

k=1

uk(xi − κk)p
+.

The right panel of Figure 10.1 shows an example of a cubic basis (p = 3), with

equally spaced knots. When fitting this spline model by penalized least squares, the

parameters in this model are estimated as in (10.3) with X the matrix with the ith

row Xi = [ 1 xi . . . xp
i

], Z with ith row Zi = [(xi − κ1)
p
+ . . . (xi − κK)p

+
]

and

D =


 0(p+1)×(p+1) 0(p+1)×K

0K×(p+1) IK×K


 .

The same results are obtained by fitting the generalized linear mixed model

ηi = Xiβ + Ziu,

u ∼ N(0,G),

with G = σ2
uIK×K by a penalized quasi-likelihood approach. The amount of smooth-

ing, λ2p = 1/σ2
u, is chosen automatically in the mixed model.
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Figure 10.2: Radial spline basis function (m=1), with 9 equidistant knots.

10.3.4 Radial Smoothers

Another spline method is to work with radial basis functions. These are basis functions

of the form C(|xi − κk|) for some univariate function C. For example, the basis

function C can be defined as

C(r) = |r|2m−1,

with m a positive value. Figure 10.2 shows the basis functions for m = 1. A charac-

teristic of radial basis functions is that they only depend on the distances between the

data and the knots. As a consequence, the function is radially symmetric about this

point. The advantage of this property is that it easily extends to higher-dimensional

predictor variables.

As in previous sections, the spline function can be written as Xβ + ZKu where

(Nychka 2000)

X =
[

1 xi . . . xm−1
i

]
1≤i≤N

and ZK =
[
|xi − κk|2m−1

]
1≤i≤N,1≤k≤K

.

In order to obtain a smooth fit, an appropriate penalty factor must be chosen. Green

and Silverman (1994) showed that maximizing the penalized log likelihood

yT (Xβ + ZKu) − 1T a(Xβ + ZKu) − 1

2
λ2m−1uT ΩKu

with

ΩK =
[
|κk − κk′ |2m−1

]
1≤k,k′≤K;1≤i≤N
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corresponds with the thin plate spline family of smoothers. The thin-plate spline is a

generalization of the usual cubic smoothing spline with a roughness penalty function

that is rotationally invariant. The theoretical foundations for the thin-plate smoothing

spline are described in Duchon (1976, 1977) and Meinguet (1979).

Ruppert, Wand and Carroll (2003) noted that radial smoothers can be described

by the following generalized linear mixed model:

h
(
E(Y |u)

)
= Xβ + ZKu,

u ∼ N(0, σ2
u(Ω

−1/2
K )(Ω

−1/2
K )T ).

Using the transformation Z = ZKΩ
−1/2
K , this results in

h
(
E(Y |u)

)
= Xβ + Zu,

u ∼ N(0, σ2
uIK×K).

This form allows fitting through standard mixed model software.

These radial bases are particularly useful for higher-dimensional smoothing, as

will be shown in Section 10.4.2.

10.3.5 Illustration: BHV-1 Study

For illustration, consider the Bovine Herpesvirus-1 study as described in Chapter 2.

In was noted that young animals have high sero-prevalence of gb-antibodies because

of the maternal antibodies. Here, we investigate the relationship between the age of

the animal and the prevalence of gb-antibodies, without taking the clustering into

account.

We use the truncated power basis to illustrate the use of penalized splines as mixed

models. Some choices have to be made when fitting the penalized spline function.

The degree of the polynomial basis and the number and positioning of knots needs to

be specified. Following the recommendations of Ruppert (2002) and Kammann and

Wand (2003), we chose the knot location as

κk =
k + 1

K + 2
th sample quantile of the unique xi,

for k = 1 . . . ,K. The effects of the number of knots and the degree of the regression

spline are shown in Figure 10.3. The dotted line represents the fit when the parameters

are treated as fixed effect, the full line is the result of the penalized spline as a mixed

model.

In this example, the penalized spline model is very flexible in describing the non-

linear relationship between age and infection of the animal. Penalized estimation
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Figure 10.3: The fitted logistic regression models with penalized splines function, with

varying number of knots and degree of basis.
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based on a mixed model shrinks the coefficients of the spline basis towards zero,

resulting in a smoother fit compared with the fixed effects estimation. The cubic fit

smooths the non-linear relationship much more effectively than the linear spline fit,

and there are no unsightly corners. Increasing the number of knots also increases

the flexibility in the fit, as seen for the linear spline basis. When using the cubic

spline, there are only minor differences between the models with 3, 10 or 20 knots. In

summary, the penalized splines offer great flexibility in modelling nonlinear data.

