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Chapter 1
Introduction

Within the framework of chemical risk assessment, the handling of concentration data

reported to be below the limit of detection (LOD, left-censored) or between the limit

of detection and the limit of quantification (LOQ, interval-censored) presents interesting

challenges to the statistical analysis of chemical occurrence data. Parametric models for

concentration data play a crucial role in probabilistic food safety exposure assessment

(EFSA, 2010; Hewett and Ganser, 2007; Moy, 2013), and hence the choice of the distri-

bution for such censored data is an important step in the analysis. We will introduce two

case studies on chemical contaminants, more specifically data on Cadmium concentra-

tions. In the first study 42% of the data are left-censored by an LOD; in the second study

almost 18% is left- or interval-censored. The log-normal distribution is a very popular

distribution in this field. Is it a good choice for the two case studies, or should we use

another model? Moreover, can we combine information from multiple models to obtain

even better information on the population underlying the case studies?

In the classical one-sample non-censored goodness-of-fit problem, we observe a random

sample from a population with density function f . As the density function is unknown, we

want to test the null hypothesis that f is equal to a completely specified density function

f0. The specification of this distribution f0 can be based on past studies, prior experience

or claims by previous researchers. This problem, where f0 is completely specified, is called

a simple null hypothesis. However, in most cases the density f0 is not completely specified

and we simply want to test the null hypothesis that the density function f belongs to

some family of distributions Gf , such as the family of normal distributions (where the

mean and variance are not specified). This is called a composite null hypothesis.

Goodness-of-fit tests for censored data have not been studied as extensively as one

1



2 Chapter 1. Introduction

might expect. Hollander and Proschan (1979) present a test for a simple null hypothesis

for right-censored data. This test can be applied for left-censored data by reversing the

order of the observations. The null distribution of this test however is not applicable in the

situation where the parameters of the hypothesized distribution are unknown. Despite this

invalidity, the Hollander-Proschan test is proposed in this setting in the antimicrobial liter-

ature (see e.g. pages 217-220 in Haas et al., 1999). Another test for right-censored data,

based on the Cramér-von Mises test, is proposed by Koziol and Green (1976). Akritas

(1988) proposed a test for a simple and composite null hypothesis for right-censored data.

The test is based on the Pearson statistic and on partitioning the data. A generalization to

interval-censored data is not straightforward. A test for interval-censored data, based on

the Cramér-von Mises statistic and a leveraged bootstrap, was introduced by Ren (2003).

We propose and study a (composite) goodness-of-fit test for censored data. We define

an extended family of distributions with extra flexibility. If we need extra flexibility to

describe the data, then we reject the hypothesis and we conclude that f does not belong

to the family of distributions Gf . We will use the family of semi-nonparametric models

SemiNP (Fenton and Gallant, 1996; Gallant and Nychka, 1987) to describe the flexibility,

and the test is based on the order-selection test of Aerts et al. (1999).

We often select the best model via a model selection criterion, and inference is then

based on that model. However, it is also possible to make formal inferences based on an

entire family of distributions. The conditioning is on all the models in the family instead of

on one best model, and this has advantages. In model averaging (Burnham and Anderson,

2002), the members of the family of distributions are ranked from best to worst. Each

member receives a weight: the better the model, the higher the weight. Based on every

distribution in the family of distributions, we can estimate a parameter of interest. The

model averaged parameter of interest is obtained by weighting the individual estimates.

Model selection and model averaging over a family of fractional polynomials was proposed

and discussed in Faes et al. (2007) and Namata et al. (2008). We will use model averaging

in the context of censored data, for example to model average the distribution function

for a fixed concentration for the Cadmium data and we will perform a simulation study.

In chemical risk assessment, it is also important to determine the quantiles of the

distribution of the concentration data. For a continuous distribution, the p-quantile is

the number η where η = F−1(p). As described above, we can select the best model

from a family of distributions and estimate the quantile in this model. Another possibility

is to compute a model averaged quantile. In this case, there are two ways to carry out

the model averaging, as we could average over the estimates directly, or average over the

distribution function first and invert afterwards. We illustrate both techniques on the

Cadmium data. In a case study on Cesium concentrations, there is an extra uncertainty
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because measurement errors are possible for the limit of detection. We propose a

way to deal with the uncertainty. A simulation study is carried out to investigate the

performance of the two approaches of model averaging.

Mathematical models defined by a system of non-linear differential equations are

widely applied to describe dynamic processes in biology and other fields. For instance,

the SIR model (Susceptible-Infected-Recovered) and accompanying system of differential

equations is one of the basic compartmental models in infectious disease epidemiology,

which is widely used and well suited to model many viral infections in childhood (see e.g.

Hens et al., 2012). In the field of predictive microbiology, mathematical models defined

by differential equations are developed to predict the growth rate of a microorganism pop-

ulation under a set of environmental conditions (see e.g. Barany and Roberts, 1995). Two

case studies are introduced from these fields of infectious disease and microbial growth

modelling. The first dataset concerns 15 concentration measurements of Yersinia ente-

rocolitica, a bacterium causing the yersiniosis disease, a zoonotic disease in humans as

well as animals. Several mathematical models for microbial growth have been proposed in

literature (see e.g. López et al., 2004), but not so much attention has been given to more

data-driven nonparametric and semiparametric approaches. Such flexible models might

indicate local deviations from the parametric model, deviations that might indicate model

misspecification or unexpected patterns that deserve some more attention. Figure 2.4

shows an unexpected decrease of concentrations in the so-called “lag phase” (the initial

phase of no-growth as the cells will only start growing after a certain unknown lag time). Is

it possible to relax the differential equation model so that it follows the data more closely?

On the other hand, growth curves are expected to be monotone globally, and therefore

it would be natural to consider more smooth models constrained to be monotone. And

where and how much would a more flexible model, constrained to be monotone or not,

differ from the global parametric model? Unfortunately, it is not always possible to provide

closed-form solutions for the system and numerical techniques need to be used to solve the

differential equations. Ramsay et al. (2007) describe a method for estimating parameters

in ordinary differential equations that is robust to model misspecification. The approach

is based on a modification of data smoothing methods along with a generalization of

profiled estimation. We briefly describe this generalized profiling estimation procedure

and extend it with an additional penalization term to incorporate shape constraints such

as monotonicity.

The second dataset concerns a seroprevalence survey conducted in Belgium. It is a

sample of 3075 individuals with ages up to 65, tested for Parvovirus B19 IgG antibody
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activity. Figure 2.5 displays the proportion of positive samples per age class, with dots

proportional to the number of samples collected. As seropositivity of an individual of age a

at the time of test indicates that that individual has been infected somewhere in the past,

i.e. in the interval [0,a], the seroprevalence curve is expected to be monotone as a function

of age. Figure 2.5 shows there is an issue of monotonicity, as the seroprevalence shows a

dip around the age of 30 years. Several modeling approaches are discussed in Hens et al.

(2012). Here we follow again the approach of Ramsay et al. (2007) and Hooker et al.

(2011), who applied the generalized profiling methodology to parameterize state-space

models for measles in Ontario. Again, as in the previous example, we focus on the issue

of monotonicity.

As for all smoothing methods, the selection of the smoothing parameter plays a central

role in generalized profiling. Ramsay et al. (2007) considered two rationales for choosing

the amount of smoothing, corresponding to the need for robustness with respect to poor

initial parameter values or model misspecification. They chose the smoothing parameter

manually for their examples, and suggested some algorithms to automate these choices.

Hooker et al. (2011) discussed and illustrated the use of forward cross-validation (CV) or

forward prediction error as an objective way to choose the smoothing parameter. In anal-

ogy with the idea to “move forward and predict” in the forward cross-validation method,

we propose and illustrate the use of one-sided cross-validation. One-sided cross-validation

(OSCV) has been introduced by Hart and Yi (1998) to select the smoothing parameter

in local linear and kernel regression estimation as a method that has the objectivity of CV

and statistical properties comparable to those of a plug-in rule. OSCV is introduced for

generalized profiling and compared to traditional leave-one-out cross-validation (LOOCV).

As mentioned by Hooker et al. (2011), an advantage of the generalized profiling

method is that it provides readily accessible diagnostics for assessing model fit through

visual inspection of different types of plots. There is a huge literature on model

diagnostics and lack-of-fit tests in particular, for different types of regression models and

based on a variety of approaches (see e.g. Hart, 1997; Aerts et al., 1999; Li, 2012). Model

diagnostics and lack-of-fit tests for functions defined by ordinary differential equations

(ODEs) was studied more recently in Hooker and Ellner (2015). Our approach differs

from that of Hooker (2009) and Hooker and Ellner (2015) in that it focuses on the ODE

solution as (conditional) mean of the observed outcomes and by the construction of the

test statistic, being an empirical measure of discrepancy between the parametric and the

semiparametric solution. Bootstrap methodology is proposed for inferential purposes,

more precisely, for the construction of pointwise and simultaneous confidence bands, for

testing lack of fit of a particular parametric model and for testing monotonicity.
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In Chapter 2 we describe the data examples that we will use throughout the thesis.

An overview of various parametric models that are commonly used in the handling of con-

centration data, is given in Chapter 3. We also introduce a family of semi-nonparametric

models. In Chapter 4 we propose and study a goodness-of-fit test of parametric models

for censored data. Model averaging of the distribution function is discussed in Chapter 5.

Chapter 6 focuses on estimating the quantiles. We compare estimates based on a single

parametric model to a model averaged estimate. The final Chapter 7 concerns generalized

profiling estimation procedure for systems of differential equations.





Chapter 2
Data description

This chapter summarizes relevant background information on the data on which the

methods in this dissertation are based.

2.1 Chemical contaminant data

There are a lot of regulations to ensure the safety of the food that we consume everyday.

In Belgium the food producers have developed a system of self control to ensure the quality

and safety of their products. Regular checks and analyses in different parts of the food

chain, are conducted by the federal agency of food safety (FAVV, Federaal Agentschap

voor de Veiligheid van de Voedselketen). On the European level, the European Food Safety

Authority provides independent scientific advice to the decision makers who regulate food

safety in Europe.

The most important risks concerning food safety can be divided into two categories:

microbiological (caused by bacteria, viruses, etc.) and chemical (caused by pesticides,

medication, heavy metals, etc.). In this section, we will deal with the concentration of

Cadmium and Cesium in certain food stuffs.

The parameters limit of detection (LOD) and limit of quantification (LOQ) are of

special importance for exposure estimations in risk assessments as they describe the lower

end of the distribution of occurrence data. The LOD and LOQ are often calculated

on the basis of the response of the analytical instrument. In this way, the limits are

determined through a dilution series of the component in question in a suitable solvent

and by evaluating the observed concentration after injection of a standard solution into the

system, in a sort of controlled process. These are known as instrumental limits. The LOD

represents the minimum concentration or mass of a component that can be detected with

7
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Table 2.1: Cadmium data 1. Summary statistics on Cadmium concentration.

Observed LOD

n 57 42

mean 0.1265 0.0074

variance 0.2954 1.0 × 10−5

min 0.0015 0.0010

max 4.1380 0.0100

a given confidence for a given analytical procedure. Similarly, the LOQ is the minimum

concentration or mass of the component that can be quantified with acceptable accuracy

and precision (Keith et al., 1983).

2.1.1 Cadmium data

The scientific report prepared by a Working Group on Left-Censored Data of the European

Food Safety Authority (EFSA), uses Cadmium level data from several food categories

and different countries to compare different substitution methods, nonparametric and

parametric models. The Cadmium concentrations are obtained in several laboratories,

and different limits of detection or quantification can apply to different laboratories.

We will consider two subsets of the sample. The first subset contains data from the

food category “meat and meat products” from Country A (see Section 4.3.1. in EFSA,

2010) to compare several models. A summary of the data is provided in Table 2.1. The

number of samples is 99, but only 57 report an exact concentration. The remaining 42

values represent an upper bound of the actual Cadmium level, the limit of detection.

The LODs are small and lie in between 0.001 and 0.01, which is in the left tail of the

distribution. This results in left-censored data in the particular area of small concentration

values. As different laboratories may use different LODs, some of the exactly observed

values from one lab can be smaller than the LOD used at another lab.

A visual representation of the data is given in Figure 2.1. On the left is a kernel

density of the logarithm of the concentrations. As noted from Table 2.1, the LODs are

concentrated in the left tail. In the right panel of Figure 2.1 is the Kaplan-Meier estimate,

a frequently used estimator of the survival function in censored data (see introduction of

Chapter 3). The estimator is comparable to the empirical survival function (where survival

function is equal to 1 - distribution function: S = 1−F ), but censored values increase the

jumps for concentrations that are measured below the censored values. In this example a
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Figure 2.1: Cadmium data 1. Kernel density function (left panel: solid line represents uncensored

data, dashed line represents LODs) and Kaplan-Meier estimate of survival function (right panel)

of logarithm of concentrations.

small concentration measured below the LOD of another laboratory.

In Chapter 3 we will fit parametric and semi-nonparametric models to the Cadmium

data 1. Their performance is measured and compared. In Chapter 4 we will perform

a goodness-of-fit test for the log-normal distribution. An estimate for the distribution

function of the Cadmium data 1 and model averages are computed in Chapter 5. Finally,

estimates and model averages for the quantiles of this sample are computed in Chapter 6.

A second sample concerns data from the food category “coffee, tea and cacao” from

Country B. Apart from the left censoring, also interval censoring is present in this data

set. In total there are 114 observations, of which 94 concentrations are measured, while

3 are censored by a limit of detection and 17 are in between a limit of detection and a

limit of quantification.

Data are shown in Figure 2.2, where left-censored values are replaced by LOD/2 and

interval-censored by (LOD+LOQ)/2.

Several models are fit to the Cadmium data 2 in Chapter 3. In Chapter 4 we test

whether this sample comes from a log-normal distribution. Estimates for the distribution

function are computed and are used for model averages in Chapter 5.
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Figure 2.2: Cadmium data 2. Kernel density function of concentrations (left panel, the stan-

dard kernel density estimator does not account for concentrations to be positively valued) and

logarithm of concentrations (right panel). Left-censored values have been replaced by LOD/2

and interval-censored by (LOD+LOQ)/2.
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Figure 2.3: Cesium data. The censored observations are represented by a grey vertical line,

representing the range in which the true unknown value is located, below the LOD value of 10;

on the log10 scale (left panel) and on regular scale cut off at 20 (right panel). The right panel

shows on the right vertical scale a normal distribution at the value of the LOD value of 10,

representing the uncertainty about the true LOD values.

2.1.2 Cesium data

Immediately after the accident at Tokyo Electric Power Company’s Fukushima Daiichi Nu-

clear Power Plant in March 2011, the Government of Japan had taken comprehensive ac-

tions, such as establishing provisional regulatory values, monitoring of foods and materials

for agricultural production, restriction of distribution of food with higher radionuclide levels

than the regulatory values, and decontamination of farm land in order to ensure sufficient

supply of safe foods distributed within Japan as well as for export. In April 2012, new limits

were established for foods on a basis of intervention exemption level of 1 mSv/year (Sievert

or Sv is a derived unit of radiation dose), equivalent to the Codex Standard and monitoring

results accumulated. The data are publicly available on the website of the Japanese Min-

istry of Health (http://www.mhlw.go.jp/english/topics/2011eq/index.html).

We consider a sample of 278 134Cesium measurements in pork meat (excl. wild boar)

at 106 unique points in time, in the prefecture Fukushima. 88% of the measurements is

censored, meaning that the concentration is below a LOD. The LOD is fixed and equal

to 10 across all measurements. The actual LOD values are unknown but are expected to

be “about” 10. A graphical representation of the sample is given in Figure 2.3.

In Chapter 6 we estimate and model average the quantiles. In contrast to the Cadmium

data, there is a time component in this sample and we explain how we can cope with this

component in the analysis. We also deal with the uncertainty about the LOD.
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Table 2.2: Signal Tandmobiel data. Number of observations: interval - right-censored.

sound decayed

Girls 778-447 663-220

Boys 647-630 687-314

2.2 Signal Tandmobiel data

A typical example of time-to-event data comes from the Signal Tandmobiel study. The

study was conducted in Flanders (Belgium) from 1996 to 2001. A cohort of 4430 ran-

domly sampled schoolchildren (2297 boys and 2133 girls) attending the first year of the

primary school at the beginning of the study, was examined annually by one of 16 trained

dentists. From a methodological viewpoint, this data set has already been presented in

Bogaerts and Lesaffre (2004) and in Komarek and Lesaffre (2006; 2007; 2008), among

others. We will restrict analysis to the emergence time distribution of the permanent up-

per left first premolar (tooth 24 in European dental notation). The age of emergence of

the permanent tooth 24, denoted by T , can be interval-censored as well as right-censored,

but is never observed exactly. As suggested in Komarek and Lesaffre (2009), since per-

manent teeth do not emerge before the age of 5, the origin time for all analyses is set at 5

years and T − 5 is taken instead of T throughout. We split the data according to gender

and the status of the primary predecessor of their tooth (0 if sound and 1 if decayed,

missing due to caries or filled), resulting in four subgroups. The number of observations

in each group is given in Table 2.2.

In Chapter 4 we will use a newly proposed goodness-of-fit test to test whether the

data are log-normally distributed.
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Figure 2.4: Y. enterocolitica data. Scatter plot of logarithm of concentration versus time.

2.3 Microbial risk data

The example concerns the concentration of a species of gram-negative coccobacillus-

shaped bacterium Yersinia enterocolitica. The bacteria cause the yersiniosis disease, a

zoonotic disease in humans as well as animals (cattle, pigs, birds). The disease usually

does not require treatment, but for severe infections antibiotics might be needed.

The data are available on the ComBase website (http://www.combase.cc), and the

sample consists of n = 15 measurements at a temperature of 20◦C and pH equal to 7.

The first measurement was done at time 0 and the next after 1, 2, 3 and 4 days. After

the fourth day, the recording was no longer daily. The last concentration was measured

after 37 days (888h). The data are shown in Figure 2.4, with log transformed counts of

Yersinia enterocolitica bacteria on the y-axis.

In Chapter 7 we will use a model, characterized by differential equations, to describe

the Y. enterocolitica data. On the one hand we will allow for deviations from the model;

on the other hand we impose a monotonicity constraint.
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Figure 2.5: Parvovirus B19 data. Proportion of positive samples for every age, with dots

proportional to sample size.

2.4 Serological data

A seroprevalence survey testing for Parvovirus B19 IgG antibody was performed on a large

representative national serum bank in Belgium between November 2001 and March 2003

and in other countries. In this dissertation we only use data from Belgium. Sera of 3080

individuals with ages varying between 0 and 82 year for a total of 71 different ages (in

years) were tested (more details in Hens et al., 2012). As for the highest age groups (66,

71, 78, 79 and 82) only 1 individual was tested (all being positive), these age groups

were excluded from the sample, resulting in n = 66 different age groups. Parvovirus

B19 is the infectious agent of erythema infectiosum, also known as the slapped cheek

syndrome or fifth disease. The disease is usually mild in children and teenagers, but

infection during pregnancy can lead to miscarriage, fetal anemia, etc. The disease is

mainly transmitted through respiratory route, but other transmission rates are reported

as well. The proportion of positive samples per age class is shown in Figure 2.5.

We will use the model of Farrington (1990) to describe the data in Chapter 7, but we

allow for deviations from the model. We will also test whether the model is appropriate.



Chapter 3
Statistical models related to the

log-normal distribution for

censored data

Concentration measurements, such as in the Cadmium or Cesium data, are positively

valued and, often, skewed to the right. A typical way to deal with the skewness is to

use a logarithmic transform of the concentrations, leading to the log-normal distribution

as a natural and convenient option for the concentration data. As family of parametric

models we consider other parametric distributions which are directly related to or are

extensions of the log-normal distribution: the log-skew-normal, the log-t, the log-skew-t,

the Weibull and the gamma distributions. The generalized gamma distribution includes

several of the previously mentioned distributions as special cases. Each of these distribu-

tions will be described briefly. We also consider a family of semi-nonparametric models,

SemiNP (Fenton and Gallant, 1996; Gallant and Nychka, 1987), which will be described

in Section 3.2. For both families we use maximum likelihood theory for censored data.

Instead of using parametric models or a family of semi-nonparametric models, we

could also fit a nonparametric distribution to the data. The Kaplan-Meier estimator is

a frequently used estimator for the survival function of right-censored data. For every

event in the sample, there is a jump in the estimator. There is no jump for a censored

observation, but all following events will have a larger jump. The Kaplan-Meier estimator

15
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is defined as

ŜKM (y) =
∏

j:yj6y

(
n− j

n+ 1 − j

)δj

, (3.1)

where δj = δEj
(see Section 3.3), yj = min{xj , tj}, y1 6 y2 6 . . . 6 yn and in case

of ties the censoring happens instantaneously after an event. Sometimes the survival

function of the censored observations is used, which is defined as

ŜKM,T (y) =
∏

j:yj6y

(
n− j

n+ 1 − j

)1−δj

.

The Kaplan-Meier estimator can also be used for left-censored data, by reversing

the order of the observations (Gomez et al., 1992). Another approach to obtain a non-

parametric estimate of the survival curve in case of left-censored data, is given by Turnbull

(1976). An advantage of this approach is that it can also be used for interval-censored

data. Note that we will not focus on the fully nonparametric models such as the Kaplan-

Meier estimator. This is because such models are of a different nature, and moreover they

might not be applicable for our setting of interest. Indeed if the smallest value in the data

is censored, which is essentially always the case for censoring caused by LOD, the Kaplan-

Meier estimator is undefined in the left tail of the distribution (see e.g. Gillespie et al.,

2010).

The performance of the parametric models will be compared to the performance of the

semi-nonparametric family of distributions in a data example and in a simulation study.

3.1 Parametric models

We will introduce the log-normal distribution, with its link to the normal distribution.

Next the log-t distribution is introduced, and a skewed log-normal and skewed log-t

distribution. Then we deal with the gamma and Weibull distribution. Finally a link

between the distributions is given by the generalized gamma distribution.

Log-normal distribution A log-normal distribution for concentrations Y corresponds to

a normal distribution on the log-scale X = logY . The mean and variance of Y are given

by E(Y ) = eµ+σ2/2 and Var(Y ) = (eσ2 − 1)e2µ+σ2

, with µ = E(X) and σ2 = Var(X)

the mean and variance on the log-scale. The median is equal to Med(Y ) = eµ, so

back-transforming the mean on the log-scale to the original scale results in the median

Med(Y ) = exp(E(log Y )).
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Log-t distribution A first extension is the log-t distribution, corresponding to the Stu-

dent’s t-distribution on the log-scale. A random variable Y with a log-t distribution with

parameters µ, σ (location and scale on log-scale) and n (degrees of freedom), can be

represented as Y = exp(µ + σX) with X ∼ t(n), a Student’s t distribution with n

degrees of freedom. If the degrees of freedom increase to infinity, the log-t distribution

converges to the log-normal distribution. The mean and variance of Y are infinite (see

e.g. Schmoyer et al., 1996); the median of Y is equal to Med(Y ) = eµ.

Log-skew-normal and log-skew-t distribution On the log-scale, the skew-normal dis-

tribution SN(µ = 0, σ = 1, α) has as density f(x;µ = 0, σ = 1, α) = 2φ(x)Φ(αx),

where α is a skewness parameter, φ is the density and Φ the distribution func-

tion of the standard normal distribution (Azzalini, 1985; Azzalini and Dalla Valle, 1996;

Azzalini and Capitanio, 2003; Azzalini et al., 2003). On the original scale Y , the loca-

tion parameter µ and scale parameter σ can be introduced by setting logY = µ + σX ,

where X is a skew-normal SN(µ = 0, σ = 1, α) distributed random variable. The density

function of the log-skew-normal with parameters (µ, σ, α) is given by

fLSN(y;µ, σ, α) =
2

σy
φ

(
log y − µ

σ

)
Φ

(
α

log y − µ

σ

)
, y > 0.

If α = 0, this distribution reduces to the log-normal distribution. Lin and Stoyanov (2009)

proved that a log-skew-normal random variable Y with parameters µ = 0, σ = 1, α has

t-order moment, for any real t,

E(Y t) = 2 exp(t2/2)Φ(δt), where δ =
α√

1 + α2
,

but does not have a moment generating function and is moment-indeterminate. There is

to our knowledge no closed form for the mean and variance of a general log-skew-normal

distributed random variable Y , nor for the median.

In the same way, the log-skew-t distribution with parameters (µ, σ, α, n) is defined

as Y = exp(µ + σX) with X a skew-t distribution. Azzalini et al. (2003) used the

log-skew-normal and log-skew-t distributions as models for family income data.

Gamma and Weibull distribution The gamma distribution with shape parameter k

and scale parameter a (a, k > 0) is defined by

f(y; a, k) = a−kyk−1 exp(−y/a)/Γ(k), y > 0,

with mean µ = ak and variance σ2 = ka2. The Weibull distribution with shape parameter

b and scale parameter a (a, b > 0) is defined by

f(y; a, b) = ba−byb−1 exp(−(y/a)b), y > 0,
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with µ = aΓ(1 + 1/b) and σ2 = a2Γ(1 + 2/b) − µ2.

Generalized gamma distribution The generalized gamma distribution is a continuous

probability distribution with three parameters. It is a generalization of the two-parameter

gamma distribution. The gamma and Weibull distribution are special cases of the family.

The probability density function can be written as

f(y; a, k, b) = ba−bkybk−1 exp(−(y/a)b)/Γ(k), y > 0,

with parameters a, k, b > 0. The gamma distribution is obtained for b = 1 and the

Weibull for k = 1. Other special cases are the exponential distribution (b = k = 1)

and the chi-squared distribution with n/2 degrees of freedom (a = 2, k = n/2, b = 1).

The log-normal distribution is a limiting case for k → ∞. This can be proven via the

reparametrization λ = 1√
k

, σ = 1
b
√

k
and µ = log a+ 1

b log k:

f(y;µ, σ, λ) =
λ

yσΓ( 1
λ2 )

exp



λ log y−µ

σ + log( 1
λ2 ) − exp

{
λ log y−µ

σ

}

λ2


 ,

with Stirling’s formula and a Taylor expansion.

3.2 A semi-nonparametric family of distributions

A convenient way to extend a distribution is by use of the SemiNP model

(Fenton and Gallant, 1996; Gallant and Nychka, 1987). The SemiNP representation of a

density is given by

fr(y) = P 2
r (y)f(y). (3.2)

In this formulation Pr(y) = a0 + a1y + · · · + ary
r is a polynomial of degree r with

(a0, . . . , ar)T such that
∫
fr(y)dy = 1. Furthermore P0 ≡ a0 = 1, such that f0(y)

corresponds to the base density. Values r > 0 control the extent of departure from the

base density and the larger the order r the more flexible the density fr. It is assumed that

the true unknown density lies in a broad class whose elements may be approximated by the

SemiNP density estimator, tailored to provide an excellent approximation to virtually any

plausible density. Zhang and Davidian (2008) proposed a general framework for regression

analysis of time-to-event data subject to arbitrary patterns of censoring based on the

SemiNP representation and showed that this formulation allows popular models, such as

the proportional hazards, proportional odds, and accelerated failure time models, to be

placed in a common framework.
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Zhang and Davidian (2008) present an algorithm to determine the coefficients a. The

estimation consists of first applying a matrix decomposition and spherical transformation

to uniquely define the coefficients a0, . . . , ar that determine the extended density function.

The transformed parameters are denoted by φ1, . . . , φr. We will go through these steps

for r = 3, where we assume that the null distribution f0 is the density function of the

standard normal distribution.

Firstly, we note that

∫
f3(y)dy =

∫
(a0 + a1y + a2y

2 + a3y
3)2f0(y)dy,

= aT Aa, (3.3)

= 1,

where a = (a0, a1, a2, a3) is the vector of coefficients, A = E(WWT ) represents the

moments and W = (1, Y, Y 2, Y 3)T is a stochastic vector. As the moments of the

standard normal distribution are not hard to calculate, it is easy to construct the matrix

A:

A = E




1 Y Y 2 Y 3

Y Y 2 Y 3 Y 4

Y 2 Y 3 Y 4 Y 5

Y 3 Y 4 Y 5 Y 6




=




1 0 1 0

0 1 0 3

1 0 3 0

0 3 0 15



. (3.4)

Secondly, we want to express the matrix of moments A as the product of BT B.

The matrix B can be obtained by the Cholesky decomposition which results in an upper

triangle matrix. Basic matrix-calculation can be used to find the Cholesky decomposition

and these calculations are programmed in many mathematical programs (e.g. Maple):

B =




1 0 1 0

0 1 0 3

0 0
√

2 0

0 0 0
√

6



.

By using the decomposition in (3.3) and replacing Ba by c, we get

1 = aT BT Ba

= cT c. (3.5)

Thirdly, equation (3.5) implies that c = (c0, . . . , c3) lies on the unit sphere, suggesting
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the spherical transformation

c0 = sin(φ1),

c1 = cos(φ1) sin(φ2),

c2 = cos(φ1) cos(φ2) sin(φ3),

c3 = cos(φ1) cos(φ2) cos(φ3).

Fourthly, we will estimate the parameters (φ1, . . . , φ3) and as such obtain estimates

for c. As a = B−1c, it is only a matter of matrix multiplication to get estimates for a.

Note that A and B are positive definite matrices, such that B−1 exists.

We are interested in the SemiNP representation as a framework to model distributions

of data such as the cadmium data, where data are positive. A popular distribution is the

log-normal distribution, that is directly linked to the well known normal distribution. By

a simple transformation Z = log Y −µ
σ , the density f0 of the log-normal distribution can

be written as

f0(y) = (yσ)−1φ

(
log y − µ

σ

)
.

In the same way, we define the density of the extension of the log-normal distribution

as

fr(y) = (yσ)−1P 2
r

(
log y − µ

σ

)
φ

(
log y − µ

σ

)
.

As we will mention in the next section, we also need the survival function in order to

compute the likelihood for censored data. Once the density is known, it is straightforward

to obtain the survival function:

Sr(y) =

∞∫

log y−µ

σ

P 2
r (z)φ(z)dz.

Some examples of the density function for r = 1 are provided in Figure 3.1. One

additional parameter φ1 defines the coefficients a0 and a1 of the polynomial Pr. The left

panel shows the density with µ = 0 and σ = 1, while µ = 0 and σ = 0.5 in the right

panel. The log-normal distribution corresponds to φ1 = π/2 (a0 = 1, a1 = 0, solid line),

while other values of φ1 result in other densities: φ1 = π/4 (a0 =
√

2/2, a1 =
√

2/2,

dashed line), φ1 = 3π/4 (a0 =
√

2/2, a1 = −
√

2/2, dotted line) and φ1 = π (a0 = 0,

a1 = 1, dash-dotted line).

Zhang and Davidian (2008) propose a recursive way to determine the extension of the

survival and density function in terms of the SemiNP representation. Since Pr(y) is a

polynomial, partial integration can be used to simplify the integral. Hence the distribution
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Figure 3.1: SemiNP models. Examples of density function f1, with µ = 0 and σ = 1 (left panel)

or σ = 0.5 (right panel). Additional parameter φ1 is set to π/4 (a0 =
√

2/2, a1 =
√

2/2, dashed

line), π/2 (a0 = 1, a1 = 0, solid line, log-normal distribution), 3π/4 (a0 =
√

2/2, a1 = −
√

2/2,

dotted line) and π (a0 = 0, a1 = 1, dash-dotted line).

.

function can be expressed as a linear combination of the density and the cumulative

distribution function of the standard normal. Zhang and Davidian (2008) introduce the

integral I(k, c) =
∞∫
c

zkϕ(z)dz. The survival function Sr(y) can be expressed as the sum

of several of these integrals:

Sr(y) =

∞∫

(log y−µ)/σ

P 2
r (z)φ(z)dz

=a2
0I

(
0,

log y − µ

σ

)
+ a0a1I

(
1,

log y − µ

σ

)
+ (a2

1 + a0a2)I

(
2,

log y − µ

σ

)

+ · · · + a2
rI

(
r2,

log y − µ

σ

)
.

Furthermore, the integrals I(k, c) define a recursive relation, i.e.

I(0, c) = 1 − Φ(c),

I(1, c) = ϕ(c),

I(k, c) = ck−1ϕ(c) + (k − 1)I(k − 2, c), k > 2.

Whereas Fenton and Gallant (1996) and Zhang and Davidian (2008) argue that fr

with r ≤ 4 can well approximate a diverse range of true densities, our experience is that
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larger values of r might be needed. For practical and computational feasibility we limit

ourselves to r ≤ 7.

For each fixed r, the set of parameters µ, σ, a0, . . . , ar can be estimated by maximizing

the likelihood function (3.6) for censored data, with now f and S replaced by fr and Sr.

The order r can be selected adaptively by inspection of an information criterion. For a

given dataset, r̂ denotes that value of r that optimizes Akaike’s information criterion (see

Section 3.3), resulting in the final SemiNP model fr̂.

The likelihood is maximized by taking starting values for φ over a grid. For example,

for r = 1, we use the estimates µ̂ and σ̂ from the null model and let φ1 start at 0

and increase in steps of π/16. For the other degrees of extension, we use the estimated

parameters from the lower degree and let the new φr vary in the same range as above.

By following this procedure, we obtain a set of local maxima for each r and the maximum

likelihood is then chosen to be the largest from this set.

General expressions can be derived for the moments and the median for any value of

r. However the expressions become quite unattractive. For instance, for r = 1, the mean

equals exp(µ+σ2/2)(1 + 2σa0a1 +σ2a2
1) and the variance exp(2µ+ 2σ2)(1 + 4σa0a1 +

4σ2a2
1) − exp(2µ+ σ2)(1 + 2σa0a1 + σ2a2

1)2.

3.3 Terminology for censored data

Suppose X has a distribution function F and x1, . . . , xn is a sample from this distribution.

These observations can be left- or right-censored by a value ti or interval-censored by two

values tLi
and tRi

. Indicator functions for the different types of censoring on the i-th

observation can be defined as follows

δRi
= 1 if right-censoring at ti < xi, 0 otherwise;

δLi
= 1 if left-censoring at ti > xi, 0 otherwise;

δIi
= 1 if interval-censoring at tLi

< xi 6 tRi
, 0 otherwise;

δEi
= 1 if the event is observed exactly at ti = xi, 0 otherwise.

It holds that δEi
+ δRi

+ δLi
+ δIi

= 1.

An observation is right-censored δRi
= 1 at ti when the true value xi is not observed

before ti and is known to exceed ti. The observed value is given by yi = min(xi, ti).

For example, the true event is time-to-death which cannot be observed because censoring

happens at the end of the study.

An observation is left-censored δLi
= 1 when the value xi is known to be smaller than

ti, e.g. limit of detection (LOD). In this case, the observed value is yi = max(xi, ti).
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An observation is interval-censored δIi
= 1 when xi is known to be larger than a value

tLi
, but smaller than tRi

, e.g. between the limit of detection (LOD) and the limit of

quantification (LOQ). Left and right censoring are special cases of interval censoring.

All observations can be represented by (tLi
, tRi

, δRi
, δLi

, δIi
). For left censoring we

have tLi
= −∞ (or tLi

= 0 if all observations are assumed to be non-negative, e.g. in

survival analysis) and tRi
= ti. In case of right censoring we have ti = tLi

and tRi
= ∞.

If the observation is not censored, then tLi
= tRi

= ti = xi.

Let the density function of the true values X be represented by f(·), the cumulative

distribution function by F (·) and the survival function by S(·). Typically these functions

depend on some parameters θ. If we assume that censoring of the observations occurs

independently, then the likelihood function for the sample of n observations is

L(θ) =

n∏

i=1

{
f(ti)

δEi [1 − S(ti)]
δLi [S(ti)]

δRi [S(tLi
) − S(tRi

)]
δIi

}
. (3.6)

When there is no censoring, the likelihood function reduces to the simple likelihood∏
f(ti).

All parametric models can be fitted to censored data by maximizing the likelihood L(θ)

as defined in (3.6). Akaike’s information criterion (AIC, Akaike, 1973) is a commonly

used measure to compare the fit of several candidate models. It is defined as AIC =

−2 logL(θ) + 2K, where K represents the number of parameters in the model. The

lower the AIC value, the better the model succeeds in fitting to the data while accounting

for complexity. Claeskens and Carroll (2007) used AIC for model selection in general

semi-nonparametric problems. AIC has also been studied for selection of the smoothing

parameter in nonparametric models, see e.g. Hurvich et al. (1998).

Other model selection criteria can be used (e.g. Bayesian information criterion, BIC,

Schwarz (1978)), each having pros and cons, but to our knowledge their behavior has not

been studied in a comparative study for censored data and a detailed and full comparison

of the performance characteristics of AIC with other criteria in our particular setting is

beyond the scope of this research.

3.4 Application to data example

In the previous chapter, we have proposed several models that are related to the log-

normal distribution. The AIC of each model, fitted to the Cadmium data, is given in

Table 3.1.

It appears that from a computational point of view, the fit on the log-scale is often

easier and a more global minimum is achieved. Therefore, in Table 3.1, AIC of these

models is chosen to be the smallest of AIC on regular and (transposed) AIC on log-scale.
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Table 3.1: Cadmium data 1 and 2. AIC of parametric and SemiNP models.

Cadmium 1 Cadmium 2

Distribution Nr Par AIC AIC

GenGam 3 -64.918 -67.311

Gamma 2 -47.238 -68.086

Weibull 2 -65.741 -69.278

Log-skew-t 4 -72.846 -65.407

Log-t 3 -62.616 -57.669

Log-skew-n 3 -66.642 -67.744

Log-normal 2 -64.734 -59.863

SemiNP1 2+1 -65.783 -61.600

SemiNP2 2+2 -69.484 -60.781

SemiNP3 2+3 -78.382 -59.352

SemiNP4 2+4 -77.952 -57.690

SemiNP5 2+5 -76.637 -55.914

SemiNP6 2+6 -75.556 -54.073

SemiNP7 2+7 -74.215 -69.302

In these examples, only SemiNP7 for the Cadmium data 2 achieved a better fit on the log

scale. We could improve the fit on the original scale by using the (transformed) estimates

on the log scale (and vice versa) if it results in a better fit. This can be considered as an

additional step or as an alternative to the use of different starting values for the parameter

estimates.

For Cadmium 1, the gamma distribution has the largest AIC and is therefore the worst

model. The AIC of the log-normal distribution, log-skew-normal, Weibull and generalized-

gamma distribution are close. From the class of parametric models, the log-skew-t dis-

tribution performs best. Within the class of the SemiNP models, three extra parameters

added to the log-normal distribution results in the best fit and the AIC value of this

model is smaller than that of any parametric model. The non-parametric estimate and

the estimated distribution functions of the log-normal and the log-skew-t distribution are

depicted in the left panel of Figure 3.2, together with the adaptive SemiNP model.

The best parametric fit for Cadmium 2 is given by the Weibull distribution, with AIC

equal to −69.278. In the family of SemiNP models, the model with 7 extra parameters

has the best global fit, with AIC= −69.302. The fitted distributions are shown in the

right panel of Figure 3.2, together with the non-parametric estimate.
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Figure 3.2: Cadmium data 1 (left) and 2 (right). Distribution function of concentration. Non-

parametric estimate (solid line); fit of parametric models: log-normal (dots) and best fitting

(dashed line, log-skew-t and Weibull respectively); and best SemiNP (dash-dotted line, r = 3

and r = 7 respectively).



26 Chapter 3. Statistical models related to the log-normal distribution

3.5 Simulation study

In this section we describe a simulation study, which we will use for the goodness-of-fit

test in Chapter 4 and model averaging in Chapters 5 and 6.

We focus on the setting of chemical risk assessment and testing for log-normality. In

the first section we describe the generation of uncensored data under the null hypothesis

and under two types of alternative hypotheses: i) a mixture of log-normal distributions

with one component being the null distribution, and a second component located to the

right of the first component (representing a local deviation from the null distribution),

ii) a gamma distribution (representing a global deviation from the null distribution). In

the second section the censoring mechanism is introduced. In Section 3.5.3 we elaborate

on the computational issues that occurred when fitting the semiNP models. The models

are compared with respect to AIC in Section 3.5.4. More results will follow in the next

chapters.

3.5.1 Data sampling

The null model is defined as the log-normal distribution with mean 1 and standard devi-

ation 2. This null model is then mixed with a second log-normal distribution with mean

2.818 and standard deviation 0.771, with a mixing proportion varying from 5% (as a

contiguous alternative), 10% (less contiguous) to 25% (non-contiguous). We will refer

to these distributions as the 95%, 90% and 75% mixture distributions. The left panel

of Figure 3.3 shows that these mixture distributions deviate locally in the right tail from

the null distribution. As another alternative model which deviates more globally from

the null model, we consider the gamma distribution with the same mean 1 and standard

deviation 2 as the log-normal null distribution (right panel of Figure 3.3). Sample sizes

n = 100, 200, 500 were used, and for each setting 500 simulation runs.

3.5.2 Censoring scheme

As for the Cadmium data, we again assume that the data originate from several labora-

tories. Assume that there are five different limits of detection (LODs) and each LOD is

associated with a laboratory. Each laboratory contributes the same amount of data. The

LODs in the simulations correspond to theoretical percentiles of the aforementioned log-

normal distribution. For example, the (1, 5, 10, 20, 25)-percentiles correspond to LODs

0.023, 0.055, 0.088, 0.154, 0.190 resulting in on average 12% censoring for a sample from

the log-normal distribution. Figure 3.3 shows the location of the LODs (N) graphically.

By taking the (25, 50, 75)-percentiles for the LODs, on average 50% is censored. They
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Figure 3.3: Simulation study. Left panel: sampling distributions are log-normal and mixture

distributions; left censoring based on 5 LODs (N) and 3 LODs (•); left and interval censoring

based on LODs (N) and LOQs (omitted) or 3 LODs (◦) and LOQs (•). Right panel: log-

normal and gamma distribution; left censoring for gamma based on 5 LODs (N); left and interval

censoring based on 5 LODs (▽) and LOQs (N).

are represented by • in Figure 3.3.

Additionally interval-censored data are sampled. A limit of quantification is set equal

to a constant times the limit of detection. Data below LOD are left-censored and data

in between LOD and LOQ are interval-censored. Only above LOQ, data can be exactly

measured.

In the simulations of the log-normal and mixture distributions with 5 LODs, the LOQ

is equal to 1.5 times the LOD. For this kind of interval censoring, more data are censored

compared to the left-censored data. As LOD and LOQ are close together and not distin-

guishable in the graph, we omit the LOQs in the left panel of Figure 3.3. In case we have

3 LODs, we set LOQ equal to the (25, 50, 75)-percentiles and LOD (◦) equal to 0.75

times LOQ (•). The simulations of the gamma distribution use the (1, 5, 10, 20, 25)-

percentiles as 5 LODs, resulting in 42% left censoring (N in right panel of Figure 3.3).

The interval censoring in this case is determined by LOD = 3
4 LOQ and LOQ equal to the

(1, 5, 10, 20, 25)-percentiles. The right panel of Figure 3.3 shows the location of these

five LODs (▽) and LOQs (N) in the gamma distribution, along a sloping line to make

them visible.

To get more insights in how the left censoring occurs and what influence it has on the

density function, some kernel density functions are calculated. Figure 3.4 shows a sample

drawn from the log-normal distribution with sample sizes 200 and 500, of which 12% or



28 Chapter 3. Statistical models related to the log-normal distribution

0 1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

x

D
en

si
ty

 fu
nc

tio
n

no censoring
12% censoring
50% censoring

0 1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

x

D
en

si
ty

 fu
nc

tio
n

no censoring
12% censoring
50% censoring

Figure 3.4: Simulations. Influence of censoring in log-normal distribution. Sample size 200 (left)

and 500 (right). Censoring varies from none (full line) to 12% (dashed lines) and 50% (dotted

lines). Kernel density function based only on uncensored observations in red; based on sample

where censored values are replaced by LOD/2 in blue. Crosses represent location of LODs.

50% is censored. For each sample size, different curves are drawn: the solid line represents

all data of which no point is censored, the dashed line represents 12% censoring and the

dotted line 50%. For the censored case, the red line uses only the uncensored observations

and is thereby based on less data. The blue line uses all data, but the (left-)censored data

are replaced by the half of their limit of detection (LOD/2). The LODs are indicated by

a cross on the x-axis for 12% censoring and above the axis for 50% censoring.

The censoring occurs on the left of the distribution. The influence of the 12% censoring

is minor, but for 50% censoring there is a big difference in density functions.

The same patterns appear when samples are drawn from the mixture of two log-

normal distributions. In Figure 3.5(a) the kernel density function of a sample from the

90% mixture distribution is drawn, causing the second bump in the density function. The

means of the two distributions are quite distant. However, only 10% of the observations

come from this second (log-normal) distribution. In Figure 3.5(b) we draw the kernel

density function of a sample from the 75% mixture distribution. These data are quite far

away from the null hypothesis. The more data (< 50%) come from the right distribution,

the more they differ from the null hypothesis.
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(a) 90% mixture distribution
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(b) 75% mixture distribution

Figure 3.5: Simulations. Influence of censoring in mixture of two log-normal distributions.

Sample size 200 (left) and 500 (right). Censoring varies from none (full line) to 12% (dashed

lines) and 50% (dotted lines). Kernel density function based only on uncensored observations in

red; based on sample where censored values are replaced by LOD/2 in blue. Crosses represent

location of LODs.
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3.5.3 Computational issues

For the parametric models, especially for the generalized-gamma distribution, it appears

necessary to provide a series of several starting values to solve the convergence issues.

As the fitting of the SemiNP models is very time consuming and computer intensive, we

cannot provide multiple starting values for all fits. The SemiNP extensions are nested, so

we use the estimates for the log-normal distribution as starting values for the first exten-

sions with 16 different values for the extra parameter. These estimates are in turn used as

starting values for the second extensions with again 16 values for the extra parameter, and

so on. Nevertheless there are major problems. Eventually there are no error messages for

the calculation of the estimates, but standard errors cannot always be computed (the final

Hessian matrix is of full rank but with at least one negative eigenvalue). Only estimates

of the models of which the hessian has no negative eigenvalue, are included in the tables.

For the uncensored data, at least one extended model of the SemiNP family has no con-

verging issues. For the samples with censoring, drawn from the log-normal distribution

with sample size 100, 200 and 500 respectively, there are 121, 179 and 210 samples where

none of the extended models converge. For the 75% mixture, every sample has at least

one extension, for the 90% mixture there are 10, 9 and 6 samples (for the respective

sample sizes) where none of the extended models converge, while for the 95% mixture

28, 38 and 70 samples have no converging extended model. For the data sampled from

the gamma distribution there are 104, 74 and 42 samples for which none of the extended

model converge. The lower values in the mixed samples can be expected since the Sem-

iNP models can more easily detect local deviations from the base distribution compared

to global. If none of the extended models converge, then the family of SemiNP models for

this sample reduces to only one member, the log-normal distribution. Although there are

major problems in the simulation study, these problems can be avoided in an individual

analysis by carefully selecting the starting values.

3.5.4 Results

The models are ordered according to AIC, where order 1 corresponds to the best model

and order 14 to the worst. Based on the orders of the 500 samples, we can make a boxplot

for each fitted model. The results for a sample of size 500 from the log-normal distribution

are given in Figure 3.6. Since the sample is taken from the log-normal distribution, we

expect that the log-normal model fits the data best. This can be seen in the graph. The

skewed distributions do not fit better than the original. The reason is that AIC penalizes

for the number of parameters. Since data are sampled from the log-normal distribution,

there is no skewness and the parameter accounting for skewness is redundant. The gamma
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Figure 3.6: Simulation study. AIC order of every fitted model for sample from log-normal

distribution with sample size 500. Left panel: no censoring, right panel: left censoring based on

5 LODs.

and the Weibull distributions provide no good fit on the simulated data. Furthermore we

observe that the SemiNP models fit better with less parameters, which agrees with the

penalization for extra parameters. Similar results are obtained for data with and without

censoring.

As expected, when sampling from the gamma distribution, the best model according

to AIC is the gamma distribution (see Figure 3.7). The log-skew-t distribution is often

the second best model, while the log-t and the log-normal distribution provide no good

fit. However we observe that the SemiNP model fits better when more parameters are

used. This coincides with the expectation that any model can be well approximated with a

member of the SemiNP family of distributions. If part of the data is censored (in this case

almost 50% is censored), there is less information in the data. Therefore it is obvious that

the benefit of extra parameters in the SemiNP distribution is limited. In this simulation

we see that the best extension of the log-normal is given by 3 extra parameters.

For the other settings, we provide a summary plot in Figure 3.8 and 3.9 by only looking

at the median order of AIC. For the samples from the pure distributions (log-normal or

gamma) it is clear that it is harder to have enough information in the data such that

the SemiNP distribution fits well. The decrease in AIC order stops at about 3 or 4 extra

parameters when sampling from the gamma distribution. Also in the case of censoring, the

minimum order for the SemiNP fits, is shifted to the right when compared to sample size

500. For the mixture distributions, the same pattern can be observed for both uncensored
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Figure 3.7: Simulation study. AIC order of every fitted model for sample from gamma distribution

with sample size 500. Left panel: no censoring, right panel: left censoring based on 5 LODs.

and censored samples. The SemiNP distribution performs better than the log-normal.

As the data are more mixed, the log-normal performs worse, but the SemiNP performs

better. There is a dip around 3 to 5 parameters.

A disadvantage of the description of the results by means of the order of the model is

that it does not show how much the fitted models differ from each other with regard to

AIC. In other words, we do not know how large the difference is between the AIC of the

fitted models.

3.6 Conclusion

In this chapter, we have discussed various statistical models that are related to the log-

normal distribution. We started the discussion with parametric models and continued

with a semi-nonparametric family of distributions. Maximum likelihood theory, with an

adapted likelihood, was used to fit the models to censored data. All models were fit to

the Cadmium data and were compared. Although the fit of the log-normal distribution

was not bad, we found both parametric and SemiNP models that performed better with

regard to AIC. For Cadmium data 1, the log-skew-t distribution and SemiNP3 models

performed best. Different parametric and SemiNP models were chosen for Cadmium data

2: Weibull and SemiNP7.

The performance of the models was examined in a simulation study, by comparing their

global fit to the data. Different scenarios for the simulated distribution and percentage
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of censoring were considered. When sampling from the log-normal distribution, the best

fitting distribution is often the log-normal itself, but also the log-skew-normal and SemiNP

perform good. When sampling from a distribution other than the log-normal, the SemiNP

models perform better than the log-normal, but also some of the parametric models are

plausible depending on the situation. We will use the same simulation study in the next

chapters to study the performance of a goodness-of-fit test for censored data and model

averaging.
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Figure 3.8: Simulation study. Median order AIC of samples from log-normal (×) and gamma

(�) distribution with sample sizes 100 (upper), 200 (middle) and 500 (lower). Left panels: no

censoring, right panel: left censoring based on 5 LODs.
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Figure 3.9: Simulation study. Median order AIC of samples from log-normal (×), 95% (•), 90%

(♦) and 75% (�) mixture distributions with sample sizes 100 (upper), 200 (middle) and 500

(lower). Left panel: no censoring, right panel: left censoring based on 5 LODs.





Chapter 4
Goodness-of-fit

In this chapter we propose and study a new goodness-of-fit test for left-, right- and

interval-censored data, assuming random censorship. The test is based on the order selec-

tion test as described by Aerts et al. (1999), which requires a series of nested alternative

models extending the null model. For censored data, such a family of densities is de-

scribed by the SemiNP (Semi-NonParametric) representation (Fenton and Gallant, 1996;

Gallant and Nychka, 1987; Zhang and Davidian, 2008) (see Chapter 3). The combination

of the order selection test and the SemiNP representation results in the goodness-of-fit test

for censored data proposed in this chapter. The material in this chapter was summarized

in Nysen et al. (2012).

In goodness-of-fit testing, a distinction is made between a simple and a composite

hypothesis. In a simple hypothesis, interest is only in the specific parameters of the

distribution. For example, testing whether the data come from a normal distribution with

mean zero and variance one. With a composite null hypothesis, we are interested in

the shape of the underlying distribution. For example, testing whether the data follow a

normal distribution, without specifying the parameters.

To test whether the true data come from a distribution with completely specified

distribution function F0(y) (and survival function S0(y)), the simple null-hypothesis equals

H0 : F (y) = F0(y) ∀y. (4.1)

The null hypothesis of the composite null hypothesis can be stated as follows:

H0 : f ∈ Gf , (4.2)

where Gf is some parametric family of density functions, like the family of log-normal

distributions.

37
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If the data are not censored, multiple tests exist for the composite null hypothesis.

For example, the tests of Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises

(see e.g. D’Agostino and Stephens, 1986, for more details) are based on the empirical

distribution function and are implemented in most statistical software.

The Kolmogorov-Smirnov statistic is defined as D = supy | Fn(y) − F (y) |. It is

computed as the maximum of D+ and D−, where D+ is the largest vertical distance

between the ECDF and the distribution function when the ECDF is greater than the

distribution function, and D− is the largest vertical distance when the ECDF is less than

the distribution function.

The Anderson-Darling and the Cramér-von Mises statistic belong to the quadratic

class of ECDF statistics. This class of statistics is based on the squared difference of

the ECDF and the distribution function. In general, quadratic statistics have the form

Q = n
∞∫

−∞
(Fn(y) − F (y))2ψ(y)dF (y). The function ψ(y) weights the squared differ-

ence. The Anderson-Darling statistic is defined as A2 = n
∞∫

−∞
(Fn(y) −F (y))2[F (y)(1 −

F (y))]−1dF (y). By introducing the transformation U(i) = F (Y(i)), where (i) denotes

the i-th ordered value, the statistic is computed as

A2 = −n− 1

n

n∑

i=1

[
(2i− 1) logU(i) + (2n+ 1 − 2i) log(1 − U(i))

]
.

The Cramér-von Mises statistic is defined as W2 = n
∞∫

−∞
(Fn(y) − F (y))2dF (y) and can

be computed as

W2 =

n∑

i=1

(
U(i) − 2i− 1

2n

)2

+
1

12n
.

Thus, compared with the Cramér-von Mises statistic, the Anderson-Darling statistic places

more weight on observations in the tails of the distribution.

First we present some tests that are capable of dealing with censored data. Then we

will review the order selection test and the SemiNP representation to develop a hypothesis

test for censored data.

4.1 Goodness-of-fit test

We give a non-comprehensive overview of goodness-of-fit tests that can be used for

censored data. Next we discuss the order selection test and explain how we have adapted

the test to be suitable for censored data.
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4.1.1 Existing tests for censored data

Hollander and Proschan (1979) present a test of a simple null hypothesis for right-censored

data. Suppose data can only be observed or right-censored and let y(1), y(2), . . . , y(n)

represent the ordered values. The Hollander-Proschan test is based on the test statistic

C = −
∫
S0(y)dŜKM (y),

where ŜKM is the Kaplan-Meier estimator (3.1) of the survival function S. Normalizing

this expression results in C∗ =
√
n

C− 1
2

σ̂ , where the asymptotic variance of C is estimated

by

σ̂2 =
1

16

n∑

i=1

n

n− i+ 1

([
S0(y(i−1))

]4 −
[
S0(y(i))

]4
)
,

and y(0) = −∞. Under the null hypothesis, C∗ converges in probability to the standard

normal distribution.

To compute C∗, there is a simplified version of C given by

C =
∑

δE(i)
=1

S0(y(i))f̂KM (y(i)),

where f̂KM (y(i)) is the jump of the Kaplan-Meier estimator at y(i), i.e. f̂KM (y(i)) =

ŜKM (y(i)) − ŜKM (y(i−1)).

This test can be extended for left-censored data by reversing the order of the obser-

vations. In practice it means that the survival function is replaced by the cumulative

distribution function and the jump of the Kaplan-Meier estimator is calculated as follows.

