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Abstrat

For the analysis of lustered survival data, two di�erent types of models that take the assoiation into aount,

are ommonly used: frailty models and opula models. Frailty models assume that onditional on a frailty term

for eah luster, the hazard funtions of individuals within that luster are independent. These unknown frailty

terms with their imposed distribution are used to express the assoiation between the di�erent individuals in a

luster. Copula models on the other hand assume that the joint survival funtion of the individuals within a

luster is given by a opula funtion, evaluated in the marginal survival funtion of eah individual. It is the

opula funtion whih desribes the assoiation between the lifetimes within a luster. A major disadvantage

of the present opula models over the frailty models is that the size of the di�erent lusters must be small and

equal in order to set up manageable estimation proedures for the di�erent model parameters. We desribe in

this manusript a opula model for lustered survival data where the lusters are allowed to be moderate to

large and varying in size by onsidering the lass of Arhimedean opulas with ompletely monotone generator.

We develop both one- and two-stage estimators for the di�erent opula parameters. Furthermore we show the

onsisteny and asymptoti normality of these estimators. Finally, we perform a simulation study to investigate

the �nite sample properties of the estimators. We illustrate the method on a data set ontaining the time to �rst

insemination in ows, with ows lustered in herds.
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1 Introdution

Multivariate survival data onsist of multiple lifetimes whih are linked to eah other in some

sense. In lustered survival data, subjets in the same luster are assumed to share some

harateristi or environment, and are therefore expeted to be more similar with respet to the

hazard of the event. For example, in a multi-enter linial trial, patients of one enter form a

separate luster. To analyze this type of multivariate survival data, two di�erent tehniques that

take the assoiation between the individuals into aount, are ommonly used, namely frailty

models and opula models.

In frailty models, the interest lies on the hazard funtion of an individual, onditionally on an

unknown frailty term for the luster ontaining this individual. In these models, we follow a

onditional viewpoint and investigate the in�uene of di�erent ovariates on the hazard funtion

of an individual, given the luster. The frailty term for eah luster expresses that we assume

that di�erent individuals in the same luster behave in a similar but unknown manner. We

onsider this frailty term as a realization of a random variable with a given frailty distribution

and allow it to vary over the di�erent lusters. This approah is explained in detail in Duhateau

and Janssen (2008) and Wienke (2011).

To estimate the di�erent parameters in frailty models, we make use of the onditional viewpoint

of these models. Hereby we assume that di�erent individuals within the same luster are treated

as independent of eah other, onditionally on this ommon frailty term. In the onstrution

of the likelihood funtion of a frailty model, this assumption is utilized by �rst looking at

the onditional ontribution of an individual within a luster to the likelihood funtion and

afterwards integrating over the frailty distribution. In this way, the frailty model approah

has the advantage that it allows that the number of individuals within a luster may vary

over the di�erent lusters. However, a major disadvantage of the frailty model is that the

marginal survival funtions in the frailty model ontain the assoiation parameter of the frailty

distribution (Goethals et al. (2008)). This has led to the orret observation by, e.g., (Hougaard,

1986, p. 676) that the assoiation parameter in a frailty model an be obtained from the marginal

survival funtions alone. Additionally, overdispersion in the data, as ompared to the proposed

density funtion, is required in a frailty model in order to pik up assoiation.

Copula models, on the other hand, are spei�ed in terms of the marginal distribution of an

individual. The assoiation between di�erent individuals within a luster is modelled by intro-

duing a opula funtion that links the marginal survival funtions together to obtain the joint

survival funtion.

To estimate the di�erent parameters in opula models, often two stages are used. In the �rst

stage, the parameters of the marginal survival funtions are estimated, and then inserted in the

opula funtion. In the seond stage, the parameter(s) of the opula funtion are estimated.
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Thus, both in the model spei�ation and parameter estimation, the parameter(s) desribing the

assoiation is kept separate from the other parameters. Most reported opula models, however,

only use lusters in whih the luster size is small and onstant over the di�erent lusters as

it is then straightforward to de�ne and estimate the marginal survival funtions. For example,

Shih and Louis (1995) introdued a opula model for multivariate survival data and provided

estimation methods for the unknown parameters in a bivariate setting. Glidden (2000) and

Andersen (2005) extended the approah of Shih and Louis (1995) to inlude ovariates into the

marginal survival funtion, but also here the lusters only had size two. Massonnet et al. (2009)

extended these models further for lusters of size 4 to model the time until infetion in the

four di�erent quarters of a ow udder. Although Glidden (2000) gives theoretial results for

the Clayton opula in a balaned design with a �xed luster size N and Othus and Li (2010)

do the same in an unbalaned design for the Gaussian opula model, to our knowledge, opula

models in general have not been used for lustered multivariate survival data with a luster

size of more than 4 or for a luster size whih di�ers over the lusters. The hoie of a small

and onstant luster size is a diret onsequene of the di�ulty to write down the likelihood

funtion for the observed lustered survival data. For example, if the luster size is equal to

two, there are 4 di�erent ontributions to the likelihood for the observed outomes within the

luster, depending on whether none, the �rst, the seond or both individuals in this luster are

ensored. This leads to a likelihood funtion onsisting of 4 di�erent terms where every term is

found by taking derivatives of the joint survival funtion over the unensored omponents in an

observed ouple. If the luster size is three, the number of possible ombinations inreases to 8,

while a luster size of 4 leads to 16 di�erent ombinations. In a general setting with a luster

size equal to n, we have 2n possible ombinations. Sine a likelihood funtion also ontains

2n di�erent possible terms and eah term is found by taking derivatives of the joint survival

funtion over the unensored omponents in a ombination, it is a huge task to get an expression

for the likelihood funtion when a general n-dimensional opula funtion is onsidered for the

assoiation between the di�erent individuals within a luster. In pratie it is impossible to

alulate a losed form for all the derivatives of a opula funtion if the order n is large.

For the lass of Arhimedean opula funtions, we will solve this numerial problem in this

manusript and show that the onstrution of the likelihood funtion for this lass of opula

funtions simpli�es onsiderably suh that we an allow the luster size to be moderate to large

and varying over the di�erent lusters. The key to this solution is that the joint survival funtion

of an Arhimedean opula funtion an be rewritten as a mixture distribution of independent

ontributions in a similar way as in the frailty model approah. Although some of the expressions

of the Arhimedean opula funtion resemble that of the frailty model, the two models di�er in

an essential way due to their di�erent inferential viewpoint, i.e., marginal versus onditional.

The artile is organized as follows. In Setion 2 we introdue a new formulation of the Arhimedean

opula model by rewriting the likelihood ontributions in terms of Laplae transforms. In Se-

tion 3 we present the theoretial results onerning estimators arising from this model, starting
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from parametri and semiparametri approahes. Setion 4 gives an overview of a large lass of

distributions for whih the likelihood ontributions are easy to generate. In Setions 5 and 6, we

report simulation results along with results for a data example. The data set and our ode an

be found at our website (http://www.vetstat.ugent.be/researh/ArhimedeanCopula/). Proofs

of asymptoti results are given in the Appendix.

2 Desription of the model

We develop a opula model for lustered survival data in whih the size of eah luster may be

di�erent. Let K be the number of lusters (i = 1, . . . ,K). In eah luster, we denote the lifetime

for the di�erent individuals by a positive random variable Tij , j = 1, . . . , ni where ni is the

number of individuals in luster i. For eah individual, we assume that there is an independent

random ensoring variable Cij suh that under a right ensoring sheme, the observed quantities

are given by

Xij = min(Tij , Cij)

δij = I(Tij ≤ Cij)
, i = 1, . . . ,K, j = 1, . . . , ni.

The risk of failure may also depend on a set of ovariates Zij , whih are possibly time-varying.