10.4 Two-dimensional smoothing

Penalized spline regression relies on a set of basis functions that permit the handling

of a nonlinear structure. Bivariate smoothing requires bivariate basis functions. Pe-

nalized spline regression can be extended to the bivariate situation in several ways.

Suppose x1i and x2i are two continuous predictors of the response variable y. A

general bivariate smoothing model is

ηi = f(x1i, x2i),

where f is a bivariate smooth function.

10.4.1 Tensor Product Bases

One possible methodology for constructing two-dimensional basis function is by taking

products of one-dimensional basis functions. Penalized splines as presented in previous

section can easily be extended to fit this model:

ηi = β0 + β1x1i +

K1∑

k=1

u1k(x1i − κ1k)+ + β2x2i +

K2∑

k=1

u2k(x2i − κ2k)+

+γx1ix2i +

K2∑

k=1

ν1kx1i(x2i − κ2k)+ +

K1∑

k=1

ν2kx2i(x1i − κ1k)+

+

K1∑

k=1

K2∑

k′=1

νkk′(x1i − κ1k)+(x2i − κ2k′)+ (10.4)

The corresponding basis is often referred to as a tensor product basis. Figure 10.4

shows the basis functions corresponding to (10.4) with knots κ11 = κ21 = 0.3 and

κ12 = κ22 = 0.6. It is easy to see that this model can be fit in a generalized linear

mixed model. A possible drawback of the tensor product splines is their dependence

on the orientation of the coordinate axes.
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Figure 10.4: Basis functions for tensor product model, with knots κ11 = κ21 = 0.3

and κ12 = κ22 = 0.6.
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10.4.2 Radial Smoothers

The extension of radial smoothers to higher dimensions is straightforward. For xi ∈
Rd, 1 ≤ i ≤ N , and κk ∈ Rd, 1 ≤ k ≤ K, higher dimensional splines can be obtained

by taking X to have columns spanning the space of all d-dimensional polynomials in

the components of xi with degree less than m and

Z = ZKΩ
−1/2
K =

[
C(‖ xi − κk ‖)

1≤k≤K

]
1≤i≤N

[
C(‖ κk − κk′ ‖)

1≤k,k′≤K

]−1/2

where

C(r) =





‖ r ‖2m−d for d odd

‖ r ‖2m−d log ‖ r ‖ for d even
, (10.5)

(Nychka 2000). Note that the function C(.) could be replaced by any other proper

covariance function used in kriging (Cressie 1993, O’Connell and Wolfinger 1997, Stein

1999).

10.5 General Design GLMMs

An advantage of smoothing through mixed models is the possibility to handle other

complications in the data at the same time. For example, the mixed model rep-

resentation of smoothers allows for straightforward combinations of smoothing with

other modelling tools such as random effects for longitudinal data (Ngo and Wand

2003). Consider the situation where we observe responses yij for the individuals j

(j = 1, . . . , ni) from group i (i = 1, . . . , N), together with a covariate xij . A possible

model for such data is

h
(
E(Yij |xij)

)
= β0 + Ui + β1xij ,

where we model the covariate as a linear trend, and account for the grouping by

assuming that Ui ∼ N(0, σ2
U ). Instead of assuming a parametric model, we can

consider a smooth function f describing the trend of x.

h
(
E(Yij |xij)

)
= Ui + f(xij).
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For f , a linear spline basis or radial basis functions could be used. If one defines

X =




1 x11

...
...

1 x1n1

...
...

1 xN1

...
...

1 xNnN




,

Z =




1 . . . 0 (x11 − κ1)+ . . . (x11 − κK)+
...

. . .
...

...
. . .

...

1 . . . 0 (x1n1
− κ1)+ . . . (x1n1

− κK)+
...

...
...

...
. . .

...

0 . . . 1 (xN1 − κ1)+ . . . (xN1 − κK)+
...

. . .
...

...
. . .

...

0 . . . 1 (xNnN
− κ1)+ . . . (xNnN

− κK)+




,

β = [β0, β1]
Y and u = [U1, . . . , UN , u1, . . . , uK ]T then one can simultaneously esti-

mate variance components for the random intercept and the amount of smoothing for

f by using the mixed model

η = Xβ + Zu

with

Cov(u) =


 σ2

UI 0

0 σ2
uI


 .