Note that by subtracting every observation from the largest observation, we obtain again a

right-censored data set y∗
1 , . . . , y

∗
n, where y∗

i = y(n) − y(i). Let SY ∗ represent the survival

function of Y ∗ and f̂KM,Y ∗(y∗
i ) the jump of the Kaplan-Meier estimator of the survival

function in y∗
i ,

f̂KM,Y ∗(Y ∗
i ) = f̂KM,Y (y(n) − y(i))

= ŜKM,Y ∗(y(n) − y(i)) − ŜKM,Y ∗(y(n) − y(i−1))

and y(0) = −∞. The simplified expression of C for left-censored data is given by

C =
∑

δE(i)
=1

F0(y(i))f̂KM,Y ∗(y(n) − y(i)).

The asymptotic variance of C is now estimated by

σ̂2 =
1

16

n∑

i=1

n

n− i+ 1

([
F0(y(i−1))

]4 −
[
F0(y(i))

]4
)
.
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A drawback of the Hollander-Proschan test is that it is only available for a simple null

hypothesis. In this dissertation we are interested in testing a composite null hypothesis,

e.g. do the data come from a log-normal distribution? By first estimating the parameters

of the distribution and substituting them into the null model, an estimated null model

can be obtained. Next, the model S0 can be replaced by the estimated null model Ŝ0 to

obtain a test for a composite null hypothesis. However, the performance of this test is

bad, as we illustrate in a small simulation study in Section 4.3.1.

Another test for right-censored data is proposed by Koziol and Green (1976). Let

x1, . . . , xn be a sample that may be right-censored by t1, . . . , tn. The available data

are given by the pairs (yi, δRi
), where yi = min(xi, ti) and δRi

= 1 as yj = xj .

Koziol and Green (1976) use the integral-probability transformation to form new pairs

(Vi, δRi
), where Vi = min (F0(Xi), F0(Ti)). If F0 is the true distribution function of Xi,

then the null hypothesis reduces to testing whether U = F0(Xi) is uniformly distributed

on (0, 1). The Koziol-Green statistic is given by

ψ2 = n

1∫

0

(
F̂KM (y) − y

)2

dy, (4.3)

where F̂KM is the Kaplan-Meier estimator of the distribution of U . Properties about the

asymptotic distribution are known for a special form of censoring distribution where the

distribution function G of the censoring variable is related to the true distribution F0 via

1 −G(y) = (1 − F0(y))β ,

for some β, 0 < β < 2. Asymptotic critical points of the test statistic ψ2 in (4.3) for

some values of β are available.

Ren (2003) proposes a test statistic for interval-censored data by introducing the

leveraged bootstrap procedure to obtain a test statistic similar to the Cramér-von Mises

statistic

Tn = n

∞∫

0

(Fn(y) − F0(y))2dF0(y)

where Fn is the empirical distribution of X1, . . . , Xn. For the Cramér-von Mises statistic,

it is known that under H0

Tn
D→ W, as n → ∞, (4.4)

where W has a distribution function given in Shorack and Wellner (1986, p147). The

statistic cannot be used as such by replacing the empirical distribution function with an

estimator F̂n using censored data, because the convergence rate of F̂n is slower than
√
n.

The leveraged bootstrap procedure consists of three main steps.
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(LB1) Compute the non-parametric maximum likelihood estimator F̂n using the observed

data (tLi
, tRi

, δIi
), i = 1, . . . , n.

(LB2) For an integer m satisfying m → ∞, as n → ∞, obtain an independently and

identically distributed leveraged bootstrap sample X∗
n1, . . . , X

∗
nm, which is drawn

from F̂n.

(LB3) For the statistic of interest Hn(X1, . . . , Xn) formulated for a complete i.i.d. sample,

compute H∗
m(X∗

n1, . . . , X
∗
nm) and draw inference.

The test statistic for the null hypothesis, using the leveraged bootstrap is given by

T ∗
m = m

∞∫

0

(F ∗
nm(x) − F0(x))2dF0(x),

where F ∗
nm is the empirical distribution function of a leveraged bootstrap sample

X∗
n1, . . . , X

∗
nm from F̂n. The following result holds for this statistic.

Assume

nγ(F̂n − F ) = Op(1), for some γ > 0,

and let m = o(n2γ) satisfy m → ∞, as n → ∞. Then, under H0,

lim
n→∞

sup
0<x<∞

|P (T ∗
m ≤ x|On) − P (W ≤ x)| = 0,

in probability, where On = {(tLi
, tRi

, δIi
)|1 ≤ i ≤ n} and W is as in (4.4).

Two possible decision rules are proposed. The first rule uses only one leveraged boot-

strap sample and rejects H0 at significance level α if T ∗
m ≥ Cα, where P (W ≥ Cα) = α.

By obtaining N different leveraged bootstrap samples, one can define

W̄ =
1

N

N∑

k=1

I(T ∗
km ≥ Cα),

pn = Pn(T ∗
km ≥ Cα),

where Pn denotes the conditional probability given F̂n. The statistic NW̄ follows a

binomial distribution with parameters pn and N and is asymptotically normal for large

N . Denote by zα the (1 − α)100-th percentile of the standard normal distribution. For

some ρ such that 0 < ρ < α < 1, we choose

N = max





1,
pn(1 − pn)
[

α−pn

zα−ρ−zα

]2




.



42 Chapter 4. Goodness-of-fit

The null hypothesis is rejected at significance level α if W̄ ≥ α+zα−ρ

√
α(1−α)

N . This

is the second decision rule and it is called the LB-goodness-of-fit test (LB-GOF test).

In D’Agostino and Stephens (1986) modifications for some types of left- and right-

censored data, of the Kolmogorov-Smirnov and the Cramér-von Mises statistics are pro-

posed. The modifications are valid for testing a simple null hypothesis. Modifications

for testing a composite null hypothesis for censored data, are available for some continu-

ous (normal, exponential, . . .) distributions, but not for the log-normal distribution. No

modifications for interval-censoring are presented. Other goodness-of-fit tests based on

the Kolmogorov-Smirnov statistic are introduced by Koziol (1980), Castro-Kuriss et al.

(2009) and Grané (2012).

Akritas (1988) proposed a test for a simple and composite null hypothesis for right-

censored data. The test is based on the Pearson statistic and on partitioning the data. A

generalization to interval-censored data is not straightforward. Some other goodness-of-fit

tests were presented by Hyde (1977) and Gray and Pierce (1985).

Bayesian tests were proposed by Yin (2009), Cao et al. (2010) and Calle and Gómez

(2008, Chap. 21).

4.1.2 Order selection test

Let y1, ..., yn be a sample having unknown density f(y), and we want to test the composite

hypothesis (4.2). Aerts et al. (1999) proposed a general method for testing the fit of a

parametric function. The underlying idea is to “accept” the prescribed parametric model

if and only if it is chosen by a model selection criterion. Their test also has a connection

with nonparametric smoothing since they employ orthogonal series estimators to detect

departures from a parametric model. Aerts et al. (1999) illustrate the applicability of their

method in a wide variety of settings, including goodness-of-fit tests. In their Example 1

they represent f as f(y) = Cγ exp(γ(y)) such that hypothesis (4.2) can be restated as

H0 : γ ∈ G

for some parametric family of functions G, and let

G = {γ(y; θ1, . . . , θp) : (θ1, . . . , θp) ∈ Θ}.

The null model is extended by an approximator to γ(y) of the form

γr(y; θ1, . . . , θp+r) = γ(y; θ1, . . . , θp) +

r∑

j=1

θp+juj(y), r = 1, 2, ... (4.5)

where u1, u2, ... are known functions that span some ‘large’ space of functions (such as

(orthogonal) polynomials, trigonometric functions, ...).
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The log-likelihood of the approximator equals

Lr(θ1, . . . , θp+r) =

n∑

i=1

γ(Yi; θ1, . . . , θp)+

n∑

i=1

r∑

j=1

θp+juj(Yi)+n logCγr(·;θ1,...,θp+r).

Note that L0(θ1, . . . , θp) corresponds to the log-likelihood of the null model. The

supremum over all parameters will we denoted by Lr = supθ1,...,θp+r
Lr(θ1, . . . , θp+r).

Aerts et al. (1999) defined the modified AIC by

MAIC(r;Cn) = 2(Lr − L0) − Cnr, r = 0, 1, . . . , (4.6)

where Cn is some constant larger than 1, and let r̂Cn
be the maximizer of MAIC(r;Cn).

By appropriate choice of Cn, the asymptotic type I error probability of the test

“reject H0 when r̂Cn
> 0”, (4.7)

can be any number between 0 and 1. For example, a test of asymptotic significance level

0.05 is obtained by using Cn = 4.18 (See Hart, 1997, p. 178 for values of Cn leading to

other test levels). In practice we limit the possible values of r to {1, . . . , Rn}, depending

on the application and the functions u1, u2, . . . defining the space of functions. Rejection

rule (4.7) can be reformulated as “reject H0 when r̂Cn
∈ {1, . . . , Rn}”.

The test described above, rejects H0 if and only if MAIC(r;Cn) is larger than 0

for some r in {1, . . . , Rn}, because r̂Cn
= 0 corresponds to MAIC(r̂Cn

;Cn) = 0 and

r̂Cn
> 0 corresponds to a strictly positive MAIC. The test is also equivalent to rejecting

H0 when Tn ≥ Cn, with Tn = max1≤r≤Rn
{2(Lr − L0)/r}. The asymptotic distribution

of Tn = max1≤r≤Rn
{2(Lr − L0)/r)} is given by

P (T 6 t) = exp

[
−

∞∑

s=1

P (χ2
s > st)

s

]
,

where χ2
s has the chi-square distribution with s degrees of freedom. Hence, in addition

to playing the role of penalty constant, Cn is a critical value of the statistic Tn. Using

this version of the test one may approximate the P -value corresponding to an observed

Tn by using either a large-sample distribution or the bootstrap.

In the next section we explain how the order selection test is combined with the

SemiNP representation to develop a goodness-of-fit test for the log-normal distribution.

4.1.3 Test for a log-normal distribution

Here, we make the link between the SemiNP representation and the order selection test,

and as such, we propose a goodness-of-fit test for the log-normal distribution.



44 Chapter 4. Goodness-of-fit

In the notation of Aerts et al. (1999), we have the density f(y; θ1, . . . , θp) =

Cγ exp(γ(y; θ1, . . . , θp)), the approximator

fr(y; θ1, . . . , θp+r) = Cγr
exp(γr(θ1, . . . , θp+r))

= P 2
r (y; θp+1, . . . , θp+r)f(y; θ1, . . . , θp),

and additional parameters (θp+1, . . . , θp+r) = (a1, . . . , ar) such that the log-likelihood

(for uncensored data) becomes

Lr(θ1, . . . , θp+r) =

n∑

i=1

log f(Yi; θ1, . . . , θp) +

n∑

i=1

logP 2
r (Yi; θp+1, . . . , θp+r).

When testing log-normality, we define a random variable Y by log(Y ) = µ+ σX, σ > 0.

The variable Y has a log-normal distribution when r is set to zero and the number of

parameters p of the null distribution is 2. The density function of the log-normal distri-

bution is given by f(y;µ, σ) = (yσ)−1φ
(

log(y)−µ
σ

)
, where φ(·) is the density function of

the standard normal distribution. The extended distributions are from the SemiNP family

of distributions, as explained in Section 3.2. Note that the polynomial Pr is constructed

such that fr(y) = P 2
r (y)f(y) is a density function, thus eliminating the parameter Cγr

.

In Section 3.2, we described a recursive way to determine the extension of the survival

and density function in terms of the SemiNP representation. These functions can be

imputed in the (log-)likelihood function (3.6) for censored or uncensored observations.

Next the MAIC-value (4.6) can be computed to determine r̂Cn
> 0 for the test in (4.7).

One starts by calculating L0, the log-likelihood under the null hypothesis (r = 0). Next

the log-likelihood Lr for r > 0 is determined and compared to L0. In our calculations,

the maximal value of r is set to 7. To simplify the calculations, it is possible to interrupt

the calculations as soon as a positive value of MAIC is obtained.

In general, when the density function is represented by f(y; θ1, . . . , θp+r) =

Cγr
exp(γr(y; θ1, . . . , θp+r)), with γr as in (4.5), the distribution function

F (y; θ1, . . . , θp+r) =

y∫

−∞

f(t; θ1, . . . , θp+r)dt cannot be easily obtained.

Likelihood ratio test Suppose the maximal value of r is equal to 1. In this case, the

statistic Tn equals 2(Lr − L0)/r which is the likelihood ratio test statistic, where the

alternative model has one or more parameters than the model under the null hypothe-

sis. The 5% critical value for a likelihood ratio test (χ2-distribution with one degree of

freedom) equals 3.84, which is smaller than Cn = 4.18. Hence, the likelihood ratio test

rejects sooner.
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Table 4.1: Cadmium data 1 and 2. Results of the proposed test: MAIC and value of test statistic

Tn (maximum of column 2(Lr − L0)/r).

Cadmium 1 Cadmium 2

Distribution r 2 Lr−L0
r

MAIC 2 Lr−L0
r

MAIC

SemiNP1 1 3.049 -1.131 3.738 -0.442

SemiNP2 2 4.375 0.390 2.459 -3.442

SemiNP3 3 6.549 7.108 1.830 -7.050

SemiNP4 4 5.305 4.498 1.457 -10.892

SemiNP5 5 4.380 1.002 1.210 -14.849

SemiNP6 6 3.804 -2.258 1.035 -18.869

SemiNP7 7 3.354 -5.779 3.349 -5.820

4.2 Application to data examples

In this section we show the results of the proposed test for both samples concerning cad-

mium concentrations. We also apply the test to the Signal Tandmobiel data as introduced

in Section 2.2.

4.2.1 Cadmium data

As mentioned before, we could use Hollander-Proschan to test for a log-normal distribution

on the Cadmium data. The value of the test statistic is c∗ = −0.664 with a p-value equal

to 0.506, indicating that the null hypothesis cannot be rejected. However, as this is a

composite null hypothesis, the asymptotic theory fails and the test result is non-reliable.

The results of the proposed test are summarized in Table 4.1. To test the null hypoth-

esis of log-normal distribution, the maximum value of the log-likelihood in each extension

of the null model is compared to the maximum log-likelihood in the null model. The

difference is used to compute the modified AIC value (4.6) or Tn. The maximum MAIC

for Cadmium data 1, is attained at r = 3 and is strictly positive, such that r̂Cn
= 3 is not

zero. This is equivalent to computing the value of Tn as the maximum of 2(Lr − L0)/r,

which is in this example 6.549. This value exceeds the critical value 4.18. The null hy-

pothesis of a log-normal distribution is rejected at 5% significance level. The model that

best describes the data, is the log-normal distribution extended with 3 parameters.

The left panel of Figure 3.2 already showed that the fitted distribution function of

the log-normal distribution deviates from the Kaplan-Meier estimate, while the extended

distribution is closer to the Kaplan-Meier estimate.

In the second Cadmium example, the value of the test statistic is 3.738 and the null

hypothesis of the log-normal distribution cannot be rejected at significance level 5%.
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Figure 4.1: Signal Tandmobiel data: boys with sound primary predecessors. Survival function

of emergence time. Non-parametric estimate (solid), log-normal (dashed) fit and fit of the best

SemiNP distribution (r = 2, dotted).

4.2.2 Signal Tandmobiel data

All four subgroups of the Signal Tandmobiel data have been analyzed. All tests reject the

null hypothesis at 5% significance level (critical value 4.18). The group of boys with sound

primary predecessors reaches a maximum of 8.635 at the extension with two parameters

(see Figure 4.1), while a maximum of 8.294 is achieved at one extra parameter for the

boys in the group ‘decayed, missing due to caries or filled’. Both groups of girls reach

a maximum value at one extra parameter, with values 7.465 and 6.233 respectively. So

we conclude that none of the groups originates from a log-normal distribution. A better

description of the data is given by the extension with one (first group) or two extra

parameters.

4.3 Simulation study

In the first section we investigate the test of Hollander-Proschan in case of a simple and

a composite null hypothesis. We expect that the test will not perform good in case

of a composite null hypothesis, because it does not account for the estimation of the

parameters. The second section presents the results of the simulations of the proposed

test. The test is compared to some standard goodness-of-fit tests in case of no censoring.

As no tests for censored data were available in the software and it is not straightforward

to implement the tests for left- and interval-censoring, we do not make a comparison with

other tests when data are censored.
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Table 4.2: Simulation study Hollander-Proschan. Simple null hypothesis. Percentage of rejected

null hypotheses based on 1000 replicates for null hypothesis of exponential distribution.

α \ θ 1 0.8 0.6 0.4 1 0.8 0.6 0.4

33.33% censoring 50% censoring

Sample

size 20

0.01 0.010 0.065 0.306 0.793 0.017 0.069 0.303 0.769

0.05 0.047 0.154 0.531 0.904 0.062 0.162 0.490 0.884

0.10 0.087 0.240 0.634 0.936 0.111 0.242 0.597 0.927

Sample

size 50

0.01 0.011 0.138 0.676 0.995 0.016 0.121 0.630 0.993

0.05 0.048 0.274 0.841 0.998 0.059 0.247 0.807 0.998

0.10 0.106 0.373 0.896 0.998 0.102 0.347 0.872 0.999

4.3.1 Hollander-Proschan

Two cases are considered, the simple null hypothesis and the composite null hypothesis. In

the simple null hypothesis, it is assumed that the data come from a specified distribution

and the corresponding parameters are tested. For example, we suppose that data come

from an exponential distribution and the null hypothesis states that the parameter equals

one: H0 : X ∼ Exp(1). Table 1(b) in Hollander and Proschan (1979) is reproduced

concerning the C-statistic. Data are simulated from the exponential distribution with

parameter θ. The censoring process occurs according to the survival function RH(x) =

RF (x)β , where β is equal to 1/2 and 1, corresponding to a percentage c of 33.33 and

50.00 respectively. The significance level α is set to 1%, 5% and 10%. For each setting,

1000 samples are drawn.

Table 4.2 shows that under the null hypothesis (θ = 1), the correct amount of hy-

potheses is rejected. When the alternative hypothesis is true (θ 6= 1), the rejection rate

grows as the true parameter lies further away from 1. Power also increases as sample sizes

grow. In most cases, the rejection rate is smaller when more censoring is present.

The method collapses when a composite null hypothesis is considered, such as a test

for the log-normal distribution. Figure 4.2 shows the cumulative density functions of the

standard normal distribution (solid line) and of C∗
n, the Hollander-Proschan statistic. The

dashed line is obtained by first estimating the parameters of the log-normal distribution

and then using these estimates to calculate C∗
n. The dotted line is obtained by using the

true parameters from the distribution to calculate C∗
n.

100 simulations were run, each with sample size between 500 and 550. Data are

sampled from a log-normal distribution with parameters −0.8047 and 1.2686. The data

in Figure 4.2(a) are not censored, the data in Figure 4.2(b) contain 10% (left-)censoring.

From both figures, we conclude that the statistic C∗ has too little variation and
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Figure 4.2: Simulation study Hollander-Proschan. Distribution of statistic C∗: theoretical (nor-

mal distribution, solid line) and simulation-based with true (dotted line) or estimated parameters

(dashed line), based on 100 replicates for null hypothesis of log-normal distribution. No censoring

(left panel) versus 10% censoring (right panel).

therefore has no standard normal distribution. In conclusion, the asymptotic variance

used to obtain the standardized version of the statistic, is incorrect when the parameters

of the distribution need to be estimated first.

4.3.2 Order selection test

We will compare the performance of the proposed test to some standard goodness-of-fit

tests in case of no censoring. Although modifications of these standard tests for censored

data are proposed in literature, they are not available in software. In case of censoring we

therefore only study the performance of the order selection test, without implementing

the modifications of the standard goodness-of-fit tests.

In case of no censoring

If the data are not censored, then we can rely on standard tests, like Kolmogorov-Smirnov,

Anderson-Darling and Cramér-von Mises. In this section we compare the performance of

the proposed order selection test to the performance of these standard tests.

Table 4.3 shows that the proposed order selection test seems to be especially good

for local deflections from the null distribution, like in the mixture case with 95% of the

observations coming from the left log-normal distribution. The percentage of rejected

null hypotheses of all tests is fairly good in this setting, though the proposed test seems

to be a bit conservative, especially for small samples. It seems that the convergence is
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Table 4.3: Simulation study without censoring. Percentage of rejected null hypotheses based on

500 replicates for null hypothesis of log-normal distribution. Null hypothesis of the log-normal

distribution, with data sampled from the log-normal distribution, a mixture of two log-normal

distributions or a gamma distribution.

Sample size 100 Sample size 200 Sample size 500

Significance level 10% 5% 10% 5% 10% 5%

Log-normal Order selection 0.054 0.034 0.060 0.032 0.094 0.050

Kolmogorov-Smirnov 0.114 0.052 0.094 0.050 0.096 0.044

Cramér-von Mises 0.090 0.048 0.090 0.048 0.084 0.050

Anderson-Darling 0.080 0.048 0.096 0.056 0.092 0.050

95% mixture Order selection 0.166 0.068 0.236 0.096 0.418 0.282

Kolmogorov-Smirnov 0.210 0.112 0.194 0.102 0.354 0.202

Cramér-von Mises 0.202 0.116 0.208 0.114 0.332 0.210

Anderson-Darling 0.246 0.156 0.306 0.182 0.512 0.328

90% mixture Order selection 0.316 0.168 0.576 0.326 0.882 0.776

Kolmogorov-Smirnov 0.464 0.286 0.616 0.424 0.950 0.888

Cramér-von Mises 0.452 0.300 0.630 0.418 0.936 0.862

Anderson-Darling 0.598 0.424 0.802 0.622 0.988 0.966

75% mixture Order selection 0.928 0.670 0.998 0.990 1.000 1.000

Kolmogorov-Smirnov 0.998 0.996 1.000 1.000 1.000 1.000

Cramér-von Mises 1.000 1.000 1.000 1.000 1.000 1.000

Anderson-Darling 1.000 1.000 1.000 1.000 1.000 1.000

Gamma Order selection 0.998 0.998 1.000 1.000 1.000 1.000

Kolmogorov-Smirnov 0.998 0.990 1.000 1.000 1.000 1.000

Cramér-von Mises 1.000 1.000 1.000 1.000 1.000 1.000

Anderson-Darling 1.000 1.000 1.000 1.000 1.000 1.000

slower as compared to the other tests. Because the level is too small, the power will be

smaller.

For global deviations from the null distribution, the other tests have better perfor-

mance. For the gamma distribution and the 75% mixture, it is difficult to compare the

tests as all hypotheses are rejected.

We now turn to the next stage, where part of the data is censored. The standard tests

can no longer be used, but we will investigate the performance of the proposed test.
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(a) 12% left censoring.
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(b) 50% left censoring.
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(c) 18% interval censoring.

Figure 4.3: Simulations. Distribution of statistic T : theoretical (χ2 distribution, dashed line)

and simulation-based, based on 500 replicates. Null hypothesis of the log-normal distribution,

with data sampled from the log-normal distribution. Sample size 100 (solid), 200 (dotted), 500

(dash-dot).

In case of censoring

As mentioned before, the asymptotic distribution of Tn = max1≤r≤Rn
{2(Lr − L0)/r}

is given by

P (T 6 x) = exp

[
−

∞∑

s=1

P (χ2
s > sx)

s

]
,

where χ2
s has the chi-square distribution with s degrees of freedom.

For each sample size, 500 samples are drawn from the log-normal distribution. The

empirical distribution function of the resulting values of the test statistic Tn is shown in

Figure 4.3.

Compared to the theoretical distribution, the empirical distribution function is located

too much to the left. By using the theoretical critical values, the rejection rate will be too

small. For large sample size, the empirical distribution function is a better approximation

for the theoretical distribution function, at least for large values of the statistic. Especially

those large values are important for the test of a null hypothesis. Because only few large

values are available, a large number of samples should be used to conduct the simulation

study.

The most upper part of Table 4.4, showing rejection percentages when data are

generated under the null hypothesis, shows that the test seems to be somewhat over-

conservative, especially for small samples. This even holds in case of no censoring. As

sample sizes grow to 500, the rejection percentages converge to the nominal level, indicat-

ing the asymptotic distribution is indeed valid, even in case the data are interval-censored
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Table 4.4: Simulations. Percentage of rejected null hypotheses based on 500 replicates. Null

hypothesis of the log-normal distribution, with data sampled from the log-normal distribution, a

mixture of two log-normal distributions or a gamma distribution. c is the percentage of censoring.

c Sample size 100 Sample size 200 Sample size 500

Significance level 10% 5% 10% 5% 10% 5%

Left

censoring

Log-normal 0% 0.054 0.034 0.060 0.032 0.094 0.050

12% 0.062 0.038 0.060 0.034 0.116 0.050

50% 0.080 0.036 0.068 0.038 0.094 0.042

95% mixture 0% 0.166 0.068 0.236 0.096 0.418 0.282

12% 0.158 0.074 0.234 0.096 0.484 0.306

48% 0.168 0.084 0.246 0.118 0.464 0.298

90% mixture 0% 0.316 0.168 0.576 0.326 0.882 0.776

11% 0.276 0.140 0.560 0.338 0.926 0.836

45% 0.736 0.638 1.000 1.000 1.000 1.000

75% mixture 0% 0.928 0.670 0.998 0.990 1.000 1.000

9% 0.876 0.542 0.998 0.980 1.000 1.000

38% 0.736 0.638 0.994 0.950 1.000 1.000

Gamma 0% 0.998 0.998 1.000 1.000 1.000 1.000

42% 0.766 0.696 0.992 0.930 1.000 1.000

Interval

censoring

Log-normal 0% 0.054 0.034 0.060 0.032 0.094 0.050

18% 0.050 0.026 0.068 0.032 0.106 0.052

50% 0.074 0.048 0.060 0.028 0.096 0.042

95% mixture 0% 0.166 0.068 0.236 0.096 0.418 0.282

18% 0.150 0.070 0.244 0.110 0.492 0.308

48% 0.120 0.062 0.174 0.084 0.472 0.292

90% mixture 0% 0.316 0.168 0.576 0.326 0.882 0.776

17% 0.260 0.134 0.568 0.326 0.932 0.832

45% 0.236 0.148 0.478 0.230 0.938 0.818

75% mixture 0% 0.928 0.670 0.998 0.990 1.000 1.000

14% 0.880 0.514 0.996 0.992 1.000 1.000

38% 0.658 0.498 0.992 0.930 1.000 1.000

Gamma 0% 0.998 0.998 1.000 1.000 1.000 1.000

42% 0.764 0.690 1.000 0.960 1.000 1.000

and 50% is censored.

For the most contiguous alternative model, the 95% mixture model, rejection percent-

ages grow to about 7% and 16% (at level 0.05 and 0.10 respectively) for samples of size

100, to about 10% and 24% for samples of size 200 and about 30% and 47% for size 500.

The rejection percentages are mostly quite similar despite very different percentages of

the data that are censored. The same similarity holds whether it concerns left-censoring

only or left- and interval-censoring.

As expected, the power increases as the alternative model deviates more substantially
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(c) 18% interval censoring

Figure 4.4: Simulations. Percentage of rejected null hypotheses versus degree of extension (r).

Null hypothesis of the log-normal distribution, with data sampled from log-normal distribution.

Sample sizes 100 (circle), 200 (triangle) and 500 (cross).

from the null model, as in the 90% and 75% mixture models. Although the deviation is

represented by a local bump at the right (as shown in Figure 3.3), the percentage rejected

increases to about 80% for samples of size 100, up to 100% for samples of size 500.

Finally for the gamma distribution, representing a global deviation from the null model,

the rejection percentages are already about 70% for samples of size 100 and quickly grow

to about 95% for samples of size 200.

A more visual representation of the results, only showing the percentages of rejected

null hypotheses based on the theoretical critical values, is given in Figures 4.4 and 4.5. In

the former we expect the lines to approach the nominal values of 5%, while in the latter

the percentage should grow as high as possible (representing the power of the test).

A final representation of the results is the calculation of simulation-based critical values

(Table 4.5). The empirical values are smaller than the corresponding theoretical values

(3.22 and 4.18). However, as the sample size n increases, they approach the theoretical

values.
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(a) 90% Mixture.
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(b) 75% mixture.

Figure 4.5: Simulations. Percentage of rejected null hypotheses versus degree of extension (r).

Null hypothesis of the log-normal distribution, with data sampled from mixture of log-normal

distributions. 9% censoring in the left panel and 37% (39%) in the right panel. Sample sizes

100 (circle), 200 (triangle) and 500 (cross).

Table 4.5: Simulations. Simulation-based critical points. Null hypothesis of the log-normal

distribution, with data sampled from the log-normal distribution. c is the percentage of left

(upper part) and interval (lower part) censoring.

c Sample size 100 Sample size 200 Sample size 500

Significance level 10% 5% 10% 5% 10% 5%

Log-normal 12% 2.554 3.803 2.959 3.487 3.306 4.133

50% 2.941 3.653 2.639 3.746 3.011 3.791

Log-normal 18% 2.426 3.223 2.825 3.556 3.342 4.190

50% 2.628 3.937 2.635 3.381 3.206 3.985
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4.4 Bootstrap

From the simulation study it becomes clear that the asymptotic significance level does not

correspond to reality. In other words, the rejection rate is too low, when decision is based

on the theoretical distribution. In this section, we describe some bootstrap methods in

order to give an alternative to the theoretical critical values.

Suppose a data set is given and some of the observations are censored

(tLi
, tRi

, δRi
, δLi

, δIi
), i = 1, . . . , n. We denote the test statistic by T and from the

original sample we obtain a value tobs. For each bootstrap sample b = 1, . . . , B,

Efron and Tibshirani (1993) compute the test statistic tb and the observed value of the

test statistic is compared to the bootstrap values. The approximate bootstrap significance

level is defined as

ÂSLboot = # {tb > tobs} /B.

Some methods to obtain bootstrap samples with censored values are listed in the next

sections.

Non-parametric bootstraps were proposed for right-censored data

(Efron and Tibshirani, 1986; Davison and Hinkley, 1997) and interval-censored data

(Lawless and Babineau, 2006; Ren, 2003). In the context of hypothesis testing, we are

more interested in a parametric bootstrap. In the latter, the data are simulated with

respect to the null hypothesis.

Hjort (1992) focusses on aspects of maximum likelihood estimation applied to para-

metric survival data models, only for right-censored data. The parametric bootstrap

simulates pseudo-data (Y ∗
1 , δ

∗
1), . . . , (Y ∗

n , δ
∗
n) from the parametrically estimated model.

More specifically, X∗
i is simulated from the distribution with hazard rate α(., θ̂) and t∗i

from Ĝ, independently, such that Y ∗
i = min(X∗

i , t
∗
i ) and δ∗

Ri
= I{X∗

i > t∗i } define the

bootstrap sample. For the nonparametric bootstrap, the nonparametric Kaplan-Meier

estimate F̂ is used instead of the hazard rate. Both bootstraps are used to approximate

the limiting distribution of the MLE.

Beran (1988) focusses on the bootstrap of a hypothesis test that postulates that θ

is a member of Θ0, a specified subset of the parameter space Θ. This formulation is

equivalent to the simple null hypothesis in equation (4.1). Let cn(α) denote the largest

(1 − α)th quantile of the null distribution of the test statistic Tn. Then the test

φn =





1 if Tn > cn(α),

0 otherwise,

has level α. To obtain asymptotically valid critical values for the test φn, the following

bootstrap method can be used. Suppose that θ̂n = θ̂n(x1, . . . , xn) is an estimate of θ,
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based on the sample x1, . . . , xn, that is consistent under the null hypothesis and takes its

values in Θ0. Given the original sample x1, . . . , xn, let x∗
1, . . . , x

∗
n be an artificial sample

of size n drawn from the fitted null hypothesis model Fθ̂n
. Let T ∗

n = Tn(x∗
1, . . . , x

∗
n)

denote the value of the test statistic, recalculated from the bootstrap sample x∗
1, . . . , x

∗
n.

The conditional distribution of T ∗
n , given x1, . . . , xn, is the bootstrap estimate for the

null distribution of Tn. The largest (1 − α)th quantile of the bootstrap null distribution

is the bootstrap critical value cn(α) for the test φn.

4.4.1 Four approaches

We describe four approaches to obtain a bootstrap sample. While the first approach

is rather naive (no censoring), there is a different mechanism of censoring in the other

approaches. To facilitate the explanation of the approaches, we assume that data are

left-censored by a limit of detection. The results are shown in Paragraph 4.4.2.

Approach 1

In a first approach, the bootstrap samples are drawn from the null distribution, i.e. log-

normal. While censoring occurs in the original data, no censoring is introduced in the

bootstrap sample.

Approach 2

The second approach is an attempt to let the bootstrap sample resemble the original data.

How to draw a sample that resembles the true data well? Suppose only left censoring

occurs in the original data set. In the first step, we draw an uncensored sample. As

we assume that data come from the distribution under the null hypothesis, we fit the

parameters of the distribution on the given data set and sample from the distribution

with the estimated parameters. In the second step, censoring is introduced. Remember

that simulations were based on data coming from 5 laboratories, each with a different

limit of detection. Denote these limits of detection by L1 < L2 < · · · < L5. As all data

below L1 cannot be truly observed by any of the laboratories, all values in the bootstrap

samples below L1 are censored by L1. Next, calculate the probability of being censored in

the interval [0, L2] and censor with probability such that the probability in the bootstrap

sample of being unobserved in the same interval is the same as in the original data.

For example, suppose in the original data 6 observations are censored by L1, one is

observed in (L1, L2] and 4 are censored by L2. In the bootstrap sample 5 observations are

already censored by L1 in the first step and 9 are remaining for the second step. Based

on the cumulative probabilities, 6+4
6+1+4 = 90.9% of the observations should be censored.
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Figure 4.6: Simulations. Bootstrap approach 3. Illustration of generating uncensored value.

Determine interval to which sampled value belongs (step 1) and use F̂ to compute probabilities

P L1 and P L2 (step 2). Next generate number between P L1 and P L2 (Step 3). Bootstrap

value is the corresponding quantile (step 4).

In the bootstrap there are already 5 values censored by L1 and 9 remaining. We want to

censor a fraction p of the remaining 9 values:

6 + 4

6 + 1 + 4
=

5 + 9p

5 + 9
→ p =

1

9

(
10

11
× 14 − 5

)
= 85.9%.

If too many observations are censored by the smallest LOD, then this is corrected for

by the cumulative probabilities.

Approach 3

This approach is based on the idea of Efron and Tibshirani (1986). Assign an equal

weight 1/n to each observation (Yi, δLi
) and draw with replacement from this sample.

If the sampled value (Y 0∗
i , δ∗

Li
) has censoring indicator δ∗

Li
= 1 (i.e. is censored), then

the bootstrap value equals the sampled value: (Y ∗
i , δ

∗
Li

) = (Y 0∗
i , δ∗

Li
). However, if the

sampled value was truly observed (δ∗
Li

= 0), then a new value Y ∗
i is drawn from the

estimated distribution F̂ under the condition that the new value falls in between the

same LODs as the original value. The process is illustrated in Figure 4.6. For example,

suppose the sampled value Y 0∗
i is in between L1 and L2 (Step 1). Based on the estimated

distribution function F̂ , the probabilities PL1 = F̂ (Y < L1) and PL2 = F̂ (Y < L2)

can be computed (Step 2). Next a number p∗ is generated from the uniform distribution
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between PL1 and PL2 (Step 3). The quantile corresponding to this number is the new

bootstrap value Y ∗
i = F̂−1(p∗)(Step 4).

Approach 4

The bootstrap in this paragraph is probably the most intuitive approach and is based on the

method of Hjort (1992). We translate the method to left-censored data. The parametric

bootstrap simulates pseudo-data (Y ∗
1 , δ

∗
1), . . . , (Y ∗

n , δ
∗
n) from the parametrically estimated

model. More specifically, X∗
i is simulated from the distribution with distribution function

F (., θ̂) and t∗i from Ĝ, where Ĝ is the empirical distribution function of the LODs or

equivalently a table distribution with a fixed probability for each LOD (resampling from

LODs). Finally Y ∗
i = max(X∗

i , t
∗
i ) and δ∗

Li
= I{X∗

i 6 t∗i } define the bootstrap sample.

This approach can be easily extended to interval-censored data. Each censored value

can be represented by a couple (tL, tR), which in case of interval censoring is (LOD,

LOQ) and (0, LOD) in case of left censoring. The couples are resampled such that

δ∗
Ei

= I{X∗
i > t∗Ri

}, δ∗
Li

= I{X∗
i < t∗Li

} and δ∗
Ii

= I{t∗Li
< X∗

i 6 t∗Ri
}. There is no

right censoring in the original, nor in the bootstrap sample.

4.4.2 Results

The results of the bootstraps for the simulation study and the data examples (both

cadmium samples and the Signal Tandmobiel data) are given below.

Simulation study

As the bootstrap approaches are very computer intensive and preliminary exploratory

results seem to indicate comparable results, we limited the bootstrap analysis to the log-

normal distribution and the 75% mixture, for the setting with five laboratories and sample

size 100. The results from approach 1 are disappointing: the p-values are systematically

lower than the theoretical p-values and even more hypotheses are rejected. For each

original sample, 200 bootstrap samples were generated with left censoring as in approach

2 and 3. The rejection percentages are shown in Table 4.6.

For approach 4, the results are based on 500 bootstrap samples and we show the

rejection percentage for both left and interval censoring. Although the number of boot-

strap replicates is still rather low (due to computational intensity), Table 4.7 confirms the

conservative behaviour of the test procedure under the null (at least in case of a relatively

small size of 100). For the mixture distribution, rejection percentages are roughly similar.

This limited simulation study indicates that all bootstrap procedures perform similar and

asymptotical theory is reliable.
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Table 4.6: Simulation study. Bootstrap approach 2 and 3. Percentage of rejected null hypotheses

based on 200 bootstrap samples.

Significance level

Censoring Method 10% 5%

Left Log-normal Bootstrap approach 2 0.065 0.030

Bootstrap approach 3 0.060 0.025

Asymptotic theory 0.070 0.030

75% mixture Bootstrap approach 2 0.850 0.630

Bootstrap approach 3 0.795 0.630

Asymptotic theory 0.855 0.525

Table 4.7: Simulation study. Bootstrap approach 4. Percentage of rejected null hypotheses

based on 500 replicates for 200 samples of size 100, compared to theoretical results.

Significance level

Censoring Method 10% 5%

Left Log-normal Bootstrap approach 4 0.095 0.045

Asymptotic theory 0.070 0.030

75% mixture Bootstrap approach 4 0.970 0.765

Asymptotic theory 0.855 0.525

Interval Log-normal Bootstrap approach 4 0.095 0.055

Asymptotic theory 0.065 0.025

75% mixture Bootstrap approach 4 0.955 0.825

Asymptotic theory 0.840 0.485

Cadmium data 1

Using the bootstrap algorithm in approach 2 and based on 500 bootstrap samples from

the Cadmium data 1, the estimated critical points are 20.456 (at 5%) and 16.186 (at

10%). The bootstrap in approach 3 leads to the estimated critical points 7.245 (at 5%)

and 5.692 (at 10%) and the bootstrap in approach 4 to 3.562 an 2.568. For this particular

example, there seems to be some discrepancy between both bootstrap approaches, as well

as with the asymptotic null distribution: the value 6.549 of the test statistic on the original

data exceeded 4.18, the critical point at 5% based on the asymptotic distribution. The

same conclusion was made based on bootstrap approach 4. However the test does not

reject at 10% using the first bootstrap procedure, and it does reject at 10% but not at

5% for the second bootstrap procedure.
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Figure 4.7: Cadmium data 1. Bootstrap. Theoretical (dashed line) and empirical distribution

function of proposed test, based on 500 bootstrap samples. Approach 2 (dotted), approach 3

(dash-dot) and approach 4 (solid).

Cadmium data 2

These data are left- and interval-censored and therefore the extended approach was used

to generate bootstrap samples. In 15 out of 500 samples, the test statistic of the bootstrap

sample exceeded the original value 3.738. The critical points of the bootstrap distribution

are 3.073 (at 5% significance level) and 2.341 (at 10%). Although the asymptotical theory

did not reject the null hypothesis at 5%, the bootstrap does. However both decisions are

borderline.

Signal Tandmobiel data

The structure of the data is different from the Cadmium data. Data collection is based

on check-ups by the dentist and no exact measurements were recorded. Original data

are of the form (tL, tR) or (tL,∞) and all data are by definition censored and with

tL strictly positive. Therefore the bootstrap sample will have the same structure, with

δ∗
Li

= I{x0∗
i < t∗Li

}; if t∗Ri
= ∞ then δ∗

Ri
= I{x0∗

i > t∗Li
} or if t∗Ri

6= ∞ then

δ∗
Ii

= I{t∗Li
< x0∗

i < t∗Ri
} and δ∗

Ri
= I{x0∗

i > t∗Ri
}. Note that the bootstrap sample

can contain left-, interval- and right-censored data, while the original sample does not

contain left-censored data. From the 500 bootstrap samples, respectively 1, 5, 2 and 5

samples have a test statistics exceeding the statistic in the original sample of 8.635 (girls

with sound primary predecessors), 8.294 (girls, decayed), 7.465 (boys, sound) and 6.233

(boys, decayed). The critical points at 5% significance level according to the bootstrap are

4.118, 3.980, 4.010 and 3.966 respectively for the girls with sound and decayed primary

predecessors, and the boys with sound and decayed primary predecessors. Therefore,
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for every group of children the null hypothesis of the lognormal distribution is strongly

rejected at 5% significance level, based on the bootstrap.

4.5 Conclusion

We have proposed a general omnibus test for goodness-of-fit of parametric models for

arbitrary censored data, using the order selection test in combination with the SemiNP

representation. The method is straightforward to implement using standard optimization

software, but the estimation is dependent on the choice of appropriate starting values. No

formal proof is provided for the asymptotic behavior of the test, but simulation studies

show that the test performs well. The results of the data examples and the simulation

study indicate that the bootstrap approach offers a worthwhile alternative to the asymp-

totic approach. In fact, the results show that the nominal level is reached more accurately

and that the power behavior is better for the bootstrap approach.

Although we focused on testing log-normality, the approach is generally applicable for

competing distributions such as the loglogistic, gamma etc. This is the topic of further

research, in combination with extensions to models with covariates (regression models)

and to models with fixed and random effects, for instance to represent heterogeneity from

different food categories (as illustrated in EFSA (2010)). It should be possible to adapt

the approach also to other applications and setting such as to problems involving both

censoring and truncation (because the SemiNP representation is in “parametric” form,

the likelihood function is straightforward under the usual assumption that censoring and

truncation are independent of event time).
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Model averaging distribution

functions

The determination of an appropriate distribution for concentration data is of major im-

portance in chemical risk assessment. The selection and the estimation of an appropriate

distribution is hindered by observations below the limit-of-detection and the limit-of-

quantification, leading to left-censored and interval-censored data. The log-normal dis-

tribution is a typical choice, owing its popularity from the use of the log transform in

daily laboratory practice, in combination with the nice mathematical and computational

properties of the normal distribution. But the log-normal should not be the only choice

and other distributions need to be considered as well. Here we focus on several families of

distributions that are related to the log-normal distribution in some direct or indirect way,

and that are parametric or semi-nonparametric extensions of the log-normal distribution

(see Chapter 3): the log-skew-normal, the log-t, the log-skew-t, the Weibull, the gamma,

the generalized-gamma, and the semi-nonparametric estimator of Zhang and Davidian

(2008). Whereas in Chapter 4 we developed methodology to test the goodness-of-fit of a

particular hypothesized distribution, our interest here goes to model selection and model

averaging, using all parametric models only or in addition the series of extensions of the

log-normal distribution underlying the semi-nonparametric estimator. The models and

methods of selection and averaging are illustrated on data of cadmium concentration in

food products (Section 5.2) and further investigated through simulations (Section 5.3).

The material in this chapter was published in Nysen et al. (2015).

61
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5.1 Model averaging

By selecting one final best model and subsequently using it for inference, the preceding

step of model selection and model uncertainty is fully ignored. Standard inference on such

a final best model is “conditional” on that model. Model averaging offers a possibility to

include model uncertainty and to provide multi-model inference or unconditional inference.

Model averaging (Burnham and Anderson, 2002) starts from a rich set of plausible

candidate models and combines all fitted models such that better models have higher

influence than moderate and poor models. Let M be the family of candidate models, as

defined in the previous section, with Mi (i = 1 . . . ,K) the individual candidate models

from family M, and Fi the corresponding cumulative distribution function. The natural

parameters θi are estimated by maximum likelihood and their covariance matrix is denoted

by Cov(θ̂i).

In model averaging, a good model is defined by a small AIC. The weight that each

model receives, is based on the difference of its AIC with the smallest AIC of all candidate

models. The sum of the weights is equal to one:

wi =
exp

(
− 1

2 ∆i

)
∑K

j=1 exp
(
− 1

2 ∆j

)

with

∆i = AICi − AICmin.

Suppose we are interested in a parameter eta of the distribution, such as the mean,

median or the value of the density function in a specified location. For every candidate

model Mi, we can obtain an estimate η̂i. The model averaged value of parameter η is

given by the weighted average of the estimates from all candidate models:

η̂MA =

K∑

i=1

wiη̂i,

with estimated variance

V̂ar(η̂) =

[
K∑

i=1

wi

√
v̂ar(η̂i) + (η̂i − η̂MA)

2

]2

.

The variance estimator is the sum of two components. The first component is the con-

ditional variance, given model Mi. The second component reflects the variation in the

estimates across the K models.
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For each model Mi, a parameter η can be estimated and the standard error can

be obtained with the delta method. If the natural parameters θi of a distribution are

estimated and their variance-covariance matrix Var(θ̂i) is known, then the delta method

states that

Var(η̂) ≈ ▽h(θi)
TVar(θ̂i)▽h(θi), (5.1)

where the parameter η can be written in terms of the natural parameters: η = h(θi). In

formula (5.1) the gradient ▽h(θi) can be estimated by ▽h(θ̂i).

A central question in model averaging is the choice of the family M of candidate

models. A general guideline for selection and averaging in case of parametric models is that

the family needs to be rich enough (so that it contains at least one good approximating

model), and that it should only contain “sensible” models. Sensible models refer to all

models M ∈ M that should really be serious “candidates” within the context of the

application, and should obey possible constraints such as known shape restrictions (for

more discussion on this issue, see e.g. Burnham and Anderson, 1998). For our area

of interest (distribution of concentration data), the family of parametric models listed

and described in Section 3.1 seems to comply with this general guideline. This family

of parametric models will be denoted by MP . However, there is no guarantee that this

family MP includes a good approximating model as a family member, and consequently,

in case none of the family members fit well to the data, neither the best model selected

within this family nor the averaged estimate will fit well.

This latter observation is the main motivation to consider our very rich family of

models, being the series of SemiNP models fr, r ≥ 0 of Section 3.2. The family is so

rich that it can approximate in principle any distribution, under very general conditions.

The family of SemiNP models will be denoted as MS . The family is similar to the

family of orthogonal series estimators or a family of nonparametric smoothers indexed over

the smoothing parameter (kernel smoothers, splines). The order r acts as a smoothing

parameter similar to e.g. the bandwidth for kernel or local polynomial smoother (see

e.g. Hart, 1997). The family can also be compared to a family of fractional polynomials

indexed over a fine grid of fractional powers. Model selection and model averaging over

a family of fractional polynomials was proposed and discussed in Faes et al. (2007) and

Namata et al. (2008).

We will apply the family MS in two ways: i) as a whole family of indexed models, ii)

represented by a single model, being the model fr̂ adaptively selected with AIC as best

within MS , or, in other words, the model with data-driven smoothing parameter. This

model will be denoted as M̂S . So next to MP , we will consider the extended families

MP ∪
{
M̂S

}
and MP ∪MS as families over which model selection and model averaging
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can be performed. It is important to note that the composition of the extended family

MP ∪
{
M̂S

}
depends on the data. It is a data-driven family, because the particular

member M̂S varies across samples in its selected order r̂. Moreover, in case r̂ = 0

indicates the best model, no extra member will be added and MP = MP ∪
{
M̂S

}
. To

our knowledge such extensions or combinations have not been considered and studied yet.

It is also possible to consider only the SemiNP models. However in the simulation

study, we have encountered a lot of numerical issues, especially for the models in the family

of SemiNP models. Therefore we decided not to consider the family MS as a separate

family of candidate models. But it does seem an interesting option. Of course, in principle

the family MS or M̂S should suffice as the SemiNP estimator can approximate essentially

any distribution, but this might be at the cost of many parameters (r or r̂ large), whereas

a parametric model with only a few parameters might also be a good approximation, and

therefore to be preferred or at least to be considered.

In this chapter, we will apply model averaging to the density function and the cumula-

tive distribution function, both evaluated in a real number y. For each candidate model,

the natural parameters are estimated by maximum likelihood theory. These estimates are

implemented in the density and cumulative distribution function and the delta method is

used to estimate the variance of the function value. In the next chapter we will focus on

model averaging of quantiles.

5.2 Application to data examples

We are interested in the estimation of the cumulative distribution function F (y) and the

density function f(y), in some selected points y in the left tail of the distribution, ranging

from the 5% quantile up to the average of the LODs. We report on the estimation of

η = F (y) and η = f(y), for a fixed value y.

The three columns to the right in Table 5.1 show the weights on which the model

averaged estimates for the different families are based. Throughout all weighting schemes,

it is clear that the gamma distribution performs worst, getting weights very close to 0 and

thus will not contribute at all to the model averaged estimate. For the MP family, the log-

skew-t outperforms all other parametric models with weight 0.89611. Interestingly, when

extending the family MP with one additional, albeit data adaptive model to the family

MP ∪
{
M̂S

}
, the SemiNP model with r̂ = 3 fully takes over with weight 0.93454. The

weight of the log-skew-t model reduces to 0.05866 and all other models get approximately

a weight zero. The weight of all parametric models reduces even further when extending

the family further to the larger family MP ∪ MS. In the latter case, the weight of the

SemiNP model with r̂ = 3 is spread over the SemiNP models with r ranging essentially
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Table 5.1: Cadmium data 1. AIC and model averaging weights based on parametric models

(MP ) and based on parametric models together with best estimate of SemiNP (MP ∪
{

M̂S

}
)

or all 7 SemiNP models (MP ∪ MS).

Distribution Nr par AIC w(MP ) w(MP ∪
{

M̂S

}
) w(MP ∪ MS)

GenGam 3 -64.92 0.01701 0.00111 0.00045

Gamma 2 -47.24 2.46E-06 1.61E-07 6.45E-08

Weibull 2 -65.74 0.02568 0.00168 0.00067

Log-skew-t 4 -72.85 0.89611 0.05866 0.02346

Log-t 3 -62.62 0.00538 0.00035 0.00014

Log-skew-n 3 -66.64 0.04029 0.00264 0.00105

Log-normal 2 -64.73 0.01552 0.00102 0.00041

SemiNP1 2+1 -65.78 0.00069

SemiNP2 2+2 -69.48 0.00437

SemiNP3 2+3 -78.38 0.93454 0.37374

SemiNP4 2+4 -77.95 0.30144

SemiNP5 2+5 -76.64 0.15612

SemiNP6 2+6 -75.56 0.09094

SemiNP7 2+7 -74.22 0.04653

from 3 to 5.

In Table 5.2, the estimates η̂ = F̂ (y) are computed for y = qLN,0.05, min(LOD),

qLN,0.25 and LOD, where qLN,α represents the α-th quantile of the log-normal distribution

with parameters fitted to the data. The last rows correspond to the model averaged

value, based on the three families of candidate models, without and with the SemiNP

representation.

We can clearly see that different models lead to widely varying estimates of F (y),

especially when y is small. While selection of the best parametric model is standard,

it is seen that the addition of the more flexible SemiNP model can have an important

impact on the estimates. For each value of F (y) (each column) one can clearly observe

the effect of the weights: the MP -average is close to the estimate of the log-skew-t,

the MP ∪
{
M̂S

}
-average is close to the SemiNP3 estimate, and the MP ∪ MS-average

follows the trend in the estimates when going further from the SemiNP3- to the SemiNP5-

estimates. The estimated standard error of the averaged estimates is equal or slightly

higher as the estimate of the best single model.

When comparing the columns from left to right, corresponding to the estimation of

F (y) with y growing from y = 0.00028 to y = 0.00738, the model averaged estimates

over the families MP ∪
{
M̂S

}
and MP ∪ MS turn from being smaller than the MP -
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Table 5.2: Cadmium data 1. Estimates F̂ (y) of parametric models and model averaged value

(standard errors between brackets). Model averaging based on parametric models only (MP ),

on parametric models and best SemiNP (MP ∪
{

M̂S

}
), or on all fitted models (MP ∪ MS).

Corresponding weights are given in Table 5.1.

F̂ (qLN,0.05) F̂ (min(LOD)) F̂ (qLN,0.25) F̂ (LOD)

Distribution F̂ (2.77E − 04) F̂ (1.00E − 03) F̂ (2.13E − 03) F̂ (7.38E − 03)

GenGam 0.098(0.055) 0.195(0.101) 0.281(0.136) 0.466(0.190)

Gamma 0.244(0.063) 0.320(0.070) 0.374(0.073) 0.484(0.075)

Weibull 0.145(0.033) 0.239(0.041) 0.315(0.045) 0.477(0.046)

Log-skew-t 0.212(0.066) 0.276(0.061) 0.329(0.057) 0.452(0.049)

Log-t 0.050(0.024) 0.149(0.042) 0.247(0.049) 0.465(0.048)

Log-skew-n 0.115(0.046) 0.213(0.054) 0.294(0.054) 0.466(0.047)

Log-normal 0.050(0.024) 0.150(0.042) 0.250(0.049) 0.467(0.047)

SemiNP1 0.034(0.016) 0.223(0.047) 0.389(0.050) 0.481(0.049)

SemiNP2 0.072(0.058) 0.253(0.072) 0.355(0.060) 0.466(0.050)

SemiNP3 0.061(0.045) 0.240(0.070) 0.353(0.060) 0.468(0.050)

SemiNP4 0.039(0.030) 0.215(0.067) 0.349(0.060) 0.472(0.050)

SemiNP5 0.020(0.022) 0.188(0.071) 0.348(0.061) 0.475(0.051)

SemiNP6 0.006(0.008) 0.140(0.069) 0.335(0.064) 0.479(0.051)

SemiNP7 0.008(0.010) 0.150(0.068) 0.338(0.062) 0.479(0.051)

MP 0.201(0.071) 0.269(0.064) 0.325(0.059) 0.454(0.052)

MP ∪
{

M̂S

}
0.070(0.053) 0.242(0.070) 0.351(0.060) 0.467(0.050)

MP ∪ MS 0.044(0.043) 0.212(0.076) 0.348(0.061) 0.471(0.051)
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Table 5.3: Cadmium data 2. AIC and model averaging weights based on parametric models

(MP ) and based on parametric models together with best estimate of SemiNP (MP ∪
{

M̂S

}
)

or all 7 SemiNP models (MP ∪ MS).

Distribution Nr par AIC w(MP ) w(MP ∪
{

M̂S

}
) w(MP ∪ MS)

GenGam 3 -67.311 0.14691 0.10511 0.10373

Gamma 2 -68.086 0.21643 0.15486 0.15281

Weibull 2 -69.278 0.39276 0.28102 0.27731

Log-skew-t 4 -65.407 0.05671 0.04058 0.04004

Log-t 3 -57.669 0.00118 0.00085 0.00084

Log-skew-n 3 -67.744 0.18245 0.13055 0.12882

Log-normal 2 -59.863 0.00355 0.00254 0.00250

SemiNP1 2+1 -61.600 0.00597

SemiNP2 2+2 -60.781 0.00396

SemiNP3 2+3 -59.352 0.00194

SemiNP4 2+4 -57.690 0.00084

SemiNP5 2+5 -55.914 0.00035

SemiNP6 2+6 -54.073 0.00014

SemiNP7 2+7 -69.302 0.28450 0.28074

estimate to being larger. The difference between the estimates over MP ∪
{
M̂S

}
and

MP ∪ MS gets smaller for growing y.

