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1
Introduction

The study of non-negative response variables is crucial andtakes several forms in a wide

variety of areas of modern scientific investigations. One ofthese is lifetime or survival

time studies, where the response variable is expressed as the time until certain event of

interest (time-to-event endpoint). In engineering for example, researchers are often in-

terested in studying the time until the break down of a machine component. Another

example is in the social sciences, where interest lies in theduration of strikes, duration

of unemployment or the duration of marriages in societies. In medical settings, survival

times emerge from investigations that focus on the time until recurrence of cancer tu-

mors, the time to recovery after a surgical operation or the life span of some biological

units, among others. Nonetheless, there are also cases in survival time studies where the
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2 1. Introduction

term ”time” may not represent the literal time. For instance, in quality control or reliabil-

ity in manufacturing, this could be the amount of force needed to render a part unusable.

While in economics, it could also be the amount payed by an insurance company in case

of damage.

In various fields of survival time studies, researchers are often confronted with the dis-

tinguishable and unifying phenomenon of censoring. This surfaces as a consequence of

the fact that, for some study units, the exact survival time is known, whereas for others

only a partial information is available. Censoring in general occurs for various reasons.

Depending on the underlying reason for censoring, we can broadly distinguish between

three types of censoring, namelyType I, Type II andRandomcensoring schemes. Type

I censoring occurs when the censoring time is fixeda priori. While in type II censoring,

the censoring time is determined by a fixed number of exact survival times to be ob-

served. In both these types of censoring however, the censoring mechanism is controlled

by the investigator. In a laboratory experiment for example, a researcher who wants to

investigate the lifespan of a number of fluorescent tubes mayput them on a test in order

to record their times to failure. Some tubes may take a long time to burn out and it may

not be feasible for the experimenter to wait that long. Therefore, he/she may decide to

end the experiment at a prescribed time (i.e. fixed censoringtime). In such situation, the

exact lifetime of some tubes may not be observed and this leads to Type I censoring. On

the other hand, the investigator may not have a prior knowledge of the appropriate fixed

censoring time and may chose to wait until a prespecified proportion of the tubes burns

out. The exact lifetime of some tubes may not be observed in this second scenario as

well, in which case we have type II censoring. Obviously, thecensoring mechanisms in

these scenarios are under the control of the investigator.

Random censoring on the other hand, is beyond the control of the investigator. It occurs

when the response random variable of each study unit is associated with a potential

censoring random variable. Thus, in a study where the lifetime of primary interest is

the time until death from a heart disease, it is possible thatsome study units would die

from other diseases and their exact lifetime cannot be observed. Also, patients with

inoperable cancer are often taken off study when their tumorgrows in size by a certain

amount or when new lesions are detected and as such their exact lifetime cannot be
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observed. Clearly, the censoring variable (i.e. death fromother diseases or taken off

study) is random and cannot be controlled by the researcher.

Between the aforementioned censoring schemes, random censoring is the most predom-

inant and can further be discerned as three types. The first israndom left censoringand

occurs when the available partial information is an upper bound on response of interest.

To illustrate this, consider the African children example of Miller (1981) where interest

is on knowing the age at which certain group of children learnto perform a certain task.

At the beginning of the research, some children already knewhow to perform the task.

In such cases, the only available information is that those children can perform the task

at a younger age. Thus, the age at which those children knew the task is left censored at

their respective current age.

The second israndom right censoring, where the available partial information is a lower

bound on the response. In the heart disease example, if a patient dies without a heart

disease then the only information on his time to heart disease is that this time is greater

than the observed death time and as such is right censored. Both these types of random

censoring can be considered as special cases of the third type calledinterval censoring.

In this latter type of censoring, the available partial information is that the response

time of interest falls within a certain interval. This is thecase for example in a HIV-

AIDS study, where the study subjects are examined yearly forHIV infection. Therefore,

if a subject is not infected at year 3 but found to be infected at year 4, then the only

information on the time of infection is that it is less than 4 years but greater than 3 years.

As a result, the infection time of that subject is interval censored between year 3 and 4.

Although censoring is regarded as nuisance, it is often an integral component of most

survival studies. As a result, the statistical analysis of such data sets requires the use of

special techniques. Another characterizing feature of survival studies is the availability

of some additionally measured variables (covariates). These covariates in most cases

are not of primary interest to the researcher, but have the potential to influence the dis-

tribution of the time until the event of interest. In other words, the distribution of the

lifetime variables varies with different covariate values. As an example, imagine a study

that is supposed to provide insight into the distribution ofthe length of stay of patients in

hospital admission. Then it is apparent that the distribution of interest may be influenced
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by the age of the patient and/or the severity of his/her medical condition.

In this thesis, we provide some new techniques that are associated with the statistical

analysis of censored survival data. Primarily, we focus on generalizations of the random

right censorship Koziol-green model in the absence and presence of covariates. For easy

exposition, we first give a more rigorous introduction of thesetting without covariates

in Section 1.1. In that same section, we give a brief review ofsome basic and existing

statistical techniques that are usually employed in this respect. Afterwards, we introduce

our new extension of the Koziol-Green model in Subsection 1.1.1 for the case without

covariates. In Section 1.2, we vividly describe the settingwhereby some covariates

which are thought to contain some information about the lifetime of interest are collected

together with the censored responses. There, we introduce the conditional Koziol-Green

model and its new generalization thereof. Before proceeding, it is important to note that

the representation of censored data in Section 1.2 is based on fixed design (covariate)

points. Nevertheless, the associated methodologies can beapplied to the random design

settings, with some modifications.

1.1 Random right censored survival time

SupposeY1,Y2,Y3, ...,Yn is a sample ofn independent identically distributed non-negative

response variables with a continuous distribution function F(t) = P(Y1 ≤ t). Frequently,

these responses are subject to random right censoring. Thatis, for everyYi ∼ Y (i =

1,2,3, ...,n), there exist a potential non-negative random variableCi ∼C, called censor-

ing variable with distribution functionG(t) = P(C1 ≤ t) such that we can only observe

Zi = min(Yi ,Ci) andδi = 1{Yi ≤ Ci} where the couples(Zi ,δi) are independent copies

of (Z,δ ). Let us denote the distribution of the theZ-sample byH(t) = P(Z ≤ t) and

assume thatY andC are independent. Then we can write

1−H(t) = (1−F(t))(1−G(t)).

Under this assumption, the well known Kaplan and Meier (1958) product limit estimator

for the distribution functionF serves as the inferential bases for the lifetime of interest
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and is given by

FKM
n (t) = 1−

{

∏
i:Zi≤t

(
n−Ri

n−Ri +1

)δi
}

,

whereRi is the rank of theith observation in theZ-sample. This estimator is a step

function which jumps only at the uncensored observations. In the absence of censoring,

it is easy to see that this estimator reduces to the empiricaldistribution function

Fn(t) =
1
n

n

∑
i=1

1{Yi ≤ t}.

In some settings however, the censoring variable is informative to the lifetime variable

through its distribution function. In such case, Koziol andGreen (1976) considered a

sub-model under the assumption that the survival time variableY and the censoring time

variableC are independent. In the Koziol-Green sub-model, the authors assumed that

the distribution function of the censoring variable is a power of the distribution of the

lifetime variable. Mathematically, this is expressed as

1−G(t) = (1−F(t))β , ∀t ≥ 0 (1.1)

for someβ > 0. This Koziol and Green (1976) sub-model is equivalent to the extra as-

sumption that the observable timeZ and censoring indicatorδ are mutually independent

(Sethuraman (1965), Kochar and Proschan (1991)). This means that, the instantaneous

event rate is proportional to the instantaneous rate of censoring. This extra assumption,

introduced by Koziol and Green (1976) not only allowed the censored observations to

contribute to the estimation of survival distribution function of interest, but also marked

the era of informative censoring within the domain of lifetime analysis whereby the

censoring distribution is allowed to depend on unknown parameters of the lifetime dis-

tribution. In light of this, the Koziol and Green (1976) model received considerable

attention in the statistical literature. For example, Abdushukurov (1987) and Cheng and

Lin (1987) independently derived the model

FACL(t) = 1− (1−H(t))γ

for the survival time distribution function under the Koziol and Green (1976) characteri-

zation, whereγ = 1
1+β = P(δ = 1) is the expected proportion of uncensored observations
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andH(t) = P(Z ≤ t) is as defined earlier. Upon replacingγ andH(·) by appropriate es-

timators, these authors obtained a non-parametric maximumlikelihood estimator for the

survival time distribution function under the Koziol-Green model and later studied its

large sample properties. The authors also showed that the non-parametric maximum

likelihood estimator under the Koziol and Green (1976) model is asymptotically more

efficient than the corresponding product limit estimator ofKaplan and Meier (1958).

The estimator studied by Abdushukurov (1987), Cheng and Lin(1987) is of the form

FACL
n (t) = 1− (1−Hn(t))

γn (1.2)

whereγn is the proportion of uncensored observations andHn(t) is the empirical distri-

bution of the observed time, which are respectively given by

γn =
1
n

n

∑
i=1

1{δi = 1},

Hn(t) =
1
n

n

∑
i=1

1{Zi ≤ t}.
(1.3)

For a detailed review of the statistical literature on Koziol and Green (1976) model, we

refer to Csörgó (1988). He also developed a test to check the validity of the Koziol-

Green model and showed that there are many data sets for which(1.1) is not satisfied.

Equivalently, there are many practical settings for which the observable timeZ and cen-

soring indicatorδ are not independent. For those cases, it may be questionableto use

the estimator (1.2) as the inferential basis for the lifetime. The first contribution of this

thesis is to derive and study an extended estimator which hasthe ability to overcome the

limitations of (1.2). We introduce such estimator in Section 1.1.1 and later proceed with

a detailed study of its properties and applicability in Chapters 2 and 3.

1.1.1 The extended Koziol-Green model under dependent censoring

As mentioned above, the applicability of the estimator (1.2) proposed independently

by Abdushukurov (1987) and Cheng and Lin (1987) under the classical Koziol-Green

model (1.1) could be limited in practice, due to the independence assumption that it

imposes on the observable timeZ and the censoring indicatorδ (Csörgó (1988)). Here,
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we ameliorate this limitation and assume instead, the existence of some known copula

function C that describe the joint distribution ofZ andδ . Mathematically, we express

this as

Hu(t) = P(δ = 1,Z ≤ t) = C (γ ,H(t)), (1.4)

whereγ andH(·) are as previously defined. In the parlance of Klement et al. (2007),

C (γ ,H(t)) is known as the verticalγ-section of the copulaC , for a fixedγ ∈ (0,1).

There, the set of all copulas with the same verticalγ-section were studied. The authors

also found copulas that bound both below and above the set. Because the censoring in-

dicatorδ is a discrete variable, we also know from Sklar’s theorem (see Nelsen (2006))

thatC may not be unique. As a result, it is important to be consciousand not directly

interpret (1.4) as a dependence model, but rather as a deviceto help relax the Koziol and

Green (1976) characterization (1.1). Furthermore from Genest and Nešlehová (2007), it

is also clear that the copula functionC alone is not sufficient to describe the association

structure betweenZ andδ . The marginal distributions are also needed for this. However,

it turns out that the non-uniqueness of the copula functionC does not have any signifi-

cant practical consequence on the estimator for the distribution functionF of the survival

time. In the sequel, we will see that this estimator does not change when a copula func-

tion with the same verticalγ-section is chosen. In passing, note thatγ = 0 corresponds

to the situation with only censored observations, in which case it is not feasible to make

inference about the survival time. Whenγ = 1, then we have fully observed lifetimes

and it is not necessary to account for censoring in order to make inference about the

lifetime distribution. Thus, it is reasonable to assume that γ ∈ (0,1).

On the other hand, it is imperative to make a non-verifiable assumption about the re-

lationship between survival timeY and the censoring timeC in order to proceed and

derive an estimator for the marginal distribution functionof the survival time (Tsiatis

(1975)). It is common in time to event analysis to assume independence between these

random variables. In some situations however, this assumption may be doubtful and

unrealistic. For example, in a cancer study where the event of interest is the recurrence

of a cancer tumor and the censoring event is death, or in industrial testing, it may occur

that a piece of equipment is taken away (i.e. censored) because it shows signs of future

failure. Adopting the strategy of some previous authors (e.g. Zheng and Klein (1995),
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Rivest and Wells (2001), Braekers and Veraverbeke (2005)),we solve this problem by

using a copula model to describe the possible dependence structure ofY andC. In order

to obtain tractable results, we only concentrate on the class of Archimedean copulas to

model the joint distribution ofY andC. That is,

S(t1, t2) = P(Y > t1,C > t2) = ϕ [−1]
(
ϕ(F̄(t1))+ ϕ

(
Ḡ(t2)

))
(1.5)

whereF̄(t) = 1−F(t) andḠ(t) = 1−G(t) are survival distribution functions ofY and

C respectively,ϕ : [0,1] → [0,∞] is a known continuous, convex and strictly decreasing

function withϕ(1) = 0. We denote byϕ [−1] the pseudo-inverse ofϕ which is defined as

in Nelsen (2006),

ϕ [−1] =





ϕ−1(s) , 0≤ s≤ ϕ(0)

0 , ϕ(0) ≤ s≤ ∞
.

Using relation (1.5), we now derive an estimator for the distribution functionF under

model (1.4). To do so, we work in parallel with Tsiatis (1975)and obtain from (1.5) that

dHu(t)
dt

= − ∂
∂ t1

S(t1, t2)

∣∣∣∣
t=t1=t2

=
ϕ ′(F̄(t))

ϕ ′ (S(t, t))
dF(t)

dt
=

ϕ ′(F̄(t))
ϕ ′ (H̄(t))

dF(t)
dt

,

with ϕ ′(u) = d
duϕ(u) andS(t, t) = ϕ−1

(
ϕ(F̄(t))+ ϕ(Ḡ(t))

)
= 1−H(t) = H̄(t).

Reorganizing this equation, gives

ϕ ′ (F̄(t))
dF(t)

dt
= ϕ ′ (H̄(t))

dHu(t)
dt

.

By integrating on both sides and withϕ(F̄(0)) = ϕ(1) = 0, we obtain that

F̄(t) = ϕ−1
(
−
∫ t

0
ϕ ′(H̄(s))dHu(s)

)
. (1.6)

From the informative censoring structure described in the extended Koziol-Green model

and given by (1.4), we find that

dHu(s) = C01(γ ,H(s))dH(s)

whereC01(u,v) = ∂
∂vC (u,v) is the first partial derivative of the general copula function

C (u,v) with respect to the second coordinate. Introducing this later relation into (1.6) in

conjunction with a variable transformation, we obtain the model

F̄(t) = ϕ−1
(
−
∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

)
,
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in which we allow for dependent censoring as well as non-independency ofZ andδ . In

the above model, we note that the copula functionC only enters through its derivative

C01 which is a conditional probability (see for example Nelsen (2006, page 41)). When

the survival time is independent of the censoring time, thenthis model connects to the

ideas of some previous authors through the relation

P(δ = 1|Z = t) = C01(γ ,H(t))

of the conditional probability of an uncensored observation, given the observed lifetime.

For instance, in the semiparametric random censorship model of Dikta (1998), the author

assumed a parametric model for the above conditional probability. While Cao et al.

(2005), used a non-parametric kernel smoother for this sameconditional probability.

To find the estimator

F̄n(t) = ϕ−1
(
−
∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw

)
(1.7)

for the survival distributionF̄(t) in the extended Koziol-Green model, we replacedγ and

H(t) by their empirical counterparts which are as defined in (1.3).

If we takeC such thatHu(t) = γH(t), we easily see that this estimator simplifies to

F̄n(t) = ϕ−1(γnϕ(H̄n(t))) , (1.8)

which is the unconditional version of the conditional estimator of Braekers and Veraver-

beke (2008). Moreover, if we also assume that the censoring time and the survival time

are independent, then (1.8) reduces to the estimator of Abdushukurov (1987) and Cheng

and Lin (1987) as displayed in (1.2). As a result, we obviously see that the estimator

(1.7) is more general and includes (1.8) and (1.2) as specialcases (se also Table 1.1).

In Chapter 2, we pursue further the estimator (1.7) and obtain some desirable theoretical

results. In addition, we present a goodness-of-fit test to determine the validity of this

estimator in practical applications in Chapter 3. These results can also be found in

Gaddah and Braekers (2010a,b).
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1.2 Random right censored survival time in fixed design

In the previous section, we meticulously described censored survival data in the ab-

sence of covariate information and later introduced the extended Koziol-Green model

which can be used for that setting. The purpose of the currentsection is to also give a

detailed description of the setting with covariates. LetY1,Y2,Y3, ...,Yn denote indepen-

dent responses observed at fixed design points 0≤ x1 ≤ x2 ≤ x3 ≤ ... ≤ xn = 1. Sim-

ilar to the previous setting (i.e. scenario without covariates), it often occurs that these

responses are subject to random right censoring. In other words, there exist at each de-

sign pointxi , a non-negative random variableCi such that the observable variables are

Zi = min(Yi ,Ci) and δi = 1{Yi ≤ Ci}. Also, let Fxi (t) = P(Yi ≤ t),Gxi (t) = P(Ci ≤ t)

andHxi (t) = P(Zi ≤ t) denote the distribution functions ofYi ,Ci andZi respectively. At

a fixed design pointx∈ [0,1], we further writeFx,Gx andHx for the distribution func-

tions of the response variableYx at x, the censoring variableCx at x and the observable

time Zx = min(Yx,Cx) at x. It is important to note that we writeYi ,Ci ,Zi,δi instead of

Yxi ,Cxi ,Zxi ,δxi for the design pointsxi . If we assume thatYi andCi are conditionally

independent, given the covariatexi , then we can write

1−Hxi(t) = (1−Fxi (t))(1−Gxi (t)). (1.9)

In analogy with the classical Koziol-Green model (1.1), we can also assume that

1−Gx(t) = (1−Fx(t))
βx, x∈ [0,1] (1.10)

whereβx > 0 is allowed to depend only onx. Using assumption (1.9) and model (1.10),

subsequently leads to the estimator

FVC
xh (t) = 1− (1−Hxh(t))

γxh (1.11)

in the conditional Koziol-Green model (1.10), where

Hxh(t) =
n

∑
i=1

wni (x,hn)1{Zi ≤ t} and γxh =
n

∑
i=1

wni (x,hn)1{δi = 1} (1.12)

are the Stone (1977) type estimators forHx(t) andγx = 1
1+βx

= P(δx = 1) respectively,

with wni (x,hn) being the Gasser-Müller type weight functions based on thekernelK and



1.2. Random right censored survival data in fixed design 11

defined by

wni (x,hn) =
1

cn(x,hn)

∫ xi

xi−1

1
hn

K

(
x−z
hn

)
dz, i = 1,2, ...,n

cn(x,hn) =

∫ xn

0

1
hn

K

(
x−z
hn

)
dz

depending on a positive bandwidth sequence{hn}, which tends to zero asn→ +∞. The

estimator (1.11) was introduced and studied by Veraverbekeand Cadarso-Suárez (2000).

It is the conditional version of the one proposed by Abdushukurov (1987) and Cheng and

Lin (1987) under the classical Koziol-Green model.

Recently, Braekers and Veraverbeke (2008) further studiedthe estimator (1.11) under

the conditional Koziol-Green model (1.10). More specifically, Braekers and Veraver-

beke (2008) extended (1.11) to accommodate possible dependence between the survival

time variableYx at x and the censoring variableCx at x. Also, the authors proved the

consistency and asymptotic normality of their estimator. In this thesis, we obtain fur-

ther insight into this recent extension of Braekers and Veraverbeke (2008) under the

conditional Koziol-Green model. In particular, we complement their work with a weak

convergence result. As an application of the weak convergence, we show the asymp-

totic efficiency of the conditional estimator of Braekers and Veraverbeke (2008) over the

copula graphics estimator of Braekers and Veraverbeke (2005). In addition, we develop

a confidence band and illustrate its use on simulated as well as real data set. For con-

venience, we reintroduce this estimator below and defer theassociated new results to

Chapter 4.

1.2.1 The conditional Koziol-Green model under dependent censoring

In what preceded, we introduced the general setting of censored data in the presence of

covariate information. In analogy with the setting withoutcovariates, we need to make a

non-verifiable assumption about the underlying dependencestructure that describes the

relationship between the lifetime variable and the censoring variable in order to uniquely

estimate the marginal distribution function of the lifetime variable. Conditional on the

covariate, it is common to assume independence between these variables. However, in
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some situations this assumption may not be feasible. For example, in medicine, we are

often interested in the time until dying from a certain disease. This time may be related to

the time until dying from another disease. Therefore, we again need a dependence model

for the association between the time until event of interestand the time until censoring

(i.e. death from other diseases). In line with (1.5), we assume that at a fixed design point

x∈ [0,1], the join survival distribution of the lifetimeYx and censoring timeCx satisfies

Sx(t1, t2) = ϕ [−1]
x
(
ϕx (F̄x(t1))+ ϕx

(
Ḡx(t2)

))
(1.13)

where for eachx∈ [0,1], F̄x = 1−Fx andḠx = 1−Gx are the conditional survival dis-

tribution functions of the lifetimeYx and censoring timeCx respectively,ϕx : [0,1] →
[0,+∞] is a known continuous, convex strictly decreasing functionwith ϕx(1) = 0. ϕ [−1]

x

is the pseudo inverse ofϕx and given by

ϕ [−1]
x (s) =





ϕ−1
x (s) , 0≤ s≤ ϕx(0)

0 , ϕx(0) ≤ s≤ +∞

Similar to the derivation of the extended estimator (1.7) introduced earlier, it follows

from relation (1.13) that

ϕ ′
x(F̄x(t))

∂
∂ t

Fx(t) = ϕ ′
x(H̄x(t))

∂
∂ t

Hu
x (t) (1.14)

with Hu
x (t) = P(Zx ≤ t,δx = 1),ϕ ′

x(u) = ∂
∂uϕx(u) and

H̄x(t) = 1−Hx(t) = Sx(t, t) = ϕ [−1]
x
(
ϕx (F̄x(t))+ ϕx

(
Ḡx(t)

))
.

By the extra assumption (1.10), which is equivalent to the conditional independence of

Zx andδx, it follows that

Hu
x (t) = P(Zx ≤ t)P(δx = 1) = Hx(t)γx.

Plugging the preceding display into equation (1.14) and integrating on both sides yields

ϕx(F̄x(t)) = γxϕx(H̄x(t)) (1.15)

On recalling thatH̄x(t) = ϕ [−1]
x
(
ϕx(F̄x(t))+ ϕx

(
Ḡx(t)

))
for all t ≥ 0, the preceding dis-

play can be expressed as

Ḡx(t) = ϕ [−1]
x (βxϕx(F̄x(t))) , βx =

1− γx

γx
(1.16)
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which is equivalent to relation (1.10) under dependent censoring.

Relations (1.15) and (1.16) are given in Braekers and Veraverbeke (2008). To find an

estimator for the conditional distribution function of thelifetime, these authors rewrote

relation (1.15) as

Fx(t) = 1−ϕ [−1]
x (γxϕx(H̄x(t)))

and replaced the different unknown quantitiesγx andHx(t) by the corresponding estima-

torsγxh andHxh(t) to obtain

FBV
xh (t) = 1−ϕ [−1]

x (γxhϕx(H̄xh(t))) (1.17)

whereγxh andHxh(t) are the Stone (1977) type non-parametric estimators as given in

(1.12). In Gaddah and Braekers (2009), we further studied the conditional Koziol-Green

model under dependent censoring and proved the weak convergence of the process as-

sociated with the estimator (1.17) to a zero mean Gaussian process. In Chapter 4 of this

thesis, we give this new result together with some applications.

1.2.2 The generalized conditional Koziol-Green model under dependent

censoring

In the preceding section, we introduced the conditional Koziol-Green estimator, which

was developed under two different models. As a first model, the joint distribution func-

tion of the lifetime variable and the censoring variable is described by means of an

Archimedean copula function. For the second model, the additional information con-

tained in the marginal distribution functions of the lifetime variable and the censoring

variable is captured through relation (1.16), which is equivalent to the conditional in-

dependence ofZx andδx under dependent censoring. In some applications however,Zx

andδx may not be independent, even after conditioning on the covariates. This creates

additional challenges in making inference about the marginal conditional distribution

functionFx of the lifetimeYx at a design valuex∈ [0,1]. In the spirit of Section 1.1.1, we

overcome this potential difficulty (in the presence of covariates) in the current section

by allowing for possible dependence betweenZx andδx. In particular, we introduce a
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generalization of the conditional Koziol-Green model (1.16) where we assume that the

survival function of the censoring variable is a general function of that of the lifetime

variable and is given by

Ḡx(t) = µx(F̄x(t)) , t > 0 (1.18)

with µx(ω) a non-decreasing function ofω ∈ [0,1], µx(0) = 0 andµx(1) = 1. We select

this functionµx(·) such that the sub-distribution of the uncensored observations satisfies

Hu
x (t) = P(Zx ≤ t,δx = 1) = Cx(γx,Hx(t)) (1.19)

whereCx(·, ·) is some known copula function with the preceding relation following di-

rectly from Sklar’s theorem, Nelsen (2006). In representation (1.19),γx = P(δx = 1) is

as before, the conditional expected proportion of the uncensored observations at a fixed

covariate valuex ∈ [0,1]; andHx(t) = P(Zx ≤ t) is the conditional distribution of the

observable timeZx atx∈ [0,1].

To find the functionµx(·) we proceed as follows. First, we note from the derivation of

the conditional Koziol-Green estimator that

Hu
x (t) =

∫ t

0

ϕ ′
x(F̄x(s))

ϕ ′
x(H̄x(s))

dF(s) = Cx(γx,1− H̄x(t)) (1.20)

Second, we recall that

H̄x(t) = ϕ [−1]
x

(
ϕx(F̄x(t))+ ϕx(Ḡx(t))

)
.

Substituting the generalized Koziol-Green model (1.18), we obtain

H̄x(t) = ϕ [−1]
x (ϕx(F̄x(t))+ ϕx(µx(F̄x(t))) ,

which upon plugging into (1.20) yields
∫ t

0

ϕ ′
x(F̄x(s))

ϕ ′
x

(
ϕ [−1]

x (ϕx(F̄x(s))+ ϕx(µx(F̄x(s)))
)dF(s)

= Cx

(
γx,1−ϕ [−1]

x (ϕx(F̄x(t))+ ϕx(µx(F̄x(t))))
)

. (1.21)

Next, we setω = F̄x(t) and after differentiating the preceding equation on both sides and

rearranging, we obtain

µ ′
x(ω) =

ϕ ′
x(ω)

ϕ ′
x(µx(ω))


 1

Cx,01

(
γx,1−ϕ [−1]

x (ϕx(ω)+ ϕx(µx(ω)))
) −1
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where µ ′
x(ω) = ∂

∂ω µx(ω), Cx,i j (u,v) = ∂ i+ j

∂ui∂vj Cx(u,v) denotes theith and jth partial

derivatives ofCx(·, ·) with respect to its first and second arguments respectively,and

ϕ ′
x(·) is as previously defined.

Furthermore, we define

φx(ω) = ϕ [−1]
x (ϕx(ω)+ ϕx(µx(ω))) ⇔ µx(ω) = ϕ [−1]

x (ϕx(φx(ω))−ϕx(ω)) (1.22)

This implies,

φ ′
x(ω) =

∂
∂ω

φx(ω) =
ϕ ′

x(ω)+ ϕ ′
x(µx(ω))µ ′

x(ω)

ϕ ′
x(φx(ω))

=
ϕ ′

x(ω)

Cx,01(γx,1−φx(ω))ϕ ′
x(φ ′

x(ω))

Rearranging and integrating on both sides, we obtain

ϕx(ω) = −
∫ 1

φx(ω)
ϕ ′

x(s)Cx,01(γx,1−s)ds.

