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In this publication, we consider IMEX methods applied to singularly perturbed ordinary dif-
ferential equations. We introduce a new splitting into stiff and non-stiff parts that has a direct
extension to systems of conservation laws and investigate its performance analytically and nu-
merically. We show that this splitting can in some cases improve the order of convergence,
demonstrating that the phenomenon of order reduction is not only a consequence of the method
but also of the splitting.

1. Introduction

The computation of extremely stiff ordinary differential equations has been the subject of extensive research
over the last decades, see for example the standard textbook [25]. Our interest in stiff ordinary differential
equations (ODE) stems from the approximation of compressible fluid flows [1, 48] using appropriate spatial
discretization, such as for example the finite volume [20, 21, 34, 35] or the discontinuous Galerkin [9, 10,
11, 12] method. In particular, we are interested in the approximation of flows in the nearly incompressible
regime, i.e., at very low Mach numbers ε [33]. This does not only lead to stiffness induced by a discretization
parameter, but also to stiffness induced by the singular perturbation problem that constitutes the transition
from compressible to incompressible flows [31, 44].

It has been recognized that handling such problems with explicit integration methods leads to a time
step size depending on ε and thus to high computational costs if ε� 1. There are plenty of approaches in
literature treating the stiffness. One example are split-explicit [18] methods that can increase computational
efficiency for a fixed ε. However, time step restrictions are not independent of ε. Treating the equations fully
implicit tends to remove the restriction on the time steps. In the context of computational fluid dynamics
though, it usually leads to extreme damping [34]. Therefore in many cases, it might be beneficial to separate
stiff (w.r.t. ε) from non-stiff terms and treat them implicitly and explicitly, respectively.

Examples of identifying stiff and non-stiff parts in the context of computational fluid dynamics can be
found, e.g., in [5, 13, 16, 19, 22, 32, 36, 37, 42]; other examples, for instance from linear or elliptic equations
can be found in [15, 45]. It has been recognized in [47] that decomposing the equations into stiff and non-stiff
terms is not trivial. Even if both parts are stable individually, this does not necessarily mean that the overall
algorithm is stable. For linear equations, the authors in [47] have found a uniformly stable scheme based
on characteristic decomposition. This, however, can not easily be extended to nonlinear equations. To this
end, we investigate a new, more general splitting based on the solution of the unperturbed (’incompressible’)
equation in this paper. This splitting has a direct extension to systems of conservation laws. Let us note that
similar splittings have been presented in [5, 19, 36, 42, 49]. In particular, in [5], the authors linearize around
the lake at rest solution, yielding a linear, stiff part that models gravitational waves and is treated implicitly,
and a non-stiff part that is treated explicitly (for further details, in particular the spatial discretization, we
refer to [5]). The systematic extension of this ansatz, which we pursue in this work, came out of discussions
of the authors with S. Noelle, R. Klein and H. Zakerzadeh, see [38].
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Splitting the equations into stiff and non-stiff parts leads to implicit / explicit (IMEX) time integration
routines. Famous integrators include IMEX multistep methods, see, e.g., [4, 14, 26] and IMEX Runge-Kutta
(RK) methods [3, 6, 7, 43]. We focus on IMEX BDF methods (to be explained in Sec. 4) and IMEX RK
methods (to be explained in Sec. 5).

It is well-known that zero-stable IMEX BDF methods (up to six steps) are uniformly consistent, i.e.,
independent of the relation between the perturbation parameter ε and the time step ∆t, the error converges
with the correct order in ∆t to zero. The same is not true for general IMEX RK methods [6] (with the
exception of the specifically designed Runge-Kutta method by Boscarino [7]). This means that for ∆t� ε,
the error seems to exhibit some kind of degradation in convergence in general. In this work, we present
comparisons between a common splitting and the newly developed splitting, showing that order reduction
is also a phenomenon of the splitting and not only the temporal integration.

The paper is organized as follows: In Sec. 2, we shortly comment on the singular perturbation problem
used in this paper. Then in Sec. 3, we introduce the new splitting based on what we call the reference
solution w(0); and we explain the important AP (asymptotic preserving) property [27, 28, 29]. In Sec. 4,
we combine this splitting with the IMEX BDF method and show that it is AP. The analysis is equipped
with numerical results. In Sec. 5, we apply the splitting to IMEX RK schemes, show again the AP property
under suitable restrictions and present numerical results. Sec. 6 offers conclusions and outlook.