When we consider the family of parametric models for Cadmium data 2, the Weibull

distribution fits the data best with regard to AIC and thus receives the highest weight

(Table 5.3). When adding one or all members from the SemiNP family of distributions, the

largest model (SemiNP7) also receives a substantial part of the weight. This is reflected

in the estimates for the distribution function (Table 5.4).
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Table 5.4: Cadmium data 2. Estimates F̂ (y) of parametric models and model averaged value

(standard errors between brackets). Model averaging based on parametric models only (MP ),

on parametric models and best SemiNP (MP ∪
{

M̂S

}
), or on all fitted models (MP ∪ MS).

Corresponding weights are given in Table 5.3.

F̂ (qLN,0.05) F̂ (min(LOD)) F̂ (qLN,0.25) F̂ (LOD)

Distribution F̂ (0.002) F̂ (0.003) F̂ (0.004) F̂ (0.015)

GenGam 0.059 (0.021) 0.080 (0.023) 0.102 (0.025) 0.233 (0.033)

Gamma 0.072 (0.019) 0.092 (0.022) 0.114 (0.025) 0.232 (0.033)

Weibull 0.062 (0.015) 0.082 (0.019) 0.105 (0.022) 0.233 (0.033)

Log-skew-t 0.059 (0.021) 0.082 (0.025) 0.106 (0.027) 0.242 (0.033)

Log-t 0.029 (0.011) 0.050 (0.016) 0.076 (0.021) 0.247 (0.035)

Log-skew-n 0.057 (0.020) 0.080 (0.024) 0.105 (0.026) 0.243 (0.033)

Log-normal 0.029 (0.011) 0.050 (0.016) 0.076 (0.021) 0.250 (0.035)

SemiNP1 0.033 (0.012) 0.054 (0.017) 0.080 (0.021) 0.247 (0.035)

SemiNP2 0.034 (0.012) 0.056 (0.017) 0.081 (0.021) 0.246 (0.035)

SemiNP3 0.035 (0.013) 0.056 (0.017) 0.082 (0.021) 0.245 (0.035)

SemiNP4 0.035 (0.013) 0.057 (0.017) 0.083 (0.021) 0.245 (0.034)

SemiNP5 0.036 (0.013) 0.057 (0.017) 0.083 (0.021) 0.244 (0.034)

SemiNP6 0.036 (0.013) 0.058 (0.017) 0.083 (0.021) 0.244 (0.034)

SemiNP7 0.019 (0.014) 0.054 (0.026) 0.102 (0.033) 0.255 (0.041)

MP 0.063 (0.019) 0.083 (0.022) 0.106 (0.024) 0.235 (0.033)

MP ∪
{

M̂S

}
0.050 (0.026) 0.075 (0.026) 0.105 (0.027) 0.241 (0.037)

MP ∪ MS 0.050 (0.026) 0.075 (0.026) 0.105 (0.027) 0.241 (0.037)
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5.3 Simulation study

Data are simulated according to the simulation scheme in Section 3.5. Three scenarios are

considered: scenario 1 assumes that data come from a log-normal distribution, scenario 2

assumes that data are gamma distributed and scenario 3 is the setting where data come

from a mixture distribution. In this section we only focus on left censoring. The parameters

η of interest are particular values of the cumulative distribution function F and the density

function f . In this section we only summarize and discuss the results for F (y1) (resp.

F (y2)), with F the generating distribution, and y1 = 0.0555 (resp. y2 = 0.1901) the

5% (resp. 25%) quantile of the log-normal (µ=−0.8047;σ=1.2686) distribution. We

will discuss the results for some sample sizes and generating distributions in detail in this

section. The results for the other sample sizes and generating distributions are presented

in Appendix A, as are the results for estimating the density function.

As we are looking at the 5% and 25% quantile of the log-normal distribution, we

are interested in estimating the value of the distribution function in the left tail of the

distribution, in a region where most of the data are left-censored, and more towards the

center, where most of the data are uncensored. In the log-normal case y1 is located as

extreme in the left tail of the distribution as the smallest point at which the cumulative

distribution function is estimated in the analysis of the Cadmium data. The values for η

being F (y1) and F (y2) are (obviously) 0.05 and 0.25 respectively for the first scenario,

0.3776 and 0.5103 for the second scenario. For the last scenario, η = F (y1) equals

0.0375, 0.045 and 0.0475 corresponding to the 75%, 90% and 95% mixtures respectively;

and η = F (y2) equals 0.1875, 0.225 and 0.2375 respectively.

The performance of the estimator is measured by the mean squared error (MSE),

decomposed in a squared bias and a variance term. Let η̂(r) denote the estimate based on

the r-th generated dataset, for r = 1, ..., R. With η̂ the average of the η̂(r)’s, the MSE

is approximated as (η̂ − η)2 +
∑

r(η̂(r) − η̂)2/(R− 1), with the first term approximating

the squared bias, and the second term the variance. To evaluate the performance for

the estimator for the standard error of η̂, the average squared estimated standard error is

compared to the approximate variance
∑

r(η̂(r) − η̂)2/(R−1). The number of simulations

is set to 500 (R = 500).

In total, we compare 12 different estimators η̂: seven estimators based on the seven

fully parametric models, the best parametric model according to AIC, the best model from

the SemiNP family according to AIC, the model average based on the parametric models

only (MP ), based on the parametric models supplemented with only the best model

from the SemiNP family (MP ∪
{
M̂S

}
), and finally based on the parametric models

supplemented with all SemiNP extensions (MP ∪ MS). Note that, as mentioned before,
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Table 5.5: Simulation study. Sample from log-normal distribution of size 100 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.347 (+) 2.243 2.589 (6) 3.186 1.482 (+) 3.592 5.074 (8) 5.125

Gamma 20.625 (+) 3.662 24.286 (11) 5.351 41.595 (+) 6.749 48.344 (11) 7.660

Weibull 30.418 (+) 3.878 34.297 (12) 4.680 44.392 (+) 5.506 49.898 (12) 5.861

Log-skew-t 0.016 (−) 2.662 2.679 (9) 3.405 0.184 (+) 5.624 5.808 (10) 6.448

Log-t 0.012 (−) 2.096 2.108 (1) 2.387 0.000 (+) 2.593 2.593 (1) 3.044

Log-skew-n 0.008 (−) 2.817 2.825 (10) 2.955 0.121 (−) 4.153 4.274 (4) 4.004

Log-normal 0.008 (−) 2.295 2.303 (2) 2.458 0.004 (−) 2.801 2.805 (2) 3.032

Best Parametric 0.015 (−) 2.527 2.543 (4) 2.528 0.060 (+) 5.732 5.792 (9) 3.389

Best SemiNP 0.028 (−) 2.627 2.655 (7) 2.496 0.000 (−) 4.124 4.124 (3) 4.859

MP 0.000 (+) 2.453 2.453 (3) 2.943 0.161 (+) 4.413 4.574 (5) 5.082

MP ∪

{
M̂S

}
0.002 (−) 2.543 2.545 (5) 2.953 0.156 (+) 4.764 4.920 (7) 5.764

MP ∪ MS 0.011 (−) 2.658 2.669 (8) 2.977 0.120 (+) 4.752 4.873 (6) 6.836

the first and third model average is based on a fixed set of candidate models, whereas the

second model average has one data-selected member in the family of candidate models.

We select four tables in order to summarize and discuss our main findings: two under

the scenario of the log-normal distribution, and one for both other scenarios (mixture and

gamma distribution). The other results are presented in Appendix A. As the simulation

settings are the same as in Section 3.5, we encountered the same computational as

mentioned in that section. The four leftmost columns of the table show the results

without censoring. The results for the same samples but now censored according to

the LOD values as described above, are shown in the right columns. The first of these

columns shows the (simulated) squared bias and the sign of the bias (“+” in case of

overestimation, and “-” otherwise); the second shows the (simulated) variance, both

combined in the third column in the Mean Squared Error (MSE). In between brackets is

the rank of the models according to MSE (1=best, 12=worst). Finally, the fourth column

(labeled var) provides insights in the performance of the estimates for the standard error

of the estimates. Indeed, comparing the variance result in column 2 with the average of

the squared estimate for the standard errors over all runs in column 4 allows us to assess

the bias of the se-estimate.

Scenario 1: generating from a log-normal distribution Table 5.5 and Table 5.6

summarize the results for sample size 100. Focusing on the left columns (no censoring) of
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Table 5.6: Simulation study. Sample from log-normal distribution of size 100 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.713 (−) 11.714 12.427 (3) 12.286 0.045 (−) 13.225 13.270 (2) 13.752

Gamma 1.899 (−) 6.751 8.650 (1) 11.645 1.022 (+) 10.341 11.363 (1) 14.049

Weibull 0.965 (+) 8.933 9.898 (2) 12.258 6.610 (+) 11.406 18.016 (12) 13.724

Log-skew-t 0.478 (−) 14.217 14.695 (12) 13.641 0.300 (−) 14.963 15.263 (8) 14.405

Log-t 0.388 (−) 13.851 14.239 (11) 12.999 0.329 (−) 15.037 15.365 (10) 15.401

Log-skew-n 0.114 (−) 13.786 13.899 (7) 12.813 0.027 (−) 15.647 15.674 (11) 13.980

Log-normal 0.036 (−) 13.556 13.592 (4) 12.220 0.034 (−) 14.747 14.780 (4) 13.728

Best Parametric 0.083 (−) 13.950 14.033 (9) 12.417 0.043 (−) 15.055 15.098 (7) 13.835

Best SemiNP 0.019 (−) 14.125 14.143 (10) 12.527 0.056 (−) 15.233 15.289 (9) 15.510

MP 0.218 (−) 13.446 13.663 (5) 12.889 0.062 (−) 14.620 14.681 (3) 14.315

MP ∪

{
M̂S

}
0.157 (−) 13.707 13.865 (6) 13.111 0.061 (−) 14.771 14.831 (5) 14.952

MP ∪ MS 0.078 (−) 13.825 13.904 (8) 13.494 0.061 (−) 14.779 14.841 (6) 17.806

the first table (η = F (y1)), we observe that the log-t, log-normal, log-skew-t, and the log-

skew-normal perform best, in that order, with very small negative bias. Bias is very large

and positive (overestimation) for the gamma and Weibull distribution, due to the location

of y1 in the very left tail of the distributions. Their extension to the generalized-gamma

distribution performs as one of the better ones. In a simulation setting we know the true

generating model, but of course in practice we don’t. So interest mainly goes to the

data-selected and averaged models. Here we can conclude that performance of all (five)

approaches are essentially the same, but there is a small increase in MSE when the family

of distributions for model averaging is larger. Comparing data-selected and averaged

models with the oracle model (the generating model), we can conclude that performances

are quite close. Regarding the bias of the se-estimate, the main conclusions are: i) slight

overestimation for the parametric models, ii) essentially zero for the data-selected models,

iii) some overestimation for the averaged models.

Switching to the right columns (with censoring) of Table 5.5, many of the above

findings remain valid. As expected, bias, variance and MSE values are now higher, because

y1 is located in the left tail of the distribution where the censoring is imposed. The impact

of censoring is very limited for the log-t and the log-normal model, but for most other

models, including the data-selected and averaged model, the MSE values double in value,

more or less. We can also see that censoring has an impact on the magnitude of the

standard errors. Again the data-selected and averaged models perform quite similar, with
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Table 5.7: Simulation study. Sample from gamma distribution of size 200 - estimate of distri-

bution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.099 (−) 7.581 7.680 (2) 7.280 0.004 (−) 12.621 12.625 (3) 12.831

Gamma 0.115 (−) 6.935 7.050 (1) 6.806 0.034 (−) 12.066 12.101 (1) 12.017

Weibull 6.571 (+) 11.246 17.818 (8) 8.140 12.260 (−) 12.284 24.544 (10) 10.994

Log-skew-t 0.704 (+) 9.415 10.119 (7) 9.243 0.052 (−) 12.439 12.491 (2) 12.929

Log-t 0.695 (−) 24.614 25.309 (9) 14.509 23.084 (−) 14.246 37.331 (12) 12.073

Log-skew-n 39.619 (+) 11.788 51.408 (11) 5.819 8.404 (−) 11.092 19.497 (9) 12.388

Log-normal 126.980 (+) 8.693 135.674 (12) 7.953 21.952 (−) 14.240 36.192 (11) 12.090

Best Parametric 0.001 (−) 8.224 8.224 (6) 6.912 0.055 (−) 12.915 12.970 (7) 11.999

Best SemiNP 4.648 (+) 32.432 37.079 (10) 9.094 2.173 (−) 17.317 19.490 (8) 20.471

MP 0.008 (+) 7.834 7.842 (3) 8.057 0.121 (−) 12.601 12.722 (4) 12.804

MP ∪

{
M̂S

}
0.005 (+) 7.896 7.900 (4) 8.126 0.102 (−) 12.738 12.840 (5) 13.363

MP ∪ MS 0.003 (+) 7.919 7.922 (5) 8.144 0.102 (−) 12.761 12.862 (6) 13.429

some advantage for the best SemiNP model.

The results in Table 5.6 for the parameter η = F (y2) are very much the same,

albeit with some remarkable and important differences. For the true model, the log-

normal, MSE increases. Being the poorest models for η = F (y1), the gamma and

Weibull model outperform all other models, especially in the absence of censoring. The

next best parametric model is the generating log-normal model. Conclusion is that the

estimation of local features of a distribution is not necessarily predestinated for the “true”

model. Not directly deducible from this table is the fact that AIC most often selected the

log-normal model as best model, and not the gamma model. Indirectly this is confirmed

by the results for the best parametric (data-selected) model whose results are close to that

of the log-normal. AIC is of course a model selection criterion that assesses the global fit

of a model to the data, whereas focus is here on a local characteristic of the distribution.

Another remarkable observation is that the loss of precision when censoring is introduced

is quite limited. Of course, censoring is concentrated in the left tail of the distribution,

and even to the left of y2.

Scenario 2: generating from a gamma distribution In the second part of the study,

samples are drawn from the gamma distribution. The results for samples of size 200

estimating the cumulative distribution function in y1, are provided in Table 5.7. In all

simulations from the gamma distribution, the mean squared error is the smallest when
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fitting the gamma model. For this correctly specified distribution, i.e. gamma, MSE

increases if the data are censored. The MSE for the gamma model is much smaller

than for the other models and only the generalized gamma model is of about the same

magnitude. It is clear that the SemiNP models are not the best way to describe these data.

However, the performance is better in Scenario 3 below, where data are simulated from

a distribution with a local deviation from the log-normal distribution instead of a global

deviation. We can also observe that for some fitted distributions, MSE is smaller in the

censored case. This is the case when using the log-skew-normal and the log-normal, and

the best SemiNP. This is mainly located in the bias component. The use of the log-skew-

normal and the log-normal result in estimates for the cumulative distribution function of

the gamma (at y1) that are extremely highly biased upwards. Introducing censoring (42%)

in the data reduces that bias considerably. This peculiar effect when using a misspecified

model for the estimation of the cumulative distribution function based on censored data

seems contradictory, but the use of a misspecified model can lead to ‘unpredictable’ effects

when censoring is introduced.

Regarding the bias of the se-estimates, the conclusions are: i) slight underestimation

for the parametric models, except for the oracle model where there is almost no bias, ii)

underestimation for the data-selected models, iii) slight overestimation for the averaged

models. Because the AIC of the gamma model is the smallest (not deducible from this

table), the MSE and mean variance for the model averages are close to the corresponding

values of the gamma model.

Scenario 3: generating from a mixture of log-normal distributions The last part

of the simulation study contains data sampled from the 75%, 90% or 95% mixture dis-

tributions. All results are in Appendix A, but we show here only the results for the 75%

mixture with sample size 500, when estimating F (y2) in Table 5.8. The data-selected

model based on the parametric distributions and the model average in the MP family,

are biased and the standard errors are overestimated. The data-selected model based on

the SemiNP models is only little biased, but the standard error is underestimated. The

model averages based on MP ∪
{
M̂S

}
and MP ∪MS show also little bias. The standard

errors are still underestimated, but closer to the variance in the second column. For the

censored data, the standard error in both the data-selected models and model-averages

is overestimated, but the bias is much smaller for the model averages. In Table 5.8, we

can also observe an ‘improved’ behavior in case of censoring. But here all models are

misspecified, except for the SemiNP model which is known to be able to capture local

departures. For that SemiNP model the MSE increases when introducing censoring, as

one would expect.
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Table 5.8: Simulation study. Sample from 75% mixture distribution of size 500 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 8.852 (−) 1.096 9.949 (12) 1.752 2.187 (−) 1.666 3.853 (9) 2.193

Gamma 7.189 (−) 0.944 8.133 (10) 1.772 1.470 (−) 1.422 2.892 (7) 2.128

Weibull 5.600 (−) 1.179 6.778 (8) 1.698 2.100 (−) 1.453 3.554 (8) 1.906

Log-skew-t 5.281 (−) 1.012 6.293 (4) 1.803 0.724 (−) 1.499 2.223 (1) 2.243

Log-t 6.391 (−) 1.757 8.148 (11) 1.816 6.896 (−) 1.868 8.764 (12) 1.984

Log-skew-n 5.331 (−) 1.032 6.363 (7) 1.786 1.032 (−) 1.514 2.546 (6) 2.191

Log-normal 5.864 (−) 1.768 7.632 (9) 1.797 6.528 (−) 1.884 8.412 (11) 1.982

Best Parametric 5.316 (−) 1.031 6.347 (6) 1.789 0.829 (−) 1.546 2.375 (5) 2.217

Best SemiNP 0.077 (+) 4.105 4.182 (3) 2.502 1.027 (−) 4.058 5.085 (10) 6.089

MP 5.314 (−) 1.027 6.340 (5) 1.793 0.826 (−) 1.527 2.353 (2) 2.227

MP ∪

{
M̂S

}
0.024 (−) 3.928 3.952 (2) 2.676 0.106 (−) 2.257 2.363 (4) 5.104

MP ∪ MS 0.007 (−) 3.885 3.892 (1) 2.701 0.102 (−) 2.260 2.362 (3) 5.395

Of course it does not make sense to recommend the use of a misspecified model in

case of censoring, but it stresses the importance of careful selecting candidate models

(possibly based on prior or expert knowledge) and of considering model averaging. In

Table 5.8 where all models are misspecified, the model averaged estimates perform very

good, especially the extended versions (last two lines).

The tables in Appendix A show that for the less contaminated samples (95% and 90%

mixture), the family with all members of the SemiNP model has smaller MSE than the

family with only the best member. When simulating from the 75% mixture, it depends on

the sample size and censoring which family of candidate models gives the smallest MSE.

Similar results are obtained for the estimate of the density function in a fixed value.

The tables are available in Appendix A. Data from the log-normal distribution are least

biased by the log-normal model. An exception is the Weibull model for uncensored data

and the generalized gamma model for censored data while estimating the density in the

5% quantile. While AIC of the Weibull model was the second worst for uncensored, log-

normally distributed data, the bias is the smallest. The bias in the SemiNP models is

close to the bias of the true (log-normal) model. The variance is clearly larger than the

square of the bias and therefore has more influence on the mean squared error. MSE of

the Weibull model is the smallest for the estimate of the density in the 5% quantile, but

the log-normal performs well, as expected. The MSE of the SemiNP models is close to

the log-normal model. For the censored samples, the MSE of the log-normal model is the
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smallest, closely followed by the SemiNP model with one extra parameter. In the case

of the 25% quantile, the least biased models are the SemiNP. MSE of these models is

close to MSE of the log-normal, but the Weibull (uncensored) and generalized gamma

(censored) have a MSE that is slightly smaller. For data simulated from the gamma

distribution, the gamma model has the smallest mean squared error. The bias is clearly

smallest for the true gamma model, but the variance is smaller for some other models.

The best SemiNP model has one extra parameter compared to the log-normal model for

uncensored data and the maximum number of 7 extra parameters for censored data. The

same conclusions hold for sample size 200, except for the censored case and 25% quantile,

where the SemiNP model with three parameters performs slightly better than the model

with seven parameters.

5.4 Conclusion

In this chapter we focused on different model strategies for the estimation of the distribu-

tion function of chemical contaminant data, which are typically left-censored. It is shown

that it is highly important to select an appropriate and rich enough family of candidate

models. The use of the SemiNP model is recommended when working with real data.

Its semi-parametric nature offers more flexibility to the standard parametric models. As

the fitting of the SemiNP model needs some specialized code, and turns out to be quite

computer intensive and highly sensitive to starting values, this might hinder its use in

daily statistical practice. But, while these computational issues were a major problem in

our simulation study, this is less the case for fitting a single data example. Our experience

learned that convergence could be reached in all cases after trying out a few different sets

of starting values.

The techniques described in this article, are based on maximum likelihood estimation.

As the likelihood is defined for any type of censoring (left-, right- or interval-censoring),

we do expect the methods to be applicable to other censoring schemes and to other data

structures such as hierarchical and longitudinal data. Throughout this thesis AIC has

been used as the information criterion to select and to average different models, but other

choices can be made. While the AIC is asymptotically efficient, BIC is an asymptotically

consistent model selection criterion (Burnham et al., 2011). The comparison of both

criteria for model selection and averaging in case of censored data is another interesting

topic for future research. In some instances we are also only interested in some local

property of the distribution and using AIC or BIC might not be the best option (as they

compare models globally). Focused information criteria as introduced and studied in

Claeskens and Hjort (2003) offer an appealing way to go in that case.





Chapter 6
Model averaging quantiles

Whereas in Chapter 5 we focused on the model averaging of the distribution function,

our interest here goes to model averaging of quantiles. As a quantile is the inverse

of the distribution function, there are two approaches to model average quantiles. One

approach consists of estimating the quantile in every model, followed by averaging over the

estimates. In the other approach we first construct a model averaged distribution function

and then take the inverse to obtain an estimate for the quantile. Both approaches are

illustrated on Cadmium and Cesium data (Section 6.4). The study of the Cesium data is

further complicated by the presence of a time effect and by the uncertainty of the limit

of detection. A way to deal with these complications is discussed in Section 6.3. The

performance of both model averaging approaches is compared in a simulation study in

Section 6.2. The material in this chapter was published in Nysen et al. (2016b).

6.1 Two approaches of model averaging quantiles

The quantile ξp of a distribution is the point where the cumulative distribution function

achieves the level p. It can be computed by inverting the cumulative distribution func-

tion. To compute a model averaged quantile, there are two natural approaches. In the

first approach we estimate the quantile in each model and compute the average over all

estimated quantiles. In the second approach, we model average the cumulative distribu-

tion function and invert the model averaged function to estimate the quantile. A prior

comparison of the approaches is given in the last subsection.

77
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6.1.1 Direct method of model averaging

In this first approach, the quantile ξp is estimated for each candidate model Mi (i =

1, . . . ,K) and the model averaged estimate is a weighted average of the K estimates.

Based on model Mi, the ML-estimate for ξp is given by ξ̂p,i = F−1
i (p; θ̂i), with variance

(as approximated by the delta method)

Var(ξ̂p,i) ≈ ∇F−1
i (p; θi)

T Cov(θ̂i)∇F−1
i (p; θi). (6.1)

The gradient ∇F−1
i (p; θi) with respect to θi can be estimated by ∇F−1

i (p; θ̂i).

The model averaged estimate is defined as the weighted average

ξ̂p,MA1
=

K∑

i=1

wiξ̂p,i, (6.2)

with weights wi defined as (Burnham and Anderson, 2002)

wi =
exp

(
− 1

2 ∆i

)
∑K

j=1 exp
(
− 1

2 ∆j

) , (6.3)

where ∆i = AICi − AICmin. The variance estimator

V̂ar(ξ̂p,MA1
) =

[
K∑

i=1

wi

√
V̂ar(ξ̂p,i) +

(
ξ̂p,i − ξ̂p,MA1

)2
]2

,

is the sum of two components, the conditional variance, given model Mi, and the second

component reflects the variation in the estimates across the K models. For a general

discussion on the construction of the AIC-based weights, its motivation in the frequentist

approach, the use and comparison with other weights as well as with Bayesian averaging,

we refer to Burnham and Anderson (2002). It is of course important to include sufficiently

good approximating models in the set of candidate models. This could be assured through

knowledge about the setting, or by making the family of candidate models rich enough

(excluding however models that make no sense for a particular application of interest).

6.1.2 Indirect method of model averaging

A second approach follows the opposite order: instead of inverting all model specific CDFs

Fi and next averaging the obtained quantiles, first average the model specific CDFs Fi,

and next invert the obtained average. As inverting a CDF is nonlinear, the approaches

are not identical. See next section for some more comparative considerations.

Let y be a real number in the domain of the candidate distribution function. The

averaged distribution function is given by

FMA(y; θ̂) =

K∑

i=1

wiFi(y; θ̂i),
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with the same weights (6.3) and with θ̂ the stacked vector of all estimated natural pa-

rameters θ̂i of all candidate models Mi, i = 1, ...,K.

The estimated variance of FMA(y; θ̂) is then given by

V̂ar(FMA(y; θ̂)) =

[
K∑

i=1

wi

√
V̂ar(Fi(y; θ̂i)) +

(
Fi(y; θ̂i) − FMA(y; θ̂)

)2
]2

. (6.4)

Note that FMA(y; θ̂) is indeed a valid cumulative distribution function of a positive

continuous random variable. The performance of the estimator FMA(y; θ̂) has been studied

in Nysen et al. (2015). They illustrated the importance of choosing a good model and

how selecting an incorrect model can bias the results. Model averaging reduces the bias

and therefore offers a worthwhile solution. It is interesting to compare their results on

the CDF scale to our results on the inverted quantile scale. Indeed, we define the indirect

averaged estimate for the p-quantile ξp as

ξ̂p,MA2
= F−1

MA
(p; θ̂). (6.5)

In practice ξ̂p,MA2
is computed by numerically solving the equation FMA(y; θ̂) = p.

Based on the implicit function theorem, the variance of ξ̂p,MA2
can be approximately

estimated by

V̂ar(ξ̂p,MA2
) =

V̂ar(FMA(ξ̂p,MA2
; θ̂))

f2
MA(ξ̂p,MA2

; θ̂)
,

using expression (6.4) and with averaged density fMA(y; θ̂) = (∂/∂y)FMA(y; θ̂).

The direct estimate ξ̂p,MA1
and the indirect estimate ξ̂p,MA2

will be not the same, but

are expected to be not too far apart. Figure 6.4 illustrates the two different approaches

for the estimation of the 25% quantile of the cadmium distribution. The figure shows

that the model specific estimates ξ̂0.25,i vary substantially. A poor model choice may

thus result into a poor estimate. The model averaged estimates ξ̂0.25,MA1
and ξ̂0.25,MA2

are close in this case. The estimate resulting from the log-skew-t model, selected by AIC

as best model (see Section 6.4.1) and contributing most to ξ̂0.25,MA1
, is slightly smaller

(as indicated by the dashed black vertical line). In the following section we go into some

prior considerations on the difference between both estimates ξ̂p,MA1
and ξ̂p,MA2

.

6.1.3 Prior comparison of direct and indirect estimator

A quite similar, though different situation appears in the construction of model-averaged

benchmark dose (BMD) estimation. The BMD is defined as the dose corresponding to a

very small increase in risk over background, a “safe level” of exposure, and such a BMD
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is estimated from dose-response models, e.g. through developmental toxicity studies

designed to assess the potential adverse effect of a chemical exposure on developing

fetuses. Faes et al. (2007) proposed the use of the flexible family of fractional polynomials

(FP, Royston and Altman, 1994) to estimate the BMD and proposed to average the FP-

specific BMD-estimates directly (similar to our “direct” approach). In the same setting,

Wheeler and Bailer (2007, 2009) pointed at some shortcomings of this direct method,

and proposed to first average the dose-response models and to define a BMD estimate

from there. This latter approach is the translation of our “indirect” approach to this

BMD setting. Wheeler and Bailer (2007) recommend the latter method, but as other

issues of implementation where involved, and as the setting is not identical (no censored

data but binary response variable in a regression context), their conclusions cannot be

straightforwardly extended to our setting.

Although a theoretical study of both approaches along the lines and with methodology

as introduced in Claeskens and Hjort (2008) is beyond the scope of this dissertation, some

first order approximations might lead to some further insights in how the estimates ξ̂p,MA1

and ξ̂p,MA2
differ. Based on a first order Taylor expansion applied to Fi(y, θ̂i) around ξp,

it follows that for each model Mi (i, . . . ,K), we have that, for a particular fixed value of

0 < p < 1,

p− Fi(ξp, θ̂i) = fi(ξp, θ̂i)(ξ̂p,i − ξp) +OP ((ξ̂p,i − ξp)2),

with fi(y; θ̂i) = (∂/∂y)Fi(y; θ̂i), and consequently, with weights wi as in (6.3) summing

to 1,

p− FMA(ξp, θ̂) =

K∑

i=1

wifi(ξp, θ̂i)(ξ̂p,i − ξp) +

K∑

i=1

wiOP ((ξ̂p,i − ξp)2). (6.6)

A similar first order Taylor expansion applied to FMA(y, θ̂) around ξp yields

p− FMA(ξp, θ̂) = fMA(ξp, θ̂)(ξ̂p,MA2
− ξp) +OP ((ξ̂p,MA2

− ξp)2)

such that, ignoring the remainder OP -terms

(ξ̂p,MA2
− ξp) ≈

K∑

i=1

wi
fi(ξp, θ̂i)

fMA(ξp, θ̂)
(ξ̂p,i − ξp) 6= (ξ̂p,MA1

− ξp).

This relationship expresses the difference between both model-averaged estimators, in

terms of the differences between the model specific density estimates fi(ξp, θ̂i) and the

model averaged density estimate fMA(ξp, θ̂). A sufficient (but not necessary) condition for

(ξ̂p,MA2
− ξp) ≈ (ξ̂p,MA1

− ξp) is that

fi(ξp, θ̂i)

fMA(ξp, θ̂)
≈ 1, for all i = 1, ...,K.
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It is very unlikely that this sufficient condition is fulfilled for all models, but it might be

reasonable to assume that it holds for those model Mi having the highest weights wi and

contributing most to the averaged estimate.

As these considerations do not reveal sufficient insights in how both approaches per-

form for small and varying sample sizes and with varying percentages of left-censoring,

simulations were set up and results thereof are reported in the next section.

6.2 Simulation study

The settings and scenarios of the simulation study are similar to those in Chapter 5, where

the performance of the individual candidate models is compared to the performance of the

best model and the model average, for estimating the distribution function F (y) at some

predefined y. The simulation study in Nysen et al. (2015) did indicate that results and

conclusions thereof are quite scenario dependent. However, in this chapter we focus on

quantile estimation and the results are not a priori the same as for the estimation of the

distribution function. Indeed, a distribution function F (y) is, as an average of indicators

I(Y ≤ y), a linear combination of random variables and is restricted to a value between

0 and 1, whilst a quantile is a non-linear functional and is only restricted to be positive

in our setting.

The objective of this simulation study is to compare the performance and accuracy

of different approaches to estimate the quantiles in terms of i) mean squared error of the

estimates, decomposed in squared bias and variance, ii) bias of the estimated standard

errors of the estimates. In this comparison we consider the following different estimates,

based on: i) each of the individual parametric models, as members of the family M, ii)

that member of M, selected as best by AIC and iii) the model average over M according

to the direct and indirect method.

Two censoring schemes are used. The first is explained in Section 3.5.2.

The second censoring scheme is based on the first data example. For the Cadmium

1 data, 5 different limits of detection are used, representing 42% of all data. The LODs

correspond to the 15%, 24%, 39%, 46% and 52% percentiles of the fitted log-normal

distribution, with frequencies 4, 1, 12, 2 and 23 (the other 57 are not censored). If we

assume that the LODs in the sample occur with the same probability as in reality, it

means that the distribution of the 15%, 24%, 39%, 46% and 52% percentiles is equal

to 9% (=4/42), 2% (=1/42), 29% (=12/42), 5% (=2/42) and 55% (=23/42). For the

simulation study we use the same percentiles of the log-normal distribution, with the same

discrete distribution. This results in 44% censoring for the samples from the log-normal

distribution, 41%, 39% and 32% for the mixture distributions and 59.6% for the gamma
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Figure 6.1: Simulation study. Left panel: sampling distributions log-normal and mixture distri-

butions. Right panel: sampling distributions log-normal and gamma distribution. Left censoring

based on censoring scheme 1 (N) and censoring scheme 2 (•).

distribution. The LODs are shown by the circles on the horizontal axis in Figure 6.1.

We selected three tables in order to summarize and discuss our main findings. The

upper part of these tables summarize the performance of the individual members of the

parametric family M, followed by the best data-driven representative of this family (se-

lected by AIC), and the averaged models over this family (according to the two methods of

averaging: direct indicated by ∗ and indirect by ∗∗). The four leftmost columns show the

results without censoring. The results for the same samples but now censored according

to the LOD values as described above, are shown in the middle (first censoring scheme)

and right (second censoring scheme) columns. So, from left to right, the percentage of

censored data increases. Every first column shows the (simulated) squared bias and the

sign of the bias (“+” in case of overestimation, and “-” otherwise); the second shows

the (simulated) variance, both combined in the third column with the Mean Squared

Error (MSE). In between brackets is the rank of the models according to MSE (1=best,

9=worst). Finally, the fourth column (labeled var) provides insights in the performance

of the estimates for the standard error of the estimates. Indeed, comparing the variance

result in column 2 with the average of the squared estimate for the standard errors over all

runs in column 4 allows us to assess the bias of the standard error-estimate (s.e.-estimate).

Scenario 1: generating from a log-normal distribution. Table 6.1 summarizes the

results for sample size 100 while estimating the 5% quantile (0.0555) of the data. A first

overall observation is that the MSE increases for all models when increasing the degree
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Table 6.1: Simulation study. Sample from log-normal distribution of size 100 - estimate of 5%

quantile (Results ×10−4).

Censoring No censoring Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 9.163(-) 0.833 9.995(8) 1.064 13.581(-) 0.800 14.382(9) 0.831 23.098(-) 0.484 23.582(9) 0.441

Weibull 10.820(-) 0.517 11.337(9) 0.569 13.162(-) 0.500 13.662(8) 0.495 18.736(-) 0.438 19.174(7) 0.388

Log-skew-t 0.079(+) 1.689 1.767(7) 1.930 0.005(-) 3.066 3.071(7) 3.254 0.029(-) 20.920 20.949(8) 19.412

Log-t 0.075(+) 1.300 1.376(2) 1.328 0.041(+) 1.506 1.548(1) 1.609 0.214(+) 2.807 3.021(1) 3.130

Log-skew-n 0.060(+) 1.638 1.698(6) 1.534 0.238(+) 2.355 2.593(5) 2.038 5.121(+) 13.078 18.199(6) 9.129

Log-normal 0.065(+) 1.294 1.359(1) 1.246 0.069(+) 1.510 1.579(2) 1.490 0.197(+) 2.891 3.087(2) 3.022

AIC-selected 0.076(+) 1.467 1.542(5) 1.307 0.005(+) 2.762 2.766(6) 1.568 1.334(+) 13.283 14.617(5) 4.887

MP
(1) 0.051(+) 1.453 1.505(3) 1.526 0.001(+) 2.273 2.274(3) 2.311 0.108(-) 4.943 5.051(3) 13.322

MP
(2) 0.052(+) 1.458 1.510(4) 1.159 0.000(+) 2.356 2.356(4) 2.046 2.292(-) 3.494 5.785(4) 18.811

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

of censoring (from left to right), as to be expected. For the log-normal (the true model),

the log-t, the direct and the indirect model average, this increase stays quite limited but

for some methods the increase is dramatic (log-skew-t, log-skew-normal, the AIC-selected

model). For the second censoring scheme several models and methods get into problem,

in one or another way.

Focusing first on the individual parametric models, the estimators based on the log-t

and the true log-normal distribution outperform all other estimators and provide the best

fits (as to be expected in this scenario). Both their MSE values are actually very close,

with the smallest value for the true log-normal distribution in case of no censoring, and the

reverse in case of moderate or highly censored data. But the log-t and the true log-normal

estimators are closely followed by the direct and indirect model average. Both methods

of model averaging behave very similar; in case of no or moderate censoring, the variance

of the direct method is slightly smaller, and the reverse for the higher censoring scheme

2. For the gamma and Weibull model the increase in the MSE is mainly located in the

squared bias component, for the log-skew-t it is rather the variance component, and for

the log-skew-normal and the AIC-selected model it happens in both components.

The estimates for the standard errors perform well for the log-t and the log-normal

model, regardless of the degree of censoring. But for the others, the performance of the

estimates for the standard errors is also affected by the degree of censoring: from overesti-

mation to underestimation for the gamma, Weibull, log-skew-t, and to an extreme extent

for the AIC-selected model. For the log-skew-normal the se-estimates always underesti-

mate the variability in the estimates but bias increases with the degree of censoring. For

no and moderate censoring, the estimates for the standard errors perform well for the

direct and indirect model average. However, for censoring scheme 2, the se-estimates
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Table 6.2: Simulation study. Sample from log-normal distribution (upper panel), gamma dis-

tribution (lower left panel) or mixture of 2 log-normal distributions (lower right panel). Average

AIC rank of models within MP .

Scenario 1

Log-normal distribution

Sample size 100

Censoring No Censoring 1 Censoring 2

Gamma 5.90 5.66 4.82

Weibull 4.91 4.49 3.39

Log-skew-t 3.85 3.98 4.50

Log-t 3.03 3.21 3.74

Log-skew-n 2.02 2.26 2.87

Log-normal 1.29 1.40 1.68

Scenario 2 Scenario 3

Gamma distribution 75% Mixture distribution

Sample size 200 Sample size 500

Censoring No Censoring 1 Censoring 2 No Censoring 1 Censoring 2

Gamma 1.18 1.26 1.30 4.19 3.69 2.43

Weibull 3.71 2.98 2.24 3.18 3.38 3.13

Log-skew-t 2.05 2.60 2.67 1.95 1.73 1.02

Log-t 4.98 6.00 5.95 5.84 5.97 5.99

Log-skew-n 3.13 3.77 4.96 1.05 1.27 4.17

Log-normal 5.96 4.40 3.88 4.79 4.96 4.26

seem to highly overestimate the true variability. A further investigation in the distribu-

tional properties of the se-estimates in these particular cases indicates a very right-skewed

distribution, explaining the high value of the average of the variance estimates.

The averaged AIC ranks of the individual parametric models (Table 6.2) show that

the log-normal distribution leads to the best quantile estimators, but that its dominance

decreases slightly with the degree of censoring. The two worst performers (gamma and

Weibull) seem to perform relatively somewhat better when more censoring is present. It

is not unexpected that the higher the level of censoring the worse the performance of

any method and the more alike the different methods perform; although there is a clear

winner for this scenario.

The above findings generalize to the other sample sizes and different quantiles (results

not shown here), except how both model averaged estimators compare with each other.

The first model averaging approach is usually the best for small quantiles, while for larger
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Table 6.3: Simulation study. Sample from (a) gamma distribution of size 200 - estimate of

25% quantile (×10−4) and (b) 75% mixture distribution of size 500 - estimate of 1% quantile

(Results ×10−4).

(a)

Censoring No censoring Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.018(+) 0.220 0.238(5) 0.224 0.026(+) 0.405 0.430(1) 0.436 0.083(+) 0.878 0.961(1) 0.851

Weibull 0.023(+) 0.222 0.246(6) 0.158 1.935(+) 0.699 2.635(6) 0.665 7.080(+) 1.880 8.960(3) 1.804

Log-skew-t 0.003(+) 0.218 0.222(3) 0.227 0.111(+) 0.481 0.592(3) 0.755 0.485(+) 1.573 2.058(2) 3.303

Log-t 1.116(+) 1.080 2.195(9) 0.623 5.088(+) 0.774 5.862(9) 0.693 36.221(+) 3.421 39.642(9) 3.439

Log-skew-n 0.225(-) 0.085 0.311(7) 0.048 2.223(+) 0.782 3.005(7) 0.621 35.282(+) 3.494 38.776(8) 3.396

Log-normal 0.385(-) 0.050 0.435(8) 0.021 4.979(+) 0.762 5.741(8) 0.683 35.185(+) 3.450 38.635(7) 3.393

AIC-selected 0.011(+) 0.219 0.231(4) 0.215 0.060(+) 0.526 0.586(2) 0.447 33.050(+) 4.134 37.183(6) 3.305

MP
(1) 0.008(+) 0.211 0.219(2) 0.225 0.108(+) 0.503 0.611(4) 0.572 29.062(+) 3.602 32.665(4) 4.339

MP
(2) 0.007(+) 0.210 0.216(1) 0.240 0.105(+) 0.510 0.615(5) 0.492 29.304(+) 3.668 32.973(5) 3.632

(b)

Censoring No censoring Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.197(-) 0.020 4.217(9) 0.031 4.962(-) 0.017 4.978(9) 0.021 6.012(-) 0.009 6.021(8) 0.011

Weibull 3.881(-) 0.019 3.899(8) 0.022 4.305(-) 0.017 4.322(8) 0.019 4.883(-) 0.015 4.898(4) 0.016

Log-skew-t 2.091(-) 0.048 2.139(7) 0.087 3.693(-) 0.095 3.788(7) 0.144 7.127(-) 0.005 7.132(9) 0.073

Log-t 0.141(+) 0.131 0.272(1) 0.133 0.160(+) 0.146 0.305(1) 0.157 0.907(+) 0.226 1.133(1) 0.315

Log-skew-n 1.714(-) 0.044 1.758(3) 0.072 2.421(-) 0.044 2.465(3) 0.061 0.052(+) 1.880 1.932(3) 0.243

Log-normal 0.182(+) 0.132 0.314(2) 0.131 0.222(+) 0.147 0.369(2) 0.155 1.110(+) 0.232 1.342(2) 0.317

AIC-selected 1.786(-) 0.056 1.842(4) 0.074 3.082(-) 0.147 3.229(4) 0.072 4.917(-) 0.017 4.934(5) 0.017

MP
(1) 1.840(-) 0.049 1.889(5) 0.082 3.140(-) 0.102 3.242(5) 0.110 4.910(-) 0.024 4.935(6) 0.030

MP
(2) 1.846(-) 0.049 1.895(6) 0.051 3.199(-) 0.108 3.307(6) 0.131 5.015(-) 0.020 5.035(7) 0.061

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

quantiles the second approach results in a smaller mean squared error. So there is no

clear model averaged winner, but both perform well, mostly taking rank 3-5 across all 9

estimators.

We can conclude that for this setting the true log-normal and the log-t perform globally

best. The direct and indirect model average also perform well in case of no or moderate

censoring, but they collapse in the second censoring scheme in the variance estimation.

Scenario 2: generating from a gamma distribution. The results of estimating the

25% quantile (0.0106) from a sample of size 200, generated from the gamma distribution,

are given in part (a) of Table 6.3. This scenario differs from the first one in several ways:

another distribution, a less extreme quantile, a higher percentage censored data, and a

larger sample size.

Globally, the mean squared errors are again larger in case of censored data, and there

are no pronounced differences in the MSE characteristics between both methods of aver-
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aging. In many cases, the bias squared term dominates the MSE, and this holds especially

for censoring scheme 2. Only the true gamma model, followed by the log-skew-t and, to

a lesser extent, the Weibull model are performing well across all censoring schemes.

Most individual parametric models perform very similar in case of no censoring. When

introducing censoring, the gamma distribution outperforms the rest, most closely followed

by the log-skew-t. The AIC-selected and averaged models perform quite well, with some

loss in performance with increasing degree of censoring, especially for AIC-selected model.

The table also shows varying performance of the se-estimates: in some cases more or less

underestimation, in other situations some overestimation. Performance is best for the

true gamma model. But overall bias seems to be the larger problem when estimating this

particular quantile. Table 6.2, showing the average AIC-ranks across the simulation runs,

confirms the (expected) outstanding performance of the gamma model.

For smaller quantiles (not shown here), the variance and mean squared error of the

indirect approach are smaller than those of the direct approach; the estimated standard

errors are smallest for the direct approach. However, the differences are small. The results

for the 25% quantile in the small and large sample, are similar to the discussion above.

For the largest quantile that we considered (50%), the mean squared error of the direct

and indirect approach are close together, but there is no winner. The estimated standard

errors are smaller for the indirect approach.

We can conclude that for this second scenario the gamma and the log-skew-t perform

best, followed by the averaged models and the AIC-selected model, but following at a

larger distance with increasing degree of censoring (due to inflating squared bias).

Scenario 3: generating from a mixture of log-normal distributions. Part (b) of

Table 6.3 shows the results of estimating the 1% quantile (0.0269) in a sample of size

500 from the 75% mixture distribution. This scenario is again quite different: a bimodal

distribution with a relatively small second bump in the right tail of the distribution, a

different percentage censoring and even larger sample size, and a quantile in the extreme

left tail of the distribution. In this setting all candidate models are wrong, and a related

point of interest here is how, when estimating an extreme quantile in the extreme left

tail, this second component to the right of the mixture model disturbs the performance

of the individual models (especially of the log-normal model) as well as the performance

of the model selection and the model averaging methods.

As before MSE values get larger with increasing degree of censoring, and as in the first

scenario, the log-t and log-normal distribution are performing best, now closely followed

by the log-skew-normal. The log-skew-normal distribution acts better than in the first

scenario, as it tries to deal with the skewness (on the log scale) introduced by the second



6.2. Simulation study 87

component of the mixture model. The next group of comparably performing estimates

consists of the AIC-selected model and both model averages, taking the next three posi-

tions. Only in the second censoring scheme the AIC-selected model has to leave its fourth

position to the Weibull. Similar to scenario 1, the gamma, Weibull and log-skew-t take

the last positions in the MSE ranking.

Compared to the log-t, log-normal and log-skew-normal, the AIC-selected, direct and

indirect model averages show a more growing squared bias component as the degree of

censoring increases. This indicates that AIC not only selects one of the two or three best

models, but also one of the less performing models (also suffering from bias problems).

And indeed, the three right columns of Table 6.2 show that surprisingly neither the log-t

nor the log-normal get the lower averaged ranks, but the log-skew-normal and the log-

skew-t do, and especially this latter distribution has bias problems. As a global measure

of fit, AIC selects the models allowing the accommodation of the additional skewness (on

log scale) introduced by the second mixture component, rather than selecting the models

that perform best in the left tail of the distribution. In general the se-estimates are slightly

to moderately overestimating the variability of the estimates, and both model averages

perform essentially equally well.

We can conclude that there is some effect of the introduction of the second component

in the log-normal mixture, but the global findings of scenario 1 hold in this case as well.

Although the quantile estimates and their se-estimates in this third scenario seem to

suffer less from aberrations induced by the second censoring scheme as compared to the

first scenario. The explanation for this is the lower 32% censoring as compared to the

44% in the first scenario. The same LODs where used but the second component shifts

probability area from the left tail to the right tail of the distribution.

Across all scenarios. Figure 6.2 summarizes the performance of all 9 different quantile

estimators (6 parametric models, the AIC-selected model and 2 model averages) across

all 60 settings (5 distributions: log-normal, gamma, three mixtures; 3 sample sizes; 4

quantiles). The performance of each estimator for a particular setting is summarized by

its MSE rank for that setting: the smaller the MSE value, the lower the rank and the

darker the bar in the bar chart in Figure 6.2. The upper and lower bar chart fully at the

left show the result for the uncensored data, the middle panels for censoring scheme 1

and the two right panels for censoring scheme 2. Although these bar charts obviously only

summarize the global performance across the particular settings included in the simulation

study, they shed some light on the performance of a particular estimator at a higher, more

global level.

The estimators based on the log-normal and gamma distribution take the extreme
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Figure 6.2: Simulation study. Bar chart of the MSE rank (black=rank 1; white=rank 9): bar

height represents the number of settings that selected a model with the given rank. Left panels:

no censoring; middle panels: censoring 1; right panels: censoring 2.

lowest and highest rank positions more often than any other estimator, which is not

surprising as they perform best in case the data are generated according to the log-normal

and gamma distribution. The log-normal and log-t are performing best in terms of having

highest frequencies for the best ranks 1 and 2. But they do appear to be also the worst

performing estimator for the setting where data are generated from a gamma distribution.

The AIC-selected model and the model averages M(1) and M(2) have rarely the

highest or lowest MSE, but often a position at the better side in the middle, indicating

that they are not often performing as best and mostly not as worst estimator but quite

often as good performing estimators. So, in case one has no prior knowledge about the

true distribution, the AIC-selected model and the model averaged estimators are certainly

a worthwhile option. When the degree of censoring increases, comparing the panels

from left to right, the rank distribution flattens out, especially for the direct averaging

method. Comparing the AIC-selected model, and the direct and indirect method of model

averaging, there is no clear winner.
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6.3 Extensions

In the next section we will apply both approaches of model averaging to the Cadmium and
134Cesium data. Before we show the results, we discuss some interesting extensions. A

first extension is the use of the family MS of semiNP models, which we illustrate on the

Cadmium data. Limiting yourself to the set of typical parametric models, and selecting

your final model from that set or averaging over those models, will still end in a poor

estimate in case all parametric candidate models fit poorly. It is therefore important to

include a good approximating model in the set of candidate models. This could be assured

through knowledge about the setting. Another way is to make the family of candidate

models rich enough. One way to do this is to include the best member or the whole

nested series of MS as part of the family of candidate models.

The second extension is the inclusion of covariates, more precisely a time effect. Finally

we propose a method to account for the uncertainty about the true LOD-values. The

last two extensions are illustrated on the 134Cesium data. These extensions were not

included in the simulation study as we encountered too many computational problems

(non-convergence related to the choice of starting values, the large number of parameters

and the existence of local maxima).

6.3.1 Covariates

In practice the natural parameters are expressed as a function of the logarithmic mean and

variance and as such plugged into the likelihood function. To our knowledge there is no

closed form expression of the logarithmic mean and variance of the log-skew-t distribution.

We assume that the logarithmic mean includes the parameter µ in a linear way as it holds

for the log-skew-normal distribution.

Models can be extended to incorporate the effect of covariates. Typically the mean

of the distribution is modelled as a (linear) function of the covariate, e.g. µ = β0 + β1t.

These parameters can be plugged into the density and distribution function to obtain an

extended likelihood:

L(β0, β1, θ|y, δ) =
n∏

i=1

{
f(yi;µ = β0 + β1t)

1−δLi [F (yi;µ = β0 + β1t)]
δLi

}
, (6.7)

where θ represents all final parameters to be estimated (with parameter µ replaced by β0

and β1). As consequence of including time-dependent parameters, the quantile of interest

ξp(t) and its estimators now also depend on the covariate t.

In the 134Cesium data we are interested in the effect of time on the estimation of the

quantiles of the distribution of 134Cesium concentrations. We will model the logarithmic
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Table 6.4: Overview of distributions and the corresponding logarithmic mean and variance.

Distribution E(log Y ) Var(log Y) Remarks

Gamma (shape k, scale a) Ψ(k) + log(a) Ψ′(k) Ψ is digamma function

Weibull (shape b, scale a) (b log a − γ)/b π2/(6b2) γ is Euler’s constant

Log-skew-t / /

Log-t (df n) µ (if n > 1) σ2n/(n − 2) (if n > 2)

Log-skew-n (skewness α) µ + σδ
√

2/π σ2(1 − 2δ2/π) δ = α/
√

1 + α2

Log-normal µ σ2

mean E(logY ) as a function of time. Table 6.4 provides an overview of the parametric

models with the corresponding logarithmic mean and variance.

6.3.2 Measurement error on limit of detection

Reconsider the likelihood expression (3.6) assuming the LOD values to be known (in our

case all equal to 10). Similar to random effects models, we know consider this likelihood

as the likelihood, given the LOD value. Next, we assign a distribution fU (u;LODi) to

the “random” LOD, with mean LODi, and maximize the marginal likelihood

L(θ|y, δ) =

n∏

i=1

{
f(yi; θ)

1−δLi

[∫
F (u; θ)fU (u;LODi)du

]δLi

}
, (6.8)

where, as before, δLi
is equal to 1 for a left-censored observation and 0 otherwise, and f

and F are the density and distribution function of the data, respectively. This likelihood

can be extended in the same way as in (6.7) to include covariate effects.

Note that G(LODi; θ) =
∫
F (u; θ)fU (u;LODi)du is again a cumulative distribution

function (under some mild regularity conditions). The likelihood expression (6.8) equals

expression (3.6) with CDF F (LODi; θ) replaced by CDF G(LODi; θ).

6.4 Application to data examples

The Cadmium and 134Cesium data are used to illustrate both approaches of model av-

eraging. For the Cadmium data, we compare estimates based on the parametric models

to estimates based on models from the SemiNP family of distributions. Three families

of candidate models are used for the model averages. For the 134Cesium data we have

information on the time of measurement and we consider this as a covariate. Further, the

limit of detection is unknown and we deal with the uncertainty.
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Table 6.5: Cadmium data 1. For each parametric and semiNP model, according to different

families: AIC, weights, and quantile estimates (standard error estimates). The first line shows

the empirical estimates. (Estimate and standard error ×10−2)

Distribution AIC w(MP ) w(MP ∪

{
M̂S

}
) w(MP ∪ MS) ξ̂0.05 ξ̂0.25

0.145 0.500

Gamma -47.24 0.000 0.000 0.000 0.000(0.000) 0.031(0.038)

Weibull -65.74 0.026 0.002 0.001 0.002(0.002) 0.113(0.051)

Log-skew-t -72.85 0.912 0.059 0.023 0.000(0.000) 0.063(0.076)

Log-t -62.62 0.005 0.000 0.000 0.028(0.014) 0.217(0.070)

Log-skew-n -66.64 0.041 0.003 0.001 0.006(0.006) 0.144(0.073)

Log-normal -64.73 0.016 0.001 0.000 0.028(0.014) 0.213(0.069)

M
(1)
P

0.001(0.002) 0.071(0.079)

M
(2)
P

0.000(0.003) 0.072(0.081)

SemiNP1 -65.78 0.001 0.034(0.008) 0.113(0.024)

SemiNP2 -69.48 0.004 0.022(0.013) 0.098(0.045)

SemiNP3 -78.38 0.936 0.374 0.024(0.013) 0.106(0.045)

SemiNP4 -77.95 0.302 0.032(0.013) 0.120(0.043)

SemiNP5 -76.64 0.156 0.043(0.018) 0.133(0.042)

SemiNP6 -75.56 0.091 0.059(0.021) 0.153(0.041)

SemiNP7 -74.22 0.047 0.056(0.020) 0.150(0.041)

MP ∪

{
M̂S

}(1)
0.023(0.013) 0.104(0.048)

MP ∪

{
M̂S

}(2)
0.021(0.014) 0.105(0.046)

MP ∪ M
(1)
S

0.033(0.018) 0.120(0.047)

MP ∪ M
(2)
S

0.030(0.018) 0.123(0.047)
(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

6.4.1 Cadmium data

The parametric and semiNP models were fit to the Cadmium data. The estimated dis-

tribution functions are shown in Figure 6.3, showing that the (log-)normal distribution

is a reasonable fit, but other distributions fit better. Especially the log-skew-t and the

SemiNP distribution describe the data quite well, as indicated by AIC in Table 6.5. The

model averaging weights are computed as in (6.3) and are also listed in Table 6.5. The

best parametric fit is convincingly the log-skew-t distribution and consequently it has a

major impact on the model average over the family M. The estimates for the 5% and

25% quantiles are shown in Table 6.5. The naive estimates (substituting the censored

values by LOD/2) are shown on the first line. The results for other quantiles (e.g. 1%

and 50%) are similar and are available in Appendix B.

