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Chapter 1
Introduction

In survival studies, focus is on time to event data. With this type of data, the variable of
interest is typically positive-valued and measures the time until something happens, e.g.,

� time to death;

� time to onset or relapse of a disease;

� time to failure of electronic components;

� duration of nursing home stay.

If the event occurred in all individuals, many methods of analysis would be applicable.
However, it is usual that at the end of follow-up some of the individuals have not had the
event of interest yet, or have dropped out of the study. Thus, their true time to event is
unknown and only a lower time bound for the event is observed. This situation is called
right censoring. In this thesis, we will deal with non-informative right censoring, meaning
that censoring carries no prognostic information about subsequent survival experience; in
other words, those who are censored because of loss to follow-up at a given point in time
should be as likely to have a subsequent event as those individuals who remain in the
study.

1
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Further, survival data are rarely normally distributed, but rather skewed and comprise
typically of many early events and relatively few late ones. It is these features of the
data that make the methods called survival analysis necessary. Many fine books have
been written on the subject, e.g, Klein and Moeschberger (2003); Kleinbaum and Klein
(2012). In Section 1.1 we will review some of the basic concepts.

1.1 Basic concepts of univariate survival analysis

Suppose we are studying the survival times of n independent individuals which are possibly
right-censored. The observed time for individual i(i = 1, . . . , n) is Xi = min(Ti, Ci),
where Ti is the event time and Ci is the censoring time. Event times and censoring times
are assumed to be independent. In order to know whether the event actually happened,
an indicator δi = I(Ti ≤ Ci) is introduced, which equals 1 if the event happened and 0
otherwise.

Let F (t) = P (T ≤ t) be the cumulative distribution function of T and f the correspond-
ing probability density function. The survival function captures the probability that the
individual will survive beyond a specified time

S(t) = P (T > t) = 1− F (t) =
∫ ∞
t

f(x)dx.

The hazard function (also known as the failure rate, hazard rate, or force of mortality) is
the instantaneous rate of occurrence of the event

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t .

The numerator of this expression is the conditional probability that the event will occur in
the interval [t, t+ ∆t[ given that it has not occurred before, and the denominator is the
width of the interval. Dividing one by the other we obtain a rate of event occurrence per
unit of time. Letting the interval width go to zero in the limit, we obtain an instantaneous
rate of occurrence. The conditional probability in the numerator may be written as the
ratio of the joint probability that T is in the interval [t, t+∆t[ and T ≥ t to the probability
of the condition T ≥ t. The former may be written as f(t)∆t for small ∆t, while the
latter is S(t) by definition. Dividing by ∆t and passing to the limit gives the useful result

h(t) = f(t)
S(t) ,
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from which we can deduce that

h(t) = − d

dt
logS(t).

This gives rise to the cumulative hazard function

H(t) =
∫ t

0
h(x)dx = − logS(t).

One may think of H(t) as the sum of the risks you face going from duration 0 to t.

The survival and hazard functions provide alternative but equivalent characterizations of
the distribution of T . The distribution of T can be estimated either parametrically, making
assumptions on the functional form of the density, or nonparametrically.

In the parametric case, the simplest possible survival distribution is obtained by assuming
a constant hazard over time, corresponding to an exponential distribution of T :

h(t) = λ

S(t) = exp(−λt)

f(t) = λ exp(−λt).

The exponential distribution is a special case of the more flexible Weibull distribution

h(t) = ρλρtρ−1

S(t) = exp(−(λt)ρ)

f(t) = ρλρtρ−1 exp(−(λt)ρ)

with scale parameter λ > 0 and shape parameter ρ > 0. If ρ = 1, this model reduces to
the exponential. If ρ > 1, then the hazard increases over time. If ρ < 1, then the hazard
decreases over time.

Another extension of the exponential model is the piecewise exponential model, where
the duration is partitioned into L intervals with cutpoints 0 = τ0 < τ1 < · · · < τL = ∞
and the hazard is assumed to be constant within each interval:

h(t) = λl for t ∈ [τl−1, τl[

S(t) = exp

− l−1∑
j=1

λj(τj − τj−1)− λl(t− τl−1)

 for t ∈ [τl−1, τl[

f(t) = λl exp

− l−1∑
j=1

λj(τj − τj−1)− λl(t− τl−1)

 for t ∈ [τl−1, τl[.
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In the following chapters, the Weibull distribution and piecewise exponential distribution
will be used to illustrate the parametric modelling approach, because they cover a wide
range of distributional shapes due to their flexibility. Other popular choices for the distri-
bution of event times are the Gompertz, generalized gamma, log-logistic and log-normal
distribution (Wienke, 2011; Klein and Moeschberger, 2003). All these distributions are
equally applicable in the developed methodology.

The classical nonparametric estimator for the survival function in the presence of censoring
is the Kaplan-Meier estimator (Kaplan and Meier, 1958)

Ŝ(t) =
∏

i:t(i)≤t

(
1− di

ni

)
where t(i)(i = 1, . . . ,m) are the ordered event times and di the number of events at
t(i), while ni is the number at risk just before t(i). The Kaplan-Meier estimator is a step
function which jumps at the observed event times. If the largest observation happens to
be a censored case, the estimator will never drop to zero. If no data are censored, the
Kaplan-Meier estimator coincides with be the empirical survival function

Ŝ(t) = 1
n

n∑
i=1

I(Ti ≥ t),

which is the proportion alive at t.

In parametric inference, all of the evidence in a sample relevant to model parame-
ters is contained in the likelihood function. If the lifetimes T1, . . . , Tn are governed by
a survival function S(t) with associated density f(t), the contribution of an uncensored
subject to the likelihood is f(ti) = f(xi), because the actual lifetime is observed.
If the subject did not experience the event, all we know under non-informative right
censoring is that the lifetime Ti exceeds the observed time xi, so its contribution is
S(xi) = P (Ti > xi). The likelihood of all n subjects at once is

L =
n∏
i=1

f(xi)δiS(xi)1−δi .

Up to this point we have been concerned with a homogeneous population, where the
lifetimes of all units are governed by the same survival function S(t). The risk of failure
may, however, be affected by a set of covariates Zi = (Zi1, . . . , Zip)′, which are possibly
time-varying. The accelerated failure time model (AFT) models the logarithm of the
(possibly unobserved) event times Ti(i = 1, . . . , n) using a conventional linear model

log Ti = β′Zi + εi
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where the distribution of log-survival of the ith subject is specified as a simple shift of
a baseline distribution represented by the error term εi. In a model with a single binary
covariate Z, this means that the survival function of subjects in group 1 is S1(t) =
S0(exp(−β)t). In words, the probability that a member of group 1 has not experienced
the event at time t is exactly the same as the probability that a member of group 0
will not have experienced the event at time exp(−β)t. For β = log 2, this would be
half the time. Different kinds of parametric models are obtained by assuming different
distributions for the error term. If the εi are normally distributed, the log-normal model
for the Ti is obtained. Alternatively, if the εi have an extreme value distribution with
probability density function f(ε) = exp(ε− exp(ε)), the Ti are exponentially distributed.

Another, widely used approach of modelling covariate effects is the proportional hazards
model that was proposed by Cox (1972). As the name suggests, the proportional hazards
model focuses directly on the hazard function. The hazard at time t for a subject with
covariate information Zi is

hi(t|Zi) = h0(t) expβ′Zi.

In this model, h0(t) is the baseline hazard function that describes the hazard for individuals
with Zi = 0, and expβ′Zi is the proportionate increase or reduction in hazard, associated
with the set of characteristics Zi. The survival function is

S(t|Zi) = S0(t)exp(β′Zi)

where S0(t) = exp(−H0(t)) is the baseline survival function. Different assumptions about
the baseline survival function (or hazard function) lead to different kinds of proportional
hazards models. One can assume a parametric form of the baseline survival function, but
Cox (1972) observed that inference about the covariate effects is also possible when there
is no assumption at all on the baseline survival (or hazard) function. In Cox’s proportional
hazards model, estimation of covariate effects is done by maximizing the partial likelihood.
In case of data without tied observations, the partial likelihood is given by

L(β) =
∏
i:δi=1

exp(β′Zi)∑
j:Xj≥Xi exp(β′Zj)

.

If event times are observed on a discrete time scale, it is possible that the event times of
two or more subjects coincide. In the case of tied observations, it is recommended to use
the approximation proposed by Efron (1977).
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1.2 Models for multivariate survival data

Multivariate survival data consist of multiple lifetimes which are linked to each other in
some sense. In clustered survival data, subjects in the same cluster are assumed to share
some characteristic or environment, and are therefore expected to be more similar with
respect to the hazard of the event. Examples are

� follow-up of cancer patients treated in different medical centers;

� mortality of twins;

� time to infection in the four udder parts of a dairy cow.

To analyze this type of multivariate survival data, two popular techniques exist that model
the association between the individuals: frailty models and copula models.

1.2.1 Frailty models

The frailty approach aims to account for heterogeneity, caused by unmeasured covariates
at the cluster level. For example, in a multi-center clinical trial, some hospitals perform
better than others, although the study protocol implies the same therapy in all hospitals.

In addition to the observed covariates, a frailty model also accounts for the pres-
ence of a latent multiplicative effect on the hazard function. This effect, or frailty, is
considered as a realization of a random variable U with a given frailty distribution having
unit mean and finite variance:

E(U) = 1 and Var(U) = θ.

It is the variance of the frailty that represents the heterogeneity and which is eventually
estimated. In cases where the frailty is greater than one, subjects experience an increased
hazard of failure and are said to be more frail. Frailty models come in different flavours.
The shared frailty model is used with multivariate survival data where the unobserved
frailty is shared among groups of individuals. The correlated frailty model was originally
developed for the analysis of bivariate failure time data, in which two associated random
variables are used to characterize the frailty effect for each pair.
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In shared frailty models, the interest lies on the hazard function of an individual, conditional
on an unknown frailty term for the cluster containing this individual. In these models,
we follow a conditional viewpoint and investigate the influence of different covariates on
the hazard function of an individual, given the cluster. In fact, shared frailty models are
extensions of the proportional hazards model. The hazard at time t for subject j in cluster
i with covariate information Zij = (Zij1, . . . , Zijp)′ is

hij(t|Zij) = h0(t)ui exp(β′Zij).

The frailty term ui(i = 1, . . . ,K) for each cluster expresses that we assume that different
individuals in the same cluster behave in a similar but unknown manner. We consider
this frailty term as a realization of a random variable U with a given frailty distribution
and allow it to vary over the different clusters. These unknown frailty terms with their
imposed distribution are used to express the association between the different individuals
in a cluster. Due to its mathematical convenience, the one-parameter gamma distribution
is a popular choice for the distribution of U . The one-parameter gamma density is

fU (u) = u1/θ−1 exp(−u/θ)
θ1/θΓ(1/θ)

with θ > 0. Geerdens et al. (2013) developed a strategy to verify the goodness of fit
of the one-parameter gamma frailty distribution. Other common choices are the positive
stable distribution and the inverse Gaussian distribution.

The correlated frailty model is a natural extension of the shared frailty model, allowing
the frailties of individuals in a clusters to be correlated but not necessarily shared. This
enables that associations are no longer the same across all pairs of individuals within a
cluster. The hazard of individual j in cluster i has the form

hij(t|Zij) = h0(t)uij exp(β′Zij).

Correlated frailty models are characterized by the joint distribution of a vector of frailties
(ui1, . . . , uini). If the frailties are independent, no clustering is present. If all frailties are
equal, the shared frailty model is obtained as a special case of the correlated frailty model,
with correlation one between the frailties. The flexibility of the correlated frailty model
comes with a price. Extensions of the bivariate case to higher dimensions become very
complex with increasing cluster size.

The frailty approach is explained in detail in Duchateau and Janssen (2008) and Wienke
(2011). To estimate the different parameters in frailty models, we make use of the
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conditional viewpoint of these models. Hereby we assume that different individuals within
the same cluster are treated as independent of each other, conditionally on the frailty
term(s). In the construction of the likelihood function of a frailty model, this assumption
is utilized by first looking at the conditional contribution of an individual within a cluster to
the likelihood function and afterwards integrating over the frailty distribution. In this way,
the frailty model approach has the advantage that it allows that the number of individuals
within a cluster may vary over the different clusters. However, the correlated frailty
model becomes very complex with increasing cluster sizes. Another major disadvantage
of the frailty model is that the marginal survival functions in the frailty model contain the
association parameter of the frailty distribution (Goethals et al., 2008). This has led to
the correct observation by, e.g., Hougaard (1986, p. 676) that the association parameter
in a shared frailty model can be obtained from the marginal survival functions alone.
The conditional approach therefore makes it difficult to interpret the frailty parameter,
because it does not simply quantify the association between event times. Additionally,
overdispersion in the data, as compared to the proposed density function, is required in a
frailty model in order to pick up association.

1.2.2 Copula models

Copula models, on the other hand, assume that the joint survival function of the individuals
within a cluster is given by a copula function, evaluated in the marginal survival function
of each individual (Sklar, 1959):

S(t1, . . . , tn) = C(S1(t1), . . . , Sn(tn)).

Here, S(t1, . . . , tn) = P (T1 > t1, . . . , Tn > tn) is the joint survival function and Si(ti) =
P (Ti > ti), i = 1, . . . , n are the marginal survival functions. It is the copula function
C which describes the association between the lifetimes within a cluster. An n-variate
copula is a function C : [0, 1]n → [0, 1] satisfying:

1. For every (u1, . . . , un) in [0, 1]n: C(u1, . . . , un) = 0 if ui = 0 for at least one i in
(1, . . . , n).

2. For every (u1, . . . , un) in [0, 1]n: C(u1, . . . , un) = uk if all ui = 1 when i 6= k.

3. For every hyperrectangle B = [u1, v1] × · · · × [un, vn], the C-volume of B is non-
negative, i.e.,

∆vn
un∆vn−1

un−1
. . .∆v2

u2
∆v1
u1
C(w1, . . . , wn) ≥ 0
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where, for i = 1, . . . , n,

∆vi
uiC(w1, . . . , wn) =C(w1, . . . , wi−1, vi, wi+1, . . . , wn)

− C(w1, . . . , wi−1, ui, wi+1, . . . , wn).

In this thesis, we focus on parametric copula families Cθ that depend on a finite dimen-
sional vector of parameters θ (often just a scalar). Estimation of the different parameters
in copula models can be done in two stages. In the first stage, the parameters of the
marginal survival functions are estimated, and then inserted in the copula function. In the
second stage, the parameter (vector) θ of the copula function is estimated. Thus, both
in the model specification and parameter estimation, the parameter(s) describing the as-
sociation between event times is kept separate from the other parameters. Most reported
copula models, however, only use clusters in which the cluster size is small and constant
over the different clusters as it is then straightforward to define and estimate the marginal
survival functions. For example, Shih and Louis (1995) introduced a copula model for
multivariate survival data and provided estimation methods for the unknown parameters
in a bivariate setting. Glidden (2000) and Andersen (2005) extended the approach of Shih
and Louis (1995) to include covariates into the marginal survival function, but also here
the clusters only had size two. Massonnet et al. (2009) extended these models further
for clusters of size 4 to model the time until infection in the four different quarters of a
cow udder. Although Glidden (2000) gives theoretical results for the Clayton copula in
a balanced design with a fixed cluster size N and Othus and Li (2010) do the same in
an unbalanced design for the Gaussian copula model, to our knowledge, copula models in
general have not been used for clustered multivariate survival data with a cluster size of
more than 4 or for a cluster size which differs over the clusters. The choice of a small and
constant cluster size is a direct consequence of the difficulty to write down the likelihood
function for the observed clustered survival data. For example, if the cluster size is equal
to two, there are 4 different contributions to the likelihood for the observed outcomes
within the cluster, depending on whether none, the first, the second or both individuals
in this cluster are censored. This leads to a likelihood function consisting of 4 different
terms where every term is found by taking derivatives of the joint survival function over
the uncensored components in an observed couple:

L =
K∏
i=1

(f(xi1, xi2|Zi1,Zi2))δi1δi2
(
−∂S(xi1, xi2|Zi1,Zi2)

∂xi1

)δi1(1−δi2)

×
(
−∂S(xi1, xi2|Zi1,Zi2)

∂xi2

)(1−δi1)δi2
(S(xi1, xi2|Zi1,Zi2))(1−δi1)(1−δi2).

(1.1)
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Denoting uij = S(xij |Zij) and cθ(ui1, ui2) = ∂2

∂ui1∂ui2
Cθ(ui1, ui2) we get the equiva-

lent likelihood in terms of the copula function:

L =
K∏
i=1

(cθ(ui1, ui2))δi1δi2
(
∂Cθ(ui1, ui2)

∂ui1

)δi1(1−δi2)

×
(
∂Cθ(ui1, ui2)

∂ui2

)(1−δi1)δi2
(Cθ(ui1, ui2))(1−δi1)(1−δi2). (1.2)

If the cluster size is three, the number of possible combinations increases to 8, while a
cluster size of 4 leads to 16 different combinations. In a general setting with a cluster
size equal to n, we have 2n possible combinations. Since a likelihood function then
also contains 2n different possible terms and each term is found by taking derivatives
of the joint survival function over the uncensored components in a combination, it
is a huge task if a general n-dimensional copula function is considered for the asso-
ciation between the different individuals within a cluster. It is in practice impossible
to calculate a closed form for all the derivatives of a copula function if the order n is large.

For the class of Archimedean copula functions, we will solve this numerical prob-
lem in Chapter 2 and show that the construction of the likelihood function for this class
of copula functions simplifies considerably such that we can allow the cluster size to
be moderate to large and varying over the different clusters. The key to this solution
is that the joint survival function of an Archimedean copula function can be rewritten
as a mixture distribution of independent contributions in a similar way as in the frailty
model approach. Although some of the expressions of the Archimedean copula function
resemble that of the frailty model, the two models differ in an essential way due to their
different inferential viewpoint, i.e., marginal versus conditional.

1.3 Data description

In this section, we will introduce two datasets that are used to exemplify the methods
developed in future chapters. One dataset exhibits heavy censoring while the other includes
light censoring. Both data sets are related to veterinary science, but the methodology
presented in this dissertation applies to any scientific domain, as long as there are clustered
survival data involved.
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1.3.1 Udder infection data

Mastitis, the infection of the udder, is a frequently occurring disease in dairy cows.
Mastitis control programs have been implemented due to the fact that large economic
losses are associated with the disease. Control programs are focused on detection of
mastitis, identification of the causative agent(s) and prevention of transmission by
removing the source of the agent (milk contaminated fomites, bedding, persistently
infected cows, etc.). Knowledge of mammary anatomy and physiology, mammary defense
mechanism, microbial habitats, microbial virulence factors, milking machine function, and
antibiotics/germicides is important in achieving effective mastitis control. In this study,
1196 cows have been followed during the lactation period, which is roughly 300-350 days
but different for every cow. From each udder quarter, a milk sample is taken monthly
and is screened for the presence of different bacteria. We define time to infection as the
midpoint between the sampling times of the last negative result and the first positive
result. To avoid convergence issues, the times to infection are multiplied by a factor
4/365.25, so that time reflects the trimester rather than the day of the year. We model
the time until infection with any bacteria, with the cow being the cluster and the quarter
the experimental unit within the cluster. Observations are right-censored if no infection
occurs before the end of the lactation period, or if the cow is lost to follow-up during the
study. The censoring percentage is 61%.

The condition of the teat end deteriorates with an increasing number of calvings,
which makes the udder more vulnerable to infections. Several studies have shown that
prevalence as well as incidence of intramammary infections indeed increase with parity
(Weller et al., 1992). Therefore we consider the parity of the cow as a covariate. The
binary parity variable is 1 for primiparous cows (cows that had one calving) and is 0 for
multiparous cows (cows that had more than one calving). Logically, the parity covariate
acts on the cow level.

This data set is an example of a balanced design, since all clusters have four
components. We order the four parts in each cluster such that each first component
corresponds to the left-front udder quarter, each second component to the left-rear udder
quarter, and so on.

Because of the balanced nature and the small cluster size of this data set, it has
been a very good learning example to extend copula modelling of survival data to
more than two dimensions. All techniques for large and varying cluster sizes, that were
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developed in Chapter 2, were double checked on this data set, because a cluster size
equal to 4 is on the edge of what is possible with existing copula techniques.

In Chapter 5, different models for the association structure between the infection
times of the four udder parts are compared.

cow id location time status parity
1 Left Front 0.734 1 1
1 Right Front 0.734 1 1
1 Left Rear 1.303 1 1
1 Right Rear 0.734 1 1
2 Left Front 0.728 1 0
2 Right Front 2.218 1 0
2 Left Rear 2.218 1 0
2 Right Rear 2.218 1 0
...

...
...

...
...

1196 Left Front 3.055 0 1
1196 Right Front 3.055 0 1
1196 Left Rear 3.055 0 1
1196 Right Rear 2.880 1 1

Table 1.1: Udder infection data. Column 1 contains the cow identification number. Column 2
denotes the location of the udder part. The observed time (column 3) is the minimum of the
time to infection and the censoring time (trimester). The status is the censoring indicator: 1 if
infected and 0 otherwise. The parity is 1 for a primiparous cow and 0 for a multiparous cow.