Subsequently, this leads to

ω = ϕ [−1]
x

(
−
∫ 1

φx(ω)
ϕ ′

x(s)Cx,01(γx,1−s)ds

)
= ξx (γx,φx(ω)) .

The functionµx(·) now follows from (1.22) and is given by

µx(ω) = ϕ [−1]
x
(
ϕx
(
ξ−1

x (γx,φx(ω))
)
−ϕx(ω)

)
,

with ξ−1
x denoting the inverse function ofξx (γx,φx(ω)) with respect toφx(ω).

From (1.13), we also note that

H̄x(t) = Sx(t, t) = ϕ [−1]
x (ϕx(F̄x(t))+ µx(F̄x(t)))

= ϕ [−1]
x
(
ϕx(F̄x(t))+ ϕx

(
ξ−1

x (γx, F̄x(t))
)
−ϕx(F̄x(t))

)

= ξ−1
x (γx, F̄x(t)) (1.23)

Consequently, we have

F̄x(t) = ξx (γx,H̄x(t))

= ϕ [−1]
x

(
−
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw

)
. (1.24)
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As before, we now replaceγx andHx(t) by their corresponding Stone (1977) type estima-

tors. Subsequently, we obtain the non-parametric survivaldistribution function estimator

F̄xh(t) = ϕ [−1]
x

(
−
∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw

)
(1.25)

for the lifetime in the generalized conditional Koziol-Green model (1.18) under depen-

dent censoring. It is of interest to point out that the new estimator (1.25) is the condi-

tional version of (1.7) and includes (1.17) as a special case(i.e. whenCx(γxh,Hxh(t)) =

γxhHxh(t)). The nonparametric generalized conditional Koziol-Green estimator (1.25)

will be the foundation of Chapter 5. There, we establish someasymptotic (i.e.n→ ∞)

properties and provide simulations to help get some insightinto its finite sample perfor-

mance.

Before delving into the details of the newly introduced estimators in the consecutive

chapters, it is important to emphasize that the Koziol and Green (1976) characterization

is a model for informatively censored lifetime data in the sense that it allows the survival

distribution of the lifetime to depend on unknown parameters of the survival distribution

of the censoring time. This informativeness can be capturedindirectly through a relation

on the observable timeZ and censoring indicatorδ . In Table 1.1, we summarize the basic

differences between the estimators introduced above for informatively censored lifetime

data. For the case without covariates, if we assume thatZ andδ are independent, then

we have the classical Koziol-Green model (1.1) which together with the independence

of the lifetimeY and censoring timeC yield FACL
n as given in (1.2). On the other, if we

do not assume thatZ andδ are independent, then we get the new extension (1.4), which

together with an Archimedean copula to accommodate possible dependence betweenY

andC lead to the new extended estimatorFn = 1− F̄n (with F̄n given in (1.7)). Obviously,

we see thatFn is general and includesFACL
n as a special case. By the same scrutiny for the

case with covariates, we also note thatFxh = 1− F̄xh (with F̄xh given in (1.25)) is more

general and includes the others as special cases.
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Table 1.1: Basic interrelations and differences between some estimators under various assump-

tions on the lifetimeY and censoring timeC, in addition to the assumptions on the observable

timeZ and censoring indicatorδ .

Estimators
Key Assumptions Without Covariates With Covariates

Y andC are independent;

Z andδ are independent

FACL
n – Abdushukurov

(1987) and Cheng and

Lin (1987)

FVC
xh – Veraverbeke and

Cadarso-Suárez (2000)

Y andC are dependent;

Z andδ are independent

— FBV
xh – Braekers and

Veraverbeke (2008)

Y andC are dependent;

Z andδ are not

independent

Fn – A new proposition Fxh – A new proposition

1.3 Some practical data examples

In this section, we present 3 data sets that will be used to illustrate the practical ap-

plication of the analysis techniques on which this thesis isbased. The first data set is

the result of the Worcester Heart Attack Study (WHAS), whichhas the objective to de-

scribe trends over time in the incidence and survival rate following hospital admission

of acute myocardial infarction (AMI) patients. The data is collected during ten 1-year

periods beginning in 1975 on all AMI patients admitted to hospitals in the Worcester,

Massachusetts, metropolitan area. It has information on 8 000 admissions. However,

the version of the WHAS data set we utilize in this thesis is taken from the book by

Hosmer and Lemeshow (1999). It is a 10% random sample of the original WHAS data

set. In this sample, only a small subset of variables is included. Some of these variables

are the hospital admission date, the discharge date and the date of last follow-up, from

which various survival time variables can be created. Two times that are calculated from

these dates and are included in the data set are the length of stay (hospital admission to

discharge) and total follow-up (hospital admission to lastfollow-up). Each has its own
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censoring variable that indicates whether the study unit was alive at hospital discharge or

last follow-up respectively. Also included in this data setare some key variables which

are believed to influence the survival time variables. In addition, subjects with any miss-

ing values are dropped from the sampled data set. As a result,the WHAS data we use in

this thesis has information on only 481 study units.

The second data set is obtained in a study on size regulation of Atlantic halibuts in

the Atlantic coast of Canada following a drastic reduction in the population of the fish

species. It aimed at a minimum size limit for retained halibuts for the bottom trawl and

long line fishery. However, a minimum size limit would be effective only if an accept-

able proportion of the fish returned to the water survive capture, handling and release.

For this purpose, the research vessel installed special holding tanks aboard in which the

investigators placed the fishes. The measured response for each fish was the time elapsed

in hours between placing the fish in the holding tank and death. A remarkable feature

about this study is that some animals are removed from the experiment before they die

and their faith is unknown. Also, limited holding facilities on board the research vessel

necessitated the occasional removal of live experimental animals after 48 hours from

the tank for disposal or release in order to accommodate moreexperimental animals.

In addition, all fish surviving past 50-day duration for the experiment were assigned

maximum survival time of 1200 hours and treated as right censored observations. In ad-

dition to the response variable, the researchers also recorded, for each fish, the covariate

fork length of the fish, handling time, total catch weight anddepth trawled, which they

believed to have an influence on the survival of the fish. For further details about the

Atlantic halibut data set, we refer to Lange et al. (1994).

The last data set is the result of a prospective historical clinical study that took place in

the period 1962-77 at the University Hospital of Odense, Denmark. It has information

on 225 malignant melanoma (cancer of the skin) patients who underwent a surgical

operation in which the tumor was completely removed together with the skin within a

distance of 2.5 cm around it. In this study, the response variable of interest is the time

until malignant melanoma related death. As a result, those patients who did not die

of skin cancer were right censored at the study duration or time of death from other

causes. Some covatiates recorded at the time of the operation were the sex and age
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of the patients. In addition, tumor characteristics such aswidth, location on the body,

thickness, growth patterns, types of malignant cells and ulceration were documented.

See Andersen et al. (1993) for a more elaborate description of the melanoma data set.





2
The extended Koziol-Green model under

dependent censoring

In Section 1.1.1 of the previous chapter, we introduced the estimator proposed by Ab-

dushukurov (1987) and Cheng and Lin (1987) for informatively censored survival data.

This estimator was developed under the classical Koziol andGreen (1976) model of

random censorship (1.1) and is known to be more efficient thanthe Kaplan and Meier

(1958) estimator. By Csörgó (1988), it was clear that the applicability of the estimator

could be limited in practice. To ameliorate the shortfall, we considered an extension

of the estimator of Abdushukurov (1987) and Cheng and Lin (1987), in Section 1.1.1.

More precisely, we derived a non-parametric estimator for the distribution function of a

21
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survival time under an extension of the classical Koziol-Green model. In the extended

Koziol-Green model, we expressed the marginal distribution of the censoring time as a

function of the marginal distribution of the survival time,where this function was found

through some known copula function on the observable lifetime and the censoring indi-

cator. In order to further increase the scope of applicability of the extended estimator,

we additionally allow the censoring time to depends on the survival time through the

expression of their joint distribution by an Archimedean copula function.

In this chapter, we further study the extended estimator andestablish some of its impor-

tant asymptotic properties. We summarize these propertiesas three main theorems in

Sections 2.1, 2.2 and 2.3. Before we proceed to these sections, we give the following

basic definitions and regularity assumptions that are important in establishing the main

results of the chapter.

For the distribution functionH, we denote the right end point of its support byTH =

inf{t : H(t) = 1}.

(A1) For a copula functionC (·, ·), we letCi j (u,v) = ∂ i+ j

∂ui∂vj C (u,v) denote theith and

jth partial derivatives with respect to its first and second coordinates respectively.

For a fixedγ ∈ (0,1), we further assume thatC20(γ ,v), C02(γ ,v) andC11(γ ,v)

exist and are continuous for allv∈ [0,1].

(A2) For the generator of an Archimedean copulaϕ , we defineϕ ′(u)= d
duϕ(u), ϕ ′′(u)=

d2

du2 ϕ(u), ϕ ′′′(u) = d3

du3 ϕ(u) and assume thatϕ ′′′(u) exists and is continuous for all

u∈ (0,1].

In Assumption (A1),γ is the probability of uncensored observations. Ifγ = 0, then

we have only censored observations and it is not feasible to make inference about the

survival distribution of the lifetime. Conversely,γ = 1 corresponds to fully observable

lifetimes, in which case we do not have to account for censoring. Thus, we assume

throughout the thesis thatγ ∈ (0,1). With this restriction, we see that Assumption (A1)

is satisfied by most copula functions. If we take the Gumbel bivariate logistic copula for
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example, then for a fixedγ ∈ (0,1), we easily see that

C02(γ ,v) = − 2γ2(1− γ)

(γ +v− γv)3 ,C20(γ ,v) = − 2v2(1−v)
(γ +v− γv)3 and C11(γ ,v) =

2γv
(γ +v− γv)3

exist and are continuous for allv∈ [0,1]. For the Frank family of copulas, we also find

that

C02(γ ,v) = − θ
(
e−θ γ −1

)(
e−θ −e−θ γ)e−θv

((e−θ −1)+ (e−θ γ−1)(e−θv−1))
2 ,

C20(γ ,v) = − θ
(
e−θv−1

)(
e−θ −e−θv

)
e−θ γ

((e−θ −1)+ (e−θ γ−1)(e−θv−1))
2 ,

C11(γ ,v) = − θe−θ γe−θv
(
e−θ −1

)

((e−θ −1)+ (e−θ γ−1)(e−θv−1))
2

exist and are continuous for allv∈ [0,1], with θ ∈ (−∞,∞).

Furthermore, we also note that several generators of Archimedean copula functions sat-

isfy Assumption (A2). For the Clayton copula generator for instance

ϕ(u) =
1
θ

(
u−θ −1

)
, θ ∈ [−1,∞)

and it is straight forward to see thatϕ ′′′(u) = −(1+ θ)(2+ θ)u−(3+θ ) exists and is

continuous for allu∈ (0,1].

2.1 Strong consistency result

The main result of this section is the uniform strong consistency of the extended Koziol-

Green estimatorFn(t) as presented in (1.7) in Chapter 1. Also, we obtain the rate of

this convergence by means of an exponential bound. These results are summarized as

Theorem 2.1 whose proof depends heavily on Lemma 2.1 below. First we give the lemma

and afterwards justify its importance in establishing the strong consistency result.

Lemma 2.1. Suppose x≥ 0, 0 ≤ y < 1−H(T) and y= xϕ ′(1)
2ϕ ′(1−H(T)−y) . Then for all

T < TH ,

xϕ ′(1)

2ϕ ′ (ϕ [−1]
(
ϕ(1−H(T))− x

2ϕ ′(1)
)) ≤ y≤ 1−H(T)−ϕ [−1]

(
ϕ(1−H(T))− x

2
ϕ ′(1)

)
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Proof. By the mean value theorem, we have

ϕ(1−H(T)−y)−ϕ(1−H(T)) = −ϕ ′(1−H(T)−y∗)y (2.1)

wherey∗ is a point between zero andy.

Next, we note from the conditions of the Lemma that

−x
2

ϕ ′(1) = −ϕ ′(1−H(T)−y)y ≥ −ϕ ′(1−H(T)−y∗)y. (2.2)

Substituting (2.2) into (2.1), gives after some straight forward calculations that

y ≤ 1−H(T)−ϕ [−1]
(

ϕ(1−H(T))− x
2

ϕ ′(1)
)

. (2.3)

Using (2.3), we also get that

y =
xϕ ′(1)

2ϕ ′(1−H(T)−y)
≥ xϕ ′(1)

2ϕ ′ (ϕ [−1]
(
ϕ(1−H(T))− x

2ϕ ′(1)
))

which concludes the proof.

Theorem 2.1. Assume (A1), (A2),ϕ ′(1) < 0 and T< TH , then

(a) For all ε > 0, we have

P

(
sup

0≤t≤T
|Fn(t)−F(t)| > ε

)
≤ 2exp

(
− nα2

6(3γ + β )

)
+Dexp

(
−nα2)

where

α =
ϕ ′(1)ε

2ϕ ′
(

ϕ [−1]
(

ϕ(1−H(T))− ϕ ′(1)ε
2

)) ,

β = 1−H(T)−ϕ [−1]

(
ϕ(1−H(T))− ϕ ′(1)ε

2

)

and D is a finite positive constant.

(b) If n → ∞, then

sup
0≤t≤T

|Fn(t)−F(t)| → 0 a.s.
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Proof. We have that

Fn(t)−F(t) = (1− F̄n(t))− (1− F̄(t)) = F̄(t)− F̄n(t)

= −
{

ϕ−1
(
−
∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw

)

−ϕ−1
(
−
∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

)}
.

Applying the mean value theorem, we get

Fn(t)−F(t) = (γn− γ)A(γ∗,H∗(t))+ (Hn(t)−H(t))B(γ∗,H∗(t)),

where

A(γ∗,H∗(t)) =

∫ H∗(t)
0 ϕ ′(1−w)C11(γ∗,w)dw

ϕ ′
(

ϕ−1
(
−∫ H∗(t)

0 ϕ ′(1−w)C01(γ∗,w)dw
))

and

B(γ∗,H∗(t)) =
ϕ ′(1−H∗(t))C01(γ∗,H∗(t))

ϕ ′
(

ϕ−1
(
−∫ H∗(t)

0 ϕ ′(1−w)C01(γ∗,w)dw
)) ,

with γ∗ betweenγn andγ , andH∗(t) betweenHn(t) andH(t). Using integration by parts,

and noting thatϕ ′(1)C10(γ∗,0) = 0, we further obtain

A(γ∗,H∗(t)) =
ϕ ′(1−H∗(t))C10(γ∗,H∗(t))+

∫ H∗(t)
0 ϕ ′′(1−w)C10(γ∗,w)dw

ϕ ′
(

ϕ−1
(
−∫ H∗(t)

0 ϕ ′(1−w)C01(γ∗,w)dw
)) .

Under Assumption(A1), this gives after some calculations that

sup
0≤t≤T

|A(γ∗,H∗(t))| ≤ 3
|ϕ ′(1)| sup

0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ . (2.4)

Similarly, we also find that

sup
0≤t≤T

|B(γ∗,H∗(t))| ≤ 1
|ϕ ′(1)| sup

0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ . (2.5)

Using (2.4) and (2.5), we find for allε > 0 andη > 0 that

P

(
sup

0≤t≤T
|Fn(t)−F(t)| > ε

)
≤ P

(
3

|ϕ ′(1)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ |γn− γ |> ε

2

)

+P

(
1

|ϕ ′(1)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ sup

0≤t≤T
|Hn(t)−H(t)| > ε

2

)
,
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for which the right hand side of the inequality can be writtenas

P

(
3

|ϕ ′(1)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ |γn− γ | > ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| ≤ η
)

+P

(
3

|ϕ ′(1)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ |γn− γ | > ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| > η
)

+P

(
1

|ϕ ′(1)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ sup

0≤t≤T
|Hn(t)−H(t)|> ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| ≤ η
)

+P

(
1

|ϕ ′(1)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))
∣∣ sup

0≤t≤T
|Hn(t)−H(t)|> ε

2
, sup
0≤t≤T

|Hn(t)−H(t)| > η
)

.

With 0 < η < 1−H(T) such that

sup
0≤t≤T

|ϕ ′(1−H∗(t))| < |ϕ ′(1−H(T)−η)|,

the preceding quantity is further bounded above by

P

(
|γn− γ |> ϕ ′(1)ε

6ϕ ′(1−H(T)−η)

)
+P

(
sup

0≤t≤T
|Hn(t)−H(t)|> ϕ ′(1)ε

2ϕ ′(1−H(T)−η)

)

+2P

(
sup

0≤t≤T
|Hn(t)−H(t)|> η

)
.

Choosingη such thatη = ϕ ′(1)ε
2ϕ ′(1−H(T)−η) , we easily find that

P

(
sup

0≤t≤T
|Fn(t)−F(t)| > ε

)
≤ P

(
|γn− γ | > η

3

)
+3P

(
sup

0≤t≤T
|Hn(t)−H(t)| > η

)
.

Next, we use Bernstein’s inequality on the first term at the right hand side of the preced-

ing inequality followed by an application of Dvoretzky, Kiefer and Wolfowitz theorem

(see for example, Serfling (1980, page 59)) on the second termof the same inequality.

This yields

P

(
sup

0≤t≤T
|Fn(t)−F(t)| > ε

)
≤ 2exp

(
− nη2

6(3γ + η)

)
+Dexp

(
−2nη2) ,

whereD is a finite positive constant. Using Lemma 2.1, we see that thepreceding

inequality is further bounded above by

2exp

(
− nα2

6(3γ + β )

)
+Dexp

(
−2nα2) ,



2.2. Almost sure representation 27

with α andβ as given in Theorem 2.1.

If we take εn = ε = Kn−1/2(logn)1/2 for some positive constantK, then it is easy to

see thatεn is small for largen. Thus, by the Borel-Cantelli lemma we find the strong

consistency of the extended Koziol-Green estimator.

2.2 Almost sure asymptotic representation

We now present the extended Koziol-Green estimator as the sum of n independent iden-

tically distributed random variable with a remainder term.This representation is an

important tool and will pave way for further asymptotic properties of our estimator. It

has also been utilized by several authors. For instance, Lo and Singh (1986) employed

it for the Kaplan-Meier estimator, Van Keilegom and Veraverbeke (1997) for the Beran

estimator, Braekers and Veraverbeke (2008) for the conditional Koziol-Green estimator,

among others. Under some conditions, we state such a representation together with the

rate of convergence of the remainder term as Theorem 2.2.

Prior to stating the theorem, we give the following lemma which will be used later on.

We omit the proof of this lemma, since it is basic and can be found in many standard

texts on mathematical statistics. See for example, Serfling(1980).

Lemma 2.2. Let γn and Hn(t) be as previously defined. Then,

(a) |γn− γ | = O
(
n−1/2(logn)1/2

)
a.s.

(b) sup
0≤t≤T

|Hn(t)−H(t)| = O
(

n−1/2(logn)1/2
)

a.s.

Theorem 2.2. Assume (A1), (A2),ϕ ′(1) < 0 and T< TH . Then, as n→ ∞,

Fn(t)−F(t) =
1
n

n

∑
i=1

mt (Zi ,δi)+ rn(t)

where

mt (Zi,δi) =
1

ϕ ′(F̄(t))

{
(1{δi = 1}− γ)

∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dw (2.6)

+(1{Zi ≤ t}−H(t))ϕ ′(H̄(t))C01(γ ,H(t))

}
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and

sup
0≤t≤T

|rn(t)| = O
(
n−1 logn

)
a.s.

Proof. To establish the asymptotic representation ofFn(t), we start with a second order

Taylor expansion and obtain

Fn(t)−F(t)

=
1

ϕ ′(F̄(t))

{∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw−

∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

}

+rn1(t) (2.7)

where

rn1(t) =
ϕ ′′(ϕ−1(η(t)))

2[ϕ ′(ϕ−1(η(t)))]3
×

{∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw−

∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

}2

with η(t) between−∫ Hn(t)
0 ϕ ′(1−w)C01(γn,w)dw and−∫ H(t)

0 ϕ ′(1−w)C01(γ ,w)dw.

We denote

I(t) =
∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw−

∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

and find that

sup
0≤t≤T

|rn1(t)| ≤ 1
|ϕ ′(1)|3 sup

0≤t≤T
ϕ ′′(ϕ−1(η(t))) sup

0≤t≤T
|I(t)|2.

Using Assumption(A1), it is easy to see that

−
∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw and −

∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

are respectively bounded above byϕ(1−Hn(T)) andϕ(1−H(T)). On recalling that

ϕ ′′(·) is a decreasing function, we note that the preceding enequality is further bounded

above by

1
|ϕ ′(1)|3 ϕ ′′(1−HM(T)) sup

0≤t≤T
|I(t)|2
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whereHM(T) = max(Hn(T),H(T)). Furthermore, we apply the mean value theorem to

get

I(t) = [γn− γ ]
∫ H∗(t)

0
ϕ ′(1−w)C11(γ∗,w)dw+[Hn(t)−H(t)]ϕ ′(1−H∗(t))C01(γ∗,H∗(t)),

with γ∗ betweenγn andγ ; andH∗
n(t) betweenHn(t) andH(t). This gives

sup
0≤t≤T

|I(t)| ≤ |γn− γ | sup
0≤t≤T

∣∣∣∣
∫ H∗(t)

0
ϕ ′(1−w)C11(γ∗,w)dw

∣∣∣∣

+ sup
0≤t≤T

|Hn(t)−H(t)| sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))C01(γ∗,H∗(t))
∣∣ .

Integrating by parts and recalling thatC10(γ∗,0) = 0 for all γ∗ ∈ (0,1], we obtain

sup
0≤t≤T

∣∣∣∣
∫ H∗(t)

0
ϕ ′(1−w)C11(γ∗,w)dw

∣∣∣∣ = sup
0≤t≤T

∣∣ϕ ′(1−H∗(t))C10(γ∗,H∗(t))
∣∣

+ sup
0≤t≤T

∣∣∣∣
∫ H∗(t)

0
ϕ ′′(1−w)C10(γ∗,w)dw

∣∣∣∣

Next, we employ similar deductions as in the proof of Theorem2.1 and obtain

sup
0≤t≤T

∣∣∣∣
∫ H∗(t)

0
ϕ ′(1−w)C11(γ∗,w)dw

∣∣∣∣ ≤ 3|ϕ ′(1−HM(T))|.

Using the preceding inequality, we get after some calculations that

sup
0≤t≤T

|I(t)| ≤ 3|ϕ ′(1−HM(T))||γn− γ |+ |ϕ ′(1−HM(T))| sup
0≤t≤T

|Hn(t)−H(t)|.

Evoking the Glivenko-Cantelli theorem (see Serfling (1980,page 61)), it becomes easy

to see thatHn(T)→H(T) a.s.. SinceH(T) < 1, we may therefore suppose thatT < THn.

In consequent, we obtain by Lemma 2.2 that

sup
0≤t≤T

|I(t)| = O
(

n−1/2(logn)1/2
)

a.s.

which subsequently, leads to

sup
0≤t≤T

|rn1(t)| = O
(
n−1 logn

)
a.s.



30 2. The extended Koziol-Green model under dependent censoring

We can further decompose the main term in (2.7) by using a second order Taylor expan-

sion to get
∫ Hn(t)

0
ϕ ′(1−w)C01(γn,w)dw−

∫ H(t)

0
ϕ ′(1−w)C01(γ ,w)dw

= [γn− γ ]
∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dw+[Hn(t)−H(t)]ϕ ′(1−H(t))C01(γ ,H(t))

+ rn2(t)+ rn3(t)+ rn4(t)

(2.8)

where

rn2(t) =
1
2

[γn− γ ]2
∫ H∗(t)

0
ϕ ′(1−w)C21(γ∗,w)dw

rn3(t) =
1
2

[Hn(t)−H(t)]2
{

ϕ ′(1−H∗(t))C02(γ∗,H∗(t))−ϕ ′′(1−H∗(t))C01(γ∗,H∗(t))
}

rn4(t) = [γn− γ ] [Hn(t)−H(t)]ϕ ′(1−H∗(t))C11(γ∗,H∗(t))

with γ∗ betweenγn andγ ; andH∗(t) betweenHn(t) andH(t).

Next, we determine the rate of convergence ofrn2(t), rn3(t) and rn4(t). Starting with

rn2(t), we integrate by parts and obtain

rn2(t) =
1
2
[γn− γ ]2

{
ϕ ′(1−H∗(t))C20(γ∗,H∗

n(t))−ϕ ′(1)C20(γ∗,0)

+

∫ H∗(t)

0
ϕ ′′(1−w)C20(γ∗,w)dw

}
.

Working as before, we get

sup
0≤t≤T

|rn2(t)| ≤ 4|ϕ ′(1−HM(T))| sup
0≤v≤1

|C20(u,v)| [γn− γ ]2 , ∀u∈ (0,1].

For rn3(t), we have for allu∈ (0,1] that

sup
0≤t≤T

|rn3(t)| ≤
{

ϕ ′(1−HM(T)) sup
0≤v≤1

|C02(u,v)|+ ϕ ′′(1−HM(T))

}
×

sup
0≤t≤T

|Hn(t)−H(t)|2 .

SinceH(T) < 1 andHn(T)→H(T) a.s. (see Serfling (1980, page 61)), we may suppose

again thatT < THn. In consequent, we employ Lemma 2.2 again and obtain

sup
0≤t≤T

|rn2(t)| = O
(
n−1 logn

)
a.s. and sup

0≤t≤T
|rn3(t)| = O

(
n−1 logn

)
a.s.
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In the same spirit, we also get that

sup
0≤t≤T

|rn4(t)| = O
(
n−1 logn

)
a.s.

Next, we let

rn(t) = rn1(t)+
1

ϕ ′(F̄(t))
(rn2(t)+ rn3(t)+ rn4(t)).

From the preceding display, it straight forwardly follows that

sup
0≤t≤T

|rn(t)| = O
(
n−1 logn

)
a.s.,

sinceϕ ′(F̄(t)) ≤ ϕ ′(1) < 0 for all t ∈ [0,T]. Using this together with (2.8) and (2.7),

concludes the proof.

2.3 Weak convergence result

As mentioned in the opening of the preceding section, the essence of the almost sure

asymptotic representation is to obtain some further asymptotic properties of the extended

Koziol-Green estimator. Here, we will establish an additional important property of the

estimator. Because of the order of the remainder term given in Theorem 2.2, we will

only consider the main term in the asymptotic representation and show that the process

associated with the estimator converges weakly to a zero mean Gaussian process with

some variance-covariance function, providedn → ∞. We formulate this result as the

following theorem.

Theorem 2.3. Assume the conditions of Theorem 2.2. If n→ ∞, then

√
n(Fn(·)−F(·)) →W(·)

where W(·) is a zero mean Gaussian process with variance-covariance function
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Γ(s, t) =
1

ϕ ′(F̄(s))ϕ ′(F̄(t))
×

{
γ(1− γ)

∫ H(s)

0
ϕ ′(1−w)C11(γ ,w)dw

∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dw

+(Hu(s)− γH(s))ϕ ′(H̄(s))C01(γ ,H(s))
∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dw

+(Hu(t)− γH(t))ϕ ′(H̄(t))C01(γ ,H(t))
∫ H(s)

0
ϕ ′(1−w)C11(γ ,w)dw

+(H(s∧ t)−H(s)H(t))ϕ ′(H̄(s))ϕ ′(H̄(t))C01(γ ,H(s))C01(γ ,H(t))

}

Proof. To prove the above theorem, we first establish the finite dimensional distribu-

tions of the process
√

n(Fn(·)−F(·)) and then append it with tightness in the space of

bounded functionsℓ∞[0,T]. Due to the order of the remainder term in Theorem 2.2 we

only have to show the weak convergence of the main term in the asymptotic representa-

tion. This translates to showing it for

Wn(t) =
1√
n

n

∑
i=1

mt (Zi,δi) ,

wheremt (Zi,δi), i = 1,2, ...,n are independent copies ofmt(Z,δ ), with mt(Z,δ ) as de-

fined in (2.6).