2. Singular perturbation problem and reference solution

In this work, we consider the ordinary differential equation

w′(t) = f(w(t)), w(0) = win, (1)

where, for ε > 0,

w :=

(
y
z

)
, f(w) :=

(
z

g(y,z)
ε

)
. (2)

(Note that extensions to somewhat more complex ODEs are usually straightforward.) This equation con-
stitutes a singularly perturbed problem (SPP), as formally, for ε → 0 the equation changes its type to a
differential algebraic equation. For a more detailed introduction to SPPs, we refer to [2, 24, 25, 39] and the
references therein.

We assume that g(·, ·) is (at least) in class C2(R2), and that the logarithmic norm of ∂2g(y, z) is bounded
by a negative constant in the vicinity of the solution to guarantee the existence of an ε expansion, see [25].
(Note that in the scalar case, this amounts to ∂2g(y, z) ≤ −c for a positive constant c.)

One particular instance of (1) is van der Pol equation, defined by

g(y, z) :=
(
1− y2

)
z − y. (3)

Our interest is in the case of small (but finite) ε. Expanding w in terms of ε as

w(t) = w(0)(t) + εw(1)(t) + ε2w(2)(t) +O(ε3) (4)

reveals that w(0) = (y(0), z(0))
T fulfills the DAE

y′(0)(t) = z(0)(t), g(y(0), z(0)) = 0. (5)

Because ∂2g(y, z) can be bound by a negative constant, we can guarantee that the latter equation is a
differential algebraic equation (DAE) of index one [24]. Roughly speaking, this means that one can express
z(0) as a function of y(0), and y(0) fulfills an ODE. We refer to w(0) as the reference solution:
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Definition 1. The solution w(0) = (y(0), z(0))
T to (5) is called reference solution or RS, for short.

Obviously, only carefully crafted initial conditions induce a well-posed DAE for w(0), and the same holds
true for any w(i). Initial conditions win that ’survive’ the limit as ε → 0 are called well-prepared, they
necessarily lie (to first order in ε) on the solution manifold of (5). One particular set of initial conditions
for van der Pol equation from literature [25], that we are going to use in the sequel, is given by

win =

(
2,−2

3
+

10

81
ε− 292

2187
ε2 +O(ε3)

)T
.

Remark 1. Choosing arbitrary initial conditions that do not lie to first order on the solution manifold
of (5) would lead to a boundary layer in the solution of (3) for finite but small ε. This, then again, is
a solution that can not be represented via an expansion as in (4), but it has to be represented by a more
general expansion in both ε and t

ε . We refer to [25] for more details. Solutions that depend on t
ε are not

of interest in this work, as their dynamics is governed on a time scale of order ε, and a numerical scheme
with uniform (w.r.t. ε) time step is arguably not useful in such a context.

We note that, unlike for systems of conservation laws, the question of a suitable splitting for ordinary
differential equations has usually not been discussed in literature. This is probably because for ordinary
differential equations, there is a ’naive’ splitting, given in Def. 2, that can be applied in a stable way (see
[6]).

Definition 2. The ’standard’ (or ’naive’) splitting usually employed in literature is given by

f(w) =

(
0

g(y,z)
ε

)
+

(
z
0

)
, (6)

where the first part is treated implicitly.

3. Splitting and AP property

3.1. Splitting

In this section, we define the splitting that is the scope of this work. More formally, we introduce f̃ and f̂ ,
such that the right-hand side f of the ODE (1) can be split into

f(w) = f̃(w) + f̂(w),

and we think about f̃(w) as a ’stiff’ contribution to the flux. In (6), we already showed the standard way
such a splitting is performed in literature. In this publication, we propose a splitting that has an extension
to other types of ODEs and is related to the reference solution (RS) w(0), i.e., the (formal) limit solution
for ε→ 0, see also Def. 1. The splitting is consequently called RS-IMEX splitting:

Definition 3. RS-IMEX splitting: We define the following splitting for the right-hand side f of (1):

f̃(w) = f(w(0)) + f ′(w(0))(w − w(0)), f̂(w) = f(w)− f̃(w). (7)

In the course of this work, f̃(w) is treated implicitly, while f̂(w) is treated explicitly within an IMEX
time integration method. There are a couple of remarks in order here:

Remark 2. 1. The motivation of this splitting is that for ε close to zero, the term w − w(0) is supposed

to be in O(ε), i.e., small. In particular, f̂ is supposed to be small. Therefore, we can have the hope
that f̂ is ’non-stiff’.
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2. Note that f(w(0)) = (z(0), 0)T and

f ′(w(0)) =

(
0 1

1
ε∂1g(w(0))

1
ε∂2g(w(0))

)
.