1.3.2 Insemination data

In dairy cattle, the calving interval (the time between two calvings) should be optimally
between 12 and 13 months. One of the main factors determining the length of the
calving interval is the time from parturition to the time of first insemination (Duchateau
and Janssen, 2004). The objective of this study, amongst others, was to quantify the
correlation between insemination times of cows within a herd. Insemination at a dairy
farm is typically done by the farmer itself, relying on his experience. We want to get
some insight into this process. The data set includes 181 clusters (farms) of different
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sizes, ranging from 1 cow to 174 cows, with 10513 cows in total. As no inseminations
take place in the first 29 days after calving, 29 days are subtracted from the time to first
insemination since at risk time starts only then. Duchateau and Janssen (2004) suggest
to transform time to months rather than days, but we did not encounter any convergence
issues by not doing so, so we leave the time in days.

Although to a much smaller extent than the mastitis data, this data set is also subject
to right censoring. If a cow is not inseminated within 300 days after calving, or if it is
culled without being inseminated, it is censored at that time. The censoring percentage
is 5.5%.

The time to first insemination may be influenced by the the parity of the cow (0 if
multiparous, 1 if primiparous). Due to its unbalanced cluster sizes and censoring, this
data set is very well suited to illustrate the newly developed techniques in Chapter 2.

farm id cow id time status parity
1 1 82 1 0
1 2 80 1 0
...

...
...

...
...

1 51 219 1 1
2 52 78 1 1
2 53 116 1 0
...

...
...

...
...

2 98 40 1 0
...

...
...

...
...

181 10433 46 1 1
181 10434 251 1 0
...

...
...

...
...

181 10513 73 1 1

Table 1.2: Insemination data. Columns 1 and 2 contain the identification number of the farm
and the cow. The observed time (column 3) is the minimum of the time to first insemination
and the censoring time (days). The status is the censoring indicator: 1 if inseminated and 0
otherwise. The parity is 0 for a multiparous cow and 1 for a primiparous cow.
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1.4 Outline

The main objective of the first part of this dissertation is to tackle the problem of modelling
multivariate survival data that are grouped in clusters of variable size, through copulas.
In Chapter 2, we show that the family of Archimedean copulas is extremely well suited
for this, due to the property that the generator of an Archimedean copula can be seen as
a Laplace transform. In order to improve readability and not to overcharge this chapter
with hardcore mathematical technicalities, the regularity conditions, theorems and proofs
are put together in Chapter 3. In 2017, a condensed version of the material in Chapters
2 and 3 will be published in the Journal of the Royal Statistical Society - Series B.

The existing software to fit copula models does not accommodate for multidimensional
censored data. In order to make the extended Archimedean copula model accessible to
other users that encounter clustered survival data, we took our first steps in developing an
R package. The methods are implemented for a selection of copula functions and marginal
survival distributions. With hopefully many more upgrades to come, an illustration of the
use and output of our package Sunclarco can be found in Chapter 4.

In Chapter 5 we literally take the Archimedean copula model to the next level, as we allow
for a hierarchy of clustering. To explore the opportunities and shortcomings of hierarchical
Archimedean copula models in survival analysis, we start from the four-dimensional mas-
titis data set, and compare a set of models that are biologically relevant in this context.
A manuscript along the lines of Chapter 5 was submitted to Biometrics for publication.

Each chapter concludes with a discussion of the presented material, including do’s and
don’ts, together with ideas for future research.

We refer the reader to Appendices A and B for supplementary mathematical details
linked to Chapters 2 and 5.



Chapter 2
Extending the Archimedean
copula methodology to model
multivariate survival data
grouped in clusters of variable
size

We describe in this chapter a copula model for clustered survival data where the clus-
ters are allowed to be moderate to large and varying in size by considering the class
of Archimedean copulas with completely monotone generator. We develop both one-
and two-stage estimators for the different copula parameters. Furthermore we show the
consistency and asymptotic normality of these estimators. Finally, we perform a simu-
lation study to investigate the finite sample properties of the estimators. We illustrate
the method on a data set containing the time to first insemination in cows, with cows
clustered in herds.

The chapter is organized as follows. In Section 2.1 we introduce a new formulation of the

15
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Archimedean copula model by rewriting the likelihood contributions in terms of Laplace
transforms. In Section 2.2 we present the theoretical results concerning estimators aris-
ing from this model, starting from parametric and semi-parametric approaches. Section
2.3 gives an overview of a large class of distributions for which the likelihood contribu-
tions are easy to generate. In Sections 2.4 and 2.5, we report simulation results along
with results for a data example. The data set and our code can be found at our web-
site (http://www.vetstat.ugent.be/research/ArchimedeanCopula/). Proofs of asymptotic
results are given in Chapter 3.

2.1 Description of the model

We develop a copula model for clustered survival data in which the size of each cluster may
be different. Let K be the number of clusters (i = 1, . . . ,K). In each cluster, we denote
the lifetime for the different individuals by a positive random variable Tij , j = 1, . . . , ni
where ni is the number of individuals in cluster i. For each individual, we assume that
there is an independent random censoring variable Cij such that under a right censoring
scheme, the observed quantities are given by

Xij = min(Tij , Cij)
δij = I(Tij ≤ Cij)

i = 1, . . . ,K, j = 1, . . . , ni.

The risk of failure may also depend on a set of covariates Zij = (Zij1, . . . , Zijp)T . We
assume that the joint survival function for the lifetime of the different individuals within
cluster i is given by

S(ti1, . . . , tini |Zi1, . . . ,Zini) = P (Ti1 > ti1, . . . , Tini > tini |Zi1, . . . ,Zini)

= ϕθ
[
ϕ−1
θ (S(ti1|Zi1)) + · · ·+ ϕ−1

θ (S(tini |Zini))
]

where S(tij |Zij) = P (Tij > tij |Zij) is a common marginal survival model for the
lifetime Tij , given Zij . The generator ϕθ : [0,∞[→ [0, 1] of a parametric Archimedean
copula family is a continuous strictly decreasing function with ϕθ(0) = 1 and ϕθ(∞) = 0.
We denote by ϕ−1

θ the inverse function of ϕθ. Since we want the Archimedean copula
function to be correctly defined for any cluster size, we assume that this generator is
completely monotonic. This means that all the derivatives exist and have alternating
signs: (−1)m dm

dtmϕθ(t) ≥ 0, for all t > 0 and m = 0, 1, 2, . . . (see Nelsen (2006)). The
generator ϕθ is a Laplace transformation of a positive distribution function Gθ(x) with
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Ḡθ(0) = 1 (Joe, 1997),

ϕθ(t) =
∞∫

0

e−txdGθ(x), t ≥ 0.

Hence we can rewrite the joint survival function for cluster i as

S(ti1, . . . , tini |Zi1, . . . ,Zini) = ϕθ

 ni∑
j=1

ϕ−1
θ (S(tij |Zij))


=

∞∫
0

e
−x

ni∑
j=1

ϕ−1
θ

(S(tij |Zij))

dGθ(x)

=
∞∫

0

ni∏
j=1

e−xϕ
−1
θ

(S(tij |Zij))dGθ(x). (2.1)

In this way, the Archimedean copula function can be seen as a mixture distribution, con-
sisting of independent and identically distributed components which depend on a common
factor that has Gθ as distribution. We use this structure to derive the likelihood function.
The contribution of cluster i, with cluster size ni, to the likelihood function corresponds to
the derivative of the ni-dimensional joint survival function over all uncensored individuals
in this cluster. Since the joint survival function does not change when the individuals
within the cluster are permuted, we note that only the number of uncensored individuals
determines the derivative. In the bivariate case, the contribution of cluster (pair) i to the
likelihood function is

� for a pair with two events ((δi1, δi2) = (1, 1)):

f(xi1, xi2|Zi1,Zi2) = ∂2S(xi1, xi2|Zi1,Zi2)
∂xi1∂xi2

,

� for a pair with one event and one censored observation ((δi1, δi2) = (1, 0) or
(δi1, δi2) = (0, 1)):

−∂S(xi1, xi2|Zi1,Zi2)
∂xij

,

� for a pair with two censored observations ((δi1, δi2) = (0, 0)):

S(xi1, xi2|Zi1,Zi2).
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In Appendix A we show that each of these contributions can be written as∫ ∞
0

2∏
j=1

e−xϕ
−1
θ

(S(xij |Zij))
[

−xf(xij |Zij)
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x).

The bivariate Archimedean copula likelihood is given by the product of these contributions
over all K clusters

L =
K∏
i=1

∫ ∞
0

2∏
j=1

e−xϕ
−1
θ

(S(xij |Zij))
[

−xf(xij |Zij)
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x).

In the case of unbalanced clusters, the contribution of cluster i to the likelihood function
is

Li = (−1)di ∂di

∂{δij = 1}S(xi1, . . . , xini |Zi1, . . . ,Zini)

where ∂{δij = 1} is the set of uncensored individuals in cluster i and di =
ni∑
j=1

δij , the

size of this set. Using representation (2.1) of the joint survival function in the same way
as was done in Appendix A for bivariate data, this derivative is given by

Li =
∞∫

0

ni∏
j=1

e−xϕ
−1
θ

(S(xij |Zij))
[

−xf(xij |Zij)
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x).

Combining the contributions over the different clusters, we get the following likelihood
function for survival data that are clustered in groups of unequal sizes

L =
K∏
i=1

∞∫
0

ni∏
j=1

e−xϕ
−1
θ

(S(xij |Zij))
[

−xf(xij |Zij)
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x). (2.2)

In general it is difficult to evaluate expression (2.2) except for very specific choices of the
distribution Gθ. It is done for the one-parameter gamma distribution in Appendix A.2.
Since the generator ϕθ is the Laplace transform of Gθ, there is an alternative expression
for the likelihood function (2.2) which is found by using derivatives of this generator, i.e.
ϕ

(m)
θ (t) =

∞∫
0

(−x)me−txdGθ(x). Hence the likelihood function can be rewritten as

L =
K∏
i=1

 ni∏
j=1

[
f(xij |Zij)

ϕ′θ(ϕ
−1
θ (S(xij |Zij)))

]δijϕ
(di)
θ

 ni∑
j=1

ϕ−1
θ (S(xij |Zij))

 . (2.3)

Remark. In the frailty model framework (Duchateau and Janssen, 2008, p.119), we note
that we find a similar expression for the joint survival function in frailty models, with
Gθ(x) as the frailty distribution of the unknown frailty term in the cluster. Starting
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from the conditional viewpoint in frailty models, we find a similar expression for the joint
survival function as follows. The joint conditional survival function for a cluster i is given
by S(ti1, . . . , tini |Zi1, . . . ,Zini , Ui) with Ui the frailty term with distribution Gθ(u) and
generator ϕθ(·). Denote the conditional cumulative hazard function for subject j from
cluster i by H(tij |Zij , Ui) = Hc(tij |Zij)Ui. The marginal joint survival function is
obtained by integrating out the frailty term:

Sf (ti1, . . . , tini |Zi1, . . . ,Zini) =
∞∫

0

S(ti1, . . . , tini |Zi1, . . . ,Zini , ui)dGθ(ui)

=
∞∫

0

S(ti1|Zi1, ui) . . . S(tini |Zini , ui)dGθ(ui)

=
∞∫

0

exp(−ui
ni∑
j=1

Hc(tij |Zij))dGθ(ui)

=
∞∫

0

exp(−ui
ni∑
j=1

ϕ−1
θ (Sf (tij |Zij)))dGθ(ui) (2.4)

due to the conditional independence assumption. The two joint survival functions (2.1)
and (2.4) are indeed similar, but note that S(tij |Zij) 6= Sf (tij |Zij). More specifically
Sf (tij |Zij) = ϕθ(Hc(tij |Zij)) and therefore, the marginal survival function in (2.4)
contains the association parameter. This an important distinction between the frailty
model and the copula model.

2.2 The estimation procedures

In this section, we investigate a one- and two-stage parametric estimation method and
a two-stage semi-parametric estimation method to estimate the different parameters in
this model. Shih and Louis (1995) demonstrated how this can be done for a bivariate
survival data set and derived asymptotic properties of the estimators. Joe (1997, 2005)
discussed a general framework for studying asymptotic efficiency. We extend their results
to clustered survival data with clusters of varying and possibly large size.

For equal-sized clusters with cluster size n having the same covariate structure, baseline
survival functions can be estimated for each jth univariate margin, j = 1, . . . , n, where
the jth subject always has the same covariate information. Since in our application
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clusters have varying size, we cannot order the components within a cluster and estimate
the baseline survival of all jth components. We assume that all subjects have the same
baseline survival, whatever the cluster, and allow for subject specific covariate information.

2.2.1 One-stage parametric estimation

Let β be the q-dimensional parameter vector for the margins, containing distribution-
specific parameters for the baseline survival and covariate effects. We use the likelihood
function L(β, θ) as derived in (2.2) and (2.3).
Write Uβ(β, θ) = ∂ logL(β, θ)

∂β
, Uθ(β, θ) = ∂ logL(β, θ)

∂θ
for the score functions.

Solving {
Uβ(β, θ) = 0
Uθ(β, θ) = 0

simultaneously, we find the maximum likelihood estimate (β̂, θ̂).

Denote the Hessian matrix as I(β̂, θ̂) =
[
∂2 logL(β̂, θ̂)

∂ηi∂ηj

]
i,j=1...,q+1

with η = (β, θ).

From maximum likelihood theory (Cox and Hinkley, 1974; Lehmann and Casella, 1998),
we know that under regularity conditions (C.1)-(C.5) in Chapter 3,

√
K(β̂−β, θ̂−θ) con-

verges to a multivariate normal distribution with mean vector zero and variance-covariance
matrix I−1, where the Fisher information matrix I =

[
−∂

2 logL(β, θ)
∂ηi∂ηj

]
i,j=1...,q+1

is par-

titioned into blocks:

I =
(

Iββ Iβθ
Iθβ Iθθ

)
.

Here, KIββ is the q× q variance-covariance matrix of Uβ, KIβθ is the q× 1 covariance
vector between Uβ and Uθ andKIθθ is the scalar variance of Uθ. Furthermore, Iθβ = ITβθ.
Since the inverse of the block matrix

A =
(
A11 A12

A21 A22

)
is defined by

A−1 =
(

(A11 −A12A
−1
22 A21)−1 −A11A12(A22 −A21A

−1
11 A12)−1

−A−1
22 A21(A11 −A12A

−1
22 A21)−1 (A22 −A21A

−1
11 A12)−1

)
we find that the lower right element of I−1 is

Var(θ̂) = (Iθθ − IθβI−1
ββIβθ)−1.
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To match the appearance with the variance expressions in the sections to come, we rewrite
this as

Var(θ̂) = 1
Iθθ

+
Iθβ(I−1)ββIβθ

I2
θθ

. (2.5)

Note that (I−1)ββ is the upper left q × q block of I−1, which is not the same as I−1
ββ.

In practical applications, standard errors of parameter estimates can be retrieved from
the diagonal elements of the inverse of the Hessian matrix I(β̂, θ̂), since we know from
maximum likelihood theory that KI = E

[
−I(β̂, θ̂)

]
.

2.2.2 Two-stage parametric estimation

Two-stage parametric estimation, also referred to as the method of inference func-
tions for margins (Xu, 1996), has been used mainly for multivariate models whenever
a multi-parameter numerical optimization for maximum likelihood estimation is too time-
consuming or infeasible. In the first stage, β is estimated by β by considering all subjects
as independent, identically distributed random variables, i.e. solving

U∗β(β) =
K∑
i=1

ni∑
j=1

δij
∂ log f(xij |Zij)

∂β
+ (1− δij)

∂ logS(xij |Zij)
∂β

=
K∑
i=1

U∗i,β(β) = 0.

Since clusters are considered as mutually independent, the U∗i,β(·) are independent and
identically distributed. Under regularity conditions (C.6)-(C.10) in Chapter 3,

√
K(β −

β) converges to a multivariate normal distribution with mean vector zero and variance-
covariance matrix (I∗)−1V(I∗)−1, where V is the variance-covariance matrix of the score
functions U∗β;

V = E
[
U∗1,β(β0)(U∗1,β(β0))′

]
and I∗ is the Fisher information of U∗β;

I∗ = E

[
− ∂

∂β
U∗1,β(β0)

]
.

The use of the robust sandwich estimator is required since (I∗)−1 is not a consistent
estimator of the asymptotic variance-covariance matrix due to the correlation between
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survival times. In case of independence, we get V = I∗, and the formula (I∗)−1V(I∗)−1

reduces to the usual inverse Fisher information matrix (I∗)−1 (Pawitan, 2001).

In the second stage, the association parameter θ is estimated by plugging in the estimates
for the margins into the likelihood expression (2.3), which is then maximized for the
association parameter θ. The two-stage estimator for θ is the solution to

Uθ(β, θ) = ∂ logL
∂θ

(β, θ) = 0.

The asymptotic normality of the two-stage estimator is established below. The proof is
deferred to Chapter 3.

Theorem 2.2.1. Let θ denote the solution to Uθ(β, θ) = 0 and let θ0 be the true value
of the association parameter. Under regularity conditions (C.10)-(C.14) in Chapter 3,√
K(θ − θ0) converges to a normal distribution with mean zero and variance

Var(θ) = 1
Iθθ

+ Iθβ(I∗)−1V(I∗)−1Iβθ
I2
θθ

. (2.6)

To estimate this quantity, we make use of (I∗)−1V(I∗)−1, the robust variance obtained
in the first step; I−1

θθ and Iβθ are obtained from the Hessian matrix of the one-stage
procedure, which can be estimated numerically by performing one iteration of the one-
stage optimization in which we evaluate the Hessian matrix in the two-stage parameter
results.

2.2.3 Two-stage semi-parametric estimation

In the two-stage semi-parametric estimation procedure, the marginal survival functions
are estimated using the Cox proportional hazards model (Cox, 1972). Formulas for the
standard error of the estimated covariate effect β̌ and the estimated cumulative hazard Λ̌
that account for clustering can be found using a sandwich formula (Spiekerman and Lin,
1998). The results in Spiekerman and Lin (1998) even accommodate for time-varying
covariates.

In the second stage, maxθ L(θ; β̌, Λ̌) is solved for θ̌.
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Theorem 2.2.2. Under regularity conditions (C.15)-(C.21) in Chapter 3, (θ̌; β̌, Λ̌) is a
consistent estimator for (θ0;β0,Λ0).

The results for β̌ and Λ̌ follow from arguments along the lines of Spiekerman and Lin
(1998). The proof of the consistency of θ̌ is quite tedious and can be found in Chapter 3.
Also following Spiekerman and Lin (1998), we can show that

√
K(β̌−β0) converges to a

mean zero normal distribution and that
√
K(Λ̌−Λ0) converges to a mean zero Gaussian

process.

Theorem 2.2.3. Under regularity conditions (C.15)-(C.21) in Chapter 3,
√
K(θ̌ − θ0)

converges to a normal distribution with mean zero and variance

Var(Ξ1)
W (θ0)2 .

The proof of this theorem and the precise definition of Ξ1 and W (θ0), together with their
estimators, can be found in Chapter 3.

2.3 Copula likelihood expression for distributions from the PVF
family

The power variance function family of distributions, denoted PVF(α, δ, γ), is a large class
of distributions for which Hougaard (2000) states that the Laplace transforms correspond
to

L(s) = exp
[
− δ
α

((γ + s)α − γα)
]

with derivatives

L(k)(s) = (−1)kL(s)
k∑
j=1

ck,j(α)δj(γ + s)jα−k,

where the coefficients ck,j(α) are polynomials of order k − j in α, given by the recursive
formula

ck,1(α) = Γ(k − α)
Γ(1− α) , ck,k = 1

ck,j(α) = ck−1,j−1(α) + ck−1,j(α)(k − 1− jα).

This allows for a closed form expression of the copula likelihood (2.3). In practical im-
plementations, we first calculate the list of coefficients ck,j(α), k = 1, . . . ,max(di),
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j = 1, . . . , k from the iterative scheme and plug these into the expression for the kth
derivative of the Archimedean copula generator to obtain the likelihood function (2.3).
This is the modus operandi in the following Examples 2 and 3. In some rare cases, there
exists an explicit expression for the kth derivative of the Laplace transform and hence the
likelihood can be calculated directly. This is illustrated in Example 1.

Example 1: The one-parameter gamma distribution with density

gθ(x) = x1/θ−1e−x/θ

θ1/θΓ(1/θ)
, θ > 0.

is found as the limiting case α = 0, δ = γ = 1/θ. Failure times are independent when θ
approaches zero. The Laplace transform is

L(s) = ϕθ(s) = (1 + θs)−1/θ

which is the generator of the Clayton copula. The first four derivatives of the Laplace
transform are

ϕ
(1)
θ (s) = (−1)1(1 + θs)−1/θ−1

ϕ
(2)
θ (s) = (−1)2(1 + θ)(1 + θs)−1/θ−2

ϕ
(3)
θ (s) = (−1)3(1 + θ)(1 + 2θ)(1 + θs)−1/θ−3

ϕ
(4)
θ (s) = (−1)4(1 + θ)(1 + 2θ)(1 + 3θ)(1 + θs)−1/θ−4.

