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Samenvatting

In dit proefschrift ligt de nadruk op de analyse van massa spectrometrie (MS) data.

Het gebruiken van dergelijke data voor de studie van protëınen, kan leiden tot een

nieuw inzicht in de moleculaire en cellulaire eigenschappen van biologische processen

en mogelijk tot nieuwe biomerkers. Proteomica, de studie van alle aanwezige protëınen

in een cel of weefsel, wordt vaak als een vervolg op genomica (studie van genen en hun

expressieniveau) beschouwd. In vergelijking tot genomica, is dit ingewikkelder omdat

de hoeveelheid en het aantal unieke eiwitten varieert in tegenstelling tot de genen.

Het proteoom, alle aanwezige protëınen, kan verschillen van weefsel tot weefsel en

van moment tot moment. In het begin van de proteomica, werd er vooral onderzoek

gedaan naar boodschapper RNA, maar men vond dat er geen of weinig correlatie be-

stond tussen de hoeveelheid boodschapper RNA en het bijhorende protëıne (Rogers

et al. 2008, Dhingraa et al. 2005). Men weet nu dat de aanwezigheid van bood-

schapper RNA niet altijd leidt tot de productie van protëınen en dat de hoeveelheid

eiwit afhankelijker is van het coderend gen en de fysiologische toestand van de cel

dan van het boodschapper RNA. Recente ontwikkelingen in MS gebaseerde proteom-

ica hebben geleid tot de mogelijkheid om op een geautomatiseerde manier duizenden

protëınen en peptiden gelijktijdig te kwantificeren en te identificeren. Deze mogeli-

jkheden hebben voor nieuwe uitdagingen voor het statistisch onderzoek gezorgd. Eén

van deze uitdagingen is het op een snelle, efficiënte en correcte manier conclusies

trekken voor deze grote en complexe datasets. Hiernaast kan statistiek ook helpen bij

het correct opzetten van massa spectrometrie gerelateerde experimenten. In dit proe-

fwerk stellen we enkele statistische modellen voor die gebruikt kunnen worden voor

de interpretatie van MS experimenten van gelabelde en niet-gelabelde peptiden. Het

feit dat we niet weten welke peptiden aanwezig zijn en we dus hét onderscheidende

kenmerk, nl. de massa van een peptide, niet kennen maakt het analyseren van MS

data gecompliceerd. Het schatten van de massa zorgt voor een mate van onzekerheid
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vi Samenvatting

waarmee rekening moet gehouden worden omdat alle andere schatters afhankelijk zijn

van de geschatte massa.

18O-labeled MS

In dit deel stellen we verscheidene modellen voor die het analyseren van gelabelde pep-

tiden mogelijk maken. Peptidenstalen van verschillende biologische oorsprong worden

vaak met Liquid Chromatography Mass Spectrometry geanalyseerd. Om geen reken-

ing te moeten houden met de niet-biologische variaties tussen de verschillende spectra

kan men deze stalen, na het labelen, samen verwerken in één spectrum. Dankzij het

merken kunnen de peptiden van verschillende stalen maar met dezelfde massa in het-

zelfde spectrum van elkaar onderscheiden worden. Er bestaan verschillende manieren

om peptiden te labelen. Het enzymatisch labelen met 18O van peptiden is zo’n tech-

niek die nieuw is en zeer veel potentie heeft. We stellen modellen voor die rekeningen

houden met de vorm van de pieken, stick en shape en die ofwel op een Bayesiaanse

ofwel op een frequentistische manier toegepast kunnen worden. In vergelijking met de

methoden van (Mirgorodskaya et al. 2000, Rao et al. 2005, López-Ferrer et al. 2006,

Eckel-Passow et al. 2006, Ramos-Fernández et al. 2007), is er geen nood aan extra

experimentele stappen. Hiernaast zijn er nog enkele andere verschillen ten opzichte

van de bestaande technieken:

• Er wordt rekening gehouden met de mogelijke aanwezigheid van de drie zuurstof

isotopen.

• De isotoop distributie wordt geschat in plaats van een gemiddelde verdeling te

veronderstellen.

• Alle parameters kunnen op hetzelfde ogenblik geschat worden en de precisie van

de schatters wordt eveneens berekend.

• Het heteroscedastisch karakter van de mean-variance functie wordt niet ge-

negeerd.

• Dankzij random effects kan de technische en biologische variabiliteit van de

spectra bepaald worden.
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Kwantificatie van overlappende peptide in niet-gelabelde MS experimenten

Het bepalen of er peptide pieken zijn die overlappen en het scheiden van dergelijke

pieken is al tientallen jaren een probleem. Verschillende onderzoekers met verschil-

lende achtergronden hebben voor dit probleem oplossingen voorgesteld, variërend van

aanpassingen maken aan het experiment en of het uitbreiden van het experiment tot

het ontwikkelen van statistische modellen. In het tweede deel van deze scriptie wor-

den twee modellen voorgesteld voor MS data met een ongekend aantal peptiden. We

beschouwen opnieuw twee voorstellingswijzen van de pieken: stick en shape. Wanneer

men gebruik maakt van de stick representation moet men rekening houden met een

extra afwijking op de isotopen ratio’s. De oorzaken van deze afwijking zijn het ge-

bruiken van samenvattende statistieken en de veronderstellingen die gemaakt worden.

In het geval van de shape representation zijn deze veronderstellingen niet nodig. Maar

het Bayesian mixture model levert ook foutieve schatters op en overschat eveneens de

precisie. Bayesian model averaging is een oplossing voor dit probleem, wanneer het

massaverschil tussen twee overlappende peptiden groot genoeg is, dit wil zeggen wan-

neer het verschil minstens gelijk is aan de helft van de breedte van de piek. Wanneer

men de massa’s van de aanwezige peptiden kent, kan men dit model voor enkelvoudig

geladen deeltjes aanpassen voor spectra met meervoudig geladen peptiden. Hiervoor

volstaat het aanpassen van de mean structure en de prior distribution. In dergelijke

gevallen wordt het model eenvoudiger, doordat men de massa van de peptiden niet

meer hoeft te schatten en dus kan veranderen in vaststaande en gekende waarden.

De resultaten van deze modellen zijn weliswaar afhankelijk van de kwaliteit van het

gebruikte preprocessing algoritme. We steunen namelijk op het feit dat de gevonden

pieken correct zijn. In het geval van het algoritme dat voorgesteld is door Valkenborg

et al. (2009) betekent dit dat de verhouding tussen een piek en ruis groot genoeg moet

zijn om gedetecteerd te kunnen worden.
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Chapter 1

The focus and content of the

dissertation

The main focus of the dissertation is the analysis and quantification of mass

spectrometry-based proteomics to study molecular and cellular biological characteris-

tics for the search of, e.g., new protein biomarkers, surrogate endpoints or markers of

classification of diseases. Proteomics is the large-scale study of proteins, particularly

their structures and functions. Proteomics confirms the presence of the protein and

provides a direct measure of the quantity present. After genomics, proteomics is often

considered the next step in the study of biological systems. It is much more compli-

cated than genomics because, while an organism’s genome is more or less constant,

the proteome differs from cell to cell and from time to time. In the past research

was focused on the mRNA analysis, but this was found not to correlate with protein

content (Rogers et al. 2008, Dhingraa et al. 2005). It is now known that mRNA is

not always translated into protein, and the amount of protein produced for a given

amount of mRNA depends on the gene it is transcribed from and on the current

physiological state of the cell.

Recent advances in mass spectrometry-based proteomics has led to the ability of

quantifying and identifying thousands of proteins and peptides from complex biologi-

cal samples in an automated and high-throughput fashion. Typically, such techniques

extensively use liquid chromatography (LC) combined with mass spectrometry (MS)

for protein-expression profiling. MS allows to separate peptides, present in a sample,

3
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according to their mass and charges. The LC step is used to reduce the complexity of

the peptide mixture, which needs to be analyzed by MS, by separating the peptides

based on their physico-chemical properties and by selecting only a subset for further

processing in a mass spectrometer.

The advent of technological advances in proteomics has brought about a new area

of statistical research. However, it is only until recently that the research has started

to be devoted to the identification and quantification of peptides and proteins. The

challenge of application of statistical methods lies in several aspects. First, mass-

spectrometry data are often highly complex and with huge dimensionality. Thus,

they require elaborate statistical analyses that extract and maintain most of the

information from the data in a proper way. On the other hand, the large-scale nature

of such data implies that the suited approaches should be a fast tool for the feasibility

of real-life applications. In addition, a statistical analysis is said to be valid based on

a well-conducted experiment. This indicates that the experimental design should also

be statistically involved.

In the dissertation, some statistical modeling approaches will be introduced, both

for the labeled and label-free MS experiments. It will be assumed that the sequences

(function of the chemical elements that consist a peptide) of the peptides in the mass

spectrometry data are unknown. Had the peptide sequences been known, the pep-

tides in a mass spectrum could have been easily separated by their masses (as a

known function of sequences) and the quantification would have become straightfor-

ward. Most of the existing methods are based on such assumption, which becomes

an important limitation when in reality the sequences of the peptides are unknown.

The assumption of unknown sequences of the peptides implies that peptides’ masses

are unknown and need to be estimated using an elaborate statistical approach. This

becomes an additional source of complication, because an extra uncertainty related to

the estimation of masses should be accounted for. Moreover, this uncertainty should

be carefully analyzed, because all the other estimations are performed conditional on

the estimation of masses. This is because, in a mass spectrum, masses of the peptides

are the typical characteristics used to separate peptides. It is worth noting that the

methods proposed in this dissertation require high-resolution mass spectra.

The dissertation consists of three parts. The first part gives a fundamental in-

troduction to the mass-spectrometry data analysis. Chapter 2 introduces the basic

principles and terminology used for the analysis of mass spectrometry. Chapter 3

describes the case studies that will be considered in the dissertation.
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The second part focuses on the modeling approach that quantifies the peptides by

using data from the enzymatic 18O-labeling. We implement the modeling approach in

both the frequentist and Bayesian framework. Chapter 4 gives the definitions related

to the analysis and discusses the previous approaches considered for the modeling of

the 18O-labeled mass spectra. In Chapter 5, Chapter 6, and Chapter 7, respec-

tively, models assuming homoscedasticity, heteroscedasticity, and heteroscedasticity

with random effects to account for the between-spectra variability, are presented. The

models are formulated using the frequentist approach. The same types of the mod-

els in the Bayesian framework are implemented and their applications are discussed

in Chapter 8 and Chapter 9. Finally, in Chapter 10, we consider an extended

model for the shape representation of the MS data, implemented in the frequentist

framework, and we discuss its advantages over the models, presented in the previous

chapters.

In the third part, a statistical model dealing with overlapping peptides with un-

known sequences in mass spectra is introduced. This model is a solution for the

separation and quantification of peptides processed in a label-free experiment. More

specifically, Chapter 11 gives an introduction to the existing methods, dealing with

the estimation and quantification of overlapping peptides, and illustrates briefly the

use of prior information, which underlies our estimation approaches. In Chapter 12

and Chapter 13, respectively, we propose models for the stick and shape represen-

tations of a mass spectrum. We then present an improved method – Bayesian model

averaging– in Chapter 14, based on the model described in Chapter 13.





Chapter 2

Introduction to mass

spectrometry-based

proteomics

This chapter provides a brief presentation of mass spectrometry and the notation,

which will be used later for the analyses. Section 2.1 gives a general introduc-

tion to proteins, peptides, and proteomics. In Section 2.2, the principles of liquid

chromatography-mass spectrometry (LC-MS), applied to proteomics, are described.

Section 2.3 introduces the concept of the isotopic distribution. Section 2.4 gives a

brief description of the pre-processing steps prior to the analyses of mass spectrome-

try data. In Section 2.5, some definitions of the shape and stick representations of the

MS data, which will be used for the analyses in the dissertation, are provided. Part

of the dissertation deals with the analyses of labeled mass spectrometry, therefore the

basic principle of the enzymatic 18O-labeling is explained in Section 2.6.

2.1 Proteins, peptides, and proteomics

Proteins (also known as polypeptides) are organic compounds made of amino acids

arranged in a linear chain by using information encoded in genes. Each protein has

its own unique amino acid sequence that is specified by the nucleotide sequence of the

gene encoding this protein. The genetic code is a set of three-nucleotide sets called

7
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codons. Each three-nucleotide combination designates an amino acid, for example

AUG (adenine-uracil-guanine) is the code for methionine. Genes encoded in DNA

are first transcribed into pre-messenger RNA (mRNA) by proteins such as RNA

polymerase. Most organisms then process the pre-mRNA (also known as a primary

transcript) using various forms of post-transcriptional modification to form the mature

mRNA, which is then used as a template for protein synthesis (Mathews et al. 1999).

Figure 2.1 depicts the schematic form of the biological information flow from DNA to

protein.

Figure 2.1: The DNA sequence of a gene encodes the amino acid sequence of a protein

(http://en.wikipedia.org/wiki/Protein).

Overall, there is a total of 20 different amino acids that can occur in a peptide.

Although each of the standard amino acids has a distinct structure, they do share

a general set up. As displayed in Figure 2.2, all amino acids consist of an amino

end, a carbon end, and a side chain. The only chemical elements occurring in these

standard amino acids - and thus in proteins - are hydrogen (H), carbon (C), nitrogen

(N), oxygen (O), and sulfur (S). Despite their identical general structure, amino acids

differ considerably in the chemical structure of the side chain, ranging from very short

chains to large sub-molecules and having varying chemical properties.

Proteins are also called the “polypeptide molecules”, distinguished from peptides

only by the number of amino acid units. Thus, peptides are short polymers, composed

of a smaller number of amino acids and thus their structures are less complex than

proteins. The identification of proteins are allowed based on peptides’ masses and

sequences when the technique of mass spectrometry is applied. In this case, the

peptides are most often generated by in-gel digestion after electrophoretic separation

of the proteins.

Proteomics, which studies the structures and functions of large-scaled proteins



2.1 Proteins, Peptides, and Proteomics 9

Figure 2.2: General chemical structure of an amino acid, which consists of an amino end,

a carbon end and a side chain.

and peptides, has received a lot of interest in the recent years. It has been found that

proteomics plays an irreplaceable role in the process leading to a better understanding

of an organism. This is reflected in several aspects. First, the level of transcription of

a gene gives only a rough estimate of its level of expression into a protein. An mRNA

produced in abundance may be degraded rapidly or translated inefficiently, resulting

in a small amount of protein. Second, many proteins experience post-translational

modifications that profoundly affect their activities by, e.g., the current physiological

state of the cell. Third, many transcripts give rise to more than one protein, through

alternative splicing or alternative post-translational modifications. Fourth, many pro-

teins form complexes with other proteins or RNA molecules, and only function in the

presence of these other molecules (Belle et al. 2006). Hence, proteomics helps to ob-

tain a better understanding of the biological characteristics of living organisms and

cells.

The technique of mass spectrometry is a valuable tool in the field of proteomics.

It can be used to identify proteins through variations of peptides’ masses in a mass

spectrum. Another use of mass spectrometry in proteomics is protein quantification.

By labeling proteins with stable heavier isotopes, the relative abundance of proteins

can be determined.
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2.2 Liquid chromatography-mass spectrometry (LC-

MS)

Liquid chromatography-mass spectrometry (abbreviated as “LC-MS”) is an analyt-

ical chemistry technique that combines the physical separation capabilities of liquid

chromatography with the mass analysis capabilities of mass spectrometry. It is gen-

erally applied for the specific detection and potential identification of chemicals in a

complex mixture. Typically, such technique works in two steps. The LC step is used

to reduce the complexity of the peptide mixture by separating the peptides based

on their physico-chemical properties. The “so-processed” peptide mixtures are then

allowed to be separated according to their masses in the MS step.

2.2.1 Liquid chromatography

Chromatography is a term for a set of laboratory techniques for the separation of

mixtures. It involves passing a mixture, dissolved in a “mobile phase”, through a

stationary phase, which separates the analyte to be measured from other molecules

in the mixture based on differential partitioning between the mobile and stationary

phases. Subtle differences in a compound’s partition coefficient result in differential

retention on the stationary phase and thus changing the separation.

Chromatography may be preparative or analytical. The purpose of preparative

chromatography is to separate the components of a mixture for further use (and

is thus a form of purification). Analytical chromatography is done normally with

smaller amounts of material and is for measuring the relative proportions of analytes

in a mixture. The two are not mutually exclusive.

Liquid chromatography (LC) is a separation technique in which the mobile phase

is a liquid. Liquid chromatography can be carried out either in a column or a plane.

Present day LC that generally utilizes very small packing particles and a relatively

high pressure is referred to as high performance liquid chromatography (HPLC).

In the HPLC technique, the sample is forced through a column that is packed with

irregularly or spherically shaped particles or a porous monolithic layer (stationary

phase) by a liquid (mobile phase) at high pressure. The sample to be analyzed is

introduced in small volume to the stream of mobile phase. The analyte’s motion

through the column is slowed by specific chemical or physical interactions with the

stationary phase as the analyte traverses the length of the column. How much the
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Figure 2.3: Schematic plot of the HPLC instruments and the working principle.

analyte is slowed down depends on the nature of the analyte and on the compositions

of the stationary and mobile phases (http://en.wikipedia.org/wiki/Chromatography).

The time, at which a specific analyte elutes (comes out of the end of the column), is

called the retention time; the retention time under particular conditions is considered

a reasonably unique identifying characteristic of a given analyte.

The basic instruments involved in an HPLC system can be represented schemati-

cally in Figure 2.3. Solvent from the reservoir is pumped at a certain selectable flow

rate to an injector, at which point the sample is introduced and carried to the col-

umn. It is important that the flow be maintained slowly, continuously, and without

pulsations. The column is the heart of the system where the separation of various com-

ponents take place. The resolved components are then monitored by the detector and

subsequently analyzed qualitatively and quantitatively through an integrator/plotter.

After chromatographic fractionation of the analyte mixture, the fractions of these

analytes (peptides) are then processed in different mass spectra. As a result, a peptide

can be present in several spectra due to the chromatographic fractionation.

2.2.2 Mass spectrometry

Generally, mass spectrometers are devices, which rely on separating charged ions

by their mass-to-charge ratios. When applied in proteomics, it allows for separating

peptide molecules by their different masses. Thanks to mass spectrometry, the peptide

content of a biological sample can be visualized, which eases the identification and

quantification of the peptides.

In the dissertation, we will focus on the application of Matrix-Assisted Laser Des-
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orption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS). AMALDI-

TOF mass spectrometer is composed of several different parts: a source that ionizes

the sample, the analyzer that separates the ions based on mass-to-charge ratio, and

a detector that “sees” the ions.

Matrix-Assisted Laser Desorption/Ionization(MALDI)

Ion collection chamberMALDI target

Ionization

Soft ionized single
charged molecules

Matrix
molecules

H
+

Analyte

H
+Desorption

Laser beam

Figure 2.4: Basic principle of Matrix-Assisted Laster Desorption/Ionization (MALDI), re-

produced from Valkenborg (2008).

MALDI is a soft ionization technique, which can be used to volatize entire molecules

to gas phase (desorption) and to transfer a proton to the molecule (ionization). In

MALDI analysis, the analyte molecules are first mixed with a high amount of matrix

molecules in solution (usually a UV-absorbing weak organic acid), and spotted on

a metallic plate. Next, the solution evaporates and the matrix molecules crystallize

around the analyte molecules, serving as a protecting shield of the fragile analyte

molecules. When irradiated by a laser, the matrix molecules efficiently absorb the

laser energy directed towards the spot on the metallic target plate. Energy from the

laser is converted into kinetic energy of the irradiated molecules, leading to the va-

porization of a small amount of the spotted sample. In the gas phase, the protonation

reactions occur, by which a proton is transferred between the acidic matrix ion and

the molecules from the sample, leading to a charged vaporized molecule. After ioniza-

tion, the ions (of the analyte and matrix) are colletected in the ion collection chamber

(also called the “acceleration chamber”), waiting for the process of the Time-Of-Fligt

(TOF) step.

The matrix plays a key role by strongly absorbing photon energy from the laser
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beam and transfering it into excitation energy of the solid system. On the other hand,

the matrix serves as a solvent for the analyte, to reduce the intermolecular forces and

the aggregation of the analyte molecules.

Figure 2.4 depicts the basic principle of the MALDI step.

2.2.3 Time-Of-Flight (TOF)

In this work, the linear TOF will be considered.

Ion acceleration

s

Detector

Time

C
u

rr
e
n

t

m3

v2 v1

t3t2t1

v3

m2 m1

v3
E
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Figure 2.5: Basic principle of linear Time-of-flight Mass Spectrometer (TOF-MS), repro-

duced from Valkenborg (2008).

The basic principle of the linear TOF mass spectrometer is depicted in Figure 2.5.

Essentially, a linear TOF mass analyzer is a long vacuum tube with a collection

chamber at the inlet, collecting the ions generated from the ion source. At the end of

the tube there is an ion detector that records the time of the arrival of the accelerated
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ions and counts the number of ions by measuring the electric current when the ions

hit the detector.

At the last step of MALDI, the ions from the collection chamber are shortly

exposed to a known electrical field, denoted as E, for which the potential energy in

the chamber is transferred to kinetic energy of the ions. Suppose an ion with charge

q is exposed to an electrical filed E. As a result, a force F with

F = Eq, (2.1)

will be imposed on the charged ion. According to Newton’s second law, this force

can also be written as

F = ma, (2.2)

where m is the ion’s mass. This means that the force that is imposed onto the

charged ion, results in an acceleration a = Eq
m of the ion. The ion with charge q, still

in the collection chamber, is exposed to the electrical field and accelerates during a

short time period ta, until it leaves the acceleration chamber and enters the field-free

vacuum tube with a certain velocity, v. Given a known distance sa in the acceleration

chamber, again by applying Newton’s laws, the time that the ion arrives at the vacuum

tube ta, and the corresponding velocity v can be calculated. By assuming that the

initial velocity v0, i.e., the velocity of the ion before it enters the electrical field, is

zero,

ta =

√
2
sa
a

=

√
2
m

Eq
sa, (2.3)

v = ata =

√
2
Eq

m
sa. (2.4)

Subsequently, when the ion reaches the vacuum tube, the velocity v will be kept

constant. As the length of the vacuum tube s is known, the time the ion takes to

travel through the vacuum tube t can be calculated:

t =
s

v
=

s√
2Eq

m sa

. (2.5)

The ratio of m/q is defined as the mass-to-charge ratio. As the electrical field E,

the acceleration distance sa, and the length of the vacuum tube s are known and kept

constant, the travelling time t for the ion in the vacuum tube depends only on the

mass-to-charge ratio. It should be noted that the ratio m/q , which is expressed in

units of dalton-per-coulomb (Da/C), is difficult to interpret. Alternatively, instead
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m/z Intensity
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Figure 2.6: Output data from the TOF mass spectrometry.

of the absolute charge, a dimensionless variable z can be introduced, representing the

relative charge state of an ion. In other words, z indicates the number of protons

a molecule is carrying. In this respect, a peptide, which has a mass of 1000 Da

and carries one proton (H+) (called singly charged), corresponds roughly to a mass-

to-charge ratio of 1001 m/z. This is because the molecules are protonated by the

MALDI-procedure (mH+). Therefore, them/z should be corrected by adding 1.00783

Da. Thus, a singly charged peptide will approximately have its mass-to-charge ratio

equal to its mass value plus one. Similarly, the mass of a doubly charged peptide

will be roughly two times its mass-to-charge ratio plus one. In the dissertation, we

will only focus on the singly charged peptides. However, the developed modeling

approaches can be adapted for the multiply charged peptides.

Finally, when the ions hit the detector, the detector records the time of the arrival

of these ions and counts the number of ions arriving at distinct times by measuring

the electric current, which represents proportionally the number of ions. The mass-

to-charge ratios are then calculated from the arrival times through (2.5). As a result,

the mass spectrometer produces an output with typically two variables, the mass-

to-charge ratio (m/z) and the corresponding intensity value, as a measure of the

number of ions (ion counts). Figure 2.6 gives an example of the output. To visualize

the output, the data can be plotted as a line plot, as shown in Figure 2.7.
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Figure 2.7: Graphical representation of the MS data.

2.3 Isotopic distribution

Because the five chemical elements that compose a peptide: carbon (C), hydrogen (H),

nitrogen (N), oxygen (O), and sulphur (S), have different isotopes, peptides can have

different isotopic variants, which differ with respect to their weights. For a peptide

of a known chemical composition, the probability of occurrence of these variants is

called the isotopic distribution. It follows that, in a high-resolution mass spectrum,

a peptide produces a series of peaks that are separated by roughly 1 Da (for singly-

charged peptides) and that correspond to different isotopic variants of the peptide.

These peaks are called the isotopic peaks. Their relative heights are related to the

probabilities of the isotopic distribution of the peptide. This leads to the idea of

searching for peptide-related peaks in a mass spectrum by using an average isotopic

distribution. By zooming in at around 2500 Da in Figure 2.7, an example of the

“isotopic peaks” can be observed. Typically, these peaks appear in the vicinity of

the mass range, with mass difference of roughly multiples of 1 Da. The first isotopic

peak corresponds to the so-called monoisotopic variant of the peptide and is called

the monoisotopic peak. The monoisotopic variant contains atoms of only the lightest

isotopes of the chemical elements that contribute to the molecule.

To quantify the isotopic distribution, we define two sets of isotopic ratios by re-

ferring to Figure 2.8: the common reference ratios and the consecutive ratios. The

common reference ratios are defined as ratios of the intensity values of each isotopic

peak with respect to the intensity of the monoisotopic peak. More specifically, let
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hj denote the probability of occurrence of the jth isotopic variant (see Figure 2.8).

Given l isotopic variants for a peptide, the isotopic ratio of the jth isotopic variant

can be defined as

Rj = hj/h1, with j = 1, ..., l. (2.6)

The consecutive ratio Cj is defined as a ratio of the intensity value of each isotopic

peak with respect to that of its previous isotopic peak, i.e.,


C1 = hj/hj = 1 if j = 1.

Cj = hj/hj−1 if j = 2, ..., l,
(2.7)

It can be easily seen that C1 = R1 = 1 and Rj = C1C2 . . . Cj . We will later use

both definitions of isotopic ratios, for different purposes.

To compute the isotopic distribution, the information about the chemical compo-

sition of the peptide is needed. Given the known chemical composition, the isotopic

distribution can then be computed, e.g., by using a Fourier transform as proposed by

Rockwood (1995). In reality, however, the chemical composition of a peptide is often

not available. As an alternative, the average isotopic distribution can be predicted as

a function of the mass. Several approaches (Breen et al. 2000, Gay et al. 1999, Senko

et al. 1995, Valkenborg et al. 2007, Valkenborg et al. 2008) have been proposed to this

aim.
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Figure 2.8: Stick representation of the isotopic peaks in a spectrum.

We consider two approaches to predict the distribution from the information about

the monoisotopic mass of the peptide. Breen et al. (2000) suggested the use of an av-
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erage distribution, obtained by using a Poisson approximation. In the approximation,

the probability of the lth isotopic peak variant takes the form:

P (l;µ) =





e−µµl−1

(l−1)! if l = 1, 2, ...;µ > 0

0 otherwise.

Moreover, Breen et al. (2000) discovered an empirical linear relationship between

the Poisson mean µ and the monoisotopic mass m of a peptide: µ = 0.000594m −

0.03091. This linear relationship allows to predict the isotopic distribution of a peptide

based on peptide’s monoisotopic mass.

Another method to model the isotopic distribution, as suggested by Gay et al.

(1999) and Valkenborg et al. (2008), is to use a polynomial model. The polynomial

model either treats the abundance of each isotopic peak or the isotopic ratio regarding

each peak as the response variable, and models it as a function of either the monoiso-

topic mass m or a transformation of it. Valkenborg et al. (2008) suggested that a

fourth order polynomial is sufficient as a result of assessing the improvement in the

adjusted coefficient of determination with respect to the addition of an extra param-

eter. Valkenborg et al. (2008) also suggested that models fitted to the consecutive

ratios produce smaller errors than ratios with the monoisotopic peak as the common

reference. This is because the monoisotopic peak is always among the most abundant

peaks which would result in larger errors for the ratio estimation if it is taken as the

common reference for these ratios. More specifically, the model takes the following

form:

Cl =β0l + β1l

( m

1000

)
+ β2l

( m

1000

)2
+ β3l

( m

1000

)3
+ β4l

( m

1000

)4
+ εl, (2.8)

2.4 Pre-processing of mass spectrometry data

Prior to the analyses of mass spectrometry data, the data need to be pre-processed.

In general, the pre-processing of the MS data comprises mainly four steps: baseline

correction, noise filtering, feature finding, and mass calibration. For the details of the

pre-processing algorithms, we refer to Valkenborg et al. (2009). The following sections

explain briefly the algorithms, developed by Valkenborg et al. (2008) and Valkenborg

et al. (2009).
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2.4.1 Baseline correction

The intensity (ion count) is used as a measure for the abundance of a peptide in a

spectrum. The green line shown in the right panel of Figure 2.7 indicates the baseline

(i.e., an offset of the MS data) that varies along the mass coordinate. Although, the

baseline can be viewed as constant (approximately horizontal) in a few Da range,

for real applications, it is mandatory to subtract the baseline from the spectrum.

In this way, the baseline variability does not influence the measure of abundance.

Moreover, for distinguishing peptide-related peaks from the noises, the height of the

peaks is used. The baseline would influence the height of the observed peaks and,

consequently, would complicate the assessment of valid peptide peaks. Baseline is

found by applying a moving window of around 10 Da and by smoothing the local

minima of the intensity values using a linear extrapolation.

2.4.2 Dimensionality reduction

The data from one mass spectrum contain approximately 150,000 data points. Some

of the measurements are likely to be noise-generated ones. We are only interested

in finding the group of peaks corresponding to the composite isotopic distribution of

a peptide. To reduce the dimensionality of the problem, we first select all the local

maxima in a spectrum. However, many of these local maxima are likely due to noise

and thus need to be filtered out. For this purpose, either a signal to noise ratio or a

threshold intensity value, which is assumed to be the smallest intensity value for the

peptide peaks, can be used.

2.4.3 Feature finding

After dimensionality reduction, the real features can be found by applying the typical

characteristics of the peptide peaks. As has been mentioned in Section 2.3, a peptide

produces a series of peaks, which correspond to different isotopes that compose the

peptide, separated by approximately 1 Da. This feature can be used to distinguish the

features from the noise. More specifically, the local maximum having mass difference

with a threshold of 1.00235 Da can be selected.
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2.4.4 Mass calibration

The monoisotopic mass is an appropriate measure for the location of the peptide in

the mass dimension. But the monoisotopic mass measurement with a MALDI-TOF

mass spectrometer is often affected by an error. First, the calibration is performed

via a quadratic transformation by using the information about the internal standards,

available in the data sets:

TOF (time-of-flight) = β1m/z + β2
√
m/z + β3. (2.9)

Next, the mass calibration is done based on the obtained values of β1, β2, and

beta3, from (2.9) by computing:

m/zcal. = −
β2
2β1

±

√(
β2
2β1

)2

−
β3 − TOF

β1

2.5 Mass spectrometry data representation

By looking at a particular cluster of the peptide peaks, shown in Figure 2.9a, one

can clearly see that each peak exhibits a peak envelope composed of multiple data

points. These peak envelopes follow similar shape. We term the original setting of

the data the shape representation. Alternatively, each of the peaks can be represented

by one data point, as a summary statistic for the peak. In this way, each of the peaks

can be represented by a single data point, which can be reflected by a stick in the

graphical representation, as shown in Figure 2.9c. For such type of setting, we term it

the stick representation. More specifically, to obtain data for the stick representation,

the spectrum is first binned with a bin width of approximately 1 Da. The binning

points are defined to be the mid points of two neighboring local maxima (shown in

Figure 2.9b. The intensity of a certain observed peak can then be taken either as a

sum or a maximum of intensities of all the data points within a bin, corresponding to

the observed peak. The mass location of the peak can be defined as the mass of the

mid point within the bin.

2.6 Labeling techniques

In LC-MS applications, peptide samples from different biological conditions are usu-

ally analyzed. To avoid the between-spectra variability, these peptide samples can be
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Figure 2.9: Shape and stick representations of the mass spectrum data.

pooled and processed in the same spectrum. To do so, a labeling approach can be

considered. The idea is similar to, e.g., two-channel cDNA microarrays, where mRNA

from one sample is labeled with a green fluorescent dye and mRNA from another sam-

ple is labeled with a red fluorescent dye. Afterwards, the samples are pooled together

and processed simultaneously. As a result, gene-expression measurements are subject

to the same sources of variability. However, labeling with a dye is not an option in

the mass spectrometry context. Instead, peptides are labeled with a stable isotope,

which results in an increase of peptide’s mass. The mass spectrometry based on stable

isotope labeling method provides quantitative information of the peptides.

2.6.1 Enzymatic 18O-lableling

C
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Figure 2.10: Chemical reaction scheme for the enzymatic 18O-labeling procedure.

A relatively new and powerful technique for stable isotope labeling is the enzymatic
18O-labeling (see Figure 2.10), which is a two-step labeling approach, as described by

Miyagi and Rao (2007). In the first step, peptide samples from two cell states, or

biological conditions are both digested in normal water (H2
16O) with trypsine.

During the second step, the peptide sample to be labeled undergoes proteolysis,

i.e., digest, in a heavy-oxygen-water reagent (H2
18O). This step involves two reactions.

In the first reaction, a 16O-carboxyl-oxygen atom is replaced by an 18O-oxygen from
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the heavy-oxygen-water. This hydrolysis reaction is fast and happens immediately

upon the proteolytic digest, resulting in the incorporation of one 18O-oxygen atom

from the heavy-oxygen-water into the carboxyl terminus of the peptide sample. As a

result, this oxygen-exchange introduces a mass shift of two Da for the peptide sample.

The second reaction is much slower, and is in principle the reverse of the protease-

catalyzed peptide-bond (Miyagi and Rao 2007). The oxygen-replacement of the

carboxyl-terminus continues and is enzymatically catalyzed by a proteolytic reagent,

in this case, trypsine. In this respect, the two-step labeling protocol is also referred

to as enzymatic labeling. The reaction speed depends on multiple unobserved factors

and therefore can be different for different peptides.
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Figure 2.11: Effect of enzymatic 18O-labeling in a mass spectrum in the stick representa-

tion. Left panel: “sticks” can be seen as a representation of the distribution

the isotopic variants of the peptide. Right panel: labeling causes accumula-

tion of different isotopic variants in a joint spectrum.

Because there are two reaction sites, which can incorporate 18O-atoms, the labeling

should lead, in ideal circumstances, to an increase of the mass of the peptide molecule

by 4 Da, as two 18O-atoms are roughly 4 mass units heavier than two 16O-atoms.

The resulting mass spectrum for peptide Sample I and Sample II are symbolically

depicted in Figure 2.11.

Before the enzymatic 18O-labeling, the pooled peptide samples would appear at the

same mass location in a mass spectrum, as illustrated on the left panel of Figure 2.11.

In such case, the two samples would not be distinguishable from each other and

therefore the quantification of the two peptide samples would have been impossible.

After the enzymatic 18O-labeling, the isotopic peaks corresponding to the labeled
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peptide will shift four Da to the right, as shown in Figure 2.11b. A clear distinction

between the peptide samples can now be made and the relative abundance of the

peptide in the two samples can be calculated.

In practice, however, there are additional problems related to the use of the en-

zymatic 18O-labeling strategy. First, the heavy-oxygen water does not contain 100%

pure 18O-water. It can also contain 16O- and 17O-atoms. We term these water im-

purities. Note that, if the two carboxyl-terminus oxygen atoms are replaced by, e.g.,
17O-atoms, the peptide molecule becomes heavier by only 2, and not 4 Da, as it ide-

ally would be the case in 100% pure 18O-water. Second, the speed of the enzymatic

reaction, that is, the oxygen incorporation rate, depends on multiple unobserved fac-

tors and therefore can differ for different peptides. As a result, at the end of the

enzymatic reaction, not all peptide molecules from the labeled peptide sample may

have been actually labeled. The isotopic peaks for these molecules will overlap with

the peaks from unlabeled sample. We term this situation the incomplete labeling.

Denote the proportions of 16O, 17O, and 18O atoms in the heavy-oxygen water by

p16, p17, and p18, respectively, with p16 + p17 + p18 = 1. Due to water impurities,

the carboxyl-terminus of a peptide can contain different isotopes of oxygen. Let us

consider the triplet (n16, n17, n18), where n16, n17, and n18 denote the number of 16O,
17O, and 18O atoms in a carboxyl-terminus, respectively. Clearly, n16+n17+n18 = 2.

The possible isotope combinations can now be expressed as follows:

X(1) = (2, 0, 0), X(3) = (1, 0, 1), X(5) = (0, 1, 1),

X(2) = (1, 1, 0), X(4) = (0, 2, 0), X(6) = (0, 0, 2), (2.10)

For example, configuration X(3) = (1, 0, 1) indicates that one of the carboxyl-

terminus oxygen atoms was replaced by a 16O-atom, while the other was replaced by

an 18O-atom. Note that the numbers of atoms of different isotopes of oxygen in the

triplet sum to two, because the amount of oxygen atoms in the carboxyl-terminus

cannot exceed two.

For different configurations X(i), peaks corresponding to the isotopic distribution

of a labeled peptide sample will shift with multiples of 1 Da. The mass shift depends

on the configuration. The probability of a particular shift follows from the probability

distribution of the six possible configurations of the carboxyl-terminus:

P0 = P{X(1)}, P2 = P{X(3)}+ P{X(4)},

P1 = P{X(2)}, P3 = P{X(5)}, P4 = P{X(6)}, (2.11)
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where Pk indicates the probability of the mass shift of k Da (k = 0, . . . , 4). It should

be noted that we define the mass shifts relative to a carboxyl-terminus, which contains

two 16O-atoms.

These problems imply that the peaks, observed for a peptide in a joint spectrum,

will correspond to a complex mixture of shifted and overlapping isotopic peaks that are

related to the isotopic distributions of the peptide molecules from the unlabeled and

labeled samples. The corresponding isotopic peak heights of the two peptide samples

are therefore distorted. Neglecting the distortion caused by the incomplete labeling

will result in biased estimation for the quantification of the two peptide samples.

Figure 2.12 shows the effect of the incomplete labeling. In ideal circumstances,

the enzymatic 18O-labeling should result in exactly four Da shifted for the labeled

peptide sample, as depicted on the left panel of Figure 2.12. However, in reality, due

to incomplete labeling, the isotopic peaks of the labeled sample exhibit multiple shifts

of one Da. These shifted isotopic peaks get overlapped with those of the unlabeled

peptide sample, distorting the peak heights of both samples. The amount of the la-

beled peptide molecules exhibiting multiple shifts correspond to the shift probabilities

Pk, as demonstrated on the right panel of Figure 2.12.
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Figure 2.12: Effect of incomplete labeling in a mass spectrum in stick representation. Left

panel: ideal circumstance of enzymatic 18O-labeling, which results in four Da

shift for the labeled sample. Right panel: due to incomplete labeling, isotopic

peaks of the labeled sample show multiple shifts of one Da with the amount

of shifted molecules corresponding to the shift probability Pk.

In order to estimate the relative abundance of the peptide in the two samples,
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the incomplete labeling has to be taken into account. In Part II of the dissertation,

we introduce a modeling approach to correctly estimate the relative abundance of a

peptide in the two samples.





Chapter 3

Case studies

The modeling approaches for the analysis of mass spectrometry data, to be introduced

in this dissertation, are applied to a number of data sets. These data sets will be briefly

described in Section 3.1. The research topics based on these data sets will thereafter

be introduced in Section 3.2.

3.1 The considered data sets

3.1.1 Bovine cytochrome C mass spectra

Bovine cytochrome C is a relatively small protein related to mitochondria in a cell.

It is a chain of 105 amino acids: MGDVEKGKKIFVQKCAQCHTVEKGGKHKTG-

PNLHGLFGRKTGQAPGFSYTDANKNKGITWGEETLMEYLENPKKYIPGTKM-

IFAGIKKKGEREDLIAYLKKATNE.

A peptide mixture of tryptic digested bovine cytochrome C was purchased from

LC Packings and mixed with five internal standards from Laser BioLabs used for the

calibration of the mass spectrometer. According to the data sheets of the suppliers,

the mixture should contain 17 protein fragments. The amino acid sequences and

the theoretical monoisotopic masses of these fragments are known. For instance, the

sequence of the peptide at mass 1168.61 Da is: TGPNLHGLFGR; the sequence of

the peptide with mass 1456.66 Da is: TGQAPGFSYTDANK; the sequence of the

peptide with mass 1584.76 Da is: KTGQAPGFSYTDANK.

The peptide mixture was divided into two parts. One part was enzymatically

27
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labeled with a stable 18O-isotope, with trypsine as a catalyst, while the other part

remained unlabeled (Miyagi and Rao 2007). In the first case, three units from the

unlabeled part where mixed with one unit from the labeled part, what should result

in the relative abundance of 1/3. In the second case, three units from the labeled

part where mixed with one unit from the unlabeled part, what should result in the

relative abundance of 3/1. In both cases, the composed mixture was automatically

spotted six times on one stainless steel plate by a robot. The plate was processed

by a 4800 MALDI-TOF/TOF analyzer mass spectrometer and yielded six spectra for

the 1/3 mixture and six spectra for the 3/1 mixture.

3.1.2 NCBI public database

The RefSeq database of the NCBI, available at http://www.ncbi.nlm.nih.gov/RefSeq,

provides the monoisotopic masses and istopoic distributions of human peptides. When

accessed on February 27, 2008, for the human proteome, the database contained

amino acid sequences for 132,292 proteins. Performing an in silico digest by trypsine

results in 2,616,371 peptides with monoisotopic masses between 400 and 4000 Da,

with 306,427 unique atomic compositions.
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Figure 3.1: Histogram of the monoisotopic mass locations of peptides in the mass range of

1997.5-2002.5 Da in the NCBI data set.
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The data set contains the isotopic distributions and monoisotopic masses of the

2,616,371 peptides. The information of the isotopic distributions and monoisotopic

masses will later be used as supplementary information for the analysis of MS data

in the dissertation.

For the isotopic distribution, the modeling approaches, described in Section 2.3,

can be applied to the NCBI data. The obtained parameter estimates can then be

included as the prior information for the estimation of the isotopic distribution.

Figure 3.1 presents the number of peptides with monoisotopic masses appearing

in small intervals of 0.01 Da around the mass range of 2000 Da. It can be observed

that the monoisotopic masses vary around integer values. Moreover, there are regions

where no peptides can be found. This prior information can be quantified by using

an appropriate prior distribution in modeling MS data.

3.2 The case studies

3.2.1 Modeling of enzymatic 18O-labeled mass spectra

In this study, a modeling approach for the estimation of relative abundance of the

labeled and unlabeled peptides is implemented. The study is based on the bovine

cytochrome C data. For each peptide, the six technical replications of spectra, each

with two different relative abundances (1/3 or 3/1) of the 16O and 18O labeled pep-

tides, are considered simultaneously in the modeling approach. We chose only the

three peptides, with optimal data quality, namely peptides with masses 1168.6 Da,

1456.7 Da and 1584.8 Da.

3.2.2 The quantification of overlapping peptides in MALDI-

TOF mass spectra

For this case study, we consider a label-free MS and assume that the sequences of

the peptides, and therefore the masses of these peptides, are unknown. In a MALDI-

TOF mass spectrum, peptides result in an overlap when they have similar masses

and thus appear in the vicinity of the mass scale. We develop a method to quantify

the overlapping peptides. The developed method can be easily modified for peptides

with known sequences. In such case, the masses are known and the approach can be

simplified.
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The case study is, again, based on the bovine cytochrome C data from Sec-

tion 3.1.1, with each spectrum treated as a source of pairs of overlapping peptides

with a four Da difference in the monoisotopic masses. For the analysis purposes, we

select two peptides with monoisotopic masses of 1456.66 Da and 1584.76 Da. For each

peptide, we considered six spectra for each of the two different relative abundances

(1/3 or 3/1).

Prior information, that assists the analysis, is obtained from the NCBI data.

The prior information for the isotopic distribution

As has been mentioned in Section 2.3, the isotopic distribution can be predicted as

a function of the mass. We adapted the method, proposed by Valkenborg et al.

(2008), by fitting the models to the logarithmic consecutive ratios C∗
l (C∗

l = lnCl =

lnRl − lnRl−1, (l = 2, ..., L), and C∗
1 = 0) of NCBI data set (see Section 3.1.2). The

gain of polynomial models fitted to the logarithmicly transformed consecutive ratios

C∗
l is three-fold:

1. Figures 3.2 and 3.3 show the histograms of the residuals of the models fitted to

the original and log scales of Cl respectively. It is clear that the log transfor-

mation gives more symmetric distributions for the model residuals;

2. Figures 3.4 and 3.5 show the fit of the models to the two scales of Cl. It can be

clearly observed that the variance (reflected as the ‘bandwidth’ of the scatters)

of the observed ratios around the fitted lines after the log transformation is more

constant;

3. When transforming the consecutive ratios to ratios with the monoisotopic peak

as a common reference, the errors on the original scale are multiplicative while

on the logarithmic scale they become additive, since Rl = exp

(
l∑

i=1

C∗
l

)
.

As a result, the model takes the form:

C∗
l =β0l + β1l

( m

1000

)
+ β2l

( m

1000

)2
+ β3l

( m

1000

)3
+ β4l

( m

1000

)4
+ εl, (3.1)

where εl ∼ N(0, σ2
C∗

l
). We will use the estimates of this model as the informative

prior distributions for the isotopic ratios. The reason of using the polynomial models

as the prior, instead of the Poisson approximated one, is that the variability around
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Figure 3.2: Histograms of residuals for the polynomial model to the original scale of con-

secutive ratios Cl at around 2000Da.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

20

40

60

80

100

120

140

160

Residuals log(C
2
)

C
ou

nt
s

(a) C∗

2

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

160

180

Residuals log(C
3
)

C
ou

nt
s

(b) C∗

3

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0

20

40

60

80

100

120

140

Residuals log(C
4
)

C
ou

nt
s

(c) C∗

4

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140

Residuals log(C
5
)

C
ou

nt
s

(d) C∗

5

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

20

40

60

80

100

120

140

160

Residuals log(C
6
)

C
ou

nt
s

(e) C∗

6

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

Residuals log(C
7
)

C
ou

nt
s

(f) C∗

7

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

Residuals log(C
8
)

C
ou

nt
s

(g) C∗

8

Figure 3.3: Histograms of residuals for the polynomial model to the log scale of consecutive

ratios Cl at around 2000Da.

the average ratios can be obtained directly from the models and used in the prior

distributions. Details of this will be given Chapter 12.
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Figure 3.4: The fit of the polynomial model to the original scale of consecutive ratios Cl

(green dots represent observed ratios; black line represents the mean of the

polynomial models).
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Figure 3.5: The fit of the polynomial model to the log scale of consecutive ratios Cl (green

dots represent observed ratios; black line represents the mean of the polynomial

models).
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Chapter 4

Introduction to the analysis

of enzymatically 18O-labeled

mass-spectrometry data

4.1 Enzymatic 18O-labeling and problem statement

As it has been mentioned in Section 2.6.1, the enzymatic 18O-labeling separates the

labeled peptide samples from the unlabeled ones by four Da. As a result, the labeled

peptides from, say, Sample II, can be pooled together with the unlabeled peptides

from, say, Sample I, and processed simultaneously by LC and MS. Thanks to the

enzymatic 18O-labeling, the isotopic peaks, which correspond to the labeled peptide,

shift 4 Da to the right in the mass spectrum. This allows for making a distinction

between the peaks related to peptides from different samples. Consequently, a direct

comparison of the peptide abundance in the two samples is possible, because the

abundance measurements are affected by the same amount of machine noise.

A “näıve” approach to compute the relative abundance of the peptide in the

two samples would be to take the ratio of the heights of the first and fifth peak

observed for the peptide in the joint mass spectrum (see Figure 4.1), as these peaks

would correspond to the monoisotopic variants of the peptide in the unlabeled and

labeled sample, respectively. However, as it can be observed from Figure 4.1, some

isotopic peaks of the unlabeled peptide will still overlap with the monoisotopic peak

35
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Figure 4.1: Peptide samples with enzymatic 18O-labeling in a mass spectrum in stick rep-

resentation, under ideal circumstances: labeling causes isotopic variants shifted

by 4 Da in a joint spectrum.

of the labeled peptide. Thus, the ratio would yield a biased estimate of the relative

abundance, because it does not take into account the overlap of the isotopic peaks.
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Figure 4.2: Fifth observed peak in function of the unobserved peptide peak intensities,

reproduced from Valkenborg (2008).

In practice, however, there are additional problems related to the use of the enzy-

matic 18O-labeling strategy due to incomplete labeling. As explained in Section 2.6.1,

the incomplete labeling results in the isotopic peaks of the labeled peptide sample

shifted by multiples of one Da, instead of four Da. The amount of molecules with

these multiple shifts correspond to the shift probability Pk. Taking the fifth observed

peak as an example (Figure 4.2), its intensity value will be a sum of the intensities of

the fifth isotopic peak of the unlabeled sample and of the isotopic peaks of the labeled
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sample with different shift probabilities Pk (refer to Section 2.6.1).

These problems imply that the peaks, observed for a peptide in a joint spectrum,

will correspond to a complex mixture of shifted and overlapping isotopic peaks that

are related to the isotopic distributions of the peptide molecules from the unlabeled

and labeled samples. In order to estimate the relative abundance of the peptide in

the two samples, the overlap of the isotopic peaks has to be taken into account.

4.2 Data representation
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Figure 4.3: Graphical representation of the observed spectra for the six replications.

We apply the developed method to the data set of tryptic peptides of bovine

cytochrome C from LC Packings.

We assume that, prior to the statistical analysis of a series of peaks observed

in a MALDI-TOF spectrum and considered to be corresponding to a peptide, the

spectrum was appropriately pre-processed. To this aim, we use the strategy proposed
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(a) 1168.6Da Q=0.33
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(b) 1456.7Da Q=0.33
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(c) 1584.8Da Q=0.33
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(d) 1168.6Da Q=3
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(e) 1456.7Da Q=3
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(f) 1584.8Da Q=3

Figure 4.4: Stick representation of the spectra presented in Figure 4.3. Bars of the same

shade represent peaks from the same spectrum.

by Valkenborg et al. (2009). A summary of the pre-processing algorithm is described

in Section 2.4. The pre-processing strategy extracts the information about the mass

location and the height (intensity) of peaks, which are most likely due to a peptide.

We restrict the analysis to three bovine cytochrome C peptides, for which joint

spectra of acceptable quality were obtained. The three peptides are with masses

1168.61 Da, 1456.66 Da and 1584.76 Da (detailed description of these peptides is

available in Section 3.1). Figure 4.3 presents the shape representation, i.e., the original

settings of the observed spectra for the three peptides in both mixing experiments.

The modeling approach based on the shape representation of the spectra needs to

take into account the shape of the envelopes.

Alternatively, a modeling approach can be based on the stick representation (de-

fined in Section 2.5). In this respect, we take the maximum intensity value of a peak

as the intensity of that peak. The stick representation of the data is presented in

Figure 4.4. To work with the stick representation, several assumptions have to be

made. First, the peak envelopes have exactly the same shape. Second, the isotopic

peaks of Sample II align with those of Sample I. Or, equivalently, for each observed

peak, the maximum intensity values of the isotopic peaks of the two samples are at
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the same mass location.

4.3 Previous approaches

Several methods have been proposed to deal with the analysis of the 18O-labeled mass

spectra. On one hand, efforts aimed at the optimization of the enzymatic labeling

process have been undertaken. For instance, methods that prohibit the back-exchange

have been investigated (Storms et al. 2006). Alternatively, techniques that only allow

for the incorporation of a single 18O-atom have been proposed (Rao et al. 2005).

On the other hand, approaches that address the issue at the analysis stage have

been developed. Mirgorodskaya et al. (2000) have formulated a regression approach,

which uses information about the isotopic distribution and about the labeling effi-

ciency of the labeled peptide. The information is extracted from an additional mass

spectrum of the labeled peptides, obtained before mixing the unlabeled and labeled

sample. This extra MS step complicates the conduct of the experiment. Rao et al.

(2005), López-Ferrer et al. (2006), and Ramos-Fernández et al. (2007) have suggested

to identify the amino acid sequence of the peptide via an additional MS identification

(tandem MS). Consequently, they can calculate the isotopic distribution of the pep-

tide. The extra MS identification and the calculation of the isotopic distribution are

computationally involved and require extra mass spectrometer time. Eckel-Passow

et al. (2006) have proposed a regression approach similar in spirit to the method of

Mirgorodskaya et al. (2000). They have used the method of Senko et al. (1995) to

estimate the average isotopic distribution. This method is fast and does not need

extra MS steps. However, the approach does not consider the possible presence of
17O atoms in the heavy-oxygen water. It can also lead to biased relative abundance

estimates, as the actual isotopic distribution of a peptide can substantially deviate

from the average isotopic distribution when, e.g., the peptide contains sulphur atoms

(Valkenborg et al. 2007).

In the following chapters, we describe an alternate, model-based approach to es-

timate the relative abundance of a peptide from enzymatically 18O-labeled MS data.

The approach uses the regression framework, considered by Mirgorodskaya et al.

(2000) and Eckel-Passow et al. (2006). We combine the framework with a stochastic

model, which describes the enzymatic 18O-labeling reaction. The method also allows

us to estimate peptide’s isotopic distribution from the observed data, which in turn

can be used to validate if the peaks are indeed originating from a peptide. The pro-
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Table 4.1: Overview of the models presented in Chapters 5 to 9.

Frequentist Bayesian

Fixed effects Random effects Fixed effects Random effects

Homoscedasticity Chapter 5 – – –

Heteroscedasticity Chapter 6 Chapter 7 Chapter 8 Chapter 9

posed method is evaluated by using data from a controlled MS experiment, described

in Section 3.1.1. In Chapter 5, we review the model with homoscedastic residual

variance and with fixed effects in the frequentist approach, proposed by Valkenborg

(2008). In Chapter 6, we extend the model to incorporate heteroscedastic residual

variance by an appropriate mean-dependent variance-function. A further extension

in the frequentist framework by accounting for the between-spectra variability is de-

scribed in Chapter 7. A Bayesian modeling approach with and without accounting

for the between-spectra variability is explained in Chapters 8 and 9, respectively.

Table 4.1 gives an overview of the models presented in these chapters. Finally, the

implementation of the model based on the shape representation of a spectrum is

presented in Chapter 10.



Chapter 5

A frequentist approach to the

analysis of 18O-labeled mass

spectra using a homoscedastic

fixed-effect discrete-time

Markov-chain based model

5.1 Introduction

In this chapter, we review the approach of a homoscedastic regression model in the

frequentist framework to analyze 18O-labeled mass spectra data, proposed by Valken-

borg (2008). We first present a model to estimate the relative abundance of a peptide

from a mixture of overlapping peptide peaks observed in the joint spectrum from

an enzymatic 18O-labeling experiment. The model is overparameterized, so in the

next step we describe further modeling steps to reduce the number of the parameters.

After formulating the model, we describe methods for its estimation.

41
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5.2 Model formulation

5.2.1 A model for the joint spectrum

As it has been mentioned in Section 2.6.1, the heavy-oxygen water contains water

impurities, with proportions of 16O, 17O, and 18O atoms in the heavy-oxygen water

denoted by p16, p17, and p18, respectively, with p16 + p17 + p18 = 1. For the triplet

(n16, n17, n18) with n16 + n17 + n18 = 2, the possible isotope combinations are shown

in equation (2.10). The probability of a particular shift follows from the probability

distribution of the six possible configurations of the carboxyl-terminus and is defined

in equation (2.11).

Consider a peptide, which has l ≥ 5 isotopic variants (including the monoisotopic

one). The enzymatic 18O-labeling and mixing of this peptide with its unlabeled

counterpart will result in an observed joint spectrum of l + 4 peaks. The observed

peak intensities yj in the joint spectrum, where j = 1, 2, . . . , denotes the position of

the peak in the observed series of peaks in a joint spectrum, with j = 1 referring to

the first observed peak of the spectrum, will be a function of the abundance of the

unobserved isotopic variants of the peptide Samples I and II, i.e., the unlabeled and

labeled samples, respectively. The function will depend on the mass shift probabilities,

defined in (2.11).

To model the observed peak intensities, we assume that

yj = µj + εj , εj ∼ N(0, σ2) (5.1)

and that εj ’s are independent. The mean intensity, µj , of the jth peak in the joint

spectrum is expressed as follows:

µ1 = HI
1 + P0H

II
1 ,

µ2 = HI
2 + P0H

II
2 + P1H

II
1 ,

... (5.2)

µl = HI
l + P0H

II
l + P1H

II
l−1 + P2H

II
l−2 + P3H

II
l−3 + P4H

II
l−4,

µl+1 = P1H
II
l + P2H

II
l−1 + P3H

II
l−2 + P4H

II
l−3,

µl+2 = P2H
II
l + P3H

II
l−1 + P4H

II
l−2,

µl+3 = P3H
II
l + P4H

II
l−1,

µl+4 = P4H
II
l .
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whereHI
i andHII

i are the unobserved abundances of the ith isotopic variant (with i =

1 corresponding to the monoisotopic variant) in Sample I and Sample II, respectively,

and Pk is the mass shift probability (2.11). Now, upon defining relative abundance

Q of the peptide in Sample II and the isotopic ratios Ri (refer to Section 2.3):

Q =
HII

1

HI
1

, Ri =
HI

i

HI
1

=
HII

i

HII
1

, (5.3)

where R1 = 1. By putting H ≡ HI
1 , we can re-write (5.2) as follows:

µ1 = HR1 +HQR1P0,

µ2 = HR2 +HQ(P0R2 + P1R1),

... (5.4)

µl = HRl +HQ(P0Rl + P1Rl−1 + P2Rl−2 + P3Rl−3 + P4Rl−4)

µl+1 = HQ(P1Rl + P2Rl−1 + P3Rl−2 + P4Rl−3),

µl+2 = HQ(P2Rl + P3Rl−1 + P4Rl−2),

µl+3 = HQ(P3Rl + P4Rl−1),

µl+4 = HQP4Rl.

A few remarks regarding (5.4) are worth mentioning. The parameter of interest is

Q, as it captures the relative abundance of the peptide in the two samples. Terms

HQPkRj denote the contributions to the mean values of the observed peaks from the

isotopic variants of the peptide from Sample II (see Figure 4.2). Note that, for peaks

l + 1, . . . , l + 4, there are no contributions from the unlabeled peptide in Sample I.

The isotopic ratios (5.3) are used for both the unlabeled and labeled peptide, because

the ratios depend on the isotopic distribution, which is the same for both peptides.

Finally, to determine the structure of the system of equations (5.4), we need to specify

l. If a series of, say, m ≥ 9 one-Da-separated peaks is observed in the joint spectrum,

then we assume that the series was generated by m− 4 unobserved isotopic variants

of a peptide, and we put l = m− 4.

Note that (5.4) is a system of equations with 5+2+ (m− 5) = m+2 parameters.

However, this is more than the number of observations (peaks) m. Consequently,

the model, specified by (5.1)–(5.4), is over-parameterized. Thus, we need to consider

additional simplifying assumptions to reduce the number of parameters. These are

discussed in the next section.
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5.2.2 A model for the enzymatic 18O-labeling

To further reduce the number of parameters in (5.4), we consider a Markov-model (Wel-

ton and Ades. 2005) for the enzymatic 18O-labeling, so that the shift probabilities

P0, . . . , P4 are replaced by a smaller number of parameters.

In (2.10), we have introduced the configurations X(i), which indicate the com-

bination of oxygen isotopes present at the carboxyl-terminus of a peptide. We will

refer to the configurations as states. We assume that, before the enzymatic labeling,

the carboxyl-terminus of all isotopic variants of a peptide from Sample II contains

two 16O-atoms, i.e., it is in state X(1). This is depicted in Figure 5.1, where the

white circle denotes state X(1). After the first oxygen-atom replacement (k = 1), the

carboxyl-terminus will stay with certain probability in state X(1) or move to states

X(2) or X(3). This is indicated by the light gray color in Figure 5.1, where the arrows

indicate the possible direction of transitions. After the second oxygen replacement

(k = 2), the probabilities for the carboxyl-terminus to remain in states X(1), X(2),

or X(3) will change. Moreover, three additional states can be reached, namely, X(4),

X(5), and X(6) (see the dark gray color in Figure 5.1). A third oxygen-replacement

reaction (k = 3) will allow for eight new transitions, indicated by the black arrows in

Figure 5.1, and so on. This process can be seen as a discrete-time Markov-chain, with

the discrete time steps interpreted as the oxygen replacements. The discrete-time

16,17 16,18

18,1817,17

16,16

17,18

Figure 5.1: Transitions between carboxyl-terminus states.
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Markov-chain can now be defined more formally. Given the transition probability

matrix T , the state probabilities are expressed as follows:

S′
k = S′

0T
kP (k) , (5.5)

with Sk denoting a 6 × 1 column vector containing the state probabilities after k

oxygen replacements and P (k) denoting the probability that k replacement reactions

will take place. Under the assumption that at the beginning of the labeling process the

isotopic variants of a peptide in Sample II contain 100% 16O-atoms at the carboxyl-

terminus, the 6× 1 initial state vector is given by S0 = (1, 0, 0, 0, 0, 0)′.

We assume that the enzymatic reaction is equally likely on both reaction sites of

the carboxyl-terminus. We also assume that the previous oxygen replacements do

not influence the enzymatic reaction for future oxygen replacements, i.e., that the

transition probabilities are independent of the number oxygen replacements k. The

transition probability matrix T with transition probabilities Pij is then given by



p16 p17 p18 0 0 0
p16

2
p16+p17

2
p18

2
p17

2
p18

2 0
p16

2
p17

2
p16+p18

2 0 p17

2
p18

2

0 p16 0 p17 p18 0

0 p16

2
p16

2
p17

2
p17+p18

2
p18

2

0 0 p16 0 p17 p18




, (5.6)

where p16 and p17 are the proportions of the heavy-oxygen water impurities (assumed

known). Row (i = 1, . . . , 6) and column (j = 1, . . . , 6) indices correspond to states

X(1), . . . , X(6). The transition probabilities Pij give the probability to move from

state X(i) to state X(j). For example, the probability to move from state X(3) =

(1, 0, 1) to state X(1) = (2, 0, 0) equals P31 = p16/2, because only if the 18O-atom in

state X(3) is replaced by a 16O-atom, we reach state X(1).

Term P (k) in (5.5) denotes the probability of k oxygen replacements. The number

of oxygen replacements k during the labeling reaction is unknown and depends on the

reaction speed and duration. The duration of the enzymatic reaction is usually known

and kept constant across multiple labeling experiments. We denote the duration by

τ . The reaction speed depends on many factors and is specific for each peptide. We

express the speed as the peptide-specific incorporation rate λ, which gives the number

of reactions per time unit. We assume that λ is constant over time.

Under these assumptions, the probability for k oxygen replacements can be mod-

eled by a Poisson process with rate λ and time τ . As a result, after summing over all
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possible values of k and rearranging terms, equation (5.5) is expressed as follows:

S′(λ; τ, p16, p17) = S′
0e

−λτeT λτ , (5.7)

where S′(λ, τ, p16, p17) is the vector containing the state probabilities for the isotope

combination of the carboxyl-terminus of a peptide with incorporation rate λ after a

reaction time τ in heavy-oxygen water with impurities p16 and p17. Note that, to

simplify notation, we will suppress the use of τ , p16, and p17 in subsequent formulae.

Now, the probabilities of the isotopic distribution mass shifts, defined in (2.11),

are computed as follows:

P0(λ) = S1(λ), P2(λ) = S3(λ) + S4(λ),

P1(λ) = S2(λ), P3(λ) = S5(λ), P4(λ) = S6(λ), (5.8)

where Si(λ) denotes the ith element of the state probability vector S(λ).