From this, one can conclude that for ∆w := w − w(0), there holds

f̃(w) =

(
z

1
εg
′(w(0))∆w

)
, f̂(w) =

(
0

1
ε

(
g(w)− g′(w(0))∆w

)) . (8)

For future reference, we define g̃(w) as g′(w(0))∆w, and ĝ(w) as g(w)− g̃(w).

3. In practice, w(0) is replaced by an approximation wapp(0) .

4. Because w(0) depends on t, both f̃ and f̂ depend on t as well. Most of the time, we omit this dependence
for the sake of simplicity.

Remark 3. The proposed splitting relies on a first-order Taylor expansion around the reference solution.
The question of using a zeroth-order expansion directly springs to mind, i.e., taking the implicit part to
be f̃(w) = f(w(0)). This, however, would render the scheme completely explicit, because the stiff part is
independent of w, thus, there is no implicit stabilization mechanism present.

We note once again that this splitting is universal in the sense that for any convergent singular perturbation
problem, such a splitting is - at least formally - available.

3.2. Asymptotic preserving property

Consider any numerical method which computes an approximate solution wn+1
∆t . This numerical solution

should converge towards the exact solution w for ∆t→ 0 and a finite value of ε: This is the standard consis-
tency requirement. However, dealing with ε, another natural measure of consistency is whether the discrete
solution, at a finite value of ∆t, converges to some w∆t,(0) for ε→ 0, which constitutes an approximation to
w(0). This consistency requirement is introduced in the sequel.

Definition 4. An algorithm for the computation of a solution to (1) is called asymptotic preserving (AP)
if the discrete limit (w.r.t. ε→ 0) algorithm is a consistent approximation to (5).

An illustration that is frequently shown in this context [28] can be seen in Fig. 1. If the diagram commutes
(i.e., the order of limits ∆t→ 0 and ε→ 0 can be changed) the algorithm is asymptotic preserving.

w w(0)

wn+1
∆t

wn+1
∆t,(0)

ε → 0

ε → 0

∆t → 0 ∆t → 0? AP

Figure 1: Illustration of the AP property. If wn+1
∆t,(0) converges toward w(0) for ∆t → 0, the algorithm is

asymptotic preserving (AP).
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4. IMEX BDF

In this section, we couple the splitting defined in Sec. 3 to an IMEX BDF scheme [26]. It is well-known that
BDF schemes belong to the class of linear multistep schemes and are constructed in such a way that wn+1

∆t

is given by the expression

s∑
j=−1

αjw
n−j
∆t = ∆tf(wn+1

∆t ).

Remark 4. 1. BDF schemes are zero-stable up to s = 5.

2. Computing the coefficients is easily possible using the relation A~α = (0, 1, 0, . . . , 0)T for ~α = (α−1, . . . , αs)
T

and matrix A with Aij = − (j−1)i−1

(i−1)! .

3. Obviously, these schemes are implicit.

The so-called extrapolated BDF scheme can be construced to be

s∑
j=−1

αjw
n−j
∆t =

s∑
j=0

∆tβjf(wn−j∆t ).

These schemes are obviously explicit, and so they will constitute the explicit part of IMEX BDF.

Remark 5. Again, the βj fulfill a linear system of equations: ~β = (β0, . . . , βs)
T fulfills B~β = (1, 0, 0, . . . , 0)T

for matrix B with Bij = (−1)i−1 ji−1

(i−1)! .

Based on a splitting of f as in (7) it is obvious to construct the IMEX BDF scheme as

s∑
j=−1

αjw
n−j
∆t = ∆tf̃(wn+1

∆t ) + ∆t
s∑
j=0

βj f̂(wn−j∆t ). (9)

Those schemes are usually indexed by their convergence order s+ 1.

Remark 6. The first-order IMEX scheme ( implicit-explicit Euler)

wn+1
∆t = wn∆t + ∆t

(
f̃(wn+1

∆t ) + f̂(wn∆t)
)

is an IMEX BDF scheme for s = 0.