After some calculations we get that, for allt ∈ [0,T], E [mt (Z,δ )] = 0 and, for all 0≤
s, t ≤ T,

Γ(s, t) = Cov[ms(Z,δ ) ,mt (Z,δ )] = E [ms(Z,δ ) ,mt (Z,δ )]
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which equals

1
ϕ ′(F̄(s))ϕ ′(F̄(t))

×
{∫ H(s)

0
ϕ ′(1−w)C11(γ ,w)dw

∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dwE

[
(1{δ = 1}− γ)2

]

+ϕ ′(H̄(s))C01(γ ,H(s))
∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dwE[(1{δ = 1}− γ)(1{Z ≤ s}−H(s))]

+ϕ ′(H̄(t))C01(γ ,H(t))
∫ H(s)

0
ϕ ′(1−w)C11(γ ,w)dwE[(1{δ = 1}− γ)(1{Z ≤ t}−H(t))]

+ϕ ′(H̄(s))ϕ ′(H̄(t))C01(γ ,H(s))C01(γ ,H(t))E [(1{Z ≤ s}−H(s))(1{Z ≤ t}−H(t))]

}
,

and gives

1
ϕ ′(F̄(s))ϕ ′(F̄(t))

×
{

γ (1− γ)
∫ H(s)

0
ϕ ′(1−w)C11(γ ,w)dw

∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dw

+(Hu(s)− γH(s))ϕ ′(H̄(s))C01(γ ,H(s))
∫ H(t)

0
ϕ ′(1−w)C11(γ ,w)dw

+(Hu(t)− γH(t))ϕ ′(H̄(t))C01(γ ,H(t))
∫ H(s)

0
ϕ ′(1−w)C11(γ ,w)dw

+(H(s∧ t)−H(s)H(t))ϕ ′(H̄(s))ϕ ′(H̄(t))C01(γ ,H(s))C01(γ ,H(t))

}
.

Thus, by the multivariate central limit theorem, we get the finite dimensional distribu-

tions of the process under consideration.

Next, we show tightness by verifying the conditions of Theorem 2.5.6 of van der Vaart

and Wellner (2000). Hereto we show that the class of functions F given by

F = {mt(z,d) : t ∈ [0,T]}

is Donsker.

For the first term in (2.6), we note that(1{d=1}−γ)
ϕ ′(F̄(t))

∫ H(t)
0 ϕ ′(1−w)C11(γ ,w)dw is uni-

formly bounded overt. Furthermore we see that the second function

z→ (1{z≤ t}−H(t))
ϕ ′(F̄(t))

ϕ ′(H̄(t))C01(γ ,H(t))
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is uniformly bounded overt and is a monotone function ofz, with z and d denoting

the observed time and censoring indicator. Hence, we have that mt(z,d) is a monotone

function ofzand

sup
0≤t≤T

|mt (z,d)|

= sup
0≤t≤T

∣∣∣∣
(1{d = 1}− γ)

ϕ ′(F̄(t))

(
ϕ ′(H̄(t))C10(γ ,H(t))+

∫ H(t)

0
ϕ ′(1−w)C10(γ ,w)dw

)

+
(1{z≤ t}−H(t))

ϕ ′(F̄(t))
ϕ ′(H̄(t))C01(γ ,H(t))

∣∣∣∣

≤ ϕ ′(H̄(T))

ϕ ′(1)

(
3+ sup

0≤t≤T
C01(γ ,H(t))

)
≤ M

whereM is a finite positive constant. Using Theorem 2.7.5 of van der Vaart and Wellner

(2000), we get that the bracketing numberN[ ] (ε ,F ,L2(P)) = O
(
exp
(

K
ε
))

with K a

positive constant. Hence, we get that
∫ ∞

0

√
logN[ ] (ε ,F ,L2(P))d(ε) < ∞

which shows the classF is Donsker and completes the proof.



3
A goodness-of-fit test under the extended

Koziol-Green model

In Chapter 1 we introduced the extended Koziol-Green estimator for informatively cen-

sored data. It was shown that this estimator is flexible and includes the estimator pro-

posed independently by Abdushukurov (1987) and Cheng and Lin (1987) as a special

case. Under some conditions, we established in Chapter 2 that this estimator is uni-

formly consistent over the sample space. In the same chapter, we found an asymptotic

representation for the estimator which lead to the weak convergence of the associated

process to a zero mean Gaussian process with some variance-covariance function. In the

current chapter, we further pursue the extended Koziol-Green estimator and determine

35
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its validity in practical applications. From the results ofTsiatis (1975), it is apparent that

the dependence structure between the censoring time and thesurvival time cannot be

formally investigated, since we do not get to fully observe either of these variables. As a

consequence, checking for the validity of the extended Koziol-Green estimator reduces

to a goodness-of-fit test for the verticalγ-section of some copula functionC such that

characterization (1.4) is satisfied. In light of this, we take as null hypothesis,

H0 : Hu(t)−C (γ ,H(t)) = 0 , for all t ≥ 0 (3.1)

versus the general alternative

Ha : Hu(t)−C (γ ,H(t)) 6= 0, for some t ≥ 0

In what follows, we provide tools and techniques for the purpose of ascertaining the suit-

ability of the copula functionC under the extended Koziol-Green model. Afterwards,

we illustrate the use of the testing procedure on simulated as well as a practical data set.

3.1 Almost sure asymptotic representation

As a basic tool to help obtain the necessary theoretical results for the testing proce-

dure, we first obtain an asymptotic representation of the empirical quantity Hu
n(t)−

C (γn,Hn(t)) as the sum ofn independent and identically distributed random variables

with a remainder term which isO
(
n−1 logn

)
almost surely. We present this result as

Theorem 3.1. Before proceeding, it is important to note thatthe notations used in this

chapter carry directly over from Section 1.1.1 and Chapter 2, unless otherwise stated.

Moreover, the results in the present chapter are valid underthe regularity assumptions

listed in Chapter 2.

Theorem 3.1. Under the null hypothesis (3.1), assume condition(A1) of Chapter 2 is

satisfied. Then,∀t ≥ 0

Hu
n(t)−C (γn,Hn(t)) =

1
n

n

∑
i=1

kt (Zi ,δi)+ rn(t)
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where

kt (Zi,δi) = 1{Zi ≤ t,δi = 1}−Hu(t)− (1{Zi ≤ t}−H(t))C01(γ ,H(t))

−(1{δi = 1}− γ)C10(γ ,H(t))

and

sup
t∈[0,+∞]

|rn(t)| = O
(
n−1 logn

)
a.s.

Proof. Under the null hypothesis (3.1), we can write

Hu
n(t)−C (γn,Hn(t)) = [Hu

n(t)−C (γn,Hn(t))]− [Hu(t)−C (γ ,H(t))]

= [Hu
n(t)−Hu(t)]− [C (γn,Hn(t))−C (γ ,H(t))]

Applying Taylor’s expansion on the 2nd term in the precedingequation, we get

Hu
n(t)−C (γn,Hn(t)) = Hu

n(t)−Hu(t)− [Hn(t)−H(t)]C01(γ ,H(t))

− [γn− γ ]C10(γ ,H(t))+ rn(t)

=
1
n

n

∑
i=1

kt (Zi ,δi)+ rn(t) (3.2)

where

kt (Zi,δi) = 1{Zi ≤ t,δi = 1}−Hu(t)− [1{Zi ≤ t}−H(t)]C01(γ ,H(t))

− [1{δi = 1}− γ ]C10(γ ,H(t))

and

rn(t) =
1
2

[γn− γ ]2C20(γ∗,H∗(t))+
1
2

[Hn(t)−H(t)]2C02(γ∗,H∗(t))

+[γn− γ ] [Hn(t)−H(t)]C11(γ∗,H∗(t)) (3.3)

with γ∗ lying betweenγn andγ ; andH∗(t) betweenHn(t) andH(t). We now determine

the rate of convergence ofrn(t). To do so, we note from (3.3) that

sup
t∈[0,+∞]

|rn(t)| ≤ |γn− γ |2 sup
t∈[0,+∞]

|C20(γ∗,H∗(t))|

+ sup
t∈[0,+∞]

|Hn(t)−H(t)|2 sup
t∈[0,+∞]

|C02(γ∗,H∗(t))|

+ |γn− γ | sup
t∈[0,+∞]

|Hn(t)−H(t)| sup
t∈[0,+∞]

C11(γ∗,H∗(t))
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By Kolmogorov theorem (see for example, Serfling (1980, page27)) we have thatγn → γ
a.s. asn→ ∞. From the Glivenko-Cantelli theorem (Serfling (1980, page 61)), we also

haveHn(t)→ H(t) a.s asn→ ∞. As a result, we know thatγ∗ → γ a.s andH∗(t)→ H(t)

a.s asn→ ∞. Thus, under Assumption(A1), we can find positive constantsM1, M2 and

M3 such that

sup
t∈[0,+∞]

|rn(t)| ≤ M1 |γn− γ |2 +M2 sup
t∈[0,+∞]

|Hn(t)−H(t)|2

+M3 |γn− γ | sup
t∈[0,+∞]

|Hn(t)−H(t)|

Using Lemma 2.2, it easily follows that

sup
t∈[0,+∞]

|rn(t)| = O
(
n−1 logn

)
a.s,

which concludes the proof.

3.2 Weak convergence result

In the previous section, we gave an asymptotic representation of the empirical quantity

Hu
n(·)−C (γn,Hn(·)), since it provides the basis for a valid test of the null hypothe-

sis. As before, we will focus on the main term in the asymptotic representation given

in the previous section, under the condition thatn → ∞. However, we shall not work

with the exact original quantity. Instead, we will work withits normalized version
√

n(Hu
n(·)−C (γn,Hn(·))). In the following theorem, we show the weak convergence

of the normalized basic empirical process to a zero mean Gaussian process with a cer-

tain variance-covariance function.

Theorem 3.2. Under the null hypothesis (3.1), suppose Assumption (A1) holds and n→
∞. Then,

√
n(Hu

n(·)−C (γn,Hn(·))) → ψ(·) in ℓ∞[0,+∞]
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whereψ(·) is a zero mean Gaussian process with variance-covariance function given by

σ(s, t)

= [Hu(s∧ t)−Hu(s)Hu(t)]+ [H(s∧ t)−H(s)H(t)]C01(γ ,H(s))C01(γ ,H(t))

+γ [1− γ ]C10(γ ,H(s))C10(γ ,H(t))+ [Hu(s)− γH(s)]C01(γ ,H(s))C10(γ ,H(t))

+[Hu(t)− γH(t)]C01(γ ,H(t))C10(γ ,H(s))− [Hu(s∧ t)−Hu(s)H(t)]C01(γ ,H(t))

− [Hu(s∧ t)−Hu(t)H(s)]C01(γ ,H(s))− [Hu(s)− γH(s)]C10(γ ,H(t))

− [Hu(t)− γH(t)]C10(γ ,H(s)) (3.4)

for all s≥ 0 and all t≥ 0.

Proof. The proof of Theorem 3.2 proceeds in two steps. First, we establish the conver-

gence of the finite dimensional distributions of the process
√

n(Hu
n(·)−C (γn,Hn(·))).

Secondly, we show that the process is tight inℓ∞[0,+∞].

To start, we use the main term in the asymptotic representation given in Theorem 3.1

and denote

Wn(t) =
1√
n

n

∑
i=1

kt(Zi,δi).

For some integerq > 0, we take distinct time points 0= t1 < t2 < · · · < tq. Then, by the

multivariate central limit theorem,(Wn(t1),Wn(t2), ...,Wn(tq)) converges to an asymptotic

normal distribution with mean vector

E (Wn(t)) = E (kt(Z,δ )) = 0

and variance-covariance matrix equals

σ(s, t) = Cov(ks(Z,δ )kt(Z,δ )) = E (ks(Z,δ )kt(Z,δ ))

= [Hu(s∧ t)−Hu(s)Hu(t)]+ [H(s∧ t)−H(s)H(t)]C01(γ ,H(s))C01(γ ,H(t))

+ γ [1− γ ]C10(γ ,H(s))C10(γ ,H(t))+ [Hu(s)− γH(s)]C01(γ ,H(s))C10(γ ,H(t))

+ [Hu(t)− γH(t)]C01(γ ,H(t))C10(γ ,H(s))− [Hu(s∧ t)−Hu(s)H(t)]C01(γ ,H(t))

− [Hu(s∧ t)−Hu(t)H(s)]C01(γ ,H(s))− [Hu(s)− γH(s)]C10(γ ,H(t))

− [Hu(t)− γH(t)]C10(γ ,H(s))
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for all s= t j ≥ 0 andt = tk ≥ 0.

To show tightness, we first note that

sup
t∈[0,+∞]

|kt(Z,δ )| ≤ sup
t∈[0,+∞]

|1{Z ≤ t,δ = 1}−Hu(t)|+ |1{δ = 1}− γ | sup
t∈[0,+∞]

C10(γ ,H(t))

+ sup
t∈[0,+∞]

|1{Z ≤ t}−H(t)| sup
t∈[0,+∞]

C01(γ ,H(t))

≤ 3

Secondly, we define

F = {kt(Z,δ ) : t ≥ 0}

Then,F consists of uniformly bounded function over[0,+∞]. As such, their bracketing

number isN[ ] (α ,F ,L2(P))) = O
(
exp(Kα−1)

)
for α < 6 and someK > 0. Forα > 6,

we takeN[ ] (α ,F ,L2(P))) = 1. Furthermore, we note that proving tightness of the

process is equivalent to showing that the class of functionsF is Donsker. As a result,

we apply Theorem 19.5 of van der Vaart (1998) and obtain
∫ 1

0

√
logN[ ] (α ,F ,L2(P))d(3α) = 3

∫ 1

0

√
logN[ ] (α ,F ,L2(P))dα

≤ 3
∫ 1

0

√
K
α

dα < ∞

This shows that the process under consideration is tight inℓ∞[0,+∞]. Combining this

with the convergence of the finite dimensional distributions completes the proof.

3.3 Goodness-of-fit test statistics

Now, we introduce two goodness of fit test statistics to help investigate the validity of

the extended Koziol-Green model in practical applications. Both test statistics are based

on the basic empirical process

ψn(·) =
√

n(Hu
n(·)−C (γn,Hn(·)))

More precisely, we consider the Kolmogorov-Smirnov and Cramer-von Mises type statis-

tics, which are respectively defined by

TKS = sup
t∈[0,+∞]

|ψn(t)| and TCM =

∫ +∞

0
ψn(t)

2dC (γn,Hn(t))
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As a consequence of Theorem 3.2, we now give the following corollary that will serve

as the basis for finding critical values for the test statistics.

Corollary 3.1. Under the null hypothesis (3.1), assume (A1) holds. Then,

TKS→ sup
t∈[0,+∞]

|ψ(t)|

TCM →
∫ +∞

0
ψ(t)2dC (γ ,H(t))

Proof. To establish the first assertion in the Corollary, we note that

TKS− sup
t∈[0,+∞]

|ψ(t)| = sup
t∈[0,+∞]

|ψn(t)|− sup
t∈[0,+∞]

|ψ(t)|

≤ sup
t∈[0,+∞]

|ψn(t)−ψ(t)| → 0 a.s , n→ ∞.

For the second assertion in the corollary, we have
∣∣∣∣TCM −

∫ +∞

0
ψ(t)2dC (γ ,H(t))

∣∣∣∣ =

∣∣∣∣
∫ +∞

0
ψn(t)

2dC (γn,Hn(t))−
∫ +∞

0
ψ(t)2dC (γ ,H(t))

∣∣∣∣

Adding and subtracting terms, we get
∣∣∣∣TCM −

∫ +∞

0
ψ(t)2dC (γ ,H(t))

∣∣∣∣ ≤
∣∣∣∣
∫ +∞

0

[
ψn(t)

2−ψ(t)2]dC (γn,Hn(t))

∣∣∣∣

+

∣∣∣∣
∫ +∞

0
ψ(t)2d [C (γn,Hn(t))−C (γ ,H(t))]

∣∣∣∣ .
(3.5)

But,
∣∣∣∣
∫ +∞

0

[
ψn(t)

2−ψ(t)2]dC (γn,Hn(t))

∣∣∣∣ ≤ sup
t∈[0,+∞]

∣∣ψn(t)
2−ψ2(t)

∣∣
∫ +∞

0
dC (γn,Hn(t)).

Considering the ordered observed timesz(1),z(2), ...,z(n), we get that

∫ +∞

0
dC (γn,Hn(t)) =

n

∑
r=1

[
C (γn,

r
n
)−C (γn,

r −1
n

))

]

≤
n

∑
r=1

[
r
n
− r −1

n

]
≤ 1

wherer is the rank ofz(r) (r = 1,2, ...,n). The inequality in the above display follows

from Theorem 2.2.4 in Nelsen (2006). Hence, as a consequenceof Theorem 3.2, we get
∣∣∣∣
∫ +∞

0

[
ψn(t)

2−ψ(t)2]dC (γn,Hn(t))

∣∣∣∣→ 0 a.s , n→ ∞ (3.6)
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Next, we recall that asn→ ∞, γn
P→ γ a.s andHn(t)

P→ H(t) a.s. Therefore, using As-

sumption(A1) together with Lemma 2.2 impliesC (γn,Hn(t))
P→C (γ ,H(t)) a.s. Further,

we note thatψ(t)2 is continuous for allt ≥ 0. Hence by the Helly-Bray Theorem (Rao

(1973, page 117)) we obtain
∣∣∣∣
∫ +∞

0
ψ(t)2d [C (γn,Hn(t))−C (γ ,H(t))]

∣∣∣∣→ 0 a.s , n→ ∞ (3.7)

Substituting (3.6) and (3.7) into (3.5) establishes the second assertion in the Corollary.

For practical application of the test statistics, we propose the following formulation. Let

Z(1), Z(2), ...,Z(n) denote the order statistics of theZ-sample andδ(1),δ(2), ...,δ(n) denote

the inducedδ -sample. Further, letr(= 1,2, ...,n) be the rank ofZ(r) and denote the

number of uncensored observations not greater thanZ(r) by

Nr = {1≤ j ≤ r : δ( j) = 1}.

Then, the test statistics can be expressed as

TKS = n1/2 max
1≤r≤n

∣∣∣∣
Nr

n
−C

(
γn,

r
n

)∣∣∣∣ ,

TCM = n
n

∑
r=1

(
Nr

n
−C

(
γn,

r
n

))2(
C

(
γn,

r
n

)
−C

(
γn,

r −1
n

))
.

(3.8)

At this juncture, it is obvious that a valid test of the null hypothesis (3.1) should be based

on the null distribution of the test statistics. Due to its complicated variance-covariance

functionσ(s, t) (as given in Theorem 3.2), it is not feasible to readily find critical values

for the test. As a resort, we propose a bootstrap approximation to the null distribution

of the test statistics. Nonetheless, the validity of the bootstrap can only be assured if

the original empirical process
√

n(Hu
n(·)−C (γn,H(·))) and its bootstrap counterpart

converge to the same limiting Gaussian process.

3.4 Bootstrap approximation of test statistics

In view of the variance-covariance structure in Theorem 3.2, we now describe a bootstrap

procedure to approximate the null distribution of the critical values of the Kolmogorov-
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Smirnov and Cramer-von Mises type test statistics given in Section 3.3. Also, we give

an asymptotic representation of the bootstrap process. This representation, as in the

previous chapter, will aid in establishing the theoreticalvalidity of the bootstrap. Before

giving this result, we first describe the bootstrap procedure in the following steps.

1. Given the observed data, we estimateγ andH(t) by

γn =
1
n

n

∑
i=1

1{δi = 1} and Hn(t) =
1
n

n

∑
i=1

1{Zi ≤ t}

2. For eachi (i = 1,2, ...,n),

(a) we generate two independent uniform (0,1) samplesui andsi

(b) given the copula functionC under the null hypothesis (3.1), we setvi =

(C10)
−1(si), where(C10)

−1 is the inverse ofC10.

(c) we define the bootstrap pair(Z∗
i ,δ ∗

i ) by

Z∗
i = inf{t : Hn(t) ≥ vi} and δ ∗

i = 1{ui > 1− γn}

3. We compute the bootstrap counterparts ofHu
n(t),Hn(t) andγn respectively by

Hu∗
n (t) =

1
n

n

∑
i=1

1{Z∗
i ≤ t,δ ∗

i = 1}

H∗
n(t) =

1
n

n

∑
i=1

1{Z∗
i ≤ t}

γ∗n =
1
n

n

∑
i=1

1{δ ∗
i = 1}

and consequently obtain the bootstrap quantity
(
Hu∗

n (t)−C (γ∗n ,H∗
n(t))

)
.

As previously mentioned, we need to establish the validity of the bootstrap approxima-

tion. In light of this, we give an asymptotic representationof the bootstrap empirical

processHu∗
n (·)−C (γ∗n ,H∗

n(·)) in Section 3.4.1. By means of this valuable tool (i.e. the

asymptotic representation), we show in Section 3.4.2 that the bootstrap process and the

corresponding original process converge to the same limiting Gaussian process.
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3.4.1 Almost sure asymptotic representation of the bootstrap process

Here, we give an asymptotic representation of the bootstrapprocess under consideration

as the sum ofnconditionally independent random quantities plus a remainder term which

is of orderO
(

n−1/2 (logn)1/2
)

almost surely. In the remainder of this chapter, we letP∗

andE∗ denote Probability and Expectation conditionally on the observed data.

Theorem 3.3. Under the null hypothesis (3.1), assume (A1) is satisfied. Then,∀t ≥ 0

Hu∗
n (t)−C (γ∗n ,H∗

n(t)) =
1
n

n

∑
i=1

{
kt (Z

∗
i ,δ ∗

i )−E∗kt (Z
∗
i ,δ ∗

i )

}
+ r∗n(t)

where

kt (Z
∗
i ,δ ∗

i ) = 1{Z∗
i ≤ t,δ ∗

i = 1}−Hu(t)− [1{Z∗
i ≤ t}−H(t)]C01(γ ,H(t))

− [1{δ ∗
i = 1}− γ ]C10(γ ,H(t))

and

sup
t∈[0,+∞]

|r∗n(t)| = O
(

n−1/2(logn)1/2
)

a.s

Proof. Adding and subtracting terms, we get

Hu∗
n (t)−C (γ∗n ,H∗

n(t))

=
[
Hu∗

n (t)−C (γ∗n ,H∗
n(t))

]
− [Hu

n(t)−C (γn,Hn(t))]+ [Hu
n(t)−C (γn,Hn(t))]

=
[
Hu∗

n (t)−Hu
n(t)

]
− [C (γ∗n ,H∗

n(t))−C (γn,Hn(t))]+ [Hu
n(t)−C (γn,Hn(t))]

=
[
Hu∗

n (t)−Hu(t)
]
− [C (γ∗n ,H∗

n(t))−C (γ ,H(t))]− [Hu
n(t)−Hu(t)]

+[C (γn,Hn(t))−C (γ ,H(t))]+ [Hu
n(t)−C (γn,Hn(t))]

Using Taylor’s expansion on the 2nd and 4th term at the right hand side of the preceding

display, we obtain

Hu∗
n (t)−C (γ∗n ,H∗

n(t))

=

{
Hu∗

n (t)−Hu(t)− [H∗
n(t)−H(t)]C01(γ ,H(t))− [γ∗n − γ ]C10(γ ,H(t))

}

−
{

Hu
n(t)−Hu(t)− [Hn(t)−H(t)]C01(γ ,H(t))− [γn− γ ]C10(γ ,H(t))

}

+R∗
n(t)+Rn(t)

(3.9)
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where,

R∗
n(t) = −1

2
[H∗

n(t)−H(t)]2C02(γ⋆
1 ,H⋆

1(t))− 1
2

[γ∗n − γ ]2C20(γ⋆
1 ,H⋆

1(t))

− [γ∗n − γ ] [H∗
n(t)−H(t)]C11(γ⋆

1 ,H⋆
1(t))

with γ⋆
1 lying betweenγ∗n andγ , H⋆

1(t) betweenH∗
n(t) andH(t); and

Rn(t) = −1
2

[Hn(t)−H(t)]2C02(γ⋆
2 ,H⋆

2(t))− 1
2

[γn− γ ]2C20(γ⋆
2 ,H⋆

2(t))

− [γn− γ ] [Hn(t)−H(t)]C11(γ⋆
2 ,H⋆

2(t))+ [Hu
n(t)−C (γn,Hn(t))]

with γ⋆
2 betweenγn and γ ; andH⋆

2(t) betweenHn(t) andH(t). We now give the rate

of convergence ofR∗
n(t) and Rn(t). Starting withRn(t), we note that under the null

hypothesis (3.1),

Hu
n(t)−C (γn,H

u
n(t)) = [Hu

n(t)−C (γn,H
u
n(t))]− [Hu(t)−C (γ ,H(t))]

= Hu
n(t)−Hu(t)− [C (γn,Hn(t))−C (γ ,H(t))]

(3.10)

Applying the bivariate mean value theorem on the 2nd term, weobtain

Hu
n(t)−C (γn,H

u
n(t)) = [Hu

n(t)−Hu(t)]− [Hn(t)−H(t)]C01(γ∗,H∗(t))

− [γn− γ ]C10(γ∗,H∗(t))
(3.11)

with γ∗ lying betweenγn andγ ; andH∗(t) betweenHn(t) andH(t). Using Dvortzky,

Kiefer and Wolfowitz theorem on the first term at the right hand side of (3.11), we have

for all ε > 0,

P

(
sup

t∈[0,+∞]

|Hu
n(t)−Hu(t)| > ε

)
≤ Cexp

(
−2nε2

)
,

with C a finite positive constant. If we takeε = εn = Kn−1/2 (logn)1/2 for someK > 0,

we get

∞

∑
n=1

exp
(
−2nε2) < ∞.

Thus, by the Borrel-Cantelli lemma, we have

sup
t∈[0,+∞]

|Hu
n(t)−Hu(t)| = O

(
n−1/2 (logn)1/2

)
a.s. (3.12)
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Next, we have from (3.11) that

sup
t∈[0,+∞]

|Hu
n(t)−C (γn,H

u
n(t))| ≤ sup

t∈[0,+∞]

|Hu
n(t)−Hu(t)|+ |γn− γ | sup

t∈[0,+∞]

C10(γ∗,H∗(t))

+ sup
t∈[0,+∞]

|Hn(t)−H(t)| sup
t∈[0,+∞]

C01(γ∗,H∗(t))

But, for all u∈ (0,1)

sup
0≤v≤1

C10(u,v) ≤ 1 and sup
0≤v≤1

C01(u,v) ≤ 1

which imply

sup
t∈[0,+∞]

|Hu
n(t)−C (γn,H

u
n(t))|

≤ sup
t∈[0,+∞]

|Hu
n(t)−Hu(t)|+ sup

t∈[0,+∞]

|Hn(t)−H(t)|+ |γn− γ |

Invoking Lemma 2.2 together with (3.12), we obtain

sup
t∈[0,+∞]

|Hu
n(t)−C (γn,H

u
n(t))| = O

(
n−1/2 (logn)1/2

)
a.s.