Figure 5.2 shows the values of the mass shift probabilities as a function of λ for

a labeling reaction of τ = 120 in heavy-oxygen water with impurities p16 = 2% an

p17 = 1%. Note that, for λ ≥ 0.09, the shift probabilities are basically constant. A

similar plot would be obtained for the dependence of the probabilities on the reaction

duration. It follows that, for a peptide with λ ≥ 0.09, the enzymatic reaction is

basically completed after 120 time units, e.g., minutes; extending the duration does

not change the mass shift probabilities. This means that, if we consider a peptide

with λ = 0.09, after τ = 120 minutes, only 94.08% of the molecules will receive two
18O-atoms on their carboxyl group. In other words, isotopic peaks of only 94.08%

of the peptide molecules from Sample II will shift by 4 Da to the right in the joint

mass spectrum. Further, the peaks of 1.94%, 3.90%, 0.04%, and 0.04% of the labeled

molecules will shift by 3, 2, 1, and 0 Da, respectively. The analysis of a labeled

mass spectrum should correct for these different shifts and overlaps to avoid biased

estimates of the relative peptide abundance. By using (5.7) and (5.8), we replace

the five shift probabilities (2.11) by a single parameter, namely, λ. Consequently, we

further reduce the number of parameters in (5.4) to 3+(m−5) = m−2, which is less

then the number of available observations (peaks) m. This allows to fit the model,

specified by (5.1)–(5.4) and (5.7)–(5.8), to observed data.

5.2.3 Estimation and inference

Assume that we have got n joint spectra, each with m observed peaks. The model,

specified by (5.1)–(5.4) and (5.7)–(5.8), can be fitted to observed data by maximizing
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Figure 5.2: Shift probabilities P0, P2, P3 and P4 in function of λ for an enzymatic reaction

of 120 minutes with heavy-oxygen water impurities of p16=2% and p17 = 1%.

the log-likelihood, given by

lML(β, σ
2) = −

1

2

n∑

i=1

m∑

j=1

log
(
σ2
)
−

1

2σ2

n∑

i=1

m∑

j=1

[yij − µij(β)]
2
, (5.9)

where yij is the jth observed peak in the ith joint spectrum, µij is the correspond-

ing mean value, and β = (H1, . . . , Hn, Q, λ,R1, . . . , Rm−4) is a parameter vector that

includes all the parameters used to model the mean value. Note that we use spectrum-

specific intensities Hi to adjust for the possible variation of intensity scales between

the n joint spectra.

Maximum-likelihood (ML) estimates of β and σ2 can be obtained by simultane-

ously maximizing log-likelihood function (5.9) with respect to these parameters. Al-

ternatively, the estimates can also be obtained via the least squares approach, i.e., by

minimizing the sum of squared residuals:
n∑

i=1

m∑
j=1

[yij − µij(β)]
2
. The REML-estimator

for σ2 is given by

σ̂2
REML =

1

nm− p

n∑

i=1

m∑

j=1

[yij − µij(β)]
2
, (5.10)

where p is the total number of parameters to be estimated in (5.1)–(5.4) and

(5.7)–(5.8).
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5.2.4 Practical implementation

For practical implementation, it is worth noting that all the parameters were positive.

The analyses were done using Matlab 2009a with functions fmincon (for con-

strained estimation) and fminunc (for unconstrained estimation) in the optimization

toolbox.

When performing the constrained estimation, the upper and lower boundaries

should be specified for the parameters using function fmincon: the relative abundance

Q was constrained to be in the interval [0, 100] and the reference intensities of each

technical replicates Hi was constrained to be non-negative. The (common-reference)

isotopic ratios were constrained to be positive and not larger than 1.3. The oxygen

incorporation rate λ was constrained to be [0, λ0]. This is because discrimination

between large values of λ, so that the labeling efficiency reaches its maximum, becomes

difficult.

The logarithmic transformation can be used for the parameters to work with

an unconstrained optimization problem. For λ we may want to ensure that it is

bounded in a [0, λ0] interval. In this case, we can consider the use of the Box-Cox

transformation: λ = λ0 exp(λ
′)/{exp(λ′) + 1}.

Both the constrained and unconstrained estimation approaches were implemented

and they showed much similarity in terms of both estimating the mean structure

and variance function parameters. Theoretically, the constrained and unconstrained

estimation approaches should lead to the same statistical estimates. However, usu-

ally in practice, unconstrained estimation is more robust than constrained estimation

since constraints often lead to the skewness of the parameter distributions while with

a transformation of the bounded parameters, the distributions are often more sym-

metric. Global optimization becomes easier for the more symmetric distributions.

Moreover, it is often unclear in reality what boundaries should be specified for each

of the parameters when performing a constrained estimation approach. Hence, all

the analyses in the following chapters of the dissertation will be based on the uncon-

strained estimation approach.

5.3 Results

We present results of the application of the model to the controlled experiment of the

enzymatic labeling of bovine cytochrome C peptides (see Section 3.1). The model was
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estimated by minimizing the minus log-likelihood (5.9). The estimation approaches

were implemented by using Matlab 2009a. In particular, function fminunc for un-

constrained optimization problems with Newton-Raphson algorithm was used. To

use the Newton-Raphson algorithm for the optimization, the gradient functions of

all the parameters have to be specified analytically, which is feasible in our modeling

approach. The proportions of water impurities of the heavy-oxygen water were as-

sumed to be equal to p16 = 2% and p17 = 1%. The true values of isotopic ratios Ri

were calculated from the atomic composition of the peptides by using the convolution

method, developed by Rockwood (1995). As the duration of the experiment is not

known, we estimate products λτ instead of λ.

Table 5.1: Results of the analysis of the data for Q = 1/3 for the homoscedastic model

(Est.: estimate; SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H1 – 22919.2 54.15 – 24650.2 106.4 – 74535.5 1009.5

H2 – 22331.6 53.87 – 22255.9 104.5 – 72945.2 1002.5

H3 – 21289.5 53.44 – 22116.7 104.6 – 63110.5 975.8

H4 – 23742.0 54.40 – 24445.3 106.3 – 71135.1 1007.1

H5 – 18474.1 52.40 – 19583.8 103.0 – 48362.5 944.3

H6 – 24517.0 54.74 – 24315.8 105.7 – 61482.0 977.7

Q 0.3333 0.3382 0.0060 0.3333 0.3419 0.0112 0.3333 0.5543 0.0255

λτ – 7.1631 0.4061 – 7.0290 0.6894 – 4.7178 0.3317

σ – 72.19 6.59 – 135.95 12.41 – 1342.16 122.52

R2 0.8703 0.8608 0.0017 0.7933 0.7892 0.0031 0.6645 0.8249 0.0105

R3 0.4223 0.3980 0.0039 0.3567 0.3276 0.0071 0.2454 0.2880 0.0170

R4 0.1478 0.1233 0.0033 0.1166 0.0880 0.0056 0.0653 0.0249 0.0143

R5 0.0413 0.0357 0.0037 0.0306 0.0258 0.0067 0.0139 0.0610 0.0130

R6 0.0097 0.0067 0.0027 0.0068 0.0023 0.0049 0.0025 0.0000 0.0000

Table 5.1 shows the results of the analysis for the three peptides, for which the

intended value of the relative abundance Q in the controlled experiment was 1/3.

Several patterns can be observed in Table 5.1. First of all, for each peptide, a con-

siderable between-spectra variability of intensity measurements, as indicated by the

estimates of Hi, is worth noting. By using the 18O-labeling strategy, this variability is

removed from the comparison of the peptide abundance in the unlabeled and labeled

samples.

It is also worth noting that, for the peptides with masses 1584.8 Da and 1456.7
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Table 5.2: Results of the analysis of the data for Q = 3/1 for the homoscedastic model

(Est.: estimate; SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H1 – 8315.4 33.68 – 8682.8 47.58 – 32299.5 591.2

H2 – 8178.9 33.39 – 8773.4 47.84 – 26557.5 533.7

H3 – 7366.2 31.75 – 7703.2 44.87 – 27490.0 543.6

H4 – 9776.5 36.99 – 10107.3 51.84 – 18438.3 460.0

H5 – 9429.3 36.22 – 9664.3 50.52 – 20800.6 478.3

H6 – 8334.4 33.77 – 8547.2 47.21 – 19252.5 466.8

Q (2.4) 2.4122 0.0089 (2.4) 2.3896 0.0119 (2.4) 2.0073 0.0327

λτ – 9.3945 0.1534 – 11.7699 0.6823 – 20.0000 0.0001

σ – 81.26 7.42 – 109.77 10.02 – 1086.65 99.20

R2 0.8703 0.8611 0.0023 0.7933 0.7741 0.0028 0.6645 0.7541 0.0117

R3 0.4223 0.4184 0.0018 0.3567 0.3349 0.0023 0.2454 0.3069 0.0090

R4 0.1478 0.1350 0.0016 0.1166 0.0967 0.0021 0.0653 0.0739 0.0085

R5 0.0413 0.0338 0.0017 0.0306 0.0213 0.0022 0.0139 0.0067 0.0094

R6 0.0097 0.0075 0.0017 0.0068 0.0046 0.0022 0.0025 0.0093 0.0094

Da, the point estimates for Q and for the isotopic ratios, for both models, are very

close to the true values. For the peptide with mass 1168.6 Da, the point estimates

differ from the true values.

Table 5.2 presents results of the analysis of the three peptides for the spectra,

for which the intended value of relative abundance Q was equal to 3/1. Remarkably,

for the peptides with masses 1584.8 Da and 1456.7 Da, relative abundance Q is

consistently estimated to be equal to about 2.4. This suggests a possible inaccuracy at

the stage of mixing the unlabeled and labeled samples when running the experiment.

The results, shown in Table 5.2, exhibit similar trends to those present in Table 5.1.

The point estimates for the isotopic ratios for the peptides with masses 1584.8 Da

and 1456.7 Da are in agreement with the values presented in Table 5.1 and with the

true values. Some differences between the estimated values of λτ in 5.2 and 5.1 can

be observed. This may be due to, e.g., a difference in the duration of the labeling

process.

For the peptide with mass 1168.6 Da, the estimates of isotopic ratios are more

different from those reported in Table 5.1 and from the true values. Also, the estima-

tion of λτ is clearly yielding different results. This suggests some problems with the

assumed form of the model for this peptide.
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Figure 5.3: Scatter plots of the residuals versus the logarithm of predicted intensity values.

To check the goodness of fit of the model, scatter plots of the residuals versus

the logarithm of the predicted intensity values are presented in Figure 5.3. The

symmetry of the clouds of the residuals around the horizontal line at zero indicates

the adequacy of the model with resect to its mean structure. However, the variability

of the residuals is clearly not constant, but increases as the intensity value increases.

This implies that the residual variance for the model is not correctly specified and

that an improvement could be made by assuming the variance of the residual errors

to be mean-intensity-dependent.

For comparison purposes, the data for Q = 1/3 were analyzed by using the method

developed by Eckel-Passow et al. (2006). We applied it to each of the six mass spectra

separately, as the method does not accommodate multiple spectra. Subsequently, we

computed the mean values of the estimates of Q and λτ , obtained for the spectra.

The mean estimates of Q were equal to 0.347, 0.345, and 0.595 for the peptides with

masses 1584.8 Da, 1456.7 Da, and 1168.6 Da, respectively. For the first two peptides,

the estimates are close to the corresponding values in Table 5.1 and to the true value

of Q = 1/3. For the peptide with mass 1168.6 Da, the estimate is larger than the

corresponding estimate in Table 5.1. The mean estimates of λτ were equal to 3.38,

3.685, and 2.30 for the peptides with masses 1584.8 Da, 1456.7 Da, and 1168.6 Da,
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respectively. These values seem to be halved, as compared to the corresponding

estimates, shown in Table 5.1. This is a systematic, expected effect, which can be

explained theoretically (refer to Valkenborg 2008, p.185–187).

5.4 Discussion

As mentioned in Chapter 4, several methods have already been proposed to analyze

data from enzymatic 18O-labeling experiments (Mirgorodskaya et al. 2000, Rao et al.

2005, López-Ferrer et al. 2006, Eckel-Passow et al. 2006, Ramos-Fernández et al. 2007).

Most of them, however, postulate the use of additional experimental steps, what is

an important limitation. The model described in this chapter does not require such

steps. It is similar in spirit to the approach developed by Eckel-Passow et al. (2006).

In fact, it is possible to show that the Markov-model, shown in this chapter, includes

the model developed by Eckel-Passow et al. (2006) for the probabilities of particular

mass shifts of the labeled peptide molecules (see equations (1) and (2) in their paper).

However, the model extends in several ways the one used by Eckel-Passow et al.. First,

it allows to account for the possible presence of 17O-atoms in the heavy-oxygen water.

Second, Eckel-Passow et al. (2006) suggest to estimate the isotopic distribution of a

peptide by using the average distribution developed by Senko et al. (1995). However,

the actual isotopic distribution of a peptide can markedly deviate from the average

one when, e.g., the peptide contains sulphur atoms (Valkenborg et al. 2007). Instead,

in the proposed model, isotopic ratios of the isotopic distribution are estimated. The

advantage of this solution is that the information about the ratios can be used to check

whether the observed series of mass-spectrum peaks is truly generated by a peptide

(Valkenborg et al. 2009). Note, however, that it is also possible to use the model

with a fixed, e.g., predicted (Valkenborg et al. 2008), isotopic distribution. Finally,

we develop a unified modeling framework, in which all parameters of interest, like the

relative abundance and the peptide-specific incorporation rate, are simultaneously

estimated from the data. It can easily accommodate different parameterizations, and

provide necessary estimates of precision.

The results of the application to the real-life data for relative abundance Q = 1/3

were consistent with the true parameter values for two of three analyzed peptides. For

one peptide, however, the results were biased both for the proposed model and for the

methods of Zhu et al. (2010) and Eckel-Passow et al. (2006). The bias may be caused

by the quality of MS-measurements in the available spectra by some experimental
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factors unknown to us. The possibility of the effect of such factors is further supported

by the results of the analysis of the data for Q = 3/1, in which the relative abundance

was consistently estimated to equal 2.4. This suggests that, in fact, the mixing of

the samples during the conduct of the controlled experiment might have not been

executed with a required precision.

In the next chapter, we present an extension of the model by accounting for the

heterosecdastic nature of the residual variance, which is an important characteristic

of the mass-spectrometry data.





Chapter 6

A frequentist approach for

the analysis of 18O-labeled

mass spectra using a

heteroscedastic fixed-effect

discrete-time Markov-chain

based model

In this chapter, we present a heteroscedastic regression model in the frequentist frame-

work to analyze 18O-labeled mass spectra data, based on the model described in

Chapter 5. The presented method has been published by Zhu et al. (2010).

6.1 Data exploration for an appropriate variance

function

In Section 5.3, we noted that the variability of residual errors was dependent on

the intensity scale. In order to find an appropriate variance function for the residual

55
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errors, we considered the residuals from the model assuming homoscedasticity, defined

by (5.1)–(5.4) and (5.7)–(5.8). Figure 6.1 shows the scatter plots of the residuals and

their observed intensities together with a lowess smoother. The smoothed curves, in

general, do not exhibit systematic trends, but oscillate around the horizontal line with

zero intercept, which indicates correct specification of the mean structure.
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Figure 6.1: Model residuals versus the observed intensities for the model with a constant

residual variance.

However, the variability of residuals increases with the intensity. This is illustrated

in Figure 6.2, which shows the scatter plots of the logarithm of the variance of residuals

versus the logarithm of the mean of the corresponding intensities. The variances were

computed by grouping the residuals corresponding to the same peak in the six joint

spectra. The interpretation of the scatter plots is enhanced by including a linear

regression and a lowess curve in the plots. The lowess smoothed curves in the majority

of the cases are fairly linear, and the linear regression lines fit the scatter plots quite

well. This indicates that the residual variance can be described by a power function
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of the mean intensity with power parameter θ, i.e.,

yij = µij + εij , εij ∼ N(0, σ2µ2θ
ij ) (6.1)

where yij and µij are, respectively, the observed and mean intensities of the jth

observed peak in the ith spectrum. Based on (5.4), µij can be equivalently written

as:

µij ≡ E(yij) =





HiRj +QHi

∑min(4,j−1)
k=0 PkRj−k if 1 ≤ j ≤ l,

QHi

∑4
k=j−l PkRj−k if l + 1 ≤ j ≤ l + 4.

(6.2)

Consequently, further analysis of the data was based on the model, defined by

(6.1)–(6.2) and (5.7)–(5.8).

4 6 8 10

3
4

5
6

7

log of the mean observed intensity

lo
g 

S
D

 o
f g

ro
up

ed
 r

es
id

ua
ls

log(SE)
lowess
linear reg

(a) 1168.6Da Q=0.33

4 5 6 7 8 9 10

2
3

4
5

log of the mean observed intensity

lo
g 

S
D

 o
f g

ro
up

ed
 r

es
id

ua
ls

log(SE)
lowess
linear reg

(b) 1456.7Da Q=0.33

4 5 6 7 8 9 10

2
3

4
5

log of the mean observed intensity

lo
g 

S
D

 o
f g

ro
up

ed
 r

es
id

ua
ls

log(SE)
lowess
linear reg

(c) 1584.8Da Q=0.33

4 5 6 7 8 9 10 11

3
4

5
6

7

log of the mean observed intensity

lo
g 

S
D

 o
f g

ro
up

ed
 r

es
id

ua
ls

log(SE)
lowess
linear reg

(d) 1168.6Da Q=3

5 6 7 8 9 10

2
3

4
5

log of the mean observed intensity

lo
g 

S
D

 o
f g

ro
up

ed
 r

es
id

ua
ls

log(SE)
lowess
linear reg

(e) 1456.7Da Q=3
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Figure 6.2: The logarithm of the standard deviations of (grouped) model residuals versus

the logarithm of the (mean) observed intensity for the model with a constant

residual variance.
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6.2 Estimation and inference

Assume that we have got n joint spectra, each with m observed peaks. The model,

specified by (6.1)–(6.2) and (5.7)–(5.8), can be fitted to observed data by using various

methods (Carroll and Ruppert 1988, Davidian and Giltinan 1995). The starting point

for them is the log-likelihood, given by

lML(β, θ, σ
2) = −

1

2

n∑

i=1

m∑

j=1

log
{
σ2µ2θ

ij (β)
}
−

1

2σ2

n∑

i=1

m∑

j=1

{
yij − µij(β)

µθ
ij(β)

}2

, (6.3)

where yij is the jth observed peak in the ith joint spectrum, µij is the corresponding

mean value, and β = (H1, . . . , Hn, Q, λ,R1, . . . , Rm−4) is a parameter vector that

includes all the parameters used to model the mean value.

Maximum-likelihood (ML) estimates of β, θ, and σ2 can be obtained by simulta-

neously maximizing log-likelihood function (6.3) with respect to these parameters. In

general, however, this is a numerically complex task, which requires finding an opti-

mum in a multidimensional parameter space. This task can be simplified by observing

that, if we assume that β and θ are known, the estimator for σ2 is given by

σ̂2
ML =

1

nm

n∑

i=1

m∑

j=1

{
yij − µij(β)

µθ
ij(β)

}2

. (6.4)

By plugging expression (6.4) in (6.3) and omitting constant terms, we obtain the

following log-profile-likelihood function, which depends only on θ and β:

l∗ML(β, θ) = −
1

2

n∑

i=1

m∑

j=1

log
{
µ2θ
ij (β)

}
−
nm

2
log




n∑

i=1

m∑

j=1

{
yij − µij(β)

µθ
ij(β)

}2



= −
nm

2
log








n∏

i=1

m∏

j=1

µij(β)





2θ
nm


−

nm

2
log




n∑

i=1

m∑

j=1

{
yij − µij(β)

µθ
ij(β)

}2

 .

(6.5)

Maximizing (6.5) with respect to θ and β allows obtaining estimates for these param-

eters. The estimates can then be used to compute the ML-estimate of σ2 from (6.4).

However, it is well known that the ML-estimator is biased downwards. Thus, espe-

cially when the number of spectra is small, it is better to replace it by the following
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REML-estimator:

σ̂2
REML =

1

nm− p

n∑

i=1

m∑

j=1

{
yij − µij(β)

µθ
ij(β)

}2

, (6.6)

where p denotes the number of the estimated mean-structure parameters.

The use of log-profile-likelihood (6.5) still requires a simultaneous maximization

of the function over β and θ. Moreover, the use of log-likelihood (6.3) or of log-

profile-likelihood (6.5) assumes that the data fulfill all the assumptions of the model,

defined in (6.1), (6.2) and (5.7)–(5.8). If some of the assumptions are not fulfilled,

the obtained estimates of the parameters may be incorrect.

An alternative estimation approach is to use a pseudo-likelihood generalized least

squares (PL-GLS) approach (Davidian and Giltinan 1995), which is more robust to

mis-specifications of the model, e.g., when the assumed distribution for the residuals

is hampered by some outlying observations. Moreover, it is also much simpler numeri-

cally. In the case of the power-of-the-mean variance, as specified in (6.1), the approach

is especially straightforward. Namely, log-profile-likelihood (6.5) can be expressed as

l∗ML(β, θ) = −
nm

2
log


{µ̃(β)}2θ

n∑

i=1

m∑

j=1

{
yij − µij(β)

µθ
ij(β)

}2

 , (6.7)

where µ̃(β) =

{
n∏

i=1

m∏
j=1

µij(β)

} 1
nm

. It follows that maximization of (6.7) is equivalent

to minimization of

l∗∗ML(β, θ) =
n∑

i=1

m∑

j=1

[
{yij − µij(β)}

{
µ̃(β)

µij(β)

}θ
]2

≡
n∑

i=1

m∑

j=1

{fij(β, θ)}
2
. (6.8)

Thus, minimization of (6.8), either over θ (while keeping β fixed) or over (β, θ), can

be viewed as an ordinary least squares (OLS) problem for a linear model with all

data equal to 0 and fij(β, θ) as the fitted mean structure. It can be also viewed as a

weighted least squares (WLS) problem for estimating β, with weights

wij(β, θ) =

{
µ̃(β)

µij(β)

}θ

.

As a result, the following algorithm can be used to estimate β, θ, and σ2:

1. Set k = 0. Use an initial estimate β̂(0) of β.
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2. Set k = k + 1.

3. While keeping β̂(k−1) fixed, compute an estimate θ̂(k) of θ from (6.8) by using

OLS.

4. Compute weights w
(k)
ij (β̂(k−1), θ̂(k)). While keeping the weights fixed, obtain

estimate β̂(k) of β by using WLS.

5. Iterate between steps 2–4 until convergence.

6. Use the obtained estimates of β and θ to compute an estimate of σ2 from (6.4)

or (6.6).

Irrespectively of the estimation approach used, standard errors of the estimates of β, θ,

and σ2 can be obtained from the inverse of the negative Hessian of log-likelihood (6.3),

computed at the estimated values of the parameters. Alternatively, if parameters β

are of the main interest, variance-covariance matrix of the estimate of β can be

computed from the following formula (Davidian and Giltinan 1995):

σ2




n∑

i=1

m∑

j=1

µ−2θ
ij (β)

∂µij(β)

∂β

{
∂µij(β)

∂β

}′

 , (6.9)

with all unknown parameters replaced by their estimated values.

6.3 Application to bovine cytochrome C data

Again, we present results of the application of the model to the controlled experiment

of the enzymatic labeling of bovine cytochrome C peptides. The model was estimated

by maximizing log-profile-likelihood (6.5) and by using the PL-GLS approach (refer

to Section 6.2). The estimation approaches were implemented by using Matlab 2009a.

In particular, function fminunc for unconstrained optimization problems was used.

The proportions of water impurities of the heavy-oxygen water were assumed to be

equal to p16 = 2% and p17 = 1%.

Table 6.1 presents the PL-GLS estimates of the model for the three analyzed

peptides for the controlled experiment with intended relative abundance Q = 1/3.

The estimates obtained by maximizing log-profile-likelihood (6.5) were very similar

and therefore are not shown. Standard errors were obtained from the inverse of the
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Table 6.1: Results of the analysis of the data for Q = 1/3 for the heteroscedastic model

(Est.: estimate; SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H1 – 22919.4 116.3 – 24585.0 221.2 – 79829.8 2785.3

H2 – 22330.7 114.2 – 22466.2 208.2 – 79495.0 2815.8

H3 – 21347.8 111.0 – 22335.1 208.2 – 68540.7 2480.6

H4 – 23857.2 121.7 – 24461.1 221.2 – 73386.6 2536.7

H5 – 18464.0 99.7 – 19525.5 184.9 – 48984.7 1803.0

H6 – 24687.6 126.5 – 24832.6 230.0 – 63503.9 2251.8

Q 0.3333 0.3369 0.0028 0.3333 0.3384 0.0043 0.3333 0.5215 0.0186

λτ – 7.3162 0.2295 – 7.3941 0.3247 – 4.7178 0.2890

σ – 0.4394 0.2283 – 0.3471 0.1428 – 1.2152 0.5235

θ – 0.6041 0.0645 – 0.6894 0.0514 – 0.7320 0.0461

R2 0.8703 0.8570 0.0038 0.7933 0.7806 0.0061 0.6645 0.7638 0.0226

R3 0.4223 0.3977 0.0025 0.3567 0.3273 0.0035 0.2454 0.2845 0.0121

R4 0.1478 0.1243 0.0015 0.1166 0.0904 0.0017 0.0653 0.0545 0.0036

R5 0.0413 0.0331 0.0008 0.0306 0.0211 0.0007 0.0139 0.0097 0.0011

R6 0.0097 0.0084 0.0003 0.0068 0.0057 0.0003 0.0025 0.0012 0.0002

Table 6.2: Results of the analysis of the data for Q = 3/1 for the heteroscedastic model

(Est.: estimate; SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H1 – 8316.0 53.45 – 8617.7 72.99 – 32130.8 857.0

H2 – 8168.4 52.80 – 8732.5 73.21 – 27108.5 723.9

H3 – 7424.0 49.99 – 7748.5 67.15 – 28827.4 775.5

H4 – 9773.1 60.68 – 10135.9 82.37 – 17037.4 468.9

H5 – 9482.2 59.72 – 9702.9 79.19 – 19488.7 527.7

H6 – 8372.2 54.17 – 8623.3 74.02 – 18502.8 503.8

Q (2.4) 2.3996 0.0131 (2.4) 2.3785 0.0165 (2.4) 2.1200 0.0467

λτ – 9.6100 0.1551 – 12.7660 0.8446 – 20.0000 0.0181

σ – 0.4624 0.3165 – 0.4743 0.2675 – 0.1178 0.0475

θ – 0.6109 0.0823 – 0.6362 0.0690 – 0.9336 0.0448

R2 0.8703 0.8607 0.0042 0.7933 0.7739 0.0049 0.6645 0.7187 0.0177

R3 0.4223 0.4203 0.0027 0.3567 0.3374 0.0029 0.2454 0.2901 0.0083

R4 0.1478 0.1355 0.0013 0.1166 0.0975 0.0013 0.0653 0.0699 0.0023

R5 0.0413 0.0338 0.0005 0.0306 0.0213 0.0005 0.0139 0.0121 0.0005

R6 0.0097 0.0073 0.0002 0.0068 0.0044 0.0002 0.0025 0.0015 0.0001

negative Hessian of log-likelihood (6.3). The values obtained from (6.9) were very

similar.

Several patterns can be observed in Table 6.1. First of all, for the peptides with
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masses 1584.8 Da and 1456.7 Da, the point estimates are quite similar to those in

the homoscedastic model shown in Table 5.1 for all parameters, except for σ. The

latter difference is obvious, because the two models assume different forms of residual

variance. Important differences can be seen in the standard errors of the parameters.

For instance, for the parameter of interest, Q, standard errors for the homoscedastic

model (see Tables 5.1 and 5.2) are larger than for the heteroscedastic one. This means

that the former model is less efficient in estimating Q. As a consequence, the model

may more often lead to false negative findings, i.e., to declare differences in peptides’

abundances as statistically nonsignificant while, in fact, there are such differences.

On the other hand, standard errors for, e.g., the reference intensities Hi are smaller

for the homoscedastic model. Thus, they are more “optimistic”, i.e., they suggest a

higher precision of estimation of the parameters than it is actually the case, as seen

from the heteroscedastic model.

Again, for the peptides with masses 1584.8 Da and 1456.7 Da, the point estimates

for Q and for the isotopic ratios, for both models, are very close to the true values.

For the peptide with mass 1168.6 Da, the results of the two models differ.

Table 6.2 presents results of the analysis of the three peptides for the spectra,

for which the intended value of relative abundance Q was equal to 3/1. The results,

shown in Table 6.2, exhibit similar trends to those present in Table 6.1. The estimated

values of θ for the heteroscedastic model are close, taking into account the precision

of estimation, to the results from Table 6.1. This suggests that the chosen functional

form of dependence of residual variance on intensity was appropriate.

6.4 A simulation study

In this section, we show results of a simulation study, undertaken to check the statis-

tical properties of the proposed heteroscedastic model.

For the simulation, we chose three sets of isotopic ratios – the average one (denoted

by A) obtained by a Poisson approximation with the model developed by Breen

et al. (2000) (see Section 2.3); the extremely small ratios (denoted by E1); and the

extremely large ratios (denoted by E2) within 2001 ± 0.5 Da mass range. E1 and

E2 are the isotopic distributions with the second isotopic peak being the least and

most abundant among all the peptides around 2001 Da from the NCBI data (see

Section 3.1). Figure 6.3 illustrates graphically the three sets of isotopic distributions.

The duration of the enzymatic reaction was kept constant at τ = 120 minutes. The
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Figure 6.3: The three sets of isotopic distributions used in the simulation study.

proportions of heavy-oxygen water impurities were assumed to be equal to p16 = 2%

and p17 = 1%. For this simulation study, we considered as in the bovine cytochrome

C data sets, six technical replicates. Possible variability due to, e.g., laser fluctuations

and inefficient crystallization, was simulated by using six different reference intensities,

namely, H1 = 18000, H2 = 20000, H3 = 23000, H4 = 21000, H5 = 19000, and H6 =

22500.

In the simulation study, the data sets were generated with combinations of settings

for different parameters shown as below:

Q : {0.5 1 2}

λ : {0.02 0.04 0.10}

σ : {0.05 1.50}

R : {A E1 E2}

θ : 0.6

500 data sets were generated for each setting. A graphical representation of the various

settings of the simulation for the spectrum with reference intensity H1 = 18000 is

shown in Figures 6.4 to 6.6.

For comparison purposes, both heteroscedastic model, defined by (6.1)–(6.2) and

(5.7)–(5.8), and homoscedastic model, defined by (5.1)–(5.4) and (5.7)–(5.8), were

applied to the simulated data. For comparison purposes, the heteroscedastic model
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was evaluated by log-profile-likelihood (PLK), by using equation (6.5) and by PL-GLS

(see Section 6.2) algorithm. The homoscedastic model, based on equations (5.1)–(5.4)

and (5.7)–(5.8), was evaluated by the least squares (LS) and maximum-likelihood

(ML).

6.4.1 Simulation with fixed reaction time τ = 120(minutes)

For the homoscedastic model, as ML and LS showed very similar results, only the

results of LS are shown. As the isotopic ratios are estimated very precisely and close

to their true values, these results are not discussed here. Thus, we mainly focus on the

results of the estimation of Q, λ, θ and σ. The summary statistics of the parameters

are shown in Tables A.1 to A.12 (Appendix A). The mean relative bias is defined as

the percentage of bias with respect to the scale of the true value for the parameter,

i.e., b̄ =
(
β̂ − β

)
/β = β̂/β − 1. The empirical variance S2

emp denotes the variance of

estimates for the 500 replicated data sets. The model-based variance S2
mb is the mean

of the model-based variances for the 500 data sets. Since most of the parameters were

estimated based on transformations, the Delta method was used to transform these

model-based variances of the parameter estimates into their original scales. The mean

squared error indicates the efficiency of a parameter estimate and is equal to the sum

of the squared bias and the empirical variance, i.e., MSE= (β̂ − β)2 + S2
emp.

Figures 6.7 and 6.8 show the estimation results for λ. When λ was equal to 0.10

and σ was equal to 1.50, for most of the data sets, the optimization algorithms didn’t

converge. Thus, the corresponding results were excluded from the plots. The reason

for the non-convergence when λ = 0.1 will be explained in Section 6.4.2. The figures

show that the MSE for λ decreases with the increase of Q, indicating that a more

abundant labeled peptide leads to more precise estimates for λ. Furthermore, a larger

λ results in a larger MSE.

Figures 6.9 to 6.10 show the MSE for Q by including only the data sets that con-

verged for λ = 0.10. The figures indicate that a smaller Q or a larger λ leads to a

smaller MSE for Q. All the figures also show that the MSE is consistently smaller

for the heteroscedastic model, fitted by PLK and PL-GLS, than for the homoscedas-

tic model, fitted by LS. The results for the heteroscedastic model, using the two

optimization approaches, look almost identical in most of the figures.

Figures 6.11 to 6.12 show that, in general, the MSE for θ increases as λ or Q

increases.
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6.4.2 Non-estimability for λ

The simulation study shows that bias of λ estimates increases as the true value of

λ increases. This can be explained by Figure 5.2. When λ is greater than 0.09, it

becomes very difficult to estimate, because any value in the interval (0.09, 0.167) yields

almost the same shift probabilities. Consequently, it becomes difficult to distinguish

between different values of λ based on data. The convergence problem became more

serious when the residual variance was larger (when σ = 1.50) as the information for

estimating the parameter would very likely be buried under the noise.

To investigate the influence of the incomplete labeling on the non-estimability, the

simulations were repeated by using the same settings for all the other parameters, but

with four possible reaction times: 24, 48, 90, and 120, and λ = 0.10.

The estimates of parameters, other than λ, were almost identical to the results

obtained in the previous simulation study. Figures 6.13 and 6.14 show the MSE for λ

for the new simulation. Again, due to non-convergence for τ = 120, the corresponding

results were not included. The simulation study ascertains that, for shorter reaction

times τ , λ can be estimated. This means that to solve the problem of non-estimability

for λ, shortening the labeling (reaction) time can be considered.

An alternative solution is to perform a two-stage estimation approach.

To be more specific, the estimation of λ can be separated from the other parame-

ters. To perform the analysis, in the first stage, a sufficient number of grid points for λ

is chosen. The other parameters are estimated by maximizing the likelihood function,

given the value of λ at a grid point. The value of λ, which gives the maximum of

values of the likelihood function over all the grid points, is chosen as the estimate of

λ. At the second stage, λ is treated as a fixed value by using the estimate from the

first stage and the other parameters are estimated conditional on the fixed value of

λ.

From Table 6.3, it can be observed that larger Q or smaller σ leads to smaller

MSE for λ. Table 6.4 indicates that the MSE for Q increases for larger values of Q

or σ. Moreover, it can be seen from Table 6.5 that the MSE for θ increases with the

increase of Q. These findings are all consistent with the results obtained from the

one-stage analysis of the simulations (see Section 6.4.1).

Through simulation study based on the settings in which there was non-estimability

issue for λ, two-stage analysis solved the problem. Moreover, parameter estimates

with a smaller MSE were obtained (shown in Tables 6.3 to 6.6).



66 Chapter 6. Frequentist Heteroscedastic Model for 18O-Labeled Mass Spectra

6.5 Discussion

We have presented an extension of the model, proposed by Valkenborg (2008), which

takes into account the (mean-dependent) heteroscedastic nature of the residual errors.

We implemented the model by using a PL-GLS algorithm, which is more robust than

the direct likelihood maximization.

The results of the application to the real-life data were, in general, consistent with

the true parameter values for two of three analyzed peptides. The consideration of

the heteroscedastic residual variance leads to a precision gain for the parameter of

interest.

In the simulation study, the parameters of the heteroscedastic model were well

estimated. For the homoscedastic model, although the bias was also very small, the

variances were slightly larger, resulting in larger mean squared errors for almost all

the settings. This indicates that the misspecification of the variance function will lead

to a precision loss. The relative abundance parameter was estimated with a better

precision when it was smaller or when the labeling was more complete (for larger λ).

Moreover, a more abundant labeled peptide sample leads to more precise estimates

for the oxygen incorporation rate λ. This is reasonable, because the information of

the estimation of λ comes mainly from the labeled peptide. All the parameters were

more precisely estimated when the amount of random noise was smaller.

It is also worth noting that non-estimability for λ may occur when labeling is

complete (λ ≥ 0.09 for reaction time τ = 120 minutes), and when the amount of

residual error increases. Such problem can be solved either by shortening the reaction

time period, i.e., by decreasing τ when conducting the experiment, or by performing

a two-stage analysis (see Section 6.4.2). Note, however, that the more complete the

labeling is, the more precise estimates of the relative abundance can be produced.

Thus, there is a trade-off between the estimation of λ and Q.

Numerical complexity of the developed methodology is low. On average, fitting

the model for each peptide, presented in Tables 6.1 and 6.2, took about 1.5s on

a HP8530p laptop using Matlab 2009a under Windows Vista R©. Thus, upon the

automation of the selection of peak-clusters for fitting the model, the method can be

used in a high-throughput environment.

Several extensions of the proposed methodology are possible. For instance, differ-

ent residual variance functions can be used (Davidian and Giltinan 1995). Inclusion

of random effects, which would allow estimating, e.g., the between-sample biological
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variability, is possible. This type of extension will be dealt with in the next chapter.
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Figure 6.4: Graphical representation for simulation settings with A ratios and H1 = 18000.
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Figure 6.5: Graphical representation for simulation settings with E1 ratios and H1 = 18000.
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Figure 6.6: Graphical representation for simulation settings with E2 ratios and H1 = 18000.
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Results of the simulation with fixed reaction time τ = 120(minutes)
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Figure 6.7: Graphical representation of the MSE of λ for settings with σ = 0.05 and τ = 120 (excluding λ = 0.10).
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Figure 6.8: Graphical representation of the MSE of λ for settings with σ = 1.50 and τ = 120 (excluding λ = 0.10).
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Figure 6.9: Graphical representation of the MSE of Q for settings with σ = 0.05 (τ = 120).
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Figure 6.10: Graphical representation of the MSE of Q for settings with σ = 1.50 (τ = 120).
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Figure 6.11: Graphical representation of the MSE of θ for settings with σ = 0.05 (τ = 120).
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Figure 6.12: Graphical representation of the MSE of θ for settings with σ = 1.50 (τ = 120).
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Figure 6.13: Graphical representation of the MSE of λ for settings with σ = 0.05 for various values of τ (excluding τ = 120).
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Figure 6.14: Graphical representation of the MSE of λ for settings with σ = 1.50 for various values of τ (excluding τ = 120).
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Simulation results of the two-stage analysis:

Table 6.3: Mean relative bias b̄, empirical variance S2
emp and MSE of λ (From the first-stage

analysis).

R Q σ b̄ (×1e − 3) S2
emp (×1e − 7) MSE (×1e − 7)

0.5 0.05 0.14 24.55 24.55

1.50 -109.6 2485 3685

A 1.0 0.05 0.58 6.04 6.07

1.50 -12.58 2510 2526

2.0 0.05 0.14 1.78 1.78

1.50 22.87 1453 1506

0.5 0.05 1.14 37.85 37.98

1.50 -142.4 2642 4670

E1 1.0 0.05 0.18 9.64 9.64

1.50 -44.25 2376 2572

2.0 0.05 -0.02 2.34 2.34

1.50 20.79 1900 1943

0.5 0.05 1.70 33.28 33.57

1.50 -114.3 2798 4105

E2 1.0 0.05 0.26 8.71 8.72

1.50 -51.55 1968 2234

2.0 0.05 -0.16 2.40 2.40

1.50 12.39 1673 1688



76 Chapter 6. Frequentist Heteroscedastic Model for 18O-Labeled Mass Spectra

Table 6.4: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of Q (From the second-stage analysis).

R Q σ b̄ (×1e − 5) S2
emp/S

2
mb (×1e − 6) MSE (×1e − 6)

0.5 0.05 2.14 0.107/0.021 0.108

1.50 442.1 63.41/18915 68.29

A 1.0 0.05 -2.86 0.229/0.016 0.230

1.50 177.3 155.3/13014 158.4

2.0 0.05 -0.73 0.572/0.017 0.572

1.50 65.18 414.8/12841 416.5

0.5 0.05 0.11 0.155/0.099 0.155

1.50 460.8 94.20/39921 99.51

E1 1.0 0.05 -1.78 0.325/0.026 0.325

1.50 221.5 186.9/34066 191.8

2.0 0.05 -1.02 0.729/0.117 0.730

1.50 116.0 568.2/64795 573.6

0.5 0.05 -1.04 0.122/0.058 0.122

1.50 413.6 79.83/43410 841.0

E2 1.0 0.05 -1.59 0.243/0.030 0.244

1.50 198.3 164.7/24655 168.7

2.0 0.05 -1.07 0.616/0.066 0.617

1.50 96.47 422.7/54702 426.5
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Table 6.5: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp, mean model

based variance S2
mb and MSE of θ (From the second-stage analysis).

R Q σ θ̄ b̄(×1e − 2) S2
emp/S

2
mb (×1e − 2) MSE(×1e − 2)

0.5 0.05 0.5926 -1.23 0.540/12.94 0.545

1.50 0.5897 -1.71 0.622/13.15 0.632

A 1.0 0.05 0.5929 -1.19 0.645/15.54 0.650

1.50 0.5969 -0.510 0.747/15.74 0.748

2.0 0.05 0.5977 -0.386 0.892/20.12 0.893

1.50 0.5969 -0.512 0.833/19.79 0.834

0.5 0.05 0.5881 -1.99 0.968/20.72 0.983

1.50 0.5783 -3.62 0.921/21.40 0.969

E1 1.0 0.05 0.6051 0.853 1.14/27.33 1.15

1.50 0.5888 -1.87 1.16/27.34 1.17

2.0 0.05 0.5830 -2.84 1.77/36.11 1.80

1.50 0.5789 -3.51 1.64/35.46 1.68

0.5 0.05 0.5863 -2.28 0.964/22.58 0.983

1.50 0.5819 -3.02 1.01/23.19 1.04

E2 1.0 0.05 0.5980 -0.329 1.20/29.35 1.20

1.50 0.5987 -0.220 1.17/30.13 1.17

2.0 0.05 0.5929 -1.18 1.80/40.21 1.81

1.50 0.5877 -2.05 1.74/40.26 1.75
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Table 6.6: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp and MSE of σ

(From the second-stage analysis).

R σ Q σ̄ b̄ S2
emp(×1e − 2) MSE(×1e − 2)

0.5 0.065 0.293 0.232 0.253

0.05 1.0 0.069 0.373 0.266 0.301

A 2.0 0.074 0.476 0.462 0.518

0.5 2.039 0.360 178.8 207.9

1.50 1.0 2.043 0.362 251.5 280.9

2.0 2.184 0.456 382.9 429.7

0.5 0.082 0.650 1.806 1.911

0.05 1.0 0.073 0.454 0.651 0.702

E1 2.0 0.125 1.495 5.959 6.518

0.5 2.484 0.656 425.5 522.2

1.50 1.0 2.638 0.759 961.9 1091

2.0 3.696 1.464 3082 3564

0.5 0.083 0.653 1.018 1.125

0.05 1.0 0.082 0.640 0.836 0.938

E2 2.0 0.114 1.281 3.252 3.662

0.5 2.582 0.722 629.1 746.3

1.50 1.0 2.431 0.621 683.8 770.5

2.0 3.592 1.395 2933 3271



Chapter 7

A frequentist approach for

the analysis of 18O-labeled

mass spectra using a

heteroscedastic random-effect

Markov-chain-based model

MS data can be subject to technical and/or biological variability. Technical variability

is related to the between-spectra variability of intensity measurements even for the

same sample. Biological variability is related to the variability of measurements for

different biological samples.

It is worth noting that, the estimation of different sources of variability in the

context of mass spectrometry data, has never been addressed in the methods proposed

for the analysis of the 18O-labeled mass spectrometry experiments. In this chapter,

we present a heteroscedastic regression model with random effects, in the frequentist

framework, as a method to account for the between-spectra variability.

79
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7.1 Model formulation

The model formulation is similar to the one defined in (6.1)–(6.2) and (5.7)–(5.8),

modified by including a spectrum-specific relative abundance parameter Qi for the

ith spectrum. More specifically, consider a peptide, which has l ≥ 5 isotopic variants

(including the monoisotopic variant). The observed peak intensity yij of the jth

observed peak, where j = 1, 2, . . ., in the ith mass spectrum is defined as

yij = µij + εij , (7.1)

where εij ∼ N(0, σ2µ2θ
ij ), (7.2)

and εij ’s are independent. The mean intensity µij of the jth peak in the ith spectrum

is expressed as follows:

µij ≡ E(yij) =





HiRj +QiHi

∑min(4,j−1)
k=0 PkRj−k if 1 ≤ j ≤ l,

QiHi

∑4
k=j−l PkRj−k if l + 1 ≤ j ≤ l + 4.

(7.3)

We assume that Hi and Qi are random, i.e.,(
Hi

Qi

)
∼ N

((
H

Q

)
,

(
σ2
H σHQ

σHQ σ2
Q

))
. (7.4)

The parameters of interest are Q, σ2
Q and σ2

H . Parameters Q and σ2
Q capture,

respectively, the (mean) relative abundance of the peptide in the two peptide samples

and biological variability across different spectra. Parameter σ2
H is related to the

technical variability of intensity measurements across the different spectra. It is worth

noting that for technical replicates of mass spectra, there is no need to account for

the variability of the relative abundance. In such case, Qi, Q and σ2
Q can be replaced

by a single fixed-effect Q and (7.4) degenerates to a univariate normal distribution

for Hi.

7.2 Estimation and inference

7.2.1 Estimation approach for the homoscedastic regression

model

As an initial step, the model was implemented with homoscedastic residual variance.

The optimization approach for the homoscedastic random effects model is based on
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maximizing the marginal likelihood function by ‘eliminating’ the random parameters

Hi and/or Qi. This can be done by integrating out these random effects over their

assumed distributions.

More specifically, assuming that n joint spectra are available, defineH = (H1, . . . , Hn)

and Q = (Q1, . . . , Qn). For the homoscedastic model, with the mean structure spec-

ified by (7.3)–(7.4), the joint likelihood is given by

LMarginal(β, σ
2) =

∫ ∫
LML(β, σ

2)F (H,Q)d(H,Q), (7.5)

with the corresponding log-likelihood of LML(β, σ
2), omitting the constant terms,

given as

lML(β, σ
2) = −

n∑

i=1

m∑

j=1

log (σ)−
1

2σ2

n∑

i=1

m∑

j=1

[yij − µij(β)]
2
. (7.6)

In (7.5), F (H,Q) denotes the product of the density of the assumed joint distribu-

tion for the random effects Hi and Qi, specified by (7.4). Vector β contains all the pa-

rameters used to model the mean value µij , i.e., β = (H1, . . . , Hn, Q1, . . . , Qn, λ,R1, . . . ,

Rm−4) .

As the integral, shown in (7.5), has no closed form, a solution is to use numerical

approximation of the integral. For this purpose, an adaptive quadrature function

is used. The advantage of using an adaptive quadrature function is that it adapts

the integral such that more weight is assigned to the parameter space where the

distribution of the random effects is concentrated (Molenberghs and Verbeke 2005).

Consequently, the adaptive quadrature function leads to more accurate approximation

of the integral.

The corresponding REML-likelihood becomes

LREML(β, σ
2) =

∣∣∣∣∣

n∑

i=1

XT
i Xi

∣∣∣∣∣

1/2

×

∣∣∣∣∣

n∑

i=1

XT
i WiXi

∣∣∣∣∣

−1/2

× LMarginal(β, σ
2), (7.7)

where Xi is a design matrix for the ith spectrum, involving the shift probabilities

P (defined in Secction 5.2.2). Thus, matrix Xi contains only one unknown parameter

(λ). (For linear mixed models when no unknown parameter is involved in the design

matrix Xi, the term

∣∣∣∣
n∑

i=1

XT
i Xi

∣∣∣∣ becomes a constant and can then be ignored from

the REML-likelihood function.) Matrix Wi is the inverse of the covariance matrix

Vi, where Vi is the variance-covariance matrix for the intensity values of the ith
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spectrum. Matrix Vi contains the sum of the residual variance σ2 and variance of the

random effects on the main diagonal and only the variance of the random effects on

the off-diagonal.

7.2.2 Estimation approach for the heteroscedastic regression

model

Similar to equation (7.5), the joint likelihood for the heteroscedastic model (7.1)–(7.4)

is given by

LMarginal(β, θ, σ
2) =

∫ ∫
LML(β, θ, σ

2)F (H,Q)d(H,Q), (7.8)

where the corresponding log-likelihood of LML(β, θ, σ
2), omitting the constant terms,

is in the same form as equation (6.3). The only difference is that the vector β now

contains spectrum-specific relative abundance parameters, i.e., (Q1, . . . , Qn).

To maximize the marginal likelihood shown in (7.8), an adaptive quadrature func-

tion can be considered. The maximization of the marginal likelihood, shown in (7.8),

is numerically complex and is very sensitive to the choice of initial values. An alter-

native is to perform a two-stage analysis, described by Davidian and Giltinan (1995).

The first stage of the analysis entails a PL-GLS algorithm for the estimation of the

mean-dependent variance function, by treating all the effects as fixed ones. The sec-

ond stage produces the estimates of the random effect(s) based on the individual

estimates obtained from the first stage.

More specifically, for the first stage, the PL-GLS algorithm is the same as de-

scribed in Section 6.2, but with the spectrum-specific relative abundance parameter

Qi included.

At the second stage, the spectrum-specific parameter estimates Ĥi and Q̂i, esti-

mated from the first stage, are treated as “data” to obtain the estimates for H, σ2
H ,

Q and σ2
Q.

More specifically, the following model is used:

(η̂i) ∼ N (η,D +Ci) . (7.9)

where η̂i =

(
Ĥi

Q̂i

)
, η =

(
H

Q

)
and D =

(
σ2
H σHQ

σHQ σ2
Q

)
. Matrix Ci is the

variance-covariance matrix for Ĥi and Q̂i obtained from the first stage. The inclusion
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of Ci accounts for the variability of the estimates of Ĥi and Q̂i around their true

values and thus can be deemed as the uncertainty of the within-subject (spectra)

variability for small-sample applications. We now wish to estimate η and D as the

mean and variance-covariance matrix of the random effects. A straightforward way

for the estimation is to maximize the log-likelihood, resulting from (7.9). Ignoring

constant terms, the log-likelihood is

l(η,D) = −

n∑

i=1

[
log |D +Ci|+ (η̂i − η)

T
(D +Ci)

−1
(η̂i − η)

]
. (7.10)

Maximizing the log-likelihood function in (7.10) can be approached in two ways:

by direct maximization of the function shown in (7.10), or by using the EM algorithm.

The EM algorithm is performed in three steps:

(i) Set k = 0 and obtain starting values as

η̂(0) = n−1
n∑

i=1

η̂i, D̂(0) = (n− 1)−1
n∑

i=1

(
η̂i − η̂(0)

) (
η̂i − η̂(0)

)T
.

(ii) “E-step”: set k = k + 1 and produce current empirical Bayes estimates of the

ηi, i = 1, . . . , n, given by

η̃i,(k+1) =
(
D̂−1

k +C−1
i

)−1 (
C−1

i η̂i + D̂−1
k η̂(k)

)
.

(iii) “M-step”: obtain updated estimates as

η̂(k+1) = n−1
n∑

i=1

η̃i,(k+1),

D̂(k+1) = n−1
n∑

i=1

(
D̂−1

(k) +C−1
i

)−1

+ n−1
n∑

i=1

(
η̃i,(k+1) − η̂(k+1)

) (
η̃i,(k+1) − η̂(k+1)

)T
.

(iv) Iterate between steps (ii)–(iii) until convergence.

For spectra with technical replicates, the vectors and matrices degenerate to the

corresponding scalers and vectors for the random effect of H.

Irrespectively of the estimation approaches used, standard errors of the estimates

can be obtained from the inverse of negative Hessian of the marginal loglikelihood

(7.8), computed at the estimated values of the parameters.



84 Chapter 7. Frequentist Heteroscedastic Random-Effect Model for 18O-Labeled MS

7.3 Results

In this section, we present results of the application of the model to both real-life and

simulated data.

7.3.1 Application to bovine cytochrome C data set

In this section, we present an application of the model to the controlled experiment

of the enzymatic labeling of bovine cytochrome C peptides (see Section 3.1).

Random H

In this section, the results of the model by including only the random effect for H

(not for Q) are presented. This is reasonable, as the data set contains technical repli-

cates with same biological (labeled and unlabeled) samples for different spectra, which

should give the same value of Q. Practically, the estimation approaches were imple-

mented by using Matlab 2009a. In particular, function fminunc for unconstrained

optimization problems was used. As an initial step, the homoscedastic model, with

mean structure defined by (7.3)–(7.4), was fitted. In this respect, the model was es-

timated by maximizing the marginal likelihood via a numerical approximation of the

integral using function quadl with adaptive Lobatto quadrature. As in Chapters 5

and 6, the proportions of water impurities of the heavy-oxygen water were assumed to

be equal to p16 = 2% and p17 = 1%. The true values of isotopic ratios Ri were calcu-

lated from the atomic composition of the peptides by using the convolution method,

developed by Rockwood (1995). As the duration of the experiment is not known, we

estimated products λτ instead of λ.

Tables 7.3 and 7.4 present results of the analysis of the three peptides for the

spectra under the homoscedastic residual variance assumption, for which the intended

value of relative abundance Q was equal to 1/3 and 3/1, respectively. The results

are mostly consistent with those shown in Chapters 5 and 6. For each peptide, a

considerable amount of between-spectra variability of the intensity measurements,

represented by the parameter σ2
H , is worth noting. This, on the one hand, demon-

strates the advantage of using the 18O-labeling strategy, since the variability can be

removed from the comparison of the peptide abundance in the unlabeled and labeled

samples. Moreover, it shows that a random effects model accounting for the between-

spectra variability is useful.
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The second analysis assumes heteroscedasticity for the residual variance (7.2). The

analysis is based on the marginal log-likelihood (7.8), by using the point estimates

obtained from the two-stage analysis, with the optimization approach presented in

Section 7.2.2, as the initial values. The differences of the point estimates obtained

from the analysis based on the marginal log-likelihood (7.8) and those of the two-stage

analysis with direct log-likelihood (7.10) for the random effects and the EM algorithm

were mostly at the magnitude of 10−7 to 10−11 and can therefore be ignored. Thus,

we present only the results obtained from the marginal log-likelihood.

The results, shown in Tables 7.5 and 7.6 are, in general, consistent with the results

of the homoscedastic model, shown in Tables 7.3 and 7.4.

The point estimates of Q are in agreement, especially for the two peptides with

masses 1456.7 and 1584.8 Da, while the standard errors for the heteroscedastic model

are smaller for Q = 1/3. This indicates that the use of a (mean-)variance function

results in a precision gain for the parameters in the mean structure.

It is also important to note that for peptide with mass 1168.6 Da, the point

estimates of the isotopic ratios for the heteroscedastic model are much closer to the

true values, although they are still more biased than for the other two peptides. Taking

into account the standard errors of these parameter estimates, the heteroscedastic

model shows less departure from the true values. Thus, the model provides better

estimates of these isotopic distribution parameters.

Interestingly, standard errors of Q in Tables 7.5 and 7.6, as compared with the ones

shown in Tables 6.1 and 6.2 (with fixed effects), are slightly smaller. This indicates

the consideration of between-spectra variability may lead to more precise parameter

estimates.

To check the goodness of fit of the model, scatter plots of the standardized (rescaled

with the corresponding power-of-the-mean variance function) conditional residuals

versus the logarithm of the predicted intensity values are presented in Figure 7.1. The

symmetry of the clouds of the residuals around the horizontal line at zero indicates

the adequacy of the model with respect to its mean structure. No systematic trend

of the spread of the residuals along the abscissa indicates the constant nature of the

standardized residuals and thus implies the appropriateness of the specified power-of-

the-mean variance function.
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(b) 1456.7Da Q=0.33
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(c) 1584.8Da Q=0.33
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(d) 1168.6Da Q=3
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(e) 1456.7Da Q=3
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(f) 1584.8Da Q=3

Figure 7.1: Scatter plots of the standardized residuals versus the logarithm of predicted

intensity values.

Random H and Q

The data set was re-analyzed by assuming the heteroscedastic model with both ran-

dom H and Q. Two types of estimation approaches were considered for this purpose:

the analysis based on the marginal log-likelihood (7.8) and the two-stage analysis with

maximization of direct log-likelihood (7.10) for the random effects. For the analysis

based on the marginal log-likelihood (7.8), the estimates obtained from the two-stage

analysis were used as the initial values. As the difference of the results obtained

from the two approaches was at the magnitude of 10−7 to 10−11, their results can

be treated as identical. It should be noted that, as the magnitude of the estimates

for σ2
H and σ2

Q differ drastically, numerical problems may arise when working with

the EM algorithm for the two-stage analysis. Alternatively, one could consider the

rescaling of the response variable, by, e.g., multiplying a factor of 10−4. For practical

implementation, function dblquad in Matlab 2009a was used for the double integra-

tion (with adaptive Lobatto quadrature) of the two random effects Hi and Qi, needed

for the calculation of the marginal log-likelihood function in (7.8).

Tables 7.7 and 7.8 show the results of fitting the model with both Hi and Qi as
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random effects. The results of the fixed effects are quite similar to those shown in

Tables 7.5 and 7.6. It can also be seen that the estimates of σ2
Q are quite small. This

is understandable, since the spectra are technical replicates for the same biological

samples. It is worth noting that the estimates of the covariance parameter σHQ for

the two random effects are non-significant. Taking this into account, we refitted the

model by assuming σHQ = 0. The results are presented in Tables 7.9 and 7.10.

Comparing with Tables 7.7 and 7.8, the fixed-effect estimates are identical to those

in Tables 7.9 and 7.10. This is not surprising, since the fixed-effect estimates were

obtained in the first stage of the analysis, in which the same estimation approach of

PL-GLS was performed for both models. Moreover, the estimates of the random-effect

distribution for the two models are also very similar.

7.3.2 Application with biological replicates: a simulation study

For the application with biological replicates, we present a simulation study. As

has been observed from the real-life analyses of the bovine cytothrome C data set,

the covariance σHQ can be treated as zero, i.e., we can assume that Hi and Qi are

independent. The parameters in this simulation study, except of σQ, were chosen

based on values obtained for the peptide with mass 1584.8 Da from the data of

bovine cytochrome C peptides (Tables 7.9 and 7.10). The observed intensity values

in the generated data sets were a sum of the mean intensity µij and a random error

term εij as in equations (7.1)-(7.2), and (7.3)-(7.4), truncated to be zero if negative.

To avoid numerical problems related to zero intensity values for the least abundant

peaks, σQ was chosen as a compromise between the full representation of between-

biological-sample variability (to be large enough) and the occurrence of numerical

problems (to be small enough). In the simulations, two settings with two different

relative abundances were considered, each with 100 data sets. For each data set, 6

biological replicates of mass spectra were assumed to be available. The two settings

were:

Setting 1: Q = 1/3, σQ = 0.05, H = 24000, σH = 2100

Setting 2: Q = 3, σQ = 0.5, H = 8000, σH = 880

The other parameters were chosen as follows: σ = 0.40, θ = 0.60, λτ = 8.4, and

M = 1584.76 Da.

We chose the isotopic ratios to be the ratios from the average isotopic distribution
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estimated at massM = 1584.76 Da by a Poisson approximation, as proposed by Breen

et al. (2000). Again, estimates of the two-stage analysis with direct log-likelihood

(7.10) for the random effects were used as the initial values for the analysis based on

the marginal log-likelihood (7.8) maximization.

Table 7.1: Simulation results of the two settings – Mean estimate (M.Est.), mean relative

bias (M.R.B.), empirical standard error Semp and model-based standard error

Smb, using two-stage analysis with direct log-likelihood.

Parameter Setting 1 Setting 2

M.Est. M.R.B. Semp/Smb M.Est. M.R.B. Semp/Smb

R2 0.9114 0.0010 0.0044/0.0070 0.9125 0.0022 0.0051/0.0092

R3 0.4154 0.0023 0.0024/0.0032 0.4153 0.0020 0.0029/0.0035

R4 0.1262 0.0037 0.0015/0.0037 0.1257 -0.0009 0.0010/0.0020

R5 0.0287 0.0022 0.0006/0.0010 0.0287 0.0032 0.0004/0.0006

R6 0.0052 -0.0050 0.0002/0.0005 0.0052 0.0044 0.0001/0.0001

µH 24314.8 0.0131 1015/1226 8076.5 0.0096 319.2/351.8

σH 2194.7 0.0451 481.2/581.0 920.6 0.0461 182.3/237.7

µQ 0.3376 0.0129 0.0701/0.0964 3.0261 0.0087 0.3024/0.3413

σQ 0.0479 -0.0417 0.0083/0.0092 0.4712 -0.0576 0.0986/0.1249

σ 0.3690 -0.0755 0.0698/0.0805 0.3683 -0.0792 0.0481/0.0716

θ 0.6321 0.0536 0.1212/0.1357 0.6402 0.0670 0.0929/0.0895

λτ 8.7275 0.0390 0.6215/0.7826 8.4035 0.0004 0.0588/0.0813

llk -421.85 – 62.22 -437.47 – 32.98

Tables 7.1 and 7.2 show the results of the model fitted by using the two-stage

analysis (with direct log-likelihood for the random effects) and the analysis based on

the marginal log-likelihood (7.8), respectively. It is clear that the results are nearly

identical except for the estimates of λτ , which show a slight difference for the two

estimation approaches.

For both estimation approaches, the point estimates of the isotopic ratios Rj , λτ ,

as well as Q are very close to the true values and with negligible biases. Regarding the

parameters that reflect the between-spectra and between-biological-sample variability,

i.e., σH and σQ, the estimates are close to the true values. The estimates of θ and σ

also correspond to the true values. The simulation shows that all of the parameters

are estimated with a negligible bias. Thus, the simulation indicates good performance

of the model, when fitted to mass spectra data with biological replicates, simulated

under the correct model specification.

From Tables 7.1 and 7.2, the average model (marginal) log-likelihood values, de-
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Table 7.2: Simulation results of the two settings – Mean estimate (M.Est.), mean relative

bias (M.R.B.), empirical standard error Semp and model-based standard error

Smb, using the analysis based on the marginal log-likelihood (7.8).

Parameter Setting 1 Setting 2

M.Est. M.R.B. Semp/Smb M.Est. M.R.B. Semp/Smb

R2 0.9114 0.0010 0.0044/0.0070 0.9125 0.0022 0.0051/0.0092

R3 0.4154 0.0023 0.0024/0.0032 0.4153 0.0020 0.0029/0.0035

R4 0.1262 0.0037 0.0015/0.0037 0.1257 -0.0009 0.0010/0.0020

R5 0.0287 0.0022 0.0006/0.0010 0.0287 0.0032 0.0004/0.0006

R6 0.0052 -0.0050 0.0002/0.0005 0.0052 0.0044 0.0001/0.0001

µH 24314.8 0.0131 1015/1359 8076.5 0.0096 319.2/351.8

σH 2194.7 0.0451 481.2/565.2 920.6 0.0461 182.3/237.7

µQ 0.3376 0.0129 0.0701/0.0942 3.0261 0.0087 0.3024/0.3443

σQ 0.0479 -0.0417 0.0083/0.0092 0.4712 -0.0576 0.0986/0.1249

σ 0.3690 -0.0755 0.0698/0.0805 0.3683 -0.0792 0.0481/0.0716

θ 0.6321 0.0536 0.1212/0.1359 0.6402 0.0670 0.0929/0.0895

λτ 8.7293 0.0392 0.7101/0.7324 8.3720 -0.0033 0.2186/0.3600

llk -419.48 – 61.84 -435.69 – 32.39

noted as llk, for the analysis based on the marginal log-likelihood (7.8) are slightly

larger than those for the two-stage analysis with direct log-likelihood for the random

effects. It should be noted that for the two-stage analysis, the model log-likelihood

values for around 5 out of the 100 data sets, are slightly smaller than for the analysis

based on the marginal log-likelihood (7.8), while all the rest 95 data sets show iden-

tical values for the two approaches. Despite the slight improvement in the marginal

log-likelihood values for the analysis based on the marginal log-likelihood (7.8), the

two approaches can still be treated as equivalent since the parameter estimates are

equally precisely estimated.