We are now ready to show the main theorem of this section, namely, that the algorithm is asymptotic
preserving.

4.1. Asymptotic Preserving Property

In this section we want to prove the AP property given in Def. 4.

Theorem 1. The algorithm (9) with RS-IMEX splitting is asymptotic preserving with correct order s+ 1.

Proof. Let wn∆t be expanded in terms of ε as

wn∆t = wn∆t,(0) + εwn∆t,(1) +O(ε2)
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for all n. We assume that start values wj∆t,(0), 0 ≤ j ≤ s are consistent to the right order, i.e., ∆wj∆t,(0) :=

wj∆t,(0) − w(0)(t
j) = O(∆ts+1). Inserting the expansion of wn−j∆t , 0 ≤ j ≤ s into (9) leads to

s∑
j=−1

αjy
n−j
∆t,(0) = ∆tzn+1

∆t,(0) +O(ε),

ε

∆t

s∑
j=−1

αjz
n−j
∆t,(0) = g′(w(0))∆w

n+1
∆t,(0) +

s∑
j=0

βj

(
g(wn−j∆t,(0))− g

′(w(0))∆w
n−j
∆t,(0)

)
+O(ε).

Then the (formal) limit algorithm for ε→ 0 is given by

s∑
j=−1

αjy
n−j
∆t,(0) = ∆tzn+1

∆t,(0), (11a)

0 = g′(w(0))∆w
n+1
∆t,(0) +

s∑
j=0

βj

(
g(wn−j∆t,(0))− g

′(w(0))∆w
n−j
∆t,(0)

)
. (11b)

The first equation can be rewritten as

s∑
j=−1

αjy
n−j
∆t,(0) = ∆tz(0)(t

n+1) + ∆t∆zn+1
∆t,(0).

This means that yn+1
∆t,(0) = y(0)(t

n+1)+O(∆ts+1)+O(∆t∆zn+1
∆t,(0)), which implies that ∆yn+1

∆t,(0) = O(∆t∆zn+1
∆t,(0))+

O(∆ts+1) for all n. Plugging this into (11b) and exploiting recursively ∆wn−j∆t,(0) = O(∆ts+1) implies that

∆zn+1
∆t,(0) = O(∆ts+1).

4.2. Numerical Results

In this section, we show numerical results based on van der Pol equation (see eqs. (1)–(3)) to show that the
performed algorithm works as expected. In the numerical results, error has been computed as the two-norm
of the difference to the solution at end time Tend = 0.5, i.e.,

e∆t := ‖w(Tend)− wN∆t‖2,

where N is such that N∆t = Tend. We usually consider various ε, ranging from ε = 10−1 to 10−7, to show
that the algorithms perform well for both relatively large and small values of ε.

We employ both IMEX BDF 2 and IMEX BDF 4, given by

3

2
wn+1

∆t − 2wn∆t +
1

2
wn−1

∆t = ∆t
(
f̃(wn+1

∆t ) + 2f̂(wn∆t)− f̂(wn−1
∆t )

)
and

25

12
wn+1

∆t − 4wn∆t + 3wn−1
∆t −

4

3
wn−2

∆t +
1

4
wn−3

∆t = ∆t
(
f̃(wn+1

∆t ) + 4f̂(wn∆t)− 6f̂(wn−1
∆t ) + 4f̂(wn−2

∆t )− f̂(wn−3
∆t )

)
respectively.

Obviously, the most straightforward splitting (which, indeed, is usually employed in literature) is to split

as in (6) and treat the ε-dependent part implicitly, i.e., take the stiff part to be
(

0, g(y,z)ε

)T
. We refer

to this splitting as the standard splitting, see also Def. 2. For the RS-IMEX splitting as given in Def. 3,
the reference solution w(0) is computed exactly. Note that this is possible analytically for van der Pol’s
example. In practical cases, however, w(0) (needed in (7)) is not readily available, so one has to compute an
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approximation wapp(0) numerically. This approach, which we call RS-Approximate (or RSApp, for short), has

also been implemented using a BDF discretization (always with corresponding order) of the limit differential
algebraic equation. Initial steps needed for this multistep scheme are computed with a stiff integrator to
extremely high precision.