We assume that the joint survival funtion for the lifetime of the di�erent individuals within

luster i is given by

S(ti1, . . . , tini |Zi1, . . . ,Zini) = P (Ti1 > ti1, . . . , Tini > tini |Zi1, . . . ,Zini)

= ϕθ

[

ϕ−1
θ (S(ti1|Zi1)) + · · ·+ ϕ−1

θ (S(tini |Zini))
]

where S(tij |Zij) = P (Tij > tij |Zij) is a ommon marginal survival model for the lifetime Tij ,

given Zij . The generator ϕθ : [0,∞[→ [0, 1] of a parametri Arhimedean opula family is a

ontinuous stritly dereasing funtion with ϕθ(0) = 1 and ϕθ(∞) = 0. We denote by ϕ−1
θ

the inverse funtion of ϕθ. Sine we want the Arhimedean opula funtion to be orretly

de�ned for any luster size, we assume that this generator is ompletely monotoni. This means

that all the derivatives exist and have alternating signs: (−1)m dm

dtmϕθ(t) ≥ 0, for all t > 0 and

m = 0, 1, 2, . . . (see Nelsen (2006)). The generator ϕθ is a Laplae transformation of a positive

distribution funtion Gθ(x) with Ḡθ(0) = 1 (Joe, 1997),

ϕθ(t) =

+∞
∫

0

e−txdGθ(x), t ≥ 0.

Hene we an rewrite the joint survival funtion for luster i as

S(ti1, . . . , tini |Zi1, . . . ,Zini) =
+∞
∫

0

e
−x

ni∑

j=1
ϕ−1
θ (S(tij |Zij))

dGθ(x) (1)

=
+∞
∫

0

ni
∏

j=1
e−xϕ−1

θ (S(tij |Zij))dGθ(x).
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In this way, the Arhimedean opula funtion an be seen as a mixture distribution, onsisting

of independent and identially distributed omponents whih depend on a ommon fator that

has Gθ as distribution. We use this struture to derive the likelihood funtion. The ontribution

of luster i, with luster size ni, to the likelihood funtion orresponds to the derivative of the

ni-dimensional joint survival funtion over all unensored individuals in this luster. Sine the

joint survival funtion does not hange when the individuals within the luster are permuted,

we note that only the number of unensored individuals determines the derivative. Hene, the

ontribution of luster i to the likelihood funtion is given by

Li = (−1)di
∂di

∂{δij = 1}S(xi1, . . . , xini |Zi1, . . . ,Zini)

where ∂{δij = 1} is the set of unensored individuals in luster i and di =
ni
∑

j=1
δij , the size of

this set.

Using representation (1) of the joint survival funtion, this derivative is given by

Li =

+∞
∫

0

e
−x

ni∑

j=1
ϕ−1
θ (S(xij |Zij))

ni
∏

j=1

[

−xf(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij

dGθ(x)

where f = −dS/dt is the onditional density of the lifetime Xij .

Combining the ontributions over the di�erent lusters, we get the following likelihood funtion

L =
K
∏

i=1

+∞
∫

0

e
−x

ni∑

j=1
ϕ−1
θ (S(xij |Zij))

ni
∏

j=1

[

−xf(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij

dGθ(x)

=

K
∏

i=1

+∞
∫

0

ni
∏

j=1

e−xϕ−1
θ (S(xij |Zij))

[

−xf(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij

dGθ(x). (2)

In general it is di�ult to evaluate expression (2) exept for very spei� hoies of the dis-

tribution Gθ. Sine the generator ϕθ is the Laplae transform of Gθ, there is an alternative

expression for this likelihood funtion whih is found by using derivatives of this generator, i.e.

ϕ
(m)
θ (t) =

+∞
∫

0

(−x)me−txdGθ(x). Hene the likelihood funtion an be rewritten as

L =
K
∏

i=1





ni
∏

j=1

[

f(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij


ϕ
(di)
θ





ni
∑

j=1

ϕ−1
θ (S(xij |Zij))



 . (3)

Remark: In the frailty model framework (Duhateau and Janssen, 2008, p.119), we note that

we �nd a similar expression for the joint survival funtion in frailty models, with Gθ(x) as the

frailty distribution of the unknown frailty term in the luster. Starting from the onditional

viewpoint in frailty models, we �nd a similar expression for the joint survival funtion as follows.
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The joint onditional survival funtion for a luster i is given by S(ti1, . . . , tini |Zi1, . . . , Zini , Ui)

with Ui the frailty term with distribution Gθ(u) and generator ϕθ(·). Denote the onditional

umulative hazard funtion for subjet j from luster i by H(tij |Zij , Ui) = Hc(tij |Zij)Ui. The

marginal joint survival funtion is obtained by integrating out the frailty term:

Sf (ti1, . . . , tini |Zi1, . . . , Zini) =

∞
∫

0

S(ti1, . . . , tini |Zi1, . . . , Zini , ui)dGθ(ui)

=

∞
∫

0

S(ti1|Zi1, ui) . . . S(tini |Zini , ui)dGθ(ui)

=

∞
∫

0

exp(−ui

ni
∑

j=1

Hc(tij |Zij))dGθ(ui)

=

∞
∫

0

exp(−ui

ni
∑

j=1

ϕ−1
θ (Sf (tij |Zij)))dGθ(ui) (4)

due to the onditional independene assumption. The two joint survival funtions (1) and

(4) are indeed similar, but note that S(tij |Zij) 6= Sf (tij |Zij). More spei�ally Sf (tij |Zij) =

ϕθ(Hc(tij |Zij)) and therefore, the marginal survival funtion in (4) ontains the assoiation

parameter. This an important distintion between the frailty model and the opula model.

3 The estimation proedures

In this setion, we investigate a one- and two-stage parametri estimation method and a two-

stage semi-parametri estimation method to estimate the di�erent parameters in this model.

Shih and Louis (1995) demonstrated how this an be done for a bivariate survival data set

and derived asymptoti properties of the estimators. Joe (1997, 2005) disussed a general

framework for studying asymptoti e�ieny. We extend their results to lustered survival data

with lusters of varying and possibly large size.

For equal-sized lusters with luster size n having the same ovariate struture, baseline survival

funtions an be estimated for eah jth univariate margin, j = 1, . . . , n, where the jth subjet

always has the same ovariate information. Sine in our appliation lusters have varying size,

we annot order the omponents within a luster and estimate the baseline survival of all jth

omponents. We assume that all subjets have the same baseline survival, whatever the luster,

and introdue subjet spei� ovariate information.
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3.1 One-stage parametri estimation

Let β be the parameter vetor for the margins, ontaining distribution-spei� parameters for

the baseline survival and ovariate e�ets. We use the likelihood funtion L(β, θ) as derived in

(2) and (3). Write Uβ(β, θ) =
∂ logL(β,θ)

∂β , Uθ(β, θ) =
∂ logL(β,θ)

∂θ . Solving

{

Uβ(β, θ) = 0

Uθ(β, θ) = 0

simultaneously, we �nd the maximum likelihood estimate (β̂, θ̂). From maximum likelihood

theory (Cox and Hinkley, 1974), we know that under regularity onditions,

√
K(β̂ − β, θ̂ − θ)

onverges to a multivariate normal distribution with mean vetor zero and variane-ovariane

matrix I
−1
, where I is partitioned into bloks:

I =

(

Iββ Iβθ

Iθβ Iθθ

)

.

Here, KIββ is the variane-ovariane matrix of Uβ, KIβθ is the ovariane vetor between Uβ

and Uθ and KIθθ is the salar variane of Uθ, so

Var(θ̂) =
1

Iθθ
+

Iθβ(I
−1)ββIβθ
I2θθ

. (5)

In pratial appliations, standard errors of parameter estimates an be retrieved from the

diagonal elements of the inverse of the Hessian matrix I.

3.2 Two-stage parametri estimation

Two-stage parametri estimation, also referred to as the method of inferene funtions for mar-

gins (Xu, 1996), has been used mainly for multivariate models whenever a multi-parameter

numerial optimization for maximum likelihood estimation is too time-onsuming or infeasible.

