
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Extending the Archimedean copula methodology to model multivariate

survival data grouped in clusters of variable size

Peer-reviewed author version

PRENEN, Leen; BRAEKERS, Roel & DUCHATEAU, Luc (2017) Extending the

Archimedean copula methodology to model multivariate survival data grouped in

clusters of variable size. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY

SERIES B-STATISTICAL METHODOLOGY, 79 (2), pag. 483-505.

DOI: 1369-7412/17/79000

Handle: http://hdl.handle.net/1942/21320



Extending the Ar
himedean 
opula methodology to model

multivariate survival data grouped in 
lusters of variable size

Leen Prenen

1

, Roel Braekers

∗1
and Lu
 Du
hateau

2

1

Interuniversity Institute for Biostatisti
s and statisti
al Bioinformati
s, Universiteit

Hasselt, Belgium

2

Department of Physiology and Biometri
s, Universiteit Gent, Belgium

Abstra
t

For the analysis of 
lustered survival data, two di�erent types of models that take the asso
iation into a

ount,

are 
ommonly used: frailty models and 
opula models. Frailty models assume that 
onditional on a frailty term

for ea
h 
luster, the hazard fun
tions of individuals within that 
luster are independent. These unknown frailty

terms with their imposed distribution are used to express the asso
iation between the di�erent individuals in a


luster. Copula models on the other hand assume that the joint survival fun
tion of the individuals within a


luster is given by a 
opula fun
tion, evaluated in the marginal survival fun
tion of ea
h individual. It is the


opula fun
tion whi
h des
ribes the asso
iation between the lifetimes within a 
luster. A major disadvantage

of the present 
opula models over the frailty models is that the size of the di�erent 
lusters must be small and

equal in order to set up manageable estimation pro
edures for the di�erent model parameters. We des
ribe in

this manus
ript a 
opula model for 
lustered survival data where the 
lusters are allowed to be moderate to

large and varying in size by 
onsidering the 
lass of Ar
himedean 
opulas with 
ompletely monotone generator.

We develop both one- and two-stage estimators for the di�erent 
opula parameters. Furthermore we show the


onsisten
y and asymptoti
 normality of these estimators. Finally, we perform a simulation study to investigate

the �nite sample properties of the estimators. We illustrate the method on a data set 
ontaining the time to �rst

insemination in 
ows, with 
ows 
lustered in herds.
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1 Introdu
tion

Multivariate survival data 
onsist of multiple lifetimes whi
h are linked to ea
h other in some

sense. In 
lustered survival data, subje
ts in the same 
luster are assumed to share some


hara
teristi
 or environment, and are therefore expe
ted to be more similar with respe
t to the

hazard of the event. For example, in a multi-
enter 
lini
al trial, patients of one 
enter form a

separate 
luster. To analyze this type of multivariate survival data, two di�erent te
hniques that

take the asso
iation between the individuals into a

ount, are 
ommonly used, namely frailty

models and 
opula models.

In frailty models, the interest lies on the hazard fun
tion of an individual, 
onditionally on an

unknown frailty term for the 
luster 
ontaining this individual. In these models, we follow a


onditional viewpoint and investigate the in�uen
e of di�erent 
ovariates on the hazard fun
tion

of an individual, given the 
luster. The frailty term for ea
h 
luster expresses that we assume

that di�erent individuals in the same 
luster behave in a similar but unknown manner. We


onsider this frailty term as a realization of a random variable with a given frailty distribution

and allow it to vary over the di�erent 
lusters. This approa
h is explained in detail in Du
hateau

and Janssen (2008) and Wienke (2011).

To estimate the di�erent parameters in frailty models, we make use of the 
onditional viewpoint

of these models. Hereby we assume that di�erent individuals within the same 
luster are treated

as independent of ea
h other, 
onditionally on this 
ommon frailty term. In the 
onstru
tion

of the likelihood fun
tion of a frailty model, this assumption is utilized by �rst looking at

the 
onditional 
ontribution of an individual within a 
luster to the likelihood fun
tion and

afterwards integrating over the frailty distribution. In this way, the frailty model approa
h

has the advantage that it allows that the number of individuals within a 
luster may vary

over the di�erent 
lusters. However, a major disadvantage of the frailty model is that the

marginal survival fun
tions in the frailty model 
ontain the asso
iation parameter of the frailty

distribution (Goethals et al. (2008)). This has led to the 
orre
t observation by, e.g., (Hougaard,

1986, p. 676) that the asso
iation parameter in a frailty model 
an be obtained from the marginal

survival fun
tions alone. Additionally, overdispersion in the data, as 
ompared to the proposed

density fun
tion, is required in a frailty model in order to pi
k up asso
iation.

Copula models, on the other hand, are spe
i�ed in terms of the marginal distribution of an

individual. The asso
iation between di�erent individuals within a 
luster is modelled by intro-

du
ing a 
opula fun
tion that links the marginal survival fun
tions together to obtain the joint

survival fun
tion.

To estimate the di�erent parameters in 
opula models, often two stages are used. In the �rst

stage, the parameters of the marginal survival fun
tions are estimated, and then inserted in the


opula fun
tion. In the se
ond stage, the parameter(s) of the 
opula fun
tion are estimated.

2



Thus, both in the model spe
i�
ation and parameter estimation, the parameter(s) des
ribing the

asso
iation is kept separate from the other parameters. Most reported 
opula models, however,

only use 
lusters in whi
h the 
luster size is small and 
onstant over the di�erent 
lusters as

it is then straightforward to de�ne and estimate the marginal survival fun
tions. For example,

Shih and Louis (1995) introdu
ed a 
opula model for multivariate survival data and provided

estimation methods for the unknown parameters in a bivariate setting. Glidden (2000) and

Andersen (2005) extended the approa
h of Shih and Louis (1995) to in
lude 
ovariates into the

marginal survival fun
tion, but also here the 
lusters only had size two. Massonnet et al. (2009)

extended these models further for 
lusters of size 4 to model the time until infe
tion in the

four di�erent quarters of a 
ow udder. Although Glidden (2000) gives theoreti
al results for

the Clayton 
opula in a balan
ed design with a �xed 
luster size N and Othus and Li (2010)

do the same in an unbalan
ed design for the Gaussian 
opula model, to our knowledge, 
opula

models in general have not been used for 
lustered multivariate survival data with a 
luster

size of more than 4 or for a 
luster size whi
h di�ers over the 
lusters. The 
hoi
e of a small

and 
onstant 
luster size is a dire
t 
onsequen
e of the di�
ulty to write down the likelihood

fun
tion for the observed 
lustered survival data. For example, if the 
luster size is equal to

two, there are 4 di�erent 
ontributions to the likelihood for the observed out
omes within the


luster, depending on whether none, the �rst, the se
ond or both individuals in this 
luster are


ensored. This leads to a likelihood fun
tion 
onsisting of 4 di�erent terms where every term is

found by taking derivatives of the joint survival fun
tion over the un
ensored 
omponents in an

observed 
ouple. If the 
luster size is three, the number of possible 
ombinations in
reases to 8,

while a 
luster size of 4 leads to 16 di�erent 
ombinations. In a general setting with a 
luster

size equal to n, we have 2n possible 
ombinations. Sin
e a likelihood fun
tion also 
ontains

2n di�erent possible terms and ea
h term is found by taking derivatives of the joint survival

fun
tion over the un
ensored 
omponents in a 
ombination, it is a huge task to get an expression

for the likelihood fun
tion when a general n-dimensional 
opula fun
tion is 
onsidered for the

asso
iation between the di�erent individuals within a 
luster. In pra
ti
e it is impossible to


al
ulate a 
losed form for all the derivatives of a 
opula fun
tion if the order n is large.

For the 
lass of Ar
himedean 
opula fun
tions, we will solve this numeri
al problem in this

manus
ript and show that the 
onstru
tion of the likelihood fun
tion for this 
lass of 
opula

fun
tions simpli�es 
onsiderably su
h that we 
an allow the 
luster size to be moderate to large

and varying over the di�erent 
lusters. The key to this solution is that the joint survival fun
tion

of an Ar
himedean 
opula fun
tion 
an be rewritten as a mixture distribution of independent


ontributions in a similar way as in the frailty model approa
h. Although some of the expressions

of the Ar
himedean 
opula fun
tion resemble that of the frailty model, the two models di�er in

an essential way due to their di�erent inferential viewpoint, i.e., marginal versus 
onditional.