In Fig. 2, numerical results are shown for IMEX BDF 2, where standard splitting (left), RS-IMEX splitting
(middle) and RSApp are compared. Clearly, one can see that there is no order degradation in any cases.
Furthermore, quantitatively and qualitatively, all plots behave nearly the same. An analogue observation
can be made for IMEX BDF 4, shown in Fig. 3. All BDF schemes converge with their respective order of
two and four uniformly in ε. We believe that the irregularities one can observe for BDF 4 in the lower left
corner are due to cancellation effects, which can indeed be observed also for differential equations that are
not singularly perturbed. These irregularities seem to be even more severe for the standard splitting.
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Figure 2: Convergence results for van der Pol equation for different values of ε, using the BDF 2 scheme
coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0) (middle)
and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we choose

e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.
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Figure 3: Convergence results for van der Pol equation for different values of ε, using the BDF 4 scheme
coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0) (middle)
and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we choose

e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.
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5. IMEX RK

As for BDF schemes, it is also possible to couple implicit and explicit Runge-Kutta methods with the
splitting defined in Def. 3. In the following, we introduce the class of IMEX Runge-Kutta methods. (For a
thorough discussion, we refer to [40] and the references therein.)

Definition 5 (IMEX Runge-Kutta scheme). For every tn+1 = tn + ∆t do the following:

1. (Stages) For i = 1, . . . , s solve

w∆t,i = wn∆t + ∆t
i∑

j=1

Ãi,jkj + ∆t
i−1∑
j=1

Âi,jlj ,

with ki = f̃(w∆t,i, t
n + c̃i∆t) and li = f̂(w∆t,i, t

n + ĉi∆t). (Note that here, the dependence of f̃ and f̂
on t is crucial, see also Rem. 2, which is why we make it explicit.)

2. (Update) Finally evaluate

wn+1
∆t = wn∆t + ∆t

s∑
j=1

b̃jkj + ∆t
s∑
j=1

b̂jlj .

The coefficients of the IMEX RK method are given by two Butcher tableaux, the one with overhats referring
to the explicit, the other to the implicit method.

Remark 7. We only consider IMEX Runge-Kutta schemes of diagonally-implicit type, i.e., the implicit
Butcher matrix Ã is a lower triangular matrix. Order conditions for such type of schemes can be found in
[40].

Remark 8. Example tableaux can be found in A.

In this work, we consider a variety of IMEX Runge-Kutta schemes. We consider both type A [41] and
type CK [30] schemes:

Definition 6. An IMEX Runge-Kutta scheme is

• of type A, if the matrix Ã is invertible.

• of type CK, if the matrix Ã is given by

(
0 0

α̃ Ã

)
for α̃ ∈ Rs−1 and with Ã ∈ R(s−1)×(s−1) invertible.

See also Tbl. 1 for an overview.

c̃ Ã

b̃T
ĉ Â

b̂T

0 0 0

c̃ α̃ Ã

β̃ b̃T

0 0 0

ĉ α̂ Â

β̂ b̂T

Table 1: IMEX RK method of type A (left) and type CK (right). The first tableau of one pair refers to the
implicit part.

The proof that the RS-IMEX splitting is also AP in this context is valid for both type A and type CK
schemes that are in addition both globally stiffly accurate and of diagonally-implicit type.

Definition 7 (Globally Stiffly Accurate). An IMEX RK method is called globally stiffly accurate (GSA) if
Ãs,j = b̃j and Âs,j = b̂j for j = 1, . . . , s.

Corollary 1. For an IMEX RK scheme that is GSA, the update wn+1
∆t is identical to the last stage, i.e.,

wn+1
∆t = w∆t,s.
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5.1. Toward the AP property: Example

To motivate the proof of the AP property, it is insightful to consider a specific IMEX RK method. More
precisely, we consider a three-stage, second-order method taken from [3], named ARS-222. The correspond-
ing Butcher tableaux are given in Tbl. 2. Coupling it to the RS IMEX splitting (see Def. 3 or eq. (8)), one

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

0 0 0 0
γ γ 0 0
1 δ 1-δ 0

δ 1-δ 0

Table 2: ARS-222 IMEX RK scheme with γ = 2−
√

2
2 ≈ 0.293 and δ = 1 − 1

2γ ≈ −0.707. Left: ’Implicit’

tableau, right: ’explicit’ tableau.