In the �rst stage, β is estimated by β by onsidering all subjets as independent, identially

distributed random variables, i.e. solving

U
∗
β(β) =

K
∑

i=1

ni
∑

j=1

δij
∂ log f(xij|Zij)

∂β
+ (1− δij)

∂ log S(xij |Zij)

∂β
= 0.

Under regularity onditions,

√
K(β − β) onverges to a multivariate normal distribution with

mean vetor zero and variane-ovariane matrix (I∗)−1
V(I∗)−1

, where V is the variane-

ovariane matrix of the sore funtions U
∗
β and I

∗
is the Fisher information of U

∗
β. The

use of the robust sandwih estimator is required sine (I∗)−1
is not a onsistent estimator of

the asymptoti variane-ovariane matrix due to the orrelation between survival times. In the
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seond stage, the assoiation parameter θ is estimated by plugging in the estimates for the mar-

gins into the likelihood expression (3), whih is then maximized for the assoiation parameter

θ. The two-stage estimator for θ is the solution to

Uθ(β, θ) =
∂ logL

∂θ
(β, θ) = 0.

Theorem 1. Let θ denote the solution to Uθ(β, θ) = 0 and let θ0 be the true value of the asso-

iation parameter. Under regularity onditions,

√
K(θ − θ0) onverges to a normal distribution

with mean zero and variane

Var(θ) =
1

Iθθ
+

Iθβ(I
∗)−1

V(I∗)−1
Iβθ

I2θθ
. (6)

The proof of Theorem 1 is provided in the Appendix. To estimate this quantity, we make

use of (I∗)−1
V(I∗)−1

, the robust variane obtained in the �rst step; I−1
θθ and Iβθ are obtained

from the Hessian matrix of the one-stage proedure, whih an be estimated numerially by

performing one iteration of the one-stage optimization in whih we evaluate the Hessian matrix

in the two-stage parameter results.

3.3 Two-stage semiparametri estimation

In the two-stage semiparametri estimation proedure, the marginal survival funtions are esti-

mated using the Cox proportional hazards model (Cox, 1972). Formulas for the standard error

of the estimated ovariate e�et β̌ and the estimated umulative hazard Λ̌ that aount for

lustering an be found using a sandwih formula (Spiekerman and Lin, 1998).

In the seond stage, maxθ L(θ; β̌, Λ̌) is solved for θ̌.

Theorem 2. Under regularity onditions C.1-C.7 in the Appendix, (θ̌; β̌, Λ̌) is a onsistent

estimator for (θ0;β0,Λ0).

The results for β̌ and Λ̌ follow from arguments along the lines of Spiekerman and Lin (1998).

The onsisteny of θ̌ is proved in the Appendix. Also following Spiekerman and Lin (1998), we

an show that

√
K(β̌−β0) onverges to a mean zero normal distribution and that

√
K(Λ̌−Λ0)

onverges to a mean zero Gaussian proess.

Theorem 3. Under regularity onditions C.1-C.7 in the Appendix,

√
K(θ̌ − θ0) onverges to a

normal distribution with mean zero and variane

Var(Ξ1)

W (θ0)2
.

The proof of this theorem and the preise de�nition of Ξ1 and W (θ0), together with their

estimators, an be found in the Appendix.
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4 Copula likelihood expression for distributions from the PVF

family

The power variane funtion family of distributions, denoted PVF(α, δ, γ), is a large lass of

distributions for whih Hougaard (2000) states that the Laplae transforms orrespond to

L(s) = exp

[

− δ

α
((γ + s)α − γα)

]

with derivatives

L(k)(s) = (−1)kL(s)
k
∑

j=1

ck,j(α)δ
j(γ + s)jα−k,

where the oe�ients ck,j(α) are polynomials of order k− j in α, given by the reursive formula

ck,1(α) =
Γ(k − α)

Γ(1− α)
, ck,k = 1

ck,j(α) = ck−1,j−1(α) + ck−1,j(α)(k − 1− jα)

This allows for a losed form expression of the opula likelihood (3).

Example 1: The one-parameter gamma distribution with density

gθ(x) =
x1/θ−1e−x/θ

θ1/θΓ(1/θ)
, θ > 0.

is found as the limiting ase α = 0, δ = γ = 1/θ. Failure times are independent when θ

approahes zero. The Laplae transform is

L(s) = ϕθ(s) = (1 + θs)−1/θ

whih is the generator of the Clayton opula. The Clayton opula has lower tail dependene,

whih, in a survival ontext, orresponds to a higher assoiation later in time.

Example 2: The hoie α = θ, δ = θ, γ = 0 leads to the positive stable distribution with

density

gθ(x) = − 1

πx

∞
∑

k=1

Γ(kθ + 1)

k!
(−x−θ)k sin(θkπ)

with 0 < θ < 1. Feller (1971) shows that this density funtion an be found by Fourier inversion

of the Laplae transform

L(s) = ϕθ(s) = e−sθ

whih is the generator of the Gumbel-Hougaard opula. Small values of θ provide large orrela-

tion and survival times are independent as θ approahes 1. The Gumbel-Hougaard opula has

upper tail dependene, implying a stronger orrelation between the lower survival times.
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Example 3: Another PVF distribution is obtained by hoosing α = 1/2, δ = (2θ)−1/2, γ =

(2θ)−1
. This is the inverse Gaussian distribution with variane θ. The density is de�ned by

fθ(x) =

√

1

2πθ
x−3/2 exp

( −1

2xθ
(x− 1)2

)

with θ > 0. The Laplae transform is

L(s) = ϕθ(s) = exp

(

1

θ
−
(

1

θ2
+ 2

s

θ

)1/2
)

.

5 Simulation study

We generate 1000 data sets with 50, 200 or 500 lusters of size varying uniformly between 2 and

50. Survival times are simulated from respetively a Clayton opula with θ0 = 0.2, 0.5, 1.0, 1.5

or from a Gumbel-Hougaard opula with θ0 = 0.2, 0.5, 0.65, 0.8, and with, in both settings,

Weibull marginal survival funtions S(t) = λtρ exp(β′Z), hoosing ρ = 1.5, λ = 0.0316 and

Z a dihotomous ovariate with e�et β = 3. The values of the assoiation parameter θ for

both opula models are hosen suh that the aording values of Kendall's tau are omparable.

Data are generated using the sampling algorithm of Marshall and Olkin (1988). The ensoring

distribution is also Weibull, with parameters (λC = 0.0274, ρC = 1.5) and (λC = 0.1464, ρC =

1.5) yielding ensoring perentages of 25% and 50%, respetively. The performanes of one-

stage parametri estimation, two-stage parametri estimation and two-stage semi-parametri

estimation are summarized in Tables 2, 3 and 4. For eah opula, simulation results are listed

in inreasing order of assoiation. For the Clayton opula, higher values of θ orrespond to a

higher degree of assoiation via τ = θ
θ+2 whereas the inverse link holds for the Gumbel-Hougaard

opula (τ = 1 − θ). For eah degree of assoiation, we report the mean estimated values of θ̂,

θ and θ̌ in the �rst row. Mean standard errors together with the overage are reported in the

seond row. Standard errors of one-stage parametri estimators are alulated from the inverse

Hessian matrix. In the two-stage parametri approah, standard errors are found via formula

(6). In the two-stage semiparametri ase, we used the grouped jakknife to obtain standard

errors (Lipsitz et al., 1994; Lipsitz and Parzen, 1996). As in the work of Othus and Li (2010) we

noted that the variane expression in the two-stage semiparametri estimation method is rather

ompliated to implement. We assessed the performane of the jakknife proedure in the two-

stage parametri model by omparing the standard error through the theoretial expression with

a jakknife alternative. Sine the results were virtually the same, we only show the standard

error alulated from the theoretial expression.

