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1

Introduction

The study of non-negative response variables is cruciatakes several forms in a wide
variety of areas of modern scientific investigations. On#hege is lifetime or survival
time studies, where the response variable is expressea@ &swh until certain event of
interest (time-to-event endpoint). In engineering forrape, researchers are often in-
terested in studying the time until the break down of a mazliomponent. Another
example is in the social sciences, where interest lies imthation of strikes, duration
of unemployment or the duration of marriages in societiesnédical settings, survival
times emerge from investigations that focus on the timel vaturrence of cancer tu-
mors, the time to recovery after a surgical operation orifeespan of some biological
units, among others. Nonetheless, there are also casevivestime studies where the
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term "time” may not represent the literal time. For instgringquality control or reliabil-
ity in manufacturing, this could be the amount of force nektderender a part unusable.
While in economics, it could also be the amount payed by ammramee company in case
of damage.

In various fields of survival time studies, researchers &enaonfronted with the dis-
tinguishable and unifying phenomenon of censoring. Thifasas as a consequence of
the fact that, for some study units, the exact survival timknown, whereas for others
only a partial information is available. Censoring in gext@ccurs for various reasons.
Depending on the underlying reason for censoring, we caadiyalistinguish between
three types of censoring, namélype | Type Il andRandoncensoring schemes. Type
| censoring occurs when the censoring time is fiagatiori. While in type Il censoring,
the censoring time is determined by a fixed number of exastvalrtimes to be ob-
served. In both these types of censoring however, the dagsmechanism is controlled
by the investigator. In a laboratory experiment for exampleesearcher who wants to
investigate the lifespan of a number of fluorescent tubespoathem on a test in order
to record their times to failure. Some tubes may take a lang to burn out and it may
not be feasible for the experimenter to wait that long. Tfoees he/she may decide to
end the experiment at a prescribed time (i.e. fixed censdirimg). In such situation, the
exact lifetime of some tubes may not be observed and this lgatlype | censoring. On
the other hand, the investigator may not have a prior knoydesf the appropriate fixed
censoring time and may chose to wait until a prespecifiedgtonm of the tubes burns
out. The exact lifetime of some tubes may not be observedisnsétond scenario as
well, in which case we have type Il censoring. Obviously,¢Basoring mechanisms in
these scenarios are under the control of the investigator.

Random censoring on the other hand, is beyond the contrbkdhtestigator. It occurs
when the response random variable of each study unit is iassgovith a potential
censoring random variable. Thus, in a study where thedifetof primary interest is
the time until death from a heart disease, it is possibledbate study units would die
from other diseases and their exact lifetime cannot be wbderAlso, patients with
inoperable cancer are often taken off study when their tugnows in size by a certain
amount or when new lesions are detected and as such their I#gime cannot be



observed. Clearly, the censoring variable (i.e. death fodiher diseases or taken off
study) is random and cannot be controlled by the researcher.

Between the aforementioned censoring schemes, randororzens the most predom-
inant and can further be discerned as three types. The fi@idom left censoringnd
occurs when the available partial information is an uppemigoon response of interest.
To illustrate this, consider the African children examplidvller (1981) where interest
is on knowing the age at which certain group of children lg¢arperform a certain task.
At the beginning of the research, some children already Kkmawto perform the task.
In such cases, the only available information is that thédlelren can perform the task
at a younger age. Thus, the age at which those children kreetash is left censored at
their respective current age.

The second isandom right censoringwhere the available partial information is a lower
bound on the response. In the heart disease example, ifenpdies without a heart
disease then the only information on his time to heart deséathat this time is greater
than the observed death time and as such is right censoreid tli&se types of random
censoring can be considered as special cases of the thed¢&fiedinterval censoring

In this latter type of censoring, the available partial mfiation is that the response
time of interest falls within a certain interval. This is thase for example in a HIV-
AIDS study, where the study subjects are examined yearliifdrinfection. Therefore,

if a subject is not infected at year 3 but found to be infecteglear 4, then the only
information on the time of infection is that it is less thanebys but greater than 3 years.
As a result, the infection time of that subject is intervats@red between year 3 and 4.

Although censoring is regarded as nuisance, it is often tagial component of most
survival studies. As a result, the statistical analysisughsdata sets requires the use of
special technigues. Another characterizing feature ofigirstudies is the availability
of some additionally measured variables (covariates). s&lomvariates in most cases
are not of primary interest to the researcher, but have ttenpal to influence the dis-
tribution of the time until the event of interest. In othernds, the distribution of the
lifetime variables varies with different covariate valuds an example, imagine a study
that is supposed to provide insight into the distributiotheflength of stay of patients in
hospital admission. Then it is apparent that the distrdougf interest may be influenced
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by the age of the patient and/or the severity of his/her nadigndition.

In this thesis, we provide some new techniques that are iassdowith the statistical
analysis of censored survival data. Primarily, we focus @megalizations of the random
right censorship Koziol-green model in the absence andepoesof covariates. For easy
exposition, we first give a more rigorous introduction of Hetting without covariates
in Section 1.1. In that same section, we give a brief reviewasfie basic and existing
statistical techniques that are usually employed in thapeet. Afterwards, we introduce
our new extension of the Koziol-Green model in Subsectidnlfor the case without
covariates. In Section 1.2, we vividly describe the settivitereby some covariates
which are thought to contain some information about théifiife of interest are collected
together with the censored responses. There, we introlecnditional Koziol-Green
model and its new generalization thereof. Before procegdins important to note that
the representation of censored data in Section 1.2 is baséidenl design (covariate)
points. Nevertheless, the associated methodologies capgdied to the random design
settings, with some modifications.

1.1 Random right censored survival time

Supposén, Y, Ys, ..., Y, is a sample of independent identically distributed non-negative
response variables with a continuous distribution fumckdt) = P(Y; <t). Frequently,
these responses are subject to random right censoring. iS[Hat everyY; ~Y (i =
1,2,3,...,n), there exist a potential non-negative random vari&ble C, called censor-
ing variable with distribution functiois(t) = P(Cy < 't) such that we can only observe
Z; = min(Y;,G) and & = 1{Y; < C;} where the couple§Z;, &) are independent copies
of (Z,d). Let us denote the distribution of the tdesample byH (t) = P(Z <'t) and
assume that andC are independent. Then we can write

1-H(t) = (1-F(t))(1-G(t)).

Under this assumption, the well known Kaplan and Meier (3@B8duct limit estimator
for the distribution functiorF serves as the inferential bases for the lifetime of interest
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and is given by

FMt) = 1— {i;ﬂt <nE_TIj_|l>d},

whereR; is the rank of theth observation in th&-sample. This estimator is a step
function which jumps only at the uncensored observatiom¢hé absence of censoring,
it is easy to see that this estimator reduces to the empdisalbution function

Fat) — %in{vi <t

In some settings however, the censoring variable is infaw@ao the lifetime variable
through its distribution function. In such case, Koziol aAteen (1976) considered a
sub-model under the assumption that the survival time k¥ and the censoring time
variableC are independent. In the Koziol-Green sub-model, the asthssumed that
the distribution function of the censoring variable is a powf the distribution of the
lifetime variable. Mathematically, this is expressed as

1-G(t) = (1-F@®)P , wt>0 (1.2)

for somef > 0. This Koziol and Green (1976) sub-model is equivalent &ektra as-
sumption that the observable tirdeand censoring indicata¥ are mutually independent
(Sethuraman (1965), Kochar and Proschan (1991)). This srtban, the instantaneous
event rate is proportional to the instantaneous rate ofacgrgs This extra assumption,
introduced by Koziol and Green (1976) not only allowed thesoeed observations to
contribute to the estimation of survival distribution ftioo of interest, but also marked
the era of informative censoring within the domain of lifiei analysis whereby the
censoring distribution is allowed to depend on unknown p@&tars of the lifetime dis-
tribution. In light of this, the Koziol and Green (1976) mbdeceived considerable
attention in the statistical literature. For example, Astdukurov (1987) and Cheng and
Lin (1987) independently derived the model

F () = 1-(1-H({))"

for the survival time distribution function under the Kokzémd Green (1976) characteri-
zation, whereg/= ﬁ =P(d =1) is the expected proportion of uncensored observations
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andH (t) = P(Z <t) is as defined earlier. Upon replacipgindH (-) by appropriate es-
timators, these authors obtained a non-parametric maxihiefihood estimator for the

survival time distribution function under the Koziol-Greenodel and later studied its
large sample properties. The authors also showed that thgarametric maximum
likelihood estimator under the Koziol and Green (1976) nhasl@asymptotically more

efficient than the corresponding product limit estimatoKafplan and Meier (1958).
The estimator studied by Abdushukurov (1987), Cheng anq1987) is of the form

Fa(t) = 1—(1—Ha(®)" (1.2)

wherey;, is the proportion of uncensored observations Hp(t) is the empirical distri-
bution of the observed time, which are respectively given by

X
I

100
ﬁi;l{d:]-}’ (1 3)
Ha(t) = %_iﬂ{zigt}.

For a detailed review of the statistical literature on Kbzinod Green (1976) model, we
refer to Csorgb (1988). He also developed a test to cheshkvalidity of the Koziol-
Green model and showed that there are many data sets for @highis not satisfied.
Equivalently, there are many practical settings for whiahabservable timg& and cen-
soring indicatord are not independent. For those cases, it may be questiotabke
the estimator (1.2) as the inferential basis for the lifetirifhe first contribution of this
thesis is to derive and study an extended estimator whickhlesahility to overcome the
limitations of (1.2). We introduce such estimator in Settlol.1 and later proceed with
a detailed study of its properties and applicability in Cleap 2 and 3.

1.1.1 The extended Koziol-Green model under dependent cesring

As mentioned above, the applicability of the estimator XJposed independently
by Abdushukurov (1987) and Cheng and Lin (1987) under thsesidal Koziol-Green
model (1.1) could be limited in practice, due to the indegeeg assumption that it
imposes on the observable tirdeand the censoring indicatadr (Csorgd (1988)). Here,



1.1. Random right censored survival data 7

we ameliorate this limitation and assume instead, theengst of some known copula
function ¢ that describe the joint distribution & and . Mathematically, we express
this as

HYt) = P(0=21Z2<t)=%(y,H(t)), (1.4)

wherey andH (-) are as previously defined. In the parlance of Klement et 807},

% (y,H(t)) is known as the verticay-section of the copul&’, for a fixedy € (0,1).
There, the set of all copulas with the same vertieakction were studied. The authors
also found copulas that bound both below and above the seauBe the censoring in-
dicator ¢ is a discrete variable, we also know from Sklar’s theorene (8elsen (2006))
that% may not be unique. As a result, it is important to be conscang not directly
interpret (1.4) as a dependence model, but rather as a dewietp relax the Koziol and
Green (1976) characterization (1.1). Furthermore fromeSeand Neslehova (2007), it
is also clear that the copula functi@halone is not sufficient to describe the association
structure betweed andd. The marginal distributions are also needed for this. Hamev
it turns out that the non-uniqueness of the copula funciodoes not have any signifi-
cant practical consequence on the estimator for the disioiio functionF of the survival
time. In the sequel, we will see that this estimator does hahge when a copula func-
tion with the same vertical-section is chosen. In passing, note that O corresponds
to the situation with only censored observations, in whiakecit is not feasible to make
inference about the survival time. When= 1, then we have fully observed lifetimes
and it is not necessary to account for censoring in order tkenmaference about the
lifetime distribution. Thus, it is reasonable to assume yha (0,1).

On the other hand, it is imperative to make a non-verifiabkuegption about the re-
lationship between survival timé and the censoring tim€ in order to proceed and
derive an estimator for the marginal distribution functiminthe survival time (Tsiatis
(1975)). It is common in time to event analysis to assumepeddence between these
random variables. In some situations however, this assamptay be doubtful and
unrealistic. For example, in a cancer study where the evidntarest is the recurrence
of a cancer tumor and the censoring event is death, or infndutesting, it may occur
that a piece of equipment is taken away (i.e. censored) Bedashows signs of future
failure. Adopting the strategy of some previous authorg. (2heng and Klein (1995),



8 1. Introduction

Rivest and Wells (2001), Braekers and Veraverbeke (200 )solve this problem by
using a copula model to describe the possible dependenmtust ofY andC. In order
to obtain tractable results, we only concentrate on thesaag\rchimedean copulas to
model the joint distribution of andC. That is,

Sti,t) = P(Y>t,C>t)=¢""(9(F(t)+¢ (G(t))) (1.5)

whereF (t) = 1—F(t) andG(t) = 1— G(t) are survival distribution functions of and

C respectivelyg : [0,1] — [0, ] is a known continuous, convex and strictly decreasing
function with¢ (1) = 0. We denote by (=1 the pseudo-inverse gf which is defined as

in Nelsen (2006),

sou _ Jo7He . 0=s<e0)
0 , $(0)<s<o
Using relation (1.5), we now derive an estimator for therdiation functionF under
model (1.4). To do so, we work in parallel with Tsiatis (19@8y obtain from (1.5) that

dHUt) 9
dt - _a_t]_S(tl7t2)

¢'(F(t) dR(t) _ ¢'(F(t)) dF(t)

t=ti=t T P(StY) dt  ¢'(H(Y) dt
with ¢'(u) = L (u) andS(t,t) = ¢ L ($(F (1)) + $(G(t))) = 1—H(t) = H(t).

Reorganizing this equation, gives

o Fo) Y~ g T,

H
By integrating on both sides and wigh(F (0)) = ¢ (1) = 0, we obtain that

F = 07 (- [ 0o 1)

From the informative censoring structure described in #tereled Koziol-Green model
and given by (1.4), we find that

dHY(s) = %o1(y,H(s))dH(s)

where%psi(u,v) = %%(u,v) is the first partial derivative of the general copula funetio

% (u,Vv) with respect to the second coordinate. Introducing the leglation into (1.6) in
conjunction with a variable transformation, we obtain thedei

Fit) — d)1(—/OH(t)d)’(l—w)%()l(y,w)dw),
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in which we allow for dependent censoring as well as nonpeddency o andd. In
the above model, we note that the copula funct@wnly enters through its derivative
%1 Which is a conditional probability (see for example Nels2®0g, page 41)). When
the survival time is independent of the censoring time, tis model connects to the
ideas of some previous authors through the relation

PO=1Z=t) = %on(y,H(1))

of the conditional probability of an uncensored observatgven the observed lifetime.
For instance, in the semiparametric random censorship lnnbbékta (1998), the author
assumed a parametric model for the above conditional pidgabWhile Cao et al.
(2005), used a non-parametric kernel smoother for this gameitional probability.

To find the estimator

Hn(t)
Fat) = ¢71 (-/0 q)’(l—w)%l(yn,w)dw) 2.7)
for the survival distributiorF (t) in the extended Koziol-Green model, we replageshd
H(t) by their empirical counterparts which are as defined in (1.3)

If we take % such thaH"(t) = yH (t), we easily see that this estimator simplifies to

Fa(t) = ¢71(Vn¢(gn(t)))> (1.8)

which is the unconditional version of the conditional estior of Braekers and Veraver-
beke (2008). Moreover, if we also assume that the censdrmgadnd the survival time
are independent, then (1.8) reduces to the estimator of gknduurov (1987) and Cheng
and Lin (1987) as displayed in (1.2). As a result, we obvipsse that the estimator
(1.7) is more general and includes (1.8) and (1.2) as speasals (se also Table 1.1).

In Chapter 2, we pursue further the estimator (1.7) and olsaine desirable theoretical
results. In addition, we present a goodness-of-fit test terdene the validity of this
estimator in practical applications in Chapter 3. Theseltexan also be found in
Gaddah and Braekers (2010a,b).



10 1. Introduction

1.2 Random right censored survival time in fixed design

In the previous section, we meticulously described cenkstgvival data in the ab-
sence of covariate information and later introduced therede¢d Koziol-Green model
which can be used for that setting. The purpose of the cugsesetion is to also give a
detailed description of the setting with covariates. Ygl>,Ys,...,Y, denote indepen-
dent responses observed at fixed design poirtsx@ < x, < x3 < ... < X, = 1. Sim-
ilar to the previous setting (i.e. scenario without covasg, it often occurs that these
responses are subject to random right censoring. In othetsythere exist at each de-
sign pointx;, a non-negative random variali such that the observable variables are
Zi =min(Y;,C) and & = 1{Y; < G;}. Also, letF(t) = P(Y; <1),Gx(t) = P(C <t)
andHy (t) = P(Z <t) denote the distribution functions ¥f,C; andZ; respectively. At
a fixed design poink € [0, 1], we further writeFy, Gx andHy for the distribution func-
tions of the response variab¥g at x, the censoring variabl€, at x and the observable
time Z, = min(Yy,Cx) atx. It is important to note that we writ§,C;,Z;, & instead of
Yx,Cx,Zx, O for the design points;. If we assume thaY; andC; are conditionally
independent, given the covariate then we can write

1-Hy(t) = (1—Fq()(1-Gx(1)). (1.9)
In analogy with the classical Koziol-Green model (1.1), \ae also assume that
1-Gt) = (1-FR(t)P xe[0] (1.10)

wherefy > 0 is allowed to depend only on Using assumption (1.9) and model (1.10),
subsequently leads to the estimator

(1) = 1—(1—Hyp(t))%n (1.11)
in the conditional Koziol-Green model (1.10), where

Hxh<t>=_iwni<x,hn>1{zist} and yxh:_iwnmx,hn)ﬂ{d:l} (1.12)

are the Stone (1977) type estimators lit) and y, = ﬁ = P(d¢x = 1) respectively,
with wy, (x, hn) being the Gasser-Muller type weight functions based okéneelK and
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defined by

1 I X—z .
Wn (X, hn) = EYCAN) )“h—nK< o >dz, i=212..n

%1 X—2Z
ch(X,hy) = /o h_nK ( h > dz
depending on a positive bandwidth sequefiag, which tends to zero as— +. The
estimator (1.11) was introduced and studied by VeraverbakeCadarso-Suarez (2000).

Itis the conditional version of the one proposed by Abdusinok (1987) and Cheng and
Lin (1987) under the classical Koziol-Green model.

Recently, Braekers and Veraverbeke (2008) further stutiecestimator (1.11) under
the conditional Koziol-Green model (1.10). More specificaBraekers and Veraver-
beke (2008) extended (1.11) to accommodate possible depeadbetween the survival
time variableYy at x and the censoring variablg, at x. Also, the authors proved the
consistency and asymptotic normality of their estimataor.this thesis, we obtain fur-

ther insight into this recent extension of Braekers and Wizeke (2008) under the
conditional Koziol-Green model. In particular, we comp&nnhtheir work with a weak

convergence result. As an application of the weak convesewe show the asymp-
totic efficiency of the conditional estimator of Braekersl aferaverbeke (2008) over the
copula graphics estimator of Braekers and Veraverbekes|200 addition, we develop

a confidence band and illustrate its use on simulated as we#tad data set. For con-
venience, we reintroduce this estimator below and defeafiseciated new results to
Chapter 4.

1.2.1 The conditional Koziol-Green model under dependentensoring

In what preceded, we introduced the general setting of cedsiata in the presence of
covariate information. In analogy with the setting withcovariates, we need to make a
non-verifiable assumption about the underlying dependstroeture that describes the
relationship between the lifetime variable and the cengorariable in order to uniquely
estimate the marginal distribution function of the lifeémariable. Conditional on the
covariate, it is common to assume independence betwees ¥heables. However, in
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some situations this assumption may not be feasible. Fongbeg in medicine, we are
often interested in the time until dying from a certain dear his time may be related to
the time until dying from another disease. Therefore, wénagaed a dependence model
for the association between the time until event of inteagst the time until censoring
(i.e. death from other diseases). In line with (1.5), we assthat at a fixed design point
x € [0,1], the join survival distribution of the lifetim¥, and censoring tim€, satisfies

Sdtit) = ok 7 (dx(Fx(tr)) + 0x (Gx(t2))) (1.13)

where for eachx € [0,1], F_x =1-FK andéx = 1— Gy are the conditional survival dis-
tribution functions of the lifetimeYy and censoring tim€, respectively,gy : [0,1] —
[0,+] is a known continuous, convex strictly decreasing functigth ¢4(1) =0. qb)[(_l]

is the pseudo inverse gk and given by

-1
¢>[<71](S) _ {¢x (s , 0<s<¢«(0)
0 ; 9x(0) <s< +o0

Similar to the derivation of the extended estimator (1.T)oduced earlier, it follows
from relation (1.13) that
_ 0 —
¢>/<(Fx(t))EFx(t) = ¢>/<(Hx(t))

with HY(t) = P(Zc < t, 8 = 1), ¢4 (u) = 2-¢x(u) and

17}

SH® (1.14)

H(t) = 1—Hy(t) =Sc(t,t) = ¢4 7 (dx (Fx(t)) + 9x (Gx(1))) -

By the extra assumption (1.10), which is equivalent to thedit@mnal independence of
Zx anddy, it follows that

He() = PZx<t)P(5=1) =Hy(t)k.
Plugging the preceding display into equation (1.14) anegrating on both sides yields
ox(Fu(t) = wdx(Hx(t)) (1.15)

On recalling thatt(t) = ¢x " (¢« (Fx(t)) + ¢x (Gx(t))) for all t > 0, the preceding dis-
play can be expressed as

Git) = ox T(Bdx(R(t) , B=— (1.16)
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which is equivalent to relation (1.10) under dependent @eng.

Relations (1.15) and (1.16) are given in Braekers and Vebake (2008). To find an
estimator for the conditional distribution function of thietime, these authors rewrote
relation (1.15) as

F(t) = 1— ok (kdx(Fx(®)))

and replaced the different unknown quantityegandHy(t) by the corresponding estima-
tors yxn andHyn(t) to obtain

FNU) = 1—¢x 7 (hade(Hxn())) (1.17)

where i and Hyy(t) are the Stone (1977) type non-parametric estimators as give
(1.12). In Gaddah and Braekers (2009), we further studied¢dmditional Koziol-Green

model under dependent censoring and proved the weak cemargf the process as-
sociated with the estimator (1.17) to a zero mean Gaussaegs. In Chapter 4 of this
thesis, we give this new result together with some apptioati

1.2.2 The generalized conditional Koziol-Green model undedependent
censoring

In the preceding section, we introduced the conditionali®le@reen estimator, which
was developed under two different models. As a first modeljamt distribution func-
tion of the lifetime variable and the censoring variable ésatibed by means of an
Archimedean copula function. For the second model, thetiaddl information con-
tained in the marginal distribution functions of the life variable and the censoring
variable is captured through relation (1.16), which is eglgint to the conditional in-
dependence dx anddy under dependent censoring. In some applications howgyer,
and &, may not be independent, even after conditioning on the @esr This creates
additional challenges in making inference about the matgionditional distribution
functionF of the lifetimeYy at a design valug € [0, 1]. In the spirit of Section 1.1.1, we
overcome this potential difficulty (in the presence of caatas) in the current section
by allowing for possible dependence betwegrandd. In particular, we introduce a
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generalization of the conditional Koziol-Green model @).tvhere we assume that the
survival function of the censoring variable is a generalcfion of that of the lifetime
variable and is given by

Gx(t) = Ix(Rd(t) , t>0 (1.18)
with L (w) a non-decreasing function of € [0,1], 1 (0) = 0 anduy(1) = 1. We select
this functionpi(-) such that the sub-distribution of the uncensored obsenatatisfies

He(t) = P(Zx<t,8=1) =% Hx(t)) (1.19)

where%(+,-) is some known copula function with the preceding relatidiofang di-
rectly from Sklar's theorem, Nelsen (2006). In represémmafl.19),y = P(& =1) is
as before, the conditional expected proportion of the usmed observations at a fixed
covariate valuex € [0,1]; andHx(t) = P(Zx <t) is the conditional distribution of the
observable tim&y atx € [0, 1].