Here, σ2
U measures the between-subject variability and σ2

u controls the amount of

smoothing done to estimate f .

A similar combination is performed by Kammann and Wand (2003). They combine

a geostatistical analysis with additive models to account for non-linear effects.

The key to full generality is to allow the random effects design matrix to have a

general structure (Zhao et al. 2004). Breaking the fixed and random effects structure
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into pieces to account for different covariance structures used in longitudinal data

modelling, smoothing and spatial statistics, we get

Xβ + Zu = XRβR + ZRuR + XSβS +
L∑

l=1

ZS
l uS

l + ZCuC .

The longitudinal structure with random intercepts and slopes is characterized by

XR ≡




XR
1

. . .

XR
m


 , ZR ≡ blockdiag

1≤i≤m
(XR

i )

and

Cov(uR) ≡ blockdiag
1≤i≤m

(ΣR
i ) ≡ Im ⊗ ΣR.

The matrix ZS contains the smoothing spline basis functions. As in previous sections,

the smoothing spline is plugged in a generalized linear mixed model by assuming

Cov(uS) = D.

The component ZCuC represents random effects with spatial correlation structure

(Wakefield, Best and Waller 2000). As such, different complexities in the data can be

translated into a unified generalized linear mixed model.

10.6 Data Analysis

The data depicted in Figure 2.7 correspond to the number of spikes measured during

successive slow waves in a 24 × 10 array. We have data from 7 different cat, with 12

to 16 successive slow waves per cat. Denote yijl the number of spikes occurring at

location xi = (x1i, x2i) during slow wave j for cat l.

10.6.1 One Cat

First, consider data from one cat only and assume that observations from successive

slow waves are independent. The number of spikes on the surface is modelled using a

Poisson distribution:

yij1 ∼ Poisson(λi)

log(λi) = f(xi)
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Figure 10.5: Choice of knots on the surface.

where f(xi) is modelled non-parametrically using a cubic radial spline function:

log(λi) = β0 + β1x1i + β2x2i +

K∑

k1=1

ukC(‖(x1i, x2i) − (κ1k, κ2k)‖) (10.6)

with C(.) as in (10.5) with d = 2 and m = 2. Defining Xi = [ 1 xT
i

] and Z as in

Section 10.4.2, we can write the model as log(λ) = Xβ + Zu. A regular lattice of 46

equidistant knots κk = (κ1k, κ2k) is chosen (Figure 10.5). Figure 10.6 shows the fit

f̂(xi) = Xβ̂ + Zû obtained by treating the coefficients of the knots as fixed effects.

The top panel is a contour plot, showing the contour levels of the estimated λ. The

dots represent the observed values for this cat, with the size proportional to the mean

number of spikes at that location. The bottom panel is a three-dimensional graph of

the fitted model. This plot seems to overfit the data, rather than smoothing it. By

treating the above model as a mixed model with

uk ∼ N(0, σ2
u),

a smooth fit is obtained. Indeed, fitting a smoothing spline as a generalized lin-

ear mixed model has the advantage that the amount of smoothing is selected auto-

matically. In this example, the selected smoothing parameters is λ̂ = (1/σu)1/3 =

(1/0.003326)1/3 = 6.70. Figure 10.7 shows the fit f̂(xi) = Xβ̂ + Zû obtained using

PQL estimation. A smooth fit, indicating the location of spikes on the surface, is

obtained.

It is of interest to test whether the predictor variable xi has an effect on the
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Figure 10.6: Estimated number of spikes on the preparation of cat 1, based on Model 1

by treating the coefficients of the knots as fixed effects.
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Figure 10.7: Estimated number of spikes on the preparation of cat 1, based on Model 1,

by treating the coefficients of the knots as random effects.
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response. In this case, the null hypothesis is

H0 : β1 = β2 = σ2
u = 0 versus H1 : β1 6= 0, β2 6= 0 or σ2

u > 0.

As the null-hypothesis is on the boundary of the parameter space, classical inference

no longer holds. Let us consider the likelihood ratio test. When testing the hypothesis

H0 : σ2
u = 0 versus H1 : σ2

u > 0, the asymptotic null distribution of the likelihood ratio

test is a mixture of two chi-squared distributions, 1
2χ2

0 + 1
2χ2

1 (Self and Liang 1987).