Note that, as the number of lusters inreases from K = 50 (Table 2) to K = 200 (Table 3),

standard errors are halved sine they are proportional to 1/
√
K. For the Gumbel-Hougaard

opula, the bias of the estimates are not notieably a�eted by an inreasing perentage of

10



ensoring, Only when we go from the one-stage parametri estimation method to the two-stage

estimation methods we have an inrease in the bias. However the standard errors beome a bit

larger when more ensoring is present. For the Clayton opula, we observe that the bias of the

estimators inreases more when the perentage of ensoring inreases than in the ase of the

Gumbel-Hougaard opula. For the standard errors, we see in the Clayton opula similar results

as for the Gumbel-Hougaard opula. The ombined e�et of the inreased bias and slightly

di�erent standard errors for the Clayton model in omparison of the Gumbel-Hougaard model

explain why the overages are smaller in the Clayton model than in the Gumbel-Hougaard

model. A general observation is that biases and standard errors tend to shrink as θ0 approahes

independene. In eah of Tables 2, 3 and 4, the largest biases are found in the semiparametri

ases where θ0 has moved far away from independene. The transition from K = 50 to K = 200

and K = 500 leads to a redution of the bias, whih also follows from the asymptoti proofs

in the Appendix. However, when the number of lusters is small and the variability of luster

sizes is large, the two-stage parametri and semi-parametri proedures are not reommended.

Although omputationally more demanding, the one-stage parametri proedure yields the best

results in every setting.

6 Modelling time to �rst insemination in ows lustered in herds

In dairy attle, the alving interval (the time between two alvings) should be optimally between

12 and 13 months. One of the main fators determining the length of the alving interval is

the time from parturition to the time of �rst insemination (Duhateau and Janssen, 2004). The

objetive of this study, amongst others, was to quantify the orrelation between insemination

times of ows within a herd. Insemination at a dairy farm is typially done by the farmer itself,

relying on his experiene. In this way, we get some insight into this proess. The data set

inludes 181 lusters (farms) of di�erent sizes, ranging from 1 ow to 174 ows. The ensoring

perentage is 5.5%. The parity of the ow (0 if multiparous, 1 if primiparous) is added as a

ovariate. In the parametri approah, we �rst assume a Weibull distribution for the times to

�rst insemination

S(t) = exp(−λ exp(β′Z)tρ)

and model the assoiation struture by a Clayton opula and a Gumbel-Hougaard opula. In

Table 1, the results are listed for the parity e�et and assoiation parameter, using the one-

stage parametri, two-stage parametri and two-stage semiparametri estimation proedures.

In addition, a model with pieewise onstant baseline hazard was also �tted, beause it has the

advantage of a �exible baseline hazard - making it a good alternative for the semiparametri

model - but is also parametri , and thus the one-stage estimation proedure an be used.

Hereby utpoints are hosen suh that eah time interval ontains 5% of the events.

In both opula models, the results for the parity e�et are similar for all estimation ap-

11
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Figure 1: Estimated survival urves for multiparous ows

proahes (see Table 1). The hazard ratio in the one-stage Weibull-Clayton model equals

0.92 (95% CI: [0.89, 0.95]), and is 0.95 (95% CI: [0.92, 0.97]) for the Weibull-Gumbel-Hougaard

model. Both the parametri Weibull and semiparametri two-stage approahes lead to a hazard

ratio of 0.94 (95% CI: [0.90, 0.98]). For the PWE-Clayton and PWE-Gumbel-Hougaard models,

hazard ratios are 0.93 (95% CI: [0.90, 0.96]) and 0.94 (95% CI: [0.92, 0.97]), respetively. Within

eah opula model, the parameter estimates for θ vary over the di�erent estimation tehniques.

The lowest values of θ are observed for the one-stage Weibull models and the highest for the

two-stage semiparametri models. Regarding the simulation results in Setion 5, we emphasize

that the one-stage parametri proedure is most reliable for relatively small sample sizes. If the

Weibull assumption is questionable, a pieewise exponential model for the hazard funtion is

reommended.

Clayton opula Gumbel-Hougaard opula

Weibull Weibull PWE Semipar. Weibull Weibull PWE Semipar.

one-stage two-stage one-stage two-stage one-stage two-stage one-stage two-stage

β −0.082 −0.066 −0.070 −0.060 −0.055 −0.066 −0.058 −0.060

(0.017) (0.022) (0.016) (0.021) (0.013) (0.022) (0.014) (0.021)

θ 0.212 0.324 0.352 0.447 0.624 0.766 0.661 0.790

(0.015) (0.050) (0.034) (0.063) (0.016) (0.018) (0.013) (0.016)

Table 1: Estimation results for time to �rst insemination data

A visual hek of the estimated marginal survival urves (see Figure 1) reveals why the di�erene

between the estimated assoiation parameter θ in the one-stage Weibull-Clayton and PWE-

12



Clayton is so large (0.212 versus 0.352). The di�erene between the estimated marginal survival

funtions is largest for later times, whih are the times when the Clayton opula imposes a

higher dependeny. If the Weibull assumption is inorret, the estimated assoiation parameter

will also lak auray. In this example, we used both a Clayton and a Gumbel-Hougaard opula

to illustrate our tehniques. At this moment, we did not fous on a goodness-of-�t test for the

seletion of the opula funtion. This will be done in the future.

7 Disussion

The urrent opula methodology only allows the modelling of multivariate survival data that are

grouped in lusters of small and equal size. A new formulation for the likelihood of Arhimedean

opula models for survival data is developed, that allows for lusters of large and variable size.

The failure times within a luster are assumed to be exhangeable and the whole data set is

used to estimate a ommon marginal baseline survival. The survival funtions of subjets di�er

through the inorporation of ovariates (possibly time-dependent). For opula members of the

PVF family, a losed form expression of the likelihood exists, whereas other hoies require

numerial integration. We investigated the parametri one-stage and two-stage approah as

well as the semiparametri two-stage approah and derived asymptoti results for the estimators

under a reasonable set of onditions. Simulation results show that all three methods work well

for luster sizes ranging from 2 to 50. Even larger lusters an be attained, at the ost of larger

omputing time. For samples with less than 100 lusters, the two-stage estimation approahes

are not reommended sine they lead to larger bias and less overage. As an alternative to

the �exible semiparametri model, a pieewise onstant hazard (or, by extension, e.g. splines)

an be used while modelling the marginal survival funtion. This artile is an extension of the

work of Shih and Louis (1995), who derived founding results for bivariate data, and the work of

Glidden (2000), who investigated the two-stage semiparametri model for the Clayton opula,

as it desribes the use of opula funtions for lusters with large and varying luster size.
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0% ensoring 25% ensoring 50% ensoring

Copula Parametri Parametri Semiparametri Parametri Parametri Semiparametri Parametri Parametri Semiparametri

model τ θ0 one-stage two-stage two-stage one-stage two-stage two-stage one-stage two-stage two-stage

Clayton 0.09 0.2 0.197 0.193 0.191 0.196 0.194 0.194 0.197 0.195 0.195

(0.043; 93.1%) (0.042; 89.7%) (0.045; 85.9%) (0.047; 92.0%) (0.047; 90.7%) (0.049; 88.9%) (0.055; 92.1%) (0.055; 91.3%) (0.056, 88.9%)

0.2 0.5 0.498 0.486 0.463 0.496 0.489 0.479 0.495 0.491 0.485

(0.084; 93.2%) (0.091; 84.3%) (0.010; 76.8%) (0.091; 92.9%) (0.097; 88.1%) (0.105; 85.3%) (0.101; 92.7%) (0.106; 89.8%) (0.113; 87.8%)

0.33 1.0 0.997 0.973 0.875 0.996 0.981 0.938 0.997 0.990 0.959

(0.160; 93.5%) (0.176; 81.9%) (0.174; 71.8%) (0.166; 92.9%) (0.182; 86.9%) (0.195; 81.7%) (0.178; 92.3%) (0.194; 88.9%) (0.205; 85.7%)