From (3.3), it also follows that

sup
t∈[0,+∞]

|Rn(t)| ≤ sup
t∈[0,+∞]

|rn(t)|+ sup
t∈[0,+∞]

|Hu
n(t)−C (γn,H

u
n(t))| .

This gives

sup
t∈[0,+∞]

|Rn(t)| = O
(
n−1(logn)

)
+O

(
n−1/2 (logn)1/2

)
a.s.

= O
(

n−1/2(logn)1/2
)

a.s. (3.13)

For R∗
n(t), we work in analogy withrn(t) and obtain

sup
t∈[0,+∞]

|R∗
n(t)| = OP∗

(
n−1 logn

)
a.s. (3.14)

Combining (3.9), (3.12) and (3.13) gives the representation in Theorem 3.3.
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3.4.2 Weak convergence result for the bootstrap process

In this subsection, we show that our bootstrap procedure is avalid process to obtain

critical values for the test statistics presented in Section 3.3. As mentioned earlier, this is

equivalent to showing that the empirical bootstrap process
√

n
(
Hu∗

n (·)−C (γ∗n ,H∗
n(·))

)

and its corresponding original empirical process
√

n(Hu
n(·)−C (γn,Hn(·))) converge to

the same limiting process. Armed with the almost sure asymptotic representation of the

bootstrap process (i.e. Theorem 3.3), we now formulate the validity of the bootstrap

procedure in the following theorem.

Theorem 3.4. Under the null hypothesis H0, assume (A1) is satisfied. If n→ ∞, then

√
n
(

Hu∗
n (·)−C (γ∗n ,H∗

n(·))
)
→ ψ(·) in ℓ∞[0,+∞]

whereψ(·) is a zero mean Gaussian process with variance-covariance function σ(s, t),

given in (3.4).

Proof. Here we work in line with Braekers and Veraverbeke (2005). Let

W∗
n (t) = n−1/2

n

∑
i=1

{
kt(Z

∗
i ,δ ∗

i )−E∗kt(Z
∗
i ,δ ∗

i )

}
.

Then, showing the weak convergence of
√

n
(
Hu∗

n (·)−C (γ∗n ,H∗
n(·))

)
is equivalent to

that ofW∗
n (·), providedn→ ∞. To do this, we proceed in two steps. First, we show the

convergence of the finite dimensional distributions and later establish tightness ofW∗
n (·)

in ℓ∞[0,+∞].

For the convergence of the finite dimension distributions, we show that for any distinct

time points 0< t1 < t2 · ·· < tq, q = 1,2, ...

(
W∗

n (t1),W
∗
n (t2), ...,W

∗
n (tq)

)
→ N(0,σ(t j , tk))

Unlike Section 2.3 of Chapter 2, it is not possible to establish the finite dimensional dis-

tributions by the multivariate central limit theorem, since the random quantitieskt(Z∗
i ,δ ∗

i )

(i = 1,2, ...,n) are not identically distributed. To this end, we instead verify whether the

following two conditions of Araujo and Giné (1980)
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1. lim
n→∞

n

∑
i=1

E∗
(

W∗
ni j

W∗
nik

)
= σ(t j , tk) = σ jk , 1≤ j,k≤ q

2. lim
n→∞

n

∑
i=1

∫

{|W∗
ni |>ε}

∣∣W∗
ni

∣∣2dP∗ = 0 , ∀ε > 0

hold almost surely for the summandsW∗
nik

= n−1/2{ktk(Z
∗
i ,δ ∗

i )−E∗ktk(Z
∗
i ,δ ∗

i )}, where

∣∣W∗
ni

∣∣2 =
q

∑
k=1

∣∣W∗
nik

∣∣2 and W∗
ni

=
q

∑
k=1

W∗
nik

.

Adopting similar analogy employed in the calculation of thevariance-covariance func-

tion of the empirical quantity
√

n(Hu
n(·)−C (γn,Hn(·))), we obtain for all 1≤ j,k≤ q

E∗
(

W∗
ni j

W∗
nik

)
=

1
n

{
[Hu

n(t j ∧ tk)−Hu
n(t j)H

u
n(tk)]

+ [Hn(t j ∧ tk)−Hn(t j)Hn(tk)]C01(γ ,H(t j))C01(γ ,H(tk))

+ γn[1− γn]C10(γ ,H(t j))C10(γ ,H(tk))

+ [Hu
n(t j)− γnHn(t j)]C01(γ ,H(t j))C10(γ ,H(tk))

+ [Hu
n(tk)− γnHn(tk)]C01(γ ,H(tk))C10(γ ,H(t j))

− [Hu(t j ∧ tk)−Hu(t j)H(tk)]C01(γ ,H(tk))

− [Hu
n(t j ∧ tk)−Hu

n(tk)Hn(t j)]C01(γ ,H(t j))

− [Hu
n(t j)− γnHn(t j)]C10(γ ,H(tk))

− [Hu
n(tk)− γnHn(tk)]C10(γ ,H(t j))

}

(3.15)

But, we recall that

sup
t∈[0,+∞]

|Hu
n(t)−Hu(t)| = O

(
n−1/2 (logn)1/2

)
a.s.,

sup
t∈[0,+∞]

|Hn(t)−H(t)| = O
(

n−1/2 (logn)1/2
)

a.s.,

|γn− γ | = O
(

n−1/2 (logn)1/2
)

a.s..

Assumingn → ∞, we may replace in (3.15)Hu
n(·),Hn(·) and γn by Hu(·),H(·) andγ
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respectively. Thus almost surely, we get

σ jk = lim
n→∞

n

∑
i=1

E∗
(

W∗
ni j

W∗
nik

)

= [Hu(t j ∧ tk)−Hu(t j)H
u(tk)]+ [H(t j ∧ tk)−H(t j)H(tk)]C01(γ ,H(t j))C01(γ ,H(tk))

+ γ [1− γ ]C10(γ ,H(t j))C10(γ ,H(tk))+ [Hu(t j)− γH(t j)]C01(γ ,H(t j))C10(γ ,H(tk))

+ [Hu(tk)− γH(tk)]C01(γ ,H(tk))C10(γ ,H(t j))− [Hu(t j ∧ tk)−Hu(t j)H(tk)]C01(γ ,H(tk))

− [Hu(t j ∧ tk)−Hu(tk)H(t j)]C01(γ ,H(t j))− [Hu(t j)− γH(t j)]C10(γ ,H(tk))

− [Hu(tk)− γH(tk)]C10(γ ,H(t j))

To show that the second condition of Araujo and Giné (1980) holds, we first recall that

W∗
nik

= n−1/2{ktk(Z
∗
i ,δ ∗

i )−E∗ktk(Z
∗
i ,δ ∗

i )} = n−1/2gtk (Z∗
i ,δ ∗

i ) ,

where

gtk (Z∗
i ,δ ∗

i ) = 1{Z∗
i ≤ tk,δ ∗

i = 1}−1{Zi ≤ tk,δi = 1}
− [1{Z∗

i ≤ tk}−1{Zi ≤ tk}]C01(γ ,H(tk))

− [1{δ ∗
i = 1}−1{δi = 1}]C10(γ ,H(tk)).

Conditional on the original data, it follows for allT > 0 that

sup
0≤t≤T

∣∣∣∣gt (Z
∗
i ,δ ∗

i )

∣∣∣∣ ≤ sup
0≤t≤T

∣∣∣∣1{Z∗
i ≤ t,δ ∗

i = 1}−1{Zi ≤ t,δi = 1}
∣∣∣∣

+ sup
0≤t≤T

∣∣∣∣[1{Z∗
i ≤ t}−1{Zi ≤ t}]C01(γ ,H(t))

∣∣∣∣

+ sup
0≤t≤T

∣∣∣∣[1{δ ∗
i = 1}−1{δi = 1}]C10(γ ,H(t))

∣∣∣∣

≤ 2+C10(γ ,H(T)) < ∞

(3.16)

This means that the functiongtk (Z∗
i ,δ ∗

i ) is uniformly bounded for allk> 0. Using (3.16),

it follows that

max
1≤i≤n

∣∣∣∣W
∗
ni

∣∣∣∣ = max
1≤i≤n

∣∣∣∣
q

∑
k=1

W∗
ni

∣∣∣∣= max
1≤i≤n

∣∣∣∣
q

∑
k=1

gtk (Z∗
i ,δ ∗

i )

∣∣∣∣

≤ n−1/2 max
1≤i≤n

q

∑
k=1

sup
0≤t≤T

∣∣∣∣gt (Z
∗
i ,δ ∗

i )

∣∣∣∣

= n−1/2q max
1≤i≤n

sup
0≤t≤T

∣∣∣∣gt (Z
∗
i ,δ ∗

i )

∣∣∣∣.
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This implies that

max
1≤i≤n

∣∣∣∣W
∗
ni

∣∣∣∣ = OP∗

(
n−1/2

)
. (3.17)

Similarly, we have

n

∑
i=1

∣∣∣∣W
∗
ni

∣∣∣∣
2

=
n

∑
i=1

q

∑
k=1

∣∣∣∣W
∗
nik

∣∣∣∣
2

≤ q max
1≤i≤n

(
sup

0≤t≤T

∣∣∣∣gt (Z
∗
i ,δ ∗

i )

∣∣∣∣
)2

= OP∗ (1) (3.18)

Using (3.17) and (3.18), we get for allε > 0

n

∑
i=1

∫

{|W∗
ni |>ε}

∣∣W∗
ni

∣∣2 dP∗ ≤
∫

{max1≤i≤n|W∗
ni |>ε}

∣∣W∗
ni

∣∣2dP∗

≤ OP∗(1)P∗
(

max
1≤i≤n

∣∣W∗
ni

∣∣> ε
)

= oP∗(1) a.s

Hence, the convergence of the finite dimensional distributions.

To prove tightness, we verify the conditions

1.
n

∑
i=1

E

[
sup
t∈F

|Zni (t)|1{sup
t∈F

|Zni (t)| > λ
}]

→ 0 , ∀λ > 0

2. sup
ρ(t,t ′)≤δn

n

∑
i=1

E
(
Zni (t)−Zni (t

′)
)2 → 0 , ∀δn ↓ 0

3.
∫ δn

0

√
logN[ ] (ε ,F ,Ln

2)dε → 0 , ∀δn ↓ 0

of the bracketing central limit theorem of van der Vaart and Wellner (2000, Theorem

2.11.9), withF denoting an index set endowed with an appropriate semimetric ρ .

Let us define

X∗
ni
(t) = n−1/2kt(Z

∗
i ,δ ∗

i ) and F = [0,T].

OnF , we further define the semimetric

ρ
(
t, t ′
)

= max




|Hu(t)−Hu(t ′)| , |H(t)−H(t ′)| , |C10(γ ,H(t))−C10(γ ,H(t ′))| ,

|C01(γ ,H(t))−C01(γ ,H(t ′))|


 .
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Next, we divideF for everynandε , conditional on the original observationsZ1,Z2, ...,Zn

in a partition{F ∗n
ε j
} such that

n

∑
i=1

E∗ sup
t,t ′∈F ∗n

ε j

∣∣∣∣X
∗
ni
(t)−X∗

ni
(t ′)

∣∣∣∣
2

≤ ε2 a.s. (3.19)

The smallest number of intervals of this partition for which(3.19) holds is the bracketing

numberN[ ] (ε ,F ,Ln
2).

GivenZ1,Z2, ...,Zn, we take withinF , a sequence of time points 0= t0 < t1 < t2 < · · · <
tm such that{Z1,Z2, ...,Zn}⊂ {t0, t1, ..., tm} andρ(t, t ′) <Cε for everyt, t ′ ∈ [t j−1, t j ], j =

1,2, ...,m; whereC is a constant to be determine later.

Conditional on the original data, we further define the following partitions

F
∗n
ε j

=





[t j−1, t j [ if t j−1 /∈ {Z1,Z2, ...,Zn}
]t j−1, t j [ if t j−1 ∈ {Z1,Z2, ...,Zn}

F
∗n
εm

=





[tm−1, t j [ if tm−1 /∈ {Z1,Z2, ...,Zn}
]tm−1, t j [ if tm−1 ∈ {Z1,Z2, ...,Zn}

F
∗n
ε j,m+i

= {Zi} , i = 1,2, ...,n

Next, we show that (3.19) holds for this partition. In this way, the bracketing number

N[ ] (ε ,F ,Ln
2) = OP∗

(1
ε
)
+n. To do this, we start by noting that

∣∣X∗
ni
(t)−X∗

ni
(t ′)
∣∣ = n−1/2 |kt(Z

∗
i ,δ ∗

i )−kt ′(Z
∗
i ,δ ∗

i )|

≤ n−1/2
{∣∣1{Z∗

i ≤ t,δ ∗
i = 1}−1{Z∗

i ≤ t ′,δ ∗
i = 1}

∣∣+
∣∣Hu(t)−Hu(t ′)

∣∣

+
∣∣C10(γ ,H(t))−C10(γ ,H(t ′))

∣∣+
∣∣1{Z∗

i ≤ t}−1{Z∗
i ≤ t ′}

∣∣

+2
∣∣C01(γ ,H(t))−C01(γ ,H(t ′))

∣∣+
∣∣H(t)−H(t ′)

∣∣
}

.

Using Cauchy-Schwartz inequality, it follows that

∣∣X∗
ni
(t)−X∗

ni
(t ′)
∣∣2 ≤ 6

n

{∣∣1{Z∗
i ≤ t,δ ∗

i = 1}−1{Z∗
i ≤ t ′,δ ∗

i = 1}
∣∣2 +

∣∣Hu(t)−Hu(t ′)
∣∣2

+
∣∣C10(γ ,H(t))−C10(γ ,H(t ′))

∣∣2 +
∣∣1{Z∗

i ≤ t}−1{Z∗
i ≤ t ′}

∣∣2

+4
∣∣C01(γ ,H(t))−C01(γ ,H(t ′))

∣∣2 +
∣∣H(t)−H(t ′)

∣∣2
}

.
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Next, we note that

∣∣1{Z∗
i ≤ t,δ ∗

i = 1}−1{Z∗
i ≤ t ′,δ ∗

i = 1}
∣∣2 =





1 if t ∧ t ′ ≤ Z∗
i ≤ t ∨ t ′,δ ∗

i = 1

0 otherwise
.

This implies that

sup
t,t ′∈F ∗n

ε j

∣∣∣∣1{Z∗
i ≤ t,δ ∗

i = 1}−1{Z∗
i ≤ t ′,δ ∗

i = 1}
∣∣∣∣
2

=





1 if Z∗
i ∈ F ∗n

ε j
|{left end point}

0 otherwise
.

Also,

∣∣1{Z∗
i ≤ t}−1{Z∗

i ≤ t ′}
∣∣2 =





1 if t ∧ t ′ ≤ Z∗
i ≤ t ∨ t ′

0 otherwise

which gives

sup
t,t ′∈F ∗n

ε j

∣∣∣∣1{Z∗
i ≤ t}−1{Z∗

i ≤ t ′}
∣∣∣∣
2

=





1 if Z∗
i ∈ F ∗n

ε j
|{left end point}

0 otherwise
.

Consequently, it follows that

E∗ sup
t,t ′∈F ∗n

ε j

∣∣∣∣1{Z∗
i ≤ t,δ ∗

i = 1}−1{Z∗
i ≤ t ′,δ ∗

i = 1}
∣∣∣∣
2

= Hu
n

(
right end point ofF ∗n

ε j

)
−Hu

n

(
left end point ofF ∗n

ε j

)
= 0

and

E∗ sup
t,t ′∈F ∗n

ε j

∣∣∣∣1{Z∗
i ≤ t}−1{Z∗

i ≤ t ′}
∣∣∣∣
2

= Hn

(
right end point ofF ∗n

ε j

)
−Hn

(
left end point ofF ∗n

ε j

)
= 0

As pointed out by Braekers and Veraverbeke (2005), this is trivial due to the construction
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of the partitions. As a consequence, we have

n

∑
i=1

E∗ sup
t,t ′∈F ∗n

ε j

∣∣X∗
ni
(t)−X∗

ni
(t ′)
∣∣2

≤ 6
n

n

∑
i=1

{∣∣1{Z∗
i ≤ t,δ ∗

i = 1}−1{Z∗
i ≤ t ′,δ ∗

i = 1}
∣∣2+

∣∣Hu(t)−Hu(t ′)
∣∣2

+
∣∣C10(γ ,H(t))−C10(γ ,H(t ′))

∣∣2 +
∣∣1{Z∗

i ≤ t}−1{Z∗
i ≤ t ′}

∣∣2

+4
∣∣C01(γ ,H(t))−C01(γ ,H(t ′))

∣∣2 +
∣∣H(t)−H(t ′)

∣∣2
}

≤ 42C2ε2

If we takeC2 = 1
42, we obtain (3.19).

Now we can readily verify the conditions of Theorem 2.11.9 ofvan der Vaart and Wellner

(2000). Starting with the 3rd condition, we take a positive constantD and observe that

∫ ζn

0

√
logN∗

[ ] (ε ,F ,Ln
2)dε ≤

∫ ζn

0

√
log

(
D
ε

+n

)
dε =

∫ ζn

0

∫ √
log(D

ε +n)

0
dνdε

By Fubini’s theorem, this equals
∫ ∞

0 fn(ν)dν , where

fn(ν) =





ζn , ν ≤ log
(

D
ε +n

)

D
eν2−n

, ν > log
(

D
ε +n

)

Since fn converges to zero, we also get pointwise convergence offn. Further, we use the

bounded convergence theorem (see for example Foran (1991))and find that, forζn ↓ 0,

∫ ζn

0

√
logN∗

[ ] (ε ,F ,Ln
2)dε ≤

∫ ∞

0
fn(ν)dν → 0

Also, we have that

n

∑
i=1

E∗
(

X∗
ni
(t)−X∗

ni
(t ′)

)2

≤ 6

{∣∣Hu
n(t)−Hu

n(t ′)
∣∣+
∣∣Hu(t)−Hu(t ′)

∣∣2

+
∣∣C10(γ ,H(t))−C10(γ ,H(t ′))

∣∣2 +
∣∣Hn(t)−Hn(t

′)
∣∣

+4
∣∣C01(γ ,H(t))−C01(γ ,H(t ′))

∣∣2 +
∣∣H(t)−H(t ′)

∣∣2
}
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So that

sup
ρ(t,t ′)<ζn

n

∑
i=1

E∗
(

X∗
ni
(t)−X∗

ni
(t ′)

)2

→ 0 a.s

for everyζn ↓ 0. This gives the 2nd condition of Theorem 2.11.9 of Van der Vaart and

Wellner (2000). Before we verify the 3rd condition of the same theorem, we recall that

sup
t∈F

∣∣X∗
ni
(t)
∣∣ ≤ n−1/2

{
2+C10(γ ,H(T))

}

with C10(γ ,H(T)) ≤ 1 for all T > 0. Therefore for allη > 0, it follows that1{sup
t∈F

∣∣X∗
ni
(t)
∣∣> η

}
= 0

if n is sufficiently large. As a result, we get
n

∑
i=1

E∗
[

sup
t∈F

∣∣X∗
ni
(t)
∣∣1{sup

t∈F

∣∣X∗
ni
(t)
∣∣> η

}]
→ 0 as n→ ∞

Thus, all the conditions of Theorem 2.11.9 of van der Vaart and Wellner (2000) are

satisfied and the quantity
√

n
(
Hu∗

n (·)−C (γ ,H∗
n(·))

)
is asymptotically tight. Combining

this with the convergence of the finite dimensional distributions concludes the proof.

3.5 A simulation study

In this section, we set up a simulation study to investigate the finite sample performance

of the goodness-of-fit test and its bootstrap approximationof the critical values. Hereto

we generate samples of observable couples(Zi,δi), i = 1, . . . ,n such thatHu(t) = P(Z ≤
t,δ = 1) = C (γ ,H(t)). We assume in this simulation study that the observable lifetimes

Zi (i = 1,2, . . . ,n) have an exponential distribution (Zi ∼ Exp(λ )) with λ = 1.5 and the

indicatorsδi (i = 1,2, . . . ,n) are Bernoulli distributed with proportionγ of uncensored

observations. In particular, we takeγ = 25%,50% and 75% so as to study the influence

of censoring intensity on the bootstrap approximations. Further we use the Clayton

copula defined by

C (u,v) =
[
max

(
u−1.3 +v−1.3−1,0

)]−1/1.3
, ∀(u,v) ∈ [0,1]2 (3.20)

to express the relationship betweenZi andδi . Using the inverse distribution function

method, we obtain our simulation data as follows:
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1. We generate two independent uniform(0,1) samplesu andt.

2. We setv = (C10)
−1(t) whereC10 = ∂

∂uC (u,v) and(C10)
−1 is the inverse function

of C10

3. We define the observed quantitiesdi = 1{u > 1− γ} andzi = − 1
λ log(1−v).

Based on the simulated data, we utilize the procedure described in Section 4 under the

null hypothesisH0 with the Clayton copula given in (3.20). That is, for a fixed bootstrap

sizeB and for eachb (b= 1,2, . . . ,B), we computeT∗
KSb

andT∗
CMb

based on the bootstrap

data(z
∗
1,d

∗
1), . . . ,(z

∗
n,d

∗
n), where

T∗
KSb

= n1/2 max
1≤r∗≤n

∣∣∣∣
Nr∗

n
−C

(
γ∗n ,

r∗

n

)∣∣∣∣

T∗
CMb

= n
n

∑
r∗=1

(
Nr∗

n
−C

(
γ∗n ,

r∗

n

))2(
C

(
γ∗n ,

r∗

n

)
−C

(
γ∗n ,

r∗−1
n

)) (3.21)

with γ∗n , r∗ andNr∗ being the bootstrap counterparts ofγn, r andNr respectively. Conse-

quently, we obtain an approximatep-value for the test based onTKS andTCM by

1
B

B

∑
b=1

1{T∗
KSb

> TKS
}

and
1
B

B

∑
b=1

1{T∗
CMb

> TCM
}

(3.22)

respectively.

Taking the Product, Plackett and Frank copulas given respectively by

C (u,v) = uv ,

C (u,v) =
1
8

{
1+4(u+v)−

√
[1+4(u+v)]2−80uv

}
,

C (u,v) = −1
4

log

(
1+

(e−4u−1)(e−4v−1)

(e−4−1)

)
,

we also compute the approximatep-values under the corresponding null hypotheses.

With a bootstrap sizeB = 10000, we report theP-values of both test statistics in Table

3.1. Since we generated data under (3.20), we expect to conclude the Clayton copula as

the most plausible copula function to express the relationship between the observed time

and censoring indicator in this simulation study. The results in Table 3.1 show that this

is true at 5% level of significance for various degrees of censoring and samples of size

150 or more.
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Table 3.1: Approximatep-values (based on 10000 bootstrap replicates) forTKS andTCM under

null hypothesisH0 with Clayton, Product, Plackett and Frank copulas, based onsimulated data

in which the Clayton copula describes the relationship between the observed time and censoring

indicator.

n γ Statistic Clayton Product Plackett Frank

150

25%
TKS 0.4462 0.0000 0.0000 0.0000
TCM 0.3969 0.0000 0.0000 0.0000

50%
TKS 0.4603 0.0000 0.0000 0.0040
TCM 0.3841 0.0000 0.0000 0.0020

75%
TKS 0.3711 0.0000 0.0013 0.0318
TCM 0.3292 0.0000 0.0010 0.0182

200

25%
TKS 0.5011 0.0000 0.0000 0.0000
TCM 0.5134 0.0000 0.0000 0.0000

50%
TKS 0.4323 0.0000 0.0000 0.0004
TCM 0.3795 0.0000 0.0000 0.0004

75%
TKS 0.4326 0.0000 0.0004 0.0110
TCM 0.3676 0.0000 0.0000 0.0057

250

25%
TKS 0.3526 0.0000 0.0000 0.0000
TCM 0.2741 0.0000 0.0000 0.0000

50%
TKS 0.4720 0.0000 0.0000 0.0000
TCM 0.4175 0.0000 0.0000 0.0000

75%
TKS 0.3655 0.0000 0.0004 0.0091
TCM 0.3032 0.0000 0.0000 0.0036

3.6 Data example: Survival with Malignant Melanoma

In this section, we apply the goodness-of-fit test on the melanoma data set, introduced in

Chapter 1. The data comes from a historical prospective clinical study conducted in the

period 1962-77. The study took place at the university hospital of Odense, Denmark and

has information on 225 patients with malignant melanoma (cancer of skin). However,

only the 205 patients with complete information are considered here. Of these patients,
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57 (28%) died of malignant melanoma (event), 14(7%) died of other causes and 134

(65%) were alive at the end of the study. See Andersen et al. (1993) for more details

about the data set.

For the purpose of this illustration, we treat those observations corresponding to deaths

due to other causes and those corresponding to the 134 survivors as censored observa-

tions. Before applying the goodness-of-fit test, we performa preliminary search of a

potential copula functionC by graphically investigating whether

Hu
n(t) = C (γn,Hn(t))

nearly holds for allt ≥ 0, whereHu
n(t),Hn(t) andγn are as previously defined. In par-

ticular, we compare the verticalγn-section of the Fréchet-Hoeffding lower bound (W),

Fréchet-Hoeffding upper bound (M), Clayton, Product, Plackett and Frank copulas to

the empirical quantityHu
n(H−1

n (p)), whereH−1
n (p) = inf{t : Hn(t) > p} is the quantile

function ofHn(t). The Clayton, Product, Plackett and Frank copulas are as given in the

preceding section and the Fréchet-Hoeffding lower and upper bounds are respectively

given by

C (u,v) = max(u+v−1,0) and C (u,v) = min(u,v).

Table 3.2: Goodness-of-fit test on copula function to describe the relationship between the ob-

served time and censoring indicator in the Malignant Melanoma data set.

Clayton Product Plackett Frank

TKS 0.3774 1.7682 0.7762 0.6611
P-value 0.2512 0.0000 0.0011 0.0069

TCM 0.0136 0.3355 0.0455 0.0295
P-value 0.0872 0.0000 0.0040 0.0175

Among the copula functions shown in Figure 3.1, we see that the Clayton copula gives

the best approximation to the empirical quantity and suggests itself as a potential candi-

date for this data set. Table 3.2 supports this observation based on the bootstrap proce-

dure described earlier withB = 10000 replicates. That is, except for the Clayton copula,
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Figure 3.1: Graphical test of the copula function to describe the relationship between the ob-

served time and censoring indicator.

the null hypothesis under the other copula functions is clearly rejected at 5% significance

level. This confirms that the Clayton copula function given in Section 5, is appropriate

to describe the relationship between the observed survivaltime and censoring indicator

in this data set.



4
The conditional Koziol-Green model under

dependent censoring

In Section 1.2.1 of Chapter 1, we introduced the conditionalKoziol-Green estimator

of Braekers and Veraverbeke (2008). This estimator is a generalization of the condi-

tional Koziol-Green estimator proposed and studied by Veraverbeke and Cadarso-Suárez

(2000), where the association between the censoring variable and the lifetime variable

is captured by a known Archimedean copula function. In this way, a model which ac-

commodates both dependent and informative censoring was obtained. Braekers and

Veraverbeke (2008) derived in this model, a non-parametricKoziol-Green estimator for

the conditional distribution function of the lifetime and showed its uniform consistency

59
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and asymptotic normality. In this chapter, we append their results by proving the weak

convergence of the process associated with this estimator and give some of its applica-

tions. First, we give some regularity conditions in Section4.1, under which the results of

the chapter are valid. In Section 4.2, we give the weak convergence result and present its

applications in Section 4.3. We conclude this chapter with asimulation study in Section

4.4 and an illustration of the results on the Worcester heartattack study in Section 4.5.