To find the functionpy(-) we proceed as follows. First, we note from the derivation of
the conditional Koziol-Green estimator that

w0 = [ SR — k- ) (1.20)

Second, we recall that
He®) = ¢x Y ($x(Rult)) + u(Gu(1))) -
Substituting the generalized Koziol-Green model (1.18),obtain
Hx(t) = 8 (9x(Fult) + dx(ii(Fx(1)))
which upon plugging into (1.20) yields
/t Px(Fx(s))
O ¢s (8 Y (Ox(F(9) + dx(ke(F(9))) )
= (%1 0k Y (B(Fl) + x((F1))) (1.21)

Next, we setw = F_X(t) and after differentiating the preceding equation on balbsiand

dF(s)

rearranging, we obtain

, A L
px(w) = / - -1
Ba(k(@)) (chm (e 2= 0k ™ (9x(0) + d(hi(@)) )
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where (@) = 2 (W), Gxij(U,V) = s22-6x(U,v) denotes théth and jth partial

~ duov!
derivatives oféx(-,-) with respect to its first and second arguments respectiaglg,

#4(+) is as previously defined.
Furthermore, we define
B(w) = o (Bx(@) + hul(i(@))) & (@) = 8k Y (Bu(@(w)) — de(w)) (1.22)

This implies,

0 9 (@) (@)
N (A

x(w)
%x01 (Yo 1 — (W) dx(@(w))

Rearranging and integrating on both sides, we obtain

1
Px(w) = —/(px(w)rp)’((s)%xpl(yg(,l—s)ds

Subsequently, this leads to

o = o (<[ B9k 1-905) ~ &l ).

The functionpy(-) now follows from (1.22) and is given by
(@) = (B (& (o (@) — dx(w)
with &1 denoting the inverse function & (y, ¢ (w)) with respect tag (w).
From (1.13), we also note that
H(t) = Sdtt) = ¢ Y (Bu(Rlt) + (1))

= 05 Y (Bu(Fx0) + b (&% Ful1))) — x(Fx(1)))
= & m K1) (1.23)

Consequently, we have
Ft) = & (% Hx(®))
Hx(t)
ok ! <— /0 ¢)’((1—w)<€x.01(%<,w)dw>. (1.24)
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As before, we now replacg andHy(t) by their corresponding Stone (1977) type estima-
tors. Subsequently, we obtain the non-parametric surdigéiibution function estimator

[711 Hxh(t) ’
Eat) = ok <— /0 ¢X(1—w)(gx,01(yxh,w)dw> (1.25)

for the lifetime in the generalized conditional Koziol-@remodel (1.18) under depen-
dent censoring. It is of interest to point out that the nevinestor (1.25) is the condi-
tional version of (1.7) and includes (1.17) as a special @asewhenéx(n, Hxn(t)) =
¥nHxn(t)). The nonparametric generalized conditional Koziol-@Grestimator (1.25)
will be the foundation of Chapter 5. There, we establish sasymptotic (i.e.n — o)
properties and provide simulations to help get some insigabtits finite sample perfor-
mance.

Before delving into the details of the newly introduced restiors in the consecutive
chapters, it is important to emphasize that the Koziol anekB1(1976) characterization
is a model for informatively censored lifetime data in thasethat it allows the survival
distribution of the lifetime to depend on unknown paranmetdrthe survival distribution

of the censoring time. This informativeness can be captindgicectly through a relation
on the observable timéand censoring indicatay. In Table 1.1, we summarize the basic
differences between the estimators introduced above flmmiratively censored lifetime
data. For the case without covariates, if we assumeztaatd o are independent, then
we have the classical Koziol-Green model (1.1) which togethith the independence
of the lifetimeY and censoring tim€ yield F; as given in (1.2). On the other, if we
do not assume tha& andd are independent, then we get the new extension (1.4), which
together with an Archimedean copula to accommodate paesdiépendence betwen
andC lead to the new extended estimafar=1—F, (with = givenin (1.7)). Obviously,
we see thaF, is general and includds;“ as a special case. By the same scrutiny for the
case with covariates, we also note that= 1 — Fy (with Fen given in (1.25)) is more
general and includes the others as special cases.
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Table 1.1: Basic interrelations and differences between some esinmander various assump-
tions on the lifetimey and censoring tim€, in addition to the assumptions on the observable
time Z and censoring indicatay.

Estimators
Key Assumptions Without Covariates With Covariates
Y andC are independent; i~ —Abdushukurov | Fve _ veraverbeke and

Z and$ are independent| (1987) and Cheng and | cadarso-Suarez (2000)
Lin (1987)

Y andC are dependent; — . — Braekers and
Z and ¢ are independent Veraverbeke (2008)

Y andC are dependent;
Z andd are not

Fn — A new proposition |Fn— A new proposition

independent

1.3 Some practical data examples

In this section, we present 3 data sets that will be used ustilite the practical ap-
plication of the analysis techniques on which this thesigased. The first data set is
the result of the Worcester Heart Attack Study (WHAS), whiels the objective to de-
scribe trends over time in the incidence and survival ralevitng hospital admission
of acute myocardial infarction (AMI) patients. The data @lected during ten 1-year
periods beginning in 1975 on all AMI patients admitted togitas in the Worcester,
Massachusetts, metropolitan area. It has information o@Baaimissions. However,
the version of the WHAS data set we utilize in this thesis ietafrom the book by
Hosmer and Lemeshow (1999). It is a 10% random sample of iggmar WHAS data
set. In this sample, only a small subset of variables is dedlu Some of these variables
are the hospital admission date, the discharge date andateofllast follow-up, from
which various survival time variables can be created. Twe$ that are calculated from
these dates and are included in the data set are the lengthydhsspital admission to
discharge) and total follow-up (hospital admission to faiow-up). Each has its own



18 1. Introduction

censoring variable that indicates whether the study urstalise at hospital discharge or
last follow-up respectively. Also included in this data as# some key variables which
are believed to influence the survival time variables. Intamiy subjects with any miss-
ing values are dropped from the sampled data set. As a rdsMyHAS data we use in
this thesis has information on only 481 study units.

The second data set is obtained in a study on size regulafiétilantic halibuts in
the Atlantic coast of Canada following a drastic reductiorthe population of the fish
species. It aimed at a minimum size limit for retained haitor the bottom trawl and
long line fishery. However, a minimum size limit would be effee only if an accept-
able proportion of the fish returned to the water survive wapthandling and release.
For this purpose, the research vessel installed specidingolanks aboard in which the
investigators placed the fishes. The measured responsactofish was the time elapsed
in hours between placing the fish in the holding tank and deatremarkable feature
about this study is that some animals are removed from therempnt before they die
and their faith is unknown. Also, limited holding facilifeon board the research vessel
necessitated the occasional removal of live experimemtimhals after 48 hours from
the tank for disposal or release in order to accommodate experimental animals.
In addition, all fish surviving past 50-day duration for theperiment were assigned
maximum survival time of 1200 hours and treated as right@easobservations. In ad-
dition to the response variable, the researchers alsodedofor each fish, the covariate
fork length of the fish, handling time, total catch weight atggpth trawled, which they
believed to have an influence on the survival of the fish. Fahés details about the
Atlantic halibut data set, we refer to Lange et al. (1994).

The last data set is the result of a prospective historigaicell study that took place in
the period 1962-77 at the University Hospital of Odense, rDank. It has information
on 225 malignant melanoma (cancer of the skin) patients widemnwvent a surgical
operation in which the tumor was completely removed togetvith the skin within a
distance of 2.5 cm around it. In this study, the responseabkriof interest is the time
until malignant melanoma related death. As a result, thedems who did not die
of skin cancer were right censored at the study durationnoe ®f death from other
causes. Some covatiates recorded at the time of the opemadce the sex and age
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of the patients. In addition, tumor characteristics suckvigith, location on the body,
thickness, growth patterns, types of malignant cells acdration were documented.
See Andersen et al. (1993) for a more elaborate descripfitimeanelanoma data set.






2

The extended Koziol-Green model under
dependent censoring

In Section 1.1.1 of the previous chapter, we introduced gtienator proposed by Ab-
dushukurov (1987) and Cheng and Lin (1987) for informagivansored survival data.
This estimator was developed under the classical Koziol @rekn (1976) model of
random censorship (1.1) and is known to be more efficient tharKaplan and Meier
(1958) estimator. By Csorgd (1988), it was clear that theliaability of the estimator
could be limited in practice. To ameliorate the shortfale wonsidered an extension
of the estimator of Abdushukurov (1987) and Cheng and Lir87)9in Section 1.1.1.
More precisely, we derived a non-parametric estimatorterdistribution function of a

21
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survival time under an extension of the classical Koziok&r model. In the extended
Koziol-Green model, we expressed the marginal distriloutibthe censoring time as a
function of the marginal distribution of the survival timehere this function was found
through some known copula function on the observable rifetand the censoring indi-
cator. In order to further increase the scope of applidgbif the extended estimator,
we additionally allow the censoring time to depends on theigal time through the
expression of their joint distribution by an Archimedeapuia function.

In this chapter, we further study the extended estimatoreatablish some of its impor-
tant asymptotic properties. We summarize these propeatidhree main theorems in
Sections 2.1, 2.2 and 2.3. Before we proceed to these sgcti@ngive the following
basic definitions and regularity assumptions that are itapoiin establishing the main
results of the chapter.

For the distribution functioH, we denote the right end point of its support iy =
inf{t:H(t)=1}.

(A1) For a copula functior¥’(-,-), we let%; (u,v) = d—ﬁ%%(u,v) denote thath and
jth partial derivatives with respect to its first and seconordmates respectively.
For a fixedy € (0,1), we further assume th&tao(y,V), %o2(y,v) and €11(y,V)

exist and are continuous for alkc [0, 1].

(A2) Forthe generator of an Archimedean coppijave definep’(u) = %d)(u), ¢"(u)=
dijzrp(u), ¢"(u) = diqub(u) and assume that"” (u) exists and is continuous for all
ue (0,1].

In Assumption (Al),y is the probability of uncensored observations.y H= 0, then
we have only censored observations and it is not feasibleakennference about the
survival distribution of the lifetime. Conversely,= 1 corresponds to fully observable
lifetimes, in which case we do not have to account for cengoriThus, we assume
throughout the thesis thgte (0,1). With this restriction, we see that Assumption (A1)
is satisfied by most copula functions. If we take the Gumbedtiate logistic copula for
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example, then for a fixed € (0,1), we easily see that

2/%(1-y) 22(1-v) 2
——— %(y,v) = ———— and 611(y,V) = ————
v Y = e ulVV) = e
exist and are continuous for alle [0,1]. For the Frank family of copulas, we also find

that

%02( Y, V) = -

Oyl _even
©02(Y,V) = (e®—1)+ (e )(e*QV 1))?
(e Ov _ )( —€e ev) e %
(60— 1)+ (e 1) (e 1)

Gty = e
uy,v) = (78 — 1)+ (e 0v-1) (-6 — 1))?

exist and are continuous for alk [0, 1], with 8 € (—o0, ).

)

%20( Y, V) =

Furthermore, we also note that several generators of Artiean copula functions sat-
isfy Assumption (A2). For the Clayton copula generator fatance
1/ 6
b =5 (1 °-1) , Oel-Lew)
and it is straight forward to see thgt”(u) = —(1+ 6)(2+ 8)u~®+9) exists and is
continuous for alu € (0, 1].

2.1 Strong consistency result

The main result of this section is the uniform strong coesisy of the extended Koziol-
Green estimatoFy(t) as presented in (1.7) in Chapter 1. Also, we obtain the rate of
this convergence by means of an exponential bound. Thegksrase summarized as
Theorem 2.1 whose proof depends heavily on Lemma 2.1 beliost.vwwe give the lemma
and afterwards justify its importance in establishing ttnersy consistency result.

Lemma 2.1. Suppose ¥ 0, 0<y<1—H(T) and y= % Then for all
T < TH,

( _ _ -1 _ Y
S GG H ) Sy <Y STHM Y (#a—H(T)-Z4'(D))



24 2. The extended Koziol-Green model under dependent cagsori

Proof. By the mean value theorem, we have

¢(1-H(T)—y)—¢(1-H(T)) = —¢'A-H(T)-y)y (2.1)
wherey* is a point between zero and

Next, we note from the conditions of the Lemma that

20 = —¢A-HT)-yy = —¢'A-HT)-y)y. (2

Substituting (2.2) into (2.1), gives after some straigtviard calculations that

y £ L-HM -l (p-HT) - 2¢'(D). (2.3)
Using (2.3), we also get that
y AN X$'()
2¢'(1-H(T)-y) 29" (¢1-Y (9(1-H(T)) - 3¢'(2)))
which concludes the proof. O

Theorem 2.1. Assume (A1), (A2p’(1) < 0and T < Ty, then

(a) Forall € >0, we have

na? )
P <0§tu<pT|Fn(t) —F@)] > s> < 2exp<—m> +Dexp(—na?)

where

!/
p = 1M -o0¥ (pa-nmy-£5E)
and D is a finite positive constant.
(b) If n— o, then

sup |Fy(t)—F()] —0 as.
0<t<T
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Proof. We have that

Fa)—F(t) = (1-Fa(t) (1 F()) F(t)—Fa(t)
= { ( ¢ 1- w)%l(yn,w)dw>

< / ¢'(1—w)6oa(y, )dw)}

Applying the mean value theorem, we get

Fal) =F(1) = (= YA H (1)) + (Ha(t) = H(D)B(y",H* (1)),
where

Jo' Vo' (1—w)Buu(y', w)dw
(=Y g1 w)Boa(y, wydw) )

Ay H' (1) =
o (#

and
¢'(1—H*(t))Gou(y",H* (1))
o' (6 (—Jo ¢ @ —WBuuly  wyw) )
with y* betweeny, andy, andH*(t) betweerH,(t) andH (t). Using integration by parts,
and noting thaty’(1)%10(y*,0) = 0, we further obtain
¢'(1—H* (1) 1oy, H* (©) + fo 9" (1 —w)Gao(y", w)dw
o' (o1 (- Vo -whmly waw))

Under AssumptiorfAl), this gives after some calculations that

B(y",H'(t)) =

Aly,H (1) =

sup [A(y,H*(t))] < sup [¢'(1—H*(1))]. (2.4)
0<t<T 9"(D)] o<t<T
Similarly, we also find that
sup [B(y",H"(t))] < sup [¢'(1—H"(1))] (2.5)
0<t<T ¢’ ( 1)| o<t<T
Using (2.4) and (2.5), we find for aél > 0 andn > 0 that
3
P< sup |Fa(t) —F(t)] >£> ( ) sup |¢'(L—H*(t))| Iy — vyl > >
0<t<T [ (1 0<t<T

_|_

req g B E
0150010 H )] sup e H(01 > 5).
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for which the right hand side of the inequality can be writéen

(w1

sup |¢/(1— H*(®)| [y — vl > & ,sup\Hna)—H(t)\gn)
Dl P

Sup [¢/(1—H'(0)| I —y1> 5. SUp IHlt) (t)\>n>

¢’
< 3
¢/1 0<t<T

¢/(1 E:J<F’T ¢'(1— H*(t))|02:JSF)T|Hn(t) —H({t)| > —,oztuSpT|Hn(t) —H(t)| < ,7>

/ * &
<|¢f(1)| SUp [#(1=H(V)] SUP [Ha(t) =H(®] > 5, SUP [Hn(t) ~H(®)] > 1

With 0 < n <1—H(T) such that

+P

sup [¢'(1-H*M)] < [¢'(1-H(T)—n),

0<t<T

the preceding quantity is further bounded above by

. §(1)e .
P(’Vn y’> 6¢’(1—H(T)—r])> +P<0§H§9F‘Hn(t) H(t)‘ > 2¢/(1_H(T)_r’)
) )

+2P< sup [Hn(t) —H(t)| > n).
0<t<T
/(1

Choosingn such thatn = we easily find that

¢'(Le
2¢"(1-H(T)-n)’

P sup ) -FOI>¢) < P(w—yi>5)+3( sup M -HOI>n).
o<t<T 0<t<T

Next, we use Bernstein’s inequality on the first term at tightrhand side of the preced-
ing inequality followed by an application of Dvoretzky, Keée and Wolfowitz theorem
(see for example, Serfling (1980, page 59)) on the seconddéthe same inequality.
This yields

P( sup |Fa(t) —F(t)] > s) < 2exp<—L2> +Dexp(—2nn?),

0<t<T 6(3y+n)

whereD is a finite positive constant. Using Lemma 2.1, we see thatptleeeding
inequality is further bounded above by

2 exp(— Lﬂ) +Dexp(—2na?)
6(3y+B) ’
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with o andf3 as given in Theorem 2.1.

If we take &, = £ = Kn"%/2(log n)l/2 for some positive constand, then it is easy to
see that, is small for largen. Thus, by the Borel-Cantelli lemma we find the strong
consistency of the extended Koziol-Green estimator. O

2.2 Almost sure asymptotic representation

We now present the extended Koziol-Green estimator as theo§n independent iden-
tically distributed random variable with a remainder terhis representation is an
important tool and will pave way for further asymptotic peofies of our estimator. It
has also been utilized by several authors. For instancenddsingh (1986) employed
it for the Kaplan-Meier estimator, Van Keilegom and Verdeke (1997) for the Beran
estimator, Braekers and Veraverbeke (2008) for the camditiKoziol-Green estimator,
among others. Under some conditions, we state such a repaen together with the
rate of convergence of the remainder term as Theorem 2.2.

Prior to stating the theorem, we give the following lemmadakhivill be used later on.
We omit the proof of this lemma, since it is basic and can bedoin many standard
texts on mathematical statistics. See for example, Seifliag0).

Lemma 2.2. Let y, and H,(t) be as previously defined. Then,
@ |w—-vl = O(nY2(logn)¥?) as.
(b) sup [Hn(t)—H({)| = O <n*1/2(logn)l/2) as.

o<t<T
Theorem 2.2. Assume (A1), (A2)})'(1) < 0and T < Ty. Then, as p— o,
1 n
Fo(t) —F(t) = n i;mt (Zi, ) +rn(t)

where
Z ! 1 e
m@8) = g {E=1-y

)
¢’ (1-w)Gu(y,w)dw (2.6)

L(L{z<t) - HE)§ A (t))%l(%H(t))}
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and

sup [ra(t)] = O(n tlogn) as.
o<t<T

Proof. To establish the asymptotic representatiofrf), we start with a second order
Taylor expansion and obtain

Fa(t) —F(t)
n(t) (
= m{/j t ¢/(1—W)%1(Vn,W)dW—/OH t)cl)’(l—w)%l(y,w)dw}
Hrm(t) 2.7)

P (@ M)
2[¢'(9~2(n (1))

Hn(t)
{/0 ¢'(1—w)%o1 (Yh, W) dw—

H(t) 2
A ¢'(1—w)%o1(y, W) dw}

with n(t) between— ’OH“(t) ¢'(1—wW) %01 (Yh, W) dw and—fOHm¢’(1—w)%1(y,w)dw.
We denote

) HD)
(t) :/0 ¢’(1—w)%1(yn,w)dw—/o 6/ (1— W) %o (v, W) dw

and find that

1 " -1 2
oi?ng ()] < Woﬁf’ﬁ ¢" (¢ (”(t)))oit‘i% )=

Using Assumptior(Al), it is easy to see that

‘Hn(t) H(t)
—/ ¢’'(1—w)%o1(¥n,W)dw and —/ ¢'(1—w)%o1(y,w)dw
0 0

are respectively bounded above ¢yl — H,(T)) and¢ (1 —H(T)). On recalling that

¢"(-) is a decreasing function, we note that the preceding eniggisfurther bounded
above by

Wd:"(l—HM(T))OgySpT 102



2.2. Almost sure representation 29

whereHy (T) = max(Hn(T),H(T)). Furthermore, we apply the mean value theorem to
get

0 = vl WY W [He(t) ~H O]/ H () oaly” H (1),

with y* betweeny, andy; andH;(t) betweerH,(t) andH (t). This gives

H* (t)
sup [1(0)] < Iyl sup | [ ¢'(L-wyaa(y’, wydw
0<t<T o<t<T |J0

+ sup [Hn(t) —H(t)| sup [¢"(1—H"(t))o(y",H"(1))].
0<t<T 0<t<T

Integrating by parts and recalling théto(y*,0) = 0 for all y* € (0, 1], we obtain

H*(t)
sup | [ (Lo wialy wdw = sup [¢/(1H'(0) oly H (D)
0<t<T |/0 0<t<T
H*(t)
+ sup / ¢"(1—w)G10(y",w)dw,
0<t<T |/0

Next, we employ similar deductions as in the proof of TheoBinand obtain

sup
0<t<T

H*(t)
/O ¢’(1—w)<g11(w,w)dw‘ < 3)¢'(1—Hu(T)).
Using the preceding inequality, we get after some calaratihat

sup [1(1)] < 3[¢'(1—Hm(T))lIa—VI+[¢'(1—Hm(T))| sup [Ha(t) —H(1)].
0<t<T 0<t<T

Evoking the Glivenko-Cantelli theorem (see Serfling (198ye 61)), it becomes easy
to see thaHy(T) — H(T) a.s.. Sincéd(T) < 1, we may therefore suppose tiak Ty,.
In consequent, we obtain by Lemma 2.2 that

sup [I(t)] = O(n’l/z(logn)m) as.
o<t<T

which subsequently, leads to

sup [ra(t)) = O(n tlogn) as.
o<t<T
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We can further decompose the main term in (2.7) by using anseaaer Taylor expan-
sion to get

Hn(t) H(t)
| 0@ () dw— [ 91— wioa (v.w) dw

(
=¥ 0 W (W) [Hn(t) ~ H (D] 9'(1~ HI) s (v H 1)

+ I'n2(t) + I'n3(t) + rn4(t)

(2.8)
where
1 2 H™(®) I
elt) = 50— /0 8'(1— W) (v W) cdw
o) = 3 [Ha(®) ~HOR (81— H 0oy H* (1) — 0"(1—H* () %on (v, H* (1))}

ra(t) = [h—V [Hn(t)—H( 9" (1—H*(1)%1 (v, H (1))
with y* betweeny, andy; andH*(t) betweerH,(t) andH (t).