The k-th derivative of the Laplace transform is

ϕ
(k)
θ (s) = (−1)k(1 + θs)−(k+1/θ)

k−1∏
l=0

(1 + lθ).

This allows for a closed form expression of the copula likelihood (2.3). Denote Sij =
S(xij |Zij) and fij = f(xij |Zij).

L =
K∏
i=1

 ni∏
j=1

[
fij

ϕ′θ(ϕ
−1
θ (Sij))

]δijϕ
(di)
θ

 ni∑
j=1

ϕ−1
θ (Sij)


=

K∏
i=1

 ni∏
j=1

[
fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij (−1)di
1 + θ

ni∑
j=1

ϕ−1
θ (Sij)

−(di+1/θ)
di−1∏
l=0

(1 + lθ)

=
K∏
i=1

 ni∏
j=1

[
−fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij1 + θ

ni∑
j=1

ϕ−1
θ (Sij)

−(di+1/θ)
di−1∏
l=0

(1 + lθ).
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Since ϕ−1
θ (s) = (s−θ − 1)/θ, this equals

L =
K∏
i=1

 ni∏
j=1

[
fij

S1+θ
ij

]δij1− ni +
ni∑
j=1

S−θij

−(di+1/θ)
di−1∏
l=1

(1 + lθ). (2.7)

In Appendix A.2, we show that this likelihood can also be calculated directly from equation
(2.2).

The corresponding log-likelihood is given by

logL =
K∑
i=1

 ni∑
j=1

δij [log fij − (1 + θ) logSij ] (2.8)

−(di + 1/θ) log

1− ni +
ni∑
j=1

S−θij

+
di−1∑
l=0

log(1 + lθ)

 .

Just as any Archimedean copula, the ni-variate Clayton copula is exchangeable, meaning
that all bivariate copula margins are the same:

C(Sij1 , Sij2) = C(Sij2 , Sij1) = ϕθ(ϕ−1
θ (Sij1) + ϕθ(ϕ−1

θ (Sij2)).

In Figure 2.1, 1000 samples from a bivariate Clayton copula are visualized. The association
parameter ranges from θ = 0 (independence) to θ = 3. As can be seen from Figures
2.1 (b-d), the values of Sij1 and Sij2 are strongest correlated in the lower left corner.
We say that the Clayton copula has lower tail dependence. In a survival context, where
Sij = P (Tij > xij) is a monotone decreasing function, this corresponds to a stronger
association between later lifetimes.

Example 2: The choice α = θ, δ = θ, γ = 0 leads to the positive stable distribution with
density

gθ(x) = − 1
πx

∞∑
k=1

Γ(kθ + 1)
k! (−x−θ)k sin(θkπ)

with 0 < θ < 1. Feller (1971) shows that this density function can be found by Fourier
inversion of the Laplace transform

L(s) = ϕθ(s) = e−s
θ

which is the generator of the Gumbel-Hougaard copula. Small values of θ provide large
correlation and survival times are independent as θ approaches 1. The Gumbel-Hougaard
copula has upper tail dependence, as can be seen from Figure 2.2, implying a stronger
correlation between the lower survival times.
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(a) Clayton copula, θ = 0 (independence)
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(b) Clayton copula, θ = 1
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(c) Clayton copula, θ = 2
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(d) Clayton copula, θ = 3
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Figure 2.1: Bivariate Clayton copula with θ = 0, 1, 2, 3.
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(a) Gumbel copula, θ = 0.25
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(b) Gumbel copula, θ = 0.33

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sij1

S
ij 2

(c) Gumbel copula, θ = 0.5
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(d) Gumbel copula, θ = 1 (independence)
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Figure 2.2: Bivariate Gumbel copula with θ = 0.25, 0.33, 0.5, 1.
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Example 3: Another PVF distribution is obtained by choosing α = 1/2, δ =
(2θ)−1/2, γ = (2θ)−1. This is the inverse Gaussian distribution with variance θ. The
density is defined by

fθ(x) =
√

1
2πθx

−3/2 exp
(
−1
2xθ (x− 1)2

)
with θ > 0. The Laplace transform is

L(s) = ϕθ(s) = exp
(

1
θ
−
(

1
θ2 + 2s

θ

)1/2
)
.

The tail dependence of the inverse Gaussian copula is in between upper and lower tail
dependence. The distributions in these three examples therefore cover a wide range of
association structures in the data.

2.4 Simulation study

We generate 1000 data sets with 50, 200 or 500 clusters of size varying uniformly
between 2 and 50. Survival times are simulated from respectively a Clayton copula with
θ0 = 0.2, 0.5, 1.0, 1.5 or from a Gumbel-Hougaard copula with θ0 = 0.2, 0.5, 0.65, 0.8,
and with, in both settings, Weibull marginal survival functions S(t) = exp(λtρ exp(β′Z)),
choosing ρ = 1.5, λ = 0.0316 and Z a dichotomous covariate with effect β = 3. The
values of the association parameter θ for both copula models are chosen such that the
according values of Kendall’s tau are comparable. Data are generated using the sampling
algorithm of Marshall and Olkin (1988). The censoring distribution is also Weibull, with
parameters (λC = 0.0274, ρC = 1.5) and (λC = 0.1464, ρC = 1.5) yielding censoring
percentages of 25% and 50%, respectively. The performances of one-stage parametric
estimation, two-stage parametric estimation and two-stage semi-parametric estimation
are summarized in Tables 2.2, 2.3 and 2.4. Since the focus is on the association
parameter, the results for the marginal parameters λ and ρ and the covariate effect β
are not reported. For each copula, simulation results are listed in increasing order of
association. For the Clayton copula, higher values of θ correspond to a higher degree of
association via τ = θ

θ+2 whereas the inverse link holds for the Gumbel-Hougaard copula
(τ = 1− θ). For each degree of association, we report the mean estimated values of θ̂, θ
and θ̌ in the first row. Mean standard errors together with the coverage are reported in
the second row. Standard errors of one-stage parametric estimators are calculated from
the inverse Hessian matrix. In the two-stage parametric approach, standard errors are



2.5. Modelling time to first insemination in cows clustered in herds 29

found via formula (2.6). In the two-stage semi-parametric case, we used the grouped
jackknife to obtain standard errors (Lipsitz et al., 1994; Lipsitz and Parzen, 1996). As in
the work of Othus and Li (2010) we noted that the variance expression in the two-stage
semi-parametric estimation method is rather complicated to implement. We assessed the
performance of the jackknife procedure in the two-stage parametric model by comparing
the standard error through the theoretical expression with a jackknife alternative. Since
the results were virtually the same, we only show the standard error calculated from the
theoretical expression.

Note that, as the number of clusters increases from K = 50 (Table 2.2) to K = 200
(Table 2.3), standard errors are halved since they are proportional to 1/

√
K. For the

Gumbel-Hougaard copula, the bias of the estimates are not noticeably affected by an
increasing percentage of censoring, Only when we go from the one-stage parametric
estimation method to the two-stage estimation methods we have an increase in the
bias. However the standard errors become a bit larger when more censoring is present.
For the Clayton copula, we observe that the bias of the estimators increases more
when the percentage of censoring increases than in the case of the Gumbel-Hougaard
copula. For the standard errors, we see in the Clayton copula similar results as for the
Gumbel-Hougaard copula. The combined effect of the increased bias and slightly different
standard errors for the Clayton model in comparison of the Gumbel-Hougaard model
explain why the coverages are smaller in the Clayton model than in the Gumbel-Hougaard
model. A general observation is that biases and standard errors tend to shrink as θ0

approaches independence. In each of Tables 2.2, 2.3 and 2.4, the largest biases are
found in the semi-parametric cases where θ0 has moved far away from independence.
The transition from K = 50 to K = 200 and K = 500 leads to a reduction of the bias,
which also follows from the asymptotic proofs in Chapter 3. However, when the number
of clusters is small and the variability of cluster sizes is large, the two-stage parametric
and semi-parametric procedures are not recommended. Although computationally more
intensive, the one-stage parametric procedure yields the best results in every setting.

2.5 Modelling time to first insemination in cows clustered in herds

In this data example, the insemination data set, introduced in Section 1.3.2, is analysed.
In the parametric approach, we first assume a Weibull distribution for the times to first



30 Chapter 2. Extending the Archimedean copula methodology

insemination
S(t) = exp(−λ exp(β′Z)tρ)

and model the association structure by a Clayton copula and a Gumbel-Hougaard copula.
In Table 2.1, the results are listed for the parity effect and association parameter, using
the one-stage parametric, two-stage parametric and two-stage semi-parametric estimation
procedures. In addition, a model with piecewise constant baseline hazard was also fitted,
because it has the advantage of a flexible baseline hazard - making it a good alternative
for the semi-parametric model - but is also parametric , and thus the one-stage estimation
procedure can be used. Hereby cutpoints are chosen such that each time interval contains
5% of the events. A piecewise constant hazard corresponds to a piecewise exponential
distribution of event times and will be abbreviated by PWE.

In both copula models, the results for the parity effect are similar for all es-
timation approaches (see Table 2.1). A primiparous cow has a significantly
lower hazard of being inseminated than a multiparous cow. The hazard ratio
in the one-stage Weibull-Clayton model equals 0.92 (95% CI: [0.89, 0.95]), and is
0.95 (95% CI: [0.92, 0.97]) for the Weibull-Gumbel-Hougaard model. Both the para-
metric Weibull and semi-parametric two-stage approaches lead to a hazard ratio of
0.94 (95% CI: [0.90, 0.98]). For the PWE-Clayton and PWE-Gumbel-Hougaard models,
hazard ratios are 0.93 (95% CI: [0.90, 0.96]) and 0.94 (95% CI: [0.92, 0.97]), respec-
tively. Within each copula model, the parameter estimates for θ vary over the different
estimation techniques. The lowest values of θ are observed for the one-stage Weibull mod-
els and the highest for the two-stage semi-parametric models. Regarding the simulation
results in Section 2.4, we emphasize that for relatively small sample sizes, the one-stage
parametric procedure is most reliable. If the Weibull assumption is questionable, a piece-
wise exponential model for the hazard function is recommended.

Clayton copula Gumbel-Hougaard copula
Weibull Weibull PWE Semi-par. Weibull Weibull PWE Semi-par.
one-stage two-stage one-stage two-stage one-stage two-stage one-stage two-stage

β −0.082 −0.066 −0.070 −0.060 −0.055 −0.066 −0.058 −0.060
(0.017) (0.022) (0.016) (0.021) (0.013) (0.022) (0.014) (0.021)

θ 0.212 0.324 0.352 0.447 0.624 0.766 0.661 0.790
(0.015) (0.050) (0.034) (0.063) (0.016) (0.018) (0.013) (0.016)

Table 2.1: Estimation results for time to first insemination data

A visual check of the estimated marginal survival curves (see Figure 2.3) reveals why



2.5. Modelling time to first insemination in cows clustered in herds 31

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Clayton

Time(days)

E
s
ti
m

a
te

d
 s

u
rv

iv
a
l

Weibull−Clayton 1−stage

PWE−Clayton 1−stage

0 50 100 150 200 250 300

0
.2

0
.4

0
.6

0
.8

1
.0

Gumbel−Hougaard

Time(days)

E
s
ti
m

a
te

d
 s

u
rv

iv
a
l

Weibull−GH 1−stage

PWE−GH 1−stage

Figure 2.3: Estimated survival curves for multiparous cows



32 Chapter 2. Extending the Archimedean copula methodology

the difference between the estimated association parameter θ in the one-stage Weibull-
Clayton and PWE-Clayton is so large (0.212 versus 0.352). The difference between the
estimated marginal survival functions is largest for later times, which are the times when
the Clayton copula imposes a higher dependency. If the Weibull assumption is incorrect,
the estimated association parameter will also lack accuracy. In this example, we used both
a Clayton and a Gumbel-Hougaard copula to illustrate our techniques. At this moment,
we did not focus on a goodness-of-fit test for the selection of the copula function. This
will be done in the future and will be added to our R package Sunclarco.
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2.6 Discussion

The current copula methodology only allows the modelling of multivariate survival data
that are grouped in clusters of small and equal size. A new formulation for the likelihood
of Archimedean copula models for survival data is developed, that allows for clusters of
large and variable size. The failure times within a cluster are assumed to be exchangeable
and the whole data set is used to estimate a common marginal baseline survival. The
survival functions of subjects differ through the incorporation of covariates (possibly time-
dependent). For copula members of the PVF family, a closed form expression of the
likelihood exists, whereas other choices require numerical integration. We investigated
the parametric one-stage and two-stage approach as well as the semi-parametric two-
stage approach and derived asymptotic results for the estimators under a reasonable set
of conditions. Simulation results show that all three methods work well for cluster sizes
ranging from 2 to 50. Even larger clusters can be attained, at the cost of larger computing
time. For samples with less than 100 clusters, the two-stage estimation approaches are
not recommended since they lead to larger bias and less coverage. As an alternative to
the flexible semi-parametric model, a piecewise constant hazard (or, by extension, e.g.
splines) can be used while modelling the marginal survival function. This chapter is an
extension of the work of Shih and Louis (1995), who derived founding results for bivariate
data, and the work of Glidden (2000), who investigated the two-stage semi-parametric
model for the Clayton copula, as it describes the use of copula functions for clusters with
large and varying cluster size.
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Chapter 3
Conditions, theorems and proofs
in Chapter 2

We state regularity conditions as well as proofs for the consistency and asymptotic normal-
ity of the estimators developed in Chapter 2 . For the parametric estimation procedures,
the regularity conditions are adapted from Cox and Hinkley (1974) and Lehmann and
Casella (1998). To prove consistency and asymptotic normality in the semi-parametric
setting, an approach based on empirical processes is required. Therefore the set of con-
ditions is adapted from Spiekerman and Lin (1998) and Othus and Li (2010).

3.1 Conditions for one-stage parametric estimation

The regularity conditions for one-stage parametric estimation are:

(C.1) The parameter space Ω has finite dimension, is closed and compact, and the true
parameter vector η = (β, θ) lies in the interior of Ω.

(C.2) E
[
Uβj (β0, θ0)

]
= 0 for j = 1, . . . q and Uθ(β0, θ0) = 0.

37



38 Chapter 3. Conditions, theorems and proofs in Chapter 2

(C.3) E
[
∂ logL(β0, θ0)

∂ηi
· ∂ logL(β0, θ0)

∂ηj

]
= E

[
−∂

2 logL(β, θ)
∂ηi∂ηj

]
for i, j = 1, . . . q+1.

(C.4) The Fisher information matrix I =
[
−∂

2 logL(β, θ)
∂ηi∂ηj

]
i,j=1...,q+1

is positive definite

for all η = (β, θ) ∈ Ω.

(C.5) Third order partial derivatives of logL(β, θ) are bounded integrable, i.e.,∣∣∣∣∂3 logL(β, θ)
∂ηiηjηk

∣∣∣∣ < Mijk for all η ∈ Ω, where E[Mijk] <∞ for i, j, k = 1, . . . , q+1.

3.2 Conditions, theorems and proofs for two-stage parametric es-
timation

The regularity conditions for the first stage of the two-stage parametric estimation pro-
cedure, i.e., estimation of the marginal parameters β = (β1, . . . , βq)′, are given by (C.6)-
(C.9). Denote

U∗βj (β) =
K∑
i=1

ni∑
j=1

δij
∂ log f(xij |Zij)

∂βj
+ (1− δij)

∂ logS(xij |Zij)
∂βj

=
K∑
i=1

U∗i,βj (β) = 0.

(C.6) The parameter space Ω1 has finite dimension, is closed and compact, and the true
parameter vector β lies in the interior of Ω1.

(C.7) E
[
U∗1,βj (β0)

]
= 0 for j = 1, . . . , q.

(C.8) The Fisher information matrix

I∗ = E

[
− ∂

∂βj
U∗1,βi(β)

]
i,j=1...,q

≡ E
[
− ∂

∂β
U∗1,β(β)

]
is positive definite for all β ∈ Ω1.

(C.9) Second order partial derivatives of U∗βi(β) are bounded integrable, i.e.∣∣∣∣∣∂2U∗βi(β)
∂βjβk

∣∣∣∣∣ < Mijk for all β ∈ Ω1, where E[Mijk] <∞ for i, j, k = 1, . . . , q.

The regularity conditions for the second stage of the two-stage parametric estimation
procedure, i.e., estimation of the association parameter θ, are
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(C.10) The parameter space Ω2 is closed and compact, and the true parameter θ lies in
the interior of Θ.

(C.11) E[Uθ(β0, θ0)] = 0.

(C.12) E
[
U2
θ (β0, θ0)

]
= E

[
−∂Uθ(β0, θ0)

∂θ

]

(C.13) The Fisher information matrix Iθθ = E

[
−∂Uθ(β, θ)

∂θ

]
is positive definite for all θ

in Θ.

(C.14) Second order partial derivatives of Uθ(β, θ) are bounded integrable, i.e.∣∣∣∣∂2Uθ(β, θ)
∂θ2

∣∣∣∣ < M for all θ ∈ Θ, where E[M ] <∞.

Theorem (2.2.1). Let θ denote the solution to Uθ(β, θ) = 0 and let θ0 be the true value
of the association parameter. Under regularity conditions (C.10)-(C.14) as stated above,√
K(θ − θ0) converges to a normal distribution with mean zero and variance

Var(θ) = 1
Iθθ

+ Iθβ(I∗)−1V(I∗)−1Iβθ
I2
θθ

. (2.6)

Proof. Let β0 denote the true parameter vector for the margins. Expanding the score
function U∗β in a Taylor series around β0 and evaluating it at β = β, we get under
regularity conditions of maximum likelihood theory

U∗β(β) = 0 = U∗β(β0) +
∂U∗β
∂β

∣∣∣∣
β=β0

(β − β0) + op(
√
K).

The op-notation stands for convergence in probability, i.e., XK = op(
√
K) is defined as

lim
K→∞

P (|XK/
√
K| ≥ ε) = 0 for every positive ε.

Similarly,

Uθ(β, θ) = 0 = Uθ(β0, θ0)+ ∂Uθ
∂β

∣∣∣∣
(β,θ)=(β0,θ0)

(β−β0)+ ∂Uθ
∂θ

∣∣∣∣
(β,θ)=(β0,θ0)

(θ−θ0)+op(
√
K).
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By the law of large numbers, as K →∞,

− 1
K

∂U∗β
∂β

∣∣∣∣
β=β0

= 1
K

K∑
i=1

[
− ∂

∂β
U∗i,β(β0)

]
→ I∗

− 1
K

∂Uθ
∂β

∣∣∣∣
(β,θ)=(β0,θ0)

= 1
K

K∑
i=1

[
− ∂

∂β
Ui,θ(β0, θ0)

]
→ Iθβ

− 1
K

∂Uθ
∂θ

∣∣∣∣
(β,θ)=(β0,θ0)

= 1
K

K∑
i=1

[
− ∂

∂θ
Ui,θ(β0, θ0)

]
→ Iθθ.

Hence
1√
K

(
U∗β(β0)
Uθ(β0, θ0)

)
→
√
K

(
I∗ 0
Iθβ Iθθ

)(
β − β0

θ − θ0

)
.

By the central limit theorem, 1√
K

(
U∗β(β0)
Uθ(β0, θ0)

)
converges to multivariate normal with

mean
(

0
0

)
and variance-covariance matrix

(
V 0
0 Iθθ

)
with V = Var

(
U∗1,β(β0)

)
=

E
[
U∗1,β(β0)(U∗1,β(β0))′

]
. Thus,

√
K

(
β − β0

θ − θ0

)
converges to multivariate normal

with mean vector zero and variance-covariance matrix(
I∗ 0
Iθβ Iθθ

)−1(
V 0
0 Iθθ

)(
I∗ 0
Iθβ Iθθ

)−1T

=
(

(I∗)−1 0
−Iθβ(I∗)−1

Iθθ
1
Iθθ

)(
V 0
0 Iθθ

)(
(I∗)−1T −(I∗)−1T ITθβ

Iθθ

0 1
Iθθ

)

=

 (I∗)−1V(I∗)−1T −(I∗)−1V(I∗)−1T Iβθ

Iθθ
−Iθβ(I∗)−1V(I∗)−1T

Iθθ
1
Iθθ

+ Iθβ(I∗)−1V(I∗)−1T Iβθ

I2
θθ

 .

(Note that (I∗)−1T = (I∗)−1 since (A−1)T = (AT )−1 and (I∗)T = I∗.)

The lower right element of this matrix is the asymptotic variance of
√
K(θ − θ0) and we

denote this by σ2.
σ2 = 1

Iθθ
+ Iθβ(I∗)−1V(I∗)−1Iβθ

I2
θθ

.
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3.3 Conditions, theorems and proofs for two-stage semi-parametric
estimation

Before we prove Theorems 2.2.2 and 2.2.3, we first introduce some notation.