More generally, the asymptotic null distribution for the likelihood ratio test statistic

for testing the null hypothesis which sets the variance component and s regression

coefficients equal to zero, is a mixture of χ2
s and χ2

s+1, with equal probability 1/2. Note

however that large-sample theory for likelihood ratio test assumes that the number of

subjects approaches infinity (Stram and Lee 1994). In addition, maximum likelihood

estimates of the variance components can be biased. Using REML estimates might

improve the accuracy of the test. However, restricted likelihood can only be used to

compare models with the same mean structure (Verbeke and Molenberghs 2000). For

these reasons, likelihood ratio test based on a mixture of chi-squared distributions

might perform poor when applied to penalized splines (Crainiceanu et al. 2003).

As an alternative, simulation methods can be used to estimate the appropriate null

distribution. This is topic of current research.

10.6.2 Cat-Specific Profiles

In previous section, we considered data from only one isolated segment of the duode-

num. However, data from seven preparations of different cat are available. Both the

number of spikes and the locations of the spike patches are very different among cats.

Therefore, it seems sensible to allow the profiles to vary with the cats. Instead of the

previous model, we specify the model

yijl ∼ Poisson(λil)

with

log(λil) = (β0 + b0l) + (β1 + b1l)x1i + (β2 + b2l)x2i (10.7)

+

K∑

k=1

(uk + νkl)C(‖xi − κk‖),

with uk ∼ N(0, σ2
u). Further, bl = (b0l, b1l, b2l)

T ∼ N(0,Σ) for an unstructured

covariance matrix Σ, allowing for complex departures from the overall structure, and
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νl = (ν1l, . . . , νkl)
T ∼ N(0, σ2

νI). This is equivalent to modelling

log(λil) = f(xi) + gl(xi)

with f(xi) = Xiβ + Ziu as in (10.6) and gl = Xibl + Ziνl random functions with

mean zero, which are modelled as a penalized spline.

The reparameterization ν∗
kl = uk + νkl is used in order to fit the model. Note

that the parameters ν∗
kl are distributed normally with mean zero and variance σ2

ν∗ =

σ2
u + σ2

ν . The covariance matrix Σ is estimated as




1.278 −0.250 −1.232

−0.250 0.060 0.233

−1.232 0.233 1.441


 ,

and the variance σ2
ν∗ , which controls the amount of smoothing, is estimated as 0.040.

Results are shown in figures 10.8 and 10.9 . Each plot shows the cat-specific profile.

The contour plot shows the contour levels in steps of 0.1. It can be seen that the

location of spikes on the surface are different among animals.

It can be argued that the use of one smoothing parameter to fit the cat-specific

profiles is too restrictive, and that each cat requires its own smoothing parameter.

This is possible by assuming ν∗
kl ∼ N(0, σ2

l ). A disadvantage of this approach is that

the number of parameters increases considerably, hampering the estimation.

10.6.3 Successive slow waves

In addition, the number of spikes on each preparation is repeatedly measured, during

successive slow waves. Consequently, these repeated measurements might be corre-

lated. We assume

yitl ∼ Poisson(λitl)

log(λi) = utl + fl(xi)

with utl ∼ N(0, σ2
t ) and fl(xi) the cat-specific profiles as defined in (10.7). The

between-subject variability σ2
t is estimated as 0.086 (s.e.= 0.006). The covariance

matrix Σ is estimated as



1.113 −0.256 −1.205

−0.256 0.071 0.250

−1.205 0.250 1.505


 ,
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cat 1 cat 2

cat 3 cat 4

cat 5 cat 6

cat 7

Figure 10.8: Contour plot of the cat-specific profiles of estimated number of spikes.
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cat 1 cat 2

cat 3 cat 4

cat 5 cat 6

cat 7

Figure 10.9: Three dimensional plot of the cat-specific profiles of estimated number of

spikes.
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Figure 10.10: Random intercept of successive slow waves for different cat.

and the variance σ2
ν∗ , which controls the amount of smoothing, is estimated as 0.037

(s.e.=0.002).

The intercept β0l + utl for each cat during the successive slow waves is shown

in Figure 10.10. It is seen that the intercept during the successive slow waves are

similar for most preparations. The number of spikes occurring at a fixed point on

the surface, but at different time points, are closely related. The effect of a random

intercept for each slow wave on the estimated profile, is that the peaks in the profile

become stronger or weaker, but the estimated location of spikes stays the same. As

an example, the estimated number of spikes in the successive slow waves of cat 4 are

shown in Figures 10.11 and 10.12.

It is also possible to assume that the covariance between the measurements of

two slow wave is a decreasing function of the time lag between them. Thus, an

autoregressive structure might be useful in this context. This is should be investigated

further.