can explicitly write it as

y∆t,1 = yn∆t

z∆t,1 = zn∆t

y∆t,2 = yn∆t + γ∆tz∆t,2

z∆t,2 = zn∆t +
γ∆t

ε
g̃(y∆t,2, z∆t,2) +

γ∆t

ε
ĝ(y∆t,1, z∆t,1)

yn+1
∆t ≡ y∆t,3 = yn∆t + (1− γ)∆tz∆t,2 + γ∆tz∆t,3

zn+1
∆t ≡ z∆t,3 = zn∆t +

(1− γ)∆t

ε
g̃(y∆t,2, z∆t,2) +

γ∆t

ε
g̃(y∆t,3, z∆t,3) +

δ∆t

ε
ĝ(y∆t,1, z∆t,1) +

(1− δ)∆t
ε

ĝ(y∆t,2, z∆t,2)

Remark 9. Obviously this scheme is of type CK and it is GSA. Furthermore, it fulfills the condition that
ĉ = c̃ and may also be classified as a type ARS scheme [3], since α̃ = 0.

The first part of an AP proof (see Fig. 1) is to derive the limiting scheme, i.e., to express wn∆t as wn∆t,(0) +

O(ε) and find an expression for wn+1
∆t,(0).

Remark 10. Subscript indices without brackets, such as 1, refer to stages of the Runge-Kutta method.
Subscript indices with brackets, such as (0), refer to terms of the asymptotic expansion.

In a straightforward way, one can deduce the following lemma:

Lemma 1. The limit ARS-222 scheme (coupled to the RS-IMEX splitting) is given by

y∆t,1,(0) = yn∆t,(0)

z∆t,1,(0) = zn∆t,(0)

y∆t,2,(0) = yn∆t,(0) + γ∆tz∆t,2,(0)

0 = g̃(y∆t,2,(0), z∆t,2,(0)) + ĝ(y∆t,1,(0), z∆t,1,(0))

y∆t,3,(0) = yn∆t,(0) + (1− γ)∆tz∆t,2,(0) + γ∆tz∆t,3,(0)

0 = (1− γ)g̃(y∆t,2,(0), z∆t,2,(0)) + γg̃(y∆t,3,(0), z∆t,3,(0)) + δĝ(y∆t,1,(0), z∆t,1,(0)) + (1− δ)ĝ(y∆t,2,(0), z∆t,2,(0))

yn+1
∆t,(0) = y∆t,3,(0), zn+1

∆t,(0) = z∆t,3,(0).

9



The final point one has to show is that the scheme given in La. 1 is a consistent discretization of (5).
(Again, see Fig. 1.) We proceed by showing that the individual stages are consistent. Due to the GSA
property, it then follows directly that the overall algorithm is a consistent discretization of the limit DAE
(5). As a reminder, ∆w denotes w−w(0) and similarly for other quantities. Since we are using exact initial
values (after all this is a consistency analysis) there holds ĝ(y∆t,1, z∆t,1) = 0.

Lemma 2. The limit ARS-222 scheme (coupled to the RS-IMEX splitting) is a consistent approximation
of the DAE (5).

Corollary 2. La. 2 implies that the ARS-222 scheme with splitting as given in Def. 3 is asymptotic pre-
serving (AP).

Proof. (Of La. 2)
Starting with the second stage (since the first stage is equal to the initial conditions) of z, we insert the

RS-IMEX splitting, see Def. 3. To simplify notation, we abbreviate y(0)(t
n + ∆tc̃i) =: yi,(0); note that c̃ = ĉ

in this case. With this being said, one can equivalently rewrite the second stage as

0 = g′(w2,(0))∆w∆t,2,(0) ≡ ∂1g(y2,(0), z2,(0))∆y∆t,2,(0) + ∂2g(y2,(0), z2,(0))∆z∆t,2,(0)

and, because ∂2g 6= 0 (see Sec. 1), one can conclude that

∆z∆t,2,(0) = O(1)∆y∆t,2,(0). (12)

The expression for y∆t,2,(0) can be augmented by z2,(0) − z2,(0) to yield

y∆t,2,(0) = yn∆t,(0) + γ∆t
(
z2,(0) + ∆z∆t,2,(0)

)
.

Subtracting y2,(0) on both sides and inserting the expression (12) for z∆t,2,(0) yields

∆y∆t,2,(0) = yn∆t,(0) + γ∆tz2,(0) − y2,(0) −O(∆t)∆y∆t,2,(0),

which is equivalent to

O(1)∆y∆t,2,(0) = yn∆t,(0) + γ∆tz2,(0) − y2,(0). (13)

The right-hand side of (13) is the consistency error of the implicit Euler discretization of y(0) = z′(0).