The arti
le is organized as follows. In Se
tion 2 we introdu
e a new formulation of the Ar
himedean


opula model by rewriting the likelihood 
ontributions in terms of Lapla
e transforms. In Se
-

tion 3 we present the theoreti
al results 
on
erning estimators arising from this model, starting
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from parametri
 and semiparametri
 approa
hes. Se
tion 4 gives an overview of a large 
lass of

distributions for whi
h the likelihood 
ontributions are easy to generate. In Se
tions 5 and 6, we

report simulation results along with results for a data example. The data set and our 
ode 
an

be found at our website (http://www.vetstat.ugent.be/resear
h/Ar
himedeanCopula/). Proofs

of asymptoti
 results are given in the Appendix.

2 Des
ription of the model

We develop a 
opula model for 
lustered survival data in whi
h the size of ea
h 
luster may be

di�erent. Let K be the number of 
lusters (i = 1, . . . ,K). In ea
h 
luster, we denote the lifetime

for the di�erent individuals by a positive random variable Tij , j = 1, . . . , ni where ni is the

number of individuals in 
luster i. For ea
h individual, we assume that there is an independent

random 
ensoring variable Cij su
h that under a right 
ensoring s
heme, the observed quantities

are given by

Xij = min(Tij , Cij)

δij = I(Tij ≤ Cij)
, i = 1, . . . ,K, j = 1, . . . , ni.

The risk of failure may also depend on a set of 
ovariates Zij , whi
h are possibly time-varying.

We assume that the joint survival fun
tion for the lifetime of the di�erent individuals within


luster i is given by

S(ti1, . . . , tini |Zi1, . . . ,Zini) = P (Ti1 > ti1, . . . , Tini > tini |Zi1, . . . ,Zini)

= ϕθ

[

ϕ−1
θ (S(ti1|Zi1)) + · · ·+ ϕ−1

θ (S(tini |Zini))
]

where S(tij |Zij) = P (Tij > tij |Zij) is a 
ommon marginal survival model for the lifetime Tij ,

given Zij . The generator ϕθ : [0,∞[→ [0, 1] of a parametri
 Ar
himedean 
opula family is a


ontinuous stri
tly de
reasing fun
tion with ϕθ(0) = 1 and ϕθ(∞) = 0. We denote by ϕ−1
θ

the inverse fun
tion of ϕθ. Sin
e we want the Ar
himedean 
opula fun
tion to be 
orre
tly

de�ned for any 
luster size, we assume that this generator is 
ompletely monotoni
. This means

that all the derivatives exist and have alternating signs: (−1)m dm

dtmϕθ(t) ≥ 0, for all t > 0 and

m = 0, 1, 2, . . . (see Nelsen (2006)). The generator ϕθ is a Lapla
e transformation of a positive

distribution fun
tion Gθ(x) with Ḡθ(0) = 1 (Joe, 1997),

ϕθ(t) =

+∞
∫

0

e−txdGθ(x), t ≥ 0.

Hen
e we 
an rewrite the joint survival fun
tion for 
luster i as

S(ti1, . . . , tini |Zi1, . . . ,Zini) =
+∞
∫

0

e
−x

ni∑

j=1
ϕ−1
θ (S(tij |Zij))

dGθ(x) (1)

=
+∞
∫

0

ni
∏

j=1
e−xϕ−1

θ (S(tij |Zij))dGθ(x).
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In this way, the Ar
himedean 
opula fun
tion 
an be seen as a mixture distribution, 
onsisting

of independent and identi
ally distributed 
omponents whi
h depend on a 
ommon fa
tor that

has Gθ as distribution. We use this stru
ture to derive the likelihood fun
tion. The 
ontribution

of 
luster i, with 
luster size ni, to the likelihood fun
tion 
orresponds to the derivative of the

ni-dimensional joint survival fun
tion over all un
ensored individuals in this 
luster. Sin
e the

joint survival fun
tion does not 
hange when the individuals within the 
luster are permuted,

we note that only the number of un
ensored individuals determines the derivative. Hen
e, the


ontribution of 
luster i to the likelihood fun
tion is given by

Li = (−1)di
∂di

∂{δij = 1}S(xi1, . . . , xini |Zi1, . . . ,Zini)

where ∂{δij = 1} is the set of un
ensored individuals in 
luster i and di =
ni
∑

j=1
δij , the size of

this set.

Using representation (1) of the joint survival fun
tion, this derivative is given by

Li =

+∞
∫

0

e
−x

ni∑

j=1
ϕ−1
θ (S(xij |Zij))

ni
∏

j=1

[

−xf(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij

dGθ(x)

where f = −dS/dt is the 
onditional density of the lifetime Xij .

Combining the 
ontributions over the di�erent 
lusters, we get the following likelihood fun
tion

L =
K
∏

i=1

+∞
∫

0

e
−x

ni∑

j=1
ϕ−1
θ (S(xij |Zij))

ni
∏

j=1

[

−xf(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij

dGθ(x)

=

K
∏

i=1

+∞
∫

0

ni
∏

j=1

e−xϕ−1
θ (S(xij |Zij))

[

−xf(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij

dGθ(x). (2)

In general it is di�
ult to evaluate expression (2) ex
ept for very spe
i�
 
hoi
es of the dis-

tribution Gθ. Sin
e the generator ϕθ is the Lapla
e transform of Gθ, there is an alternative

expression for this likelihood fun
tion whi
h is found by using derivatives of this generator, i.e.

ϕ
(m)
θ (t) =

+∞
∫

0

(−x)me−txdGθ(x). Hen
e the likelihood fun
tion 
an be rewritten as

L =
K
∏

i=1





ni
∏

j=1

[

f(xij|Zij)

ϕ′
θ(ϕ

−1
θ (S(xij |Zij)))

]δij


ϕ
(di)
θ





ni
∑

j=1

ϕ−1
θ (S(xij |Zij))



 . (3)

Remark: In the frailty model framework (Du
hateau and Janssen, 2008, p.119), we note that

we �nd a similar expression for the joint survival fun
tion in frailty models, with Gθ(x) as the

frailty distribution of the unknown frailty term in the 
luster. Starting from the 
onditional

viewpoint in frailty models, we �nd a similar expression for the joint survival fun
tion as follows.
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The joint 
onditional survival fun
tion for a 
luster i is given by S(ti1, . . . , tini |Zi1, . . . , Zini , Ui)

with Ui the frailty term with distribution Gθ(u) and generator ϕθ(·). Denote the 
onditional


umulative hazard fun
tion for subje
t j from 
luster i by H(tij |Zij , Ui) = Hc(tij |Zij)Ui. The

marginal joint survival fun
tion is obtained by integrating out the frailty term:

Sf (ti1, . . . , tini |Zi1, . . . , Zini) =

∞
∫

0

S(ti1, . . . , tini |Zi1, . . . , Zini , ui)dGθ(ui)

=

∞
∫

0

S(ti1|Zi1, ui) . . . S(tini |Zini , ui)dGθ(ui)

=

∞
∫

0

exp(−ui

ni
∑

j=1

Hc(tij |Zij))dGθ(ui)

=

∞
∫

0

exp(−ui

ni
∑

j=1

ϕ−1
θ (Sf (tij |Zij)))dGθ(ui) (4)

due to the 
onditional independen
e assumption. The two joint survival fun
tions (1) and

(4) are indeed similar, but note that S(tij |Zij) 6= Sf (tij |Zij). More spe
i�
ally Sf (tij |Zij) =

ϕθ(Hc(tij |Zij)) and therefore, the marginal survival fun
tion in (4) 
ontains the asso
iation

parameter. This an important distin
tion between the frailty model and the 
opula model.

3 The estimation pro
edures

In this se
tion, we investigate a one- and two-stage parametri
 estimation method and a two-

stage semi-parametri
 estimation method to estimate the di�erent parameters in this model.

Shih and Louis (1995) demonstrated how this 
an be done for a bivariate survival data set

and derived asymptoti
 properties of the estimators. Joe (1997, 2005) dis
ussed a general

framework for studying asymptoti
 e�
ien
y. We extend their results to 
lustered survival data

with 
lusters of varying and possibly large size.