10.7 Discussion

In this chapter, the spatial organization of spike patches occurring in seven isolated

segments of the duodenum were investigated. Spikes tend to occur in some areas and

not in others. This spatial heterogeneity will play a role in determining some aspects
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slow wave 1 slow wave 2

slow wave 3 slow wave 4

slow wave 5 slow wave 6

Figure 10.11: Contour plot of estimated number of spikes during successive slow waves

1 to 6 of cat 4.
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slow wave 7 slow wave 8

slow wave 9 slow wave 10

slow wave 11 slow wave 12

Figure 10.12: Contour plot of estimated number of spikes during successive slow waves

7 to 12 of cat 4.
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of intestinal motility (Lammers et al. 2004).

The mixed model approach for non-parametric regression has important advan-

tages. It can be used both for continuous data, as well as for non-Gaussian data. It

can be easily extended for handling higher-dimensional smoothing problems. It can

handle grouping or other types of correlations in the same model. In addition, it

selects the amount of smoothing in the model automatically.

In this chapter, we used penalized quasi-likelihood methods for fitting the gen-

eralized linear mixed models. However, the approximation can be quite inaccurate

in certain circumstances. A possible alternative is the PQL2 procedure available in

MLwiN software. Another alternative is the use of a Bayesian approach, and the use

of Markov Chain Monte Carlo for estimation and inference. The WinBUGS package

is quite flexible to implement a GLMM. Further research is needed in this context.
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In deze thesis staat het gebruik van flexibele methoden voor het analyseren van gecor-

releerde multivariate data afkomstig uit dierenexperimenten centraal. Correlaties in

de data kunnen ontstaan doordat meerdere metingen worden opgenomen bij een zelfde

dier, doordat dieren gegroepeerd zijn of metingen ruimtelijk aan elkaar verwant zijn.

Bovendien zijn de metingen afkomstig uit deze studies vaak discreet van aard. De

statistische analyse wordt gekenmerkt door de keuze van een kansmodel, een predic-

tor model en een schattingsmethode. Het kansmodel reflecteert de structuur van de

data (type metingen, correlaties in de data, . . . ), terwijl het predictormodel de relatie

beschrijft tussen de respons en mogelijks verklarende variabelen. Bovendien trachten

we steeds gebruik te maken van computationeel aantrekkelijke schattingsmethodes,

waarbij de likelihood functie niet noodzakelijk moet gespecificeerd worden. Het groot-

ste deel van deze thesis is gewijd aan de ontwikkeling van statistische procedures in het

gebied van risicoanalyse bij ontwikkelingstoxicologische studies. Daarnaast worden

andere toepassingsgebieden bekeken zoals electrofysiologie, veterinaire epidemiologie

and gastro-enterologie. De gebruikte data worden beschreven in Hoofdstuk 2.

In de publieke opinie is er een grote bezorgdheid omtrent de blootstelling aan

tal van toxische stoffen. Denken we maar aan de alarmerende geruchten omtrent de

mogelijks schadelijke effecten van dioxine en PCBs in de voedingsketen of in uitstoten

van verbrandingsovens. Andere voor de publieke opinie minder gekende haarden

van toxiciteit kan men terugvinden in geneesmiddelen, die naast hun therapeutische

werking ook bijwerkingen kunnen vertonen, additieven gebruikt in de voedingssector,

enz. Hoewel een nulblootstelling van al de mogelijk toxische stoffen uiteraard ideaal

zou zijn, is dit in de huidige moderne maatschappij niet haalbaar. Vandaar wordt er

getracht de toxische stoffen te identificeren en veilige blootstellingslimieten voor deze

stoffen te bepalen.

Ontwikkelingstoxicologische studies zijn ontwikkeld om het potentiële gevaar van

een blootstelling op de ontwikkeling van een foetus te onderzoeken, en spelen bij-
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gevolg een belangrijke rol op het vlak van de volksgezondheid. In deze context is

het echter ethisch onverantwoord mensen in studies bloot te stellen aan mogelijks

schadelijke stoffen. Bovendien zijn betrouwbare epidemiologische gegevens nauweli-

jks of niet beschikbaar. Bijgevolg wordt er vaak geopteerd voor toxicologische, en in

het bijzonder teratologische experimenten op knaagdieren. Hierbij worden zwangere

moederdieren blootgesteld aan een mogelijks toxische verbinding gedurende de meest

kritische periode van de dracht. Net voor het baren worden de moederdieren gedis-

secteerd. Vervolgens wordt de baarmoeder grondig onderzocht. Men telt het aantal

embryo’s die nooit tot ontwikkeling zijn gekomen en terug in de baarmoederwand zijn

geabsorbeerd. Men telt ook het aantal dode foetussen en het aantal levensvatbare

foetussen. De levensvatbare foetussen worden verder onderzocht op de aanwezigheid

van een malformatie en laag geboortegewicht. Aan de hand van dergelijke experi-

menten wenst men te onderzoeken of de toegediende stof toxisch is en wenst men een

veilig niveau van blootstelling aan de toxische stof te schatten. Dit behoort tot het

domein van de kwantitatieve risicoanalyse.