Next, we determine the rate of convergencerft),rn,(t) andry,(t). Starting with
rn2(t), we integrate by parts and obtain

ralt) = %[Vn—V]z{q)/(l—H*(t))%o(WHrT(t))—¢/(1)C520(V70)
+/ ¢"(1—w)G20(Y", W)dW}

Working as before, we get

sup [ra(t)] < 4[¢"(1—Hw(T))| sup [Ga(uV)|[a—y1* . Vue (0,1].

0<t<T 0<v<1

Forrus(t), we have for alu € (0,1] that

up a0 < {0'(1—Hu(T)) SUp [Goa(uy)| -+ ¢"(1— Hin(T) |
0<t<T 0<v<1
sup |Hn(t) — H(t)[*.
o<t<T
SinceH (T) < 1andHy(T) — H(T) a.s. (see Serfling (1980, page 61)), we may suppose
again thafl < Ty,. In consequent, we employ Lemma 2.2 again and obtain

sup |r2(t)] = O(n~tlogn) as. and supry(t)) = O(ntlogn) as.
0<t<T 0<t<T
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In the same spirit, we also get that

sup [ru(t)) = O(ntlogn) as.
0<t<T

Next, we let

mt) = r(t)+ (r2(t) + rna(t) + rna(t)).

1
¢'(F(1))
From the preceding display, it straight forwardly follovimt

sup rn(t)] = O(n tlogn) as,
o<t<T

since¢’(F(t)) < ¢’(1) < 0 for allt € [0, T]. Using this together with (2.8) and (2.7),
concludes the proof. O

2.3 Weak convergence result

As mentioned in the opening of the preceding section, thenessof the almost sure
asymptotic representation is to obtain some further asyticgiroperties of the extended
Koziol-Green estimator. Here, we will establish an additilbimportant property of the
estimator. Because of the order of the remainder term giwerheorem 2.2, we will
only consider the main term in the asymptotic represemtaditd show that the process
associated with the estimator converges weakly to a zerm i@@aissian process with
some variance-covariance function, provided— c. We formulate this result as the
following theorem.

Theorem 2.3. Assume the conditions of Theorem 2.2. 4o, then
V(Fa(-) =F () = W(-)

where W(+) is a zero mean Gaussian process with variance-covarianoetifin
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1
¢'(F(s))¢'(F (1))

H(S) HEY)
{ray [ oa-wienmwaw [ 00wt (yow dw

r(st) X

+(HU(S) —yH(9) ¢/ (H() 6o (V. H(9) [ ¢'(1—waa(yw)dw
R~ ) )G (v H) [ (0w (yw) o

+(H(sAt) —H(9)H (1)) ¢'(H(8))9' (H(t) Gox (v, H(s)) Gou (v, H (t))}

Proof. To prove the above theorem, we first establish the finite dewaal distribu-
tions of the procesg/n(F,(-) — F(-)) and then append it with tightness in the space of
bounded functiong”[0, T]. Due to the order of the remainder term in Theorem 2.2 we
only have to show the weak convergence of the main term ingheptotic representa-
tion. This translates to showing it for

1 n
Wa(t) = ﬁ;m(zi,c‘i),
wherem (Z;,&),1=1,2,...,n are independent copies of(Z, ), with m(Z,d) as de-
fined in (2.6).
After some calculations we get that, for &k [0, T], E[m (Z,0)] = 0 and, for all 0<

st<T,

F(st) = Covms(Z,6),m(Z,9)] = E[ms(Z,9),m(Z,0)]
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which equals

1
¢'(F(s))9'(F(1))

{ HeE) HEO) ,
/0 ¢/ (1—w) % (y, W) dw/ ¢/ (1—wW) %11 (y, W) dwE (1[{5:1}—y)]

X

O G (VH(E) [ LWy w) WE((1(8 =1} ) (1Z <5}~ H(S))
QAo (VHO) [ 80w (W) QWEL(L(5 = 1) ) (LZ <8~ H ()]
4/ (H(9)9' (1) s (vH() Fan (v HOIE L (Z £ - H©) 1Z <1 - ()]

and gives
! X
¢'(F(s))¢'(F(t))

(s)
{y(l—y)/oH ¢'(L—w)611(y,w dw/ "(1—w)%11(y,w)dw

+(HU(S) ~ H(S) 8/ (9 Fon (VHS) [ 9'(L—w)eas(v.w)w
+HUO) — YH )8/ (T O (rHO) [ 9L w)saa () cw

+(H(sAt) —H(9)H (1)) ¢'( (S))fP'(l'T(t))%l(%H(S))%l(%H(t))}-

Thus, by the multivariate central limit theorem, we get thétdi dimensional distribu-
tions of the process under consideration.

Next, we show tightness by verifying the conditions of Theaor2.5.6 of van der Vaart
and Wellner (2000). Hereto we show that the class of funsti@ngiven by

F={m(zd):te[0,T]|}
is Donsker.

For the first term in (2.6), we note thé%—‘f'(il(i)—_)y) fOH(t)qb’(l—w)%ll(y,w)dw is uni-
formly bounded ovet. Furthermore we see that the second function

L 1zt —H()

A AGIOAIO)
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is uniformly bounded ovet and is a monotone function & with z andd denoting
the observed time and censoring indicator. Hence, we hatertfz,d) is a monotone
function ofzand

SLLLL
_ (]l{d:l}_y) ey H(®) /
= ozyng W <¢ (H(t))%lo(y,H(t))—i—/o ] (1_W)<€10(V7W)dw>

(1{z<t} ~H(1)
AGE)

¢'(H(T))
< S (o S o)) <m

§(F (t))%l(v,H(t))‘

whereM is a finite positive constant. Using Theorem 2.7.5 of van dearand Wellner
(2000), we get that the bracketing numbér (¢,.#,L2(P)) = O (exp()) with K a
positive constant. Hence, we get that

/: \/'09'\‘[1 (8,7, L2(P))d(g) < o

which shows the clas is Donsker and completes the proof. O



3

A goodness-of-fit test under the extended
Koziol-Green model

In Chapter 1 we introduced the extended Koziol-Green estinfar informatively cen-
sored data. It was shown that this estimator is flexible aotlides the estimator pro-
posed independently by Abdushukurov (1987) and Cheng amd1987) as a special
case. Under some conditions, we established in Chaptert2hisaestimator is uni-
formly consistent over the sample space. In the same chapteiound an asymptotic
representation for the estimator which lead to the weak egmnce of the associated
process to a zero mean Gaussian process with some variaveganoce function. In the
current chapter, we further pursue the extended Koziok@estimator and determine

35
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its validity in practical applications. From the resultsIaiatis (1975), it is apparent that
the dependence structure between the censoring time arglithigal time cannot be
formally investigated, since we do not get to fully obserithar of these variables. As a
conseguence, checking for the validity of the extended #le2reen estimator reduces
to a goodness-of-fit test for the verticalsection of some copula functicgl such that
characterization (1.4) is satisfied. In light of this, wedais null hypothesis,

Ho: HY(t)—%(y,H(t)) = 0, forall t>0 (3.1)
versus the general alternative
Ha: HY(t) - % (y,H(t)) # O, forsomet>0

In what follows, we provide tools and techniques for the pggoof ascertaining the suit-
ability of the copula functior¥’” under the extended Koziol-Green model. Afterwards,
we illustrate the use of the testing procedure on simulasasdledl as a practical data set.

3.1 Almost sure asymptotic representation

As a basic tool to help obtain the necessary theoreticaltsefar the testing proce-
dure, we first obtain an asymptotic representation of theidgeap quantity HY(t) —

% (Yn,Hn(1)) as the sum of independent and identically distributed random variables
with a remainder term which i® (n~*logn) almost surely. We present this result as
Theorem 3.1. Before proceeding, it is important to note thatnotations used in this
chapter carry directly over from Section 1.1.1 and Chaptaress otherwise stated.
Moreover, the results in the present chapter are valid uthgeregularity assumptions
listed in Chapter 2.

Theorem 3.1. Under the null hypothesis (3.1), assume conditiét) of Chapter 2 is
satisfied. Theriyt >0

HUt) — € (o Halt)) = Eimzi,mﬂn(t)

n;
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where

ki (Zi,8) = I{Z <t,6=1}—H"t) — (1{Z <t} —H(1)) Gor(V,H(1))
—(1{& = 1} —y) 10 (y,H (1))

and

sup [ra(t)] = O(ntlogn) as.
te[0,4)

Proof. Under the null hypothesis (3.1), we can write

Ha(t) =% (4, Hn(t)) = [HA(t) =€ (yn, Hn(t))] = [H*(t) = €'(y, H(1))]
= [Hi(®) =H®)] = [€ (s, Hn(t)) = € (v.H(1))]

Applying Taylor’s expansion on the 2nd term in the precedingation, we get

HIO) — € (0 Hol1) = O~ HU(O ~ 1) ~ HO) Coul v H (D)
~ = a0y H () +1alt)
SEPLET (32)

where

k(Z,8) = H{zZ<t,&=1}-HY) - [1{Z <t} —H({)]%or(y,H (1))
—[1{& =1} - V[ %10(y,H(t))

and

(®) = 300~ V2%aly" H(0) + 5 Halt) ~ HOPGoaly’ H* (1)

+ =¥l [Hn(t) = H(O)] Ga1(y", H* (1)) (3.3)
with y* lying betweeny, andy; andH*(t) betweerH,(t) andH (t). We now determine
the rate of convergence of(t). To do so, we note from (3.3) that

sup [ra(t)] < [—vI> sup [%ao(y",H (1))
te[0,4-00] te[0,+]

+ sup [Ha(t) —H(®)|® sup [o(y",H*(1))|
te[0,4-00] te[0,+o]

+l¥a—¥l sup [Hn(t)—H(t)| sup “1(y",H(t))
te[0, 400 te[0, 400



38 3. A goodness-of-fit test under the extended Koziol-Greateimo

By Kolmogorov theorem (see for example, Serfling (1980, gaQgwe have thag, — y
a.s. af — o. From the Glivenko-Cantelli theorem (Serfling (1980, padp,6ive also
haveH,(t) — H(t) a.s a: — . As a result, we know thagt* — ya.s andH*(t) — H(t)

a.s am — oo. Thus, under AssumptiofAl), we can find positive constank;, M, and
M3 such that

sup [ra(t)] < Malyh—y*+Mz sup [Ha(t) —H()”
te[0,4-) t€[0,4-0]

+Mz|yh—y| sup [Hn(t) —H(t)]
te[0,4-00]

Using Lemma 2.2, it easily follows that

sup |ra(t)) = O(n tlogn) a.s
te[0,4-00]

which concludes the proof. O

3.2 Weak convergence result

In the previous section, we gave an asymptotic representafithe empirical quantity
HY () — € (¥, Hn()), since it provides the basis for a valid test of the null hieet
sis. As before, we will focus on the main term in the asymptotipresentation given
in the previous section, under the condition that> . However, we shall not work
with the exact original quantity. Instead, we will work witts normalized version
VN(HY(-) =% (¥n,Hn(-))). In the following theorem, we show the weak convergence
of the normalized basic empirical process to a zero meansgauprocess with a cer-
tain variance-covariance function.

Theorem 3.2. Under the null hypothesis (3.1), suppose Assumption (Aldlsemd n—
. Then,

VN(HY() =€ (%, Hn(-)) — @(°) in 710, +-o0]
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wherey(-) is a zero mean Gaussian process with variance-covariametiftn given by

o(st)
= [H%(sAt) = HY(g)H"(t)] + [H(sAt) — H()H ()] Go1(y, H($)) Gos(y. H (1))
+Y[1 = VI%10(y: H(8)) €10(y; H (1)) + [H"(s) — YH(5)] Go1(Y. H(8)) Ga0(y. H (1))
+[HA(t) — yH (1)] Coa(y; H (1)) Ga0(y, H(s)) — [H"(sAt) — HY(s)H (1) Goa(y, H (1))
= [H%(sAt) = HY(t)H(s)] Goa(y, H(s)) — [H"(s) — YH(s)] G1o(y, H (1))
= [HY(t) — yH(1)] 210(y; H(9)) (3.4)

foralls>0andallt> 0.

Proof. The proof of Theorem 3.2 proceeds in two steps. First, webkstethe conver-
gence of the finite dimensional distributions of the procg®gH(:) — € (yn,Hn(+))).
Secondly, we show that the process is tightfD, 4-oo].

To start, we use the main term in the asymptotic representgfiven in Theorem 3.1
and denote

Wa(t) = %_ik((zi,d)

For some integeq > 0, we take distinct time points8t; <t <--- <ty. Then, by the
multivariate central limit theorentWs (1), Wa(t2), ..., Wh(tg)) converges to an asymptotic
normal distribution with mean vector

EMA() = E(k(Z,6))=0
and variance-covariance matrix equals

o(st) = Cov(ks(Z,0)k(Z,9)) = E (k(Z,0)k(Z,9))
= [H(sAt) =HY(gH"(t)] + [H(sAt) — H()H ()] Gos(y, H(s)) Goa(y: H (1))
+y[1= Y1610y, H(8)) €10(y, H(1)) + [HY(s) — YH ()] Goa(y, H(s)) Gao(y; H (1))
+[HY() — yH ()] Goa(y, H (1)) €10(v, H(s)) — [H"(sAt) — HY()H (1) Gou(y. H (1))
— [H%(sAt) = HY(t)H(s)] Goa(y. H(s)) — [H"(s) — yH (9)] C10(y, H (1))

= [H¥(t) = yH (V)] G0(y, H(s))

)
(

H(t
H(t
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for all s=t; > 0 andt =t > 0.

To show tightness, we first note that

sup |k(Z,0)] < sup |1{Z<t,0=1}—H"(t)|+|1{d=1}—y| sup %io(y,H(t))

te[0,4-0] te[0,+oo] te[0,4-0]
+ sup [I{Z <t} —H()| sup Coi(y,H(t))
te[0,+oo] te[0,+o0]
< 3

Secondly, we define
ZF = {k(Z,0):t >0}

Then,.# consists of uniformly bounded function oV +]. As such, their bracketing
number isNj| (a, #,L2(P))) = O (exp(Ka ™)) for a < 6 and some& > 0. Fora > 6,

we takeN( (a,#,L2(P))) = 1. Furthermore, we note that proving tightness of the
process is equivalent to showing that the class of functignis Donsker. As a result,
we apply Theorem 19.5 of van der Vaart (1998) and obtain

1 — 1 —
/()\/IogNH(a,J,LZ(P))dBa) - 3/ \/loaN; (a7, Lo(P) da

< 3/ \/7da<oo

This shows that the process under consideration is tight @ +]. Combining this
with the convergence of the finite dimensional distributi@ompletes the proof. O

3.3 Goodness-of-fit test statistics

Now, we introduce two goodness of fit test statistics to helgstigate the validity of
the extended Koziol-Green model in practical applicatidsth test statistics are based
on the basic empirical process

Un(-) = VNn(HY() =€ (¥, Hn()))
More precisely, we consider the Kolmogorov-Smirnov and'@avon Mises type statis-
tics, which are respectively defined by

—+oo
Tes =  SUP |Un(t)] and  Tom = Yn(t)%dE (v, Hn(1))
te[0,+00] 0
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As a consequence of Theorem 3.2, we now give the followinglzoy that will serve
as the basis for finding critical values for the test stafssti

Corollary 3.1. Under the null hypothesis (3.1), assume (A1) holds. Then,

Tks— sup |@(t)]
te[0,+00]

Tow— [ wde (v H)

Proof. To establish the first assertion in the Corollary, we noté tha

Tks— sup [@¢t)] = sup [¢gn(t)|— sup [g(t)]
te[OH,—oo] t€[07+°°] t€[07+°°]
< sup [ - @) —0 as , noe.
t€[0,4-00]

For the second assertion in the corollary, we have

+o0

Tou— [ weras )| = | [ unwRason )~ [ wras i)
Adding and subtracting terms, we get
oo +o0
Tewm _/ Yt )zd% (y,H ‘ ‘ L.Un — (1) ]d%(VmHn(t))‘
0 (3.5)

4 ‘/OM W(t)2d[€ (yn, Hn(t)) —%(V,H(t))]'-

But,

[ 2w d et < sup [un(0? - 00| [ O )

te[0,4-00]

Considering the ordered observed tinags, z,), ..., Z ), We get that

n

[t = 3 [€0h )~ 0n )

wherer is the rank ofz, (r = 1,2,...,n). The inequality in the above display follows
from Theorem 2.2.4 in Nelsen (2006). Hence, as a consequéideorem 3.2, we get

[Wn(t)z - W(t)z] d% (yh, Hn(t))

400
' —0 as, n—oo (3.6)
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Next, we recall that as — o, y;, LR y a.s andHy(t) LR H(t) a.s. Therefore, using As-
sumption(Al) together with Lemma 2.2 implies (yn, Hn(t)) = €(y,H(t)) a.s. Further,
we note thaty(t)? is continuous for alt > 0. Hence by the Helly-Bray Theorem (Rao
(1973, page 117)) we obtain

| Wi ) - S (HO)| ~0 as L on—e @)

Substituting (3.6) and (3.7) into (3.5) establishes th@sdassertion in the Corollary.
O

For practical application of the test statistics, we preptbe following formulation. Let
Z(1), Z(), ---,Z(n) denote the order statistics of tdesample andy), 92), ---, §n) denote

the inducedd-sample. Further, let(= 1,2,...,n) be the rank ofZ,, and denote the
number of uncensored observations not greater #arby

Then, the test statistics can be expressed as
N r

Tks = n%2 max —r—%( —)
KS 1<r<n| n Y, n

o5 (4 (e (05

At this juncture, it is obvious that a valid test of the nulldoghesis (3.1) should be based
on the null distribution of the test statistics. Due to itsngiicated variance-covariance
functiono(s;t) (as given in Theorem 3.2), it is not feasible to readily fintical values
for the test. As a resort, we propose a bootstrap approamati the null distribution
of the test statistics. Nonetheless, the validity of thetttoap can only be assured if
the original empirical procesg/n(Hf(-) — % (¥, H(:))) and its bootstrap counterpart
converge to the same limiting Gaussian process.

)

(3.8)

Tem

3.4 Bootstrap approximation of test statistics

In view of the variance-covariance structure in TheoremeZnow describe a bootstrap
procedure to approximate the null distribution of the cativalues of the Kolmogorov-
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Smirnov and Cramer-von Mises type test statistics giveneictiSn 3.3. Also, we give

an asymptotic representation of the bootstrap processs rEpresentation, as in the
previous chapter, will aid in establishing the theoreticidity of the bootstrap. Before

giving this result, we first describe the bootstrap proceduartthe following steps.

1. Given the observed data, we estimgandH (t) by

=

W = %_iu{azl} and  Ho(t) = _iu{zigt}

2. Foreach (i=1,2,...,n),

(&) we generate two independent uniform (0,1) samplesds

(b) given the copula functio” under the null hypothesis (3.1), we sgt=
(¢10) 1 (s), where(%10) * is the inverse of1o.

(c) we define the bootstrap p&if;", &) by
Z' = inf{t:Hy(t) > v} and 6 = L{u>1—w}
3. We compute the bootstrap counterpartsifft), H,(t) andy;, respectively by

1n * *
O = (Y HE sua =1
i=

MO = 351z <y
10
RIS RICESY

and consequently obtain the bootstrap quar(iity (t) — & (y;,H;(t))).

As previously mentioned, we need to establish the validitthe bootstrap approxima-
tion. In light of this, we give an asymptotic representat@frthe bootstrap empirical
procesHY (-) — (v, H;:()) in Section 3.4.1. By means of this valuable tool (i.e. the
asymptotic representation), we show in Section 3.4.2 tiebbotstrap process and the
corresponding original process converge to the same figniBaussian process.
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3.4.1 Almost sure asymptotic representation of the bootsép process

Here, we give an asymptotic representation of the bootgiraqess under consideration
as the sum ofi conditionally independent random quantities plus a redwiterm which
is of orderO (n*l/2 (log n)1/2> almost surely. In the remainder of this chapter, wéfet
andE* denote Probability and Expectation conditionally on theeslied data.

Theorem 3.3. Under the null hypothesis (3.1), assume (Al) is satisfiedn;F > 0

HY (1) =% (. () = %__ii{mzr,é.*)—E*mzi*,a.*)} +13(0)

where
k(Z,8") = H{Z' <t,8" =1} —Ht) - [1{Z <t} —H(1)]Gor(y.H(1))
—[1{&" =1} - y|G10(y,H(1))

and
sup [ri(t)] = O(nfl/z(logn)l/z) a.s

te[0,4-00]

Proof. Adding and subtracting terms, we get
HY' (1) — € (v, Ha (1)
- [H“"(t)—%%H())] [H(E) = € (o, H()] + () — % (v, Ha(0))]
= [HY ()= H{O] = [0, Hi(0) = € (0, Ha(0)] + [HED) = (. Ha(0))]
= [HY O - HUO)] €04, Hi (0) = € (v, H D)) - [HE(0) — H(0)]
[%(vn, (0)) =€ (v, H ()] + [HE(1) — € (4, Ha(1))]

Using Taylor’s expansion on the 2nd and 4th term at the rightlrside of the preceding
display, we obtain

HY (1) = € (vh, Ha (1))

_ {Hn“* (t) — HU(t) — [H (1) — H ()] Goaly H ) — [y — v]%lo(v,H(t))}
(3.9)
- {H;‘(t) ~ H(t) — [Ha(t) — H (O] only,H (1)) — o — v]%low,H(t))}

+Ra(t) +Ra(t)
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where,

Rit) = 3 [Hil) ~ HOPGonlf HE () 5 s — V20l Hi (1)

— [ =VIHa () —H O] C1a(y1, HI (1)

with y; lying betweeny; andy, H (t) betweerH;;(t) andH (t); and

5 Hnlt) = H %0218, H3(0) — 3 o~ V220008 H3 (1)

= [yh = VI [Hn(t) = H()] 212(y5, H3 (1)) + [HA'(t) — € (yh, Hn(1))]

Ra(t) =

with y5 betweeny, andy; andH(t) betweenH,(t) andH(t). We now give the rate
of convergence oR;(t) and R,(t). Starting withR(t), we note that under the null
hypothesis (3.1),

Ha(t) = € (1 Hi(1)) = [HA(t) = (v, Hy (1)) — [H(t) = 2 (v, H(1))]

(3.10)
= Hq(t) —HY(t) = [€(yn, Hn(t)) = €(v,H(1))]
Applying the bivariate mean value theorem on the 2nd termobtain
Ha(t) = (v, Hy(t)) = [Ha(t) = H ()] — [Ha(t) — H(t)] Coa(y", H* (1)) (3.11)

=¥ = YC10(y", H* (1))

with y* lying betweeny, andy; andH*(t) betweenH,(t) andH (t). Using Dvortzky,
Kiefer and Wolfowitz theorem on the first term at the right tiaide of (3.11), we have
forall € > 0O,

P{ sup [Hi()-H@t)]>¢e] < Cexp<—2n£2>,

te[0,+o0]
with C a finite positive constant. If we take= &, = Kn=/?(log n)l/2 for someK > 0,
we get

exp(—2ne?) < oo,
2 (—2ne?)