7.4 Discussion

We have presented an extension of the model, introduced in Chapter 6. The model,

presented in this chapter, allows for the estimation of technical and/or biological

variability in the context of 18O-labeled MS data, the topic of which has not been

addressed thus far. In the model, we considered the heteroscedastic nature of residual

variance.

The results of the application to real-life technical replicates, in general, are con-
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sistent with the true parameter values, except for the peptide with mass 1168.6 Da.

It is possible that the bias may be caused by some experimental factors unknown to

us. In the simulation study, which intended to show an application to the biological

replicates, the parameters were well estimated with negligible bias. For both appli-

cations, feasibility of incorporating the between-spectra variability via the inclusion

of one or more random effects is ascertained. The comparison of our method with

the one proposed in Chapter 6 indicates that adjusting for extra sources of variability

gives more precise estimates of the parameters of interest.

Numerical complexity of the developed method is tolerable. On average, fitting

the model with heteroscedasticity for each peptide, as presented in Tables 7.5 and 7.6,

took about 25.6s on a HP8530p laptop using Matlab 2009a under Windows Vista R©.

Thus, the method can be applied to a high-throughput environment, based upon the

automation of the selection of peak-clusters for fitting the model.

Several further extensions of the proposed methodology are still possible. For

instance, a Bayesian formulation of the model, which would allow for the use of prior

information about, e.g., the isotopic distribution of the peptide, can be proposed.

This type of extension will be reported in the next chapter.
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Table 7.3: Results of the analysis of the data for Q = 1/3 for the homoscedastic model with random H (Est.: estimate; SE:

standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 22121.0 876.1 – 22820.8 801.4 – 64585.3 3956.8

σ2
H – 4598290.9 3975 – 3896216.2 9958 – 96806404.4 318637

Q 0.3333 0.3382 0.0030 0.3333 0.3417 0.0084 0.3333 0.5543 0.0147

λτ – 7.1627 0.000003 – 7.0348 0.0002 – 4.7177 0.0006

σ – 72.1850 0.0221 – 135.9390 0.0899 – 1342.1489 0.9025

R2 0.8703 0.8608 0.0017 0.7933 0.7892 0.0014 0.6645 0.8249 0.0006

R3 0.4223 0.3980 0.0015 0.3567 0.3277 0.0025 0.2454 0.2880 0.0076

R4 0.1478 0.1233 0.0013 0.1166 0.0880 0.0024 0.0653 0.0249 0.0083

R5 0.0413 0.0357 0.0029 0.0306 0.0259 0.0077 0.0139 0.0610 0.0132

R6 0.0097 0.0067 0.0025 0.0068 0.0024 0.0067 0.0025 0.0000 0.0002

Table 7.4: Results of the analysis of the data for Q = 3/1 for the homoscedastic model with random H (Est.: estimate; SE:

standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 8528.9 361.3 – 8878.8 351.3 – 23630.3 2249.9

σ2
H – 783295.8 805.7 – 732142.5 128.6 – 30237814.1 4710

Q (2.4) 2.4122 0.0063 (2.4) 2.3895 0.0102 (2.4) 2.0074 0.0146

λτ – 9.3945 0.0001 – 11.7708 0.0001 – 19.9795 0.000001

σ – 81.2602 0.0305 – 109.7680 0.0102 – 1086.6977 2.8333

R2 0.8703 0.8611 0.0022 0.7933 0.7741 0.0028 0.6645 0.7541 0.0098

R3 0.4223 0.4184 0.0018 0.3567 0.3349 0.0022 0.2454 0.3069 0.0087

R4 0.1478 0.1350 0.0016 0.1166 0.0967 0.0021 0.0653 0.0739 0.0087

R5 0.0413 0.0338 0.0018 0.0306 0.0213 0.0022 0.0139 0.0067 0.0261

R6 0.0097 0.0075 0.0019 0.0068 0.0046 0.0022 0.0025 0.0093 0.0151
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Table 7.5: Results of the analysis of the data for Q = 1/3 for the heteroscedastic model with random H (Est.: estimate; SE:

standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 22268.0 818.6 – 23025.1 759.0 – 69292.6 4523.2

σ2
H – 3999670.8 5697.8 – 3362302.8 2210.7 – 104782380.6 462811.1

Q 0.3333 0.3368 0.0016 0.3333 0.3384 0.0026 0.3333 0.5130 0.0131

λτ – 7.3254 0.0000001 – 7.3947 0.000002 – 5.8627 0.00002

σ – 0.3732 0.00002 – 0.3454 0.00002 – 0.5461 0.0002

θ – 0.6250 0.0133 – 0.6901 0.0134 – 0.8333 0.0113

R2 0.8703 0.8568 0.0039 0.7933 0.7806 0.0061 0.6645 0.7556 0.0223

R3 0.4223 0.3976 0.0022 0.3567 0.3273 0.0031 0.2454 0.2812 0.0085

R4 0.1478 0.1244 0.0010 0.1166 0.0904 0.0014 0.0653 0.0556 0.0036

R5 0.0413 0.0331 0.0007 0.0306 0.0211 0.0007 0.0139 0.0095 0.0004

R6 0.0097 0.0084 0.0003 0.0068 0.0057 0.0003 0.0025 0.0012 0.0002

Table 7.6: Results of the analysis of the data for Q = 3/1 for the heteroscedastic model with random H (Est.: estimate; SE:

standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 8588.6 326.8 – 8924.8 320.0 – 23542.7 2245.1

σ2
H – 633672.2 563.2 – 600231.3 543.5 – 28422220.7 29380.5

Q (2.4) 2.3992 0.0114 (2.4) 2.3785 0.0145 (2.4) 2.1206 0.0468

λτ – 9.6154 0.000004 – 12.7681 0.000003 – 20.0000 0.0001

σ – 0.4121 0.00002 – 0.4705 0.00002 – 0.1139 0.00002

θ – 0.6250 0.0126 – 0.6372 0.0126 – 0.9375 0.0125

R2 0.8703 0.8607 0.0043 0.7933 0.7739 0.0049 0.6645 0.7185 0.0177

R3 0.4223 0.4204 0.0026 0.3567 0.3374 0.0028 0.2454 0.2900 0.0083

R4 0.1478 0.1355 0.0014 0.1166 0.0975 0.0013 0.0653 0.0698 0.0048

R5 0.0413 0.0338 0.0005 0.0306 0.0213 0.0005 0.0139 0.0121 0.0005

R6 0.0097 0.0073 0.0002 0.0068 0.0044 0.0002 0.0025 0.0015 0.0001
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Table 7.7: Results of the analysis of the data for Q = 1/3 for the heteroscedastic model with random H and Q (Est.: estimate;

SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 22321.7 1148 – 23096.2 1014 – 70541.7 5317

σ2
H – 6199325.9 3549 – 5055473.6 8484 – 126561704.9 58170

Q 0.3333 0.3345 0.0091 0.3333 0.3296 0.0120 0.3333 0.5065 0.0440

σ2
Q – 0.000215 0.0000001 – 0.000486 0.00000004 – 0.000026 0.00000001

σHQ – -24.56 20.68 – -15.36 50.14 – 15.25 57.04

λτ – 7.6091 0.000003 – 7.8237 0.000001 – 5.9543 0.000001

σ – 0.4801 0.00002 – 0.4466 0.00004 – 0.5642 0.0000003

θ – 0.7744 0.0500 – 0.8302 0.0474 – 0.9333 0.0318

R2 0.8703 0.8554 0.0267 0.7933 0.7785 0.0277 0.6645 0.7473 0.0675

R3 0.4223 0.3983 0.0135 0.3567 0.3279 0.0134 0.2454 0.2777 0.0313

R4 0.1478 0.1254 0.0048 0.1166 0.0917 0.0046 0.0653 0.0563 0.0080

R5 0.0413 0.0328 0.0022 0.0306 0.0209 0.0018 0.0139 0.0095 0.0017

R6 0.0097 0.0084 0.0007 0.0068 0.0057 0.0006 0.0025 0.0012 0.0002

Table 7.8: Results of the analysis of the data for Q = 3/1 for the heteroscedastic model with random H and Q (Est.: estimate;

SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 8600.1 426.7 – 8923.7 338.7 – 23939.1 3723

σ2
H – 746673.7 1322 – 1328470.7 4283 – 46105776.1 35205

Q (2.4) 2.3940 0.0623 (2.4) 2.3828 0.0716 (2.4) 2.1343 0.2508

σ2
Q – 0.004235 0.000001 – 0.000657 0.0000003 – 0.005497 0.0000002

σHQ – -1.6509 112.4 – -50.58 39.13 – -488.2 312.1

λτ – 9.6850 0.00003 – 12.7096 0.00002 – 19.9047 0.00003

σ – 0.3805 0.00003 – 0.4370 0.00002 – 0.2279 0.00002

θ – 0.7771 0.0445 – 0.7771 0.0184 – 1.0375 0.0275

R2 0.8703 0.8602 0.0203 0.7933 0.7740 0.0183 0.6645 0.7138 0.0938

R3 0.4223 0.4212 0.0113 0.3567 0.3380 0.0094 0.2454 0.2885 0.0432

R4 0.1478 0.1357 0.0042 0.1166 0.0976 0.0034 0.0653 0.0695 0.0118

R5 0.0413 0.0338 0.0014 0.0306 0.0214 0.0011 0.0139 0.0120 0.0021

R6 0.0097 0.0073 0.0004 0.0068 0.0044 0.0003 0.0025 0.0015 0.0003
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Table 7.9: Results of the analysis of the data for Q = 1/3 for the heteroscedastic model with random H and Q assuming σHQ = 0

(Est.: estimate; SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 22321.7 1192 – 23096.2 1085 – 70541.7 5265

σ2
H – 6307482.2 6834 – 5193374.5 574.8 – 126463528.3 144346

Q 0.3333 0.3328 0.0089 0.3333 0.3284 0.0125 0.3333 0.5057 0.0443

σ2
Q – 0.000216 0.0000001 – 0.000487 0.0000004 – 0.000026 0.0000002

λτ – 7.6091 0.000004 – 7.8237 0.00001 – 5.9543 0.00001

σ – 0.4801 0.00001 – 0.4466 0.0002 – 0.5642 0.00001

θ – 0.7744 0.0474 – 0.8302 0.0484 – 0.9333 0.0315

R2 0.8703 0.8554 0.0250 0.7933 0.7785 0.0278 0.6645 0.7473 0.0676

R3 0.4223 0.3983 0.0128 0.3567 0.3279 0.0134 0.2454 0.2777 0.0314

R4 0.1478 0.1254 0.0047 0.1166 0.0917 0.0046 0.0653 0.0563 0.0080

R5 0.0413 0.0328 0.0022 0.0306 0.0209 0.0018 0.0139 0.0095 0.0017

R6 0.0097 0.0084 0.0007 0.0068 0.0057 0.0006 0.0025 0.0012 0.0002

Table 7.10: Results of the analysis of the data for Q = 3/1 for the heteroscedastic model with random H and Q assuming

σHQ = 0 (Est.: estimate; SE: standard error.)

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H – 8600.1 414.3 – 8923.8 440.1 – 23939.1 3004

σ2
H – 746673.7 1322.4 – 924743.1 898.5 – 46105776.1 10082

Q (2.4) 2.3940 0.0613 (2.4) 2.3803 0.0635 (2.4) 2.1343 0.2456

σ2
Q – 0.004235 0.000001 – 0.005253 0.00003 – 0.005497 0.000002

λτ – 9.6850 0.000002 – 12.7096 0.000002 – 19.9047 0.00001

σ – 0.3805 0.00003 – 0.4371 0.0001 – 0.2279 0.00001

θ – 0.7771 0.0398 – 0.7771 0.0356 – 1.0375 0.0445

R2 0.8703 0.8602 0.0194 0.7933 0.7740 0.0180 0.6645 0.7138 0.0894

R3 0.4223 0.4212 0.0109 0.3567 0.3380 0.0094 0.2454 0.2885 0.0414

R4 0.1478 0.1357 0.0041 0.1166 0.0976 0.0035 0.0653 0.0695 0.0113

R5 0.0413 0.0338 0.0014 0.0306 0.0214 0.0011 0.0139 0.0120 0.0020

R6 0.0097 0.0073 0.0004 0.0068 0.0044 0.0003 0.0025 0.0015 0.0002



Chapter 8

A Bayesian approach for the

analysis of 18O-labeled mass

spectra using a

heteroscedastic fixed-effects

Markov-chain-based model

In this chapter, we formulate the heteroscedastic model, presented in Chapter 6,

within the Bayesian framework. Using the Bayesian approach allows for the incorpo-

ration of prior information that could be helpful to analyze the data. In particular,

such information exists for the isotopic distribution (see Section 3.2.2). Moreover, it

allows inclusion of random effects that can be used to capture the biological variabil-

ity of the peptide abundance. We investigate the operational characteristics of the

model by applying it to real-life MS data set (the bovine cytochrome C data) and by

conducting a simulation study.

95
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8.1 Model formulation

8.1.1 The likelihood

The likelihood of the moel is the same as in equations (6.1), (6.2) and (5.7)–(5.8).

8.1.2 Prior and posterior distributions

Non-informative normal priors were defined for the logarithm of all the parameters

except for λ, the common residual variance σ, and the power parameter θ. For θ, a

non-informative normal prior distribution was considered. For λ, a non-informative

normal prior was defined for it with a box-cox transformation: λ′ = log
(

λ
20/τ−λ

)
.

More specifically, the following priors were used for these parameters:

log (Hi) ∼ N

(
0,

1

τ1

)
, (8.1)

log (Q) ∼ N

(
0,

1

τ2

)
, (8.2)

log (Rj) ∼ N

(
0,

1

τ3

)
, (8.3)

σ−2 ∼ Γ (α, β) , (8.4)

θ ∼ N

(
0,

1

τ4

)
, (8.5)

λ′ ∼ N

(
0,

1

τ5

)
, (8.6)

where α, β, and τ1, . . . , τ5 are positive constants close to zero. Since the variance

function of the model, shown in (6.1), is dependent on the mean structure parameters,

there are no closed form posterior distributions for the parameters. As a result, the

posterior distributions need to be evaluated by numerical (sampling) methods, e.g.,

via Metropolis-Hasting algorithm with acception-rejection rules.

8.2 Practical implementation

In the following sections, the implementation of the Markov-chain-based model, using

WinBUGS and JAGS, will be introduced.
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8.2.1 WinBUGS through WBDiff

Since the implementation of the model entails the estimation of Markov Chain tran-

sition probabilities through matrix exponential, the Bayesian model cannot be imple-

mented directly through WinBUGS. However, WBDiff, which namely is a WinBUGS

Differential Interface, makes such application in WinBUGS feasible. WBDiff is built

for WinBUGS to do differential equations, and hence can handle matrix exponential as

well. The software can be downloaded from http://www.winbugs-development.org.

uk/wbdiff.html with user manual available from Lunn (2004).

The transition matrix T is of the form (5.6) with p16, p17, and p18 being the

known proportions of oxygen isotopes that exist in the heavy-oxygen-water due to

water impurities. The transition matrix with element Tij can be interpreted as the

probability of moving from state i to state j after the next exchange (reaction).

To implement the matrix exponential shown in equation (5.7) via differential

equations, let π(t) denote the vector of the transition rate, given time t, such that

S(τ) = S0e
−λτeTλτ = ∂π(t)

∂t e−λτ . The vector π(t) = (π1(t), π2(t), . . . , π6(t)) contains

transition rates related to the six states of oxygen combinations for the carboxyl-

terminus, expressed in (2.10). Then the matrix exponential can be written down as

the differential equations shown as follows:





∂π1(t)
∂t = π1(t)T11λτ + π2(t)T21λτ + π3(t)T31λτ

∂π2(t)
∂t = π1(t)T12λτ + π2(t)T22λτ + π3(t)T32λτ + π4(t)T42λτ + π5(t)T52λτ

∂π3(t)
∂t = π1(t)T13λτ + π2(t)T23λτ + π3(t)T33λτ + π5(t)T53λτ + π6(t)T63λτ

∂π4(t)
∂t = π2(t)T24λτ + π4(t)T44λτ + π5(t)T54λτ

∂π5(t)
∂t = π2(t)T25λτ + π3(t)T35λτ + π4(t)T45λτ + π5(t)T55λτ + π6(t)T65λτ

∂π6(t)
∂t = π3(t)T36λτ + π5(t)T56λτ + π6(t)T66λτ

(8.7)

The differential equations in (8.7) can be implemented in WinBUGS using the

WBDiff as an interface. An example of the WinBUGS code for the Bayesian model
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is shown in Appendix C.

8.2.2 JAGS-Just Another Gibbs Sampler

Alternatively, the matrix exponential can be implemented in JAGS. In JAGS 1.0.3,

matrix exponential is defined as an internal function mexp by loading the msm module

(User manual available at Plummer 2009).

8.3 Results

In this section, we present results of an application of the model to the controlled

experiment of the six replicated mass spectra of bovine cytochrome C peptides. We

also show results of a simulation study, undertaken to check the statistical properties

of the implemented method.

8.3.1 Bovine cytochrome C data sets

The model was applied to three fragments (peptides at 1168.6Da, 1456, 7Da and

1584.8Da respectively) of the replicated mass spectra of bovine cytochrome C (see

Section 3.1).

The model application to the data was analyzed using WinBUGS 1.4 through

WBDiff. As an initial step, a homoscedastic model, by using priors shown in (8.1)–

(8.6), was fitted to the data. Later, a heteroscedastic model with power of the mean

variance function, defined by (6.1)–(6.2) and (5.7)–(5.8), was applied to the same

data sets, by using (8.5) as the prior for the power parameter θ. Again, as the true

reaction time τ was unknown, the product of λτ was estimated. Tables 8.2 to 8.7

show the statistical results of the homoscedastic and heteroscedastic models.

Several patterns can be observed in these tables. For each of the peptides, the

estimated values of θ of the heteroscedastic model, from the two experiments with

relative abundances 3/1 and 1/3, are not significantly different from each other, by

taking into account the precision expressed as the 95% credible interval. This suggests

the chosen functional form of dependence of residual variance on the intensity was

appropriate.

It is also worth noting that, for the peptides with masses 1584.8 Da and 1456.7

Da, the point estimates for Q, and for the isotopic ratios R, shown in Tables 8.2 to

8.5, for both models, are very close to the true values.
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When Q = 3/1, its value is consistently estimated around 2.4, especially for the

two peptides with masses 1456, 7 and 1584.8Da. This agrees with the estimates in the

frequentist approach presented in the Chapters 5 and 6. Moreover, for the two pep-

tides, the estimates of λτ , for the two experiments with different relative abundance

values, are also very similar.

For the peptide with mass 1168.6 Da, the estimates for Q and R, shown in Ta-

bles 8.6 and 8.7, differ considerably from the true values. The estimates of the het-

eroscedastic models are slightly closer to the true values, implying a possible improve-

ment when a proper variance function is used.

8.3.2 A simulation study

The simulation was performed based on the assumption of power-of-the-mean vari-

ance function for the residuals. The settings were the same as in the simulation

study for the frequentist approach, presented in Section 6.4. Both heteroscedastic

and homoscedastic models were applied to the simulated data. The intention of the

simulation was to check the statistical properties of the proposed model under the

correct model assumptions.

The simulation was done in R 2.8.0 with R2jags package linking the software

JAGS 1.0.3 to R, since it was more convenient to read data and compile the models

through R with a large amount of data sets. From the results of the simulation, we

observed that the biases and MSE of the isotopic ratio (R) estimates were negligible.

Thus, we only discuss the results of the parameters of Q, λ, θ and σ. Tables B.1 to

B.12 (Appendix B) show the results of different parameter estimates in the simula-

tion. The summary statistics shown in the tables are based on the medians of the

corresponding parameters. Figures 8.2 to 8.6 give a graphical representation of the

summary statistics shown in Tables B.1 to B.9.

The results of the estimation of parameters λ and Q, shown in Figures 8.2 to 8.5,

show that the MSE is smaller for the heteroscedastic model (denoted in figures by

VAR) than the homoscedastic model (denoted by CON). This indicates that a correct

specification of residual variance gives more precise parameter estimates.

Figures 8.4 and 8.5 also show that when λ increases, Q is better estimated as its

MSE becomes smaller. This finding agrees with the results shown in Section 6.4, for

the frequentist model. It indicates that, given a fixed reaction time τ , when labeling

is more complete, Q can be better estimated.
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The results of λ, when its true value is equal to 0.10 and the residual variance

σ is equal to 1.50, are not shown in the figures because the estimates were seriously

biased and very imprecise. This is related to the convergence problem, as explained

in Section 6.4.

Convergence

The convergence of the continuation procedure for the parameters were checked by

Geweke statistics (Geweke 1992). From the simulation, it was found that, when

λ = 0.01 and σ = 1.50, there was problem for the posterior distribution of λ to

converge. Table 8.1 shows the percentage of the converged data sets for parameter λ

for the settings with λ = 0.01 and σ = 1.50.

Table 8.1: Percentage of converged data sets per setting for λ.

σ λ Q Breen E1 E2

CON VAR CON VAR CON VAR

0.5 1.00% 0.00% 0.80% 0.00% 1.00% 0.00%

1.50 0.10 1.0 0.60% 0.20% 0.20% 0.00% 1.20% 0.20%

2.0 0.20% 0.60% 1.00% 0.20% 1.00% 0.60%

The reason for the non-convergence has been explained in Section 6.4.2.

In the Bayesian framework, however, the non-convergence of one parameter doesn’t

hinder the estimation of other parameters, since they are sampled from their condi-

tional posterior distributions. One may argue about the validity of their joint distri-

bution if some of them don’t converge. Alternatively, one can think of performing a

two-stage analysis, as described in Section 6.4.2, to resolve the problem.

Sample size for the estimation of θ

Figure 8.6 shows that, when σ = 1.50, the bias for θ is negligible. However, this

is not the case when σ = 0.05. In such case, θ was severely underestimated. The

underestimation of θ may be due to the lack of information available in the data. A

solution to increase the information content of the data is to increase the number of

available spectra.

The simulation for the settings with A ratios was repeated by increasing the

number of spectra from 6 to 12. Figure 8.1 shows a comparison of the bias and
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Figure 8.1: Comparison of the estimation of θ from data sets with 6 and 12 spectra for

seetings with Breen ratios (σ = 0.05).

MSE for the estimates of θ, obtained from the data sets containing 6 and 12 spectra.

Clearly, the underestimation is diminished and the MSE becomes much smaller when

number of spectra is increased.

8.4 Discussion

In this chapter, we have implemented the heteroscedastic model, introduced in Chap-

ter 6, in the Bayesian framework. Using the Bayesian approach allows for the incor-

poration of prior information that could be helpful to analyze the data. In particular,

such information exists for the isotopic distribution. We assessed the performances

of the model via both a real-life data application and a simulation study.

The application of the models to the bovine cytochrome C data sets, in general,

produced unbiased estimation, except for the peptide with mass 1168.6Da. For this

peptide, the results were biased both for the frequentist and Bayesian approaches.

The bias might be caused by some experimental factors unknown to us.

The simulation study addresses the importance of a correct specification of the

residual variance. The study shows that a correct specification for the form of the

residual variance leads to a precision gain. It is worth noting that for the power

parameter θ in the variance function to be well estimated, there should be enough

information in the data. Such information content can be increased by providing more

replications of spectra.
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The results of the analysis using the Bayesian model agrees, in general, with the

ones implemented in the frequentist framework (presented in Chapter 6). An advan-

tage of the Bayesian approach over the frequentist approach, despite the possibility

of incorporating prior information, is that the estimation approach is relatively easier

and straightforward. Recall that in the frequentist framework, when the model in-

corporates both a mean-dependent variance function and random effects, a one-stage

analysis is computationally complex and very sensitive to the choice of initial values.

The results of the application of our method to data from a real-life, controlled

experiment and to a simulation study confirm feasibility and satisfactory performance

of the proposed modeling approach. The model is flexible for further extensions, e.g.,

considering the estimation of different sources of variability, in the context of MS

data, by including random effeccts. In the next chapter, we present an extended

model by including random effects of H and Q, to account for the between-spectra

and biological variability, in the Bayesian framework.
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Statistical results of the case study:

Table 8.2: Results of the analysis of the data for Q = 3/1 at 1584.8Da (HOMOSC.: homoscedastic model; HETEROSC.:

heteroscedastic model).

Parameter TRUE HOMOSC. HETEROSC.

Mean Median 95% c.i. Mean Median 95% c.i.

H1 – 8400.3 8402.0 (8296.5, 8498.4) 8432.9 8433.1 (8293.7, 8583.9)

H2 – 8258.8 8259.1 (8158.4, 8358.1) 8270.9 8272.0 (8125.1, 8414.6)

H3 – 7441.6 7442.1 (7343.9, 7535.3) 7538.9 7538.8 (7403.5, 7684.9)

H4 – 9868.8 9871.2 (9561.4, 9973.7) 9895.0 9893.4 (9734.2, 10060.0)

H5 – 9527.3 9528.8 (9417.0, 9630.5) 9618.7 9617.3 (9456.7, 9796.9)

H6 – 8420.6 8422.2 (8309.6, 8520.1) 8504.8 8502.3 (8358.1, 8658.1)

Q 2.4 2.3857 2.3855 (2.3594, 2.4127) 2.3581 2.3583 (2.3221, 2.3899)

λτ – 8.2320 8.2080 (7.8000, 8.8320) 8.6040 8.6040 (8.2080, 9.0360)

σ – 123.2132 121.3509 (100.3990, 151.1763) 1.1490 0.3602 (0.1278, 3.7930)

θ – – – – 0.6517 0.6780 (0.3975, 0.8025)

R2 0.8703 0.8635 0.8634 (0.8570, 0.8705) 0.8617 0.8617 (0.8500, 0.8732)

R3 0.4223 0.4255 0.4255 (0.4201, 0.4307) 0.4302 0.4300 (0.4229, 0.4386)

R4 0.1478 0.1374 0.1375 (0.1324, 0.1425) 0.1388 0.1389 (0.1353, 0.1423)

R5 0.0413 0.0362 0.0364 (0.0299, 0.0412) 0.0367 0.0367 (0.0352, 0.0383)

R6 0.0098 0.0085 0.0083 (0.0055, 0.0133) 0.0097 0.0097 (0.0090, 0.0104)
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Table 8.3: Results of the analysis of the data for Q = 1/3 at 1584.8Da (HOMOSC.: homoscedastic model; HETEROSC.:

heteroscedastic model).

Parameter TRUE HOMOSC. HETEROSC.

Mean Median 95% c.i. Mean Median 95% c.i.

H1 – 23001.6 22999.0 (22876.0, 23126.9) 23021.5 23017.9 (22775.6, 23271.2)

H2 – 22418.0 22418.2 (22295.0, 22547.9) 22431.3 22431.6 (22192.4, 22673.1)

H3 – 21347.4 21345.5 (21225.4, 21467.2) 21397.8 21398.4 (21166.0, 21630.3)

H4 – 23832.4 23833.2 (23705.5, 23953.6) 23987.7 23989.7 (23728.8, 24256.8)

H5 – 18534.7 18534.9 (18413.7, 18655.5) 18525.9 18528.3 (18318.6, 18722.6)

H6 – 24598.7 24597.1 (24476.4, 24724.7) 24780.1 24779.2 (24527.3, 25047.5)

Q 0.3333 0.3270 0.3272 (0.3179, 0.3373) 0.3260 0.3260 (0.3213, 0.3308)

λτ – 7.3680 7.1880 (6.0240, 9.0720) 7.2720 7.2360 (6.6240, 8.1360)

σ – 83.803 82.5033 (68.6678, 103.0714) 0.5256 0.3599 (0.1404, 1.1882)

θ – – – – 0.6273 0.6284 (0.4841, 0.7486)

R2 0.8703 0.8616 0.8617 (0.8576, 0.8655) 0.8572 0.8572 (0.8490, 0.8652)

R3 0.4223 0.4122 0.4122 (0.4067, 0.4171) 0.4102 0.4103 (0.4053, 0.4148)

R4 0.1478 0.1315 0.1315 (0.1228, 0.1384) 0.1315 0.1315 (0.1284, 0.1346)

R5 0.0413 0.0416 0.0415 (0.0346, 0.0486) 0.0387 0.0387 (0.0371, 0.0406)

R6 0.0098 0.0104 0.0106 (0.0067, 0.0156) 0.0130 0.0130 (0.0121, 0.0138)
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Table 8.4: Results of the analysis of the data for Q = 3/1 at 1456.7Da (HOMOSC.: homoscedastic model; HETEROSC.:

heteroscedastic model).

Parameter TRUE HOMOSC. HETEROSC.

Mean Median 95% c.i. Mean Median 95% c.i.

H1 – 8773.5 8772.2 (8663.3, 8885.2) 8720.8 8720.3 (8568.3, 8870.5)

H2 – 8860.9 8860.7 (8749.1, 8971.8) 8820.2 8819.8 (8670.9, 8973.7)

H3 – 7784.9 7784.4 (7682.6, 7889.6) 7847.6 7846.5 (7710.6, 7993.0)

H4 – 10205.1 10203.9 (10082.1, 10329.7) 10232.0 10232.0 (10064.8, 10407.4)

H5 – 9763.0 9762.9 (9647.9, 9878.8) 9813.9 9812.8 (9645.8, 9989.7)

H6 – 8644.6 8643.9 (8536.4, 8757.3) 8745.1 8742.4 (8596.3, 8909.4)

Q 2.4 2.3777 2.3775 (2.3517, 2.4035) 2.3623 2.3633 (2.3270, 2.3939)

λτ – 10.9440 10.8120 (9.4320, 12.7200) 11.6400 11.5080 (10.2960, 13.2000)

σ – 133.2802 131.1575 (108.6815, 164.6927) 0.5938 0.4258 (0.1665, 1.2280)

θ – – – – 0.6513 0.6553 (0.5289, 0.7731)

R2 0.7933 0.7758 0.7759 (0.7690, 0.7826) 0.7762 0.7763 (0.7651, 0.7868)

R3 0.3567 0.3396 0.3396 (0.3342, 0.3449) 0.3430 0.3430 (0.3368, 0.3493)

R4 0.1166 0.1008 0.1008 (0.0955, 0.1060) 0.1016 0.1015 (0.0987, 0.1045)

R5 0.0306 0.0233 0.0237 (0.0148, 0.0286) 0.0245 0.0245 (0.0235, 0.0256)

R6 0.0068 0.0057 0.0057 (0.0004, 0.0089) 0.0071 0.0070 (0.0066, 0.0076)
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Table 8.5: Results of the analysis of the data for Q = 1/3 at 1456.7Da (HOMOSC.: homoscedastic model; HETEROSC.:

heteroscedastic model).

Parameter TRUE HOMOSC. HETEROSC.

Mean Median 95% c.i. Mean Median 95% c.i.

H1 – 24749.4 24750.1 (24499.6, 25001.2) 24867.0 24852.0 (24360.1, 25457.3)

H2 – 22374.6 22376.7 (22126.6, 22618.9) 22883.5 22871.3 (22334.2, 23476.7)

H3 – 22235.7 22238.0 (21988.8, 22473.4) 22674.8 22667.0 (22179.8, 23214.7)

H4 – 24557.7 24558.6 (24307.3, 24797.0) 24832.9 24828.4 (24266.6, 25408.4)

H5 – 19651.4 19650.0 (19412.1, 19891.5) 19713.6 19716.8 (19247.8, 20178.4)

H6 – 24424.7 24427.3 (24174.9, 24671.2) 25919.5 25179.1 (24635.0, 25806.4)

Q 0.3333 0.3598 0.3601 (0.3507, 0.3676) 0.3294 0.3297 (0.3208, 0.3370)

λτ – 16.3800 16.6560 (14.4600, 17.5080) 8.7480 8.8080 (7.3800, 9.8640)

σ – 161.1173 158.8647 (132.1106, 197.2109) 0.2629 0.2108 (0.1007, 0.5082)

θ – – – – 0.7639 0.7667 (0.6607, 0.8627)

R2 0.7933 0.7905 0.7905 (0.7836, 0.7977) 0.7769 0.7770 (0.7611, 0.7926)

R3 0.3567 0.3485 0.3485 (0.3425, 0.3543) 0.3415 0.3416 (0.3335, 0.3490)

R4 0.1166 0.1061 0.1061 (0.1007, 0.1116) 0.1030 0.1030 (0.1002, 0.1059)

R5 0.0306 0.0328 0.0327 (0.0227, 0.0407) 0.0275 0.0275 (0.0261, 0.0292)

R6 0.0068 0.0044 0.0043 (0.0026, 0.0065) 0.0112 0.0112 (0.0104, 0.0119)
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Table 8.6: Results of the analysis of the data for Q = 3/1 at 1168.6Da (HOMOSC.: homoscedastic model; HETEROSC.:

heteroscedastic model).

Parameter TRUE HOMOSC. HETEROSC.

Mean Median 95% c.i. Mean Median 95% c.i.

H1 – 32402.1 32407.5 (31148.7, 33694.7) 32833.4 32834.2 (31229.7, 34649.2)

H2 – 26655.6 26663.6 (25562.9, 27733.2) 27550.7 27521.9 (26285.9, 28929.0)

H3 – 27570.4 27594.5 (26363.5, 28674.2) 29538.4 29534.8 (28096.3, 30975.1)

H4 – 18437.2 18435.5 (17529.7, 19372.0) 17180.0 17165.4 (16359.0, 18112.2)

H5 – 20856.3 20861.4 (19869.9, 21815.7) 19779.5 19769.0 (18828.0, 20866.3)

H6 – 19322.5 19329.4 (18336.0, 20289.8) 18826.6 18818.1 (17894.7, 19784.6)

Q 2.4 2.0330 2.0326 (1.9674, 2.1034) 2.1346 2.1353 (2.0408, 2.2293)

λτ – 15.5040 15.6480 (13.6920, 16.5600) 17.0800 17.1240 (16.2840, 17.7240)

σ – 1204.438 1186.492 (989.9005, 1466.329) 0.0956 0.0842 (0.0491, 0.1634)

θ – – – – 0.9577 0.9593 (0.8873, 1.0216)

R2 0.6645 0.7568 0.7568 (0.7342, 0.7798) 0.7137 0.7141 (0.6786, 0.7478)

R3 0.2454 0.3096 0.3095 (0.2917, 0.3281) 0.2900 0.2899 (0.2734, 0.3062)

R4 0.0653 0.0800 0.0801 (0.0636, 0.0946) 0.0723 0.0722 (0.0676, 0.0768)

R5 0.0139 0.0036 0.0035 (0.0023, 0.0051) 0.0144 0.0144 (0.0133, 0.0154)

R6 0.0025 0.0053 0.0052 (0.0027, 0.0080) 0.0037 0.0037 (0.0034, 0.0040)
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Table 8.7: Results of the analysis of the data for Q = 1/3 at 1168.6Da (HOMOSC.: homoscedastic model; HETEROSC.:

heteroscedastic model).

Parameter TRUE HOMOSC. HETEROSC.

Mean Median 95% c.i. Mean Median 95% c.i.

H1 – 75245.8 75242.3 (72985.3, 77564.3) 87319.1 87179.7 (79783.1, 96097.2)

H2 – 73669.0 73646.9 (71581.8, 75948.2) 88076.3 87918.9 (81255.8, 96498.6)

H3 – 63588.3 63585.8 (61422.7, 65726.7) 75376.6 75167.1 (69101.6, 82509.8)

H4 – 71619.6 71601.5 (69427.8, 73940.7) 77272.2 77067.4 (71406.1, 84527.4)

H5 – 48695.4 48687.6 (46695.1, 50786.3) 50596.9 50476.6 (46784.7, 55115.4)

H6 – 61968.9 61988.6 (59748.0, 64080.2) 66931.3 66838.9 (61500.5, 72929.8)

Q 0.3333 0.5266 0.5268 (0.5008, 0.5512) 0.4565 0.4568 (0.4268, 0.4861)

λτ – 3.9720 3.9720 (3.4560, 4.5840) 5.6400 5.8200 (5.2440, 6.5760)

σ – 17551.493 1527.288 (1267.013, 1900.911) 0.0888 0.0781 (0.0452, 0.1582)

θ – – – – 1.0086 1.0098 (0.9382, 1.0717)

R2 0.6645 0.8243 0.8243 (0.7992, 0.8478) 0.7372 0.7367 (0.6653, 0.7986)

R3 0.2454 0.3336 0.3334 (0.3146, 0.3543) 0.2950 0.2955 (0.2689, 0.3185)

R4 0.0653 0.0305 0.0303 (0.0163, 0.0481) 0.0627 0.0628 (0.0562, 0.0685)

R5 0.0139 0.0525 0.0540 (0.0302, 0.0697) 0.0137 0.0137 (0.0123, 0.0150)

R6 0.0025 0.0026 0.0025 (0.0012, 0.0042) 0.0049 0.0049 (0.0043, 0.0054)
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Graphical representation of the simulation results:
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Figure 8.2: Graphical representation of the MSE of λ for settings with σ = 0.05.
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Figure 8.3: Graphical representation of the MSE of λ for settings with σ = 1.50 (excluding λ = 0.10).
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Figure 8.4: Graphical representation of the MSE of Q for settings with σ = 0.05.
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Figure 8.5: Graphical representation of the MSE of Q for settings with σ = 1.50.
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Figure 8.6: Graphical representation of the mean relative bias of θ.





Chapter 9

A Bayesian approach for the

analysis of 18O-labeled mass

spectra using a

heteroscedastic random-effect

Markov-chain-based model

In this chapter, we extend the Bayesian model, defined in Chapter 8, by incorporating

the random effect(s) to account for the between-spectra technical/biological variabil-

ity. To investigate the performance of the model, we apply it to both the bovine

cytochrome C data set and to data from a simulation study.

9.1 Model formulation

9.1.1 The likelihood

Based on the model presented in Chapter 8, to account for the between-spectra (bio-

logical) variability, we need to define spectrum-specific relative abundance parameter,

i.e., Qi for the ith spectrum.
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For the model implementation, we assume no covariance between random effects

Hi and Qi, i.e., σHQ = 0, as a priori such an association would not be expected

(as can be observed from Chapter 7). The resulting likelihood is then shown in

equations (7.1)–(7.2) and (7.3), by assuming thatHi and Qi are random, i.e.,

Hi ∼ N
(
H,σ2

H

)
, (9.1)

Qi ∼ N
(
Q, σ2

Q

)
. (9.2)

9.1.2 Prior and posterior distributions

The priors for the parameters were defined in the same way as explained in Section 8.1.

For σ2
H and σ2

Q, non-informative conjugate (inverse-gamma) priors were used. For H

and Q, non-informative normal priors were defined for the logarithm of them. More

specifically, the following priors were used:

σ−2
H ∼ Γ (α1, β1) , (9.3)

σ−2
Q ∼ Γ (α2, β2) , (9.4)

H ∼ N

(
0,

1

τ6

)
, (9.5)

Q ∼ N

(
0,

1

τ7

)
, (9.6)

where α1, α2, β1, β2, τ6, and τ7 are positive constants close to zero. Same as in

Chapter 8, there is no analytical solution for the posterior distributions of the param-

eters and they need to be evaluated via some numerical (sampling) methods.

The analysis was done using WinBUGS 1.4 through WBDiff (the interface of

differential equations).

9.2 Results

In this section, we present results of the application of the model to the six replicated

mass spectra of bovine cytochrome C peptides. We also show results of a simulation

study, undertaken to check the statistical properties of the proposed model.

9.2.1 Bovine cytochrome C data sets

The model was applied to three peptides (at 1168.6 Da, 1456.7 Da and 1584.8 Da) of

the replicated mass spectra of bovine cytochrome C (see Section 3.1).
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The model was fitted to the data by using WinBUGS 1.4 through WBDiff. Ta-

bles 9.2 to 9.7 show the statistical results of the random-effect models.

Several common characteristics can be observed in these tables. First, for each

peptide, a considerable amount of between-spectra variability of abundance, repre-

sented by σ2
H , can be observed. Moreover, compared with σ2

H , the magnitude of

between-spectra variability for the relative abundance, denoted as σ2
Q, is negligible

(for model denoted as “Random H and Q”). This is because, for each of the peptide,

the two samples from the six spectra are basically the same. Thus, in principle they

should produce exactly the same value of the relative abundance parameter.

The results are, in general, similar to the ones presented in Chapter 8 for the fixed

effect model. However, there are several additional patterns that can be observed.

First, it is interesting to note that the important parameters, λτ and isotopic ratios

R are better estimated than in the fixed-effect model. For R, accounting for its

precision by the 95% credible intervals, the estimates are closer to the true values

than in the fixed-effect model, even for the peptide with mass 1168.6 Da. For λτ ,

the estimates of the two random-effect models are stable, i.e., for each peptide with

the same relative abundance, the λτ estimates are more alike and show, in general,

narrower 95% credible intervals than those in the fixed-effect model, presented in the

Chapter 8.

9.2.2 A simulation study reflecting biological variability

In this section, we present a simulation study of the setting with biological variability,

by applying the Bayesian model with random Hi and Qi. The settings were the same

as presented in Section 7.3.2.

The simulation was preformed using R2WinBUGS, the interface to call the ap-

plication of WinBUGS 1.4 via R, with the discrete-time Markov-chain-based model

implemented through WBDiff.

The results of the simulation study are presented in Table 9.1. The point esti-

mates of the isotopic ratios, λτ , as well as mean relative abundance Q are very close

to the true values. Regarding the parameters that reflect the technical and biological

variability, i.e., σH and σQ, they are estimated with negligible bias. The estimates of

power-of-the-mean variance function parameters θ and σ also show agreement with

their true values. The simulation shows satisfactory performance of the model, im-

plemented within the Bayesian framework, under the correct model specification.
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Table 9.1: Simulation results of the two settings – Mean estimate (M.Est.), mean relative

bias (M.R.B.), empirical standard error Semp and model-based standard error

Smb.

Parameter Setting 1 Setting 2

M.Est. M.R.B. Semp/Smb M.Est. M.R.B Semp/Smb

R2 0.9110 0.0006 0.0034/0.0035 0.9095 -0.0010 0.0037/0.0060

R3 0.4186 0.0100 0.0020/0.0020 0.4277 0.0320 0.0024/0.0037

R4 0.1261 0.0022 0.0013/0.0013 0.1258 0.0002 0.0009/0.0013

R5 0.0288 0.0059 0.0005/0.0006 0.0290 0.0114 0.0004/0.0006

R6 0.0052 0.0029 0.0002/0.0002 0.0053 0.0157 0.0001/0.0002

µH 24030.5 0.0013 933.7/997.2 8080.1 0.0100 306.7/441.7

σH 2024.6 -0.0359 671.5/726.5 853.8 -0.0298 290.1/353.7

µQ 0.3460 0.0381 0.0984/0.1160 2.8887 -0.0371 0.2498/0.2686

σQ 0.0477 -0.0450 0.0129/0.0175 0.4762 -0.0475 0.1723/0.1690

σ 0.4533 0.1332 0.1828/0.2496 0.3563 -0.1093 0.1169/0.1813

θ 0.5955 -0.0076 0.0554/0.0567 0.6405 0.0675 0.0480/0.0763

λτ 7.9933 -0.0484 0.3317/0.4205 7.8722 -0.0628 0.0633/0.0761

9.3 Discussion

In this chapter, we have introduced a Bayesian model, with random effects, for the

estimation of technical and biological variability.

The application of the models to the bovine cytochrome C data set, in general,

gives unbiased estimation. The estimates of the most important parameters are im-

proved with smaller bias and better precision, as compared to the fixed-effect models.

Thus, the incorporation of various sources of variability, in the context of MS data,

by the inclusion of one or more random effects is useful.

The results of the application of our method to data from a real-life, controlled

experiment and to a simulation study confirm feasibility and satisfactory performance

of the proposed modeling approach. The computational speed of the model is tol-

erable can be feasibly implemented in a high-throughput environment. On average,

fitting the model, in the Bayesian framework, for each peptide, took about 3 min-

utes on a HP8530p laptop under Windows Vista R©. The model can be extended to,

e.g., the shape representation of the peaks. In the next chapter, we will discuss the

implementation and applications of such a model.
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Statistical results of the case study:

Table 9.2: Results of the analysis of the data for Q = 3/1 at 1584.8Da.

Parameter TRUE Random H Random H and Q

Mean Median 95% c.i. Mean Median 95% c.i.

µH – 8559 8543 (7675, 9524) 8618 8623 (7676, 9455)

σ2
H – 1208000 826700 (281700, 4502000) 1154000 787800 (261100, 4305000)

Q 2.4 2.3760 2.3770 (2.3440, 2.4070) 2.3660 2.3650 (2.2870, 2.4430)

σ2
Q – – – – 0.0097 0.0069 (0.0023, 0.0348)

λτ – 8.9520 8.9400 (8.5440, 9.4560) 8.9520 8.9400 (8.5200, 9.4800)

σ – 0.2575 0.2031 (0.0729, 0.7070) 0.5984 0.4202 (0.1118, 1.4142)

θ – 0.7493 0.7548 (0.6101, 0.8801) 0.6586 0.6532 (0.5089, 0.8212)

R2 0.8703 0.8648 0.8648 (0.8531, 0.8769) 0.8606 0.8607 (0.8483, 0.8728)

R3 0.4223 0.4309 0.4308 (0.4225, 0.4394) 0.4277 0.4275 (0.4207, 0.4353)

R4 0.1478 0.1366 0.1366 (0.1327, 0.1404) 0.1359 0.1359 (0.1328, 0.1395)

R5 0.0413 0.0340 0.0340 (0.0327, 0.0354) 0.0339 0.0339 (0.0326, 0.0353)

R6 0.0098 0.0074 0.0074 (0.0070, 0.0078) 0.0074 0.0074 (0.0069, 0.0079)

Table 9.3: Results of the analysis of the data for Q = 1/3 at 1584.8Da.

Parameter TRUE Random H Random H and Q

Mean Median 95% c.i. Mean Median 95% c.i.

H – 22290 22300 (19970, 24520) 22220 22220 (20020, 24460)

σ2
H – 7128000 4959000 (1674000, 25470000) 7498000 5353000 (1797000, 26630000)

Q 0.3333 0.3314 0.3314 (0.3271, 0.3360) 0.3169 0.3173 (0.2855, 0.3522)

σ2
Q – – – – 0.0056 0.0042 (0.0015, 0.0170)

λτ – 6.5640 6.5520 (6.0960, 7.0680) 6.6324 6.6132 (6.2184, 7.1712)

σ – 0.6359 0.5341 (0.2134, 1.8740) 0.5557 0.4368 (0.1813, 1.1916)

θ – 0.5947 0.5957 (0.4492, 0.7124) 0.6056 0.6028 (0.4813, 0.7215)

R2 0.8703 0.8596 0.8595 (0.8527, 0.8662) 0.8576 0.8576 (0.8497, 0.8652)

R3 0.4223 0.4053 0.4053 (0.4009, 0.4096) 0.4046 0.4047 (0.4001, 0.4088)

R4 0.1478 0.1245 0.1245 (0.1212, 0.1278) 0.1247 0.1247 (0.1219, 0.1275)

R5 0.0413 0.0336 0.0335 (0.0317, 0.0355) 0.0334 0.0334 (0.0319, 0.0352)

R6 0.0098 0.0085 0.0085 (0.0076, 0.0092) 0.0085 0.0085 (0.0078, 0.0092)
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Table 9.4: Results of the analysis of the data for Q = 3/1 at 1456.7Da.

Parameter TRUE Random H Random H and Q

Mean Median 95% c.i. Mean Median 95% c.i.

H – 8855 8895 (7380, 9795) 8873 8877 (7472, 9787)

σ2
H – 1591000 1032000 (351000, 5946000) 1307000 891000 (303500, 4687000)

Q 2.4 2.3940 2.3940 (2.3640, 2.4230) 2.3705 2.3705 (2.3062, 2.4536)

σ2
Q – – – – 0.0076 0.0055 (0.0018, 0.0272)

λτ – 12.6960 12.0320 (9.7440, 13.1840) 11.2320 11.1600 (10.2480, 12.6720)

σ – 0.4318 0.3786 (0.1885, 1.0330) 0.6001 0.4426 (0.1756, 1.3149)

θ – 0.6720 0.6758 (0.5560, 0.7625) 0.6431 0.6444 (0.5182, 0.7595)

R2 0.7933 0.7763 0.7762 (0.7661, 0.7865) 0.7774 0.7775 (0.7684, 0.7865)

R3 0.3567 0.3405 0.3405 (0.3349, 0.3462) 0.3432 0.3432 (0.3380, 0.3486)

R4 0.1166 0.0984 0.0984 (0.0959, 0.1011) 0.1014 0.1014 (0.0988, 0.1039)

R5 0.0306 0.0214 0.0214 (0.0203, 0.0223) 0.0245 0.0245 (0.0234, 0.0255)

R6 0.0068 0.0044 0.0044 (0.0041, 0.0048) 0.0070 0.0070 (0.0066, 0.0075)

Table 9.5: Results of the analysis of the data for Q = 1/3 at 1456.7Da.

Parameter TRUE Random H Random H and Q

Mean Median 95% c.i. Mean Median 95% c.i.

H – 22750 22810 (20460, 24730) 22980 23000 (20780, 25010)

σ2
H – 6779000 4476000 (1537000, 25910000) 6455000 4506000 (1503000, 23250000)

Q 0.3333 0.3319 0.3320 (0.3239, 0.3397) 0.3337 0.3308 (0.3034, 0.3698)

σ2
Q – – – – 0.0055 0.0041 (0.0015, 0.0177)

λτ – 6.8700 6.8382 (6.2292, 7.7088) 6.9060 6.8532 (6.1824, 7.8924)

σ – 0.3464 0.3085 (0.1481, 0.7885) 0.4263 0.3606 (0.1613, 0.8165)

θ – 0.7338 0.7362 (0.6204, 0.8303) 0.6967 0.6944 (0.5961, 0.8021)

R2 0.7933 0.7857 0.7857 (0.7723, 0.7987) 0.7807 0.7809 (0.7659, 0.7953)

R3 0.3567 0.3359 0.3358 (0.3284, 0.3434) 0.3337 0.3336 (0.3269, 0.3409)

R4 0.1166 0.0915 0.0916 (0.0877, 0.0954) 0.0909 0.0909 (0.0872, 0.0949)

R5 0.0306 0.0213 0.0213 (0.0197, 0.0233) 0.0213 0.0212 (0.0199, 0.0228)

R6 0.0068 0.0058 0.0058 (0.0053, 0.0064) 0.0058 0.0058 (0.0052, 0.0064)



F
igu

res
a
n
d
T
a
bles

119

Table 9.6: Results of the analysis of the data for Q = 3/1 at 1168.6Da.

Parameter TRUE Random H Random H and Q

Mean Median 95% c.i. Mean Median 95% c.i.

H – 21910 22490 (13770, 27780) 22020 22000 (14500, 28600)

σ2
H – 91880000 60750000 (19490000, 350500000) 62480000 45340000 (15640000, 209200000)

Q 2.4 2.0900 2.0910 (2.0120, 2.1680) 2.1359 2.1364 (2.0307, 2.2426)

σ2
Q – – – – 0.0102 0.0073 (0.0023, 0.0361)

λτ – 17.9520 18.3960 (16.2480, 19.2600) 18.8160 19.2720 (16.0440, 19.8720)

σ – 0.1494 0.1369 (0.0799, 0.2930) 0.1314 0.0999 (0.0541, 0.2940)

θ – 0.9155 0.9188 (0.8379, 0.9776) 0.9310 0.9362 (0.8233, 1.0044)

R2 0.6645 0.6962 0.6959 (0.6692, 0.7238) 0.6974 0.6970 (0.6618, 0.7223)

R3 0.2454 0.2810 0.2808 (0.2684, 0.2949) 0.2816 0.2813 (0.2689, 0.2947)

R4 0.0653 0.0682 0.0682 (0.0640, 0.0727) 0.0686 0.0686 (0.0647, 0.0737)

R5 0.0139 0.0118 0.0118 (0.0110, 0.0127) 0.0124 0.0124 (0.0115, 0.0134)

R6 0.0025 0.0015 0.0015 (0.0013, 0.0016) 0.0017 0.0017 (0.0015, 0.0020)

Table 9.7: Results of the analysis of the data for Q = 1/3 at 1168.6Da.

Parameter TRUE Random H Random H and Q

Mean Median 95% c.i. Mean Median 95% c.i.

H – 66370 66080 (57630, 77740) 69250 69230 (57270, 81200)

σ2
H – 138800000 88830000 (29870000, 499800000) 193000000 128700000 (39500000, 736800000)

Q 0.3333 0.5112 0.5117 (0.4815, 0.5416) 0.4872 0.4852 (0.4087, 0.5703)

σ2
Q – – – – 0.0093 0.0065 (0.0021, 0.0332)

λτ – 5.1468 5.1492 (4.3824, 5.8620) 5.3568 5.3220 (4.6548, 6.2460)

σ – 1.1080 0.9935 (0.5099, 2.2170) 1.3561 1.1476 (0.5704, 2.5538)

θ – 0.7785 0.7813 (0.6939, 0.8574) 0.7448 0.7461 (0.6583, 0.8279)

R2 0.6645 0.8021 0.8004 (0.7561, 0.8578) 0.7625 0.7617 (0.7167, 0.8133)

R3 0.2454 0.3203 0.3202 (0.2949, 0.3466) 0.3049 0.3048 (0.2798, 0.3303)

R4 0.0653 0.0564 0.0563 (0.0485, 0.0648) 0.0556 0.0554 (0.0482, 0.0643)

R5 0.0139 0.0097 0.0096 (0.0080, 0.0123) 0.0095 0.0095 (0.0074, 0.0119)

R6 0.0025 0.0013 0.0013 (0.0010, 0.0017) 0.0014 0.0014 (0.0009, 0.0020)





Chapter 10

A model for the analysis of
18O-labeled mass spectra with

shape representation of the

data

In this chapter, we introduce an extended model, which takes the shape of the peak

envelopes into account. A straightforward advantage of defining a shape model is that

it can be directly applied to the original data set, for which all the information content

is preserved. The resulting parameter estimates are expected to be more precise.

10.1 Model formulation

In this section, we first describe the model formulation for both the mean and variance

structure. The corresponding estimation approach will be introduced afterwards.

10.1.1 Mean structure

The mean structure of the model is intrinsically the same as shown in (6.2), but with

a multiplicative factor of a shape function. For the shape function, we consider an

asymmetric Laplace distribution function, to account for the right-skewness nature of
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the peak envelopes (as can be observed from Figure 2.9). To model the observed peak

intensities, assuming l isotopic variants are observed for each peptide, we define that

the mean intensity µij of the observed one yij , which is the jth observed intensity

from the ith spectrum, to be

µij ≡ E(yij) =





HiRmψ(xij ;M1 + (m− 1)S, σs, κ)

+QHiψ(xij ;M2 + (m− 5)S, σs, κ)
∑min(4,m−1)

k=0 PkRm−k if 1 ≤ m ≤ l

QHiψ(xij ;M2 + (m− 5)S, σs, κ)
∑4

k=m−l PkRm−k if l + 1 ≤ m ≤ l + 4

,

(10.1)

where xij is the jth mass coordinate in the ith spectrum; m is the index for the

observed peak;M1 andM2 are, respectively, the monoisotopic masses of the unlabeled

and labeled peptide samples. Parameter S reflects the average difference in molecular

weight of the isotopes and is usually very close to one. Thus, in (10.1), S is defined to

be the difference in mass locations between two neighboring isotopic peaks of the same

peptide, and is assumed to be constant over all the isotopic peaks for both peptide

samples. Parameters σs and κ are, respectively, the spread and skewness parameters

for the asymmetric Laplace distribution function ψ(xij ;M + (m− 1)S, σs, κ), where

ψ(xij ;M + (m− 1)S, σs, κ) =




F (xij |M + (m− 1)S, σs, κ)− F (xij−1|M + (m− 1)S, σs, κ) if j ≥ 2,

F (xij |M + (m− 1)S, σs, κ) if j = 1,
(10.2)

with F (xij |M+(m−1)S, σs, κ) the cdf function of asymmetric Laplace calculated

at xij with mean M + (m− 1)S and standard deviation σs, i.e.,

F (xij |M + (m− 1)S, σs, κ) =





κ2

1+κ2 exp
[
−

√
2

σsκ
|xij − (M + (m− 1)S) |

]
if xij < M + (m− 1)S,

1− 1
1+κ2 exp

[
−

√
2κ
σs

|xij − (M + (m− 1)S) |
]

if xij ≥M + (m− 1)S.

Similar to the models for the stick representation, terms HiRmψ(xij ;M1 + (m−

1)S, σs, κ) and QHiψ(xij ;M2 + (m−)S, σs, κ)PkRm−k in (10.1) denote the contribu-

tions to the mean values of the jth observed intensity from the mth isotopic variant

from Samples I and II respectively.
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10.1.2 Data exploration for a suitable variance function

For the pre-processing algorithm, we used the strategy proposed by Valkenborg et al.

(2009). For the baseline correction, however, using the algorithm, implemented by

Valkenborg et al. (2009), turned out to produce numerical problems due to many

zero intensity values after baseline correction. This caused problems in evaluating a

suitable variance function and in estimating the chosen variance function. Alterna-

tively, we corrected the baseline by subtracting the minimum intensity value of the

ith spectrum across the m+ 4 observed peaks for a certain peptide samples. This is

empirically valid since the baseline in around 10 Da mass range is fairly constant.
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(c) 1168Da Q = 3
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(d) 1584Da Q = 1/3
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(e) 1456Da Q = 1/3
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(f) 1168Da Q = 1/3

Figure 10.1: Scatter plots of grouped residual standard error with 95% confidence interval

(on y) versus mean (observed) intensity (on x).

In order to find a suitable variance function for the residual variance of the model,

a homoscedastic model with a mean structure defined in (10.1) was fitted, using

least squares, to the bovine cytochrome C data set (see Section 3.1). The residuals

were first ordered according to their corresponding observed intensity values and then

grouped. The variances and the mean (observed) intensities were calculated based on

the grouped residuals.

Figure 10.1 shows the scatter plots of the residual standard errors, together with
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Figure 10.2: Scatter plots of the logarithmic residual standard error, with 95% confidence

interval, versus the logarithmic mean (observed) intensity, to check the ap-

propriateness of the power-of-the-mean variance function.

the corresponding 95% confidence intervals, versus the mean (observed) intensities.

It is apparent from Figure 10.1 that the fit is far from linear and the scatter of the

observations mostly concentrate around low intensity values. Moreover, the widths of

the 95% confidence intervals are far from constant, but increase drastically along the

intensity value scale. Thus, a logarithmic transformation was considered for exploring

a suitable variance function. The scatter plots were then re-drawn using the logarith-

mic transformation for both scales. The result is shown in Figure 10.2. The 95%

confidence intervals are now fairly constant. However, the scatters show a sigmoidal

shape.

Figure 10.2 indicates that for the model of the shape representation, instead of

applying a power-of-the-mean variance function as defined in Chapter 6, a sigmoidal

variance function should be considered. However, a conventional sigmoidal function is

limited in both the scale and the shape. Thus, we considered the modified sigmoidal

function:

V = d+
a

1 + exp [−b(U − c)]
, (10.3)
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Figure 10.3: Scatter plots of the logarithm of residual standard error versus the logarithm

of mean (observed) intensity and the fitted sigmoidal model (10.3).

where a > 0, b > 0, and V and U are, respectively, the logarithm of the residual stan-

dard error and the logarithm of the observed intensity yij . The modified sigmoidal

function, defined in (10.3), was fitted to the residuals, obtained from the homoscedas-

tic model, using least squares approach. Figure 10.3 indicates good fit of the proposed

modified sigmoidal function for all the six data sets.

The flexibility of the model is reflected by the different aspects of the model shape

being controlled by different parameters. More specifically, parameter a influences

the elongation of the sigmoidal shape along the y axis, while parameter b controls the

stretch of the sigmoidal shape along the x axis and the direction of the sigmoid (if

b > 0, the function is monotonely increasing; if b < 0, it’s monotonely decreasing).

Parameters c and d adjust the shift of the sigmoid on the x and y axes, respectively.

Another advantage of using the modified sigmoidal function as a variance function

is that the additive factor d on the log-scale becomes multiplicative on the original

scale. This means the exp(d) can be viewed as a common baseline residual variance

σ2, which can be profiled out when, for instance, a PL-GLS algorithm is considered.

Therefore, in the PL step to estimate the variance function parameters, only three

parameters a, b and c need to be estimated. The details of PL-GLS algorithm for the
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model will be discussed in Section 10.2.

Thus, the resulting model takes the following form:

yij = µij + εij , (10.4)

where εij ∼ N
(
0, σ2g2 (µij ; a, b, c)

)
, with

g (µij ; a, b, c) = exp

(
a

1 + exp {−b [log (µij)− c]}

)
, a > 0, b > 0, (10.5)

and that εij ’s are independent. The mean intensity µij is defined in equation (10.1).

10.2 Estimation and inference

Assume that we have got n joint spectra, each with M observed mass (or intensity)

coordinates. The model, specified by (10.1)–(10.5), can be fitted to observed data by

using various methods (Carroll and Ruppert 1988, Davidian and Giltinan 1995). The

starting point for them is the log-likelihood, given by

lML(β, a, b, c, σ
2) =

−
1

2

n∑

i=1

M∑

j=1

log
{
σ2g2 (µij(β); a, b, c)

}
−

1

2σ2

n∑

i=1

M∑

j=1

{
yij − µij(β)

g (µij(β); a, b, c)

}2

,

(10.6)

where β = (H1, . . . , Hn, Q, λ,R1, . . . , Rl,M1,M2, S, σs, κ) is a parameter vector that

includes all the parameters used to model the mean value, as specified in (10.1).

Maximum-likelihood (ML) estimates of β, a, b, c, and σ2 can be obtained by

simultaneously maximizing log-likelihood function (10.6) with respect to these pa-

rameters. In general, however, this is a numerically complex task, which requires

finding an optimum in a multidimensional parameter space. This task can be simpli-

fied by observing that, if we assume β, a, b, and c are known, the estimator for σ2 is

given by

σ̂2
ML =

1

nM

n∑

i=1

M∑

j=1

{
yij − µij(β)

g (µij(β); a, b, c)

}2

. (10.7)

By plugging expression (10.7) in (10.6) and omitting constant terms, we obtain the

following log-profile-likelihood function, which depends only on a, b, c, and β (not on
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σ2):

l∗ML(β, a, b, c) =

−
1

2

n∑

i=1

M∑

j=1

log
{
g2 (µij(β); a, b, c)

}
−
nM

2
log




n∑

i=1

M∑

j=1

{
yij − µij(β)

g (µij(β); a, b, c)

}2

 =

−
nM

2
log








n∏

i=1

M∏

j=1

g (µij(β); a, b, c)





2
nM


−

nM

2
log




n∑

i=1

M∑

j=1

{
yij − µij(β)

g (µij(β); a, b, c)

}2

 .

(10.8)

Maximizing (10.8) with respect to a, b, c, and β allows obtaining estimates for these

parameters. The estimates can then be used to compute the ML-estimate of σ2 from

(10.7). However, it is well known that the ML-estimator is biased downwards. Thus,

especially when the number of spectra is small, it is better to replace it by the following

REML-estimator:

σ̂2
REML =

1

(nM − p)

n∑

i=1

M∑

j=1

{
yij − µij(β)

g (µij(β); a, b, c)

}2

, (10.9)

where p denotes the number parameters in the model.

The use of log-profile-likelihood (10.8) still requires a simultaneous maximization

of the function over β, a, b and c. Moreover, the use of log-likelihood (10.6) or of

log-profile-likelihood (10.8) assumes that the data fulfill all the assumptions of the

model, defined in (10.1)–(10.4) and (10.5).