0.43 1.5 1.479 1.436 1.226 1.478 1.451 1.365 1.476 1.469 1.402

(0.234; 92.1%) (0.253; 83.9%) (0.229; 63.0%) (0.240; 92.6%) (0.262; 87.5%) (0.273; 81.3%) (0.252; 91.7%) (0.278; 88.5%) (0.287; 84.9%)

G-H 0.2 0.8 0.803 0.801 0.803 0.804 0.802 0.803 0.804 0.802 0.804

(0.034; 93.6%) (0.042; 88.6%) (0.041; 89.0%) (0.036; 94.3%) (0.045; 89.0%) (0.044; 87.7%) (0.039; 94.9%) (0.048; 87.8%) (0.048; 86.0%)

0.35 0.65 0.656 0.655 0.661 0.656 0.656 0.662 0.656 0.656 0.664

(0.040; 93.5%) (0.048; 89.4%) (0.049; 89.5%) (0.042; 93.3%) (0.051; 89.2%) (0.052; 88.9%) (0.045; 94.6%) (0.055; 88.0%) (0.056; 86.4%)

0.5 0.5 0.507 0.507 0.521 0.508 0.508 0.522 0.507 0.509 0.525

(0.040; 93.3%) (0.046; 91.2%) (0.047; 90.4%) (0.041; 93.6%) (0.048; 90.5%) (0.050; 90.2%) (0.043; 94.3%) (0.051; 88.4%) (0.054; 86.9%)

0.8 0.2 0.205 0.208 0.247 0.205 0.209 0.250 0.205 0.211 0.258

(0.022; 94.7%) (0.023; 92.3%) (0.030; 68.5%) (0.022; 94.2%) (0.025; 92.6%) (0.032; 67.2%) (0.023; 95.1%) (0.026; 89.7%) (0.035; 60.9%)

Table 2: Simulation results for 50 lusters of varying sizes ranging from 2 to 50

1
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0% ensoring 25% ensoring 50% ensoring

Copula Parametri Parametri Semiparametri Parametri Parametri Semiparametri Parametri Parametri Semiparametri

model τ θ0 one-stage two-stage two-stage one-stage two-stage two-stage one-stage two-stage two-stage

Clayton 0.09 0.2 0.199 0.198 0.197 0.199 0.198 0.198 0.199 0.199 0.199

(0.021; 94.4%) (0.022; 93.3%) (0.025; 90.8%) (0.024; 94.4%) (0.024; 94.0%) (0.025; 92.6%) (0.027; 95.3%) (0.028; 94.8%) (0.029; 94.0%)

0.2 0.5 0.498 0.498 0.489 0.498 0.498 0.495 0.498 0.499 0.497

(0.042; 94.3%) (0.052; 90.8%) (0.059; 88.8%) (0.045; 94.6%) (0.052; 92.6%) (0.057; 92.0%) (0.050; 93.3%) (0.055; 93.4%) (0.060; 92.5%)

0.33 1.0 0.994 0.990 0.953 0.993 0.990 0.978 0.994 0.992 0.984

(0.079; 95.3%) (0.101; 90.8%) (0.110; 86.8%) (0.083; 94.3%) (0.099; 92.6%) (0.108; 90.7%) (0.088; 95.1%) (0.102; 93.4%) (0.109; 92.0%)

0.43 1.5 1.494 1.484 1.401 1.494 1.488 1.463 1.496 1.491 1.472

(0.118; 94.2%) (0.147; 90.1%) (0.152; 82.2%) (0.121; 94.4%) (0.145; 91.2%) (0.155; 90.4%) (0.127; 94.8%) (0.148; 91.8%) (0.157; 91.1%)

G-H 0.2 0.8 0.802 0.801 0.802 0.801 0.801 0.801 0.801 0.800 0.801

(0.017; 95.8%) (0.022; 93.2%) (0.022; 92.4%) (0.018; 94.6%) (0.024; 92.4%) (0.024; 91.6%) (0.020; 95.5%) (0.026; 92.2%) (0.026; 91.6%)

0.35 0.65 0.652 0.652 0.654 0.652 0.652 0.654 0.652 0.652 0.655

(0.020; 95.2%) (0.025; 93.9%) (0.026; 93.0%) (0.021; 95.0%) (0.027; 93.3%) (0.028; 93.4%) (0.022; 95.4%) (0.030; 92.8%) (0.030; 93.0%)

0.5 0.5 0.503 0.503 0.507 0.502 0.503 0.508 0.502 0.503 0.509

(0.020; 94.8%) (0.024; 93.8%) (0.024; 93.4%) (0.020; 94.7%) (0.025; 93.7%) (0.026; 93.3%) (0.021; 95.1%) (0.028; 93.2%) (0.029; 93.0%)

0.8 0.2 0.201 0.202 0.215 0.201 0.203 0.217 0.201 0.203 0.220

(0.011; 95.3%) (0.012; 94.7%) (0.014; 81.4%) (0.011; 94.0%) (0.013; 94.5%) (0.015; 81.2%) (0.011; 94.7%) (0.013; 93.9%) (0.016; 76.9%)

Table 3: Simulation results for 200 lusters of varying sizes ranging from 2 to 50

1
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0% ensoring 25% ensoring 50% ensoring

Copula Parametri Parametri Semiparametri Parametri Parametri Semiparametri Parametri Parametri Semiparametri

model τ θ0 one-stage two-stage two-stage one-stage two-stage two-stage one-stage two-stage two-stage

Clayton 0.09 0.2 0.200 0.200 0.199 0.200 0.200 0.200 0.200 0.199 0.200

(0.013; 95.4%) (0.014; 94.2%) (0.016; 92.6%) (0.015; 95.3%) (0.016; 94.1%) (0.017; 93.7%) (0.017; 94.9%) (0.018; 95.2%) (0.019; 94.8%)

0.2 0.5 0.501 0.499 0.493 0.501 0.499 0.498 0.501 0.500 0.499

(0.027; 95.4%) (0.033; 92.2%) (0.039; 89.9%) (0.029; 94.9%) (0.033; 92.8%) (0.037; 91.7%) (0.032; 94.6%) (0.035; 93.4%) (0.038; 93.2%)

0.33 1.0 0.999 0.994 0.973 1.000 0.996 0.990 0.999 0.997 0.992

(0.050; 94.8%) (0.065; 91.8%) (0.072; 89.1%) (0.053; 94.1%) (0.064; 92.9%) (0.070; 92.1%) (0.056; 94.2%) (0.065; 93.0%) (0.070; 93.2%)

0.43 1.5 1.498 1.496 1.453 1.498 1.497 1.485 1.497 1.498 1.490

(0.075; 93.8%) (0.098; 93.4%) (0.104; 88.8%) (0.077; 94.3%) (0.095; 93.7%) (0.101; 93.4%) (0.081; 93.5%) (0.095; 93.4%) (0.102; 93.9%)

G-H 0.2 0.8 0.800 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.802

(0.011; 93.6%) (0.014; 94.3%) (0.014; 92.9%) (0.011; 95.5%) (0.015; 93.3%) (0.015; 93.0%) (0.013; 95.4%) (0.017; 93.6%) (0.017; 93.0%)

0.35 0.65 0.651 0.652 0.653 0.651 0.652 0.653 0.652 0.652 0.654

(0.013; 95.4%) (0.016; 95.3%) (0.017; 95.1%) (0.013; 95.9%) (0.017; 93.7%) (0.018; 93.6%) (0.014; 94.6%) (0.019; 93.8%) (0.020; 92.9%)

0.5 0.5 0.501 0.502 0.504 0.501 0.502 0.505 0.502 0.502 0.505

(0.013; 96.9%) (0.015; 95.0%) (0.016; 94.8%) (0.013; 94.9%) (0.016; 93.8%) (0.017; 93.4%) (0.014; 95.8%) (0.018; 93.9%) (0.018; 93.6%)

0.8 0.2 0.201 0.201 0.208 0.201 0.201 0.209 0.201 0.202 0.211

(0.007; 95.7%) (0.008; 95.4%) (0.009; 86.7%) (0.007; 95.9%) (0.008; 95.4%) (0.009; 86.1%) (0.007; 95.0%) (0.009; 94.6%) (0.010; 83.2%)

Table 4: Simulation results for 500 lusters of varying sizes ranging from 2 to 50

1
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Appendix: Theorems and proofs

Proof of Theorem 1. Let β0 denote the true parameter vetor for the margins. Expanding the sore funtion

U
∗
β in a Taylor series around β0 and evaluating it at β = β, we get under regularity onditions of maximum

likelihood theory

U
∗
β(β) = 0 = U

∗
β(β0) +

∂U∗
β

∂β

∣

∣

∣

∣

β=β0

(β − β0) + op(
√
K).