Thus, by the Borrel-Cantelli lemma, we have

sup [HY(t) —HY(t)] = O(n’l/z(logn)l/z) as.  (3.12)
te[0,+o0]
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Next, we have from (3.11) that

sup [Hi(t) =€y, Hi(t)] < sup [Hi(t) —H"O)[+ |y —yl sup Gio(y",H*(t))

t€[0,4-0] t€[0, 4] t€[0,4-0]
+ sup [Hq(t) —H(t)[ sup Goa(y",H" (1))
te[0,+00] t€[0,+00]
But, forallue (0,1)
sup po(u,v) < 1 and supéoi(u,v) < 1
0<v<1 o<v<1

which imply

sup [Hy'(t) — € (v, Ha'(1))|
te[0,4-00]

< sup [H(t) —Ht)[+ sup [Ha(t)—H(t)[+ |-Vl
te[0,4-00] te[0,4-00]

Invoking Lemma 2.2 together with (3.12), we obtain

sup [Hp(t) =€ (w,Ha ()| = O(n‘l/z(logn)l/2> a.s.
te[0,+o0]

From (3.3), it also follows that

sup [Ra(t)] < sup |ra(t)[+ sup [Hp(t) =% (y,Hn(t))].

te[0, 400 te[0,+oo] te[0,+o]
This gives
sup [Ra(t)] = O(n‘l(logn))+O(n‘1/2(logn)1/2) a.s.
t€[0,+o0]
= O(n‘l/z(logn)l/2> a.s. (3.13)

For R (t), we work in analogy withr,(t) and obtain

sup |Ry(t)] = Op: (n tlogn) a.s. (3.14)
t€[0,+-0]

Combining (3.9), (3.12) and (3.13) gives the represematorheorem 3.3. O
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3.4.2 Weak convergence result for the bootstrap process

In this subsection, we show that our bootstrap procedurevalid process to obtain
critical values for the test statistics presented in Sa@i8. As mentioned earlier, this is
equivalent to showing that the empirical bootstrap proggs$Hy (-) — ¢ (v, Hii(+)))
and its corresponding original empirical procggs(HY(-) — % (yh,Hn(-))) converge to
the same limiting process. Armed with the almost sure asgtitptepresentation of the
bootstrap process (i.e. Theorem 3.3), we now formulate #hdity of the bootstrap
procedure in the following theorem.

Theorem 3.4. Under the null hypothesisdlassume (Al) is satisfied. I o, then
VA(HY ()= (o Ha() —w() in £7[0,+ed
wherey(-) is a zero mean Gaussian process with variance-covarianeetiin o(s,t),

given in (3.4).

Proof. Here we work in line with Braekers and Veraverbeke (2005}. Le
n
Wi = S Sz 8-k E)
1=

Then, showing the weak convergence fi (HS (-) — (v, H;i(+))) is equivalent to
that of W; (), providedn — . To do this, we proceed in two steps. First, we show the
convergence of the finite dimensional distributions anelrlastablish tightness & (-)

in £°]0, +oo].

For the convergence of the finite dimension distributions,slow that for any distinct
time points O<t; <ty-- <tg, 0=1,2,...

(vv:(n),vv:(tz),...,w:<tq>) LN, (t.4)

Unlike Section 2.3 of Chapter 2, it is not possible to estdibthe finite dimensional dis-
tributions by the multivariate central limit theorem, sértbe random quantitidg(Z", &*)
(i=1,2,...,n) are not identically distributed. To this end, we insteadfyavhether the

following two conditions of Araujo and Giné (1980)
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n
1. lim Y E* (W,T”W,jjk> = ot =0k , 1<jk<q

n—oo I

.Hozl/| |>E} W PdP = 0, ve>0

hold almost surely for the summandg, = n=Y2{k,(Z’,&") — E*k(Z,&")}, where

q
|W7T|k | and - Z n.k

M e

Wi |* =

k

1

Adopting similar analogy employed in the calculation of tlegiance-covariance func-
tion of the empirical quantity/n(HS(:) — € (yh,Hn(+))), we obtain for all 1< j,k < q

e (Wiwe, ) = +{ I At - MR
+ [Flt; A ) — ot Fa(t0)] %oa(.H (1)) (. H ()
+ Ya[1 — Vo] G10(Y, H (tj)) €10(Y, H (t))

(
+ [Ha'(t)) = YaHn (t))] Gou (v, H(t})) G10(y: H (t))
+[Hn'(t) — Van( k)] Goa(y; H(t)) Gao(y, H (t))) (3.15)
— [H™(tj Ati) — H(tj)H ()] Goa(y, H (1))
[H#(tmt) Hn (ti)Hn(t))] Gou (v, H (t)))
— [Ha(t)) — yaHn(t;)] 210(y, H (&)

But, we recall that

sup [Hi(t) —H'®] = O(n*(logn*?)  as,
t€[0,+o0]

sup [Ha(t)—H(t)| = O(n‘l/z(logn)1/2> a.s,
t€[0,+o0]

o=yt = O(n"2(logn)"?) as.

Assumingn — o, we may replace in (3.18)(-),Hn(-) and y, by HY(:),H(-) andy
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respectively. Thus almost surely, we get

Ojk = r!moiE* <W§1Wr:k>
= [HY(tj At) — HY(t))H" (t)] + [H (tj Ati) — H (t))H (t)] Goa (v, H (t
+ y[1—y]G10(y,H(tj)) G1o(y, H(tk)) + [H(t;) — yH(t;)] Goa(y, H (1

i))Cou(y,H(t))
j)— ))G10(y,H (&)
) -

+ [H%(t) — yH ()] Goa(y, H (&) G10(y, H (1)) — [H"(tj At) — HY(tj)H (t)] Goa(y, H (&)
— [HY(tj At) — HY(t)H ()] Goa(y, H (t))) — [H"(t)) — yH (t))] G10(y, H ()
— [H%(t) — yH (k)] €10(y, H(t;))

To show that the second condition of Araujo and Giné (19804 we first recall that
Wo, = n V2 {k(Z,8) - Ek(Z )} =n"2g,(Z.8"),
where
& (Z7,8) = H{Z <t.d =1} -1{Z <t § =1}
—[1{Z" <t} — 1{Z <t}] Goa(y,H (i)
—[1{§" =1} — 1{& = 1}] %10(y, H (t))-

Conditional on the original data, it follows for all > O that

sup |a:(Z.8")| < sup ﬂ{zi*sné.*zl}—ﬂ{ziSt,dzl}‘
0<t<T 0<t<T
T osup|iL(z <ty -1z St}]%l(v,H(t))'
0<t<T (3.16)
T sup|iL(E =1 - 1{& = 1)] %o(V,H(t))'
o<t<T

< 2+ %1(yH(T)) <o
This means that the functiag, (Z, &") is uniformly bounded for ak > 0. Using (3.16),
it follows that

W*

max
1<i<n

q
S & (Z.3)

q
= max| ) W} = max
Z ”" 1<i<n| &

1<i<n &

q
< n¥?maxy sup
Isisn&o<t<T

& (Z7,97)|-

& (4,97)

= max Su
ql<I<n0<t<pr
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This implies that

max Wy

1<i<n

— Op (n—1/2> . (3.17)

Similarly, we have

n 2

izl Wn i—il kil

Using (3.17) and (3.18), we get for &l> 0

2 2
wi| <amex( supla(@.8))) —0e 1 @18

1<i<n 0<t<T

W *d

,/{maX1<i<n ‘Wﬁi | >£}

< Op:(}P* (max\ | > £> =o0p(1) a.s

1<i<n

Hence, the convergence of the finite dimensional distidimsti

To prove tightness, we verify the conditions

1. ZLE [sup\znl {tSlLJ?p]Zni(t)] >)\H -0 , VA>0
6,/

te.7

sup ZLE Zn (1) — Zy (¢ )) —0 , V&0
p(tt)<ni

3/ JlogN (6.7, 13)de ~0 5,10

of the bracketing central limit theorem of van der Vaart andllidér (2000, Theorem
2.11.9), with.# denoting an index set endowed with an appropriate semicrtri

Let us define
Xit) = nYk(Z,8) and F = [0,T].
On %, we further define the semimetric
( H“(t)H“(t’),H(t)H(t’),‘flo(v,H(t))%1o(v,H(t’)),)
max .

o1y, H(t)) — Goa(y: H(t'))|

ptY) =
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Next, we divideZ for everyn ande, conditional on the original observatiods, 7, ..., Z,
in a partition{.7;"} such that

ZLE* sup
tt’eﬁ‘*”

The smallest number of intervals of this partition for wh{8lil9) holds is the bracketing
numberN;, (&,.7,L3).

< g2 a.s (3.19)

GivenZy, 2y, ..., Zy, we take withinZ, a sequence of time points9ty <t <t, <--- <
tmsuch thaf{Zy, 2y, ..., Zn} C {to,t1,....tm} @andp(t,t’) < Ce for everyt,t’ € [tj_1,tj], j =
1,2,....,m; whereC is a constant to be determine later.

Conditional on the original data, we further define the fwilg partitions

cgz*n o [tJ*LtJ[ If tj*l ¢ {217227 ---,Zn}
]tj_l,tj[ if tj_]_ S {21,22, ...,Zn}

o {[tml,tj[ it w1 & {212, 20}
&m

]tm_]_,tj[ |f tm_l S {Z]_,Zz7 ...7Zn}
FO = {z} ., i=12,..n

&) mi

Next, we show that (3.19) holds for this partition. In thisywthe bracketing number
Njj (g,.#,L3) = Op- (1) +n. To do this, we start by noting that

Xa ) =X ()] = nPk(Z,8) —ke(Z, 0]
< n—l/z{\]l{zi* <t,8 =1} —1{Z" <t,& =1} +|H"(t) —H"(t")|
+|G10(y, H() — Gro(y, H({t') |+ |1{Z" <t} — 1{Z" <t'}|
+2|%0a(y, H(t)) — oa(y,H(t'))| + \H(t)—H(t’)|}.
Using Cauchy-Schwartz inequality, it follows that
X=X W) < g{u{zi* <t,§ =1} —1{Z <t,& = 1}[*+ |HU1t) — HY(t)|?
+| (v, HE) — Groly, HE)) |* + |1{ZF <t} — 1{Z; <t'}|?

+4|%01(y, H(t)) — Goa(y,H (t’))|2+ IH(t)— H(t’)|2}.
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Next, we note that

, 2 1 if tAt <ZF<tvt,§ =1
|]1{Zi*§t,5,*:1}—]l{zi*§t,5,*:1}\ = .
0 otherwise

This implies that

sup |1{Z <t,&" =1} - 1{Z' <t',&" =1}

2 {1 if  Z < 7{left end poini

ttes 0 otherwise
Also,
2 1 if tAat <zF<tvt
|{Z <t} —1{Z <t'}|" =
0 otherwise
which gives
2 1 if  Z e Z:"|{left end point
sup [1{Z; <t} -1{Z <t'}| = | .
ez 0 otherwise

Consequently, it follows that

2
E° sup |L{Z; <t & =1} - 1{Z <t.§ =1}

t.t'eﬂg'j"

= Hy (right end point ot%}*j”) —HY (Ieft end point ofﬁ‘g‘j”) =0
and
2

E* sup |1{Z <t} —1{Z <t}

t,t’eﬁfgjn

— Hn <right end point otszgjn) ~Hn (left end point off;;”) -0

As pointed out by Braekers and Veraverbeke (2005), thisgiatdue to the construction
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of the patrtitions. As a consequence, we have

2

ZLE* sup | X5 (t) —X; ()]
tt/ef*"

6 n

- ”.Zl{u{z* <t,8° =1} - 1{Z} <t,&" = 1}*+ |HY(t) - HU(t))|

+ |Gy, H) — Caoly, H ()P + |1{Z7 <t} —1{Z" <t}

+4|Goa (Y, H (1) — Gon(y H(E)) [P+ [H(E) - H<t’>|2}
< 42XC%€?
If we takeC? = 2, we obtain (3.19).

Now we can readily verify the conditions of Theorem 2.11.9ai der Vaart and Wellner
(2000). Starting with the 3rd condition, we take a positisastantD and observe that

en {n & 4/log(2+n)
/ JloaN (6,7 Lg)de < / ,/log +n ds_// dvde
0

By Fubini’s theorem, this equal§’ fn(v)dv, where

{Zn , v<log(2+n)

fa(v) =
" ZD,n , v>log(2+n)

eV
Sincef, converges to zero, we also get pointwise convergendg. éfurther, we use the
bounded convergence theorem (see for example Foran (1&8d.Y)nd that, foi, | O,

{n 00
/0 JloaN; (6.7, Liyde < /ofn(v)dV—>0

Also, we have that

i_iE* (X0 —x;(r'))z

< 6{|Hn“<t> — ()] + [H"(0) —H*(t")]

2

+[%10(y, H (1)) = Gao(y, H ()| + [Hn(t) — Ha(t)|

4|y H ) — Gorly. HE) P+ \H(t)—H(t')!z}

2
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So that )
n
sup ZlE* (X;‘I (1) —X,;j(t’)) -0 a.s
ptt)<ni=
for everyZ, | 0. This gives the 2nd condition of Theorem 2.11.9 of Van darvand
Wellner (2000). Before we verify the 3rd condition of the satheorem, we recall that
supi0] < n 22+ dulyn(r))
teF

with G10(y,H(T)) < 1forall T > 0. Therefore for alh > 0, it follows that

s >n} = 0

if nis sufficiently large. As a result, we get

i_ilE* [i%‘xr:(t)u{z‘gﬂxé(t)! >UH —0 as n— oo

Thus, all the conditions of Theorem 2.11.9 of van der Vaad ¥ellner (2000) are
satisfied and the quantityn (HY (-) —¢(v,H;;())) is asymptotically tight. Combining
this with the convergence of the finite dimensional distidns concludes the proof.[d

3.5 A simulation study

In this section, we set up a simulation study to investigldefinite sample performance
of the goodness-of-fit test and its bootstrap approximatfaie critical values. Hereto
we generate samples of observable couf#gs), i = 1,...,nsuch thaH"(t) = P(Z <

t,0 =1) =% (y,H(t)). We assume in this simulation study that the observabléntifet

Z (i=1,2,...,n) have an exponential distributiod;(~ Exp(A)) with A = 1.5 and the
indicatorsd; (i =1,2,...,n) are Bernoulli distributed with proportiop of uncensored
observations. In particular, we talke= 25%, 50% and 75% so as to study the influence
of censoring intensity on the bootstrap approximationsrtbHem we use the Clayton
copula defined by

~1/13

¢(uv) = [max(u®+v13-10)] , Y(uv) e[0,1?2  (3.20)

to express the relationship betwegnand &. Using the inverse distribution function
method, we obtain our simulation data as follows:
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1. We generate two independent unifof@1) sampless andt.

2. We setv = (%10) "L(t) where@yo = 2% (u,v) and(%10) "t is the inverse function
of (510

3. We define the observed quantitiis= 1{u > 1—y} andz = — 3 log(1—v).
Based on the simulated data, we utilize the procedure dhestin Section 4 under the
null hypothesidHg with the Clayton copula given in (3.20). That is, for a fixedtstrap

sizeBand for eaclb (b=1,2,...,B), we computelys andTd), based on the bootstrap
data(z,d;),...,(z,,d;), where

v (e )

umnd (5 e(65)) (e (1) ¢ (655)

with y;,r* andN,- being the bootstrap counterpartsypfr andN, respectively. Conse-

Tés, = n2 max
KS 1<r*<n

(3.21)

qguently, we obtain an approximagevalue for the test based diks andTcm by
18 18
E bzlll {TKSb > TKS} and E bzl]l {TCMb > TCM} (322)
respectively.
Taking the Product, Plackett and Frank copulas given réispgcby
¢uyVv) = uv,
1
€uyv) = = {1+ 4(u+v) — \/[1+4(u+v)]2—80uv} ,

8
(e*4U o 1) (e*4V _ 1)
(e-1) > ’

¢(u,v) = —%Iog <1+

we also compute the approximapevalues under the corresponding null hypotheses.
With a bootstrap siz8 = 10000, we report th@-values of both test statistics in Table
3.1. Since we generated data under (3.20), we expect toummithe Clayton copula as
the most plausible copula function to express the reldtipnisetween the observed time
and censoring indicator in this simulation study. The rssul Table 3.1 show that this

is true at 5% level of significance for various degrees of ceng and samples of size
150 or more.
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Table 3.1: Approximatep-values (based on 10000 bootstrap replicatesYfgrandTcy under
null hypothesidHg with Clayton, Product, Plackett and Frank copulas, basesironlated data
in which the Clayton copula describes the relationship betwthe observed time and censoring
indicator.

n y Statistic Clayton Product Plackett Frank
Tks 0.4462 0.0000 0.0000 0.0000

25% Tem  0.3969 0.0000 0.0000 0.0000
150 50% Tks 0.4603 0.0000 0.0000 0.0040
Tem  0.3841 0.0000 0.0000 0.0020
7504 Tks 0.3711 0.0000 0.0013 0.0318
0 Tem  0.3292 0.0000 0.0010 0.0182
250 Tks 0.5011 0.0000 0.0000 0.0000
0 Tem  0.5134 0.0000 0.0000 0.0000
200 50% Tks 0.4323 0.0000 0.0000 0.0004
Tem  0.3795 0.0000 0.0000 0.0004
7504 Tks 0.4326 0.0000 0.0004 0.0110
0 Tem  0.3676 0.0000 0.0000 0.0057
250 Tks 0.3526 0.0000 0.0000 0.0000
0 Tem  0.2741 0.0000 0.0000 0.0000
250 50% Tks 0.4720 0.0000 0.0000 0.0000
Tem  0.4175 0.0000 0.0000 0.0000
750 Tks 0.3655 0.0000 0.0004 0.0091
0

Tem 0.3032 0.0000 0.0000 0.0036

3.6 Data example: Survival with Malignant Melanoma

In this section, we apply the goodness-of-fit test on the noetea data set, introduced in
Chapter 1. The data comes from a historical prospectivécalistudy conducted in the
period 1962-77. The study took place at the university akpf Odense, Denmark and
has information on 225 patients with malignant melanomadenof skin). However,

only the 205 patients with complete information are congdéenere. Of these patients,
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57 (28%) died of malignant melanoma (event), 1#%) died of other causes and 134
(65%) were alive at the end of the study. See Andersen et al. (1983nére details
about the data set.

For the purpose of this illustration, we treat those obg&ma corresponding to deaths
due to other causes and those corresponding to the 134 auerads censored observa-
tions. Before applying the goodness-of-fit test, we perfarpreliminary search of a

potential copula functiofs” by graphically investigating whether

Hi(t) = %(yn,Hn(t))

nearly holds for alt > 0, whereH{(t),Hn(t) andy, are as previously defined. In par-
ticular, we compare the verticg-section of the Fréchet-Hoeffding lower bound (W),
Fréchet-Hoeffding upper bound (M), Clayton, Product,cRéit and Frank copulas to
the empirical quantityH¥(H;2(p)), whereH; 1(p) = inf{t : Hn(t) > p} is the quantile
function ofHy(t). The Clayton, Product, Plackett and Frank copulas are & givthe
preceding section and the Fréchet-Hoeffding lower anceuppunds are respectively
given by

% (u,v) = maxu+v—10) and €(u,v) = min(u,v).

Table 3.2: Goodness-of-fit test on copula function to describe theicglahip between the ob-
served time and censoring indicator in the Malignant Metaaalata set.
Clayton Product Plackett Frank

Tks 0.3774 1.7682 0.7762 0.6611
P-value 0.2512 0.0000 0.0011 0.0069

Tem  0.0136 0.3355 0.0455 0.0295
P-value 0.0872 0.0000 0.0040 0.0175

Among the copula functions shown in Figure 3.1, we see tleCilayton copula gives
the best approximation to the empirical quantity and suggeself as a potential candi-
date for this data set. Table 3.2 supports this observatsedon the bootstrap proce-
dure described earlier with = 10000 replicates. That is, except for the Clayton copula,
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Figure 3.1: Graphical test of the copula function to describe the retestiip between the ob-
served time and censoring indicator.

the null hypothesis under the other copula functions istgleajected at 5% significance
level. This confirms that the Clayton copula function giverBSiection 5, is appropriate
to describe the relationship between the observed surtiaal and censoring indicator
in this data set.
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The conditional Koziol-Green model under
dependent censoring

In Section 1.2.1 of Chapter 1, we introduced the conditidfatiol-Green estimator
of Braekers and Veraverbeke (2008). This estimator is argkpation of the condi-
tional Koziol-Green estimator proposed and studied byWmtzeke and Cadarso-Suarez
(2000), where the association between the censoring Varsadul the lifetime variable
is captured by a known Archimedean copula function. In thésy,va model which ac-
commodates both dependent and informative censoring waénedd. Braekers and
Veraverbeke (2008) derived in this model, a non-paramgimol-Green estimator for
the conditional distribution function of the lifetime andasved its uniform consistency

59
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and asymptotic normality. In this chapter, we append thesialts by proving the weak
convergence of the process associated with this estimatbgiae some of its applica-
tions. First, we give some regularity conditions in Sectloh under which the results of
the chapter are valid. In Section 4.2, we give the weak cgerare result and present its
applications in Section 4.3. We conclude this chapter wihraulation study in Section
4.4 and an illustration of the results on the Worcester hatatk study in Section 4.5.

4.1 Regularity conditions

For the design pointgy,...,x, we write A, = 1r£1|<n (% —x—1) and En = lrg_a<x(><i -
<Isn <i<n

o0 +00
%_1). The notationg|K || = supK(u), [[K|3 = [ K?(u)du, pf = [ uK(u)du, pX =
ueR —00 —o0

400
[ u?K(u)duwill be used for the kernek.