4.1 Regularity conditions

For the design pointsx1, . . . ,xn we write ∆n = min
1≤i≤n

(xi − xi−1) and ∆̄n = max
1≤i≤n

(xi −

xi−1). The notations‖K‖∞ = sup
u∈IR

K(u), ‖K‖2
2 =

+∞∫
−∞

K2(u)du, µK
1 =

+∞∫
−∞

uK(u)du, µK
2 =

+∞∫
−∞

u2K(u)du will be used for the kernelK.

We use the following assumptions on the design and on the kernel.

(C1) xn → 1, ∆̄n = O(n−1),∆̄n−∆n = o(n−1).

(C2) K is a probability density function with finite support[−M,M] for someM > 0,

µK
1 = 0 andK is Lipschitz of order 1.

The assumption (C1) expresses that the chosen design pointsare asymptotically equidis-

tant points, selected uniformly over the whole interval[0,1]. This implies that, for

cn(x,hn) defined in Section 1.2,cn(x,hn) = 1 for n sufficiently large. Therefore we may

takecn(x,hn) = 1 in all proofs of the asymptotic results.

If L is any distribution, thenTL denotes the right endpoint of its support (TL = inf{t :

L(t) = L(+∞)}). We note thatTHx = TFx = TGx. To obtain our results, we need some

smoothness conditions. For a fixed 0< T < TFx,

(C3) Ḟx(t) = ∂
∂xFx(t), F̈x(t) = ∂ 2

∂x2 Fx(t) exist and are continuous in(x, t) ∈ [0,1]× [0,T]

(C4) β̇x = ∂
∂xβx, β̈x = ∂ 2

∂x2 βx exist and are continuous inx∈ [0,1]
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The generatorϕx(v) of the Archimedean copula needs to satisfy the following properties.

(C5) ϕ ′
x(v) = ∂

∂vϕx(v) and ϕ ′′
x (v) = ∂ 2

∂v2 ϕx(v) are Lipschitz in thex-direction with a

bounded Lipschitz constant, andϕ ′′′
x (v) = ∂ 3

∂v3 ϕx(v) ≤ 0 exists and is continuous

in (x,v) ∈ [0,1]×]0,1].

These assumptions and the fact thatϕx is a generator for an Archimedean copula, give

thatϕ ′
x(v) is monotone increasing withϕ ′

x(v) < 0 andϕ ′′
x (v) is monotone decreasing with

ϕ ′′
x (v) ≥ 0.

4.2 Weak convergence result

In this section, we show the weak convergence of the process(nhn)
1/2(FBV

xh (·)−Fx(·))
associated with the conditional Koziol-Green estimatorFBV

xh (t) for the conditional dis-

tribution functionFx(t). This adds to the works of Braekers and Veraverbeke (2008),

where the authors showed the asymptotic normality in a fixed time point. As in the pre-

vious chapters, we first need to derive an almost sure representation for the conditional

Koziol-Green estimatorFBV
xh (t). This result has already been obtained by Braekers and

Veraverbeke (2008). For convenience, we formulate their result as the following Lemma.

Lemma 4.1. Assume conditions (C1)-(C5), hn → 0, nh5
n

logn = O(1),T < TFx. Then, for

t < TFx,

FBV
xh (t)−Fx(t) =

n

∑
i=1

wni (x,hn)mtx(Zi,δi)+Rn(x, t)

where wni(x,hn) is the Gasser-M̈uller type weight as defined in Section 1.2,

mtx (Zi,δi) = −ϕx(H̄x(t))
ϕ ′

x (F̄x(t))
(1{δi = 1}− γx)+

γxϕ ′
x (H̄x(t))

ϕ ′
x (F̄x(t))

(1{Zi ≤ t}−Hx(t))

and as n→ +∞

sup
0≤t≤T

|Rn(x, t)| = O
(
(nhn)

−1 logn
)

a.s.
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We do not give the prove of the Lemma since it was already established by Braekers and

Veraverbeke (2008). Based on the asymptotic representation (i.e. Lemma 4.1), we show

the weak convergence of the process(nhn)
1/2
(
FBV

xh (·)−Fx(·)
)

in the spaceℓ∞[0,T] of all

bounded functions on [0,T] equipped with the supremum-norm. Due to the order of the

remainder term in the above representation, we only need to show the weak convergence

of the main term in this representation which is the sum of independent quantities of the

observed variates. Before we establish the weak convergence result, we give Lemma 4.2

and 4.3 which concern the asymptotic bias and variance respectively.

Lemma 4.2. Assume (C1), (C2), Fx(t) andβx satisfy (C3) and (C4) in [0,T] with T< TFx

andϕx satisfies (C5), hn → 0. Then, as n→ +∞

sup
0≤t≤T

∣∣∣∣∣
n

∑
i=1

wni (x,hn)Emtx(Zi,δi)+
µK

2 h2
n

2

(
ϕx(H̄x(t))
ϕ ′

x(F̄x(t))
γ̈x +

γxϕ ′
x(H̄x(t))

ϕ ′
x(F̄x(t))

Ḧx(t)

)∣∣∣∣∣

= o
(
h2

n

)
+O

(
n−1)

Proof. For fixedt ≤ T, we have

n

∑
i=1

wni (x,hn)Emtx(Zi,δi) = −ϕx(H̄x(t))
ϕ ′

x(F̄x(t))
(Eγxh− γx)+

γxϕ ′
x(H̄x(t))

ϕ ′
x(F̄x(t))

(EHxh(t)−Hx(t))

By Lemma A.1.b of Van Keilegom and Veraverbeke (1997a), we get the result.

Lemma 4.3. Assume (C1)-(C4) in [0,T] with T< THx and ϕx satisfies (C5), hn → 0,

nhn → +∞. Then, as n→ +∞

sup
0≤t≤T

∣∣∣∣∣
n

∑
i=1

w2
ni(x,hn)Cov(msx(Zi ,δi),mtx(Zi,δi))−

1
nhn

Γx(s, t)

∣∣∣∣∣ = o
(
(nhn)

−1)

where

Γx(s, t) = ||K||22
{

ϕx(H̄x(s))ϕx(H̄x(t))
ϕ ′

x(F̄x(s))ϕ ′
x(F̄x(t))

γx(1− γx)

+
γ2

x ϕ ′
x(H̄x(s))ϕ ′

x(H̄x(t))
ϕ ′

x(F̄x(s))ϕ ′
x(F̄x(t))

(Hx(s∧ t)−Hx(s)Hx(t))

}
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Proof. From the main term in the asymptotic representation given inLemma 4.1, we

compute for all 0≤ s, t ≤ T

Cov(msx(Zi,δi) ,mtx (Zi ,δi))

= E (msx(Zi,δi) ,mtx (Zi,δi))−Emsx(Zi,δi)Emtx(Zi,δi)

= ϕx(H̄x(s))ϕx(H̄x(t))
ϕ ′

x(F̄x(s))ϕ ′
x(F̄x(t))

γxi (1− γxi )+ γ2
x ϕ ′

x(H̄x(s))ϕ ′
x(H̄x(t))

ϕ ′
x(F̄x(s))ϕ ′

x(F̄x(t))
(Hxi (s∧ t)−Hxi(s)Hxi (t))

+
γxϕx(H̄x(s))ϕ ′

x(H̄x(t))
ϕ ′

x(F̄x(s))ϕ ′
x(F̄x(t))

(
Hu

xi
(t)− γxi Hxi (t)

)
+

γxϕx(H̄x(t))ϕ ′
x(H̄x(s))

ϕ ′
x(F̄x(s))ϕ ′

x(F̄x(t))

(
Hu

xi
(s)− γxi Hxi (s)

)

By the conditional independent property ofZi andδi, the right hand side of the preceding

display reduces to

ϕx(H̄x(s))ϕx(H̄x(t))
ϕ ′

x(F̄x(s))ϕ ′
x(F̄x(t))

γxi (1− γxi )+
γ2

x ϕ ′
x(H̄x(s))ϕ ′

x(H̄x(t))
ϕ ′

x(F̄x(s))ϕ ′
x(F̄x(t))

(Hxi (s∧ t)−Hxi(s)Hxi (t))

from which the result follows via Lemma 3.1 of Van Keilegom and Veraverbeke (1997a),

which is standard in calculating the asymptotic variance function in a fixed design re-

gression setting.

Theorem 4.1. Assume conditions (C1)-(C5), t< TFx. Then,

(a) If nh5
n → 0 and(nhn)

−1/2 logn→ 0, then as n→ +∞

(nhn)
1/2 (Fxh(·)−Fx(·)) →W(·|x) in ℓ∞[0,T]

(b) If hn = Cn−1/5 for some C> 0, then as n→ +∞,

(nhn)
1/2 (Fxh(·)−Fx(·)) → W̃(·|x) in ℓ∞[0,T]

where W(·|x) and W̃(·|x) are Gaussian processes with variance-covariance function

Γx(s, t) as presented in Lemma 4.3, W(·|x) has a zero mean function while forW̃ this is

given by

btx =
1
2

µK
2 C5/2

{−ϕx(H̄x(t))
ϕ ′

x(F̄x(t))
γ̈x +

γxϕ ′
x(H̄x(t))

ϕ ′
x(F̄x(t))

Ḧx(t)

}

Proof. From Lemma 4.1 and 4.2, we find

Fxh(t)−Fx(t) =
n

∑
i=1

wni(x,hn)ξtx(Zi ,δi)+h2
nb̄tx + R̄n(t)
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where

ξtx(Zi,δi) = mtx(Zi,δi)−Emtx(Zi ,δi)

sup
0≤t≤T

|R̄n(t)| = O
(
(nhn)

−3/4(logn)3/4
)

+o(h2
n) a.s.

and

b̄tx =
µK

2 h2
n

2

(−ϕx(H̄x(t))
ϕ ′

x(F̄x(t))
γ̈x +

γxϕ ′
x(H̄x(t))

ϕ ′
x(F̄x(t))

Ḧx(t)

)
.

The bias(nhn)
1/2h2

nb̄tx is o(1) under conditions (a) and equalsbtx under conditions (b).

Hence it suffices to prove the weak convergence ofWhx(·)= (nhn)
1/2

n
∑

i=1
wni(x,hn)ξ·x(Zi,δi)

to the Gaussian processW(·|x) with mean zero and covariance functionΓx(s, t).

As before, we do this in two steps. First we show the convergence of the finite di-

mensional distributions. Next we verify the asymptotic tightness by Theorem 2.11.9

(Bracketing central limit theorem) of van der Vaart and Wellner (2000).

Convergence of the finite dimensional distributions, in this case is that for anyq= 1,2, . . .

and any 0≤ t1 ≤ . . . ≤ tq ≤ T : (Whx(t1),Whx(t2), . . . ,Whx(tq))
D→ N(0,Γx(ti , t j)). Since

Whx(ti) =
n
∑

k=1
Wnki whereWnki = (nhn)

1/2wnk(x,hn)ξtix(Zk,δk), it suffices to check the two

conditions of Araujo and Giné (1980) as stated in Section 3.4.2.

Now, applying Lemma 4.3, we obtain

n

∑
k=1

E(WnkiWnk j) = (nhn)
n

∑
k=1

w2
nk(x,hn)Cov(mtix(Zk,δk),mt j x(Zk,δk)) = Γx(ti , t j)+o(1)

Since the functionsξtix(Zk,δk) are uniformly bounded, it follows that

max
1≤k≤n

|Wnk| = O((nhn)
−1/2) a.s. and

n

∑
k=1

|Wnk|2 = O(1) a.s.

Hence,

n

∑
k=1

∫

{|Wnk|>ε}
|Wnk|2dP ≤ O(1)P

(
max

1≤k≤n
|Wnk| > ε

)
= o(1).

To prove the asymptotic tightness, we denote the processWhx(t) asWhx(t) = ∑n
i=1Zni(t)

whereZni(t) = (nhn)
1/2wni(x,hn)ξtx(Zi,δi).
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As before, we need to verify the three conditions of Theorem 2.11.9 of van der Vaart and

Wellner (2000). For that purpose, we put onF = [0,T] and define the semimetric

ρ
(
t, t ′
)

= max




∣∣∣∣
−1

ϕ ′
x(F̄x(t))

+ 1
ϕ ′

x(F̄x(t ′))

∣∣∣∣, |ϕ ′
x(H̄x(t))−ϕ ′

x(H̄x(t ′))|,

|ϕx(H̄x(t))−ϕx(H̄x(t ′))|, sup
x′∈[0,1]

√
|Hx′(t)−Hx′(t ′)|




In the third condition, we need the bracketing numberN[ ](ε ,F ,Ln
2). Again, this is the

minimal number of sets in a partition ofF = [0,T] =
⋃

j Fε j such that for every set

Fε j ,

n

∑
i=1

E

[
sup

t,t ′∈Fε j

|Zni(t)−Zni(t
′)|2
]

≤ ε2.

Let us divideF = [0,T] into subintervals 0= t0 ≤ t1 ≤ . . . ≤ tq = T whereρ(t, t ′) ≤Cε
for all t, t ′ ∈ [t j−1, t j ], j = 1, . . . ,q with C some constant which we will determine later on.

For the partitionF = [0, t1]
⋃(⋃q

j=2]t j−1, t j ]
)

, we find after some lengthy calculations

that

∣∣Zni(t)−Zni(t
′)
∣∣ ≤ (nhn)

1/2wni(x,hn)

( −1
ϕ ′

x(1)
|ϕx(H̄x(t))−ϕx(H̄x(t

′))|

+(2ϕx(H̄x(T))+2ϕ ′
x(H̄x(T)))

∣∣∣∣
−1

ϕ ′
x(F̄x(t))

+
1

ϕ ′
x(F̄x(t ′))

∣∣∣∣

− 2
ϕ ′

x(1)
|ϕ ′

x(H̄x(t))−ϕ ′
x(H̄x(t

′))| (4.1)

+
ϕ ′

x(H̄x(T))

ϕ ′
x(1)

(
|1{Zi ≤ t}−1{Zi ≤ t ′}|+ |Hxi (t)−Hxi(t

′)|
))

So

sup
t,t ′∈Fε j

∣∣Zni(t)−Zni(t
′)
∣∣2

≤ (nhn)w2
ni(x,hn)

{
C1(Cε)2 +

(
ϕ ′

x(H̄x(T))
ϕ ′

x(1)

)2
|1{Zi ≤ t j}−1{Zi ≤ t j−1}|2

}
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whereC1 is a constant, uniquely determined by the right hand side of (4.1). For the

appropriate choice ofC, this leads to

n

∑
i=1

E

[
sup

t,t ′∈Fε j

|Zni(t)−Zni(t
′)|2
]

≤ ε2.

Hence the bracketing numberN[ ](ε ,F ,Ln
2) is equal toO(ε−1) and we get

∫ δn

0

√
logN[ ](ε ,F ,Ln

2)dε =
∫ δn

0

√
logO(ε−1)dε → 0

when δn → 0. We do not need to verify the second condition of Theorem 2.11.9 of

van der Vaart and Wellner (2000), since our partition ofF = [0,T] is independent ofn.

As last condition we have to check whether for allη > 0,

n

∑
i=1

E

[
sup

0≤t≤T
|Zni(t)|1{ sup

0≤t≤T
|Zni(t)| > η

}]
→ 0 as n→ +∞.

Sinceξtx(Zi ,δi) is bounded uniformly and max
1≤i≤n

wni(x,hn) = O((nhn)
−1) a.s., we get that

sup
0≤t≤T

|Zni(t)| = O
(
(nhn)

−1/2
)

a.s. ,

which is always smaller thanη for n sufficiently large. So the first condition is also

satisfied. Hence, by Theorem 2.11.9 of van der Vaart and Wellner (2000), we have that

Whx(·) →W(·|x) in ℓ∞[0,T].

4.3 Some applications of the weak convergence theorem

The weak convergence result summarized in Theorem 4.1 in thepreceding section can

be used as a starting point to derive some practical applications. In light of this, we first

show in this section that the conditional Koziol-Green estimator is asymptically more

efficient in the Koziol-Green model under dependent censoring than the copula-graphic

estimator of Braekers and Veraverbeke (2005). A second application is an asymptotic

confidence band for the conditional Koziol-Green estimator.
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4.3.1 Asymptotic efficiency

At a fixed design pointx∈ [0,1], Braekers and Veraverbeke (2005) derived the variance-

covariance function

σx(s, t) =
||K||22

ϕ ′
x(F̄x(s))ϕ ′

x(F̄(t))

{∫ s∧t

0
ϕ ′

x(H̄x(z))
2dHu

x (z)

+

∫ s∧t

0

(
ϕ ′′

x (H̄x(w))H̄x(w)+ ϕ ′
x(H̄x(w))

)∫ w

0
ϕ ′′

x (H̄x(y))dHu
x (y)dHu

x (w)

+
∫ s∧t

0
ϕ ′′

x (H̄x(w))
∫ s∧t

0

(
ϕ ′′

x (H̄x(y))H̄x(y)+ ϕ ′
x(H̄x(y))

)
dHu

x (y)dHu
x (w)

−
∫ t

0

(
ϕx(H̄x(y))H̄x(y)+ ϕ ′

x(H̄x(y))
)

dHu
x (y)

∫ s

0

(
ϕ ′′

x (H̄(w))H̄x(w)+ ϕ ′
x(H̄x(w))

)
dHu

x (w)

}

At any fixed time pointt, it is easy to see that the asymptotic variance of the copula-

graphic estimator of Braekers and Veraverbeke (2005) reduces, after some lengthy but

straightforward derivation to the expression

σx(t, t) =
||K||22

ϕ ′
x(F̄(t))2 ×

{
γx(1− γx)

∫ t

0
ϕ ′

x(H̄x(w))2dHx(w)+ γ2
x ϕ ′

x(H̄x(t))
2Hx(t)(1−Hx(t))

}
(4.2)

when the Koziol-Green model is satisfied.

Analogously, we also obtain the expression

Γx(t, t) = ||K||22
{

ϕx(H̄x(t))2

ϕ ′
x(F̄x(t))2 γx(1− γx)+

γ2
x ϕ ′

x(H̄x(t))2

ϕ ′
x(F̄x(t))2 (Hx(t)(1−Hx(t)))

}
(4.3)

for the asymptotic variance of the conditional Koziol-Green estimator. To show the

efficiency of the conditional Koziol-Green estimator over the copula-graphic estimator,

we compare expressions (4.2) and (4.3) and get that

Γx(t, t)
σx(t, t)

=
γx(1− γx)ϕx(H̄x(t))2 + γ2

x ϕ ′
x(H̄x(t))2Hx(t)(1−Hx(t))

γx(1− γx)
∫ t

0 ϕ ′
x(H̄x(s))2dHx(s)+ γ2

x ϕ ′
x(H̄x(t))2Hx(t)(1−Hx(t))

=
γx(1− γx)

(∫ 1
H̄x(t) |ϕ

′
x(w)|dw

)2
+ γ2

x ϕ ′
x(H̄x(t))2Hx(t)(1−Hx(t))

γx(1− γx)
∫ t

0 ϕ ′
x(H̄x(s))2dHx(s)+ γ2

x ϕ ′
x(H̄x(t))2Hx(t)(1−Hx(t))

≤ γx(1− γx)Hx(t)
∫ t

0 ϕ ′
x(H̄x(s))2dHx(s)+ γ2

x ϕ ′
x(H̄x(t))2Hx(t)(1−Hx(t))

γx(1− γx)
∫ t

0 ϕ ′
x(H̄x(s))2dHx(s)+ γ2

x ϕ ′
x(H̄x(t))2Hx(t)(1−Hx(t))

≤ 1
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where the inequality follows from the Cauchy-Schwartz inequality. From this,we note

that the upper bound goes to 1 ifγx → 1. This was expected since the estimators in both

models become a conditional empirical distribution function when there is no censoring.

Also, we see that this upper bound is 1 whent → +∞ and isHx(t) whenγx → 0. For

a pictorial representation of the relative asymptotic efficiency of the conditional Koziol-

Green estimator over the copula-graphic estimator, we present in Figure 4.1, the upper

bound for three Archimedean copulas, the independent copula (ϕx(t) = − log(t)), the

Fréchet-Hoeffding lower bound (ϕx(t) = 1−t) and the Clayton family copula withθ = 1

(ϕx(t) = 1
t − 1). We use in this picture the conditional distribution function Hx(t) to

transform the time-axis to[0,1].
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Figure 4.1: The upperbound for the ratio of variances, given for the independent (a.), Fréchet

- Hoeffding lower bound (b.) and Clayton family copula (θ = 1) (c.). Each curve presents a

different percentage of uncensored observations (bottom till top: px1 = 0.01,0.2,0.4,0.6,0.8).

For the independent copula, we see in Figure 4.1 straight lines for each level of censor-

ing. The Fréchet-Hoeffding lower bound which expresses a discordant association gives

convex lines while the concordant Clayton copula shows concave lines. In each plot, we

have that the lines converge to 1 at the right end and all curves are lying between the
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diagonal and the horizontal line at 1.

4.3.2 Asymptotic confidence band

As a second application of the weak convergence result in Theorem 4.1, we derive an

asymptotic confidence band for the conditional Koziol-Green estimatorFBV
xh (t). Like in

the work of Hollander and Pẽna (1989), we introduce an extraparameterλ such that

we have a family of bands and which gives some flexibility in the construction of the

confidence band. For example, by selecting certain values for λ we can find a more

narrow asymptotic confidence band when the sample size is small or moderate, or a

more conservative band when we are interested in a timet near the end of the support.

We summarize this result as the following theorem.

Theorem 4.2.Assume the conditions (C1) - (C5) with T< TFx, nh5
n →0, (nhn)

−1/2 logn→
0 andλ > 0. For each0 < α < 1, let cαxh be such that, as n→ +∞,

P

(
sup

0≤t≤T

∣∣∣∣∣B1(Lxh(t))+
λ 1/2ϕx(H̄xh(t))

γxhϕ ′
x(H̄xh(t))(H̄xh(t)+ λHxh(t))

B2(γxh)

∣∣∣∣∣≤ cαxh

)
→ 1−α

(4.4)

Then, as n→ +∞,

P(Fxh(t)−cαxhDxh(t) ≤ Fx(t) ≤ Fxh(t)+cαxhDxh(t), for all 0≤ t ≤ T) → 1−α

where B1(s) and B2(s) are independent Brownian bridges and

Lxh(t) =
λHxh(t)

H̄xh(t)+ λHxh(t)

Dxh(t) = (nhnλ )−1/2‖K‖2
γxhϕ ′

x(H̄xh(t))(H̄xh(t)+ λHxh(t))
ϕ ′

x(F̄xh(t))
.

Proof. We note that we can rewrite in Theorem 4.1 the Gaussian processW(·|x) as, for

a givenλ > 0,

λ−1/2‖K‖2
γxϕ ′

x(H̄x(t))(H̄x(t)+ λHx(t))
ϕ ′

x(F̄x(t))
B1(Lx(t))+‖K‖2

ϕx(H̄x(t))
ϕ ′

x(F̄x(t))
B2(γx)
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where{B1(s)|0≤ s≤ 1} and{B2(s)|0≤ s≤ 1} are independent Brownian bridges and

Lx(t) =
λHx(t)

H̄x(t)+ λHx(t)
(4.5)

Using Theorem 4.1 together with Theorem 1 of Braekers and Veraverbeke (2008), Lemma

A.2 of Van Keilegom and Veraverbeke (1997a), Lemma A.1. of Braekers and Veraver-

beke (2001) and Slutsky’s Theorem, we have that

(Fxh(·)−Fx(·))D−1
xh (·)→B1(Lx(·))+

λ 1/2ϕx(H̄x(·))
γxϕ ′

x(H̄x(·))(H̄x(·)+ λHx(·))
B2(γx) in ℓ∞[0,T].

Analogously, we find that

B1(Lxh(·))+ λ1/2ϕx(H̄xh(·))
γxhϕ ′

x(H̄xh(·))(H̄xh(·)+λHxh(·))B2(γxh)

→ B1(Lx(·))+ λ1/2ϕx(H̄x(·))
γxϕ ′

x(H̄x(·))(H̄x(·)+λHx(·))B2(γx) in ℓ∞[0,T].

Let

ηx(c) = P

(
sup

0≤t≤T

∣∣∣∣∣B1(Lx(t))+
λ 1/2ϕx(H̄x(t))

γxϕ ′
x(H̄x(t))(H̄x(t)+ λHx(t))

B2(γx)

∣∣∣∣∣≤ c

)

ηxh(c) = P

(
sup

0≤t≤T

∣∣∣∣∣B1(Lxh(t))+
λ 1/2ϕx(H̄xh(t))

γxhϕ ′
x(H̄xh(t))(H̄xh(t)+ λHxh(t))

B2(γxh)

∣∣∣∣∣≤ c

)
.

Since sup0≤t≤T | · | is a continuous functional, we have that asn→ +∞, ηxh(c) → ηx(c)

for all c. By Lemma 4.4 below, we have thatηx(·) is a continuous function, and hence

supc>0 |ηxh(c)−ηx(c)| → 0 by Pólya’s Theorem (see for example, the work of Serfling

(1980)). More specifically, we see thatηxh(cxαh)−ηx(cxαh) → 0 and by the definition

of cxαh we get thatηx(cxαh) → 1−α which finishes our proof.