Yij(t) = I{Xij≥t}

Λ̌(t) =
∫ t

0

d
∑K
i=1
∑ni
j=1 δijI{Xij≤u}∑K

i=1
∑ni
j=1 Yij(u) exp[β̌

′
Zij(u)]

=
K∑
i=1

ni∑
j=1

δijI{Xij≤t}∑K
k=1

∑nk
l=1 I{Xkl≤Xij} exp[β̌

′
Zkl(Xij)]

Hij = exp
(
−
∫ τ

0
Yij(u) exp[β′Zij(u)]dΛ(u)

)
H0
ij = exp

(
−
∫ τ

0
Yij(u) exp[β′0Zij(u)]dΛ0(u)

)
Ȟij = exp

(
−
∫ τ

0
Yij(u) exp[β̌

′
Zij(u)]dΛ̌(u)

)
Hij(t) = exp

(
−
∫ τ

0
Yij(u) exp[β′Zij(u)]d(Λ + t(Γ− Λ))(u)

)
Note that Hij = Hij(0).

L(θ;β,Λ) =
K∏
i=1

Li(θ;β,Λ)

=
K∏
i=1

 ni∏
j=1

[
1

ϕ′θ
(
ϕ−1
θ (Hij)

)]δij
ϕ

(di)
θ

 ni∑
j=1

ϕ−1
θ (Hij)


lK(θ) = K−1 logL(θ;β,Λ)

= K−1
K∑
i=1


ni∑
j=1

δij log
[

1
ϕ′θ
(
ϕ−1
θ (Hij)

)]+ logϕ(di)
θ

 ni∑
j=1

ϕ−1
θ (Hij)


lK0(θ) = K−1 logL(θ;β0,Λ0)

ľK(θ) = K−1 logL(θ; β̌, Λ̌)

UK(θ) = ∂lK(θ)
∂θ

= K−1 ∂ logL(θ;β,Λ)
∂θ

= K−1
K∑
i=1


ni∑
j=1

δij
[
ϕ′θ
(
ϕ−1
θ (Hij)

)] ∂
∂θ

[
ϕ′θ
(
ϕ−1
θ (Hij)

)]−1

+

ϕ(di)
θ

 ni∑
j=1

ϕ−1
θ (Hij)

−1
∂

∂θ

ϕ(di)
θ

 ni∑
j=1

ϕ−1
θ (Hij)
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UK0(θ) = ∂lK0(θ)
∂θ

= K−1 ∂ logL(θ;β0,Λ0)
∂θ

ǓK(θ) = ∂ľK(θ)
∂θ

= K−1 ∂ logL(θ; β̌, Λ̌)
∂θ

We copy the following notation from Spiekerman and Lin (1998) where a⊗0 = 1,a⊗1 = a

and a⊗2 = a′a:

S(r)(β, t) = K−1
K∑
i=1

ni∑
j=1

Yij(t) exp[β′Zij(t)]Zij(t)⊗r, s(r) = E
[
S(r)(β, t)

]
(r = 0, 1, 2)

E(β, t) = S(1)(β, t)
S(0)(β, t)

, e(β, t) = s(1)(β, t)
s(0)(β, t)

V (β, t) = S(2)(β, t)
S(0)(β, t)

−E(β, t)⊗2, v(β, t) = s(2)(β, t)
s(0)(β, t)

− e(β, t)⊗2

Assume the following regularity conditions where τ > 0 is a constant (e.g. end of study
time).

(C.15) β is in a compact subset of Rp.

(C.16) Λ(τ) <∞.

(C.17) θ ∈ ν, where ν is a compact subset of Θ.

(C.18) P (Cij ≥ t ∀t ∈ [0, τ ]) > δc > 0 for i = 1, . . . ,K and j = 1, . . . , ni.

(C.19) Write Zij(t) = {Zij1(t), . . . , Zijp(t)}. For i = 1, . . . ,K, j = 1 . . . , ni, k = 1, . . . , p

|Zijk(0)|+
∫ τ

0
|dZijk(t)| ≤ BZ <∞ a.s. for some constant BZ .

(C.20) E
[
log Li(θ1;β,Λ)

Li(θ2;β,Λ)

]
exists for all θ1, θ2 ∈ Θ, i = 1, . . . ,K.

(C.21) A =
∫ τ

0 v(β0, u)s(0)(β0, u)dΛ0(u) is positive definite.

Theorem (2.2.2). Under regularity conditions (C.15)-(C.21), the two-stage semi-
parametric estimator (θ̌; β̌, Λ̌) is a consistent estimator for (θ0;β0,Λ0).

Proof. The results for β̌ and Λ̌ follow from arguments along the lines of Spiekerman
and Lin (1998). We will now show the consistency of θ̌ using ideas of Othus and Li (2010).
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To account for the fact that plug-in estimates of β and Λ are used in the likeli-
hood for θ, we will need to take a Taylor series expansion of the likelihood of θ around
β0 and Λ0. Since Λ0 is an unspecified function, this expansion will need to include
a functional expansion term. An expansion using Hadamard derivatives is appropriate
for this situation. Hereto, we must verify that the log-likelihood lK(θ) is Hadamard
differentiable with respect to Λ.

We find the Hadamard derivative of lK w.r.t. Λ at Γ − Λ ∈ BV [0, τ ] by taking
the derivative of K−1 logL(θ;β,Λ + t(Γ− Λ)) with respect to t en then putting t = 0:

d

dt

[
K−1 logL(θ;β,Λ + t(Γ− Λ))

]∣∣∣∣
t=0

=
∫ τ

0
ζK(θ; Λ)(u)d(Γ− Λ)(u)

where

ζK(θ; Λ)(u) = K−1
K∑
i=1

ni∑
j=1

Dl
ijYij(u) exp[β′Zij(u)]

and

Dl
ij =

δij−ϕ′′θ (ϕ−1
θ (Hij))

ϕ′θ(ϕ
−1
θ (Hij))

+
ϕ

(di+1)
θ

(∑ni
j=1 ϕ

−1
θ (Hij)

)
ϕ

(di)
θ

(∑ni
j=1 ϕ

−1
θ (Hij)

)
 −Hij

ϕ′θ(ϕ
−1
θ (Hij))

.

The derivative of lK(θ) w.r.t. β is

ζK(θ;β) = K−1
K∑
i=1

ni∑
j=1

Dl
ij

(∫ τ

0
Yij(u)Zij(u) exp[β′Zij(u)]dΛ(u)

)
.

To prove consistency for θ̌, we will require ||ζK(θ; Λ)||∞ and ||ζK(θ;β)|| to be bounded.
This can be obtained when the common factor ||Dl

ij ||∞ is bounded and also the terms
unique to ζK(θ;β) and ζK(θ; Λ) have to be bounded. This requirement is not too
restrictive, e.g. for the Clayton copula we have

||Dl
ij ||∞ =

∣∣∣∣∣∣
∣∣∣∣∣∣δij(1 + θ)−

(1 + diθ)H−θij(
−ni + 1 +

∑ni
j=1H

−θ
ij

)
∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.

Due to the definition ofHij and condition (C.16), this expression is bounded. By condition
(C.19),

||Yij exp[β′Zij ]||∞ and
∣∣∣∣∣∣∣∣∫ τ

0
Yij(u)Zij(u) exp[β′Zij(u)dΛ(u)]

∣∣∣∣∣∣∣∣ are bounded.
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An expansion of ľK(θ) around β0 and Λ0 can be written as

ľK(θ) = lK0(θ) + ζK(θ;β0)(β̌ − β0) +
∫ τ

0
ζK(θ; Λ0)(t)d(Λ̌− Λ0)(t) +R.

Another (intuitive) notation is:

lK,θ(β̌, Λ̌) = lK,θ(β0,Λ0) + ∂

∂β
lK,θ(β0,Λ0)(β̌ − β0) + ∂

∂Λ lK,θ(β0,Λ0)(Λ̌− Λ0) +R.

The remainder term R is of order op
(

max{||β̌ − β0||, ||Λ̌− Λ0||∞}
)
. This can be seen

from the definition of Hadamard differentiability, since∣∣∣∣∣
∣∣∣∣∣ lK,θ(β,Λ0 + t(Λ̌− Λ0))− lK,θ(β, Λ̌)

t
− ∂

∂Λ lK,θ(β,Λ0)(Λ̌− Λ0)

∣∣∣∣∣
∣∣∣∣∣
∞

→ 0, as t ↓ 0,

uniformly in Λ̌ − Λ0 in all compact subsets of D, the space of cumulative hazard
functions. Since β̌ is consistent and Λ̌ is uniformly consistent (Spiekerman and Lin,
1998), R = op(1).

In order to prove θ̌ is consistent we will need to verify the uniform convergence
of the log-likelihood with the plug-in estimate of Λ to the expected value of the
log-likelihood evaluated at the true value of Λ, denoted lK0(θ):

sup
θ∈ν
|ľK(θ)− E[lK0(θ)]| = op(1). (3.1)

This can be shown as follows:

ľK(θ)−E[lK0(θ)] = lK0(θ)−E[lK0(θ)]+ζK(θ;β0)(β̌−β0)+
∫ τ

0
ζK(θ; Λ0)(t)d(Λ̌−Λ0)(t)+R.

Due to the law of large numbers, for fixed θ,

lK0(θ)− E[lK0(θ)] p→ 0. (3.2)

Since ||ζK(θ;β)|| is bounded, say ||ζK(θ;β)|| ≤M1, we have

sup
θ∈ν

∣∣∣ζK(θ;β0)(β̌ − β0)
∣∣∣ ≤M1||β̌ − β0||. (3.3)

Since ||ζK(θ; Λ)(u)||∞ is bounded, say ||ζK(θ; Λ)(u)||∞ ≤M2, we have

sup
θ∈ν

∣∣∣∣∫ τ

0
ζK(θ; Λ)(t)d(Λ̌− Λ0)(t)

∣∣∣∣ ≤M2||Λ̌− Λ0||∞. (3.4)

Therefore

sup
θ∈ν

∣∣∣ľK(θ)− E[lK0(θ)]
∣∣∣ ≤ sup

θ∈ν
|lK0(θ)− E[lK0(θ)]|+M1||β̌−β0||+M2||Λ̌−Λ0||∞+R.
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Using (3.2), the consistency of β̌, the uniform consistency of Λ̌ and the fact that R =
op(1), we get

sup
θ∈ν

∣∣∣ľK(θ)− E[lK0(θ)]
∣∣∣ = op(1).

Finally, in order to verify that θ̌ is consistent, we will need to show that the expected
log-likelihood is maximized at the truth:

E[lK0(θ)]− E[lK0(θ0)] < 0. (3.5)

Due to independence between clusters and the fact that all lower dimensional copulas can
be regarded as margins of the highest dimensional copula, the log-likelihood lK(θ) can be
written as a sum of i.i.d. random variables

K−1
K∑
i=1

logLi(θ;β,Λ)

with

Li = (−1)di ∂di

∂{δij = 1}S(xi1, . . . , xini)

=

 ni∏
j=1

[
1

ϕ′θ
(
ϕ−1
θ

(
e−Λ(xij)

))]δij
ϕ

(di)
θ

 ni∑
j=1

ϕ−1
θ

(
e−Λ(xij)

)
where ∂{δij = 1} is the set of uncensored individuals in cluster i.

Take θ 6= θ0. The law of large numbers, Jensen’s inequality and condition (C.20)
imply that

lim
K→∞

lK0(θ)− lK0(θ0) = E[lK0(θ)]− E[lK0(θ0)]

= E

[
K−1

K∑
i=1

logLi(θ;β0,Λ0)
]
− E

[
K−1

K∑
i=1

logLi(θ0;β0,Λ0)
]

= E [logL1(θ;β0,Λ0)− logL1(θ0;β0,Λ0)]

= E

[
log L1(θ;β0,Λ0)

L1(θ0;β0,Λ0)

]
≤ logE

[
L1(θ;β0,Λ0)
L1(θ0;β0,Λ0)

]
= log 1

= 0.

The before last equality results from L1(θ;β0,Λ0) being the contribution of clus-
ter 1 to the likelihood L(θ;β0,Λ0), which is the joint density function of



46 Chapter 3. Conditions, theorems and proofs in Chapter 2

(x11, . . . , x1n1 ; δ11, . . . , δ1n1).
Since θ̌ maximizes ľK(θ), (3.1) implies that

0 ≤ ľK(θ̌)−ľK(θ0) = ľK(θ̌)−ľK(θ0)+E[lK0(θ0)]−E[lK0(θ0)] = ľK(θ̌)−E[lK0(θ0)]+op(1)

⇓

E[lK0(θ0)] ≤ ľK(θ̌) + op(1).

Subtract E[lK0(θ̌)] from each side of the inequality to write

E[lK0(θ0)]− E[lK0(θ̌)] ≤ ľK(θ̌)− E[lK0(θ̌)] + op(1) ≤ sup
θ∈Θ
|ľK(θ)− E[lK0(θ)]|+ op(1) = op(1).

(3.6)

Now take θ such that |θ − θ0| ≥ ε for any fixed ε > 0. By (3.5) there must exist some
γε > 0 such that

E[lK0(θ̌)] + γε < E[lK0(θ0)].

It follows that

P (|θ̌ − θ0| ≥ ε) ≤ P (E[lK0(θ̌)] + γε < E[lK0(θ0)]).

Equation (3.6) implies that

P (E[lK0(θ̌)] + γε < E[lK0(θ0)])→ 0 as K →∞.

Therefore
P (|θ̌ − θ0| ≥ ε)→ 0 as K →∞

which proves the consistency of θ̌.

Theorem (2.2.3). Under regularity conditions (C.15)-(C.21),
√
K(θ̌ − θ0) converges to

a normal distribution with mean zero and variance

Var(Ξ1)
W (θ0)2 .

Proof. Take a first order Taylor series expansion of ÛK(θ̂) around and θ0:

ÛK(θ̂) = ÛK(θ0) + (θ̂ − θ0) ∂ÛK
∂θ

∣∣∣∣∣
θ=θ∗

(3.7)
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where θ∗ is between θ̂ and θ0. It must be the case that ÛK(θ̂) = 0 since θ̂ was taken to
be the maximum of L(θ; β̌, Λ̌). Therefore

√
K(θ̂ − θ0) =

√
KÛK(θ0)
− ∂ÛK

∂θ

∣∣∣
θ=θ∗

. (3.8)

We already showed that θ̂ consistently estimates θ0, so the law of large numbers implies
that

∂ÛK
∂θ

∣∣∣∣∣
θ=θ∗

P−→W (θ0) = lim
K→∞

∂UK
∂θ

∣∣∣∣
θ=θ0

(Fisher information).

We will show that the score equation ÛK(θ0) in the numerator of (3.8) follows a normal
distribution. Hereto we need a Taylor series expansion of ÛK(θ0) around β0 and Λ0.
Because Λ0 is an unspecified function, we will use the Hadamard derivative of UK(θ0)
w.r.t. Λ at Γ− Λ ∈ BV [0, τ ].

d

dt

[
K−1 ∂ logL(θ;β,Λ + t(Γ− Λ))

∂θ

]∣∣∣∣
t=0

=
∫ τ

0
ξK(θ; Λ)(u)d(Γ− Λ)(u)

where

ξK(θ; Λ)(u) = K−1
K∑
i=1

ni∑
j=1

DU
ijYij(u) exp[β′Zij(u)]

and

DU
ij =

{
δij
ϕ′′θ
(
ϕ−1
θ (Hij)

)
ϕ′θ
(
ϕ−1
θ (Hij)

) ∂
∂θ

[
ϕ′θ
(
ϕ−1
θ (Hij)

)]−1

+ δijϕ
′
θ

(
ϕ−1
θ (Hij)

) ∂
∂θ

[
−
ϕ′′θ
(
ϕ−1
θ (Hij)

)
ϕ′θ
(
ϕ−1
θ (Hij)

)3
]

−
ϕ

(di+1)
θ

(∑ni
j=1 ϕ

−1
θ (Hij)

)
[
ϕ

(di)
θ

(∑ni
j=1 ϕ

−1
θ (Hij)

)]2 1
ϕ′θ
(
ϕ−1
θ (Hij)

) ∂
∂θ

ϕ(di)
θ

 ni∑
j=1

ϕ−1
θ (Hij)



+ 1
ϕ

(di)
θ

(∑ni
j=1 ϕ

−1
θ (Hij)

) ∂

∂θ

ϕ(di+1)
θ

(∑ni
j=1 ϕ

−1
θ (Hij)

)
ϕ′θ
(
ϕ−1
θ (Hij)

)
 (−Hij).

The derivative of UK(θ) w.r.t. β is given by

ξK(θ;β) = K−1
K∑
i=1

ni∑
j=1

DU
ij

∫ τ

0
Yij(u)Zij(u) exp[β′Zij(u)]dΛ(u).
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We require ||ξK(θ; Λ)||∞ and ||ξK(θ;β)|| to be bounded. By condition (C.19), the terms
unique to ξK(θ; Λ) and ξK(θ;β), i.e.

||Yij exp[β′Zij ]||∞ and
∣∣∣∣∣∣∣∣∫ τ

0
Yij(u)Zij(u) exp[β′Zij(u)dΛ(u)]

∣∣∣∣∣∣∣∣
are bounded. The common term ||DU

ij ||∞ is also bounded.

A Taylor series expansion of ÛK(θ0) around β0 and Λ0 gives

ÛK(θ0) = UK0(θ0) + ξK(θ0;β0)(β̌ − β0) +
∫ τ

0
ξK(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)] +GK ,

where GK is the remainder term for the Taylor series. Since Λ̌ is
√
K-consistent it can

be shown that GK = op(K−1/2).

Define the pointwise limit of ξK(θ,Λ)(t) as ξ(θ,Λ)(t) and denote ξ(θ;β) = E[ξK(θ;β)].
Since ||ξK(θ; Λ)||∞ and ||ξK(θ;β)|| are bounded, ||ξ(θ; Λ)||∞ and ||ξ(θ;β)|| are too.
Therefore
√
KÛK(θ0) =

√
K

(
UK0(θ0) + ξ(θ0;β0)(β̌ − β0) +

∫ τ

0
ξ(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)]

)
+ op(1).

(3.9)

By Spiekerman and Lin (1998)

√
K(β̌ − β0)→ A−1

K∑
i=1

wi.

wherewi. is the ith component of the score function for β under the independence working
assumption, evaluated at β0:

wi. =
ni∑
j=1

∫ τ

0
{Zij(u)− E(β0, u)}dMij(u)

with
Mij(t) = δijYij(t)−

∫ t

0
Yij(u) exp

[
β′0Zij(u)

]
dΛ0(u).

They also showed that

√
K(Λ̌0(t, β̌)− Λ0(t))→W(t) = K−1/2

K∑
i=1

Ψi(t)

where W(t) is a zero-mean Gaussian process with variance function

E
[
Ψ1(t)2]
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with
Ψi(t) =

∫ t

0

dMi.(u)
s(0)(β0, u)

+ hT (t)A−1wi.

and

h(t) = −
t∫

0

e(β0, u)dΛ0(u).

That’s why
√
K

(
UK0(θ0) + ξ(θ0;β0)(β̌ − β0) +

∫ τ

0
ξ(θ0; Λ0)(t)d[Λ̌(t)− Λ0(t)]

)
=
√
K

(
K−1

K∑
i=1

φi(θ0) + ξ(θ0;β0)K−1A−1
K∑
i=1

wi. +
∫ τ

0
ξ(θ0; Λ0)(t)d

[
K−1

K∑
i=1

Ψi(t)
])

= K−1/2
K∑
i=1

(
φi(θ0) + ξ(θ0;β0)A−1wi. +

∫ τ

0
ξ(θ0; Λ0)(t)dΨi(t)

)

= K−1/2
K∑
i=1

Ξi.

The central limit theorem implies that
√
KÛK(θ0) converges to a normally distributed

random variable with mean zero and variance equal to the variance of Ξ1.

Thus we have
√
K(θ̂ − θ0) =

√
KÛK(θ0)
− ∂ÛK

∂θ

∣∣∣
θ=θ∗

(3.10)

where √
KÛK(θ0) D−→ N(0,Var(Ξ1))

and
∂ÛK
∂θ

∣∣∣∣∣
θ=θ∗

P−→W (θ0).

By Slutsky’s theorem,
√
K(θ̂ − θ0) converges to a normal distribution with mean zero

and variance equal to
Var(Ξ1)
W (θ0)2 .

The variance of Ξ1 (note that Var(Ξ1) = E[Ξ2
1]) can be estimated by K−1∑K

i=1 Ξ̂2
i

where Ξ̂i is obtained from Ξi replacing parameter values by their estimators.

W (θ0) can be estimated by the (minus) derivative of the pseudo score function
ÛK(θ), evaluated in θ̂.