As already shown in the simulations under different scenarios, the direct and indirect

estimates are similar for the family M of candidate models. Both approaches are illus-
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trated in Figure 6.4 for the 25% quantile. On the one hand the quantiles of the individual

distributions are projected on the horizontal axis, and the model average is represented by

the cross (direct approach). On the other hand the model averaged distribution is shown

(squares) together with its quantile (indirect approach).

Within the family of semi-nonparametric models, the SemiNP3 model (extending the

log-normal with three additional parameters) is the best model based on AIC and therefore

r̂ = 3 and MP ∪ {M̂S} = MP ∪ {f̂3}, i.e. extending the family of parametric models

with the SemiNP3 model. Moreover AIC of the parametric models is larger, resulting

in a high weight for the SemiNP3 model and a higher estimate for the quantiles. When

turning to the family MP ∪MS , the SemiNP3 and SemiNP4 model take over the leading

role and result in considerably higher estimates for both quantiles. The model averaged

estimates combining the parametric and the SemiNP estimates are mainly determined by

the higher weights given to the SemiNP3, SemiNP4 and even SemiNP5 model.

In this particular application the SemiNP models seem to outperform the parametric

models. This is also confirmed graphically by comparing all models with the fully non-

parametric Kaplan-Meier estimate, at least for concentrations larger than the smallest

LOD. Indeed the SemiNP models in the right panels of Figure 6.3 seem to follow the

Kaplan-Meier estimate much closer. The Kaplan-Meier estimate however has a major

disadvantage, as it is undefined below the smallest LOD and therefore does not allow to

estimate small quantiles below this point.
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Figure 6.3: Cadmium data 1. Cumulative distribution function of the concentrations. Para-

metric fitted distributions (left) and SemiNP fitted distributions (right). The censored data are

represented by crosses, where the thickness represents the number of censored data. The dots

represent the uncensored data. The thin black line represents the Kaplan-Meier estimate. The

fit of the log-normal and log-t distribution cannot be distinguished. The lower panels zoom in

on the left tail (up to the largest observed LOD) of the corresponding upper panels.
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Figure 6.4: Cadmium data 1. Illustration of direct and indirect approach, based on the cumula-

tive distribution functions. The squares represent the model averaged distribution function. The

vertical lines indicate the location of the model-specific 25% quantile estimates ξ̂0.25,i and the

indirect estimate ξ̂0.25,MA2 (vertical line of squares). The cross on the horizontal line represents

the model averaged quantile ξ̂0.25,MA1 from the direct approach.



6.4. Application to data examples 95

Table 6.6: Cesium data: AIC and model averaging weights. A constant value 10 is assumed for

the LODs.

Distribution β̂0(s.e.) β̂1(s.e.) AIC weight

Gamma 0.4180(0.7680) -0.0128(0.0023) 363.5246 0.0000

Weibull 1.2859(0.3950) -0.0155(0.0032) 343.4477 0.0000

Log-skew-t -0.0127(0.0023) 308.2874 0.4975

Log-t 2.1817(0.1256) -0.0120(0.0020) 308.3320 0.4865

Log-skew-n 2.4391(0.2115) -0.0142(0.0029) 315.1819 0.0158

Log-normal 2.1675(0.2458) -0.0142(0.0030) 324.7135 0.0001

6.4.2 Cesium data

As mentioned in Section 2.1.2, an extra difficulty occurs for the Cesium data, because

the LODs are not exactly known. They are only known to vary about an average value

of 10. We handle this problem in two different manners. The first is by replacing the

unknown LODs by the average value 10, the second is by assuming a distribution for the

LOD. We will assume here that the LODs are normally distributed with mean 10 and

variance 2 as well as a triangular distribution centered around 10, with base from 0 to 20

(as a sensitivity analysis about the unknown distribution of LODs). In case more precise

information is available, e.g. about the laboratory techniques and corresponding LODs,

this could be incorporated in the distribution.

In what follows we limit ourselves to the parametric models. Extending the SemiNP

models with both extensions was not feasible within the scope of this study.

6.4.2.1 Assuming the LOD to be known and equal to 10

Table 6.6 shows some goodness-of-fit statistics (AIC) for every parametric model and

the corresponding weights for model averaging. Based on AIC, the log-t and log-skew-t

distribution provide the best fit. Therefore the weights of these distributions are highest.

Figure 6.5 shows the parametrically estimated 5% and 25% quantiles as a function

of time t. The fitted quantile function of the Weibull and gamma distribution is quite

different from the other quantiles of the other distributions. The AIC of these distributions

is relatively high and therefore they do not contribute to the model averaged quantile.

The model averaged quantiles are in between the log-t and log-skew-t distribution, as

expected, since these distributions receive almost all the weight. We can hardly observe

a difference between the direct and indirect method.
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Figure 6.5: Cesium data. Quantiles (left: 5% - right: 25%) based on parametric estimates. The

model averaged quantiles are represented by bold squares (direct method) and crosses (indirect

method). A constant value 10 is assumed for the LODs.
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Figure 6.6: Cesium data. Quantiles (left: 5% - right: 25%) based on parametric estimates. The

model averaged quantiles are represented by bold squares (direct method) and crosses (indirect

method). A normal distribution (mean 10, variance 2) is assumed for the LODs.

6.4.2.2 Using an uncertainty distribution for the LOD, centered at 10

Normal distribution for LOD. Next, we assume that the LODs are not exactly equal

to 10, but have a value close to 10. Therefore we assume a normal distribution with mean

10 and variance 2 (right panel of Figure 2.3). 99% of the LODs are then in the interval

[6.36, 13.64] and for computational ease we limit the region over which we integrate to

[0, 20]. The results as shown in part (a) of Table 6.7 and Figure 6.6 are close to those

with fixed LOD=10. This result indicates that the choice of an LOD equal to 10 would

be sufficient.

Triangular distribution for LOD. Finally we assume a triangular distribution with cen-

ter 10 and base [0, 20]. Now the results in part (b) of Table 6.7 differ a bit more from
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Table 6.7: Cesium data: AIC and model averaging weights. (a) A normal distribution (mean

10, variance 2) and (b) a triangular distribution is assumed for the LODs.

(a)

Distribution β̂0(s.e.) β̂1(s.e.) AIC weight

Gamma 0.3791(0.7815) -0.0129(0.0023) 364.1902 0.0000

Weibull 1.2761(0.3975) -0.0156(0.0033) 343.9874 0.0000

Log-skew-t -0.0127(0.0022) 309.3092 0.4971

Log-t 2.1809(0.1291) -0.0121(0.0021) 309.3565 0.4854

Log-skew-n 2.4405(0.2112) -0.0144(0.0029) 316.0206 0.0173

Log-normal 2.1659(0.2471) -0.0144(0.0030) 325.4342 0.0002

(b)

Distribution β̂0(s.e.) β̂1(s.e.) AIC weight

Gamma -0.0340(0.9027) -0.0140(0.0024) 370.7506 0.0000

Weibull 1.2034(0.4259) -0.0175(0.0035) 349.5870 0.0000

Log-skew-t -0.0149(0.0027) 319.3412 0.4582

Log-t 2.2235(0.1410) -0.0140(0.0021) 319.1392 0.5069

Log-skew-n 2.5143(0.2269) -0.0167(0.0031) 324.5242 0.0343

Log-normal 2.1826(0.2716) -0.0168(0.0032) 332.9782 0.0005

those in Table 6.6 and the log-t takes over from the log-skew-t as the best model, with a

slightly higher slope. The final fits (Figure 6.7) are however close again. This shows that

the sensitivity to the choice of the distribution for the LOD is negligible in this setting.

6.5 Conclusion

In this chapter we studied the estimation of quantiles of distributions as they appear for

concentration data in chemical risk assessment. This estimation is complicated by the

presence of left-censored data. Also the model selection and model averaging is hampered

by this form of incomplete data.

Next to the performance of the quantile estimators based on the individual candidate

models and on the AIC-selected model, two different model averaged quantile estimators

are defined and compared: averaging the quantile estimators, each derived from the

estimated distributions (direct method) and vice versa, inverting the averaged estimator

of the distribution function to derive the quantile estimator (indirect method).

Main conclusions. The main conclusions from the obtained insights are i) the true

model or a good approximating model performs best; ii) AIC-selected model or averaged

models are in general not performing best, but do achieve acceptable performance char-
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Figure 6.7: Cesium data. Quantiles (left: 5% - right: 25%) based on parametric estimates. The

model averaged quantiles are represented by bold squares (direct method) and crosses (indirect

method). A triangular distribution is assumed for the LODs.

acteristics in case one has no prior knowledge of the true distribution (as in most cases);

iii) there is no favorite method of averaging; in some cases the direct method performs

somewhat better, and reversed in other cases, without a clear pattern; iv) only the true or

closely approximating model can deal with extremely high percentages of censoring (40%

or more) and model selected or model averaged estimates might turn into highly variable

estimates and their se-estimates might inflate dramatically; v) the family of candidate

models, the model selection and model averaging can be extended with the SemiNP fam-

ily of models, as illustrated in the Cadmium data; and can be extended with covariates

and measurement error on the LODs as illustrated in the 134Cesium data; vi) Including

the SemiNP family of models is an appealing option to ensure that the family of candidate

models is rich enough. It needs however some careful selection of starting values (due to

the large number of parameters and the existence of local maxima); vii) when estimating

local characteristics such as quantiles in the left tail, model selection and model averaging

based on global measures of fit are sensitive to deviations located at the right tail of the

distribution.

Global and local measures. Regarding point vii) of the main conclusions, the use of

a focused information criterion (see e.g. Claeskens and Hjort, 2008) for model selection

and model averaging in this particular setting and for quantile regression (Behl et al.,

2014) is a promising avenue of further research. Determining the maximum percentage of

censoring or the minimum sample size to estimate extreme percentiles of the distribution

might be another goal of future research. It depends on several factors including the

particular distribution of the LOD values and of course on the true underlying distribution

of the data.

Bayesian approach. Bayesian model averaging (see e.g. Hoeting et al., 1999) offers
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an attractive alternative computational and inferential paradigm for estimating quantiles

in the presence of censoring. It has been successfully applied in other fields such as in

dose-response modelling (see e.g. Morales and Ryan, 2006). A Bayesian implementation

of model averaging might also circumvent some of the computational problems as we

encountered with the SemiNP models.

Several software packages such as the R package BMS (http://bms.zeugner.eu)

and BMA (http://www.research.att.com/ volinsky/bma.html) exist to perform

Bayesian model averaging. A study comparing the direct and indirect method of model

averaging for the estimation of quantiles based on censored data from a Bayesian point

of view would be very welcome in the field of chemical risk assessment. Such a study

and comparison with the frequentist approach is beyond the scope of this work but is an

interesting avenue for further research.





Chapter 7
Generalized profiling

Statistical parametric models describing changes over time (or other dimensions) as de-

fined by differential equations occur in several fields of applied statistics. For such models,

Ramsay et al. (2007) introduced a generalized smoothing estimation approach that is ro-

bust to model misspecification. As illustrated by two examples from bacterial growth and

infectious disease transmission, a monotonicity constraint can appear as a very natural

limitation of any candidate model, or one might want to test for monotonicity in order

to check the validity of the assumed model. In this chapter we extend the generalized

profiling approach with an additional penalty term in order to guarantee a monotone

solution. As an alternative to the forward prediction error and cross-validation for se-

lecting a data-driven smoothing parameter, the method of one-sided cross-validation of

Hart and Yi (1998) is proposed and shown to be useful in this setting. Finally bootstrap

pointwise and simultaneous confidence intervals, a bootstrap omnibus lack-of-fit test of

the proposed parametric model and a bootstrap test for monotonicity are introduced and

applied to both examples.

The material in this chapter is proposed in Nysen et al. (2016a).

7.1 Differential equation models for the Y. enterocolitica and Par-

vovirus B19 data

This section briefly describes differential equation models for the two data examples.

101
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7.1.1 The Y. enterocolitica data

The first example concerns the concentration of a species of gram-negative coccobacillus-

shaped bacterium Yersinia enterocolitica (see Section 2.3).

The microbial growth process is typically described by three or four phases. The first

phase is called the lag phase, because the growth of the cells will only start after a certain

lag time. During the exponential phase the cells will grow. Finally the growth is inhibited

and a stationary phase is attained. The fourth phase is the death phase, where the cells

die, but this phase is often omitted. A popular growth model reflecting the three first

phases has been introduced by Baranyi and Roberts (1994). Denoting µ(t) the mean of

the log of the cell concentration of a bacterial batch culture, the Baranyi and Roberts’

BR-model is defined by the differential equation

dµ(t)

dt
= κα(t)u(µ(t)), (7.1)

with the initial value µ(0) = µ0, with the “inhibition” function (ensuring the transition of

the growth curve to the stationary phase)

u(µ(t)) =
(

1 − e(µ(t)−µmax)
)
,

and with the “adjustment” function (describing the adjustment of the culture to the new

environment)

α(t) =
1

1 + e−Q(t)
,

where Q(t) = ln q(t), q(t) characterizing the physiological state of the cells, satisfying

dQ(t)

dt
= κ, (7.2)

with initial condition Q(0) = log q0. The BR-model extends pure exponential (Malthus)

growth with α(t) ≡ 1, u(y(t)) ≡ 1 and logistic growth (Verhulst, 1838; Pearl and Reed,

1920) with α(t) ≡ 1.

The set of differential equations (7.1) and (7.2) can be solved analytically with solution

given by

µ(t) = µmax − ln

(
1 +

1

C(1 + q(t))

)
, (7.3)

with q(t) = q0e
κt and

C =
eµ0

(eµmax − eµ0 )(1 + q0)
.



7.1. Differential equation models 103

See e.g. López et al. (2004) for an evaluation of the BR- and other mathematical models

for microbial growth. The above mathematical model does however not reflect any random

variation in the observed concentrations but it rather describes how the mean log concen-

trations depend on time. Denote zj , for j = 1, ..., n, the j-th observed concentration at

time tj and assume zj has a log-normal distribution with geometric mean µ(tj) = E(zj |tj)

depending on tj in a non-linear way as described by the BR-model of differential equa-

tions (7.1) and (7.2) and with a constant geometric variance σ2 = Var(zj|tj). So, the

parameters of the log-normal distribution (typically defined on log-scale) are ln(µ(tj))

and ln(σ2). The use of geometric mean and variance are very common in the field of

microbial risk assessment.

Using the data (tj , yj = ln(zj)) ordinary least squares (OLS) provides parameter

estimates ̂log(µmax) = 16.45, κ̂ = 0.08, ̂log(µ0) = 4.30, ̂log(q0) = −24.11 and σ̂ = 1.01

for the BR-model, resulting in the fitted curve shown by the dotted line in Figure 2.4.

The fitted curve seems to describe the growth pattern in the data fairly well. But

one could consider a more flexible, semiparametric alternative such as an approach based

on penalized splines. A more data-driven approach is however likely to follow the de-

creasing trend of the first five measurements and hence violating the natural assumption

of monotonicity for growth curves. The method proposed here allows to consider more

flexible models but penalized i) in the “direction” of the parametric BR-model and ii) to

be monotone. A bootstrap approach provides confidence intervals and hypothesis tests

for lack of fit and for monotonicity.

7.1.2 The Parvovirus B19 data

The second example concerns the Parvovirus B19 data (see Section 2.4).

The SIR transmission model consists of three compartments: susceptible (S), infected

(I) and recovered (R) and the flow in and out each of the three compartments can be

described by a system of three differential equations in age and time. Under endemic

equilibrium (steady state), there is no time dependence. Assuming that the disease is

irreversible, meaning that immunity is lifelong and that mortality caused by infection is

negligible, and turning to the so-called prevalence, the fraction of non-susceptible individ-

uals (infected or immune) π(a), the system simplifies to one single differential equation

dπ(a)

da
= λ(a)(1 − π(a)), (7.4)

with λ(a) the so-called force of infection (FOI, see e.g. Hens et al., 2012). Having an

estimator for the age-dependent prevalence π(a), equation (7.4) can be easily applied to

get an estimate for the FOI λ(a). It is also important to mention that the prevalence π(a)
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is non-decreasing as a function of the age a and that the estimator should be as well.

Indeed the seroprevalence π(a) reflects the probability to have been infected somewhere

in past at the time of the test, for an individual of age a, and hence can only increase

with age. Although not exactly equal, the prevalence π(a) is commonly replaced by the

so-called ‘seroprevalence’, i.e., the proportion of subjects of age a who test positive on a

serological test, as the data we have at hand (Bollaerts et al., 2012).

The solution of (7.4) for a constant force of infection λ(a) ≡ λ is given by

π(a) = 1 − Ce−λa, (7.5)

and C the initial probability to be susceptible. Given an SIR model, the constant C equals

1. A constant FOI does not hold for most infections including Parvovirus B19. A flexible

parametric age-dependent model for the force of infection was proposed by Farrington

(1990)

λ(a) = (αa − γ)e−βa + γ. (7.6)

Farrington’s model assumes that the force of infection increases to a peak in a linear

fashion followed by an exponential decrease. The parameter γ is called the long term

residual value of the force of infection, as a tends to ∞, λ(a) tends to γ. In order to

ensure that the monotonicity of π(a) or equivalently that the force of infection satisfies

λ(a) ≥ 0, Farrington (1990) constrained the parameter space to be nonnegative.

The solution is given by

π(a) = 1 − C∗ exp

(
e−βa

(
α

β
a+

α

β2
− γ

β

)
− γa

)
.

with C∗ related to the initial probability 1 − π0 = 1 − π(0) to be susceptible at birth.

In Section 7.2.1 we will use a (weighted) least-squares approach to find a solution for

the differential equations. Therefore we transform the observed proportions pj for j-th age

group aj by the arcsin transformation (given by yj = asin
√
p

j
), leading to approximately

normal observations with mean asin
√
πj and variance 1/4nj (Johnson and Kotz, 1969),

where nj is the number of individuals in the j-th age group. It has also been recommended

(Bartlett, 1947) to replace a proportion of 0 by 1/4nj and a proportion of 1 by 1−1/4nj.

In the sample of n = 66 age groups that we consider, none of the proportions was equal

to 0 or 1.

Using the age-grouped data (aj , yj = asin
√
p

j
), weighted least squares (WLS) was

used to estimate the approximate mean asin
√
π(aj) with π(a) the parametric non-linear

model of Farrington and with weights wj = nj , leading to estimates α̂ = 0.065, β̂ =

0.219, γ̂ = 0.005, π̂0 = 0.031. The fitted curve is shown by the dotted line in Figure 2.5.
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Non-negative values were obtained for the parameters α, β and γ by the reparameterisation

α = exp(αh), β = exp(βh) and γ = exp(γh).

Two important observations from the data and the fitted model as shown in Figure 2.5.

Farrington’s model is not able to fit the data well at ages around 30. The observed

proportions of seropositive around the age of 30 seem to deviate unexpectedly from the

natural monotone trend of a growing probability to have been ever infected when getting

older. This might indicate that an assumption might be violated, such as the steady state

assumption or life-long immunity or another assumption of the SIR model. A formal test

for monotonicity can provide scientific evidence that assumptions need to be reconsidered

or the model has to be modified or extended.

7.2 Generalized profiling with monotonicity constraints

A first section describes briefly the generalized estimation procedure, as introduced in

Ramsay et al. (2007) and using largely their notation. Next we extend the estimation

procedure to include shape restrictions, with focus on monotonicity constraints.

7.2.1 Generalized profiling

Following the notation of Ramsay et al. (2007), x is a d-dimensional vector, depending

on a variable t. A system of d non-linear differential equations is defined as

ẋ(t) =
dx

dt
= f(x, t|θ), t ∈ [0, T ], (7.7)

with parameter θ. Initial or boundary values x0 = x(0) may be considered as pa-

rameters that must be included in the (augmented) parameter vector θ. For the

Y. enterocolitica example, d = 2, x(t) = (µ(t), Q(t))′, f is defined by (7.1) and

(7.2), and θ = (µmax, κ, µ0, Q0)′. For the Parvovirus B19 example, d = 1, t = a,

x(a) = asin
√
π(a), f is defined by (7.4), and θ = (α, β, γ, π0)′.

Following the collocation method, each component xi (i = 1, .., d) of x is approxi-

mated in terms of a basis function expansion x̃i

x̃i(t) =

Ki∑

k=1

cikφik(t) = c′
iφi(t), i = 1, ..., d, (7.8)

or in short, x̃ = Φc, where the number Ki of basis functions in vector φi is chosen to

ensure enough flexibility to capture the variation in the approximated function xi and

its derivatives. A spline basis is a typical and popular choice. For the Y. enterocolitica

example, K1 = K2 = 91 (from 0 to 900 in steps of 10), and in the Parvovirus B19

example K = 66 (from 0 to 65 in steps of 1).
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Using a sample (tj ,yj), j = 1, ..., n, with tj = (t1j , ..., tij , ..., tdj)′ and corresponding

(independent) observations yj = (y1j , ..., yij , ..., ydj)′ with mean E(yj |tj) = x(tj) and

variance σ2 = (σ2
1 , .., σ

2
i , ..., σ

2
d)′, the (weighted) least squares estimation procedure to

estimate the unknown parameter θ of the model x satisfying (7.7) and the coefficients c

of the corresponding basis function approximation x̃ consists of two steps: i) estimation of

the coefficients c for a given value of θ and a particular value of the smoothing parameter

λ (inner loop), and ii) estimating θ (outer loop).

Estimating ĉ(θ,λ) (inner optimization) In the first step, the parameters c are up-

dated by minimizing the weighted least squares criterion

J(c|θ,λ) =
∑

i∈Do

n∑

j=1

wij(yij − x̃i(tij))2 + PEN(x̃|λ), (7.9)

with weights wij to deal with e.g. heteroscedasticity and/or post-stratification, Do the

subset of observed variables (those i for which data yij are available), and penalty PEN

representing the extent to which an actual function x̃i satisfies the ODE system. Note

that for simplicity formula (7.9) assumes that the sample size n is the same for each

i ∈ Do. In the first Y. enterocolitica example, wij ≡ 1 and Do = {1} as only data are

available on the first equation for µ(t) and not on the second for Q(t). Also in the second

Parvovirus B19 example Do = {1} as d = 1. Here age-specific weights w1j = nj reflect

different sample sizes and hence different variances for the observed proportions per age

group aj .

Re-expressing equation (7.7) as the differential operator equation

Li,θ(xi) = ẋi − fi(x, t|θ) = 0,

the extent to which the approximation x̃ satisfies the system of differential equations, can

be measured by

PENi(x̃) =

∫
Li,θ(x̃i(t))

2dt,

resulting in a total penalization measure as given by

PEN(x̃|λ) =
d∑

i=1

λiPENi(x̃),

where the smoothing parameter λ = (λ1, ..., λd) controls the size of the extent that x̃ fails

to satisfy the differential equation exactly. In most cases the integral in the penalization

measure PENi(x̃) will be approximated numerically (see Ramsay et al., 2007).
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Estimating θ(λ) (outer optimization) In the second step θ̂ is updated by optimizing

H(θ|λ) with respect to θ alone, with

H(θ|λ) =
∑

i∈Do

n∑

j=1

wij(yij − x̃i(tij))2.

The “smoothing” penalty λ is fixed in both inner and outer optimization steps. In its

simplest form it can be adjusted manually by visual inspection (if data available), but

preferably one uses automated, data-driven selection procedures. Ramsay et al. (2007)

discuss two rationales for choosing λ, corresponding to the need for robustness with re-

spect to poor initial parameter values or model misspecification. Hooker et al. (2011)

apply forward cross-validation to model for infectious disease dynamics for measles in On-

tario. For more details on generalized profiling, see Ramsay et al. (2007) and Hooker et al.

(2011).

7.2.2 Monotonicity constraints

In models for microbial growth, we assume that the number of bacteria or the concen-

tration increases with time. When applying generalized profiling as explained in previous

section, there is no guarantee that the approximation is monotone. Therefore we intro-

duce a second penalization term, which penalizes local deviations from this assumption.

We use a well-known technique, that was also used by Bollaerts et al. (2006a,b) among

others. Using a B-spline basis, the solution x̃i is guaranteed to be non-decreasing if suc-

cessive coefficients cik are non-decreasing. Define the additional penalization term for

monotonicity of x̃i as

PENM,i(x̃) =

Ki∑

k=2

I{(−1)pi(cik − ci,k−1) < 0}(cik − ci,k−1)2,

with indicator I{(−1)pi(cik − ci,k−1) < 0} equal to 1 if the first order difference

(−1)pi (cik − ci,k−1) < 0 and 0 otherwise. Here pi = 1 if the fit should be mono-

tone non-increasing and pi = 2 if the fit should be monotone non-decreasing. With M
the subset of components i for which monotonicity is required, the total penalization term

equals, with additional regulation parameter κ = {κi}i∈M,

PENM (x̃|κ) =
∑

i∈M
κiPENM,i(x̃),

leading to the extended expression J(c|θ,λ,κ) in the first step of the estimation proce-

dure:

J(c|θ,λ,κ) =
∑

i∈Do

n∑

j=1

wij(yij − x̃i(tij))2 + PEN(x̃|λ) + PENM (x̃|κ).
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In both applications M = {1} and p1 = 1.

7.2.3 Parametric and semiparametric estimators

To simplify notation, presentation is limited to the case where only one variable is ob-

served (Do = {1}), as in both data examples. Interest goes to estimators for the mean

x(t) = E(y|t) as a function of t. First of all there is the “fully parametric” estimator,

denoted by x̂PAR(t), resulting from fitting the parameter θ to the data by least squares,

and equivalent to the result of generalized profiling with λ = ∞ (very large) and κ = 0.

Next to the fully parametric estimator, the model x̃(t) =
∑K

k=1 ck(θ, λ, κ)φk(t) fitted by

generalized profiling for different choices of λ and κ provides “semiparametric” estima-

tors, being spline estimators penalized “in the direction” of the fully parametric model.

The first option is the semiparametric solution x̂GP(t; λ̂opt) corresponding to a data-driven

optimal choice λ = λ̂opt and κ = 0. Next, assuming the underlying model is monotone,

the generalized profiling with monotonicity constraint results in another penalized semi-

parametric solution x̂MGP(t; λ̂opt) corresponding to a data-driven optimal choice λ = λ̂opt

and κ = ∞ (very large). So, main interest does not go to the estimators for the param-

eter θ corresponding to different choices for λ and κ, but rather to the estimated curves

x̂(t) =
∑K

k=1 ĉk(θ̂, λ̂, κ)φk(t).

7.3 Selection of penalty parameters

Several techniques to obtain an appropriate data-driven value for the penalty parameter λ

are briefly described, and one-sided cross-validation is proposed as an additional method

for generalized profiling. In general the value for λ is first selected without any mono-

tonicity constraints (κ = 0). If that fit is monotone increasing (or similarly decreasing),

no additional penalization is necessary and by definition PENM (x̃|κ) = 0. If the fit is not

monotone, κ is set to an arbitrary but sufficiently high value (such as 104) to guarantee

the desired monotonicities. In what follows, focus is on methods to select the smooth-

ing parameter λ and, for ease of notation, it is assumed that there is only one observed

variable (Do = {1}) as is the case for the Y. enterocolitica and the Parvovirus B19 data.

Hooker et al. (2011) described a forward cross validation method, being a forward

prediction error (FPE) when predicting future responses based on the parametric model

with the estimated parameters. The terms in FPE are the (squared) errors made in

predicting the observation at time tj by starting from the estimated trajectory at time

tj − h, and solving the differential equation model from time tj − h to time t.

Our interest however lies less in the parametric solution of the differential equation

(with θ based on generalized profiling), but rather in the semiparametric estimators, and
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therefore we do not consider this option further. We will use leave-one-out and one-

sided CV methods based on the semiparametric estimators, as discussed in the following

paragraphs.

Leave-one-out cross-validation Another computer-intensive method, which is feasible

in case of a small data set, is leave-one-out CV. In this case the j-th observation (in turn

for j = 1, ..., n) is dropped from the data and the differential equation is solved with the

profiling method with solution x̃[−j]
(
t, θ̂

[−j]

λ

)
, where the superscript [−j] indicates the

deletion of the j-th observation, and the dependence on the estimated parameters θ is

also explicitly included. The dropped observation yj is compared to the predicted value

of this observation, based on the profiling without that observation:

LOOCV (λ) =

n∑

j=1

wj

(
yj − x̃[−j]

(
tj , θ̂

[−j]

λ

))2

.

That value of λ minimizing the criterion LOOCV (λ) over a grid of values is selected

to be the optimal choice.

One-sided cross-validation Hart and Yi (1998) introduced the one-sided CV. It has the

objectivity of LOOCV but statistical properties comparable to those of a plug-in rule (less

variable and more stable). Moreover it resembles, similar to FPE, that there is a natural

time- or age-order in the sequence of the data (being ordered in that sense). For the left

one-sided cross-validation, the observations 1 to j − 1 are used to obtain a prediction

(x̃[1,j−1]) for the j-th observation. This procedure is repeated for j = (k+1), . . . , n, with

k some small number (guaranteeing sufficient data for prediction when j is small). The

reverse holds for the right one-sided cross validation, where the observation j + 1 to n

are used to obtain a prediction (x̃[j+1,n]) for the j-th observation, leading to the criteria

OSCVL(λ) =

n∑

j=k+1

wj

(
yj − x̃[1,j−1]

(
tj , θ̂

[1,j−1]

λ

))2

,

OSCVR(λ) =

k∑

j=1

wj

(
yj − x̃[j+1,n]

(
tj , θ̂

[j+1,n]

λ

))2

.

For the Y. enterocolitica data we took k = 8 (left) and k = 10 (right); for the Parvo B19

data k = 20 (left) and k = 50 (right).

In the next sections the CV criteria are applied to our two data examples. Remember

that the original Y. enterocolitica data are of the form (tj , ln zj), with j = 1, ..., 15 and

the Parvovirus B19 data are of the form (aj , asin
√
pj), with j = 1, ..., 66.
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Figure 7.1: Y. enterocolitica (left panel) and Parvovirus B19 (right panel) data. Selection of

optimal penalty term λ. Graphs of LOOCV (λ) (⋄), OSCVL(λ) (◦), and OSCVR(λ) (�) as of

function of λ over a grid 102, . . . , 109 (left) and 101, . . . , 109 (right).

7.3.1 The Y. enterocolitica data

In order to find a good value for λ, a grid search was performed over powers of 10

(102, 103, . . .). The curves in the left panel of Figure 7.1 show no clear minimum within

the chosen grid but they do show a clear upward trend, for all CV criteria LOOCV (λ),

OSCVL(λ), and OSCVR(λ), for λ between 104 and 105. For small values of λ in

the chosen grid, the corresponding fit is primarily data-driven and goes almost perfectly

through nearly all observations. For large values of λ, the profile is closer to the OLS fit,

with local deviations. As the sample size is quite small the CV criteria are less accurate

and more variable and one might not really obtain a useful minimum, so that one in this

case typically does not select the value of λ that minimizes the CV criteria, but rather

the point where a substantial increase or a jump appears in the CV pattern. Here, the

jump in the CV criteria between 104 and 105 corresponds to the transition between the

two extremes. As we are interested in a compromise between a data-driven and a fully

parametric solution, we believe that the optimal value of λ is in between 104 and 105.

When further searching for the best value in the range 1 · 104, 2 · 104, ..., 10 · 104, we

notice that the three criteria do not fully agree. While we would choose λ = 2 · 104 based

on the left one-sided and leave-one-out cross-validation, a choice λ = 6 · 104 is more

appropriate for the right one-sided cross-validation. In general a smoother solution (large

penalty) is preferred over a more “wiggly” solution (small penalty) and therefore we opted

for λ̂opt = 6 · 104.
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Figure 7.2: Y. enterocolitica (left panel) and Parvovirus B19 (right panel) data. Parametric

fit (dotted line), data-modified semiparametric (dashed line) and data-modified semiparametric

with monotonicity constraint (solid line).

The parameter values that result from the generalized profiling, based on λ = 6 ·
104 are ̂log(µmax) = 16.455, κ̂ = 0.079, ̂log(µ0) = 4.742 and ̂log(q0) = −23.641.

These estimates are different when the restriction for monotonicity is imposed (κ = 104):
̂log(µmax) = 16.444, κ̂ = 0.079, ̂log(µ0) = 4.166 and ̂log(q0) = −23.886. The resulting

fitted curves are shown in the left panel of Figure 7.2.

The data-modified semiparametric solution (dashed line) in the left panel of Figure 7.2

shows a decrease in the lag phase following the observed concentrations, but expected

to be not inherent to the underlying model. The fit beyond the lag phase is close to the

OLS fit. By introducing the monotonicity constraint (solid line), the decrease in the lag

phase is no longer present and consequently the fit gets overall close to the OLS fit.

7.3.2 The Parvovirus B19 data

Again a grid search was applied to select an appropriate value for the penalty parameter

λ. The situation here is quite different from the previous example, as much more data are

available and consequently the CV curves might show more clearly a minimum. A rough

search with λ a power of 10 (10, 102, 103, . . .) tells us that the optimal value is somewhere

between 10 and 1000 (see right panel of Figure 7.1), and a finer search was set up. Again

the three criteria do not fully agree: the right one-sided would select λ = 30, while the

leave-one-out would select λ = 80 and the left one-sided λ = 100. Again preferring

the larger value, the final choice for λ is λ̂opt = 100, corresponding to parameter values

α̂ = 0.023, β̂ = 0.127, γ̂ = 0.037 and an initial seroprevalence of π̂0 = 0.091. If the

monotonicity restriction is applied, the parameter values change as follows: α̂ = 0.033,
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β̂ = 0.101 and γ̂ = 0.020, π̂0 = 0.078. The resulting fits are shown in the right panel of

Figure 7.2.

In the next section the use of the bootstrap is proposed for the construction of confi-

dence intervals and testing lack of fit.

7.4 Bootstrap confidence regions and lack-of-fit tests

To not complicate notation, it is assumed again that there is only one observed variable

(Do = {1}) as in both data examples. In a first section bootstrap methodology is

introduced to construct pointwise and simultaneous confidence bounds for x̂GP(t; λ̂opt) and

x̂MGP(t; λ̂opt). In a next section focus is on a bootstrap lack-of-fit test, i.e. for testing the

null hypothesis that the underlying model (e.g. Baranyi-Roberts or Farrington model)

holds. A second bootstrap test investigates whether there is evidence in the data against

the monotonicity assumption, i.e. testing the null hypothesis that the underlying model

is monotone.

7.4.1 Weighted residual bootstrap

Both applications are based on a weighted residual bootstrap, using standardized residuals.

More precisely, the structure

yj = x̃(tj) + se(yj |tj) × εj , (7.10)

with x̃(tj) approximating the mean E(yj |tj), se(yj |tj) =
√

var(yj |tj) and normalized

error terms

εi =
yj − x̃(tj)

se(yj |tj)
, (7.11)

suggests bootstrap data to be generated as

y∗
j = x̂M(tj) + ŝe(yj |tj) × ε∗

j , (7.12)

with ε∗
j , j = 1, ..., n, sampled with replacement from the n standardized residuals

{yj − x̂R(tj)

ŝe(yj |tj)
; j = 1, ..., n}, (7.13)

and using two estimators x̂M(tj) and x̂R(tj) for the (approximate) mean x̃(tj), not nec-

essarily identical, and an estimate or known expression ŝe(yj |tj) for the heteroscedastic

part of the standard error. We recommend to always use x̂R(tj) = x̂GP(tj ; λ̂opt) such that

the residuals are not based on any constrained type of model (constrained to be fully

parametric or to be monotone).



7.4. Bootstrap confidence regions and lack-of-fit tests 113

In this way B bootstrap samples {(tj , y
∗
(b),j)}n

j=1, b = 1, ..., B, can be constructed,

being different in the resampled standardized residuals {ε∗
(b),j}n

j=1. For each of these B

bootstrap samples all estimates can be recalculated, in this way providing information on

the sampling distribution of the estimators. The larger the number of bootstrap samples

B, the more accurately characteristics of the sampling distribution such as percentiles can

be estimated. As the generalized profiling method is very computer intensive on its own,

the number of bootstrap runs was taken as B = 1000 for both applications. In principle,

for each bootstrap sample the optimal data driven smoothing parameter λ̂opt could be

recalculated, but this appeared to be computationally not feasible in our data examples

and the value of λ̂opt was fixed across the bootstrap samples, being the optimal choice as

determined on the original sample. For more details on the residual bootstrap, see e.g.

Davison and Hinkley (1997).

For the Y. enterocolitica example it is assumed that the se(yj |tj) do not depend on

j (homoscedasticity) and hence they can be dropped (or put equal to 1 without loss of

generality) in (7.12)-(7.13) and ordinary residuals {yj − x̂(tj)}n
j=1 can be resampled. For

the Parvovirus B19 example, the standard errors se(yj |tj) = 1/(2
√
nj) are known and

do not need to be estimated and hence the weighted residuals {2
√
nj(yj − x̂(tj))}n

j=1

(or dropping the 2) need to be resampled. Depending on the application, confidence

bounds or hypotheses testing, different estimators for the structural part of the model

x̂M(tj), j = 1, ..., n need to be chosen.

7.4.2 Bootstrap confidence bounds

Here, the estimator x̂GP(tj ; λ̂opt) (or alternatively the monotone version x̂MGP(tj , λ̂opt)) is

used as the estimator x̂M(tj) in the construction (7.12)-(7.13) of B bootstrap samples.

The notation x̂(M)GP(tj ; λ̂opt) in the sequel indicates with (M) the two alternative estima-

tors. For each bootstrap sample (b = 1, ..., B), the generalized profiling estimates can be

recalculated at any value t of interest, leading to the bootstrap replicates or x̂∗(M)GP

(b) (t; λ̂opt),

b = 1, ..., B. Pointwise bootstrap percentile intervals (see e.g. Davison and Hinkley,

1997) and simultaneous bootstrap confidence intervals are constructed, the latter as fol-

lows. Suppose that B bootstrap samples are drawn. Consider a predefined finite set

of grid points of interest {t1, . . . , tg, . . . , tG}. For each grid point tg, the bootstrap

replicates {x̂∗(M)GP

(b) (tg; λ̂opt); b = 1, ..., B} are ordered and their corresponding ranks are

denoted by {r(b)
g ; b = 1, ..., B}. The b-th ordered replicate is denoted by x̂∗(M)GP

[b] (tg; λ̂opt)

for b = 1, ..., B.

Define bk as the k-th order statistic of
[
max

{
max

1≤g≤G
(r(b)

g );B + 1 − min
1≤g≤G

(r(b)
g )

}
; b = 1, . . . , B

]
.
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By construction, the intervals over the grid points
{[
x̂∗(M)GP

[B+1−bk](tg; λ̂opt); x̂
∗(M)GP

[bk] (tg; λ̂opt)
]

; g = 1, ..., G
}

have a global confidence level of at least 100 k
B %. This method has also been applied by

Claeskens and Aerts (2000), see also Besag et al. (1995).

7.4.3 Omnibus bootstrap lack-of-fit test

The generalized profiling approach offers an interesting framework for testing the lack of

fit of a parametric model, as defined by differential equations and estimated by x̂PAR(t).

Tuned by a data adaptive smoothing parameter the final (monotone) semiparametric

estimator x̂(M)GP(t; λ̂opt) might deviate more or less from the parametric estimator x̂PAR(t).

Larger deviations indicate evidence against the parametric model. So, interest goes to

testing the null hypothesis of goodness of fit of the parametric model

HGoF

0 : ẋ(t) = f(x, t|θ),

against the alternative hypothesis of lack of fit. The proposed test is not designed to

detect specific types of departures from the prescribed null model, but is expected to be

consistent (‘omnibus’) against virtually any departure from the hypothesized parametric

model. Hooker (2009) proposed estimating lack of fit in terms of empirical forcing func-

tions, being nonparametric functions g(t) which modify (7.7) to ẋ(t) = f(x, t|θ) + g(t)

and represent both random disturbances to the system and deterministic lack of fit of f .

Recently Hooker and Ellner (2015) took a more general way that includes the possibil-

ity of parameter values changing over time, producing a system ẋ(t) = f(x,g(t)|θ) in

which g(t) can modify f more generally than by additive forcing. Our approach differs

from that of Hooker (2009) and Hooker and Ellner (2015) in that it focuses on the ODE

(approximate) solution x(t) as (conditional) mean of the observed outcomes y and by

the construction of the test statistic, being an empirical measure of discrepancy between

the parametric and semiparametric solution estimating the weighted integrated absolute

difference
∫

| x̂PAR(t) − x̂(M)GP(t; λ̂opt) | f(t)dt (with f(t) the design density behind the

observed t1, ..., tn) and defined as

tGoF

n =

n∑

j=1

nj

N
| x̂PAR(tj) − x̂(M)GP(tj ; λ̂opt) | . (7.14)

As interest goes in generating the null distribution of T GoF
n , B bootstrap samples

are generated as defined by (7.12)-(7.13) with x̂M(tj) = x̂PAR(tj). These choices make

sure that the generated data are reflecting the hypothesized mean structure, while the
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residuals are obtained from the original data and a semiparametric model estimate. For

each bootstrap sample the test statistic is recalculated in the same way as for the orig-

inal sample, leading to B bootstrap test statistic replicates (omitting the GoF super-

script) {t(b)
n ; b = 1, ..., B}. The bootstrap estimate for the p-value is then defined as

the proportion of bootstrap test values exceeding the original value, or more precisely

(
∑B

b=1 I{t(b)
n ≥ tn} + 1)/(B + 1).

7.4.4 Testing monotonicity

Here interest goes to testing whether the underlying semiparametric model is monotone,

or testing

HM

0 : x(t) is a monotone function of t.

Following the same ideas as in the previous section, the test statistic is now measuring

the distance between the unconstrained and monotone semiparametric fit, defined as

tM

n =
n∑

j=1

nj

N
| x̂MGP(tj ; λ̂opt) − x̂GP(tj ; λ̂opt) |, (7.15)

and B bootstrap samples are generated as defined by (7.12)-(7.13) with x̂M(tj) =

x̂MGP(tj ; λ̂opt) and x̂R(tj) = x̂GP(tj ; λ̂opt). Again, for each bootstrap sample the test statistic

is recalculated in the same way as for the original sample, leading to B bootstrap test

statistic replicates and resulting in a bootstrap estimate for the p-value.

7.5 Application to Y. enterocolitica and Parvovirus B19 data

The application of the bootstrap (simultaneous) confidence intervals and bootstrap tests

are presented in this section. Based on the plots of the fitted curves x̂PAR(t), x̂GP(t; λ̂opt)

and x̂MGP(t; λ̂opt) in Figure 7.2 and taking into account the sample size, one might expect

to not have enough evidence against both the null hypotheses HGoF
0 and HM

0 for the

Y. enterocolitica data, but that both hypotheses might be rejected at 5% level for the

Parvovirus B19 data.

7.5.1 The Y. enterocolitica data

Figure 7.3 shows the confidence bounds for the Y. enterocolitica data, pointwise (left pan-

els) and simultaneous bounds (right panels) using the semiparametric estimator x̂GP(t; λ̂opt)

(top panels) and its monotone alternative x̂MGP(t; λ̂opt) (lower panels), and based on a grid

from 0 to 900 in steps of 10. As compared to the pointwise bounds, the simultaneous
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Figure 7.3: Y. enterocolitica data. Parametric fit (dotted line), bootstrapped pointwise (left)

and simultaneous (right) confidence intervals, with λ = 6 × 104, while κ = 0 (upper) or κ = 104

(lower).

bounds are wider as expected. The difference between the unconstrained and monotone

versions are rather quite small.

The null hypothesis HGoF
0 that the BR-model holds cannot be rejected, with p-value

0.137 (using tGoF
n with x̂GP(tj ; λ̂opt)) and 0.175 (using tGoF

n with x̂MGP(tj ; λ̂opt)). For testing the

monotonicity hypothesis HM
0 , the left panel of Figure 7.4 shows the bootstrap generated

null distribution of the test statistic tM
n and its value (0.116) for the original dataset as a

bullet on the horizontal axis. The p-value is estimated as 0.116 and consequently there is

insufficient evidence by the local decrease of the concentration data in the lag phase to

reject monotonicity.

7.5.2 The Parvovirus B19 data

Figure 7.5 depicts the bootstrapped confidence bounds for the Parvovirus B19 data, again

unconstrained (monotone) in the upper (lower) panels and pointwise (simultaneous) in the

left (right) panels. To improve interpretability the bounds are shown on the [0, 1] proba-
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Figure 7.4: Y. enterocolitica (left panel) and Parvovirus B19 (right panel) data. Distribution of

test statistic when testing the monotonicity of the fit.

bility scale, obtained by first computing the confidence bounds on the arcsin-transformed

scale and then transforming to the [0, 1] scale. Monotonizing the semiparametric estimator

has, not unexpectedly, quite an effect on the bounds around the age of 30.

The null hypothesis HGoF
0 that Farrington’s model holds can be rejected with p-value

0.002 using tGoF
n with x̂GP(tj ; λ̂opt) and with p-value 0.006 when using tGoF

n with x̂MGP(tj ; λ̂opt).

Monotonizing forces the semiparametric estimator to be more similar to Farrington’s

model, thus explaining the second version of the test having a slightly higher p-value.

For testing the monotonicity hypothesis HM
0 , the right panel of Figure 7.4 shows the

bootstrap generated null distribution of the test statistic tM
n and its value (0.016) for

the original dataset. HM
0 is clearly rejected with a p-value 0.005. Main conclusion is

that the flexible but parametric and monotone model of Farrington is not appropriate

or that another process is causing the decrease or plateau between the ages of 20 and

40. Goeyvaerts et al. (2011) investigated whether this phenomenon is induced by waning

antibodies for Parvovirus B19 and, if this is the case, whether secondary infections are

plausible, or whether boosting may occur. They tested several immunological scenarios

by fitting different compartmental dynamic transmission models to serological data using

data on social contact patterns.

7.6 Conclusions

In this chapter generalized profiling has been extended with an additional penalization,

constraining the semiparametric solution to be monotone. The bootstrap is applied for

the construction of simultaneous confidence bands and for formal tests of goodness/lack-

of-fit and monotonicity. The methodology is applied to two motivating examples. For

the Y. enterocolitica data, the Baranyi and Roberts model was not rejected; neither was
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Figure 7.5: Parvovirus B19 data. Parametric fit (dotted line), bootstrapped pointwise (left) and

simultaneous (right) confidence intervals, with λ = 100, while κ = 0 (upper) or κ = 104 (lower).

monotonicity. Both hypotheses, that the Farrington model holds, and that the solution is

monotone, were rejected however for the Parvovirus B19 data.

Other applications might imply other natural shape restrictions such as single-peaked

or U-shaped patterns. As proposed by Bollaerts et al. (2006b), asymmetric discrete penal-

ties can be used to enforce different types of shape constraints. Such other penalties could

be used as well within the generalized profiling approach.

Generalized profiling is computer-intensive and sensitive to appropriate starting values,

even within the least squares estimation framework. Conceptually it is rather straightfor-

ward to extend generalized profiling to non-normal data and general maximum likelihood

(ML) estimation and inference. Here we applied least squares and normal approximation

for both motivating examples. The inherent nature of the Y. enterocolitica data is however

count data, and the non-aggregated Parvovirus B19 data are binary. The use of Poisson

or Bernoulli based maximum likelihood estimation and inference makes the method even

more computer-intensive and more sensitive to starting values and more unstable. There-

fore a genuine ML based implementation of generalized profiling is an interesting avenue

of further research but is considered beyond the scope of this research.



Chapter 8
General discussion and

conclusion

In this thesis we discuss several ways to deal with censored data. Different statistical mod-

els are used to describe the data, but all models are related to the log-normal distribution.

Parametric models are used, but also a family of semi-nonparametric models is applied.

We introduce a test to check the goodness of fit of a model and we use model averaging

to obtain an estimate for a parameter of interest. In the final chapter of the thesis we

extend the generalized profiling technique with an additional constraint to monotonize

the solution, and we apply the bootstrap for the construction of confidence bands and for

hypothesis testing.

In Chapter 4 we propose a goodness-of-fit test of parametric models for censored data.

The test is based on the order selection test (Aerts et al., 1999), in combination with the

SemiNP family of distributions (Fenton and Gallant, 1996; Gallant and Nychka, 1987;

Zhang and Davidian, 2008). Although we do not provide a formal proof for the behaviour

of the test, simulation studies show that the test performs well across several scenarios.

A bootstrap approach is suggested as an alternative to the asymptotic approach, and

the data examples and simulation study show similar results. In this research we focus

on a test for the log-normal distribution. However, the approach is applicable for other

distributions, such as the gamma, Weibull, etc. and this is an interesting avenue for

further research. Extensions to models with covariates or random effects is also subject

of further research.

Chapter 5 describes different strategies for the estimation of the distribution function

for censored data. As the true underlying model is mostly unknown, it is important to

119
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select a good model to draw inference on the whole sample or make a statement on the

concentration below LOD and LOQ. We compare the estimates of parametric and the

more flexible semiNP models, but also investigate model averaging. As model averaging

(Burnham and Anderson, 1998) takes into account the uncertainty of the model, it is a

worthwhile alternative to model selection. Still, the choice of an appropriate and rich

enough family of candidate models is highly important. In Chapter 6 we continue with

model averaging, but now we focus on quantiles. We propose two methods: averaging

the quantile estimators, each derived from the estimated distributions (direct approach)

or inverting the averaged estimator of the distribution function (indirect approach). The

simulation study does not reveal a preference for one approach. In order to select a

good model and as such obtain an estimate based on this model, we use AIC, which is a

global measure of fit. Such a global measure of fit is sensitive to deviations in the right

tail of the distribution. As we are mostly interested in characteristics in the left tail of

the distribution, the use of other measures like a focused information criterion (see e.g.

Claeskens and Hjort, 2008) is a valuable option and is a topic of further research. We are

also hindered by the numerical instability of the semiNP models. A Bayesian approach to

model averaging (see e.g. Hoeting et al., 1999) might offer an attractive alternative and

is also subject of further research.

In Chapter 7 we study generalized profiling (Ramsay et al., 2007), a generalized

smoothing estimation approach that is robust to model misspecification, as a way to

numerically solve systems of differential equations through a semi-parametric solution. In

some situations, the solution is assumed to be monotone and we recommend to use an

additional penalty constraining the semi-parametric solution. We apply the bootstrap to

obtain confidence bands for the solution, but also to perform hypothesis tests. We test

two hypotheses, where the first deals with the goodness-of-fit of the proposed system of

differential equations, and the second concerns the monotonicity of the solution. The

methodology is illustrated on two examples. In the first example we use the Baranyi-

Roberts model (Baranyi and Roberts, 1994) to describe Y. enterocolitica data. In the

second example, Parvovirus B19 data are described by the Farrington model (Farrington,

1990).
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Appendix A
Model averaging distribution

functions

In Chapter 5 we showed the estimates of the distribution function for Cadmium data 1

and Cadmium data 2. We compared estimates based on the parametric models to

estimates based on the semiNP models and to the model averages. The results for

estimating the density function are presented here in Tables A.1 and A.2.

Tables A.3-A.32 give the results of the simulation study as described in Chapter 5 for

estimating the value of the distribution function, while tables A.33-A.62 give the results

of the simulation study for estimating the value of the density function.
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Table A.1: Cadmium data 1. Estimates f̂(y) of parametric models and model averaged value.

Model averaging based on parametric models only (MP ), on parametric models and best SemiNP

(MP ∪
{

M̂S

}
), or on all fitted models (MP ∪MS). Corresponding weights are given in Table 5.1.

f̂(qLN,0.05) f̂(min(LOD) f̂(qLN,0.25) f̂(LOD)

Distribution 2.77E-04 1.00E-03 2.13E-03 7.38E-03

GenGam 201.614(106.07) 98.297(45.20) 59.817(23.79) 22.556(5.39)

Gamma 184.542(10.73) 66.865(3.06) 36.684(1.96) 13.528(1.07)

Weibull 208.840(26.42) 89.814(7.11) 52.636(3.32) 19.853(1.43)

Log-skew-t 146.705(28.83) 61.151(13.22) 37.160(8.13) 16.559(3.29)

Log-t 172.870(52.66) 109.888(14.28) 70.905(5.74) 25.859(2.62)

Log-skew-n 214.583(34.45) 94.958(7.60) 55.767(5.27) 21.167(2.73)

Log-normal 177.009(52.86) 111.278(13.59) 71.085(5.59) 25.653(2.53)

SemiNP1 236.645(80.05) 223.457(22.26) 88.180(13.11) 0.066(0.16)

SemiNP2 360.827(151.12) 154.418(51.81) 52.569(21.85) 11.787(4.58)

SemiNP3 323.138(142.56) 165.576(38.23) 59.522(21.59) 10.654(3.98)

SemiNP4 253.960(134.37) 187.886(31.93) 71.389(22.59) 9.255(3.75)

SemiNP5 168.923(136.86) 214.446(38.18) 85.608(29.92) 7.655(3.82)

SemiNP6 70.131(82.31) 228.179(44.88) 111.873(37.79) 5.903(3.60)

SemiNP7 87.179(90.96) 226.676(41.10) 106.682(34.92) 6.128(3.58)

MP 152.581(34.01) 64.921(16.19) 39.401(9.81) 17.123(3.59)

MP ∪
{

M̂S

}
311.973(144.30) 158.987(42.48) 58.205(21.61) 11.078(4.19)

MP ∪ MS 239.863(155.28) 185.822(45.05) 73.589(29.71) 9.289(4.27)
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Table A.2: Cadmium data 2. Estimates f̂(y) of parametric models and model averaged value.