We use the following assumptions on the design and on thekern

(C1) Xn — 1,80 = O(n 1) Ay — A, = 0(n" ).
(C2) K is a probability density function with finite suppdrtM, M] for someM > 0,
pk = 0 andK is Lipschitz of order 1.

The assumption (C1) expresses that the chosen design pmrasymptotically equidis-
tant points, selected uniformly over the whole interf@l1]. This implies that, for
cn(x,hn) defined in Section 1.2;,(x,h,) = 1 for n sufficiently large. Therefore we may
takec,(x,h,) = 1 in all proofs of the asymptotic results.

If L is any distribution, therT| denotes the right endpoint of its suppoft & inf{t :
L(t) = L(4)}). We note thafly, = Tg, = Tg,. To obtain our results, we need some
smoothness conditions. For a fixeeOr < Tg,,

(C3) Fx(t) = ZFx(t), Fx(t) = Z,F(t) exist and are continuous {,t) € [0,1] x [0, T]

(C4) B = 2B« Bx = 2By exist and are continuous ie [0, 1]
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The generatogy(v) of the Archimedean copula needs to satisfy the followingprtes.

(C5) ¢y(v) = Zoy(v) and ¢y (v) = g—vzz¢x(v) are Lipschitz in thex-direction with a
bounded Lipschitz constant, agq’(v) = %(px(v) < 0 exists and is continuous
in (x,v) € [0,1]x]0,1].

These assumptions and the fact tlhais a generator for an Archimedean copula, give
that@y(v) is monotone increasing wity(v) < 0 andg;/ (v) is monotone decreasing with
i
x (V) = 0.

4.2 Weak convergence result

In this section, we show the weak convergence of the progess/2(F2'(-) — Fx(-))
associated with the conditional Koziol-Green estima§(t) for the conditional dis-
tribution functionF(t). This adds to the works of Braekers and Veraverbeke (2008),
where the authors showed the asymptotic normality in a fiked point. As in the pre-
vious chapters, we first need to derive an almost sure rapetsm for the conditional
Koziol-Green estimatoF}Y(t). This result has already been obtained by Braekers and
Veraverbeke (2008). For convenience, we formulate theirltas the following Lemma.

Lemma 4.1. Assume conditions (C1)-(C5), k- O o _ O(1),T < Tg,. Then, for

' logn
t<Tg,

BB = 5 wnlchma(Z.8)+Rox

where wii(x, h,) is the Gasser-Nller type weight as defined in Section 1.2,

Ky (Hx(t))
¢ (Fx(1))

_ oK) o et
M (28) = e (=1 -+ (1{Z <t} ~ (1))
and as n— +o

sup |[Ra(x,t)] = O((nh)tlogn) as.

0<t<T
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We do not give the prove of the Lemma since it was already ksialol by Braekers and
Veraverbeke (2008). Based on the asymptotic represemt@ieo Lemma 4.1), we show
the weak convergence of the procésk,)/2 (F2(-) — Fy(-)) in the space®[0, T] of all
bounded functions on [0,T] equipped with the supremum-ndduore to the order of the
remainder term in the above representation, we only nedwbie the weak convergence
of the main term in this representation which is the sum ofpwhdent quantities of the
observed variates. Before we establish the weak convezgesalt, we give Lemma 4.2
and 4.3 which concern the asymptotic bias and variance cteply.

Lemma4.2. Assume (C1), (C2)kt) and By satisfy (C3) and (C4) in [0, T] with K Tg,
and ¢y satisfies (C5), h— 0. Then, as r— +oo

: R (80) | ki)
oSHB |2  m)E M, 8)+ 55 (cpx( F) o) )>'

=o(hj)+0O(n™")

Proof. For fixedt < T, we have

bx(Hx(t))
$x(Fx(1))

Vedr(Hx(1))
oy (Fx(t))

By Lemma A.1.b of Van Keilegom and Veraverbeke (1997a), widlgeresult. O

3 W (K PEM(Z.8) — - (En— )+ (EHu(t) — (1))

Lemma 4.3. Assume (C1)-(C4) in [0,T] with K Ty, and ¢y satisfies (C5), h— O,
nh, — —+. Then, as - +©

oifng IZ (%, hn)Cov(ms(Zi, &), Mx(Zi, &) — %Fx(s,t) =o((nhy)™ )
where
a0 - RSO
V2¢x Hx(5)) by (Hix(t)) _
i) SN0 0}
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Proof. From the main term in the asymptotic representation givelbeimma 4.1, we
compute forall < st <T

Cov(msx(Z, &), Mx (Zi, 1))

= E(M«(Z,8),Mx(Zi,)) —Emsx(Z,6) Emx(Z, &)

() du(Hx (1) 1K Hy (5)) $x(Hx(t))
= BB B Wl ¥o) + s e (Hx (SAD) —Hx (S)Hx (1))

() 84 8.(F(0) 4P
+ BRSO (H(1) — i (1)) + B (H(9) -y (9)

By the conditional independent propertyZfandd;, the right hand side of the preceding
display reduces to

¢X(HX(S))¢X(HX(t))%q(l_%q) Y di(Hx(S)) 9 (Hx(t))

dx(Fx(s)) o (Fx(t)) b (Fx(9)) dx(Fx(t))
from which the result follows via Lemma 3.1 of Van Keilegondareraverbeke (1997a),
which is standard in calculating the asymptotic varianaefion in a fixed design re-
gression setting. O

(Hx (SA1) — Hy (S)Hx (1))

Theorem 4.1. Assume conditions (C1)-(C5)<t Tg,. Then,

(a) If nh> — 0and(nh,)~2logn — 0, then as n— +o
(nho)*2 (Fan(-) = Fx(-)) = W([x) in  £°[0,T]
(b) If h, =Cn Y5 for some C> 0, then as n— +oo,
(nhn) 2 (Fn(-) = () = W([x) in ¢7[0,T]
where W-|x) and W(-|x) are Gaussian processes with variance-covariance function

«(s,t) as presented in Lemma 4.3,MX) has a zero mean function while ¢ this is
given by

_ 1 ke —Px(Hx(t) .. | %x(Hx(t))
bx 2U2C { 9 (F(t) Y+ Q) Hx( )}

Proof. From Lemma 4.1 and 4.2, we find

Fxn(t) — Fx(t) = _iwni(x, hn)&x(Zi, &) + h2b + Ra(t)
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where
éx(Zi,6) = mMy(Zi, &) —Emy(Z,8)
sup [Ry(t)| = O((nm)*3/4(logn)3/4>+o(hﬁ) a.s.
o<t<T
and
= R (=g (Hi(t) ., | ds(H(D))
e = M5 (i e )

The bias(nh,)Y/2h2by, is 0(1) under conditions (a) and equals under conditions (b).
Hence it suffices to prove the weak convergendaigf:) = (nhn)l/2 Z Whi (X, hn)éx(Zi, &)

to the Gaussian proce®g(-|x) with mean zero and covariance functlﬁg(s t).

As before, we do this in two steps. First we show the convergent the finite di-
mensional distributions. Next we verify the asymptotichtigess by Theorem 2.11.9
(Bracketing central limit theorem) of van der Vaart and \iveil (2000).

Convergence of the finite dimensional distributions, is tase is that forany=1,2,...
and any 0<ty <. <tq < T 3 (Wh(ty) Wha(t2), - Wh(ta)) 2 N(O, Ty (ti, t})). Since
Whx(ti) = Z Whii wheréWhii = (nhy)Y2wik(x, hn) &x(Zk, &), it suffices to check the two
condltlons of Araujo and Giné (1980) as stated in Sectidr23.

Now, applying Lemma 4.3, we obtain

i E (WhkiWhkj) = (nhy) Z Wznk(xa hn) Cov(myx(Zk, &), mjx(zka &)) = Mx(ti,tj) +0o(1)
k=1 k=1

Since the functiong;x(Zx, &) are uniformly bounded, it follows that
n
W —1/2 S. d W2 = O(1 S.
maxWhl = O((h) ™% as. and 3 M (1) as
Hence,

n .
> | Wail?dP < O(1)P ( max Why| > £> — o(1).
k=17 {Whi|> €} 1<k<n

To prove the asymptotic tightness, we denote the proskgs) asWhy(t) = S ; Zai(t)
whereZni(t) = (nhy)Y2wni(x, hn) &x(Zi, &)
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As before, we need to verify the three conditions of Theoreli.® of van der Vaart and
Wellner (2000). For that purpose, we put.gh= [0, T] and define the semimetric

e+ gy | 1P (Hx(®) — x(Hx()],

p(tt) = max

|¢x(|'Tx(t)) - ¢x(|'Tx(t/))|ax/§éF;] \/|Hx/ (t) - Hx’(t/)|

In the third condition, we need the bracketing numNer(e, .7, L5). Again, this is the
minimal number of sets in a partition o¥ = [0,T] = [J;-%¢j such that for every set
19?5]‘1

ZLE sup |Zni(t) — Zni(t/)’2 < &
Lt € Fej

Let us divide# = [O,T] into subintervals B=to <t; < ... <tq=T wherep(t,t') <Ce¢

forallt,t’ e [tj_1.tj],] = ..,qwith C some constant which we will determine later on.

For the partition# = [O,tl] U (U?:z]tj,l,tj]>, we find after some lengthy calculations

that

|Zni(t) = Zni(t')| < (nhw)l/ZWni(thn)< |#x(Hx(t)) — $x(Hx(t))]

¢x( 1)
- ) 1 1
2 I v /4!
mld’x("'x(t)) — Py (Hx(t))] (4.1)
¢>/<(HX(T)) : : ! /
+ B (1142 <0 102 <))+ ) - () )

So

2
SUp ‘Zm Zm(t/)‘
Lt €Fej

< (A Ccn) {CatCe? + (#0212 <t} - 10z <40
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whereC; is a constant, uniquely determined by the right hand sidetdf)( For the
appropriate choice o, this leads to

1€ Fej

Hence the bracketing numbhy, (g, #,L3) is equal toO(e~1) and we get

/\/IogNH £,7,L%) /\/Iogo Dde —0

when d, — 0. We do not need to verify the second condition of Theoren.9.bf
van der Vaart and Wellner (2000), since our partitionZof= [0, T| is independent of.
As last condition we have to check whether forrali> O,

ZLE [ sup |Zqi(t |]l{ sup |Zni(t)| > r]H —0 as n— +oo.

o<t<T 0<t<T

Sinceéix(Z;, &) is bounded uniformly an9<_rganni(x, h,) = O((nh,) 1) a.s., we get that
<I<n

sup Za(t)| = O ((nh)*2) as.,

0<t<T

which is always smaller than for n sufficiently large. So the first condition is also
satisfied. Hence, by Theorem 2.11.9 of van der Vaart and Afe{2000), we have that
Whx(-) — W(:|x) in £*]0,T].

4.3 Some applications of the weak convergence theorem

The weak convergence result summarized in Theorem 4.1 iprdeeding section can
be used as a starting point to derive some practical apigitatin light of this, we first

show in this section that the conditional Koziol-Greenrastior is asymptically more
efficient in the Koziol-Green model under dependent cengdtian the copula-graphic
estimator of Braekers and Veraverbeke (2005). A secondcapipin is an asymptotic
confidence band for the conditional Koziol-Green estimator
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4.3.1 Asymptotic efficiency

At a fixed design poink € [0, 1], Braekers and Veraverbeke (2005) derived the variance-
covariance function

KE o,
¢X(FX( s))¢L(F ()){ 0 #y(Hx(2))°dH{(2)

[ (@) Pt + 40) [ By A aHE W)
[0 [ L)) + ) A dHEw
= [} @R + 005 00) 8 [ (8w + 6 w) db) |

ox(st) =

At any fixed time point, it is easy to see that the asymptotic variance of the copula-
graphic estimator of Braekers and Veraverbeke (2005) egjuafter some lengthy but
straightforward derivation to the expression

HKHz
Y = G

t _ _
{%( (1-w /0 d’;(Hx(W))dex(W) + V)%d’)i(Hx(t))ZHx(t)(l_ Hx(t))} (4.2)
when the Koziol-Green model is satisfied.

Analogously, we also obtain the expression
’ Pu(Fu(t))? Pu(Ru(t))?
for the asymptotic variance of the conditional Koziol-Greestimator. To show the

efficiency of the conditional Koziol-Green estimator ovee topula-graphic estimator,
we compare expressions (4.2) and (4.3) and get that

Mx(t,t) V(1 — ¥) dx(Hx( t +V2¢x Hx 2Hx( )(1—Hy(t))
ox(t,t) W(1— )fo‘l’x(HX(S))deX( )+V>%¢x( X( ))2Hx(t) (1~ Hx(t))
(1))
)

( )
(L 50 () 192w Icw) -+ Y204 (H(0) (1) (1~ Hylt)
( )
( 2

(L ) + (Hy(t)(1— Hx<t>>>} 4.3)

)
)

))2H(t) (L~ (1) _
MO (D)

V(1= 15) Jo 94(Hx(S))2dH(S) + 1204(Hx(1))2Hy (1) (1 — Hi(t)
V(1 — Y5)Hx(t) Jo 9% (Hx(9))2dHy(S) + 2 ds(H,

=T A ) SR OUP(9)2d(S) VB (D)

(t
)?
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where the inequality follows from the Cauchy-Schwartz unaily. From this,we note
that the upper bound goes to 1iff— 1. This was expected since the estimators in both
models become a conditional empirical distribution fumctivhen there is no censoring.
Also, we see that this upper bound is 1 wher +o and isHy(t) wheny — 0. For

a pictorial representation of the relative asymptotic &fficy of the conditional Koziol-
Green estimator over the copula-graphic estimator, weeptén Figure 4.1, the upper
bound for three Archimedean copulas, the independent aggu(t) = —log(t)), the
Fréchet-Hoeffding lower boun@y(t) = 1—t) and the Clayton family copula with = 1
(px(t) = % —1). We use in this picture the conditional distribution ftion Hy(t) to
transform the time-axis t{®, 1].

(a) (b.)

1
1

1
1

1
1

Ratio
Ratio

1
1

1
1

00 02 04 06 08 10

1

00 02 04 06 08 10

1

Time Time

Ratio

00 02 04 06 08 10

Figure 4.1: The upperbound for the ratio of variances, given for the peselent (a.), Fréchet
- Hoeffding lower bound (b.) and Clayton family copul@ £ 1) (c.). Each curve presents a
different percentage of uncensored observations (boitbtog: py = 0.01,0.2,0.4,0.6,0.8).

For the independent copula, we see in Figure 4.1 straiges lior each level of censor-
ing. The Fréchet-Hoeffding lower bound which expresseiseoddant association gives
convex lines while the concordant Clayton copula shows @emtines. In each plot, we
have that the lines converge to 1 at the right end and all suave lying between the
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diagonal and the horizontal line at 1.

4.3.2 Asymptotic confidence band

As a second application of the weak convergence result iorEne 4.1, we derive an
asymptotic confidence band for the conditional Koziol-Grestimator=3)(t). Like in
the work of Hollander and P&na (1989), we introduce an exarameted such that
we have a family of bands and which gives some flexibility ia tonstruction of the
confidence band. For example, by selecting certain valued fee can find a more
narrow asymptotic confidence band when the sample size i emaoderate, or a
more conservative band when we are interested in attinear the end of the support.
We summarize this result as the following theorem.

Theorem 4.2. Assume the conditions (C1) - (C5) withTg,, nhg — 0, (nhy)~Y2logn —
OandA > 0. For eachO < a < 1, let ¢uxhy be such that, as > +o,
124 (0
P( sup A ¢X(Hxh(t))
o<t<T

Bl(l—xh(t)) + %(h(p)/((Hxh(t))(Hxh(t) +A Hxh(t))

Ba(¥h)| < Caxh | = 1—a

(4.4)

Then, as n— 4o,

where B (s) and By(s) are independent Brownian bridges and

A Hxh(t)
Hxh(t) +A Hxh(t)

Dun(t) = (nkh)\)—l/2||KH2%<h¢>/<(Hxh(

Lxh(t)

) (Han(t) + AHun())
% (Fxn(t))

)
¢
Proof. We note that we can rewrite in Theorem 4.1 the Gaussian pU¢e) as, for
a givenA >0,

o KBUE) (F(®) T AHK()
A )

dx(Hx(1))
By (L(t)) + HKllzm

B2()
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where{B;(s)|0 < s< 1} and{B3(s)|0 < s< 1} are independent Brownian bridges and

AR
0= B AR o

Using Theorem 4.1 together with Theorem 1 of Braekers anavwéebeke (2008), Lemma
A.2 of Van Keilegom and Veraverbeke (1997a), Lemma A.1. add&ers and Veraver-
beke (2001) and Slutsky’s Theorem, we have that

A29y(Hx())

D) — . -1/ N .
(Bl =B €)= BabOD T G, ()R + AR

B2(y) in £7[0,T].

Analogously, we find that

AY2x(Fon("))
Balban()) + g ot ariary S200)

A2, (Hy() T
= BuO) + oG amm B2k i 70T

Let
m(©) — P sup [Bulat) + D) g )¢
x oo B R ) (Fe(t) + A (D) 2 )| <
B AY2¢, (Hyn(1))
Tol®) = P(@!‘ﬁ B ) () + AP ) 2 SC)'

Since sup.-t |- | is a continuous functional, we have thatras: -+, nyy(c) — nx(c)

for all c. By Lemma 4.4 below, we have thgj(-) is a continuous function, and hence
SUR..o|Nxh(C) — Nx(c)| — O by Polya’s Theorem (see for example, the work of Serfling
(1980)). More specifically, we see thagn(Cxah) — Nx(Cxah) — 0 and by the definition

of cygh We get thatx(cxah) — 1 — a which finishes our proof. O

Lemma 4.4. Let {B1(s)|0 < s< 1} and {By(s)|0 < s< 1} be independent Brownian

bridges. Let k(t), (0<t <T) be asin (4.5)A > 0. Then

AY26, (Hy(t))
oo B+ G L) (Fh(t) + A (D)

has a continuous distribution.

B2(%)
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We omit the proof of this lemma since it follows the exact $iras the proof of Lemma
A.4 of Van Keilegom and Veraverbeke (1997b), if we take

AY26, (Hy(t))

Yx(t) = Ba(Lx(t)) + V@4 (Hx(t)) (Hx(t) + AHx(t))

B2(%)

4.4 A simulation study

In this section we perform a simulation study to investigiie finite sample coverage
probability of the asymptotic confidence band of Theorem %t covariance structure
of the limiting proces&V(.|x) in Theorem 4.1 precludes the possibility to readily find
values ofcgxh to satisfy (4.4). As a consequence, exact confidence banigfpcannot
be obtained. To circumvent this problem, we develop in thitien, an asymptotically
conservative confidence band. Therefore we start with tttettiat the left-hand side of
(4.4) satisfies the inequality

< Caxh>

< Caxh> (4.6)

A2 (Hxn(t))
Yin®yx(Hxn(t)) (Hxn(t) + A Hxn(t))

P( sup |By(Lxn(t))|+ sup Ba(xh)

0<t<T 0<t<T

AY26, (Han(t))

Bbn() B F0) (Fan(t) + A D)

B2(Y&h)

<P ( sup
0<t<T

Using the independence Bf (Lxy(t)) andBy(n), we convolve and rewrite the left-hand
side of (4.6) as

/CGXh P< sup |B1(Lxn(t))] < Caxh—Y> dP([[A]| <y)
0

o<t<T
[ Quuer Cam - ypae (N < L) (@)
= Coxh — .
o Yda(m(Caxh ™Y ~ M (Y, Lxn(T ), A)
where _
AY2¢ (Hen(1)) Lan(T
A= su B | O (T) = g2l
A R o @) () + AP 2 ] Sl = o

, Bin= 52 andN denotes

— (1/2) 9 (Hxn(t)) (1-Lyn(tA)
My (s Lar(T), A) = (A Bew) oi:Jng ‘ 6/ (Fn)Fhen(t)

a standard normal random variable.
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Mimicking Hollander and P&na (1989), we define a distritnutiunction

* = 2 1
Q" (Cax, ¥, Lx(T),A) = \/;Mx(ca)Q%(jLX(T)?A) .

o 1 y ’
/0 Quy(T) (Cax_y)eXp<_§ (MX(W,Lx(T)J)) )dy

wheredy(T) = Ly(T) andQq,(t) is defined as

1-Ly(T)
1+dk(T) < k
Qum)(C) = 1-20 (‘CXWX)M) 23 (-1 exp(—2ck?) x

(= ampe ) (= ame )

with @(.) being the standard normal cumulative distribution funttiBy choosingcax
to satisfyQ* (Cax, ¥, Lx(T),A) = 1— a, we obtain an asymptotically conservative con-

fidence band

P [Fun(t) — CaxnDxn(t) < Fx(t) < Fen(t) 4+ CaxnDxn(t)] > 1—a (4.8)

To investigate the coverage probabilities of (4.8), we gateedata by taking fixed and
equidistant design pointg = 'ﬁ (i=1,23,...,n). Also, we assume that the survival
timesY; (i =1,2,3,...,n) are independent random variables with~ Weibull(a; +
apX;,b) such that for each design point the conditional survivatcfiom F_.(t) is given

fi e (1))

for some constanta;, a, such thaia; > A(0,—ap) andb > 0. Note thata; + apx; char-
acterizes the shape of the survival distribution of ittiesubject whereal is the scale
parameter.

as

Furthermore, we assume that the censoring intensity paeafe= exp(as +asXi) (i =
1,2,3,...n) for some constantag anday. Using the relation

Gi(t) = ¢x " (Bedx(R(V)),
we obtain informative censoring tim€s based on the Clayton and Frank copula gener-

ator functionsgy(-) at a pre-specified covariate levelith dependence paramet@ras
follows:
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1. we generate two independent uniform (0,1) random vassabandt.

2. we setv = c;1(t), wherecy(v) = 2 {¢§‘1> (¢x(u) +¢x(v))} andc;? is the in-
verse or quasi-inverse of, depending on whethay is a strict or non-strict gen-
erator function.

3. we seCi = G Y(v) and¥; = FY(u).