An alternative estimation approach is to use a PL-GLS algorithm (Davidian and

Giltinan 1995), which is more robust to mis-specifications of the model and simpler

numerically (see Section 6.2). In the case of the modified sigmoidal variance, as

specified in (10.5), the approach can be deduced in a similar way as presented in

Section 6.2. Namely, log-profile-likelihood (10.8) can be expressed as

l∗ML(β, a, b, c) = −
nM

2
log


{g̃ (µij(β); a, b, c)}

2
n∑

i=1

M∑

j=1

{
yij − µij(β)

g (µij(β); a, b, c)

}2

 ,

(10.10)

where g̃ (µij(β); a, b, c) =

{
n∏

i=1

M∏
j=1

g (µij(β); a, b, c)

} 1
nM

. It follows that maximization

of (10.10) is equivalent to minimization of
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l∗∗ML(β, a, b, c) =

n∑

i=1

M∑

j=1

[
{yij − µij(β)}

{
g̃ (µij(β); a, b, c)

g (µij(β); a, b, c)

}]2
≡

n∑

i=1

M∑

j=1

{fij(β, a, b, c)}
2
.

(10.11)

Thus, minimization of (10.11), either over a, b and c (while keeping β fixed) or over

(β, a, b, c), can be viewed as an ordinary least squares (OLS) problem for a linear

model with all data equal to 0 and fij(β, a, b, c) as the fitted mean structure. It can

be also viewed as a weighted least squares (WLS) problem for estimating β, with

weight

wij(β, a, b, c) =
g̃ (µij(β); a, b, c)

g (µij(β); a, b, c)
.

As a result, the following algorithm can be used to estimate β, a, b, c, and σ2:

1. Set k = 0. Use an initial estimate β̂(0) of β.

2. Set k = k + 1.

3. While keeping β̂(k−1) fixed, compute estimates â(k), b̂(k) and ĉ(k) of a, b and c,

respectively, from (10.11), by using OLS.

4. Compute weights w
(k)
ij (β̂(k−1), â(k), b̂(k), ĉ(k)). While keeping the weights fixed,

obtain estimate β̂(k) of β by using WLS.

5. Iterate between steps 2–4 until convergence.

6. Use the obtained estimates of β and a, b, c to compute an estimate of σ2 from

(10.7) or (10.9).

Irrespectively of the estimation approach used, standard errors of the estimates of

β, a, b, c, and σ2 can be obtained from the inverse of the negative Hessian of log-

likelihood (10.6), computed at the estimated values of the parameters.

10.2.1 Practical implementation

For the practical implementation, we considered an unconstrained estimation ap-

proach, as explained in Section 5.2.4. More specifically, for the parameters that need

to be constrained positively, a logarithmic transformation was considered. For λ, as in

Chapters 5 to 9, we considered the Box-Cox transformation: λ = λ0 exp(λ
′)/{exp(λ′) + 1}.
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It was observed that, to avoid numerical problems, parameters M1, M2, and S

need to be constrained within a certain range. For the monoisotopic masses of the

two peptide samples, M1 and M2, they could be constrained within 1 Da range, at

a particular peak observed from a mass spectrum. For this purpose, an inverse-logit

transformation was used. To be more specific, suppose M1 and M2 are observed to

vary within intervals of [M10 ,M10 + 1] and [M20 ,M20 + 1] respectively, the transfor-

mation then takes the form: M1 = M10 +
exp(M ′

1)
1+exp(M ′

1)
and M2 = M20 +

exp(M ′

2)
1+exp(M ′

2)
.

With this respect, the transformed scales of M ′
1 and M ′

2 can take any real values.

The parameter S, which is the difference in mass locations between two neighbor-

ing isotopic peaks, usually varies within a small range around 1.0015 Da. The value

1.0015 was obtained as an average difference in the isotopic masses. Thus, S can be

constrained in the interval of [1.0000, 1.0050]. To this aim, a re-scaled inverse-logit

transformation was used, yielding S = 1 + 0.0050 exp(S′)
1+exp(S′) , where the transformed

scale S′ is allowed to take any real values.

10.3 Application to bovine cytochrome C data
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Figure 10.4: Observed versus fitted (with predicted mean intensity) spectrum.

We apply the model to the controlled experiment of the enzymatic labeling of
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bovine cytochrome C peptides. The estimation approaches were implemented by us-

ing Matlab 2009a with function fminunc for unconstrained optimization problems.

It should be noted that, unlike the models for the stick representation, due to the

inclusion of the shape function, the gradient functions of the model parameters can

no longer be expressed analytically. For this reason, a medium-scale search using

the Gauss-Newton algorithm (instead of Newton-Raphson algorithm) was performed.

The proportions of water impurities of the heavy-oxygen water were still assumed to

be equal to p16 = 2% and p17 = 1%. As stated earlier, to avoid numerical prob-

lem, the baseline correction algorithm proposed by Valkenborg et al. (2009) was not

applied. Instead, the baseline was assumed to be constant for each peptide samples

within each spectrum. Thus, the baseline correction was done by subtracting the

minimum intensity value of a specific spectrum from the observed intensity values of

the spectrum.

Tables 10.2 and 10.3 present, respectively, the PL-GLS estimates of the model

for the three analyzed peptides for the controlled experiment with intended relative

abundances Q = 1/3 and Q = 3/1.

Apart from the patterns of the parameter estimates observed also in Section 6.3,

several improvements over the stick-representation models are worth mentioning.

First, for the two peptides with masses 1456.7 Da and 1584.8 Da, the λτ estimates,

for the two experiments with relative abundances Q = 1/3 and Q = 3/1, are closer

to each other. This is expected as the oxygen incorporation rate should be relatively

constant for the same peptide. Furthermore, the 95% confidence intervals for the

relative abundance Q and the isotopic ratios R, in general, contain the true val-

ues, especially for the two peptides with masses 1456.7 Da and 1584.8 Da. This is

an important improvement over the stick-representation models. Recall that, in the

stick-representation models (see Section 6.3), the standard errors were much smaller,

yielding the confidence intervals slightly deviating away from the true values.

Figure 10.4 shows the comparison of the observed versus the fitted spectrum for

one of the six spectra. The fitted intensities were obtained by the predicted mean

intensity values of the model. The figure shows that the asymmetric Laplace function

provides a good approximation for the shape of the peak envelopes. The fitted spectra

are quite compatible with the observed ones, especially for the peptides with masses

1456.7 Da and 1584.8 Da.
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10.4 A simulation study

In this section, we present results of a simulation study, undertaken to check the

statistical properties of the proposed model.

10.4.1 Simulation settings

In the simulation study, the proportions of heavy-oxygen water impurities were as-

sumed to be equal to p16 = 2% and p17 = 1%. For this simulation study, we considered

as in the bovine cytochrome C data sets, six technical replicates. Possible variability

due to, e.g., laser fluctuations and inefficient crystallization, was simulated by us-

ing six different reference intensities (obtained as a rough average from the bovine

cytochrome C data set), namely, H1 = 129500, H2 = 126800, H3 = 117500, H4 =

135600, H5 = 105500 and H6 = 136000.

The data sets were generated with combinations of settings for different parameters

shown as below:

Q : {0.5 2}

λτ : {4.8 9.6}

R : {E1 E2}

S : 1.0015

σs : 0.0800

M1 : 2001.053

M2 : {M1 + 4S + 0σs M1 + 4S + 1.5σs M1 + 4S + 3σs}

For the settings of the isotopic ratios R, similar to Section 6.4, E1 and E2 are the

isotopic distributions with the second isotopic peak being the least and most abundant

among all the peptides around 2001 Da from the NCBI data. The other parameters

were chosen as: κ = 0.7500, a = 5.0000, b = 0.5000, c = 4.5000 and σ = 15.00. The

combinations of these parameters lead to 24 settings in total. Table 10.1 shows the

numbering of the 24 settings with different combinations of the parameters.

For each of the settings, 200 replicated data sets, with random noise, were gen-

erated. In particular, the variance of the random noise of the replicated data sets

was assumed to follow the modified sigmoidal function (10.5). The randomly gener-

ated noise, based on the assumption of (10.5), was then added to the mean intensity
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Table 10.1: Numbering of the 24 simulation settings.

Q = 0.5

E1 E2

M2 : 0σs M2 : 1.5σs M2 : 3σs M2 : 0σs M2 : 1.5σs M2 : 3σs

λτ 4.8 set1 set2 set3 set4 set5 set6

9.6 set7 set8 set9 set10 set11 set12

Q = 2

E1 E2

M2 : 0σs M2 : 1.5σs M2 : 3σs M2 : 0σs M2 : 1.5σs M2 : 3σs

λτ 4.8 set13 set14 set15 set16 set17 set18

9.6 set19 set20 set21 set22 set23 set24

values, and truncated to be zero if negative. Based on the truncated intensity val-

ues, a baseline was added to them. The baseline was generated by using a Gaussian

density function, representing a slight ‘bumping’ shape as represented by the ‘true

baseline’ in Figure 10.5. To correct for the baseline, as done also in the analysis of

bovine cytochrome C data, a minimum intensity value observed for that spectrum

was subtracted from the ‘observed’ intensity values of the spectrum.
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Figure 10.5: Graphical demonstration of baseline correction.

One of the purposes of the simulation was to check the possible improvement of the

shape-representation model over the model for the stick representation, by retaining

the full content of the information from the mass spectra data. To this aim, the same

simulated data sets were also analyzed by the model of the stick representation, after

extracting the information from the original data for the stick representation (see

Section 4.2).
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A graphical representation of the 24 settings of the simulated data sets is shown

in Figures 10.9 and 10.10. The corresponding stick representation of the 24 settings

is presented in Figures 10.11 and 10.12.

To apply the model for the stick representation (introduced in Chapter 6), the

validity of the assumption of the power-of-the-mean variance function for the stick

representation needs to be checked. Figures 10.13 and 10.14 show the scatter plots

of the (grouped) logarithm of standard errors of the random noise versus the loga-

rithm of the mean intensity values. The random noise corresponds to those intensities

that represent the observed peaks, i.e., the maximum intensity of each observed peak,

in the stick representation. In general, the scatter plots can be viewed as linear,

which corroborates the validity of the assumption of the variance function, namely

the power-of-the-mean variance function. Thus, for the analysis of the stick represen-

tation, such variance function was applied.

10.4.2 Results of the simulation study

Tables D.1 to D.7 (Appendix D) present a comparison of the simulation results of

the models for the shape and stick representations. A common pattern, observed

from these tables, when M2 = 4S + 1.5σs and M2 = 4S + 3σs, is that the shape-

representation model gives less biased and more precise estimates, as indicated by

the mean relative bias b̄ and the empirical standard error Semp, respectively. For the

settings with M2 = 4S + 1.5σs and M2 = 4S + 3σs, i.e., when at a specific observed

peak, the ‘tilt’ of the centroid of the peaks of the two peptide samples is larger (equal

to 4S + 1.5σs and 4S + 3σs) than for the settings with M2 = 4S + 0σs, b̄ and Semp

of the shape model are considerably smaller than those of the stick-representation

model. This is because, when the ‘tilt’ is large, the summary statistics used for the

stick representation, takes only the maximum intensity of a certain peak. The sum-

mary statistics would then only reflect the information of the more abundant peptide

sample, while losing most of the information content of the other, less abundant one.

Thus, it illustrates the advantage of using the shape model.

Figures 10.6 and 10.7 give a graphical representation of the MSE of Q and λτ of

the shape model for the various settings. From Figure 10.6, it can be seen that, when

λτ is larger (9.6), the MSE for the relative abundance Q, in generally, is smaller. Note

that this was also observed in the simulation for the stick representation (presented

in Chapter 6). It indicates that the more complete the labeling, the better Q can
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Figure 10.6: MSE of Q for various settings of the shape model.
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Figure 10.7: MSE of λτ for various settings of the shape model.

be estimated. In should be noted that, again, similar to the simulation for the stick

representation (presented in Chapter 6), the MSE of the product of oxygen incor-

poration rate and reaction duration λτ , shown in Figure 10.7, is smaller when the

labeled peptide sample is more abundant, i.e., when Q = 2. This is reasonable since

the information about the oxygen exchange mainly comes from the labeled peptide

sample.

Figure 10.8 presents graphically the MSE for both the shape and stick (represen-

tation) models for isotopic ratios R2 and R3. These figures indicate that the model for

the stick representation consistently show larger MSE than the shape-representation

model. Moreover, for the shape model, the MSE of the ratios is smaller when the
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Figure 10.8: MSE of R2 and R3 for settings of E1 and E2 (dashed lines: model for the

stick representation; solid lines: model for the shape representation).

second (labeled) peptide sample is more abundant. This may be due to the fact

that, for most of the isotopic peaks of the labeled peptides, they are not overlapped

with those of the unlabeled ones. Thus, they give more information for these ratio

estimates. This implies that a more abundant labeled peptide sample provides more

information content for estimation of the isotopic ratios. As the results of the other

isotopic ratios (R4–R6) show similar patterns, they are not presented graphically.

Tables D.8 to D.12 (Appendix D) show the results of M1, M2, κ, σs, and S for

the shape model. They are, in general, estimated with a negligible bias. It is worth

mentioning, however, that the estimates of the spread parameter of the asymmetric

Laplace function σs (presented in Table D.11) show consistently an upward bias. This

can be explained by observing in Figure 10.5 that the (constant) baseline correction
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does not fully correct for the true baseline, especially for the first to the seventh

observed peaks. These peaks, are usually the most abundant ones. The heavy tails

induced by the baseline, result in the parameter estimation of the shape function

trying to adapt to these tails, and provide, consequently, an upward bias for the

estimate of the spread parameter.

The results of the estimates of the parameters for the variance function are pre-

sented in Tables D.13 to D.16 (Appendix D). These results are mostly estimated with

negligible bias.

The simulation confirms the satisfactory performance of the shape-representation

model, and verifies its advantages than the model for the stick representation.

10.5 Discussion and conclusion

Most of the existing methods (Mirgorodskaya et al. 2000, Rao et al. 2005, López-Ferrer

et al. 2006, Eckel-Passow et al. 2006, Ramos-Fernández et al. 2007) based the analyses

on the stick representation, which is an important limitation. Since working with the

stick representation implies an information reduction, especially when the data reflect

worse quality, e.g., when the peaks of the two peptide samples are ‘tilted’ instead of

exhibiting a complete overlap. As a result, the information reduction imposes biased

estimates of the parameters of interest. As an alternative, Ramos-Fernández et al.

(2007) proposed an analyzing approach, based on the shape representation of the MS

data, by approximating the asymmetry nature of the peak envelopes using a mixture

of two Gaussian functions. The use of a mixture of Gaussian functions can not only

cause numerical complexity, but may lead to the non-identifiability issue, when a peak

envelope can be equally well approximated by several mixture patterns. Furthermore,

in their approach, the masses and isotopic distributions were assumed to be known,

with the assumption of known peptide atomic sequences. This assumption is often

unrealistic, as in reality the sequences or peptide chemical compositions are rarely

known.

To address the limitations of these methods, in this chapter, we have presented

a model for the enzymatically 18O-labeled MS for the shape representation. In the

model, we used the asymmetric Laplace distribution function to approximate the

peak shape envelopes, avoiding the possible non-identifiability issue. Moreover, our

modeling approach allows for the estimation of both peptide masses and their iso-

topic distributions, releasing the assumption of known chemical compositions. In



10.5 Discussion and Conclusion 137

particular, the model is based on the one for the stick representation (presented in

Chapter 6), by accounting for the (mean-dependent) heteroscedastic nature of the

residual variance for the MS data. We implemented the model by a double itera-

tion of PL-GLS algorithm, which is more robust than the likelihood-maximization

approach when distributional assumptions are violated.

The results of the application to the real-life data were, in general, consistent with

the true parameter values for two of three analyzed peptides. The estimates for the

parameters of interest, in general, showed agreement with the estimates obtained for

the stick representation, and their 95% confidence intervals mostly contained the true

values.

In the simulation study, the relative abundance parameter was estimated with

better precision when the labeling was more complete. On the other hand, the pa-

rameter, related to the labeling step, i.e., the product of oxygen incorporation rate

and reaction duration, and the isotopic ratio parameters, showed better estimation

when the labeled peptide sample was more abundant. This is because the labeled

peptide gives the most information for the estimation of these parameters. The sim-

ulation illustrates the improved performances of the shape model compared with the

model for the stick representation, when the peaks of the two peptide samples are

‘tilted’ instead of exhibiting a complete overlap.

The computational speed of the model, presented in this chapter, was estimated

to be roughly 4 minutes for each peptide, on a HP8530p laptop using Matlab 2009a

under Windows Vista R©.
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Statistical results of the case study:

Table 10.2: Results of the analysis of the data for Q = 1/3.

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H1 – 140584.1 2479.8 – 143020.7 2301.9 – 558465.4 5582.5

H2 – 138828.9 2469.3 – 138115.3 2276.2 – 566407.7 5585.9

H3 – 124616.7 2421.3 – 130093.7 2285.3 – 467854.7 5424.2

H4 – 148885.3 2534.9 – 147210.0 2297.8 – 511043.2 5353.1

H5 – 111185.8 2407.8 – 111198.5 2257.9 – 335006.8 5052.5

H6 – 148003.1 2520.5 – 147296.5 2294.8 – 441897.0 5249.5

Q 0.3333 0.3107 0.0552 0.3333 0.3072 0.0114 0.3333 0.4342 0.0270

M1 1584.76 1584.7560 0.0008 1456.66 1456.6681 0.0006 1168.61 1168.6211 0.0005

M2 1588.77 1588.7634 0.0025 1460.67 1460.6774 0.0016 1172.62 1172.6281 0.0004

λτ – 8.2058 0.1647 – 7.0719 1.1761 – 5.8806 0.5285

κ – 0.7076 0.0070 – 0.8575 0.0093 – 0.8024 0.0104

σs – 0.0882 0.0014 – 0.0829 0.0007 – 0.0714 0.0009

S 1.0015 1.0033 0.0007 1.0015 1.0040 0.0007 1.0015 1.0040 0.0008

σ – 26.8757 4.3311 – 54.5165 1.5328 – 85.8688 0.3973

a – 3.9700 0.2311 – 3.1869 0.0340 – 3.6037 0.0669

b – 0.6286 0.0676 – 0.8811 0.0217 – 1.0674 0.0287

c – 5.0525 0.00002 – 5.0631 0.000001 – 5.6036 0.000002

R2 0.8703 0.8606 0.0208 0.7933 0.7883 0.0113 0.6645 0.7231 0.0030

R3 0.4223 0.4077 0.0198 0.3567 0.3294 0.0096 0.2454 0.2663 0.0174

R4 0.1478 0.1356 0.0351 0.1166 0.0921 0.0097 0.0653 0.0502 0.0111

R5 0.0413 0.0464 0.0115 0.0306 0.0304 0.0140 0.0139 0.0151 0.0204

R6 0.0097 0.0169 0.0396 0.0068 0.0070 0.0067 0.0025 0.0100 0.0049
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Table 10.3: Results of the analysis of the data for Q = 3/1.

1584.8 Da 1456.7 Da 1168.6 Da

Parameter TRUE Est. SE TRUE Est. SE TRUE Est. SE

H1 – 48776.2 1342.9 – 50752.0 1348.0 – 209822.6 2384.9

H2 – 48405.6 1339.4 – 50943.4 1350.2 – 173986.7 2150.3

H3 – 44943.0 1283.8 – 46536.1 1293.1 – 182871.1 2208.1

H4 – 56546.1 1458.9 – 58554.0 1456.1 – 112792.2 1809.0

H5 – 58853.4 1483.0 – 58430.2 1446.3 – 132629.1 1902.5

H6 – 52252.3 1373.9 – 54103.6 1382.6 – 125139.8 1858.4

Q 2.4 2.4800 0.0555 2.4 2.4502 0.0526 2.4 2.1564 0.0215

M1 1584.76 1584.7479 0.0017 1456.66 1456.6577 0.0016 1168.61 1168.6190 0.0007

M2 1588.77 1588.7549 0.0009 1460.67 1460.6651 0.0010 1172.62 1172.6262 0.0004

λτ – 8.4015 0.4462 – 9.1833 0.5065 – 20.0000 0.0000

κ – 0.6567 0.0070 – 0.7370 0.0091 – 0.7912 0.0064

σs – 0.0869 0.0008 – 0.0867 0.0008 – 0.0829 0.0005

S 1.0015 1.0029 0.0008 1.0015 1.0029 0.0008 1.0015 1.0027 0.0004

σ – 23.6448 0.5910 – 33.1379 0.6935 – 46.1972 0.6986

a – 4.1196 0.0184 – 3.7354 0.0161 – 3.6805 0.0162

b – 0.5546 0.0114 – 0.5990 0.0135 – 1.3530 0.0386

c – 5.0278 0.00002 – 5.0401 0.000001 – 5.5129 0.0000005

R2 0.8703 0.8673 0.0148 0.7933 0.7863 0.0132 0.6645 0.7272 0.0065

R3 0.4223 0.4138 0.0120 0.3567 0.3384 0.0108 0.2454 0.2862 0.0053

R4 0.1478 0.1374 0.0100 0.1166 0.1022 0.0090 0.0653 0.0878 0.0042

R5 0.0413 0.0367 0.0047 0.0306 0.0273 0.0020 0.0139 0.0193 0.0009

R6 0.0097 0.0111 0.0019 0.0068 0.0095 0.0022 0.0025 0.0075 0.0014
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Graphical representation of the simulation study:
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Figure 10.9: Graphical representation for the simulation settings of the shape model

(set1∼12).
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Figure 10.10: Graphical representation for the simulation settings of the shape model

(set13∼24).
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Figure 10.11: Graphical representation for the simulation settings of the stick-

representation model (set1∼12).



Figures and Tables 143

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(a) set13

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(b) set14

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(c) set15

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(d) set16

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(e) set17

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(f) set18

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(g) set19

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(h) set20

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(i) set21

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(j) set22

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(k) set23

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

4

Peak number in joint spectrum

In
te

ns
ity

 

 
Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6

(l) set24

Figure 10.12: Graphical representation for the simulation settings of the stick-

representation model (set13∼24).
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Figure 10.13: EDA for the power-of-the-mean residual variance function (set1∼12).



Figures and Tables 145

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(a) set13

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity
lo

g 
re

si
d 

S
E

 (
st

ic
k)

 

 
var stick
linear reg

(b) set14

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(c) set15

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(d) set16

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(e) set17

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(f) set18

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(g) set19

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(h) set20

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 

var stick
linear reg

(i) set21

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 

var stick
linear reg

(j) set22

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 
var stick
linear reg

(k) set23

7 8 9 10 11
5

5.5

6

6.5

7

7.5

8

8.5

log of intensity

lo
g 

re
si

d 
S

E
 (

st
ic

k)

 

 

var stick
linear reg

(l) set24

Figure 10.14: EDA for the power-of-the-mean residual variance function (set13∼24).
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Chapter 11

Introduction to the problem

of overlapping peptides

In this chapter, we introduce the problem of the quantification of overlapping peptides

in a high-resolution MALDI-TOF-MS. We also briefly review the existing methods

aimed at solving the problem. Some basic notations for our modeling approach are

also defined.

As stated in Section 2.3, a peptide produces a series of peaks, called isotopic peaks,

seperated by roughly multiples of one Da. Their relative heights are related to the

probabilities of the isotopic distribution of the peptide.

A ‘cluster’ of peaks observed in a mass spectrum can be produced by more than

one peptide. This happens if two peptides differ in mass by only a few units. Such

peptides are called overlapping peptides. Clearly, the identification of the relative

abundances, as well as of the exact masses of the overlapping peptides, is of interest.

11.1 Problem description

Figure 11.1 illustrates a possible scenario for the case of no measurement noise. It

shows, in panel (a), isotopic peaks for three overlapping peptides. The resulting ob-

served joint spectrum is presented in panel (b), with a ‘cluster’ of superimposed pep-

tide peaks. Our key interest is to quantify the true underlying peptides, as displayed

in Figure 11.1a. The quantification means a proper assessment of: 1) the number

149
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Figure 11.1: The observed spectrum and its corresponding true underlying peptide com-

ponents.

of overlapping peptides (components), 2) the monoisotopic masses of the peptides,

i.e., the masses of the isotopic variants that contain the most abundant isotopes of

chemical elements constructing the peptides, and 3) the corresponding abundances of

the peptides.

To this aim, we consider both stick and shape representations of the data.

Modeling the shape representation allows one to consider all the measurements

in a mass spectrum, but requires the use of an appropriate function describing the

peak-shape (see Chapter 10). As an alternative, the stick representation (definition

in Section 2.5) uses only the summary statistic of the measurements and thus yields

a simpler model.

11.1.1 Stick representation of a mass spectrum with overlap-

ping peptides

One way to obtain the data of stick representation is to sum all the intensities be-

longing to one observed peak, and to use this summed intensity as a representative

measure of that peak. A graphical example of an observed spectrum in the stick rep-

resentation is shown in Figure 11.2. Intrinsically, the observed peak intensity is a sum

of intensities of isotopic peaks from different peptides that contribute to this certain

peak. Let yld denote the abundance of the lth isotopic peak of the dth peptide. For

the example shown in Figure 11.2, the intensity of the third stick (bin) y3 is a sum of
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intensities of the third isotopic peak of the first peptide, y31 , of the second isotopic

peak of the second peptide, y22 , and of the monoisotopic peak of the third peptide,

y13 , i.e., y3 = y31 + y22 + y13 .
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Figure 11.2: Graphical explanation of model definition for the stick representation.

To work with the stick representation, several assumptions have to be made:

1. There are approximately the same number of data points within each bin (cor-

responding to each observed peak). This assumption holds as the number of

data points per peak is locally constant (within around 20 Da range);

2. There is an exact overlap with respect to the modes of the peaks from different

peptides. This is because for the stick representation, only one data point would

represent each peak within a bin. Thus, a slight shift of the two peptide peaks

within the same bin would not be detectable;
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3. The difference in the monoisotopic masses of overlapping peptides is integers

of 1 Da. This is because the peak numbers, rather than the true monoisotopic

mass coordinates, will be used for the modeling of the stick representation;

4. The monoisotopic masses of two overlapping peptides do not appear at the

same observed peak. In other words, the difference of monoisotopic masses

of two overlapping peptides is at least 1 Da, because an exact overlap of two

peptides are not distinguishable.

11.1.2 Shape representation of a mass spectrum with overlap-

ping peptides

The stick representation may not work equivalently well as the shape representation,

due to information reduction. Alternatively, one may want to consider the use of an

appropriate shape function for the shape representation.

For this purpose, a suitable function depicting the shape of the peak envelope is

needed.

By referring to Figure 11.1, let us assume that we have a measurement y∗i at

mass coordinate xi and that this measurement belongs to the third observed peak.

The intensity at the mass coordinate xi is a sum of intensity measurements of all

the isotopic peaks of the three peptides that contribute to the mass coordinate, i.e.,

y∗i = y∗31 +y
∗
22 +y

∗
13 . y

∗
ld

is the peak intensity of lth isotopic peak of the dth peptide at

mass location xi in the shape representation, calculated from: y∗ld = yldψ(xi|µld , σs).

ψ(xi|µld , σs) is a shape function, approximating the shape of the peak envelopes, with
∑
i

ψ(xi|µld , σs) = 1; µld and σs are the mean and spread for the shape function.

11.2 Existing methods

Several existing methods to tackle the problem of overlapping peptides in the MALDI-

TOF MS data have been proposed. In this section, we discuss these methods and

mention the limitations while using the methods.

Breen et al. (2000) suggested to model the isotopic distribution by a Poisson

approximation (details explained in Section 2.3), which can also be used to identify

overlapping peptides. The method is based on the stick representation. This method

often fails due to the lack of information about the mass location of these peptides



11.2 Existing Methods 153

and due to the discrepancy between the true isotopic distribution and the Poisson-

approximated one. Such discrepancy will not only result in the bias of the isotopic

distribution itself, but also of the quantification of the overlapping peptides which is

of particular interest, e.g., the relative abundance(s) of these peptides.

Schulz-Trieglaff et al. (2007) and Lange et al. (2006) developed a peak-picking

algorithm by means of a wavelet function, combined with a greedy search to identify

the overlapping peptides. This method has three limitations: 1) the multi-stage

analysis involved for the greedy search, would pose a difficulty in, e.g., estimating

precision of the estimates, obtained at different stages, 2) often no unique solution

can be found for the wavelet functions to fit to the peptide profiles, and 3) greedy

search is often problematic in that it can either include noise peaks as peptide peaks or

discard peptide peaks, depending on the fit to the wavelet functions. These limitations

acting together can lead to non-identification or mis-identification of the overlapping

peptides.

As an alternative, we propose a Bayesian modeling approach to address the prob-

lem of overlapping peptides in the MS data. Chapter 12 and Chapter 13 describe,

respectively, models based on the stick and shape representations. In Chapter 14, we

present an improved method, based on the shape representation, using a Bayesian

model averaging approach.





Chapter 12

A Bayesian model for the

stick representation of a mass

spectrum with overlapping

peptides

12.1 Introduction

Due to the limitations of the existing methods for the quantification of overlapping

peptides, mentioned in Section 11.2, as an alternative, we propose a Bayesian modeling

approach to address the problem. The advantage of the Bayesian methodology over

frequentist approaches is that prior information can be incorporated in the model.

Such information can be obtained from MS data available in public databases like,

e.g., the NCBI data (refer to Section 3.1).

In this chapter, we formulate the Bayesian model for the stick representation of

a mass spectrum with overlapping peptides. We first explain the priors used for the

parameters and the resulting posterior distributions. Then, an application to the

bovine cytochrome C data set is presented, followed by a simulation study, to assess

the statistical performances of the proposed the model.

155
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12.2 Model formulation for the stick representation

We assume that the number of the overlapping peptides, D is known. In the stick

representation, the height of ith peak, yi, is assumed to be normally distributed with

mean E(yi) and a constant variance σ2. Thus,

yi ∼ N(E(yi), σ
2), i = 1, . . . , N, (12.1)

with

E(yi) = f(H,R,M)

≡
D∑

d=1

L∑

l=1

E(yld)

=
D∑

d=1

L∑

l=1

HdRldI(Md + l − 1− i = 0) (12.2)

where N is the number of sticks (peaks) in a mass-spectrum that are modeled and

L is the number of isotopic variants of the peptides. The mean structure shown in

equation (12.2) is based on the formulation for the stick representation explained

in Section 11.1. In equation (12.2), Hd is the abundance of the dth overlapping

peptide (d = 1, 2, . . . , D) and H = (H1, . . . , HD). The monoisotopic-mass-index of

the dth peptide in the stick representation is denoted by Md with M1 = 1 and M =

(M1,M2, . . . ,MD). Note that we order the peptides according to their increasing

monoisotopic masses, i.e., Md < Md+1. Parameter Rld is the lth common reference

isotopic ratio for the dth peptide and R = (R11 , R21 , . . . , RL1
, R12 , R22 , . . . , RL2

, . . . ,

R1D , R2D , ..., RLD
) is a vector containing the isotopic ratios for all peptides. The

indicator function I(A) is equal to one if expression A is true and zero otherwise.

12.3 Prior distributions

We formulate a Bayesian model for the observed MS data by assuming prior distri-

butions for parameters of the model, defined in (12.1)–(12.2). As there is usually no

prior information available for Hd and σ2, we specify non-informative priors for these

parameters. Note that, in the stick representation, we do not distinguish between

monoisotopic masses that fall in the same bin. Hence, for the mass-indices Md, we

also specify a non-informative prior. This allows to fully estimate these parameters
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from the data. The prior distributions are specified as follows:

Hd ∼ N

(
0,

1

τ

)
with τ ∼ Γ(α∗, β∗), (12.3)

σ−2 ∼ Γ(α, β), (12.4)

(M2, . . . ,MD) ∼ Multinomial{1, (π2, . . . , πN−1)}, (12.5)

where π2 = . . . = πN−1 = 1
N−1 and α, β, α∗, and β∗ are positive constants close to

zero. To avoid redundancy, M is ordered such that Md < Md+1, d = 1, ..., D − 1.

For the isotopic ratios R, we consider informative priors, as explained in the next

section.

12.3.1 Informative prior for the isotopic ratios R

Priors obtained from the polynomial models

The NCBI data can be used to extract information about possible forms of the isotopic

distribution of peptides. We initially fitted a multivariate polynomial model to the

ratios simultaneously, to obtain the model-based mean and covariance structure. This,

however, turned out to be practically infeasible due to the heterogeneity of covariance

structure for different isotopic ratios across different mass ranges. Alternatively, a

semi-model-based and semi-empirical approach was performed. This was done by

fitting a univariate polynomial model (3.1) to each of the isotopic ratios. In this way,

the model-based mean structure could be obtained. The variances were calculated

empirically from the residuals of these polynomial models.

The resulting model coefficient estimates of the polynomial models for isotopic

ratios l = 2 to 8 are shown in Table 12.1. They allow to infer the form of the isotopic

distribution of a peptide with monoisotopic mass m. The variances of the model

residuals are shown in Table 12.2.

The prior for each of the isotopic ratios can then be defined as a normal prior

with mean and variance shown in Tables 12.1 and 12.2. More explicitly, the prior

distribution is on the log-scale of Cl: N(µC∗

l
, σ2

C∗

l
).

As the priors for the logarithm of different consecutive ratios are assumed to be in-

dependent, the prior for the logarithms of Rl (l = 2, . . . , 8) is N(
l∑

i=2

µC∗

i
,

l∑
i=2

σ2
C∗

i
). As a

result, the prior for Rl is log-normal with the mean
l∑

i=2

µC∗

i
and variance

l∑
i=2

σ2
C∗

i
. Fig-

ure 12.1 shows an overlay of the observed isotopic ratios Rl versus their transformed
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Table 12.1: The polynomial model coefficient estimates.

C∗

2 C∗

3 C∗

4 C∗

5 C∗

6 C∗

7 C∗

8

β0 -2.5835 -2.6283 -2.9429 -3.1161 -3.2939 -3.4508 -3.6021

β1 3.2954 2.3416 2.4265 2.3733 2.4299 2.4994 2.5967

β2 -1.7098 -1.0856 -1.2003 -1.1854 -1.2464 -1.3110 -1.3932

β3 0.4594 0.2772 0.3197 0.3176 0.3386 0.3600 0.3865

β4 -0.0466 -0.0274 -0.0324 -0.0323 -0.0347 -0.0372 -0.0401

σ2 0.0035 0.0008 0.0006 0.0010 0.0012 0.0016 0.0019

Table 12.2: The variances of the model residuals σ2
C∗

l
.

σ2
C∗

2
σ2
C∗

3
σ2
C∗

4
σ2
C∗

5
σ2
C∗

6
σ2
C∗

7
σ2
C∗

8

0.003478 0.000817 0.000609 0.000998 0.001233 0.001598 0.001956

prior distributions at around 2001 Da. This figure indicates the priors correctly cap-

ture the possible ranges for the values of the ratios.

Reparameterization as a virtual constraint of ratio estimates

Using the priors for the logarithm of consecutive ratios C∗
l , described in Section 12.3.1,

the priors of the common-reference ratios are linked by the corresponding consecu-

tive ratios. More specifically, as Rj = C1C2 . . . Cj , the increase of Cl will result in

an increase in the common-reference ratios Rl–RL. For instance, consider a situa-

tion when the second peptide is much more abundant than the first and it starts

to overlap from the third observed peak (as presented in Figure 12.2a). The model

could either capture the true scenario (represented by Figure 12.2b) by recognizing

the third (much more abundant) peak as an advent of (the monoisotopic peak of) an

overlapping peptide; or it could treat it as the second isotopic peak, which is much

more abundant than the monoisotopic one (depicted in Figure 12.2c). The latter case

could happen when C22 is estimated much larger and far beyond the reasonable range

of the ratio estimates, resulting in the over-estimation of common-reference ratios R22

to RL2
. In this way, it still yields equivalently good fit to the true scenario, leading

to non-identifiability issue. Alternatively, to circumvent the problem, the ratios can

be reparameterized. Let hl denote the abundance of the lth isotopic peak, such that



12.3 Prior Distributions 159

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
1

P

 

 
NCBI
prior R

1

(a) R2

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
2

P

 

 
NCBI
prior R

2

(b) R3

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
3

P

 

 
NCBI
prior R

3

(c) R4

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
4

P

 

 
NCBI
prior R

4

(d) R5

0.015 0.02 0.025 0.03 0.035 0.04
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
5

P

 

 
NCBI
prior R

5

(e) R6

4 5 6 7 8 9 10

x 10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
6

P

 

 
NCBI
prior R

6

(f) R7

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
7

P

 

 
NCBI
prior R

7

(g) R8

Figure 12.1: Prior density plots for the reference ratios Rl versus the NCBI data.

L∑
i=1

hl = 1. We then have Rl = hl/h1, and:

R2 =
L∑

l=2

Rl −
L∑

l=3

Rl =
1− h1
h1

−
L∑

l=3

Rl. (12.6)

For isotopic ratios Rl (l = 3, . . . , L), we still use the priors defined in Section 12.3.1.

For R2, instead of putting a prior on it, we use the equality relationship in (12.6) and

define a prior for (1− h1) /h1. The reparameterization becomes a natural constraint

for the common-reference ratios. This is because the increase of the other ratios, as

shown in equation (12.6), would result in the shrinkage of R2 (given h1).

The prior for (1− h1) /h1 was obtained by fitting a model with monoisotopic
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Figure 12.2: Graphical representation of non-identifiability with the use of prior C∗

l :

N(µC∗

l
, σ2

C∗

l
). Panel (a): the observed spectrum as a mixture of two pep-

tides; panel (b): the underlying true scenario; panel (c): the wrong scenario

due to the over-estimation of R22–RL2 .

mass m as a covariate to the isotopic distributions of the NCBI data set. Figure 12.3

shows the scatter plot of the log and log odds scales of h1 (from the NCBI data

set) versus the monoitotopic mass m. It is clear that a linear regression on the log

scale of h1, i.e., log(h1) = α + βm + ε, is a good choice. However, the increase of

the ‘bandwidth’ of the scatter along m implies that the variance of ε cannot be a

constant. On the other hand, Figure 12.3(b) shows that the variance of the log odds

scale of h1 is fairly constant. Thus, an alternative can be to fit a model to the log

odds of h1. Transforming the linear regression on the log scale to log odds scale, the

model function becomes: y = log
(

1−h1

h1

)
= log [1− exp (α+ βm)] − (α+ βm) + ε,

where ε ∼ N(0, σ2
h1
).

Figure 12.4 indicates that the predicted mean follows the pattern of the observed

log odds of h1. Strictly speaking, normality assumption is not perfectly satisfied as

indicated by the QQ-plot shown in Figure 12.5. Given the large number of observa-

tions, normality could be hardly perfectly met. We assume roughly, that the residuals

follow a normal distribution. Consequently, the prior for the log odds scale is defined

as:

log

(
1− h1
h1

)
∼ N(µh1

, σ2
h1
), (12.7)

where µh1
= log [1− exp (α+ βm)] − (α+ βm). The prior for the odds of h1 is

then log-normal, i.e., 1−h1

h1
∼ Log-normal(µh1

, σ2
h1
).

The resulting prior for the common-reference (isotopic) ratio Rld is log-normal,
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Figure 12.3: Scatter plots of functions of h1 versus monoisotopic mass.

Figure 12.4: Fitted mean versus observed log odds of h1.
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Figure 12.5: QQ plot for the model residuals on the log odds of h1.
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i.e.,

Rld ∼ Log-normal

(
l∑

i=1

µi,

l∑

i=1

σ2
i

)
, where l = 3, . . . , L, (12.8)

and R2d = 1−h1

h1
−

L∑
l=3

Rld with the prior:

1− h1
h1

∼ Log-normal(µh1
, σ2

h1
). (12.9)

12.4 Conditional posterior distributions

The normal prior distribution for Hd, defined in (12.3), is a conjugate prior given the

normal likelihood, which results from (12.1)–(12.2). Hence, the conditional posterior

distribution of Hd is also a normal distribution, which can be computed analytically.

More specifically:

p(Hd|y,M , σ2) ∝ N(µHd
, σ2

Hd
), (12.10)

with σ2
Hd

=

[
τ + σ−2

(
L∑

l=1

R2
l

)]−1

and

µHd
= σ2

Hd

{
0 + σ−2

[
N∑
i=1

yi

(
L∑

l=1

RlI(Md + l − 1− i)

)]}

=

N∑
i=1

yi

[
m∑
l=1

RlI(Md + l − 1− i = 0)

]

τσ2 +
m∑
l=1

R2
l

The prior distribution for σ−2, defined in (12.4), given the normal likelihood, is

also a conjugate prior, and leads to a Gamma conditional posterior distribution:

p(σ−2|y,H,M) ∝ Γ


α+

N

2
, β +

N∑
i=1

(yi − E(yi))
2

2


 (12.11)

The conditional posterior distribution forMd is multinomial with the probabilities

of belonging to each category updated based on the prior, i.e.,

p(Md = j|y,H, σ2) ∝ Multinomial(1,p) (12.12)
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with pj =
πjL(Md = j|y,H, σ2)

N∑
s=2

πsL(Md = s|y,H, σ2)

, j = 2, ..., N.

=

exp


−

N∑

i=1

(yi−E(yi))
2

2σ2




∑
s
exp


−

N∑

i=1

(yi−E(yi))2

2σ2




=

exp


−

N∑
i=1

(
yi −

D∑
d=1

L∑
l=1

HdRlI(j + l − 1− i = 0)

)2

2σ2




N∑
s=2

exp


−

N∑
i=1

(
yi −

D∑
d=1

L∑
l=1

HdRl · I(s+ l − 1− i = 0)

)2

2σ2




There is no analytical solution for the conditional posterior distributions of Cld

and Rld . These distributions therefore need to be evaluated by numerical (sampling)

methods, e.g., a Metropolis-Hasting algorithm with acception-rejection rules.

12.5 Application to the data

To investigate the performance of the developed model (12.1)–(12.2), we fitted it to

real-life data. The model was fitted by using the R package R2WinBUGS, built in R

to automatically call the WinBUGS1.4 software, which allows to fit Bayesian models.

To implement the model in WinBUGS1.4, the priors, specified in Section 12.3, were

considered.

12.5.1 Bovine cytochrome C mass spectra

The model was applied to a data set of replicated joint mass spectra obtained for

peptides of bovine cytochrome C (for details refer to Section 3.2).

In the 18O labeling strategy, the labeled peptide ideally receives two 18O-atoms

at its carboxyl terminus, which leads to a four Da mass shift of the corresponding

peptide peaks when analyzed by a mass spectrometer (see Section 2.6.1). Thus, each
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(d) Stick representation (Set2)

Figure 12.6: Graphical representation of the first (H2/H1 = 1/3) and the second

(H2/H1 = 3/1) data sets.

spectrum can be treated as containing pairs (D = 2) of overlapping peptides with

a four Da difference in the monoisotopic masses (M∗
2 = M∗

1 + 4, with M∗
1 and M∗

2

denoting the monoisotopic masses of the two peptides).

For the analysis purposes, we chose two peptides with monoisotopic masses of

1456.66 Da and 1584.76 Da. For each peptide, we considered six spectra for each of

two different relative abundances (1/3 or 3/1) of the 16O and 18O labeled peptides.
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This results in the following four settings, each with 6 spectra:

Setting 1: M∗
1 = 1456.66248 H2/H1 = 1/3 M2 = 5

Setting 2: M∗
1 = 1456.66248 H2/H1 = 3/1 M2 = 5

Setting 3: M∗
1 = 1584.75744 H2/H1 = 1/3 M2 = 5

Setting 4: M∗
1 = 1584.75744 H2/H1 = 3/1 M2 = 5

An example of the original spectra and of the corresponding stick representations

is shown in Figure 12.6.

12.5.2 Results of the model fit

The parameters of main interest are:

• the estimated index of the monoisotopic mass location of the second peptide,

M2, for model (12.1)–(12.2);

• the relative abundance H2/H1.

Note that, usually, instead of the relative abundance H2/H1, individual abundances

H1 and H2 of the overlapping peptides would be of interest. However, in the analyzed

experiment, only their ratio H2/H1 was controlled. Thus, it is of interest to verify

whether the proposed model estimates correctly the relative abundance.

In this respect, as has been observed in Chapter 5, the experiment for settings 2

and 4 was not well conducted. The achieved value of relative abundance H2/H1 was

about 2.4, not 3. This value was therefore assumed as the true relative abundance.

Since the atomic compositions of all the peptides in the data set are known,

the true isotopic distributions can be computed based on the atomic compositions

using a Fourier transform, as proposed by Rockwood (1995). The computed isotopic

distributions, transformed to isotopic ratios, are then used as the true values for these

ratios.

Fit for the individual spectrum

Tables 12.4 to 12.15 show the point estimates (medians of the posterior distribu-

tions) and the 95% credible intervals for the parameters of model (12.1)–(12.2) for

the stick representation, based on 20,000 samples (with 10,000 burn-in samples) from

the posterior distribution. The tables contain results for each technical replicate.

Several patterns can be observed from these tables. First, for all of the spectra, the

monoisotopic mass index for the second peptideM2 is correctly estimated. Second, the
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point estimates of the relative abundance H2/H1 for all the cases are underestimated

and the 95% credible intervals are fairly wide. For settings 2 and 4, the 95% credible

interval covers the true value, which is in general not the case for the other two

settings.

It is also worth noting that the point estimates of the isotopic ratios mostly show

an upward bias, especially for the first peptide, i.e., for parameters Rl1 . However, the

95% credible intervals of these ratio estimates for both peptides cover the true values.
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Simultaneous fit to six technical replications of spectra

For each setting, there are 6 technical replicates of the mass spectra. It is intuitively

reasonable to fit a model simultaneously to the six data sets by appropriately incor-

porating the between-spectra variability. The variability can then be studied. With

this respect, the model was modified by allowing all the spectra to share the same

parameters except of the reference abundance, the residual standard deviation, and

the relative abundance parameters. More specifically, the reference abundance, i.e.,

the abundance of the first peptide, was defined to be spectrum specific and denoted

as H1j for the jth spectrum. Similarly, the residual standard deviation is denoted

as σj for the jth spectrum. The model is reparameterized to incorporate a random

effect parameter Qj , being the relative abundance between the two peptides for the

jth spectrum. For this relative abundance effect, in order to estimate the between-

spectra variability, Qj is assumed to be a random variable. As such, the abundance of

the second peptide H2j for the jth spectrum is no longer a parameter, but a product

of H1j and Qj , i.e., H2j = H1jQj . More specifically, based on the model defined in

(12.1)-(12.2), the intensity of the ith peak in the jth spectrum is:

yij ∼ N(E(yij), σ
2
j ), i = 1, . . . , N, (12.13)

with

E(yij) = f(H,R,M ,Q)

=

L∑

l=1

H1jRl1I(M1 + l − 1− i = 0) +

L∑

l=1

H2jRl2I(M2 + l − 1− i = 0)

=

L∑

l=1

H1jRl1I(l − i = 0) +

L∑

l=1

H1jQjRl2I(M2 + l − 1− i = 0), (12.14)

where Qj is random:

Qj ∼ N(Q, σ2
Q).

Non-informative (conjugate) priors are used for Q and σ2
Q, i.e.,

Q ∼ N

(
0,

1

τQ

)
,

σ−2
Q ∼ Γ (αQ, βQ) ,
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where τQ, αQ and βQ are positive constants close to zero. The results of fitting

the model (12.13)–(12.14), based on 20,000 samples from the posterior distributions,

are presented in Tables 12.16 and 12.17. The monoisotopic mass index for the second

peptideM2 is again correctly estimated for all the settings. There is still slight under-

estimation for the mean relative abundance parameter Q, but it is closer to the true

value when the between-spectra variability is incorporated. The estimates of between-

spectra variability of the relative abundance, captured by σ2
Q, are very small. This is

reasonable since, for technical replicates, samples for different spectra are the same

and thus their relative abundance is expected to be the same as well.

It is also interesting to note that the isotopic ratios for the first peptide, for

all of the four settings, are over-estimated. On the other hand, the ratios for the

second peptide are estimated very close to the true values, regarding their point

estimates. The 95% credible intervals of these ratio estimates for this peptide contain

the true values as well. This is perhaps due to the incorporation of the between-spectra

variability for the second peptide via the relative abundance parameter, which allows

for the correction of the bias for estimating the other parameters that are related to

this peptide.

The over-estimation of the isotopic ratios of the first peptide may be caused by

the fact that in the experiment, in which 18O-labeling is used, a part of peptide

molecules from a labeled sample (the second peptide) do not get a complete label

(see Section 2.6.1). These incompletely labeled molecules additionally overlap with

the molecules from the unlabeled sample (the first peptide). Because of this effect,

the intensity measurements in the observed joint spectrum may not reflect the true

isotopic distributions of the overlapping peptides. Rather, the peaks of the first

peptide appear to be more abundant than they actually are and thus causes an upward

bias. The under-estimation of the relative abundance may also be due to this effect.

12.6 A simulation study

In this section, we present a simulation study that was performed to investigate the

performance of the proposed model (12.1)–(12.2) for the stick representation of a mass

spectrum with overlapping peptides.



12.6 A Simulation Study 169

12.6.1 Simulation settings

In the simulation, only two overlapping peptides were considered. For the isotopic

distribution, we chose three sets of ratios: an average one (denoted by A) by a Poisson

approximation (see Section 2.3); the one with extremely small ratios (denoted by

E1); and the one with extremely large ratios (denoted by E2) within 20001± 0.5 Da

mass range. Details of the three sets of isotopic ratios are given in Section 6.4 (see

Figure 6.3).

These three sets of isotopic distributions lead to 9 combinations for the isotopic

ratios of the two peptides. They are respectively: AA, AE1, AE2, E1A, E2A,

E1E1, E2E2, E1E2 and E2E1.

For each of the isotopic ratio combinations, three sets of M2 values and 5 sets of

H2 : H1 values were considered, This gives 15 settings with respect to the combina-

tions of these parameters. The coding of these settings, which will be used in figures

in the following section, is shown in Table 12.3.

Table 12.3: The coding of the simulation settings for the stick representation model.

M2 H2 : H1

1:1 0.5:1 0.2:1 1:0.5 1:0.2

2 21 22 23 24 25

3 31 32 33 34 35

5 51 52 53 54 55

For each of the settings shown in Table 12.3, the true values of H1 and H2 were

obtained by multiplying 104. For instance, for the setting with H2 : H1 = 0.5 : 1, H2

is equal to 5000 and H1 is equal to 104. For all of the settings, σ was chosen to be

10. For demonstration purposes, we generated 10 data sets per setting.

In the simulation study, one of the aims was to investigate the influence of the

information reduction imposed by the stick representation. For this purpose, we

generated the data sets based on the shape representation (see Figure 12.7(a)–(b)).

Normal density function was used to approximate the peak shape. The peaks were

then binned and summed within each bin (see Figure 12.7(c)). Afterwards, random

normal noise with σ = 10 was added to each summed peak and was truncated to zero

if the sum was negative (see Figure 12.7(d)). Figure 12.7 illustrates the four steps of
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data generation.
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(d) Step4: sticks

Figure 12.7: Illustration of the four steps of data generation (no measurement error).

In order to investigate the influence of either ignoring or considering the variability

of the isotopic distributions, we fit two models to the simulated data sets. First, the

model, which accounts for the variability of the isotopic distribution, obtained from

(12.1)–(12.2) was considered. Second, a model obtained by replacing isotopic ratios

Rld by fixed values, obtained from an average computed values according to the

method proposed by Breen et al. (2000), was used.

12.6.2 Simulation results

Figures 12.8 and 12.9 show the mean relative bias of the isotopic ratio (Rl1 and Rl2)

estimates for the model with variable isotopic ratios. Severe bias of the isotopic ratios

can be observed in Figures 12.8 and 12.9, especially for the smaller ratios (represented
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by larger bullet points in the figures). This may be due to the lack of information in the

data for the ratios to be correctly estimated. Figures 12.10 and 12.11 indicates that

these ratio estimates are closer to their prior means, which confirms the hypothesis

about the insufficient amount of information in the data.

Figures 12.12 and 12.13 show the mean relative bias of H1 and H2 for the two

models. For the estimates of H1, it can be observed that they were slightly better

estimated for the model with variable isotopic ratios, except for the settings of AA,

AE1 and AE2. As these are the settings when the first peptide has an average

isotopic distribution, the model with fixed isotopic ratios correctly specify the isotopic

distribution of the peptide. Figure 12.13 shows that, in general, the two models exhibit

similar bias for H2. In other words, the model with variable isotopic ratios does not

offer much improvement. This may be due to the bias of the isotopic ratio estimates

towards their prior means in the model.

As shown in Figure 12.14, the mean relative bias forM2 is consistently zero except

for a few settings when the second peptide is 5 times less abundant than the first one.

Again, the model with variable isotopic ratios performs slightly better in identifying

the monoisotopic mass index for the second peptide in that there appears bias only

when overlap starts from the second observed peak (Figure 12.14(d)(f)(h)). These

are the settings for which the second peptide is much less abundant than the first,

and thus it is more difficult to be detected.

Figure 12.15 indicates that, for all the settings, σ is severely over-estimated for

both models, except for the settings of AA when using the model with fixed isotopic

ratios. As it has been mentioned, these are the settings when the correct specification

of the isotopic ratios is used for the model. For the model with variable isotopic ratios,

as it has been seen from Figures 12.10 and 12.11, the isotopic ratio estimates are biased

towards the prior means, thus even for the setting of AA, σ was over-estimated.

12.7 Discussion

In this chapter, we have presented a model for the stick representation of a mass

spectrum (and multiple spectra) with overlapping peptides. We applied the model

to the bovine cytochrome C data set and investigated its statistical performance via

a simulation study. To work with the stick representation, one needs to accept the

assumptions for modeling the representation (see Section 11.1).

In the real-life data application, the second peptide was correctly detected re-
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garding its monoisotopic mass index. The isotopic ratios of the first peptide were

well estimated. On the other hand, the ratio estimates for the second peptide were

in general over-estimated with an upward bias, while the relative abundance was in

general under-estimated. This may be due to the incomplete labeling, given that the

data were obtained from of 18O-labeling experiment. The incomplete labeling causes

part of the peptide molecules of the labeled (second) peptide to have multiple shifts

from 0 to 4 Da and get overlapped with the first peptide. Consequently, the first

peptide, observed in a spectrum, becomes more abundant while the second peptide

becomes less abundant (See Part II of the dissertation for more details). This not only

distorts the isotopic distributions (especially of the first peptide), but their relative

abundance.

The simulation study indicates that the model with variable isotopic ratios, in

general, performs slightly better than the one with fixed ratios. The latter model

works well only when it correctly specifies the isotopic distributions for the data,

which in reality is not likely to happen. In the model with variable isotopic ratios,

the ratio estimates were closer to their prior means instead of their true values. This

indicates an insufficient amount of information imposed by the information reduction

for the stick representation. A possible way to improve this is to use the shape

representation of the mass spectrum. This will be considered in the next chapter.
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Table 12.4: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 1/3 for Spectrum 1.

Parameter Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8108 0.8106 (0.78, 0.8428) 0.8703 0.8812 0.8808 (0.8591, 0.9064)

R31
0.3567 0.3738 0.374 (0.3539, 0.393) 0.4223 0.4446 0.4448 (0.4276, 0.4608)

R41
0.1166 0.1240 0.124 (0.1159, 0.1322) 0.1478 0.1588 0.1588 (0.1494, 0.1679)

R51
0.0306 0.0325 0.0324 (0.0295, 0.0356) 0.0413 0.0445 0.0445 (0.0409, 0.0482)

R22
0.7933 0.8028 0.8029 (0.7367, 0.8679) 0.8703 0.8571 0.8559 (0.8032, 0.9151)

R32
0.3567 0.3651 0.3644 (0.3312, 0.4013) 0.4223 0.4191 0.4186 (0.3861, 0.454)

R42
0.1166 0.1200 0.1199 (0.1075, 0.1324) 0.1478 0.1479 0.1477 (0.1346, 0.1621)

R52
0.0306 0.0315 0.0315 (0.0277, 0.0352) 0.0413 0.0416 0.0415 (0.0372, 0.0461)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 1777.839 1709 (1177.975, 2764.025) – 1214.990 1166 (779.4975, 1940.025)

H2/H1 1/3 0.3063 0.3060 (0.2834, 0.3310) 1/3 0.3093 0.3093 (0.2910, 0.3269)

Table 12.5: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 3/1 for Spectrum 1.

Parameter Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8282 0.8266 (0.746, 0.9166) 0.8703 0.9083 0.9087 (0.8127, 1.006)

R31
0.3567 0.3819 0.3806 (0.3392, 0.4306) 0.4223 0.4514 0.4512 (0.3971, 0.5055)

R41
0.1166 0.1254 0.1249 (0.1104, 0.1434) 0.1478 0.1595 0.1593 (0.1394, 0.1807)

R51
0.0306 0.0329 0.0329 (0.0284, 0.0378) 0.0413 0.0446 0.0445 (0.0384, 0.0515)

R22
0.7933 0.7931 0.7924 (0.7336, 0.8553) 0.8703 0.8755 0.8747 (0.8135, 0.9418)

R32
0.3567 0.3599 0.3598 (0.3295, 0.3916) 0.4223 0.4274 0.4268 (0.3927, 0.4656)

R42
0.1166 0.1183 0.1182 (0.1072, 0.1297) 0.1478 0.1506 0.1504 (0.137, 0.1656)

R52
0.0306 0.0310 0.0309 (0.0278, 0.0345) 0.0413 0.0423 0.0422 (0.0376, 0.0474)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 3231.511 3116 (2160, 4983.025) – 3293.170 3172 (2172, 5133)

H2/H1 2.4 2.2314 2.2274 (1.9586, 2.5248) 2.4 2.2189 2.2142 (1.9435, 2.5200)
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Table 12.6: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 1/3 for Spectrum 2.

Parameter Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8052 0.8049 (0.7788, 0.8327) 0.8703 0.8763 0.876 (0.8577, 0.8956)

R31
0.3567 0.3730 0.3732 (0.3553, 0.3895) 0.4223 0.4387 0.4388 (0.4246, 0.4524)

R41
0.1166 0.1239 0.1239 (0.1162, 0.1315) 0.1478 0.1568 0.1569 (0.1484, 0.165)

R51
0.0306 0.0324 0.0324 (0.0296, 0.0354) 0.0413 0.0439 0.0439 (0.0406, 0.0474)

R22
0.7933 0.7933 0.7932 (0.7338, 0.8531) 0.8703 0.8752 0.8745 (0.8236, 0.9289)

R32
0.3567 0.3605 0.3598 (0.3303, 0.3942) 0.4223 0.4291 0.4288 (0.3981, 0.4614)

R42
0.1166 0.1185 0.1184 (0.1072, 0.1305) 0.1478 0.1516 0.1513 (0.1387, 0.165)

R52
0.0306 0.0311 0.0311 (0.0276, 0.0347) 0.0413 0.0426 0.0426 (0.0382, 0.0470)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 1170.793 1125 (771.1975, 1854) – 799.3267 768 (514.495, 1273.025)

H2/H1 1/3 0.3058 0.3057 (0.2854, 0.3267) 1/3 0.3011 0.3011 (0.2857, 0.3162)

Table 12.7: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 3/1 for Spectrum 2.

Parameter Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8314 0.8292 (0.7491, 0.9198) 0.8703 0.9087 0.9092 (0.8104, 1.009)

R31
0.3567 0.3834 0.3821 (0.3398, 0.4321) 0.4223 0.4514 0.4515 (0.3954, 0.5063)

R41
0.1166 0.1260 0.1255 (0.1107, 0.1436) 0.1478 0.1595 0.1594 (0.1390, 0.1809)

R51
0.0306 0.0330 0.033 (0.0285, 0.0379) 0.0413 0.0446 0.0445 (0.0382, 0.0515)

R22
0.7933 0.8015 0.8008 (0.7416, 0.8637) 0.8703 0.8811 0.8805 (0.8185, 0.9479)

R32
0.3567 0.3643 0.3643 (0.3337, 0.3962) 0.4223 0.4305 0.43 (0.3955, 0.4693)

R42
0.1166 0.1197 0.1197 (0.1085, 0.1312) 0.1478 0.1517 0.1515 (0.138, 0.1668)

R52
0.0306 0.0314 0.0313 (0.0282, 0.0350) 0.0413 0.0426 0.0425 (0.0378, 0.0477)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 3763.184 3629 (2512, 5789.025) – 3917.537 3775 (2587, 6088.05)

H2/H1 2.4 2.2048 2.2007 (1.9390, 2.4901) 2.4 2.2111 2.2061 (1.9325, 2.5127)
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Table 12.8: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 1/3 for Spectrum 3.

Parameter Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8049 0.8047 (0.7765, 0.8359) 0.8703 0.8770 0.8767 (0.8558, 0.9002)

R31
0.3567 0.3713 0.3714 (0.3522, 0.3898) 0.4223 0.4383 0.4384 (0.4224, 0.454)

R41
0.1166 0.1233 0.1233 (0.1153, 0.1314) 0.1478 0.1570 0.1571 (0.1478, 0.1658)

R51
0.0306 0.0323 0.0323 (0.0294, 0.0354) 0.0413 0.0440 0.0440 (0.0405, 0.0477)

R22
0.7933 0.8014 0.8011 (0.7368, 0.8652) 0.8703 0.8639 0.8633 (0.8104, 0.92)

R32
0.3567 0.3645 0.3639 (0.3322, 0.4002) 0.4223 0.4234 0.4231 (0.3911, 0.4575)

R42
0.1166 0.1198 0.1197 (0.1077, 0.1322) 0.1478 0.1495 0.1493 (0.1361, 0.1634)

R52
0.0306 0.0315 0.0315 (0.0278, 0.0352) 0.0413 0.0420 0.042 (0.0376, 0.0465)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 1748.928 1681 (1158, 2733) – 1170.213 1122 (752.9975, 1865)

H2/H1 1/3 0.3037 0.3035 (0.2809, 0.3275) 1/3 0.3023 0.3023 (0.2850, 0.3192)

Table 12.9: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 3/1 for Spectrum 3.

Parameter Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8302 0.8285 (0.7477, 0.9185) 0.8703 0.9079 0.9079 (0.8095, 1.006)

R31
0.3567 0.3829 0.3816 (0.3399, 0.432) 0.4223 0.4512 0.4516 (0.3957, 0.5052)

R41
0.1166 0.1258 0.1252 (0.1108, 0.1436) 0.1478 0.1594 0.1593 (0.1389, 0.1807)

R51
0.0306 0.0330 0.0329 (0.0285, 0.0379) 0.0413 0.0446 0.0445 (0.0382, 0.0515)

R22
0.7933 0.7964 0.7957 (0.7380, 0.8586) 0.8703 0.8748 0.8736 (0.8131, 0.9425)

R32
0.3567 0.3611 0.361 (0.331, 0.3924) 0.4223 0.4274 0.4268 (0.3923, 0.4663)

R42
0.1166 0.1186 0.1186 (0.1077, 0.1302) 0.1478 0.1506 0.1503 (0.137, 0.1655)

R52
0.0306 0.0311 0.0310 (0.0279, 0.0346) 0.0413 0.0422 0.0421 (0.0375, 0.0473)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 3432.690 3310 (2290, 5298.025) – 3542.675 3414 (2334.95, 5516)

H2/H1 2.4 2.2564 2.2560 (1.9836, 2.5500) 2.4 2.2441 2.2397 (1.9618, 2.5488)



176
C
h
a
p
ter

1
2
.
B
a
yesia

n
M
od
el
fo
r
th
e
S
tick

R
ep
resen

ta
tio

n
w
ith

O
verla

p
p
in
g
P
ep
tid

es

Table 12.10: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 1/3 for Spectrum 4.