Model averaging based on parametric models only (MP ), on parametric models and best SemiNP

(MP ∪
{

M̂S

}
), or on all fitted models (MP ∪MS). Corresponding weights are given in Table 5.3.

f̂(qLN,0.05) f̂(min(LOD)) f̂(qLN,0.25) f̂(LOD)

Distribution F̂ (0.002) F̂ (0.003) F̂ (0.004) F̂ (0.015)

GenGam 21.043 (3.790) 18.350 (2.833) 16.213 (2.287) 9.701 (1.178)

Gamma 21.138 (3.346) 17.706 (2.368) 15.191 (1.731) 8.627 (0.553)

Weibull 21.157 (3.658) 18.301 (2.751) 16.076 (2.109) 9.525 (0.687)

Log-skew-t 23.481 (4.460) 20.317 (3.005) 17.668 (2.168) 9.590 (1.195)

Log-t 19.610 (5.344) 20.164 (4.289) 19.697 (3.310) 12.709 (0.951)

Log-skew-n 23.701 (4.479) 20.622 (3.006) 17.981 (2.137) 9.744 (1.071)

Log-normal 19.961 (5.408) 20.572 (4.252) 20.069 (3.220) 12.760 (0.931)

SemiNP1 20.596 (5.211) 20.523 (4.025) 19.621 (3.034) 12.272 (0.875)

SemiNP2 20.769 (5.118) 20.446 (3.933) 19.408 (2.963) 12.083 (0.854)

SemiNP3 20.844 (5.064) 20.390 (3.883) 19.284 (2.925) 11.981 (0.844)

SemiNP4 20.884 (5.029) 20.349 (3.851) 19.202 (2.901) 11.917 (0.837)

SemiNP5 20.909 (5.004) 20.319 (3.829) 19.143 (2.884) 11.872 (0.833)

SemiNP6 20.925 (4.986) 20.295 (3.813) 19.099 (2.872) 11.839 (0.829)

SemiNP7 27.072 (13.875) 37.428 (9.616) 35.888 (7.240) 4.668 (1.519)

MP 21.726 (3.947) 18.728 (2.934) 16.361 (2.281) 9.415 (0.949)

MP ∪
{

M̂S

}
23.247 (7.143) 24.048 (9.003) 21.916 (8.734) 8.065 (2.201)

MP ∪ MS 23.214 (7.118) 24.001 (8.936) 21.884 (8.656) 8.119 (2.209)
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Table A.3: Simulation study. Sample from log-normal distribution of size 100 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.347 (+) 2.243 2.589 (6) 3.186 1.482 (+) 3.592 5.074 (8) 5.125

Gamma 20.625 (+) 3.662 24.286 (11) 5.351 41.595 (+) 6.749 48.344 (11) 7.660

Weibull 30.418 (+) 3.878 34.297 (12) 4.680 44.392 (+) 5.506 49.898 (12) 5.861

Log-skew-t 0.016 (−) 2.662 2.679 (9) 3.405 0.184 (+) 5.624 5.808 (10) 6.448

Log-t 0.012 (−) 2.096 2.108 (1) 2.387 0.000 (+) 2.593 2.593 (1) 3.044

Log-skew-n 0.008 (−) 2.817 2.825 (10) 2.955 0.121 (−) 4.153 4.274 (4) 4.004

Log-normal 0.008 (−) 2.295 2.303 (2) 2.458 0.004 (−) 2.801 2.805 (2) 3.032

Best Parametric 0.015 (−) 2.527 2.543 (4) 2.528 0.060 (+) 5.732 5.792 (9) 3.389

Best SemiNP 0.028 (−) 2.627 2.655 (7) 2.496 0.000 (−) 4.124 4.124 (3) 4.859

MP 0.000 (+) 2.453 2.453 (3) 2.943 0.161 (+) 4.413 4.574 (5) 5.082

MP ∪

{
M̂S

}
0.002 (−) 2.543 2.545 (5) 2.953 0.156 (+) 4.764 4.920 (7) 5.764

MP ∪ MS 0.011 (−) 2.658 2.669 (8) 2.977 0.120 (+) 4.752 4.873 (6) 6.836

Table A.4: Simulation study. Sample from log-normal distribution of size 100 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.713 (−) 11.714 12.427 (3) 12.286 0.045 (−) 13.225 13.270 (2) 13.752

Gamma 1.899 (−) 6.751 8.650 (1) 11.645 1.022 (+) 10.341 11.363 (1) 14.049

Weibull 0.965 (+) 8.933 9.898 (2) 12.258 6.610 (+) 11.406 18.016 (12) 13.724

Log-skew-t 0.478 (−) 14.217 14.695 (12) 13.641 0.300 (−) 14.963 15.263 (8) 14.405

Log-t 0.388 (−) 13.851 14.239 (11) 12.999 0.329 (−) 15.037 15.365 (10) 15.401

Log-skew-n 0.114 (−) 13.786 13.899 (7) 12.813 0.027 (−) 15.647 15.674 (11) 13.980

Log-normal 0.036 (−) 13.556 13.592 (4) 12.220 0.034 (−) 14.747 14.780 (4) 13.728

Best Parametric 0.083 (−) 13.950 14.033 (9) 12.417 0.043 (−) 15.055 15.098 (7) 13.835

Best SemiNP 0.019 (−) 14.125 14.143 (10) 12.527 0.056 (−) 15.233 15.289 (9) 15.510

MP 0.218 (−) 13.446 13.663 (5) 12.889 0.062 (−) 14.620 14.681 (3) 14.315

MP ∪

{
M̂S

}
0.157 (−) 13.707 13.865 (6) 13.111 0.061 (−) 14.771 14.831 (5) 14.952

MP ∪ MS 0.078 (−) 13.825 13.904 (8) 13.494 0.061 (−) 14.779 14.841 (6) 17.806

Table A.5: Simulation study. Sample from log-normal distribution of size 200 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.314 (+) 1.111 1.426 (10) 1.660 1.135 (+) 1.616 2.751 (9) 3.119

Gamma 22.309 (+) 1.937 24.246 (11) 2.737 44.354 (+) 3.378 47.732 (11) 3.904

Weibull 32.859 (+) 2.092 34.951 (12) 2.382 47.423 (+) 2.793 50.216 (12) 2.972

Log-skew-t 0.010 (−) 1.315 1.325 (5) 1.565 0.131 (+) 2.624 2.755 (10) 3.024

Log-t 0.007 (−) 1.036 1.043 (1) 1.195 0.001 (+) 1.250 1.250 (1) 1.479

Log-skew-n 0.004 (−) 1.382 1.386 (9) 1.478 0.026 (−) 1.819 1.845 (4) 2.068

Log-normal 0.005 (−) 1.128 1.133 (2) 1.232 0.002 (−) 1.288 1.290 (2) 1.506

Best Parametric 0.013 (−) 1.320 1.333 (7) 1.262 0.004 (+) 2.165 2.169 (8) 1.749

Best SemiNP 0.012 (−) 1.351 1.363 (8) 1.272 0.000 (+) 1.748 1.748 (3) 2.388

MP 0.001 (−) 1.209 1.210 (3) 1.424 0.036 (+) 1.893 1.930 (5) 2.332

MP ∪

{
M̂S

}
0.003 (−) 1.278 1.281 (4) 1.434 0.030 (+) 1.953 1.983 (7) 2.637

MP ∪ MS 0.006 (−) 1.321 1.327 (6) 1.470 0.028 (+) 1.937 1.965 (6) 3.017
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Table A.6: Simulation study. Sample from log-normal distribution of size 200 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.463 (−) 5.712 6.175 (3) 6.151 0.015 (−) 6.257 6.272 (2) 6.913

Gamma 1.573 (−) 3.200 4.773 (1) 5.858 1.385 (+) 4.858 6.243 (1) 7.071

Weibull 1.489 (+) 4.471 5.960 (2) 6.157 7.963 (+) 5.508 13.471 (12) 6.892

Log-skew-t 0.314 (−) 6.537 6.851 (12) 6.674 0.208 (−) 6.841 7.049 (10) 7.161

Log-t 0.250 (−) 6.385 6.635 (10) 6.511 0.162 (−) 7.026 7.188 (11) 7.273

Log-skew-n 0.062 (−) 6.436 6.498 (7) 6.397 0.015 (−) 6.950 6.965 (8) 6.977

Log-normal 0.016 (−) 6.402 6.418 (4) 6.150 0.011 (−) 6.815 6.826 (3) 6.913

Best Parametric 0.044 (−) 6.444 6.487 (6) 6.247 0.032 (−) 6.957 6.990 (9) 6.961

Best SemiNP 0.003 (−) 6.838 6.841 (11) 6.326 0.024 (−) 6.809 6.833 (5) 8.030

MP 0.114 (−) 6.339 6.453 (5) 6.449 0.047 (−) 6.824 6.871 (7) 7.094

MP ∪

{
M̂S

}
0.068 (−) 6.501 6.569 (8) 6.593 0.049 (−) 6.798 6.847 (6) 7.391

MP ∪ MS 0.025 (−) 6.558 6.583 (9) 6.790 0.046 (−) 6.783 6.829 (4) 8.300

Table A.7: Simulation study. Sample from log-normal distribution of size 500 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.258 (+) 0.471 0.729 (10) 0.606 0.860 (+) 0.715 1.575 (10) 0.855

Gamma 22.919 (+) 0.818 23.737 (11) 1.104 45.135 (+) 1.484 46.619 (11) 1.570

Weibull 33.886 (+) 0.878 34.765 (12) 0.959 48.557 (+) 1.199 49.756 (12) 1.193

Log-skew-t 0.004 (−) 0.545 0.549 (6) 0.622 0.073 (+) 1.046 1.118 (9) 1.215

Log-t 0.005 (−) 0.459 0.464 (1) 0.482 0.000 (+) 0.556 0.556 (1) 0.589

Log-skew-n 0.000 (−) 0.562 0.562 (8) 0.576 0.032 (−) 0.788 0.820 (7) 0.797

Log-normal 0.004 (−) 0.485 0.489 (2) 0.493 0.003 (−) 0.581 0.583 (2) 0.598

Best Parametric 0.003 (−) 0.524 0.527 (4) 0.509 0.000 (+) 0.884 0.884 (8) 0.669

Best SemiNP 0.004 (−) 0.561 0.565 (9) 0.516 0.000 (−) 0.658 0.658 (3) 1.145

MP 0.000 (−) 0.511 0.511 (3) 0.562 0.006 (+) 0.757 0.762 (6) 0.869

MP ∪

{
M̂S

}
0.001 (−) 0.530 0.531 (5) 0.568 0.004 (+) 0.738 0.742 (4) 1.011

MP ∪ MS 0.001 (−) 0.548 0.550 (7) 0.589 0.005 (+) 0.738 0.742 (5) 1.116

Table A.8: Simulation study. Sample from log-normal distribution of size 500 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.414 (−) 2.204 2.619 (5) 2.450 0.018 (−) 2.604 2.622 (1) 2.765

Gamma 1.437 (−) 1.226 2.663 (6) 2.350 1.511 (+) 1.991 3.501 (11) 2.835

Weibull 1.778 (+) 1.747 3.525 (12) 2.467 8.559 (+) 2.224 10.783 (12) 2.759

Log-skew-t 0.180 (−) 2.590 2.770 (11) 2.665 0.132 (−) 2.780 2.912 (9) 2.846

Log-t 0.131 (−) 2.592 2.723 (10) 2.595 0.084 (−) 2.889 2.973 (10) 2.906

Log-skew-n 0.034 (−) 2.521 2.555 (2) 2.548 0.011 (−) 2.832 2.843 (8) 2.777

Log-normal 0.007 (−) 2.478 2.485 (1) 2.470 0.006 (−) 2.796 2.802 (2) 2.773

Best Parametric 0.025 (−) 2.582 2.607 (4) 2.496 0.018 (−) 2.806 2.823 (5) 2.784

Best SemiNP 0.000 (−) 2.719 2.719 (9) 2.539 0.010 (−) 2.795 2.805 (3) 3.928

MP 0.062 (−) 2.501 2.562 (3) 2.580 0.030 (−) 2.794 2.824 (6) 2.827

MP ∪

{
M̂S

}
0.031 (−) 2.649 2.680 (7) 2.646 0.031 (−) 2.795 2.826 (7) 3.091

MP ∪ MS 0.011 (−) 2.675 2.685 (8) 2.726 0.028 (−) 2.790 2.817 (4) 3.386
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Table A.9: Simulation study. Sample from gamma distribution of size 100 - estimate of distri-

bution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.765 (−) 30.332 31.096 (7) 14.625 0.000 (+) 24.860 24.860 (4) 25.551

Gamma 0.188 (−) 12.987 13.175 (1) 13.564 0.077 (−) 23.117 23.194 (1) 23.926

Weibull 5.926 (+) 20.662 26.588 (4) 16.206 12.705 (−) 23.565 36.270 (10) 21.885

Log-skew-t 0.573 (+) 18.311 18.884 (2) 18.264 0.031 (−) 24.514 24.545 (3) 26.066

Log-t 0.496 (−) 51.201 51.698 (10) 28.185 23.606 (−) 27.600 51.206 (12) 24.526

Log-skew-n 75.618 (+) 20.132 95.750 (11) 13.403 0.214 (−) 24.961 25.174 (8) 25.293

Log-normal 122.501 (+) 16.727 139.229 (12) 15.935 22.429 (−) 27.594 50.022 (11) 24.008

Best Parametric 0.445 (−) 31.836 32.281 (8) 13.966 0.124 (−) 24.258 24.381 (2) 23.763

Best SemiNP 0.824 (+) 36.494 37.319 (9) 18.507 1.116 (−) 34.716 35.832 (9) 35.027

MP 0.149 (−) 26.352 26.501 (3) 17.251 0.293 (−) 24.606 24.898 (5) 25.410

MP ∪

{
M̂S

}
0.263 (−) 26.637 26.900 (5) 17.703 0.173 (−) 24.896 25.070 (6) 26.419

MP ∪ MS 0.301 (−) 26.861 27.163 (6) 17.899 0.148 (−) 25.003 25.151 (7) 26.999

Table A.10: Simulation study. Sample from gamma distribution of size 100 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.030 (−) 46.272 47.302 (9) 16.598 0.027 (−) 19.672 19.698 (2) 20.369

Gamma 0.085 (−) 12.534 12.619 (1) 13.063 0.037 (−) 19.855 19.892 (3) 20.204

Weibull 20.042 (+) 17.231 37.273 (4) 15.899 0.002 (−) 22.872 22.874 (9) 20.631

Log-skew-t 0.529 (+) 17.380 17.909 (2) 17.220 0.000 (+) 20.067 20.067 (6) 21.799

Log-t 5.210 (+) 39.952 45.162 (8) 24.952 5.145 (+) 22.346 27.490 (11) 20.043

Log-skew-n 64.726 (+) 15.731 80.458 (11) 12.361 0.180 (+) 19.011 19.190 (1) 19.380

Log-normal 99.533 (+) 9.472 109.005 (12) 15.354 5.626 (+) 22.080 27.707 (12) 19.526

Best Parametric 0.576 (−) 46.758 47.334 (10) 13.471 0.008 (−) 19.973 19.980 (5) 20.121

Best SemiNP 6.458 (+) 33.942 40.400 (7) 18.151 0.217 (−) 24.907 25.124 (10) 25.953

MP 0.175 (−) 36.782 36.956 (3) 18.804 0.000 (+) 19.938 19.938 (4) 20.347

MP ∪

{
M̂S

}
0.198 (−) 37.244 37.442 (5) 19.138 0.022 (−) 20.163 20.186 (7) 21.069

MP ∪ MS 0.197 (−) 37.537 37.734 (6) 19.311 0.036 (−) 20.338 20.374 (8) 21.328

Table A.11: Simulation study. Sample from gamma distribution of size 200 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.099 (−) 7.581 7.680 (2) 7.280 0.004 (−) 12.621 12.625 (3) 12.831

Gamma 0.115 (−) 6.935 7.050 (1) 6.806 0.034 (−) 12.066 12.101 (1) 12.017

Weibull 6.571 (+) 11.246 17.818 (8) 8.140 12.260 (−) 12.284 24.544 (10) 10.994

Log-skew-t 0.704 (+) 9.415 10.119 (7) 9.243 0.052 (−) 12.439 12.491 (2) 12.929

Log-t 0.695 (−) 24.614 25.309 (9) 14.509 23.084 (−) 14.246 37.331 (12) 12.073

Log-skew-n 39.619 (+) 11.788 51.408 (11) 5.819 8.404 (−) 11.092 19.497 (9) 12.388

Log-normal 126.980 (+) 8.693 135.674 (12) 7.953 21.952 (−) 14.240 36.192 (11) 12.090

Best Parametric 0.001 (−) 8.224 8.224 (6) 6.912 0.055 (−) 12.915 12.970 (7) 11.999

Best SemiNP 4.648 (+) 32.432 37.079 (10) 9.094 2.173 (−) 17.317 19.490 (8) 20.471

MP 0.008 (+) 7.834 7.842 (3) 8.057 0.121 (−) 12.601 12.722 (4) 12.804

MP ∪

{
M̂S

}
0.005 (+) 7.896 7.900 (4) 8.126 0.102 (−) 12.738 12.840 (5) 13.363

MP ∪ MS 0.003 (+) 7.919 7.922 (5) 8.144 0.102 (−) 12.761 12.862 (6) 13.429
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Table A.12: Simulation study. Sample from gamma distribution of size 200 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.091 (−) 8.701 8.791 (6) 8.308 0.017 (−) 10.323 10.339 (6) 10.205

Gamma 0.071 (−) 6.672 6.742 (1) 6.536 0.023 (−) 10.271 10.295 (5) 10.139

Weibull 20.930 (+) 9.306 30.237 (9) 7.957 0.000 (+) 11.820 11.820 (8) 10.360

Log-skew-t 0.674 (+) 8.931 9.605 (7) 8.640 0.022 (+) 10.349 10.371 (7) 10.992

Log-t 5.308 (+) 18.045 23.353 (8) 12.525 5.463 (+) 11.428 16.891 (10) 9.884

Log-skew-n 30.653 (+) 8.677 39.330 (10) 5.159 2.982 (+) 14.195 17.177 (11) 9.742

Log-normal 100.255 (+) 4.851 105.106 (12) 7.655 5.904 (+) 11.290 17.194 (12) 9.807

Best Parametric 0.000 (−) 8.416 8.416 (5) 6.735 0.009 (−) 10.153 10.162 (2) 10.141

Best SemiNP 12.995 (+) 26.942 39.937 (11) 8.910 0.069 (−) 12.996 13.065 (9) 13.778

MP 0.010 (+) 7.962 7.972 (2) 8.152 0.001 (−) 10.145 10.146 (1) 10.264

MP ∪

{
M̂S

}
0.008 (+) 8.019 8.027 (3) 8.196 0.007 (−) 10.223 10.231 (3) 10.437

MP ∪ MS 0.008 (+) 8.056 8.065 (4) 8.214 0.010 (−) 10.225 10.235 (4) 10.476

Table A.13: Simulation study. Sample from gamma distribution of size 500 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.003 (−) 3.011 3.014 (2) 2.905 0.006 (+) 4.770 4.775 (6) 5.161

Gamma 0.000 (−) 2.921 2.921 (1) 2.733 0.000 (+) 4.532 4.532 (1) 4.836

Weibull 8.375 (+) 4.496 12.870 (9) 3.272 11.037 (−) 4.658 15.695 (10) 4.429

Log-skew-t 0.986 (+) 3.990 4.976 (7) 3.700 0.020 (−) 4.794 4.814 (7) 5.146

Log-t 0.525 (−) 10.434 10.959 (8) 5.821 19.082 (−) 7.936 27.018 (12) 4.950

Log-skew-n 58.716 (+) 6.430 65.146 (11) 2.452 0.953 (−) 7.168 8.122 (8) 5.078

Log-normal 135.751 (+) 3.446 139.197 (12) 3.188 20.374 (−) 5.443 25.817 (11) 4.873

Best Parametric 0.001 (+) 3.159 3.160 (6) 2.805 0.001 (+) 4.709 4.710 (2) 4.897

Best SemiNP 10.259 (+) 27.962 38.221 (10) 3.578 2.278 (−) 6.816 9.094 (9) 7.378

MP 0.005 (+) 3.061 3.066 (4) 3.064 0.001 (−) 4.717 4.718 (3) 5.090

MP ∪

{
M̂S

}
0.005 (+) 3.061 3.066 (5) 3.065 0.001 (−) 4.721 4.721 (5) 5.122

MP ∪ MS 0.005 (+) 3.061 3.066 (3) 3.065 0.001 (−) 4.721 4.721 (4) 5.134

Table A.14: Simulation study. Sample from gamma distribution of size 500 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.002 (−) 3.432 3.434 (6) 3.305 0.002 (+) 3.874 3.876 (5) 4.087

Gamma 0.001 (+) 2.785 2.785 (1) 2.610 0.001 (+) 3.848 3.849 (1) 4.066

Weibull 23.689 (+) 3.660 27.350 (9) 3.182 0.051 (+) 4.456 4.506 (8) 4.156

Log-skew-t 0.940 (+) 3.720 4.660 (7) 3.438 0.199 (+) 3.825 4.024 (7) 4.214

Log-t 6.021 (+) 7.170 13.190 (8) 4.947 7.398 (+) 5.385 12.784 (12) 3.959

Log-skew-n 46.452 (+) 5.367 51.819 (11) 2.200 1.007 (+) 4.526 5.533 (10) 3.894

Log-normal 103.973 (+) 1.979 105.951 (12) 3.060 6.924 (+) 4.278 11.202 (11) 3.931

Best Parametric 0.002 (+) 3.202 3.204 (5) 2.755 0.008 (+) 3.874 3.882 (6) 4.055

Best SemiNP 21.479 (+) 19.143 40.622 (10) 3.502 0.001 (+) 4.756 4.757 (9) 5.718

MP 0.006 (+) 3.072 3.079 (2) 3.160 0.027 (+) 3.829 3.856 (2) 4.103

MP ∪

{
M̂S

}
0.006 (+) 3.073 3.079 (4) 3.160 0.026 (+) 3.830 3.856 (3) 4.109

MP ∪ MS 0.006 (+) 3.073 3.079 (3) 3.161 0.026 (+) 3.833 3.859 (4) 4.110
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Table A.15: Simulation study. Sample from 75% mixture distribution of size 100 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 2.936 (+) 3.029 5.966 (12) 3.834 11.003 (+) 5.140 16.143 (12) 5.515

Gamma 2.607 (+) 1.712 4.320 (11) 2.762 6.080 (+) 2.872 8.953 (10) 3.757

Weibull 1.946 (+) 1.644 3.589 (10) 2.036 3.438 (+) 2.185 5.623 (5) 2.469

Log-skew-t 1.664 (+) 1.548 3.212 (8) 2.980 6.712 (+) 3.749 10.461 (11) 5.997

Log-t 1.212 (−) 0.973 2.184 (1) 1.090 1.227 (−) 1.111 2.337 (1) 1.257

Log-skew-n 0.926 (+) 1.511 2.437 (3) 2.583 2.768 (+) 2.475 5.243 (4) 3.557

Log-normal 1.277 (−) 1.011 2.288 (2) 1.092 1.396 (−) 1.121 2.517 (2) 1.240

Best Parametric 0.956 (+) 1.608 2.564 (4) 2.578 4.485 (+) 4.276 8.761 (9) 4.057

Best SemiNP 1.158 (−) 2.398 3.556 (9) 1.630 1.710 (−) 3.227 4.937 (3) 5.743

MP 1.150 (+) 1.461 2.612 (5) 2.836 5.270 (+) 3.358 8.628 (8) 4.903

MP ∪

{
M̂S

}
0.021 (+) 2.965 2.985 (6) 2.594 1.644 (+) 5.972 7.616 (7) 5.389

MP ∪ MS 0.003 (+) 3.041 3.044 (7) 2.541 1.452 (+) 6.144 7.595 (6) 5.470

Table A.16: Simulation study. Sample from 75% mixture distribution of size 100 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 14.788 (−) 5.560 20.349 (8) 8.558 4.224 (−) 7.272 11.495 (2) 10.614

Gamma 15.909 (−) 4.716 20.625 (9) 8.193 7.161 (−) 6.888 14.049 (8) 9.823

Weibull 16.252 (−) 5.590 21.842 (10) 7.692 10.373 (−) 6.925 17.298 (9) 8.635

Log-skew-t 11.396 (−) 4.911 16.307 (4) 8.603 4.187 (−) 6.767 10.954 (1) 10.545

Log-t 16.534 (−) 8.215 24.749 (12) 8.504 17.079 (−) 8.774 25.853 (12) 9.162

Log-skew-n 11.614 (−) 4.995 16.609 (5) 8.433 5.098 (−) 7.129 12.227 (5) 10.266

Log-normal 14.486 (−) 8.256 22.742 (11) 8.243 15.707 (−) 8.865 24.573 (11) 9.058

Best Parametric 11.647 (−) 5.013 16.660 (6) 8.430 4.667 (−) 7.068 11.735 (3) 10.320

Best SemiNP 1.973 (−) 14.199 16.172 (3) 11.348 6.683 (−) 12.490 19.173 (10) 23.085

MP 12.142 (−) 5.021 17.163 (7) 8.523 4.930 (−) 6.965 11.895 (4) 10.400

MP ∪

{
M̂S

}
5.653 (−) 9.745 15.398 (2) 10.695 3.919 (−) 8.800 12.719 (6) 12.047

MP ∪ MS 5.188 (−) 10.095 15.283 (1) 10.827 3.904 (−) 8.848 12.752 (7) 12.303

Table A.17: Simulation study. Sample from 75% mixture distribution of size 200 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.808 (+) 1.728 3.536 (10) 1.878 9.306 (+) 3.455 12.760 (12) 2.894

Gamma 4.196 (+) 0.970 5.167 (12) 1.518 8.949 (+) 1.595 10.544 (11) 2.071

Weibull 3.672 (+) 0.978 4.650 (11) 1.140 5.911 (+) 1.263 7.175 (7) 1.384

Log-skew-t 2.333 (+) 0.910 3.243 (9) 1.596 8.304 (+) 2.126 10.430 (10) 2.984

Log-t 0.776 (−) 0.596 1.372 (1) 0.598 0.773 (−) 0.639 1.412 (1) 0.691

Log-skew-n 1.378 (+) 1.240 2.619 (6) 1.375 2.693 (+) 2.594 5.286 (4) 1.786

Log-normal 0.858 (−) 0.609 1.467 (2) 0.597 0.945 (−) 0.658 1.603 (2) 0.679

Best Parametric 1.735 (+) 0.934 2.669 (7) 1.433 6.485 (+) 2.385 8.870 (9) 2.374

Best SemiNP 0.728 (−) 1.394 2.122 (3) 0.907 1.505 (−) 1.657 3.162 (3) 9.550

MP 1.774 (+) 0.914 2.688 (8) 1.526 6.694 (+) 2.051 8.746 (8) 2.656

MP ∪

{
M̂S

}
0.004 (+) 2.379 2.383 (5) 1.419 0.984 (+) 6.002 6.985 (5) 3.881

MP ∪ MS 0.001 (−) 2.354 2.354 (4) 1.387 0.887 (+) 6.099 6.986 (6) 3.911
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Table A.18: Simulation study. Sample from 75% mixture distribution of size 200 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 10.921 (−) 2.767 13.688 (11) 4.349 2.692 (−) 4.188 6.880 (7) 5.463

Gamma 9.878 (−) 2.542 12.419 (9) 4.312 2.925 (−) 3.702 6.627 (6) 5.186

Weibull 8.663 (−) 3.146 11.808 (8) 4.105 4.210 (−) 3.828 8.038 (9) 4.614

Log-skew-t 7.279 (−) 2.651 9.930 (4) 4.439 1.555 (−) 3.752 5.307 (1) 5.507

Log-t 10.246 (−) 4.458 14.704 (12) 4.454 10.336 (−) 4.936 15.272 (12) 4.820

Log-skew-n 7.591 (−) 2.980 10.571 (7) 4.361 2.833 (−) 4.364 7.197 (8) 5.286

Log-normal 8.640 (−) 4.565 13.205 (10) 4.354 9.394 (−) 4.909 14.303 (11) 4.801

Best Parametric 7.334 (−) 2.699 10.033 (5) 4.385 1.752 (−) 3.943 5.695 (2) 5.429

Best SemiNP 0.032 (−) 8.495 8.527 (3) 6.092 2.225 (−) 8.466 10.691 (10) 22.772

MP 7.421 (−) 2.724 10.145 (6) 4.403 1.840 (−) 3.896 5.736 (3) 5.455

MP ∪

{
M̂S

}
1.197 (−) 6.691 7.888 (2) 6.057 0.863 (−) 5.470 6.333 (5) 8.312

MP ∪ MS 0.953 (−) 6.831 7.783 (1) 6.125 0.838 (−) 5.491 6.329 (4) 8.242

Table A.19: Simulation study. Sample from 75% mixture distribution of size 500 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.183 (+) 0.559 1.742 (6) 0.698 7.398 (+) 1.464 8.861 (10) 1.159

Gamma 5.148 (+) 0.381 5.528 (12) 0.635 10.507 (+) 0.641 11.148 (12) 0.864

Weibull 4.755 (+) 0.388 5.143 (11) 0.481 7.373 (+) 0.505 7.878 (7) 0.583

Log-skew-t 2.614 (+) 0.352 2.966 (10) 0.640 8.512 (+) 0.917 9.429 (11) 1.277

Log-t 0.624 (−) 0.250 0.875 (1) 0.251 0.677 (−) 0.264 0.941 (1) 0.284

Log-skew-n 2.099 (+) 0.346 2.445 (7) 0.588 5.112 (+) 0.573 5.685 (4) 0.817

Log-normal 0.657 (−) 0.254 0.911 (2) 0.251 0.750 (−) 0.264 1.014 (2) 0.282

Best Parametric 2.208 (+) 0.367 2.575 (8) 0.600 7.062 (+) 1.069 8.131 (9) 0.998

Best SemiNP 0.395 (−) 0.712 1.107 (3) 0.402 1.131 (−) 1.055 2.186 (3) 2.018

MP 2.271 (+) 0.353 2.624 (9) 0.618 7.142 (+) 0.916 8.059 (8) 1.122

MP ∪

{
M̂S

}
0.029 (−) 1.429 1.457 (5) 0.571 0.413 (+) 5.856 6.268 (6) 2.223

MP ∪ MS 0.046 (−) 1.362 1.408 (4) 0.577 0.395 (+) 5.872 6.267 (5) 2.375

Table A.20: Simulation study. Sample from 75% mixture distribution of size 500 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 8.852 (−) 1.096 9.949 (12) 1.752 2.187 (−) 1.666 3.853 (9) 2.193

Gamma 7.189 (−) 0.944 8.133 (10) 1.772 1.470 (−) 1.422 2.892 (7) 2.128

Weibull 5.600 (−) 1.179 6.778 (8) 1.698 2.100 (−) 1.453 3.554 (8) 1.906

Log-skew-t 5.281 (−) 1.012 6.293 (4) 1.803 0.724 (−) 1.499 2.223 (1) 2.243

Log-t 6.391 (−) 1.757 8.148 (11) 1.816 6.896 (−) 1.868 8.764 (12) 1.984

Log-skew-n 5.331 (−) 1.032 6.363 (7) 1.786 1.032 (−) 1.514 2.546 (6) 2.191

Log-normal 5.864 (−) 1.768 7.632 (9) 1.797 6.528 (−) 1.884 8.412 (11) 1.982

Best Parametric 5.316 (−) 1.031 6.347 (6) 1.789 0.829 (−) 1.546 2.375 (5) 2.217

Best SemiNP 0.077 (+) 4.105 4.182 (3) 2.502 1.027 (−) 4.058 5.085 (10) 6.089

MP 5.314 (−) 1.027 6.340 (5) 1.793 0.826 (−) 1.527 2.353 (2) 2.227

MP ∪

{
M̂S

}
0.024 (−) 3.928 3.952 (2) 2.676 0.106 (−) 2.257 2.363 (4) 5.104

MP ∪ MS 0.007 (−) 3.885 3.892 (1) 2.701 0.102 (−) 2.260 2.362 (3) 5.395
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Table A.21: Simulation study. Sample from 90% mixture distribution of size 100 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.195 (+) 1.824 2.018 (2) 3.181 3.439 (+) 5.291 8.730 (6) 6.285

Gamma 9.658 (+) 2.525 12.182 (11) 4.175 20.351 (+) 4.556 24.907 (12) 5.853

Weibull 11.090 (+) 2.570 13.660 (12) 3.414 17.172 (+) 3.616 20.789 (11) 4.234

Log-skew-t 0.514 (+) 3.010 3.524 (10) 3.690 4.629 (+) 6.323 10.952 (10) 6.521

Log-t 0.338 (−) 1.609 1.948 (1) 1.827 0.245 (−) 1.990 2.235 (1) 2.218

Log-skew-n 0.328 (+) 2.933 3.261 (5) 3.335 1.690 (+) 6.253 7.944 (4) 4.449

Log-normal 0.370 (−) 1.670 2.040 (3) 1.836 0.323 (−) 2.014 2.337 (2) 2.221

Best Parametric 0.091 (+) 3.273 3.364 (7) 2.608 2.790 (+) 7.696 10.486 (9) 3.702

Best SemiNP 0.646 (−) 2.765 3.411 (9) 2.129 0.679 (−) 3.903 4.583 (3) 7.522

MP 0.252 (+) 2.653 2.905 (4) 3.339 3.316 (+) 5.445 8.761 (8) 5.803

MP ∪

{
M̂S

}
0.001 (−) 3.350 3.351 (6) 3.221 1.346 (+) 7.405 8.751 (7) 6.938

MP ∪ MS 0.036 (−) 3.371 3.407 (8) 3.081 1.016 (+) 7.492 8.508 (5) 7.195

Table A.22: Simulation study. Sample from 90% mixture distribution of size 100 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 11.094 (−) 8.435 19.529 (12) 10.341 5.105 (−) 9.882 14.986 (9) 12.117

Gamma 10.585 (−) 5.649 16.234 (4) 10.155 1.783 (−) 8.675 10.458 (2) 12.275

Weibull 4.851 (−) 7.105 11.956 (1) 10.283 0.910 (−) 9.124 10.034 (1) 11.586

Log-skew-t 10.007 (−) 8.061 18.069 (10) 10.527 3.877 (−) 10.015 13.892 (3) 12.393

Log-t 8.246 (−) 10.587 18.833 (11) 10.706 7.621 (−) 11.669 19.290 (12) 11.829

Log-skew-n 9.783 (−) 8.095 17.878 (9) 10.308 4.537 (−) 10.230 14.767 (7) 12.067

Log-normal 7.125 (−) 10.637 17.762 (8) 10.445 6.925 (−) 11.802 18.727 (11) 11.692

Best Parametric 8.885 (−) 8.658 17.544 (6) 10.217 4.137 (−) 10.534 14.670 (5) 11.789

Best SemiNP 1.495 (−) 14.437 15.933 (3) 12.608 3.702 (−) 14.244 17.946 (10) 20.802

MP 9.300 (−) 8.400 17.700 (7) 10.436 4.227 (−) 9.997 14.224 (4) 12.197

MP ∪

{
M̂S

}
4.343 (−) 11.928 16.270 (5) 12.573 3.021 (−) 11.674 14.695 (6) 14.603

MP ∪ MS 3.398 (−) 12.161 15.560 (2) 13.021 3.025 (−) 11.822 14.847 (8) 15.735

Table A.23: Simulation study. Sample from 90% mixture distribution of size 200 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.176 (+) 0.927 1.103 (3) 1.553 2.059 (+) 2.092 4.151 (5) 2.837

Gamma 12.604 (+) 1.415 14.019 (11) 2.228 25.473 (+) 2.451 27.924 (12) 3.123

Weibull 15.262 (+) 1.495 16.757 (12) 1.840 22.816 (+) 2.011 24.827 (11) 2.277

Log-skew-t 0.160 (+) 1.436 1.597 (7) 1.764 2.775 (+) 3.363 6.139 (10) 3.371

Log-t 0.151 (−) 0.870 1.020 (1) 0.961 0.091 (−) 1.016 1.106 (1) 1.166

Log-skew-n 0.097 (+) 1.443 1.540 (6) 1.645 0.601 (+) 3.117 3.717 (4) 2.209

Log-normal 0.179 (−) 0.904 1.082 (2) 0.969 0.149 (−) 1.040 1.189 (2) 1.165

Best Parametric 0.016 (+) 1.503 1.519 (5) 1.306 1.429 (+) 4.058 5.488 (9) 2.171

Best SemiNP 0.257 (−) 1.636 1.893 (10) 1.217 0.259 (−) 2.080 2.339 (3) 6.849

MP 0.038 (+) 1.282 1.320 (4) 1.566 1.700 (+) 3.392 5.092 (6) 3.091

MP ∪

{
M̂S

}
0.061 (−) 1.735 1.795 (9) 1.493 0.382 (+) 4.872 5.254 (8) 5.112

MP ∪ MS 0.097 (−) 1.680 1.776 (8) 1.466 0.331 (+) 4.787 5.118 (7) 5.361
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Table A.24: Simulation study. Sample from 90% mixture distribution of size 200 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 5.667 (−) 4.607 10.274 (11) 5.414 2.429 (−) 5.115 7.544 (7) 6.175

Gamma 5.891 (−) 2.894 8.785 (6) 5.250 0.163 (−) 4.364 4.526 (1) 6.348

Weibull 1.188 (−) 3.810 4.998 (1) 5.351 0.051 (+) 4.746 4.797 (2) 6.023

Log-skew-t 5.707 (−) 4.719 10.426 (12) 5.441 2.194 (−) 5.188 7.382 (3) 6.274

Log-t 4.100 (−) 5.356 9.456 (7) 5.551 3.537 (−) 5.988 9.526 (12) 6.119

Log-skew-n 5.197 (−) 4.812 10.009 (10) 5.392 2.389 (−) 5.329 7.718 (9) 6.178

Log-normal 3.253 (−) 5.467 8.720 (5) 5.418 3.072 (−) 5.969 9.041 (11) 6.074

Best Parametric 4.579 (−) 5.057 9.636 (8) 5.342 2.202 (−) 5.436 7.638 (8) 6.132

Best SemiNP 0.175 (−) 7.867 8.043 (3) 6.647 1.434 (−) 6.952 8.387 (10) 10.931

MP 4.792 (−) 4.894 9.685 (9) 5.459 2.124 (−) 5.329 7.454 (4) 6.266

MP ∪

{
M̂S

}
0.919 (−) 7.409 8.328 (4) 6.906 1.109 (−) 6.393 7.503 (6) 8.435

MP ∪ MS 0.598 (−) 7.399 7.997 (2) 7.094 1.116 (−) 6.372 7.488 (5) 9.046

Table A.25: Simulation study. Sample from 90% mixture distribution of size 500 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.189 (+) 0.400 0.589 (4) 0.596 1.622 (+) 0.904 2.526 (8) 1.289

Gamma 14.429 (+) 0.559 14.988 (11) 0.923 28.453 (+) 1.004 29.457 (12) 1.291

Weibull 17.924 (+) 0.598 18.521 (12) 0.767 26.293 (+) 0.814 27.107 (11) 0.947

Log-skew-t 0.094 (+) 0.557 0.651 (6) 0.675 1.783 (+) 1.481 3.264 (10) 1.322

Log-t 0.079 (−) 0.374 0.453 (1) 0.400 0.053 (−) 0.440 0.494 (1) 0.479

Log-skew-n 0.069 (+) 0.567 0.636 (5) 0.650 0.174 (+) 1.914 2.089 (4) 0.745

Log-normal 0.088 (−) 0.383 0.471 (2) 0.402 0.077 (−) 0.444 0.520 (2) 0.479

Best Parametric 0.037 (+) 0.630 0.667 (7) 0.549 1.187 (+) 1.582 2.769 (9) 1.218

Best SemiNP 0.045 (−) 0.705 0.750 (10) 0.573 0.000 (+) 1.002 1.002 (3) 3.197

MP 0.033 (+) 0.525 0.559 (3) 0.625 0.964 (+) 1.513 2.477 (7) 1.314

MP ∪

{
M̂S

}
0.026 (−) 0.711 0.737 (9) 0.601 0.377 (+) 2.038 2.414 (6) 3.392

MP ∪ MS 0.036 (−) 0.688 0.724 (8) 0.599 0.331 (+) 1.954 2.284 (5) 2.839

Table A.26: Simulation study. Sample from 90% mixture distribution of size 500 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 3.192 (−) 1.799 4.991 (11) 2.201 1.189 (−) 2.105 3.294 (5) 2.528

Gamma 3.751 (−) 1.072 4.822 (9) 2.140 0.016 (+) 1.706 1.722 (1) 2.584

Weibull 0.195 (−) 1.433 1.628 (1) 2.189 0.808 (+) 1.828 2.636 (2) 2.460

Log-skew-t 3.206 (−) 1.915 5.121 (12) 2.243 1.298 (−) 2.157 3.455 (9) 2.516

Log-t 1.829 (−) 2.127 3.956 (6) 2.245 1.670 (−) 2.376 4.046 (12) 2.491

Log-skew-n 2.916 (−) 1.926 4.842 (10) 2.234 1.339 (−) 2.291 3.629 (10) 2.494

Log-normal 1.552 (−) 2.112 3.663 (5) 2.217 1.484 (−) 2.379 3.863 (11) 2.482

Best Parametric 2.596 (−) 1.988 4.584 (7) 2.205 1.196 (−) 2.177 3.373 (7) 2.529

Best SemiNP 0.005 (+) 3.386 3.392 (3) 2.831 0.854 (−) 2.472 3.326 (6) 6.374

MP 2.646 (−) 1.958 4.604 (8) 2.252 1.230 (−) 2.204 3.434 (8) 2.527

MP ∪

{
M̂S

}
0.019 (−) 3.443 3.462 (4) 2.958 0.833 (−) 2.410 3.243 (3) 5.314

MP ∪ MS 0.003 (−) 3.301 3.305 (2) 3.008 0.827 (−) 2.419 3.246 (4) 4.585
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Table A.27: Simulation study. Sample from 95% mixture distribution of size 100 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.140 (+) 1.952 2.092 (2) 2.973 2.005 (+) 4.224 6.229 (5) 5.645

Gamma 12.680 (+) 2.891 15.571 (11) 4.609 26.497 (+) 5.265 31.761 (12) 6.514

Weibull 15.975 (+) 2.984 18.958 (12) 3.868 24.314 (+) 4.228 28.542 (11) 4.820

Log-skew-t 0.028 (+) 2.804 2.832 (8) 3.417 1.675 (+) 6.150 7.825 (9) 6.610

Log-t 0.197 (−) 1.835 2.032 (1) 2.060 0.111 (−) 2.289 2.400 (1) 2.525

Log-skew-n 0.016 (+) 2.675 2.691 (5) 3.133 0.240 (+) 5.422 5.662 (4) 4.182

Log-normal 0.219 (−) 1.914 2.133 (3) 2.073 0.170 (−) 2.331 2.501 (2) 2.536

Best Parametric 0.006 (−) 2.756 2.762 (6) 2.435 1.021 (+) 7.781 8.801 (10) 3.408

Best SemiNP 0.505 (−) 2.546 3.051 (10) 2.160 0.367 (−) 4.147 4.514 (3) 6.955

MP 0.015 (+) 2.468 2.483 (4) 3.096 1.410 (+) 5.431 6.841 (6) 5.719

MP ∪

{
M̂S

}
0.037 (−) 2.736 2.773 (7) 3.024 0.614 (+) 6.635 7.249 (8) 7.077

MP ∪ MS 0.107 (−) 2.825 2.931 (9) 2.943 0.406 (+) 6.483 6.889 (7) 7.641

Table A.28: Simulation study. Sample from 95% mixture distribution of size 100 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 8.488 (−) 9.868 18.356 (11) 10.971 4.251 (−) 11.229 15.480 (3) 12.629

Gamma 9.197 (−) 6.112 15.309 (2) 10.699 0.872 (−) 9.400 10.273 (2) 12.941

Weibull 2.446 (−) 7.801 10.247 (1) 11.013 0.034 (−) 10.023 10.057 (1) 12.396

Log-skew-t 7.641 (−) 11.060 18.701 (12) 11.541 4.104 (−) 11.664 15.767 (6) 12.934

Log-t 6.159 (−) 11.781 17.940 (9) 11.407 5.558 (−) 12.979 18.537 (12) 12.689

Log-skew-n 7.137 (−) 10.867 18.004 (10) 11.247 4.146 (−) 12.246 16.392 (9) 12.685

Log-normal 5.148 (−) 11.753 16.901 (5) 11.078 4.874 (−) 13.021 17.895 (11) 12.436

Best Parametric 6.310 (−) 11.058 17.368 (7) 10.990 3.664 (−) 12.288 15.952 (8) 12.437

Best SemiNP 2.065 (−) 14.773 16.837 (4) 12.353 3.143 (−) 14.555 17.699 (10) 18.981

MP 6.788 (−) 10.724 17.512 (8) 11.306 3.720 (−) 11.783 15.502 (4) 12.812

MP ∪

{
M̂S

}
4.020 (−) 12.994 17.014 (6) 12.611 2.834 (−) 12.870 15.704 (5) 15.342

MP ∪ MS 3.037 (−) 13.255 16.292 (3) 13.180 2.826 (−) 12.993 15.818 (7) 16.940

Table A.29: Simulation study. Sample from 95% mixture distribution of size 200 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.167 (+) 0.977 1.144 (4) 1.453 1.307 (+) 1.732 3.039 (8) 2.630

Gamma 16.044 (+) 1.557 17.601 (11) 2.446 32.286 (+) 2.706 34.993 (12) 3.452

Weibull 21.072 (+) 1.666 22.738 (12) 2.067 31.100 (+) 2.237 33.337 (11) 2.568

Log-skew-t 0.004 (+) 1.244 1.248 (6) 1.635 0.768 (+) 2.633 3.402 (10) 3.157

Log-t 0.074 (−) 0.948 1.023 (1) 1.072 0.031 (−) 1.096 1.126 (1) 1.309

Log-skew-n 0.001 (+) 1.261 1.262 (7) 1.504 0.051 (+) 2.028 2.078 (4) 1.992

Log-normal 0.087 (−) 0.987 1.074 (2) 1.085 0.063 (−) 1.121 1.185 (2) 1.316

Best Parametric 0.012 (−) 1.204 1.217 (5) 1.217 0.197 (+) 2.926 3.123 (9) 1.858

Best SemiNP 0.150 (−) 1.396 1.546 (10) 1.195 0.076 (−) 1.854 1.930 (3) 15.578

MP 0.000 (−) 1.119 1.119 (3) 1.407 0.361 (+) 2.537 2.899 (5) 2.606

MP ∪

{
M̂S

}
0.040 (−) 1.355 1.395 (8) 1.400 0.113 (+) 2.900 3.013 (7) 12.992

MP ∪ MS 0.063 (−) 1.409 1.472 (9) 1.421 0.099 (+) 2.836 2.935 (6) 12.632



Appendix 143

Table A.30: Simulation study. Sample from 95% mixture distribution of size 200 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 3.807 (−) 4.922 8.729 (11) 5.690 1.606 (−) 5.410 7.016 (3) 6.472

Gamma 4.860 (−) 2.932 7.792 (6) 5.511 0.000 (−) 4.433 4.433 (1) 6.662

Weibull 0.190 (−) 3.955 4.145 (1) 5.701 1.004 (+) 4.905 5.909 (2) 6.406

Log-skew-t 3.512 (−) 5.409 8.920 (12) 5.929 1.936 (−) 5.679 7.614 (9) 6.526

Log-t 2.638 (−) 5.574 8.212 (8) 5.902 2.188 (−) 6.129 8.317 (12) 6.530

Log-skew-n 2.985 (−) 5.410 8.395 (10) 5.835 1.701 (−) 5.860 7.561 (8) 6.463

Log-normal 1.944 (−) 5.682 7.626 (5) 5.729 1.776 (−) 6.102 7.878 (11) 6.433

Best Parametric 2.472 (−) 5.616 8.088 (7) 5.715 1.657 (−) 5.807 7.465 (7) 6.444

Best SemiNP 0.509 (−) 7.004 7.513 (3) 6.356 1.209 (−) 6.477 7.685 (10) 15.145

MP 2.807 (−) 5.412 8.219 (9) 5.844 1.628 (−) 5.785 7.413 (6) 6.527

MP ∪

{
M̂S

}
1.236 (−) 6.339 7.574 (4) 6.586 1.204 (−) 6.105 7.309 (5) 12.221

MP ∪ MS 0.813 (−) 6.468 7.281 (2) 6.886 1.194 (−) 6.108 7.302 (4) 12.651

Table A.31: Simulation study. Sample from 95% mixture distribution of size 500 - estimate of

distribution function in the 5% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.193 (+) 0.429 0.622 (9) 0.587 1.019 (+) 0.728 1.747 (10) 1.419

Gamma 18.088 (+) 0.642 18.730 (11) 1.010 35.691 (+) 1.172 36.864 (12) 1.423

Weibull 24.357 (+) 0.694 25.051 (12) 0.857 35.388 (+) 0.954 36.342 (11) 1.063

Log-skew-t 0.006 (+) 0.496 0.501 (4) 0.652 0.456 (+) 1.075 1.531 (9) 1.186

Log-t 0.030 (−) 0.407 0.437 (1) 0.443 0.012 (−) 0.490 0.502 (1) 0.535

Log-skew-n 0.004 (+) 0.497 0.501 (5) 0.592 0.001 (−) 0.712 0.714 (3) 0.666

Log-normal 0.034 (−) 0.420 0.454 (2) 0.447 0.025 (−) 0.497 0.522 (2) 0.538

Best Parametric 0.001 (−) 0.522 0.523 (6) 0.494 0.152 (+) 1.204 1.356 (8) 0.794

Best SemiNP 0.018 (−) 0.621 0.639 (10) 0.539 0.009 (+) 0.717 0.726 (4) 1.252

MP 0.001 (+) 0.472 0.473 (3) 0.566 0.142 (+) 0.925 1.067 (7) 1.021

MP ∪

{
M̂S

}
0.006 (−) 0.575 0.582 (7) 0.580 0.089 (+) 0.896 0.985 (6) 1.268

MP ∪ MS 0.008 (−) 0.591 0.600 (8) 0.598 0.090 (+) 0.871 0.961 (5) 1.426

Table A.32: Simulation study. Sample from 95% mixture distribution of size 500 - estimate of

distribution function in the 25% quantile of the log-normal distribution (Results ×10−4).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.915 (−) 1.947 3.863 (11) 2.321 0.611 (−) 2.295 2.906 (2) 2.650

Gamma 2.938 (−) 1.109 4.047 (12) 2.241 0.277 (+) 1.797 2.074 (1) 2.706

Weibull 0.055 (+) 1.529 1.584 (1) 2.324 2.889 (+) 1.960 4.849 (12) 2.607

Log-skew-t 1.533 (−) 2.178 3.711 (10) 2.442 0.843 (−) 2.381 3.224 (10) 2.636

Log-t 0.971 (−) 2.240 3.212 (6) 2.385 0.815 (−) 2.520 3.336 (11) 2.643

Log-skew-n 1.239 (−) 2.172 3.411 (9) 2.401 0.658 (−) 2.493 3.151 (8) 2.623

Log-normal 0.717 (−) 2.220 2.936 (2) 2.337 0.649 (−) 2.517 3.166 (9) 2.622

Best Parametric 1.003 (−) 2.238 3.241 (7) 2.338 0.640 (−) 2.410 3.049 (3) 2.626

Best SemiNP 0.085 (−) 3.032 3.117 (4) 2.645 0.541 (−) 2.521 3.063 (5) 3.750

MP 1.152 (−) 2.167 3.319 (8) 2.397 0.670 (−) 2.420 3.090 (7) 2.636

MP ∪

{
M̂S

}
0.271 (−) 2.907 3.178 (5) 2.751 0.604 (−) 2.480 3.084 (6) 3.031

MP ∪ MS 0.152 (−) 2.867 3.019 (3) 2.874 0.587 (−) 2.474 3.061 (4) 3.258
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Table A.33: Simulation study. Sample from log-normal distribution of size 100 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.358 (−) 6.738 7.096 (3) 7.513 0.009 (−) 7.561 7.570 (3) 8.212

Gamma 3.127 (−) 1.935 5.062 (2) 3.129 0.488 (−) 2.429 2.916 (1) 3.164

Weibull 0.044 (−) 2.733 2.778 (1) 3.756 0.371 (+) 3.256 3.627 (2) 3.952

Log Skew t 1.343 (−) 9.095 10.438 (9) 9.525 1.761 (−) 10.554 12.315 (8) 11.209

Log t 0.829 (−) 8.906 9.735 (6) 9.348 0.837 (−) 9.845 10.681 (6) 13.602

Log Skew N 0.340 (−) 9.423 9.762 (7) 8.873 0.682 (−) 12.903 13.585 (10) 11.837

Log-normal 0.083 (−) 9.264 9.347 (5) 8.714 0.085 (−) 10.370 10.455 (4) 10.101

Best Parametric 0.260 (−) 9.699 9.959 (8) 8.784 0.534 (−) 11.184 11.717 (7) 10.098

Best SemiNP 0.137 (−) 13.739 13.876 (12) 9.678 0.752 (−) 16.641 17.394 (12) 16.132

MP 0.464 (−) 8.795 9.259 (4) 9.012 0.583 (−) 10.089 10.672 (5) 10.926

MP ∪

{
M̂S

}
0.476 (−) 10.710 11.186 (10) 10.081 0.957 (−) 11.674 12.631 (9) 14.194

MP ∪ MS 0.233 (−) 11.777 12.009 (11) 11.521 1.100 (−) 12.537 13.637 (11) 18.574

Table A.34: Simulation study. Sample from log-normal distribution of size 100 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.691 (−) 1.230 1.921 (4) 1.440 1.049 (−) 1.250 2.299 (4) 1.598

Gamma 18.583 (−) 1.041 19.624 (12) 0.410 18.556 (−) 0.968 19.524 (12) 0.377

Weibull 13.401 (−) 0.716 14.116 (11) 0.469 12.900 (−) 0.680 13.580 (11) 0.441

Log Skew t 0.016 (+) 2.714 2.730 (10) 3.117 0.030 (−) 4.031 4.061 (10) 3.973

Log t 0.009 (+) 1.420 1.429 (2) 1.284 0.003 (+) 1.444 1.447 (2) 1.385

Log Skew N 0.002 (+) 2.387 2.390 (9) 2.147 0.170 (+) 3.220 3.390 (9) 2.651

Log-normal 0.005 (+) 1.219 1.224 (1) 1.098 0.003 (+) 1.254 1.258 (1) 1.117

Best Parametric 0.010 (+) 1.992 2.001 (6) 1.340 0.009 (−) 3.212 3.221 (8) 1.441

Best SemiNP 0.014 (+) 1.974 1.988 (5) 1.476 0.010 (+) 2.138 2.148 (3) 2.316

MP 0.002 (−) 1.783 1.785 (3) 1.910 0.039 (−) 2.475 2.514 (5) 2.472

MP ∪

{
M̂S

}
0.000 (−) 2.071 2.071 (7) 2.122 0.024 (−) 2.723 2.746 (7) 3.032

MP ∪ MS 0.000 (+) 2.178 2.178 (8) 2.380 0.012 (−) 2.668 2.679 (6) 3.428

Table A.35: Simulation study. Sample from log-normal distribution of size 200 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.185 (−) 3.370 3.555 (2) 3.804 0.002 (+) 3.705 3.707 (3) 4.247

Gamma 2.840 (−) 0.867 3.707 (3) 1.527 0.354 (−) 1.083 1.438 (1) 1.534

Weibull 0.004 (−) 1.330 1.334 (1) 1.859 0.579 (+) 1.533 2.112 (2) 1.955

Log Skew t 0.793 (−) 4.174 4.967 (11) 4.744 0.747 (−) 4.663 5.411 (9) 5.453

Log t 0.557 (−) 4.141 4.698 (10) 4.757 0.454 (−) 4.780 5.233 (6) 5.779

Log Skew N 0.135 (−) 4.329 4.464 (6) 4.439 0.144 (−) 5.227 5.372 (8) 5.622

Log-normal 0.033 (−) 4.420 4.453 (5) 4.411 0.026 (−) 4.844 4.870 (4) 5.130

Best Parametric 0.135 (−) 4.530 4.664 (9) 4.459 0.154 (−) 5.150 5.304 (7) 5.169

Best SemiNP 0.000 (−) 5.275 5.275 (12) 5.051 0.245 (−) 8.090 8.335 (12) 7.490

MP 0.228 (−) 4.219 4.446 (4) 4.591 0.193 (−) 4.730 4.923 (5) 5.434

MP ∪

{
M̂S

}
0.118 (−) 4.428 4.547 (7) 5.094 0.319 (−) 5.803 6.122 (10) 6.983

MP ∪ MS 0.027 (−) 4.623 4.649 (8) 5.752 0.337 (−) 6.024 6.361 (11) 8.305
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Table A.36: Simulation study. Sample from log-normal distribution of size 200 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.574 (−) 0.574 1.148 (9) 0.765 0.810 (−) 0.596 1.405 (9) 1.221