Risicoanalyse kan men baseren op de berekening van de NOAEL, of “No Ob-

servable Adverse Effect Level”, wat de dosis is juist onder de kleinste dosis die een

statistisch of biologisch significante toename veroorzaakt in vergelijking met de con-

trole. Gezien de vele nadelen van deze aanpak (Williams and Ryan 1996), wordt

veelal verkozen om de kwantitatieve risicoanalyse te baseren op dosis-respons mo-

dellering. Hierbij stelt men een gepast dosis-respons op, welke dan gebruikt wordt bij

de bepaling van de BMD, of “benchmark dosis”. Dit is de dosis waarbij de toename

van het risico ten opzichte van het achtergrond risico gelijk is aan een bepaalde, typ-

isch kleine, waarde, b.v. 10−4. In tegenstelling tot de NOAEL benadering laat deze

aanpak toe om een maat voor variabiliteit van de geschatte veilige dosis te bepalen, al-

sook om de structuur van een toxicologisch experiment in de analyse op te nemen. De

kwantitatieve risicoanalyse gesteund op dosis-respons modellering leidt echter tot een

aantal algemene, relevante onderzoeksvragen. Vooreerst dient men bij de statistische

analyse van gegevens uit toxicologische studies rekening te houden met de genetis-

che verwantschap van foetussen uit een zelfde nest en de gelijkaardige omstandighe-

den voor die foetussen in de baarmoeder. Modellen die het complexe mechanisme

waaruit de data worden gegenereerd, trachten te benaderen, dienen bijgevolg reke-

ning te houden met dit zogenaamde nest-effect. Ook de mogelijke associaties tussen

verschillende types van afwijkingen die bij een foetus kunnen optreden zijn belang-

rijk. Bij de levensvatbare foetussen worden verschillende ontwikkelingsstoornissen,

zoals malformaties en een te laag geboortegewicht, onderzocht. Vaak wordt hierbij

de graad van malformatie opgemeten (bijvoorbeeld normaal, lichte afwijking, zwaar
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misvormd), terwijl het gewicht als een continue variabele wordt gegeven. Bijgevolg

moeten ook statistische modellen ontwikkeld worden om responsen van gemengde aard

(bijvoorbeeld ordinaal en continu) gezamenlijk te modelleren. Verder dient men de

hiërarchische structuur met dode foetussen enerzijds en levensvatbare maar mogelijks

afwijkende foetussen anderzijds mee in rekening te brengen. In dit onderzoeksdomein

bekijken we verscheidene, specifieke deelaspecten: het schatten van een veilige bloot-

stellingslimiet, het toetsen van de nulhypothese dat er geen dosiseffect aanwezig is,

en het beschrijven van een dosis-respons relatie welke de structuur van de data zo

volledig mogelijk in rekening brengt.

Modelleren van data afkomstig van een ontwikkelingstoxicologische studie is com-

plex door de hiërarchische, geclusterde en multivariate structuur van de data. Vooreerst

bekijken we het effect van de mogelijks toxische stof op de aanwezigheid van malfor-

maties bij de ontwikkelende foetus. Het opstellen van een geschikt dosis-respons

model is niet vanzelfsprekend. Echter, keuze van dit model kan invloed hebben op de

kwantitatieve risicoanalyse. Indien we een veilige dosis wensen te bepalen is het zeer

belangrijk dat het model goed aanpast aan de data. In de statistische literatuur wordt

bij het opstellen van een geschikt dosisrespons model nog steeds veel aandacht besteed

aan klassieke veelterm predictoren. Deze zijn echter vaak ontoereikend voor kwan-

titatieve risicoanalyse, te meer daar de extrapolatie naar lage dosissen gebaseerd op

een verkeerd gespecificeerd dosisrespons model kan leiden tot onbetrouwbare virtueel

veilige dosissen. Als alternatief kunnen fractionele veeltermen, zoals voorgesteld door

Royston and Altman (1993), aangewend worden. Deze veeltermen passen nog steeds

binnen de klasse van (veralgemeende) lineaire modellen, maar bieden een veel grotere

verscheidenheid aan functionele vormen dan de klassieke veeltermen. In Hoofdstuk 4

tonen we aan de hand van uitgebreide simulatiestudies hoe misleidend het blindelings

toepassen van klassieke veeltermen kan zijn, en hoe fractionele veeltermen een meer

betrouwbare schatting geven van een veilige dosis, zelfs indien het kansmodel fout

gespecificeerd is.