Lemma 4.4. Let {B1(s)|0 ≤ s≤ 1} and {B2(s)|0 ≤ s≤ 1} be independent Brownian

bridges. Let Lx(t), (0≤ t ≤ T) be as in (4.5),λ > 0. Then

sup
0≤t≤T

∣∣∣∣∣B1(Lx(t))+
λ 1/2ϕx(H̄x(t))

γxϕ ′
x(H̄x(t))(H̄x(t)+ λHx(t))

B2(γx)

∣∣∣∣∣

has a continuous distribution.
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We omit the proof of this lemma since it follows the exact lines as the proof of Lemma

A.4 of Van Keilegom and Veraverbeke (1997b), if we take

Yx(t) = B1(Lx(t))+
λ 1/2ϕx(H̄x(t))

γxϕ ′
x(H̄x(t))(H̄x(t)+ λHx(t))

B2(γx)

4.4 A simulation study

In this section we perform a simulation study to investigatethe finite sample coverage

probability of the asymptotic confidence band of Theorem 4.2. The covariance structure

of the limiting processW(.|x) in Theorem 4.1 precludes the possibility to readily find

values ofcαxh to satisfy (4.4). As a consequence, exact confidence bands for Fx(t) cannot

be obtained. To circumvent this problem, we develop in this section, an asymptotically

conservative confidence band. Therefore we start with the fact that the left-hand side of

(4.4) satisfies the inequality

P

(
sup

0≤t≤T
|B1(Lxh(t))|+ sup

0≤t≤T

∣∣∣∣∣
λ 1/2ϕx(H̄xh(t))

γxhϕ ′
x(H̄xh(t))(H̄xh(t)+ λHxh(t))

B2(γxh)

∣∣∣∣∣≤ cαxh

)

≤ P

(
sup

0≤t≤T

∣∣∣∣∣B1(Lxh(t))+
λ 1/2ϕx(H̄xh(t))

γxhϕ ′
x(H̄xh(t))(H̄xh(t)+ λHxh(t))

B2(γxh)

∣∣∣∣∣≤ cαxh

)
(4.6)

Using the independence ofB1(Lxh(t)) andB2(γxh), we convolve and rewrite the left-hand

side of (4.6) as

∫ cαxh

0
P

(
sup

0≤t≤T
|B1(Lxh(t))| ≤ cαxh−y

)
dP(||A|| ≤ y)

=
∫ cαxh

0
Qdxh(T) (cαxh−y)dP

(
|N| ≤ y

Mxh(γxh,Lxh(T),λ )

)
(4.7)

where

||A|| = sup
0≤t≤T

∣∣∣∣∣
λ 1/2ϕ (H̄xh(t))

γxhϕ ′(H̄xh(t)) (H̄xh(t)+ λHxh(t))
B2(γxh)

∣∣∣∣∣, dxh(T) = Lxh(T)
1−Lxh(T) ,

Mxh(γxh,Lxh(T),λ ) = (λβxh)
(1/2) sup

0≤t≤T

∣∣∣ϕ(H̄xh(t))(1−Lxh(t,λ))
ϕx′(Hxh(t))H̄xh(t)

∣∣∣, βxh = 1−γxh
γxh

andN denotes

a standard normal random variable.
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Mimicking Hollander and Pẽna (1989), we define a distribution function

Q⋆ (cαx,γx,Lx(T),λ ) =

√
2
π

1
Mx(cαx,γx,Lx(T),λ )

×
∫ cαx

0
Qdx(T) (cαx−y)exp

(
−1

2

(
y

Mx(γx,Lx(T),λ )

)2
)

dy

wheredx(T) = Lx(T)
1−Lx(T) andQdx(T) is defined as

Qdx(T)(cx) = 1−2Φ
(
−cx

1+dx(T)

dx(T)1/2

)
+2

∞

∑
k=1

(−1)k exp
(
−2c2

xk2)×

{
Φ
(

cx
dx(T)+2k+1

dx(T)1/2

)
−Φ

(
−cx

dx(T)−2k+1

dx(T)1/2

)}

with Φ(.) being the standard normal cumulative distribution function. By choosingcαx

to satisfyQ⋆ (cαx,γx,Lx(T),λ ) = 1−α , we obtain an asymptotically conservative con-

fidence band

P[Fxh(t)−cαxhDxh(t) ≤ Fx(t) ≤ Fxh(t)+cαxhDxh(t)] ≥ 1−α (4.8)

To investigate the coverage probabilities of (4.8), we generate data by taking fixed and

equidistant design pointsxi = i
n (i = 1,2,3, . . . ,n). Also, we assume that the survival

timesYi (i = 1,2,3, ...,n) are independent random variables withYi ∼ Weibull(a1 +

a2xi ,b) such that for each design point the conditional survival function F̄i(t) is given

as

F̄i(t) = exp

(
−
( t

b

)(a1+a2xi )
)

for some constantsa1,a2 such thata1 > ∧(0,−a2) andb > 0. Note thata1 +a2xi char-

acterizes the shape of the survival distribution of theith subject whereasb is the scale

parameter.

Furthermore, we assume that the censoring intensity parameterβxi = exp(a3+a4xi) (i =

1,2,3, . . .n) for some constantsa3 anda4. Using the relation

Ḡi(t) = ϕ [−1]
x (βxi ϕx (F̄i(t))) ,

we obtain informative censoring timesCi based on the Clayton and Frank copula gener-

ator functionsϕx(·) at a pre-specified covariate levelx with dependence parameterθ as

follows:
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1. we generate two independent uniform (0,1) random variablesu andt.

2. we setv = c−1
u (t), wherecu(v) = ∂

∂u

{
ϕ (−1)

x (ϕx(u)+ ϕx(v))
}

andc−1
u is the in-

verse or quasi-inverse ofcu depending on whetherϕx is a strict or non-strict gen-

erator function.

3. we setCi = Ḡ(−1)
i (v) andYi = F̄(−1)

i (u).

In particular, we use generatorsϕx(t) = 1
θ
(
t−θ −1

)
andϕx(t) = − log

(
exp(−θ t)−1
exp(−θ )−1

)
for

the Clayton and Frank copulas respectively. We investigatethe effect of the association

structure on the coverage probabilities by considering different choices ofθ . Note that

each choice ofθ will lead to a different dependence structure for the Clayton and Frank

copulas. Therefore, we use Kendall’sτ as a measure of dependence so as to compare

results under the two copula families. This dependence measure is defined as

τ(x) = 1+4
∫ 1

0

ϕx(t)
ϕ ′

x(t)
dt

in Nelsen (2006) such that−1≤ τ(x) ≤ 1, where the dependence gets stronger asτ(x)

goes away from zero. Also, we investigate the effect of the censoring intensity on the

coverage probabilities. That is, for each value ofτ(x), we study three different sets of pa-

rametersa1,a2,a3 anda4. In the first set(a1 = 1,a2 = 0.5,a3 = −2.2,a4 = 2), we chose

the parameters such that the percentage of censored observations is always smaller than

45% (i.e. light censoring). In the second set(a1 = 1,a2 = 0.5,a3 = −0.2,a4 = 0.4), the

percentage of censored observations is inclusively between 45 and 55% (i.e. medium

censoring); whereas in the third set(a1 = 1,a2 = 0.5,a3 = 0.2,a4 = 0.5), the parame-

ters are such that the percentage of censored observations is always greater than 55%

(i.e. heavy censoring). At each combination of parameters,we generate 2000 samples,

each of a sizen. For each of these samples, we estimate the conditional Koziol-Green

survival distribution at a pre-specified covariate levelx together with the corresponding

95% confidence band. We use the Gasser-Müller weights givenin Section 1.2 with the

biquadratic kernelK(z) = (15/16)
(
1−z2

)
I (|z| ≤ 1), since it is the most used type of

weights in fixed design settings. Also, we use bandwidthhn =
(
logn/n3/2

)2/11
so that

asn→ +∞, nhn → 0 and(nhn)
−1/2 logn→ 0 . Note that this bandwidth is based on the

assumption made in Theorem 4.2.



74 4. The conditional Koziol-Green model under dependent censoring

Table 4.1: Coverage probabilities of the asymptotic confidence band atcovariate levels of 0.65

and 0.97 using the Clayton copula

Coverage(%)
Clayton(λ = 1) Clayton(λ = γ2

x )
Dependence Nominal(%) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Covariate level = 0.65
90.0 97.9 99.5 99.5 99.8 99.9 99.9

τ = −0.99 95.0 99.0 99.9 99.9 99.9 99.9 99.9
99.0 99.9 99.9 99.9 99.9 99.9 99.9

90.0 98.1 98.7 99.5 99.8 99.9 99.9
τ = 0.00 95.0 99.4 99.1 99.9 99.9 99.9 99.9

99.0 99.9 99.9 99.9 99.9 99.9 99.9

90.0 94.9 94.3 94.2 99.7 99.9 99.9
τ = 0.99 95.0 98.2 97.5 96.4 99.9 99.9 99.9

99.0 99.6 99.6 99.2 99.9 99.9 99.9
Covariate level = 0.65

90.0 87.9 94.4 94.7 98.7 99.7 99.8
τ = −0.99 95.0 91.8 98.5 96.8 99.5 99.9 99.9

99.0 97.9 99.5 99.3 99.8 99.9 99.9

90.0 87.5 93.5 93.5 98.4 99.5 99.9
τ = 0.00 95.0 93.2 96.5 97.6 99.7 99.8 99.9

99.0 96.4 99.1 99.5 99.8 99.9 99.9

90.0 82.6 78.5 74.6 98.4 99.7 99.8
τ = 0.99 95.0 86.3 85.6 82.1 98.8 99.8 99.9

99.0 94.8 94.8 92.5 99.8 99.9 99.9

Next, we compute the coverage probability as the percentageof samples for which the

confidence band atx covers its corresponding true survival distribution. In particular, we

consider estimation atx= 0.97 andx= 0.65 as extreme and non-extreme covariate levels

respectively in order to get some insight into the effect ofx on the coverage probabilities.

Also, we consider the casesλ = 1 andλ = γ2
x so as to obtain less and more conserva-

tive confidence bands respectively. In addition, we repeat the above process for different

values ofn (i.e. n = 20,30,50,100,200,300) so as to examine also, the influence ofn
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on the coverage probabilities. Nevertheless, we report only results corresponding to the

minimum sample size (i.e.n = 50) for which the coverage probabilities (at extreme or

non-extreme covariate level) are at least their corresponding nominal confidence level.

Note that the results forτ = 0 are only given in Table 4.1 since it represents the in-

dependent copula which is a special case for both the Claytonand Frank copula when

θ → 0.

Table 4.2: Coverage probabilities of the asymptotic confidence band atcovariate levels of 0.65

and 0.97 using the Frank copula

Coverage(%)
Frank(λ = 1) Frank(λ = γ2

x )
Dependence Nominal(%) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Covariate level = 0.65
90.0 99.1 99.6 99.7 99.9 99.9 99.9

τ = −0.99 95.0 99.4 99.8 99.8 99.9 99.9 99.9
99.0 99.9 99.9 99.9 99.9 99.9 99.9

90.0 96.1 94.8 92.9 99.6 99.9 99.9
τ = 0.99 95.0 97.8 98.1 96.5 99.9 99.9 99.9

99.0 99.8 99.5 99.4 99.9 99.9 99.9
Covariate level = 0.65

90.0 89.6 96.3 94.1 98.6 99.6 99.9
τ = −0.99 95.0 93.0 98.1 98.5 99.6 99.9 99.9

99.0 97.1 99.4 99.4 99.8 99.9 99.9

90.0 80.6 77.2 75.2 98.3 99.4 99.9
τ = 0.99 95.0 88.1 84.9 82.8 98.9 99.7 99.9

99.0 95.8 94.5 92.7 99.9 99.9 99.9

In Tables 4.1 and 4.2 we observe that use of Clayton and Frank copulas results in simi-

lar coverage probabilities at equivalent censoring intensities and dependence structures.

This implies that the choice of the copula function (i.e. Clayton or Frank) does not have

a significant influence on the coverage probabilities. However, assumingλ = γ2
x , leads

to a non-decreasing trend in the coverage probability with increasing censoring inten-

sity. This can be explained (at least in part) by the fact thatas censoring increases, the
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rate of deviation of the conditional Koziol-Green survivalfunction estimate from the

true survival function is negligible compared to the rate atwhich the bands increase with

increasing censoring.

Furthermore, we observe at the extreme covariate level that, the coverage probabilities

are at least their corresponding nominal only when we assumeλ = γ2
x . In contrast,

the coverage probabilities at the non-extreme covariate level are always at least their

corresponding nominal irrespective of whether we assumeλ = γ2
x or λ = 1. Also for the

non-extreme covariate level, assumingλ = 1 results in coverage probabilities which are

at most those under the assumption thatλ = γ2
x . As already mentioned, assumingλ = 1

yields less (relative toλ = γ2
x ) conservative confidence bands. As such, the particular

choice ofλ depends on whether one wants a less conservative confidence band.

4.5 Real data illustration: Worcester heart attack study

In this section, we illustrate the asymptotic conditional Koziol-Green confidence band

on a real data set. The data set comes from the Worcester HeartAttack Study (WHAS)

which was introduced in Chapter 1. As mentioned there, this data set has information

on more than 8000 admissions. Nonetheless, we only considerthe 10% random sample

of the original data set presented by Hosmer and Lemeshow (1999). As a consequence,

the data set we utilize in the section has information on only481 patients. Of these pa-

tients, 82 (17%) died while in admission (censored) whereas399 (83%) were discharged

(uncensored). We will mainly be concerned about the time until discharge from hospital

of such patients. It is worth pointing out that, the results of this section are only for

illustrative purpose. As such, we do not give a comparison with respect to the analysis

of the complete data set. For details and pointers towards the findings from the complete

WHAS data set, we refer to Hosmer and Lemeshow (1999).

In this study, we observe that a patient with severe health condition is likely to die within

the first few days of admission. However, if such patient doesnot die, then he/she is

most likely to spend many days in hospital bed. Not only severe health conditions would

increase the days that a patient spends in the hospital, but also, for example, an infection
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from the hospital can increase his/her days in the hospital bed. As such, we allege that

time until discharge from hospitalYi of a patient depends on the time until death in the

hospitalCi (i.e. time until discharge has a negative influence on the time until death in

the hospital).
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Figure 4.2: Scatter plot of time spent in hospital (LenStay) versus Age.

Figure 4.2 is a scatter plot of the observed time spent in hospital (LenStay) verses age

of the patient at admission (Age) with a distinction betweencensored and uncensored

patients. From the figure, we observe that most of the censored observations occurred

among patients whose age is in the neighborhood of 80 years. This suggests possible

association between censoring time and age of patients at admission. To formally in-

vestigate the applicability of the conditional Koziol-Green model, we adapt the partial

Koziol-Green goodness-of-fit test of Braekers and Veraverbeke (2003) and calculate the

Kolmogorov-Smirnov, the Cramer-von Mises and the Anderson-Darling types of test
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statistics given respectively as

Knx =

(
nhn

||K||22γxh(1− γxh)

)1/2

max
1≤i≤n−1

|V1
n,i −Vn,i |

W2
nx =

nhn

||K||22γxh(1− γxh)

n−1

∑
i=1

(V1
n,i − γxhVn,i)

2wn(i)(x;hn)

A2
nx =

nhn

||K||22γxh(1− γxh)

n−1

∑
i=1

(V1
n,i − γxhVn,i)

2

Vn,i(1−Vn,i)
wn(i)(x;hn)

with ||K||22 = 5
7,V1

n,i =
i

∑
k=1

wn(k)(x;hn)I(δ(k) = 1) andVn,i =
i

∑
k=1

wn(k)(x;hn), (i = 1,2, ...n=

481) whereδ (k) andwn(k)(x;hn) denotes respectively, the censoring indicator and Gasser-

Müller weights (with the biquadratic kernel) corresponding to the ordered observed time

spent in the hospital. We test at ages 50 and 75 years (i.e.x = 50 and 75). Hereby we

take as bandwidth,hn = 43. This choice is only to illustrate our method. We considered

other choiceshn = 33 andhn = 53 (not shown) but they gave similar results. A formal

method to find the optimal bandwidth is a research area which we do not pursue in this

thesis, but it could be a topic of future research.

Table 4.3: Conditional Koziol-Green goodness-of-fit test at ages 50 and 75 years

Age (years) 50 75
Statistic P-Value Statistic P-Value

Kolmogorov-Smirnov 0.5536 0.9191 1.0033 0.2664
Cramer-von Mises 0.0735 0.7213 0.2934 0.1396
Anderson-Darling 0.8386 0.4531 2.4294 0.0689

From Table 4.3, we observe that thep-values associated with the three goodness-of-fit

test statistics are larger than 5% (critical level). Thus, we fail to reject the conditional in-

dependence of theZx and theδx. Therefore, we allege that the conditional Koziol-Green

model may be appropriate for the data set at 50 and 75 years. Using the Clayton and

Frank copulas on this data set, we construct and compare confidence bands around the

conditional Koziol-Green estimate of the survival (lengthof stay in hospital) function

at ages 50 (middle aged patients) and 75 years (elderly patients). In the sequel, we as-

sumeλ = 1 so as to obtain less conservative (relative toλ = γ2
x ) confidence bands. In
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Figure 4.3: The conditional Koziol-Green survival function estimates(Surv Function) and asso-

ciated 95% confidence bands (Conf Band) for middle aged (age =50 years) and elderly (age =

75 years) patients under the Clayton (a & b) and Frank (c & d) copulas.

addition, we again use the Gasser-Müller weights with the biquadratic kernel and band-

width hn = 43. Figure 4.3 is a graphical representation of the conditional Koziol-Green

survival distribution at ages 50 and 75 years for the AMI patients together with their

corresponding 95% confidence band. In the figure, we considertwo different associ-

ation structures between the survival time (i.e time until discharge) and the censoring

time (i.e. time until death in the hospital). Firstly, we assume that the survival time and

censoring time are discordant (i.e.τ = −0.99) since we expect that small death times in

the hospital are related to large discharge times and vice versa. For a formal definition
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of discordance, we refer to the book by Nelsen (2006). Secondly, we assume that the

discharge time and time until death in the hospital are independent (i.e.τ = 0). Note

that the later assumption may be wrong for this data set. However, it is commonly used

in other real data analyses. Therefore, we consider this choice only as reference for

comparison with the result under the discordant association.

At 50 years, we observe under the Clayton and Frank copulas (Figure 4.3) that the sur-

vival distribution under the independent and discordant associations are close to each

other. As a result, the confidence band constructed under theindependent association

clearly covers the survival distribution under the discordant association, and vice versa.

This means that, ignoring the possibility of a dependence between the time until dis-

charge from the hospital and the time until death in the hospital may not have any signif-

icant influence on the estimates based on the conditional Koziol-Green survival function

and its associated 95% confidence band for middle aged patients. However, the same

cannot be said about elderly patients since Figure 4.3 (i.e.(b) and (d)) indicate that

the estimated survival distributions under independent and discordant associations at 75

years are clearly separated from each other; and that the confidence band under one form

of association does not consistently cover the survival function under the other form of

association.



5
The generalized conditional Koziol-Green

model under dependent censoring

In Chapter 1, we introduced the conditional Koziol-Green estimator, which was pio-

neered by Braekers and Veraverbeke (2008). Further, we studied this estimator and

showed the weak convergence of the associated process in Chapter 4. As applications

of the weak convergence result, we first showed the efficiencyof the conditional Koziol-

Green estimator over the copula graphics estimator of Braekers and Veraverbeke (2005).

Secondly, we developed a confidence band for the estimator and obtained some numeri-

cal results.

81
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An important feature of the conditional Koziol-Green estimator is that it assumes char-

acterization (1.10), which holds if and only if the observable variablesZx and δx are

independent. In some situations however, it becomes necessary to allow for possible

dependence between these variables. In view of this, we introduced a generalization

of the conditional Koziol-Green estimator in Section 1.2.2of Chapter 1. In the present

chapter, we study further this generalized estimator and obtain some associated attrac-

tive theoretical and numerical results. To be precise, we establish the strong consistency

of the generalized conditional Koziol-Green estimator in Section 5.1. In Section 5.2, we

give an asymptotic almost sure representation of the estimator which, as in the previous

chapters paves way for establishing the weak convergence ofthe associated process in

Section 5.3. Further, we investigate the finite sample performance of the estimator via

a simulation study in Section 5.4. We conclude the chapter with an illustration of the

estimator on the survival of Atlantic halibut data set.

Before giving these results, we complement the definitions and regularity assumptions

given in Chapter 4 with the following:

Notations:

1. γ̇x = d
dxγx , γ̈x = d2

dx2 γx, Ḣx(t) = ∂
∂xHx(t) , Ḧx(t) = ∂ 2

∂x2 Hx(t)

2. ||γ̇x|| = supx∈[0,1] |γ̇x|, ||γ̈x|| = supx∈[0,1] |γ̈x| , ||Ḣx|| = supx∈[0,1] supt∈[0,T ] |Ḣx(t)|,
||Ḧx|| = supx∈[0,1] supt∈[0,T ] |Ḧx(t)|

3. For some general copula functionCx(·, ·), we letCx,i j (u,v) = ∂ i+ j

∂ui∂vj C (u,v) denote

the ith andjth partial derivatives with respect to its first and second coordinates

respectively

Assumption:

(C6) At every design pointx∈ [0,1] and for everyu∈ (0,1), the derivativesCx,02(u,v),

Cx,20(u,v) andCx,11(u,v) exist and are continuous for allv∈ [0,1].

We do not provide a discussion of this assumption, because itis of the same nature as

Assumption (A1) in Chapter 2 and can also be verified accordingly.
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5.1 Strong consistency result

The main result of this section is the strong consistency of the generalized conditional

Koziol-Green estimator of the survival distribution function, as given in (1.25). Never-

theless, we also obtain an exponential inequality for the estimator. We formalize these as

Theorem 4.1 whose proof relies on Lemma 5.1 below. We omit theproof of this lemma,

since it follows the same lines as that of Lemma 2.1.

Lemma 5.1. If ζ ≥ 0, 0≤ η < 1−Hx(T) andη = ϕ ′
x(1)ζ

2ϕ ′
x(1−Hx(T)−η) , then∀T ≤ THx

ϕ ′
x(1)ζ

2ϕ ′
x

(
ϕ−1

x

(
ϕx(1−Hx(T))−ϕ ′

x(1)ζ
2

)) ≤η ≤ 1−Hx(T)−ϕ−1
x

(
ϕx(1−Hx(T))−ϕ ′

x(1)
ζ
2

)
,

for ζ sufficiently small.

Theorem 5.1. Under Conditions (C1)-(C6), suppose T< THx, ϕ ′
x(1) < 0 and hn → 0 as

n→ ∞.

(a) For ε > 0 and n sufficiently large, we have

P

(
sup

0≤t≤T
|Fxh(t)−Fx(t)| > ε

)
≤ 2exp(−d1nhnα2

x ε2)+d2nhnβxexp

(−d3nhnα2
x ε2

4

)

with

αx =
ϕ ′

x(1)

2ϕ ′
x

(
ϕ−1

(
ϕx(1−Hx(T))−ϕ ′

x(1) ε
2

)) ,

βx = 1−Hx(T)−ϕ−1
(

ϕx(1−Hx(T))−ϕ ′
x(1)

ε
2

)

and d1,d2,d3 denoting finite positive constants.

(b) If (nhn)
−1 logn→ 0, then

sup
0≤t≤T

|Fxh(t)−Fx(t)| → 0 a.s.
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Proof. The proof of this theorem is similar to that of Theorem 2.1. But for completeness,

we repeat the lines here. Thus, we use the mean value theorem to obtain

Fxh(t)−Fx(t) = −
[

ϕ−1
x

(
−
∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw

)

−ϕ−1
x

(
−
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw

)]

= A(γ∗,H∗(t))(γxh− γx)+B(γ∗,H∗(t))(Hxh(t)−Hx(t))

where

A(γ∗,H∗(t)) =

∫ H∗(t)
0 ϕ ′

x(1−w)Cx,11(γ∗,w)dw

ϕ ′
x

(
ϕ−1

x

(
−∫ H∗(t)

0 ϕ ′
x(1−w)Cx,01(γ∗,w)dw

))

and

B(γ∗,H∗(t)) =
ϕ ′

x(1−H∗(t))Cx,01(γ∗,H∗(t))

ϕ ′
x

(
ϕ−1

x

(
−∫ Hx(t)

0 ϕ ′
x(1−w)Cx,01(γx,w)dw

))

with γ∗ betweenγxh andγx, H∗(t) betweenHxh(t) andHx(t).Using integration by parts,

we can easily show that

sup
0≤t≤T

|A(γ∗,H∗(t))| ≤ 3
|ϕ ′

x(1)| sup
0≤t≤T

|ϕ ′
x(1−H∗(t))|

and

sup
0≤t≤T

|B(γ∗,H∗(t))| ≤ 1
|ϕ ′

x(1)| sup
0≤t≤T

|ϕ ′
x(1−H∗(t))|

Therefore, for allε > 0

P

(
sup

0≤t≤T
|Fxh(t)−Fx(t)| > ε

)

≤ P

(
|γxh− γx| sup

0≤t≤T
|A(γ∗,H∗(t))| > ε

2

)

+P

(
sup

0≤t≤T
|Hxh(t)−Hx(t)| sup

0≤t≤T
|B(γ∗,H∗(t))| > ε

2

)

≤ P

(
3

|ϕ ′
x(1)| |γxh− γx| sup

0≤t≤T
|ϕ ′

x(1−H∗(t))| > ε
2

)

+P

(
1

|ϕ ′
x(1)| sup

0≤t≤T
|Hxh(t)−Hx(t)| sup

0≤t≤T
|ϕ ′

x(1−H∗(t))| > ε
2

)
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Forη > 0, we can write

P

(
sup

0≤t≤T
|Fxh(t)−Fx(t)| > ε

)

≤ P

(
3

|ϕx(1)| |γxh− γx| sup
0≤t≤T

|ϕ ′
x(1−H∗(t))| > ε

2
, sup
0≤t≤T

|Hxh(t)−Hx(t)| ≤ η
)

+P

(
3

|ϕx(1)| |γxh− γx| sup
0≤t≤T

|ϕ ′
x(1−H∗(t))| > ε

2
, sup
0≤t≤T

|Hxh(t)−Hx(t)| > η
)

+P

(
1

|ϕx(1)| sup
0≤t≤T

|Hxh(t)−Hx(t)| sup
0≤t≤T

|ϕ ′
x(1−H∗(t))| > ε

2
, sup
0≤t≤T

|Hxh(t)−Hx(t)| ≤ η
)

+P

(
1

|ϕx(1)| sup
0≤t≤T

|Hxh(t)−Hx(t)| sup
0≤t≤T

|ϕ ′
x(1−H∗(t))| > ε

2
, sup
0≤t≤T

|Hxh(t)−Hx(t)| > η
)

With 0 < η < 1−Hx(T) and satisfying

sup
0≤t≤T

|ϕ ′
x(1−H∗(t))| < |ϕ ′

x(1−Hx(T)−η)|,

we note that this is further bounded above by

P

(
sup

0≤t≤T
|Fxh(t)−Fx(t)| > ε

)

≤ P

(
|γxh− γx| >

ϕ ′
x(1)ε

6ϕ ′
x(1−Hx(T)−η)

, sup
0≤t≤T

|Hxh(t)−Hx(t)| ≤ η
)

+P

(
|γxh− γx| >

ϕ ′
x(1)ε

6ϕ ′
x(1−Hx(T)−η)

, sup
0≤t≤T

|Hxh(t)−Hx(t)| > η
)

+P

(
sup

0≤t≤T
|Hxh(t)−Hx(t)| >

ϕ ′
x(1)ε

2ϕ ′
x(1−Hx(T)−η)

, sup
0≤t≤T

|Hxh(t)−Hx(t)| ≤ η
)

+P

(
sup

0≤t≤T
|Hxh(t)−Hx(t)| >

ϕ ′
x(1)ε

2ϕ ′
x(1−Hx(T)−η)

, sup
0≤t≤T

|Hxh(t)−Hx(t)| > η
)

≤ P

(
|γxh− γx| >

ϕ ′
x(1)ε

6ϕ ′
x(1−Hx(T)−η)

)

+P

(
|γxh− γx| >

ϕ ′
x(1)ε

6ϕ ′
x(1−Hx(T)−η)

, sup
0≤t≤T

|Hxh(t)−Hx(t)| > η
)

+P

(
sup

0≤t≤T
|Hxh(t)−Hx(t)| >

ϕ ′
x(1)ε

2ϕ ′
x(1−Hx(T)−η)

)

+P

(
sup

0≤t≤T
|Hxh(t)−Hx(t)| >

ϕ ′
x(1)ε

2ϕ ′
x(1−Hx(T)−η)

, sup
0≤t≤T

|Hxh(t)−Hx(t)| > η
)
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Choosingη such thatη = ϕ ′
x(1)ε

2ϕ ′
x(1−Hx(T)−η) , we obtain

P

(
sup

0≤t≤T
|Fxh(t)−Fx(t)| > ε

)

≤ P
(
|γxh− γx| >

η
3

)
+3P

(
sup

0≤t≤T
|Hxh(t)−Hx(t)| > η

)

≤ exp(−d1nhnη2

9
)+d2nhnη exp

(−d3nhnη2

4

)

≤ exp(−d1nhnα2
x

9
)+d2nhnβxexp

(−d3nhnα2
x

4

)

where

αx =
ϕ ′

x(1)

2ϕ ′
x

(
ϕ−1

(
ϕx(1−Hx(T))−ϕ ′

x(1) ε
2

)) ,

βx = 1−Hx(T)−ϕ−1
(

ϕx(1−Hx(T))−ϕ ′
x(1)

ε
2

)

andd1,d2,d3 are finite positive constants. In the preceding display, thesecond inequality

follows from Braekers and Veraverbeke (2008) and requires the condition

η ≥ max
(
||γ̇x||∞∆̄n + ||γ̈x||∞µK

2 h2
n,
√

6||K||2(nhn)
−1/2,2||Ḧx||∞µK

2 h2
n

)

while the third inequality follows from Lemma 5.1 above. Taking

ε = εn = d0(nhn)
−1/2(logn)1/2

with d0 a finite positive constant, we get the strong consistency result.