Gamma 19.476 (−) 0.503 19.980 (12) 0.195 19.388 (−) 0.476 19.864 (12) 0.178

Weibull 13.776 (−) 0.331 14.107 (11) 0.227 13.239 (−) 0.319 13.559 (11) 0.212

Log Skew t 0.007 (+) 1.169 1.177 (10) 1.223 0.036 (−) 1.749 1.785 (10) 1.738

Log t 0.005 (+) 0.642 0.648 (2) 0.604 0.002 (+) 0.670 0.672 (2) 0.628

Log Skew N 0.000 (+) 1.001 1.002 (7) 1.005 0.031 (+) 1.357 1.388 (8) 1.172

Log-normal 0.002 (+) 0.580 0.582 (1) 0.537 0.001 (+) 0.595 0.597 (1) 0.543

Best Parametric 0.008 (+) 0.904 0.912 (4) 0.653 0.000 (−) 1.358 1.358 (7) 0.747

Best SemiNP 0.000 (−) 1.094 1.094 (8) 0.712 0.001 (+) 1.006 1.007 (3) 0.782

MP 0.000 (−) 0.804 0.804 (3) 0.883 0.011 (−) 1.098 1.109 (4) 1.139

MP ∪

{
M̂S

}
0.001 (−) 0.935 0.936 (5) 0.991 0.009 (−) 1.186 1.195 (5) 1.236

MP ∪ MS 0.000 (−) 0.947 0.947 (6) 1.106 0.008 (−) 1.196 1.204 (6) 1.354

Table A.37: Simulation study. Sample from log-normal distribution of size 500 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.148 (−) 1.344 1.492 (2) 1.534 0.005 (+) 1.604 1.608 (3) 1.733

Gamma 2.672 (−) 0.316 2.988 (12) 0.606 0.296 (−) 0.411 0.707 (1) 0.606

Weibull 0.000 (+) 0.506 0.506 (1) 0.741 0.693 (+) 0.598 1.291 (2) 0.778

Log Skew t 0.420 (−) 1.722 2.142 (9) 1.917 0.363 (−) 1.954 2.318 (8) 2.126

Log t 0.301 (−) 1.846 2.147 (10) 1.923 0.247 (−) 2.108 2.355 (9) 2.380

Log Skew N 0.049 (−) 1.709 1.758 (3) 1.770 0.067 (−) 2.205 2.272 (7) 2.198

Log-normal 0.014 (−) 1.761 1.775 (4) 1.778 0.014 (−) 2.050 2.064 (4) 2.068

Best Parametric 0.051 (−) 1.842 1.893 (6) 1.786 0.055 (−) 2.154 2.209 (6) 2.081

Best SemiNP 0.000 (+) 2.361 2.361 (11) 1.968 0.059 (−) 3.132 3.191 (12) 2.752

MP 0.102 (−) 1.726 1.828 (5) 1.859 0.082 (−) 2.049 2.131 (5) 2.187

MP ∪

{
M̂S

}
0.038 (−) 2.008 2.046 (7) 2.076 0.098 (−) 2.397 2.495 (10) 2.564

MP ∪ MS 0.005 (−) 2.070 2.075 (8) 2.318 0.099 (−) 2.407 2.506 (11) 2.786

Table A.38: Simulation study. Sample from log-normal distribution of size 500 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.509 (−) 0.207 0.716 (10) 0.249 0.667 (−) 0.204 0.871 (10) 0.259

Gamma 19.786 (−) 0.193 19.979 (12) 0.076 19.670 (−) 0.184 19.854 (12) 0.069

Weibull 13.881 (−) 0.120 14.001 (11) 0.089 13.338 (−) 0.116 13.454 (11) 0.083

Log Skew t 0.003 (+) 0.403 0.405 (9) 0.453 0.024 (−) 0.570 0.593 (9) 0.654

Log t 0.004 (+) 0.229 0.233 (2) 0.231 0.002 (+) 0.228 0.231 (2) 0.237

Log Skew N 0.001 (−) 0.360 0.361 (6) 0.350 0.027 (+) 0.425 0.452 (8) 0.427

Log-normal 0.002 (+) 0.212 0.213 (1) 0.213 0.001 (+) 0.213 0.214 (1) 0.214

Best Parametric 0.001 (+) 0.299 0.300 (4) 0.247 0.000 (+) 0.418 0.419 (7) 0.275

Best SemiNP 0.000 (+) 0.377 0.377 (8) 0.274 0.000 (+) 0.285 0.285 (3) 0.238

MP 0.000 (−) 0.283 0.284 (3) 0.327 0.002 (−) 0.351 0.353 (4) 0.418

MP ∪

{
M̂S

}
0.001 (−) 0.340 0.341 (5) 0.358 0.001 (−) 0.361 0.362 (5) 0.422

MP ∪ MS 0.000 (−) 0.365 0.365 (7) 0.417 0.001 (−) 0.361 0.363 (6) 0.414
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Table A.39: Simulation study. Sample from gamma distribution of size 100 - estimate of density

function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.000 (−) 2.616 2.616 (6) 2.558 0.046 (−) 4.586 4.632 (3) 5.168

Gamma 0.012 (+) 0.861 0.873 (1) 0.839 0.001 (+) 0.996 0.997 (1) 1.062

Weibull 12.807 (+) 1.137 13.944 (10) 1.731 21.082 (+) 1.391 22.473 (9) 1.985

Log Skew t 0.188 (+) 1.544 1.732 (2) 1.402 0.403 (+) 5.284 5.687 (5) 17.055

Log t 27.328 (+) 4.168 31.496 (12) 5.193 117.128 (+) 2.440 119.568 (11) 5.516

Log Skew N 1.180 (+) 3.540 4.720 (8) 1.294 3.531 (+) 2.491 6.022 (6) 2.510

Log-normal 1.351 (+) 4.805 6.156 (9) 1.643 118.133 (+) 2.386 120.519 (12) 5.382

Best Parametric 0.011 (+) 2.152 2.163 (4) 0.933 0.179 (+) 4.609 4.788 (4) 1.129

Best SemiNP 3.047 (+) 11.751 14.798 (11) 5.824 4.521 (−) 99.833 104.353 (10) 62.427

MP 0.049 (+) 1.756 1.805 (3) 1.821 0.803 (+) 3.772 4.575 (2) 5.020

MP ∪

{
M̂S

}
0.059 (+) 2.506 2.566 (5) 2.428 0.058 (+) 9.093 9.152 (7) 12.688

MP ∪ MS 0.061 (+) 2.739 2.800 (7) 2.662 0.009 (+) 11.928 11.937 (8) 14.946

Table A.40: Simulation study. Sample from gamma distribution of size 100 - estimate of density

function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.000 (−) 0.362 0.362 (5) 0.344 0.009 (−) 0.831 0.839 (6) 0.860

Gamma 0.008 (+) 0.206 0.214 (1) 0.200 0.005 (+) 0.312 0.317 (1) 0.332

Weibull 0.304 (+) 0.308 0.612 (8) 0.282 2.300 (+) 0.298 2.598 (9) 0.455

Log Skew t 0.035 (−) 0.319 0.354 (4) 0.283 0.004 (−) 0.712 0.716 (4) 1.035

Log t 0.522 (+) 1.031 1.553 (10) 0.777 6.267 (+) 0.591 6.858 (12) 0.907

Log Skew N 0.928 (−) 0.309 1.236 (9) 0.140 0.023 (+) 0.585 0.607 (2) 0.559

Log-normal 1.932 (−) 0.482 2.415 (12) 0.132 6.163 (+) 0.586 6.749 (11) 0.880

Best Parametric 0.000 (−) 0.336 0.336 (3) 0.201 0.007 (+) 0.751 0.758 (5) 0.324

Best SemiNP 0.579 (+) 1.173 1.752 (11) 0.583 0.979 (+) 4.678 5.656 (10) 2.399

MP 0.000 (−) 0.285 0.285 (2) 0.293 0.028 (+) 0.675 0.702 (3) 0.712

MP ∪

{
M̂S

}
0.004 (+) 0.394 0.398 (6) 0.366 0.018 (+) 0.865 0.882 (7) 0.972

MP ∪ MS 0.009 (+) 0.432 0.441 (7) 0.396 0.015 (+) 0.939 0.954 (8) 1.057

Table A.41: Simulation study. Sample from gamma distribution of size 200 - estimate of density

function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.000 (+) 1.242 1.243 (8) 1.278 0.005 (−) 2.459 2.464 (3) 2.511

Gamma 0.002 (+) 0.383 0.386 (1) 0.409 0.000 (+) 0.449 0.449 (1) 0.507

Weibull 12.793 (+) 0.496 13.288 (11) 0.855 21.430 (+) 0.626 22.055 (8) 0.949

Log Skew t 0.216 (+) 0.716 0.932 (6) 0.673 0.959 (+) 2.513 3.472 (5) 9.243

Log t 31.015 (+) 1.522 32.536 (12) 2.433 119.204 (+) 1.148 120.352 (11) 2.659

Log Skew N 0.065 (+) 0.737 0.802 (3) 0.431 55.624 (+) 20.910 76.534 (10) 1.979

Log-normal 0.894 (+) 2.429 3.322 (9) 0.798 119.914 (+) 1.098 121.011 (12) 2.606

Best Parametric 0.007 (+) 0.874 0.881 (4) 0.504 0.048 (+) 2.793 2.841 (4) 0.647

Best SemiNP 3.889 (+) 6.130 10.019 (10) 2.607 5.552 (−) 55.384 60.936 (9) 18.724

MP 0.013 (+) 0.763 0.777 (2) 0.831 0.267 (+) 1.963 2.231 (2) 2.644

MP ∪

{
M̂S

}
0.011 (+) 0.883 0.895 (5) 0.914 0.042 (+) 4.103 4.145 (6) 4.699

MP ∪ MS 0.014 (+) 0.922 0.936 (7) 0.950 0.024 (+) 4.468 4.492 (7) 4.945
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Table A.42: Simulation study. Sample from gamma distribution of size 200 - estimate of density

function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.000 (+) 0.162 0.162 (6) 0.173 0.001 (−) 0.420 0.422 (7) 0.431

Gamma 0.002 (+) 0.093 0.095 (1) 0.098 0.001 (+) 0.150 0.151 (1) 0.162

Weibull 0.276 (+) 0.149 0.425 (8) 0.140 2.259 (+) 0.142 2.402 (8) 0.224

Log Skew t 0.036 (−) 0.155 0.190 (7) 0.144 0.000 (−) 0.316 0.316 (2) 0.480

Log t 0.534 (+) 0.516 1.050 (10) 0.393 6.198 (+) 0.295 6.492 (12) 0.447

Log Skew N 0.600 (−) 0.189 0.789 (9) 0.071 2.271 (+) 1.288 3.558 (9) 0.358

Log-normal 2.137 (−) 0.242 2.379 (12) 0.064 6.083 (+) 0.291 6.374 (11) 0.438

Best Parametric 0.000 (−) 0.157 0.158 (5) 0.104 0.002 (+) 0.406 0.408 (4) 0.175

Best SemiNP 0.276 (+) 0.934 1.210 (11) 0.252 2.144 (+) 1.753 3.897 (10) 1.522

MP 0.001 (−) 0.128 0.129 (2) 0.152 0.010 (+) 0.332 0.342 (3) 0.368

MP ∪

{
M̂S

}
0.000 (−) 0.145 0.146 (3) 0.165 0.012 (+) 0.403 0.415 (5) 0.538

MP ∪ MS 0.000 (−) 0.155 0.155 (4) 0.170 0.013 (+) 0.405 0.418 (6) 0.534

Table A.43: Simulation study. Sample from gamma distribution of size 500 - estimate of density

function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.000 (+) 0.523 0.523 (7) 0.504 0.001 (−) 0.982 0.983 (3) 0.964

Gamma 0.002 (+) 0.161 0.163 (1) 0.163 0.001 (+) 0.187 0.188 (1) 0.199

Weibull 12.806 (+) 0.210 13.016 (11) 0.341 22.187 (+) 0.248 22.435 (8) 0.370

Log Skew t 0.214 (+) 0.281 0.495 (6) 0.254 1.912 (+) 0.984 2.896 (7) 2.423

Log t 32.850 (+) 0.512 33.363 (12) 0.919 120.579 (+) 0.819 121.398 (11) 1.070

Log Skew N 0.169 (+) 0.576 0.745 (8) 0.199 12.584 (+) 12.465 25.049 (9) 0.536

Log-normal 0.465 (+) 1.017 1.481 (9) 0.307 122.418 (+) 0.447 122.865 (12) 1.030

Best Parametric 0.003 (+) 0.367 0.369 (5) 0.217 0.024 (+) 0.987 1.011 (4) 0.341

Best SemiNP 5.204 (+) 2.278 7.482 (10) 0.946 7.247 (−) 24.959 32.206 (10) 4.144

MP 0.003 (+) 0.300 0.303 (4) 0.337 0.186 (+) 0.680 0.866 (2) 1.101

MP ∪

{
M̂S

}
0.003 (+) 0.299 0.303 (3) 0.338 0.164 (+) 1.021 1.186 (5) 1.213

MP ∪ MS 0.003 (+) 0.299 0.302 (2) 0.338 0.161 (+) 1.035 1.197 (6) 1.250

Table A.44: Simulation study. Sample from gamma distribution of size 500 - estimate of density

function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.000 (+) 0.072 0.072 (6) 0.069 0.000 (−) 0.173 0.174 (7) 0.174

Gamma 0.001 (+) 0.039 0.040 (1) 0.039 0.000 (+) 0.060 0.060 (1) 0.065

Weibull 0.241 (+) 0.063 0.304 (8) 0.056 2.260 (+) 0.058 2.318 (9) 0.090

Log Skew t 0.037 (−) 0.064 0.101 (7) 0.056 0.003 (+) 0.126 0.129 (5) 0.144

Log t 0.503 (+) 0.231 0.734 (9) 0.158 5.916 (+) 0.200 6.116 (11) 0.180

Log Skew N 0.824 (−) 0.091 0.915 (10) 0.027 0.289 (+) 0.871 1.160 (8) 0.118

Log-normal 2.401 (−) 0.097 2.498 (12) 0.024 6.042 (+) 0.115 6.157 (12) 0.176

Best Parametric 0.000 (−) 0.067 0.067 (5) 0.044 0.000 (−) 0.131 0.131 (6) 0.080

Best SemiNP 0.157 (+) 0.867 1.024 (11) 0.087 2.934 (+) 0.471 3.405 (10) 0.286

MP 0.000 (−) 0.056 0.056 (2) 0.059 0.001 (+) 0.118 0.119 (2) 0.128

MP ∪

{
M̂S

}
0.000 (−) 0.056 0.056 (3) 0.060 0.001 (+) 0.127 0.127 (3) 0.157

MP ∪ MS 0.000 (−) 0.056 0.056 (4) 0.060 0.001 (+) 0.128 0.128 (4) 0.159
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Table A.45: Simulation study. Sample from 75% mixture distribution of size 100 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 8.329 (−) 1.512 9.841 (5) 2.649 4.599 (−) 1.695 6.293 (5) 2.579

Gamma 8.712 (−) 1.417 10.129 (6) 2.472 5.130 (−) 1.881 7.012 (6) 2.737

Weibull 8.550 (−) 1.819 10.369 (7) 2.519 6.077 (−) 2.197 8.274 (7) 2.770

Log Skew t 4.408 (−) 2.028 6.435 (3) 3.393 2.713 (−) 2.461 5.173 (3) 3.828

Log t 10.433 (−) 4.492 14.925 (9) 4.698 10.777 (−) 4.842 15.619 (11) 5.123

Log Skew N 3.861 (−) 2.150 6.011 (1) 3.556 1.538 (−) 2.896 4.434 (1) 4.039

Log-normal 9.258 (−) 4.772 14.030 (8) 4.755 10.054 (−) 5.160 15.214 (10) 5.303

Best Parametric 3.988 (−) 2.215 6.203 (2) 3.529 2.142 (−) 2.709 4.851 (2) 3.784

Best SemiNP 2.982 (−) 19.450 22.433 (12) 11.308 10.951 (−) 18.679 29.630 (12) 40.797

MP 4.642 (−) 2.176 6.818 (4) 3.510 2.770 (−) 2.481 5.251 (4) 3.751

MP ∪

{
M̂S

}
4.065 (−) 11.498 15.563 (11) 8.274 4.497 (−) 9.950 14.447 (8) 11.568

MP ∪ MS 3.898 (−) 11.629 15.527 (10) 8.943 4.780 (−) 10.130 14.910 (9) 12.449

Table A.46: Simulation study. Sample from 75% mixture distribution of size 100 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 12.987 (−) 1.124 14.112 (12) 0.870 14.454 (−) 0.695 15.149 (12) 0.583

Gamma 13.127 (−) 0.261 13.388 (11) 0.384 12.042 (−) 0.265 12.307 (11) 0.367

Weibull 11.958 (−) 0.331 12.289 (10) 0.507 10.993 (−) 0.348 11.341 (9) 0.503

Log Skew t 10.182 (−) 0.334 10.516 (9) 0.461 11.129 (−) 0.502 11.631 (10) 0.812

Log t 1.017 (−) 0.780 1.797 (2) 1.028 1.074 (−) 0.810 1.884 (2) 1.066

Log Skew N 8.920 (−) 0.291 9.210 (6) 0.370 8.169 (−) 0.254 8.423 (4) 0.316

Log-normal 0.733 (−) 0.690 1.422 (1) 0.906 0.793 (−) 0.721 1.514 (1) 0.936

Best Parametric 8.945 (−) 0.361 9.306 (7) 0.341 9.584 (−) 0.552 10.136 (5) 0.357

Best SemiNP 0.006 (−) 6.228 6.234 (3) 3.564 0.123 (+) 7.236 7.359 (3) 8.050

MP 9.357 (−) 0.346 9.703 (8) 0.522 10.322 (−) 0.392 10.714 (8) 0.619

MP ∪

{
M̂S

}
2.788 (−) 6.295 9.082 (5) 2.876 3.670 (−) 6.528 10.198 (7) 3.859

MP ∪ MS 2.331 (−) 6.491 8.822 (4) 2.997 3.332 (−) 6.838 10.169 (6) 3.847

Table A.47: Simulation study. Sample from 75% mixture distribution of size 200 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 6.169 (−) 0.979 7.147 (7) 1.539 3.048 (−) 1.010 4.058 (6) 1.465

Gamma 6.084 (−) 0.749 6.834 (6) 1.273 2.963 (−) 0.994 3.957 (5) 1.403

Weibull 5.247 (−) 1.019 6.266 (5) 1.332 3.195 (−) 1.209 4.404 (7) 1.463

Log Skew t 2.634 (−) 1.073 3.707 (3) 1.762 1.152 (−) 1.299 2.451 (2) 1.943

Log t 7.089 (−) 2.540 9.629 (11) 2.515 7.096 (−) 2.846 9.943 (11) 2.767

Log Skew N 2.496 (−) 1.547 4.043 (4) 1.839 0.964 (−) 2.148 3.113 (4) 2.183

Log-normal 6.035 (−) 2.747 8.782 (10) 2.580 6.554 (−) 2.972 9.526 (8) 2.896

Best Parametric 2.337 (−) 1.170 3.507 (1) 1.807 0.866 (−) 1.536 2.403 (1) 1.950

Best SemiNP 0.088 (−) 10.209 10.297 (12) 6.391 7.030 (−) 8.270 15.300 (12) 75.761

MP 2.511 (−) 1.176 3.686 (2) 1.830 1.024 (−) 1.438 2.462 (3) 2.016

MP ∪

{
M̂S

}
0.635 (−) 6.988 7.623 (8) 5.223 3.269 (−) 6.667 9.936 (10) 15.558

MP ∪ MS 0.585 (−) 7.076 7.660 (9) 5.393 3.312 (−) 6.557 9.869 (9) 15.649
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Table A.48: Simulation study. Sample from 75% mixture distribution of size 200 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 8.419 (−) 0.789 9.208 (10) 0.577 10.672 (−) 0.587 11.259 (12) 0.382

Gamma 11.741 (−) 0.127 11.867 (12) 0.185 10.700 (−) 0.127 10.827 (11) 0.175

Weibull 10.078 (−) 0.160 10.238 (11) 0.247 9.165 (−) 0.167 9.332 (9) 0.244

Log Skew t 8.811 (−) 0.113 8.924 (9) 0.219 9.506 (−) 0.207 9.713 (10) 0.332

Log t 0.433 (−) 0.349 0.782 (2) 0.495 0.449 (−) 0.374 0.823 (2) 0.500

Log Skew N 7.365 (−) 0.277 7.642 (6) 0.190 5.691 (−) 0.734 6.425 (4) 0.198

Log-normal 0.256 (−) 0.327 0.583 (1) 0.448 0.280 (−) 0.344 0.625 (1) 0.460

Best Parametric 8.023 (−) 0.166 8.189 (8) 0.175 8.498 (−) 0.263 8.761 (7) 0.210

Best SemiNP 0.004 (+) 2.745 2.749 (3) 1.844 0.178 (+) 4.025 4.203 (3) 14.340

MP 8.011 (−) 0.175 8.185 (7) 0.242 8.643 (−) 0.209 8.852 (8) 0.292

MP ∪

{
M̂S

}
1.127 (−) 3.887 5.014 (5) 1.816 1.623 (−) 6.035 7.658 (6) 3.375

MP ∪ MS 0.885 (−) 3.952 4.837 (4) 1.845 1.489 (−) 6.123 7.612 (5) 3.389

Table A.49: Simulation study. Sample from 75% mixture distribution of size 500 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 4.835 (−) 0.430 5.265 (10) 0.673 2.230 (−) 0.433 2.663 (7) 0.638

Gamma 4.835 (−) 0.273 5.108 (9) 0.519 2.059 (−) 0.373 2.431 (5) 0.570

Weibull 3.815 (−) 0.379 4.194 (7) 0.550 2.062 (−) 0.455 2.516 (6) 0.602

Log Skew t 1.714 (−) 0.418 2.132 (4) 0.725 0.501 (−) 0.533 1.034 (4) 0.825

Log t 4.814 (−) 1.063 5.877 (12) 1.073 5.173 (−) 1.130 6.303 (11) 1.191

Log Skew N 1.501 (−) 0.430 1.931 (1) 0.740 0.167 (−) 0.584 0.751 (1) 0.840

Log-normal 4.437 (−) 1.099 5.535 (11) 1.083 4.922 (−) 1.171 6.093 (10) 1.218

Best Parametric 1.540 (−) 0.434 1.975 (2) 0.736 0.343 (−) 0.601 0.943 (3) 0.810

Best SemiNP 0.138 (+) 4.198 4.336 (8) 2.740 3.356 (−) 4.198 7.554 (12) 16.658

MP 1.576 (−) 0.430 2.006 (3) 0.738 0.354 (−) 0.571 0.925 (2) 0.839

MP ∪

{
M̂S

}
0.016 (+) 3.539 3.555 (5) 2.612 1.435 (−) 4.315 5.749 (9) 14.169

MP ∪ MS 0.027 (+) 3.546 3.573 (6) 2.665 1.434 (−) 4.263 5.697 (8) 15.408

Table A.50: Simulation study. Sample from 75% mixture distribution of size 500 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 5.960 (−) 0.297 6.257 (6) 0.254 8.298 (−) 0.274 8.572 (11) 0.183

Gamma 10.909 (−) 0.048 10.957 (12) 0.073 9.918 (−) 0.049 9.966 (12) 0.068

Weibull 9.073 (−) 0.056 9.129 (11) 0.098 8.211 (−) 0.059 8.269 (9) 0.096

Log Skew t 7.885 (−) 0.040 7.925 (10) 0.078 8.374 (−) 0.085 8.460 (10) 0.142

Log t 0.124 (−) 0.122 0.245 (2) 0.186 0.139 (−) 0.127 0.266 (2) 0.189

Log Skew N 7.322 (−) 0.036 7.358 (7) 0.065 6.684 (−) 0.033 6.717 (6) 0.058

Log-normal 0.085 (−) 0.117 0.202 (1) 0.178 0.097 (−) 0.124 0.221 (1) 0.183

Best Parametric 7.451 (−) 0.040 7.491 (8) 0.067 7.677 (−) 0.111 7.788 (7) 0.086

Best SemiNP 0.032 (+) 1.410 1.442 (3) 0.775 0.140 (+) 2.867 3.007 (3) 3.010

MP 7.513 (−) 0.040 7.553 (9) 0.074 7.716 (−) 0.085 7.801 (8) 0.112

MP ∪

{
M̂S

}
0.136 (−) 2.626 2.762 (5) 0.883 0.598 (−) 5.830 6.428 (5) 2.767

MP ∪ MS 0.092 (−) 2.513 2.605 (4) 0.923 0.576 (−) 5.835 6.411 (4) 2.962
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Table A.51: Simulation study. Sample from 90% mixture distribution of size 100 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 5.094 (−) 4.183 9.277 (7) 5.253 2.953 (−) 4.135 7.088 (4) 5.152

Gamma 7.320 (−) 1.578 8.898 (4) 2.782 3.212 (−) 2.070 5.281 (2) 2.940

Weibull 3.855 (−) 2.202 6.057 (1) 3.206 1.669 (−) 2.692 4.361 (1) 3.459

Log Skew t 4.559 (−) 4.130 8.689 (3) 5.349 2.082 (−) 4.926 7.008 (3) 5.647

Log t 4.806 (−) 6.419 11.225 (9) 6.674 4.422 (−) 7.137 11.559 (9) 7.486

Log Skew N 3.925 (−) 4.356 8.281 (2) 5.386 1.894 (−) 5.464 7.358 (6) 6.180

Log-normal 3.914 (−) 6.738 10.652 (8) 6.659 3.787 (−) 7.572 11.359 (8) 7.614

Best Parametric 3.979 (−) 4.979 8.958 (5) 5.606 2.590 (−) 5.387 7.976 (7) 5.515

Best SemiNP 1.841 (−) 18.659 20.500 (12) 11.366 6.769 (−) 16.198 22.967 (12) 45.563

MP 4.472 (−) 4.553 9.025 (6) 5.536 2.643 (−) 4.676 7.319 (5) 5.659

MP ∪

{
M̂S

}
3.765 (−) 12.224 15.990 (10) 9.572 4.480 (−) 9.711 14.192 (10) 17.126

MP ∪ MS 3.163 (−) 13.034 16.197 (11) 10.623 4.853 (−) 10.034 14.887 (11) 19.387

Table A.52: Simulation study. Sample from 90% mixture distribution of size 100 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 4.882 (−) 1.154 6.037 (4) 1.530 7.518 (−) 1.505 9.024 (6) 1.612

Gamma 19.437 (−) 0.410 19.847 (12) 0.365 18.501 (−) 0.387 18.889 (12) 0.334

Weibull 15.425 (−) 0.392 15.817 (11) 0.474 14.423 (−) 0.388 14.811 (11) 0.453

Log Skew t 5.826 (−) 2.824 8.650 (10) 2.019 8.504 (−) 2.603 11.106 (10) 1.795

Log t 0.922 (−) 0.804 1.726 (2) 1.008 0.948 (−) 0.799 1.748 (2) 1.019

Log Skew N 5.502 (−) 2.641 8.143 (9) 1.682 5.603 (−) 2.958 8.561 (4) 1.078

Log-normal 0.784 (−) 0.752 1.537 (1) 0.942 0.807 (−) 0.760 1.567 (1) 0.950

Best Parametric 3.941 (−) 2.968 6.909 (8) 0.858 6.197 (−) 3.084 9.281 (8) 0.692

Best SemiNP 0.143 (−) 4.371 4.513 (3) 2.967 0.047 (−) 4.835 4.882 (3) 8.942

MP 4.586 (−) 2.174 6.761 (7) 1.600 6.871 (−) 2.035 8.907 (5) 1.500

MP ∪

{
M̂S

}
1.752 (−) 4.971 6.723 (6) 3.293 3.235 (−) 6.170 9.405 (9) 4.619

MP ∪ MS 1.231 (−) 4.864 6.096 (5) 3.494 2.672 (−) 6.355 9.027 (7) 5.003

Table A.53: Simulation study. Sample from 90% mixture distribution of size 200 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 2.587 (−) 2.428 5.015 (3) 2.944 1.136 (−) 2.456 3.592 (4) 2.974

Gamma 5.009 (−) 0.776 5.785 (8) 1.406 1.637 (−) 0.998 2.635 (2) 1.472

Weibull 1.750 (−) 1.157 2.907 (1) 1.649 0.382 (−) 1.372 1.754 (1) 1.772

Log Skew t 2.732 (−) 2.493 5.225 (6) 2.989 0.927 (−) 2.521 3.447 (3) 3.181

Log t 2.706 (−) 3.306 6.012 (9) 3.531 2.273 (−) 3.824 6.097 (9) 3.959

Log Skew N 2.228 (−) 2.679 4.907 (2) 3.023 0.949 (−) 2.932 3.882 (5) 3.580

Log-normal 1.917 (−) 3.563 5.481 (7) 3.541 1.789 (−) 3.966 5.755 (8) 4.069

Best Parametric 2.207 (−) 2.935 5.142 (5) 3.149 1.207 (−) 2.890 4.098 (7) 3.215

Best SemiNP 0.003 (−) 8.969 8.972 (12) 6.506 1.874 (−) 7.061 8.935 (12) 28.845

MP 2.336 (−) 2.778 5.114 (4) 3.156 1.233 (−) 2.688 3.921 (6) 3.308

MP ∪

{
M̂S

}
0.306 (−) 7.161 7.466 (11) 6.325 1.669 (−) 5.234 6.903 (10) 17.656

MP ∪ MS 0.159 (−) 7.125 7.284 (10) 6.778 1.640 (−) 5.349 6.990 (11) 19.955
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Table A.54: Simulation study. Sample from 90% mixture distribution of size 200 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 2.548 (−) 0.501 3.050 (8) 0.799 3.929 (−) 0.666 4.595 (5) 0.835

Gamma 17.907 (−) 0.213 18.120 (12) 0.178 17.066 (−) 0.202 17.268 (12) 0.161

Weibull 13.536 (−) 0.188 13.724 (11) 0.230 12.623 (−) 0.185 12.808 (11) 0.218

Log Skew t 2.509 (−) 1.387 3.896 (10) 1.195 4.798 (−) 1.514 6.312 (10) 1.184

Log t 0.358 (−) 0.389 0.747 (2) 0.504 0.368 (−) 0.385 0.753 (2) 0.504

Log Skew N 2.258 (−) 1.344 3.602 (9) 1.076 2.284 (−) 1.896 4.180 (4) 0.756

Log-normal 0.280 (−) 0.364 0.643 (1) 0.471 0.287 (−) 0.366 0.653 (1) 0.473

Best Parametric 1.537 (−) 1.432 2.969 (7) 0.598 3.058 (−) 1.862 4.919 (8) 0.593

Best SemiNP 0.082 (−) 2.315 2.398 (3) 1.552 0.089 (−) 2.267 2.356 (3) 5.710

MP 1.716 (−) 1.047 2.763 (5) 0.957 3.279 (−) 1.444 4.723 (6) 1.030

MP ∪

{
M̂S

}
0.409 (−) 2.474 2.883 (6) 1.724 1.277 (−) 3.649 4.926 (9) 4.081

MP ∪ MS 0.292 (−) 2.309 2.601 (4) 1.811 1.210 (−) 3.552 4.762 (7) 4.281

Table A.55: Simulation study. Sample from 90% mixture distribution of size 500 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.464 (−) 0.982 2.446 (6) 1.223 0.478 (−) 1.060 1.538 (3) 1.302

Gamma 3.819 (−) 0.280 4.099 (11) 0.567 0.958 (−) 0.377 1.335 (2) 0.590

Weibull 0.894 (−) 0.429 1.323 (1) 0.671 0.053 (−) 0.519 0.571 (1) 0.719

Log Skew t 1.628 (−) 1.019 2.647 (7) 1.263 0.463 (−) 1.144 1.607 (4) 1.337

Log t 1.261 (−) 1.393 2.654 (8) 1.473 1.154 (−) 1.567 2.721 (11) 1.666

Log Skew N 1.318 (−) 1.050 2.369 (2) 1.273 0.636 (−) 1.490 2.126 (7) 1.536

Log-normal 0.989 (−) 1.412 2.400 (3) 1.471 0.937 (−) 1.615 2.551 (8) 1.692

Best Parametric 1.310 (−) 1.119 2.429 (4) 1.308 0.518 (−) 1.219 1.737 (5) 1.359

Best SemiNP 0.476 (+) 3.673 4.150 (12) 2.986 0.505 (−) 2.363 2.868 (12) 18.833

MP 1.320 (−) 1.109 2.429 (5) 1.317 0.556 (−) 1.220 1.777 (6) 1.420

MP ∪

{
M̂S

}
0.198 (+) 3.576 3.774 (10) 3.090 0.556 (−) 2.126 2.682 (10) 17.195

MP ∪ MS 0.208 (+) 3.245 3.452 (9) 3.166 0.543 (−) 2.105 2.648 (9) 12.123

Table A.56: Simulation study. Sample from 90% mixture distribution of size 500 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.546 (−) 0.185 1.731 (10) 0.296 2.461 (−) 0.261 2.722 (8) 0.441

Gamma 16.931 (−) 0.090 17.021 (12) 0.070 16.167 (−) 0.086 16.253 (12) 0.063

Weibull 12.440 (−) 0.072 12.512 (11) 0.091 11.597 (−) 0.072 11.668 (11) 0.086

Log Skew t 1.216 (−) 0.513 1.728 (9) 0.483 2.787 (−) 0.661 3.448 (10) 0.537

Log t 0.115 (−) 0.146 0.261 (2) 0.194 0.121 (−) 0.145 0.267 (2) 0.195

Log Skew N 1.134 (−) 0.504 1.639 (8) 0.457 0.836 (−) 1.108 1.944 (4) 0.262

Log-normal 0.096 (−) 0.140 0.235 (1) 0.189 0.098 (−) 0.141 0.239 (1) 0.189

Best Parametric 0.887 (−) 0.564 1.451 (7) 0.281 2.026 (−) 0.699 2.725 (9) 0.417

Best SemiNP 0.063 (−) 0.873 0.936 (4) 0.712 0.309 (−) 0.766 1.075 (3) 3.744

MP 0.882 (−) 0.418 1.300 (6) 0.420 1.796 (−) 0.651 2.447 (7) 0.521

MP ∪

{
M̂S

}
0.111 (−) 0.913 1.023 (5) 0.733 1.035 (−) 1.342 2.377 (6) 3.820

MP ∪ MS 0.078 (−) 0.857 0.935 (3) 0.751 0.974 (−) 1.285 2.259 (5) 2.628
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Table A.57: Simulation study. Sample from 95% mixture distribution of size 100 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 3.690 (−) 5.227 8.917 (3) 5.984 1.943 (−) 5.480 7.422 (3) 6.204

Gamma 6.969 (−) 1.701 8.671 (2) 2.875 2.779 (−) 2.197 4.976 (2) 2.989

Weibull 2.662 (−) 2.396 5.058 (1) 3.393 0.813 (−) 2.907 3.721 (1) 3.629

Log Skew t 4.236 (−) 6.066 10.301 (7) 6.735 2.494 (−) 6.686 9.180 (5) 7.376

Log t 3.556 (−) 7.331 10.887 (9) 7.400 3.199 (−) 8.125 11.324 (9) 8.416

Log Skew N 3.255 (−) 6.208 9.463 (4) 6.612 2.198 (−) 8.150 10.348 (7) 7.927

Log-normal 2.660 (−) 7.646 10.307 (8) 7.299 2.491 (−) 8.586 11.076 (8) 8.389

Best Parametric 3.145 (−) 6.885 10.030 (6) 6.754 2.495 (−) 7.108 9.603 (6) 6.914

Best SemiNP 1.905 (−) 16.470 18.375 (12) 10.455 5.188 (−) 17.660 22.848 (12) 34.888

MP 3.502 (−) 6.302 9.803 (5) 6.714 2.489 (−) 6.527 9.016 (4) 7.069

MP ∪

{
M̂S

}
3.019 (−) 10.841 13.860 (10) 9.766 4.164 (−) 10.700 14.864 (10) 19.524

MP ∪ MS 2.403 (−) 11.823 14.226 (11) 11.126 4.377 (−) 11.376 15.753 (11) 22.271

Table A.58: Simulation study. Sample from 95% mixture distribution of size 100 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 3.763 (−) 1.054 4.817 (8) 1.313 5.373 (−) 1.309 6.682 (6) 1.561

Gamma 21.542 (−) 0.528 22.071 (12) 0.370 20.815 (−) 0.493 21.308 (12) 0.338

Weibull 16.662 (−) 0.455 17.117 (11) 0.467 15.742 (−) 0.440 16.183 (11) 0.443

Log Skew t 2.631 (−) 3.087 5.718 (10) 2.457 4.565 (−) 3.411 7.976 (10) 2.895

Log t 0.811 (−) 0.924 1.735 (2) 1.049 0.853 (−) 0.914 1.767 (2) 1.068

Log Skew N 2.677 (−) 2.688 5.365 (9) 1.996 2.428 (−) 3.520 5.948 (4) 1.731

Log-normal 0.716 (−) 0.853 1.570 (1) 0.977 0.740 (−) 0.861 1.601 (1) 0.984

Best Parametric 1.797 (−) 2.403 4.200 (5) 1.056 3.400 (−) 3.375 6.775 (7) 0.899

Best SemiNP 0.256 (−) 3.289 3.544 (3) 2.264 0.108 (−) 4.401 4.508 (3) 6.993

MP 2.367 (−) 2.030 4.397 (6) 1.752 3.967 (−) 2.427 6.394 (5) 1.941

MP ∪

{
M̂S

}
1.246 (−) 3.272 4.518 (7) 2.753 2.030 (−) 5.185 7.215 (9) 5.177

MP ∪ MS 0.910 (−) 3.257 4.167 (4) 3.056 1.648 (−) 5.195 6.843 (8) 5.467

Table A.59: Simulation study. Sample from 95% mixture distribution of size 200 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.613 (−) 2.749 4.362 (2) 3.267 0.566 (−) 2.896 3.462 (3) 3.517

Gamma 4.703 (−) 0.779 5.481 (9) 1.448 1.331 (−) 0.984 2.316 (2) 1.489

Weibull 0.964 (−) 1.185 2.149 (1) 1.735 0.050 (−) 1.387 1.437 (1) 1.849

Log Skew t 2.080 (−) 3.183 5.263 (7) 3.623 1.035 (−) 3.413 4.448 (5) 3.987

Log t 1.790 (−) 3.518 5.308 (8) 3.932 1.441 (−) 4.008 5.449 (9) 4.446

Log Skew N 1.456 (−) 3.259 4.715 (3) 3.602 0.791 (−) 3.876 4.666 (7) 4.350

Log-normal 1.066 (−) 3.805 4.871 (5) 3.874 0.951 (−) 4.164 5.115 (8) 4.472

Best Parametric 1.282 (−) 3.611 4.893 (6) 3.713 0.905 (−) 3.684 4.589 (6) 4.044

Best SemiNP 0.186 (−) 6.825 7.011 (12) 5.349 1.355 (−) 8.130 9.485 (12) 71.823

MP 1.473 (−) 3.357 4.830 (4) 3.697 0.922 (−) 3.492 4.414 (4) 4.090

MP ∪

{
M̂S

}
0.578 (−) 5.285 5.863 (10) 5.269 1.291 (−) 5.878 7.169 (11) 53.842

MP ∪ MS 0.290 (−) 5.671 5.961 (11) 5.986 1.294 (−) 5.852 7.147 (10) 51.809
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Table A.60: Simulation study. Sample from 95% mixture distribution of size 200 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.906 (−) 0.456 2.362 (10) 0.633 2.649 (−) 0.563 3.212 (9) 0.819

Gamma 19.950 (−) 0.284 20.234 (12) 0.181 19.334 (−) 0.269 19.603 (12) 0.164

Weibull 14.748 (−) 0.220 14.968 (11) 0.227 13.926 (−) 0.214 14.139 (11) 0.214

Log Skew t 0.900 (−) 1.066 1.966 (9) 1.222 1.938 (−) 1.459 3.396 (10) 1.455

Log t 0.267 (−) 0.439 0.705 (2) 0.525 0.282 (−) 0.434 0.717 (2) 0.528

Log Skew N 0.867 (−) 0.988 1.855 (8) 1.018 0.790 (−) 1.408 2.198 (4) 0.877

Log-normal 0.227 (−) 0.411 0.638 (1) 0.491 0.234 (−) 0.413 0.647 (1) 0.492

Best Parametric 0.535 (−) 0.865 1.399 (3) 0.583 1.050 (−) 1.355 2.405 (5) 0.617

Best SemiNP 0.130 (−) 1.420 1.550 (6) 1.050 0.193 (−) 1.628 1.821 (3) 13.650

MP 0.714 (−) 0.709 1.423 (4) 0.853 1.285 (−) 1.129 2.414 (6) 1.024

MP ∪

{
M̂S

}
0.377 (−) 1.192 1.569 (7) 1.234 0.811 (−) 1.931 2.742 (8) 10.882

MP ∪ MS 0.289 (−) 1.209 1.497 (5) 1.367 0.770 (−) 1.915 2.685 (7) 10.265

Table A.61: Simulation study. Sample from 95% mixture distribution of size 500 - estimate of

density function in the 5% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 0.797 (−) 1.126 1.923 (2) 1.368 0.156 (−) 1.296 1.452 (3) 1.552

Gamma 3.542 (−) 0.285 3.827 (12) 0.582 0.723 (−) 0.380 1.103 (2) 0.595

Weibull 0.349 (−) 0.449 0.798 (1) 0.703 0.032 (+) 0.540 0.572 (1) 0.747

Log Skew t 0.987 (−) 1.306 2.292 (8) 1.525 0.441 (−) 1.472 1.912 (6) 1.659

Log t 0.717 (−) 1.512 2.229 (7) 1.631 0.604 (−) 1.716 2.320 (10) 1.846

Log Skew N 0.620 (−) 1.337 1.957 (4) 1.515 0.361 (−) 1.726 2.086 (7) 1.847

Log-normal 0.429 (−) 1.523 1.952 (3) 1.605 0.379 (−) 1.766 2.145 (8) 1.855

Best Parametric 0.545 (−) 1.429 1.974 (5) 1.545 0.306 (−) 1.565 1.871 (4) 1.697

Best SemiNP 0.006 (+) 3.122 3.129 (11) 2.302 0.211 (−) 2.485 2.696 (12) 3.856

MP 0.622 (−) 1.369 1.991 (6) 1.546 0.327 (−) 1.556 1.883 (5) 1.735

MP ∪

{
M̂S

}
0.030 (−) 2.601 2.631 (10) 2.375 0.286 (−) 2.076 2.362 (11) 3.094

MP ∪ MS 0.000 (−) 2.562 2.562 (9) 2.646 0.269 (−) 2.046 2.315 (9) 3.385

Table A.62: Simulation study. Sample from 95% mixture distribution of size 500 - estimate of

density function in the 25% quantile of the log-normal distribution (Results ×10−2).

Censoring No Yes

bias2 (sign) var mse(rank) var bias2 (sign) var mse(rank) var

GenGam 1.127 (−) 0.170 1.298 (10) 0.263 1.511 (−) 0.200 1.711 (10) 0.556

Gamma 18.924 (−) 0.121 19.045 (12) 0.072 18.395 (−) 0.115 18.510 (12) 0.065

Weibull 13.615 (−) 0.086 13.701 (11) 0.089 12.868 (−) 0.084 12.951 (11) 0.084

Log Skew t 0.345 (−) 0.364 0.709 (9) 0.476 0.872 (−) 0.513 1.386 (9) 0.564

Log t 0.070 (−) 0.166 0.236 (2) 0.205 0.076 (−) 0.165 0.241 (2) 0.206

Log Skew N 0.346 (−) 0.334 0.680 (8) 0.383 0.129 (−) 0.340 0.469 (3) 0.283

Log-normal 0.061 (−) 0.160 0.221 (1) 0.197 0.064 (−) 0.159 0.223 (1) 0.198

Best Parametric 0.211 (−) 0.364 0.575 (4) 0.231 0.491 (−) 0.561 1.052 (8) 0.284

Best SemiNP 0.073 (−) 0.594 0.667 (7) 0.450 0.252 (−) 0.299 0.551 (4) 0.377

MP 0.281 (−) 0.276 0.557 (3) 0.341 0.479 (−) 0.375 0.854 (7) 0.447

MP ∪

{
M̂S

}
0.133 (−) 0.510 0.643 (6) 0.498 0.428 (−) 0.372 0.801 (6) 0.512

MP ∪ MS 0.110 (−) 0.511 0.621 (5) 0.555 0.432 (−) 0.355 0.787 (5) 0.503





Appendix B
Model averaging quantiles

Tables B.1-B.60 give the results of the simulation study as described in Chapter 6. For

each setting, the 1%, 5%, 25% and 50% quantiles are estimated for each parametric

model separately, and the two approaches (direct and indirect) for model averaging are

applied.

Table B.1: Simulation study. Sample from log-normal distribution of size 100 - estimate of 1%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.932 (-) 0.050 3.983 (8) 0.057 4.451 (-) 0.035 4.486 (9) 0.036 5.162 (-) 0.013 5.175 (6) 0.013

Weibull 4.055 (-) 0.025 4.080 (9) 0.025 4.323 (-) 0.021 4.344 (8) 0.020 4.827 (-) 0.014 4.841 (5) 0.012

Log-skew-t 0.001 (+) 0.718 0.718 (6) 1.027 0.036 (-) 1.543 1.579 (7) 1.768 0.183 (+) 16.873 17.056 (8) 54.003

Log-t 0.000 (+) 0.347 0.347 (1) 0.462 0.005 (-) 0.448 0.453 (1) 1.126 0.004 (+) 0.795 0.799 (1) 1.280

Log-skew-n 0.023 (+) 0.720 0.744 (7) 0.639 0.173 (+) 1.183 1.355 (6) 0.968 4.510 (+) 13.726 18.236 (9) 8.008

Log-normal 0.026 (+) 0.370 0.396 (2) 0.365 0.028 (+) 0.438 0.466 (2) 0.444 0.081 (+) 0.869 0.951 (2) 0.938

AIC-selected 0.027 (+) 0.579 0.606 (5) 0.419 0.004 (+) 1.261 1.265 (5) 0.528 1.463 (+) 12.336 13.799 (7) 37.260

M
(1) 0.008 (+) 0.503 0.511 (3) 0.603 0.000 (+) 0.925 0.925 (3) 1.029 0.038 (+) 3.924 3.962 (4) 17.110

M
(2) 0.002 (+) 0.511 0.514 (4) 0.169 0.024 (-) 1.035 1.059 (4) 0.571 2.547 (-) 0.474 3.021 (3) 2.510

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)
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Table B.2: Simulation study. Sample from log-normal distribution of size 100 - estimate of 5%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 9.163 (-) 0.833 9.995 (8) 1.064 13.581 (-) 0.800 14.382 (9) 0.831 23.098 (-) 0.484 23.582 (9) 0.441

Weibull 10.820 (-) 0.517 11.337 (9) 0.569 13.162 (-) 0.500 13.662 (8) 0.495 18.736 (-) 0.438 19.174 (7) 0.388

Log-skew-t 0.079 (+) 1.689 1.767 (7) 1.930 0.005 (-) 3.066 3.071 (7) 3.254 0.029 (-) 20.920 20.949 (8) 19.412

Log-t 0.075 (+) 1.300 1.376 (2) 1.328 0.041 (+) 1.506 1.548 (1) 1.609 0.214 (+) 2.807 3.021 (1) 3.130

Log-skew-n 0.060 (+) 1.638 1.698 (6) 1.534 0.238 (+) 2.355 2.593 (5) 2.038 5.121 (+) 13.078 18.199 (6) 9.129

Log-normal 0.065 (+) 1.294 1.359 (1) 1.246 0.069 (+) 1.510 1.579 (2) 1.490 0.197 (+) 2.891 3.087 (2) 3.022

AIC-selected 0.076 (+) 1.467 1.542 (5) 1.307 0.005 (+) 2.762 2.766 (6) 1.568 1.334 (+) 13.283 14.617 (5) 4.887

M
(1) 0.051 (+) 1.453 1.505 (3) 1.526 0.001 (+) 2.273 2.274 (3) 2.311 0.108 (-) 4.943 5.051 (3) 13.322

M
(2) 0.052 (+) 1.458 1.510 (4) 1.159 0.000 (+) 2.356 2.356 (4) 2.046 2.292 (-) 3.494 5.785 (4) 18.811

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.3: Simulation study. Sample from log-normal distribution of size 100 - estimate of 25%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.207 (+) 9.784 12.991 (9) 17.060 0.805 (-) 12.739 13.544 (8) 17.134 57.831 (-) 19.226 77.057 (9) 17.908

Weibull 0.602 (-) 9.478 10.080 (8) 12.971 5.367 (-) 10.565 15.932 (9) 12.556 37.872 (-) 13.488 51.360 (8) 12.930

Log-skew-t 0.676 (+) 8.738 9.414 (7) 8.495 0.486 (+) 9.394 9.880 (7) 9.388 0.145 (-) 29.341 29.486 (7) 27.785

Log-t 0.525 (+) 8.488 9.013 (6) 7.957 0.481 (+) 9.214 9.694 (6) 9.406 1.303 (+) 14.796 16.099 (2) 16.472

Log-skew-n 0.293 (+) 8.391 8.684 (3) 7.876 0.150 (+) 8.802 8.952 (1) 8.065 3.162 (+) 16.438 19.600 (5) 15.656

Log-normal 0.149 (+) 8.056 8.205 (1) 7.303 0.147 (+) 8.809 8.956 (2) 8.160 0.422 (+) 14.556 14.978 (1) 14.213

AIC-selected 0.233 (+) 8.373 8.606 (2) 7.473 0.169 (+) 9.315 9.484 (5) 8.671 0.531 (+) 22.247 22.778 (6) 13.714

M
(1) 0.350 (+) 8.371 8.721 (5) 7.953 0.185 (+) 9.162 9.347 (4) 9.041 0.955 (-) 16.258 17.213 (3) 28.126

M
(2) 0.335 (+) 8.360 8.694 (4) 8.974 0.192 (+) 9.131 9.323 (3) 9.849 0.298 (-) 17.071 17.369 (4) 26.430

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.4: Simulation study. Sample from log-normal distribution of size 100 - estimate of 50%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 237.173 (+) 77.151 314.324 (9) 65.347 140.922 (+) 71.895 212.817 (9) 69.342 0.415 (+) 82.118 82.533 (9) 88.795

Weibull 78.867 (+) 53.633 132.500 (8) 61.840 40.779 (+) 55.454 96.233 (8) 62.320 0.591 (-) 66.649 67.239 (8) 69.312

Log-skew-t 0.214 (+) 44.262 44.475 (7) 41.834 0.734 (+) 46.438 47.171 (7) 42.586 0.839 (+) 52.196 53.035 (7) 51.076

Log-t 0.094 (+) 36.906 37.000 (2) 32.595 0.056 (+) 37.573 37.628 (2) 33.829 0.447 (+) 46.200 46.647 (2) 42.430

Log-skew-n 0.349 (+) 43.927 44.276 (6) 38.885 0.015 (-) 43.925 43.940 (5) 36.974 0.096 (+) 44.644 44.739 (1) 39.591

Log-normal 0.095 (+) 36.717 36.812 (1) 32.482 0.087 (+) 37.492 37.579 (1) 33.500 0.275 (+) 47.591 47.866 (4) 43.593

AIC-selected 0.139 (+) 41.282 41.420 (5) 33.512 0.489 (+) 44.288 44.776 (6) 35.035 0.112 (+) 47.737 47.849 (3) 44.357

M
(1) 0.316 (+) 40.442 40.758 (4) 37.117 0.583 (+) 42.494 43.078 (4) 39.390 0.115 (+) 52.793 52.907 (6) 52.160

M
(2) 0.283 (+) 40.369 40.652 (3) 36.677 0.485 (+) 42.321 42.806 (3) 38.803 0.140 (+) 51.024 51.164 (5) 47.223

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.5: Simulation study. Sample from 75% mixture of size 100 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.305 (-) 0.173 3.479 (9) 0.280 4.041 (-) 0.157 4.198 (9) 0.219 4.943 (-) 0.143 5.086 (8) 0.190

Weibull 2.918 (-) 0.161 3.079 (8) 0.209 3.330 (-) 0.154 3.484 (7) 0.184 3.733 (-) 0.170 3.903 (4) 0.194

Log-skew-t 1.822 (-) 0.303 2.125 (7) 0.591 3.264 (-) 0.343 3.608 (8) 0.942 6.182 (-) 0.146 6.328 (9) 0.822

Log-t 0.508 (+) 0.838 1.346 (1) 0.870 0.544 (+) 0.946 1.490 (1) 1.033 2.240 (+) 1.656 3.895 (3) 1.992

Log-skew-n 1.109 (-) 0.351 1.460 (2) 0.501 1.645 (-) 0.384 2.028 (3) 0.438 0.128 (-) 3.639 3.767 (2) 1.022

Log-normal 0.670 (+) 0.868 1.538 (3) 0.830 0.788 (+) 0.967 1.755 (2) 0.973 2.899 (+) 1.721 4.620 (5) 1.993

AIC-selected 1.125 (-) 0.435 1.560 (4) 0.474 2.065 (-) 0.475 2.540 (4) 0.391 3.042 (-) 1.610 4.652 (6) 0.866

M
(1) 1.357 (-) 0.347 1.704 (5) 0.621 2.427 (-) 0.339 2.765 (5) 0.570 2.209 (-) 1.197 3.406 (1) 1.645

M
(2) 1.481 (-) 0.317 1.798 (6) 0.372 2.699 (-) 0.348 3.047 (6) 0.495 3.965 (-) 0.731 4.696 (7) 1.682

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.6: Simulation study. Sample from 75% mixture of size 100 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 1.654 (-) 2.541 4.195 (7) 4.043 4.454 (-) 2.733 7.187 (6) 3.634 10.097 (-) 3.119 13.216 (5) 3.701

Weibull 0.991 (-) 2.527 3.518 (6) 3.243 2.196 (-) 2.598 4.794 (2) 3.044 3.896 (-) 3.079 6.975 (1) 3.341

Log-skew-t 0.857 (-) 2.212 3.069 (5) 3.994 4.769 (-) 3.220 7.989 (7) 5.551 28.611 (-) 3.451 32.063 (9) 7.009

Log-t 4.118 (+) 3.460 7.579 (9) 3.359 4.323 (+) 3.780 8.103 (8) 3.758 12.190 (+) 6.112 18.302 (7) 6.713

Log-skew-n 0.304 (-) 2.314 2.618 (1) 3.630 1.496 (-) 2.684 4.179 (1) 3.513 0.003 (-) 12.860 12.862 (3) 4.917

Log-normal 3.937 (+) 3.393 7.330 (8) 3.169 4.448 (+) 3.746 8.193 (9) 3.643 13.041 (+) 6.121 19.162 (8) 6.706

AIC-selected 0.325 (-) 2.478 2.804 (4) 3.616 2.574 (-) 3.679 6.253 (5) 3.523 5.010 (-) 7.954 12.965 (4) 7.379

M
(1) 0.448 (-) 2.302 2.750 (2) 3.930 2.933 (-) 3.002 5.935 (3) 4.210 3.363 (-) 5.980 9.343 (2) 9.903

M
(2) 0.444 (-) 2.312 2.756 (3) 3.049 2.990 (-) 3.072 6.062 (4) 4.043 5.952 (-) 7.332 13.285 (6) 12.258

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.7: Simulation study. Sample from 75% mixture of size 100 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 131.581 (+) 26.492 158.073 (9) 46.106 77.528 (+) 32.573 110.101 (8) 47.585 21.686 (+) 48.153 69.838 (1) 58.199

Weibull 123.224 (+) 31.518 154.742 (8) 45.434 88.375 (+) 34.860 123.234 (9) 45.428 55.856 (+) 44.811 100.667 (7) 51.680