Chapter 4
R package Sunclarco

The methods for survival data that are grouped in unbalanced clusters using Archimedean
copulas, that were developed and proven in Chapters 2 and 3, are implemented in the R
package Sunclarco. The package covers one-stage and two-stage estimation procedures
for a selection of copula functions and marginal survival distributions.

We illustrate the Sunclarco package with the insemination data set which contains the
time to first insemination of cows clustered in herds (see Section 1.3.2). We notify the
reader that the exemplifying code in this chapter is based on the development version
of the package, which is available on R-Forge (https://r-forge.r-project.org/), and thus
subject to change.

R> R.Version()[["version.string"]]

[1] "R version 3.2.5 (2016-04-14)"

R> library(Sunclarco)

The insemination dataset is available in the package via the command data("insem")
and its first 6 lines are given by

R> head(insem)

51
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Cowid Time Status Herd Parity

1 1 82 1 1 0

2 2 80 1 1 0

3 3 152 1 1 0

4 4 287 1 1 1

5 5 236 1 1 0

6 6 83 1 1 0

The fifth line reads as: the cow with cow identification number 5 was inseminated at time
236. It is a multiparous cow that belongs to herd (farm) 1.

The CopulaModel_1stage command fits an Archimedean copula model with parametric
baseline to the data, using the one-stage estimation procedure. It requires the following
input:

data: name of the dataset

time: name of the column including the survival times

cluster: the cluster variable’s name

status: name of the column including the censoring status

covariates: a vector containing all covariates’ names

marginal: the marginal baseline distribution of the survival times (can be either
"Weibull" or "PiecewiseExp")

copula: either "Clayton" or "GH"

Initial values for optimization can be passed via init.values. A default is provided,
using the results the independence working model for the marginal parameters and an
intermediate value for the association parameter.

To obtain the results from Table 2.1, we will first fit the model with a Weibull baseline
distribution and a Clayton copula.

mod_weibCL <- CopulaModel_1stage(data=insem,time="Time",

+ status="Status",cluster="Herd",covariates="Heifer",

+ marginal="Weibull",copula="Clayton")
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This command results in the log-likelihood of the model, parameter estimates and standard
errors, an estimate of Kendall’s tau and the variance-covariance matrix of all parameters.

R> str(mod_weibCL)

List of 5

$ Parameters :’data.frame’: 4 obs. of 2 variables:

..$ Estimates : num [1:4] 0.000881 1.470265 0.212645 -0.082131

..$ StandardErrors: num [1:4] 6.82e-05 1.41e-02 1.50e-02 1.73e-02

$ Kendall_Tau : Named num [1:2] 0.0961 0.00612

..- attr(*, "names")= chr [1:2] "Estimates" "StandardErrors"

$ ParametersCov : num [1:4, 1:4] 4.65e-09 -8.59e-07 2.14e-07

-6.43e-08 -8.59e-07 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:4] "lambda" "rho" "theta" "beta_Heifer"

.. ..$ : chr [1:4] "lambda" "rho" "theta" "beta_Heifer"

$ logllh : num -54930

$ parameter.call:List of 8

..$ time : chr "Time"

..$ status : chr "Status"

..$ clusters : chr "Herd"

..$ covariates : chr "Heifer"

..$ init.values: Named num [1:4] 0.0015 1.3439 0.5000 -0.0657

.. ..- attr(*, "names")= chr [1:4] "lambda" "rho" "theta" "beta_Heifer"

..$ marginal : chr "Weibull"

..$ copula : chr "Clayton"

..$ n.piecewise: num 20

- attr(*, "class")= chr "Sunclarco"

The most important information is summarized by the summary command:

R> summary(mod_weibCL)

Execution Time: 1.859906 mins

Copula: Clayton

Marginal survival distribution: Weibull
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Loglikelihood: -54929.69

ESTIMATE SE

lambda 0.000880872 6.820698e-05

rho 1.470335455 1.412170e-02

beta_Heifer -0.082447868 1.730574e-02

theta 0.212409846 1.496303e-02

Kendall’s Tau 0.096008362 0.006113899

For piecewise exponential margins, the range of the time variable is split up into 20
intervals by default, but this can be changed through the n.pieces option. The larger
the number of cutpoints, the longer it will take to compute all estimates and standard
errors.

R> mod_pweCL <- CopulaModel_1stage(data=insem,time="Time",status="Status",

+ cluster="Herd",covariates="Heifer",

+ marginal="PiecewiseExp",copula="Clayton")

R> summary(mod_pweCL)

Execution Time: 11.54703 mins

Copula: Clayton

Marginal survival distribution: Piecewise exponential (20 intervals)

Loglikelihood: -54829.0

ESTIMATE SE

lambda1 0.002694161 0.0001725595

lambda2 0.005415180 0.0003344959

lambda3 0.006911665 0.0004277045

lambda4 0.007529730 0.0004598037

lambda5 0.008336969 0.0005187667

lambda6 0.009163350 0.0005622532

lambda7 0.010229630 0.0006182957

lambda8 0.010758852 0.0006527896

lambda9 0.011540465 0.0007007856

lambda10 0.010582665 0.0006485056
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lambda11 0.011615798 0.0006915840

lambda12 0.012473235 0.0007760987

lambda13 0.012451307 0.0007577423

lambda14 0.013168029 0.0008240393

lambda15 0.011932527 0.0007523800

lambda16 0.011947366 0.0007586338

lambda17 0.012984590 0.0008396998

lambda18 0.011850726 0.0007995940

lambda19 0.011569655 0.0008124611

lambda20 0.011210448 0.0008354135

beta_Heifer -0.069862056 0.0158143980

theta 0.351739438 0.0343196550

Kendall’s Tau 0.14956565 0.01241065

In Section 2.4, we showed that the one-stage parametric procedure is preferred over two-
stage parametric estimation when the number of clusters is relatively small, i.e., about 50
or lower. When the number of clusters increases, the two-stage procedure is less time-
consuming and yields nearly the same results as the one-stage procedure if the parametric
assumption for the baseline holds. In the two-stage estimation procedure, the additional
"Cox" option for the marginal input variable is available. This option must be called if
the user does not want to specify the baseline distribution. The user must however be
aware that even though semi-parametric estimation offers more flexibility, the parametric
estimation will be more powerful if the form of the baseline hazard is somehow known
in advance. Also, the estimation technique is more simple. To compute standard errors
for a semi-parametric model, the grouped jackknife procedure is used, which takes a lot
of time when the number of clusters is large. In the current version of Sunclarco,
the grouped jackknife procedure is also used for the estimation of standard errors in the
two-stage parametric procedure with piecewise exponential margins. We are planning
to speed up the two-stage parametric procedure with piecewise exponential margins by
making use of the variance expression (2.6), in order to have a flexible and fast alternative
to semi-parametric model fitting.

As an example of the two-stage estimation, we fit the semi-parametric model with the
Gumbel-Hougaard copula. The reported log-likelihood is the log-likelihood from the sec-
ond stage of the estimation procedure.



56 Chapter 4. R Package Sunclarco

R> mod_coxGH <- CopulaModel_2stage(data=insem,time="Time",status="Status",

+ cluster="Herd",covariates="Heifer",

+ marginal="Cox",copula="GH")

R> summary(mod_coxGH)

Execution Time: 15.36016 mins

Copula: Gumbel-Hougaard

Marginal survival distribution: Cox model

Loglikelihood: -271.3222

ESTIMATE SE

beta_Heifer -0.06034839 0.02096202

theta 0.7904656 0.01621859

Kendall’s Tau 0.2095344 0.02096202

In upcoming releases, we will gradually extend the possible choices for the marginal survival
function and copula function. We also plan to further equip the Sunclarco package
with p-values of estimated covariate effects, predictions and tools for plotting and model
selection.



Chapter 5
Investigating the correlation
structure of quadrivariate udder
infection times through
Archimedean copulas

The correlation structure imposed on multivariate time to event data is often of a simple
nature, such as in the shared frailty model where pairwise correlations between event times
in a cluster are all the same. In modelling the infection times of the four udder quarters
clustered within the cow, more complex correlation structures are possibly required, and
if so, such more complex correlation structures give more insight in the infection process.

In this chapter, we will choose a marginal approach to study more complex correlation
structures, therefore leaving the modelling of marginal distributions unaffected by the
association parameters. The dependency of failure times will be induced through copula
functions. The methods are shown for (mixtures of) the Clayton copula, but can be
generalized to mixtures of Archimedean copulas for which the nesting conditions are met
(McNeil, 2008; Hofert, 2011).

57
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5.1 Introduction

Time to event data are often clustered and different techniques have been developed to
cope with the clustering in the data. Most commonly used approaches only accommodate
a simple association structure between the event times in a cluster. For instance, the
underlying assumption of the shared frailty model is that the correlation between any
two event times is the same (Duchateau and Janssen, 2008). The correlated frailty model
allows more complex structures, but has mostly been used to model bivariate survival data
(Wienke, 2011), and the extension of the correlated frailty model based on the gamma
density function imposes quite a few restrictions on the correlation structure.

An alternative modelling technique is based on copula functions. Copulas have also
been mostly used for bivariate survival data, and in the case clusters were larger, the
development was most often also restricted to simple association structures.

The data set studied here warrants the development of more complex association struc-
tures. We investigate the appropriateness of different association structures for the quadri-
variate udder quarter infection times clustered in the cow. It was shown in previous anal-
yses using frailty models with a simple association structure that strong correlation exists
between the infection times within an udder (Goethals et al., 2009; Ampe et al., 2012).
The udder quarters, however, can be ranked in space, and special correlation structures
can therefore be proposed. For instance, it is biologically plausible that infection times
of left and right udder quarters in front are more correlated than the right front and rear
udder quarters. Because the distance between two front (or rear) parts is smaller than the
distance between one front and one rear part, it is likely that bacteria will spread more
easily from left to right, than from front to rear (or vice versa). The method proposed here
provides the tools to test such biologically plausible hypotheses. The findings have large
impact on the prevention of infections in udder quarters, as large correlations could signify
that bacteria are spread from one udder quarter to the next, which could be prevented
with proper hygienic measures.

In this chapter, we will use hierarchical Archimedean copula models as it allows us to
impose the correlation structures with biological relevance to the quadrivariate udder
quarter infection times. One challenge in using these types of models in multivariate
survival data typically is that one needs to calculate all possible first and higher order
partial derivatives of the joint survival function, which can get complicated if you allow for
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hierarchical structures. In Section 5.2, we discuss the infection time data in cow udders
and the general construction of the likelihood function. In Section 5.3, we introduce
models with different correlation structures and also discuss the choice of the baseline
hazard function and the one- and two stage approach to model fitting. In Section 5.4, we
describe the results of the different models and compare them with each other. There is a
higher level of association within the two front and the two rear udder parts, than between
pairs where one part is located front and one is located rear. There is no difference in
association between infection times in multiparous and primiparous cows. Size and power
calculations are performed in Section 5.5.

5.2 The general likelihood function for a cow udder

We investigate the correlation structure between the times to infection of the four udder
quarters nested in a cow. The data set was described in Section 1.3.1. We use the
schematic representation described by the diagram in Figure 5.1.
Let K be the number of cows (i = 1, . . . ,K). In each udder, we denote the lifetime

Figure 5.1: Schematic representation of a cow udder.

for the different parts by a positive random variable Tij , j = 1, . . . , 4. For each cow, we
assume that there is an independent random censoring variable Ci such that under a right
censoring scheme, the observed quantities are given by

Xij = min(Tij , Ci)
δij = I(Tij ≤ Ci)

, i = 1, . . . ,K, j = 1, . . . , 4.
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The risk of infection may also depend on a set of covariates Zij , which are possibly time-
varying. As denoted in the previous section, we will consider the parity as a covariate:

Zi =
{

1 for primiparous cows
0 for multiparous cows.

We denote the (possibly unobserved) time until infection for the different udder quarters
of cow i by (ti1, ti2, ti3, ti4). The likelihood contribution of a cluster of size 4 is one
term out of 16 possibilities. If cow i has four infected udder parts, its contribution to the
likelihood is the joint density function of the infection times f(ti2, ti2, ti3, ti4|Zi). If the
cow has only one infected udder part, we need to take the derivative of the joint survival
function with respect to that event time, and so on. A general expression for the full
likelihood is given by (5.1).

K∏
i=1

(f(xi2, xi2, xi3, xi4|Zi))δi1δi2δi3δi4

×
(
−
∂S(xi1, xi2, xi3, xi4|Zi)

∂xi1

)δi1(1−δi2)(1−δi3)(1−δi4) (
−
∂S(xi1, xi2, xi3, xi4|Zi)

∂xi2

)(1−δi1)δi2(1−δi3)(1−δi4)

×
(
−
∂S(xi1, xi2, xi3, xi4|Zi)

∂xi3

)(1−δi1)(1−δi2)δi3(1−δi4) (
−
∂S(xi1, xi2, xi3, xi4|Zi)

∂xi4

)(1−δi1)(1−δi2)(1−δi3)δi4

×
(
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi2

)δi1δi2(1−δi3)(1−δi4)(
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xi2∂xi3

)(1−δi1)δi2δi3(1−δi4)

×
(
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi3

)δi1(1−δi2)δi3(1−δi4)(
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi4

)δi1(1−δi2)(1−δi3)δi4

×
(
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xi2∂xi4

)(1−δi1)δi2(1−δi3)δi4 (
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xi3∂xi4

)(1−δi1)(1−δi2)δi3δi4

×
(
−
∂3S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi2∂xi3

)δi1δi2δi3(1−δi4)(
−
∂3S(xi1, xi2, xi3, xi4|Zi)

∂xi2∂xi3∂xi4

)(1−δi1)δi2δi3δi4

×
(
−
∂3S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi3∂xi4

)δi1(1−δi2)δi3δi4 (
−
∂3S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi2∂xi4

)δi1δi2(1−δi3)δi4

× f(S(xi1, xi2, xi3, xi4|Zi))(1−δi1)(1−δi2)(1−δi3)(1−δi4) (5.1)
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5.3 Different models for the association structure

In this section, we go from models with simple correlation structure to models with more
complex correlation structure. As the models are nested, likelihood ratio testing can be
used to test whether such more complex correlation structures are required. Association
structures are expressed in terms of the copula function, i.e., correlation is introduced
through the copula function that links the marginal survival functions into the joint survival
function. We will use the shorthand notation Sj for the marginal survival functions
Sj(xj |Z), j = 1, 2, 3, 4.

5.3.1 No clustering (Model 0)

In the case of independence between the udder quarter infection times in a cow, the joint
survival function is given by

S(x1, x2, x3, x4|Z) = S1S2S3S4

where S(x1, x2, x3, x4|Z) is the joint survival function and S1, . . . , S4 are the marginal
survival functions for the left front, right front, left rear and right rear udder quarters
respectively.

For this simplest model and all models following, both a parametric and semiparametric
approach will be considered. In the parametric approach, the baseline hazard is assumed
to be Weibull. The general likelihood function (5.1) can then be maximized in one
stage, i.e., maximizing the likelihood jointly for the parameter(s) of the marginal survival
functions and the parameter in the copula function, or in two stages, first estimating
the parameter(s) of the marginal survival functions, plugging those in (5.1) and then
maximizing only for the parameter in the copula function. In the semiparametric approach,
the baseline hazard is unspecified and only a two stage approach is feasible: partial
likelihood maximization is used to estimate the marginal survival functions, plugging those
in (5.1) and then maximizing only for the parameter in the copula function. The two-stage
approach is straightforward as the first stage, estimating the marginal survival functions,
is based on basic survival models without clustering, and only one parameter remains in
(5.1) for which it needs to be maximized.
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5.3.2 One level of clustering (Model 1)

If we assume that the association between each two different udder quarters is the same,
we model the joint survival function by a four-dimensional Archimedean copula function
with generator ϕ. This situation is depicted in Figure 5.2. The joint survival function is

Figure 5.2: Four-dimensional Archimedean copula with generator ϕ.

represented as
S(x1, x2, x3, x4|Z) = Cθ0(S1, S2, S3, S4),

or equivalently,

S(x1, x2, x3, x4|Z) = ϕ
[
ϕ−1(S1) + ϕ−1(S2) + ϕ−1(S3) + ϕ−1(S4)

]
where ϕ : [0,∞[→ [0, 1] is a continuous, strictly decreasing function which is completely
monotonic and has ϕ(0) = 1 and ϕ(∞) = 0 (Nelsen, 2006). The generator ϕ depends
on the association parameter θ0. As an example, the association structure is induced here
through a Clayton copula with generator ϕ(t) = (1 + θ0t)−1/θ0 with θ0 > 0. Infection
times are independent when θ0 approaches zero.

For the case of a parametric baseline hazard and using the one-stage procedure, the
contributions to the likelihood expression (5.1) are derived in Appendix B. In Chapter 2
we showed that maximizing the likelihood expression is equivalent to solving d logL

dη
= 0

with

logL(η) =
K∑
i=1

 ni∑
j=1

δij log
[

−fij
ϕ′(ϕ−1(Sij))

]
+
di−1∑
l=0

log(1 + lθ0)

−(di + 1/θ0) log

1 + θ0

ni∑
j=1

ϕ−1(Sij)

 , (5.2)
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where ni = 4, di =
ni∑
j=1

δij , Sij = Sj(xij |Zi) and fij = f(xij |Zi) = −dSij
dxij

, i =

1, . . . ,K, j = 1, . . . , 4. The parameter vector η contains the baseline parameters from
the four margins, the parity effect β and the association parameter θ0.

In the model above, it was not only assumed that all cows can be described by the
same correlation structure, but also that the correlations themselves are the same. As
primiparous and multiparous cows react quite differently with respect to udder quarter
infections, it is worthwhile to test whether primiparous and multiparous cows share the
same values for the correlations within the same correlation structure.

To test whether the association between infection times depends on the parity of the cow,
we use the following copula function ϕ(t) = (1 + θpt)−1/θp for primiparous cows and
ϕ(t) = (1 + θmt)−1/θm for multiparous cows and test the hypothesis

H0 : θm = θp versus H1 : θm 6= θp

which can then be tested through the likelihood ratio test.

5.3.3 Multilevel clustering: parent copula with two identical child
copulas (Model 2)

We assume that the front udder quarters have the same association as the rear udder
quarters, which is indicated by the solid lines in the left panel of Figure 5.3. Another type
of association occurs between the front and rear udder quarters, indicated by the dashed
lines. This type of association structure is captured by a partially nested Archimedean
copula function where the parent copula Cθ0 has two identical child copulas Cθ1 and Cθ1 :

Cθ0 [Cθ1(S1, S2), Cθ1(S3, S4)] ,

or equivalently,

S(x1, x2, x3, x4|Z) = ϕ0
[
ϕ−1

0 ◦ ϕ1
{
ϕ−1

1 (S1) + ϕ−1
1 (S2)

}
+ϕ−1

0 ◦ ϕ1
{
ϕ−1

1 (S3) + ϕ−1
1 (S4)

}]
.

The generator ϕ0 describes the association between front and rear udder quarters, while ϕ1

describes the association within front udder quarters and within rear udder quarters. The
right panel of Figure 5.3 is a schematic representation of the partially nested Archimedean
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Figure 5.3: Parent copula with two identical child copulas.

copula. According to McNeil (2008), for a general nested Archimedean structure to be
a proper copula, it is sufficient that all appearing nodes of the form ϕ−1

k ◦ ϕl have
completely monotone derivatives. The sufficient nesting condition is often easily verified
if all generators appearing in the nested structure come from the same parametric family.
For the Archimedean families of Ali-Mikhail-Haq, Clayton, Frank, Gumbel and Joe, two
generators ϕk and ϕl of the same family with corresponding parameters θk and θl fulfill
the sufficient nesting condition if θk ≤ θl (Hofert, 2011).

Since ϕ0 is a completely monotonic copula generator, we can look at ϕ0 as a Laplace
transform of a positive distribution function G0(x),

ϕ0(t) =
∫ ∞

0
e−txdG0(x).

This means we can write the joint survival function as

S(x1, x2, x3, x4|Z) =
∫ ∞

0
e−x[ϕ

−1
0 ◦ϕ1(ϕ−1

1 (S1)+ϕ−1
1 (S2))+ϕ−1

0 ◦ϕ1(ϕ−1
1 (S3)+ϕ−1

1 (S4))]dG0(x)

=
∫ ∞

0
e−xϕ

−1
0 ◦ϕ1(ϕ−1

1 (S1)+ϕ−1
1 (S2)) × e−xϕ

−1
0 ◦ϕ1(ϕ−1

1 (S3)+ϕ−1
1 (S4))dG0(x).

Defining in this expression φ1x(·) = e−xϕ
−1
0 ◦ϕ1(·), we can rewrite

e−xϕ
−1
0 ◦ϕ1(ϕ−1

1 (S1)+ϕ−1
1 (S2)) = φ1x

(
ϕ−1

1 (S1) + ϕ−1
1 (S2)

)
= φ1x

(
φ−1

1x

(
e−xϕ

−1
0 (S1)

)
+ φ−1

1x

(
e−xϕ

−1
0 (S2)

))
.