Similarly,

Uθ(β, θ) = 0 = Uθ(β0, θ0) +
∂Uθ

∂β

∣

∣

∣

∣

(β,θ)=(β0,θ0)

(β − β0) +
∂Uθ

∂θ

∣

∣

∣

∣

(β,θ)=(β0,θ0)

(θ − θ0) + op(
√
K).

By the law of large numbers, as K → ∞,

− 1

K

∂U∗
β

∂β
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∣

∣

∣

β=β0

=
1

K

K
∑

i=1

− ∂

∂β
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∗
i,β(β0) → I

∗ = E

[

− ∂

∂β
U

∗
1,β(β0)

]

− 1

K

∂Uθ

∂β

∣

∣

∣

∣

(β,θ)=(β0,θ0)

=
1

K

K
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− ∂

∂β
Ui,θ(β0, θ0) → Iθβ

− 1

K
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∣

∣

∣

∣

(β,θ)=(β0,θ0)
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1

K
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− ∂
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Ui,θ(β0, θ0) → Iθθ.

Hene

1√
K

(

U
∗
β(β0)

Uθ(β0, θ0)

)

→
√
K

(

I
∗ 0

Iθβ Iθθ

)(

β − β0

θ − θ0

)

.

By the entral limit theorem,

1√
K

(

U
∗
β(β0)

Uθ(β0, θ0)

)

onverges to multivariate normal with mean

(

0

0

)

and

variane-ovariane matrix

(

V 0

0 Iθθ

)

with V = Var

(

U
∗
1,β(β0)

)

= E
[

U
∗
1,β(β0)

2
]

. Thus,

√
K

(

β − β0

θ − θ0

)

onverges to multivariate normal with mean vetor zero and variane-ovariane matrix

(

I
∗

0

Iθβ Iθθ

)−1(

V 0

0 Iθθ

)(

I
∗

0

Iθβ Iθθ

)−1T

=





(I∗)−1
V(I∗)−1T −(I∗)−1

V(I∗)−1T
Iβθ

Iθθ
−Iθβ(I∗)−1

V(I∗)−1T

Iθθ

1
Iθθ

+
Iθβ(I∗)−1

V(I∗)−1T
Iβθ

I2
θθ



 .

The lower right element of this matrix is the asymptoti variane of

√
K(θ − θ0) and we denote this by σ2

.

σ
2 =

1

Iθθ
+

Iθβ(I
∗)−1

V(I∗)−1
Iβθ

I2θθ
.

18



Before we prove Theorem 2 and 3, we �rst introdue some notation.

Yij(t) = I{Xij≥t}

Λ̌(t) =

∫ t

0

d
∑K

i=1

∑ni
j=1 δijI{Xij≤u}

∑K
i=1

∑ni
j=1 Yij(u) exp[β̌

′
Zij(u)]

=

K
∑

i=1

ni
∑

j=1

δijI{Xij≤t}
∑K

k=1

∑nk
l=1 I{Xkl≤Xij} exp[β̌

′
Zkl(Xij)]

Hij = exp

(

−
∫ τ

0

Yij(u) exp[β
′
Zij(u)]dΛ(u)

)

H
0
ij = exp

(

−
∫ τ

0

Yij(u) exp[β
′
0Zij(u)]dΛ0(u)

)

Ȟij = exp

(

−
∫ τ

0

Yij(u) exp[β̌
′
Zij(u)]dΛ̌(u)

)

Hij(t) = exp

(

−
∫ τ

0

Yij(u) exp[β
′
Zij(u)]d(Λ + t(Γ− Λ))(u)

)

Note that Hij = Hij(0).

L(θ;β,Λ) =
K
∏

i=1

Li(θ;β,Λ)

=

K
∏

i=1





ni
∏

j=1

[

1

ϕ′
θ

(

ϕ−1
θ (Hij)

)

]δij


ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)

lK(θ) = K
−1 logL(θ;β,Λ)

= K
−1

K
∑

i=1

{

ni
∑

j=1

δij log

[

1

ϕ′
θ

(

ϕ−1
θ (Hij)

)

]

+ logϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)}

lK0(θ) = K
−1 logL(θ;β0,Λ0)

ľK(θ) = K
−1 logL(θ; β̌, Λ̌)

UK(θ) =
∂lK(θ)

∂θ
= K

−1 ∂ logL(θ;β,Λ)

∂θ

= K
−1

K
∑

i=1

{

ni
∑

j=1

δij
[

ϕ
′
θ

(

ϕ
−1
θ (Hij)

)] ∂

∂θ

[

ϕ
′
θ

(

ϕ
−1
θ (Hij)

)]−1

+

[

ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)]−1
∂

∂θ

[

ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)]}

UK0(θ) =
∂lK0(θ)

∂θ
= K

−1 ∂ logL(θ;β0,Λ0)

∂θ

ǓK(θ) =
∂ľK(θ)

∂θ
= K

−1 ∂ logL(θ; β̌, Λ̌)

∂θ

We opy the following notation from Spiekerman and Lin (1998) where a⊗0 = 1,a⊗1 = a and a⊗2 = a′a:

S
(r)(β, t) = K

−1
K
∑

i=1

ni
∑

j=1

Yij(t) exp[β
′
Zij(t)]Zij(t)

⊗r
, s

(r) = E
[

S
(r)(β, t)

]

(r = 0, 1, 2)

E(β, t) =
S(1)(β, t)

S(0)(β, t)
, e(β, t) =

s(1)(β, t)

s(0)(β, t)

V (β, t) =
S(2)(β, t)

S(0)(β, t)
−E(β, t)⊗2

, v(β, t) =
s(2)(β, t)

s(0)(β, t)
− e(β, t)⊗2

Assume the following regularity onditions where τ > 0 is a onstant (e.g. end of study time).

C1. β is in a ompat subset of R
p
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C2. Λ(τ ) < ∞
C3. θ ∈ ν, where ν is a ompat subset of Θ

C4. P (Cij ≥ t ∀t ∈ [0, τ ]) > δc > 0 for i = 1, . . . ,K and j = 1, . . . , ni

C5. Write Zij(t) = {Zij1(t), . . . , Zijp(t)}. For i = 1, . . . ,K, j = 1 . . . , ni, k = 1, . . . , p

|Zijk(0)|+
∫ τ

0

|dZijk(t)| ≤ BZ < ∞ a.s. for some onstant BZ

C6. E

[

log
Li(θ1;β,Λ)

Li(θ2;β,Λ)

]

exists for all θ1, θ2 ∈ Θ, i = 1, . . . ,K

C7. A =
∫ τ

0
v(β0, u)s

(0)(β0, u)dΛ0(u) is positive de�nite.

Proof of Theorem 2. The results for β̌ and Λ̌ follow from arguments along the lines of Spiekerman and Lin

(1998). We will now show the onsisteny of θ̌ using ideas of Othus and Li (2010).