Parameter Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8096 0.8094 (0.7821, 0.8388) 0.8703 0.8766 0.8763 (0.8569, 0.8975)

R31
0.3567 0.3756 0.3757 (0.3570, 0.3929) 0.4223 0.4412 0.4414 (0.4261, 0.4554)

R41
0.1166 0.1247 0.1247 (0.1168, 0.1327) 0.1478 0.1574 0.1575 (0.1487, 0.1658)

R51
0.0306 0.0327 0.0326 (0.0298, 0.0357) 0.0413 0.0441 0.0441 (0.0407, 0.0476)

R22
0.7933 0.7956 0.7954 (0.7352, 0.8578) 0.8703 0.8703 0.8695 (0.8182, 0.9650)

R32
0.3567 0.3620 0.3613 (0.3303, 0.3964) 0.4223 0.4251 0.4247 (0.3941, 0.4587)

R42
0.1166 0.1190 0.119 (0.1072, 0.1310) 0.1478 0.1501 0.1499 (0.1373, 0.1639)

R52
0.0306 0.0313 0.0313 (0.0277, 0.0349) 0.0413 0.0422 0.0421 (0.0379, 0.0466)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 1438.052 1381 (948.7975, 2266) – 942.0071 903.75 (608.4975, 1501.025)

H2/H1 1/3 0.3062 0.3061 (0.2848, 0.3286) 1/3 0.3053 0.3054 (0.2890, 0.3212)

Table 12.11: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 3/1 for Spectrum 4.

Parameter Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8300 0.8286 (0.7486, 0.9165) 0.8703 0.9068 0.9072 (0.8105, 1.007)

R31
0.3567 0.3827 0.3814 (0.3404, 0.4305) 0.4223 0.4507 0.4506 (0.3959, 0.5055)

R41
0.1166 0.1257 0.1253 (0.1108, 0.1431) 0.1478 0.1592 0.1591 (0.1389, 0.1804)

R51
0.0306 0.0330 0.0329 (0.0285, 0.0378) 0.0413 0.0446 0.0444 (0.0383, 0.0515)

R22
0.7933 0.7976 0.7968 (0.7384, 0.8593) 0.8703 0.8694 0.8684 (0.8089, 0.9355)

R32
0.3567 0.3614 0.3613 (0.3316, 0.3929) 0.4223 0.4246 0.4241 (0.3902, 0.4632)

R42
0.1166 0.1187 0.1187 (0.1078, 0.1302) 0.1478 0.1496 0.1493 (0.1363, 0.1643)

R52
0.0306 0.0311 0.0310 (0.0279, 0.0347) 0.0413 0.0419 0.0418 (0.0373, 0.0470)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 3406.034 3282.5 (2275.975, 5249.1) – 3469.54 3343 (2287, 5420)

H2/H1 2.4 2.2437 2.2394 (1.9760, 2.5303) 2.4 2.2519 2.2478 (1.9716, 2.5556)
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Table 12.12: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 1/3 for Spectrum 5.

Parameter Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8082 0.808 (0.7804, 0.8379) 0.8703 0.8912 0.8911 (0.8697, 0.9134)

R31
0.3567 0.3745 0.3746 (0.3556, 0.3925) 0.4223 0.4411 0.441 (0.4255, 0.4567)

R41
0.1166 0.1244 0.1243 (0.1164, 0.1324) 0.1478 0.1579 0.1579 (0.1491, 0.1666)

R51
0.0306 0.0326 0.0325 (0.0297, 0.0357) 0.0413 0.0443 0.0442 (0.0408, 0.0479)

R22
0.7933 0.8005 0.8004 (0.7385, 0.8630) 0.8703 0.8545 0.8533 (0.802, 0.912)

R32
0.3567 0.3636 0.3631 (0.3313, 0.3993) 0.4223 0.4189 0.4186 (0.3872, 0.4522)

R42
0.1166 0.1196 0.1195 (0.1074, 0.132) 0.1478 0.1479 0.1477 (0.1351, 0.1617)

R52
0.0306 0.0314 0.0314 (0.0278, 0.0351) 0.0413 0.0416 0.0415 (0.0373, 0.0459)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 1726.21 1658 (1140, 2709) – 1218.135 1170 (787.4, 1928)

H2/H1 1/3 0.3024 0.3022 (0.2803, 0.3252) 1/3 0.3081 0.3082 (0.2906, 0.3248)

Table 12.13: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 3/1 for Spectrum 5.

Parameter Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8275 0.8259 (0.7466, 0.9148) 0.8703 0.9083 0.909 (0.8104, 1.009)

R31
0.3567 0.3818 0.3807 (0.3394, 0.4294) 0.4223 0.4515 0.4517 (0.3965, 0.5063)

R41
0.1166 0.1254 0.1249 (0.1104, 0.1429) 0.1478 0.1595 0.1594 (0.139, 0.1809)

R51
0.0306 0.0329 0.0329 (0.0284, 0.0377) 0.0413 0.0446 0.0445 (0.0383, 0.0515)

R22
0.7933 0.7900 0.7891 (0.733, 0.8508) 0.8703 0.8701 0.8692 (0.8088, 0.9368)

R32
0.3567 0.3582 0.358 (0.3292, 0.3895) 0.4223 0.4250 0.4245 (0.3906, 0.4639)

R42
0.1166 0.1177 0.1176 (0.107, 0.129) 0.1478 0.1497 0.1494 (0.1362, 0.1646)

R52
0.0306 0.0308 0.0308 (0.0277, 0.0343) 0.0413 0.0420 0.0419 (0.0373, 0.0471)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 3752.857 3615.5 (2501, 5810.025) – 3972.488 3827 (2608, 6205.075)

H2/H1 2.4 2.2461 2.2423 (1.9842, 2.5249) 2.4 2.2479 2.2443 (1.9696, 2.5474)
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Table 12.14: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 1/3 for Spectrum 6.

Parameter Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8178 0.8175 (0.7902, 0.8469) 0.8703 0.8822 0.8819 (0.8619, 0.9042)

R31
0.3567 0.3789 0.3791 (0.3598, 0.3962) 0.4223 0.4441 0.4443 (0.4286, 0.459)

R41
0.1166 0.1262 0.1261 (0.1181, 0.1342) 0.1478 0.1594 0.1594 (0.1504, 0.1681)

R51
0.0306 0.0330 0.033 (0.0301, 0.0361) 0.0413 0.0446 0.0447 (0.0411, 0.0483)

R22
0.7933 0.7981 0.7981 (0.7375, 0.8593) 0.8703 0.8706 0.8698 (0.8183, 0.9267)

R32
0.3567 0.3626 0.3621 (0.3311, 0.3968) 0.4223 0.4260 0.4257 (0.3943, 0.4594)

R42
0.1166 0.1192 0.1191 (0.1075, 0.1311) 0.1478 0.1504 0.1502 (0.1372, 0.1641)

R52
0.0306 0.0313 0.0313 (0.0277, 0.0349) 0.0413 0.0422 0.0422 (0.0378, 0.0467)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 1653.986 1588 (1086, 2596.025) – 1155.196 1108 (736.7975, 1857)

H2/H1 1/3 0.3115 0.3113 (0.2897, 0.3341) 1/3 0.3060 0.3060 (0.2894, 0.3224)

Table 12.15: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with H2/H1 = 3/1 for Spectrum 6.

Parameter Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8305 0.8287 (0.749, 0.9184) 0.8703 0.9067 0.9074 (0.8083, 1.006)

R31
0.3567 0.3831 0.3819 (0.3406, 0.4316) 0.4223 0.4507 0.451 (0.395, 0.5048)

R41
0.1166 0.1259 0.1254 (0.1109, 0.1436) 0.1478 0.1592 0.1592 (0.1387, 0.1807)

R51
0.0306 0.0330 0.0330 (0.0286, 0.0379) 0.0413 0.0446 0.0445 (0.0382, 0.0514)

R22
0.7933 0.7993 0.7985 (0.7395, 0.8624) 0.8703 0.8696 0.8688 (0.8092, 0.9343)

R32
0.3567 0.3626 0.3624 (0.3323, 0.3947) 0.4223 0.4249 0.4244 (0.3904, 0.463)

R42
0.1166 0.1191 0.119 (0.1081, 0.1307) 0.1478 0.1497 0.1494 (0.1363, 0.1644)

R52
0.0306 0.0312 0.0312 (0.028, 0.0348) 0.0413 0.0420 0.0419 (0.0373, 0.047)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ – 3992.293 3850 (2660.975, 6149.05) – 4285.128 4129 (2825, 6690)

H2/H1 2.4 2.1914 2.1872 (1.9293, 2.4726) 2.4 2.2471 2.2426 (1.9652, 2.5520)



F
igu

res
a
n
d
T
a
bles

179

Statistical results of the model fitted simultaneously to multiple spectra of the case
study:

Table 12.16: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with Q = 1/3.

Par. Set 1 Set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8154 0.8155 (0.8055, 0.8259) 0.8703 0.8800 0.8799 (0.8741, 0.8861)

R31
0.3567 0.3818 0.3817 (0.3739, 0.3893) 0.4223 0.4459 0.4459 (0.4405, 0.4511)

R41
0.1166 0.1323 0.1322 (0.1266, 0.1382) 0.1478 0.1682 0.1683 (0.1634, 0.1724)

R51
0.0306 0.0347 0.0347 (0.0323, 0.0374) 0.0413 0.0472 0.0472 (0.0441, 0.0503)

R22
0.7933 0.7932 0.7932 (0.7614, 0.8252) 0.8703 0.8721 0.8720 (0.8511, 0.8943)

R32
0.3567 0.3600 0.3603 (0.3416, 0.3781) 0.4223 0.4229 0.4228 (0.4089, 0.4378)

R42
0.1166 0.1197 0.1197 (0.1115, 0.1277) 0.1478 0.1515 0.1516 (0.1435, 0.1595)

R52
0.0306 0.0317 0.0316 (0.0288, 0.0347) 0.0413 0.0432 0.0431 (0.0399, 0.0468)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ1 – 1434 1391 (974.9, 2128) – 888.2 859.2 (602.5, 1335)

σ2 – 1435 1388 (979.9, 2150) – 889.8 860.6 (603.5, 1350)

σ3 – 1434 1389 (979.7, 2171) – 890.3 861.5 (607.8, 1346)

σ4 – 1444 1389 (978.1, 2204) – 893.2 861.4 (601.4, 1360)

σ5 – 1440 1392 (977.2, 2172) – 893.1 858.7 (606.4, 1362)

σ6 – 1441 1396 (983.8, 2183) – 884.7 857.1 (603.7, 1336)

Q 1/3 0.3111 0.3110 (0.2871, 0.3356) 1/3 0.3044 0.3044 (0.2818, 0.3276)

σ2
Q – 0.0007759 0.0005297 (0.0001748, 0.002804) – 0.0007298 0.0004981 (0.000164, 0.002509)
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Table 12.17: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with Q = 3/1.

Par. Set 2 Set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8571 0.8579 (0.8112, 0.8997) 0.8703 0.9339 0.9348 (0.8810, 0.9848)

R31
0.3567 0.4271 0.4272 (0.3966, 0.4575) 0.4223 0.5143 0.5136 (0.4762, 0.5576)

R41
0.1166 0.1443 0.1444 (0.1305, 0.1568) 0.1478 0.1878 0.1875 (0.1705 0.2070)

R51
0.0306 0.0377 0.0377 (0.0339, 0.0416) 0.0413 0.0525 0.0525 (0.0469, 0.0587)

R22
0.7933 0.7910 0.7910 (0.7682, 0.8137) 0.8703 0.8572 0.8574 (0.8340, 0.8803)

R32
0.3567 0.3536 0.3532 (0.3391, 0.3697) 0.4223 0.4161 0.4160 (0.4002, 0.4327)

R42
0.1166 0.1159 0.1158 (0.1086, 0.1238) 0.1478 0.1461 0.1461 (0.1379, 0.1545)

R52
0.0306 0.0304 0.0304 (0.0277, 0.0332) 0.0413 0.0411 0.0411 (0.0375, 0.0444)

M2 5 5 5 (5, 5) 5 5 5 (5, 5)

σ1 – 3257 3157 (2231, 4885) – 3251 3149 (2200, 4921)

σ2 – 3272 3175 (2211, 4949) – 3248 3135 (2207, 5022)

σ3 – 3259 3169 (2229, 4857) – 3256 3155 (2210, 4894)

σ4 – 3256 3151 (2214, 4870) – 3250 3142 (2193, 4842)

σ5 – 3245 3144 (2217, 4800) – 3248 3139 (2200, 4898)

σ6 – 3241 3142 (2228, 4835) – 3259 3159 (2193, 4885)

Q 2.4 2.2440 2.2420 (2.1370, 2.3560) 2.4 2.3110 2.3110 (2.1990, 2.4310)

σ2
Q – 0.004559 0.002372 (0.000401, 0.02242) – 0.004581 0.0024 (0.0004319, 0.02182)
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Chapter 13

A Bayesian model for the

shape representation of a

mass spectrum with

overlapping peptides

13.1 Introduction

The sum of the peak intensities, used in the stick representation of the data (see

Section 11.1), is a rough approximation of the area under the peak-curve, which

corresponds to the abundance of a particular isotopic variant. The approximation

requires the assumption that the number of data points per bin is approximately the

same. In general, this assumption is plausible, because the number of data points per 1

Da is fairly constant within a 20 Da mass-range. Nevertheless, the stick representation

of data implies two potential limitations:

1. non-identifiability of the overlapping peptides when the difference of the monoiso-

topic masses is less than 1 Da;

2. inability to estimate the exact monoisotopic masses of the overlapping peptides.
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Moreover, as it has been observed in Chapter 12, the information reduction results

in biased estimates of isotopic ratios. To address these limitations, in this chapter,

we consider a model for the peak-shape representation of a spctrum. By taking

into account the peak shapes, all measurements in a mass spectrum are used and

the limitations of the stick representation are hopefully avoided. In this section, we

describe a Bayesian model for the shape representation.

13.2 Model formulation for the shape representa-

tion

Again, we assume that the number of the overlapping peptides, D, is known. Es-

sentially, the model formulation is similar to the one presented in Chapter 12 for the

stick representation of the MS data. The main modification is to replace the indicator

function I(Md + l− 1− i = 0) in equation (12.2) with a suitable peak-shape function

ψ(xi;µld , σs). Thus, for the observed intensities y∗i (i = 1, . . . , N∗) we assume the

following model:

y∗i ∼ N(E(y∗i ), σ
2) (13.1)

with

E(y∗i ) = f(H,R,M∗, σs, S)

=
D∑

d=1

L∑

l=1

HdRldψ(xi;M
∗
d + (l − 1)S, σs) (13.2)

where xi is the mass coordinate corresponding to intensity y∗i ,M
∗ = (M∗

1 ,M
∗
1 , ...,M

∗
D)

is a vector of monoisotopic masses of the D overlapping peptides, withM∗
d < M∗

d+1, S

is the difference in mass locations between two neighboring isotopic peaks of the same

peptide, and assumed to be constant over all the isotopic peaks for all the overlapping

peptides. In (13.2), ψ(x;µ, σ2
s) is a function of a chosen distribution, defined for the

shape of the peaks. With this respect, either cdf(cumulative distribution function) or

pdf(probability distribution function) can be used. To approximate the (underlying)

continuous mass coordinate, we chose to use the cdf, which is also a more accurate

approximation of area under the curve, especially when the dispersion parameter, σs,

takes very small values. For a normal distribution function, the area under the curve

between two neighboring mass coordinates is:
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ψ(xi;M
∗
d + (l − 1)S, σ2

s) =




Φ(xi|M

∗
d + (l − 1)S, σ2

s)− Φ(xi−1|M
∗
d + (l − 1)S, σ2

s) if i ≥ 2,

Φ(xi|M
∗
d + (l − 1)S, σ2

s)− Φ(0|M∗
d + (l − 1)S, σ2

s) if i = 1
, (13.3)

with Φ(xi|M
∗
d + (l− 1)S, σ2

s) corresponding to the normal cdf function calculated

at xi with mean M∗
d + (l − 1)S and variance σ2

s .

Peaks in MS data often exhibit a right-skewed shape. Thus, an alternative is to

approximate the shape by a function that accounts for an asymmetric shape. Asym-

metric Laplace function can serve for this purpose. In this case, an extra shape

parameter – the skewness parameter κ should be included and the shape function

becomes:

ψ(xi;M
∗
d + (l − 1)S, σs, κ) =




F (xi|M

∗
d + (l − 1)S, σs, κ)− F (xi−1|M

∗
d + (l − 1)S, σs, κ) if i ≥ 2,

F (xi|M
∗
d + (l − 1)S, σs, κ)− F (0|M∗

d + (l − 1)S, σs, κ) if i = 1,
(13.4)

with F (xi|M
∗
d +(l−1)S, σs, κ) denoting the cdf function of an asymmetric Laplace

distribution calculated at xj with meanM∗
d +(l−1)S and standard deviation σs, i.e.,

F (xi|M
∗
d + (l − 1)S, σs, κ) =





κ2

1+κ2 exp
[
−

√
2

σsκ
|xi − (M∗

d + (l − 1)S) |
]

if xi < M∗
d + (l − 1)S,

1− 1
1+κ2 exp

[
−

√
2κ
σs

|xi − (M∗
d + (l − 1)S) |

]
if xi ≥M∗

d + (l − 1)S.

13.3 Prior distributions

For Hd, σ
2, σs, S, and κ, in model (13.1)–(13.2), we use the following non-informative

priors:

Hd ∼ N

(
0,

1

τ

)
I(Hd ≥ 0), (13.5)

σ−2 ∼ Γ(α, β), (13.6)

σs ∼ N(0, 106)I(0 ≤ σs ≤ 0.5), (13.7)

S ∼ N

(
1,

1

τs

)
with τs ∼ Γ (α∗∗, β∗∗) I (τs ≥ 1600) , (13.8)

κ ∼ U(0.01, 0.99), (13.9)
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where τ , α, β, α∗, β∗ α∗∗ and β∗∗ are positive constants close to zero. To avoid

numerical problems, Hd is constrained to be non-negative and the hyper-prior for

Hd (see equation (12.3)) is replaced by a constant τ . The peak-width parameter σs

is constrained to be positive and not larger than 0.5, because peaks observed in a

spectrum, see right panel of Figure 2.7, are clearly separated from each other, with

the width of a peak not larger than 1 Da. Parameter S is the average difference in

mass difference of two neighboring isotopic peaks of a peptide and is usually very

close to one. This is reflected in the prior by setting a lower bound to the precision

parameter τs. Finally, the skewness parameter κ is assumed to be a priori smaller

than one, since the observed peak shapes are always (at least in the MALDI-TOF

data) skewed to the right.

The informative prior for the isotopic ratios Rld is the same as defined in (12.8)–

(12.9) (details see Section 12.3.1).

As mentioned in Section 3.1, some prior information for the estimation of monoiso-

topic masses M∗ is available from public databases, e.g., the NCBI data. This is

discussed in the following section.

13.3.1 Informative prior for the monoisotopic masses M∗

Figure 3.1 shows that monoisotopic masses appear in ‘clusters’ of a “bell” shape,

which indicates that a suitable choice for the prior distribution of M∗ may be a

mixture of normals. More concretely, the prior for the monoisotopic mass of the dth

peptide is defined as:

M∗
d ∼

G∑

g=1

πN(ηg, σ
2
m), (13.10)

where π = 1/G, and G is the number of normal components. For example, from

Figure 3.1, it follows that, if the monoisotopic mass is likely to appear in any of the

5 clusters, we would choose G = 5, i.e., define 5 normal components for the mixture.

To avoid adding any subjective information, at which cluster the monoisotopic mass

M∗
d is likely to occur, we define the probability of the mixture normal components to

be equal, i.e., π = 1/G. The means ηg and the variance σ2
m, are estimated from the

NCBI data. Variance σ2
m is assumed to be constant for all the different components

and is chosen to be equal to the maximum value of the variances of these components

from the NCBI data.
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Figure 13.1: Graphical demonstration of the estimation of mean ηg and standard deviation

σmg for the prior normal density of M∗

d .

To estimate the parameters, taking a mass window of 2000±2.5 Da as an example

(Figure 3.1), each ‘cluster’ of the histogram is treated as a component of the normal

mixture. Because of the assymetric shape of these clusters, we define the normal

means ηg to be the mode (instead of the mean) of each histogram (see Figure 13.1).

By assuming that the observed peptides in a histogram represent 99.9% of all the

peptides around the particular cluster of masses, the standard deviation (σmg
) of the

normal density can then be defined as one third of the observed spread around the

median ηg of that histogram. As the histograms are assymetric, the spread to the left

(spread1) and the right (spread2) of the mode are usually unequal. We define the

spread of each histogram to be the maximum of the two. As an example shown in

Figure 13.1, the standard deviation σmg
is defined to be one third of the left spread

spread1. Finally, the common variance is then taken as σ2
m = max(σ2

mg
).

Practical implementation

Practically, in the Bayesian framework, sampling ofM∗
d from the normal mixture was

carried out in four steps:

1. estimate the posterior probability of the normal mixture for the gth component,
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denoted by π∗
g ;

2. conditional on the vector of posterior probabilities π∗ for these mixture compo-

nents, sample a component out of the G normal mixture components, by means

of an indicator variable, denoted as ı (ı = 1, · · · , G);

3. conditional on ı (a certain component being selected), sample the error, denoted

by ε
M∗

d
, from the normal prior: N(0, σ2

m);

4. consequently, M∗
d = ηı + ε

M∗

d
.

For the 1st step, a non-informative Dirichlet prior was used. Zhu and Lu (2004)

suggested that for probability settings, a non-informative prior is not a flat prior

(when the parameter of the prior of Dirichlet αg = 1, g = 1, . . . , G), but a prior that

has probability mass close to zero everywhere except the boundaries. This means

that the Dirichlet prior should have all αg equal to a positive value, but as small

as possible. Such a non-informative prior is similar in the spirit to Jeffrey’s prior.

The intuition behind this theory is that, by specifying each of the αg equal to 1,

one subjectively adds one observation to each of the categories (normal components).

Thus, information content is falsely increased by these pseudo-observations. As a

result, the posterior distribution would also be very flat even if data indicate clear

signal about M∗
d .

Figure 13.2 shows an example of the cumulative probability for the prior of M∗
d

with the three different choices of αg. They look quite similar and all of them seem

to be quite non-informative as the cumulative probability function increases steadily

across the possible mass range. However, huge difference in the posterior distributions

can be caused by the different choices of αg values. Figure 13.3 demonstrates the

resulting posterior cumulative probability with the three choices of αg. It indicates

that when the data contain clear information about the location ofM∗
d , smaller values

of αg lead to more probability mass around the correct mass location whereas αg = 1

leads to a very flat posterior distribution. Therefore, to estimate M∗
d properly, one

needs to be cautious about the choice of αg, i.e., to choose αg as small as possible.

The 2nd step can be realized by drawing a sample of ı from a multinomial distribu-

tion with probabilities π∗, obtained from the Dirichlet distribution. One may argue

that the 3rd and 4th steps can be combined into one step, because they are equivalent

to sampling directly from N(ηı, σ
2
m). In practice however, this single step requires
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Figure 13.2: Graphical representation of the cumulative probability of the prior for M∗

d .

specifying an initial value for the mass M∗
d . Such initial value will force the MCMC

samples to stick with the normal component, at which the initial value is specified.

The analytical solution of the prior mean and variance

The mean and variance of the prior normal mixture, given the Dirichlet prior for π,

can be computed analytically:

E

[
G∑

g=1

πg (ηg + εg)

]
=

1

G

G∑

g=1

ηg. (13.11)

Var

[
G∑

g=1

πg (ηg + εg)

]

=E

{
Var

[
G∑

g=1

πg (ηg + εg) |ηg, σ
2
m

]}
+Var

{
E

[
G∑

g=1

πg (ηg + εg) |ηg, σ
2
m

]}

=E

[
G∑

g=1

π2
gσ

2
m

]
+Var

[
G∑

g=1

πgηg

]

=

G∑

g=1

σ2
mE

(
π2
g

)
+

G∑

g=1

Var (πgηg) + 2
∑

i

∑

j

Cov (πiηi, πjηj) (13.12)

When π ∼ Dirichlet(α1, α2, . . . , αG) with α1, . . . , αG = α, each of πg marginally
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Figure 13.3: Graphical representation of the cumulative probability of the posterior for

M∗

d by applying the priors of Figure 13.2 to data shown in (a).

follows a Beta distribution, i.e., πg ∼ Beta (α, (G− 1)α). Therefore, we have:

E
(
π2
g

)
=

α (α+ 1)

Gα (Gα+ 1)
,

Var (πg) =
α (Gα− α)

G2α2 (Gα+ 1)
=

G− 1

G2 (Gα+ 1)
,

and

Cov (πi, πj) =
−α2

G2α2 (Gα+ 1)
= −

1

G2 (Gα+ 1)
.
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Equation (13.12) can thus be written as:

V ar

[
G∑

g=1
πg (ηg + εg)

]

=
(α+1)

G∑

g=1
σ2
m

G(Gα+1) + G−1
G2(Gα+1)

G∑
g=1

η2g − 2 1
G2(Gα+1)

G−1∑
i=1

G∑
j=i+1

ηiηj

=
(α+1)σ2

m

Gα+1 + G−1
G2(Gα+1)

G∑
g=1

η2g − 2 1
G2(Gα+1)

G−1∑
i=1

G∑
j=i+1

ηiηj . (13.13)

13.4 Conditional posterior distributions

The conditional posterior distributions of Hd and σ2 can be derived similarly as in

Section 12.4. Their analytical solutions are:

p(Hd|y,M
∗, σ2, σs, S) ∝ N(µHd

, σ2
Hd

)I(Hd ≥ 0) (13.14)

with

µHd
=

N∗∑
i=1

y∗i

(
L∑

l=1

Rl · ψ(xi − (M∗
d + (l − 1)S), σs)

)

τσ2 +
N∗∑
i=1

{
L∑

l=1

[Rl · ψ(xi − (M∗
d + (l − 1)S), σs)]

}2

and

σ2
Hd

=
1{

τ + σ−2

[
N∗∑
i=1

(
L∑

l=1

Rl · ψ(xi − (M∗
d + (l − 1)S), σs)

)2
]} ,

p(σ−2|y∗,H,M∗, σs, S) ∝ Γ


α+

N∗

2
, β +

N∗∑
i=1

[y∗i − E(y∗i )]
2

2


 (13.15)

Clearly, the posterior for M∗
d should also be a mixture of normal, taking the form

of
G∑

g=1
π∗
gN(η∗g , σ

2∗
m ), with πg equal to the probability of the gth normal component,

obtained from the Dirichlet distribution. However, no analytical solution exists for the

conditional posterior distribution of M∗
d , as well as for parameters σs, κ, S, and C

∗
ld
.

These distributions therefore need to be evaluated by numerical (sampling) methods,

e.g., a Metropolis-Hasting algorithm with acception-rejection rules.



198 Chapter 13. Bayesian Model for the Shape Representation with Overlapping Peptides

13.5 Application to the data

To investigate the performance of the developed model (13.1)–(13.2), we fitted it to

real-life data. The model was fitted by using the R package R2WinBUGS, built in R

to automatically call the WinBUGS1.4 software, which allows to fit Bayesian models.

To implement the model in WinBUGS1.4, the priors, specified in Section 13.3, were

considered.

The model was applied to the same peptides of the data set with replicated joint

mass spectra of bovine cytochrome C from LC Packings, as described in Chapter 12.

More specifically, we considered four settings of the data, each with 6 spectra:

Setting 1: M∗
1 = 1456.66 M∗

2 = 1460.67 H2/H1 = 1/3

Setting 2: M∗
1 = 1456.66 M∗

2 = 1460.67 H2/H1 = 3/1

Setting 3: M∗
1 = 1584.76 M∗

2 = 1588.77 H2/H1 = 1/3

Setting 4: M∗
1 = 1584.76 M∗

2 = 1588.77 H2/H1 = 3/1
An example of the original spectra is shown in Figure 12.6.

13.5.1 Results of the model fit

The parameters of main interest are:

• the monoisotopic masses of the two peptides, M∗;

• the relative abundance H2/H1.

Fit for the individual spectrum

Tables 13.3 to 13.14 show the point estimates (means and medians of the posterior

distributions) and the 95% credible intervals for the parameters of model (13.1)–(13.2)

for the shape representation with normal cdf as a function for the peak shape for the

four settings, with 6 spectra, based on 20,000 samples (with 10,000 burn-in samples)

from the posterior distribution. Tables 13.15 to 13.26 show the results of the model

with an asymmetric Laplace distribution as the shape function for the same spectra,

based on the same number of samples of the posterior distribution.

Several patterns can be observed from the tables. First, for all of the data sets,

the monoisotopic mass of the second peptideM∗
2 is estimated at the correct, 5th peak,

indicating the appropriateness of the model specification and the prior distribution for

the parameter. Second, the point estimates of the relative abundance H2/H1 for all

the cases are underestimated, whereas the 95% credible intervals are much narrower
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than the ones shown in Section 12.5. For settings 2 and 4, the 95% credible interval

covers the true value, which is in general not the case for the other two settings.

It is also worth noting that the point estimates of the isotopic ratios are much

closer to the true values with their 95% credible intervals much narrower than those

for the stick model, presented in Section 12.5.

Figure 13.4 shows the fitted spectra of the models with the normal and asymmet-

ric Laplace distribution (shape-)functions versus the observed spectra for the peptide

with monoisotopic mass 1456.66 Da. It can be seen that asymmetric Laplace distri-

bution function provides a better fit to the peak envelopes than the normal-density

function. This is ascertained by the fact that the residual variances obtained from

the model with the asymmetric Laplace shape function are consistently smaller than

the ones with normal-density function (refer to Tables 13.3 to 13.26).
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Figure 13.4: The fitted spectra using normal-density and asymmetric Laplace as the shape

function versus the observed spectra for peptide with monoisotopic mass

M∗

1 = 1456.66Da for the 1st replicate (of the mass spectra).

Simultaneous fit to six technical replications of spectra

Similar to the model for the stick representation, presented in Chapter 12, a model

incorporating random effects for the relative abundance parameter, denoted as Qj for

the jth spectrum, can be fitted simultaneously to the six technical replicates of the
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spectra. More specifically, based on the model defined in (13.1)-(13.2), the intensity

of the ith coordinate in the j spectrum is:

y∗ij ∼ N(E(y∗ij), σ
2
j ), i = 1, . . . , N∗, (13.16)

with

E(y∗ij) = f(H,R,M∗,Q, σs, S)

=

L∑

l=1

H1jRl1ψ(xij ;M
∗
1 + (l − 1)S, σs) +

L∑

l=1

H2jRl2ψ(xij ;M
∗
2 + (l − 1)S, σs)

=

L∑

l=1

H1jRl1ψ(xij ;M
∗
1 + (l − 1)S, σs) +

L∑

l=1

H1jQjRl2ψ(xij ;M
∗
s + (l − 1)S, σs),

(13.17)

where Qj is random:

Qj ∼ N(Q, σ2
Q).

The results of fitting the model with normal and asymmetric Laplace distribution

functions are presented, respectively, in Tables 13.27–13.28, Tables 13.29–13.30. The

monoisotopic mass of the second peptide M∗
2 is again estimated correctly at the

5th peak, for all the settings. There is still slight under-estimation for the mean

relative abundance parameter Q, but the estimates are closer to the true value. The

estimates of between-spectra variability of the relative abundance, captured by σ2
Q,

are again very small due to the fact that the samples from different spectra are the

same biological samples.

The isotopic ratio estimates are closer to the true values with the 95% credible in-

tervals much narrower than in the model for the stick representation (see Section 12.5).

This is because the shape representation retains the whole information content from

the original data. This can be viewed as an important improvement over the stick-

representation model.

13.6 A simulation study

For illustration purpose and simplicity, the simulation study was based on the model

with a normal distribution function. In the simulation study, eight settings, each with

100 simulated data sets, were considered. These settings are shown in Table 13.1.

The other parameters were chosen as follows:
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Table 13.1: The eight settings for the simulation study.

set1 set2 set3 set4 set5 set6 set7 set8

M∗

1 2000.90 2000.90 2000.90 2000.90 2000.90 2000.90 2000.90 2000.90

M∗

2 2000.94 2000.94 2001.94 2001.94 2004.94 2004.94 2006.94 2006.94

H2/H1 0.2 5 0.2 5 0.2 5 0.2 5

R E1E2 E1E2 AA AA AA AA E1E2 E1E2

M∗
1 = 2000.90, H1 = 10000, σ = 10, σs = 0.08, S = 1.0015.

Figure 13.5 shows the graphical representation of the eight settings. It can be

seen that in settings 4, 6, 7 and 8, the separation of the two peptides is discernible.

However, for the other four settings, the separation is less clear, which suggests that

it may be more difficult to correctly quantify the two peptides.

Table 13.2 shows that, for all of the 100 data sets for settings 6, 7 and 8, π∗
g = 1

only for the peak that truly bears the monoisotopic mass of the second peptide and

0 elsewhere. This means the conditional posterior distribution for M∗
2 is a normal at

the correct peak for M∗
2 , instead of a mixture of normal distributions. However, for

setting 4, even if the separation is clearly seen in the data, in 5% of the simulated

data sets, the model chose the wrong peak as the monoisotopic peak of the second

peptide. For the other more difficult settings, i.e., settings 1–3, and 5, the model chose

different peaks as the monoisotopic peak of the second peptide, for the 100 replicated

data sets. This results in the posterior distribution of M∗
2 to be a mixture of normal

components, with probability of each component corresponding to the mean value of

the probability of π∗
g shown in Table 13.2.

Tables 13.31 and 13.32 show the summary statistics for the eight settings. For

settings 6–8, the parameters were, in general, well estimated. However, even for

these settings, the model-based standard errors, σmb, were slightly under-estimated as

compared to the empirical ones σemp. On the other hand, for the other five settings,

the point estimates, especially for the monoisotopic mass M∗
2 and for the isotopic

ratios Rl2 of the second peptide, are seriously biased. Moreover, the model based

standard errors σmb are severely under-estimated, as compared with the empirical

ones, especially for the two parameters of interest, i.e., M∗
2 and H2/H1. The under-

estimation of σmb and the serious bias of the point estimates lead to 95% credible

intervals incapable of incorporating the true values of the parameters.

Note that, among all the parameters, the most important parameter is the monoiso-
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topic mass of the overlapping peptide M∗
2 , since the estimation of the remaining pa-

rameters is conditional on its estimate. This indicates that when M∗
2 is incorrectly

estimated, different estimates for the other parameters will be obtained. To estimate

M∗
2 correctly, it is crucial that the right component of the normal mixture is picked

up.

Figure 13.6 shows the trace plots of indicator variable ı, after the convergence, for

the chosen normal component for the estimation of M∗
2 from the 100 data sets for

each setting (the true values of ı are plotted as the thick grey lines). What is expected

for the samples of ı is that for settings showing clear separation of the overlapping

peptides (settings 4, 6, 7, and 8), ı should converge to the correct value, implying

that the posterior of M∗
2 should be a normal, instead of a mixture of normal, at the

correct peak location. For the settings where the separation is less clear, ı is allowed

to vary across different values. This implies that the posterior ofM∗
2 for these settings

should be a mixture of normal distributions, incorporating the normal component, at

which the true value of M∗
2 locates. In order for the model-based standard errors σmb

to be compatible with the empirical ones, the variability of ı within a single data set

should be more or less equal to that between the 100 data sets. This is, nevertheless,

not observed from Figure 13.6.

From Figure 13.6, it is clear for the settings 6-8 that the samples converged to the

true value of ı. This is not the case for setting 4, even though it is also a setting that

shows a clear peptide separation. For the other four settings, the traces of the 100

data sets are mostly parallel to each other and ı, for most of these data sets, was not

correctly sampled (with the correct values of ı indicated by the thick grey lines). This

means that, for most of the 100 data sets, for the four difficult settings, the posterior

of M∗
2 is a normal (not a normal mixture) distribution that does not contain the true

value of M∗
2 . On the other hand, for a few of the data sets, the samples of ı vary

across different values, indicating that the posterior for these data sets is a normal

mixture. However, it can be seen from Figure 13.6b (for setting 2) that, between the

sample number of 900 to 1000, the thick grey line does not overlay with samples of ı

for any of the 100 data sets. This means that, for this setting, none of the posterior

distributions of M∗
2 contain the true value.
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Table 13.2: Mean probabilities of the mixture of normal for the mass of the second peptide

π∗

g (the ones in bold should be estimated with the largest probability).

mean probabilities of multinomial π̄∗

g

set1 set2 set3 set4 set5 set6 set7 set8

Shift=0 0.1400 0.0101 0.0714 0 0.0200 0 0 0

Shift=1 0.5800 0.9192 0.7653 0.9500 0.0100 0 0 0

Shift=2 0.0500 0.0303 0.0510 0.0500 0.0300 0 0 0

Shift=3 0.0300 0.0303 0.0306 0 0.1200 0 0 0

Shift=4 0.0700 0.0101 0.0204 0 0.5300 1 0 0

Shift=5 0.1200 0.0000 0.0000 0 0.2700 0 0 0

Shift=6 0.0100 0.0000 0.0102 0 0.0200 0 1 1

Shift=7 0.0000 0.0000 0.0510 0 0.0000 0 0 0
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Figure 13.5: Graphical representation of the 8 settings of simulated data sets.
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Figure 13.6: Samples of the indicator variable ı from different data sets as compared with

the true values.
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13.7 Discussion

In this chapter, we have presented a Bayesian model for the shape representation of

a mass spectrum with overlapping peptides. We applied the model to the bovine

cytochrome C data set and investigated its statistical performance via a simulation

study.

The real-life data from the bovine cytochrome C data set show a clear separation

of peaks for the overlapping peptides. In this case, the second peptide was correctly

detected by the model and the monoisotopic mass of the peptide wa correctly esti-

mated. The isotopic ratios, as well as the relative abundance of the two peptides,

were much better estimated than in the stick-representation model. This is because

the shape representation retains all the information content of the data.

The simulation study, although it showed good estimation for some of the settings

with a clear separation of the peptides, produced biased results for most settings.

Even for settings, for which the separation was obvious, for some of the data sets, the

monoisotopic mass estimates were still biased due to the posterior distribution of the

parameter converging to a wrong component of the normal mixture. For the more

difficult settings, in most cases, the parameter estimates were severely biased. More-

over, for all of the settings, for the important parameters, the 95% credible intervals

were very narrow and failed to contain the true parameter values. This indicates that

the model under-estimates uncertainties when estimating the parameters.

The problem implies that a more elaborate method, which can, on one hand, pro-

duce correct estimates for the settings with good separation, and on the other hand,

correctly estimate the model uncertainty as an indication for the difficult settings,

should be implemented. In the next chapter, we will present an alternative method

that can be used to this aim.
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Individual fit to the six spectra:

Table 13.3: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 1 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7913 0.7913 (0.774, 0.8088) 0.8703 0.8618 0.8618 (0.8427, 0.8814)

R31
0.3567 0.3599 0.3598 (0.3477, 0.3725) 0.4223 0.4326 0.4326 (0.4184, 0.4466)

R41
0.1166 0.1189 0.1188 (0.1124, 0.1255) 0.1478 0.1537 0.1537 (0.1458, 0.1618)

R51
0.0306 0.0312 0.0312 (0.0287, 0.0339) 0.0413 0.0432 0.0431 (0.0398, 0.0467)

M∗

1 1456.66 1456.679 1456.679 (1456.678, 1456.68) 1584.76 1584.777 1584.777 (1584.776, 1584.778)

R22
0.7933 0.7752 0.7750 (0.7286, 0.8233) 0.8703 0.8372 0.8369 (0.7854, 0.8904)

R32
0.3567 0.3481 0.3478 (0.3227, 0.3747) 0.4223 0.4049 0.4046 (0.375, 0.4361)

R42
0.1166 0.1141 0.114 (0.1044, 0.1244) 0.1478 0.1423 0.1421 (0.1303, 0.1552)

R52
0.0306 0.0299 0.0299 (0.0268, 0.0333) 0.0413 0.0399 0.0398 (0.0358, 0.0443)

M∗

2 1460.67 1460.687 1460.687 (1460.685, 1460.690) 1588.77 1588.785 1588.785 (1588.782, 1588.788)

σ – 309.92 309.7 (293.7975, 327.3) – 335.4336 335.2 (317.5, 354.3)

σs – 0.0470 0.0470 (0.0463, 0.0478) – 0.0499 0.0499 (0.0491, 0.0507)

S – 1.0026 1.003 (1.002, 1.004) – 1.0027 1.003 (1.002, 1.004)

H2/H1 1/3 0.3086 0.3086 (0.2941, 0.3230) 1/3 0.3084 0.3084 (0.2931, 0.3240)
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Table 13.4: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 1 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8213 0.821 (0.7829, 0.8599) 0.8703 0.9170 0.9168 (0.8732, 0.9627)

R31
0.3567 0.4104 0.4104 (0.3851, 0.4365) 0.4223 0.5030 0.5029 (0.4722, 0.5346)

R41
0.1166 0.1383 0.1383 (0.1276, 0.1494) 0.1478 0.1832 0.1831 (0.1691, 0.1977)

R51
0.0306 0.0363 0.0363 (0.0328, 0.0401) 0.0413 0.0514 0.0513 (0.0465, 0.0567)

M∗

1 1456.66 1456.674 1456.674 (1456.672, 1456.676) 1584.76 1584.772 1584.772 (1584.770, 1584.774)

R22
0.7933 0.7689 0.7689 (0.7504, 0.7875) 0.8703 0.8554 0.8553 (0.8342, 0.8771)

R32
0.3567 0.3366 0.3366 (0.3241, 0.3493) 0.4223 0.4082 0.4082 (0.394, 0.4231)

R42
0.1166 0.1093 0.1093 (0.1032, 0.1157) 0.1478 0.1427 0.1426 (0.135, 0.1506)

R52
0.0306 0.0287 0.0286 (0.0263, 0.0311) 0.0413 0.0400 0.0400 (0.0368, 0.0433)

M∗

2 1460.67 1460.682 1460.682 (1460.681, 1460.683) 1588.77 1588.78 1588.78 (1588.779, 1588.781)

σ – 255.4553 255.3 (241.8, 269.5) – 275.1429 275 (260.1, 290.9)

σs – 0.0464 0.0464 (0.0456, 0.0472) – 0.0499 0.0499 (0.0490, 0.0507)

S – 1.0026 1.003 (1.001, 1.004) – 1.0026 1.003 (1.001, 1.004)

H2/H1 2.4 2.2978 2.2971 (2.2152, 2.3834) 2.4 2.2667 2.2658 (2.1767, 2.3609)
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Table 13.5: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 2 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7875 0.7874 (0.7701, 0.8049) 0.8703 0.8584 0.8583 (0.8395, 0.8778)

R31
0.3567 0.3607 0.3606 (0.3483, 0.3734) 0.4223 0.4265 0.4265 (0.4127, 0.4405)

R41
0.1166 0.1189 0.1189 (0.1127, 0.1256) 0.1478 0.1513 0.1513 (0.1435, 0.1593)

R51
0.0306 0.0312 0.0312 (0.0288, 0.0339) 0.0413 0.0425 0.0424 (0.0392, 0.0460)

M∗

1 1456.66 1456.669 1456.669 (1456.668, 1456.670) 1584.76 1584.766 1584.766 (1584.765, 1584.767)

R22
0.7933 0.7698 0.7695 (0.7234, 0.8182) 0.8703 0.8565 0.8559 (0.8038, 0.9121)

R32
0.3567 0.3451 0.3448 (0.3202, 0.3723) 0.4223 0.4159 0.4156 (0.385, 0.4485)

R42
0.1166 0.1132 0.113 (0.1035, 0.1237) 0.1478 0.1461 0.1459 (0.1333, 0.1596)

R52
0.0306 0.0297 0.0296 (0.0266, 0.0331) 0.0413 0.0410 0.0409 (0.0367, 0.0456)

M∗

2 1460.67 1460.677 1460.677 (1460.675, 1460.679) 1588.77 1588.774 1588.774 (1588.772, 1588.777)

σ – 253.3394 253.2 (240.1, 267.4) – 267.5314 267.4 (253.4, 282.8)

σs – 0.0435 0.0435 (0.0428, 0.0443) – 0.0463 0.0463 (0.0455, 0.0471)

S – 1.0026 1.003 (1.002, 1.003) – 1.0028 1.003 (1.002, 1.004)

H2/H1 1/3 0.3074 0.3073 (0.2932, 0.3218) 1/3 0.3022 0.3022 (0.2868, 0.3176)
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Table 13.6: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 2 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8301 0.83 (0.7909, 0.8703) 0.8703 0.9244 0.9239 (0.8792, 0.9706)

R31
0.3567 0.4132 0.413 (0.3873, 0.4395) 0.4223 0.5027 0.5025 (0.4709, 0.5351)

R41
0.1166 0.1391 0.139 (0.1283, 0.1502) 0.1478 0.1827 0.1826 (0.1684, 0.1974)

R51
0.0306 0.0365 0.0365 (0.0330, 0.0404) 0.0413 0.0512 0.0512 (0.0463, 0.0565)

M∗

1 1456.66 1456.682 1456.682 (1456.680, 1456.684) 1584.76 1584.780 1584.780 (1584.778, 1584.782)

R22
0.7933 0.7797 0.7797 (0.7611, 0.7988) 0.8703 0.8577 0.8576 (0.8358, 0.88)

R32
0.3567 0.3433 0.3432 (0.3303, 0.3563) 0.4223 0.4111 0.411 (0.3961, 0.4269)

R42
0.1166 0.1117 0.1116 (0.1056, 0.1182) 0.1478 0.1436 0.1435 (0.1359, 0.1518)

R52
0.0306 0.0293 0.0293 (0.0270, 0.0318) 0.0413 0.0402 0.0402 (0.0370, 0.0436)

M∗

2 1460.67 1460.689 1460.689 (1460.688, 1460.690) 1588.77 1588.788 1588.788 (1588.786, 1588.789)

σ – 296.4185 296.2 (280.8, 313.3) – 326.6484 326.4 (309, 345.8)

σs – 0.0496 0.0496 (0.0488, 0.0505) – 0.0533 0.0533 (0.0524, 0.0543)

S – 1.0022 1.002 (1.001, 1.003) – 1.0024 1.002 (1.001, 1.004)

H2/H1 2.4 2.2822 2.2820 (2.1993, 2.3694) 2.4 2.2715 2.2709 (2.1795, 2.3676)
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Table 13.7: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 3 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7849 0.7847 (0.7681, 0.8022) 0.8703 0.8601 0.8602 (0.8405, 0.8793)

R31
0.3567 0.3566 0.3566 (0.3443, 0.369) 0.4223 0.4264 0.4264 (0.4127, 0.4406)

R41
0.1166 0.1178 0.1178 (0.1116, 0.1241) 0.1478 0.1519 0.1518 (0.1442, 0.1599)

R51
0.0306 0.0310 0.0309 (0.0285, 0.0336) 0.0413 0.0427 0.0426 (0.0394, 0.0462)

M∗

1 1456.66 1456.674 1456.674 (1456.673, 1456.675) 1584.76 1584.772 1584.772 (1584.771, 1584.773)

R22
0.7933 0.7774 0.7773 (0.7305, 0.8257) 0.8703 0.8437 0.8434 (0.7936, 0.8972)

R32
0.3567 0.3492 0.3491 (0.3235, 0.3759) 0.4223 0.4086 0.4082 (0.3793, 0.4401)

R42
0.1166 0.1145 0.1145 (0.1047, 0.1249) 0.1478 0.1435 0.1432 (0.1313, 0.1565)

R52
0.0306 0.0300 0.0300 (0.0269, 0.0334) 0.0413 0.0402 0.0402 (0.0361, 0.0447)

M∗

2 1460.67 1460.682 1460.682 (1460.680, 1460.684) 1588.77 1588.780 1588.78 (1588.777, 1588.782)

σ – 323.908 323.7 (306.8, 342) – 330.9926 330.8 (313.2, 350.1)

σs – 0.0442 0.0442 (0.0435, 0.0449) – 0.0470 0.0470 (0.0462, 0.0477)

S – 1.0027 1.003 (1.002, 1.004) – 1.0025 1.002 (1.002, 1.003)

H2/H1 1/3 0.3052 0.3052 (0.2909, 0.3195) 1/3 0.3045 0.3044 (0.2896, 0.3196)
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Table 13.8: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 3 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8320 0.8318 (0.7932, 0.8718) 0.8703 0.8249 0.8247 (0.8011, 0.8511)

R31
0.3567 0.4139 0.4138 (0.3888, 0.4401) 0.4223 0.4519 0.4518 (0.4389, 0.4662)

R41
0.1166 0.1393 0.1392 (0.1288, 0.1503) 0.1478 0.1748 0.1747 (0.1697, 0.1803)

R51
0.0306 0.0366 0.0365 (0.0330, 0.0404) 0.0413 0.0446 0.0446 (0.0431, 0.0464)

M∗

1 1456.66 1456.664 1456.664 (1456.663, 1456.666) 1584.76 1584.7612 1584.7612 (1584.7612, 1584.7613)

R22
0.7933 0.7732 0.7732 (0.7552, 0.7913) 0.8703 0.8259 0.8259 (0.8107, 0.8395)

R32
0.3567 0.3355 0.3355 (0.323, 0.348) 0.4223 0.3960 0.3960 (0.3884, 0.4031)

R42
0.1166 0.1087 0.1087 (0.1029, 0.1151) 0.1478 0.1310 0.1310 (0.1281, 0.1341)

R52
0.0306 0.0285 0.0285 (0.0262, 0.0309) 0.0413 0.0350 0.0350 (0.0342, 0.0361)

M∗

2 1460.67 1460.672 1460.672 (1460.671, 1460.673) 1588.77 1588.7689 1588.7689 (1588.7689, 1588.7690)

σ – 276.8692 276.7 (262.1, 292.4) – 311.9810 311.8920 (294.2483, 330.9076)

σs – 0.0447 0.0447 (0.044, 0.0455) – 0.0486 0.0485 (0.0484, 0.0491)

S – 1.0028 1.003 (1.002, 1.004) – 1.0025 1.0025 (1.0025, 1.0025)

H2/H1 2.4 2.3261 2.3251 (2.2433, 2.4116) 2.4 2.1173 2.1171 (2.0503, 2.1852)
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Table 13.9: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 4 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7895 0.7896 (0.7724, 0.8065) 0.8703 0.8611 0.861 (0.8418, 0.8806)

R31
0.3567 0.3629 0.3629 (0.3507, 0.3754) 0.4223 0.4299 0.4299 (0.4156, 0.444)

R41
0.1166 0.1198 0.1198 (0.1134, 0.1265) 0.1478 0.1522 0.1522 (0.1443, 0.1602)

R51
0.0306 0.0315 0.0315 (0.0290, 0.0341) 0.0413 0.0427 0.0427 (0.0394, 0.0463)

M∗

1 1456.66 1456.676 1456.676 (1456.675, 1456.676) 1584.76 1584.773 1584.773 (1584.772, 1584.774)

R22
0.7933 0.7665 0.7663 (0.7207, 0.8139) 0.8703 0.8583 0.8576 (0.8071, 0.9127)

R32
0.3567 0.3446 0.3445 (0.3194, 0.3708) 0.4223 0.4142 0.4139 (0.3843, 0.4454)

R42
0.1166 0.1129 0.1128 (0.1033, 0.1232) 0.1478 0.1455 0.1454 (0.1331, 0.1586)

R52
0.0306 0.0296 0.0296 (0.0266, 0.0330) 0.0413 0.0408 0.0407 (0.0366, 0.0452)

M∗

2 1460.67 1460.684 1460.684 (1460.682, 1460.686) 1588.77 1588.781 1588.781 (1588.778, 1588.784)

σ – 287.6014 287.4 (272.9, 303.5) – 299.6430 299.5 (283.3, 316.7025)

σs – 0.0430 0.0430 (0.0424, 0.0437) – 0.0456 0.0457 (0.0449, 0.0464)

S – 1.0024 1.002 (1.001, 1.003) – 1.0026 1.002 (1.002, 1.004)

H2/H1 1/3 0.3103 0.3103 (0.2962, 0.3245) 1/3 0.3063 0.3063 (0.2911, 0.3218)
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Table 13.10: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 4 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8256 0.8254 (0.7868, 0.8653) 0.8703 0.9185 0.918 (0.8748, 0.9642)

R31
0.3567 0.4099 0.4098 (0.3847, 0.4356) 0.4223 0.5026 0.5025 (0.4716, 0.5345)

R41
0.1166 0.1384 0.1383 (0.128, 0.1496) 0.1478 0.1832 0.1831 (0.1693, 0.1981)

R51
0.0306 0.0363 0.0363 (0.0329, 0.0400) 0.0413 0.0514 0.0513 (0.0465, 0.0568)

M∗

1 1456.66 1456.667 1456.668 (1456.666, 1456.669) 1584.76 1584.764 1584.764 (1584.762, 1584.766)

R22
0.7933 0.7736 0.7735 (0.7555, 0.7927) 0.8703 0.8414 0.8413 (0.8204, 0.8625)

R32
0.3567 0.3365 0.3364 (0.324, 0.3494) 0.4223 0.4043 0.4042 (0.3898, 0.4194)

R42
0.1166 0.1090 0.1089 (0.1028, 0.1153) 0.1478 0.1409 0.1409 (0.1333, 0.1488)

R52
0.0306 0.0285 0.0285 (0.0262, 0.0310) 0.0413 0.394 0.0394 (0.0363, 0.0428)

M∗

2 1460.67 1460.675 1460.675 (1460.674, 1460.676) 1588.77 1588.772 1588.772 (1588.771, 1588.773)

σ – 284.5025 284.3 (269.5, 300.6) – 300.0844 299.9 (284.2, 317.2)

σs – 0.0447 0.0447 (0.0440, 0.0455) – 0.0472 0.0472 (0.0464, 0.0481)

S – 1.0028 1.003 (1.002, 1.004) – 1.0026 1.003 (1.001, 1.004)

H2/H1 2.4 2.3083 2.3081 (2.2246, 2.3952) 2.4 2.3122 2.3116 (2.2210, 2.4075)
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Table 13.11: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 5 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7897 0.7896 (0.7727, 0.8073) 0.8703 0.8747 0.8747 (0.8554, 0.8943)

R31
0.3567 0.3623 0.3623 (0.3502, 0.3749) 0.4223 0.4310 0.4309 (0.4171, 0.4449)

R41
0.1166 0.1196 0.1195 (0.1132, 0.1261) 0.1478 0.1530 0.153 (0.1453, 0.1609)

R51
0.0306 0.0314 0.0314 (0.0289, 0.0340) 0.0413 0.0430 0.0430 (0.0397, 0.0466)

M∗

1 1456.66 1456.671 1456.670 (1456.670, 1456.671) 1584.76 1584.768 1584.768 (1584.767, 1584.769)

R22
0.7933 0.7795 0.7794 (0.7329, 0.8275) 0.8703 0.8358 0.8352 (0.7851, 0.889)

R32
0.3567 0.3501 0.3499 (0.3245, 0.3769) 0.4223 0.4053 0.4051 (0.3757, 0.4366)

R42
0.1166 0.1148 0.1147 (0.105, 0.1252) 0.1478 0.1424 0.1423 (0.1304, 0.1553)

R52
0.0306 0.0301 0.0301 (0.027, 0.0336) 0.0413 0.0399 0.0399 (0.0358, 0.0444)

M∗

2 1460.67 1460.678 1460.678 (1460.676, 1460.681) 1588.77 1588.776 1588.776 (1588.773, 1588.778)

σ – 325.5337 325.3 (308.9, 343.5) – 348.0792 347.9 (329.7, 367.9)

σs – 0.0462 0.0462 (0.0455, 0.0470) – 0.0490 0.0490 (0.0482, 0.0498)

S – 1.0027 1.003 (1.002, 1.004) – 1.0026 1.003 (1.002, 1.004)

H2/H1 1/3 0.3035 0.3036 (0.2895, 0.3176) 1/3 0.3099 0.3098 (0.2949, 0.3252)
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Table 13.12: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 5 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8189 0.8188 (0.7813, 0.8581) 0.8703 0.8197 0.8203 (0.7902, 0.8496)

R31
0.3567 0.4083 0.4081 (0.3835, 0.4341) 0.4223 0.4481 0.4475 (0.4334, 0.4628)

R41
0.1166 0.1376 0.1375 (0.1271, 0.1488) 0.1478 0.1735 0.1733 (0.1679, 0.1792)

R51
0.0306 0.0361 0.0361 (0.0326, 0.0400) 0.0413 0.0439 0.0438 (0.0418, 0.0466)

M∗

1 1456.66 1456.663 1456.664 (1456.662, 1456.665) 1584.76 1584.7607 1584.7607 (1584.7507, 1584.7608)

R22
0.7933 0.7617 0.7617 (0.7438, 0.7801) 0.8703 0.8207 0.8212 (0.8012, 0.8330)

R32
0.3567 0.3361 0.336 (0.3237, 0.3488) 0.4223 0.3948 0.3948 (0.3880, 0.4027)

R42
0.1166 0.1089 0.1089 (0.1028, 0.1153) 0.1478 0.1308 0.1308 (0.1279, 0.1345)

R52
0.0306 0.0285 0.0285 (0.0263, 0.0310) 0.0413 0.0346 0.0346 (0.0338, 0.0358)

M∗

2 1460.67 1460.671 1460.671 (1460.670, 1460.672) 1588.77 1588.7684 1588.7684 (1588.7684, 1588.7684)

σ – 324.0355 323.8 (307.2, 342.4) – 366.5905 366.5007 (345.9104, 388.7287)

σs – 0.0438 0.0438 (0.0430, 0.0445) – 0.0478 0.0478 (0.0472, 0.0482)

S – 1.0026 1.003 (1.002, 1.004) – 1.0026 1.0026 (1.0026, 1.0026)

H2/H1 2.4 2.2996 2.2989 (2.2188, 2.3851) 2.4 2.1100 2.1099 (2.0406, 2.1795)
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Table 13.13: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 6 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8005 0.8004 (0.7829, 0.8182) 0.8703 0.8646 0.8645 (0.845, 0.8846)

R31
0.3567 0.3665 0.3664 (0.3537, 0.3795) 0.4223 0.4326 0.4325 (0.4182, 0.447)

R41
0.1166 0.1214 0.1213 (0.1148, 0.128) 0.1478 0.1540 0.154 (0.1462, 0.1620)

R51
0.0306 0.0319 0.0319 (0.0294, 0.0346) 0.0413 0.0432 0.0432 (0.0399, 0.0468)

M∗

1 1456.66 1456.672 1456.672 (1456.671, 1456.672) 1584.76 1584.769 1584.769 (1584.768, 1584.770)

R22
0.7933 0.7727 0.7725 (0.7265, 0.8193) 0.8703 0.8565 0.8561 (0.8045, 0.9112)

R32
0.3567 0.3463 0.346 (0.3212, 0.3724) 0.4223 0.4147 0.4145 (0.3845, 0.4466)

R42
0.1166 0.1136 0.1135 (0.1039, 0.1237) 0.1478 0.1457 0.1455 (0.1333, 0.1591)

R52
0.0306 0.0298 0.0298 (0.0267, 0.0331) 0.0413 0.0408 0.0408 (0.0366, 0.0455)

M∗

2 1460.67 1460.679 1460.679 (1460.677, 1460.681) 1588.77 1588.776 1588.776 (1588.774, 1588.779)

σ – 330.4222 330.2 (313.2, 348.9025) – 353.0758 352.9 (334.2, 373.1)

σs – 0.0449 0.0449 (0.0442, 0.0457) – 0.0476 0.0476 (0.0468, 0.0484)

S – 1.0024 1.002 (1.001, 1.003) – 1.0024 1.002 (1.001, 1.003)

H2/H1 1/3 0.3158 0.3158 (0.3013, 0.3303) 1/3 0.3078 0.3078 (0.2923, 0.3234)
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Table 13.14: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal-density shape-function for Spectrum 6 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8240 0.8237 (0.7867, 0.8634) 0.8703 0.9175 0.9173 (0.8074, 0.962)

R31
0.3567 0.4120 0.4117 (0.3869, 0.4381) 0.4223 0.5058 0.5055 (0.4756, 0.5375)

R41
0.1166 0.1391 0.139 (0.1285, 0.1503) 0.1478 0.1847 0.1846 (0.1708, 0.1993)

R51
0.0306 0.0365 0.0365 (0.0330, 0.0403) 0.0413 0.0518 0.0517 (0.0469, 0.0572)

M∗

1 1456.66 1456.67 1456.67 (1456.668, 1456.672) 1584.76 1584.768 1584.768 (1584.766, 1584.770)

R22
0.7933 0.7757 0.7756 (0.758, 0.7943) 0.8703 0.8414 0.8414 (0.8212, 0.8622)

R32
0.3567 0.3412 0.3411 (0.3286, 0.354) 0.4223 0.4055 0.4054 (0.3907, 0.4201)

R42
0.1166 0.1107 0.1106 (0.1046, 0.117) 0.1478 0.1416 0.1416 (0.1341, 0.1496)

R52
0.0306 0.0290 0.0290 (0.0267, 0.0314) 0.0413 0.0396 0.0396 (0.0364, 0.0429)

M∗

2 1460.67 1460.677 1460.677 (1460.676, 1460.678) 1588.77 1588.775 1588.775 (1588.774, 1588.777)

σ – 317.6234 317.4 (300.9975, 335.5) – 350.4413 350.2 (331.7, 370.6)

σs – 0.0473 0.0473 (0.0465, 0.0481) – 0.0505 0.0505 (0.0497, 0.0514)

S – 1.0025 1.002 (1.001, 1.004) – 1.0024 1.002 (1.001, 1.004)

H2/H1 2.4 2.2511 2.2505 (2.1709, 2.3349) 2.4 2.3075 2.3069 (2.2181, 2.4018)
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Table 13.15: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 1 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7907 0.7906 (0.7754, 0.8066) 0.8703 0.8619 0.8619 (0.8456, 0.8785)

R31
0.3567 0.3595 0.3595 (0.3481, 0.3711) 0.4223 0.4337 0.4337 (0.4215, 0.446)

R41
0.1166 0.1190 0.119 (0.1128, 0.1253) 0.1478 0.1545 0.1545 (0.1473, 0.1618)

R51
0.0306 0.0313 0.0313 (0.0288, 0.0339) 0.0413 0.0434 0.0434 (0.0401, 0.0469)

M∗

1 1456.66 1456.674 1456.674 (1456.673, 1456.675) 1584.76 1584.764 1584.764 (1584.763, 1584.765)

R22
0.7933 0.7722 0.7718 (0.7299, 0.8165) 0.8703 0.8344 0.834 (0.7902, 0.8803)

R32
0.3567 0.3462 0.3462 (0.3222, 0.3708) 0.4223 0.4023 0.402 (0.3756, 0.4299)

R42
0.1166 0.1135 0.1135 (0.1043, 0.1233) 0.1478 0.1413 0.1411 (0.1301, 0.1532)

R52
0.0306 0.0298 0.0298 (0.0269, 0.0330) 0.0413 0.0396 0.0396 (0.0357, 0.0439)

M∗

2 1460.67 1460.682 1460.682 (1456.679, 1460.684) 1588.77 1588.773 1588.773 (1588.771, 1588.775)

σ – 278.3557 278.2 (263.5, 294.1) – 272.6676 272.5 (258, 288.4)

σs – 0.0742 0.0742 (0.0728, 0.0756) – 0.0767 0.0767 (0.0753, 0.0782)

κ – 0.8660 0.866 (0.8454, 0.8869) – 0.7593 0.7591 (0.7426, 0.7767)

S – 1.0022 1.002 (1.001, 1.003) – 1.0028 1.003 (1.002, 1.004)

H2/H1 1/3 0.3090 0.3090 (0.2963, 0.3221) 1/3 0.3093 0.3093 (0.2962, 0.3223)



220
C
h
a
p
ter

1
3
.
B
a
yesia

n
M
od
el
fo
r
th
e
S
h
a
pe

R
ep
resen

ta
tio

n
w
ith

O
verla

p
p
in
g
P
ep
tid

es

Table 13.16: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 1 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8209 0.8208 (0.7848, 0.8578) 0.8703 0.9127 0.9128 (0.8755, 0.9512)

R31
0.3567 0.4154 0.4153 (0.3906, 0.4406) 0.4223 0.5192 0.5191 (0.4918, 0.5472)

R41
0.1166 0.1407 0.1407 (0.1301, 0.1516) 0.1478 0.1923 0.1922 (0.1793, 0.2061)

R51
0.0306 0.0370 0.0369 (0.0334, 0.0407) 0.0413 0.0539 0.0539 (0.0491, 0.0592)

M∗

1 1456.66 1456.668 1456.668 (1456.666, 1456.671) 1584.76 1584.762 1584.762 (1584.760, 1584.763)