For equal-sized 
lusters with 
luster size n having the same 
ovariate stru
ture, baseline survival

fun
tions 
an be estimated for ea
h jth univariate margin, j = 1, . . . , n, where the jth subje
t

always has the same 
ovariate information. Sin
e in our appli
ation 
lusters have varying size,

we 
annot order the 
omponents within a 
luster and estimate the baseline survival of all jth


omponents. We assume that all subje
ts have the same baseline survival, whatever the 
luster,

and introdu
e subje
t spe
i�
 
ovariate information.
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3.1 One-stage parametri
 estimation

Let β be the parameter ve
tor for the margins, 
ontaining distribution-spe
i�
 parameters for

the baseline survival and 
ovariate e�e
ts. We use the likelihood fun
tion L(β, θ) as derived in

(2) and (3). Write Uβ(β, θ) =
∂ logL(β,θ)

∂β , Uθ(β, θ) =
∂ logL(β,θ)

∂θ . Solving

{

Uβ(β, θ) = 0

Uθ(β, θ) = 0

simultaneously, we �nd the maximum likelihood estimate (β̂, θ̂). From maximum likelihood

theory (Cox and Hinkley, 1974), we know that under regularity 
onditions,

√
K(β̂ − β, θ̂ − θ)


onverges to a multivariate normal distribution with mean ve
tor zero and varian
e-
ovarian
e

matrix I
−1
, where I is partitioned into blo
ks:

I =

(

Iββ Iβθ

Iθβ Iθθ

)

.

Here, KIββ is the varian
e-
ovarian
e matrix of Uβ, KIβθ is the 
ovarian
e ve
tor between Uβ

and Uθ and KIθθ is the s
alar varian
e of Uθ, so

Var(θ̂) =
1

Iθθ
+

Iθβ(I
−1)ββIβθ
I2θθ

. (5)

In pra
ti
al appli
ations, standard errors of parameter estimates 
an be retrieved from the

diagonal elements of the inverse of the Hessian matrix I.

3.2 Two-stage parametri
 estimation

Two-stage parametri
 estimation, also referred to as the method of inferen
e fun
tions for mar-

gins (Xu, 1996), has been used mainly for multivariate models whenever a multi-parameter

numeri
al optimization for maximum likelihood estimation is too time-
onsuming or infeasible.

In the �rst stage, β is estimated by β by 
onsidering all subje
ts as independent, identi
ally

distributed random variables, i.e. solving

U
∗
β(β) =

K
∑

i=1

ni
∑

j=1

δij
∂ log f(xij|Zij)

∂β
+ (1− δij)

∂ log S(xij |Zij)

∂β
= 0.

Under regularity 
onditions,

√
K(β − β) 
onverges to a multivariate normal distribution with

mean ve
tor zero and varian
e-
ovarian
e matrix (I∗)−1
V(I∗)−1

, where V is the varian
e-


ovarian
e matrix of the s
ore fun
tions U
∗
β and I

∗
is the Fisher information of U

∗
β. The

use of the robust sandwi
h estimator is required sin
e (I∗)−1
is not a 
onsistent estimator of

the asymptoti
 varian
e-
ovarian
e matrix due to the 
orrelation between survival times. In the
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se
ond stage, the asso
iation parameter θ is estimated by plugging in the estimates for the mar-

gins into the likelihood expression (3), whi
h is then maximized for the asso
iation parameter

θ. The two-stage estimator for θ is the solution to

Uθ(β, θ) =
∂ logL

∂θ
(β, θ) = 0.

Theorem 1. Let θ denote the solution to Uθ(β, θ) = 0 and let θ0 be the true value of the asso-


iation parameter. Under regularity 
onditions,

√
K(θ − θ0) 
onverges to a normal distribution

with mean zero and varian
e

Var(θ) =
1

Iθθ
+

Iθβ(I
∗)−1

V(I∗)−1
Iβθ

I2θθ
. (6)

The proof of Theorem 1 is provided in the Appendix. To estimate this quantity, we make

use of (I∗)−1
V(I∗)−1

, the robust varian
e obtained in the �rst step; I−1
θθ and Iβθ are obtained

from the Hessian matrix of the one-stage pro
edure, whi
h 
an be estimated numeri
ally by

performing one iteration of the one-stage optimization in whi
h we evaluate the Hessian matrix

in the two-stage parameter results.

3.3 Two-stage semiparametri
 estimation

In the two-stage semiparametri
 estimation pro
edure, the marginal survival fun
tions are esti-

mated using the Cox proportional hazards model (Cox, 1972). Formulas for the standard error

of the estimated 
ovariate e�e
t β̌ and the estimated 
umulative hazard Λ̌ that a

ount for


lustering 
an be found using a sandwi
h formula (Spiekerman and Lin, 1998).

In the se
ond stage, maxθ L(θ; β̌, Λ̌) is solved for θ̌.

Theorem 2. Under regularity 
onditions C.1-C.7 in the Appendix, (θ̌; β̌, Λ̌) is a 
onsistent

estimator for (θ0;β0,Λ0).

The results for β̌ and Λ̌ follow from arguments along the lines of Spiekerman and Lin (1998).

The 
onsisten
y of θ̌ is proved in the Appendix. Also following Spiekerman and Lin (1998), we


an show that

√
K(β̌−β0) 
onverges to a mean zero normal distribution and that

√
K(Λ̌−Λ0)


onverges to a mean zero Gaussian pro
ess.

Theorem 3. Under regularity 
onditions C.1-C.7 in the Appendix,

√
K(θ̌ − θ0) 
onverges to a

normal distribution with mean zero and varian
e

Var(Ξ1)

W (θ0)2
.

The proof of this theorem and the pre
ise de�nition of Ξ1 and W (θ0), together with their

estimators, 
an be found in the Appendix.
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4 Copula likelihood expression for distributions from the PVF

family

The power varian
e fun
tion family of distributions, denoted PVF(α, δ, γ), is a large 
lass of

distributions for whi
h Hougaard (2000) states that the Lapla
e transforms 
orrespond to

L(s) = exp

[

− δ

α
((γ + s)α − γα)

]

with derivatives

L(k)(s) = (−1)kL(s)
k
∑

j=1

ck,j(α)δ
j(γ + s)jα−k,

where the 
oe�
ients ck,j(α) are polynomials of order k− j in α, given by the re
ursive formula

ck,1(α) =
Γ(k − α)

Γ(1− α)
, ck,k = 1

ck,j(α) = ck−1,j−1(α) + ck−1,j(α)(k − 1− jα)

This allows for a 
losed form expression of the 
opula likelihood (3).

Example 1: The one-parameter gamma distribution with density

gθ(x) =
x1/θ−1e−x/θ

θ1/θΓ(1/θ)
, θ > 0.

is found as the limiting 
ase α = 0, δ = γ = 1/θ. Failure times are independent when θ

approa
hes zero. The Lapla
e transform is

L(s) = ϕθ(s) = (1 + θs)−1/θ

whi
h is the generator of the Clayton 
opula. The Clayton 
opula has lower tail dependen
e,

whi
h, in a survival 
ontext, 
orresponds to a higher asso
iation later in time.

Example 2: The 
hoi
e α = θ, δ = θ, γ = 0 leads to the positive stable distribution with

density

gθ(x) = − 1

πx

∞
∑

k=1

Γ(kθ + 1)

k!
(−x−θ)k sin(θkπ)

with 0 < θ < 1. Feller (1971) shows that this density fun
tion 
an be found by Fourier inversion

of the Lapla
e transform

L(s) = ϕθ(s) = e−sθ

whi
h is the generator of the Gumbel-Hougaard 
opula. Small values of θ provide large 
orrela-

tion and survival times are independent as θ approa
hes 1. The Gumbel-Hougaard 
opula has

upper tail dependen
e, implying a stronger 
orrelation between the lower survival times.

9



Example 3: Another PVF distribution is obtained by 
hoosing α = 1/2, δ = (2θ)−1/2, γ =

(2θ)−1
. This is the inverse Gaussian distribution with varian
e θ. The density is de�ned by

fθ(x) =

√

1

2πθ
x−3/2 exp

( −1

2xθ
(x− 1)2

)

with θ > 0. The Lapla
e transform is

L(s) = ϕθ(s) = exp

(

1

θ
−
(

1

θ2
+ 2

s

θ

)1/2
)

.

5 Simulation study

We generate 1000 data sets with 50, 200 or 500 
lusters of size varying uniformly between 2 and

50. Survival times are simulated from respe
tively a Clayton 
opula with θ0 = 0.2, 0.5, 1.0, 1.5

or from a Gumbel-Hougaard 
opula with θ0 = 0.2, 0.5, 0.65, 0.8, and with, in both settings,

Weibull marginal survival fun
tions S(t) = λtρ exp(β′Z), 
hoosing ρ = 1.5, λ = 0.0316 and

Z a di
hotomous 
ovariate with e�e
t β = 3. The values of the asso
iation parameter θ for

both 
opula models are 
hosen su
h that the a

ording values of Kendall's tau are 
omparable.