Since ϕ−1
0 ◦ ϕ1 has a completely monotonic derivative, we note that φ1x is a Laplace

transform, and therefore is a generator of an Archimedean copula. Hence there exists a
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distribution G1x such that

φ1x(t) = e−xϕ
−1
0 ◦ϕ1(t) =

∫ ∞
0

e−x1tdG1x(x1).

This leads to

S(x1, x2, x3, x4) =
∫ ∞

0
φ1x

(
ϕ−1

1 (S1) + ϕ−1
1 (S2)

)
× φ1x

(
ϕ−1

1 (S3) + ϕ−1
1 (S4)

)
dG0(x)

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (S1)+ϕ−1

1 (S2))dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (S3)+ϕ−1
1 (S4))dG1x(x1)dG0(x). (5.3)

In Appendix B we show that the likelihood for K clusters can be written as

L =
K∏
i=1

∫ ∞
0

∫ ∞
0

2∏
j=1

e−x1(ϕ−1
1 (Sij))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)δij
dG1x(x1)

×
∫ ∞

0

4∏
j=3

e−x1(ϕ−1
1 (Sij))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)δij
dG1x(x1)dG0(x), (5.4)

with Sij = Sj(xij |Zi), fij = dSij
dxij

, i = 1, . . . ,K, j = 1, . . . , 4. We notice that the
likelihood expression (5.4) is a modified version of (2.2).

Choosing parent copula Cθ0 and child copulas Cθ1 to be Clayton copulas with generators
ϕ0(t) = (1 + θ0t)−1/θ0 and ϕ1(t) = (1 + θ1t)−1/θ1 , the distribution G1x is a special
case of the exponentially tilted stable distribution (Hofert, 2011). Unfortunately, for this
choice, the inner integral in the likelihood has no closed form. We will therefore not use
the nested integral structure (5.4) for computations, but instead we will calculate the joint
survival function and its mixed partial derivatives up to fourth order. The joint survival
function is

S(x1, x2, x3, x4) =
[
−1 +

(
−1 + S−θ1

1 + S−θ1
2

)θ0/θ1
+
(
−1 + S−θ1

3 + S−θ1
4

)θ0/θ1
]−1/θ0

.

The nesting condition for this setting is θ0 ≤ θ1. This means that there must be a
stronger association of infection times within front and within rear udder parts, than
there is between front and rear udder parts.

The contributions to the likelihood expression (5.1) for the one-stage parametric approach
are given in Appendix B.
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5.3.4 Multilevel clustering: parent copula with two different child
copulas (Model 3)

We will now assume that the association within the front udder quarters is different from
the association within the rear udder quarters. A third type of association occurs between
front and rear udder quarters.

Figure 5.4: Parent copula with two different child copulas.

The hierarchical Archimedean copula function that represents this situation is

Cθ0 [Cθ1(S1, S2), Cθ2(S3, S4)] ,

or equivalently,

S(x1, x2, x3, x4) = ϕ0
[
ϕ−1

0 ◦ ϕ1
{
ϕ−1

1 (S1) + ϕ−1
1 (S2)

}
+ϕ−1

0 ◦ ϕ2
{
ϕ−1

2 (S3) + ϕ−1
2 (S4)

}]
.

The generator ϕ0 describes the association between the front and rear udder quarters,
while generators ϕ1 and ϕ2 describe the association within the front udder quarters and
within the rear udder quarters, respectively.

We will choose ϕ0, ϕ1 and ϕ2 to be generators of Clayton copulas with association
parameters θ0, θ1 and θ2. In that case, the joint survival function is given by

S(x1, x2, x3, x4) =
[
−1 +

(
−1 + S−θ1

1 + S−θ1
2

)θ0/θ1
+
(
−1 + S−θ2

3 + S−θ2
4

)θ0/θ2
]−1/θ0

.

The nesting conditions are θ0 ≤ θ1 and θ0 ≤ θ2. The contributions to the likelihood
function are given in Appendix B.
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5.4 Results

5.4.1 The marginal survival functions

When assuming a parametric form of the marginal survival functions, the Weibull distri-
bution is a popular choice. Under the Weibull assumption, the marginal survival functions
are

Sij(t|Zi) = exp(−λjtρj exp(βZi)), j = 1, . . . , 4.

The parity Zi is cow-specific and therefore we assume that the parity effect is the same
in each of the four quarters (β1 = β2 = β3 = β4 = β).

In a model without clustering (Model 0), standard survival methods yield the parameter
estimates in Table 5.1.

Weibull baseline parameters parity
Left Front Right Front Left Rear Right Rear effect β

λ1 = 0.168(0.011) λ2 = 0.178(0.012) λ3 = 0.145(0.011) λ4 = 0.157(0.011) −0.418(0.051)
ρ1 = 1.321(0.052) ρ2 = 1.270(0.050) ρ3 = 1.325(0.055) ρ4 = 1.280(0.053)

Table 5.1: Parameter estimates for marginal Weibull distributions and parity effect.

When no parametric baseline is assumed, a stratified Cox proportional hazards model
(Cox, 1972) can be used, where the baseline hazard h0j(·) is left unspecified:

hij(t|Zi) = h0j(t) exp(βZi).

In this (semi-parametric) model, the estimated parity effect is −0.407(0.051).

Following either the parametric or semi-parametric approach, these parameter estimates
are consistent and are used in the second stage of the (semi-)parametric two-stage esti-
mation procedure of models 1, 2 and 3.

5.4.2 Fitting a hierarchy of association structures

Models 0, 1, 2 and 3 are fitted and the parameter estimates are reported in Table 5.2.
Corresponding standard errors are in brackets. In the one-stage procedure, these were
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retrieved from the inverse Hessian matrix. In the two-stage procedure, standard errors of
the association parameters were determined using the grouped jackknife method (Lipsitz
et al., 1994; Lipsitz and Parzen, 1996).

Implementation of the models was done in R, based on the likelihood contributions that
were calculated in Appendix B. As an example, the R code that was used to fit Model 3
using the one-stage parametric procedure is given in Appendix B.4.1.

As pointed out in the previous section, in two-stage estimation, the estimates of the
baseline and the parity effect are equal to the estimates arising from the independence
model.
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To investigate which association structure is most appropriate, we test the hypotheses

HA
0 : θ0 = 0 versus HA

1 : θ0 6= 0 in Model 1
HB

0 : θ1 = θ0 versus HB
1 : θ1 6= θ0 in Model 2

HC
0 : θ2 = θ1 versus HC

1 : θ2 6= θ1 in Model 3

In words, test A is used to detect the presence of clustering in the data. With test B
we determine whether it is necessary to account for front and rear subclusters. Test C
is used to detect a different level of association in the front and rear subclusters. For
testing HA

0 : θ = 0, we use a likelihood ratio test with a mixed chi-squared distribution,
since the null hypothesis lies at the boundary of the parameter space (Duchateau et al.,
2002). In Section 5.5.1, we take a closer look at this distribution. To test hypotheses
HB

0 and HC
0 , the likelihood ratio statistic follows a χ2(1) distribution. The likelihood

ratio tests are performed for both one-stage and two-stage estimation procedures. The
resulting p-values are given Table 5.3. From Table 5.3 we conclude that there is in fact
clustering of infection times, and the front and rear subclusters are detected, but there
is no need to set up a model which includes a different level of association within each
subcluster. The most appropriate model for the udder quarter infection times, is therefore
Model 2.

Test Estimation procedure LRT p-value
one-stage parametric 1938.344 < 0.0001

HA
0 vs HA

1 two-stage parametric 1931.996 < 0.0001
two-stage semi-parametric 1949.055 < 0.0001
one-stage parametric 14.156 0.00017

HB
0 vs HB

1 two-stage parametric 14.703 0.00013
two-stage semi-parametric 15.397 < 0.0001
one-stage parametric 0.056 0.812

HC
0 vs HC

1 two-stage parametric 0.228 0.633
two-stage semi-parametric 0.111 0.739

Table 5.3: Likelihood ratio tests for the association structure.
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5.4.3 The association structure as a function of the parity covariate

As mentioned at the end of Section 5.3.2, it is worthwhile to test the hypothesis

HZ
0 : θm = θp versus HZ

1 : θm 6= θp

in Model 1. The p-values of the likelihood ratio tests for the different estimation ap-
proaches are listed in Table 5.4. None of the estimation procedures lead to a significant

Test Estimation procedure LRT p-value θ̂m θ̂p

one-stage parametric 1.436 0.231 3.055 3.515
HZ

0 vs HZ
1 two-stage parametric 2.732 0.098 2.829 3.302

two-stage semi-parametric 0.780 0.377 3.160 3.430

Table 5.4: Likelihood ratio test for HZ
0 : θm = θp versus HZ

1 : θm 6= θp in Model 1.

difference between θm and θp. Consequently, there is no need to model the association
structure as a function of the parity covariate.

5.5 Size and power analysis

We simulate survival data that resemble the udder infection data. All subjects are sam-
pled from the same marginal distribution, i.e. a Weibull distribution with parameters
comparable to the estimated parameters of the udder infection data set: λ = 0.11, ρ =
1.3, β = 0.4. The censoring variable is Weibull distributed with ρC = 1.3 and λC = 0.21,
yielding a censoring percentage around 61%. The aim is to assess the size and the power
of the likelihood ratio tests when comparing the different association structures. We only
investigate the performance of the two-stage parametric estimation procedure. In the first
simulation setting, we simulate four-dimensional survival data sets with one level of clus-
tering, and calculate the size and the power to detect departures from the independence
model. In the second simulation setting, we simulate data from a two-level hierarchical
copula model with two identical child copulas, and compute the size and power to detect
the subclusters. In the third simulation setting, data were simulated from a two-level
hierarchical Archimedean copula model with two different child copulas, and the size and
the power to detect the difference between the two subclusters were determined. In the
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last setting, we study the size and the power to detect a covariate effect on the association
parameter in the model with one level of clustering.

5.5.1 Testing for independence versus one-level clustering

Let the true value of θ range from 0 to 0.5 by steps of size 0.05. We simulate 1000
data sets with 200 clusters of size 4 from a Clayton copula for each specific value of
the association parameter θ. Our aim is to pick up deviations from independence. The
power of the likelihood ratio test for independence is plotted versus the value of θ. At the
boundary of the parameter space (θ = 0), the likelihood ratio statistic follows a mixed
chi-squared distribution

2 log likelihood alternative model
likelihood null model ∼ 0.5χ2(0) + 0.5χ2(1).

Figure 5.5 shows that a value of θ = 0.25, corresponding to a Kendall’s tau of 0.11, is
detected with a probability over 80%. In the model with one level of clustering, deviations
from independence are hence quickly detected. From θ = 0.35 onwards, the power level
approaches 1. At θ = 0, we approximately attain the size of the test by a value of 0.043.

5.5.2 Testing for one-level clustering versus two-level clustering
with one parent and two identical child copulas

We let the true values of θ0 and θ1 range from 0.02 to 1 by steps of length 0.02, only
considering those combinations of (θ0, θ1) for which the nesting condition θ1 ≥ θ0 is met.
We simulate 1000 data sets with 200 clusters of size 4 from a hierarchical Clayton copula
with parent copula Cθ0 and 2 identical child copulas Cθ1 for each eligible pair (θ0, θ1)
and calculate the probability to detect the subclusters. In order to make use of the χ2(1)
distribution, however, values of θ0 and θ1 close to the boundary, i.e., θ0 = θ1 = 0, should
be excluded, as demonstrated in the discussion section. Therefore, first, the independence
hypothesis is tested, and if not rejected, the simulated data set is discarded and not used
in the future testing of HB

0 : θ1 = θ0. Therefore, in simulation settings with θ1 and θ0

close to zero, a substantial number of the 1000 simulations might be discarded. If less
than 20% of the 1000 data sets remain, the symbol N is used for plotting in the top panel
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Figure 5.5: The power of the likelihood ratio test for HA
0 : θ = 0 versus HA

1 : θ 6= 0.

of Figure 5.6. As demonstrated in Section 5.5.1 and Figure 5.5 in particular, this occurs
only for very small values of the association parameter (θ0 = θ1 ≤ 0.06). The size of the
test is shown in the upper panel of Figure 5.6; most values are below 0.065 and thus quite
acceptable. In the lower panel of Figure 5.6, the line θ0 = θ1 indicates the null model,
i.e., no subclusters. To obtain a power of 80%, values must differ quite substantially, e.g.,
(0.2, 0.75) or (0.3, 0.9).

5.5.3 Testing for two-level clustering with one parent and two iden-
tical child copulas versus two-level clustering with one parent
and two different child copulas

We fix the value of θ0 at 0.5 and let θ1 and θ2 range from 0.5 to 2.0 by steps of length
0.1. We simulate 1000 data sets with 200 clusters of size 4 from a hierarchical Clayton
copula with parent copula Cθ0 and 2 child copulas Cθ1 and Cθ2 . For each combination of
θ1 and θ2, we calculate the probability to detect the different levels of association in the
subclusters. In Figure 5.7, the line θ1 = θ2 indicates the model with two identical child
copulas. On this line, we achieve the size of the test.
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Figure 5.6: Size (top) and power (bottom) of the likelihood ratio test for HB
0 : θ0 = θ1 versus

HB
1 : θ0 6= θ1.

5.5.4 Testing for differing association structures as a function of a
covariate

We fix the true value of θp at 1.5 and let θm range from 0 to 3.5 by steps of length 0.1.
We simulate 1000 data sets with 200 clusters of size 4 from a Clayton copula Cθm for a
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Figure 5.7: Size (top) and power (bottom) of the likelihood ratio test for HC
0 : θ1 = θ2 versus

HC
1 : θ1 6= θ2.

multiparous cow and from a Clayton copula Cθp for a primiparous cow.

We determine how many times the difference between the association parameters θm and
θp is picked up. In Figure 5.8, when ∆θ = θm − θp approaches −1.5, i.e., when Cθm
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approaches the independence copula, the power increases quickly. On the right hand
side of Figure 5.8, where ∆θ is positive, the power to detect a covariate effect on the
association parameter increases more gradually.
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Figure 5.8: The power of the likelihood ratio test for HZ
0 : θm = θp versus HZ

1 : θm 6= θp.

5.6 Discussion

We compared different hierarchical Archimedean copula models for the association be-
tween infection times of the four udder parts in dairy cows. The most adequate model for
the quadrivariate udder infection data is the nested copula model where the association
between front and rear udder quarters is smaller than the association between two front,
resp. rear, udder quarters. The within-front association is not significantly different from
the within-rear association. According to the best fitting copula, i.e., Model 2, the associ-
ation parameter between two quarters either on the rear or on the front side corresponds
to 3.552, or a Kendall’s tau equal to 0.64. As expected the association parameter be-
tween two quarters not on the same rear or front side is smaller and equal to 3.050 with
a corresponding Kendall’s tau equal to 0.60. Although these two association parameters
differ significantly from each other, it is not important from a practical point of view as
both are large. It is important to know for a dairy holder that noninfected udder quarters
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are highly at risk whenever one of the udder quarters of a cow is infected.

The reason to choose all apparent copulas to be Clayton copulas is threefold. From a
computational point of view, Clayton copulas are convenient to work with, since there
exists a closed form expression for the derivatives of the copula generator ϕ. For a
hierarchical Clayton copula to be well-defined, a simple nesting condition has to be met,
i.e., θk ≤ θl for all appearing nodes of the form ϕ−1

k ◦ϕl. Additionally, the Clayton copula
has lower tail dependence. In a survival context, this translates to a stronger association
later in time. It’s therefore important to extend these copulas to other members of the
Archimedean copula family to investigate when the correlation in time is strongest.

In Section 5.5.1, the power of testing for the presence of simple clustering, i.e., the same
pairwise correlation between all udder quarter, in four-dimensional data was assessed us-
ing a likelihood ratio test with a mixed chi-squared distribution, since the null hypothesis
of no association lies on the boundary of the parameter space. The top panel of Fig-
ure 5.9 illustrates that the empirical cumulative distribution function of the likelihood
ratio statistic, calculated for 1000 simulated datasets without clustering, agrees with the
0.5χ2(0) + 0.5χ2(1) distribution function. In Section 5.5.2, we assessed the power of
testing for the presence of subclusters in four-dimensional data using a likelihood ratio
test with a χ2(1) distribution. The null hypothesis HB

0 : θ0 = θ1 lies on the boundary
of the nesting condition θ0 ≤ θ1, however, since the nesting condition only is sufficient
and not necessary, the mixed chi-squared distribution does not apply unless θ0 = θ1 = 0.
Before testing for multiple levels of clustering, it is therefore necessary to test first for the
presence of simple clustering. Omitting this preliminary test can lead to test sizes much
larger than the nominal significance level. This is illustrated in Figure 5.10, where the
size of the likelihood ratio test for HB

0 : θ0 = θ1 versus HB
1 : θ0 6= θ1 was determined

for 1000 data sets with 200 clusters of size 4 that were simulated from a Clayton copula
with association parameter ranging from 0.02 to 1. For small values of θ, the size clearly
deviates from the desired 0.05 level. In the upper panel of Figure 5.6 in Section 5.5.2,
we remedy this problem by only looking at those data sets in which the preliminary test
detected the presence of simple clustering. In the lower panel of Figure 5.9, the likelihood
ratio test for HB

0 : θ0 = θ1 versus HB
1 : θ0 6= θ1 was performed on 1000 data sets that

were simulated from a unilevel Clayton copula model with association parameter equal to
1.2. As can be seen from this figure, the empirical cumulative distribution function of the
likelihood ratio statistic coincides with the χ2(1) distribution.
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Figure 5.9: Top: the empirical cumulative distribution function (ECDF) under HA
0 : θ = 0

(solid line), ECDF of χ2(0), χ2(1) (dotted lines) and 0.5χ2(0)+0.5χ2(1) (dashed line). Bottom:
ECDF under HB

0 : θ0 = θ1 = 1.2 (solid line), ECDF of χ2(0), χ2(1) (dotted lines) and 0.5χ2(0)+
0.5χ2(1) (dashed line).
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including also the data sets for which no simple clustering was detected.
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Appendix A
Validation of the Archimedean
copula likelihood expression

A.1 Validation of the bivariate copula likelihood for a general
Archimedean copula

Lemma A.1.1. For a sample of bivariate survival data {(xi1, δi1), (xi2, δi2)}, i = 1, . . .K
the contribution of pair i to the Archimedean copula likelihood can be expressed as∫ ∞

0

2∏
j=1

e−xϕ
−1
θ

(Sij)
[

−xfij
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x).

Proof. We calculate the bivariate copula likelihood for a general Archimedean cop-
ula, starting from formula (1.1) on page 9. We invoke some useful properties of the
Archimedean copula function.

The generator ϕθ : [0,∞[→ [0, 1] of an Archimedean copula function C : [0, 1]n → [0, 1],
can be written as a Laplace transform

ϕθ(s) =
∞∫

0

e−sxdGθ(x), s ≥ 0.
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86 Appendix A. Validation of the copula likelihood

The first and second order derivatives of the generator are ϕ′θ(s) =
∫ ∞

0
−xe−sxdGθ(x)

and ϕ′′θ (s) =
∫ ∞

0
x2e−sxdGθ(x). To ease notation, we write Sij = S(xij |Zij)

and fij = f(xij |Zij). Since f is the density function and S the survival function,
they are related via fij = −dSij

dxij
. In a sample of K pairs of time-to-event data

{(x11, δ11), (x12, δ12)}, . . . , {(xK1, δK1), (xK2, δK2)}, we distinguish four possible situ-
ations for pair i:

• Two censored observations (δi1 = 0, δi2 = 0). The contribution to the likelihood is
the joint survival function

Li,(0,0) = S(xi1, xi2|Zi1,Zi1)

= C(Si1, Si2) = ϕθ(ϕ−1
θ (Si1) + ϕ−1

θ (Si2))

=
∞∫

0

e−x(ϕ−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x).

• An event for the first subject and a censored observation for the second subject
(δi1 = 1, δi2 = 0):

Li,(1,0) = −∂S(xi1, xi2|Zi1,Zi2)
∂xi1

= −ϕ′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
) d

dxi1

[
ϕ−1
θ (Si1)

]
= ϕ′θ

(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
) fi1

ϕ′θ(ϕ
−1
θ (Si1))

=
∫ ∞

0
−xe−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x) fi1

ϕ′θ(ϕ
−1
θ (Si1))

=
∫ ∞

0
e−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))
[

−xfi1
ϕ′θ(ϕ

−1
θ (Si1))

]
dGθ(x).

• A censored observation for the first subject and an event for the second subject



Appendix A.1. Validation of the bivariate copula likelihood 87

(δi1 = 0, δi2 = 1):

Li,(0,1) = −∂S(xi1, xi2|Zi1,Zi2)
∂xi2

= −ϕ′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
) d

dxi2

[
ϕ−1
θ (Si2)

]
= ϕ′θ

(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
) fi2

ϕ′θ(ϕ
−1
θ (Si2))

=
∫ ∞

0
−xe−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x) fi2

ϕ′θ(ϕ
−1
θ (Si2))

=
∫ ∞

0
e−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))
[

−xfi2
ϕ′θ(ϕ

−1
θ (Si2))

]
dGθ(x).