In particular, we use generatogs(t) = % (t~% — 1) and¢y(t) = —log (%) for

the Clayton and Frank copulas respectively. We investitisesffect of the association
structure on the coverage probabilities by considerinfgiifit choices oB. Note that
each choice ob will lead to a different dependence structure for the Claydod Frank
copulas. Therefore, we use Kendalt'sas a measure of dependence so as to compare
results under the two copula families. This dependence inegsdefined as

k(1)
1(x) = 1+4/0 ALt
in Nelsen (2006) such thatl < 7(x) < 1, where the dependence gets stronger(as
goes away from zero. Also, we investigate the effect of thesoeng intensity on the
coverage probabilities. That s, for each value ©f), we study three different sets of pa-
rametersa;, ap, az anday. In the first se{a; = 1,a, = 0.5,a3 = —2.2,a4 = 2), we chose
the parameters such that the percentage of censored disesva always smaller than
45% (i.e. light censoring). In the second éa&t = 1,a, = 0.5,a3 = —0.2,a4 = 0.4), the
percentage of censored observations is inclusively betwi®eand 55% (i.e. medium
censoring); whereas in the third det; = 1,a, = 0.5,a3 = 0.2,a, = 0.5), the parame-
ters are such that the percentage of censored observasi@hways greater than 55%
(i.e. heavy censoring). At each combination of parameteesgenerate 2000 samples,
each of a sizen. For each of these samples, we estimate the conditionabk@zrieen
survival distribution at a pre-specified covariate lex#bgether with the corresponding
95% confidence band. We use the Gasser-Miller weights giv8ection 1.2 with the
biquadratic kerneK (z) = (15/16) (1—2%) 1 (|2 < 1), since it is the most used type of
weights in fixed design settings. Also, we use bandwigthk= (Iogn/n3/2)2/11 so that
asn — oo, nh, — 0 and(nh,)~¥2logn — 0 . Note that this bandwidth is based on the
assumption made in Theorem 4.2.
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Table 4.1: Coverage probabilities of the asymptotic confidence bamdbedriate levels of 0.65
and 0.97 using the Clayton copula

Coveragg%)
Clayton(A =1) Clayton(A = y¢)
Dependence Nomingbo) Setl Set2 Set3 Setl Set2 Set3

Covariate level = 0.65

90.0 979 995 995 99.8 99.9 99.9
T=-0.99 95.0 99.0 99.9 99.9 99.9 99.9 99.9
99.0 99.9 999 999 99.9 99.9 99.9

90.0 98.1 98.7 995 99.8 99.9 99.9
71 =0.00 95.0 99.4 99.1 99.9 99.9 99.9 99.9
99.0 99.9 999 999 99.9 999 99.9

90.0 949 943 942 99.7 99.9 99.9
71=0.99 95.0 98.2 975 96.4 99.9 99.9 99.9
99.0 99.6 99.6 99.2 99.9 99.9 99.9

Covariate level = 0.65
90.0 87.9 944 947 98.7 99.7 99.8
T=-0.99 95.0 91.8 98,5 96.8 99.5 99.9 99.9
99.0 97.9 995 99.3 99.8 99.9 99.9

90.0 87.5 935 935 984 995 99.9
7 =0.00 95.0 93.2 96,5 97.6 99.7 99.8 99.9
99.0 96.4 99.1 995 99.8 99.9 99.9

90.0 826 785 74.6 984 99.7 99.8
1=0.99 95.0 86.3 85.6 82.1 98.8 99.8 99.9
99.0 948 94.8 925 99.8 99.9 99.9

Next, we compute the coverage probability as the percerdhigamples for which the
confidence band atcovers its corresponding true survival distribution. Intjgalar, we
consider estimation at= 0.97 andx = 0.65 as extreme and non-extreme covariate levels
respectively in order to get some insight into the effect of the coverage probabilities.
Also, we consider the casds= 1 andA = y)% SO as to obtain less and more conserva-
tive confidence bands respectively. In addition, we regeaabove process for different
values ofn (i.e. n = 20,30,50,100,200,300) so as to examine also, the influencenof
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on the coverage probabilities. Nevertheless, we repoyt @sults corresponding to the
minimum sample size (i.en = 50) for which the coverage probabilities (at extreme or
non-extreme covariate level) are at least their correspgnadominal confidence level.
Note that the results for = 0 are only given in Table 4.1 since it represents the in-

dependent copula which is a special case for both the ClaytdnFrank copula when
6 — 0.

Table 4.2: Coverage probabilities of the asymptotic confidence bamderiate levels of 0.65
and 0.97 using the Frank copula

Coverageg%)
Frank(A = 1) Frank(A = y¢)
Dependence Nomin&Po) Setl Set2 Set3 Setl Set2 Set3

Covariate level = 0.65

90.0 99.1 99.6 99.7 99.9 99.9 99.9
T=-0.99 95.0 99.4 99.8 99.8 99.9 99.9 99.9
99.0 99.9 99.9 999 1999 999 99.9

90.0 96.1 94.8 929 99.6 99.9 99.9
T=0.99 95.0 97.8 98.1 96.5 99.9 99.9 99.9
99.0 99.8 995 99.4 99.9 99.9 99.9

Covariate level = 0.65
90.0 89.6 96.3 94.1 98.6 99.6 99.9
T=-0.99 95.0 93.0 98.1 98,5 99.6 99.9 99.9
99.0 97.1 99.4 994 99.8 99.9 99.9

90.0 80.6 77.2 752 98.3 99.4 99.9
71=0.99 95.0 88.1 849 828 989 99.7 99.9
99.0 95.8 945 92.7 99.9 99.9 99.9

In Tables 4.1 and 4.2 we observe that use of Clayton and Figmilas results in simi-
lar coverage probabilities at equivalent censoring iritixssand dependence structures.
This implies that the choice of the copula function (i.e.y@a or Frank) does not have
a significant influence on the coverage probabilities. H@reassuming = y¢, leads
to a non-decreasing trend in the coverage probability witindasing censoring inten-
sity. This can be explained (at least in part) by the fact #satensoring increases, the
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rate of deviation of the conditional Koziol-Green survifahction estimate from the
true survival function is negligible compared to the ratevhich the bands increase with
increasing censoring.

Furthermore, we observe at the extreme covariate level ttiatcoverage probabilities
are at least their corresponding nominal only when we assliimey?. In contrast,

the coverage probabilities at the non-extreme covariatel lere always at least their
corresponding nominal irrespective of whether we asshimey or A = 1. Also for the
non-extreme covariate level, assumihg- 1 results in coverage probabilities which are
at most those under the assumption that 2. As already mentioned, assumifg= 1
yields less (relative td = y?) conservative confidence bands. As such, the particular
choice ofA depends on whether one wants a less conservative confidande b

4.5 Real data illustration: Worcester heart attack study

In this section, we illustrate the asymptotic conditionaziol-Green confidence band
on a real data set. The data set comes from the Worcester Ateggk Study (WHAS)
which was introduced in Chapter 1. As mentioned there, thta det has information
on more than 8000 admissions. Nonetheless, we only cornsiddi0% random sample
of the original data set presented by Hosmer and Lemeshd@®®)18s a consequence,
the data set we utilize in the section has information on d8ly patients. Of these pa-
tients, 82 (17%) died while in admission (censored) wheB88583%) were discharged
(uncensored). We will mainly be concerned about the timé distharge from hospital
of such patients. It is worth pointing out that, the resultghis section are only for
illustrative purpose. As such, we do not give a comparisah vaspect to the analysis
of the complete data set. For details and pointers towagdfintings from the complete
WHAS data set, we refer to Hosmer and Lemeshow (1999).

In this study, we observe that a patient with severe heahiditon is likely to die within

the first few days of admission. However, if such patient dustsdie, then he/she is
most likely to spend many days in hospital bed. Not only setealth conditions would
increase the days that a patient spends in the hospitalldaytfar example, an infection
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from the hospital can increase his/her days in the hospidl B\s such, we allege that
time until discharge from hospit¥ of a patient depends on the time until death in the
hospitalC; (i.e. time until discharge has a negative influence on the timtil death in
the hospital).
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Figure 4.2: Scatter plot of time spent in hospital (LenStay) versus Age.

Figure 4.2 is a scatter plot of the observed time spent initedghenStay) verses age
of the patient at admission (Age) with a distinction betweensored and uncensored
patients. From the figure, we observe that most of the cedsuyservations occurred
among patients whose age is in the neighborhood of 80 yednis. stiggests possible
association between censoring time and age of patientsnaissidn. To formally in-

vestigate the applicability of the conditional Koziol-@remodel, we adapt the partial
Koziol-Green goodness-of-fit test of Braekers and Veraslezl{2003) and calculate the
Kolmogorov-Smirnov, the Cramer-von Mises and the AndefBarling types of test
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statistics given respectively as

1/2
n
Kix = <‘ L )> max ‘an Vn,i’

’KH%Wh(l— Yih 1<i<n—1
2 nh‘l n-1 1 X
Mo = K B i) -Zl(v"" — Vi) Wag) (% Fin)
1=
n n-1 (Vl — %(hV ,')2
A%X = rh n,i n,l Wn(l)(x’ hn)

[IKI13%n(1— Yan) & Vini (1—Vhi)

with ||K|[Z =8,V = z Wk (% Pn) 1 (8¢ = 1) andV; = z Wi (% Pn), (1=1,2,.

481) whered (k) andwn( )(x hn) denotes respectively, the censorlng indicator and Gasser-
Muller weights (with the biquadratic kernel) correspargiio the ordered observed time
spent in the hospital. We test at ages 50 and 75 yearsx(e50 and 75). Hereby we
take as bandwidtty, = 43. This choice is only to illustrate our method. We consder
other choiced, = 33 andh, = 53 (hot shown) but they gave similar results. A formal
method to find the optimal bandwidth is a research area wheklawnot pursue in this
thesis, but it could be a topic of future research.

Table 4.3: Conditional Koziol-Green goodness-of-fit test at ages SD@nyears

Age (years) 50 75
Statistic P-Value Statistic P-Value

Kolmogorov-Smirnov 0.5536 0.9191 1.0033 0.2664
Cramer-von Mises 0.0735 0.7213 0.2934 0.1396
Anderson-Darling 0.8386 0.4531 2.4294 0.0689

From Table 4.3, we observe that thevalues associated with the three goodness-of-fit
test statistics are larger than 5% (critical level). Thus fail to reject the conditional in-
dependence of thg, and thedy. Therefore, we allege that the conditional Koziol-Green
model may be appropriate for the data set at 50 and 75 yeaiag the Clayton and
Frank copulas on this data set, we construct and comparedeang bands around the
conditional Koziol-Green estimate of the survival (lengthstay in hospital) function

at ages 50 (middle aged patients) and 75 years (elderlyngsitien the sequel, we as-
sumeA = 1 so as to obtain less conservative (relative te: 2) confidence bands. In
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Figure 4.3: The conditional Koziol-Green survival function estima¢8sirv Function) and asso-
ciated 95% confidence bands (Conf Band) for middle aged (agf&years) and elderly (age =
75 years) patients under the Clayton (a & b) and Frank (c & gy&zs.

addition, we again use the Gasser-Miiller weights with fhhedxdratic kernel and band-
width h, = 43. Figure 4.3 is a graphical representation of the conditi&Koziol-Green
survival distribution at ages 50 and 75 years for the AMI gras together with their
corresponding 95% confidence band. In the figure, we consigedifferent associ-
ation structures between the survival time (i.e time unstbarge) and the censoring
time (i.e. time until death in the hospital). Firstly, we as® that the survival time and
censoring time are discordant (ie= —0.99) since we expect that small death times in
the hospital are related to large discharge times and viayvé-or a formal definition
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of discordance, we refer to the book by Nelsen (2006). Sdgone assume that the
discharge time and time until death in the hospital are ieddpnt (i.e.1 = 0). Note
that the later assumption may be wrong for this data set. Meryvé is commonly used
in other real data analyses. Therefore, we consider thigehmly as reference for
comparison with the result under the discordant assoaiatio

At 50 years, we observe under the Clayton and Frank copulgar@-4.3) that the sur-
vival distribution under the independent and discordasbeaigtions are close to each
other. As a result, the confidence band constructed undendependent association
clearly covers the survival distribution under the diseodassociation, and vice versa.
This means that, ignoring the possibility of a dependende/d®n the time until dis-
charge from the hospital and the time until death in the Habpiay not have any signif-
icant influence on the estimates based on the conditionabk@zeen survival function
and its associated 95% confidence band for middle aged fsatietowever, the same
cannot be said about elderly patients since Figure 4.3 (bg¢.and (d)) indicate that
the estimated survival distributions under independedtdiscordant associations at 75
years are clearly separated from each other; and that tlielence band under one form
of association does not consistently cover the survivattion under the other form of
association.
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The generalized conditional Koziol-Green
model under dependent censoring

In Chapter 1, we introduced the conditional Koziol-Greetingstor, which was pio-
neered by Braekers and Veraverbeke (2008). Further, weedtuldis estimator and
showed the weak convergence of the associated process pteCla As applications
of the weak convergence result, we first showed the efficientlye conditional Koziol-
Green estimator over the copula graphics estimator of Rraednd Veraverbeke (2005).
Secondly, we developed a confidence band for the estimationlatained some numeri-
cal results.

81
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An important feature of the conditional Koziol-Green esttor is that it assumes char-
acterization (1.10), which holds if and only if the obsefealbariablesz, and o, are
independent. In some situations however, it becomes reagess allow for possible
dependence between these variables. In view of this, wednted a generalization
of the conditional Koziol-Green estimator in Section 1.@fZhapter 1. In the present
chapter, we study further this generalized estimator antdimlsome associated attrac-
tive theoretical and numerical results. To be precise, wahésh the strong consistency
of the generalized conditional Koziol-Green estimator éttin 5.1. In Section 5.2, we
give an asymptotic almost sure representation of the esimadnich, as in the previous
chapters paves way for establishing the weak convergenttee agfssociated process in
Section 5.3. Further, we investigate the finite sample perdoce of the estimator via
a simulation study in Section 5.4. We conclude the chaptén am illustration of the
estimator on the survival of Atlantic halibut data set.

Before giving these results, we complement the definitiorts regularity assumptions
given in Chapter 4 with the following:

Notations

2

L= S, k= S H(t) = ZHu(t) , Fix(t) = ZHx(t)

2. |1l = supeo 1%l [1%!] = SUReo. 11| » [[HxIl = SURe(o.1SURE(oT) [Hx(t)],
|[Hx|| = SUBe[o,1) SUReo,T) Hx(t)]

3. For some general copula functi@i(-, -), we let%y;; (u,v) = d—ﬂ%%(u,v) denote
theith andjth partial derivatives with respect to its first and secondrdmates
respectively

Assumption

(C6) Atevery design point € [0,1] and for everyu € (0,1), the derivativessy o2(u, V),
%x.20(u,v) andéy 11(u, V) exist and are continuous for alke [0, 1].

We do not provide a discussion of this assumption, becauseftthe same nature as
Assumption Al) in Chapter 2 and can also be verified accordingly.
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5.1 Strong consistency result

The main result of this section is the strong consistencyhefgeneralized conditional
Koziol-Green estimator of the survival distribution fuiact, as given in (1.25). Never-
theless, we also obtain an exponential inequality for thienasor. We formalize these as
Theorem 4.1 whose proof relies on Lemma 5.1 below. We omipitbef of this lemma,
since it follows the same lines as that of Lemma 2.1.

Lemma5.1.If {>0,0<n <1—Hy(T)andn = 58— thenvT < Ty,

€5 S
(1-Hx(T)-n)

$x(1)7
204 (8 (#(1 - H(T)) - 94D

< <1 HT) - b B@— H(T) - 005 ).
)) ( 2>

for ¢ sufficiently small.

Theorem 5.1. Under Conditions (C1)-(C6), supposed Ty, ¢,(1) <Oand b, — O as

n— oo,

(a) For € > 0and n sufficiently large, we have

P( sup |Fn(t) — Fx(t)| > s> < 2exp(—dinh,a2e?) +d2nmﬁxexp<

o<t<T

—dsnh,a2e?
4

with

$x(1)
205 (91 (dx(1—Hu(T)) — 94(1)%))

B = 1-H(T)— 9 (ou(1—H(T) - 4i(1)5)

ax —

and d,, do, d3 denoting finite positive constants.

(b) If (nhy)~tlogn — 0, then
sup |Fu(t) —F(t)]—0 a.s.

0<t<T
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Proof. The proof of this theorem is similar to that of Theorem 2.1t Bucompleteness,
we repeat the lines here. Thus, we use the mean value theorantein

Fa(t) —F(t) = — [(ﬁx_l <— /OHXh(t) ¢)’((1—W)<5X701(y§<h,w)dw>

k(1)
_¢;1 <_/OH t ¢)/((1—W)%X01(%(,W)dw>:|
= A(YSHT(1) (10— %) + By H (1)) (Hxn(t) — Hix(t))

where
') g7 q
Ay, H*(t)) = _{0 ﬁf(j- W) 6x11(Y*, w)dw
¢)/<<¢X (_fo ¢>/<(1_W)(5x,01(V*,W)dw>)
and
B(y',H*(t)) = Py(1— H* (1) Gxoaly", H* (1))

85 (95 (— o™ 91— W) Bxoa (o w)aw) )

with y* betweeny, andy,, H*(t) betweerH,n(t) andHy(t).Using integration by parts,
we can easily show that

. 3 Ja g
oztuglA(V*,H ) < o) ozysglrbx(l H*(t))]
and
1

sup [B(y",H'(t))] <

o<t<T

D] SUP 191 -H(1)

Therefore, for all > 0

P< sup |Fxn(t) — K(t)] > £>

0<t<T

§ £
< (I sup [AGY H ()] > )
o<t<T

&
+( sup [Fa(t)— (0] sup [BLY H ()] > 3 )
0<t<T 0<t<T

3 2T 3
S ETCRCIES )

1 o .
2 (5T S0P halt) (0] stp 1841 —H' (1) > 5
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Forn > 0, we can write

P ( sup [Balt) - Rt > ¢

0<t<T

o Kl SUp [44(1—H"(0)] > 3. SUP Ibh(t) ~ Hu(0)] <1
o<t<T o<t<T

= P<|¢j1>|

3 R 2
P (o Hl 20 80K O > 5 03:*3’“*“” 01)

1
+P< sup [Hen(t) — He(t)] sup [$4(1—H*(1))] > =, sup [Hxn(t) —
|¢X(1) 0<t<T 0<t<T 2, o<t<T

1
+P< sup [Hen(t) — He(t)] sup [84(1—H*(1))] > =, sup [Hyn(t) —
|¢x(1)] o<t<T 0<t<T 2 o<t<T

With 0 < n < 1— Hy(T) and satisfying

sup [¢x(1—H"(1))] <[gx(1—Hx(T) = n)l,

0<t<T

we note that this is further bounded above by

P( sup |Fun(t) — K(t)| > £>

o<t<T

/(1
<P (\vxh— Wl > 6@@«_&&% i [Hxn(t) — Hx(t)] < ’7>
$u(1)e

BOLL— (1) — 1) oor [Fan(®) = () > 1 )

sup [Hxn(t) — Hx(t)| > Px(1)e

0<t<T 2¢x(1 HX(T) )70§t§T
$x(1)
(

™

sup |Hyn(t) — Hy(t)| > ,
gtng‘ (t) ~ () 205(1—Hy(T) —n) o<t<t

(
(
(
< P<\vxh—w\> (e n)>
(
(
(

6¢x(1—Hx(T) —

¢x(Le B
6¢4(L—Hx(T)—n) ’oitlﬁ IFan(t) = (1) > '7>

Py (1)
0B IHal) = H()] > o B )

0<t<T 20, (1—Hx(T) —n) o<t<T

Hy(t)) én)

Hx(t)[ > n>

sup |[Hxn(t) — Hx(t)| < r;>

sup |[Hxn(t) — Hx(t)| > r;>

(
sup |Hxn(t) — Hx(t)| > Ol 28 sup |[Hxn(t) — Hx(t)| > r;>
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Choosingn such that) = 2(11’(%%)—'7) we obtain

P ( sup Fult) - Rt > ¢

0<t<T

< P(vah— Wl > %) +3P< sup [Hun(t) — Hx(t)[ > n)

0<t<T
2 _ 2
< exp(—idlng‘n )+d2nmnexp<7d32mn >
2 _ 2
< exp(—dlngnax )+ dznm&(exp<7d32max >

where
$x(1)
26, (91 (¢x(1—He(T)) — $4(1)%))
B = 1-H(T)— ¢ (g1 H(T) - 4y(1)3)

ax —

anddi, d, d3 are finite positive constants. In the preceding displaysdo®nd inequality
follows from Braekers and Veraverbeke (2008) and requivesondition

N = max(|[llebn -+ [l i, VEIIK|l2(nhn) Y2, 21 Fi o 12
while the third inequality follows from Lemma 5.1 above. Trak
€ = &, = do(nhy)~Y?(logn)*/?

with dg a finite positive constant, we get the strong consistenayltres O

5.2 Almost sure asymptotic representation

Similar to Chapters 2 and 3, we now present the generalizeditimnal Koziol-Green
estimator as a weighted summindependent random variables. This representation, as
mentioned before, is a device that aids in obtaining furthepretical properties. We
formulate such a representation as the succeeding theardreraploy it to obtain a
further property in Section 5.3.
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Theorem 5.2. Under Assumptions (C1)-(C4) and (C6), suppose Ty, and h, — O.
Then as n— o,

Fan(t) —Fx(t) = _iWni (X, hn)mix(Zi, &) +ra(t)

where R(t) = O((nhy)"tlogn) a.s., and

1 B
MZ8) = g O =1 [ KWl

Lz St}—Hx<t>>¢;<l—Hx<t>>%x.01<vx,Hx<t>>}

Proof. By a second order Taylor's expansion, we have

Hxh()
o) ~Rl) = g d [ G- Wihorl e wdw
_ /0 (0 ¢)’((l—w)<5X.01(y§<,w)dw}+rn1(t) (5.1)
where
L (01 (N (1))
™l = e )R

Ha®) H(t) 2
{7 o wotmmmaw— [ g1 wisatswaw}

with n (t) between- fOHX“(t> Py (1—W)6x 01( Yan, W)dwand— fOHX(t) Py (1—W)Gx 01( Y, W)dw.

Let

Hxh(t) , Hx(t) /
It) = /0 0! (1 — W) o1 (Y, W)W — /0 0! (1— W) o (i W)dw

OztUSIOT\fm(t)\ < 2611 Oztungyl(t)\

andn(T) lies between- j’OHX“(T) By (1—wW)6x 01( Yan, W)dwand— j’oHX(T) Ox(1—wW)Bx 01( ¥, W)dw.
By Van Keilegom and Veraverbeke (1997a, Lemma A.2), we ki@tt,(T) — Hy(T)
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a.s. Thus, we may suppose tfiat: Ty, SinceT < Ty . LetHI"™M(T) = min(Hyn(T), Hy(T))
and H"®(T) = max(Hxn(T),Hx(T)). Then it follows that the preceding inequality is
further bounded above by

1(6 1 (n°(T))) )
20 DF o MO

with n°°(T) given by
HPHT)
1M == [T sl - WL widw

By the mean value theorem, we further have that

He (1)
sup [1(t)] < |wh— W sup / ¢;(1—W)<5X711(y‘,w)dw‘
0<t<T o<t<T |0
4L~ H (T)] sup [Hin(t) — H(t)
o<t<T
< 11— HIT))) {4|vxh—vx| | sup |Hxh<t>—Hx<t>|}
o<t<T

where the second inequality in the preceding display faltw integrating by parts, the
first term at the right hand side of the first inequality in theng display.