Data are generated using the sampling algorithm of Marshall and Olkin (1988). The 
ensoring

distribution is also Weibull, with parameters (λC = 0.0274, ρC = 1.5) and (λC = 0.1464, ρC =

1.5) yielding 
ensoring per
entages of 25% and 50%, respe
tively. The performan
es of one-

stage parametri
 estimation, two-stage parametri
 estimation and two-stage semi-parametri


estimation are summarized in Tables 2, 3 and 4. For ea
h 
opula, simulation results are listed

in in
reasing order of asso
iation. For the Clayton 
opula, higher values of θ 
orrespond to a

higher degree of asso
iation via τ = θ
θ+2 whereas the inverse link holds for the Gumbel-Hougaard


opula (τ = 1 − θ). For ea
h degree of asso
iation, we report the mean estimated values of θ̂,

θ and θ̌ in the �rst row. Mean standard errors together with the 
overage are reported in the

se
ond row. Standard errors of one-stage parametri
 estimators are 
al
ulated from the inverse

Hessian matrix. In the two-stage parametri
 approa
h, standard errors are found via formula

(6). In the two-stage semiparametri
 
ase, we used the grouped ja
kknife to obtain standard

errors (Lipsitz et al., 1994; Lipsitz and Parzen, 1996). As in the work of Othus and Li (2010) we

noted that the varian
e expression in the two-stage semiparametri
 estimation method is rather


ompli
ated to implement. We assessed the performan
e of the ja
kknife pro
edure in the two-

stage parametri
 model by 
omparing the standard error through the theoreti
al expression with

a ja
kknife alternative. Sin
e the results were virtually the same, we only show the standard

error 
al
ulated from the theoreti
al expression.

Note that, as the number of 
lusters in
reases from K = 50 (Table 2) to K = 200 (Table 3),

standard errors are halved sin
e they are proportional to 1/
√
K. For the Gumbel-Hougaard


opula, the bias of the estimates are not noti
eably a�e
ted by an in
reasing per
entage of

10




ensoring, Only when we go from the one-stage parametri
 estimation method to the two-stage

estimation methods we have an in
rease in the bias. However the standard errors be
ome a bit

larger when more 
ensoring is present. For the Clayton 
opula, we observe that the bias of the

estimators in
reases more when the per
entage of 
ensoring in
reases than in the 
ase of the

Gumbel-Hougaard 
opula. For the standard errors, we see in the Clayton 
opula similar results

as for the Gumbel-Hougaard 
opula. The 
ombined e�e
t of the in
reased bias and slightly

di�erent standard errors for the Clayton model in 
omparison of the Gumbel-Hougaard model

explain why the 
overages are smaller in the Clayton model than in the Gumbel-Hougaard

model. A general observation is that biases and standard errors tend to shrink as θ0 approa
hes

independen
e. In ea
h of Tables 2, 3 and 4, the largest biases are found in the semiparametri



ases where θ0 has moved far away from independen
e. The transition from K = 50 to K = 200

and K = 500 leads to a redu
tion of the bias, whi
h also follows from the asymptoti
 proofs

in the Appendix. However, when the number of 
lusters is small and the variability of 
luster

sizes is large, the two-stage parametri
 and semi-parametri
 pro
edures are not re
ommended.

Although 
omputationally more demanding, the one-stage parametri
 pro
edure yields the best

results in every setting.

6 Modelling time to �rst insemination in 
ows 
lustered in herds

In dairy 
attle, the 
alving interval (the time between two 
alvings) should be optimally between

12 and 13 months. One of the main fa
tors determining the length of the 
alving interval is

the time from parturition to the time of �rst insemination (Du
hateau and Janssen, 2004). The

obje
tive of this study, amongst others, was to quantify the 
orrelation between insemination

times of 
ows within a herd. Insemination at a dairy farm is typi
ally done by the farmer itself,

relying on his experien
e. In this way, we get some insight into this pro
ess. The data set

in
ludes 181 
lusters (farms) of di�erent sizes, ranging from 1 
ow to 174 
ows. The 
ensoring

per
entage is 5.5%. The parity of the 
ow (0 if multiparous, 1 if primiparous) is added as a


ovariate. In the parametri
 approa
h, we �rst assume a Weibull distribution for the times to

�rst insemination

S(t) = exp(−λ exp(β′Z)tρ)

and model the asso
iation stru
ture by a Clayton 
opula and a Gumbel-Hougaard 
opula. In

Table 1, the results are listed for the parity e�e
t and asso
iation parameter, using the one-

stage parametri
, two-stage parametri
 and two-stage semiparametri
 estimation pro
edures.

In addition, a model with pie
ewise 
onstant baseline hazard was also �tted, be
ause it has the

advantage of a �exible baseline hazard - making it a good alternative for the semiparametri


model - but is also parametri
 , and thus the one-stage estimation pro
edure 
an be used.

Hereby 
utpoints are 
hosen su
h that ea
h time interval 
ontains 5% of the events.

In both 
opula models, the results for the parity e�e
t are similar for all estimation ap-
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Figure 1: Estimated survival 
urves for multiparous 
ows

proa
hes (see Table 1). The hazard ratio in the one-stage Weibull-Clayton model equals

0.92 (95% CI: [0.89, 0.95]), and is 0.95 (95% CI: [0.92, 0.97]) for the Weibull-Gumbel-Hougaard

model. Both the parametri
 Weibull and semiparametri
 two-stage approa
hes lead to a hazard

ratio of 0.94 (95% CI: [0.90, 0.98]). For the PWE-Clayton and PWE-Gumbel-Hougaard models,

hazard ratios are 0.93 (95% CI: [0.90, 0.96]) and 0.94 (95% CI: [0.92, 0.97]), respe
tively. Within

ea
h 
opula model, the parameter estimates for θ vary over the di�erent estimation te
hniques.

The lowest values of θ are observed for the one-stage Weibull models and the highest for the

two-stage semiparametri
 models. Regarding the simulation results in Se
tion 5, we emphasize

that the one-stage parametri
 pro
edure is most reliable for relatively small sample sizes. If the

Weibull assumption is questionable, a pie
ewise exponential model for the hazard fun
tion is

re
ommended.

Clayton 
opula Gumbel-Hougaard 
opula

Weibull Weibull PWE Semipar. Weibull Weibull PWE Semipar.

one-stage two-stage one-stage two-stage one-stage two-stage one-stage two-stage

β −0.082 −0.066 −0.070 −0.060 −0.055 −0.066 −0.058 −0.060

(0.017) (0.022) (0.016) (0.021) (0.013) (0.022) (0.014) (0.021)

θ 0.212 0.324 0.352 0.447 0.624 0.766 0.661 0.790

(0.015) (0.050) (0.034) (0.063) (0.016) (0.018) (0.013) (0.016)

Table 1: Estimation results for time to �rst insemination data

A visual 
he
k of the estimated marginal survival 
urves (see Figure 1) reveals why the di�eren
e

between the estimated asso
iation parameter θ in the one-stage Weibull-Clayton and PWE-

12



Clayton is so large (0.212 versus 0.352). The di�eren
e between the estimated marginal survival

fun
tions is largest for later times, whi
h are the times when the Clayton 
opula imposes a

higher dependen
y. If the Weibull assumption is in
orre
t, the estimated asso
iation parameter

will also la
k a

ura
y. In this example, we used both a Clayton and a Gumbel-Hougaard 
opula

to illustrate our te
hniques. At this moment, we did not fo
us on a goodness-of-�t test for the

sele
tion of the 
opula fun
tion. This will be done in the future.

7 Dis
ussion

The 
urrent 
opula methodology only allows the modelling of multivariate survival data that are

grouped in 
lusters of small and equal size. A new formulation for the likelihood of Ar
himedean


opula models for survival data is developed, that allows for 
lusters of large and variable size.