• Two events (δi1 = 1, δi2 = 1):

Li,(1,1) = f(xi1, xi2|Zi1,Zi2) = ∂2S(xi1, xi2|Zi1,Zi2)
∂xi1∂xi2

= ϕ′′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
) d

dxi1

[
ϕ−1
θ (Si1)

] d

dxi2

[
ϕ−1
θ (Si2)

]
= ϕ′′θ

(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
) fi1

ϕ′θ(ϕ
−1
θ (Si1))

fi2

ϕ′θ(ϕ
−1
θ (Si2))

=
∫ ∞

0
x2e−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x) fi1

ϕ′θ(ϕ
−1
θ (Si1))

fi2

ϕ′θ(ϕ
−1
θ (Si2))

=
∫ ∞

0
e−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))
[

−xfi1
ϕ′θ(ϕ

−1
θ (Si1))

] [
−xfi2

ϕ′θ(ϕ
−1
θ (Si2))

]
dGθ(x).

In all four cases, the contribution to the bivariate copula likelihood can be written as∫ ∞
0

2∏
j=1

e−xϕ
−1
θ

(Sij)
[

−xfij
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x).

Example: Bivariate Clayton copula likelihood

We calculate the bivariate copula likelihood for the Clayton copula starting from formula
(1.1) on page 9 and show that the resulting expression is the same when starting from
formula (2.2) on page 18.

The generator of the Clayton copula is ϕθ(s) = (1 + θs)1−/θ and its inverse
is ϕ−1

θ (s) = (s−θ − 1)/θ. In a sample of K pairs of time-to-event data
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{(x11, δ11), (x12, δ12)}, . . . , {(xK1, δK1), (xK2, δK2)}, we distinguish four possible situ-
ations for pair i:

� Two censored observations (δi1 = 0, δi2 = 0). The contribution to the likelihood is
the joint survival function

Li,(0,0) = S(xi1, xi2|Zi1,Zi1) = C(Si1, Si2) = ϕθ(ϕ−1
θ (Si1) + ϕ−1

θ (Si2))

= (S−θi1 + S−θi2 − 1)−1/θ.

� An event for the first subject and a censored observation for the second subject
(δi1 = 1, δi2 = 0):

Li,(1,0) = −∂S(xi1, xi2|Zi1,Zi2)
∂xi1

= (S−θi1 + S−θi2 − 1)−1/θ−1S−θ−1
i1 fi1.

� A censored observation for the first subject and an event for the second subject
(δi1 = 0, δi2 = 1):

Li,(0,1) = −∂S(xi1, xi2|Zi1,Zi2)
∂xi2

= (S−θi1 + S−θi2 − 1)−1/θ−1S−θ−1
i2 fi2.

� Two events (δi1 = 1, δi2 = 1):

Li,(1,1) = f(xi1, xi2|Zi1,Zi2)

= ∂2S(xi1, xi2|Zi1,Zi2)
∂xi1∂xi2

= (1 + θ)(S−θi1 + Si2−θ − 1)−1/θ−2S−θ−1
i1 S−θ−1

i2 fi1fi2.

Combing the contributions of all K pairs according to (1.1), the bivariate Clayton copula
likelihood is thus given by

L =
K∏
i=1

[
(1 + θ)(S−θi1 + S−θi2 − 1)−1/θ−2S−θ−1

i1 S−θ−1
i2 fi1fi2

]δi1δi2
[
(S−θi1 + S−θi2 − 1)−1/θ−1S−θ−1

i1 fi1

]δi1(1−δi2)

[
(S−θi1 + S−θi2 − 1)−1/θ−1S−θ−1

i2 fi2

](1−δi1)δi2

[
(S−θi1 + S−θi2 − 1)−1/θ

](1−δi1)(1−δi2)
. (A.1)
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We show that this very result is obtained when starting from formula (2.2):

L =
K∏
i=1

∫ ∞
0

2∏
j=1

e−xϕ
−1
θ

(Sij)
[

−xfij
ϕ′θ(ϕ

−1
θ (Sij))

]δij
dGθ(x). (2.2)

We decompose the likelihood into the four possible contributions of a pair
{(xi1, δi1), (xi2, δi2)}

L =
K∏
i=1

∫ ∞
0

x2
2∏
j=1

e−xϕ
−1
θ

(Sij)dGθ(x) fi1

ϕ′θ(ϕ
−1
θ (Si1))

fi2

ϕ′θ(ϕ
−1
θ (Si2))

δi1δi2
∫ ∞

0
−x

2∏
j=1

e−xϕ
−1
θ

(Sij)dGθ(x) fi1

ϕ′θ(ϕ
−1
θ (Si1))

δi1(1−δi2)

∫ ∞
0
−x

2∏
j=1

e−xϕ
−1
θ

(Sij)dGθ(x) fi2

ϕ′θ(ϕ
−1
θ (Si2))

(1−δi1)δi2

∫ ∞
0

2∏
j=1

e−xϕ
−1
θ

(Sij))dGθ(x)

(1−δi1)(1−δi2)

.

We use that fij

ϕ′θ(ϕ
−1
θ (Sij))

= − d

dxij

(
ϕ−1
θ (Sij)

)
= [ϕ−1

θ (Sij)]′fij with [ϕ−1
θ (Sij)]′ ≡

d

ds
[ϕ−1
θ (s)]

∣∣∣∣
s=Sij

and write the product of exponential functions as an exponential func-

tion of a sum.

L =
K∏
i=1

[∫ ∞
0

x2e−x(ϕ
−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x)[ϕ−1
θ (Si1)]′[ϕ−1

θ (Si2)]′fi1fi2
]δi1δi2

[∫ ∞
0
−xe−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x)[ϕ−1
θ (Si1)]′fi1

]δi1(1−δi2)

[∫ ∞
0
−xe−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x)[ϕ−1
θ (Si2)]′fi2

](1−δi1)δi2

[∫ ∞
0

e−x(ϕ
−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x)
](1−δi1)(1−δi2)

.

Since we can write ϕθ(s) as a Laplace transform, ϕθ(s) =
∫ ∞

0
e−sxdGθ(x), its

first and second order derivatives are ϕ′θ(s) =
∫ ∞

0
−xe−sxdGθ(x) and ϕ′′θ (s) =
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∫ ∞
0

x2e−sxdGθ(x), yielding

ϕ′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

=
∫ ∞

0
−xe−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x)

ϕ′′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

=
∫ ∞

0
x2e−x(ϕ

−1
θ

(Si1)+ϕ−1
θ

(Si2))dGθ(x).

Substituting this into the likelihood expression, we get

L =
K∏
i=1

[
ϕ′′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

[ϕ−1
θ (Si1)]′[ϕ−1

θ (Si2)]′fi1fi2
]δi1δi2

[
ϕ′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

[ϕ−1
θ (Si1)]′fi1

]δi1(1−δi2)[
ϕ′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

[ϕ−1
θ (Si2)]′fi2

](1−δi1)δi2[
ϕθ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)](1−δi1)(1−δi2)

.

Using the explicit representation of the Clayton copula generator ϕθ and its inverse ϕ−1
θ

and all their requisite derivatives,

ϕθ(s) = (1 + θs)−1/θ ϕ′θ(s) = −(1 + θs)−1/θ−1 ϕ′′θ (s) = (1 + θs)−1/θ−2

ϕ−1
θ (s) = (s−θ − 1)/θ

[
ϕ−1
θ (s)

]′ = −s−θ−1

ϕθ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

=
(
S−θi1 + S−θi2 − 1

)−1/θ

ϕ′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

= −
(
S−θi1 + S−θi2 − 1

)−1/θ−1

ϕ′′θ
(
ϕ−1
θ (Si1) + ϕ−1

θ (Si2)
)

= (1 + θ)
(
S−θi1 + S−θi2 − 1

)−1/θ−2

we get to the bivariate Clayton copula likelihood

L =
K∏
i=1

[
(1 + θ)(S−θi1 + S−θi2 − 1)−1/θ−2S−θ−1

i1 S−θ−1
i2 fi1fi2

]δi1δi2
[
(S−θi1 + S−θi2 − 1)−1/θ−1S−θ−1

i1 fi1

]δi1(1−δi2)

[
(S−θi1 + S−θi2 − 1)−1/θ−1S−θ−1

i2 fi2

](1−δi1)δi2

[
(S−θi1 + S−θi2 − 1)−1/θ

](1−δi1)(1−δi2)
.

This is exactly the same as (A.1).
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A.2 Validation of Clayton copula likelihood

In Section 2.3, the Clayton copula likelihood (2.7) on page 25 was derived from (2.3)
using the closed form expression of the derivatives of its generator ϕθ(s) = (1 + θs)−1/θ

L =
K∏
i=1

 ni∏
j=1

[
f(xij |Zij)

ϕ′θ(ϕ
−1
θ (S(xij |Zij)))

]δijϕ
(di)
θ

 ni∑
j=1

ϕ−1
θ (S(xij |Zij))

 . (2.3)

We show the equivalence of representation (2.2) and (2.3) for the Clayton copula, by
calculating the Clayton copula likelihood (2.7) starting from (2.2)

L =
K∏
i=1

+∞∫
0

ni∏
j=1

e−xϕ
−1
θ

(S(xij |Zij))
[

−xf(xij |Zij)
ϕ′θ(ϕ

−1
θ (S(xij |Zij)))

]δij
dGθ(x). (2.2)

The generator of the Clayton copula is the Laplace transform of the one-parameter gamma
distribution, so

dGθ(x) = x1/θ−1 exp(−x/θ)
θ1/θΓ(1/θ)

dx.

Using the shorthand notation Sij = S(xij |Zij) and fij = f(xij |Zij), we rewrite the
likelihood

L =
K∏
i=1

∞∫
0

ni∏
j=1

e−xϕ
−1
θ

(Sij)
[

−xfij
ϕ′θ(ϕ

−1
θ (Sij))

]δij
dGθ(x)

=
K∏
i=1

∫ ∞
0

ni∏
j=1

e−xϕ
−1
θ

(Sij)
[

−xfij
ϕ′θ(ϕ

−1
θ (Sij))

]δij x1/θ−1e−x/θ

θ1/θΓ(1/θ)
dx

=
K∏
i=1

∫ ∞
0

e
−x
(∑ni

j=1
ϕ−1
θ

(Sij)+1/θ
)
xdi

 ni∏
j=1

[
−fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij x1/θ−1e−x/θ

θ1/θΓ(1/θ)
dx

=
K∏
i=1

 ni∏
j=1

[
−fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij 1
θ1/θΓ(1/θ)

∫ ∞
0

e
−x
(∑ni

j=1
ϕ−1
θ

(Sij)+1/θ
)
xdi+1/θ−1dx

=
K∏
i=1

 ni∏
j=1

[
−fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij 1
θ1/θΓ(1/θ)

 ni∑
j=1

ϕ−1
θ (Sij) + 1/θ

−(di+1/θ−1)

∫ ∞
0

e
−x
(∑ni

j=1
ϕ−1
θ

(Sij)+1/θ
) x

 ni∑
j=1

ϕ−1
θ (Sij) + 1/θ

di+1/θ−1

dx.
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We now use the definition of the gamma function Γ(z) =
∫ ∞

0
e−tzt−1dt:

L =
K∏
i=1

 ni∏
j=1

[
−fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij 1
θ1/θΓ(1/θ)

 ni∑
j=1

ϕ−1
θ (Sij) + 1/θ

−(di+1/θ)

Γ(di + 1/θ).

At this point, a useful feature of the gamma function comes into play. From the property
Γ(z + 1) = zΓ(z) we derive

Γ(z + k) = (z + k − 1)Γ(z + k − 1)

= (z + k − 1)(z + k − 2)Γ(z + k − 2)

= (z + k − 1)(z + k − 2) . . . (z − 1)zΓ(z)

= Γ(z)
k−1∏
l=0

(z + l).

So

Γ(di + 1/θ)
Γ(1/θ) =

di−1∏
l=0

(1/θ + l)

=
di−1∏
l=0

(1/θ(1 + lθ))

= 1
θ

(1 + 0θ)× 1
θ

(1 + θ) . . . 1
θ

(1 + (di − 1)θ)

= θ−di
di−1∏
l=0

(1 + lθ).

Plugging this into the likelihood, we get exactly equation (2.7) on page 25:

L =
K∏
i=1

 ni∏
j=1

[
−fij

ϕ′θ(ϕ
−1
θ (Sij))

]δij1 + θ

ni∑
j=1

ϕ−1
θ (Sij)

−(di+1/θ)
di−1∏
l=1

(1 + lθ)

=
K∏
i=1

 ni∏
j=1

[
−fij
−S1+θ

ij

]δij1 + θ

ni∑
j=1

S−θij − 1
θ

−(di+1/θ)
di−1∏
l=1

(1 + lθ)

=
K∏
i=1

 ni∏
j=1

[
fij

S1+θ
ij

]δij1− ni +
ni∑
j=1

S−θij

−(di+1/θ)
di−1∏
l=1

(1 + lθ).



Appendix B
Likelihood contributions for
quadrivariate survival data

The contributions to the likelihood (5.1) for the different association structures presented
in Chapter 5 are given in this Appendix. For a sample of quadrivariate survival data

{(xi1, δi1), (xi2, δi2), (xi3, δi3), (xi4, δi4)} i = 1, . . . ,K,

the contribution Li of quadruple i to the likelihood depends on the censoring status of
the event times:

� For a cluster with no events: Li = S(xi1, xi2, xi3, xi4|Zi).

� For a cluster with one event: Li = ∂S(xi1, xi2, xi3, xi4|Zi)
∂xij

.

� For a cluster with two events: Li = ∂2S(xi1, xi2, xi3, xi4|Zi)
∂xij∂xik

.

� For a cluster with three events: Li = ∂3S(xi1, xi2, xi3, xi4|Zi)
∂xij∂xik∂xil

.

� For a cluster with four events: Li = ∂4S(xi1, xi2, xi3, xi4|Zi)
∂xi1∂xi2∂xi3∂xi4

.
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According to the association structure that is specific to Model 0, 1, 2 and 3, the joint
survival function S(xi1, xi2, xi3, xi4|Zi) takes on a different form.

We denote the joint survival function S = S(xi1, xi2, xi3, xi4|Zi) and the marginal survival
functions Sj = Sj(xij |Zi), j = 1, 2, 3, 4. Furthermore, S′j = dSj

dxij
.

B.1 Contributions to the likelihood of Model 0

In the independence model, the joint survival function of the quadrivariate lifetimes is

S = S1S2S3S4

with derivatives

∂S

∂xij
= S′jSkSlSm for {j, k, l,m} = {1, 2, 3, 4}

∂2S

∂xij∂xik
= S′jS

′
kSlSm

∂3S

∂xij∂xik∂xil
= S′jS

′
kS
′
lSm

∂4S

∂xi1∂xi2∂xi3∂xi4
= S′1S

′
2S
′
3S
′
4.

B.2 Contributions to the likelihood of Model 1

In the model with one level of clustering, the joint survival function of the quadrivariate
lifetimes is

S = ϕ
[
ϕ−1(S1) + ϕ−1(S2) + ϕ−1(S3) + ϕ−1(S4)

]
.

For the Clayton copula, ϕ(t) = (1 + θt)−1/θ and ϕ−1(t) = t−θ−1
θ , yielding

S =
[
S−θ1 + S−θ2 + S−θ3 + S−θ4 − 3

]−1/θ
.

Now put
A =

[
S−θ1 + S−θ2 + S−θ3 + S−θ4 − 3

]
Cj = S−θ−1

j S′j j = 1, 2, 3, 4,
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then

∂S

∂xij
= A−1/θ−1Cj

∂2S

∂xij∂xik
= (1 + θ)A−1/θ−2CjCk

∂3S

∂xij∂xik∂xil
= (1 + θ)(1 + 2θ)A−1/θ−3CjCkCl

∂4S

∂xi1∂xi2∂xi3∂xi4
= (1 + θ)(1 + 2θ)(1 + 3θ)A−1/θ−4C1C2C3C4.

B.3 Contributions to the likelihood of Model 2

Lemma B.3.1. For a sample of quadrivariate survival data

{(xi1, δi1), (xi2, δi2), (xi3, δi3), (xi4, δi4)} i = 1, . . . ,K

the contribution of quadruple i to the nested Archimedean copula likelihood of Model 2
can be expressed as

∫ ∞
0

∫ ∞
0

2∏
j=1

e−x1(ϕ−1
1 (Sij))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)δij
dG1x(x1)

×
∫ ∞

0

4∏
j=3

e−x1(ϕ−1
1 (Sij))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)δij
dG1x(x1)dG0(x).

Proof. In Section 5.3.3 we demonstrated that in the model with a parent copula with two
identical child copulas, the joint survival function of the quadrivariate lifetimes is

S = ϕ0
[
ϕ−1

0 ◦ ϕ1
{
ϕ−1

1 (S1) + ϕ−1
1 (S2)

}
+ ϕ−1

0 ◦ ϕ1
{
ϕ−1

1 (S3) + ϕ−1
1 (S4)

}]
=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (S1)+ϕ−1

1 (S2))dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (S3)+ϕ−1
1 (S4))dG1x(x1)dG0(x).

The contributions to the likelihood are the derivatives of the joint survival function w.r.t.
the uncensored observations. We distinguish the following cases:
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• One event

Li = ∂S

∂xij

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fij

ϕ′1(ϕ−1
1 (Sij))

)
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))dG1x(x1)dG0(x) if j = 1, 2

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)
dG1x(x1)dG0(x)

if j = 3, 4.

• Two events in one subcluster

Li = ∂2S

∂xij∂xik

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fi1

ϕ′1(ϕ−1
1 (Si1))

)(
−x1fi2

ϕ′1(ϕ−1
1 (Si2))

)
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))dG1x(x1)dG0(x) if (j, k) = (1, 2)

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fi3

ϕ′1(ϕ−1
1 (Si3))

)(
−x1fi4

ϕ′1(ϕ−1
1 (Si4))

)
dG1x(x1)dG0(x)

if (j, k) = (3, 4).

• One event in the first subcluster and one event in the second subcluster

Li = ∂2S

∂xij∂xik

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fij

ϕ′1(ϕ−1
1 (Sij))

)
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fik

ϕ′1(ϕ−1
1 (Sik))

)
dG1x(x1)dG0(x)

if (j, k) = (1, 3), (1, 4), (2, 3), (2, 4).
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• Three events

Li = ∂3S

∂xij∂xik∂xil

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fi1

ϕ′1(ϕ−1
1 (Si1))

)(
−x1fi2

ϕ′1(ϕ−1
1 (Si2))

)
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fil

ϕ′1(ϕ−1
1 (Sil))

)
dG1x(x1)dG0(x)

if (j, k, l) = (1, 2, 3), (1, 2, 4)

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fij

ϕ′1(ϕ−1
1 (Sij))

)
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fi3

ϕ′1(ϕ−1
1 (Si3))

)(
−x1fi4

ϕ′1(ϕ−1
1 (Si4))

)
dG1x(x1)dG0(x)

if (j, k, l) = (1, 3, 4), (2, 3, 4).

• Four events

Li = ∂4S

∂xi1∂xi2∂xi3∂xi4

=
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fi1

ϕ′1(ϕ−1
1 (Si1))

)(
−x1fi2

ϕ′1(ϕ−1
1 (Si2))

)
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fi3

ϕ′1(ϕ−1
1 (Si3))

)(
−x1fi4

ϕ′1(ϕ−1
1 (Si4))

)
dG1x(x1)dG0(x).

In all cases, the contribution to the likelihood of Model 2 for cluster i is given by

Li =
∫ ∞

0

∫ ∞
0

e−x1(ϕ−1
1 (Si1)+ϕ−1

1 (Si2))
(

−x1fi1

ϕ′1(ϕ−1
1 (Si1))

)δi1 ( −x1fi2

ϕ′1(ϕ−1
1 (Si2))

)δi2
dG1x(x1)

×
∫ ∞

0
e−x1(ϕ−1

1 (Si3)+ϕ−1
1 (Si4))

(
−x1fi3

ϕ′1(ϕ−1
1 (Si3))

)δi3 ( −x1fi4

ϕ′1(ϕ−1
1 (Si4))

)δi4
dG1x(x1)dG0(x).

. This can be rewritten as

Li =
∫ ∞

0

∫ ∞
0

2∏
j=1

e−x1(ϕ−1
1 (Sij))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)δij
dG1x(x1)

×
∫ ∞

0

4∏
j=3

e−x1(ϕ−1
1 (Sij))

(
−x1fij

ϕ′1(ϕ−1
1 (Sij))

)δij
dG1x(x1)dG0(x).

As explained in Section 5.3.3, Lemma B.3 is more of theoretical rather than computational
importance. Weighing the cost of using elaborate techniques for evaluating the inner
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integrals, we choose to calculate the partial derivatives of the joint survival function to
obtain the contributions to the likelihood of Model 2.