From Van Keilegom and Veraverbeke (1997a, Lemma A.4) aneélens and Veraver-
beke (2001), it can respectively be shown that

sup [Hyn(t) — Hy(t)| = o((nm)*lﬂ(logn)l/z) as. .
o<t<T

Y — W = O((nhn)‘l/z(logn)l/2> a.s.

Consequently, we obtain

% (¢ 1(n°°(T))) 2_ <@>
Sy ()] < 20OF P HH*=0 oh as. (5.2

Next, we use a second order Taylor expansion and note that

Hal) HO
/o ¢x(1—W)Cfx701(%<h,W)dW—/o Oy (1 — W) B 01( Y, W)dw

"Hx(t)
= (k=% /0 Pu(1—wW) Gy 11( %, W)dw
+(Hxn(t) — Hx(t)) ¢y (1 — Hx(t)) Gx( &, Hx(t)) (5-3)
+rﬂ2 (t) + rﬂs(t) + I’n4(t)
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where

%

HX(t)
) = S04 [ LWl widw

s(®) = 5 (Hhalt) — H(0)? {8401 H () ol H: (1)) — 8311 H () Gon(. H (1))
() = (% — %) (Hxn(t) — Hx(1)) dy (1 — Hy (1)) Gxaa (5, Hy (1)

with ¥ betweeny, andy; andH;; (t) betweerHyn(t) andH(t). We now determine the

rate of convergence of,(t), rn,(t) andry,(t).

Integrating by parts, we first obtain

sup [ry()] < \vxh—w{qb;(l—H;(T))Osup Geaol i H )]

0<t<T <t<T
H©
+ sup / X(l—w)%xgo(ﬁ,w)dw‘}
o<t<T |/0
< 3lgg(1—H(T))| sup [Bx20(u,V)|lyen— ¥l , Yue (0,1)
0<v<1
< 3I¢§(l—Hi“ax(T))lOSUpll‘fx.ZO(U,V)IIWh—Vxl , Yue (0,1)
<v<

Using Assumptior(C4), we subsequently obtain

Iogn>
sup |rn,(t)] = O — 54
s (0] = O( ‘o (5.4
Analogously, we can easily show that
Iogn> (Iogn)

sup |rm,(t)] = O — and suplrp,(t)] = O —— 5.5

s (0] = 0o swlra 0] = o) (59
Substituting (5.2)and (5.3) into (5.1), preceded by (5 .5) into (5.3) concludes
the proof. O

5.3 Weak convergence result

As mentioned above, the essence of the almost sure asympptiesentation is to fa-
cilitate the derivation of further properties of the estioraunder consideration. The
objective of the present section is therefore, to use Thed® and prove the weak
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convergence of the proce@sh, )Y/ (Fyn(-) — Fy(+)) associated with the generalized con-
ditional Koziol-Green estimator (1.25) in an appropriapace of functions that will
become clear in what follows.

Theorem 5.3. Suppose the conditions of Theorem 5.2 are satisfied.

(a) Ifin addition nif — 0and 't (logn)® — 0, then
(nho)Y2 (Fan(-) = F(-))  — W(-[)
where W(+|X) is a zero mean Gaussian process with covariance function

Mx(s,t)
He(s) He(t)
= w(l- %()/O ¢X(1—W)<5X711(yg<,w)dw/0 By (1 —W)Ex11( Y, W)dw

+ (Hx(sAt) — Hx()Hx(t)) ¢y (1 — Hx(S)) (1 — Hx(t)) Gx 01, Hx(S)) Gk 01 (14, Hx(1))
Hx(s)
+(H(t) — wHx () dx(1— Hx(t)) 6x.01( ¥, Hx(t))/o Py (1— W) Gx11( Y, W)dw

HHS) ~ WG H(S) Froa(hoH(3) [ B W scaa(p wctw
foralls,t € [0,T).
(b) If hy = cn~1/3, for a positive constant c, then
()2 (Fa() —Fu)) — W(Ix)

whereW(-|x) is a Gaussian process with variance-covariance funcfigfs,t)
and mean function 8-) given by

Kh2 k(1)
Bt) = gtk [ 4wl ww
) Lo

ARG
()01 Hx<t>><€x<w,Hx<t>>}c5/2

Proof. To show the weak convergence of the prodess )2 (F(t) — Fx(t)), we work
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as in Braekers and Veraverbeke (2001). First, we define

bn(x,t) = _iwni (XtEm,(Z,4)

1 H(t)
- m{(ﬁ ; %()/0 by (1 —wW)Gx1a(¥s, W)dw

(e <t>—Hx<t>>¢;<1—Hx<t>>%x<vx,Hx<t>>}

= “ghﬁ . Hx® ,
a W{W/O Oy (1 — W) B 11( Y, W)dw

+Hx<t>¢;<1—Hx<t>>%x<vx,Hx<t>>} +o(F2) +0(nY)

where the last equality in the preceding display followsrfréerts et al. (1994). This
implies the bias
ol) if n 0
(2o ) = 4 O Al

where

K2 Hy(t)
B(t) = #Fh(t)){vx [ 80 wgastmwan
+Hx<t>¢;<1—Hx<t>><fx<vx,Hx<t>>}c5/2

with ¢ denoting a finite positive constant. Therefore we write
n
Fan(t) —F(t) = Zani (% hn) M, (Zi,8) — EM,(Zi, &)] + bn(X,t) +ra(t)
i=
n
= Ziwni (X Pin) & (Zi, &) + bn(x.t) +rn(t) (5.6)
i=

Using Billingsley (1968, Theorem 4.1), it follows that theak convergence of the pro-
cess(nhy)Y2(Fun(-) — Fx(+)) to a Gaussian process in the space of uniformly bounded
real valued functiong™[0, T| is equivalent to the weak convergence of the process

W) = (DR 3 i ()2, 2.8)
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to a Gaussian limit if[0, T]. To do this, we first show the convergence of the finite
dimensional distributions of the process and later appemdth tightness in¢®[0,T].
For the convergence of the finite dimensional distributions define

Wh, = (nhn) Y 2Wh (% hn) &, (Zk, &)
and verify the conditions of Araujo and Giné (1980), as befsee Chapter 3).
For the first condition (see Section 3.4.2), we find after soaleulations that

E <WnkiWnkj>
= nhyw2, (% hn)E [&, (Z«, &) &, (Zk, )]
= nhywj, (X hy) x

Hx(t
{rw [ o wiscapman [ 61 wibaspwn

+ (Hx(ti A1) — Hx(t)Hx(t))) dx(1— Hx(ti)) @y (1 — Hu(t)) Gxon (Y, Hx () Gxo1 (% Hx(t))

x(ti)
)~ B )95~ Hu) Bion ) [ 9L W) Geaa (e wilw

H(t))
+(Hy (t) — wHx(ti)) (1 — Hx(ti)) Gx01( Hx(t|))/o ¢>’<(1—W)<5x711(%<7W)dW}
= Tx(ti,tj) x nhyWA (X; i)

Subsequently, it follows from Lemma 3.1 of Van Keilegom aretaverbeke (1997a)
that

n

n
k=1

k=1
For the second condition, we find after some calculations tha

Hx(t)
Sup (620301 < [1{&=1) ] sup | [ 441 wion( widw
0<t<T o<t<T

+o§tu<pT| L{Zie <t} — Hy (1)) $(1 — Hx(t)) G014, Hx(1)) |

| (1= Hx(T))| <3+ sup %X,Ol(%(,Hx(t))> <o
o<t<T

IN

This gives that

max We,| = O((nhy)~2)  and Z|wnk|2 = 0(1)

1<k<n &
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Consequently, we get

n
> / Wh, |2dP < / |Wnk|2dP
k=17 {Mh[>€} max <k<n [Wh |>€ K1
< =
< O(l)P(lrggﬁ\Wnk] >£> 0(l) as n—o

Hence, it follows from Araujo and Giné (1980) thdhn(t1), Win(t2), ..., Win(tq)) con-
verges in distribution td (0, (tj,t;)) foranyg=1,2,...and any 0< t; <t, <--- <tq.

To establish tightness, we need to show that the pratigs) = 511 (Z(-) —EZy(+))
with Zy, (t) = (nhy)Y2wy, (x;hn)my, (Zi, &) is asymptotically tight in¢®[0,T]. This is
equivalent to verifying the conditions of the bracketingtral limit theorem of van der
Vaart and Wellner (2000, Theorem 2.11.9), as given in Chigte

To do so, we define the index s&t = [0, T] and endowed with the semimetpodefined
by

Hy (t)
/ Oy (1 — W) G5 01( Vs, W)dw]

sup
Hh (')

1 B 1
xelo1] | Px(Fx(t)) ¢ (Fx(t))

, Sup
x€[0,]

p(t,t) = max 3{‘3% | $x(1 = Hx(t)) G o1 Hx(t)) — h(1 — Hx(t)) G0 (15 Hx(1)) ]

sup [Hy(t) — Hx(t)]
x€[0,1]

fort,t’ € .. Njj(¢,.7,L3) is the bracketing number for evemyn a partition.7 = U;.Z,
of the index set into seté?gj such that

ZlE[sup |Zy, (1) — Zni(t’)lzl < & | vj=12.. (5.7)
tteFe

Before we check the first condition of the bracketing ceriinait theorem, we point out
that the functiorm, (Z;, &) is uniformly bounded above by

suplm, (Z.8)] < r¢;<1—HX<T>r{2%x7lo<w,Hx<T>>+sup<fx701<vx,Hx<t>>} <.

teF teF
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Consequently, we have

SUP|Zn (1)] <(nhe)/2]9(1— Hy(T)| {Z%X,lowx, He(T)) -+ SUpGor (e Hx<t>>}wni (x: hy)

te7 te7

<(nhn)2|g5(1— Hy(T)| {Z%X,lo(vx, Hx(T)) + sup@ion (¥ Hx(t))} [1K[lO ((nhn) ™)

te7

<1631~ W) { 2652004 Hu(T) + supon (e (D)} 10 () )
o () 17) <

for sufficiently largen and for allA > 0. This implies, Condition 1 of the bracketing
central limit theorem.

Because our partitior#,; of the index set is constructed independenhoive do not
need to verify the second condition since it is automatjcalitisfied. For the third
condition, we divide the index se¥ = [0, T] into subintervalgt;_1,tj], j =1,2,...,J
with 0=ty <t; < --- <ty =T such that

ptt) < Ce , Vtt €[tjat]

with C denoting a finite positive constant. Furthermore, we defigepiartition.7,, as
Fg = [tj—1,t;[. After some calculations, it then follows that

E [ sup |Zn (t) — Zy (t')[?
t

N EFej

< Snmwnxx:hn>2c252{9\¢;<1—HX<T>>12+2("’““HX””)Z o)

¢x(1) $x(1)?

This implies,
ZLE[ sup [Zy (t) — Zni(t/)|2]

1€ Fej

262f 911 2 o &(1—Hd(T))
< 5nh,C-¢e {9\4))((1 Hy(T))| +2< 1) > 2}21\’\/”' (% hn
20202 o1a/ (1 2 ¢y(1— Hx(T)) ?
< 5nhy||K||5DC%e {9|¢X(1 Hy(T))] +2< 1) > +¢)’((1)2}
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whereD is a finite positive constant. Taking

o ) —-1/2
c — <5anKH§Dc2{9\¢£(1—Hx(T))!2+2(%W) +ﬁ}> ’

we see that the right hand side of the preceding inequalitleg?. That is, a partition
Fe, for F# = [0,T] constructed as described above with the appropriate clufice
satisfies (5.7). For evemy, the bracketing number of this partition can be written as
Nj)(€,.#,L5) = O(e1). Thus, for some positive constadt, we have

/\/IogNH g,.7,Lh)de < / 1/Iog ds

By variable transformation (i.e. substituting= log(C'/¢€)), we obtain

/ ,/Iog ds = ’ eu’?du—0 as & | O
IogC’/cSn)

This establishes the third condition of the bracketing i@ rimit theorem. Hence, the

processN(+) is asymptotically tight ine”[0,T]. This together with the finite dimen-
sional convergence establish the weak convergence ofdisegsnh, )2 (Fen(-) — Fx(-))
to a Gaussian process in the sp&t@, T].

5.4 Numerical results

In the preceding sections of this chapter, we stated andegre@me important theoret-
ical properties of the conditional distribution functiostienator under the generalized
conditional Koziol-Green model. These results are asytitpito nature and rely on the
assumption that the sample sizis sufficiently large. Obviously, the following question
arises: how large is "sufficiently large”? For this purpose, set up a simulation study
to investigate the performance of the estimator in finitedamin Section 5.4.1. As an
illustration, we also apply the estimator to the SurvivalAdfantic halibut data set in

Section 5.4.2.
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5.4.1 Simulation study

The finite sample performance of the generalized conditidisdribution function es-
timator (1.25) under the generalized conditional Kozioe& model will now be ex-
plored through a simulation study. For a desired samplersizee consider fixed and
equidistance design poinks = ln (i=1,2,...,n). We assume that the survival timgs
are independent random variables and are distributed dingaio

Y; ~ Weibull(a; + axx,b),

for some constanta;, ay, b such thata; > min(0,—ay) andb > 0. Furthermore, we
assume that the non-censoring probability for the entitegmends on their design values
through

1
.= , i=12,...n
% 1+exp(ag+ asx;)

whereaz anda, are another set of constants that regulates the censorinfgamiem.
To generate data under the generalized conditional K&zieen model, we employ the
conditional distribution function method (see Nelsen @Qfage 41)) as follows:

For each (=1,2,...,n),

1. we generate two independent uniform variages (0,1) andt; € (0,1)

2. weset;, =cj ¥ (t), wherecy(v)

guasi-inverse of,

=£ % (6 (U) + 9 (v)) andcl Y denotes the

3. we obtairh; as a solution to

(1)~ () + [ 05,1 W)Gculh widw = O

T A tagx a+apX

: 1/b
i l/ b I >[< 3 Xi 1—hi —Qx (U
4. we setf, = ( '09("')> andC, = (_ og 9% " (#5(1-h) ¢.(“>)>>

5. wesezy, = min(Y;,C)andd = 1{Y; <C}
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In the above algorithm, Step 2 generates a pair of uniformalbes at design value
X € [0,1] such that their joint distribution is described by an Archilean copula with
generator functiomy,. By this step, the future coupl#;,C;) will satisfy

Se(tt2) = PO > t1,G > t) = s~ (0% (F (t) + 0% (Gx (t2)))  (5.8)

Afterwards in Step 3 and 4, we obtain the p@fr,Ci) such the observable variablgs
and g also satisfies

He(t) = P(Zi <t,6 = 1) = € (%, Hx (1)) (5.9)
for eachx; € [0,1].

Tables 5.1 and 5.2 summarize the simulation results foemdifft sample sizes each
with 10 000 replicates. The estimates are obtained at 10th, 80th, 70th and 90th per-
centilesQ of the marginal distribution of the survival times and cepend to prescribed
time values for a given design value These percentiles are chosen so as to reflect
the behavior of the Generalized conditional Koziol-Grestineator at various level of
estimation. For the purpose of comparison, the tables &latufes the results under
some competing estimators, namely the conditional Ko2iaen estimator of Braekers
and Veraverbeke (2008) and the conditional copula grapttimator of Braekers and
Veraverbeke (2005).

The results in Tables 5.1 and 5.2 are based on the choicearhpsersa; = 1.5,a, = 0.5,
b=2,a3=—3.5 anday, = 7.5. These parameters are chosen such that small design val-
ues are associated with smaller probability of censoring.thls way, we can easily
explore the effect of censoring intensity on the estimatmrder consideration. For in-
stance, estimation at design vakie- 25% would reflect the behavior of the estimators
on a light censored data set. Whereas estimation at desiga xa 75% would pro-
vide some insight into the behavior of the estimators on ayheansored data. For
all sample sizes, Table 5.1 shows that the results basedeogetteralized conditional
Koziol-Green estimator and conditional copula graphicnestior are close. This was
expected because the copula graphic estimator is moreajé¢inan the generalized con-
ditional Koziol-Green estimator, since the former does aegpend on the relationship
betweerz, anddy. For the estimation at= 75%, we further note that the biases under
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Table 5.1: Absolute biases under the generalized conditional Ko@i@en estimatofFyp,
the conditional Koziol-Green estimaté{}'***®, and the conditional copula graphic estimator

BV(2005)
Fxh .

X=25%

X =50%

X="75%

BV{2008) = BV{2005)
Bn  Fa Fa

BV{2008) = BV{2005)
Fa R Fan

I:xh

BV(2008) = BV(2005)
I:xh I:xh

10
30
n=30 50
70
90

10
30
n=50 50
70
90

10
30
n=100 50
70
90

10
30
n=150 50
70
90

10
30
n=200 50
70
90

0.0002 0.0091
0.0052 0.0169
0.0161 0.0029
0.0276 0.0290
0.0397 0.0474

0.0003 0.0095
0.0025 0.0184
0.0092 0.0085
0.0159 0.0169
0.0239 0.0309

0.0004 0.0086
0.0021 0.0175
0.0066 0.0095
0.0097 0.0105
0.0124 0.0184

0.0002 0.0090
0.0007 0.0181
0.0038 0.0117
0.0068 0.0074
0.0087 0.0145

0.0001 0.0088
0.0005 0.0178
0.0040 0.0111
0.0070 0.0074
0.0072 0.0127

0.0003
0.0053
0.0153
0.0253
0.0375

0.0003
0.0034
0.0084
0.0173
0.0340

0.0001
0.0019
0.0095
0.0095
0.0135

0.0001
0.0003
0.0033
0.0100
0.0133

0.0002
0.0007
0.0045
0.0045
0.0100

0.0083
0.0463
0.0636
0.0615
0.0586

0.0047
0.0359
0.0531
0.0481
0.0407

0.0021
0.0251
0.0412
0.0360
0.0246

0.0016
0.0201
0.0351
0.0292
0.0193

0.0017
0.0177
0.0317
0.0267
0.0159

0.0140
0.0039
0.0415
0.0850
0.0814

0.0174
0.0149
0.0294
0.0710
0.0633

0.0201
0.0263
0.0156
0.0586
0.0475

0.0209
0.0316
0.0082
0.0515
0.0425

0.0210
0.0340
0.0040
0.0488
0.0391

0.0065
0.0635
0.0635
0.0635
0.0532

0.0471
0.0317
0.0470
0.0479
0.0411

0.0039
0.0196
0.0319
0.0381
0.0390

0.0025
0.0251
0.0412
0.0385
0.0155

0.0019
0.0200
0.0219
0.0381
0.0426

0.0444
0.0836
0.0830
0.0789
0.0770

0.0407
0.0732
0.0705
0.0655
0.0599

0.0361
0.0637
0.0611
0.0566
0.0442

0.0329
0.0576
0.0541
0.0501
0.0391

0.0307
0.0543
0.0508
0.0472
0.0364

0.00682D
0.056839
0.148870
0.18a859
0.136838

0.01088490
0.040350
0.146919
0.176210
0.110388

0.016838
0.046810
0.140898
0.176330
0.108220

0.01@6949
0.0306990
0.1506990
0.17@68940
0.10089490

0.016678®
0.030678®
0.150878®
0.170678®
0.096878®

the generalized conditional Koziol-Green estimator anesistently smaller than their
counterparts under the conditional copula graphic estimakhis can be attributed to
the fact that the latter uses only the uncensored obsengatind due to our choice of
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Table 5.2: Variances under the generalized conditional Koziol-GrestimatorF;,, the condi-
tional Koziol-Green estimatd'***®, and the conditional copula graphic estimefgy“**.

Q

X=25%

X=50%

X="75%

BV{2008) = BV(Z005)
Bh Fan Fen

BV{Z008) = BV(Z005)
P Fen Fin

I:xh

BV(2008) = BV(2005)
I:xh I:xh

10
30
50
70
90

10
30
50
70
90

10
30
50
70
90

10
30
50
70
90

10
30
50
70
90

n=30

n=>50

n=100

n=150

n= 200

0.0024 0.0019
0.0064 0.0063
0.0112 0.0123
0.0143 0.0147
0.0092 0.0089

0.0016 0.0012
0.0042 0.0042
0.0071 0.0078
0.0088 0.0091
0.0054 0.0052

0.0009 0.0007
0.0024 0.0024
0.0041 0.0044
0.0050 0.0052
0.0028 0.0027

0.0006 0.0005
0.0017 0.0017
0.0029 0.0031
0.0034 0.0035
0.0019 0.0019

0.0005 0.0004
0.0014 0.0014
0.0023 0.0025
0.0027 0.0028
0.0015 0.0014

0.0039
0.0093
0.0146
0.0172
0.0117

0.0022
0.0055
0.0087
0.0101
0.0064

0.0011
0.0029
0.0048
0.0055
0.0031

0.0007
0.0020
0.0033
0.0037
0.0021

0.0005
0.0016
0.0026
0.0030
0.0016

0.0014 0.0008
0.0037 0.0042
0.0097 0.0109
0.0157 0.0151
0.0110 0.0101

0.0010 0.0006
0.0025 0.0028
0.0063 0.0073
0.0104 0.0102
0.0071 0.0064

0.0006 0.0003
0.0015 0.0016
0.0037 0.0045
0.0059 0.0059
0.0039 0.0034

0.0005 0.0002
0.0011 0.0012
0.0026 0.0033
0.0043 0.0044
0.0029 0.0025

0.0004 0.0002
0.0009 0.0010
0.0021 0.0026
0.0034 0.0034
0.0022 0.0019

0.0028
0.0083
0.0154
0.0207
0.0165

0.0017
0.0050
0.0096
0.0137
0.0101

0.0009
0.0026
0.0054
0.0076
0.0053

0.0006
0.0018
0.0039
0.0053
0.0038

0.0005
0.0015
0.0030
0.0042
0.0029

0.0009 0.00083®
0.0075 0.0009284
0.0218 0.0202749
0.0354 0.026330

0.0235 0.01@972®

0.0006 0.000G620
0.0050 0.006318
0.0154 0.01@925D
0.0239 0.016304
0.0148 0.000259

0.0003 0.000Q10
0.0032 0.006a66
0.0097 0.00015®
0.0150 0.00068D
0.0084 0.00897®

0.0002 0.00000D
0.0023 0.002@4D
0.0073 0.00681®
0.0111 0.00694®
0.0061 0.00653%

0.0002 0.00000%
0.0018 0.00Q03D
0.0059 0.00669®
0.0089 0.006519
0.0049 0.00281®

parameters, most observationsxat 75% are censored. From Table 5.1, we also note
that the biases associated with the conditional Koziole@restimator are in most cases

larger than the corresponding ones under the generalizaditomal Koziol-Green es-
timator. As for the classical conditional Koziol-Greenigsttor, Braekers and Veraver-
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beke (2008) assume a relationship betwggand d,. However they take, in this case,
the wrong assumption of independence.