The failure times within a 
luster are assumed to be ex
hangeable and the whole data set is

used to estimate a 
ommon marginal baseline survival. The survival fun
tions of subje
ts di�er

through the in
orporation of 
ovariates (possibly time-dependent). For 
opula members of the

PVF family, a 
losed form expression of the likelihood exists, whereas other 
hoi
es require

numeri
al integration. We investigated the parametri
 one-stage and two-stage approa
h as

well as the semiparametri
 two-stage approa
h and derived asymptoti
 results for the estimators

under a reasonable set of 
onditions. Simulation results show that all three methods work well

for 
luster sizes ranging from 2 to 50. Even larger 
lusters 
an be attained, at the 
ost of larger


omputing time. For samples with less than 100 
lusters, the two-stage estimation approa
hes

are not re
ommended sin
e they lead to larger bias and less 
overage. As an alternative to

the �exible semiparametri
 model, a pie
ewise 
onstant hazard (or, by extension, e.g. splines)


an be used while modelling the marginal survival fun
tion. This arti
le is an extension of the

work of Shih and Louis (1995), who derived founding results for bivariate data, and the work of

Glidden (2000), who investigated the two-stage semiparametri
 model for the Clayton 
opula,

as it des
ribes the use of 
opula fun
tions for 
lusters with large and varying 
luster size.
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0% 
ensoring 25% 
ensoring 50% 
ensoring

Copula Parametri
 Parametri
 Semiparametri
 Parametri
 Parametri
 Semiparametri
 Parametri
 Parametri
 Semiparametri


model τ θ0 one-stage two-stage two-stage one-stage two-stage two-stage one-stage two-stage two-stage

Clayton 0.09 0.2 0.197 0.193 0.191 0.196 0.194 0.194 0.197 0.195 0.195

(0.043; 93.1%) (0.042; 89.7%) (0.045; 85.9%) (0.047; 92.0%) (0.047; 90.7%) (0.049; 88.9%) (0.055; 92.1%) (0.055; 91.3%) (0.056, 88.9%)

0.2 0.5 0.498 0.486 0.463 0.496 0.489 0.479 0.495 0.491 0.485

(0.084; 93.2%) (0.091; 84.3%) (0.010; 76.8%) (0.091; 92.9%) (0.097; 88.1%) (0.105; 85.3%) (0.101; 92.7%) (0.106; 89.8%) (0.113; 87.8%)

0.33 1.0 0.997 0.973 0.875 0.996 0.981 0.938 0.997 0.990 0.959

(0.160; 93.5%) (0.176; 81.9%) (0.174; 71.8%) (0.166; 92.9%) (0.182; 86.9%) (0.195; 81.7%) (0.178; 92.3%) (0.194; 88.9%) (0.205; 85.7%)

0.43 1.5 1.479 1.436 1.226 1.478 1.451 1.365 1.476 1.469 1.402

(0.234; 92.1%) (0.253; 83.9%) (0.229; 63.0%) (0.240; 92.6%) (0.262; 87.5%) (0.273; 81.3%) (0.252; 91.7%) (0.278; 88.5%) (0.287; 84.9%)

G-H 0.2 0.8 0.803 0.801 0.803 0.804 0.802 0.803 0.804 0.802 0.804

(0.034; 93.6%) (0.042; 88.6%) (0.041; 89.0%) (0.036; 94.3%) (0.045; 89.0%) (0.044; 87.7%) (0.039; 94.9%) (0.048; 87.8%) (0.048; 86.0%)

0.35 0.65 0.656 0.655 0.661 0.656 0.656 0.662 0.656 0.656 0.664

(0.040; 93.5%) (0.048; 89.4%) (0.049; 89.5%) (0.042; 93.3%) (0.051; 89.2%) (0.052; 88.9%) (0.045; 94.6%) (0.055; 88.0%) (0.056; 86.4%)

0.5 0.5 0.507 0.507 0.521 0.508 0.508 0.522 0.507 0.509 0.525

(0.040; 93.3%) (0.046; 91.2%) (0.047; 90.4%) (0.041; 93.6%) (0.048; 90.5%) (0.050; 90.2%) (0.043; 94.3%) (0.051; 88.4%) (0.054; 86.9%)

0.8 0.2 0.205 0.208 0.247 0.205 0.209 0.250 0.205 0.211 0.258

(0.022; 94.7%) (0.023; 92.3%) (0.030; 68.5%) (0.022; 94.2%) (0.025; 92.6%) (0.032; 67.2%) (0.023; 95.1%) (0.026; 89.7%) (0.035; 60.9%)

Table 2: Simulation results for 50 
lusters of varying sizes ranging from 2 to 50

1
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0% 
ensoring 25% 
ensoring 50% 
ensoring

Copula Parametri
 Parametri
 Semiparametri
 Parametri
 Parametri
 Semiparametri
 Parametri
 Parametri
 Semiparametri


model τ θ0 one-stage two-stage two-stage one-stage two-stage two-stage one-stage two-stage two-stage

Clayton 0.09 0.2 0.199 0.198 0.197 0.199 0.198 0.198 0.199 0.199 0.199

(0.021; 94.4%) (0.022; 93.3%) (0.025; 90.8%) (0.024; 94.4%) (0.024; 94.0%) (0.025; 92.6%) (0.027; 95.3%) (0.028; 94.8%) (0.029; 94.0%)

0.2 0.5 0.498 0.498 0.489 0.498 0.498 0.495 0.498 0.499 0.497

(0.042; 94.3%) (0.052; 90.8%) (0.059; 88.8%) (0.045; 94.6%) (0.052; 92.6%) (0.057; 92.0%) (0.050; 93.3%) (0.055; 93.4%) (0.060; 92.5%)

0.33 1.0 0.994 0.990 0.953 0.993 0.990 0.978 0.994 0.992 0.984

(0.079; 95.3%) (0.101; 90.8%) (0.110; 86.8%) (0.083; 94.3%) (0.099; 92.6%) (0.108; 90.7%) (0.088; 95.1%) (0.102; 93.4%) (0.109; 92.0%)

0.43 1.5 1.494 1.484 1.401 1.494 1.488 1.463 1.496 1.491 1.472

(0.118; 94.2%) (0.147; 90.1%) (0.152; 82.2%) (0.121; 94.4%) (0.145; 91.2%) (0.155; 90.4%) (0.127; 94.8%) (0.148; 91.8%) (0.157; 91.1%)

G-H 0.2 0.8 0.802 0.801 0.802 0.801 0.801 0.801 0.801 0.800 0.801

(0.017; 95.8%) (0.022; 93.2%) (0.022; 92.4%) (0.018; 94.6%) (0.024; 92.4%) (0.024; 91.6%) (0.020; 95.5%) (0.026; 92.2%) (0.026; 91.6%)

0.35 0.65 0.652 0.652 0.654 0.652 0.652 0.654 0.652 0.652 0.655

(0.020; 95.2%) (0.025; 93.9%) (0.026; 93.0%) (0.021; 95.0%) (0.027; 93.3%) (0.028; 93.4%) (0.022; 95.4%) (0.030; 92.8%) (0.030; 93.0%)

0.5 0.5 0.503 0.503 0.507 0.502 0.503 0.508 0.502 0.503 0.509

(0.020; 94.8%) (0.024; 93.8%) (0.024; 93.4%) (0.020; 94.7%) (0.025; 93.7%) (0.026; 93.3%) (0.021; 95.1%) (0.028; 93.2%) (0.029; 93.0%)

0.8 0.2 0.201 0.202 0.215 0.201 0.203 0.217 0.201 0.203 0.220

(0.011; 95.3%) (0.012; 94.7%) (0.014; 81.4%) (0.011; 94.0%) (0.013; 94.5%) (0.015; 81.2%) (0.011; 94.7%) (0.013; 93.9%) (0.016; 76.9%)

Table 3: Simulation results for 200 
lusters of varying sizes ranging from 2 to 50

1
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0% 
ensoring 25% 
ensoring 50% 
ensoring

Copula Parametri
 Parametri
 Semiparametri
 Parametri
 Parametri
 Semiparametri
 Parametri
 Parametri
 Semiparametri


model τ θ0 one-stage two-stage two-stage one-stage two-stage two-stage one-stage two-stage two-stage

Clayton 0.09 0.2 0.200 0.200 0.199 0.200 0.200 0.200 0.200 0.199 0.200

(0.013; 95.4%) (0.014; 94.2%) (0.016; 92.6%) (0.015; 95.3%) (0.016; 94.1%) (0.017; 93.7%) (0.017; 94.9%) (0.018; 95.2%) (0.019; 94.8%)

0.2 0.5 0.501 0.499 0.493 0.501 0.499 0.498 0.501 0.500 0.499

(0.027; 95.4%) (0.033; 92.2%) (0.039; 89.9%) (0.029; 94.9%) (0.033; 92.8%) (0.037; 91.7%) (0.032; 94.6%) (0.035; 93.4%) (0.038; 93.2%)

0.33 1.0 0.999 0.994 0.973 1.000 0.996 0.990 0.999 0.997 0.992

(0.050; 94.8%) (0.065; 91.8%) (0.072; 89.1%) (0.053; 94.1%) (0.064; 92.9%) (0.070; 92.1%) (0.056; 94.2%) (0.065; 93.0%) (0.070; 93.2%)