5.2 Almost sure asymptotic representation

Similar to Chapters 2 and 3, we now present the generalized conditional Koziol-Green

estimator as a weighted sum ofn independent random variables. This representation, as

mentioned before, is a device that aids in obtaining furthertheoretical properties. We

formulate such a representation as the succeeding theorem and employ it to obtain a

further property in Section 5.3.
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Theorem 5.2. Under Assumptions (C1)-(C4) and (C6), suppose T< THx and hn → 0.

Then as n→ ∞,

Fxh(t)−Fx(t) =
n

∑
i=1

wni (x,hn)mtx(Zi ,δi)+ rn(t)

where rn(t) = O
(
(nhn)

−1 logn
)

a.s., and

mtx(Zi ,δi) =
1

ϕ ′
x(F̄x(t))

{
(1{δi = 1}− γx)

∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(1{Zi ≤ t}−Hx(t))ϕ ′
x(1−Hx(t))Cx,01(γx,Hx(t))

}

Proof. By a second order Taylor’s expansion, we have

Fxh(t)−Fx(t) =
1

ϕ ′
x(F̄x(t))

{∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw

−
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw

}
+ rn1(t) (5.1)

where

rn1(t) =
ϕ ′′

x (ϕ−1
x (η(t)))

2(ϕ ′
x(ϕ−1

x (η(t))))3
×

{∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw−
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw

}2

with η(t) between−
∫ Hxh(t)

0 ϕ ′
x(1−w)Cx,01(γxh,w)dwand−

∫ Hx(t)
0 ϕ ′

x(1−w)Cx,01(γx,w)dw.

Let

I(t) =
∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw−
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw.

Then,

sup
0≤t≤T

|rn1(t)| ≤ ϕ ′′
x (ϕ−1

x (η(T)))

2|ϕ ′
x(1)|3 sup

0≤t≤T
|I(t)|2

andη(T) lies between−∫ Hxh(T)
0 ϕ ′

x(1−w)Cx,01(γxh,w)dwand−∫ Hx(T)
0 ϕ ′

x(1−w)Cx,01(γx,w)dw.

By Van Keilegom and Veraverbeke (1997a, Lemma A.2), we know thatHxh(T)→Hx(T)
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a.s. Thus, we may suppose thatT < THxh, sinceT < THx. LetHmin
x (T)= min(Hxh(T),Hx(T))

andHmax
x (T) = max(Hxh(T),Hx(T)). Then it follows that the preceding inequality is

further bounded above by

ϕ ′′
x (ϕ−1

x (ηoo(T)))

2|ϕ ′
x(1)|3 sup

0≤t≤T
|I(t)|2 ,

with ηoo(T) given by

ηoo(T) = −
∫ Hmax

x (T)

0
ϕ ′

x(1−w)Cx,01(1,w)dw.

By the mean value theorem, we further have that

sup
0≤t≤T

|I(t)| ≤ |γxh− γx| sup
0≤t≤T

∣∣∣∣
∫ H∗(t)

0
ϕ ′

x(1−w)Cx,11(γ∗,w)dw

∣∣∣∣

+|ϕ ′
x(1−H∗

x (T))| sup
0≤t≤T

|Hxh(t)−Hx(t)|

≤ |ϕ ′
x(1−Hmax

x (T))|
{

4|γxh− γx|+ | sup
0≤t≤T

|Hxh(t)−Hx(t)|
}

where the second inequality in the preceding display follows by integrating by parts, the

first term at the right hand side of the first inequality in the same display.

From Van Keilegom and Veraverbeke (1997a, Lemma A.4) and Braekers and Veraver-

beke (2001), it can respectively be shown that

sup
0≤t≤T

|Hxh(t)−Hx(t)| = O
(
(nhn)

−1/2(logn)1/2
)

a.s. ,

|γxh− γx| = O
(
(nhn)

−1/2(logn)1/2
)

a.s.

Consequently, we obtain

sup
0≤t≤T

|rn1(t)| ≤ ϕ ′′
x (ϕ−1

x (ηoo(T)))

2|ϕ ′
x(1)|3 sup

0≤t≤T
|I(t)|2 = O

(
logn
nhn

)
a.s. (5.2)

Next, we use a second order Taylor expansion and note that
∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw−
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw

= (γxh− γx)

∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(Hxh(t)−Hx(t))ϕ ′
x(1−Hx(t))Cx(γx,Hx(t)) (5.3)

+rn2(t)+ rn3(t)+ rn4(t)
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where

rn2(t) =
1
2
(γxh− γx)

2
∫ H∗

x (t)

0
ϕ ′

x(1−w)Cx,21(γ∗x ,w)dw

rn3(t) =
1
2
(Hxh(t)−Hx(t))

2{ϕ ′
x(1−H∗

x (t))Cx,02(γ∗x ,H∗
x (t))−ϕ ′′

x (1−H∗
x (t))Cx,01(γ∗x ,H∗

x (t))
}

rn4(t) = (γxh− γx)(Hxh(t)−Hx(t))ϕ ′
x(1−H∗

x (t))Cx,11(γ∗x ,H∗
x (t))

with γ∗x betweenγxh andγx; andH∗
x (t) betweenHxh(t) andHx(t). We now determine the

rate of convergence ofrn2(t), rn3(t) andrn4(t).

Integrating by parts, we first obtain

sup
0≤t≤T

|rn2(t)| ≤ |γxh− γx|2
{

ϕ ′
x(1−H∗

x (T)) sup
0≤t≤T

|Cx,20(γ∗x ,H∗
x (t))|

+ sup
0≤t≤T

∣∣∣∣
∫ H∗

x (t)

0
ϕ ′′

x (1−w)Cx,20(γ∗x ,w)dw

∣∣∣∣
}

≤ 3|ϕ ′
x(1−H∗

x (T))| sup
0≤v≤1

|Cx,20(u,v)||γxh− γx| , ∀u∈ (0,1)

≤ 3|ϕ ′
x(1−Hmax

x (T))| sup
0≤v≤1

|Cx,20(u,v)||γxh− γx| , ∀u∈ (0,1)

Using Assumption(C4), we subsequently obtain

sup
0≤t≤T

|rn2(t)| = O

(
logn
nhn

)
(5.4)

Analogously, we can easily show that

sup
0≤t≤T

|rn3(t)| = O

(
logn
nhn

)
and sup

0≤t≤T
|rn4(t)| = O

(
logn
nhn

)
(5.5)

Substituting (5.2)and (5.3) into (5.1), preceded by (5.4) and (5.5) into (5.3) concludes

the proof.

5.3 Weak convergence result

As mentioned above, the essence of the almost sure asymptotic representation is to fa-

cilitate the derivation of further properties of the estimator under consideration. The

objective of the present section is therefore, to use Theorem 5.2 and prove the weak
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convergence of the process(nhn)
1/2 (Fxh(·)−Fx(·)) associated with the generalized con-

ditional Koziol-Green estimator (1.25) in an appropriate space of functions that will

become clear in what follows.

Theorem 5.3. Suppose the conditions of Theorem 5.2 are satisfied.

(a) If in addition nh5
n → 0 and n−1 (logn)3 → 0, then

(nhn)
1/2 (Fxh(·)−Fx(·)) → W(·|x)

where W(·|x) is a zero mean Gaussian process with covariance function

Γx(s, t)

= γx(1− γx)

∫ Hx(s)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(Hx(s∧ t)−Hx(s)Hx(t))ϕ ′
x(1−Hx(s))ϕ ′

x(1−Hx(t))Cx,01(γx,Hx(s))Cx,01(γx,Hx(t))

+(Hu
x (t)− γxHx(t))ϕ ′

x(1−Hx(t))Cx,01(γx,Hx(t))
∫ Hx(s)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(Hu
x (s)− γxHx(s))ϕ ′

x(1−Hx(s))Cx,01(γx,Hx(s))
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

for all s, t ∈ [0,T].

(b) If hn = cn−1/5, for a positive constant c, then

(nhn)
1/2 (Fxh(·)−Fx(·)) → W̃(·|x)

whereW̃(·|x) is a Gaussian process with variance-covariance functionΓx(s, t)

and mean function Bx(·) given by

Bx(t) =
µK

2 h2
n

2ϕ ′
x(F̄x(t))

{
γ̈x

∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+Ḧx(t)ϕ ′
x(1−Hx(t))Cx(γx,Hx(t))

}
c5/2

Proof. To show the weak convergence of the process(nhn)
1/2(Fxh(t)−Fx(t)), we work
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as in Braekers and Veraverbeke (2001). First, we define

bn(x, t) =
n

∑
i=1

wni (x; t)Emtx(Zi ,δi)

=
1

ϕ ′
x(F̄x(t))

{
(γxi − γx)

∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(Hxi (t)−Hx(t))ϕ ′
x(1−Hx(t))Cx(γx,Hx(t))

}

=
µK

2 h2
n

2ϕ ′
x(F̄x(t))

{
γ̈x

∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+Ḧx(t)ϕ ′
x(1−Hx(t))Cx(γx,Hx(t))

}
+o(h2

n)+O
(
n−1)

where the last equality in the preceding display follows from Aerts et al. (1994). This

implies the bias

(nhn)
1/2 bn(x, t) =





o(1) if nh5
n → 0

Bx(t) if hn = cn−1/5

where

Bx(t) =
µK

2 h2
n

2ϕ ′
x(F̄x(t))

{
γ̈x

∫ Hx(t)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+Ḧx(t)ϕ ′
x(1−Hx(t))Cx(γx,Hx(t))

}
c5/2

with c denoting a finite positive constant. Therefore we write

Fxh(t)−Fx(t) =
n

∑
i=1

wni (x;hn) [mtx(Zi,δi)−Emtx(Zi ,δi)]+bn(x, t)+ rn(t)

=
n

∑
i=1

wni (x;hn)ξtx(Zi ,δi)+bn(x, t)+ rn(t) (5.6)

Using Billingsley (1968, Theorem 4.1), it follows that the weak convergence of the pro-

cess(nhn)
1/2(Fxh(·)−Fx(·)) to a Gaussian process in the space of uniformly bounded

real valued functionsℓ∞[0,T] is equivalent to the weak convergence of the process

Wxh(·) = (nhn)
1/2

n

∑
i=1

wni (x;hn)ξ.x(Zi ,δi)
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to a Gaussian limit inℓ∞[0,T]. To do this, we first show the convergence of the finite

dimensional distributions of the process and later append it with tightness inℓ∞[0,T].

For the convergence of the finite dimensional distributions, we define

Wnki
= (nhn)

1/2Wnk(x;hn)ξtix(Zk,δk)

and verify the conditions of Araujo and Giné (1980), as before (see Chapter 3).

For the first condition (see Section 3.4.2), we find after somecalculations that

E
(
Wnki

Wnkj

)

= nhnw2
nk

(x;hn)E
[
ξtix(Zk,δk)ξt jx(Zk,δk)

]

= nhnw2
nk

(x;hn)×{
γx(1− γx)

∫ Hx(ti)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw
∫ Hx(t j )

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(Hx(ti ∧ t j)−Hx(ti)Hx(t j))ϕ ′
x(1−Hx(ti))ϕ ′

x(1−Hx(t j))Cx,01(γx,Hx(ti))Cx,01(γx,Hx(t j))

+(Hu
x (t j)− γxHx(t j))ϕ ′

x(1−Hx(t j))Cx,01(γx,Hx(t j))

∫ Hx(ti)

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

+(Hu
x (ti)− γxHx(ti))ϕ ′

x(1−Hx(ti))Cx,01(γx,Hx(ti))
∫ Hx(t j )

0
ϕ ′

x(1−w)Cx,11(γx,w)dw

}

= Γx(ti , t j)×nhnw2
nk

(x;hn)

Subsequently, it follows from Lemma 3.1 of Van Keilegom and Veraverbeke (1997a)

that

lim
n→∞

n

∑
k=1

E
(
Wnki

Wnkj

)
= Γx(tit j)×nhn

n

∑
k=1

wnk(x;hn)
2 = Γx(ti , t j)+o(1).

For the second condition, we find after some calculations that

sup
0≤t≤T

|ξtx(Zk,δk)| ≤ |1{δk = 1}− γxk| sup
0≤t≤T

∣∣∣∣
∫ Hx(t)

0
ϕ ′

x(1−w)Cx,01(γx,w)dw

∣∣∣∣

+ sup
0≤t≤T

∣∣(1{Zk ≤ t}−Hxk(t))ϕ
′
x(1−Hx(t))Cx,01(γx,Hx(t))

∣∣

≤
∣∣ϕ ′

x(1−Hx(T))
∣∣
(

3+ sup
0≤t≤T

Cx,01(γx,Hx(t))

)
< ∞

This gives that

max
1≤k≤n

|Wnk| = O
(
(nhn)

−1/2
)

and
n

∑
k=1

|Wnk |2 = O(1)
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Consequently, we get

n

∑
k=1

∫

{|Wnk |>ε}
|Wnk |2dP ≤

∫

max1≤k≤n |Wnk |>ε

n

∑
k=1

|Wnk|2dP

≤ O(1)P

(
max

1≤k≤n
|Wnk | > ε

)
= o(1) as n→ ∞

Hence, it follows from Araujo and Giné (1980) that(Wxh(t1),Wxh(t2), ...,Wxh(tq)) con-

verges in distribution toN(0,Γx(ti , t j)) for anyq= 1,2, ... and any 0≤ t1 ≤ t2 ≤ ·· · ≤ tq.

To establish tightness, we need to show that the processWxh(·) = ∑n
i=1 (Zni (·)−EZni(·))

with Zni (t) = (nhn)
1/2wni (x;hn)mtx(Zi,δi) is asymptotically tight inℓ∞[0,T]. This is

equivalent to verifying the conditions of the bracketing central limit theorem of van der

Vaart and Wellner (2000, Theorem 2.11.9), as given in Chapter 3.

To do so, we define the index setF = [0,T] and endowed with the semimetricρ defined

by

ρ(t, t ′) = max




sup
x∈[0,1]

∣∣∣∣
1

ϕ ′
x(F̄x(t))

− 1
ϕ ′

x(F̄x(t ′))

∣∣∣∣ , sup
x∈[0,1]

∣∣∣∣
∫ Hx(t)

Hx(t ′)
ϕ ′

x(1−w)Cx,01(γx,w)dw

∣∣∣∣ ,

sup
x∈[0,1]

∣∣ϕ ′
x(1−Hx(t))Cx,01(γx,Hx(t))−ϕ ′

x(1−Hx(t
′))Cx,01(γx,Hx(t

′))
∣∣ ,

sup
x∈[0,1]

|Hx(t)−Hx(t
′)|




for t, t ′ ∈F . N[ ] (ε ,F ,Ln
2) is the bracketing number for everyn in a partitionF =∪ jFε j

of the index set into setsFε j such that

n

∑
i=1

E

[
sup

t,t ′∈Fε j

|Zni (t)−Zni(t
′)|2
]

≤ ε2 , ∀ j = 1,2, ... (5.7)

Before we check the first condition of the bracketing centrallimit theorem, we point out

that the functionmtx(Zi ,δi) is uniformly bounded above by

sup
t∈F

|mtx(Zi ,δi)| ≤ |ϕ ′
x(1−Hx(T)|

{
2Cx,10(γx,Hx(T))+ sup

t∈F

Cx,01(γx,Hx(t))

}
< ∞.
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Consequently, we have

sup
t∈F

|Zni (t)| ≤(nhn)
1/2|ϕ ′

x(1−Hx(T)|
{

2Cx,10(γx,Hx(T))+ sup
t∈F

Cx,01(γx,Hx(t))

}
wni (x : hn)

≤(nhn)
1/2|ϕ ′

x(1−Hx(T)|
{

2Cx,10(γx,Hx(T))+ sup
t∈F

Cx,01(γx,Hx(t))

}
||K||∞O

(
(nhn)

−1)

≤|ϕ ′
x(1−Hx(T)|

{
2Cx,10(γx,Hx(T))+ sup

t∈F

Cx,01(γx,Hx(t))

}
||K||∞O

(
(nhn)

−1/2
)

= O
(
(nhn)

−1/2
)

< λ

for sufficiently largen and for allλ > 0. This implies, Condition 1 of the bracketing

central limit theorem.

Because our partitionFε j of the index set is constructed independent ofn, we do not

need to verify the second condition since it is automatically satisfied. For the third

condition, we divide the index setF = [0,T] into subintervals[t j−1, t j ], j = 1,2, ...,J

with 0 = t0 < t1 < · · · < tJ = T such that

ρ(t, t ′) ≤ Cε , ∀t, t ′ ∈ [t j−1, t j ]

with C denoting a finite positive constant. Furthermore, we define the partitionFε j as

Fε j = [t j−1, t j [. After some calculations, it then follows that

E

[
sup

t,t ′∈Fε j

|Zni (t)−Zni (t
′)|2
]

≤ 5nhnwni (x;hn)
2C2ε2

{
9|ϕ ′

x(1−Hx(T))|2 +2

(
ϕ ′

x(1−Hx(T))

ϕ ′
x(1)

)2

+
5

ϕ ′
x(1)2

}
.

This implies,

n

∑
i=1

E

[
sup

t,t ′∈Fε j

|Zni (t)−Zni(t
′)|2
]

≤ 5nhnC
2ε2
{

9|ϕ ′
x(1−Hx(T))|2 +2

(
ϕ ′

x(1−Hx(T))

ϕ ′
x(1)

)2

+
5

ϕ ′
x(1)2

} n

∑
i=1

wni (x;hn)
2

≤ 5nhn||K||22DC2ε2
{

9|ϕ ′
x(1−Hx(T))|2 +2

(
ϕ ′

x(1−Hx(T))

ϕ ′
x(1)

)2

+
5

ϕ ′
x(1)2

}
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whereD is a finite positive constant. Taking

C =

(
5nhn||K||22DC2

{
9|ϕ ′

x(1−Hx(T))|2 +2

(
ϕ ′

x(1−Hx(T))

ϕ ′
x(1)

)2

+
5

ϕ ′
x(1)2

})−1/2

,

we see that the right hand side of the preceding inequality equalsε2. That is, a partition

Fε j for F = [0,T] constructed as described above with the appropriate choiceof C

satisfies (5.7). For everyn, the bracketing number of this partition can be written as

N[ ](ε ,F ,Ln
2) = O

(
ε−1
)
. Thus, for some positive constantC′, we have

∫ δn

0

√
logN[ ](ε ,F ,Ln

2)dε ≤
∫ δn

0

√
log

(
C′

ε

)
dε

By variable transformation (i.e. substitutingu = log(C′/ε)), we obtain

∫ δn

0

√
log

(
C′

ε

)
dε = C′

∫ ∞

log(C′/δn)
e−uu1/2du→ 0 as δn ↓ 0.

This establishes the third condition of the bracketing central limit theorem. Hence, the

processWxh(·) is asymptotically tight inℓ∞[0,T]. This together with the finite dimen-

sional convergence establish the weak convergence of the process(nhn)
1/2 (Fxh(·)−Fx(·))

to a Gaussian process in the spaceℓ∞[0,T].

5.4 Numerical results

In the preceding sections of this chapter, we stated and proved some important theoret-

ical properties of the conditional distribution function estimator under the generalized

conditional Koziol-Green model. These results are asymptotic in nature and rely on the

assumption that the sample sizen is sufficiently large. Obviously, the following question

arises: how large is ”sufficiently large”? For this purpose,we set up a simulation study

to investigate the performance of the estimator in finite samples in Section 5.4.1. As an

illustration, we also apply the estimator to the Survival ofAtlantic halibut data set in

Section 5.4.2.
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5.4.1 Simulation study

The finite sample performance of the generalized conditional distribution function es-

timator (1.25) under the generalized conditional Koziol-Green model will now be ex-

plored through a simulation study. For a desired sample sizen, we consider fixed and

equidistance design pointsxi = i
n (i = 1,2, ...,n). We assume that the survival timesYi

are independent random variables and are distributed according to

Yi ∼ Weibull(a1 +a2xi ,b),

for some constantsa1, a2, b such thata1 > min(0,−a2) andb > 0. Furthermore, we

assume that the non-censoring probability for the entitiesdepends on their design values

through

γxi =
1

1+exp(a3 +a4xi)
, i = 1,2, ...,n

wherea3 anda4 are another set of constants that regulates the censoring mechanism.

To generate data under the generalized conditional Koziol-Green model, we employ the

conditional distribution function method (see Nelsen (2006, page 41)) as follows:

For eachi (= 1,2, ...,n),

1. we generate two independent uniform variatesui ∈ (0,1) andti ∈ (0,1)

2. we setvi = c[−1]
u (ti), wherecu(v) = ∂

∂uϕ [−1]
xi (ϕxi (u)+ ϕxi (v)) andc[−1]

u denotes the

quasi-inverse ofcu

3. we obtainhi as a solution to

ϕxi (1−hi)−ϕxi (ui)+

∫ hi

0
ϕ ′

xi
(1−w)Cxi ,01(γxi ,w)dw = 0

4. we setYi =
(
− log(vi )

a1+a2xi

)1/b
andCi =

(
−

log
(

ϕ [−1]
xi (ϕxi (1−hi)−ϕxi (ui))

)

a1+a2xi

)1/b

5. we setZi = min(Yi ,Ci) andδi = 1{Yi ≤Ci}
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In the above algorithm, Step 2 generates a pair of uniform variables at design value

xi ∈ [0,1] such that their joint distribution is described by an Archimedean copula with

generator functionϕxi . By this step, the future couple(Yi ,Ci) will satisfy

Sxi (t1, t2) = P(Yi > t1,Ci > t2) = ϕ [−1]
xi

(
ϕxi (F̄xi (t1))+ ϕxi

(
Ḡxi (t2)

))
(5.8)

Afterwards in Step 3 and 4, we obtain the pair(Yi ,Ci) such the observable variablesZi

andδi also satisfies

Hu
xi
(t) = P(Zi ≤ t,δi = 1) = Cxi (γxi ,Hxi (t)) (5.9)

for eachxi ∈ [0,1].

Tables 5.1 and 5.2 summarize the simulation results for different sample sizesn, each

with 10 000 replicates. The estimates are obtained at 10th, 30th, 50th, 70th and 90th per-

centilesQ of the marginal distribution of the survival times and correspond to prescribed

time values for a given design valuex. These percentiles are chosen so as to reflect

the behavior of the Generalized conditional Koziol-Green estimator at various level of

estimation. For the purpose of comparison, the tables also features the results under

some competing estimators, namely the conditional Koziol-Green estimator of Braekers

and Veraverbeke (2008) and the conditional copula graphic estimator of Braekers and

Veraverbeke (2005).

The results in Tables 5.1 and 5.2 are based on the choice of parametersa1 = 1.5,a2 = 0.5,

b= 2, a3 = −3.5 anda4 = 7.5. These parameters are chosen such that small design val-

ues are associated with smaller probability of censoring. In this way, we can easily

explore the effect of censoring intensity on the estimatorsunder consideration. For in-

stance, estimation at design valuex = 25% would reflect the behavior of the estimators

on a light censored data set. Whereas estimation at design value x = 75% would pro-

vide some insight into the behavior of the estimators on a heavy censored data. For

all sample sizes, Table 5.1 shows that the results based on the generalized conditional

Koziol-Green estimator and conditional copula graphic estimator are close. This was

expected because the copula graphic estimator is more general than the generalized con-

ditional Koziol-Green estimator, since the former does notdepend on the relationship

betweenZx andδx. For the estimation atx = 75%, we further note that the biases under
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Table 5.1: Absolute biases under the generalized conditional Koziol-Green estimatorFxh,

the conditional Koziol-Green estimatorFBV(2008)
xh , and the conditional copula graphic estimator

FBV(2005)
xh .

x = 25% x = 50% x = 75%
Q Fxh FBV(2008)

xh FBV(2005)

xh Fxh FBV(2008)

xh FBV(2005)

xh Fxh FBV(2008)

xh FBV(2005)

xh

n = 30

10 0.0002 0.0091 0.0003 0.0083 0.0140 0.0065 0.0444 0.0061 0.0822
30 0.0052 0.0169 0.0053 0.0463 0.0039 0.0635 0.0836 0.0568 0.0839
50 0.0161 0.0029 0.0153 0.0636 0.0415 0.0635 0.0830 0.1480 0.0871
70 0.0276 0.0290 0.0253 0.0615 0.0850 0.0635 0.0789 0.1841 0.0855
90 0.0397 0.0474 0.0375 0.0586 0.0814 0.0532 0.0770 0.1333 0.0838

n = 50

10 0.0003 0.0095 0.0003 0.0047 0.0174 0.0471 0.0407 0.0107 0.0684
30 0.0025 0.0184 0.0034 0.0359 0.0149 0.0317 0.0732 0.0493 0.0750
50 0.0092 0.0085 0.0084 0.0531 0.0294 0.0470 0.0705 0.1459 0.0715
70 0.0159 0.0169 0.0173 0.0481 0.0710 0.0479 0.0655 0.1782 0.0710
90 0.0239 0.0309 0.0340 0.0407 0.0633 0.0411 0.0599 0.1173 0.0788

n = 100

10 0.0004 0.0086 0.0001 0.0021 0.0201 0.0039 0.0361 0.0153 0.0633
30 0.0021 0.0175 0.0019 0.0251 0.0263 0.0196 0.0637 0.0436 0.0710
50 0.0066 0.0095 0.0095 0.0412 0.0156 0.0319 0.0611 0.1497 0.0698
70 0.0097 0.0105 0.0095 0.0360 0.0586 0.0381 0.0566 0.1783 0.0730
90 0.0124 0.0184 0.0135 0.0246 0.0475 0.0390 0.0442 0.1042 0.0721

n = 150

10 0.0002 0.0090 0.0001 0.0016 0.0209 0.0025 0.0329 0.0179 0.0694
30 0.0007 0.0181 0.0003 0.0201 0.0316 0.0251 0.0576 0.0395 0.0694
50 0.0038 0.0117 0.0033 0.0351 0.0082 0.0412 0.0541 0.1501 0.0694
70 0.0068 0.0074 0.0100 0.0292 0.0515 0.0385 0.0501 0.1773 0.0694
90 0.0087 0.0145 0.0133 0.0193 0.0425 0.0155 0.0391 0.1008 0.0694

n = 200

10 0.0001 0.0088 0.0002 0.0017 0.0210 0.0019 0.0307 0.0196 0.0678
30 0.0005 0.0178 0.0007 0.0177 0.0340 0.0200 0.0543 0.0370 0.0678
50 0.0040 0.0111 0.0045 0.0317 0.0040 0.0219 0.0508 0.1507 0.0678
70 0.0070 0.0074 0.0045 0.0267 0.0488 0.0381 0.0472 0.1770 0.0678
90 0.0072 0.0127 0.0100 0.0159 0.0391 0.0426 0.0364 0.0988 0.0678

the generalized conditional Koziol-Green estimator are consistently smaller than their

counterparts under the conditional copula graphic estimator. This can be attributed to

the fact that the latter uses only the uncensored observations and due to our choice of
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Table 5.2: Variances under the generalized conditional Koziol-GreenestimatorFxh, the condi-

tional Koziol-Green estimatorFBV(2008)
xh , and the conditional copula graphic estimatorFBV(2005)

xh .

x = 25% x = 50% x = 75%
Q Fxh FBV(2008)

xh FBV(2005)

xh Fxh FBV(2008)

xh FBV(2005)

xh Fxh FBV(2008)

xh FBV(2005)

xh

n = 30

10 0.0024 0.0019 0.0039 0.0014 0.0008 0.0028 0.0009 0.0005 0.0035
30 0.0064 0.0063 0.0093 0.0037 0.0042 0.0083 0.0075 0.0079 0.0184
50 0.0112 0.0123 0.0146 0.0097 0.0109 0.0154 0.0218 0.0212 0.0374
70 0.0143 0.0147 0.0172 0.0157 0.0151 0.0207 0.0354 0.0253 0.0436
90 0.0092 0.0089 0.0117 0.0110 0.0101 0.0165 0.0235 0.0149 0.0372

n = 50

10 0.0016 0.0012 0.0022 0.0010 0.0006 0.0017 0.0006 0.0003 0.0020
30 0.0042 0.0042 0.0055 0.0025 0.0028 0.0050 0.0050 0.0053 0.0118
50 0.0071 0.0078 0.0087 0.0063 0.0073 0.0096 0.0154 0.0149 0.0257
70 0.0088 0.0091 0.0101 0.0104 0.0102 0.0137 0.0239 0.0165 0.0304
90 0.0054 0.0052 0.0064 0.0071 0.0064 0.0101 0.0148 0.0092 0.0259

n = 100

10 0.0009 0.0007 0.0011 0.0006 0.0003 0.0009 0.0003 0.0002 0.0010
30 0.0024 0.0024 0.0029 0.0015 0.0016 0.0026 0.0032 0.0034 0.0066
50 0.0041 0.0044 0.0048 0.0037 0.0045 0.0054 0.0097 0.0091 0.0153
70 0.0050 0.0052 0.0055 0.0059 0.0059 0.0076 0.0150 0.0096 0.0187
90 0.0028 0.0027 0.0031 0.0039 0.0034 0.0053 0.0084 0.0049 0.0172

n = 150

10 0.0006 0.0005 0.0007 0.0005 0.0002 0.0006 0.0002 0.0001 0.0007
30 0.0017 0.0017 0.0020 0.0011 0.0012 0.0018 0.0023 0.0024 0.0047
50 0.0029 0.0031 0.0033 0.0026 0.0033 0.0039 0.0073 0.0068 0.0116
70 0.0034 0.0035 0.0037 0.0043 0.0044 0.0053 0.0111 0.0069 0.0146
90 0.0019 0.0019 0.0021 0.0029 0.0025 0.0038 0.0061 0.0035 0.0135

n = 200

10 0.0005 0.0004 0.0005 0.0004 0.0002 0.0005 0.0002 0.0001 0.0005
30 0.0014 0.0014 0.0016 0.0009 0.0010 0.0015 0.0018 0.0020 0.0037
50 0.0023 0.0025 0.0026 0.0021 0.0026 0.0030 0.0059 0.0055 0.0093
70 0.0027 0.0028 0.0030 0.0034 0.0034 0.0042 0.0089 0.0055 0.0119
90 0.0015 0.0014 0.0016 0.0022 0.0019 0.0029 0.0049 0.0028 0.0116

parameters, most observations atx = 75% are censored. From Table 5.1, we also note

that the biases associated with the conditional Koziol-Green estimator are in most cases

larger than the corresponding ones under the generalized conditional Koziol-Green es-

timator. As for the classical conditional Koziol-Green estimator, Braekers and Veraver-
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beke (2008) assume a relationship betweenZx andδx. However they take, in this case,

the wrong assumption of independence.