In voorgaande paragraaf werden fractionele veelterm predictoren voorgesteld als

alternatief voor de conventionele lineaire predictoren voor de parameters van een

dosis-respons model. We kunnen echter ook opteren voor een specifiek type van niet-

lineaire predictoren, waar in plaats van een lineaire functie van de toegediende dosis

een machtsfunctie (α + βdosisγ) wordt beschouwd. Dit geeft echter aanleiding toch

een niet-triviaal statistisch probleem, namelijk het toetsen van de nulhypothese dat er

geen dosiseffect is. De nulhypothese dat er geen dosiseffect is, is in dit geval equivalent

met het nul stellen van het product van twee regressie-parameters. Onder die nulhy-

pothese zijn de regressie-parameters bijgevolg niet identificeerbaar. Dit resulteert in
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problemen indien voor een frequentistische aanpak wordt gekozen. Een bayesiaanse

benadering laat toe om aan de hand van Bayes-factoren deze nulhypothese te toet-

sen. In Hoofdstuk 5 wordt gëıllustreerd hoe we de nulhypothese van geen trend in

het machtsmodel kunnen testen in de setting van gecorreleerde binaire gegevens.

In de voorgestelde toxicologische studies worden de levensvatbare foetussen onder-

zocht op de aanwezigheid van malformaties en wordt het geboortegewicht opgemeten.

Beide responsen zijn belangrijke indicatoren om de toxiciteit van een stof te bepalen.

Vaak zal men voor elk van de 2 soorten responsen een apart dosis-respons model

opstellen, waarna een “veilige limiet” wordt bepaald voor de meest gevoelige respons.

Vermits de beide responsen echter gecorreleerd zijn is het meer aanvaardbaar om een

gezamenlijke verdeling te formuleren voor responsen van gemengde aard (continu en

discreet). Terwijl methodes voor het gezamenlijk modelleren van meerdere continue

gegevens goed gekend zijn (Johnson en Wichern 1992), is de keuze van een verdel-

ing voor gemengd continu en ordinale variabelen geen vanzelfsprekende keuze. Een

mogelijke benadering die in de literatuur vaak gebruikt wordt bestaat erin om de

gezamenlijke verdeling te factoriseren in een marginale en een conditionele compo-

nent, waarbij het conditioneren ofwel op de discrete ofwel op de continue respons kan

gebeuren (Catalano 1997). Echter, het bepalen van een veilige blootstellingslimiet is

met behulp van deze methode niet evident, want hoewel deze methode wel corrigeert

voor de associatie tussen laag geboortegewicht en misvorming kan een schatting voor

deze maat niet rechtstreeks bekomen worden. Dus, een uitdrukking voor de gezamen-

lijke kans dat een foetus aangetast is (i.e., malformatie en/of laag geboortegewicht) is

moeilijk te specificeren. In Hoofdstuk 6 beschrijven we een Plackett-Dale methode als

alternatieve methode voor het analyseren van gemengd ordinale/continue gegevens

(Plackett 1965), waar verondersteld wordt dat de latente malformatie variabelen een

Plackett verdeling volgen. De Plackett-Dale benadering maakt gebruik van een odds

ratio om de associatie tussen malformatie en gewicht te beschrijven. Deze methode

laat toe om de bivariate intra-foetus associatie te schatten zodat de kans op malfor-

matie en/of laag geboortegewicht kan gespecificeerd worden met het oog op kwanti-

tatieve risicoanalyse. Verder worden aparte dosis-respons functies gespecificeerd voor

zowel de ordinale als de continue variabele. En tot slot houden we rekening met de

correlaties als gevolg van de clustering in het nest. Hierbij maken we gebruik van de

pseudo-likelihood methode (Arnold and Strauss 1991).