0.43 1.5 1.498 1.496 1.453 1.498 1.497 1.485 1.497 1.498 1.490

(0.075; 93.8%) (0.098; 93.4%) (0.104; 88.8%) (0.077; 94.3%) (0.095; 93.7%) (0.101; 93.4%) (0.081; 93.5%) (0.095; 93.4%) (0.102; 93.9%)

G-H 0.2 0.8 0.800 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.802

(0.011; 93.6%) (0.014; 94.3%) (0.014; 92.9%) (0.011; 95.5%) (0.015; 93.3%) (0.015; 93.0%) (0.013; 95.4%) (0.017; 93.6%) (0.017; 93.0%)

0.35 0.65 0.651 0.652 0.653 0.651 0.652 0.653 0.652 0.652 0.654

(0.013; 95.4%) (0.016; 95.3%) (0.017; 95.1%) (0.013; 95.9%) (0.017; 93.7%) (0.018; 93.6%) (0.014; 94.6%) (0.019; 93.8%) (0.020; 92.9%)

0.5 0.5 0.501 0.502 0.504 0.501 0.502 0.505 0.502 0.502 0.505

(0.013; 96.9%) (0.015; 95.0%) (0.016; 94.8%) (0.013; 94.9%) (0.016; 93.8%) (0.017; 93.4%) (0.014; 95.8%) (0.018; 93.9%) (0.018; 93.6%)

0.8 0.2 0.201 0.201 0.208 0.201 0.201 0.209 0.201 0.202 0.211

(0.007; 95.7%) (0.008; 95.4%) (0.009; 86.7%) (0.007; 95.9%) (0.008; 95.4%) (0.009; 86.1%) (0.007; 95.0%) (0.009; 94.6%) (0.010; 83.2%)

Table 4: Simulation results for 500 
lusters of varying sizes ranging from 2 to 50

1
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Appendix: Theorems and proofs

Proof of Theorem 1. Let β0 denote the true parameter ve
tor for the margins. Expanding the s
ore fun
tion

U
∗
β in a Taylor series around β0 and evaluating it at β = β, we get under regularity 
onditions of maximum

likelihood theory

U
∗
β(β) = 0 = U

∗
β(β0) +

∂U∗
β

∂β

∣

∣

∣

∣

β=β0

(β − β0) + op(
√
K).

Similarly,

Uθ(β, θ) = 0 = Uθ(β0, θ0) +
∂Uθ

∂β

∣

∣

∣

∣

(β,θ)=(β0,θ0)

(β − β0) +
∂Uθ

∂θ

∣

∣

∣

∣

(β,θ)=(β0,θ0)

(θ − θ0) + op(
√
K).

By the law of large numbers, as K → ∞,

− 1

K

∂U∗
β

∂β

∣

∣

∣

∣

β=β0

=
1

K

K
∑

i=1

− ∂

∂β
U

∗
i,β(β0) → I

∗ = E

[

− ∂

∂β
U

∗
1,β(β0)

]

− 1

K

∂Uθ

∂β

∣

∣

∣

∣

(β,θ)=(β0,θ0)

=
1

K

K
∑

i=1

− ∂

∂β
Ui,θ(β0, θ0) → Iθβ

− 1

K

∂Uθ

∂θ

∣

∣

∣

∣

(β,θ)=(β0,θ0)

=
1

K

K
∑

i=1

− ∂

∂θ
Ui,θ(β0, θ0) → Iθθ.

Hen
e

1√
K

(

U
∗
β(β0)

Uθ(β0, θ0)

)

→
√
K

(

I
∗ 0

Iθβ Iθθ

)(

β − β0

θ − θ0

)

.

By the 
entral limit theorem,

1√
K

(

U
∗
β(β0)

Uθ(β0, θ0)

)


onverges to multivariate normal with mean

(

0

0

)

and

varian
e-
ovarian
e matrix

(

V 0

0 Iθθ

)

with V = Var

(

U
∗
1,β(β0)

)

= E
[

U
∗
1,β(β0)

2
]

. Thus,

√
K

(

β − β0

θ − θ0

)


onverges to multivariate normal with mean ve
tor zero and varian
e-
ovarian
e matrix

(

I
∗

0

Iθβ Iθθ

)−1(

V 0

0 Iθθ

)(

I
∗

0

Iθβ Iθθ

)−1T

=





(I∗)−1
V(I∗)−1T −(I∗)−1

V(I∗)−1T
Iβθ

Iθθ
−Iθβ(I∗)−1

V(I∗)−1T

Iθθ

1
Iθθ

+
Iθβ(I∗)−1

V(I∗)−1T
Iβθ

I2
θθ



 .

The lower right element of this matrix is the asymptoti
 varian
e of

√
K(θ − θ0) and we denote this by σ2

.

σ
2 =

1

Iθθ
+

Iθβ(I
∗)−1

V(I∗)−1
Iβθ

I2θθ
.
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Before we prove Theorem 2 and 3, we �rst introdu
e some notation.

Yij(t) = I{Xij≥t}

Λ̌(t) =

∫ t

0

d
∑K

i=1

∑ni
j=1 δijI{Xij≤u}

∑K
i=1

∑ni
j=1 Yij(u) exp[β̌

′
Zij(u)]

=

K
∑

i=1

ni
∑

j=1

δijI{Xij≤t}
∑K

k=1

∑nk
l=1 I{Xkl≤Xij} exp[β̌

′
Zkl(Xij)]

Hij = exp

(

−
∫ τ

0

Yij(u) exp[β
′
Zij(u)]dΛ(u)

)

H
0
ij = exp

(

−
∫ τ

0

Yij(u) exp[β
′
0Zij(u)]dΛ0(u)

)

Ȟij = exp

(

−
∫ τ

0

Yij(u) exp[β̌
′
Zij(u)]dΛ̌(u)

)

Hij(t) = exp

(

−
∫ τ

0

Yij(u) exp[β
′
Zij(u)]d(Λ + t(Γ− Λ))(u)

)

Note that Hij = Hij(0).

L(θ;β,Λ) =
K
∏

i=1

Li(θ;β,Λ)

=

K
∏

i=1





ni
∏

j=1

[

1

ϕ′
θ

(

ϕ−1
θ (Hij)

)

]δij


ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)

lK(θ) = K
−1 logL(θ;β,Λ)

= K
−1

K
∑

i=1

{

ni
∑

j=1

δij log

[

1

ϕ′
θ

(

ϕ−1
θ (Hij)

)

]

+ logϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)}

lK0(θ) = K
−1 logL(θ;β0,Λ0)

ľK(θ) = K
−1 logL(θ; β̌, Λ̌)

UK(θ) =
∂lK(θ)

∂θ
= K

−1 ∂ logL(θ;β,Λ)

∂θ

= K
−1

K
∑

i=1

{

ni
∑

j=1

δij
[

ϕ
′
θ

(

ϕ
−1
θ (Hij)

)] ∂

∂θ

[

ϕ
′
θ

(

ϕ
−1
θ (Hij)

)]−1

+

[

ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)]−1
∂

∂θ

[

ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)]}

UK0(θ) =
∂lK0(θ)

∂θ
= K

−1 ∂ logL(θ;β0,Λ0)

∂θ

ǓK(θ) =
∂ľK(θ)

∂θ
= K

−1 ∂ logL(θ; β̌, Λ̌)

∂θ

We 
opy the following notation from Spiekerman and Lin (1998) where a⊗0 = 1,a⊗1 = a and a⊗2 = a′a:

S
(r)(β, t) = K

−1
K
∑

i=1

ni
∑

j=1

Yij(t) exp[β
′
Zij(t)]Zij(t)

⊗r
, s

(r) = E
[

S
(r)(β, t)

]

(r = 0, 1, 2)

E(β, t) =
S(1)(β, t)

S(0)(β, t)
, e(β, t) =

s(1)(β, t)

s(0)(β, t)

V (β, t) =
S(2)(β, t)

S(0)(β, t)
−E(β, t)⊗2

, v(β, t) =
s(2)(β, t)

s(0)(β, t)
− e(β, t)⊗2

Assume the following regularity 
onditions where τ > 0 is a 
onstant (e.g. end of study time).