R22
0.7933 0.7685 0.7686 (0.7515, 0.7854) 0.8703 0.8566 0.8565 (0.8393, 0.8741)

R32
0.3567 0.3363 0.3363 (0.3247, 0.3484) 0.4223 0.4071 0.4071 (0.3948, 0.4198)

R42
0.1166 0.1092 0.1091 (0.1035, 0.1151) 0.1478 0.1419 0.1419 (0.135, 0.1491)

R52
0.0306 0.0286 0.0286 (0.0264, 0.031) 0.0413 0.0398 0.0397 (0.0367, 0.0430)

M∗

2 1460.67 1460.676 1460.676 (1460.675, 1460.678) 1588.77 1588.771 1588.771 (1588.769, 1588.772)

σ – 236.7468 236.6 (224, 250.5) – 223.3746 223.3 (211, 236.8025)

σs – 0.0734 0.0734 (0.0719, 0.0748) – 0.0770 0.0770 (0.0756, 0.0784)

κ – 0.8622 0.8622 (0.8378, 0.8871) – 0.8108 0.8109 (0.7948, 0.8268)

S – 1.0018 1.002 (1.001, 1.003) – 1.0029 1.003 (1.002, 1.004)

H2/H1 2.4 2.3019 2.3012 (2.2252, 2.3836) 2.4 2.2714 2.2707 (2.1987, 2.3475)
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Table 13.17: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 2 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7896 0.7896 (0.7738, 0.8053) 0.8703 0.8584 0.8583 (0.8431, 0.874)

R31
0.3467 0.3622 0.3622 (0.3509, 0.3735) 0.4223 0.4274 0.4274 (0.4157, 0.4393)

R41
0.1166 0.1194 0.1194 (0.1133, 0.1255) 0.1478 0.1520 0.152 (0.1449, 0.1591)

R51
0.0306 0.0314 0.0314 (0.0289, 0.0340) 0.0413 0.0427 0.0427 (0.0395, 0.0460)

M∗

1 1456.66 1456.658 1456.658 (1456.657, 1456.659) 1584.76 1584.758 1584.758 (1584.757, 1584.759)

R22
0.7933 0.7710 0.7706 (0.7288, 0.8155) 0.8703 0.8547 0.8544 (0.8108, 0.9007)

R32
0.3567 0.3448 0.3446 (0.3207, 0.3699) 0.4223 0.4137 0.4135 (0.3865, 0.4417)

R42
0.1166 0.1131 0.1129 (0.1038, 0.123) 0.1478 0.1452 0.1451 (0.1338, 0.1575)

R52
0.0306 0.0297 0.0296 (0.0267, 0.0330) 0.0413 0.0407 0.0407 (0.0367, 0.0451)

M∗

2 1460.67 1460.666 1460.666 (1456.664, 1460.668) 1588.77 1588.767 1588.767 (1588.765, 1588.769)

σ – 223.0668 222.9 (211.2, 235.9) – 213.4271 213.3 (201.9, 225.8)

σs – 0.0674 0.0674 (0.0661, 0.0687) – 0.0714 0.0714 (0.0702, 0.0726)

κ – 0.7853 0.7848 (0.7674, 0.8053) – 0.8273 0.8273 (0.8113, 0.8427)

S – 1.0035 1.004 (1.003, 1.004) – 1.0030 1.003 (1.002, 1.004)

H2/H1 1/3 0.3071 0.3071 (0.2946, 0.3199) 1/3 0.3019 0.3020 (0.2896, 0.3144)
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Table 13.18: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 2 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8288 0.8285 (0.7944, 0.8644) 0.8703 0.9209 0.9204 (0.8844, 0.9599)

R31
0.3567 0.4215 0.4214 (0.3977, 0.4456) 0.4223 0.5211 0.5207 (0.4936, 0.5494)

R41
0.1166 0.1432 0.1431 (0.1329, 0.1542) 0.1478 0.1932 0.1931 (0.1797, 0.2072)

R51
0.0306 0.0376 0.0375 (0.0341, 0.0414) 0.0413 0.0542 0.0542 (0.0491, 0.0595)

M∗

1 1456.66 1456.674 1456.674 (1456.673, 1456.676) 1584.76 1584.765 1584.765 (1584.763, 1584.767)

R22
0.7933 0.7798 0.7798 (0.7636, 0.7964) 0.8703 0.8591 0.859 (0.8418, 0.8765)

R32
0.3567 0.3420 0.342 (0.3305, 0.3537) 0.4223 0.4107 0.4107 (0.3982, 0.4233)

R42
0.1166 0.1112 0.1112 (0.1054, 0.1171) 0.1478 0.1430 0.143 (0.136, 0.1503)

R52
0.0306 0.0291 0.0291 (0.0269, 0.0315) 0.0413 0.0400 0.0400 (0.0370, 0.0433)

M∗

2 1460.67 1460.682 1460.682 (1460.681, 1460.683) 1588.77 1588.773 1588.773 (1588.772, 1588.775)

σ – 255.6178 255.5 (241.7, 270.4) – 256.3566 256.2 (242.1, 271.4)

σs – 0.0778 0.0778 (0.0764, 0.0792) – 0.0799 0.0798 (0.0766, 0.0832)

κ – 0.8433 0.8433 (0.8234, 0.8621) – 0.7602 0.76 (0.744, 0.7770)

S – 1.0027 1.003 (1.002, 1.004) – 1.0029 1.003 (1.002, 1.004)

H2/H1 2.4 2.2836 2.2827 (2.2117, 2.3598) 2.4 2.2788 2.2782 (2.2052, 2.3558)
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Table 13.19: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 3 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7870 0.7869 (0.7715, 0.8027) 0.8703 0.8602 0.8602 (0.8442, 0.8762)

R31
0.3567 0.3578 0.3578 (0.3463, 0.3693) 0.4223 0.4269 0.4268 (0.415, 0.439)

R41
0.1166 0.1183 0.1183 (0.1121, 0.1246) 0.1478 0.1526 0.1526 (0.1453, 0.1601)

R51
0.0306 0.0311 0.0311 (0.0287, 0.0336) 0.0413 0.0429 0.0429 (0.0396, 0.0463)

M∗

1 1456.66 1456.664 1456.664 (1456.663, 1456.665) 1584.76 1584.765 1584.765 (1584.764, 1584.766)

R22
0.7933 0.7773 0.777 (0.7346, 0.8219) 0.8703 0.8410 0.8407 (0.7952, 0.8885)

R32
0.3567 0.3486 0.3484 (0.3246, 0.3736) 0.4223 0.4060 0.4059 (0.3788, 0.4341)

R42
0.1166 0.1143 0.1142 (0.105, 0.1243) 0.1478 0.1425 0.1425 (0.131, 0.1545)

R52
0.0306 0.0300 0.0300 (0.0270, 0.0333) 0.0413 0.0400 0.0399 (0.0360, 0.0442)

M∗

2 1460.67 1460.672 1460.672 (1456.670, 1460.674) 1588.77 1588.774 1588.774 (1588.771, 1588.776)

σ – 290.6453 290.4 (275.1, 307.1) – 280.2653 280 (265.2, 296.5)

σs – 0.0689 0.0689 (0.0676, 0.0702) – 0.0730 0.0730 (0.0717, 0.0743)

κ – 0.8024 0.8023 (0.7831, 0.8213) – 0.8482 0.8482 (0.8317, 0.8648)

S – 1.0036 1.004 (1.003, 1.005) – 1.0024 1.002 (1.002, 1.003)

H2/H1 1/3 0.3055 0.3055 (0.2925, 0.3185) 1/3 0.3042 0.3042 (0.2912, 0.3174)
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Table 13.20: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 3 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8315 0.8315 (0.7961, 0.8681) 0.8703 0.9173 0.9168 (0.8768, 0.9598)

R31
0.3567 0.4188 0.4185 (0.3947, 0.4436) 0.4223 0.5134 0.5132 (0.4842, 0.5439)

R41
0.1166 0.1417 0.1416 (0.1315, 0.1529) 0.1478 0.1881 0.1879 (0.1742, 0.2024)

R51
0.0306 0.0372 0.0372 (0.0337, 0.0410) 0.0413 0.0527 0.0527 (0.0477, 0.0582)

M∗

1 1456.66 1456.657 1456.657 (1456.655, 1456.658) 1584.76 1584.751 1584.751 (1584.748, 1584.754)

R22
0.7933 0.7741 0.774 (0.7575, 0.7904) 0.8703 0.8476 0.8476 (0.8289, 0.867)

R32
0.3567 0.3347 0.3347 (0.3233, 0.3465) 0.4223 0.4078 0.4078 (0.3942, 0.4218)

R42
0.1166 0.1084 0.1083 (0.1026, 0.1143) 0.1478 0.1416 0.1416 (0.1345, 0.1492)

R52
0.0306 0.0284 0.0284 (0.0262, 0.0308) 0.0413 0.0396 0.0396 (0.0366, 0.0429)

M∗

2 1460.67 1460.664 1460.664 (1460.663, 1460.665) 1588.77 1588.757 1588.757 (1588.755, 1588.760)

σ – 253.6929 253.6 (240.1, 268.1) – 273.5024 273.3 (258.4, 289.6025)

σs – 0.0698 0.0698 (0.0685, 0.0712) – 0.0740 0.0740 (0.0725, 0.0756)

κ – 0.8384 0.8384 (0.8192, 0.8574) – 0.7843 0.7837 (0.7572, 0.8155)

S – 1.0041 1.004 (1.003, 1.005) – 1.0026 1.003 (1.002, 1.004)

H2/H1 2.4 2.3286 2.3279 (2.2530, 2.4077) 2.4 2.3109 2.3102 (2.2279, 2.3981)
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Table 13.21: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 4 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7891 0.7889 (0.7741, 0.8044) 0.8703 0.8611 0.861 (0.8441, 0.8788)

R31
0.3567 0.3625 0.3625 (0.3513, 0.3736) 0.4223 0.4300 0.4299 (0.4171, 0.4427)

R41
0.1166 0.1198 0.1197 (0.1138, 0.126) 0.1478 0.1523 0.1523 (0.1449, 0.1599)

R51
0.0306 0.0315 0.0314 (0.0290, 0.0341) 0.0413 0.0428 0.0428 (0.0395, 0.0462)

M∗

1 1456.66 1456.670 1456.670 (1456.669, 1456.671) 1584.76 1584.761 1584.761 (1584.760, 1584.763)

R22
0.7933 0.7635 0.7635 (0.7224, 0.8074) 0.8703 0.8575 0.8574 (0.8086, 0.907)

R32
0.3567 0.3427 0.3423 (0.3197, 0.3674) 0.4223 0.4127 0.4126 (0.3838, 0.4424)

R42
0.1166 0.1124 0.1122 (0.1032, 0.1221) 0.1478 0.1450 0.1449 (0.1332, 0.1573)

R52
0.0306 0.0295 0.0295 (0.0266, 0.0323) 0.0413 0.0407 0.0406 (0.0366, 0.0450)

M∗

2 1460.67 1460.678 1460.678 (1456.676, 1460.680) 1588.77 1588.770 1588.770 (1588.767, 1588.772)

σ – 257.251 257.1 (243.8, 271.5) – 267.2495 267.1 (252.8, 282.6)

σs – 0.0671 0.0671 (0.0659, 0.0683) – 0.0711 0.0711 (0.0698, 0.0726)

κ – 0.8675 0.8676 (0.8495, 0.8851) – 0.7756 0.7755 (0.7508, 0.8016)

S – 1.0030 1.003 (1.002, 1.004) – 1.0028 1.003 (1.002, 1.004)

H2/H1 1/3 0.3106 0.3107 (0.2978, 0.3232) 1/3 0.3069 0.3068 (0.2933, 0.3212)
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Table 13.22: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 4 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8256 0.8255 (0.7902, 0.8617) 0.8703 0.9175 0.9174 (0.8773, 0.9594)

R31
0.3567 0.4165 0.4163 (0.3922, 0.4417) 0.4223 0.5118 0.5116 (0.4823, 0.5417)

R41
0.1166 0.1416 0.1415 (0.1309, 0.153) 0.1478 0.1882 0.188 (0.1745, 0.2024)

R51
0.0306 0.0372 0.0372 (0.0337, 0.0410) 0.0413 0.0528 0.0527 (0.0479, 0.0581)

M∗

1 1456.66 1456.658 1456.658 (1456.656, 1456.659) 1584.76 1584.759 1584.759 (1584.757, 1584.761)

R22
0.7933 0.7756 0.7756 (0.7593, 0.7922) 0.8703 0.8411 0.841 (0.8224, 0.86)

R32
0.3567 0.3360 0.3359 (0.3243, 0.3479) 0.4223 0.4036 0.4036 (0.3902, 0.4175)

R42
0.1166 0.1086 0.1085 (0.1028, 0.1144) 0.1478 0.1405 0.1404 (0.1333, 0.1478)

R52
0.0306 0.0284 0.0284 (0.0262, 0.0308) 0.0413 0.0393 0.0393 (0.0362, 0.0425)

M∗

2 1460.67 1460.665 1460.665 (1460.664, 1460.666) 1588.77 1588.766 1588.766 (1588.764, 1588.768)

σ – 256.0149 255.8 (242.3, 270.7) – 267.6753 267.5 (252.7, 283.5)

σs – 0.0696 0.0696 (0.0682, 0.0710) – 0.0744 0.0744 (0.0729, 0.0758)

κ – 0.8023 0.8022 (0.7847, 0.8212) – 0.8542 0.8543 (0.826, 0.8816)

S – 1.0039 1.004 (1.003, 1.005) – 1.0024 1.002 (1.001, 1.004)

H2/H1 2.4 2.3096 2.3090 (2.2343, 2.3869) 2.4 2.3121 2.3116 (2.2302, 2.3983)
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Table 13.23: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 5 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7899 0.7899 (0.775, 0.8050) 0.8703 0.8756 0.8755 (0.8586, 0.8927)

R31
0.3567 0.3625 0.3625 (0.3513, 0.3736) 0.4223 0.4312 0.4312 (0.4188, 0.4438)

R41
0.1166 0.1197 0.1197 (0.1137, 0.1259) 0.1478 0.1535 0.1535 (0.1461, 0.161)

R51
0.0306 0.0315 0.0314 (0.0291, 0.0341) 0.0413 0.0432 0.0431 (0.0399, 0.0466)

M∗

1 1456.66 1456.662 1456.662 (1456.661, 1456.663) 1584.76 1584.762 1584.762 (1584.761, 1584.764)

R22
0.7933 0.7776 0.7776 (0.7358, 0.821) 0.8703 0.8341 0.8335 (0.7884, 0.8825)

R32
0.3567 0.3486 0.3483 (0.3252, 0.3729) 0.4223 0.4037 0.4033 (0.3767, 0.4325)

R42
0.1166 0.1143 0.1142 (0.1051, 0.1241) 0.1478 0.1418 0.1417 (0.1306, 0.1539)

R52
0.0306 0.0300 0.0300 (0.0270, 0.0333) 0.0413 0.0398 0.0397 (0.0358, 0.0441)

M∗

2 1460.67 1460.669 1460.669 (1456.667, 1460.671) 1588.77 1588.769 1588.769 (1588.766, 1588.772)

σ – 284.1292 284 (269.2, 300.2) – 302.2285 302 (285.8, 319.7)

σs – 0.0720 0.072 (0.0707, 0.0733) – 0.0767 0.0767 (0.0753, 0.0780)

κ – 0.8238 0.8238 (0.8077, 0.8404) – 0.8575 0.8573 (0.837, 0.8781)

S – 1.0038 1.004 (1.003, 1.005) – 1.0027 1.003 (1.002, 1.004)

H2/H1 1/3 0.3037 0.3037 (0.2913, 0.3160) 1/3 0.3096 0.3096 (0.2960, 0.3232)
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Table 13.24: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 5 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8174 0.817 (0.7825, 0.8532) 0.8703 0.9117 0.9117 (0.8722, 0.9529)

R31
0.3567 0.4147 0.4146 (0.3912, 0.4394) 0.4223 0.5096 0.5095 (0.4805, 0.5394)

R41
0.1166 0.1408 0.1407 (0.1305, 0.1516) 0.1478 0.1873 0.1872 (0.1734, 0.2017)

R51
0.0306 0.0369 0.0369 (0.0335, 0.0407) 0.0413 0.0525 0.0525 (0.0476, 0.0579)

M∗

1 1456.66 1456.656 1456.656 (1456.655, 1456.658) 1584.76 1584.749 1584.749 (1584.747, 1584.752)

R22
0.7933 0.7616 0.7617 (0.7454, 0.778) 0.8703 0.8419 0.8418 (0.8231, 0.8607)

R32
0.3567 0.3348 0.3347 (0.3235, 0.3463) 0.4223 0.4057 0.4057 (0.3921, 0.4194)

R42
0.1166 0.1082 0.1082 (0.1025, 0.1141) 0.1478 0.1409 0.1409 (0.1338, 0.1485)

R52
0.0306 0.0283 0.0283 (0.0261, 0.0307) 0.0413 0.0394 0.0394 (0.0364, 0.0426)

M∗

2 1460.67 1460.664 1460.663 (1460.663, 1460.664) 1588.77 1588.756 1588.756 (1588.754, 1588.758)

σ – 287.7251 287.6 (272.2, 304.3) – 310.075 309.8 (292.9, 328.4)

σs – 0.0681 0.0681 (0.0669, 0.0694) – 0.0722 0.0722 (0.0707, 0.0737)

κ – 0.8366 0.8363 (0.8191, 0.8554) – 0.7688 0.7688 (0.7453, 0.7923)

S – 1.0037 1.004 (1.003, 1.005) – 1.0029 1.003 (1.002, 1.004)

H2/H1 2.4 2.3020 2.3018 (2.2292, 2.3781) 2.4 2.3084 2.3081 (2.2267, 2.3930)
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Table 13.25: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 6 (H2/H1 = 1/3).

Parameter Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7992 0.7993 (0.7836, 0.8149) 0.8703 0.8649 0.8649 (0.8482, 0.8817)

R31
0.3567 0.3661 0.3661 (0.3543, 0.3779) 0.4223 0.4333 0.4334 (0.4208, 0.4458)

R41
0.1166 0.1214 0.1214 (0.1152, 0.1278) 0.1478 0.1548 0.1547 (0.1475, 0.1623)

R51
0.0306 0.0319 0.0319 (0.0294, 0.0346) 0.0413 0.0435 0.0434 (0.0402, 0.0470)

M∗

1 1456.66 1456.667 1456.667 (1456.666, 1456.668) 1584.76 1584.756 1584.756 (1584.755, 1584.757)

R22
0.7933 0.7711 0.7708 (0.7296, 0.8148) 0.8703 0.8555 0.8552 (0.8091, 0.9039)

R32
0.3567 0.3451 0.3449 (0.3212, 0.3701) 0.4223 0.4132 0.4129 (0.3855, 0.4425)

R42
0.1166 0.1132 0.1131 (0.1039, 0.123) 0.1478 0.1451 0.145 (0.1334, 0.1576)

R52
0.0306 0.0297 0.0297 (0.0267, 0.0330) 0.0413 0.0407 0.0407 (0.0366, 0.0450)

M∗

2 1460.67 1460.674 1460.674 (1456.672, 1460.676) 1588.77 1588.765 1588.765 (1588.762, 1588.766)

σ – 301.1815 301 (285.3, 318.2) – 299.9874 299.8 (284, 317.5)

σs – 0.0708 0.0708 (0.0694, 0.0721) – 0.0732 0.0732 (0.0718, 0.0747)

κ – 0.8768 0.8765 (0.8558, 0.8988) – 0.7618 0.7615 (0.7448, 0.7805)

S – 1.0022 1.002 (1.001, 1.003) – 1.0028 1.003 (1.002, 1.003)

H2/H1 1/3 0.3158 0.3157 (0.3027, 0.3289) 1/3 0.3084 0.3084 (0.2951, 0.3221)



230
C
h
a
p
ter

1
3
.
B
a
yesia

n
M
od
el
fo
r
th
e
S
h
a
pe

R
ep
resen

ta
tio

n
w
ith

O
verla

p
p
in
g
P
ep
tid

es

Table 13.26: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace shape-function for Spectrum 6 (H2/H1 = 3/1).

Parameter Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8248 0.8247 (0.7886, 0.8611) 0.8703 0.9159 0.9155 (0.8766, 0.9569)

R31
0.3567 0.4148 0.4146 (0.3935, 0.4424) 0.4223 0.5140 0.5138 (0.4851, 0.5438)

R41
0.1166 0.1418 0.1417 (0.131, 0.1527) 0.1478 0.1892 0.1891 (0.1756, 0.2034)

R51
0.0306 0.0372 0.0372 (0.0337, 0.0411) 0.0413 0.0531 0.0530 (0.0481, 0.0584)

M∗

1 1456.66 1456.659 1456.659 (1456.657, 1456.661) 1584.76 1584.76 1584.76 (1584.758, 1584.762)

R22
0.7933 0.7780 0.7779 (0.7609, 0.7951) 0.8703 0.8425 0.8425 (0.8238, 0.8609)

R32
0.3567 0.3415 0.3415 (0.3295, 0.3536) 0.4223 0.4054 0.4053 (0.3921, 0.419)

R42
0.1166 0.1106 0.1106 (0.1047, 0.1168) 0.1478 0.1414 0.1414 (0.1341, 0.1487)

R52
0.0306 0.0290 0.0290 (0.0267, 0.0314) 0.0413 0.0395 0.0395 (0.0365, 0.0427)

M∗

2 1460.67 1460.666 1460.666 (1460.665, 1460.668) 1588.77 1588.768 1588.768 (1588.766, 1588.770)

σ – 292.8212 292.7 (277.1, 309.2) – 316.6342 316.5 (299, 335.6)

σs – 0.0722 0.0722 (0.0697, 0.0749) – 0.0791 0.0791 (0.0776, 0.0807)

κ – 0.7960 0.7957 (0.7779, 0.8155) – 0.8415 0.8416 (0.8163, 0.8643)

S – 1.0036 1.004 (1.003, 1.005) – 1.0023 1.002 (1.001, 1.003)

H2/H1 2.4 2.2516 2.2515 (2.1764, 2.3294) 2.4 2.3039 2.3032 (2.2228, 2.3885)
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Simultaneous fit to the six spectra:

Table 13.27: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal distribution function.

Par. Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7901 0.7901 (0.7808, 0.7992) 0.8703 0.8624 0.8623 (0.8527, 0.8722)

R31
0.3567 0.3616 0.3616 (0.3543, 0.3687) 0.4223 0.4316 0.4316 (0.4239, 0.4394)

R41
0.1166 0.1203 0.1203 (0.1155, 0.1252) 0.1478 0.1551 0.1551 (0.1495, 0.1607)

R51
0.0306 0.0316 0.0316 (0.0293, 0.034) 0.0413 0.0436 0.0436 (0.0405, 0.0469)

M∗

1 1456.66 1456.673 1456.673 (1456.673, 1456.674) 1584.76 1584.771 1584.771 (1584.771, 1584.772)

R22
0.7933 0.7652 0.7652 (0.7382, 0.7923) 0.8703 0.8410 0.841 (0.8113, 0.8711)

R32
0.3567 0.3371 0.3371 (0.3202, 0.3546) 0.4223 0.3999 0.3997 (0.3811, 0.4197)

R42
0.1166 0.1102 0.1101 (0.1028, 0.118) 0.1478 0.1400 0.1399 (0.131, 0.1492)

R52
0.0306 0.0289 0.0289 (0.0264, 0.0317) 0.0413 0.0393 0.0392 (0.0358, 0.0429)

M∗

2 1460.67 1460.681 1460.681 (1460.68, 1460.683) 1588.77 1588.779 1588.779 (1588.778, 1588.780)

σ1 – 361.4743 361.3 (340.4, 383.8) – 351.1390 351 (331.6, 372.2)

σ2 – 291.8526 291.7 (274.8, 309.7) – 468.4105 467.9 (442.1, 497.2)

σ3 – 392.5628 392.3 (369.4, 417.2) – 483.824 483.4 (455.5, 513.6)

σ4 – 419.5152 419.1 (394, 446.9) – 312.5077 312.2 (295.7, 330.4)

σ5 – 471.3549 471.2 (442.6, 501.2025) – 427.0039 426.7 (402.1, 453.5)

σ6 – 385.0705 384.8 (363.1, 409.3) – 377.7365 377.4 (356.9, 400.1)

σs – 0.0454 0.0454 (0.0450, 0.0458) – 0.0482 0.0482 (0.0478, 0.0486)

S – 1.0026 1.002 (1.002, 1.003) – 1.0026 1.003 (1.002, 1.003)

Q 1/3 0.3104 0.3104 (0.2869, 0.334) 1/3 0.3081 0.3082 (0.2841, 0.3324)

σ2
Q – 0.00076 0.00053 (0.00018, 0.00271) – 0.00077 0.00053 (0.00018, 0.00285)
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Table 13.28: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with normal distribution function.

Par. Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8073 0.8071 (0.7876, 0.8275) 0.8703 0.8932 0.8932 (0.8716, 0.9156)

R31
0.3567 0.4498 0.4497 (0.4344, 0.4657) 0.4223 0.5563 0.5563 (0.5385, 0.5741)

R41
0.1166 0.1629 0.1628 (0.1539, 0.1721) 0.1478 0.2233 0.2233 (0.2118, 0.235)

R51
0.0306 0.0428 0.0427 (0.0393, 0.0464) 0.0413 0.0626 0.0626 (0.0578, 0.0677)

M∗

1 1456.66 1456.668 1456.668 (1456.668, 1456.669) 1584.76 1584.768 1584.768 (1584.767, 1584.769)

R22
0.7933 0.7747 0.7746 (0.7657, 0.7839) 0.8703 0.8492 0.8493 (0.839, 0.8593)

R32
0.3567 0.3342 0.3342 (0.3272, 0.3413) 0.4223 0.4063 0.4063 (0.3986, 0.4139)

R42
0.1166 0.1060 0.106 (0.1017, 0.1104) 0.1478 0.1393 0.1392 (0.1341, 0.1446)

R52
0.0306 0.0277 0.0277 (0.0258, 0.0298) 0.0413 0.0388 0.0388 (0.0362, 0.0415)

M∗

2 1460.67 1460.676 1460.676 (1460.675, 1460.676) 1588.77 1588.776 1588.776 (1588.776, 1588.777)

σ1 – 322.6952 322.5 (304.2, 342.3025) – 393.7457 393.5 (371.3, 418.0025)

σ2 – 544.3902 543.8 (513.4, 577.5) – 357.8858 357.7 (337.8, 379.3)

σ3 – 316.5448 316.3 (299, 335.4) – 295.3017 295.2 (279.3, 312.4)

σ4 – 285.8252 285.5 (270.9, 302.3) – 327.2925 327 (309, 347)

σ5 – 398.0664 397.8 (375.1, 422.2) – 355.3285 355.2 (335.8, 375.9)

σ6 – 317.6863 317.5 (300.8, 335.9) – 424.1894 423.9 (400, 449.9)

σs – 0.0461 0.0461 (0.0458, 0.0465) – 0.0491 0.0491 (0.0488, 0.0496)

S – 1.0027 1.003 (1.002, 1.003) – 1.0025 1.003 (1.002, 1.003)

Q 2.4 2.2915 2.292 (2.234, 2.347) 2.4 2.2933 2.294 (2.238, 2.349)

σ2
Q – 0.00219 0.00134 (0.00032, 0.00934) – 0.00190 0.00118 (0.00030, 0.00805)
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Table 13.29: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace distribution function.

Par. Data set 1 Data set 3

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.7913 0.7913 (0.7827, 0.7997) 0.8703 0.8627 0.8626 (0.8541, 0.8717)

R31
0.3567 0.3629 0.3629 (0.3562, 0.3695) 0.4223 0.4322 0.4322 (0.4253, 0.4392)

R41
0.1166 0.1209 0.1209 (0.1162, 0.1256) 0.1478 0.1558 0.1557 (0.1505, 0.161)

R51
0.0306 0.0318 0.0317 (0.0295, 0.0342) 0.0413 0.0438 0.0437 (0.0408, 0.0469)

M∗

1 1456.66 1456.663 1456.663 (1456.661, 1456.665) 1584.76 1584.757 1584.757 (1584.756, 1584.758)

R22
0.7933 0.7681 0.768 (0.7426, 0.7941) 0.8703 0.8427 0.8425 (0.8155, 0.8702)

R32
0.3567 0.3384 0.3383 (0.3222, 0.3552) 0.4223 0.3993 0.3992 (0.3817, 0.4177)

R42
0.1166 0.1107 0.1106 (0.1036, 0.1181) 0.1478 0.1397 0.1396 (0.1313, 0.1485)

R52
0.0306 0.0291 0.0291 (0.0265, 0.0318) 0.0413 0.0392 0.0392 (0.0360, 0.0428)

M∗

2 1460.67 1460.671 1460.671 (1460.669, 1460.673) 1588.77 1588.766 1588.766 (1588.765, 1588.767)

σ1 – 367.4027 367.4 (342.1, 393.1) – 284.841 284.6 (269.2, 301.7)

σ2 – 245.9896 245.6 (230, 263.7) – 405.1527 404.8 (381.5, 430.8)

σ3 – 333.6486 333 (311.7, 358.5) – 520.4787 520.4 (490.7, 552.4)

σ4 – 463.3965 463.5 (430.1975, 496.1) – 279.4288 279.1 (264.1975, 296.1)

σ5 – 408.194 407.3 (379.3, 440.8) – 434.491 434.1 (409.6, 461.6025)

σ6 – 406.6493 406.5 (377.9, 436.2025) – 310.2171 310.1 (293, 328.5)

σs – 0.0712 0.0712 (0.0705, 0.0720) – 0.0745 0.0745 (0.0737, 0.0752)

κ – 0.8045 0.8039 (0.7889, 0.8233) – 0.7591 0.759 (0.7479, 0.7705)

S – 1.0027 1.003 (1.002, 1.003) – 1.0029 1.003 (1.002, 1.003)

Q 1/3 0.3098 0.3098 (0.2865, 0.3333) 1/3 0.3085 0.3085 (0.2855, 0.3322)

σ2
Q – 0.00076 0.00052 (0.00018, 0.00273) – 0.00076 0.00052 (0.00018, 0.00269)
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Table 13.30: Means, medians and 95% credible intervals based on the samples from posterior distributions for the parameters of

the model with asymmetric Laplace distribution function.

Par. Data set 2 Data set 4

True Mean Median 95% c.i. True Mean Median 95% c.i.

R21
0.7933 0.8064 0.8065 (0.7882, 0.8242) 0.8703 0.8912 0.8911 (0.8712, 0.9112)

R31
0.3567 0.4559 0.4559 (0.4413, 0.4706) 0.4223 0.5627 0.5626 (0.5468, 0.579)

R41
0.1166 0.1687 0.1686 (0.16, 0.1776) 0.1478 0.2320 0.2321 (0.2207, 0.2434)

R51
0.0306 0.0444 0.0444 (0.0409, 0.0482) 0.0413 0.0652 0.0652 (0.0602, 0.0705)

M∗

1 1456.66 1456.658 1456.658 (1456.657, 1456.659) 1584.76 1584.756 1584.756 (1584.755, 1584.757)

R22
0.7933 0.7768 0.7767 (0.7686, 0.7853) 0.8703 0.8516 0.8516 (0.8424, 0.8607)

R32
0.3567 0.3346 0.3346 (0.3282, 0.3411) 0.4223 0.4077 0.4077 (0.4007, 0.4147)

R42
0.1166 0.1057 0.1057 (0.1016, 0.1099) 0.1478 0.1394 0.1394 (0.1345, 0.1442)

R52
0.0306 0.0276 0.0276 (0.0257, 0.0296) 0.0413 0.0388 0.0388 (0.0363, 0.0414)

M∗

2 1460.67 1460.665 1460.665 (1460.664, 1460.666) 1588.77 1588.763 1588.763 (1588.762, 1588.763)

σ1 – 318.8121 318.6 (300.8, 337.9) – 348.2114 347.9 (327.0975, 370.4)

σ2 – 532.7193 532.5 (503.1, 564.2) – 284.6756 284.4 (267.9975, 302.6025)

σ3 – 279.207 279 (263.7, 295.7) – 266.8882 266.7 (252.6975, 282.5)

σ4 – 250.2610 250.2 (236.9, 264.4) – 315.3316 315.1 (297.0975, 334.5)

σ5 – 344.3234 344 (325.1, 365.2) – 306.5559 306.4 (290, 324.3)

σ6 – 288.2081 288 (272.8, 304.6) – 411.1908 411 (387.4, 436.5)

σs – 0.0716 0.0716 (0.0710, 0.0723) – 0.0764 0.0764 (0.0757, 0.0772)

κ – 0.8007 0.8006 (0.7919, 0.8101) – 0.7674 0.7673 (0.7571, 0.7781)

S – 1.0039 1.004 (1.003, 1.004) – 1.0029 1.003 (1.002, 1.003)

Q 2.4 2.2910 2.291 (2.239, 2.344) 2.4 2.2972 2.297 (2.247, 2.348)

σ2
Q – 0.00210 0.00135 (0.00033, 0.00829) – 0.001660 0.001088 (0.000285, 0.006464)
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Simulation results of the eight settings:

Table 13.31: Summary statistics (mean estimates
¯̂
θ, empirical standard errors σemp and model based standard errors σmb).

Parameter set1 set2 set3 set4

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
0.9763 0.9644 0.0490/0.0084 0.9763 1.0145 0.0631/0.0117 1.1577 1.2543 0.0558/0.0102 1.1577 1.5896 0.9267/0.0854

R31
0.6385 0.6172 0.0491/0.0089 0.6385 0.6331 0.0572/0.0167 0.6702 0.7768 0.0644/0.0122 0.6702 0.8053 0.2652/0.0531

R41
0.3125 0.2913 0.0315/0.0061 0.3125 0.2796 0.0282/0.0098 0.2586 0.3207 0.0338/0.0077 0.2586 0.2772 0.0069/0.0179

R51
0.1277 0.1133 0.0141/0.0037 0.1277 0.1018 0.0086/0.0050 0.0749 0.0967 0.0125/0.0038 0.0749 0.0929 0.0022/0.0070

M∗

1 2000.90 2000.906 0.0008/0.0002 2000.90 2000.934 0.0004/0.0002 2000.90 2000.900 0.0004/0.0003 2000.90 2000.901 0.0064/0.0013

R22
1.2708 1.1007 0.1401/0.1230 1.2708 1.0360 0.1193/0.0873 1.1577 1.2180 0.0984/0.0955 1.1577 1.1727 0.1041/0.0169

R32
0.8872 0.6620 0.0173/0.0397 0.8872 0.6556 0.0190/0.0348 0.6702 0.6678 0.0214/0.0363 0.6702 0.6771 0.0873/0.0127

R42
0.4431 0.2882 0.0061/0.0197 0.4431 0.2905 0.0077/0.0179 0.2586 0.2776 0.0089/0.0180 0.2586 0.2602 0.0337/0.0055

R52
0.1750 0.0984 0.0024/0.0076 0.1750 0.1017 0.0033/0.0072 0.0749 0.0923 0.0026/0.0068 0.0749 0.0787 0.0062/0.0027

M∗

2 2000.94 2002.645 1.6026/0.0527 2000.94 2002.055 0.4913/0.0226 2001.94 2002.488 1.6254/0.0593 2001.94 2001.992 0.2177/0.0009

σ 10 7.6873 0.3352/0.2180 10 7.6568 0.3052/0.2158 10 7.6193 0.3223/0.2490 10 7.8147 0.9477/0.2278

σs 0.08 0.0813 0.0004/0.0002 0.08 0.0811 0.0002/0.0001 0.08 0.0803 0.0005/0.0002 0.08 0.0798 0.0004/0.0002

S 1.0015 1.0014 0.0011/0.0004 1.0015 1.0012 0.0008/0.0004 1.0015 1.0036 0.0018/0.0004 1.0015 1.0009 0.0013/0.0005

H2/H1 0.2 0.0703 0.0424/0.0089 5 0.2146 0.0496/0.0117 0.2 0.1041 0.0522/0.0102 5 4.7323 0.2842/0.1145
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Table 13.32: Summary statistics (mean estimates
¯̂
θ, empirical standard errors σemp and model based standard errors σmb).

Parameter set5 set6 set7 set8

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.1577 1.1542 0.0244/0.0054 1.1577 1.1637 0.0250/0.0199 0.9763 0.9759 0.0048/0.0039 0.9763 0.9790 0.0236/0.0190

R31
0.6702 0.6568 0.0634/0.0044 0.6702 0.6720 0.0172/0.0149 0.6385 0.6388 0.0031/0.0033 0.6385 0.6427 0.0178/0.0152

R41
0.2586 0.2401 0.0484/0.0038 0.2586 0.2682 0.0103/0.0109 0.3125 0.3120 0.0035/0.0029 0.3125 0.3052 0.0126/0.0120

R51
0.0749 0.1420 0.0773/0.0057 0.0749 0.0962 0.0010/0.0074 0.1277 0.1241 0.0035/0.0027 0.1277 0.1036 0.0049/0.0071

M∗

1 2000.90 2000.899 0.0008/0.0003 2000.90 2000.900 0.00011/0.0009 2000.90 2000.900 0.0003/0.0003 2000.90 2000.900 0.0011/0.0010

R22
1.1577 1.0016 0.2770/0.0406 1.1577 1.1612 0.0049/0.0044 1.2708 1.2057 0.0231/0.0200 1.2708 1.2660 0.0054/0.0045

R32
0.6702 0.6695 0.2421/0.0239 0.6702 0.6722 0.0039/0.0033 0.8872 0.8266 0.0163/0.0162 0.8872 0.8834 0.0042/0.0037

R42
0.2586 0.3103 0.1317/0.0145 0.2586 0.2598 0.0032/0.0027 0.4431 0.3866 0.0158/0.0128 0.4431 0.4398 0.0034/0.0030

R52
0.0749 0.1020 0.0309/0.0072 0.0749 0.0788 0.0027/0.0024 0.1750 0.1163 0.0056/0.0080 0.1750 0.1702 0.0033/0.0028

M∗

2 2004.94 2004.960 1.0072/0.0630 2004.94 2004.940 0.0004/0.0003 2006.94 2006.940 0.0010/0.0009 2006.94 2006.940 0.0003/0.0002

σ 10 9.8833 3.7120/0.5880 10 7.8690 0.3281/0.2232 10 8.2762 0.3302/0.2410 10 8.2775 0.3150/0.2433

σs 0.08 0.0800 0.0003/0.0002 0.08 0.0800 0.0002/0.0002 0.08 0.0800 0.0003/0.0002 0.08 0.0801 0.0002/0.0002

S 1.0015 1.0024 0.0015/0.0003 1.0015 1.0014 0.0005/0.0002 1.0015 1.0015 0.0005/0.0002 1.0015 1.0016 0.0005/0.0002

H2/H1 0.2 0.1855 0.0431/0.0076 5 4.9980 0.0745/0.0672 0.2 0.2120 0.0030/0.0027 5 5.0181 0.0844/0.0687



Chapter 14

A Bayesian model averaging

approach for the shape

representation of a mass

spectrum with overlapping

peptides

14.1 Introduction

As it has been observed in Chapter 13, the Bayesian (mixture) model performs well

when MS data show a clear separation of the overlapping peptides, i.e., when the

separation is clearly seen in the data and when the mass difference of the overlapping

peptides is at least around 4 Da. However, when the separation is less apparent or the

mass difference is smaller, the Bayesian (mixture) model does not perform well. In

particular, it provides biased estimates of the monoisotopic mass of the overlapping

peptide. To tackle the problem, in this chapter, we introduce the Bayesian model

averaging approach.
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14.2 Model implementation for Bayesian model av-

eraging

In the Bayesian model averaging approach, the model formulation is given by equa-

tions (13.1)-(13.2). The difference lies in the prior distribution for the monoisotopic

mass M∗
d . Instead of specifying a mixture of G normal distributions, defined in equa-

tion (13.10), G separate models are fitted, each with a normal prior N(ηg, σ
2
m), where

G is the number of (normal) components, which can possibly contain the true value of

the monoisotopic mass of the overlapping peptide. Taking Figure 3.1 as an example,

suppose that, the monoisotopic mass M∗
2 is likely to appear around the mass range

of 1997.5–2002.5 Da, then there shows five clusters (normal components) that could

contain the true value of M∗
2 . Thus, G is equal to five for this case. The resulting

parameter estimates will be a weighted sum of the G candidate models. This means

the point estimate of a parameter θ can be treated as the weighted average of the

model-specific estimate θ̂g:

θ̂ =

G∑

g=1

wg θ̂g, (14.1)

where wg is the weight of the gth model. As suggested by Burham and Anderson

(2002), wg can be computed based on the Information Criteria. Based on the DIC

(Deviance Information Criterion) of each model, wg can be computed as follows:

wg =
exp

(
− 1

2∆DICg

)
[

G∑
g=1

exp
(
− 1

2∆DICg

)
] , (14.2)

where ∆DICg = DICg −m
g
in(DICg). The standard error can be computed as

suggested by Burham and Anderson (2002) and Eicher et al. (2009):

σ̂ (θ) =
G∑

g=1

wg

√
σ̂g (θ)

2
+
(
θ̂g − θ̂

)2
, (14.3)

where θ̂g and σ̂g (θ) are, respectively, the point estimate and the standard error

for parameter θ in the gth candidate model.
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In the next section, we show the performance of Bayesian model averaging ap-

proach applied to a simulation study as well as to the bovine cytochrome C data

set.

14.3 Results

14.3.1 A simulation study

For illustration purposes and simplicity, the simulation was based on the model with

normal distribution (shape-)function (see Section 13.6). We considered 30 settings,

accounting for various mass differences of the overlapping peptides, with both clear

and unclear peptide separation. The details of the settings are shown in Table 14.1.

Let shift be the integer of the mass difference of the two overlapping peptides, and

tilt be the mass difference after the decimal point, with tilt < 1. As a result, the

mass difference of the two overlapping peptides is equal to M2 −M1 = shift + tilt.

Or, in other words, M2 = M1 + shift + tilt. It may be difficult to quantify two

overlapping peptides when the mass difference between two peptides is too small, i.e.,

either shift or tilt is very small. Thus, it is of interest to investigate different settings

with combinations of the two parameters.

The other parameters were chosen based on real-life data:

M∗
1 = 2000.90, H1 = 10000, σ = 10, σs = 0.08, S = 1.0015.

For each of the settings, 100 simulated data sets with a random error were gen-

erated, based on the model defined in equations (13.1)–(13.2). Figures 14.1 to 14.3

show the graphical representation of the 30 settings. It can be seen that settings 1–3,

5–7, 9–16, 18–19 and 21 are difficult ones, for which the location of the second, over-

lapping peptide is not immediately obvious. These settings are the ones with either

much less abundant second, overlapping peptide (e.g., setting 21), or with very small

mass difference (e.g., setting 2).

Model (13.1)-(13.2) was fitted by using the R package R2WinBUGS, built in R

to automatically call the WinBUGS1.4 software, which allows to fit Bayesian models.

The DIC values were obtained as an automatic output from the R2WinBUGS package.

Tables E.1 to E.4 show the average weights of the eight candidate models for the

30 settings. Tables E.5 to E.12 show the summary statistics, i.e., the average point

estimates of the 100 data sets (denoted as
¯̂
θ), the mean model-based standard error

of the 100 data sets (denoted as σmb) and the empirical standard error (denoted as
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Table 14.1: The combinations of parameters used for the 30 settings of the simulation

study.

set1 set2 set3 set4 set5 set6 set7 set8

shift 0 0 1 1 0 0 1 1

tilt 0.04 0.04 0.04 0.04 0.16 0.16 0.16 0.16

H2/H1 0.2 5 0.2 5 0.5 2 0.5 2

Isotopoic Ratios E1E2 E1E2 AA AA E2A E2A AE1 AE1

set9 set10 set11 set12 set13 set14 set15 set16

shift 0 1 0 0 0 1 0 1

tilt 0.24 0.24 0.24 0.16 0.16 0.16 0.04 0.04

H2/H1 1 1 2 0.2 5 0.2 0.5 0.5

Isotopoic Ratios E2E1 E1E1 E2A E1E2 E1E2 AA E2A AE1

set17 set18 set19 set20 set21 set22 set23 set24

shift 1 0 0 1 4 4 6 6

tilt 0.04 0.04 0.16 0.04 0.04 0.04 0.04 0.04

H2/H1 2 1 1 1 0.2 5 0.2 5

Isotopoic Ratios AE1 E2E1 E2E1 E1E1 AA AA E1E2 E1E2

set25 set26 set27 set28 set29 set30

shift 4 4 6 6 4 6

tilt 0.16 0.16 0.16 0.16 0.24 0.24

H2/H1 0.5 2 0.5 2 1 1

Isotopoic Ratios AE1 AE1 E2A E2A E2E2 E2E1

σemp), computed from the point estimates of the 100 simulated data sets.

The graphical representation of the summary statistics are shown in Figures 14.4

to 14.17. The point estimates of the mass for the second (overlapping) peptide M∗
2 ,

shown in Figure 14.4, correctly represent the true mass of the peptide, except only

for settings 1–3, 6, 15 and 18. For these settings, the 95% credible intervals, com-

puted based on the model averaging, are very wide. Thus, most of them still contain

the true values of M∗
2 . This is clearly an improvement over the previous approach,

presented in Chapter 13. The wide credible intervals are an indication of settings, for

which the separation of the overlapping peptides is not easily discernible. For these

same (difficult) settings, the 95% credible intervals of the relative abundance H2/H1,

shown in Figure 14.5, contain zero and thus can be viewed as another indication that

the second, overlapping peptide is difficult to be found. For the remaining settings,

even for some of those, for which the presence of the second peptide is not clear from

the data, the Bayesian model averaging approach is able to estimate the monoiso-

topic masses of the two overlapping peptides and to correctly quantify their relative

abundance. A slight bias for the estimation of H2/H1 is only observed for setting 21.
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Figures 14.6 to 14.9 show the estimation of the isotopic ratios for the first peptide.

For the settings, for which the separation of the overlapping peptides can be detected

by the model averaging approach, the point estimates of the isotopic ratios, especially

for R21 , R31 and R41 , show negligible bias with their 95% credible intervals including,

in general, the true values. For R51 , however, the estimation is comparatively worse,

as can be observed from Figure 14.9. This is because R51 is much less abundant than

the other ratios, making it more difficult to estimate. Moreover, the corresponding

isotopic peak of R51 , in most of the settings, gets overlapped with the (more abundant)

isotopic peaks of the second peptide. This makes R51 even more difficult to estimate.

Similar patterns can be observed from Figures 14.10 – 14.13.

Figures 14.14, 14.16 and 14.17 show, in general, unbiased estimates for parameters

M∗
1 , σs, and S, respectively. The estimates of residual standard deviation parameter

σ, shown in Figure 14.15 are, in general, also well estimated with only a slight under-

estimation.

Figures 14.18 – 14.22 present the fit of the predicted spectra (using the average

point estimates obtained from Tables E.5 to E.12 in Appendix E) versus the ob-

served spectra. These figures indicate, for most of the settings that, the fitted spectra

correspond to the observed spectra, except only for settings 6 and 15. For these set-

tings, since the point estimates of M∗
2 appear in the middle of two observed peaks,

the resulting isotopic peaks of the second (overlapping) peptides, appear around the

‘valleys’ in between the two neighboring observed peaks.

As can be seen from Table 14.1, settings 1 to 20 are the settings, for which the

monoisotopic mass difference of the two overlapping peptides is at most around one

Da, i.e., shift = 0 or 1. These settings can be viewed as the more difficult due to

the relatively small difference in the monoisotopic mass, i.e., M∗
2 −M∗

1 . Table 14.2

gives a summary of whether or not the model is able to produce correct estimates for

these settings with combinations of shift, tilt, and H2/H1, based on the simulation

study. Note that the poor estimates are produced when the mass differenceM∗
2 −M

∗
1

or the relative abundance H2/H1 is too small. For the mass difference, it can either

happen when shift or tilt is very small. When shift is small, e.g., when shift = 0,

the isotopic peaks of the two peptides, appearing at the same observed peaks, exhibit

(almost) complete overlap, and thus it becomes difficult for the model to detect a

peak envelope, as a result of a mixture of two isotopic peak envelopes.

In particular, Table 14.2 indicates that, in general, when M∗
2 −M∗

1 ≥ 0.16, the

model produces the correct parameter estimates. The special case happens when
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Table 14.2: Correctness of model estimates for settings with various combinations of shift,

tilt and H2/H1. (+: correct estimation; −: wrong estimation.)

1 2 5

RH(= H2/H1) RH RH 1/RH RH 1/RH RH 1/RH RH 1/RH RH

shift 0 1 0 0 1 1 0 0 1 1

tilt = 0.04 − + − − + + − − − +

tilt = 0.16 + + + − + + + + + +

tilt = 0.24 + + + + + + + + + +

M∗
2 −M∗

1 = 0.16 and H2/H1 = 2. In such case, the mixture of the isotopic peak

envelopes of the two peptides is difficult to be discerned, because the isotopic peaks

of the two peptides show a complete overlap.

14.3.2 Application to bovine cytochrome C mass spectra

To investigate the performance of the model averaging approach when applied to

real-life data, we fitted the model to the bovine cytochrome C data set. The model

was applied to the same peptides of the data set with replicated joint mass spectra

of bovine cytochrome C from LC Packings, as described in Chapter 13. The fit the

model, we used the R package R2WinBUGS, built in R to automatically call the

WinBUGS1.4 software.

Fit for the individual spectrum

As the results of the six replicated spectra exhibit similar pattern, we only present

one of them. These results are shown in Tables 14.3 and 14.4. The results are quite

comparable with the ones shown in Section 13.5.1. In particular, the point estimates

of the relative abundance H2/H1 for all the cases are slightly underestimated. The

isotopic ratios are well-estimated, and, in general, their 95% credible intervals contain

the true values.

Simultaneous fit to six technical replications of spectra

Similar to the model presented in Chapter 13, a model, specified in equations (13.16)–

(13.17), incorporating random effects for the relative abundance parameter, denoted

as Qj with Qj ∼ N(Q, σ2
Q), can be fitted simultaneously to the six technical replicates

of the spectra.
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Table 14.3: Means, and standard errors based on model averaging for the parameters of

the model with asymmetric Laplace shape-function.

Parameter Data set 1 Data set 3

True Mean S.E. True Mean S.E.

R21
0.7933 0.7907 0.008395 0.8703 0.8598 0.008567

R31
0.3567 0.3593 0.006669 0.4223 0.4347 0.006836

R41
0.1166 0.1229 0.005162 0.1478 0.1575 0.005743

R51
0.0306 0.0328 0.002562 0.0413 0.0441 0.003436

M∗

1 1456.66 1456.674 0.0006 1584.76 1584.764 0.0006

R22
0.7933 0.7842 0.02669 0.8703 0.8487 0.02809

R32
0.3567 0.3508 0.01589 0.4223 0.4072 0.01712

R42
0.1166 0.1202 0.007787 0.1478 0.1493 0.009163

R52
0.0306 0.0322 0.002467 0.0413 0.0430 0.003287

M∗

2 1460.67 1460.682 0.0011 1588.77 1588.773 0.0011

σ – 278.7780 7.7737 – 273.1138 7.8657

σs – 0.0742 0.0007 – 0.0767 0.0007

κ – 0.8662 0.01141 – 0.7591 0.008672

S – 1.0022 0.0006 – 1.0028 0.0005

H2/H1 1/3 0.3059 0.007047 1/3 0.3064 0.007222

Table 14.4: Means, and standard errors based on model averaging for the parameters of

the model with asymmetric Laplace shape-function.

Parameter Data set 2 Data set 4

True Mean S.E. True Mean S.E.

R21
0.7933 0.7615 0.01930 0.8703 0.8419 0.01850

R31
0.3567 0.4357 0.01472 0.4223 0.5305 0.01507

R41
0.1166 0.1536 0.009825 0.1478 0.1973 0.01213

R51
0.0306 0.0324 0.002528 0.0413 0.0431 0.003362

M∗

1 1456.66 1456.668 0.0012 1584.76 1584.762 0.0007

R22
0.7933 0.7717 0.008791 0.8703 0.8571 0.008971

R32
0.3567 0.3362 0.006908 0.4223 0.4057 0.007161

R42
0.1166 0.1104 0.005162 0.1478 0.1417 0.005569

R52
0.0306 0.0315 0.002299 0.0413 0.0419 0.002860

M∗

2 1460.67 1460.676 0.0009 1588.77 1588.771 0.0005

σ – 232.6181 6.6199 – 217.1335 6.5086

σs – 0.0734 0.0007 – 0.0770 0.0007

κ – 0.8637 0.01402 – 0.8095 0.007834

S – 1.0018 0.0006 – 1.0029 0.0004

H2/H1 2.4 2.2519 0.03791 2.4 2.2181 0.03462

The results with the asymmetric Laplace distribution function are presented in

Tables 14.5 and 14.6.

In general, the results are consistent with those shown in Section 13.5.1. More
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particularly, there is still a slight under-estimation of the mean relative abundance

parameter Q, but with 95% credible intervals containing the true values. The esti-

mates of between-spectra variability of the relative abundance, captured by σ2
Q, are

again very small since for these technical replicates, the values of Q are expected to

be the same.

The isotopic ratios are well-estimated with their 95% credible intervals, in general,

covering the true values. The monoisotopic masses of the two peptides, ignoring their

rounding errors, are correctly estimated.

14.4 Concluding remarks

In this chapter, we have presented the model for the shape representation of a mass

spectrum with overlapping peptides, fitted by using the Bayesian model averaging.

We have compared its performance with the Bayesian (mixture) model, presented in

Chapter 13, via the application to the bovine cytochrome C data set and a simulation

study. The approach has two advantages, as compared with the Bayesian (mixture)

modeling approach:

• It produces unbiased estimates for all settings that show clear (visually dis-

cernible) or unclear separation of the overlapping peptides in the MS data;

• The model uncertainty, measured by the 95% credible intervals of the param-

eters, gives an indication of the difficulty to quantify the second, overlapping

peptide.

The results of the application to the real-life data show, in general, unbiased

estimates of the parameters and are consistent with the ones presented in Chapter 13.

This means that the Bayesian (mixture) modeling approach, introduced in Chapter 13,

produce equally good estimates as the Bayesian model averaging approach, presented

in this chapter. This is because the settings for the real-life data exhibit apparent

separation for the two overlapping peptides.

In the simulation study, when applying Bayeisan model averaging, we observed,

in general, unbiased estimates for the settings with either clear or unclear separation

for the overlapping peptides in the simulated MS data. Moreover, for the settings,

for which the quantification of the second, overlapping peptide was difficult, the 95%

credible intervals of the parameter estimates were wider and still contained the true
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values. This indicates that the width of the 95% credible intervals, by using the

Bayesian model averaging approach, gives an indication of whether or not the sepa-

ration of the peptides can be made.

The separability of the overlapping peptides depends on the mass difference of the

peptides. When Bayesian model averaging approach is applied, it produces unbiased

estimates for the parameters related to the overlapping peptides, when the monoiso-

toipc mass difference is at least 0.16 Da, which is roughly a half of the width of an

isotopic peak, observed in a MALDI-TOF mass spectrum. This indicates that the

two overlapping peptides can be correctly quantified by using the Bayesian model

averaging approach when the mass difference of the two peptides is at least a half of

the width of an isotopic peak. A smaller mass difference, i.e., less than a half of the

isotopic peak width, would suggest a complete overlap of the peptides and would make

the quantification infeasible. The computational speed for each of the models, pre-

sented in this chapter, was estimated to be approximately 20 minutes, on a HP8530p

laptop under Windows Vista R©. Bearing in mind that the models are highly complex

ones, being implemented in the Bayesian framework, the numerical complexity can

be treated as tolerable to be implemented in a high-throughput environment.

It should be noted that the validity of this approach is based on a proper pre-

processing procedure (for details of pre-processing, refer to Valkenborg et al. 2009).

More specifically, it assumes that a cluster of peptide peaks is correctly found after

noise filtering. This implies that, if a part of the isotopic peaks of a cluster is treated

as noise-generated and are discarded, the Bayesian model averaging approach would

yield biased estimation.

The approach implemented so far, only handles situations when the number of

overlapping peptides is known. Future research is needed for approaches allowing

estimation of the number of overlapping peptides.
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Statistical results of the simultaneous fit to the MS of the case study:

Table 14.5: Means, and standard errors based on model averaging for the parameters of the model with asymmetric Laplace

shape-function.

Parameter Data set 1 Data set 3

True Mean S.E. True Mean S.E.

R21
0.7933 0.7911 0.004388 0.8703 0.8621 0.004478

R31
0.3567 0.3627 0.003612 0.4223 0.4319 0.003639

R41
0.1166 0.1230 0.003217 0.1478 0.1580 0.003313

R51
0.0306 0.0331 0.002544 0.0413 0.0446 0.003352

M∗

1 1456.66 1456.663 0.0008 1584.76 1584.757 0.0004

R22
0.7933 0.7787 0.01541 0.8703 0.8543 0.01730

R32
0.3567 0.3383 0.01052 0.4223 0.3998 0.01127

R42
0.1166 0.1052 0.006465 0.1478 0.1433 0.007471

R52
0.0306 0.0322 0.002418 0.0413 0.0428 0.003174

M∗

2 1460.67 1460.671 0.0010 1588.77 1588.766 0.0005

σ1 – 364.3375 12.7121 – 284.6342 8.4533

σ2 – 248.0763 8.4008 – 404.3642 12.8051

σ3 – 336.6604 11.7703 – 521.7210 15.8608

σ4 – 458.8311 15.9636 – 279.7208 8.0997

σ5 – 412.7333 15.2735 – 435.6440 13.2885

σ6 – 402.8385 14.2977 – 309.4983 9.2123

σs – 0.0713 0.0004 – 0.0744 0.0004

κ – 0.8083 0.007911 – 0.7578 0.005169

S – 1.0026 0.0005 – 1.0029 0.0003

Q 1/3 0.3088 0.2521 1/3 0.3072 0.2489

σ2
Q – 0.00060 0.0008202 – 0.00057 0.0006084
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Table 14.6: Means, and standard errors based on model averaging for the parameters of the model with asymmetric Laplace

shape-function.

Parameter Data set 2 Data set 4

True Mean S.E. True Mean S.E.

R21
0.7933 0.7791 0.009461 0.8703 0.8911 0.01042

R31
0.3567 0.4545 0.007774 0.4223 0.5628 0.008514

R41
0.1166 0.1041 0.007140 0.1478 0.2321 0.005739

R51
0.0306 0.0327 0.002528 0.0413 0.0652 0.002620

M∗

1 1456.66 1456.658 0.0005 1584.76 1584.756 0.0006

R22
0.7933 0.7755 0.004216 0.8703 0.8516 0.004638

R32
0.3567 0.3343 0.003387 0.4223 0.4077 0.003552

R42
0.1166 0.1027 0.002959 0.1478 0.1394 0.002487

R52
0.0306 0.0299 0.001830 0.0413 0.0389 0.001313

M∗

2 1460.66 1460.665 0.0003 1588.76 1588.763 0.0004

σ1 – 316.8024 9.5611 – 348.1936 11.1470

σ2 – 531.6636 15.7337 – 284.7879 8.7807

σ3 – 277.2690 8.1782 – 266.7438 7.6838

σ4 – 246.6829 6.9257 – 315.2750 9.5970

σ5 – 341.6068 10.3204 – 306.4608 8.7765

σ6 – 284.7614 8.0729 – 410.9400 12.5120

σs – 0.0716 0.0003 – 0.0764 0.0004

κ – 0.8016 0.004752 – 0.7675 0.005519

S – 1.0039 0.0003 – 1.0029 0.0003

Q 2.4 2.2832 0.3226 2.4 2.2979 0.2693

σ2
Q – 0.00219 0.006632 – 0.00169 0.006297
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Figure 14.1: Graphical representation of settings 1 ∼ 10 of simulated data sets.
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Figure 14.2: Graphical representation of settings 11 ∼ 20 of simulated data sets.
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Figure 14.3: Graphical representation of settings 21 ∼ 30 of simulated data sets.
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Figure 14.4: Graphical representation of the average point estimates with the 95% credible intervals forM∗

2 (True values indicated

by the grey line).
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Figure 14.5: Graphical representation of the average point estimates with the 95% credible intervals for H2/H1 (True value

indicated by the horizontal grey line).
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Figure 14.6: Graphical representation of the average point estimates with the 95% credible intervals for R21 (True value indicated

by the horizontal grey line).
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Figure 14.7: Graphical representation of the average point estimates with the 95% credible intervals for R31 (True value indicated

by the horizontal grey line).
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Figure 14.8: Graphical representation of the average point estimates with the 95% credible intervals for R41 (True value indicated

by the horizontal grey line).
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Figure 14.9: Graphical representation of the average point estimates with the 95% credible intervals for R51 (True value indicated

by the horizontal grey line).
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Figure 14.10: Graphical representation of the average point estimates with the 95% credible intervals for R22 (True value

indicated by the horizontal grey line).
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Figure 14.11: Graphical representation of the average point estimates with the 95% credible intervals for R32 (True value

indicated by the horizontal grey line).
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Figure 14.12: Graphical representation of the average point estimates with the 95% credible intervals for R42 (True value

indicated by the horizontal grey line).
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Figure 14.13: Graphical representation of the average point estimates with the 95% credible intervals for R52 (True value

indicated by the horizontal grey line).
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Figure 14.14: Graphical representation of the average point estimates with the 95% credible intervals forM∗

1 (True value indicated

by the horizontal grey line).
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Figure 14.15: Graphical representation of the average point estimates with the 95% credible intervals for σ (True value indicated

by the horizontal grey line).



F
igu

res
a
n
d
T
a
bles

259

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

Setting

si
gm

a_
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Set1–15

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

Setting

si
gm

a_
s

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(b) Set16–30

Figure 14.16: Graphical representation of the average point estimates with the 95% credible intervals for σs (True value indicated

by the horizontal grey line).
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Figure 14.17: Graphical representation of the average point estimates with the 95% credible intervals for S (True value indicated

by the horizontal grey line).
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Figure 14.18: Observed (black solid line) versus predicted (blue dashed line) spectra (predicted intensity values calculated based

on the point estimates of settings 1 ∼ 6.
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Figure 14.19: Observed (black solid line) versus predicted (blue dashed line) spectra (predicted intensity values calculated based

on the point estimates of settings 7 ∼ 12.
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Figure 14.20: Observed (black solid line) versus predicted (blue dashed line) spectra (predicted intensity values calculated based

on the point estimates of settings 13 ∼ 18.
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Figure 14.21: Observed (black solid line) versus predicted (blue dashed line) spectra (predicted intensity values calculated based

on the point estimates of settings 19 ∼ 24.
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Figure 14.22: Observed (black solid line) versus predicted (blue dashed line) spectra (predicted intensity values calculated based

on the point estimates of settings 25 ∼ 30.





Chapter 15

Concluding remarks and

directions for future research

Proteomics has gained a growing amount of attention as it plays an irreplaceable

role in the pharmaceutical and biological applications. This dissertation is devoted

to the statistical modeling approaches for the application of proteomics based mass

spectrometry data. Some case studies have been addressed, considering both labeled

and label-free experiments.

Modeling of enzymatic 18O-labeled mass spectra

A part of the dissertation focused on the analysis of enzymatic 18O-labeled mass

spectra data. We considered models for both the stick and shape representations of

the spectrum.

As compared with the existing methods (Mirgorodskaya et al. 2000, Rao et al. 2005,

López-Ferrer et al. 2006, Eckel-Passow et al. 2006, Ramos-Fernández et al. 2007), our

method does not require an additional experimental step. In addition, our method

provides extensions in several ways:

• It accounts for the possible presence of all the oxygen isotopes in the heavy-

oxygen water.

• It incorporates the estimation of the isotopic distribution parameters, avoiding

bias introduced by using a fixed average distribution.
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• It is a unified modeling framework, in which all parameters of interest are si-

multaneously estimated from the data. It can easily accommodate different

parameterizations, and provide necessary estimates of precision.