Log-skew-t 95.098 (+) 26.313 121.410 (7) 43.651 60.485 (+) 32.891 93.376 (7) 51.481 3.041 (-) 86.601 89.641 (6) 102.607

Log-t 36.421 (+) 22.781 59.203 (2) 24.240 37.960 (+) 24.179 62.139 (2) 25.902 80.429 (+) 32.685 113.114 (9) 34.899

Log-skew-n 86.589 (+) 24.127 110.716 (3) 39.481 50.516 (+) 29.307 79.823 (3) 41.921 28.657 (+) 45.555 74.212 (2) 46.835

Log-normal 30.342 (+) 21.160 51.502 (1) 21.740 33.017 (+) 22.683 55.700 (1) 23.512 77.167 (+) 32.254 109.421 (8) 34.175

AIC-selected 87.281 (+) 24.722 112.003 (4) 39.784 54.739 (+) 31.019 85.758 (4) 45.689 31.932 (+) 52.368 84.301 (5) 58.621

M
(1) 90.881 (+) 25.388 116.269 (6) 41.653 58.123 (+) 31.259 89.382 (6) 46.877 32.503 (+) 45.561 78.065 (3) 68.293

M
(2) 90.200 (+) 25.386 115.587 (5) 35.143 57.784 (+) 31.137 88.921 (5) 40.754 36.292 (+) 44.850 81.142 (4) 58.781

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)



158 Appendix B. Model averaging quantiles

Table B.8: Simulation study. Sample from 75% mixture of size 100 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 494.980 (+) 109.606 604.587 (8) 151.096 368.057 (+) 112.775 480.831 (5) 158.416 191.488 (+) 132.790 324.278 (4) 186.437

Weibull 397.271 (+) 103.698 500.969 (3) 161.025 312.109 (+) 110.080 422.189 (3) 164.216 221.369 (+) 130.758 352.126 (6) 180.792

Log-skew-t 559.787 (+) 94.493 654.280 (9) 154.065 507.278 (+) 118.075 625.352 (9) 186.922 652.625 (+) 239.503 892.128 (9) 375.632

Log-t 0.730 (+) 80.585 81.315 (2) 113.945 1.062 (+) 82.975 84.037 (2) 116.455 18.823 (+) 95.585 114.408 (2) 123.378

Log-skew-n 495.544 (+) 90.689 586.233 (6) 144.682 369.520 (+) 100.517 470.037 (4) 151.340 96.605 (+) 144.348 240.954 (3) 163.423

Log-normal 0.000 (+) 75.296 75.296 (1) 107.712 0.073 (+) 77.311 77.384 (1) 109.323 15.483 (+) 94.328 109.810 (1) 120.754

AIC-selected 496.121 (+) 97.799 593.919 (7) 142.427 428.187 (+) 114.833 543.020 (8) 161.425 226.534 (+) 148.207 374.741 (8) 217.630

M
(1) 485.171 (+) 94.767 579.938 (5) 154.845 414.629 (+) 107.980 522.609 (7) 172.897 219.680 (+) 142.081 361.761 (7) 229.634

M
(2) 481.552 (+) 95.558 577.110 (4) 155.839 411.762 (+) 108.234 519.997 (6) 177.192 208.519 (+) 139.336 347.855 (5) 216.685

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.9: Simulation study. Sample from 90% mixture of size 100 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.919 (-) 0.071 3.990 (9) 0.102 4.522 (-) 0.057 4.580 (9) 0.069 5.359 (-) 0.029 5.388 (9) 0.035

Weibull 3.821 (-) 0.051 3.872 (8) 0.062 4.163 (-) 0.046 4.209 (8) 0.051 4.709 (-) 0.038 4.747 (7) 0.040

Log-skew-t 0.443 (-) 0.825 1.268 (7) 0.886 1.308 (-) 1.049 2.357 (7) 1.008 4.088 (-) 0.819 4.908 (8) 1.586

Log-t 0.048 (+) 0.493 0.541 (1) 0.528 0.036 (+) 0.573 0.609 (1) 0.628 0.208 (+) 0.981 1.189 (2) 1.194

Log-skew-n 0.264 (-) 0.836 1.100 (4) 0.774 0.416 (-) 1.230 1.646 (3) 0.611 0.366 (+) 1.445 1.811 (4) 1.344

Log-normal 0.096 (+) 0.515 0.611 (2) 0.506 0.096 (+) 0.590 0.686 (2) 0.594 0.387 (+) 1.046 1.433 (3) 1.193

AIC-selected 0.083 (-) 1.063 1.146 (5) 0.446 0.646 (-) 1.669 2.315 (6) 0.363 0.000 (-) 2.312 2.312 (6) 0.962

M
(1) 0.202 (-) 0.824 1.025 (3) 0.770 0.827 (-) 1.030 1.857 (4) 0.830 0.072 (-) 1.112 1.184 (1) 2.157

M
(2) 0.328 (-) 0.846 1.174 (6) 0.425 1.326 (-) 0.962 2.287 (5) 0.707 1.232 (-) 0.872 2.104 (5) 2.863

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.10: Simulation study. Sample from 90% mixture of size 100 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 6.323 (-) 1.277 7.600 (8) 1.912 10.628 (-) 1.299 11.926 (9) 1.571 19.829 (-) 1.060 20.888 (9) 1.126

Weibull 6.594 (-) 1.025 7.619 (9) 1.271 8.910 (-) 1.027 9.936 (8) 1.136 13.582 (-) 1.033 14.616 (7) 1.052

Log-skew-t 0.131 (-) 2.531 2.662 (4) 2.899 1.891 (-) 3.647 5.538 (6) 3.536 15.553 (-) 4.352 19.905 (8) 8.720

Log-t 0.689 (+) 2.004 2.693 (5) 1.960 0.605 (+) 2.266 2.872 (1) 2.231 1.695 (+) 3.754 5.449 (3) 4.126

Log-skew-n 0.054 (-) 2.469 2.523 (3) 2.636 0.479 (-) 3.858 4.337 (3) 2.521 1.763 (+) 4.778 6.541 (5) 4.304

Log-normal 0.695 (+) 1.999 2.695 (6) 1.898 0.687 (+) 2.265 2.952 (2) 2.200 1.961 (+) 3.825 5.786 (4) 4.150

AIC-selected 0.000 (+) 2.914 2.914 (7) 2.068 0.956 (-) 5.025 5.981 (7) 1.891 0.090 (+) 8.090 8.181 (6) 3.511

M
(1) 0.032 (-) 2.456 2.487 (1) 2.695 1.253 (-) 3.505 4.758 (4) 3.180 0.043 (-) 4.557 4.600 (1) 7.560

M
(2) 0.031 (-) 2.472 2.503 (2) 2.259 1.375 (-) 3.560 4.935 (5) 3.317 0.363 (-) 4.902 5.264 (2) 8.442

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)
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Table B.11: Simulation study. Sample from 90% mixture of size 100 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 40.039 (+) 16.466 56.505 (9) 28.766 11.941 (+) 20.761 32.701 (9) 29.193 6.930 (-) 30.696 37.626 (4) 33.398

Weibull 19.366 (+) 17.545 36.911 (6) 24.856 7.064 (+) 19.531 26.596 (3) 24.391 0.487 (-) 24.762 25.249 (1) 26.619

Log-skew-t 22.378 (+) 17.159 39.537 (8) 20.120 11.825 (+) 18.211 30.037 (8) 22.878 9.857 (-) 42.028 51.885 (9) 47.342

Log-t 10.787 (+) 13.530 24.318 (2) 13.406 10.163 (+) 14.571 24.734 (2) 14.455 18.406 (+) 21.534 39.940 (6) 22.047

Log-skew-n 21.473 (+) 16.941 38.414 (7) 19.372 11.221 (+) 17.366 28.587 (7) 20.386 16.221 (+) 23.803 40.024 (7) 22.117

Log-normal 9.284 (+) 13.181 22.465 (1) 12.701 9.150 (+) 14.362 23.513 (1) 13.909 17.489 (+) 21.535 39.024 (5) 21.865

AIC-selected 17.906 (+) 16.591 34.497 (3) 17.382 10.561 (+) 17.240 27.801 (4) 20.605 10.113 (+) 29.931 40.044 (8) 23.338

M
(1) 18.912 (+) 16.472 35.383 (5) 18.779 10.976 (+) 17.375 28.351 (6) 21.251 6.692 (+) 26.263 32.955 (2) 29.481

M
(2) 18.332 (+) 16.341 34.673 (4) 17.968 10.966 (+) 17.236 28.202 (5) 20.681 7.819 (+) 26.201 34.020 (3) 28.257

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.12: Simulation study. Sample from 90% mixture of size 100 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 612.697 (+) 93.483 706.180 (9) 105.132 447.004 (+) 93.602 540.606 (9) 110.951 145.439 (+) 109.621 255.060 (8) 137.094

Weibull 375.009 (+) 78.179 453.188 (8) 106.433 280.477 (+) 82.844 363.321 (7) 108.007 124.276 (+) 99.560 223.836 (7) 120.633

Log-skew-t 215.211 (+) 162.748 377.960 (7) 117.513 255.086 (+) 136.211 391.297 (8) 119.982 165.013 (+) 118.483 283.496 (9) 160.708

Log-t 34.569 (+) 55.185 89.754 (2) 63.188 33.615 (+) 56.718 90.332 (2) 64.740 51.408 (+) 70.086 121.494 (2) 75.923

Log-skew-n 213.679 (+) 157.741 371.420 (6) 110.960 193.640 (+) 146.969 340.609 (6) 100.022 51.151 (+) 71.786 122.938 (3) 77.510

Log-normal 31.627 (+) 54.209 85.836 (1) 61.857 31.344 (+) 56.023 87.367 (1) 63.382 49.780 (+) 70.118 119.898 (1) 75.662

AIC-selected 167.509 (+) 163.553 331.061 (5) 85.356 185.147 (+) 136.862 322.009 (5) 89.631 66.340 (+) 79.259 145.599 (4) 86.517

M
(1) 168.236 (+) 134.308 302.544 (4) 106.443 193.763 (+) 115.889 309.653 (4) 108.430 73.483 (+) 79.520 153.003 (6) 95.531

M
(2) 162.491 (+) 132.227 294.718 (3) 101.889 186.398 (+) 115.423 301.821 (3) 107.280 70.782 (+) 78.454 149.235 (5) 97.661

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.13: Simulation study. Sample from 95% mixture of size 100 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.915 (-) 0.062 3.977 (9) 0.080 4.476 (-) 0.049 4.525 (9) 0.052 5.252 (-) 0.022 5.274 (7) 0.023

Weibull 3.892 (-) 0.039 3.931 (8) 0.044 4.204 (-) 0.035 4.239 (8) 0.035 4.740 (-) 0.026 4.767 (6) 0.025

Log-skew-t 0.079 (-) 0.835 0.914 (7) 0.925 0.491 (-) 1.246 1.738 (5) 1.368 1.862 (-) 6.003 7.865 (9) 499.393

Log-t 0.020 (+) 0.445 0.466 (1) 0.476 0.010 (+) 0.518 0.528 (1) 0.587 0.081 (+) 0.912 0.993 (1) 1.086

Log-skew-n 0.035 (-) 0.775 0.810 (5) 0.737 0.030 (-) 1.362 1.393 (4) 0.764 0.724 (+) 5.111 5.835 (8) 2.086

Log-normal 0.057 (+) 0.471 0.528 (2) 0.445 0.055 (+) 0.544 0.598 (2) 0.527 0.194 (+) 0.974 1.168 (2) 1.058

AIC-selected 0.000 (-) 0.813 0.813 (6) 0.445 0.163 (-) 1.600 1.763 (7) 0.417 0.163 (+) 4.286 4.449 (5) 3.078

M
(1) 0.020 (-) 0.695 0.715 (3) 0.713 0.246 (-) 1.119 1.366 (3) 0.918 0.007 (-) 1.617 1.624 (3) 63.129

M
(2) 0.055 (-) 0.747 0.802 (4) 0.320 0.557 (-) 1.192 1.749 (6) 0.701 1.310 (-) 0.740 2.050 (4) 3.043

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.14: Simulation study. Sample from 95% mixture of size 100 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 7.324 (-) 1.092 8.416 (8) 1.538 11.701 (-) 1.092 12.793 (9) 1.234 21.139 (-) 0.801 21.939 (9) 0.781

Weibull 8.031 (-) 0.801 8.832 (9) 0.955 10.396 (-) 0.794 11.189 (8) 0.842 15.533 (-) 0.763 16.296 (7) 0.731

Log-skew-t 0.008 (+) 2.244 2.252 (6) 2.467 0.466 (-) 3.525 3.991 (6) 3.615 7.849 (-) 10.875 18.725 (8) 24.028

Log-t 0.385 (+) 1.770 2.155 (4) 1.689 0.310 (+) 2.009 2.320 (1) 1.939 0.812 (+) 3.432 4.244 (2) 3.624

Log-skew-n 0.014 (+) 2.113 2.127 (3) 2.195 0.004 (-) 3.470 3.474 (3) 2.364 1.824 (+) 6.990 8.814 (6) 4.378

Log-normal 0.393 (+) 1.769 2.161 (5) 1.633 0.374 (+) 2.019 2.394 (2) 1.907 0.956 (+) 3.498 4.454 (4) 3.640

AIC-selected 0.089 (+) 2.264 2.352 (7) 1.743 0.188 (-) 4.578 4.766 (7) 1.714 0.565 (+) 7.505 8.070 (5) 3.590

M
(1) 0.023 (+) 2.070 2.093 (1) 2.211 0.308 (-) 3.374 3.682 (4) 2.969 0.014 (-) 3.964 3.978 (1) 10.073

M
(2) 0.023 (+) 2.080 2.103 (2) 1.742 0.372 (-) 3.489 3.861 (5) 2.936 0.435 (-) 3.934 4.369 (3) 11.157

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.15: Simulation study. Sample from 95% mixture of size 100 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 24.433 (+) 14.170 38.603 (9) 24.314 4.372 (+) 17.951 22.323 (9) 24.557 19.165 (-) 26.694 45.859 (9) 27.168

Weibull 7.452 (+) 14.459 21.911 (5) 20.103 1.064 (+) 16.080 17.144 (1) 19.616 6.806 (-) 20.532 27.338 (3) 20.958

Log-skew-t 10.761 (+) 14.012 24.773 (8) 14.132 6.652 (+) 14.427 21.079 (8) 16.137 5.087 (-) 39.068 44.155 (8) 44.865

Log-t 6.686 (+) 11.841 18.527 (2) 11.167 6.178 (+) 12.756 18.934 (3) 12.174 10.003 (+) 19.429 29.432 (5) 19.057

Log-skew-n 10.083 (+) 13.696 23.779 (7) 13.691 5.966 (+) 13.656 19.622 (7) 14.328 10.104 (+) 20.295 30.399 (6) 18.777

Log-normal 5.617 (+) 11.454 17.071 (1) 10.584 5.417 (+) 12.527 17.943 (2) 11.664 9.188 (+) 19.441 28.628 (4) 18.856

AIC-selected 8.210 (+) 13.195 21.405 (3) 12.290 5.386 (+) 13.954 19.340 (4) 14.761 7.435 (+) 23.311 30.745 (7) 19.107

M
(1) 8.890 (+) 13.164 22.054 (6) 13.304 5.586 (+) 13.972 19.559 (6) 15.318 2.740 (+) 21.414 24.154 (1) 27.650

M
(2) 8.642 (+) 13.088 21.730 (4) 13.534 5.630 (+) 13.876 19.506 (5) 15.508 3.652 (+) 21.533 25.185 (2) 26.205

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.16: Simulation study. Sample from 95% mixture of size 100 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 536.561 (+) 89.276 625.836 (9) 90.985 380.422 (+) 87.750 468.171 (9) 96.207 88.473 (+) 103.775 192.248 (9) 120.415

Weibull 295.659 (+) 70.760 366.419 (8) 90.131 212.134 (+) 74.458 286.591 (8) 91.259 67.540 (+) 90.564 158.104 (7) 101.904

Log-skew-t 80.392 (+) 105.188 185.580 (7) 81.207 103.869 (+) 103.246 207.115 (7) 88.453 80.707 (+) 100.924 181.630 (8) 114.636

Log-t 29.682 (+) 49.647 79.329 (2) 51.261 28.710 (+) 50.857 79.567 (2) 52.759 38.063 (+) 64.024 102.087 (3) 63.303

Log-skew-n 83.107 (+) 101.269 184.376 (6) 78.555 74.162 (+) 104.074 178.236 (5) 71.847 35.512 (+) 65.805 101.317 (1) 62.880

Log-normal 28.078 (+) 48.811 76.890 (1) 50.462 27.547 (+) 50.393 77.940 (1) 51.850 37.228 (+) 64.202 101.430 (2) 63.558

AIC-selected 62.546 (+) 95.784 158.330 (5) 60.332 82.076 (+) 96.269 178.345 (6) 64.842 40.051 (+) 67.421 107.472 (4) 66.452

M
(1) 69.095 (+) 86.332 155.427 (4) 73.272 88.017 (+) 85.812 173.829 (4) 78.883 45.832 (+) 71.705 117.537 (6) 76.024

M
(2) 67.109 (+) 85.041 152.150 (3) 71.218 84.189 (+) 84.824 169.013 (3) 77.686 44.286 (+) 70.519 114.805 (5) 75.789

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )
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Table B.17: Simulation study. Sample from gamma distribution of size 100 - estimate of 1%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000

Weibull 0.000 (+) 0.000 0.000 (6) 0.000 0.000 (+) 0.000 0.000 (4) 0.000 0.000 (+) 0.000 0.000 (2) 0.000

Log-skew-t 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.000 0.000 (5) 0.000 0.001 (+) 0.084 0.085 (4) 693.827

Log-t 0.000 (+) 0.000 0.000 (7) 0.000 0.006 (+) 0.003 0.008 (8) 0.003 0.113 (+) 0.045 0.158 (7) 0.066

Log-skew-n 0.000 (+) 0.000 0.000 (8) 0.000 0.000 (+) 0.000 0.000 (6) 0.000 0.063 (+) 0.112 0.174 (8) 0.117

Log-normal 0.000 (+) 0.000 0.000 (9) 0.000 0.007 (+) 0.003 0.010 (9) 0.004 0.131 (+) 0.051 0.182 (9) 0.072

AIC-selected 0.000 (+) 0.000 0.000 (3) 0.000 0.000 (+) 0.000 0.000 (2) 0.000 0.053 (+) 0.074 0.127 (6) 0.049

M
(1) 0.000 (+) 0.000 0.000 (4) 0.000 0.000 (+) 0.000 0.000 (7) 0.000 0.048 (+) 0.050 0.098 (5) 49.427

M
(2) 0.000 (+) 0.000 0.000 (2) 0.000 0.000 (+) 0.000 0.000 (3) 0.000 0.005 (+) 0.014 0.018 (3) 0.209

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.18: Simulation study. Sample from gamma distribution of size 100 - estimate of 5%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000237 0.000 (+) 0.001 0.001 (1) 0.001

Weibull 0.000 (+) 0.000 0.000 (8) 0.000 0.003 (+) 0.003 0.007 (7) 0.003 0.017 (+) 0.016 0.033 (2) 0.018

Log-skew-t 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.002 0.002 (4) 0.007 0.009 (+) 0.193 0.202 (3) 126.761

Log-t 0.002 (+) 0.002 0.003 (9) 0.002 0.134 (+) 0.042 0.176 (8) 0.042 1.462 (+) 0.381 1.842 (8) 0.487

Log-skew-n 0.000 (+) 0.000 0.000 (6) 0.000 0.001 (+) 0.003 0.004 (6) 0.004 0.642 (+) 0.798 1.440 (7) 0.379

Log-normal 0.000 (+) 0.000 0.000 (7) 0.000 0.141 (+) 0.043 0.184 (9) 0.043 1.512 (+) 0.385 1.898 (9) 0.496

AIC-selected 0.000 (+) 0.000 0.000 (2) 0.000 0.000 (+) 0.001 0.001 (2) 0.001 0.602 (+) 0.701 1.304 (6) 0.323

M
(1) 0.000 (+) 0.000051 0.000064 (4) 0.000074 0.001 (+) 0.002 0.003 (5) 0.004 0.554 (+) 0.453 1.007 (5) 9.627

M
(2) 0.000 (+) 0.000045 0.000055 (3) 0.000347 0.000 (+) 0.001 0.001 (3) 0.006 0.290 (+) 0.380 0.671 (4) 1.318

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.19: Simulation study. Sample from gamma distribution of size 100 - estimate of 25%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.051 (+) 0.485 0.536 (4) 0.531 0.095 (+) 1.037 1.132 (1) 1.084 0.263 (+) 2.092 2.355 (1) 2.204

Weibull 0.059 (+) 0.493 0.552 (6) 0.379 2.350 (+) 1.633 3.983 (7) 1.499 8.307 (+) 3.842 12.149 (3) 3.977

Log-skew-t 0.026 (+) 0.543 0.569 (8) 0.579 0.167 (+) 1.151 1.318 (2) 1.687 0.785 (+) 3.950 4.736 (2) 5.413

Log-t 1.676 (+) 3.491 5.167 (9) 1.755 5.622 (+) 1.721 7.342 (9) 1.486 38.120 (+) 6.707 44.827 (9) 7.086

Log-skew-n 0.244 (-) 0.135 0.379 (1) 0.081 0.407 (+) 1.201 1.608 (6) 1.200 14.608 (+) 14.957 29.565 (7) 5.281

Log-normal 0.316 (-) 0.118 0.434 (2) 0.056 5.497 (+) 1.686 7.183 (8) 1.453 37.605 (+) 6.454 44.059 (8) 6.993

AIC-selected 0.049 (+) 0.518 0.567 (7) 0.542 0.181 (+) 1.171 1.351 (3) 1.093 14.568 (+) 14.839 29.407 (6) 5.578

M
(1) 0.041 (+) 0.497 0.538 (5) 0.548 0.323 (+) 1.202 1.525 (4) 1.353 15.360 (+) 10.127 25.488 (4) 7.975

M
(2) 0.036 (+) 0.491 0.527 (3) 0.603 0.316 (+) 1.227 1.543 (5) 1.215 14.339 (+) 11.156 25.496 (5) 6.734

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)
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Table B.20: Simulation study. Sample from gamma distribution of size 100 - estimate of 50%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.940 (+) 28.374 29.314 (1) 30.243 0.961 (+) 44.961 45.923 (7) 45.967 2.615 (+) 67.875 70.490 (1) 69.606

Weibull 20.170 (-) 19.804 39.974 (6) 17.341 0.947 (+) 35.393 36.340 (3) 31.686 33.444 (+) 56.757 90.201 (6) 54.632

Log-skew-t 0.102 (-) 39.474 39.576 (5) 39.894 0.621 (+) 49.213 49.835 (9) 54.130 1.136 (+) 70.966 72.103 (2) 75.578

Log-t 2.386 (-) 69.375 71.762 (7) 38.477 1.884 (-) 21.664 23.549 (2) 18.952 55.607 (+) 45.879 101.486 (9) 42.302

Log-skew-n 80.807 (-) 13.087 93.894 (8) 9.196 0.006 (+) 38.818 38.824 (4) 40.461 17.256 (+) 72.304 89.560 (5) 57.230

Log-normal 119.953 (-) 6.828 126.781 (9) 7.187 2.194 (-) 21.251 23.445 (1) 18.476 55.179 (+) 44.325 99.504 (8) 41.853

AIC-selected 0.462 (+) 34.904 35.365 (4) 31.786 0.724 (+) 46.694 47.419 (8) 45.811 16.945 (+) 75.567 92.512 (7) 58.763

M
(1) 0.065 (+) 31.877 31.942 (3) 35.274 0.478 (+) 43.612 44.090 (6) 44.614 21.855 (+) 63.924 85.779 (3) 61.096

M
(2) 0.023 (+) 31.817 31.840 (2) 31.328 0.447 (+) 43.123 43.570 (5) 34.338 24.370 (+) 62.470 86.840 (4) 42.327

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.21: Simulation study. Sample from log-normal distribution of size 200 - estimate of 1%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.135 (-) 0.022 4.157 (8) 0.022 4.644 (-) 0.014 4.658 (9) 0.012 5.282 (-) 0.003 5.285 (7) 0.002

Weibull 4.200 (-) 0.011 4.212 (9) 0.010 4.463 (-) 0.009 4.472 (8) 0.007 4.945 (-) 0.005 4.950 (6) 0.004

Log-skew-t 0.001 (-) 0.325 0.327 (7) 0.395 0.073 (-) 0.663 0.735 (7) 0.816 0.032 (-) 6.819 6.850 (9) 8.108

Log-t 0.002 (-) 0.172 0.174 (1) 0.213 0.012 (-) 0.208 0.220 (2) 0.343 0.000 (-) 0.390 0.390 (1) 0.537

Log-skew-n 0.004 (+) 0.302 0.306 (6) 0.302 0.028 (+) 0.440 0.469 (5) 0.454 0.998 (+) 4.831 5.829 (8) 2.676

Log-normal 0.008 (+) 0.168 0.175 (2) 0.173 0.007 (+) 0.197 0.204 (1) 0.211 0.027 (+) 0.424 0.452 (2) 0.439

AIC-selected 0.009 (+) 0.280 0.289 (5) 0.201 0.002 (+) 0.485 0.488 (6) 0.268 0.158 (+) 3.580 3.738 (5) 1.315

M
(1) 0.003 (+) 0.228 0.231 (4) 0.272 0.000 (-) 0.372 0.372 (3) 0.453 0.146 (-) 1.350 1.496 (3) 3.565

M
(2) 0.002 (+) 0.226 0.228 (3) 0.056 0.003 (-) 0.412 0.415 (4) 0.181 3.276 (-) 0.230 3.506 (4) 1.539

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.22: Simulation study. Sample from log-normal distribution of size 200 - estimate of 5%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 10.178 (-) 0.411 10.589 (8) 0.486 14.894 (-) 0.374 15.268 (9) 0.361 24.662 (-) 0.188 24.850 (9) 0.148

Weibull 11.758 (-) 0.251 12.010 (9) 0.253 14.184 (-) 0.231 14.415 (8) 0.215 19.893 (-) 0.195 20.088 (8) 0.156

Log-skew-t 0.025 (+) 0.763 0.788 (7) 0.844 0.022 (-) 1.400 1.422 (7) 1.507 0.242 (-) 9.871 10.112 (7) 12.421

Log-t 0.023 (+) 0.600 0.622 (2) 0.636 0.006 (+) 0.695 0.701 (1) 0.756 0.075 (+) 1.420 1.494 (1) 1.491

Log-skew-n 0.016 (+) 0.740 0.756 (6) 0.738 0.047 (+) 0.975 1.022 (5) 1.026 1.378 (+) 5.395 6.773 (6) 4.127

Log-normal 0.019 (+) 0.598 0.618 (1) 0.604 0.018 (+) 0.688 0.706 (2) 0.724 0.070 (+) 1.429 1.499 (2) 1.465

AIC-selected 0.028 (+) 0.714 0.742 (5) 0.634 0.008 (+) 1.113 1.121 (6) 0.804 0.127 (+) 5.526 5.653 (4) 2.115

M
(1) 0.024 (+) 0.660 0.684 (3) 0.706 0.003 (+) 0.974 0.976 (3) 1.049 1.043 (-) 2.276 3.320 (3) 8.408

M
(2) 0.024 (+) 0.661 0.685 (4) 0.546 0.002 (+) 0.989 0.992 (4) 0.891 4.134 (-) 2.055 6.189 (5) 14.357

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )
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Table B.23: Simulation study. Sample from log-normal distribution of size 200 - estimate of

25% quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 2.395 (+) 4.740 7.135 (9) 8.514 1.481 (-) 6.128 7.609 (8) 8.561 66.901 (-) 9.935 76.836 (9) 8.735

Weibull 1.330 (-) 4.700 6.029 (8) 6.329 7.386 (-) 5.094 12.481 (9) 6.107 43.916 (-) 6.693 50.608 (8) 6.197

Log-skew-t 0.317 (+) 4.061 4.378 (7) 4.030 0.227 (+) 4.351 4.578 (7) 4.498 0.066 (-) 14.211 14.277 (7) 14.353

Log-t 0.248 (+) 3.926 4.174 (6) 3.892 0.182 (+) 4.336 4.519 (6) 4.331 0.620 (+) 7.630 8.249 (2) 7.596

Log-skew-n 0.102 (+) 3.932 4.034 (5) 3.823 0.049 (+) 4.137 4.186 (2) 4.035 1.096 (+) 8.162 9.258 (3) 8.190

Log-normal 0.045 (+) 3.839 3.884 (1) 3.609 0.038 (+) 4.123 4.161 (1) 4.042 0.167 (+) 7.182 7.349 (1) 7.089

AIC-selected 0.079 (+) 3.881 3.960 (2) 3.667 0.065 (+) 4.273 4.338 (5) 4.147 0.013 (+) 13.645 13.657 (6) 7.064

M
(1) 0.123 (+) 3.891 4.013 (4) 3.835 0.082 (+) 4.234 4.316 (4) 4.267 3.055 (-) 8.994 12.049 (5) 20.083

M
(2) 0.119 (+) 3.887 4.006 (3) 4.406 0.083 (+) 4.227 4.309 (3) 4.741 1.872 (-) 9.328 11.200 (4) 18.546

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.24: Simulation study. Sample from log-normal distribution of size 200 - estimate of

50% quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 238.457 (+) 37.751 276.208 (9) 32.484 140.605 (+) 35.410 176.015 (9) 34.600 0.125 (+) 41.285 41.410 (9) 44.997

Weibull 74.027 (+) 26.384 100.412 (8) 30.913 36.776 (+) 27.089 63.865 (8) 31.163 1.542 (-) 33.120 34.662 (8) 34.673

Log-skew-t 0.049 (+) 20.548 20.597 (7) 19.124 0.342 (+) 21.863 22.205 (7) 20.280 0.429 (+) 24.726 25.156 (5) 24.266

Log-t 0.025 (+) 17.865 17.890 (1) 16.159 0.006 (+) 18.163 18.169 (1) 16.742 0.205 (+) 23.358 23.562 (3) 21.137

Log-skew-n 0.101 (+) 20.127 20.228 (6) 18.898 0.001 (-) 20.961 20.962 (6) 18.336 0.045 (+) 22.656 22.701 (1) 20.743

Log-normal 0.025 (+) 17.896 17.921 (2) 16.130 0.020 (+) 18.161 18.180 (2) 16.645 0.133 (+) 23.372 23.505 (2) 21.804

AIC-selected 0.016 (+) 19.340 19.356 (5) 16.590 0.055 (+) 20.771 20.825 (5) 17.196 0.030 (+) 24.562 24.592 (4) 22.787

M
(1) 0.034 (+) 18.805 18.839 (4) 17.802 0.076 (+) 19.981 20.057 (4) 18.520 0.018 (+) 26.886 26.905 (7) 27.452

M
(2) 0.032 (+) 18.798 18.830 (3) 17.661 0.067 (+) 19.942 20.009 (3) 18.298 0.030 (+) 25.928 25.958 (6) 24.945

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.25: Simulation study. Sample from 75% mixture of size 200 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.902 (-) 0.067 3.969 (9) 0.098 4.668 (-) 0.056 4.724 (9) 0.070 5.631 (-) 0.046 5.678 (8) 0.049

Weibull 3.562 (-) 0.063 3.625 (8) 0.070 3.991 (-) 0.057 4.048 (8) 0.060 4.481 (-) 0.061 4.541 (5) 0.058

Log-skew-t 2.053 (-) 0.145 2.198 (7) 0.258 3.663 (-) 0.188 3.851 (7) 0.300 6.691 (-) 0.053 6.744 (9) 0.647

Log-t 0.198 (+) 0.380 0.577 (1) 0.371 0.205 (+) 0.395 0.600 (1) 0.434 1.294 (+) 0.723 2.017 (1) 0.864

Log-skew-n 1.244 (-) 0.477 1.721 (3) 0.219 1.370 (-) 0.738 2.108 (3) 0.216 0.125 (+) 2.457 2.582 (3) 0.652

Log-normal 0.320 (+) 0.381 0.700 (2) 0.358 0.376 (+) 0.430 0.806 (2) 0.422 1.717 (+) 0.786 2.502 (2) 0.869

AIC-selected 1.568 (-) 0.191 1.759 (4) 0.208 2.858 (-) 0.317 3.175 (4) 0.173 4.331 (-) 0.440 4.771 (7) 0.152

M
(1) 1.639 (-) 0.173 1.812 (5) 0.263 3.017 (-) 0.221 3.238 (5) 0.261 3.671 (-) 0.429 4.100 (4) 0.524

M
(2) 1.686 (-) 0.165 1.851 (6) 0.160 3.167 (-) 0.225 3.392 (6) 0.281 4.514 (-) 0.202 4.716 (6) 0.485

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.26: Simulation study. Sample from 75% mixture of size 200 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 3.600 (-) 1.112 4.712 (9) 1.678 7.488 (-) 1.171 8.659 (9) 1.459 15.086 (-) 1.294 16.380 (8) 1.338

Weibull 2.970 (-) 1.094 4.064 (8) 1.268 4.869 (-) 1.093 5.961 (4) 1.169 7.679 (-) 1.268 8.947 (1) 1.230

Log-skew-t 1.659 (-) 1.057 2.716 (5) 1.753 6.444 (-) 1.587 8.031 (8) 2.164 32.991 (-) 1.692 34.683 (9) 5.003

Log-t 2.115 (+) 1.567 3.682 (7) 1.472 2.170 (+) 1.725 3.896 (1) 1.659 7.452 (+) 2.782 10.234 (4) 3.015

Log-skew-n 0.771 (-) 1.789 2.560 (4) 1.590 1.624 (-) 2.626 4.250 (3) 1.550 1.212 (+) 8.645 9.857 (3) 2.598

Log-normal 2.071 (+) 1.537 3.609 (6) 1.403 2.334 (+) 1.715 4.049 (2) 1.619 8.030 (+) 2.829 10.858 (6) 3.018

AIC-selected 1.131 (-) 1.125 2.256 (1) 1.618 4.840 (-) 1.976 6.816 (7) 1.686 8.448 (-) 2.656 11.104 (7) 2.197

M
(1) 1.196 (-) 1.094 2.290 (3) 1.726 5.033 (-) 1.632 6.665 (5) 1.953 6.919 (-) 2.411 9.330 (2) 3.381

M
(2) 1.193 (-) 1.096 2.289 (2) 1.485 5.048 (-) 1.645 6.694 (6) 2.072 7.866 (-) 2.487 10.352 (5) 4.080

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.27: Simulation study. Sample from 75% mixture of size 200 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 86.340 (+) 12.418 98.758 (9) 21.330 42.294 (+) 15.370 57.665 (8) 22.008 3.522 (+) 22.682 26.204 (1) 26.806

Weibull 69.545 (+) 14.721 84.266 (8) 20.308 43.309 (+) 16.130 59.439 (9) 20.228 18.621 (+) 20.473 39.094 (5) 22.867

Log-skew-t 61.409 (+) 11.610 73.019 (7) 19.501 31.196 (+) 14.904 46.099 (7) 22.255 10.778 (-) 39.200 49.979 (7) 43.621

Log-t 18.758 (+) 10.255 29.013 (2) 10.693 19.105 (+) 11.306 30.412 (2) 11.300 47.492 (+) 15.221 62.713 (9) 16.059

Log-skew-n 54.365 (+) 10.583 64.948 (3) 17.772 25.872 (+) 13.913 39.785 (3) 18.222 25.190 (+) 23.057 48.248 (6) 18.655

Log-normal 14.941 (+) 9.939 24.881 (1) 9.856 16.332 (+) 10.723 27.056 (1) 10.695 45.589 (+) 14.955 60.545 (8) 15.832

AIC-selected 57.715 (+) 11.572 69.286 (4) 18.425 29.422 (+) 14.511 43.933 (4) 21.053 13.463 (+) 22.648 36.112 (3) 24.176

M
(1) 58.106 (+) 11.650 69.755 (6) 18.777 30.093 (+) 14.630 44.723 (6) 21.243 14.630 (+) 20.908 35.539 (2) 26.293

M
(2) 57.899 (+) 11.678 69.576 (5) 16.598 30.021 (+) 14.614 44.634 (5) 19.434 15.271 (+) 20.866 36.137 (4) 23.923

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.28: Simulation study. Sample from 75% mixture of size 200 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 337.472 (+) 49.871 387.343 (5) 71.454 229.612 (+) 52.861 282.473 (5) 75.143 84.256 (+) 62.215 146.471 (6) 89.556

Weibull 228.630 (+) 48.518 277.148 (3) 76.063 162.054 (+) 51.919 213.973 (3) 77.569 88.842 (+) 60.914 149.756 (7) 85.800

Log-skew-t 379.094 (+) 42.533 421.628 (9) 74.132 314.072 (+) 49.939 364.011 (9) 83.938 288.112 (+) 98.337 386.449 (9) 160.351

Log-t 7.907 (-) 36.480 44.387 (1) 51.559 7.600 (-) 38.027 45.627 (1) 52.130 0.088 (+) 43.972 44.059 (2) 57.075

Log-skew-n 301.988 (+) 57.044 359.032 (4) 69.887 164.587 (+) 93.159 257.746 (4) 70.386 7.132 (+) 70.533 77.665 (3) 66.766

Log-normal 12.752 (-) 35.321 48.073 (2) 49.299 11.384 (-) 36.465 47.849 (2) 50.119 0.000 (-) 43.229 43.229 (1) 56.192

AIC-selected 345.975 (+) 47.284 393.259 (8) 70.765 282.511 (+) 51.470 333.981 (8) 78.083 89.381 (+) 63.561 152.942 (8) 93.259

M
(1) 342.877 (+) 47.893 390.770 (7) 74.588 276.552 (+) 50.196 326.748 (7) 81.459 82.760 (+) 60.926 143.687 (5) 95.106

M
(2) 341.727 (+) 48.355 390.082 (6) 73.309 275.657 (+) 50.303 325.960 (6) 84.424 80.948 (+) 60.544 141.492 (4) 93.979

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.29: Simulation study. Sample from 90% mixture of size 200 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.244 (-) 0.027 4.271 (9) 0.036 4.838 (-) 0.019 4.857 (9) 0.021 5.620 (-) 0.007 5.628 (9) 0.007

Weibull 4.153 (-) 0.019 4.172 (8) 0.021 4.484 (-) 0.016 4.500 (8) 0.017 5.031 (-) 0.013 5.044 (8) 0.011

Log-skew-t 0.245 (-) 0.394 0.639 (7) 0.450 1.013 (-) 0.501 1.514 (7) 0.538 4.255 (-) 0.300 4.555 (7) 0.653

Log-t 0.004 (+) 0.220 0.224 (1) 0.235 0.001 (+) 0.238 0.239 (1) 0.279 0.069 (+) 0.443 0.511 (1) 0.532

Log-skew-n 0.142 (-) 0.417 0.559 (6) 0.405 0.231 (-) 0.618 0.849 (3) 0.350 0.141 (+) 0.938 1.078 (4) 0.593

Log-normal 0.028 (+) 0.222 0.250 (2) 0.225 0.025 (+) 0.254 0.279 (2) 0.265 0.153 (+) 0.494 0.647 (2) 0.532

AIC-selected 0.045 (-) 0.504 0.550 (5) 0.253 0.377 (-) 0.985 1.362 (5) 0.241 0.009 (-) 1.415 1.424 (5) 0.448

M
(1) 0.059 (-) 0.395 0.454 (3) 0.381 0.460 (-) 0.715 1.175 (4) 0.511 0.181 (-) 0.687 0.867 (3) 1.395

M
(2) 0.079 (-) 0.420 0.499 (4) 0.145 0.692 (-) 0.774 1.467 (6) 0.382 1.482 (-) 0.664 2.146 (6) 2.044

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.30: Simulation study. Sample from 90% mixture of size 200 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 8.224 (-) 0.550 8.774 (8) 0.798 13.041 (-) 0.537 13.578 (9) 0.627 23.141 (-) 0.399 23.540 (9) 0.367

Weibull 8.756 (-) 0.426 9.182 (9) 0.500 11.309 (-) 0.411 11.720 (8) 0.438 16.641 (-) 0.411 17.052 (7) 0.376

Log-skew-t 0.036 (-) 1.176 1.212 (6) 1.338 1.304 (-) 1.848 3.152 (6) 1.841 15.621 (-) 2.501 18.122 (8) 4.058

Log-t 0.243 (+) 0.870 1.113 (1) 0.880 0.184 (+) 0.981 1.165 (1) 1.008 0.717 (+) 1.767 2.485 (1) 1.884

Log-skew-n 0.013 (-) 1.174 1.187 (5) 1.238 0.202 (-) 1.824 2.025 (3) 1.341 0.747 (+) 2.174 2.920 (3) 1.961

Log-normal 0.256 (+) 0.871 1.127 (2) 0.853 0.237 (+) 0.984 1.221 (2) 0.995 0.843 (+) 1.823 2.667 (2) 1.893

AIC-selected 0.002 (+) 1.291 1.293 (7) 1.021 0.499 (-) 2.863 3.362 (7) 1.077 0.002 (+) 5.612 5.614 (6) 1.635

M
(1) 0.001 (+) 1.158 1.159 (3) 1.198 0.640 (-) 2.286 2.926 (4) 1.753 0.366 (-) 2.854 3.220 (4) 5.135

M
(2) 0.001 (+) 1.161 1.162 (4) 0.942 0.691 (-) 2.331 3.022 (5) 1.738 1.033 (-) 3.181 4.214 (5) 6.439

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.31: Simulation study. Sample from 90% mixture of size 200 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 22.948 (+) 7.368 30.316 (9) 13.175 3.500 (+) 9.253 12.753 (8) 13.362 21.217 (-) 14.727 35.944 (9) 14.983

Weibull 6.550 (+) 7.798 14.348 (5) 10.965 0.668 (+) 8.525 9.192 (1) 10.710 7.650 (-) 11.270 18.920 (6) 11.490

Log-skew-t 9.368 (+) 7.376 16.744 (8) 7.922 5.229 (+) 7.579 12.807 (9) 9.117 13.380 (-) 22.380 35.760 (8) 22.888

Log-t 4.628 (+) 5.908 10.535 (2) 6.030 4.089 (+) 6.494 10.583 (3) 6.499 8.191 (+) 10.320 18.511 (5) 10.164

Log-skew-n 8.434 (+) 7.233 15.667 (7) 7.671 4.465 (+) 7.382 11.847 (7) 7.979 7.293 (+) 9.862 17.155 (3) 10.242

Log-normal 3.680 (+) 5.859 9.538 (1) 5.731 3.518 (+) 6.339 9.858 (2) 6.309 7.666 (+) 10.260 17.926 (4) 10.111

AIC-selected 6.958 (+) 7.396 14.354 (6) 6.989 4.199 (+) 7.527 11.726 (6) 8.257 3.309 (+) 17.487 20.796 (7) 10.317

M
(1) 6.981 (+) 7.052 14.033 (4) 7.338 4.151 (+) 7.294 11.445 (5) 8.454 1.120 (+) 13.329 14.449 (1) 16.262

M
(2) 6.834 (+) 7.002 13.836 (3) 7.432 4.150 (+) 7.255 11.405 (4) 8.553 1.608 (+) 13.314 14.922 (2) 15.774

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.32: Simulation study. Sample from 90% mixture of size 200 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 461.396 (+) 42.435 503.831 (9) 48.641 317.499 (+) 42.552 360.051 (9) 51.504 65.367 (+) 53.064 118.430 (8) 64.634

Weibull 241.069 (+) 35.614 276.683 (8) 48.993 165.634 (+) 37.507 203.141 (8) 49.682 45.927 (+) 46.953 92.880 (7) 55.569

Log-skew-t 56.431 (+) 61.179 117.610 (7) 50.095 89.607 (+) 61.851 151.458 (7) 53.894 69.104 (+) 52.896 122.000 (9) 67.417

Log-t 9.378 (+) 24.873 34.251 (2) 28.325 8.718 (+) 25.656 34.374 (2) 28.989 16.380 (+) 33.141 49.521 (2) 34.658

Log-skew-n 52.986 (+) 58.886 111.872 (6) 47.933 49.657 (+) 65.026 114.683 (4) 43.453 16.384 (+) 35.253 51.637 (3) 35.045

Log-normal 8.084 (+) 24.554 32.638 (1) 27.790 7.870 (+) 25.256 33.126 (1) 28.546 15.697 (+) 32.997 48.694 (1) 34.640

AIC-selected 40.109 (+) 63.122 103.230 (5) 40.271 56.937 (+) 66.031 122.968 (6) 40.379 19.864 (+) 34.973 54.837 (4) 38.313

M
(1) 38.250 (+) 54.423 92.673 (4) 44.876 59.253 (+) 57.290 116.542 (5) 48.256 24.434 (+) 37.190 61.624 (6) 43.369

M
(2) 37.595 (+) 53.812 91.407 (3) 42.005 57.226 (+) 56.709 113.936 (3) 46.399 23.299 (+) 36.622 59.921 (5) 43.966

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.33: Simulation study. Sample from 95% mixture of size 200 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.197 (-) 0.022 4.219 (9) 0.028 4.746 (-) 0.014 4.761 (9) 0.016 5.456 (-) 0.004 5.460 (9) 0.004

Weibull 4.166 (-) 0.014 4.181 (8) 0.015 4.466 (-) 0.011 4.477 (8) 0.011 4.989 (-) 0.008 4.997 (8) 0.007

Log-skew-t 0.053 (-) 0.332 0.385 (7) 0.435 0.348 (-) 0.529 0.878 (7) 0.667 2.181 (-) 2.020 4.201 (7) 4.133

Log-t 0.000 (+) 0.193 0.193 (1) 0.214 0.000 (-) 0.204 0.205 (1) 0.265 0.015 (+) 0.377 0.392 (1) 0.495

Log-skew-n 0.019 (-) 0.321 0.341 (6) 0.357 0.024 (-) 0.478 0.503 (3) 0.387 0.257 (+) 3.415 3.672 (6) 0.990

Log-normal 0.014 (+) 0.191 0.205 (2) 0.199 0.011 (+) 0.216 0.227 (2) 0.237 0.062 (+) 0.427 0.489 (2) 0.477

AIC-selected 0.000 (-) 0.313 0.313 (5) 0.216 0.033 (-) 0.652 0.685 (5) 0.239 0.033 (+) 1.521 1.554 (4) 0.503

M
(1) 0.002 (-) 0.264 0.266 (3) 0.306 0.068 (-) 0.516 0.584 (4) 0.439 0.132 (-) 0.796 0.928 (3) 1.802

M
(2) 0.004 (-) 0.272 0.276 (4) 0.078 0.128 (-) 0.609 0.737 (6) 0.248 1.789 (-) 0.505 2.294 (5) 2.226

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.34: Simulation study. Sample from 95% mixture of size 200 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 9.085 (-) 0.458 9.543 (8) 0.643 13.876 (-) 0.428 14.303 (9) 0.490 23.938 (-) 0.261 24.199 (9) 0.243

Weibull 10.012 (-) 0.325 10.337 (9) 0.376 12.534 (-) 0.305 12.838 (8) 0.324 18.133 (-) 0.281 18.413 (8) 0.259

Log-skew-t 0.004 (+) 0.896 0.900 (6) 1.083 0.277 (-) 1.502 1.780 (6) 1.700 6.818 (-) 5.159 11.977 (7) 13.135

Log-t 0.111 (+) 0.729 0.839 (1) 0.760 0.071 (+) 0.810 0.881 (1) 0.879 0.277 (+) 1.497 1.774 (1) 1.672

Log-skew-n 0.007 (+) 0.871 0.878 (5) 0.971 0.002 (-) 1.242 1.244 (3) 1.158 0.633 (+) 3.889 4.522 (6) 2.167

Log-normal 0.117 (+) 0.728 0.845 (2) 0.737 0.101 (+) 0.812 0.913 (2) 0.866 0.333 (+) 1.549 1.882 (2) 1.675

AIC-selected 0.044 (+) 0.873 0.917 (7) 0.796 0.014 (-) 1.835 1.849 (7) 0.913 0.192 (+) 3.166 3.358 (4) 1.669

M
(1) 0.033 (+) 0.819 0.853 (3) 0.907 0.044 (-) 1.563 1.607 (4) 1.347 0.392 (-) 2.001 2.393 (3) 5.820

M
(2) 0.034 (+) 0.821 0.855 (4) 0.680 0.053 (-) 1.613 1.665 (5) 1.216 1.382 (-) 2.234 3.616 (5) 9.318

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )
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Table B.35: Simulation study. Sample from 95% mixture of size 200 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 12.684 (+) 6.016 18.700 (9) 11.104 0.466 (+) 7.604 8.070 (8) 11.211 37.285 (-) 12.068 49.353 (9) 12.106

Weibull 1.215 (+) 6.192 7.407 (3) 8.833 0.337 (-) 6.722 7.060 (2) 8.580 19.150 (-) 8.810 27.960 (8) 8.999

Log-skew-t 3.739 (+) 5.417 9.156 (8) 5.741 2.442 (+) 5.695 8.136 (9) 6.452 4.195 (-) 20.186 24.382 (7) 21.609

Log-t 2.460 (+) 4.848 7.309 (2) 5.013 2.096 (+) 5.266 7.362 (6) 5.455 3.828 (+) 8.633 12.461 (5) 8.901

Log-skew-n 3.222 (+) 5.361 8.583 (7) 5.574 1.962 (+) 5.500 7.461 (7) 5.828 3.645 (+) 8.724 12.369 (4) 8.940

Log-normal 1.850 (+) 4.824 6.674 (1) 4.769 1.716 (+) 5.158 6.874 (1) 5.280 3.334 (+) 8.583 11.917 (3) 8.741

AIC-selected 2.510 (+) 5.249 7.759 (4) 5.086 1.795 (+) 5.494 7.289 (3) 5.847 2.659 (+) 11.366 14.025 (6) 8.731

M
(1) 2.707 (+) 5.137 7.844 (6) 5.342 1.829 (+) 5.499 7.328 (5) 6.025 0.056 (+) 10.162 10.218 (1) 16.865

M
(2) 2.669 (+) 5.116 7.785 (5) 5.765 1.838 (+) 5.475 7.314 (4) 6.373 0.237 (+) 10.140 10.378 (2) 15.806

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.36: Simulation study. Sample from 95% mixture of size 200 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 403.707 (+) 39.630 443.337 (9) 41.791 269.586 (+) 38.803 308.389 (9) 44.352 33.522 (+) 46.989 80.510 (9) 56.502

Weibull 186.451 (+) 30.987 217.438 (8) 41.174 121.323 (+) 32.331 153.654 (8) 41.658 18.408 (+) 40.122 58.530 (7) 46.564

Log-skew-t 18.787 (+) 30.724 49.511 (7) 31.648 27.736 (+) 35.514 63.250 (7) 34.759 25.588 (+) 38.128 63.716 (8) 47.647

Log-t 8.219 (+) 21.264 29.484 (2) 22.817 7.610 (+) 21.753 29.363 (2) 23.427 11.665 (+) 28.220 39.885 (2) 28.816

Log-skew-n 18.902 (+) 30.309 49.211 (6) 30.334 16.267 (+) 35.398 51.665 (6) 28.828 10.870 (+) 29.350 40.220 (4) 28.862

Log-normal 7.553 (+) 21.142 28.695 (1) 22.537 7.291 (+) 21.575 28.866 (1) 23.188 11.279 (+) 28.254 39.533 (1) 28.982

AIC-selected 13.176 (+) 28.735 41.911 (5) 25.308 16.888 (+) 32.245 49.133 (3) 26.672 11.371 (+) 28.730 40.101 (3) 29.628

M
(1) 13.857 (+) 27.008 40.865 (4) 28.085 18.673 (+) 31.563 50.236 (5) 30.546 14.203 (+) 31.606 45.809 (6) 34.909

M
(2) 13.739 (+) 26.894 40.633 (3) 27.654 18.169 (+) 31.346 49.515 (4) 30.041 13.685 (+) 31.038 44.723 (5) 34.206

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.37: Simulation study. Sample from gamma distribution of size 200 - estimate of 1%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000

Weibull 0.000 (+) 0.000 0.000 (7) 0.000 0.000 (+) 0.000 0.000 (6) 0.000 0.000 (+) 0.000 0.000 (2) 0.000

Log-skew-t 0.000 (+) 0.000 0.000 (3) 0.000 0.000 (+) 0.000 0.000 (4) 0.000 0.000 (+) 0.000 0.000 (3) 0.001

Log-t 0.000 (+) 0.000 0.000 (8) 0.000 0.005 (+) 0.001 0.006 (8) 0.001 0.100 (+) 0.022 0.123 (6) 0.029

Log-skew-n 0.000 (+) 0.000 0.000 (6) 0.000 0.002 (+) 0.001 0.003 (7) 0.001 0.116 (+) 0.055 0.170 (9) 0.223

Log-normal 0.000 (+) 0.000 0.000 (9) 0.000 0.005 (+) 0.001 0.007 (9) 0.001 0.111 (+) 0.024 0.135 (8) 0.030

AIC-selected 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.000 0.000 (3) 0.000 0.097 (+) 0.029 0.126 (7) 0.028

M
(1) 0.000 (+) 0.000 0.000 (4) 0.000 0.000 (+) 0.000 0.000 (5) 0.000 0.077 (+) 0.023 0.100 (5) 0.057

M
(2) 0.000 (+) 0.000 0.000 (2) 0.000 0.000 (+) 0.000 0.000 (2) 0.000 0.020 (+) 0.013 0.033 (4) 0.201

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.38: Simulation study. Sample from gamma distribution of size 200 - estimate of 5%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000

Weibull 0.000 (+) 0.000 0.000 (8) 0.000 0.002 (+) 0.001 0.003 (6) 0.001 0.012 (+) 0.006 0.018 (3) 0.006

Log-skew-t 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.000 0.001 (5) 0.001 0.001 (+) 0.005 0.006 (2) 0.026

Log-t 0.001 (+) 0.001 0.002 (9) 0.001 0.117 (+) 0.017 0.133 (8) 0.018 1.335 (+) 0.191 1.526 (7) 0.224

Log-skew-n 0.000 (+) 0.000 0.000 (6) 0.000 0.040 (+) 0.025 0.065 (7) 0.009 1.366 (+) 0.241 1.608 (9) 0.322

Log-normal 0.000 (+) 0.000 0.000 (7) 0.000 0.122 (+) 0.017 0.139 (9) 0.019 1.345 (+) 0.196 1.541 (8) 0.225

AIC-selected 0.000 (+) 0.000 0.000 (3) 0.000 0.000 (+) 0.000 0.000 (3) 0.000 1.205 (+) 0.256 1.461 (6) 0.213

M
(1) 0.000 (+) 0.000 0.000 (4) 0.000015 0.000 (+) 0.000 0.000 (4) 0.0005 0.977 (+) 0.189 1.166 (5) 0.322

M
(2) 0.000 (+) 0.000 0.000 (2) 0.000070 0.000 (+) 0.000 0.000 (2) 0.0008 0.720 (+) 0.182 0.903 (4) 0.951

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.39: Simulation study. Sample from gamma distribution of size 200 - estimate of 25%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.018 (+) 0.220 0.238 (5) 0.224 0.026 (+) 0.405 0.430 (1) 0.436 0.083 (+) 0.878 0.961 (1) 0.851

Weibull 0.023 (+) 0.222 0.246 (6) 0.158 1.935 (+) 0.699 2.635 (6) 0.665 7.080 (+) 1.880 8.960 (3) 1.804

Log-skew-t 0.003 (+) 0.218 0.222 (3) 0.227 0.111 (+) 0.481 0.592 (3) 0.755 0.485 (+) 1.573 2.058 (2) 3.303