C1. β is in a 
ompa
t subset of R
p
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C2. Λ(τ ) < ∞
C3. θ ∈ ν, where ν is a 
ompa
t subset of Θ

C4. P (Cij ≥ t ∀t ∈ [0, τ ]) > δc > 0 for i = 1, . . . ,K and j = 1, . . . , ni

C5. Write Zij(t) = {Zij1(t), . . . , Zijp(t)}. For i = 1, . . . ,K, j = 1 . . . , ni, k = 1, . . . , p

|Zijk(0)|+
∫ τ

0

|dZijk(t)| ≤ BZ < ∞ a.s. for some 
onstant BZ

C6. E

[

log
Li(θ1;β,Λ)

Li(θ2;β,Λ)

]

exists for all θ1, θ2 ∈ Θ, i = 1, . . . ,K

C7. A =
∫ τ

0
v(β0, u)s

(0)(β0, u)dΛ0(u) is positive de�nite.

Proof of Theorem 2. The results for β̌ and Λ̌ follow from arguments along the lines of Spiekerman and Lin

(1998). We will now show the 
onsisten
y of θ̌ using ideas of Othus and Li (2010).

To a

ount for the fa
t that plug-in estimates of β and Λ are used in the likelihood for θ, we will need to

take a Taylor series expansion of the likelihood of θ around β0 and Λ0. Sin
e Λ0 is an unspe
i�ed fun
tion,

this expansion will need to in
lude a fun
tional expansion term. An expansion using Hadamard derivatives is

appropriate for this situation. Hereto, we must verify that the log-likelihood lK(θ) is Hadamard di�erentiable

with respe
t to Λ.

We �nd the Hadamard derivative of lK w.r.t. Λ at Γ−Λ ∈ BV [0, τ ] by taking the derivative of K−1 logL(θ;β,Λ+

t(Γ− Λ)) with respe
t to t en then putting t = 0:

d

dt

[

K
−1 logL(θ;β,Λ+ t(Γ− Λ))

]

∣

∣

∣

∣

t=0

=

∫ τ

0

ζK(θ; Λ)(u)d(Γ− Λ)(u)

where

ζK(θ; Λ)(u) = K
−1

K
∑

i=1

ni
∑

j=1

D
l
ijYij(u) exp[β

′
Zij(u)]

and

D
l
ij =







δij
−ϕ′′

θ (ϕ
−1
θ (Hij))

ϕ′
θ(ϕ

−1
θ (Hij))

+
ϕ

(di+1)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)

ϕ
(di)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)







−Hij

ϕ′
θ(ϕ

−1
θ (Hij))

.

The derivative of lK(θ) w.r.t. β is

ζK(θ;β) = K
−1

K
∑

i=1

ni
∑

j=1

D
l
ij

(
∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)]dΛ(u)

)

.

To prove 
onsisten
y for θ̌, we will require ||ζK(θ; Λ)||∞ and ||ζK(θ;β)|| to be bounded. This 
an be obtained

when the 
ommon fa
tor ||Dl
ij ||∞ is bounded and also the terms unique to ζK(θ;β) and ζK(θ; Λ) have to be

bounded. This requirement is not too restri
tive, e.g. for the Clayton 
opula we have

||Dl
ij ||∞ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δij(1 + θ)−
(1 + diθ)H

−θ
ij

(

−ni + 1 +
∑ni

j=1 H
−θ
ij

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

.

Due to the de�nition of Hij and 
ondition C2, this expression is bounded. By 
ondition C5,

||Yij exp[β
′
Zij ]||∞ and

∣

∣

∣

∣

∣

∣

∣

∣

∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)dΛ(u)]

∣

∣

∣

∣

∣

∣

∣

∣

are bounded.

An expansion of ľK(θ) around β0 and Λ0 
an be written as

ľK(θ) = lK0(θ) + ζK(θ;β0)(β̌ − β0) +

∫ τ

0

ζK(θ; Λ0)(t)d(Λ̌− Λ0)(t) +R.
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Another (intuitive) notation is:

lK,θ(β̌, Λ̌) = lK,θ(β0,Λ0) +
∂

∂β
lK,θ(β0,Λ0)(β̌ − β0) +

∂

∂Λ
lK,θ(β0,Λ0)(Λ̌− Λ0) +R.

The remainder term R is of order op
(

max{||β̌ − β0||, ||Λ̌− Λ0||∞}
)

. This 
an be seen from the de�nition of

Hadamard di�erentiability, sin
e

∣

∣

∣

∣

∣

∣

∣

∣

lK,θ(β,Λ0 + t(Λ̌− Λ0))− lK,θ(β, Λ̌)

t
− ∂

∂Λ
lK,θ(β,Λ0)(Λ̌− Λ0)

∣

∣

∣

∣

∣

∣

∣

∣

∞
→ 0, as t ↓ 0,

uniformly in Λ̌−Λ0 in all 
ompa
t subsets of D, the spa
e of 
umulative hazard fun
tions. Sin
e β̌ is 
onsistent

and Λ̌ is uniformly 
onsistent (Spiekerman and Lin, 1998), R = op(1).

In order to prove θ̌ is 
onsistent we will need to verify the uniform 
onvergen
e of the log-likelihood with

the plug-in estimate of Λ to the expe
ted value of the log-likelihood evaluated at the true value of Λ, denoted

lK0(θ):

sup
θ∈ν

|ľK(θ)− E[lK0(θ)]| = op(1). (7)

This 
an be shown as follows:

ľK(θ)−E[lK0(θ)] = lK0(θ)− E[lK0(θ)] + ζK(θ;β0)(β̌ − β0) +

∫ τ

0

ζK(θ; Λ0)(t)d(Λ̌− Λ0)(t) +R.

Due to the law of large numbers, for �xed θ,

lK0(θ)− E[lK0(θ)]
p→ 0. (8)

Sin
e ||ζK(θ;β)|| is bounded, say ||ζK(θ;β)|| ≤ M1, we have

sup
θ∈ν

∣

∣ζK(θ;β0)(β̌ − β0)
∣

∣ ≤ M1||β̌ − β0||. (9)

Sin
e ||ζK(θ; Λ)(u)||∞ is bounded, say ||ζK(θ; Λ)(u)||∞ ≤ M2, we have

sup
θ∈ν

∣

∣

∣

∣

∫ τ

0

ζK(θ; Λ)(t)d(Λ̌− Λ0)(t)

∣

∣

∣

∣

≤ M2||Λ̌− Λ0||∞. (10)

Therefore

sup
θ∈ν

∣

∣ľK(θ)− E[lK0(θ)]
∣

∣ ≤ sup
θ∈ν

|lK0(θ)− E[lK0(θ)]|+M1||β̌ − β0||+M2||Λ̌− Λ0||∞ +R.

Using (8), the 
onsisten
y of β̌, the uniform 
onsisten
y of Λ̌ and the fa
t that R = op(1), we get

sup
θ∈ν

∣

∣ľK(θ)− E[lK0(θ)]
∣

∣ = op(1).

Finally, in order to verify that θ̌ is 
onsistent, we will need to show that the expe
ted log-likelihood is maximized

at the truth:

E[lK0(θ)]− E[lK0(θ0)] < 0. (11)

Due to independen
e between 
lusters and the fa
t that all lower dimensional 
opulas 
an be regarded as margins

of the highest dimensional 
opula, the log-likelihood lK(θ) 
an be written as a sum of i.i.d. random variables

K
−1

K
∑

i=1

logLi(θ;β,Λ)

with

Li = (−1)di
∂di

∂{δij = 1}S(yi1, . . . , yi,ni
)

=





ni
∏

j=1

[

1

ϕ′
θ

(

ϕ−1
θ

(

e−Λ(yij)
))

]δij


ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ

(

e
−Λ(yij)

)

)
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where ∂{δij = 1} is the set of un
ensored individuals in 
luster i.

Take θ 6= θ0. The law of large numbers, Jensen's inequality and 
ondition C6 imply that

lim
K→∞

lK0(θ)− lK0(θ0) = E[lK0(θ)]− E[lK0(θ0)]

= E

[

K
−1

K
∑

i=1

logLi(θ;β0,Λ0)

]

−E

[

K
−1

K
∑

i=1

logLi(θ0;β0,Λ0)

]

= E [logL1(θ;β0,Λ0)− logL1(θ0;β0,Λ0)]

= E

[

log
L1(θ;β0,Λ0)

L1(θ0;β0,Λ0)

]

≤ logE

[

L1(θ;β0,Λ0)

L1(θ0;β0,Λ0)

]

= log 1

= 0.

The before last equality results from L1(θ;β0,Λ0) being the 
ontribution of 
luster 1 to the likelihood L(θ;β0,Λ0),

whi
h is the joint density fun
tion of (y11, . . . , y1,n1
; δ11, . . . , δ1,n1

).