• It incorporates the heteroscedastic nature by using a mean-dependent variance

function.

• It allows for the estimation of biological and/or technical variability of the mass

spectra, by including random effects.

• It can be implemented in both the frequentist and Bayesian framework.

The analysis of our modeling approach justified the advantage of the shape model

than the models for the stick representation since the former retained the full infor-

mation of the MS data and turned out to produce more precise parameter estimates.

Furthermore, the model, which takes into account the heteroscedastic nature of the

MS data gave more precise parameter estimates, than the homoscedastic model.

The relative abundance of the labeled and unlabeled peptide samples, in general,

was more precisely estimated when the labeling was more complete. The isotopic

distribution parameters and the oxygen incorporation rate parameter of the labeling

step were better estimated when the labeled sample was more abundant. This is

because the labeled peptide sample provides more information for the estimation of

these two sets of parameters.

In the simulations, we encountered a non-estimability issue for the parameter of

oxygen incorporation rate when the labeling was more complete. The problem can

be solved by performing a two-stage analysis.

For future research, one can think of the inclusion of informative priors for the

Bayesian model. This should yield more precision gain, in terms of the parameter es-

timation. In particular, the prior information exists for the isotopic distributions (see

Part III of the dissertation). Moreover, the shape-representation model can be formu-

lated in the Bayesian framework, by including random effects to capture the technical

and/or biological variability of the MS data. In such case, the Bayesian model is

expected to be numerically simpler than the frequentist model, as for the latter, a

one-stage analysis for such a complicated model would likely to be infeasible. On the

other hand, the implementation of an automated processing of an MS experiment

can also be conducted, as the developed modeling approach is a fast tool, capable of

handling the high-throughput MS data.
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The quantification of overlapping peptides in MALDI-

TOF mass spectra

Another part of the dissertation deals with the analysis of the overlapping peptides in

MALDI-TOF mass spectra. In the analysis, we assumed unknown chemical compo-

sitions (masses) of the peptides. We considered both stick and shape representations

of the spectrum.

For the stick representation, the estimation, especially for the isotopic ratios, was

biased, due to the use of summary statistics of the data. Moreover, some strong

assumptions have to be made for one to feasibly work with the stick representation.

The modeling approach based on the shape representation avoids the afore-

mentioned limitations. A Bayesian (mixture) model, however, produced biased es-

timates and an under-estimation of parameter uncertainty. The Bayesian model

averaging approach becomes a solution to tackle the problem. Provided the mass

difference of the overlapping peptides is at least equal to a half of the width of an

isotopic peak (around 0.16 Da), the Bayesian model averaging turned out to be an

effective method to quantify the overlapping peptides, when masses of these peptides

were unknown.

Although the proposed method focuses on the application to singly-charged MALDI-

TOF mass spectrum, it can be modified to apply also for the multiply-charged mass

spectrum by a modification of the expression for the mean structure of the model

and the prior distributions for the corresponding parameters. The proposed modeling

approach, assuming unknown masses of the overlapping peptides, can be modified for

the application to the cases when the masses are known. In such a case, the masses

of the peptides in the model can be fixed with known values and the model simplifies.

The validity of the approach is conditional on the pre-processing algorithm. To be

more specific, we assume that the peptide peak features were correctly found. Based

on the pre-processing algorithm proposed by Valkenborg et al. (2009), this means that

all the peptide peak features have to be abundant enough to be distinguished from

the noise.

Some further extensions can be considered. For instance, the estimation of the

number of overlapping peptides can be considered by adding an additional step of the

model selection procedure. In particular, the number of overlapping peptides can be

estimated based on the model selection criteria for models with different number of

overlapping peptides. In addition, the feature (peptide peaks) finding algorithm can
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include an additional step, by comparing the average isotopic distribution with the

ones estimated from a certain ‘cluster’ of peaks. Strong agreement of the estimated

ones with the average isotopic distribution can be viewed as a measure to distinguish

‘clusters’ of features from noise.
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Schulz-Trieglaff, O., Hussong, R., Gröpl, C., Hildebrandt, A. and Reinert, K. (2007) A

fast and accurate algorithm for the quantification of peptides from mass spectrom-

etry Data. Research in Computational Molecular Biology, LNBI 4453, 473–487.

Searle, S.R. (1982) Matrix algebra useful for statistics. New York: John Wiley.

Seber, G.A.F. and Wild, C.J. (1989) Nonlinear regression. New York: John Wiley.



278 Bibliography

Sekhar Rao, K.C., Palamalai, V., Dunlevy, J.R. and Miyagi, M. (2005) Peptide-lys

metalloendopeptidase-catalyzed 18O labeling for comparative proteomics. Molecu-

lar & Cellular Proteomics, 4, 1550–1557.

Senko, M., Beu, S. and McLafferty, F. (1995) Determination of monoisotopic masses

and ion populations for large biomolecules from resolved isotopic distribution. Jour-

nal of the American Society for Mass Spectrometry, 6, 229–233.

Staes, A., Demol, H., Van Damme, J., Martens, L., Vandekerckhove, J. and Gevaert,

K. (2004) Global differential non-gel proteomics by quantitative and stable labeling

of tryptic peptides with oxygen-18. Journal of Proteome Research, 3, 786–791.

Stephens, M. (2000) Bayeisan analysis of mixture models with an unknown number of

components - an alternative to resersible jump methods. The Annals of Statistics,

28(1), 40–74.

Storms, F., Van Der Heijden, R., Tjaden, U. and Van Der Greef, J. (2006) Consid-

erations for proteolytic labeling-optimization of 18O incorporation and prohibiiton

of back-exchange. Rapid Communications in Mass Spectrometry, 20, 3491–3497.

Stoyanova, R., Kuesel, A.C. and Brown, T.R. (1995) Application of principle-

component analysis for NMR spectral quantitation. Journal of Magnetic Reso-

nance, Series A, 115, 265–269.

Tanner, M.A. and Wong, W.H. (1987) The calculation of posterior distributions by

data augmentation. Journal of American Statistical Association, 82(398), 528–540.

Titterington, D.M., Smith A.F.M. and Makov, U.E. (1985) Statistical analysis of

finite mixture distributions. New York: John Wiley.

Valentine, S.J., Kulchania, M., Srebalus Barnes, C.A. and Clemmer, D.E. (2001)

Multidimensional separations of complex peptide mixtures: a combined high-

performance liquid chromatography/ion mobility/time-of-flight mass spectrometry

approach. International Journal of Mass Spectrometry, 212(1–3), 97–109.

Valkenborg, D., Assam, P., Thomas, G., Krols, L., Kas, K. and Burzykowski,

T. (2007) Using a Poisson approximation to predict the isotopic distribution of

sulphur-containing peptides in a peptide-centric proteomic approach. Rapid Com-

munications in Mass Spectrometry, 21, 3387–3391.



279

Valkenborg, D. (2008) Ph.D. dissertation: Statistical methods for the analysis of high-

resolution mass spectrometry data. I-BIOSTAT, Hasselt University, Belgium.

Valkenborg, D., Jansen, I. and Burzykowski, T. (2008) A model-based method for the

prediction of the isotopic distribution of peptides. Journal of the American Society

for Mass Spectrometry, 19, 703–712.

Valkenborg, D., Van Sanden, S., Lin, D., Kasim, A., Zhu, Q., Haldermans, P., Jansen,

I., Shkedy, Z., and Burzykowski, T. (2008) A Cross-Validation Study to Select a

Classification Procedure for Clinical Diagnosis Based on Proteomic Mass Spec-

trometry. Statistical Applications in Genetics and Molecular Biology: Competition

on Clinical Mass Spectrometry based Proteomics Diagnostics. Volume 7, Issue 2,

Article 12.

Valkenborg, D., Thomas, G., Krols, L., Kas, K. and Burzykowski, T. (2009) A strat-

egy for the prior processing of high-resolution mass spectral data obtained from

high-dimensional combined fractional diagnoal chromatography. Journal of Mass

Spectrometry, 44(4), 516–529.

Van Dyk, D.A. and Meng, X.L. (2001) The art of data augmentation. Journal of

Computational and Graphical Statistics, 10(1), 1–50.

Van Sanden, S., Lin, D. and Burzykowski, T. (2007) Performance of classification

methods in a microarray setting: a simulation study. Technical Report With Imple-

mented R Functions.

Wang, Y.K., Quinn, D.F., Ma, Z.X. and Fu, E.W. (2002) Inverse labeling– mass

spectrometry for the rapid identification of differentially expressed protein mark-

ers/targets. Journal of Chormatography B, 782, 291-306.

Wang, Y.G. and Lin, X. (2005) Effects of variance-function misspecification in analysis

of longitudinal data. Biometrics, 61, 413-421.

Wang, Y., Zhou, X.B., Wang, H.H., Li, K., Yao, L.X. and Wong, S.T.C. (2008)

Reversible jump MCMC approach for peak identification for stroke SELDI mass

spectrometry using mixture model. Bioinformatics, 24, 407-413.

Wei, G.C.G. and Tanner, M.A. (1990) A Monte Carlo implementation of the EM

algorithm and the poor man’s data augmentation algorithms. Journal of American

Statistical Association, 85(411), 699–704.



280 Bibliography

Welton, N.J. and Ades A.E. (2005) Estimation of Markov chain transition probabil-

ities and rates from fully and partially observed data: uncertanity propagation,

evidence synthesis, and model calibration. Medical Decision Making, 25, 633-645.

Yasui, Y., McLerran, D., Adam, B.L., Winget, M., Thornquist, M. and Feng, Z. (2003)

An automated peak identification/calibration procedure for high-dimension protein

measures from mass spectrometers. Journal of Biomedicine and Biotechnology, 4,

242-248.

Yergey J.A. (1983) A general approach to calculating isotopic distributions for mass

spectrometry. International Journal of Mass Spectrometry and Ion Physics, 52,

337–349.

Zhang, N.S., Wei, B.C. and Lin J.G. (2005) Generalized nonlinear models and variance

function estimation. Computational Statistics and Data Analysis, 48, 549-570.

Zhu, M. and Lu, Y. (2004) The Counter-intuitive non-informative prior for the

Bernoulli family. Journal of Statistics Education, Volume 12, Number 2.

Zhu, Q., Valkenborg, D. and Burzykowski, T. (2010) A Markov-chain-based het-

eroscedastic regression model for the analysis of high-resolution enzymatically 18O-

labeled mass spectra. Journal of Proteome Research,, 9(5), 2669-2677.



Appendix A

Simulation results of the rrequentist

heteroscedastic model for enzymatically
18O-labeled mass spectra

281



282
A
p
pen

d
ix

A

Table A.1: Mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for λ for settings with A ratios

(at 2001.05Da).

λ Q σ b̄ (×1e − 3) S2
emp/S

2
mb (×1e − 7) MSE (×1e − 7)

LS PLK PL-GLS LS PLK PL-GLS LS PLK PL-GLS

0.5 0.05 -0.04 -0.02 -0.02 0.004/0.008 0.003/0.005 0.003/0.005 0.004 0.003 0.003

1.50 0.10 -0.05 -0.32 4.31/7.10 2.79/3.89 2.78/7.61 4.31 2.79 2.78

0.02 1.0 0.05 -0.006 -0.02 -0.02 0.002/0.002 0.001/0.001 0.001/0.002 0.002 0.001 0.001

1.50 1.05 1.43 1.32 1.56 /1.41 0.95/1.21 0.95/1.93 1.57 0.95 0.95

2.0 0.05 0.006 -0.001 -0.001 0.0005/0.0005 0.0005/0.011 0.0005/0.0007 0.0005 0.0005 0.0005

1.50 -0.50 -0.40 -0.41 0.45/0.31 0.42/0.45 0.41/0.82 0.45 0.42 0.41

0.5 0.05 0.03 0.04 0.04 0.03/0.03 0.02/0.03 0.02/0.09 0.03 0.02 0.02

1.50 3.50 2.43 2.39 24.28/28.89 19.47/24.65 19.48/30.08 24.47 19.56 19.57

0.04 1.0 0.05 -0.08 -0.06 -0.06 0.007/0.004 0.006/0.008 0.006/0.009 0.007 0.006 0.006

1.50 0.74 0.98 0.97 5.86/3.76 4.71/5.56 4.71/6.39 5.87 4.72 4.72

2.0 0.05 0.006 0.0004 0.0004 0.0018/0.0011 0.0016/0.0028 0.0016/0.0025 0.0018 0.0016 0.0016

1.50 -0.12 -0.01 -0.003 1.60/0.96 1.45/2.80 1.45/1.40 1.60 1.45 1.45

0.5 0.05 0.59 0.66 0.73 29.90/33.04 25.80/33.92 25.84/13.87 29.93 25.84 25.90

1.50 -39.38 -1.90 -77.68 6970/14520 5407/6050 4081/5100 7125 5407 4684

0.10 1.0 0.05 0.35 0.35 0.35 6.17/4.29 5.00/8.26 5.00/18.12 6.18 5.01 5.01

1.50 -8.50 23.94 -12.41 3142/26020 2170/3689 2441/6700 3149 2227 2457

2.0 0.05 0.06 0.06 0.06 1.630/1.13 1.24/4.14 1.24/5.36 1.63 1.24 1.24

1.50 24.29 16.56 9.13 2184/10350 1731/2403 1326/3200 2243 1758 1334
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Table A.2: Mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for λ for settings with E1 ratios.

λ Q σ b̄ (×1e − 3) S2
emp/S

2
mb (×1e − 7) MSE (×1e − 7)

LS PLK PL-GLS LS PLK PL-GLS LS PLK PL-GLS

0.5 0.05 -0.03 -0.01 -0.006 0.007/0.012 0.006/0.013 0.006/0.004 0.007 0.006 0.006

1.50 5.37 4.11 3.66 6.99/11.39 6.28/9.25 6.34/8.98 7.11 6.35 6.39

0.02 1.0 0.05 -0.007 -0.014 -0.015 0.0024/0.0021 0.0017/0.0038 0.0016/0.0053 0.0024 0.0017 0.0017

1.50 0.34 1.19 1.05 2.12/1.88 1.48/3.23 1.48/5.17 2.12 1.48 1.48

2.0 0.05 -0.03 -0.03 -0.03 0.0007/0.0005 0.0006/0.0012 0.0006/0.0006 0.0007 0.0006 0.0006

1.50 0.22 0.67 0.58 0.58/0.42 0.52/0.57 0.52/0.71 0.58 0.52 0.52

0.5 0.05 0.02 0.01 0.01 0.038/0.044 0.037/0.064 0.037/0.046 0.039 0.037 0.037

1.50 4.14 2.96 2.94 37.08/42.86 33.89/68.74 34.07/56.00 37.36 34.03 34.21

0.04 1.0 0.05 0.01 0.0007 0.0008 0.010/0.005 0.009/0.013 0.009/0.014 0.010 0.009 0.009

1.50 -0.52 -0.25 -0.24 8.38/4.83 7.38/16.05 7.41/22.00 8.39 7.38 7.41

2.0 0.05 -0.008 -0.009 -0.009 0.0023/0.001 0.0022/0.0012 0.0022/0.008 0.0023 0.0022 0.0022

1.50 -0.04 0.02 0.02 2.22/1.18 2.00/5.42 2.01/6.60 2.22 2.00 2.01

0.5 0.05 1.19 1.27 1.39 42.06/45.68 37.69/40.10 37.84/50.13 42.20 37.85 38.04

1.50 -50.02 -9.09 -95.58 7964/14060 6924/7382 5367/6900 8215 6932 6281

0.10 1.0 0.05 1.14 1.08 1.08 12.03/5.40 10.85/24.73 10.86/61.56 12.16 10.97 10.97

1.50 -31.28 1.86 -33.14 3558/30260 3591/4405 2945/4580 3656 3591 3055

2.0 0.05 -0.19 -0.22 -0.22 2.36/1.38 2.08/2.06 2.08/3.04 2.36 2.08 2.08

1.50 34.18 34.36 21.98 2599/16280 2328/3957 1754/1600 2716 2446 1803
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Table A.3: Mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for λ for settings with E2 ratios.

λ Q σ b̄ (×1e − 3) S2
emp/S

2
mb (×1e − 7) MSE (×1e − 7)

LS PLK PL-GLS LS PLK PL-GLS LS PLK PL-GLS

0.5 0.05 0.07 0.05 0.06 0.005/0.010 0.004/0.010 0.004/0.004 0.005 0.004 0.004

1.50 0.74 0.09 -0.27 4.28/9.45 3.93/9.10 3.95/3.93 4.28 3.93 3.95

0.02 1.0 0.05 -0.03 -0.03 -0.03 0.002/0.002 0.001/0.003 0.001/0.005 0.002 0.001 0.001

1.50 1.04 0.97 -0.58 1.87/1.37 1.34/2.30 1.58/4.56 1.88 1.35 1.58

2.0 0.05 0.01 0.0002 0.0001 0.00062/0.0004 0.00058/0.0012 0.00058/0.0007 0.00062 0.00058 0.00058

1.50 -0.44 -0.06 -0.08 0.55/0.37 0.52/0.63 0.52/0.71 0.55 0.52 0.52

0.5 0.05 0.05 0.05 0.05 0.031/0.038 0.030/0.065 0.030/0.028 0.031 0.030 0.030

1.50 2.57 2.33 2.33 27.58/35.91 26.12/33.78 26.12/29.00 27.68 26.21 26.21

0.04 1.0 0.05 -0.03 -0.04 -0.04 0.009/0.005 0.007/0.002 0.007/0.004 0.009 0.007 0.007

1.50 0.03 -0.24 -0.27 7.28/4.25 6.49/9.70 6.50/8.34 7.28 6.49 6.50

2.0 0.05 -0.004 -0.003 -0.003 0.0022/0.0013 0.0021/0.0020 0.0021/0.0048 0.0022 0.0021 0.0021

1.50 0.27 0.50 0.51 2.30/1.12 2.17/3.09 2.17/4.33 2.30 2.18 2.18

0.5 0.05 -0.11 -0.14 -0.03 32.61/38.09 31.34/34.41 31.45/42.40 32.61 31.34 31.45

1.50 -40.12 -5.40 -10.36 7343/11060 3338/3644 3909/4780 7504 3341 3920

0.10 1.0 0.05 0.24 0.33 0.33 9.15/4.85 8.61/7.57 8.61/8.40 9.15 8.62 8.62

1.50 -32.05 -2.55 -42.97 3404/31050 2617/3199 2540/3650 3506 2618 2725

2.0 0.05 -0.10 0.002 0.002 2.10/1.33 1.90/2.22 1.90/4.12 2.10 1.90 1.90

1.50 18.86 23.60 13.23 2132/9681 1286/2245 1774/3220 2168 1341 1791
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Table A.4: Mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for Q for settings with A ratios

(at 2001.05Da).

Q λ σ b̄ (×1e − 5) S2
emp/S

2
mb (×1e − 6) MSE (×1e − 6)

LS PLK PL-GLS LS PLK PL-GLS LS PLK PL-GLS

0.02 0.05 3.19 4.81 4.81 0.368/1.25 0.332/0.390 0.332/0.362 0.368 0.333 0.332

1.50 79.13 155.8 152.4 303.2/1152 271.9/363.0 272.1/333.8 303.4 272.5 272.7

0.5 0.04 0.05 -3.83 -3.32 -3.34 0.139/0.262 0.138/0.177 0.138/0.149 0.139 0.138 0.138

1.50 33.09 87.73 77.44 130.6/233.7 127.3/142.6 127.4/133.1 130.6 127.5 127.6

0.10 0.05 0.67 0.02 -0.22 0.118/0.154 0.118/0.138 0.118/0.115 0.118 0.118 0.118

1.50 755.3 683.2 843.4 68.25/125.2 64.86/78.46 60.05/110.5 82.51 76.53 77.83

0.02 0.05 -3.26 -2.52 -2.51 0.724/0.623 0.571/0.655 0.571/0.666 0.725 0.572 0.572

1.50 -11.50 12.14 14.22 701.7/563.6 602.9/586.3 602.7/587.2 701.7 602.9 602.8

1.0 0.04 0.05 3.08 2.53 2.53 0.285/0.159 0.268/0.274 0.268/0.274 0.286 0.268 0.269

1.50 26.35 37.82 36.68 258.3/134.3 245.2/246.7 245.7/247.1 258.4 245.3 245.8

0.10 0.05 -1.19 -0.96 -0.97 0.224/0.098 0.215/0.216 0.215/0.216 0.224 0.215 0.215

1.50 316.8 232.8 310.6 146.6/87.81 146.8/186.4 141.1/204.7 156.6 152.2 150.7

0.02 0.05 -1.00 0.41 0.41 1.66/0.917 1.53/1.41 1.53/1.62 1.67 1.53 1.53

1.50 160.8 128.3 129.0 1717/832.9 1587/1644 1582/1470 1727 1593 1589

2.0 0.04 0.05 -2.76 -2.06 -2.06 0.609/0.269 0.593/0.742 0.593/0.694 0.612 0.595 0.595

1.50 -37.55 -61.46 -60.15 534.2/237.8 523.8/640.9 523.1/607.2 534.7 525.3 524.5

0.1 0.05 0.30 0.42 0.42 0.567/0.204 0.514/0.817 0.514/0.534 0.567 0.514 0.514

1.50 88.14 70.52 83.48 407.0/180.5 399.3/631.5 400.4/488.0 410.2 401.3 403.2
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Table A.5: Mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for Q for settings with E1 ratios.

Q λ σ b̄ (×1e − 5) S2
emp/S

2
mb (×1e − 6) MSE (×1e − 6)

LS PLK PL-GLS LS PLK PL-GLS LS PLK PL-GLS

0.02 0.05 -8.34 -0.89 -1.22 0.696/2.36 0.616/0.873 0.618/0.820 0.698 0.616 0.618

1.50 -597.8 -290.7 -277.7 688.5/2092 625.5/794.0 631.4/700.3 697.4 627.7 633.3

0.5 0.04 0.05 -3.22 -3.28 -3.29 0.257/0.377 0.245/0.357 0.245/0.228 0.257 0.246 0.245

1.50 -63.50 38.82 28.02 198.8/343.3 194.0/266.6 194.5/208.6 198.9 194.0 194.5

0.10 0.05 -3.66 -2.97 -3.38 0.168/0.204 0.163/0.189 0.163/0.166 0.169 0.163 0.163

1.50 969.0 907.6 1165 104.9/165.4 98.51/134.1 96.48/139.6 128.3 119.1 130.4

0.02 0.05 -0.17 0.84 0.80 1.21/0.898 1.09/1.05 1.09/1.17 1.21 1.09 1.09

1.50 -80.44 -79.98 -68.62 1099/820.3 1005/951.1 1010/1015 1099 1005 1011

1.0 0.04 0.05 0.64 0.79 0.79 0.370/0.192 0.347/0.373 0.347/0.373 0.370 0.347 0.347

1.50 108.9 118.3 114.9 314.2/178.9 306.1/346.5 307.6/347.5 315.4 307.5 308.9

0.10 0.05 -3.59 -3.41 -3.42 0.344/0.122 0.332/0.284 0.332/0.284 0.345 0.334 0.334

1.50 557.9 419.8 491.5 202.9/209.8 203.8/244.5 204.3/260.1 234.0 221.4 228.4

0.02 0.05 1.38 1.82 1.82 2.43/1.22 2.23/4.05 2.23/2.30 2.43 2.23 2.23

1.50 141.5 63.89 68.76 2279/1093 2013/3031 2008/2057 2287 2015 2010

2.0 0.04 0.05 0.09 0.05 0.04 0.820/0.327 0.796/0.903 0.796/0.844 0.820 0.796 0.796

1.50 13.03 -5.03 -1.68 700.2/293.8 675.7/712.0 677.1/761.0 700.2 675.7 677.1

0.1 0.05 -0.15 0.13 0.13 0.781/0.251 0.752/0.822 0.752/0.658 0.781 0.752 0.752

1.50 156.8 113.3 155.1 582.8/220.3 566.3/636.8 541.1/607.1 592.6 571.4 550.7
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Table A.6: Mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for Q for settings with E2 ratios.

Q λ σ b̄ (×1e − 5) S2
emp/S

2
mb (×1e − 6) MSE (×1e − 6)

LS PLK PL-GLS LS PLK PL-GLS LS PLK PL-GLS

0.02 0.05 0.81 -5.21 -5.27 0.556/1.73 0.453/0.431 0.454/0.669 0.556 0.454 0.455

1.50 -175.2 26.55 29.16 561.0/1548 464.2/598.6 464.7/580.3 561.8 464.2 464.7

0.5 0.04 0.05 -7.00 -6.84 -6.86 0.184/0.297 0.177/0.279 0.177/0.184 0.186 0.178 0.178

1.50 5.68 33.48 21.81 168.9/266.9 160.6/179.9 160.7/166.2 168.9 160.6 160.7

0.10 0.05 0.26 0.09 -0.27 0.137/0.171 0.133/0.223 0.133/0.133 0.137 0.133 0.133

1.50 836.6 777.2 1042 81.22/129.3 75.30/41.55 72.09/183.4 98.72 90.40 89.22

0.02 0.05 5.27 4.79 4.78 0.884/0.809 0.838/0.874 0.838/0.957 0.887 0.840 0.841

1.50 64.26 106.3 102.2 883.0/734.9 833.1/909.3 816.1/878.2 883.4 834.2 817.1

1.0 0.04 0.05 0.95 1.31 1.31 0.314/0.171 0.302/0.314 0.302/0.314 0.314 0.302 0.302

1.50 -8.85 5.87 7.39 265.2/154.3 253.7/284.1 254.9/284.3 265.2 253.7 255.0

0.10 0.05 0.66 0.42 0.41 0.257/0.108 0.257/0.235 0.257/0.235 0.257 0.257 0.257

1.50 472.5 416.0 484.9 152.8/96.69 146.0/203.1 145.3/207.2 175.1 163.3 166.8

0.02 0.05 -2.11 0.31 0.32 1.97/1.06 1.91/4.02 1.91/2.08 1.97 1.91 1.91

1.50 120.4 78.75 83.60 2052/952.2 1928/1118 1927/1849 2058 1931 1930

2.0 0.04 0.05 -2.02 -1.99 -1.99 0.756/0.303 0.740/0.836 0.740/0.739 0.758 0.741 0.741

1.50 37.40 20.35 23.22 647.4/268.8 644.7/711.8 644.5/656.5 648.0 644.9 644.7

0.1 0.05 1.38 0.97 0.97 0.522/0.230 0.487/0.518 0.487/0.559 0.522 0.488 0.488

1.50 184.6 176.8 188.0 419.0/205.9 391.3/402.3 394.8/505.1 432.7 403.8 408.9
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Table A.7: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for θ for settings

with A ratios (at 2001.05Da).

Q λ σ θ̄ b̄(×1e − 2) S2
emp/S

2
mb (×1e − 2) MSE(×1e − 2)

PLK PL-GLS PLK PL-GLS PLK PL-GLS PLK PL-GLS

0.02 0.05 0.5849 0.5850 -2.51 -2.50 0.405/0.610 0.404/0.601 0.428 0.426

1.50 0.5833 0.5840 -2.79 -2.67 0.453/0.544 0.449/0.523 0.481 0.474

0.5 0.04 0.05 0.5858 0.5858 -2.37 -2.36 0.486/0.746 0.486/0.743 0.507 0.506

1.50 0.5888 0.5893 -1.86 -1.78 0.544/0.674 0.541/0.657 0.556 0.552

0.10 0.05 0.5952 0.5966 -0.793 -0.571 0.617/0.880 0.652/0.867 0.620 0.653

1.50 0.5940 0.5939 -0.993 -1.02 0.514/0.685 0.521/0.695 0.518 0.524

0.02 0.05 0.5926 0.5939 -1.23 -1.02 0.536/0.690 0.577/0.675 0.541 0.581

1.50 0.5869 0.5873 -2.18 -2.11 0.487/0.633 0.485/0.622 0.504 0.501

1.0 0.04 0.05 0.5936 0.5937 -1.06 -1.06 0.656/0.985 0.655/0.984 0.660 0.660

1.50 0.6040 0.6043 0.674 0.721 0.600/0.695 0.600/0.690 0.601 0.602

0.10 0.05 0.5967 0.5967 -0.545 -0.542 0.702/1.14 0.702/0.913 0.703 0.703

1.50 0.5999 0.5978 -0.015 -0.364 0.736/1.13 0.731/1.15 0.736 0.732

0.02 0.05 0.6008 0.6008 0.139 0.140 0.530/0.742 0.530/0.742 0.530 0.530

1.50 0.5942 0.5943 -0.970 -0.942 0.485/0.652 0.485/0.649 0.488 0.488

2.0 0.04 0.05 0.6015 0.6015 0.242 0.252 0.807/1.33 0.808/1.13 0.808 0.808

1.50 0.5897 0.5899 -1.72 -1.68 0.755/1.50 0.755/1.49 0.765 0.766

0.1 0.05 0.5895 0.5896 -1.75 -1.74 0.881/0.972 0.879/0.935 0.892 0.890

1.50 0.5874 0.5880 -2.11 -2.01 0.849/2.14 0.849/2.12 0.865 0.859
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Table A.8: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for θ for settings

with E1 ratios.

Q λ σ θ̄ b̄(×1e − 2) S2
emp/S

2
mb (×1e − 2) MSE(×1e − 2)

PLK PL-GLS PLK PL-GLS PLK PL-GLS PLK PL-GLS

0.02 0.05 0.5794 0.6023 -3.43 0.388 0.598/1.31 1.95/3.27 0.640 1.95

1.50 0.5719 0.5900 -4.69 -1.66 0.564/0.975 1.60/1.93 0.643 1.61

0.5 0.04 0.05 0.5932 0.5932 -1.14 -1.13 0.750/1.57 0.750/1.57 0.754 0.754

1.50 0.5807 0.5816 -3.22 -3.06 0.787/1.06 0.775/1.07 0.824 0.808

0.10 0.05 0.5868 0.5869 -2.20 -2.18 0.943/3.17 0.943/3.17 0.961 0.960

1.50 0.5796 0.5799 -3.41 -3.35 0.980/3.20 0.958/3.06 1.02 0.999

0.02 0.05 0.5871 0.5984 -2.15 -0.264 0.726/1.72 1.46/1.71 0.742 1.47

1.50 0.5813 0.5907 -3.12 -1.56 0.744/1.76 1.27/1.67 0.779 1.28

1.0 0.04 0.05 0.5930 0.5931 -1.16 -1.16 1.15/3.81 1.15/3.80 1.15 1.15

1.50 0.6032 0.6036 0.538 0.595 1.09/2.36 1.09/2.35 1.09 1.09

0.10 0.05 0.5898 0.5898 -1.70 -1.69 1.09/3.86 1.09/3.86 1.10 1.10

1.50 0.6006 0.5998 0.103 -0.032 1.32/3.78 1.30/3.79 1.32 1.30

0.02 0.05 0.6007 0.6008 0.121 0.128 0.928/1.84 0.928/1.84 0.928 0.928

1.50 0.5940 0.5955 -1.01 -0.752 0.943/1.52 0.869/2.30 0.947 0.871

2.0 0.04 0.05 0.5915 0.5918 -1.42 -1.37 1.42/8.55 1.42/8.46 1.43 1.42

1.50 0.5956 0.5959 -0.734 -0.680 1.46/7.26 1.46/7.19 1.46 1.46

0.1 0.05 0.5887 0.5888 -1.89 -1.87 1.79/1.91 1.79/1.91 1.81 1.81

1.50 0.5838 0.5847 -2.70 -2.55 1.68/1.08 1.70/1.56 1.70 1.72
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Table A.9: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp and mean model based variance S2

mb for θ for settings

with E2 ratios.

Q λ σ θ̄ b̄(×1e − 2) S2
emp/S

2
mb (×1e − 2) MSE(×1e − 2)

PLK PL-GLS PLK PL-GLS PLK PL-GLS PLK PL-GLS

0.02 0.05 0.5758 0.6137 -4.03 2.28 0.594/1.32 3.01/2.24 0.653 3.03

1.50 0.5717 0.6075 -4.72 1.25 0.639/1.34 2.93/1.28 0.719 2.94

0.5 0.04 0.05 0.5834 0.5835 -2.77 -2.75 0.757/1.96 0.757/1.95 0.785 0.785

1.50 0.5811 0.5818 -3.15 -3.04 0.797/2.24 0.794/2.16 0.833 0.828

0.10 0.05 0.5853 0.5854 -2.45 -2.43 0.940/2.66 0.940/2.66 0.962 0.961

1.50 0.5797 0.5821 -3.38 -2.98 1.07/4.70 1.11/4.81 1.11 1.14

0.02 0.05 0.5937 0.6063 -1.05 1.05 0.806/1.61 1.55/1.58 0.810 1.55

1.50 0.5915 0.5978 -1.41 -0.371 0.824/1.51 1.17/1.48 0.831 1.17

1.0 0.04 0.05 0.5972 0.5972 -0.475 -0.467 1.21/4.13 1.21/4.13 1.21 1.21

1.50 0.5948 0.5951 -0.868 -0.810 1.11/3.70 1.11/3.66 1.12 1.12

0.10 0.05 0.5866 0.5967 -0.559 -0.553 1.24/5.25 1.24/5.25 1.24 1.24

1.50 0.5987 0.5989 -0.222 -0.185 1.36/4.25 1.30/4.13 1.36 1.30

0.02 0.05 0.6011 0.6012 0.186 0.194 0.946/2.19 0.946/2.19 0.946 0.946

1.50 0.5957 0.5960 -0.710 -0.670 1.04/2.95 1.04/2.92 1.04 1.04

2.0 0.04 0.05 0.6085 0.6087 1.42 1.45 1.65/3.28 1.65/3.17 1.65 1.65

1.50 0.5982 0.5986 -0.292 -0.238 1.60/2.44 1.60/2.34 1.60 1.60

0.1 0.05 0.5884 0.5886 -1.94 -1.90 1.71/2.60 1.70/2.58 1.72 1.72

1.50 0.5841 0.5868 -2.65 -2.20 1.86/2.14 1.85/2.64 1.88 1.86
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Table A.10: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp and mean model-based variance S2

mb for σ for settings

with A ratios (at 2001.05Da).

σ Q λ σ̄ b̄ S2
emp(×1e − 2) MSE(×1e − 2)

LS PLK PL-GLS PLK PL-GLS PLK PL-GLS PLK PL-GLS

0.02 11.72 0.065 0.065 0.300 0.298 0.158 0.155 0.180 0.177

0.5 0.04 11.89 0.067 0.067 0.343 0.342 0.161 0.161 0.191 0.190

0.10 11.98 0.064 0.064 0.287 0.279 0.219 0.216 0.240 0.236

0.02 14.29 0.065 0.065 0.306 0.297 0.187 0.184 0.210 0.206

0.05 1.0 0.04 14.50 0.067 0.067 0.344 0.344 0.241 0.241 0.270 0.270

0.10 14.47 0.066 0.066 0.328 0.328 0.238 0.238 0.265 0.265

0.02 18.62 0.062 0.062 0.237 0.237 0.215 0.215 0.229 0.229

2.0 0.04 18.61 0.067 0.067 0.346 0.345 0.301 0.301 0.331 0.331

0.10 18.23 0.080 0.080 0.604 0.601 0.770 0.766 0.861 0.856

0.02 355.0 2.014 1.997 0.342 0.332 128.6 122.3 155.0 147.1

0.5 0.04 355.9 1.986 1.975 0.324 0.317 159.2 154.5 182.8 177.1

0.10 360.3 1.906 1.911 0.271 0.274 138.5 142.5 155.0 159.4

0.02 429.1 2.032 2.023 0.355 0.349 155.8 153.3 184.2 180.7

1.50 1.0 0.04 434.4 1.809 1.805 0.206 0.203 157.8 157.0 167.3 166.3

0.10 435.7 2.003 2.034 0.335 0.356 306.3 308.7 331.6 337.2

0.02 558.3 1.932 1.928 0.288 0.286 157.5 156.6 176.1 175.0

2.0 0.04 554.0 2.247 2.243 0.498 0.495 332.4 330.7 338.2 385.8

0.10 543.7 2.378 2.364 0.585 0.576 451.9 448.8 529.0 523.4
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Table A.11: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp and mean model-based variance S2

mb for σ for settings

with E1 ratios.

σ Q λ σ̄ b̄ S2
emp(×1e − 2) MSE(×1e − 2)

LS PLK PL-GLS PLK PL-GLS PLK PL-GLS PLK PL-GLS

0.02 11.75 0.074 0.072 0.481 0.431 0.357 0.372 0.414 0.418

0.5 0.04 11.76 0.069 0.069 0.379 0.378 0.348 0.347 0.384 0.383

0.10 11.82 0.079 0.078 0.571 0.570 0.800 0.717 0.785 0.798

0.02 14.07 0.075 0.074 0.492 0.473 0.425 0.432 0.485 0.488

0.05 1.0 0.04 14.20 0.083 0.083 0.651 0.650 0.862 0.861 0.968 0.967

0.10 14.22 0.083 0.083 0.670 0.669 0.703 0.702 0.815 0.814

0.02 18.39 0.072 0.072 0.438 0.438 0.441 0.440 0.489 0.488

2.0 0.04 18.11 0.097 0.096 0.931 0.925 1.685 1.669 1.901 1.883

0.10 17.96 0.116 0.116 1.324 1.321 3.374 3.366 3.813 3.802

0.02 347.4 2.277 2.199 0.518 0.466 191.5 200.0 251.8 248.9

0.5 0.04 353.7 2.348 2.314 0.565 0.543 357.6 328.6 429.5 394.8

0.10 353.8 2.569 2.530 0.713 0.687 682.0 658.9 796.3 765.0

0.02 422.6 2.365 2.317 0.576 0.546 378.6 371.2 453.4 438.2

1.50 1.0 0.04 432.6 2.196 2.190 0.464 0.460 489.3 487.4 537.8 535.0

0.10 429.0 2.447 2.458 0.632 0.639 700.4 704.2 790.2 796.1

0.02 548.9 2.292 2.288 0.528 0.526 595.1 590.3 657.8 652.4

2.0 0.04 543.2 2.819 2.812 0.879 0.874 1541 1530 1715 1702

0.10 535.8 3.369 3.350 1.246 1.233 1817 1798 2166 2141
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Table A.12: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp and mean model-based variance S2

mb for σ for settings

with E2 ratios.

σ Q λ σ̄ b̄ S2
emp(×1e − 2) MSE(×1e − 2)

LS PLK PL-GLS PLK PL-GLS PLK PL-GLS PLK PL-GLS

0.02 13.32 0.076 0.073 0.528 0.457 0.293 0.311 0.363 0.364

0.5 0.04 13.38 0.077 0.077 0.533 0.532 0.379 0.379 0.450 0.449

0.10 13.36 0.080 0.080 0.593 0.591 0.465 0.464 0.553 0.552

0.02 16.05 0.072 0.071 0.447 0.419 0.344 0.349 0.394 0.392

0.05 1.0 0.04 16.19 0.082 0.082 0.633 0.632 0.840 0.840 0.941 0.940

0.10 16.21 0.085 0.085 0.700 0.699 0.977 0.977 1.099 1.099

0.02 20.80 0.073 0.073 0.456 0.455 0.461 0.460 0.513 0.512

2.0 0.04 20.74 0.093 0.092 0.852 0.848 1.818 1.797 2.000 1.977

0.10 20.45 0.114 0.113 1.270 1.264 3.675 3.651 4.079 4.050

0.02 395.1 2.410 2.298 0.607 0.532 294.8 312.0 377.7 375.7

0.5 0.04 400.4 2.391 2.374 0.594 0.583 406.3 397.8 485.7 474.2

0.10 399.7 2.749 2.721 0.833 0.814 1045 1066 1201 1215

0.02 482.5 2.201 2.172 0.467 0.448 317.5 316.6 366.6 361.9

1.50 1.0 0.04 487.2 2.474 2.465 0.649 0.643 774.0 766.5 868.8 859.5

0.10 487.9 2.497 2.455 0.665 0.637 746.7 728.1 846.2 819.2

0.02 620.3 2.442 2.435 0.628 0.624 689.6 681.5 778.2 769.0

2.0 0.04 617.8 3.068 3.060 1.045 1.040 2324 2309 2569 2552

0.10 614.8 3.870 3.752 1.580 1.501 3168 3037 3729 3544





Appendix B

Simulation results of the

Bayesian heteroscedastic

model for enzymatically
18O-labeled mass spectra

295



296 Appendix B

Table B.1: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of λ for settings with A ratios.

λ Q σ b̄ S2
emp/S

2
mb MSE

Con Var Con Var Con Var

0.5 0.05 0.01102 -0.01086 6.928e-5/0.0001932 5.987e-6/1.170e-7 6.933e-5 6.034e-6

1.50 0.02378 -0.01843 6.694e-5/0.0001895 4.338e-6/8.778e-6 6.717e-5 4.474e-6

0.02 1.0 0.05 -0.01365 -0.02196 4.281e-5/1.090e-5 6.840e-6/9.628e-6 4.288e-5 7.033e-6

1.50 0.03856 -0.02566 4.257e-5/0.0001100 4.412e-6/2.313e-7 4.317e-5 4.676e-6

2.0 0.05 -0.05310 -0.01770 1.495e-5/5.703e-8 1.516e-5/1.987e-5 1.608e-5 1.529e-5

1.50 -0.03495 -0.02088 1.361e-5/1.058e-7 1.153e-5/2.406e-5 1.410e-5 1.171e-5

0.5 0.05 -0.01314 -0.02356 5.701e-5/1.123e-6 3.696e-5/1.122e-7 5.728e-5 3.785e-5

1.50 -0.03228 -0.02097 1.627e-5/5.024e-6 6.259e-6/1.570e-6 1.794e-5 6.963e-6

0.04 1.0 0.05 -6.644e-5 -0.001068 5.773e-8/8.579e-10 3.377e-8/9.786e-8 5.774e-8 3.560e-8

1.50 0.002477 -0.02142 4.898e-7/7.665e-7 5.990e-8/4.233e-7 4.996e-7 7.940e-7

2.0 0.05 0.003000 -0.007378 7.180e-6/1.430e-9 2.702e-6/1.617e-9 7.195e-6 2.789e-6

1.50 0.001814 -0.02010 1.476e-6/1.877e-7 6.220e-7/2.838e-6 1.481e-6 1.268e-6

0.5 0.05 0.005850 -0.02761 5.138e-5/2.212e-5 1.903e-5/1.900e-6 5.172e-5 2.665e-5

1.50 0.6516 0.5218 0.0001307/4.469e-5 0.0001930/2.672e-5 0.004377 0.002916

0.10 1.0 0.05 0.001081 -0.008568 5.256e-5/8.798e-7 1.768e-5/4.179e-7 5.257e-5 1.842e-5

1.50 0.6621 0.6255 1.252e-5/1.880e-5 0.0002624/3.200e-5 0.004396 0.004175

2.0 0.05 -0.001708 -0.003913 1.908e-5/2.180e-7 8.500e-6/1.886e-7 1.911e-5 8.653e-6

1.50 0.6510 0.5684 0.0001336/3.442e-5 0.001148/8.666e-5 0.004372 0.004379
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Table B.2: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of λ for settings with E1 ratios.

λ Q σ b̄ S2
emp/S

2
mb MSE

Con Var Con Var Con Var

0.5 0.05 0.008361 0.09784 4.717e-5/0.0001363 3.207e-5/2.077e-6 4.719e-5 3.589e-5

1.50 0.02628 0.03859 4.563e-5/0.0001960 2.045e-5/0.0001788 4.591e-5 2.104e-5

0.02 1.0 0.05 0.002003 -0.04111 8.027e-6/5.023e-6 3.029e-6/1.581e-7 8.029e-6 3.705e-6

1.50 0.02856 0.03824 3.952e-6/3.538e-7 3.200e-6/3.800e-5 4.278e-6 3.785e-6

2.0 0.05 -0.1147 -0.1746 2.585e-5/9.456e-8 8.842e-6/1.812e-5 3.111e-5 2.103e-5

1.50 -0.08814 -0.1305 3.753e-5/2.083e-7 2.590e-5/2.367e-5 4.063e-5 3.271e-5

0.5 0.05 -0.06842 -0.06629 8.689e-5/3.766e-6 6.045e-5/8.709e-6 9.328e-5 6.748e-5

1.50 0.01001 -0.05291 0.0004334/9.493e-5 1.433e-5/3.065e-6 0.0004335 1.881e-5

0.04 1.0 0.05 1.236e-5 -0.04028 9.872e-6/1.078e-9 2.131e-6/3.624e-7 9.872e-6 4.727e-6

1.50 -0.0008734 -0.01924 3.002e-6/1.028e-6 1.827e-6/8.128e-7 3.004e-6 2.419e-6

2.0 0.05 -0.001758 -0.02649 2.450e-6/9.505e-10 1.794e-6/2.837e-8 2.455e-6 2.917e-6

1.50 -0.002947 -0.01772 4.873e-6/2.498e-7 2.699e-6/2.153e-7 4.887e-6 3.202e-6

0.5 0.05 0.007315 -0.03744 0.0002927/4.172e-5 7.277e-5/9.234e-6 0.0002933 8.679e-5

1.50 0.6057 0.2833 0.0008743/3.212e-5 0.0003987/1.607e-5 0.004542 0.001201

0.10 1.0 0.05 0.002218 -0.01597 4.244e-6/1.157e-6 3.368e-7/8.756e-7 4.293e-6 2.887e-6

1.50 0.6564 0.5056 6.578e-5/2.787e-5 0.0001991/2.621e-5 0.004374 0.002755

2.0 0.05 -0.003675 -0.01844 3.631e-5/2.929e-7 2.670e-5/1.603e-6 3.644e-5 3.011e-5

1.50 0.6553 0.5573 0.0001062/2.999e-5 0.0001723/5.285e-5 0.004400 0.003278
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Table B.3: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of λ for settings with E2 ratios.

λ Q σ b̄ S2
emp/S

2
mb MSE

Con Var Con Var Con Var

0.5 0.05 0.05282 0.06272 0.0001687/6.584e-5 4.138e-5/9.275e-6 0.0001698 4.296e-5

1.50 0.01329 0.06826 0.0003051/0.0001087 7.624e-5/0.0001395 0.0003052 7.811e-5

0.02 1.0 0.05 -0.0006426 0.01339 7.281e-6/2.604e-8 3.358e-6/6.037e-6 7.281e-6 3.430e-6

1.50 0.01575 0.009722 5.173e-6/2.953e-7 4.014e-6/4.364e-6 5.272e-6 4.052e-6

2.0 0.05 0.001823 -0.01249 6.528e-6/1.006e-8 4.597e-6/1.580e-6 6.529e-6 4.659e-6

1.50 0.002581 -0.007212 3.260e-7/1.486e-7 1.613e-7/6.385e-7 3.287e-7 1.821e-7

0.5 0.05 -0.03583 0.01056 4.122e-5/6.196e-7 9.863e-6/6.905e-6 4.327e-5 1.004e-5

1.50 -0.03065 -0.02072 0.0001067/4.950e-5 7.695e-5/1.038e-5 0.0001082 7.764e-5

0.04 1.0 0.05 -0.004993 -0.04036 6.574e-6/9.196e-9 1.042e-6/9.380e-7 6.614e-6 3.648e-6

1.50 0.003517 -0.02591 3.690e-5/9.214e-7 1.454e-5/7.749e-7 3.692e-5 1.561e-5

2.0 0.05 -2.141e-6 -0.04033 9.194e-6/2.627e-10 7.100e-8/6.998e-8 9.194e-6 2.673e-6

1.50 -0.002837 -0.03150 5.037e-6/2.359e-7 7.314e-7/3.128e-7 5.049e-6 2.319e-6

0.5 0.05 -0.01176 -0.02978 0.0002200/2.894e-5 7.954e-5/7.074e-6 0.0002214 8.841e-5

1.50 0.6510 0.4134 0.0001777/3.412e-5 0.0002969/1.962e-5 0.004416 0.002006

0.10 1.0 0.05 -0.0007639 -0.02263 1.929e-5/1.036e-6 7.773e-6/1.175e-5 1.929e-5 1.290e-5

1.50 0.6587 0.5424 5.697e-5/2.975e-5 0.0001603/2.995e-5 0.004395 0.003102

2.0 0.05 -0.007416 -0.009750 7.137e-5/2.808e-7 4.656e-5/4.527e-6 7.192e-5 4.751e-5

1.50 0.6380 0.5325 0.0003702/2.850e-5 0.0003276/4.718e-5 0.004441 0.003163
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Table B.4: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of Q for settings with A ratios.

Q λ σ b̄ S2
emp/S

2
mb MSE

Con Var Con Var Con Var

0.02 0.05 -0.006669 0.001626 0.04087/0.001640 0.002484/0.003961 0.04088 0.002485

1.50 -0.02846 0.01797 0.03533/0.003750 0.007419/0.01148 0.03554 0.007500

0.5 0.04 0.05 0.02615 0.004610 0.02427/0.005389 0.001837/1.2912e-7 0.02444 0.001843

1.50 0.06262 -0.003446 0.005060/0.002466 0.001590/0.0003709 0.006041 0.001593

0.10 0.05 0.01499 0.005010 0.02255/0.002971 0.001477/9.419e-8 0.02260 0.001484

1.50 0.02058 -0.002415 0.002043/0.001890 0.001941/4.146e-5 0.002149 0.001943

0.02 0.05 -0.001535 0.003136 0.005158/0.005075 0.003310/0.002516 0.005160 0.003320

1.50 0.02483 0.003714 0.05064/0.01357 0.004351/0.007700 0.05126 0.004365

1.0 0.04 0.05 4.916e-5 0.002165 0.002949/2.974e-7 0.001700/0.0001333 0.002949 0.001705

1.50 0.01296 0.0005067 0.003495/0.0002484 0.003866/0.0002329 0.003663 0.003866

0.10 0.05 -1.787e-5 -0.00009779 0.002395/1.999e-7 0.0007845/0.0002531 0.002395 0.0007846

1.50 0.001473 -0.007731 0.0008563/8.431e-5 0.0006313/0.0001234 0.0008585 0.0006911

0.02 0.05 0.007708 0.002294 0.05282/0.03407 0.007400/0.001279 0.05306 0.007421

1.50 0.003887 -0.0005702 0.04991/0.03883 0.01440/0.001382 0.04997 0.01440

2.0 0.04 0.05 -0.001026 -0.0004800 0.001999/5.299e-7 0.0008603/6.518e-7 0.002003 0.0008612

1.50 0.001794 0.0002757 0.005573/0.0004825 0.001874/0.0006046 0.005576 0.001874

0.1 0.05 0.01739 0.0006205 0.006044/0.008720 0.0003334/6.341e-7 0.006047 0.0003349

1.50 0.01214 -0.01004 0.05210/0.0002484 0.009141/0.0005767 0.05210 0.009544
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Table B.5: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of Q for settings with E1 ratios.

Q λ σ b̄ S2
emp/S

2
mb MSE

Con Var Con Var Con Var

0.02 0.05 -0.01612 -0.05900 0.03366/0.001934 0.01196/0.004823 0.03372 0.01283

1.50 0.08438 -0.02350 0.01312/0.007108 0.009602/0.02141 0.01490 0.009740

0.5 0.04 0.05 0.005713 -0.01006 0.001771/0.02095 0.001555/0.001529 0.001779 0.001580

1.50 0.05076 -0.004173 0.002974/0.01851 0.001890/0.04947 0.003618 0.001895

0.10 0.05 -0.0002105 -0.003559 0.002896/0.004156 0.002861/0.04720 0.002896 0.002864

1.50 0.005923 -0.008106 0.007818/0.003998 0.005273/0.05314 0.007826 0.005289

0.02 0.05 -0.0002159 0.01068 0.02557/0.0001284 0.02524/0.01176 0.02557 0.02535

1.50 0.02020 -0.009803 0.04032/0.001473 0.01929/0.02904 0.04073 0.01938

1.0 0.04 0.05 9.504e-6 0.004157 0.008751/3.980e-7 0.005881/0.004613 0.008751 0.005898

1.50 0.008948 0.003450 0.004212/0.001298 0.003159/0.01151 0.004292 0.003128

0.10 0.05 -5.905e-5 -0.001498 0.003476/2.554e-7 0.001167/0.01286 0.003476 0.001169

1.50 -0.005651 -0.007184 0.0006191/0.0001144 0.0002382/0.01007 0.0006510 0.0002898

0.02 0.05 0.04800 0.008642 0.1038/0.04995 0.1116/0.03090 0.1131 0.1119

1.50 0.07142 0.02060 0.1426/0.09900 0.1035/0.02886 0.1630 0.1052

2.0 0.04 0.05 0.003682 0.01916 0.02708/0.005067 0.02007/0.006456 0.02714 0.02154

1.50 0.003737 0.01255 0.05079/0.009815 0.03480/0.007416 0.05085 0.03543

0.1 0.05 -0.0003838 0.002424 0.0005451/5.205e-7 0.0002579/0.006637 0.0005457 0.0002814

1.50 -0.006008 0.002590 0.004974/0.0002872 0.003333/0.004556 0.005118 0.003360
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Table B.6: Mean relative bias b̄, empirical variance S2
emp, mean model based variance S2

mb

and MSE of Q for settings with E2 ratios.

Q λ σ b̄ S2
emp/S

2
mb MSE

Con Var Con Var Con Var

0.02 0.05 -0.007620 -0.008933 0.001621/0.003790 0.001474/0.003077 0.001636 0.001494

1.50 0.1646 -0.02575 0.02723/0.003644 0.008896/0.02712 0.03400 0.009062

0.5 0.04 0.05 0.09485 -0.006884 0.04625/0.007329 0.002903/0.01132 0.04850 0.002915

1.50 0.03843 0.009131 0.009413/0.008726 0.004773/0.02881 0.009782 0.004794

0.10 0.05 0.006087 0.01369 0.009739/0.004929 0.004061/0.02841 0.009748 0.004108

1.50 0.001765 -0.006969 0.004649/0.0003728 0.002504/0.02893 0.004649 0.002516

0.02 0.05 0.002051 -0.02269 0.001950/0.0007679 0.001382/0.005984 0.001954 0.001897

1.50 0.02186 -0.003470 0.005768/0.001530 0.001218/0.002702 0.006246 0.001230

1.0 0.04 0.05 0.0001579 0.004473 0.005983/0.001927 0.003889/4.110e-6 0.005983 0.003909

1.50 0.009293 -0.003566 0.01261/0.002065 0.004525/0.001781 0.01270 0.004538

0.10 0.05 0.0002179 -0.001814 0.002644/2.254e-7 0.002606/0.004978 0.002644 0.002609

1.50 -0.004950 -0.007241 0.001716/0.0009614 0.001576/0.001242 0.001962 0.001628

0.02 0.05 -0.001484 -0.01000 0.004243/2.928e-6 0.001845/0.003336 0.004252 0.002245

1.50 0.002719 -0.004412 0.05077/0.008328 0.03144/0.001617 0.05080 0.03152

2.0 0.04 0.05 -2.154e-5 0.001227 0.007630/6.276e-7 0.003191/1.353e-6 0.007630 0.003197

1.50 0.0009192 0.003189 0.007019/0.0005592 0.001927/0.002221 0.007022 0.001968

0.1 0.05 -1.441e-5 0.003296 0.0002897/4.727e-7 0.0001007/0.001467 0.0002897 0.0001442

1.50 -0.006304 -0.0001904 0.005299/0.0002538 0.002519/0.0003318 0.005458 0.002519
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Table B.7: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp, mean model

based variance S2
mb and MSE of θ for settings with A ratios.

Q λ σ θ̄ b̄ S2
emp/S

2
mb MSE

0.02 0.05 0.5443 -0.09282 0.001394/0.008363 0.004495

1.50 0.5900 -0.01666 0.003234/0.004807 0.003334

0.5 0.04 0.05 0.5306 -0.1157 0.001452/0.004971 0.006268

1.50 0.5941 -0.009791 0.003586/0.004546 0.003621

0.10 0.05 0.5320 -0.1133 0.001723/0.003403 0.006345

1.50 0.6012 0.001943 0.003162/0.004371 0.003164

0.02 0.05 0.5310 -0.1150 0.001272/0.009123 0.006032

1.50 0.5911 -0.01480 0.003093/0.006348 0.003172

1.0 0.04 0.05 0.5205 -0.1325 0.001199/0.003844 0.007519

1.50 0.5976 -0.003921 0.003599/0.005869 0.003604

0.10 0.05 0.5185 -0.1359 0.001323/0.002619 0.007973

1.50 0.6028 0.004635 0.003774/0.004115 0.003782

0.02 0.05 0.5282 -0.1196 0.001378/0.01057 0.006531

1.50 0.5919 -0.01356 0.002901/0.005814 0.002967

2.0 0.04 0.05 0.5191 -0.1348 0.001517/0.002791 0.008060

1.50 0.5935 -0.01080 0.003885/0.004956 0.003927

0.1 0.05 0.5185 -0.1358 0.001664/0.002706 0.008304

1.50 0.5937 -0.01058 0.003515/0.005086 0.003555
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Table B.8: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp, mean model

based variance S2
mb and MSE of θ for settings with E1 ratios.

Q λ σ θ̄ b̄ S2
emp/S

2
mb MSE

0.02 0.05 0.5429 -0.09513 0.002811/0.02105 0.006069

1.50 0.5944 -0.009414 0.003504/0.007470 0.003536

0.5 0.04 0.05 0.5189 -0.1352 0.002666/0.004905 0.009246

1.50 0.5958 -0.006976 0.004130/0.009950 0.004148

0.10 0.05 0.5232 -0.1281 0.003282/0.009913 0.009185

1.50 0.5957 -0.007135 0.004904/0.01220 0.004923

0.02 0.05 0.5315 -0.1141 0.003016/0.03233 0.007704

1.50 0.5935 -0.01082 0.003917/0.01081 0.003959

1.0 0.04 0.05 0.5332 -0.1113 0.003674/0.01245 0.008132

1.50 0.6004 0.0007440 0.004471/0.01179 0.004471

0.10 0.05 0.5270 -0.1217 0.004018/0.006371 0.009346

1.50 0.5948 -0.008726 0.004917/0.01039 0.004944

0.02 0.05 0.5386 -0.1024 0.003795/0.05511 0.007569

1.50 0.5978 -0.003601 0.003812/0.01310 0.003817

2.0 0.04 0.05 0.5335 -0.1108 0.004195/0.007222 0.008618

1.50 0.5927 -0.01214 0.004650/0.009916 0.004703

0.1 0.05 0.5472 -0.08805 0.005022/0.007040 0.007813

1.50 0.5975 -0.004210 0.005574/0.01044 0.005580
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Table B.9: Mean estimate θ̄, mean relative bias b̄, empirical variance S2
emp, mean model

based variance S2
mb and MSE of θ for settings with E2 ratios.

Q λ σ θ̄ b̄ S2
emp/S

2
mb MSE

0.02 0.05 0.5449 -0.09183 0.003093/0.02576 0.006129

1.50 0.5937 -0.01053 0.003319/0.009010 0.003359

0.5 0.04 0.05 0.5255 -0.1241 0.003359/0.006160 0.008903

1.50 0.5921 -0.01314 0.004390/0.01320 0.004452

0.10 0.05 0.5341 -0.1098 0.004161/0.006776 0.008503

1.50 0.5997 -0.0004683 0.004677/0.009608 0.004677

0.02 0.05 0.5399 -0.1002 0.003773/0.02281 0.007386

1.50 0.5976 -0.003956 0.004046/0.01136 0.004051

1.0 0.04 0.05 0.5346 -0.1090 0.004041/0.008035 0.008322

1.50 0.5884 -0.01929 0.005437/0.01190 0.005571

0.10 0.05 0.5432 -0.09473 0.004839/0.006792 0.008070

1.50 0.5943 -0.009427 0.004763/0.009679 0.004795

0.02 0.05 0.5393 -0.1003 0.004328/0.004724 0.007949

1.50 0.6007 0.001087 0.004191/0.008806 0.004191

2.0 0.04 0.05 0.5474 -0.08767 0.004753/0.007907 0.007520

1.50 0.6015 0.002433 0.004927/0.01030 0.004929

0.1 0.05 0.5507 -0.08219 0.004392/0.006314 0.006824

1.50 0.5974 -0.004291 0.005005/0.01044 0.005012
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Table B.10: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp, model-based

variance S2
mb, mean model-based variance S2

mb and MSE of σ for settings with

A ratios.

σ Q λ σ̄ b̄ S2
emp/S

2
mb MSE

Con Var Var

0.02 18.5894 0.09819 0.9639 0.0007254/0.0004653 0.003048

0.5 0.04 19.0040 0.1152 1.3042 0.0009614/0.0007845 0.005214

0.10 14.2154 0.09035 0.8069 0.0004353/0.0008671 0.002063

0.02 15.8446 0.1141 1.2824 0.0009159/0.0009105 0.005027

0.05 1.0 0.04 12.7127 0.1290 1.5792 0.001292/0.001826 0.007527

0.10 12.6556 0.08517 0.7034 0.0005435/0.001777 0.001781

0.02 16.3881 0.1272 1.5434 0.001194/0.001553 0.007149

2.0 0.04 16.2937 0.1455 1.9102 0.001710/0.004273 0.01083

0.10 15.9068 0.1433 1.8652 0.001947/0.004377 0.01064

0.02 335.7952 1.9898 0.3265 0.4861/2.1879 0.7260

0.5 0.04 323.4883 1.9743 0.3162 0.5041/2.7104 0.7290

0.10 322.3756 1.9743 0.3162 0.6331/2.7103 0.8581

0.02 401.7372 2.0558 0.3705 0.5397/2.1775 0.8486

1.50 1.0 0.04 392.5880 2.2346 0.4897 1.3709/6.8713 1.9105

0.10 392.5763 1.9847 0.3231 0.6040/2.6555 0.8390

0.02 521.690 2.2841 0.5227 1.2440/8.2922 1.8587

2.0 0.04 493.2701 2.0687 0.3791 0.6139/2.1772 0.9374

0.10 482.0026 2.8335 0.8890 2.3688/9.6139 4.1469
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Table B.11: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp, model-based

variance S2
mb, mean model-based variance S2

mb and MSE of σ for settings with

E1 ratios.

σ Q λ σ̄ b̄ S2
emp/S

2
mb MSE

Con Var Var

0.02 15.2336 0.1173 1.3469 0.002149/0.002048 0.006684

0.5 0.04 12.1991 0.1392 1.7838 0.002912/0.006908 0.01087

0.10 12.1509 0.1341 1.6823 0.003627/0.007744 0.01070

0.02 15.0681 0.1340 1.6807 0.003329/0.006147 0.01039

0.05 1.0 0.04 14.5067 0.1156 1.3116 0.003982/0.009409 0.008283

0.10 14.5330 0.1203 1.4061 0.004313/0.009689 0.009256

0.02 18.7745 0.1120 1.2395 0.003494/0.006812 0.007335

2.0 0.04 18.5059 0.1039 1.0789 0.003635/0.008005 0.006545

0.10 18.3506 0.1037 1.0733 0.003514/0.008314 0.006394

0.02 379.2682 2.0831 0.3887 0.5155/1.7074 0.8554

0.5 0.04 401.1458 2.5882 0.7255 2.1841/5.7799 3.3682

0.10 386.8660 2.6634 0.7756 2.3842/5.9524 3.7377

0.02 452.3595 2.6594 0.7729 2.0070/6.7894 3.3512

1.50 1.0 0.04 448.8193 2.7686 0.8457 2.5571/5.4196 4.1664

0.10 438.0552 2.7417 0.8278 2.6940/5.5326 4.2358

0.02 1953.030 2.7265 0.8177 2.4175/4.3031 3.9218

2.0 0.04 578.5213 2.8660 0.9107 2.8325/4.6992 4.6984

0.10 551.8279 2.7443 0.8295 2.7014/4.1197 4.2496
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Table B.12: Mean estimate σ̄, mean relative bias b̄ ,empirical variance S2
emp, model-based

variance S2
mb, mean model-based variance S2

mb and MSE of σ for settings with

E2 ratios.