To aount for the fat that plug-in estimates of β and Λ are used in the likelihood for θ, we will need to

take a Taylor series expansion of the likelihood of θ around β0 and Λ0. Sine Λ0 is an unspei�ed funtion,

this expansion will need to inlude a funtional expansion term. An expansion using Hadamard derivatives is

appropriate for this situation. Hereto, we must verify that the log-likelihood lK(θ) is Hadamard di�erentiable

with respet to Λ.

We �nd the Hadamard derivative of lK w.r.t. Λ at Γ−Λ ∈ BV [0, τ ] by taking the derivative of K−1 logL(θ;β,Λ+

t(Γ− Λ)) with respet to t en then putting t = 0:

d

dt

[

K
−1 logL(θ;β,Λ+ t(Γ− Λ))

]

∣

∣

∣

∣

t=0

=

∫ τ

0

ζK(θ; Λ)(u)d(Γ− Λ)(u)

where

ζK(θ; Λ)(u) = K
−1

K
∑

i=1

ni
∑

j=1

D
l
ijYij(u) exp[β

′
Zij(u)]

and

D
l
ij =







δij
−ϕ′′

θ (ϕ
−1
θ (Hij))

ϕ′
θ(ϕ

−1
θ (Hij))

+
ϕ

(di+1)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)

ϕ
(di)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)







−Hij

ϕ′
θ(ϕ

−1
θ (Hij))

.

The derivative of lK(θ) w.r.t. β is

ζK(θ;β) = K
−1

K
∑

i=1

ni
∑

j=1

D
l
ij

(
∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)]dΛ(u)

)

.

To prove onsisteny for θ̌, we will require ||ζK(θ; Λ)||∞ and ||ζK(θ;β)|| to be bounded. This an be obtained

when the ommon fator ||Dl
ij ||∞ is bounded and also the terms unique to ζK(θ;β) and ζK(θ; Λ) have to be

bounded. This requirement is not too restritive, e.g. for the Clayton opula we have

||Dl
ij ||∞ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δij(1 + θ)−
(1 + diθ)H

−θ
ij

(

−ni + 1 +
∑ni

j=1 H
−θ
ij

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

.

Due to the de�nition of Hij and ondition C2, this expression is bounded. By ondition C5,

||Yij exp[β
′
Zij ]||∞ and

∣

∣

∣

∣

∣

∣

∣

∣

∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)dΛ(u)]

∣

∣

∣

∣

∣

∣

∣

∣

are bounded.

An expansion of ľK(θ) around β0 and Λ0 an be written as

ľK(θ) = lK0(θ) + ζK(θ;β0)(β̌ − β0) +

∫ τ

0

ζK(θ; Λ0)(t)d(Λ̌− Λ0)(t) +R.
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Another (intuitive) notation is:

lK,θ(β̌, Λ̌) = lK,θ(β0,Λ0) +
∂

∂β
lK,θ(β0,Λ0)(β̌ − β0) +

∂

∂Λ
lK,θ(β0,Λ0)(Λ̌− Λ0) +R.

The remainder term R is of order op
(

max{||β̌ − β0||, ||Λ̌− Λ0||∞}
)

. This an be seen from the de�nition of

Hadamard di�erentiability, sine

∣

∣

∣

∣

∣

∣

∣

∣

lK,θ(β,Λ0 + t(Λ̌− Λ0))− lK,θ(β, Λ̌)

t
− ∂

∂Λ
lK,θ(β,Λ0)(Λ̌− Λ0)

∣

∣

∣

∣

∣

∣

∣

∣

∞
→ 0, as t ↓ 0,

uniformly in Λ̌−Λ0 in all ompat subsets of D, the spae of umulative hazard funtions. Sine β̌ is onsistent

and Λ̌ is uniformly onsistent (Spiekerman and Lin, 1998), R = op(1).

In order to prove θ̌ is onsistent we will need to verify the uniform onvergene of the log-likelihood with

the plug-in estimate of Λ to the expeted value of the log-likelihood evaluated at the true value of Λ, denoted

lK0(θ):

sup
θ∈ν

|ľK(θ)− E[lK0(θ)]| = op(1). (7)

This an be shown as follows:

ľK(θ)−E[lK0(θ)] = lK0(θ)− E[lK0(θ)] + ζK(θ;β0)(β̌ − β0) +

∫ τ

0

ζK(θ; Λ0)(t)d(Λ̌− Λ0)(t) +R.

Due to the law of large numbers, for �xed θ,

lK0(θ)− E[lK0(θ)]
p→ 0. (8)

Sine ||ζK(θ;β)|| is bounded, say ||ζK(θ;β)|| ≤ M1, we have

sup
θ∈ν

∣

∣ζK(θ;β0)(β̌ − β0)
∣

∣ ≤ M1||β̌ − β0||. (9)

Sine ||ζK(θ; Λ)(u)||∞ is bounded, say ||ζK(θ; Λ)(u)||∞ ≤ M2, we have

sup
θ∈ν

∣

∣

∣

∣

∫ τ

0

ζK(θ; Λ)(t)d(Λ̌− Λ0)(t)

∣

∣

∣

∣

≤ M2||Λ̌− Λ0||∞. (10)

Therefore

sup
θ∈ν

∣

∣ľK(θ)− E[lK0(θ)]
∣

∣ ≤ sup
θ∈ν

|lK0(θ)− E[lK0(θ)]|+M1||β̌ − β0||+M2||Λ̌− Λ0||∞ +R.

Using (8), the onsisteny of β̌, the uniform onsisteny of Λ̌ and the fat that R = op(1), we get

sup
θ∈ν

∣

∣ľK(θ)− E[lK0(θ)]
∣

∣ = op(1).

Finally, in order to verify that θ̌ is onsistent, we will need to show that the expeted log-likelihood is maximized

at the truth:

E[lK0(θ)]− E[lK0(θ0)] < 0. (11)

Due to independene between lusters and the fat that all lower dimensional opulas an be regarded as margins

of the highest dimensional opula, the log-likelihood lK(θ) an be written as a sum of i.i.d. random variables

K
−1

K
∑

i=1

logLi(θ;β,Λ)

with

Li = (−1)di
∂di

∂{δij = 1}S(yi1, . . . , yi,ni
)

=





ni
∏

j=1

[

1

ϕ′
θ

(

ϕ−1
θ

(

e−Λ(yij)
))

]δij


ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ

(

e
−Λ(yij)

)

)
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where ∂{δij = 1} is the set of unensored individuals in luster i.

Take θ 6= θ0. The law of large numbers, Jensen's inequality and ondition C6 imply that

lim
K→∞

lK0(θ)− lK0(θ0) = E[lK0(θ)]− E[lK0(θ0)]

= E

[

K
−1

K
∑

i=1

logLi(θ;β0,Λ0)

]

−E

[

K
−1

K
∑

i=1

logLi(θ0;β0,Λ0)

]

= E [logL1(θ;β0,Λ0)− logL1(θ0;β0,Λ0)]

= E

[

log
L1(θ;β0,Λ0)

L1(θ0;β0,Λ0)

]

≤ logE

[

L1(θ;β0,Λ0)

L1(θ0;β0,Λ0)

]

= log 1

= 0.

The before last equality results from L1(θ;β0,Λ0) being the ontribution of luster 1 to the likelihood L(θ;β0,Λ0),

whih is the joint density funtion of (y11, . . . , y1,n1
; δ11, . . . , δ1,n1

).

Sine θ̌ maximizes ľK(θ), (7) implies that

0 ≤ ľK(θ̌)− ľK(θ0) = ľK(θ̌)− ľK(θ0) + E[lK0(θ0)]− E[lK0(θ0)] = ľK(θ̌)− E[lK0(θ0)] + op(1)

⇓

E[lK0(θ0)] ≤ ľK(θ̌) + op(1).