Log-t 1.116 (+) 1.080 2.195 (9) 0.623 5.088 (+) 0.774 5.862 (9) 0.693 36.221 (+) 3.421 39.642 (9) 3.439

Log-skew-n 0.225 (-) 0.085 0.311 (7) 0.048 2.223 (+) 0.782 3.005 (7) 0.621 35.282 (+) 3.494 38.776 (8) 3.396

Log-normal 0.385 (-) 0.050 0.435 (8) 0.021 4.979 (+) 0.762 5.741 (8) 0.683 35.185 (+) 3.450 38.635 (7) 3.393

AIC-selected 0.011 (+) 0.219 0.231 (4) 0.215 0.060 (+) 0.526 0.586 (2) 0.447 33.050 (+) 4.134 37.183 (6) 3.305

M
(1) 0.008 (+) 0.211 0.219 (2) 0.225 0.108 (+) 0.503 0.611 (4) 0.572 29.062 (+) 3.602 32.665 (4) 4.339

M
(2) 0.007 (+) 0.210 0.216 (1) 0.240 0.105 (+) 0.510 0.615 (5) 0.492 29.304 (+) 3.668 32.973 (5) 3.632

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.40: Simulation study. Sample from gamma distribution of size 200 - estimate of 50%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.460 (+) 14.364 14.824 (1) 14.679 0.340 (+) 21.878 22.217 (8) 22.523 0.921 (+) 36.391 37.312 (1) 34.137

Weibull 23.371 (-) 9.712 33.084 (7) 8.176 0.349 (+) 16.807 17.156 (3) 15.262 27.695 (+) 29.618 57.313 (3) 26.629

Log-skew-t 0.677 (-) 17.949 18.625 (5) 18.501 0.043 (+) 22.232 22.275 (9) 23.880 0.503 (+) 37.995 38.498 (2) 37.540

Log-t 4.496 (-) 26.188 30.684 (6) 17.304 2.718 (-) 10.274 12.991 (1) 9.042 52.480 (+) 23.297 75.778 (9) 20.631

Log-skew-n 48.475 (-) 9.881 58.356 (8) 5.972 0.854 (-) 17.411 18.265 (4) 13.886 50.218 (+) 23.635 73.853 (7) 20.637

Log-normal 125.454 (-) 3.288 128.742 (9) 3.307 3.044 (-) 10.116 13.160 (2) 8.920 50.189 (+) 23.639 73.828 (6) 20.648

AIC-selected 0.077 (+) 16.120 16.197 (4) 14.612 0.217 (+) 21.439 21.656 (7) 22.148 49.332 (+) 24.577 73.910 (8) 21.095

M
(1) 0.000 (-) 15.405 15.405 (2) 16.662 0.146 (+) 20.720 20.866 (6) 21.958 46.155 (+) 25.217 71.372 (4) 22.346

M
(2) 0.004 (-) 15.494 15.498 (3) 14.864 0.139 (+) 20.581 20.720 (5) 16.685 46.852 (+) 25.059 71.911 (5) 14.750

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.41: Simulation study. Sample from log-normal distribution of size 500 - estimate of 1%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.236 (-) 0.007 4.244 (8) 0.007 4.735 (-) 0.004 4.739 (9) 0.004 5.348 (-) 0.000 5.349 (9) 0.000

Weibull 4.274 (-) 0.004 4.278 (9) 0.003 4.528 (-) 0.003 4.531 (8) 0.002 5.018 (-) 0.001 5.019 (8) 0.001

Log-skew-t 0.005 (-) 0.107 0.111 (7) 0.150 0.068 (-) 0.233 0.301 (7) 0.333 0.417 (-) 1.339 1.757 (6) 2.179

Log-t 0.002 (-) 0.063 0.066 (1) 0.081 0.008 (-) 0.081 0.089 (2) 0.130 0.001 (-) 0.150 0.151 (1) 0.196

Log-skew-n 0.000 (+) 0.106 0.106 (6) 0.110 0.016 (+) 0.166 0.182 (6) 0.163 0.216 (+) 0.886 1.102 (5) 0.978

Log-normal 0.002 (+) 0.065 0.067 (2) 0.067 0.003 (+) 0.079 0.081 (1) 0.082 0.005 (+) 0.154 0.158 (2) 0.167

AIC-selected 0.001 (+) 0.089 0.089 (5) 0.077 0.001 (+) 0.169 0.170 (5) 0.104 0.008 (+) 0.881 0.889 (4) 0.442

M
(1) 0.000 (+) 0.078 0.078 (3) 0.101 0.000 (-) 0.126 0.126 (3) 0.173 0.459 (-) 0.373 0.832 (3) 1.691

M
(2) 0.000 (+) 0.078 0.078 (4) 0.018 0.000 (-) 0.129 0.129 (4) 0.055 3.865 (-) 0.060 3.925 (7) 0.946

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.42: Simulation study. Sample from log-normal distribution of size 500 - estimate of 5%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 10.658 (-) 0.162 10.820 (8) 0.186 15.476 (-) 0.146 15.622 (9) 0.134 25.716 (-) 0.054 25.770 (9) 0.041

Weibull 12.229 (-) 0.097 12.327 (9) 0.094 14.661 (-) 0.089 14.750 (8) 0.080 20.655 (-) 0.066 20.721 (8) 0.053

Log-skew-t 0.006 (+) 0.279 0.285 (7) 0.322 0.021 (-) 0.506 0.528 (7) 0.593 0.747 (-) 3.084 3.831 (6) 4.405

Log-t 0.008 (+) 0.235 0.243 (2) 0.247 0.002 (+) 0.279 0.281 (1) 0.294 0.013 (+) 0.528 0.541 (2) 0.577

Log-skew-n 0.002 (+) 0.269 0.271 (6) 0.279 0.028 (+) 0.394 0.422 (6) 0.393 0.384 (+) 1.562 1.946 (3) 1.760

Log-normal 0.006 (+) 0.233 0.239 (1) 0.237 0.006 (+) 0.280 0.286 (2) 0.285 0.011 (+) 0.528 0.539 (1) 0.571

AIC-selected 0.006 (+) 0.253 0.260 (5) 0.248 0.006 (+) 0.386 0.392 (5) 0.314 0.003 (+) 2.238 2.241 (4) 0.848

M
(1) 0.005 (+) 0.246 0.25176 (4) 0.270 0.003 (+) 0.343 0.3461 (3) 0.389 1.992 (-) 0.925 2.918 (5) 5.674

M
(2) 0.005 (+) 0.246 0.25175 (3) 0.215 0.004 (+) 0.343 0.3463 (4) 0.322 5.602 (-) 0.880 6.482 (7) 10.926

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.43: Simulation study. Sample from log-normal distribution of size 500 - estimate of

25% quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 2.029 (+) 1.790 3.819 (9) 3.382 1.810 (-) 2.465 4.275 (8) 3.408 74.277 (-) 3.792 78.068 (9) 3.418

Weibull 1.810 (-) 1.808 3.618 (8) 2.490 8.429 (-) 2.012 10.441 (9) 2.401 48.641 (-) 2.479 51.120 (8) 2.401

Log-skew-t 0.139 (+) 1.570 1.709 (7) 1.580 0.106 (+) 1.724 1.830 (7) 1.734 0.239 (-) 5.244 5.483 (4) 5.788

Log-t 0.101 (+) 1.549 1.650 (6) 1.523 0.070 (+) 1.711 1.781 (6) 1.697 0.135 (+) 2.747 2.882 (2) 3.003

Log-skew-n 0.036 (+) 1.523 1.559 (4) 1.507 0.015 (+) 1.635 1.650 (1) 1.582 0.340 (+) 3.246 3.587 (3) 3.514

Log-normal 0.011 (+) 1.456 1.467 (1) 1.430 0.011 (+) 1.641 1.652 (2) 1.603 0.019 (+) 2.657 2.675 (1) 2.822

AIC-selected 0.028 (+) 1.536 1.564 (5) 1.456 0.021 (+) 1.663 1.685 (3) 1.617 0.004 (-) 5.922 5.926 (5) 2.883

M
(1) 0.045 (+) 1.503 1.548 (3) 1.512 0.032 (+) 1.665 1.696 (5) 1.650 5.024 (-) 3.641 8.665 (7) 14.903

M
(2) 0.044 (+) 1.502 1.546 (2) 1.747 0.031 (+) 1.664 1.695 (4) 1.850 3.533 (-) 3.784 7.317 (6) 13.160

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )
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Table B.44: Simulation study. Sample from log-normal distribution of size 500 - estimate of

50% quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 234.162 (+) 14.322 248.483 (9) 12.814 137.839 (+) 13.541 151.380 (9) 13.671 0.014 (-) 15.010 15.024 (9) 17.999

Weibull 70.325 (+) 9.534 79.859 (8) 12.270 34.254 (+) 10.022 44.275 (8) 12.371 3.026 (-) 11.981 15.007 (8) 13.779

Log-skew-t 0.006 (+) 7.620 7.625 (7) 7.510 0.111 (+) 7.968 8.079 (7) 7.889 0.108 (+) 8.849 8.957 (5) 9.443

Log-t 0.000 (+) 6.632 6.632 (2) 6.400 0.002 (-) 6.871 6.874 (2) 6.592 0.010 (+) 8.359 8.369 (2) 8.529

Log-skew-n 0.046 (+) 7.535 7.581 (6) 7.266 0.039 (-) 7.452 7.491 (6) 7.177 0.001 (-) 8.204 8.205 (1) 8.437

Log-normal 0.000 (+) 6.591 6.591 (1) 6.399 0.000 (+) 6.863 6.863 (1) 6.601 0.001 (+) 8.482 8.483 (3) 8.692

AIC-selected 0.003 (+) 7.114 7.117 (5) 6.577 0.000 (+) 7.433 7.433 (5) 6.744 0.003 (-) 8.739 8.743 (4) 8.902

M
(1) 0.007 (+) 6.916 6.9235 (4) 6.948 0.000 (+) 7.243 7.243 (4) 7.138 0.029 (-) 9.845 9.874 (7) 11.245

M
(2) 0.007 (+) 6.916 6.9227 (3) 6.911 0.000 (+) 7.242 7.242 (3) 7.077 0.016 (-) 9.514 9.530 (6) 10.195

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.45: Simulation study. Sample from 75% mixture of size 500 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.197 (-) 0.020 4.217 (9) 0.031 4.962 (-) 0.017 4.978 (9) 0.021 6.012 (-) 0.009 6.021 (8) 0.011

Weibull 3.881 (-) 0.019 3.899 (8) 0.022 4.305 (-) 0.017 4.322 (8) 0.019 4.883 (-) 0.015 4.898 (4) 0.016

Log-skew-t 2.091 (-) 0.048 2.139 (7) 0.087 3.693 (-) 0.095 3.788 (7) 0.144 7.127 (-) 0.005 7.132 (9) 0.073

Log-t 0.141 (+) 0.131 0.272 (1) 0.133 0.160 (+) 0.146 0.305 (1) 0.157 0.907 (+) 0.226 1.133 (1) 0.315

Log-skew-n 1.714 (-) 0.044 1.758 (3) 0.072 2.421 (-) 0.044 2.465 (3) 0.061 0.052 (+) 1.880 1.932 (3) 0.243

Log-normal 0.182 (+) 0.132 0.314 (2) 0.131 0.222 (+) 0.147 0.369 (2) 0.155 1.110 (+) 0.232 1.342 (2) 0.317

AIC-selected 1.786 (-) 0.056 1.842 (4) 0.074 3.082 (-) 0.147 3.229 (4) 0.072 4.917 (-) 0.017 4.934 (5) 0.017

M
(1) 1.840 (-) 0.049 1.889 (5) 0.082 3.140 (-) 0.102 3.242 (5) 0.110 4.910 (-) 0.024 4.935 (6) 0.030

M
(2) 1.846 (-) 0.049 1.895 (6) 0.051 3.199 (-) 0.108 3.307 (6) 0.131 5.015 (-) 0.020 5.035 (7) 0.061

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.46: Simulation study. Sample from 75% mixture of size 500 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.825 (-) 0.364 5.190 (9) 0.604 9.164 (-) 0.389 9.553 (9) 0.515 18.338 (-) 0.341 18.679 (8) 0.426

Weibull 4.295 (-) 0.349 4.645 (8) 0.441 6.469 (-) 0.349 6.818 (7) 0.404 10.197 (-) 0.357 10.554 (4) 0.406

Log-skew-t 2.089 (-) 0.356 2.445 (7) 0.629 6.848 (-) 0.644 7.491 (8) 0.869 38.585 (-) 0.356 38.942 (9) 0.760

Log-t 1.294 (+) 0.543 1.837 (2) 0.531 1.424 (+) 0.596 2.019 (1) 0.610 5.116 (+) 0.869 5.985 (1) 1.125

Log-skew-n 1.612 (-) 0.355 1.967 (3) 0.591 3.975 (-) 0.404 4.378 (3) 0.561 0.639 (+) 6.551 7.190 (3) 0.973

Log-normal 1.289 (+) 0.538 1.827 (1) 0.521 1.487 (+) 0.592 2.079 (2) 0.604 5.410 (+) 0.870 6.280 (2) 1.127

AIC-selected 1.713 (-) 0.379 2.092 (4) 0.600 5.600 (-) 0.804 6.404 (6) 0.654 10.436 (-) 0.417 10.853 (5) 0.435

M
(1) 1.777 (-) 0.362 2.139 (6) 0.616 5.679 (-) 0.664 6.343 (4) 0.765 10.573 (-) 0.403 10.976 (6) 0.556

M
(2) 1.777 (-) 0.362 2.138 (5) 0.564 5.681 (-) 0.666 6.347 (5) 0.843 10.767 (-) 0.424 11.192 (7) 0.822

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)
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Table B.47: Simulation study. Sample from 75% mixture of size 500 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 65.491 (+) 4.271 69.762 (9) 8.109 28.138 (+) 5.430 33.568 (9) 8.366 0.038 (+) 7.239 7.277 (1) 10.172

Weibull 47.649 (+) 4.902 52.551 (8) 7.599 26.569 (+) 5.441 32.009 (8) 7.558 6.379 (+) 6.459 12.837 (5) 8.491

Log-skew-t 45.357 (+) 4.056 49.413 (7) 7.234 19.893 (+) 5.332 25.224 (7) 8.204 22.294 (-) 12.769 35.064 (8) 16.368

Log-t 9.612 (+) 3.556 13.168 (2) 3.835 10.465 (+) 3.798 14.263 (2) 4.130 30.345 (+) 4.964 35.310 (9) 6.088

Log-skew-n 43.083 (+) 3.971 47.053 (3) 6.918 18.167 (+) 5.078 23.245 (3) 7.410 14.762 (+) 11.082 25.844 (6) 7.020

Log-normal 8.547 (+) 3.492 12.039 (1) 3.713 9.591 (+) 3.750 13.342 (1) 4.040 29.561 (+) 4.900 34.460 (7) 6.042

AIC-selected 43.607 (+) 3.982 47.589 (4) 6.987 19.111 (+) 5.214 24.325 (4) 7.883 5.902 (+) 6.853 12.755 (4) 8.562

M
(1) 43.920 (+) 4.005 47.925 (6) 7.046 19.184 (+) 5.227 24.410 (6) 7.916 5.608 (+) 6.595 12.203 (2) 9.165

M
(2) 43.908 (+) 4.006 47.913 (5) 6.373 19.169 (+) 5.225 24.394 (5) 7.429 5.676 (+) 6.587 12.263 (3) 8.548

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.48: Simulation study. Sample from 75% mixture of size 500 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 254.572 (+) 18.507 273.079 (4) 27.422 162.215 (+) 19.719 181.934 (4) 28.866 37.768 (+) 22.246 60.014 (8) 34.771

Weibull 152.996 (+) 17.061 170.058 (3) 29.209 99.405 (+) 18.427 117.832 (3) 29.782 37.509 (+) 20.854 58.363 (4) 33.082

Log-skew-t 284.443 (+) 14.499 298.941 (9) 28.373 223.546 (+) 17.547 241.093 (9) 31.967 161.240 (+) 32.920 194.160 (9) 57.675

Log-t 29.097 (-) 12.855 41.952 (1) 19.001 27.290 (-) 13.204 40.493 (1) 19.300 5.592 (-) 15.394 20.986 (1) 21.695

Log-skew-n 261.469 (+) 14.872 276.341 (5) 27.604 175.866 (+) 16.619 192.486 (5) 28.492 0.039 (-) 34.495 34.535 (3) 25.372

Log-normal 32.226 (-) 12.593 44.819 (2) 18.673 30.029 (-) 13.082 43.111 (2) 18.996 6.392 (-) 15.186 21.578 (2) 21.507

AIC-selected 267.842 (+) 14.453 282.295 (6) 27.750 205.616 (+) 17.825 223.441 (6) 30.095 37.938 (+) 20.977 58.915 (5) 33.360

M
(1) 270.499 (+) 14.522 285.020 (8) 28.126 206.195 (+) 17.308 223.502 (8) 30.963 38.364 (+) 20.884 59.248 (7) 33.821

M
(2) 270.453 (+) 14.531 284.983 (7) 26.984 206.132 (+) 17.309 223.441 (7) 32.099 38.212 (+) 20.835 59.046 (6) 34.478

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.49: Simulation study. Sample from 90% mixture of size 500 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.416 (-) 0.008 4.424 (9) 0.011 4.996 (-) 0.005 5.001 (9) 0.006 5.765 (-) 0.001 5.766 (9) 0.001

Weibull 4.325 (-) 0.006 4.331 (8) 0.007 4.644 (-) 0.005 4.649 (8) 0.005 5.211 (-) 0.003 5.214 (8) 0.003

Log-skew-t 0.189 (-) 0.137 0.326 (7) 0.176 0.802 (-) 0.227 1.029 (7) 0.220 4.346 (-) 0.140 4.486 (7) 0.254

Log-t 0.001 (+) 0.074 0.075 (1) 0.086 0.000 (+) 0.088 0.088 (1) 0.102 0.020 (+) 0.159 0.178 (1) 0.195

Log-skew-n 0.130 (-) 0.145 0.275 (6) 0.165 0.086 (-) 0.436 0.523 (3) 0.112 0.051 (+) 0.155 0.206 (3) 0.197

Log-normal 0.007 (+) 0.077 0.084 (2) 0.084 0.006 (+) 0.090 0.096 (2) 0.099 0.050 (+) 0.155 0.205 (2) 0.196

AIC-selected 0.056 (-) 0.203 0.260 (5) 0.116 0.191 (-) 0.488 0.680 (6) 0.116 0.269 (-) 1.391 1.661 (5) 0.141

M
(1) 0.051 (-) 0.154 0.205 (3) 0.157 0.214 (-) 0.390 0.604 (4) 0.222 0.568 (-) 0.490 1.058 (4) 0.995

M
(2) 0.056 (-) 0.156 0.212 (4) 0.050 0.264 (-) 0.411 0.675 (5) 0.150 2.269 (-) 0.450 2.719 (6) 1.326

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.50: Simulation study. Sample from 90% mixture of size 500 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 9.324 (-) 0.187 9.511 (8) 0.287 14.342 (-) 0.182 14.524 (9) 0.219 25.269 (-) 0.101 25.370 (9) 0.103

Weibull 10.003 (-) 0.142 10.145 (9) 0.173 12.627 (-) 0.135 12.763 (8) 0.150 18.528 (-) 0.117 18.645 (8) 0.120

Log-skew-t 0.032 (-) 0.396 0.428 (6) 0.488 0.939 (-) 0.807 1.746 (7) 0.731 15.592 (-) 1.345 16.937 (7) 1.772

Log-t 0.093 (+) 0.305 0.398 (1) 0.324 0.072 (+) 0.354 0.426 (1) 0.377 0.281 (+) 0.604 0.885 (1) 0.708

Log-skew-n 0.021 (-) 0.398 0.418 (5) 0.463 0.055 (-) 1.135 1.190 (3) 0.452 0.336 (+) 0.587 0.923 (3) 0.714

Log-normal 0.096 (+) 0.305 0.401 (2) 0.319 0.090 (+) 0.353 0.443 (2) 0.375 0.335 (+) 0.586 0.922 (2) 0.711

AIC-selected 0.001 (-) 0.457 0.458 (7) 0.405 0.185 (-) 1.230 1.415 (6) 0.487 0.700 (-) 5.550 6.250 (6) 0.539

M
(1) 0.000 (-) 0.409 0.409 (4) 0.443 0.211 (-) 1.104 1.315 (4) 0.690 1.675 (-) 2.049 3.724 (4) 3.886

M
(2) 0.000 (-) 0.409 0.409 (3) 0.349 0.216 (-) 1.115 1.331 (5) 0.642 3.002 (-) 2.271 5.273 (5) 4.967

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.51: Simulation study. Sample from 90% mixture of size 500 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 15.304 (+) 2.525 17.829 (9) 4.980 1.021 (+) 3.328 4.349 (4) 5.054 34.310 (-) 4.825 39.135 (9) 5.574

Weibull 2.380 (+) 2.633 5.013 (3) 4.062 0.030 (-) 2.940 2.969 (1) 3.960 16.027 (-) 3.623 19.650 (7) 4.187

Log-skew-t 4.264 (+) 2.509 6.772 (8) 2.762 2.532 (+) 2.651 5.183 (9) 3.115 15.571 (-) 9.500 25.071 (8) 9.294

Log-t 1.817 (+) 2.107 3.924 (2) 2.205 1.684 (+) 2.324 4.007 (3) 2.410 3.511 (+) 3.484 6.995 (5) 3.866

Log-skew-n 3.882 (+) 2.492 6.374 (7) 2.720 1.859 (+) 2.512 4.371 (5) 2.718 3.305 (+) 3.421 6.726 (4) 3.856

Log-normal 1.540 (+) 2.058 3.598 (1) 2.152 1.488 (+) 2.299 3.787 (2) 2.376 3.306 (+) 3.419 6.725 (3) 3.854

AIC-selected 3.218 (+) 2.645 5.863 (6) 2.535 1.997 (+) 2.570 4.567 (8) 2.828 0.014 (+) 11.418 11.432 (6) 3.922

M
(1) 3.124 (+) 2.499 5.623 (5) 2.624 1.970 (+) 2.554 4.524 (7) 2.860 0.178 (-) 6.121 6.299 (2) 9.402

M
(2) 3.091 (+) 2.494 5.584 (4) 2.763 1.959 (+) 2.548 4.507 (6) 2.972 0.043 (-) 6.133 6.176 (1) 9.217

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.52: Simulation study. Sample from 90% mixture of size 500 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 378.153 (+) 16.102 394.255 (9) 18.451 250.127 (+) 16.339 266.467 (9) 19.568 30.259 (+) 18.770 49.029 (9) 24.861

Weibull 176.366 (+) 12.534 188.900 (8) 18.557 113.274 (+) 13.439 126.713 (8) 18.812 16.615 (+) 16.068 32.683 (7) 21.074

Log-skew-t 16.406 (+) 16.846 33.252 (7) 16.206 31.067 (+) 19.746 50.813 (7) 18.718 29.577 (+) 17.299 46.876 (8) 23.818

Log-t 1.638 (+) 8.876 10.513 (2) 10.499 1.520 (+) 9.310 10.830 (2) 10.765 4.029 (+) 11.564 15.593 (3) 13.133

Log-skew-n 15.934 (+) 16.563 32.497 (6) 15.931 11.419 (+) 24.091 35.510 (3) 14.196 3.852 (+) 11.530 15.382 (1) 13.136

Log-normal 1.402 (+) 8.794 10.196 (1) 10.412 1.363 (+) 9.262 10.626 (1) 10.687 3.862 (+) 11.528 15.390 (2) 13.137

AIC-selected 11.278 (+) 18.777 30.055 (5) 14.195 16.228 (+) 25.077 41.305 (6) 15.261 6.398 (+) 13.943 20.342 (4) 15.464

M
(1) 10.256 (+) 16.756 27.012 (4) 15.374 16.091 (+) 22.216 38.307 (5) 17.108 7.850 (+) 13.714 21.565 (6) 17.269

M
(2) 10.202 (+) 16.731 26.933 (3) 14.867 15.851 (+) 22.191 38.042 (4) 16.164 7.381 (+) 13.499 20.880 (5) 17.387

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)
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Table B.53: Simulation study. Sample from 95% mixture of size 500 - estimate of 1% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 4.340 (-) 0.007 4.347 (9) 0.009 4.875 (-) 0.004 4.879 (9) 0.005 5.559 (-) 0.001 5.559 (9) 0.001

Weibull 4.307 (-) 0.005 4.312 (8) 0.005 4.594 (-) 0.004 4.598 (8) 0.004 5.125 (-) 0.002 5.127 (8) 0.002

Log-skew-t 0.046 (-) 0.106 0.152 (7) 0.172 0.262 (-) 0.199 0.461 (7) 0.260 2.186 (-) 0.384 2.570 (6) 0.579

Log-t 0.000 (-) 0.067 0.067 (1) 0.079 0.001 (-) 0.080 0.082 (1) 0.097 0.001 (+) 0.141 0.142 (1) 0.180

Log-skew-n 0.023 (-) 0.107 0.130 (6) 0.138 0.001 (-) 0.146 0.147 (3) 0.126 0.021 (+) 0.341 0.361 (3) 0.235

Log-normal 0.003 (+) 0.069 0.071 (2) 0.075 0.002 (+) 0.082 0.084 (2) 0.090 0.012 (+) 0.145 0.158 (2) 0.177

AIC-selected 0.002 (-) 0.116 0.118 (5) 0.086 0.007 (-) 0.216 0.223 (6) 0.100 0.007 (-) 0.504 0.511 (4) 0.171

M
(1) 0.005 (-) 0.092 0.097 (3) 0.114 0.015 (-) 0.153 0.168 (4) 0.168 0.474 (-) 0.192 0.666 (5) 1.085

M
(2) 0.005 (-) 0.093 0.099 (4) 0.024 0.021 (-) 0.169 0.191 (5) 0.072 2.725 (-) 0.276 3.001 (7) 1.325

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.54: Simulation study. Sample from 95% mixture of size 500 - estimate of 5% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 10.051 (-) 0.165 10.216 (8) 0.232 14.998 (-) 0.155 15.153 (9) 0.172 25.667 (-) 0.071 25.738 (9) 0.065

Weibull 11.128 (-) 0.114 11.242 (9) 0.130 13.685 (-) 0.107 13.792 (8) 0.111 19.720 (-) 0.086 19.805 (8) 0.082

Log-skew-t 0.000 (-) 0.304 0.304 (6) 0.398 0.199 (-) 0.568 0.767 (7) 0.634 5.820 (-) 1.959 7.779 (7) 2.257

Log-t 0.033 (+) 0.262 0.295 (3) 0.283 0.019 (+) 0.309 0.328 (1) 0.331 0.070 (+) 0.530 0.600 (1) 0.632

Log-skew-n 0.000 (-) 0.297 0.297 (5) 0.355 0.006 (+) 0.417 0.423 (3) 0.390 0.107 (+) 0.765 0.873 (3) 0.713

Log-normal 0.034 (+) 0.262 0.297 (4) 0.277 0.029 (+) 0.309 0.338 (2) 0.328 0.086 (+) 0.533 0.620 (2) 0.633

AIC-selected 0.008 (+) 0.308 0.315 (7) 0.302 0.000 (-) 0.559 0.559 (6) 0.364 0.004 (-) 1.964 1.968 (4) 0.602

M
(1) 0.006 (+) 0.286 0.293 (2) 0.328 0.001 (-) 0.461 0.462 (4) 0.472 1.537 (-) 0.828 2.365 (5) 4.291

M
(2) 0.007 (+) 0.286 0.293 (1) 0.252 0.001 (-) 0.465 0.466 (5) 0.395 3.394 (-) 1.097 4.491 (6) 6.923

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )

Table B.55: Simulation study. Sample from 95% mixture of size 500 - estimate of 25% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 7.747 (+) 2.105 9.852 (9) 4.190 0.006 (-) 2.839 2.845 (7) 4.233 52.143 (-) 4.188 56.331 (9) 4.470

Weibull 0.039 (+) 2.158 2.197 (1) 3.261 2.125 (-) 2.414 4.539 (9) 3.161 29.829 (-) 2.966 32.795 (8) 3.256

Log-skew-t 1.392 (+) 1.913 3.305 (8) 2.076 0.896 (+) 2.082 2.978 (8) 2.274 3.559 (-) 7.250 10.809 (7) 7.017

Log-t 0.802 (+) 1.762 2.564 (3) 1.846 0.688 (+) 1.961 2.649 (6) 2.022 1.198 (+) 2.967 4.165 (3) 3.352

Log-skew-n 1.146 (+) 1.886 3.032 (7) 2.026 0.589 (+) 1.965 2.555 (2) 2.033 1.031 (+) 3.017 4.048 (2) 3.382

Log-normal 0.601 (+) 1.725 2.326 (2) 1.789 0.553 (+) 1.938 2.491 (1) 1.987 0.994 (+) 2.969 3.963 (1) 3.332

AIC-selected 0.869 (+) 1.887 2.756 (5) 1.883 0.612 (+) 1.985 2.597 (3) 2.071 0.300 (+) 5.478 5.778 (6) 3.327

M
(1) 0.928 (+) 1.834 2.762 (6) 1.950 0.643 (+) 1.994 2.637 (5) 2.095 1.088 (-) 3.742 4.830 (5) 11.211

M
(2) 0.922 (+) 1.830 2.752 (4) 2.162 0.641 (+) 1.991 2.632 (4) 2.268 0.603 (-) 3.706 4.309 (4) 10.229

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)
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Table B.56: Simulation study. Sample from 95% mixture of size 500 - estimate of 50% quantile

(Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 330.421 (+) 14.887 345.308 (9) 15.762 211.319 (+) 14.697 226.017 (9) 16.759 11.291 (+) 16.682 27.973 (9) 21.638

Weibull 133.628 (+) 10.840 144.469 (8) 15.505 79.930 (+) 11.552 91.481 (8) 15.679 3.177 (+) 13.826 17.002 (7) 17.532

Log-skew-t 5.041 (+) 9.993 15.034 (7) 11.034 7.851 (+) 10.872 18.723 (7) 11.674 7.298 (+) 12.141 19.439 (8) 14.736

Log-t 1.641 (+) 7.599 9.241 (2) 8.443 1.484 (+) 7.957 9.441 (2) 8.677 2.488 (+) 9.812 12.300 (3) 10.876

Log-skew-n 5.214 (+) 9.742 14.956 (6) 10.506 2.196 (+) 9.478 11.673 (3) 9.299 2.305 (+) 9.924 12.229 (2) 10.932

Log-normal 1.520 (+) 7.558 9.078 (1) 8.395 1.445 (+) 7.929 9.374 (1) 8.638 2.353 (+) 9.858 12.211 (1) 10.942

AIC-selected 3.218 (+) 9.794 13.012 (5) 9.145 2.986 (+) 10.124 13.110 (6) 9.308 2.407 (+) 10.102 12.509 (4) 11.406

M
(1) 3.344 (+) 9.029 12.373 (4) 9.817 3.167 (+) 9.526 12.693 (5) 10.194 3.452 (+) 11.309 14.761 (6) 13.589

M
(2) 3.333 (+) 9.021 12.355 (3) 9.789 3.128 (+) 9.516 12.645 (4) 10.134 3.288 (+) 11.071 14.359 (5) 13.198

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.57: Simulation study. Sample from gamma distribution of size 500 - estimate of 1%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000

Weibull 0.000 (+) 0.000 0.000 (6) 0.000 0.000 (+) 0.000 0.000 (6) 0.000 0.000 (+) 0.000 0.000 (3) 0.000

Log-skew-t 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.000 0.000 (2) 0.000

Log-t 0.000 (+) 0.000 0.000 (7) 0.000 0.004 (+) 0.000 0.004 (8) 0.000 0.088 (+) 0.007 0.096 (8) 0.010

Log-skew-n 0.000 (+) 0.000 0.000 (8) 0.000 0.000 (+) 0.001 0.001 (7) 0.000 0.031 (+) 0.036 0.067 (7) 0.006

Log-normal 0.000 (+) 0.000 0.000 (9) 0.000 0.005 (+) 0.000 0.005 (9) 0.000 0.096 (+) 0.008 0.104 (9) 0.011

AIC-selected 0.000 (+) 0.000 0.000 (3) 0.000 0.000 (+) 0.000 0.000 (4) 0.000 0.031 (+) 0.036 0.066 (6) 0.006

M
(1) 0.000 (+) 0.000 0.000 (4) 0.000 0.000 (+) 0.000 0.000 (3) 0.000 0.025 (+) 0.027 0.052 (5) 0.011

M
(2) 0.000 (+) 0.000 0.000 (2) 0.000 0.000 (+) 0.000 0.000 (2) 0.000 0.009 (+) 0.013 0.021 (4) 0.065

(1) direct method of model averaging (MA1 )
(2) indirect method of model averaging (MA2)

Table B.58: Simulation study. Sample from gamma distribution of size 500 - estimate of 5%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000 0.000 (+) 0.000 0.000 (1) 0.000

Weibull 0.000 (+) 0.000 0.000 (8) 0.000 0.002 (+) 0.000 0.002 (6) 0.000 0.009 (+) 0.002 0.011 (3) 0.002

Log-skew-t 0.000 (+) 0.000 0.000 (5) 0.000 0.000 (+) 0.000 0.000 (5) 0.001 0.001 (+) 0.001 0.001 (2) 0.002

Log-t 0.001 (+) 0.000 0.001 (9) 0.000 0.104 (+) 0.007 0.110 (8) 0.006 1.206 (+) 0.069 1.275 (8) 0.083

Log-skew-n 0.000 (+) 0.000 0.000 (6) 0.000 0.006 (+) 0.014 0.020 (7) 0.001 0.378 (+) 0.408 0.786 (7) 0.048

Log-normal 0.000 (+) 0.000 0.000 (7) 0.000 0.109 (+) 0.006 0.115 (9) 0.007 1.222 (+) 0.068 1.290 (9) 0.083

AIC-selected 0.000 (+) 0.000 0.000 (2) 0.000 0.000 (+) 0.000 0.000 (4) 0.000 0.376 (+) 0.407 0.783 (6) 0.048

M
(1) 0.000 (+) 0.00000174 0.00000199 (4) 0.0000020 0.000 (+) 0.00007 0.00012 (3) 0.000149 0.316 (+) 0.315 0.630 (5) 0.090

M
(2) 0.000 (+) 0.00000169 0.00000192 (3) 0.0000103 0.000 (+) 0.00004 0.00006 (2) 0.000175 0.242 (+) 0.272 0.514 (4) 0.265

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2 )



Appendix 175

Table B.59: Simulation study. Sample from gamma distribution of size 500 - estimate of 25%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.001 (+) 0.080 0.081 (4) 0.076 0.002 (+) 0.122 0.125 (1) 0.145 0.012 (+) 0.256 0.268 (1) 0.264

Weibull 0.004 (+) 0.080 0.084 (6) 0.053 1.623 (+) 0.232 1.856 (7) 0.241 6.149 (+) 0.651 6.800 (3) 0.664

Log-skew-t 0.000 (-) 0.079 0.080 (1) 0.077 0.092 (+) 0.172 0.264 (5) 0.242 0.292 (+) 0.493 0.785 (2) 0.889

Log-t 0.837 (+) 0.344 1.181 (9) 0.201 4.445 (+) 0.337 4.782 (8) 0.258 33.569 (+) 1.332 34.900 (9) 1.330

Log-skew-n 0.327 (-) 0.023 0.350 (7) 0.012 0.498 (+) 0.572 1.070 (6) 0.196 10.173 (+) 9.498 19.671 (6) 0.856

Log-normal 0.453 (-) 0.016 0.469 (8) 0.006 4.549 (+) 0.269 4.818 (9) 0.259 33.087 (+) 1.265 34.351 (8) 1.320

AIC-selected 0.001 (+) 0.082 0.083 (5) 0.076 0.010 (+) 0.164 0.174 (2) 0.151 10.205 (+) 9.539 19.744 (7) 1.145

M
(1) 0.001 (+) 0.079 0.080 (3) 0.078 0.028 (+) 0.155 0.183 (3) 0.191 9.890 (+) 7.601 17.491 (4) 1.620

M
(2) 0.001 (+) 0.079 0.080 (2) 0.083 0.029 (+) 0.156 0.184 (4) 0.155 9.654 (+) 7.925 17.579 (5) 1.203

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)

Table B.60: Simulation study. Sample from gamma distribution of size 500 - estimate of 50%

quantile (Results ×10−4).

Censoring No Censoring 1 Censoring 2

bias2 var mse(rank) var bias2 var mse(rank) var bias2 var mse(rank) var

Gamma 0.008 (+) 5.971 5.980 (1) 5.558 0.008 (+) 8.104 8.112 (8) 8.716 0.108 (+) 13.644 13.752 (1) 13.326

Weibull 28.086 (-) 3.817 31.903 (7) 3.049 0.021 (+) 6.165 6.186 (1) 5.849 22.394 (+) 11.067 33.461 (3) 10.349

Log-skew-t 1.601 (-) 7.305 8.906 (5) 6.932 0.217 (-) 7.536 7.753 (3) 8.435 0.053 (+) 13.997 14.050 (2) 14.699

Log-t 6.559 (-) 9.431 15.991 (6) 6.347 4.575 (-) 4.683 9.258 (9) 3.441 45.553 (+) 9.281 54.835 (9) 8.102

Log-skew-n 70.143 (-) 4.660 74.803 (8) 1.913 0.913 (-) 6.829 7.742 (2) 6.785 9.985 (+) 28.057 38.042 (6) 10.710

Log-normal 132.546 (-) 1.277 133.822 (9) 1.215 4.247 (-) 3.748 7.994 (6) 3.431 44.725 (+) 8.918 53.644 (8) 8.109

AIC-selected 0.000 (+) 6.343 6.343 (4) 5.714 0.001 (-) 7.997 7.998 (7) 8.591 10.158 (+) 28.230 38.387 (7) 11.399

M
(1) 0.011 (-) 6.099 6.110 (2) 6.168 0.022 (-) 7.776 7.798 (5) 8.518 11.585 (+) 24.472 36.057 (4) 12.740

M
(2) 0.013 (-) 6.119 6.132 (3) 5.461 0.024 (-) 7.770 7.793 (4) 6.324 12.164 (+) 24.169 36.333 (5) 8.514

(1) direct method of model averaging (MA1)
(2) indirect method of model averaging (MA2)





Appendix C
Implementation codes

We performed statistical analyses of Chapters 3 to 6 using SAS 9.2 (SAS Institute Inc.,

Cary, NC, USA) and R 2.14 (R Foundation for Statistical Computing, Vienna, Austria).

The package stats4 in R is used for maximum likelihood estimation.

C.1 Parametric models

Suppose y is a matrix consisting of two columns. For uncensored, left-censored and right-

censored data, first and second column contain the observed value. For interval-censored

data, the first entry is the left-end value and the second entry the right-end value of the

interval. ind, dl, dr, di are vectors representing the indicator variables. They have

the value 1 if the corresponding observation is respectively uncensored, left-censored,

right-censored and interval-censored and 0 otherwise.

Example for fitting the log-normal and gamma distribution.

# log-normal distribution

## starting values

p1=mean(log(y[,2]))

p2=sqrt(var(log(y[,2])))

## maximum likelihood

minusloglikLN <- function(par1,par2){

-sum(

log((dnorm(log(y[,2]), mean = par1, sd = abs(par2))/y[,2])^ind)

+log(pnorm(log(y[,2]), mean = par1, sd = abs(par2))^dl)

+log((1-pnorm(log(y[,1]), mean = par1, sd = abs(par2)))^dr)
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+log((pnorm(log(y[,2]), mean = par1, sd = abs(par2))-

pnorm(log(y[,1]), mean = par1, sd = abs(par2)))^di)

)

}

fitLN <- mle(minusloglikLN,start=list(par1=p1,par2=p2))

# gamma distribution

## starting values

p1=mean(y[,2])/var(y[,2])

p2=mean(y[,2])^2/var(y[,2])

## maximum likelihood

minusloglikGA <- function(par1,par2){

-sum(

log(dgamma(y[,2], shape = abs(par1), rate = abs(par2))^ind)+

log(pgamma(y[,2], shape = abs(par1), rate = abs(par2))^dl)+

log((1-pgamma(y[,1], shape = abs(par1), rate = abs(par2)))^dr)+

log((pgamma(y[,2], shape = abs(par1), rate = abs(par2))-

pgamma(y[,1], shape = abs(par1), rate = abs(par2)))^di)

)

}

fitGA <- mle(minusloglikGA,start=list(par1=p1,par2=p2))

The R packages sn and VGAM are used for the skewed distributions and the gener-

alized gamma distribution.

R Development Core Team (2011). R: A language and environment for

statistical computing. R Foundation for Statistical Computing,

Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Azzalini, A. (2011). R package ’sn’: The skew-normal and skew-t

distributions (version 0.4-17). URL http://azzalini.stat.unipd.it/SN

Thomas W. Yee (2010). The VGAM Package for Categorical Data Analysis.

Journal of Statistical Software, 32(10), 1-34. URL

http://www.jstatsoft.org/v32/i10/.
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C.2 SemiNP models

The macro to fit the SemiNP models is included in goftest8.sas.

%include ’C:\...\goftest8.sas’;

/*

left censored: llim = 0, rlim = value, dl = 1

right censored: llim = value, rlim = fixed, dr = 1

interval censored: llim = value 1, rlim = value 2, di = 1

non censored: llim = rlim = value, ind = 1

*/

%SNPmacrointB(data=cadb, depl=llim,depr=rlim, delta=ind,

deltal=dl, deltar=dr, deltai=di);

proc iml; load;

/*parameter estimates and corresponding likelihoods

(similar for N_3, ..., N_7)*/

print N_1 N_2;

/*only max likelihood for eg N_1

(similar for N_2, ..., N_7)*/

%let para1 = 3; /*&para1 = number of parameters*/

loca=N_1[<:>,&para1+1];

best=N_1[loca,];

print best;

quit;

C.3 Model averaging distribution functions

Suppose aicMA is a matrix with all AIC values: each column represents a candidate model.

Fhat and sef represent the estimated values and their standard error for each candidate

model (column).

bestaic=apply(aicMA,1,min)

bestaic=as.matrix(bestaic)%*%matrix(nrow=1,ncol=ncol(aicMA),1)

delta=aicMA-bestaic

num=exp((-1/2)*delta)

den=apply(num,1,sum)

den=den%*%matrix(nrow=1,ncol=ncol(aicMA),1)

weights=t(num/den)
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Fhatavg=diag(Fhat%*%(weights))

var_Fhat=sef^2

bias_tocompute_MA=(Fhat-Fhatavg%*%matrix(1,nrow=1,ncol=ncol(aicMA)))^2

comp1=sqrt(var_Fhat+bias_tocompute_MA)

std_Fhatavg=diag(comp1%*%(weights))

C.4 Model averaging quantiles

The codes for approach 1 are similar to the model averaging of distribution functions,

by changing the Fhat to Qhat. The R code to obtain the model average of the second

approach is given here.

pMA_temp=function(x,p1LN,p2LN,...)

{

cbind(

plnorm(x,meanlog=p1LN,sdlog=p2LN),

...

)%*%t(weights)-xmed

}

#quantile with root

medMA=function(p) uniroot(pMA_temp,c(10e-35,5),p[1],p[2],...

,tol=10e-10)$root

xihatavg2=rep(0,length(xvalmed));dim(xihatavg2)=c(length(xihatavg2),1)

for(i in 1:length(xvalmed)){

xmed=xvalmed[i]

xihatavg2[i]=medMA(unlist(coeff))

}

#var of F(quantile) with MA

#we need every single distribution for the calculation of

#the MAvariance, evaluated in Fhatavg

Fhat=cbind(

plnorm(xihatavg2, meanlog = coeff$LN[1], sdlog = coeff$LN[2]),

...

)

colnames(Fhat)=colnames(weights)
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FLN=function(x) plnorm(xx,meanlog=x[1],sdlog=x[2])

...

Fse=matrix(nrow=length(xihatavg2),ncol=ncol(weights))

for(i in 1:length(xihatavg2)){

xx=xihatavg2[i]

Fse[i,1]=sqrt(t(as.matrix(grad(FLN,coeff$LN)))%*%

vcov(fitLN)%*%as.matrix(grad(FLN,coeff$LN)))

...

}

colnames(Fse)=colnames(weights)

FMA=Fhat%*%t(weights)

var_Fhat=Fse^2

bias=(Fhat-FMA%*%matrix(1,nrow=1,ncol=length(aic)))^2

comp1=sqrt(var_Fhat+bias)

FMAse=comp1%*%t(weights)

#inverse with Taylor

dMA=function(x){

cbind(

dlnorm(x, meanlog = coeff$LN[1], sdlog = coeff$LN[2]),

...

)%*%t(weights)

}

var_xihatavg2=1/dMA(xihatavg)^2*FMAse^2;var_xihatavg2

std_xihatavg2=sqrt(var_xihatavg2)





Samenvatting

Toxische stoffen zijn schadelijk voor de gezondheid. De aanwezigheid van deze stoffen in

ons voedsel moet beperkt blijven en hierop wordt streng toegezien. Op het niveau van

de Europese Unie wordt dit onderzoek geleid door de Europese autoriteit voor voedsel-

veiligheid (EFSA, European Food Safety Authority). Voor ons onderzoek beschikken we

over gegevens omtrent de aanwezigheid van Cadmium in bepaalde delen van de voedsel-

keten (EFSA, 2010). Bij het meten van de concentratie van zulke stoffen, wordt men

geconfronteerd met links- en interval-gecensureerde gegevens (beneden de detectielimiet

en kwantificatielimiet respectievelijk), m.a.w. de concentratie is te laag om gedetecteerd

of precies gemeten te kunnen worden.

Een eerste groep gegevens (zie Hoofdstuk 2), bestaat uit 99 stalen waarbij de con-

centratie van Cadmium in 42 stalen onder de detectielimiet ligt en dus niet detecteerbaar

is. Dat wil zeggen dat we in bijna de helft van de stalen geen precieze gegevens hebben

over de concentratie Cadmium en we enkel weten dat de concentratie heel laag is. In een

tweede steekproef zijn er 114 stalen, waarbij er in 3 stalen geen Cadmium gedetecteerd

wordt (concentratie onder de detectielimiet) en in 17 stalen geen precieze concentratie

gemeten wordt (tussen de detectielimiet en de kwantificatielimiet).

Om uitspraken te kunnen doen over de veiligheid van ons voedsel, worden statistische

modellen gebruikt. Daarbij is het belangrijk om een ‘goed’ model te selecteren.

Een model dat vaak gebruikt wordt in de context van toxische stoffen, is de log-

normale verdeling. Deze verdeling dankt zijn populariteit vooral aan het verband (via

een logaritmische transformatie) met de bekende normale of Gauss verdeling. De log-

normale verdeling wordt getypeerd door twee parameters, µ en σ2, die respectievelijk

het gemiddelde en de variantie voorstellen op de logaritmisch-getransformeerde schaal.

Naast de log-normale verdeling, bekijken we ook andere parametrische verdelingen. Deze
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verdelingen kunnen allemaal gelinkt worden aan de log-normale verdeling, maar ze hebben

bijvoorbeeld meer parameters en zijn daardoor flexibeler. Een andere manier om de log-

normale verdeling uit te breiden en zo meer flexibiliteit te geven aan de verdeling, is het

beschouwen van een semi-parametrische familie van verdelingen. Hierbij worden, op een

vooraf bepaalde manier, parameters toegevoegd aan de log-normale verdeling of aan een

andere basisverdeling. Wij gebruiken de semi-parametrische familie SemiNP van Fenton

en Gallant (1996), Gallant en Nychka (1987) en Zhang en Davidian (2008).

In Hoofdstuk 3 stellen we deze verdelingen voor en tonen we hoe waarschijnlijk het

is dat de steekproeven van Cadmium concentraties komen uit een populatie met voor-

genoemde verdeling. Hiervoor berekenen we de meest aannemelijke schatters (maximum

likelihood). Daarbij moeten we de aannemelijkheidsfunctie aanpassen, omdat sommige ge-

gevens gecensureerd zijn. Een globale vergelijking van de verdelingen gebeurt met Akaike’s

informatie criterium (AIC). We zien dat de log-normale verdeling het niet slecht doet in

vergelijking met de andere verdelingen, maar dat bijvoorbeeld de semi-parametrische fa-

milie van verdelingen een betere globale weerspiegeling van de gegevens geeft.

Om de mogelijke sterktes en zwaktes van een verdeling te onderzoeken, kan men

gebruik maken van statistische toetsen die aanpassingstoetsen (goodness-of-fit test) ge-

noemd worden. Met een aanpassingstoets onderzoekt men of de verdeling waaruit de

steekproef is getrokken, afwijkt van een bekende verdeling, zoals de log-normale verde-

ling. In Hoofdstuk 4 van deze verhandeling, onderzoeken we een aanpassingstoets die

werd voorgesteld door Aerts et al. (1999). De toets onderzoekt of een parametrische ver-

deling, ook wel basismodel genoemd, past bij een gegeven steekproef. Daartoe wordt een

familie van verdelingen gedefinieerd waartoe het basismodel behoort. Vervolgens wordt

binnen die familie van verdelingen de beste verdeling gekozen. Als de beste verdeling

een aanzienlijke verbetering is ten opzichte van het basismodel, dan besluiten we dat het

basismodel geen goed model is.

De toets werd nog niet eerder gebruikt voor gecensureerde gegevens. Wij maken deze

uitbreiding in deze verhandeling en gebruiken daarvoor de SemiNP familie van verdelingen.

Hoewel de toets kan gebruikt worden voor een willekeurig basismodel, leggen wij de nadruk

op de log-normale verdeling. Uit de resultaten van de simulatie studie blijkt dat de toets

eerder conservatief is, maar in staat is om lokale en globale afwijkingen van de log-normale

verdeling te detecteren.

Multimodel inferentie is een methodologie om naast de variabiliteit die eigen is aan

steekproefgegevens ook de onzekerheid over een geschikt statistisch model in rekening te

brengen in de statistische besluitvorming. Deze methodologie werd nog niet toegepast in
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en aangepast aan de setting van gecensureerde gegevens. Wij hebben ons gebaseerd op de

techniek van model uitmiddeling (model averaging) die beschreven wordt door Burnham

en Anderson (2002). Hierbij wordt een familie van kandidaatmodellen beschouwd en

wordt informatie van elk model gebruikt, waarbij meer belang wordt gehecht aan een

goed model.

In Hoofdstuk 5 zijn we geïnteresseerd in het schatten van de verdelingsfunctie op een

vooraf vastgelegde plaats in de gegevens. De kandidaten voor de familie van kandidaat-

modellen werden beschreven in Hoofdstuk 3. Er zijn echter verschillende mogelijkheden

om de SemiNP familie te beschouwen. Ten eerste kunnen we ons beperken tot enkel de

familie van parametrische modellen. Die kunnen we uitbreiden met het ‘beste’ model uit

de SemiNP familie, resulterend in een tweede familie. Of we kunnen een derde familie

van kandidaatmodellen definiëren door alle parametrische en alle (tot een bepaalde graad)

modellen uit de SemiNP familie in te sluiten. Voor de Cadmium gegevens schatten we

op deze drie manieren bijvoorbeeld de kans dat een concentratie onder de gemiddelde

detectielimiet ligt. In een simulatie studie bestuderen we het gedrag van de schattingen

gebaseerd op deze drie families. We beschouwen verschillende scenario’s: met en zonder

censurering, verschillende modellen waaruit gegevens gegenereerd worden, verschillende

steekproefgroottes en andere plaatsen waar de verdelingsfunctie wordt geschat. De con-

clusie van de simulatiestudie is afhankelijk van het scenario dat wordt onderzocht.

In Hoofdstuk 6 werken we verder met de techniek van model uitmiddeling, maar zijn we

op zoek naar een schatting voor een kwantiel. Als we veronderstellen dat het onderliggende

model continu is, dan kunnen we een kwantiel berekenen door de verdelingsfunctie te

inverteren. Wanneer we opnieuw de onzekerheid over het geschikte statistische model in

rekening willen brengen, dan zijn er twee manieren om het model uit te middelen. In de

eerste manier wordt voor elk model in de familie van kandidaatmodellen een schatting

gedaan voor het kwantiel. Vervolgens wordt een gewogen gemiddelde berekend van deze

kwantielen, waarbij een goed model meer invloed heeft. Een tweede manier om uit te

middelen bestaat erin eerst een gemiddelde verdeling te bepalen en deze vervolgens te

inverteren. We gebruiken beide manieren om het 5% en 25% kwantiel van de Cadmium

concentraties te schatten. Uit de simulatie studie blijkt dat er geen favoriete methode is

van uitmiddelen. In sommige scenario’s is de eerste manier te verkiezen, terwijl de tweede

manier de voorkeur heeft in andere scenario’s.

In het laatste hoofdstuk worden voorbeelden uit andere disciplines gebruikt om de

methodologie te illustreren. Het eerste voorbeeld gaat over de concentratie van de bacterie

Yersinia enterocolitica, die gedurende 4 dagen wordt gemeten. In het algemeen kunnen

we de groei van de concentratie van een bacterie opsplitsen in drie fasen. In de eerste
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fase is er nog geen groei; vervolgens zal de concentratie snel toenemen, vaak exponentieel

snel; in de derde fase stopt de groei en wordt een maximale concentratie bereikt. Een

populair model om deze groei te beschrijven, is het model van Baranyi en Roberts (1994).

Het tweede voorbeeld gaat over een serologische studie waarin antilichamen tegen de

vijfde kinderziekte (Parvovirus B19) worden opgespoord in het bloed. Ook hier bestaan

vele modellen om het voorkomen van antilichamen te modelleren afhankelijk van de leeftijd

van de onderzochte persoon. Wij gebruiken het model van Farrington (1990) om de

gegevens te beschrijven.

In beide voorbeelden wordt verondersteld dat er steeds een toename is of m.a.w. dat

het model monotoon is: de concentratie van de bacterie kan niet afnemen; en hoe ouder

een persoon is, hoe groter de kans dat hij antilichamen heeft tegen een ziekte.

Zowel het model van Baranyi en Roberts (1994) als van Farrington (1990) kan voor-

gesteld worden aan de hand van één of meerdere differentiaalvergelijkingen. Voor zulke

modellen stelden Ramsay et al. (2007) een veralgemeende afvlakkende (smoothing) schat-

tingsmethode voor om de parameters van de differentiaalvergelijking(en) te schatten. De

methode laat toe om af te wijken van het model, maar de mate waarin afwijkingen zijn

toegestaan, wordt bepaald door een penalisatieparameter. Aangezien het bepalen van

de beste penalisatieparameter een belangrijke stap is in het schattingsproces, stellen wij

een manier voor om de penalisatieparameter te bepalen, waarbij we gebruik maken van

eenzijdige cross-validatie (Hart en Yi, 1998). Daarnaast breiden we de methode van

Ramsay et al. (2007) uit zodat de oplossing nog steeds kan afwijken van het model, maar

moet voldaan aan bepaalde beperkingen qua vorm, bijvoorbeeld het monotoon zijn van

de oplossing. Tot slot gebruiken we bootstrap methodes om betrouwbaarheidsintervallen

te bepalen rond de oplossing, en om te testen of het onderliggende model geschikt is om

de gegevens te beschrijven alsook om de hypothese van monotoniciteit te toetsen. Het

model van Baranyi en Roberts (1994) blijkt geschikt te zijn voor de Yersinia enterocolitica

gegevens, terwijl het model van Farrington (1990) onvoldoende flexibiliteit heeft voor de

Parvovirus B19 gegevens. De assumptie van een monotoon gedrag is aanvaardbaar voor

de Yersinia enterocolitica gegevens, maar niet voor de Parvovirus B19 gegevens.
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