Sin
e θ̌ maximizes ľK(θ), (7) implies that

0 ≤ ľK(θ̌)− ľK(θ0) = ľK(θ̌)− ľK(θ0) + E[lK0(θ0)]− E[lK0(θ0)] = ľK(θ̌)− E[lK0(θ0)] + op(1)

⇓

E[lK0(θ0)] ≤ ľK(θ̌) + op(1).

Subtra
t E[lK0(θ̌)] from ea
h side of the inequality to write

E[lK0(θ0)]− E[lK0(θ̌)] ≤ ľK(θ̌)− E[lK0(θ̌)] + op(1) ≤ sup
θ∈Θ

|ľK(θ)−E[lK0(θ)]|+ op(1) = op(1). (12)

Now take θ su
h that |θ − θ0| ≥ ε for any �xed ε > 0. By (11) there must exist some γε > 0 su
h that

E[lK0(θ̌)] + γε < E[lK0(θ0)].

It follows that

P (|θ̌ − θ0| ≥ ε) ≤ P (E[lK0(θ̌)] + γε < E[lK0(θ0)]).

Equation (12) implies that

P (E[lK0(θ̌)] + γε < E[lK0(θ0)]) → 0 as K → ∞.

Therefore

P (|θ̌ − θ0| ≥ ε) → 0 as K → ∞

whi
h proves the 
onsisten
y of θ̌.

Proof of Theorem 3. Take a �rst order Taylor series expansion of ÛK(θ̂) around and θ0:

ÛK(θ̂) = ÛK(θ0) + (θ̂ − θ0)
∂ÛK

∂θ

∣

∣

∣

∣

∣

θ=θ∗

(13)

where θ∗ is between θ̂ and θ0. It must be the 
ase that ÛK(θ̂) = 0 sin
e θ̂ was taken to be the maximum of

L(θ; β̌, Λ̌). Therefore

√
K(θ̂ − θ0) =

√
KÛK(θ0)

− ∂ÛK

∂θ

∣

∣

∣

θ=θ∗

. (14)
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We already showed that θ̂ 
onsistently estimates θ0, so the law of large numbers implies that

∂ÛK

∂θ

∣

∣

∣

∣

∣

θ=θ∗

P−→ W (θ0) = lim
K→∞

∂UK

∂θ

∣

∣

∣

∣

θ=θ0

(Fisher information).

We will show that the s
ore equation ÛK(θ0) in the numerator of (14) follows a normal distribution. Hereto we

need a Taylor series expansion of ÛK(θ0) around β0 and Λ0. Be
ause Λ0 is an unspe
i�ed fun
tion, we will use

the Hadamard derivative of UK(θ0) w.r.t. Λ at Γ− Λ ∈ BV [0, τ ].

d

dt

[

K
−1 ∂ logL(θ;β,Λ+ t(Γ− Λ))

∂θ

]∣

∣

∣

∣

t=0

=

∫ τ

0

ξK(θ; Λ)(u)d(Γ− Λ)(u)

where

ξK(θ; Λ)(u) = K
−1

K
∑

i=1

ni
∑

j=1

D
U
ijYij(u) exp[β

′
Zij(u)]

and

D
U
ij =

{

δij
ϕ′′

θ

(

ϕ−1
θ (Hij)

)

ϕ′
θ

(

ϕ−1
θ (Hij)

)

∂

∂θ

[

ϕ
′
θ

(

ϕ
−1
θ (Hij)

)]−1

+ δijϕ
′
θ

(

ϕ
−1
θ (Hij)

) ∂

∂θ

[

− ϕ′′
θ

(

ϕ−1
θ (Hij)

)

ϕ′
θ

(

ϕ−1
θ (Hij)

)3

]

−
ϕ

(di+1)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)

[

ϕ
(di)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)]2

1

ϕ′
θ

(

ϕ−1
θ (Hij)

)

∂

∂θ

[

ϕ
(di)
θ

(

ni
∑

j=1

ϕ
−1
θ (Hij)

)]

+
1

ϕ
(di)
θ

(

∑ni

j=1 ϕ
−1
θ (Hij)

)

∂

∂θ





ϕ
(di+1)
θ

(

∑ni
j=1 ϕ

−1
θ (Hij)

)

ϕ′
θ

(

ϕ−1
θ (Hij)

)











(−Hij).

The derivative of UK(θ) w.r.t. β is given by

ξK(θ;β) = K
−1

K
∑

i=1

ni
∑

j=1

D
U
ij

∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)]dΛ(u).

We require ||ξK(θ; Λ)||∞ and ||ξK(θ;β)|| to be bounded. By 
ondition C5, the terms unique to ξK(θ; Λ) and

ξK(θ;β), i.e.

||Yij exp[β
′
Zij ]||∞ and

∣

∣

∣

∣

∣

∣

∣

∣

∫ τ

0

Yij(u)Zij(u) exp[β
′
Zij(u)dΛ(u)]

∣

∣

∣

∣

∣

∣

∣

∣

are bounded. The 
ommon term ||DU
ij ||∞ is also bounded.

A Taylor series expansion of ÛK(θ0) around β0 and Λ0 gives

ÛK(θ0) = UK0(θ0) + ξK(θ0;β0)(β̌ − β0) +

∫ τ

0

ξK(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)] +GK ,

where GK is the remainder term for the Taylor series. Sin
e Λ̌ is

√
K-
onsistent it 
an be shown that GK =

op(K
−1/2).

De�ne the pointwise limit of ξK(θ,Λ)(t) as ξ(θ,Λ)(t) and denote ξ(θ;β) = E[ξK(θ;β)]. Sin
e ||ξK(θ; Λ)||∞
and ||ξK(θ;β)|| are bounded, ||ξ(θ; Λ)||∞ and ||ξ(θ;β)|| are too. Therefore

√
KÛK(θ0) =

√
K

(

UK0(θ0) + ξ(θ0;β0)(β̌ − β0) +

∫ τ

0

ξ(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)]

)

+ op(1). (15)

By Spiekerman and Lin (1998)

√
K(β̌ − β0) → A

−1
K
∑

i=1

wi.
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where wi. is the i
th


omponent of the s
ore fun
tion for β under the independen
e working assumption, evaluated

at β0:

wi. =

ni
∑

j=1

∫ τ

0

{Zij(u)− E(β0, u)}dMij(u)

with

Mij(t) = δijYij(t)−
∫ t

0

Yij(u) exp
[

β
′
0Zij(u)

]

dΛ0(u).

They also showed that

√
K(Λ̌0(t, β̌)− Λ0(t)) → W(t) = K

−1/2
K
∑

i=1

Ψi(t)

where W(t) is a zero-mean Gaussian pro
ess with varian
e fun
tion

E
[

Ψ1(t)
2]

with

Ψi(t) =

∫ t

0

dMi.(u)

s(0)(β0, u)
+ h

T (t)A−1
wi.

and

h(t) = −
t
∫

0

e(β0, u)dΛ0(u).

That's why

√
K

(

UK0(θ0) + ξ(θ0;β0)(β̌ − β0) +

∫ τ

0

ξ(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)]

)

=
√
K

(

K
−1

K
∑

i=1

φi(θ0) + ξ(θ0;β0)K
−1

A
−1

K
∑

i=1

wi. +

∫ τ

0

ξ(θ0; Λ0)(t)d

[

K
−1

K
∑

i=1

Ψi(t)

])

= K
−1/2

K
∑

i=1

(

φi(θ0) + ξ(θ0;β0)A
−1

wi. +

∫ τ

0

ξ(θ0; Λ0)(t)dΨi(t)

)

= K
−1/2

K
∑

i=1

Ξi.

The 
entral limit theorem implies that

√
KÛK(θ0) 
onverges to a normally distributed random variable with

mean zero and varian
e equal to the varian
e of Ξ1.

Thus we have

√
K(θ̂ − θ0) =

√
KÛK(θ0)

− ∂ÛK

∂θ

∣

∣

∣

θ=θ∗

(16)

where √
KÛK(θ0)

D−→ N(0,Var(Ξ1))

and

∂ÛK

∂θ

∣

∣

∣

∣

∣

θ=θ∗

P−→ W (θ0).

By Slutsky's theorem,

√
K(θ̂ − θ0) 
onverges to a normal distribution with mean zero and varian
e equal to

Var(Ξ1)

W (θ0)2
.

The varian
e of Ξ1 (note that Var(Ξ1) = E[Ξ2
1]) 
an be estimated by K−1∑K

i=1 Ξ̂
2
i where Ξ̂i is obtained from Ξi

repla
ing parameter values by their estimators.

W (θ0) 
an be estimated by the (minus) derivative of the pseudo s
ore fun
tion ÛK(θ), evaluated in θ̂.
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