Daar de verschillende gebeurtenissen kunnen plaatsvinden op verschillende tijd-

stippen in de ontwikkeling, is er een natuurlijke hiërarchie aanwezig in de verschillende

responsen (Williams en Ryan 1996). Door een nadelig effect in een vroeg stadium in

de ontwikkeling kan de implantatie opnieuw worden geabsorbeerd in de baarmoed-
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erwand (resorptie) of loopt een foetus het risico dat hij niet-levensvatbaar is. Ver-

volgens hebben foetussen die de ganse zwangerschap hebben overleefd mogelijks een

laag geboortegewicht en/of vertonen een malformatie. In voorgaande hoofdstukken

gebeurde het bepalen van het risico van blootstelling steeds aan de hand van de metin-

gen bij de levensvatbare foetussen. Echter, ook het aantal foetussen in een worp kan

bëınvloed worden door de toegediende toxische stof. De worpgrootte is dus eveneens

een stochastische variabele, afhankelijk van de dosis. De klassieke manier om een do-

sisgerelateerde trend in de worpgrootte in rekening te brengen is door de worpgrootte

als covariaat in het model te incorporeren. Het is echter meer aangewezen om dit

dosis effect rechtstreeks te modelleren. In Hoofdstuk 7 beschrijven we een Bayesiaans

model welke de hiërarchische structuur beschrijft, en welke toelaat een veilige dosis

te bepalen door alle informatie in de data in rekening te brengen.

In de resterende hoofdstukken worden verschillende toepassingsgebieden bekeken.

De toepassing en ontwikkeling van statistische methodes voor de analyse van gecor-

releerde discrete data, met het oog op het beantwoorden van specifieke onderzoeksvra-

gen, staat centraal. In Hoofdstuk 8 wordt de functionaliteit van neuronen in de herse-

nen bestudeerd. Hier wordt aangenomen dat neuronen informatie over een stimulus

kunnen verspreiden door het geven van impulsen. Enerzijds gebeurt dit door het

aantal impulsen in een bepaalde neuron te verhogen, en anderzijds door de synchro-

nisatie van de impulsen in verschillende neuronen. Deze veronderstellingen wensen we

te toetsen aan de hand van een statistische methode welke de synchroniciteit tussen

neuronen meet. De CSM, of ‘conditionele synchroniciteitmaat’, beschrijft de kans

waarmee neuronen samen een impuls uitstoten, gegeven dat er activiteit is in één van

de neuronen. Een model voor gecorreleerde binaire data wordt voorgesteld, welke

zowel de activiteit in de neuronen afzonderlijk, als de synchroniciteit aan de hand van

de CSM beschrijft.

In Hoofdstuk 9 staat een dierenziekten survey uit België centraal. Gebaseerd

op serologische gegevens van een prevalentie studie van het boviene herpesvirus-1

bestuderen we de infectiedruk. De infectiedruk is een biologische parameter die de

snelheid weergeeft om op een bepaalde leeftijd gëınfecteerd te worden. Het is in feite

de afgeleide functie van de prevalentie curve van gëınfecteerde subjecten als func-

tie van de leeftijd. Ook hier speelt clustering een cruciale rol aangezien runderen

uit een zelfde bedrijf meer gelijkaardig zullen zijn in vergelijking met runderen uit

verschillende bedrijven door gelijke levensomstandigheden en overdraagbaarheid van

de ziekte. Bovendien is de kans op een infectie gerelateerd met de grootte van het

bedrijf, waardoor de probleemstelling zeer nauwkeurig moet worden omschreven. Het

belang van het gebruik van modellen welke rekening houden met de clustering wordt
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getoond, alsook de mogelijkheid voor het schatten van de prevalentie en de infec-

tiedruk. Door op gepaste wijze de correlaties in rekening te brengen kunnen zowel

populatiegemiddelde als bedrijfsspecifieke patronen van de prevalentie en infectiedruk

bestudeerd worden.

Hoofdstuk 10 is gewijd aan een toepassing in de neuro-gastroenterologie. In deze

context wensen we het gedrag te bestuderen van impulsen gegenereerd door neu-

ronen in de darmwand gedurende opeenvolgende zogenaamde slow waves. Zowel de

ruimtelijk als tijdsafhankelijke trend werd gemodelleerd door het gebruik van flexibele

modellen. GLMM, of ‘generalized linear mixed model’, kunnen aangewend worden

om de ruimtelijk geordende data te ‘smoothen’ door het verband van mixed models

met penalized splines. Door het algemene kader van de GLMMs kan smoothing en

clustering op uniforme wijze in het model gebracht worden.