In Table 5.2, we compare the variances associated with the simulated estimates under

the three competing estimators. Since the copula graphic estimator is more general than

the conditional Koziol-Green and the generalized conditional Koziol-Green estimators,

we expect that the latter two estimators have smaller variances and are therefore more

efficient. The results in Table 5.2 show that this is true for estimation at covariate values

25%, 50% and 75% with a sample size of at least 30. To get further insight, we repeat the

simulation process for various choices of the Archimedean copula generator functionϕx

and the general copulaCx such that (5.8) and (5.9) are respectively satisfied. However,

we do not report these additional results because the conclusions are the same as above.

5.4.2 Illustration on real data: Survival of Atlantic halib ut

In this section, we illustrate the generalized conditionalKoziol-Green estimator on the

well known Survival of Atlantic halibut data set. This data set is already introduced in

Chapter 1. It is the result of a study on the size regulation ofthe Atlantic Halibut as one

of conservation measures suggested for the trawl and long line fishery. In this section,we

are particularly concerned about the survival time of a fish that was caught and handled

as in the commercial fishing. In this experiment, the fish is censored by the time that

it has spent in the holding tank. Some of the fishes were censored because they were

removed from the holding tank within 48 hours to make space for new ones. Also, the

fishes that were alive at the end of the experiment were treated as censored observations.

We refer to Neilson et al. (1989) and Lange et al. (1994) for further details about this

data set.

In this study, we observed that, the catch and handling are a period of great stress for the

fish. In addition, the holding tank which is the fish’s new environment will cause more

stress. As such, one can expect a number of the fishes to die within the first few hours

after they have been placed in the holding tank.

Not only the stressful environment will diminish the probability of survival for a fish,
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but also, for example, an infection brought into the holdingtank by a sick fish can kill

the other fishes as well. Thus, it is reasonable to allege thatthe probability of dying from

infection increases with the time spent in the holding tank.As such, the survival timeYi

of a fish depends on the time that it has spent in the holding tank Ci. Equivalently, the

time spent in the holding tank has a negative influence on the survival time. Figure 5.1

is a scatter plot of survival time versus fork length of the experimental animals with a

distinction between censored and uncensored observations. From the figure, it is clear

that most of the censored observations occurred among fisheswith fork length greater

than 39 cm. This suggests possible association between censoring time and fork length

of the fishes.
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Figure 5.1: Scatter plot of fork length versus survival time with a distinction between censored

and uncensored observations

A further feature of this study is that the occurrence of these censoring is a manifes-

tation of the fishes’ endurance abilities. These can inherently be attributed to several

factors such as the time of the catch and the prevailing atmospheric temperature or wind,

among others. As a result, we suspect that censoring time could be additionally infor-
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mative to the survival time through its distribution function. As such, the generalized

conditional Koziol-Green estimator could be the outstanding candidate to estimate the

survival distribution of the time until death, provided relation (5.9) holds. In this prac-

tical data illustration, we verify condition (5.9) by looking at the empirical counterpart

and investigate whether, at a desired fork lengthx

Hu
xh(t) = Cx (γxh,Hxh(t)) (5.10)

nearly holds for allt ≥ 0, where

Hu
xh(t) =

n

∑
i=1

wni(x,hn)1{zi ≤ t,di = 1}

Hxh(t) =
n

∑
i=1

wni(x,hn)1{zi ≤ t}

γxh =
n

∑
i=1

wni(x,hn)1{di = 1}

with zi anddi denoting respectively, the observed time and censoring indicator at fork

length xi (i = 1,2,3, ...,n) andwni(x,hn) is the corresponding weight at fork lengthx

(compare with definitions (1.12) and (1.13) in Chapter 1).

Relation (5.10) readily suggests an informal procedure to investigate the relationship

between the observed time and censoring indicator. In otherwords, a plausible func-

tion to describe the relationship between the observed variables at a given covariate

valuex needs to give the best approximation toHu
xh(t), uniformly overt ≥ 0. In Fig-

ure 5.2, we present a visual test for the copula function to describe the relationship

between the observed time and censoring indicator as definedin (5.10). In particular,

we consider estimation at fork lengths(= 32,53) and compare Fréchet-Hoeffding lower

bound (F-H lower), Frechet-Hoffding upper bound (F-H upper), Product, Gumbel bi-

variate logistic, Plackett (with parameterθ = 10), Clayton (with parameterθ = 3) and

Frank (with parameterθ = 8) copulas to the empirical quantityHu
xh

(
H−1

xh (p)
)
, where

H−1
xh (p) = inf{t : Hxh(t) > p} is the quantile function ofHxh(t). These copula functions

are given in Nelsen (2006). For convenience, we list them here respectively in a general
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way as follows:

C (u,v) = max(u+v−1,0)

C (u,v) = min(u,v)

C (u,v) = uv

C (u,v) =
uv

u+v−uv

C (u,v) =
1+(θ −1)(u+v)−

√
[1+(θ −1)(u+v)]2−4uvθ(θ −1)

2(θ −1)

C (u,v) =
[
max

(
u−θ +v−θ −1,0

)]−1/θ

C (u,v) = − 1
θ

log

(
1+

(e−θu−1)(e−θv−1)

e−θ −1

)

Irrespective of the bandwidths (i.e.hn = 20,40), we notice from the first row of Figure

5.2 that the Gumbel logistic copula gives the best approximation to the empirical quan-

tity. As a result, we consider it as the most plausible candidate to describe the relation-

ship between observed times and the censoring indicators inthis data set. However, this

observation is not clear in the second row of Figure 5.2, since the various copula func-

tion approximations almost coincide with the empirical quantity Hu
xh

(
H−1

xh (p)
)
. This is

expected because there is no censoring at fork length= 32, as can be seen in Figure 5.1.

As a consequent,γxh ≈ 1, Hu
xh(t) ≈ Hxh(t) for all time t ≥ 0 and

Hu
xh(t) = Cx(γxh,Hxh(t)) ≈ Hxh(t),

for all copula functions under consideration. Using the Gumbel logistic copula, we

present in Figure 5.3, the generalized conditional Koziol-Green estimate of the distribu-

tion function of time until death in the holding tank. In thisestimation, we assume the

Frank copula with generator function

ϕx(u) = − log

(
e(x−20)u−1
ex−20−1

)

for the association structure of the survival time and censoring time. This choice has also

been considered by Braekers and Veraverbeke (2005) for the conditional copula graphic

estimator. It allows the dependence structure of the survival time and censoring time to
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Figure 5.2: Graphical test for the copula function to describe the relationship between observed

time and censoring indicator.

also depend on the fork lengthx and gives a stronger discordance association for larger

fishes, given that all the fishes are kept in the holding tank for the same amount of time.

Equivalently, this means that the survival probability of larger fishes will be smaller than

the survival probability of the smaller fishes.

For the purpose of comparison, Figure 5.3 also features the conditional copula graphic

and the conditional Koziol-Green estimates of the survivaldistribution. Due to the large

proportion of uncensored observations in this data set, we observe from Figure 5.3 that

the three survival distribution estimates are close to eachother. This is because, the
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Figure 5.3: Estimates of the survival probabilities of Atlantic halibuts under the generalized

conditional Koziol-Green estimator (black dotted line), the conditional copula graphic estimator

(blue continuous line) and the conditional Koziol-Green estimator (red dashed line)

performance of the generalized conditional estimator overthe other two tends to increase

with decreasing proportion of uncensored observations. This is more obvious in the

second row of Figure 5.3 where all three competing estimators coincide, due to the

high probability of non-censoring at fork length= 32. In general, it is obvious that the

Gumbel bivariate copula captures the possible relationship between the observed times

and the censoring indicator. In addition, Figure 5.3 shows that the effect of the bandwidth

choice on the conclusions under these three estimators is negligible.
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Nonetheless, it might be appropriate to point out that the graphical test presented in

Figure 5.1 is for illustrative purpose only. A formal test ofcopula functions based on

the observable variablesZi and δi is possible and follows the lines of Chapter 3. On

the contrary, it is not possible to perform a formal test on the choice of Archimedean

generator functionϕx(u) to model the dependence structure of the survival time and

censoring time, since neither of these random variables is fully observable. By following

the work of Braekers and Veraverbeke (2005), we can however,conduct a thorough

sensitivity analysis on the choice ofϕx. We do not dwell on these any further in this

thesis, but they may be possible areas for future exploration.



6
Possible future research

In Chapter 1, we introduced the generalized conditional Koziol-Green estimator (1.25).

This estimator is nonparametric and depends on some generalcopula functionCx that is

assumed to be knowna priori. Nevertheless, there are cases where we may be interested

in a certain copula family. For example, when the Plackett copula is used on the observ-

able variablesZi andδi (i = 1,2, ...,n), then its parameter is the constant odds ratio for

the conditional sub-distributions of the observed variables. In such cases, it might be

appropriate to adopt a semiparametric form of (1.25). To achieve this, we parameterize

the generalized conditional Koziol-Green model (1.18) andassume instead that

Ḡx(t) = νx (θ , F̄x(t)) (6.1)

107
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with, for every value ofθ , νx(θ ,ω) a non-decreasing function ofω ∈ [0,1], νx(θ ,0) = 0

and νx(θ ,1) = 1. Similar to the nonparametric derivation (see in Section 1.2.2), we

find this functionνx(·, ·) such that the sub-distribution atx ∈ [0,1] of the uncensored

observations satisfies

Hu
x (t) = P(Zx ≤ t,δx) = Cx(θ ;γx,Hx(t)) (6.2)

where{Cx(θ ; ·, ·) : θ ∈ Θ} is the desired copula family depending on some unknown

parameterθ from a compact parameter spaceΘ ∈ Rd, with d ∈ N. By following the

lines leading (1.25), we easily obtain the semiparametric estimator

F̄xh(t) = ϕ [−1]
x

(
−
∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01
(
θ̂ ;γxh,w

)
dw

)
(6.3)

in the generalized conditional Koziol-Green model (6.1) under dependent censoring. For

this semiparametric estimator,γxh andHxh(t) are the nonparametric Stone (1977) type

estimators ofγx andHx(t). To obtain the estimator̂θ , we propose a likelihood based

technique. More specifically, we note from (6.2) that the likelihood contribution of the

ith data point is

Li(θ) =





Cxi ,01(θ ;γxi ,Hxi (zi)) if di = 1

1−Cxi ,01(θ ;γxi ,Hxi (zi)) if di = 0
.

Obviously, this leads to the likelihood
n

∏
i=1

Cxi ,01(θ ;γxi ,Hxi (zi))
di (1−Cxi ,01(θ ;γxi ,Hxi (zi)))

1−di

wherezi anddi (i = 1,2, ...,n) are the observed times and censoring indicators respec-

tively. However, we note in this likelihood thatγxi andHxi (·) are unknown. Replacing

them by their respective Stone (1977) type counterparts (see Chapter 1), subsequently

yields the pseudo-likelihood
n

∏
i=1

Cxi ,01(θ ;γxi h,Hxih(zi))
di (1−Cxi ,01(θ ;γxi h,Hxih(zi)))

1−di .

At a design valuex∈ [0,1], we subsequently obtain̂θ as a solution to the weighted score

equation

n

∑
i=1

wni (x,hn)

{
di

C ′
xi ,01(γxih,Hxih(zi))

Cxi ,01(γxih,Hxih(zi))
− (1−di)

C ′
xi ,01(γxih,Hxih(zi))

1−Cxi ,01(γxih,Hxih(zi))

}
= 0
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wherewni (x,hn) is the Gasser-Müller weight defined in Chapter 1 and

C
′
xi ,01(θ ;u.v) =

(
∂

∂θ1
Cxi ,01(θ ;u.v), ...,

∂
∂θq

Cxi ,01(θ ;u.v)

)T

is a vector of partial derivatives for each component ofθ . In the weighted score equation

above, each pseudo log-likelihood contribution is multiplied by the weight. In this way,

those observationsxi close tox have a higher impact in estimatingθ .

6.1 Theoretical properties

As in the previous chapters, one important step towards the proposed semiparametric

estimator (6.3) is to show its consistency as an estimator ofthe true survival distribution

function F̄x at x∈ [0,1] as well as the weak convergence of the corresponding empirical

process to an appropriate Gaussian process with some variance covariance function. To

carry out these, we first need to establish the consistency and normality of the prelimi-

nary estimatorsγxh,Hxh andθ̂ . Forγxh andHxh, these results has already been established

and can be found in the literature. See for example Van Keilegom and Veraverbeke

(1997a) and Braekers and Veraverbeke (2001), among others.For θ̂ , we could adapt

the results of Newey (1994) and Chen et al. (2003), who gave primitive conditions un-

der which a semiparametric estimator that depends on some preliminary nonparametric

estimators is consistent and asymptotically normal.

Once the important asymptotic results of the preliminary estimators are established, we

can proceed in parallel with Chapter 5 and ascertain the desired theoretical properties

of the semiparametric estimator (6.3). Furthermore, it might be appropriate to deter-

mine the validity of the generalized semiparametric conditional Koziol-Green estimator

in practical applications. Similar to Chapter 3, this will reduce to testing for the null

hypothesis

H0 : Hu
x (t)−Cx(θo;γx,Hx(t)) = 0 for all t ≥ 0,

due to the infeasibility of a formal test to ascertain the dependence structure that gov-

erns the joint distribution of the survival time and censoring time. For the alternative
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hypothesis, we may allow for any deviation of the conditional sub-distribution of the un-

censored observations from theγx-section of the general copula functionCx(θ ; ., .). To

establish the necessary conditions for the validity of the estimator (6.3), we can further

mimic the theoretical development of the testing procedurepresented in Chapter 3. In

line with Chapter 3, it might also be convenient to consider abootstrap approximation

of the testing procedure.
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43. Veraverbeke, N. and C. Cadarso-Suárez (2000). Estimationof the conditional distribu-

tion in a conditional Koziol-Green model.Test 9, 97–122.

44. Zheng, M. and J. Klein (1995). Estimates of marginal survival for dependent competing

risks based on an assumed copula.Biometrika 82, 127–138.



Samenvatting

In hedendaagse wetenschappelijke onderzoeken, ontmoetenwij vaak studies waarvan de

primaire interesse gericht is op niet-negatieve reactievariabelen. Een specifiek voorbeeld

hiervan zijn de overlevingsstudies waarbij de reactievariabele de tijd tot een bepaalde

gebeurtenis is. Dit soort studies worden toegepast in diverse onderzoeksgebieden. In

techniek bijvoorbeeld, is de tijd tot het falen van een machinecomponent belangrijk. Bij

de sociale wetenschappen, kijkt men naar de duur van stakingen, de duur van werk-

loosheid of de duur van huwelijken in sommige maatschappijen. In een medische con-

text heeft men overlevingsstudies wanneer men de tijd tot hervallen na een kankertumor,

de tijd tot herstel na een chirurgische operatie of de levensduur van sommige biologische

organismen onderzoekt. Bij verschillende overlevingsstudies staat de responsvariabele

”tijd” niet voor de letterlijke tijd. Bijvoorbeeld, in kwaliteitscontrole of betrouwbaarheid

in de productie is men meestal geı̈nteresseerd in de kracht die nodig is om een onderdeel

onbruikbaar te maken. Terwijl in economie, stelt dit het bedrag voor dat door een verzek-

eringsmaatschappij wordt betaald in het geval van schade.

Door verschillende praktische redenen kunnen we de response variabelen niet volledig

waarnemen voor elke studieobject. Bij enkele studieobjecten nemen wij hun exacte re-

sponstijd waar, terwijl voor anderen objecten is slechts gedeeltelijke informatie voor de

responstijd beschikbaar. Eén bron van gedeeltelijke informatie is censurering. Bijvoor-

beeld in een medische studie waar de overlevingstijd door een hartkwaal belangrijk is. In
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dit geval, het is mogelijk dat sommige patiënten sterven aan andere ziekten zodat hun ex-

acte overlevingstijd niet kan worden waargenomen. Namelijk wanneer een patiënt sterft

zonder een hartkwaal, is de enige informatie over de overlevingstijd van een hartkwaal

dat dit groter is dan de waargenomen overlevingstijd. We noemen deze overlevingstijd

rechts gecensureerd.

Ondanks dat censurering een integraal deel vormt van overlevingsstudies, heeft dit gevol-

gen voor het trekken van conclusies in dergelijke studies. Voorts moeten we niet-verifieerbare

veronderstellingen maken over de associatie tussen de respons (overlevings) variabele en

de censureringsvariabele. Onder de veronderstelling dat de overlevings en censureringsvari-

abele onafhankelijk zijn, vormt de Kaplan en Meier (1958) schatter een inferenciële basis

voor de verdeling van de overlevingstijd.

In sommige studies zien we dat de censureringsvariabele informatief is voor de over-

levingsveranderlijkeY door zijn distributiefunctie. Om deze informatieve censurering

te behandelen, stelde Koziol en Green (1976) een submodel voor waarbij de distribu-

tiefunctie F van de overlevingsveranderlijkeY en de distributiefunctieG van de cen-

sureringsveranderlijke voldeden aan de volgende relatie

1−G(t) = (1−F(t))β , β > 0.

Volgens Kochar en Proschan (1991) , kunnen we gemakkelijk aantonen dat de vooraf-

gaande karakterisering van dit submodel gelijkwaardig is aan het feit dat de waarneem-

bare variabelenZ = min(Y,C) enδ = 1{Y ≤C} onafhankelijk zijn. Gebaseerd op deze

extra veronderstelling en de onafhankelijkheid vanY enC, hebben Abdushukurov (1987)

en Cheng en Lin (1987) gevonden dat

F̄ACL(t) = (1−H(t))γ ,

waarbijγ het percentage van ongecensureerde observaties is enH(·) de distributiefunctie

vanZ is. Door het vervangen vanγ enH(·) door respectievelijke empirisch schattersγn

enHn(·), de auteurs verkreeg de volgende schatter van de overlevingstijddistributie

F̄ACL
n (t) = (1−Hn(t))

γn .

Zij bestudeerden de asymptotische eigenschappen van de schatter en toonden zijn supe-

rioriteit over Kaplan and Meier (1958) schatter in termen van asymptotische efficiency.
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Volgens Csörgó (1988) is de praktische toepasbaarheid van F̄ACL
n (·) beperkt aangezien

het kleine aantal data sets waarvoor de onafhankelijkheidsveronderstelling opZ en δ
houdt. In Hoofdstuk 1 van de thesis, introduceerden wij een uitbreiding vanF̄ACL

n (·)
waarbij we de onderliggende onderstellingen generaliseren. Namelijk enerzijds hebben

we de associatie tussenY enC, en anderzijds is er een verband tussenF enG. Voor de

eerste veronderstelling nemen we aan zoals in Rivest en Wells (2001) dat de gezamenli-

jke overlevingsdistributie vanY enC voldoet aan

S(t1, t2) = P(Y > t1,C > t2) = ϕ [−1]
(
ϕ(F̄(t1))+ ϕ(Ḡ(t2))

)
,

waarbij F̄(t) = 1− F(t) en Ḡ(t) = 1− G(t) de respectievelijke overlevingsdistribu-

ties zijn vanY en C. De functieϕ : [0,1] → [0,∞] is een bekende generator van de

Archimedische copula functie. We noterenϕ [−1] voor de pseudo-inverse van deze gen-

erator zoals weergegeven in Nelsen (2006). Voor de tweede onderstelling veralgeme-

nen wij het verband tussenF en G indirect door een andere copula functieC op de

waarneembare variabelenZ enγ zodat de sub-distributie van de ongecensureerde obser-

vaties gegeven wordt door

Hu(t) = P(δ = 1,Z ≤ t) = C (γ ,H(t)) ,

waarbij γ = P(δ = 1) het verwachte aandeel ongecensuurde observaties is enH(t) =

P(Z ≤ t) is de distributie van het waargenomen overlevingstijd. Wijbestuderen de

asymptotische eigenschappen van de uitgebreide schatter in Hoofdstuk 2 en testen zijn

toepasselijkheid door een goodness-of-fit-procedure in Hoofdstuk 3.

In Hoofdstukken 4 en 5 beschouwen wij de situatie waarbij enkele extra gemeten vari-

abelen (covariaten) beschikbaar zijn. Deze covariaten zijn in de meeste voorbeelden niet

van primair belang voor de onderzoeker, maar ze hebben het potentieel om de distribu-

tie van de overlevingstijd te beı̈nvloeden. Als voorbeeld,denken wij aan een studie die

inzicht probeert te geven in de distributie van de lengte vaneen verblijf voor patiënten

in een ziekenhuisopname. Hierbij is het duidelijk dat de distributie van de overlev-

ingstijd (duur van het ziekenhuisverblijf) door de leeftijd en/of een medische conditie

(ernstigheidsgraad van de ziekte) van de patiënt bij opname kan worden beı̈nvloed. Voor

een meer technische voorstelling van dit probleem, veronderstellen we datYx1,Yx2, ,Yxn

onafhankelijke overlevingstijden zijn op vaste designpunten x1 < x2 < · · · < xn. Elke
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Yxi is geassocieerd met een censurerende veranderlijkeCxi . Bij elk ontwerppuntxi ,

zijn de waarneembare variabelenZxi = min(Yxi ,Cxi ) en δxi = 1{Yxi ≤ Cxi}. Wij behan-

delen deze regressie setting op twee manieren. Eerst, veronderstellen wij dat bij een

bepaalde covariaat waardex ∈ [0,1], de distributiefunctieFx van de overlevingstijdYx

bij x en de distributiefunctieGx van de censuringsveranderlijkeCx bij x voldoet aan de

voorwaardelijke Koziol-Green karakterisering

1−Gx(t) = (1−Fx(t))
βx ,

waarbij βx > 0 slechts afhangt van x. Gelijkaardig als in de situatie zonder covari-

aten, veronderstellen we dat de mogelijke afhankelijkheidtussenYx enCx gegeven is een

Archimedische copula functie die voldoet aan

Sx(t1, t2) = P(Yx > t1,Cx > t2) = ϕ [−1]
x
(
ϕx(F̄x(t1))+ ϕx(Ḡx(t2))

)
.

Deze assumptie samen met de voorwaardelijke Koziol-Green karakterisering leidt tot het

voorwaardelijke Koziol-Green model

F̄BV
x (t) = ϕ [−1]

x (γxϕx(H̄x(t))) ,

voor de voorwaardelijke overlevingsdistributie van de overlevingstijd onder afhankelijke

censurering waarbijγx = P(δx = 1) en Hx(t) = P(Zx ≤ t). In dit model krijgen we de

schatter

F̄BV
xh (t) = ϕ [−1]

x (γxhϕx(H̄xh(t))) ,

metγxh het gewogen percentage ongecensureerde observaties enHxh(·) de gewogen em-

pirische distributie van de waargenomen overlevingstijd.De voorafgaande schatter werd

voorgesteld door Braekers en Veraverbeke (2008). De auteurs toonden zijn consistentie

en asymptotische normaliteit aan. In Hoofdstuk 4, complementeren wij hun resultaat met

de zwakke convergentie van het bijbehorende proces. Gebruikmakend van dit recentere

resultaat toonden wij de asymptotische efficiency aan vanF̄BV
xh over de copula-graphic

schatter van Braekers en Veraverbeke (2005) . In hetzelfde hoofdstuk, ontwikkelden

wij een betrouwbaarheidsband voor̄FBV
xh en illustreren deze op een praktische data set

-Worcester Heart Attack Study.
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Overeenkomstig het scenario zonder covariates, veralgemenen wij de onafhankelijkhei-

dsbeperking opZx en δx en verkrijgen, na wat algebra, de algemene voorwaardelijke

Koziol-Green schatter

F̄xh(t) = ϕ [−1]
x

(
−
∫ Hxh(t)

0
ϕ ′

x(1−w)Cx,01(γxh,w)dw

)
,

metγxh enHxh zoals vroeger bepaald. In Hoofdstuk 5, bestudeerden wijF̄xh en maakten

zijn consistentie en zwakke convergentieresultaten duidelijk. Verder, onderzoeken wij

zijn eindige steekproefeigenschappen via een simulatiestudie en illustreren het op de

”Atlantic halibut data set”.
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