σ Q λ σ̄ b̄ S2
emp/S

2
mb MSE

Con Var Var

0.02 19.9978 0.1226 1.4514 0.002613/0.003438 0.007879

0.5 0.04 13.6390 0.1327 1.6534 0.003439/0.009084 0.01027

0.10 13.6609 0.1279 1.5590 0.003925/0.008920 0.01000

0.02 16.4048 0.1308 1.6155 0.003516/0.008056 0.01004

0.05 1.0 0.04 16.5354 0.1090 1.1797 0.003777/0.009524 0.007256

0.10 16.5585 0.1032 1.0640 0.003516/0.009037 0.006347

0.02 21.2499 0.1211 1.4225 0.003212/0.008211 0.008270

2.0 0.04 21.1953 0.09346 0.8691 0.002788/0.006929 0.004677

0.10 20.8847 0.08657 0.7315 0.002027/0.007547 0.003365

0.02 430.8158 2.5387 0.6924 2.0333/6.2857 3.1121

0.5 0.04 426.3120 2.7563 0.8375 2.5173/6.1427 4.0954

0.10 410.6182 2.7572 0.8382 2.7048/6.8906 4.2855

0.02 511.5862 2.6370 0.7580 2.6987/7.2538 3.9916

1.50 1.0 0.04 501.4285 2.7189 0.8126 2.5706/4.1126 4.0563

0.10 499.2004 2.1012 0.4008 0.5633/0.8372 0.9247

0.02 643.1848 2.3306 0.5537 2.9703/5.1681 3.6602

2.0 0.04 631.4164 2.8110 0.8741 3.1187/2.7966 4.8374

0.10 632.6614 2.7446 0.8297 2.7175/3.8970 4.2665





Appendix C

WinBUGS code for the Bayesian model of
18O-labeled mass spectra

The following lines give the WinBUGS code implemented for the model with mean-power-variance function:

model {

###Matrix exponential implemented by differential

equations:

solution[1:n.grid, 1:dim] <- ode(init[1:dim], grid[1:n.grid], D(pi[1:dim], t), origin, tol)

D(pi[c_11], t) <- p16*lambda*pi[c_11]+p16/2*lambda*pi[c_12]+p16/2*lambda*pi[c_13]

D(pi[c_12], t) <- (p16+p17)/2*lambda*pi[c_12]+p17*lambda*pi[c_11]+p17/2*lambda*pi[c_13]+p16*lambda*pi[c_14]+p16/2*lambda*pi[c_15]

D(pi[c_13], t) <- (p16+p18)/2*lambda*pi[c_13]+p18*lambda*pi[c_11]+p18/2*lambda*pi[c_12]+p16/2*lambda*pi[c_15]+p16*lambda*pi[c_16]

D(pi[c_14], t) <- p17*lambda*pi[c_14]+p17/2*lambda*pi[c_12]+p17/2*lambda*pi[c_15]

D(pi[c_15], t) <- (p17+p18)/2*lambda*pi[c_15]+p18/2*lambda*pi[c_12]+p17/2*lambda*pi[c_13]+p18*lambda*pi[c_14]+p17*lambda*pi[c_16]
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D(pi[c_16], t) <- p18*lambda*pi[c_16]+p18/2*lambda*pi[c_13]+p18/2*lambda*pi[c_15]

vec[1]<-exp(-lambda*grid[n.grid])*solution[n.grid,1]

vec[2]<-exp(-lambda*grid[n.grid])*solution[n.grid,2]

vec[3]<-exp(-lambda*grid[n.grid])*(solution[n.grid,3]+solution[n.grid,4])

vec[4]<-exp(-lambda*grid[n.grid])*solution[n.grid,5]

vec[5]<-exp(-lambda*grid[n.grid])*solution[n.grid,6]

###Model mean structure and variance function:

for(i in 1:n.rep){

log.H[i]~dnorm(0.0,1.0E-6) #prior for log(H[i]) with \tau_1=1.0E-6.

H[i]<-exp(log.H[i])

mean[i,1]<-H[i]+H[i]*Q*vec[1]

mean[i,2]<-H[i]*R[1]+H[i]*Q*vec[2]+H[i]*Q*R[1]*vec[1]

mean[i,3]<-H[i]*R[2]+H[i]*Q*vec[3]+H[i]*Q*R[1]*vec[2]+H[i]*Q*R[2]*vec[1]

mean[i,4]<-H[i]*R[3]+H[i]*Q*vec[4]+H[i]*Q*R[1]*vec[3]+H[i]*Q*R[2]*vec[2]+H[i]*Q*R[3]*vec[1]

mean[i,5]<-H[i]*R[4]+H[i]*Q*vec[5]+H[i]*Q*R[1]*vec[4]+H[i]*Q*R[2]*vec[3]+H[i]*Q*R[3]*vec[2]+H[i]*Q*R[4]*vec[1]

mean[i,6]<-H[i]*R[5]+H[i]*Q*R[1]*vec[5]+H[i]*Q*R[2]*vec[4]+H[i]*Q*R[3]*vec[3]+H[i]*Q*R[4]*vec[2]+H[i]*Q*R[5]*vec[1]

mean[i,7]<-H[i]*Q*R[2]*vec[5]+H[i]*Q*R[3]*vec[4]+H[i]*Q*R[4]*vec[3]+H[i]*Q*R[5]*vec[2]

mean[i,8]<-H[i]*Q*R[3]*vec[5]+H[i]*Q*R[4]*vec[4]+H[i]*Q*R[5]*vec[3]

mean[i,9]<-H[i]*Q*R[4]*vec[5]+H[i]*Q*R[5]*vec[4]

mean[i,10]<-H[i]*Q*R[5]*vec[5]

for(j in 1:n.obs){

sigmafun[i,j]<-1/tau*pow(mean[i,j],2*theta) #variance function \sigma^2*mu[i,j]^{2\theta}

taufun[i,j]<-1/sigmafun[i,j]

y[i,j]~dnorm(mean[i,j],taufun[i,j])

}

}

# Initial conditions:

init[1] <- 0.167; init[2] <- 0.167; init[3] <- 0.167; init[4] <- 0.167; init[5] <- 0.167; init[6] <- 0.167;
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# Prior distributions:

tau~dgamma(0.001,0.001) #prior for 1/sigma^2 with \alpha and \beta=0.001

sigma<-1/sqrt(tau)

lambda.prime~dnorm(0.0,1.0E-6) #prior for \lambda’ with \tau_5=1.0E-6

lambda<-20/120*exp(lambda.prime)/(exp(lambda.prime)+1) #back-transform for lambda

log.Q~dnorm(0.0,1.0E-6) #prior for log(Q) with \tau_2=1.0E-6

Q<-exp(log.Q)

for(j in 1:5){

log.R[j]~dnorm(0.0,1.0E-6) #prior for log(R[j]) with \tau_3=1.0E-6

R[j]<-exp(log.R[j])

}

theta~dnorm(0.0,1.0E-6) #prior for \theta with \tau_4=1.0E-6

}





Appendix D

Simulation results of the

shape model for enzymatically
18O-labeled mass spectra
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Table D.1: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for Q.

M2 Q λτ R b̄(×1e − 2) Semp/Smb(×1e − 2) MSE(×1e − 3)

Shape Stick Shape Stick Shape Stick

4.8 E1 -10.38 -14.94 2.156/2.279 3.099/3.713 3.159 6.541

0.5 E2 -7.761 -13.67 2.061/2.216 3.162/3.406 1.931 5.669

9.6 E1 -1.867 -2.547 1.132/1.413 2.260/2.476 0.215 0.673

0σs E2 -1.647 -2.142 1.090/1.218 1.855/2.200 0.187 0.459

4.8 E1 -0.311 -0.345 3.612/3.664 6.317/7.079 1.343 4.039

2 E2 -0.588 -0.231 2.951/3.174 5.797/6.041 1.009 3.382

9.6 E1 -0.052 0.091 3.335/3.975 5.680/5.904 1.113 3.230

E2 -0.183 0.428 2.797/2.876 4.812/5.117 0.796 2.389

4.8 E1 -2.913 -16.55 1.169/1.215 1.875/2.276 0.349 7.200

0.5 E2 -3.349 -16.61 1.065/1.159 1.590/2.006 0.394 7.152

9.6 E1 1.098 -5.372 1.024/1.357 2.154/2.623 0.135 1.185

1.5σs E2 0.159 -5.772 0.891/1.213 1.894/2.432 0.080 1.191

4.8 E1 -0.065 -9.800 2.779/2.787 5.456/5.969 0.774 41.40

2 E2 -0.350 -8.59 2.229/2.258 4.960/4.965 0.546 32.01

9.6 E1 0.020 -0.263 2.474/2.493 4.228/5.456 0.613 1.815

E2 -0.021 0.512 2.175/2.261 3.412/4.956 0.473 1.269

4.8 E1 1.274 -17.49 1.036/1.516 2.062/2.404 0.148 8.076

0.5 E2 0.631 -17.19 0.914/1.351 1.617/2.212 0.094 7.652

9.6 E1 2.830 -6.758 0.960/1.301 2.509/2.957 0.292 1.772

3σs E2 1.867 -6.341 0.807/1.019 1.789/2.817 0.152 1.325

4.8 E1 -0.130 -12.38 2.367/2.411 4.618/5.377 0.567 63.42

2 E2 -0.072 -10.84 1.939/2.000 3.910/4.453 0.378 48.53

9.6 E1 0.056 -0.735 2.252/2.410 4.217/6.031 0.508 1.994

E2 -0.089 -0.272 1.719/1.981 3.843/5.390 0.299 1.507
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Table D.2: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for λτ .

M2 Q λτ R b̄(×1e − 2) Semp/Smb(×1e − 2) MSE

Shape Stick Shape Stick Shape Stick

4.8 E1 18.68 52.93 39.51/39.83 226.5/355.5 0.960 11.58

0.5 E2 18.19 46.59 35.55/37.27 195.9/241.2 0.889 8.839

9.6 E1 0.758 5.172 53.21/53.88 272.5/215.6 0.288 7.672

0σs E2 1.985 14.91 67.24/73.56 370.8/557.2 0.488 15.79

4.8 E1 -0.756 -0.643 7.610/8.794 14.04/14.92 0.007 0.021

2 E2 -0.452 0.326 7.298/7.605 14.24/14.76 0.006 0.021

9.6 E1 -4.816 -0.324 38.88/54.20 167.7/272.9 0.365 2.813

E2 -2.819 0.047 38.95/55.23 143.3/194.9 0.225 2.054

4.8 E1 4.587 316.7 31.28/40.33 0.00007/0.005 0.146 231.0

0.5 E2 6.751 316.7 32.00/33.06 0.00008/0.006 0.207 231.0

9.6 E1 1.472 108.3 55.63/67.21 0.0001/0.005 0.330 108.2

1.5σs E2 1.002 108.3 48.08/68.54 0.0001/0.005 0.240 108.2

4.8 E1 0.725 75.22 6.115/7.358 90.05/100.0 0.005 13.85

2 E2 1.069 77.54 5.685/6.646 87.07/92.38 0.006 14.61

9.6 E1 -3.427 108.3 44.47/44.95 0.00007/0.005 0.306 108.2

E2 -1.806 108.3 41.58/43.18 0.0001/0.006 0.203 108.2

4.8 E1 5.003 316.7 15.78/59.25 0.00004/0.004 0.083 231.0

0.5 E2 4.675 316.7 14.21/62.75 0.00008/0.005 0.071 231.0

9.6 E1 -7.310 108.3 55.15/56.07 0.0001/0.005 0.797 108.2

3σs E2 -4.986 108.3 63.07/79.66 0.0002/0.007 0.627 108.2

4.8 E1 -0.392 130.7 5.581/6.850 205.2/567.3 0.003 43.58

2 E2 -0.246 129.9 5.358/5.931 219.8/432.8 0.003 43.69

9.6 E1 -6.251 108.3 31.29/38.15 0.00006/0.004 0.458 108.2

E2 -5.320 108.3 29.85/36.51 0.00008/0.005 0.350 108.2
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Table D.3: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for R2.

M2 Q λτ R b̄(×1e − 3) Semp/Smb(×1e − 2) MSE(×1e − 3)

Shape Stick Shape Stick Shape Stick

4.8 E1 1.803 -36.89 2.049/2.267 3.448/4.082 0.423 2.486

0.5 E2 2.430 -48.70 2.527/2.588 4.293/5.008 0.648 5.673

9.6 E1 3.732 -35.56 1.994/2.395 3.443/4.000 0.411 2.391

0σs E2 3.470 -48.83 2.497/2.565 3.823/4.740 0.643 5.312

4.8 E1 1.520 -42.58 1.384/1.467 2.490/2.641 0.194 2.348

2 E2 1.941 -46.41 1.603/1.674 2.700/3.070 0.263 4.207

9.6 E1 2.684 -35.43 1.230/1.316 2.028/2.342 0.158 1.608

E2 1.586 -40.50 1.485/1.562 2.492/2.735 0.225 3.270

4.8 E1 3.590 -19.16 2.059/2.253 3.523/4.665 0.436 1.591

0.5 E2 0.677 -30.48 2.257/2.439 4.329/6.036 0.510 3.374

9.6 E1 2.685 -13.29 2.074/2.346 3.818/5.076 0.437 1.626

1.5σs E2 -0.431 -15.46 2.256/2.516 4.573/6.729 0.509 2.477

4.8 E1 1.010 -20.73 1.343/1.742 2.195/2.608 0.182 0.891

2 E2 -0.917 -38.55 1.457/1.469 2.569/2.867 0.214 3.059

9.6 E1 1.053 4.062 1.198/1.121 2.306/2.786 0.145 0.548

E2 2.036 12.59 1.324/1.497 2.759/3.588 0.182 1.017

4.8 E1 8.092 -10.85 1.993/2.187 3.521/5.243 0.541 1.352

0.5 E2 5.240 -16.40 2.353/2.366 4.954/7.236 0.598 2.889

9.6 E1 6.374 2.507 1.811/2.153 3.758/6.119 0.367 1.418

3σs E2 6.954 14.24 2.340/2.403 4.983/8.632 0.626 2.811

4.8 E1 4.173 0.831 1.177/1.226 2.416/2.693 0.155 0.584

2 E2 0.943 -15.06 1.494/1.438 2.862/2.948 0.225 1.185

9.6 E1 3.218 36.58 1.151/1.120 2.139/3.213 0.143 1.733

E2 3.251 47.55 1.149/1.296 3.192/4.268 0.149 4.670
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Table D.4: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for R3.

M2 Q λτ R b̄(×1e − 2) Semp/Smb(×1e − 2) MSE(×1e − 4)

Shape Stick Shape Stick Shape Stick

4.8 E1 7.823 10.76 2.049/2.416 3.512/3.838 29.15 59.57

0.5 E2 4.229 6.596 2.324/2.639 4.107/4.571 19.48 51.11

9.6 E1 3.680 4.803 1.549/2.001 2.791/3.214 7.921 17.19

0σs E2 2.215 2.828 2.126/2.188 3.866/3.912 8.383 21.24

4.8 E1 0.457 -1.085 1.162/1.248 2.353/2.478 1.436 6.018

2 E2 0.472 -1.281 1.405/1.406 2.668/2.850 2.151 8.410

9.6 E1 0.219 -1.308 1.010/1.077 1.745/1.906 1.391 3.742

E2 0.274 -1.251 1.167/1.981 2.223/2.221 1.421 6.173

4.8 E1 3.917 5.951 1.820/1.924 3.024/3.695 9.568 23.58

0.5 E2 2.046 4.513 2.007/2.066 3.867/5.011 7.324 30.98

9.6 E1 2.283 6.558 1.416/1.987 3.244/4.082 4.131 28.06

1.5σs E2 1.111 6.303 1.766/2.095 4.151/5.680 4.089 48.50

4.8 E1 0.214 -6.346 0.122/1.588 1.820/2.055 1.497 19.73

2 E2 0.089 -7.331 1.366/1.405 2.200/2.258 1.872 47.14

9.6 E1 0.404 -0.941 0.926/0.951 1.635/2.144 0.924 3.034

E2 0.191 -0.062 1.095/1.175 2.358/2.788 1.228 5.561

4.8 E1 1.957 6.370 1.609/1.700 3.100/4.261 4.153 26.15

0.5 E2 1.188 5.908 1.821/1.958 4.679/6.126 4.429 49.37

9.6 E1 1.806 9.054 1.454/1.835 3.691/4.892 3.443 47.05

3σs E2 1.342 10.08 1.761/1.994 4.539/7.132 4.521 100.5

4.8 E1 0.550 -5.211 1.076/1.134 1.805/2.041 1.280 14.33

2 E2 0.065 -6.517 1.344/1.312 2.120/2.245 1.809 37.93

9.6 E1 0.356 -0.104 0.880/0.963 1.661/2.419 0.826 2.763

E2 0.367 1.706 1.003/1.092 2.391/3.189 1.113 8.009
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Table D.5: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for R4.

M2 Q λτ R b̄(×1e − 2) Semp/Smb(×1e − 2) MSE(×1e − 4)

Shape Stick Shape Stick Shape Stick

4.8 E1 17.90 20.91 1.554/1.613 2.537/2.750 33.71 49.12

0.5 E2 11.63 13.78 2.025/2.154 3.477/3.323 30.64 49.36

9.6 E1 9.944 9.369 1.221/1.692 2.048/2.141 11.15 12.77

0σs E2 6.104 4.429 1.502/1.668 2.556/2.552 9.569 10.38

4.8 E1 1.712 -0.262 0.826/1.025 1.577/2.503 0.968 2.493

2 E2 1.274 -1.247 1.026/1.069 1.869/1.948 1.371 3.800

9.6 E1 1.504 0.485 0.719/0.822 1.344/2.284 0.738 1.829

E2 0.767 -1.098 0.828/0.876 1.576/2.479 0.801 2.722

4.8 E1 10.76 8.331 1.237/1.616 1.881/2.574 12.83 10.31

0.5 E2 6.405 4.394 1.271/1.626 2.4483.245 9.669 9.785

9.6 E1 8.339 7.998 1.044/1.700 2.195/2.708 7.879 11.07

1.5σs E2 4.849 5.599 1.271/1.651 2.762/3.689 6.232 13.78

4.8 E1 1.216 3.125 0.813/0.936 1.526/2.484 0.805 3.283

2 E2 0.329 -1.785 0.930/0.965 1.649/2.597 0.886 3.344

9.6 E1 1.532 -2.322 0.728/0.808 1.285/1.457 0.759 2.178

E2 0.935 -2.001 0.838/0.843 1.630/1.877 0.874 3.443

4.8 E1 5.285 7.798 1.178/1.454 2.334/2.839 4.115 11.39

0.5 E2 2.958 4.657 1.320/1.540 3.153/3.938 3.461 14.20

9.6 E1 6.142 11.26 1.108/1.584 2.287/3.248 4.912 17.60

3σs E2 3.383 9.425 1.300/1.599 3.175/4.588 3.936 27.52

4.8 E1 1.446 4.524 0.714/0.919 1.438/1.465 0.715 4.066

2 E2 0.805 -1.608 0.845/0.970 1.478/1.573 0.841 2.691

9.6 E1 1.565 -0.807 0.652/0.819 1.302/1.624 0.664 1.760

E2 0.863 0.750 7.987/8.592 1.773/2.176 0.784 3.256



319

Table D.6: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for R5.

M2 Q λτ R b̄(×1e − 2) Semp/Smb(×1e − 2) MSE(×1e − 4)

Shape Stick Shape Stick Shape Stick

4.8 E1 20.66 45.41 1.259/1.775 2.323/2.405 8.337 38.01

0.5 E2 12.35 35.06 1.506/1.956 2.673/2.683 6.938 44.78

9.6 E1 13.20 33.35 1.188/1.891 2.023/2.264 4.168 21.6

0σs E2 8.593 22.00 1.267/1.628 2.579/3.491 3.868 21.47

4.8 E1 6.111 8.974 0.667/1.143 1.079/1.300 1.035 2.438

2 E2 4.480 3.263 0.768/1.226 1.268/2.200 1.205 1.933

9.6 E1 4.375 6.013 0.566/0.926 0.931/0.948 0.623 1.438

E2 2.826 2.743 0.695/0.970 1.149/2.099 0.727 1.551

4.8 E1 13.35 15.65 0.822/1.56 2.146/3.106 3.494 8.482

0.5 E2 8.827 6.551 0.998/1.788 2.200/4.065 3.383 6.156

9.6 E1 12.21 18.65 0.797/1.509 2.194/3.208 2.993 10.32

1.5σs E2 7.042 8.016 0.873/2.107 3.182/4.724 2.282 12.09

4.8 E1 0.753 4.763 0.520/0.976 1.028/1.039 0.279 1.415

2 E2 -0.115 -1.967 0.659/0.942 1.186/1.172 0.434 1.526

9.6 E1 0.365 6.681 0.503/0.833 0.980/1.236 0.255 1.667

E2 0.784 3.876 0.700/0.822 1.188/1.537 0.509 1.872

4.8 E1 12.87 14.53 0.710/1.668 2.536/3.990 3.125 9.771

0.5 E2 8.353 2.883 0.862/1.604 3.273/5.452 2.879 10.96

9.6 E1 12.43 21.15 0.655/1.481 2.795/4.020 2.873 14.88

3σs E2 8.507 13.67 0.814/1.806 3.797/5.744 2.880 20.14

4.8 E1 3.975 4.669 0.538/0.907 0.990/1.062 0.539 1.324

2 E2 2.562 -2.192 0.636/0.896 1.271/1.815 0.606 1.763

9.6 E1 3.416 9.313 0.444/0.791 0.923/1.351 0.382 2.224

E2 2.746 5.065 0.549/0.804 1.300/1.797 0.532 2.477
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Table D.7: Mean relative bias b̄, empirical standard error Semp, model based standard error

Smb and mean squared error MSE for both the stick and shape models for R6.

M2 Q λτ R b̄ Semp/Smb(×1e − 2) MSE(×1e − 4)

Shape Stick Shape Stick Shape Stick

4.8 E1 0.266 0.930 0.605/1.522 1.301/1.529 1.691 17.87

0.5 E2 0.193 0.805 0.772/3.595 1.566/1.622 1.835 23.97

9.6 E1 0.207 0.796 0.574/1.242 1.166/1.475 1.313 13.20

0σs E2 0.166 0.673 0.638/2.091 1.212/1.651 1.322 16.49

4.8 E1 0.127 0.352 0.368/2.835 0.711/0.737 0.437 2.826

2 E2 0.104 0.278 0.401/0.794 0.785/0.850 0.519 3.174

9.6 E1 0.103 0.304 0.316/0.794 0.605/0.621 0.299 2.099

E2 0.078 0.232 0.378/1.270 0.707/0.712 0.346 2.285

4.8 E1 0.211 0.755 0.417/2.356 1.144/1.836 1.003 11.97

0.5 E2 0.152 0.674 0.521/2.982 1.399/2.069 1.039 17.01

9.6 E1 0.197 0.823 0.464/1.686 1.200/1.749 0.937 14.11

1.5σs E2 0.128 0.743 0.504/2.958 1.413/2.170 0.800 20.32

4.8 E1 0.045 0.273 0.305/1.145 0.623/0.664 0.131 1.800

2 E2 0.023 0.182 0.382/0.949 0.740/0.769 0.163 1.651

9.6 E1 0.041 0.353 0.308/0.941 0.649/0.920 0.126 2.752

E2 0.020 0.283 0.358/0.828 0.692/1.183 0.141 3.142

4.8 E1 0.202 0.816 0.374/2.245 1.310/1.916 0.905 14.17

0.5 E2 0.167 0.689 0.478/2.655 1.670/2.376 1.157 18.52

9.6 E1 0.185 0.923 0.401/2.574 1.294/1.918 0.801 17.61

3σs E2 0.146 0.826 0.464/3.374 1.511/2.072 0.924 24.91

4.8 E1 0.077 0.305 0.302/0.951 0.590/0.700 0.203 2.091

2 E2 0.054 0.215 0.373/0.884 0.663/0.806 0.235 1.975

9.6 E1 0.055 0.398 0.291/0.829 0.663/1.021 0.142 3.403

E2 0.043 0.348 0.361/0.790 0.901/1.690 0.192 4.833
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Table D.8: Mean estiamtes µ̄, mean relative bias b̄, empirical standard error Semp and

model based standard error Smb for both the stick and shape models for M1.

M2 Q True λτ R µ̄ b̄ (×1e − 7) Semp/Smb (×1e − 4)

Shape Shape Shape

4.8 E1 2001.053 2001.0534 2.012 8.959/9.970

0.5 E2 2001.053 2001.0533 1.371 7.829/9.579

9.6 E1 2001.053 2001.0533 1.691 9.117/11.33

0σs E2 2001.053 2001.0533 1.569 8.420/8.976

4.8 E1 2001.053 2001.0533 1.507 7.316/8.434

2 E2 2001.053 2001.0531 0.733 6.051/6.893

9.6 E1 2001.053 2001.0532 0.929 7.776/8.586

E2 2001.053 2001.0531 0.728 6.447/7.147

4.8 E1 2001.053 2001.0532 1.184 9.461/11.59

0.5 E2 2001.053 2001.0532 1.051 8.295/12.56

9.6 E1 2001.053 2001.0535 2.486 9.226/12.44

1.5σs E2 2001.053 2001.0533 1.392 8.516/19.20

4.8 E1 2001.053 2001.0534 1.808 7.486/9.296

2 E2 2001.053 2001.0533 1.549 6.909/7.740

9.6 E1 2001.053 2001.0532 1.156 7.995/8.954

E2 2001.053 2001.0532 1.012 6.515/7.569

4.8 E1 2001.053 2001.0538 3.750 8.632/8.930

0.5 E2 2001.053 2001.0537 3.553 7.679/10.52

9.6 E1 2001.053 2001.0539 4.412 9.128/10.14

3σs E2 2001.053 2001.0538 3.838 8.465/11.02

4.8 E1 2001.053 2001.0531 0.667 7.713/11.21

2 E2 2001.053 2001.0531 0.446 6.848/8.571

9.6 E1 2001.053 2001.0532 0.846 8.258/10.39

E2 2001.053 2001.0533 1.301 6.692/8.512
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Table D.9: Mean estiamtes µ̄, mean relative bias b̄, empirical standard error Semp and

model based standard error Smb for both the stick and shape models for M2.

M2 Q True λτ R µ̄ b̄(×1e − 7) Semp/Smb(×1e − 4)

Shape Shape Shape

4.8 E1 2005.059 2005.0594 1.787e 14.43/19.46

0.5 E2 2005.059 2005.0592 0.754 13.58/16.74

9.6 E1 2005.059 2005.0590 -0.032 13.81/18.77

0σs E2 2005.059 2005.0593 1.447 13.59/15.30

4.8 E1 2005.059 2005.0592 0.924 6.361/7.553

2 E2 2005.059 2005.0592 0.850 5.235/6.237

9.6 E1 2005.059 2005.0592 1.130 5.854/6.986

E2 2005.059 2005.0591 0.411 5.497/5.865

4.8 E1 2005.179 2005.1784 -3.104 14.64/18.78

0.5 E2 2005.179 2005.1785 -2.349 12.51/15.30

9.6 E1 2005.179 2005.1789 -0.509 12.84/19.52

1.5σs E2 2005.179 2005.1790 -0.131 11.15/18.26

4.8 E1 2005.179 2005.1792 1.209 5.359/6.688

2 E2 2005.179 2005.1791 0.698 4.773/5.676

9.6 E1 2005.179 2005.1793 1.363 5.666/6.582

E2 2005.179 2005.1792 1.008 4.705/5.859

4.8 E1 2005.299 2005.3007 8.532 12.54/14.96

0.5 E2 2005.299 2005.3005 7.305 10.06/14.25

9.6 E1 2005.299 2005.3009 9.599 13.46/15.95

3σs E2 2005.299 2005.3008 8.943 12.05/13.59

4.8 E1 2005.299 2005.2995 2.562 5.367/7.525

2 E2 2005.299 2005.2995 2.403 4.614/7.048

9.6 E1 2005.299 2005.2997 3.577 5.532/7.667

E2 2005.299 2005.2997 3.266 4.667/7.407
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Table D.10: Mean estiamtes µ̄, mean relative bias b̄, empirical standard error Semp and

model based standard error Smb for both the stick and shape models for κ.

M2 Q True λτ R µ̄ b̄(×1e − 3) Semp/Smb(×1e − 3)

Shape Shape Shape

4.8 E1 0.75 0.7550 6.699 5.797/9.803

0.5 E2 0.75 0.7538 5.005 5.870/9.774

9.6 E1 0.75 0.7554 7.212 6.746/10.77

0σs E2 0.75 0.7546 6.075 6.103/8.859

4.8 E1 0.75 0.7535 4.607 4.707/9.738

2 E2 0.75 0.7528 3.716 4.382/6.884

9.6 E1 0.75 0.7528 3.739 5.105/8.467

E2 0.75 0.7513 1.697 4.500/6.515

4.8 E1 0.75 0.7511 1.503 7.902/11.10

0.5 E2 0.75 0.7497 -0.390 6.667/13.67

9.6 E1 0.75 0.7553 7.055 6.885/10.18

1.5σs E2 0.75 0.7537 4.892 5.959/21.45

4.8 E1 0.75 0.7550 6.725 5.120/9.105

2 E2 0.75 0.7530 4.016 4.848/7.862

9.6 E1 0.75 0.7548 6.381 5.629/8.028

E2 0.75 0.7531 4.074 4.435/7.257

4.8 E1 0.75 0.7493 -0.904 7.636/14.85

0.5 E2 0.75 0.7490 -1.315 6.176/19.26

9.6 E1 0.75 0.7557 7.664 7.339/13.01

3σs E2 0.75 0.7542 5.590 7.339/18.26

4.8 E1 0.75 0.7519 2.517 5.683/8.901

2 E2 0.75 0.7512 1.580 4.208/7.472

9.6 E1 0.75 0.7526 3.472 5.934/8.105

E2 0.75 0.7524 3.236 4.914/6.983
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Table D.11: Mean estiamtes µ̄, mean relative bias b̄, empirical standard error Semp and

model based standard error Smb for both the stick and shape models for σs.

M2 Q True λτ R µ̄ b̄ Semp/Smb (×1e − 3)

Shape Shape Shape

4.8 E1 0.08 0.0889 0.111 1.253/1.569

0.5 E2 0.08 0.0870 0.088 1.014/1.248

9.6 E1 0.08 0.0891 0.113 0.979/1.647

0σs E2 0.08 0.0872 0.090 1.032/1.065

4.8 E1 0.08 0.0841 0.051 0.723/1.729

2 E2 0.08 0.0831 0.039 0.609/2.643

9.6 E1 0.08 0.0839 0.049 0.698/1.333

E2 0.08 0.0829 0.037 0.596/2.630

4.8 E1 0.08 0.0899 0.123 1.244/1.245

0.5 E2 0.08 0.0878 0.098 1.085/1.224

9.6 E1 0.08 0.0895 0.119 1.182/1.394

1.5σs E2 0.08 0.0875 0.093 1.121/1.402

4.8 E1 0.08 0.0844 0.055 0.814/1.426

2 E2 0.08 0.0834 0.043 0.631/3.568

9.6 E1 0.08 0.0840 0.050 0.779/1.642

E2 0.08 0.0831 0.038 0.588/2.687

4.8 E1 0.08 0.0885 0.106 1.195/1.337

0.5 E2 0.08 0.0868 0.085 0.991/1.167

9.6 E1 0.08 0.0884 0.105 1.283/1.392

3σs E2 0.08 0.0868 0.084 0.960/1.039

4.8 E1 0.08 0.0837 0.047 0.817/2.702

2 E2 0.08 0.0828 0.035 0.588/2.187

9.6 E1 0.08 0.0836 0.045 0.767/2.482

E2 0.08 0.0827 0.034 0.674/2.020
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Table D.12: Mean estiamtes µ̄, mean relative bias b̄, empirical standard error Semp and

model based standard error Smb for both the stick and shape models for S.

M2 Q True λτ R µ̄ b̄(×1e − 5) Semp/Smb(×1e − 4)

Shape Shape Shape

4.8 E1 1.0015 1.0014 -5.306 5.160/8.717

0.5 E2 1.0015 1.0015 -3.025 4.838/5/119

9.6 E1 1.0015 1.0015 0.541 5.473/6.943

0σs E2 1.0015 1.0015 -3.005 4.695/5.922

4.8 E1 1.0015 1.0015 -1.200 3.485/6.706

2 E2 1.0015 1.0015 -2.473 3.232/4.970

9.6 E1 1.0015 1.0015 -2.376 3.340/6.615

E2 1.0015 1.0015 -3.850 2.894/4.731

4.8 E1 1.0015 1.0019 42.42 5.341/6.971

0.5 E2 1.0015 1.0018 26.64 4.953/5.137

9.6 E1 1.0015 1.0016 13.78 5.445/5.793

1.5σs E2 1.0015 1.0015 4.505 4.598/4.785

4.8 E1 1.0015 1.0015 -3.395 2.982/3.999

2 E2 1.0015 1.0015 -3.439 2.479/3.097

9.6 E1 1.0015 1.0014 -5.295 3.065/4.196

E2 1.0015 1.0014 -7.566 2.555/2.605

4.8 E1 1.0015 1.0006 -86.22 4.370/13.83

0.5 E2 1.0015 1.0008 -71.16 3.946/13.23

9.6 E1 1.0015 1.0007 -82.27 4.840/5.396

3σs E2 1.0015 1.0008 -66.24 3.914/6.649

4.8 E1 1.0015 1.0010 -46.60 2.836/4.355

2 E2 1.0015 1.0012 -33.38 2.509/5.072

9.6 E1 1.0015 1.0010 -47.82 3.012/5.425

E2 1.0015 1.0011 -37.40 2.536/3.208
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Table D.13: Mean relative bias b̄, empirical standard error Semp, model based standard

error Smb and mean squared error MSE for both the stick and shape models

for σ.

M2 Q λτ R b̄ Semp/Smb MSE

Shape Shape Shape

4.8 E1 -0.221 1.757/1.960 14.09

0.5 E2 -0.049 1.587/1.690 3.068

9.6 E1 -0.258 1.851/2.128 18.38

0σs E2 -0.091 1.691/2.116 4.713

4.8 E1 0.355 1.830/2.248 31.65

2 E2 0.530 1.867/2.242 66.74

9.6 E1 0.478 2.193/2.766 56.27

E2 0.662 2.042/2.497 0.010

4.8 E1 -0.256 1.744/1.972 17.75

0.5 E2 -0.092 1.580/1.898 4.382

9.6 E1 -0.275 1.904/2.474 20.69

1.5σs E2 -0.088 1.663/1.851 4.442

4.8 E1 0.301 1.954/2.149 24.54

2 E2 0.529 1.800/1.898 66.29

9.6 E1 0.439 1.945/2.146 47.13

E2 0.699 2.188/2.399 0.011

4.8 E1 -0.125 1.611/2.537 6.094

0.5 E2 0.009 1.617/2.584 2.631

9.6 E1 -0.196 1.851/2.510 12.08

3σs E2 -0.039 1.607/2.571 2.928

4.8 E1 0.352 1.748/1.948 30.92

2 E2 0.575 1.994/2.437 78.32

9.6 E1 0.397 1.948/1.956 39.21

E2 0.659 2.475/2.475 0.010
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Table D.14: Mean relative bias b̄, empirical standard error Semp, model based standard

error Smb and mean squared error MSE for both the stick and shape models

for a.

M2 Q λτ R b̄(×1e − 2) Semp/Smb MSE(×1e − 2)

Shape Shape Shape

4.8 E1 5.145 0.284/0.320 14.68

0.5 E2 0.369 0.209/0.323 4.388

9.6 E1 6.567 0.288/0.343 19.06

0σs E2 1.812 0.231/0.320 6.173

4.8 E1 -5.870 0.166/0.311 11.38

2 E2 -8.427 0.154/0.339 20.11

9.6 E1 -7.983 0.185/0.305 19.36

E2 -10.06 0.151/0.330 27.56

4.8 E1 6.224 0.305/0.325 18.98

0.5 E2 1.400 0.211/0.325 4.953

9.6 E1 8.061 0.352/0.325 28.66

1.5σs E2 1.779 0.226/0.333 5.882

4.8 E1 -5.296 0.185/0.314 10.43

2 E2 -8.737 0.141/0.342 21.08

9.6 E1 -7.338 0.168/0.305 16.28

E2 -10.67 0.159/0.343 30.97

4.8 E1 0.562 0.219/0.321 4.882

0.5 E2 -1.939 0.202/0.322 5.002

9.6 E1 4.535 0.294/0.323 13.81

3σs E2 0.235 0.208/0.323 4.337

4.8 E1 -6.568 0.162/0.338 13.41

2 E2 -9.545 0.149/0.355 24.98

9.6 E1 -6.390 0.177/0.315 13.35

E2 -10.01 0.170/0.332 27.91
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Table D.15: Mean relative bias b̄, empirical standard error Semp, model based standard

error Smb and mean squared error MSE for both the stick and shape models

for b.

M2 Q λτ R b̄ Semp/Smb(×1e − 2) MSE(×1e − 2)

Shape Shape Shape

4.8 E1 0.175 4.482/6.525 0.964

0.5 E2 0.221 4.056/5.107 1.390

9.6 E1 0.160 6.007/9.352 1.001

0σs E2 0.206 4.004/4.756 1.225

4.8 E1 0.250 3.534/4.850 1.689

2 E2 0.254 3.595/6.761 1.740

9.6 E1 0.263 3.962/4.859 1.887

E2 0.263 3.314/3.712 1.841

4.8 E1 0.193 4.456/5.700 1.132

0.5 E2 0.234 3.773/4.399 1.507

9.6 E1 0.144 4.850/5.097 0.755

1.5σs E2 0.202 3.854/4.106 1.168

4.8 E1 0.255 3.964/4.950 1.876

2 E2 0.277 3.460/3.788 2.034

9.6 E1 0.248 3.446/4.812 1.657

E2 0.274 3.745/4.977 2.017

4.8 E1 0.269 3.878/4.125 1.963

0.5 E2 0.283 4.094/5.072 2.166

9.6 E1 0.182 4.463/5.043 1.026

3σs E2 0.227 3.720/4.021 1.430

4.8 E1 0.269 3.627/4.666 1.938

2 E2 0.282 3.494/7.479 2.106

9.6 E1 0.236 3.589/4.401 1.522

E2 0.265 4.000/9.927 1.916
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Table D.16: Mean relative bias b̄, empirical standard error Semp, model based standard

error Smb and mean squared error MSE for both the stick and shape models

for c.

M2 Q λτ R b̄ Semp/Smb (×1e − 2) MSE

Shape Shape Shape

4.8 E1 0.129 2.164/3.971 0.338

0.5 E2 0.148 1.899/2.465 0.444

9.6 E1 0.128 8.066/12.61 0.336

0σs E2 0.147 1.786/2.319 0.436

4.8 E1 0.200 1.395/4.406 0.813

2 E2 0.211 1.658/3.412 0.903

9.6 E1 0.206 1.342/1.678 0.861

E2 0.223 1.411/2.403 1.006

4.8 E1 0.129 2.037/2.316 0.335

0.5 E2 0.147 1.878/1.895 0.439

9.6 E1 0.129 2.191/2.555 0.336

1.5σs E2 0.147 1.948/1.993 0.435

4.8 E1 0.193 1.388/1.737 0.756

2 E2 0.211 1.350/1.593 0.901

9.6 E1 0.200 1.324/1.669 0.807

E2 0.223 1.360/3.370 1.007

4.8 E1 0.128 2.133/2.517 0.332

0.5 E2 0.147 1.891/2.598 0.436

9.6 E1 0.129 2.333/3.426 0.336

3σs E2 0.147 1.822/6.048 0.438

4.8 E1 0.189 1.426/2.079 0.724

2 E2 0.209 3.742/4.741 0.882

9.6 E1 0.197 1.232/2.052 0.786

E2 0.219 4.515/8.938 0.977





Appendix E

Simulation results for the Bayesian model

averaging approach to quantify the

overlapping peptides

Tables E.1 to E.4 show the average weights of the 100 simulated data sets for each of the 8 models.
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Table E.1: Weights of the 8 models in settings 1–8 (the ones in bold should receive the largest weight across the 8 models).

ave. weight π̄i

set1 set2 set3 set4 set5 set6 set7 set8

Shift=0 0.1354 0.1818 0.2411 0.0000 1 0.6198 0 0

Shift=1 0.0771 0.0703 0.5780 1.0000 0 0.3802 1 1

Shift=2 0.2482 0.4120 0.0475 0.0000 0 0.0000 0 0

Shift=3 0.2310 0.1668 0.0251 0 0 0.0000 0 0

Shift=4 0.1468 0.1078 0.0128 0 0 0.0000 0 0

Shift=5 0.0706 0.0218 0.0232 0 0 0.0000 0 0

Shift=6 0.0507 0.0223 0.0206 0 0 0.0000 0 0

Shift=7 0.0402 0.0171 0.0499 0 0 0.0000 0 0

Table E.2: Weights of the 8 models in settings 9–16 (the ones in bold should receive the largest weight across the 8 models).

ave. weight π̄i

set9 set10 set11 set12 set13 set14 set15 set16

Shift=0 1 0 1 1 1 0 0.1003 0

Shift=1 0 1 0 0 0 1 0.0895 1

Shift=2 0 0 0 0 0 0 0.4313 0

Shift=3 0 0 0 0 0 0 0.1521 0

Shift=4 0 0 0 0 0 0 0.0897 0

Shift=5 0 0 0 0 0 0 0.0344 0

Shift=6 0 0 0 0 0 0 0.0420 0

Shift=7 0 0 0 0 0 0 0.0607 0
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Table E.3: Weights of the 8 models in the 6 settings (the ones in bold should receive the largest weight across the 8 models).

ave. weight π̄i

set17 set18 set19 set20 set21 set22 set23 set24

Shift=0 0 0.0595 0.9800 0 0 0 0.0000 0

Shift=1 1 0.0076 0.0000 1 0 0 0 0

Shift=2 0 0.9306 0.0198 0 0 0 0 0

Shift=3 0 0.0022 0.0002 0 0 0 0 0

Shift=4 0 0.0001 0.0000 0 1 1.0000 0 0

Shift=5 0 0.0000 0.0000 0 0 0.0000 0.0000 0

Shift=6 0 0.0000 0.0000 0 0 0 1.0000 1

Shift=7 0 0.0000 0.0000 0 0 0 0.0000 0

Table E.4: Weights of the 8 models in the 8 settings (the ones in bold should receive the largest weight across the 8 models).

ave. weight π̄i

set25 set26 set27 set28 set29 set30

Shift=0 0 0 0 0 0 0

Shift=1 0 0 0 0 0 0

Shift=2 0 0 0 0 0 0

Shift=3 0 0 0 0 0 0

Shift=4 1 1 0 0 1 0

Shift=5 0 0 0 0 0 0

Shift=6 0 0 1 1 0 1

Shift=7 0 0 0 0 0 0
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Tables E.5 and E.12 show the summary statistics of model averaging for the 8 settings.

Table E.5: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set1 set2 set3 set4

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
0.9763 1.0157 0.0182/0.0200 0.9763 1.2072 0.0334/0.0338 1.1577 1.2761 0.0560/0.0625 1.1577 1.3685 0.1189/0.1346

R31
0.6385 0.6556 0.0263/0.0281 0.6385 0.7866 0.0416/0.0517 0.6702 0.8031 0.0673/0.0704 0.6702 0.7419 0.0426/0.0468

R41
0.3125 0.3047 0.0233/0.0292 0.3125 0.3470 0.0533/0.0653 0.2586 0.3352 0.0376/0.0403 0.2586 0.2796 0.0082/0.0182

R51
0.1277 0.1111 0.0133/0.0169 0.1277 0.1185 0.0276/0.0295 0.0749 0.1026 0.0143/0.0153 0.0749 0.0932 0.0017/0.0070

M∗

1 2000.90 2000.906 0.0003/0.0004 2000.90 2000.934 0.0003/0.0004 2000.90 2000.900 0.0004/0.0004 2000.90 2000.900 0.0020/0.0023

R22
1.2708 1.1675 0.1673/0.1835 1.2708 1.2461 0.0678/0.0934 1.1577 1.2230 0.0801/0.1196 1.1577 1.1931 0.0265/0.0282

R32
0.8872 0.6633 0.0425/0.0433 0.8872 0.6556 0.0405/0.0425 0.6702 0.6689 0.0166/0.0384 0.6702 0.6947 0.0177/0.0199

R42
0.4431 0.2858 0.0200/0.0204 0.4431 0.2792 0.0198/0.0192 0.2586 0.2774 0.0075/0.0184 0.2586 0.2668 0.0071/0.0084

R52
0.1750 0.0965 0.0075/0.0075 0.1750 0.0958 0.0075/0.0077 0.0749 0.0933 0.0024/0.0070 0.0749 0.0796 0.0030/0.0039

M∗

2 2000.94 2003.714 1.5196/1.6031 2000.94 2003.127 1.2650/1.3378 2001.94 2002.337 1.3033/1.4417 2001.94 2001.942 0.0012/0.0014

σ 10 7.6750 0.2184/0.3275 10 7.7370 0.2882/0.3422 10 7.6530 0.3122/0.3482 10 7.6789 0.2915/0.3413

σs 0.08 0.0815 0.0002/0.0003 0.08 0.0811 0.0002/0.0002 0.08 0.0804 0.0005/0.0006 0.08 0.0797 0.0003/0.0004

S 1.0015 1.0026 0.0006/0.0007 1.0015 1.0023 0.0005/0.0007 1.0015 1.0041 0.0018/0.0020 1.0015 1.0008 0.0007/0.0007

H2/H1 0.2 0.0953 0.0729/0.0738 5 0.0739 0.0683/0.0786 0.2 0.1079 0.0568/0.0620 5 4.7687 0.1586/0.1790
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Table E.6: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set5 set6 set7 set8

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.2708 1.2641 0.0048/0.0060 1.2708 1.1777 0.0602/0.0677 1.1577 1.1589 0.0053/0.0045 1.1577 1.1598 0.0098/0.0126

R31
0.8872 0.8799 0.0042/0.0057 0.8872 0.7574 0.0936/0.0949 0.6702 0.6724 0.0039/0.0054 0.6702 0.6748 0.0082/0.0084

R41
0.4431 0.4373 0.0033/0.0045 0.4431 0.3431 0.0718/0.0728 0.2586 0.2615 0.0033/0.0038 0.2586 0.2652 0.0066/0.0080

R51
0.1750 0.1675 0.0029/0.0036 0.1750 0.1185 0.0286/0.0297 0.0749 0.0798 0.0027/0.0027 0.0749 0.0852 0.0044/0.0046

M∗

1 2000.90 2000.901 0.0004/0.0006 2000.90 2000.958 0.0578/0.0600 2000.90 2000.900 0.0003/0.0003 2000.90 2000.900 0.0005/0.0006

R22
1.1577 1.1677 0.0096/0.0117 1.1577 1.1672 0.0627/0.0643 0.9763 0.9741 0.0083/0.0104 0.9763 0.9746 0.0041/0.0049

R32
0.6702 0.6822 0.0084/0.0107 0.6702 0.6843 0.0104/0.0255 0.6385 0.6365 0.0070/0.0089 0.6385 0.6372 0.0035/0.0049

R42
0.2586 0.2682 0.0066/0.0079 0.2586 0.2769 0.0098/0.0133 0.3125 0.3077 0.0058/0.0074 0.3125 0.3103 0.0029/0.0035

R52
0.0749 0.0877 0.0043/0.0045 0.0749 0.0897 0.0057/0.0065 0.1277 0.1149 0.0048/0.0051 0.1277 0.1231 0.0026/0.0030

M∗

2 2001.06 2001.061 0.0007/0.0009 2001.06 2001.366 0.3824/0.3957 2002.06 2002.060 0.0005/0.0007 2002.06 2002.060 0.0003/0.0004

σ 10 8.0498 0.3195/0.3700 10 16.9136 8.9194/9.4351 10 7.8962 0.2247/0.3060 10 7.9236 0.2280/0.2663

σs 0.08 0.0800 0.0002/0.0003 0.08 0.0959 0.0164/0.0173 0.08 0.0800 0.0003/0.0003 0.08 0.0799 0.0003/0.0002

S 1.0015 1.0010 0.0004/0.0004 1.0015 1.0005 0.0028/0.0030 1.0015 1.0018 0.0004/0.0003 1.0015 1.0018 0.0002/0.0004

H2/H1 0.5 0.4919 0.0076/0.0089 2 1.0602 0.8891/0.9006 0.5 0.4994 0.0040/0.0044 2 2.0028 0.0125/0.0139
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Table E.7: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set9 set10 set11 set12

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.2708 1.2664 0.0046/0.0070 0.9763 0.9760 0.0039/0.0051 1.2708 1.2576 0.0213/0.0280 0.9763 0.9822 0.0060/0.0068

R31
0.8872 0.8816 0.0049/0.0085 0.6385 0.6381 0.0033/0.0041 0.8872 0.8732 0.0191/0.0243 0.6385 0.6452 0.0036/0.0039

R41
0.4431 0.4384 0.0039/0.0068 0.3125 0.3115 0.0029/0.0039 0.4431 0.4287 0.0122/0.0206 0.3125 0.3180 0.0031/0.0036

R51
0.1750 0.1693 0.0032/0.0051 0.1277 0.1251 0.0027/0.0033 0.1750 0.1531 0.0089/0.0100 0.1277 0.1298 0.0028/0.0029

M∗

1 2000.90 2000.901 0.0009/0.0015 2000.90 2000.900 0.0003/0.0003 2000.90 2000.904 0.0225/0.0255 2000.90 2000.899 0.0008/0.0008

R22
0.9763 0.9772 0.0053/0.0076 0.9763 0.9750 0.0039/0.0051 1.1577 1.1614 0.0110/0.0114 1.2708 1.1948 0.0322/0.0361

R32
0.6385 0.6393 0.0039/0.0063 0.6385 0.6382 0.0033/0.0042 0.6702 0.6720 0.0044/0.0044 0.8872 0.8105 0.0243/0.0281

R42
0.3125 0.3128 0.0032/0.0039 0.3125 0.3118 0.0029/0.0036 0.2586 0.2602 0.0033/0.0042 0.4431 0.3726 0.0172/0.0211

R52
0.1277 0.1253 0.0029/0.0040 0.1277 0.1264 0.0027/0.0033 0.0749 0.0797 0.0026/0.0037 0.1750 0.1129 0.0080/0.0094

M∗

2 2001.14 2001.139 0.0007/0.0026 2002.14 2002.140 0.0002/0.0003 2001.14 2001.139 0.0009/0.0017 2001.06 2001.059 0.0025/0.0027

σ 10 9.0796 0.7211/0.7564 10 8.1997 0.2364/0.3047 10 9.2103 0.8431/0.9449 10 8.1329 0.2391/0.3151

σs 0.08 0.0809 0.0007/0.0009 0.08 0.0800 0.0001/0.0002 0.08 0.0815 0.0105/0.0135 0.08 0.0801 0.0003/0.0004

S 1.0015 1.0013 0.0006/0.0011 1.0015 1.0014 0.0002/0.0005 1.0015 1.0012 0.0008/0.0014 1.0015 1.0025 0.0005/0.0006

H2/H1 1 1.0565 0.0516/0.0591 1 1.0013 0.0039/0.0051 2 1.9458 0.0826/0.1039 0.2 0.2112 0.0080/0.0087
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Table E.8: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set13 set14 set15 set16

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
0.9763 0.9963 0.0213/0.0430 1.1577 1.1609 0.0046/0.0053 1.2708 1.2198 0.0288/0.0348 1.1577 1.1757 0.0196/0.0218

R31
0.6385 0.6630 0.0174/0.0257 0.6702 0.6722 0.0041/0.0064 0.8872 0.7701 0.0580/0.0587 0.6702 0.6951 0.0133/0.0156

R41
0.3125 0.3169 0.0129/0.0274 0.2586 0.2605 0.0032/0.0042 0.4431 0.3283 0.0340/0.0457 0.2586 0.2757 0.0094/0.0099

R51
0.1277 0.1100 0.0073/0.0094 0.0749 0.0782 0.0025/0.0027 0.1750 0.1092 0.0257/0.0194 0.0749 0.0926 0.0030/0.0050

M∗

1 2000.90 2000.913 0.0275/0.0449 2000.90 2000.900 0.0004/0.0004 2000.90 2000.913 0.0002/0.0003 2000.90 2000.900 0.0002/0.0003

R22
1.2708 1.2652 0.0234/0.0261 1.1577 1.1713 0.0219/0.0271 1.1577 1.2538 0.1748/0.1903 0.9763 0.9626 0.0320/0.0362

R32
0.8872 0.8616 0.0403/0.0665 0.6702 0.6750 0.0163/0.0163 0.6702 0.6567 0.0418/0.0429 0.6385 0.6297 0.0180/0.0213

R42
0.4431 0.4250 0.0249/0.0288 0.2586 0.2644 0.0113/0.0124 0.2586 0.2799 0.0193/0.0199 0.3125 0.2900 0.0109/0.0112

R52
0.1750 0.1641 0.0143/0.0232 0.0749 0.0896 0.0060/0.0067 0.0749 0.0957 0.0073/0.0074 0.1277 0.1066 0.0057/0.0056

M∗

2 2001.06 2001.061 0.0031/0.0034 2002.06 2002.061 0.0023/0.0024 2000.94 2003.529 1.4493/1.5102 2001.94 2001.941 0.0029/0.0029

σ 10 9.2126 0.3654/0.5509 10 7.6929 0.2209/0.2912 10 7.7018 0.2180/0.2693 10 7.6577 0.2163/0.3582

σs 0.08 0.0813 0.0051/0.0074 0.08 0.0801 0.0002/0.0004 0.08 0.0821 0.0012/0.0016 0.08 0.0800 0.0002/0.0003

S 1.0015 1.0016 0.0007/0.0007 1.0015 1.0015 0.0006/0.0006 1.0015 1.0003 0.0005/0.0007 1.0015 1.0019 0.0004/0.0007

H2/H1 5 4.5715 0.6324/0.9425 0.2 0.1967 0.0040/0.0051 0.5 0.0529 0.2993/0.3132 0.5 0.4815 0.0170/0.0195
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Table E.9: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set17 set18 set19 set20

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.1577 1.3033 0.0612/0.0787 1.2708 1.1234 0.0073/0.0080 1.2708 1.2546 0.0179/0.0197 0.9763 0.9358 0.0217/0.0230

R31
0.6702 0.7720 0.0427/0.0523 0.8872 0.6837 0.0252/0.0307 0.8872 0.8695 0.0195/0.0244 0.6385 0.5961 0.0175/0.0194

R41
0.2586 0.2933 0.0150/0.0158 0.4431 0.2868 0.0173/0.0240 0.4431 0.4297 0.0137/0.0154 0.3125 0.2806 0.0111/0.0132

R51
0.0749 0.0948 0.0067/0.0072 0.1750 0.0977 0.0089/0.0135 0.1750 0.1652 0.0079/0.0124 0.1277 0.1057 0.0065/0.0078

M∗

1 2000.90 2000.900 0.0005/0.0007 2000.90 2000.920 0.0002/0.0003 2000.90 2000.904 0.0015/0.0019 2000.90 2000.900 0.0003/0.0003

R22
0.9763 0.9989 0.0179/0.0228 0.9763 1.1351 0.1034/0.1278 0.9763 0.9885 0.0253/0.0279 0.9763 0.9790 0.0181/0.0209

R32
0.6385 0.6694 0.0178/0.0231 0.6385 0.6749 0.0382/0.0415 0.6385 0.6468 0.0079/0.0098 0.6385 0.6450 0.0164/0.0199

R42
0.3125 0.3255 0.0115/0.0144 0.3125 0.2830 0.0177/0.0187 0.3125 0.3165 0.0089/0.0092 0.3125 0.3213 0.0077/0.0087

R52
0.1277 0.1289 0.0046/0.0044 0.1277 0.0961 0.0070/0.0074 0.1277 0.1268 0.0065/0.0073 0.1277 0.1324 0.0035/0.0042

M∗

2 2001.94 2001.944 0.0017/0.0020 2000.94 2002.815 0.4575/0.7387 2001.06 2001.100 0.0774/0.1076 2001.94 2001.939 0.0011/0.0012

σ 10 7.8860 0.2308/0.3076 10 7.8285 0.3204/0.3687 10 9.3840 0.8085/1.5082 10 7.8591 0.2265/0.2537

σs 0.08 0.0792 0.0004/0.0005 0.08 0.0824 0.0010/0.0012 0.08 0.0816 0.0062/0.0085 0.08 0.0801 0.0002/0.0002

S 1.0015 1.0004 0.0007/0.0009 1.0015 0.9989 0.0034/0.0038 1.0015 1.0004 0.0012/0.0020 1.0015 1.0013 0.0003/0.0005

H2/H1 2 1.8655 0.0586/0.0737 1 0.3820 0.3782/0.4836 1 0.9445 0.0958/0.1373 1 1.0403 0.0209/0.0216
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Table E.10: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set21 set22 set23 set24

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.1577 1.1574 0.0051/0.0060 1.1577 1.1638 0.0200/0.0248 0.9763 0.9766 0.0041/0.0053 0.9763 0.9829 0.0260/0.0308

R31
0.6702 0.6699 0.0034/0.0045 0.6702 0.6742 0.0150/0.0183 0.6385 0.6392 0.0032/0.0035 0.6385 0.6402 0.0182/0.0218

R41
0.2586 0.2593 0.0034/0.0041 0.2586 0.2668 0.0107/0.0109 0.3125 0.3131 0.0027/0.0034 0.3125 0.3227 0.0110/0.0110

R51
0.0749 0.0906 0.0041/0.0046 0.0749 0.0964 0.0011/0.0074 0.1277 0.1308 0.0024/0.0027 0.1277 0.1448 0.0035/0.0062

M∗

1 2000.90 2000.900 0.0004/0.0004 2000.90 2000.900 0.0009/0.0012 2000.90 2000.900 0.0003/0.0003 2000.90 2000.900 0.0012/0.0014

R22
1.1577 1.1993 0.0324/0.0344 1.1577 1.1612 0.0044/0.0055 1.2708 1.2943 0.0207/0.0245 1.2708 1.2726 0.0045/0.0057

R32
0.6702 0.7041 0.0181/0.0210 0.6702 0.6724 0.0033/0.0043 0.8872 0.8988 0.0154/0.0196 0.8872 0.8883 0.0040/0.0048

R42
0.2586 0.2782 0.0104/0.0122 0.2586 0.2602 0.0027/0.0032 0.4431 0.4544 0.0110/0.0112 0.4431 0.4438 0.0032/0.0040

R52
0.0749 0.0939 0.0037/0.0064 0.0749 0.0785 0.0024/0.0028 0.1750 0.1918 0.0032/0.0062 0.1750 0.1783 0.0024/0.0024

M∗

2 2004.94 2004.942 0.0013/0.0016 2004.94 2004.940 0.0003/0.0003 2006.94 2006.940 0.0009/0.0013 2006.94 2006.940 0.0003/0.0004

σ 10 7.8233 0.2760/0.3332 10 7.8989 0.2235/0.2968 10 7.9357 0.2251/0.2872 10 7.9129 0.3160/0.3615

σs 0.08 0.0800 0.0002/0.0002 0.08 0.0800 0.0003/0.0003 0.08 0.0800 0.0002/0.0002 0.08 0.0801 0.0002/0.0002

S 1.0015 1.0015 0.0005/0.0006 1.0015 1.0015 0.0005/0.0005 1.0015 1.0016 0.0005/0.0005 1.0015 1.0015 0.0005/0.0006

H2/H1 0.2 0.1851 0.0041/0.0047 5 4.9978 0.0674/0.0801 0.2 0.1963 0.0027/0.0033 5 5.0197 0.0849/0.1005
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Table E.11: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set25 set26 set27 set28

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.1577 1.1588 0.0041/0.0055 1.1577 1.1596 0.0083/0.0103 1.2708 1.2671 0.0044/0.0058 1.2708 1.2591 0.0088/0.0099

R31
0.6702 0.6706 0.0033/0.0043 0.6702 0.6709 0.0065/0.0083 0.8872 0.8840 0.0037/0.0045 0.8872 0.8758 0.0072/0.0090

R41
0.2586 0.2593 0.0028/0.0036 0.2586 0.2608 0.0054/0.0061 0.4431 0.4403 0.0030/0.0032 0.4431 0.4327 0.0059/0.0069

R51
0.0749 0.0801 0.0028/0.0032 0.0749 0.0870 0.0040/0.0047 0.1750 0.1704 0.0028/0.0030 0.1750 0.1570 0.0054/0.0060

M∗

1 2000.90 2000.900 0.0004/0.0004 2000.90 2000.900 0.0004/0.0005 2000.90 2000.900 0.0002/0.0003 2000.90 2000.900 0.0004/0.0005

R22
0.9763 0.9738 0.0079/0.0095 0.9763 0.9769 0.0039/0.0049 1.1577 1.1534 0.0084/0.0090 1.1577 1.1566 0.0042/0.0049

R32
0.6385 0.6383 0.0065/0.0081 0.6385 0.6395 0.0033/0.0042 0.6702 0.6657 0.0065/0.0068 0.6702 0.6704 0.0033/0.0036

R42
0.3125 0.3109 0.0056/0.0063 0.3125 0.3121 0.0029/0.0031 0.2586 0.2581 0.0054/0.0061 0.2586 0.2587 0.0028/0.0037

R52
0.1277 0.1179 0.0048/0.0055 0.1277 0.1253 0.0027/0.0032 0.0749 0.0836 0.0036/0.0041 0.0749 0.0780 0.0025/0.0027

M∗

2 2005.06 2005.061 0.0006/0.0007 2005.06 2005.060 0.0004/0.0004 2007.06 2007.059 0.0004/0.0005 2007.06 2007.060 0.0002/0.0003

σ 10 8.0878 0.2298/0.3078 10 8.0974 0.2320/0.2952 10 8.2322 0.2416/0.3065 10 8,2474 0.2408/0.2866

σs 0.08 0.0799 0.0002/0.0002 0.08 0.0798 0.0002/0.0002 0.08 0.0801 0.0002/0.0002 0.08 0.0801 0.0002/0.0002

S 1.0015 1.0015 0.0005/0.0005 1.0015 1.0015 0.0002/0.0005 1.0015 1.0016 0.0002/0.0005 1.0015 1.0017 0.0005/0.0005

H2/H1 0.5 0.4991 0.0032/0.0040 2 1.9986 0.0124/0.0156 0.5 0.5016 0.0031/0.0031 2 1.9848 0.0122/0.0139
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Table E.12: Summary statistics of model averaging (mean estimates
¯̂
θ, empirical standard errors σemp) and model based standard

errors σmb.

Parameter set29 set30

TRUE
¯̂
θ σemp/σmb TRUE

¯̂
θ σemp/σmb

R21
1.2708 1.2669 0.0047/0.0056 1.2708 1.2674 0.0046/0.0054

R31
0.8872 0.8838 0.0038/0.0051 0.8872 0.8840 0.0038/0.0044

R41
0.4431 0.4400 0.0032/0.0033 0.4431 0.4402 0.0031/0.0038

R51
0.1750 0.1680 0.0030/0.0037 0.1750 0.1696 0.0029/0.0034

M∗

1 2000.90 2000.900 0.0002/0.0002 2000.90 2000.900 0.0002/0.0003

R22
1.2708 1.2672 0.0047/0.0059 0.9763 0.9753 0.0040/0.0043

R32
0.8872 0.8839 0.0039/0.0043 0.6385 0.6372 0.0034/0.0045

R42
0.4431 0.4397 0.0032/0.0034 0.3125 0.3116 0.0030/0.0034

R52
0.1750 0.1691 0.0029/0.0031 0.1277 0.1244 0.0028/0.0037

M∗

2 2005.14 2005.140 0.0002/0.0002 2007.14 2007.140 0.0002/0.0003

σ 10 8.6752 0.2633/0.3499 10 8.5103 0.2521/0.3422

σs 0.08 0.0802 0.0001/0.0002 0.08 0.0801 0.0001/0.0002

S 1.0015 1.0015 0.0005/0.0005 1.0015 1.0016 0.0005/0.0005

H2/H1 1 1.0013 0.0041/0.0054 1 0.9988 0.0040/0.0045
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