Choosing parent copula Cθ0 and child copulas Cθ1 to be Clayton copulas with generators
ϕ0(t) = (1 + θ0t)−1/θ0 and ϕ1(t) = (1 + θ1t)−1/θ1 , the joint survival function becomes

S =
[
−1 +

(
−1 + S−θ1

1 + S−θ1
2

)θ0/θ1
+
(
−1 + S−θ1

3 + S−θ1
4

)θ0/θ1
]−1/θ0

.

Now put

A =
[
−1 +

(
−1 + S−θ1

1 + S−θ1
2

)θ0/θ1
+
(
−1 + S−θ1

3 + S−θ1
4

)θ0/θ1
]

B12 =
(
−1 + S−θ1

1 + S−θ1
2

)

B34 =
(
−1 + S−θ1

3 + S−θ1
4

)

Cj = S−θ1−1
j S′j j = 1, 2, 3, 4

then

∂S

∂xij
=
{

A−1/θ0−1B
θ0/θ1−1
12 Cj if j = 1, 2

A−1/θ0−1B
θ0/θ1−1
34 Cj if j = 3, 4

∂2S

∂xij∂xik
=

{
A−1/θ0−2B

θ0/θ1−2
ij CjCk

[
(1 + θ0)Bθ0/θ1

jk
+ (−θ0 + θ1)A

]
if (j, k) = (1, 2), (3, 4)

(1 + θ0)A−1/θ0−2B
θ0/θ1−1
12 B

θ0/θ1−1
34 CjCk else

∂3S

∂xij∂xik∂xil
=


(1 + θ0)A−1/θ0−3B

θ0/θ1−2
12 B

θ0/θ1−1
34 CjCkCl

[
(1 + 2θ0)Bθ0/θ1

12 + (−θ0 + θ1)A
]

if (j, k, l) = (1, 2, 3), (1, 2, 4)

(1 + θ0)A−1/θ0−3B
θ0/θ1−1
12 B

θ0/θ1−2
34 CjCkCl

[
(1 + 2θ0)Bθ0/θ1

34 + (−θ0 + θ1)A
]

if (j, k, l) = (1, 3, 4), (2, 3, 4)

∂4S

∂xi1∂xi2∂xi3∂xi4
= (1 + θ0)A−1/θ0−4B

θ0/θ1−2
12 B

θ0/θ1−2
34 C1C2C3C4[

(1 + 2θ0)(1 + 3θ0)Bθ0/θ1
12 B

θ0/θ1
34 + (1 + 2θ0)(−θ0 + θ1)A

(
B
θ0/θ1
12 +B

θ0/θ1
34

)
+(−θ0 + θ1)2A2

]
.
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B.4 Contributions to the likelihood of Model 3

In the model with a parent copula with two different child copulas, the joint survival
function of the quadrivariate lifetimes is, for the Clayton copula

S =
[
−1 +

(
−1 + S−θ1

1 + S−θ1
2

)θ0/θ1
+
(
−1 + S−θ2

3 + S−θ2
4

)θ0/θ2
]−1/θ0

.

Now put

A =
[
−1 +

(
−1 + S−θ1

1 + S−θ1
2

)θ0/θ1
+
(
−1 + S−θ2

3 + S−θ2
4

)θ0/θ2
]

B12 =
(
−1 + S−θ1

1 + S−θ1
2

)
B34 =

(
−1 + S−θ2

3 + S−θ2
4

)
Cj1 = S−θ1−1

j S′j j = 1, 2

Cj2 = S−θ2−1
j S′j j = 3, 4

then
∂S

∂xij
=
{

A−1/θ0−1B
θ0/θ1−1
12 Cj1 if j = 1, 2

A−1/θ0−1B
θ0/θ2−1
34 Cj2 if j = 3, 4

∂2S

∂xij∂xik
=


A−1/θ0−2B

θ0/θ1−2
12 C11C21

[
(1 + θ0)Bθ0/θ1

12 + (−θ0 + θ1)A
]
if (j, k) = (1, 2)

A−1/θ0−2B
θ0/θ2−2
34 C32C42

[
(1 + θ0)Bθ0/θ2

34 + (−θ0 + θ2)A
]
if (j, k) = (3, 4)

(1 + θ0)A−1/θ0−2B
θ0/θ1−1
12 B

θ0/θ2−1
34 Cj1Ck2 if j ∈ {1, 2} and k ∈ {3, 4}

∂3S

∂xij∂xik∂xil
=


(1 + θ0)A−1/θ0−3B

θ0/θ1−2
12 B

θ0/θ2−1
34 Cj1Ck1Cl2

[
(1 + 2θ0)Bθ0/θ1

12 + (−θ0 + θ1)A
]

if (j, k, l) = (1, 2, 3), (1, 2, 4)

(1 + θ0)A−1/θ0−3B
θ0/θ1−1
12 B

θ0/θ2−2
34 Cj1Ck2Cl2

[
(1 + 2θ0)Bθ0/θ2

34 + (−θ0 + θ2)A
]

if (j, k, l) = (1, 3, 4), (2, 3, 4)

∂4S

∂xi1∂xi2∂xi3∂xi4
= (1 + θ0)A−1/θ0−4B

θ0/θ1−2
12 B

θ0/θ2−2
34 C11C21C32C42[

(1 + 2θ0)(1 + 3θ0)Bθ0/θ1
12 B

θ0/θ2
34 + (1 + 2θ0)A((−θ0 + θ2)Bθ0/θ1

12 + (−θ0 + θ1)Bθ0/θ2
34 )

+ (−θ0 + θ1)(−θ0 + θ2)A2
]
.
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B.4.1 R code for one-stage estimation in Model 3

R> head(udder)

cowid location time status parity
1 1 LF 0.7337440 1 1
2 1 RF 0.7337440 1 1
3 1 LR 1.3032170 1 1
4 1 RR 0.7337440 1 1
5 2 LF 0.7282683 1 0
6 2 RF 2.2176591 1 0

Q1 <-udder[udder$location=="LF",]
Q2 <-udder[udder$location=="RF",]
Q3 <-udder[udder$location=="LR",]
Q4 <-udder[udder$location=="RR",]

t1 <- Q1$time; c1 <- Q1$status; par1 <- Q1$parity
t2 <- Q2$time; c2 <- Q2$status; par2 <- Q2$parity
t3 <- Q3$time; c3 <- Q3$status; par3 <- Q3$parity
t4 <- Q4$time; c4 <- Q4$status; par4 <- Q4$parity

loglik <- function(p){ #loglikelihood for one-stage estimation of Model 3

lambda1 <- exp(p[1]) #exp transform to make sure that
rho1 <- exp(p[2]) #estimated parameters are positive
lambda2 <- exp(p[3])
rho2 <- exp(p[4])
lambda3 <- exp(p[5])
rho3 <- exp(p[6])
lambda4 <- exp(p[7])
rho4 <- exp(p[8])
beta <- p[9] #covariate effect can be negative
theta1 <- exp(p[10])
theta2 <- exp(p[11])
theta3 <- exp(p[12])

S1 <- exp(-lambda1*t1^rho1*exp(beta*par1));
S2 <- exp(-lambda2*t2^rho2*exp(beta*par2));
S3 <- exp(-lambda3*t3^rho3*exp(beta*par3));
S4 <- exp(-lambda4*t4^rho4*exp(beta*par4));

DS1 <- -lambda1*rho1*t1^(rho1-1)*exp(beta*par1)*S1;
DS2 <- -lambda2*rho2*t2^(rho2-1)*exp(beta*par2)*S2;
DS3 <- -lambda3*rho3*t3^(rho3-1)*exp(beta*par3)*S3;
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DS4 <- -lambda4*rho4*t4^(rho4-1)*exp(beta*par4)*S4;

A <- -1+(-1+S1^(-theta2)+S2^(-theta2))^(theta1/theta2)+(-1+S3^(-theta3)+
S4^(-theta3))^(theta1/theta3)

B12 <- -1+S1^(-theta2)+S2^(-theta2)
B34 <- -1+S3^(-theta3)+S4^(-theta3)
C1 <- S1^(-theta2-1)*DS1
C2 <- S2^(-theta2-1)*DS2
C3 <- S3^(-theta3-1)*DS3
C4 <- S4^(-theta3-1)*DS4

#joint survival function
S <- A^(-1/theta1)

#first order partial derivatives
dS1 <- A^(-1/theta1-1)*B12^(theta1/theta2-1)*C1
dS2 <- A^(-1/theta1-1)*B12^(theta1/theta2-1)*C2
dS3 <- A^(-1/theta1-1)*B34^(theta1/theta3-1)*C3
dS4 <- A^(-1/theta1-1)*B34^(theta1/theta3-1)*C4

#second order partial derivatives
d2S12 <- A^(-1/theta1-2)*B12^(theta1/theta2-2)*C1*C2*((1+theta1)*B12^(theta1/theta2)+

(-theta1+theta2)*A)
d2S13 <- (1+theta1)*A^(-1/theta1-2)*B12^(theta1/theta2-1)*B34^(theta1/theta3-1)*C1*C3
d2S14 <- (1+theta1)*A^(-1/theta1-2)*B12^(theta1/theta2-1)*B34^(theta1/theta3-1)*C1*C4
d2S23 <- (1+theta1)*A^(-1/theta1-2)*B12^(theta1/theta2-1)*B34^(theta1/theta3-1)*C2*C3
d2S24 <- (1+theta1)*A^(-1/theta1-2)*B12^(theta1/theta2-1)*B34^(theta1/theta3-1)*C2*C4
d2S34 <- A^(-1/theta1-2)*B34^(theta1/theta3-2)*C3*C4*((1+theta1)*B34^(theta1/theta3)+

(-theta1+theta3)*A)

#third order partial derivatives
d3S123 <- (1+theta1)*A^(-1/theta1-3)*B12^(theta1/theta2-2)*B34^(theta1/theta3-1)*

C1*C2*C3*((1+2*theta1)*B12^(theta1/theta2)+(-theta1+theta2)*A)
d3S124 <- (1+theta1)*A^(-1/theta1-3)*B12^(theta1/theta2-2)*B34^(theta1/theta3-1)*

C1*C2*C4*((1+2*theta1)*B12^(theta1/theta2)+(-theta1+theta2)*A)
d3S134 <- (1+theta1)*A^(-1/theta1-3)*B12^(theta1/theta2-1)*B34^(theta1/theta3-2)*

C1*C3*C4*((1+2*theta1)*B34^(theta1/theta3)+(-theta1+theta3)*A)
d3S234 <- (1+theta1)*A^(-1/theta1-3)*B12^(theta1/theta2-1)*B34^(theta1/theta3-2)*

C2*C3*C4*((1+2*theta1)*B34^(theta1/theta3)+(-theta1+theta3)*A)

#fourth order partial derivatives
d4S1234 <- (1+theta1)*A^(-1/theta1-4)*B12^(theta1/theta2-2)*B34^(theta1/theta3-2)*

C1*C2*C3*C4*((1+2*theta1)*(1+3*theta1)*B12^(theta1/theta2)*B34^(theta1/theta3)+
(1+2*theta1)*A*((-theta1+theta3)*B12^(theta1/theta2)+(-theta1+theta2)*
B34^(theta1/theta3))+(-theta1+theta2)*(-theta1+theta3)*A^2)

terms <- log(S^((1-c1)*(1-c2)*(1-c3)*(1-c4))*
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(-dS1)^(c1*(1-c2)*(1-c3)*(1-c4))*
(-dS2)^((1-c1)*c2*(1-c3)*(1-c4))*
(-dS3)^((1-c1)*(1-c2)*c3*(1-c4))*
(-dS4)^((1-c1)*(1-c2)*(1-c3)*c4)*
d2S12^(c1*c2*(1-c3)*(1-c4))*
d2S13^(c1*(1-c2)*c3*(1-c4))*
d2S14^(c1*(1-c2)*(1-c3)*c4)*
d2S23^((1-c1)*c2*c3*(1-c4))*
d2S24^((1-c1)*c2*(1-c3)*c4)*
d2S34^((1-c1)*(1-c2)*c3*c4)*
(-d3S123)^(c1*c2*c3*(1-c4))*
(-d3S124)^(c1*c2*(1-c3)*c4)*
(-d3S134)^(c1*(1-c2)*c3*c4)*
(-d3S234)^((1-c1)*c2*c3*c4)*
d4S1234^(c1*c2*c3*c4))

-sum(terms)}

init.vals <- c(rep(log(0.5),8),0.5,rep(log(0.5),3))
res <- nlm(loglik,init.vals,hessian=TRUE)

lambda1 <- exp(res$estimate[1])
lambda2 <- exp(res$estimate[3])
lambda3 <- exp(res$estimate[5])
lambda4 <- exp(res$estimate[7])
rho1 <- exp(res$estimate[2])
rho2 <- exp(res$estimate[4])
rho3 <- exp(res$estimate[6])
rho4 <- exp(res$estimate[8])
beta <- res$estimate[9]
theta1 <- exp(res$estimate[10])
theta2 <- exp(res$estimate[11])
theta3 <- exp(res$estimate[12])

#Calculate standard errors using delta method
stderr <- sqrt(diag(solve(res$hessian)))
se <- c(lambda1,rho1,lambda2,rho2,lambda3,rho3,lambda4,rho4,1,theta1,theta2,theta3)*stderr

lambda1; se[1] #0.156654(0.01055878)
rho1; se[2] #1.298542(0.04833772)
lambda2; se[3] #0.1657836(0.01089846)
rho2; se[4] #1.263716(0.04677189)
lambda3; se[5] #0.1338474(0.009678422)
rho3; se[6] #1.311082(0.05189555)
lambda4; se[7] #0.1419053(0.009947461)
rho4; se[8] #1.269656(0.04981163)
beta; se[9] #-0.3400679(0.06777242)
theta1; se[10] #3.047683(0.184657)
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theta2; se[11] #3.588606(0.2711444)
theta3; se[12] #3.512632(0.2742904)





Samenvatting

In overlevingsstudies analyseert men de tijd totdat een bepaalde gebeurtenis zich voordoet.
Naast de levensduur van personen, zijn andere voorbeelden van overlevingstijden: de tijd tot
hervallen van een ziekte, de levensduur van elektronische componenten, of de tijd dat een
persoon in een bejaardentehuis verblijft. Als de gebeurtenis zich voordoet bij alle personen
of studieobjecten, zijn er vele technieken toepasbaar. Maar in vele gevallen hebben we geen
exacte informatie over de overlevingstijd, bijvoorbeeld als de patiënt nog leeft of als de
elektronische component het nog niet begeven heeft aan het einde van de studie. In zo’n
gevallen spreken we van censurering en komen er specifieke statistische technieken aan
te pas. We willen immers zoveel mogelijk informatie meenemen in de analyse, ook als dit
slechts een ondergrens is voor de ware overlevingstijd.

Vaak zijn overlevingstijden ook nog eens gegroepeerd in clusters, zoals bij het opvolgen van
kankerpatiënten in verschillende ziekenhuizen, de levensduur van tweelingen of de tijd tot
infectie van de 4 uierkwartieren bij een melkkoe. De overlevingstijden binnen een cluster
vertonen doorgaans een zekere associatie. Om met geclusterde overlevingsdata te werken,
zijn er verschillende technieken voorhanden: frailty modellen en copula modellen. Beide mo-
dellen hebben hun voordelen en beperkingen. Bij het frailty model is de grootste beperking
dat de functies die de marginale overlevingskansen beschrijven, afhangen van de associatie-
parameter die de gezamenlijke overlevingsfunctie bepaalt. Bij het copula model is dit niet zo
en staan de marginale overlevingsfuncties los van de associatiestructuur. Het copula model
is dan weer minder geschikt wanneer de clusters groot zijn, of in grootte verschillen.

In Hoofdstuk 2 proberen we om de methodologie van copula modellen meer flexibel te ma-
ken zodat deze toch met variabele clustergroottes om kan. We doen dit voor de belangrijke
klasse van de Archimedische copula’s. Deze copula’s hebben een breed toepassingsdomein
omwille van verscheidene redenen: ze zijn gemakkelijk te construeren, er is een grote va-
riëteit aan mogelijke associatiestructuren, en ze hebben mooie wiskundige eigenschappen.
Door deze eigenschappen slim te benutten, kunnen we het Archimedisch copula model op
zo’n manier herschrijven dat de grootte van de clusters geen enkel probleem meer vormt. Si-
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mulatiestudies tonen aan dat de schatters van de associatieparameter die uit dit vernieuwde
model voortkomen, “goede” schatters zijn (in wiskundetaal: consistent en asympotisch nor-
maal verdeeld). We bewijzen dit formeel in Hoofdstuk 3 en geven eveneens uitdrukkingen
voor de variantie van de schatters.

Natuurlijk bestaat er naast de theoretische fraaiheid van het vernieuwde Archimedische co-
pula model, ook nog het praktische aspect. We illustreren hoe dit model kan gebruikt worden
bij een dataset die stamt uit de diergeneeskunde. Bij melkkoeien ligt de tijd tussen twee
worpen optimaal tussen 12 en 13 maanden. Een belangrijke factor die de lengte van dit
interval beïnvloedt, is de tijd tussen het werpen en de eerstvolgende inseminatie. In een
melkveebedrijf worden de koeien doorgaans door de boer zelf geïnsemineerd, afhankelijk
van zijn ervaring. Om meer inzicht te krijgen in het inseminatieproces, fitten we ons mo-
del op een dataset die gegevens bevat uit 181 melkveebedrijven van uiteenlopende grootte.
Omdat het aantal worpen van een koe een invloed kan hebben op de tijd tot de eerstvolgende
inseminatie, nemen we deze informatie mee op in het model. We vergelijken verschillende
schattingsprocedures voor een greep uit het assortiment aan Archimedische copula functies
en voor verschillende keuzes van de baseline overlevingsfuncties. Om ons model toegan-
kelijk te maken voor andere gebruikers, hebben we een softwarepakket ontwikkeld voor de
statistische softwareomgeving R. In Hoofdstuk 4 geven we hiervan een korte gebruiksaan-
wijzing.

In de praktijk komen we regelmatig datasets tegen waarin overlevingstijden meerdere ni-
veaus van clustering vertonen. Denk bijvoorbeeld aan de levensduur van leden van Afri-
kaanse families, die gegroepeerd zijn in afgelegen dorpen. Om de mogelijkheden en tekort-
komingen van het Archimedische copula model in zo’n setting te onderzoeken, starten we in
Hoofdstuk 5 vanuit een dataset met dimensie 4. Deze dataset bevat de tijden tot infectie van
de 4 uierdelen van 1196 melkkoeien. Een uierinfectie is nefast voor de melkproductie en de
kwaliteit van de melk, daarom is het belangrijk om inzicht te verwerven in de manier waarop
een infectie zich over de uier verspreidt. We vertalen dit probleem naar copula-taal door de
associatie tussen de infectietijden van de vier uierdelen te onderzoeken. Het aantal keren dat
een koe gekalfd heeft, kan invloed hebben op de staat van de uierspenen, en dus ook op de
vatbaarheid voor infecties. De pariteit, die we dichotomiseren als primipaar (1 keer gekalfd)
of multipaar (meer dan eens gekalfd), wordt als verklarende variabele opgenomen in het
model. We vergelijken modellen die verschillende associatiestructuren handhaven, waarbij
we rekening houden met de biologische relevantie van deze modellen. Als je een koe van
dichtij bekijkt, zie je dat de voorste twee uierspenen dicht bij elkaar liggen en de achter-
ste twee ook. Er is meer ruimte tussen de voorste en achterste uierdelen. De voorste en
achterste paren kunnen dus als subclusters van de uier worden beschouwd. Zoals verwacht
komt het geneste Archimedische copula model met 2 evenwaardige subclusters als beste
model uit onze vergelijking. De correlatie tussen infectietijden van de voorste uierdelen is
gelijk aan de correlatie tussen de achterste uierdelen, en is groter dan de correlatie tussen
een speen vooraan en een speen achteraan. Maar doordat de correlatie globaal gezien erg
groot is, heeft dit resultaat weinig praktisch nut voor de melkveehouder. Zodra er een speen
geïnfecteerd is, moeten er preventieve zorgen geboden worden aan de andere spenen omdat
de infectie zich snel verspreidt over de gehele uier.
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In de ontwikkeling van hiërarchische copula modellen is het echter wel van belang om te
kunnen zien of er onderscheid kan gemaakt worden in de associatie van hoofd-en subclus-
ters. Daarom hebben we een aantal simulatiestudies uitgevoerd om o.a. de gevoeligheid
te bepalen waarmee het onderscheid tussen hoofd-en subclusters gedetecteerd wordt. Het
vierdimensionale geval wordt in Hoofdstuk 5 als uitgangspunt gebruikt om de modellen te
kunnen veralgemenen naar hogere dimensies. Ondanks de mooie eigenschappen van de
klasse van Archimedische copula’s, blijft het een uitdaging om de berekening van de bouw-
stenen van het hiërarchische model te generaliseren. Dit is iets dat in de toekomst zeker
nog de nodige aandacht verdient.