Subtrat E[lK0(θ̌)] from eah side of the inequality to write

E[lK0(θ0)]− E[lK0(θ̌)] ≤ ľK(θ̌)− E[lK0(θ̌)] + op(1) ≤ sup
θ∈Θ

|ľK(θ)−E[lK0(θ)]|+ op(1) = op(1). (12)

Now take θ suh that |θ − θ0| ≥ ε for any �xed ε > 0. By (11) there must exist some γε > 0 suh that

E[lK0(θ̌)] + γε < E[lK0(θ0)].

It follows that

P (|θ̌ − θ0| ≥ ε) ≤ P (E[lK0(θ̌)] + γε < E[lK0(θ0)]).

Equation (12) implies that

P (E[lK0(θ̌)] + γε < E[lK0(θ0)]) → 0 as K → ∞.

Therefore

P (|θ̌ − θ0| ≥ ε) → 0 as K → ∞

whih proves the onsisteny of θ̌.

Proof of Theorem 3. Take a �rst order Taylor series expansion of ÛK(θ̂) around and θ0:

ÛK(θ̂) = ÛK(θ0) + (θ̂ − θ0)
∂ÛK

∂θ

∣

∣

∣

∣

∣

θ=θ∗

(13)

where θ∗ is between θ̂ and θ0. It must be the ase that ÛK(θ̂) = 0 sine θ̂ was taken to be the maximum of

L(θ; β̌, Λ̌). Therefore

√
K(θ̂ − θ0) =

√
KÛK(θ0)

− ∂ÛK

∂θ

∣

∣

∣

θ=θ∗

. (14)
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We already showed that θ̂ onsistently estimates θ0, so the law of large numbers implies that

∂ÛK

∂θ

∣

∣

∣

∣

∣

θ=θ∗

P−→ W (θ0) = lim
K→∞

∂UK

∂θ

∣

∣

∣

∣

θ=θ0

(Fisher information).

We will show that the sore equation ÛK(θ0) in the numerator of (14) follows a normal distribution. Hereto we

need a Taylor series expansion of ÛK(θ0) around β0 and Λ0. Beause Λ0 is an unspei�ed funtion, we will use

the Hadamard derivative of UK(θ0) w.r.t. Λ at Γ− Λ ∈ BV [0, τ ].

d

dt

[

K
−1 ∂ logL(θ;β,Λ+ t(Γ− Λ))

∂θ

]∣

∣

∣

∣

t=0

=

∫ τ

0

ξK(θ; Λ)(u)d(Γ− Λ)(u)

where

ξK(θ; Λ)(u) = K
−1

K
∑

i=1

ni
∑

j=1

D
U
ijYij(u) exp[β

′
Zij(u)]

and

D
U
ij =

{

δij
ϕ′′

θ

(

ϕ−1
θ (Hij)

)

ϕ′
θ

(

ϕ−1
θ (Hij)

)

∂

∂θ

[

ϕ
′
θ

(

ϕ
−1
θ (Hij)

)]−1

+ δijϕ
′
θ

(

ϕ
−1
θ (Hij)

) ∂

∂θ

[

− ϕ′′
θ

(

ϕ−1
θ (Hij)

)

ϕ′
θ

(

ϕ−1
θ (Hij)

)3

]

−
ϕ

(di+1)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)

[

ϕ
(di)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)]2

1

ϕ′
θ

(

ϕ−1
θ (Hij)

)

∂

∂θ

[

ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)]

+
1

ϕ
(di)
θ

(

∑ni

j=1 ϕ
−1
θ (Hij)

)

∂

∂θ





ϕ
(di+1)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)

ϕ′
θ

(

ϕ−1
θ (Hij)

)











(−Hij).

The derivative of UK(θ) w.r.t. β is given by

ξK(θ;β) = K
−1

K
∑

i=1

ni
∑

j=1

D
U
ij

∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)]dΛ(u).

We require ||ξK(θ; Λ)||∞ and ||ξK(θ;β)|| to be bounded. By ondition C5, the terms unique to ξK(θ; Λ) and

ξK(θ;β), i.e.

||Yij exp[β
′
Zij ]||∞ and

∣

∣

∣

∣

∣

∣

∣

∣

∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)dΛ(u)]

∣

∣

∣

∣

∣

∣

∣

∣

are bounded. The ommon term ||DU
ij ||∞ is also bounded.

A Taylor series expansion of ÛK(θ0) around β0 and Λ0 gives

ÛK(θ0) = UK0(θ0) + ξK(θ0;β0)(β̌ − β0) +

∫ τ

0

ξK(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)] +GK ,

where GK is the remainder term for the Taylor series. Sine Λ̌ is

√
K-onsistent it an be shown that GK =

op(K
−1/2).

De�ne the pointwise limit of ξK(θ,Λ)(t) as ξ(θ,Λ)(t) and denote ξ(θ;β) = E[ξK(θ;β)]. Sine ||ξK(θ; Λ)||∞
and ||ξK(θ;β)|| are bounded, ||ξ(θ; Λ)||∞ and ||ξ(θ;β)|| are too. Therefore

√
KÛK(θ0) =

√
K

(

UK0(θ0) + ξ(θ0;β0)(β̌ − β0) +

∫ τ

0

ξ(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)]

)

+ op(1). (15)

By Spiekerman and Lin (1998)

√
K(β̌ − β0) → A

−1
K
∑

i=1

wi.
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where wi. is the i
th

omponent of the sore funtion for β under the independene working assumption, evaluated

at β0:

wi. =

ni
∑

j=1

∫ τ

0

{Zij(u)− E(β0, u)}dMij(u)

with

Mij(t) = δijYij(t)−
∫ t

0

Yij(u) exp
[

β
′
0Zij(u)

]

dΛ0(u).

They also showed that

√
K(Λ̌0(t, β̌)− Λ0(t)) → W(t) = K

−1/2
K
∑

i=1

Ψi(t)

where W(t) is a zero-mean Gaussian proess with variane funtion

E
[

Ψ1(t)
2]

with

Ψi(t) =

∫ t

0

dMi.(u)

s(0)(β0, u)
+ h

T (t)A−1
wi.

and

h(t) = −
t
∫

0

e(β0, u)dΛ0(u).

That's why

√
K

(

UK0(θ0) + ξ(θ0;β0)(β̌ − β0) +

∫ τ

0

ξ(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)]

)

=
√
K

(

K
−1

K
∑

i=1

φi(θ0) + ξ(θ0;β0)K
−1

A
−1

K
∑

i=1

wi. +

∫ τ

0

ξ(θ0; Λ0)(t)d

[

K
−1

K
∑

i=1

Ψi(t)

])

= K
−1/2

K
∑

i=1

(

φi(θ0) + ξ(θ0;β0)A
−1

wi. +

∫ τ

0

ξ(θ0; Λ0)(t)dΨi(t)

)

= K
−1/2

K
∑

i=1

Ξi.

The entral limit theorem implies that

√
KÛK(θ0) onverges to a normally distributed random variable with

mean zero and variane equal to the variane of Ξ1.

Thus we have

√
K(θ̂ − θ0) =

√
KÛK(θ0)

− ∂ÛK

∂θ

∣

∣

∣

θ=θ∗

(16)

where √
KÛK(θ0)

D−→ N(0,Var(Ξ1))

and

∂ÛK

∂θ

∣

∣

∣

∣

∣

θ=θ∗

P−→ W (θ0).

By Slutsky's theorem,

√
K(θ̂ − θ0) onverges to a normal distribution with mean zero and variane equal to

Var(Ξ1)

W (θ0)2
.

The variane of Ξ1 (note that Var(Ξ1) = E[Ξ2
1]) an be estimated by K−1∑K

i=1 Ξ̂
2
i where Ξ̂i is obtained from Ξi

replaing parameter values by their estimators.

W (θ0) an be estimated by the (minus) derivative of the pseudo sore funtion ÛK(θ), evaluated in θ̂.
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