In Table 5.2, we compare the variances associated with thelaied estimates under
the three competing estimators. Since the copula graptinasr is more general than
the conditional Koziol-Green and the generalized condétid<oziol-Green estimators,
we expect that the latter two estimators have smaller veemm@and are therefore more
efficient. The results in Table 5.2 show that this is true &imeation at covariate values
25%, 50% and 75% with a sample size of at least 30. To get furnbkmght, we repeat the
simulation process for various choices of the Archimedegula generator functiofi,
and the general copulé such that (5.8) and (5.9) are respectively satisfied. Howeve
we do not report these additional results because the csiankiare the same as above.

5.4.2 lllustration on real data: Survival of Atlantic halib ut

In this section, we illustrate the generalized conditidkatiol-Green estimator on the
well known Survival of Atlantic halibut data set. This datt & already introduced in
Chapter 1. It is the result of a study on the size regulatiomefAtlantic Halibut as one
of conservation measures suggested for the trawl and Inadighery. In this section,we
are particularly concerned about the survival time of a gl tvas caught and handled
as in the commercial fishing. In this experiment, the fish issoeed by the time that
it has spent in the holding tank. Some of the fishes were ceddmecause they were
removed from the holding tank within 48 hours to make spaceésv ones. Also, the
fishes that were alive at the end of the experiment were ttesteensored observations.
We refer to Neilson et al. (1989) and Lange et al. (1994) fothfer details about this
data set.

In this study, we observed that, the catch and handling aeziadof great stress for the
fish. In addition, the holding tank which is the fish’s new eomment will cause more
stress. As such, one can expect a number of the fishes to diim wie first few hours

after they have been placed in the holding tank.

Not only the stressful environment will diminish the probigyp of survival for a fish,
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but also, for example, an infection brought into the holdiagk by a sick fish can Kkill
the other fishes as well. Thus, it is reasonable to allegeahibairobability of dying from
infection increases with the time spent in the holding taf&such, the survival tim¥

of a fish depends on the time that it has spent in the holding @anEquivalently, the
time spent in the holding tank has a negative influence onuhsval time. Figure 5.1
is a scatter plot of survival time versus fork length of th@enmental animals with a
distinction between censored and uncensored observatioos the figure, it is clear
that most of the censored observations occurred among figtte$ork length greater
than 39 cm. This suggests possible association betweenragensime and fork length

of the fishes.

Survival Time (hours)

400 600 800 1000 1200

200

* 0000

% Uncensored
O Censored

Fork Length (centimeters)

Figure 5.1: Scatter plot of fork length versus survival time with a distion between censored
and uncensored observations

A further feature of this study is that the occurrence of ¢hesnsoring is a manifes-
tation of the fishes’ endurance abilities. These can inhigrée attributed to several
factors such as the time of the catch and the prevailing githesg temperature or wind,
among others. As a result, we suspect that censoring time beuadditionally infor-
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mative to the survival time through its distribution fumeti As such, the generalized
conditional Koziol-Green estimator could be the outstagdiandidate to estimate the
survival distribution of the time until death, providedatbn (5.9) holds. In this prac-
tical data illustration, we verify condition (5.9) by loalj at the empirical counterpart
and investigate whether, at a desired fork length

Han() = %x (¥, Hxn(t)) (5.10)

nearly holds for alt > 0, where

Ha(t) = iwni(x,hn)]l{zi <t,d =1}
Hun(t) = _iwni(x,hn)]l{zi <t}

Yah = iwni(x,hn)]l{dizl}

with z andd, denoting respectively, the observed time and censoringatat at fork
lengthx; (i =1,2,3,...,n) andwpi(x,h,) is the corresponding weight at fork length
(compare with definitions (1.12) and.{B) in Chapter 1).

Relation (5.10) readily suggests an informal procedurentestigate the relationship
between the observed time and censoring indicator. In otloeds, a plausible func-
tion to describe the relationship between the observedibias at a given covariate
valuex needs to give the best approximationHg (t), uniformly overt > 0. In Fig-
ure 5.2, we present a visual test for the copula function &rrlee the relationship
between the observed time and censoring indicator as defingd10). In particular,
we consider estimation at fork lengths 32 53) and compare Fréchet-Hoeffding lower
bound (F-H lower), Frechet-Hoffding upper bound (F-H upp@roduct, Gumbel bi-
variate logistic, Plackett (with paramet@r= 10), Clayton (with paramete# = 3) and
Frank (with paramete6 = 8) copulas to the empirical quantityy, (Hy!(p)), where
H1(p) = inf{t : Hyn(t) > p} is the quantile function ofixn(t). These copula functions
are given in Nelsen (2006). For convenience, we list thera hespectively in a general
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way as follows:

¢(u,v) = maxu+v—10)
¢(u,v) = min(u,v)
€(uv) = uv
€(uyv) = %/

_ _ — — —
Sy = 1+(6—-1)(u+v) \/[1;(56 l)1)(u+v)] 4uvB(6 — 1)
F(uv) = [max( _170)} 1/

6u ov

F(uv) = _é,og<1+(e e19(e1 ))

Irrespective of the bandwidths (i.e, = 20,40), we notice from the first row of Figure
5.2 that the Gumbel logistic copula gives the best approomdo the empirical quan-
tity. As a result, we consider it as the most plausible caatdido describe the relation-
ship between observed times and the censoring indicatdinssinlata set. However, this
observation is not clear in the second row of Figure 5.2,esthe various copula func-
tion approximations almost coincide with the empirical it H; (Hxh (p)). This is
expected because there is no censoring at fork lead®l, as can be seen in Figure 5.1.
As a consequentin ~ 1, Hj (t) = Hyn(t) for all timet > 0 and

H)?h(t) = %X(WWHXh(t)) ~ HXh(t)v

for all copula functions under consideration. Using the ®ahlogistic copula, we
present in Figure 5.3, the generalized conditional Kodoten estimate of the distribu-
tion function of time until death in the holding tank. In th@stimation, we assume the
Frank copula with generator function

e(foO)u -1
¢x(u) = -—log (W
for the association structure of the survival time and cengdime. This choice has also

been considered by Braekers and Veraverbeke (2005) footiditonal copula graphic
estimator. It allows the dependence structure of the sairtime and censoring time to
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Figure 5.2: Graphical test for the copula function to describe the i@teship between observed
time and censoring indicator.

also depend on the fork lengihand gives a stronger discordance association for larger
fishes, given that all the fishes are kept in the holding tankhi® same amount of time.
Equivalently, this means that the survival probabilityarfjer fishes will be smaller than
the survival probability of the smaller fishes.

For the purpose of comparison, Figure 5.3 also featuresahdittonal copula graphic
and the conditional Koziol-Green estimates of the sunalstribution. Due to the large
proportion of uncensored observations in this data set,bgerve from Figure 5.3 that
the three survival distribution estimates are close to edhbr. This is because, the
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Figure 5.3: Estimates of the survival probabilities of Atlantic haliswnder the generalized
conditional Koziol-Green estimator (black dotted lindig tonditional copula graphic estimator
(blue continuous line) and the conditional Koziol-Greetineator (red dashed line)

performance of the generalized conditional estimator thepther two tends to increase
with decreasing proportion of uncensored observationsis iBhmore obvious in the
second row of Figure 5.3 where all three competing estirsatoincide, due to the
high probability of non-censoring at fork length32. In general, it is obvious that the
Gumbel bivariate copula captures the possible relatipnsaiween the observed times
and the censoring indicator. In addition, Figure 5.3 shdwasthe effect of the bandwidth
choice on the conclusions under these three estimatorgligjitde.
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Nonetheless, it might be appropriate to point out that thaplgical test presented in
Figure 5.1 is for illustrative purpose only. A formal testadpula functions based on
the observable variableg and & is possible and follows the lines of Chapter 3. On
the contrary, it is not possible to perform a formal test om ¢hoice of Archimedean
generator functionp(u) to model the dependence structure of the survival time and
censoring time, since neither of these random variableglisdbservable. By following

the work of Braekers and Veraverbeke (2005), we can howeasrduct a thorough
sensitivity analysis on the choice ¢f. We do not dwell on these any further in this
thesis, but they may be possible areas for future exploratio
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Possible future research

In Chapter 1, we introduced the generalized conditionali®deZreen estimator (1.25).
This estimator is nonparametric and depends on some gexgrala functiors that is
assumed to be knowanpriori. Nevertheless, there are cases where we may be interested
in a certain copula family. For example, when the Plackgtuéis used on the observ-
able variableg; andd (i = 1,2,...,n), then its parameter is the constant odds ratio for
the conditional sub-distributions of the observed vagablin such cases, it might be
appropriate to adopt a semiparametric form of (1.25). Toesehthis, we parameterize

the generalized conditional Koziol-Green model (1.18) asslime instead that

Gx(t) = w(6,K(1)) (6.1)
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with, for every value 0B, vx(0, w) a non-decreasing function af € [0, 1], v(6,0) =0
and w(0,1) = 1. Similar to the nonparametric derivation (see in Secti¢h2), we
find this functionvy(-,-) such that the sub-distribution ate [0,1] of the uncensored
observations satisfies

He(t) = P(Zx<t,00) = 6x(6; %, Hx(t)) (6.2)

where{%x(0;-,-) : 6 € ©} is the desired copula family depending on some unknown
parameter® from a compact parameter spa@e= RY, with d € N. By following the
lines leading (1.25), we easily obtain the semiparametiicrator

_ Hxh(t) A
Fa(t) = I (_/0 dy(1—W) %501 (6; Y, W) dw> (6.3)

in the generalized conditional Koziol-Green model (6.1demdependent censoring. For
this semiparametric estimatogg, andHyy(t) are the nonparametric Stone (1977) type
estimators ofii andHg(t). To obtain the estimatof, we propose a likelihood based
technique. More specifically, we note from (6.2) that thelitkood contribution of the
ith data point is

x.01(0; %, Hx (2)) if di=1
Li(6) = _ .
1-%6x01(0;¥%,Hx(z)) if d=0

Obviously, this leads to the likelihood

_Iﬂl‘fmm(@: Vo e (2)) (1= G.01.(6; . Hy (2))) "

wherez andd; (i =1,2,...,n) are the observed times and censoring indicators respec-
tively. However, we note in this likelihood tha andHy (-) are unknown. Replacing
them by their respective Stone (1977) type counterparts Gdepter 1), subsequently
yields the pseudo-likelihood

Iﬂ!%)q'()l(e; Ve Hxh (Z)) % (1 — .01 (8; Vi, Hxn(z))) 9.

At a design value € [0, 1], we subsequently obtafhas a solution to the weighted score
equation

C _%)2701(%qh7H>qh(Zi))_ o %2701(%qh7H>qh(zi)) B
iZW“‘(X’h“){d'%olmh,m(z)) . d')l—%mmmh,mh@))}‘o
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wherewy, (X, hy) is the Gasser-Muller weight defined in Chapter 1 and

d , T
Cx.01(6;Uv) = (d—elch"Ol(e;u'v)""’ a—%%mm(e;u-v))
is a vector of partial derivatives for each componenf ol the weighted score equation
above, each pseudo log-likelihood contribution is mukiglby the weight. In this way,
those observations close tox have a higher impact in estimatirély

6.1 Theoretical properties

As in the previous chapters, one important step towards ithgoged semiparametric
estimator (6.3) is to show its consistency as an estimattireofrue survival distribution
function Fy atx € [0,1] as well as the weak convergence of the corresponding emlpiric
process to an appropriate Gaussian process with some eaiganariance function. To
carry out these, we first need to establish the consistendyhammality of the prelimi-
nary estimatorn, Hxn and®é. For yn andHy,, these results has already been established
and can be found in the literature. See for example Van Keitegnd Veraverbeke
(1997a) and Braekers and Veraverbeke (2001), among otFersd, we could adapt
the results of Newey (1994) and Chen et al. (2003), who gaweitpye conditions un-
der which a semiparametric estimator that depends on soslimprary honparametric
estimators is consistent and asymptotically normal.

Once the important asymptotic results of the preliminatymestors are established, we
can proceed in parallel with Chapter 5 and ascertain theeategieoretical properties
of the semiparametric estimator (6.3). Furthermore, ithihige appropriate to deter-
mine the validity of the generalized semiparametric céoditl Koziol-Green estimator
in practical applications. Similar to Chapter 3, this wilduce to testing for the null
hypothesis

Ho:  Hy(t) — 6x(6o; ¥, Hx(t)) =0 forall t >0,

due to the infeasibility of a formal test to ascertain theedefence structure that gov-
erns the joint distribution of the survival time and censgrtime. For the alternative
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hypothesis, we may allow for any deviation of the conditian-distribution of the un-
censored observations from tigesection of the general copula functi@i(9;.,.). To
establish the necessary conditions for the validity of thtareator (6.3), we can further
mimic the theoretical development of the testing proceguesented in Chapter 3. In
line with Chapter 3, it might also be convenient to consideoatstrap approximation
of the testing procedure.
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Samenvatting

In hedendaagse wetenschappelijke onderzoeken, ontmegtierak studies waarvan de
primaire interesse gericht is op niet-negatieve readtigivalen. Een specifiek voorbeeld
hiervan zijn de overlevingsstudies waarbij de reactiedsie de tijd tot een bepaalde
gebeurtenis is. Dit soort studies worden toegepast in sivenderzoeksgebieden. In
techniek bijvoorbeeld, is de tijd tot het falen van een magbbmponent belangrijk. Bij
de sociale wetenschappen, kijkt men naar de duur van stkirde duur van werk-
loosheid of de duur van huwelijken in sommige maatschappije een medische con-
text heeft men overlevingsstudies wanneer men de tijd toelen na een kankertumor,
de tijd tot herstel na een chirurgische operatie of de leiemsvan sommige biologische
organismen onderzoekt. Bij verschillende overlevingdistu staat de responsvariabele
"tijd” niet voor de letterlijke tijd. Bijvoorbeeld, in kwdteitscontrole of betrouwbaarheid
in de productie is men meestal geinteresseerd in de kraechbdig is om een onderdeel
onbruikbaar te maken. Terwijl in economie, stelt dit hetragdsoor dat door een verzek-
eringsmaatschappij wordt betaald in het geval van schade.

Door verschillende praktische redenen kunnen we de respa@rgbelen niet volledig
waarnemen voor elke studieobject. Bij enkele studieobieoemen wij hun exacte re-
sponstijd waar, terwijl voor anderen objecten is slechtiegéelijke informatie voor de
responstijd beschikbaar. Eén bron van gedeeltelijkerimétie is censurering. Bijvoor-
beeld in een medische studie waar de overlevingstijd doohagkwaal belangrijk is. In
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dit geval, het is mogelijk dat sommige patienten stervenaaaere ziekten zodat hun ex-
acte overlevingstijd niet kan worden waargenomen. Nakneijnneer een patiént sterft
zonder een hartkwaal, is de enige informatie over de oviedstijd van een hartkwaal
dat dit groter is dan de waargenomen overlevingstijd. Weneoedeze overlevingstijd
rechts gecensureerd.

Ondanks dat censurering een integraal deel vormt van eimglestudies, heeft dit gevol-

gen voor het trekken van conclusies in dergelijke studiesrig moeten we niet-verifieerbare
veronderstellingen maken over de associatie tussen denegpverlevings) variabele en

de censureringsvariabele. Onder de veronderstellingedaterlevings en censureringsvari-
abele onafhankelijk zijn, vormt de Kaplan en Meier (1958)atter een inferenciéle basis
voor de verdeling van de overlevingstijd.

In sommige studies zien we dat de censureringsvariabetenatief is voor de over-
levingsveranderlijkey door zijn distributiefunctie. Om deze informatieve cemsing
te behandelen, stelde Koziol en Green (1976) een submodelwaarbij de distribu-
tiefunctie F van de overlevingsveranderlijRé en de distributiefuncties van de cen-
sureringsveranderlijke voldeden aan de volgende relatie

1-G(t) = (1-Ft)* , gp>o.

Volgens Kochar en Proschan (1991) , kunnen we gemakkelijkoaan dat de vooraf-
gaande karakterisering van dit submodel gelijkwaardigislzet feit dat de waarneem-
bare variabeleZ = min(Y,C) end = 1{Y < C} onafhankelijk zijn. Gebaseerd op deze
extra veronderstelling en de onafhankelijkheid YaanC, hebben Abdushukurov (1987)
en Cheng en Lin (1987) gevonden dat

F M) = (L-H®),

waarbijy het percentage van ongecensureerde observatie$lis pde distributiefunctie
vanZ is. Door het vervangen vanenH (-) door respectievelijke empirisch schattggs
enHy,(-), de auteurs verkreeg de volgende schatter van de oversiifatistributie

Fact) = (1—Ha(t)".

Zij bestudeerden de asymptotische eigenschappen van dgesa@n toonden zijn supe-
rioriteit over Kaplan and Meier (1958) schatter in termen waymptotische efficiency.
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\Volgens Csorgb (1988) is de praktische toepasbaarheid:_p%t(-) beperkt aangezien
het kleine aantal data sets waarvoor de onafhankelijkheidaderstelling oZ en &
houdt. In Hoofdstuk 1 van de thesis, introduceerden wij eimraiding vanF°(-)
waarbij we de onderliggende onderstellingen generalisedamelijk enerzijds hebben
we de associatie tuss&nenC, en anderzijds is er een verband tusBean G. Voor de
eerste veronderstelling nemen we aan zoals in Rivest ers \(2€l01) dat de gezamenli-
jke overlevingsdistributie vay enC voldoet aan

Sti,t) = P(Y>14,C>t) =Y (p(F(t) +¢(G(t))),

waarbij F(t) = 1 —F(t) en G(t) = 1— G(t) de respectievelijke overlevingsdistribu-
ties zijn vanY enC. De functie¢ : [0,1] — [0,] is een bekende generator van de
Archimedische copula functie. We noter¢fr! voor de pseudo-inverse van deze gen-
erator zoals weergegeven in Nelsen (2006). Voor de tweedersielling veralgeme-
nen wij het verband tussef en G indirect door een andere copula funcéeop de
waarneembare variabel@eny zodat de sub-distributie van de ongecensureerde obser-
vaties gegeven wordt door

HYt) = P(O6=L1Z<t)=%(y,H(1)),

waarbij y = P(d = 1) het verwachte aandeel ongecensuurde observatiesHgten-
P(Z <t) is de distributie van het waargenomen overlevingstijd. Wéstuderen de
asymptotische eigenschappen van de uitgebreide schattirafdstuk 2 en testen zijn
toepasselijkheid door een goodness-of-fit-procedure ofdibuk 3.

In Hoofdstukken 4 en 5 beschouwen wij de situatie waarbipnkxtra gemeten vari-
abelen (covariaten) beschikbaar zijn. Deze covariatenzifle meeste voorbeelden niet
van primair belang voor de onderzoeker, maar ze hebben kattmel om de distribu-
tie van de overlevingstijd te beinvioeden. Als voorbediehken wij aan een studie die
inzicht probeert te geven in de distributie van de lengte eam verblijf voor patiénten
in een ziekenhuisopname. Hierbij is het duidelijk dat deritlistie van de overlev-
ingstijd (duur van het ziekenhuisverblijf) door de leeftgn/of een medische conditie
(ernstigheidsgraad van de ziekte) van de patiént bij ogriean worden beinvioed. Voor
een meer technische voorstelling van dit probleem, vemstelien we daty,, Yy, , , Yx,
onafhankelijke overlevingstijden zijn op vaste desigriparnx; < X < --- < X,. Elke
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Yy IS geassocieerd met een censurerende verande@ijke Bij elk ontwerppuntx;,
zijn de waarneembare variabelgg = min(Yy,,Cx ) endy, = 1{Yy < Cy}. Wij behan-
delen deze regressie setting op twee manieren. Eerst,destallen wij dat bij een
bepaalde covariaat waardec [0,1], de distributiefunctie, van de overlevingstijd
bij x en de distributiefuncti€, van de censuringsveranderlijkg bij x voldoet aan de
voorwaardelijke Koziol-Green karakterisering

1-Gut) = (1-Ft)P,

waarbij B > 0 slechts afhangt van x. Gelijkaardig als in de situatie eorabvari-
aten, veronderstellen we dat de mogelijke afthankelijkihesdery, enC, gegeven is een
Archimedische copula functie die voldoet aan

Stite) = P(Y%>t,Co>t2) = Y (Sx(Felta)) + dx(Gx(t2)) -

Deze assumptie samen met de voorwaardelijke Koziol-Grarakkerisering leidt tot het
voorwaardelijke Koziol-Green model

() = b Y (dx(Fx(1))),

voor de voorwaardelijke overlevingsdistributie van dertaxéngstijd onder afhankelijke
censurering waarbi = P(0 = 1) enHy(t) = P(Z« <t). In dit model krijgen we de
schatter

") = o Y (Ve (Fn(D)))

met yn het gewogen percentage ongecensureerde observatikg(ende gewogen em-
pirische distributie van de waargenomen overlevingsiijd.voorafgaande schatter werd
voorgesteld door Braekers en Veraverbeke (2008). De auteanden zijn consistentie
en asymptotische normaliteit aan. In Hoofdstuk 4, complearen wij hun resultaat met
de zwakke convergentie van het bijbehorende proces. Gahalkiend van dit recentere
resultaat toonden wij de asymptotische efficiency aanﬁ_@nover de copula-graphic
schatter van Braekers en Veraverbeke (2005) . In hetzelddédbtuk, ontwikkelden
wij een betrouwbaarheidsband vdéfhv en illustreren deze op een praktische data set
-Worcester Heart Attack Study.
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Overeenkomstig het scenario zonder covariates, veralygmeij de onafhankelijkhei-
dsbeperking ofZx en & en verkrijgen, na wat algebra, de algemene voorwaardelijke
Koziol-Green schatter

— Hxh(t)
B = ok (= [ - witon( o wiaw).

met yn enHyy zoals vroeger bepaald. In Hoofdstuk 5, bestudeerdelfrywin maakten
zijn consistentie en zwakke convergentieresultaten djkidé/erder, onderzoeken wij
zijn eindige steekproefeigenschappen via een simulatisten illustreren het op de
"Atlantic halibut data set”.
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