Therefore, this term is O(∆t2), and one can conclude that both ∆z∆t,2,(0) and ∆y∆t,2,(0), i.e., ∆w∆t,2,(0), are
also O(∆t2). Before starting to show consistency of the third step, let us note that, because ∆w∆t,2,(0) =
O(∆t2), there holds

g(w∆t,2,(0))− g(w2,(0))− g′(w2,(0))∆w∆t,2,(0) = O(∆t4).

Starting from the second algebraic equation of the limit ARS-222 scheme, there holds

0 = (1− γ)g′(w2,(0))∆w∆t,2,(0) + γg′(w3,(0))∆w∆t,3,(0) + (1− δ)
(
g(w∆t,2,(0))− g(w2,(0))− g′(w2,(0))∆w∆t,2,(0)

)
= (1− δ)g′(w3,(0))∆w∆t,3,(0) +O(∆t2).

Similarly to before, one can conclude that

∆z∆t,3,(0) = O(1)∆y∆t,3,(0) +O(∆t2). (14)

One can rewrite the second stage for y as

y∆t,3,(0) = yn∆t,(0) + (1− γ)∆t(z2,(0) + ∆z∆t,2,(0)) + γ∆t(z3,(0) + ∆z∆t,3,(0)).

10



Collecting ∆z∆t,i,(0) terms and substituting them yields

y∆t,3,(0) = yn∆t,(0)+γ∆tz3,(0) + (1− γ)∆tz2,(0) +O(∆t)∆y∆t,3,(0) +O(∆t2). (15)

Again, the first three terms of the right-hand side of (15) form a discretization of y′(0) = z(0), and therefore,

∆y∆t,3,(0) = O(∆t2),

which, because of (14) implies that also ∆z∆t,3,(0) = O(∆t2). This concludes the proof that the limit
ARS-222 scheme is consistent with the DAE (5).

The ideas presented in this short section are rather general, as they also apply for the more complex case
of type A and type CK methods. In the sequel, we extend the proof to methods of type CK, provided they
are GSA, fulfill ĉ = c̃ and are of diagonally-implicit type.

5.2. The AP property for type CK methods

Before actually starting to prove that type CK methods are AP, we have to introduce some notation first.
In general, an IMEX RK method relies on s stages (see also Def. 5), namely w∆t,1,(0), . . . , w∆t,s,(0). A type
CK method is designed in such a way that the first stage is equal to wn∆t,(0). The following notation is rather
standard in the analysis of IMEX RK methods:

Definition 8 (Notation). The vectors ~y∆t,(0) ∈ Rs−1 and ~z∆t,(0) ∈ Rs−1 denote

~y∆t,(0) :=

y∆t,2,(0)
...

y∆t,s,(0)

 and ~z∆t,(0) :=

z∆t,2,(0)
...

z∆t,s,(0)

 .

Please note that they start at stage two. Similar notation is applied for vectors ~y(0) and ~z(0), where, as seen
in the last paragraph, wi,(0) := w(0)(t

n + ∆tc̃i). In addition, we define

~yn∆t,(0) :=

y
n
∆t,(0)

...
yn∆t,(0)

 ∈ Rs−1.

It is natural and convenient to apply functions g := R× R→ R to such a vector, we define

g(~y∆t,(0), ~z∆t,(0)) :=

g(y∆t,2,(0), z∆t,2,(0))
...

g(y∆t,s,(0), z∆t,s,(0))

 ∈ Rs−1.

As a last rather standard notation, we define diag (~v) of some vector ~v as the diagonal matrix with diagonal
entries ~vi.

With this being said, we can reformulate La. 1 for more general CK methods in the following way. Please
note that we directly exploit the fact wn+1

∆t,(0) = wn+1
∆t,s,(0), see also Cor. 1.

Lemma 3. Let c̃i = ĉi, and let the IMEX RK method (coupled to the RS-IMEX splitting) be of type CK ,
globally stiffly accurate and of diagonally-implicit type. Then, the limit scheme is given by

y∆t,1,(0) = yn∆t,(0), z∆t,1,(0) = zn∆t,(0) (16)

~y∆t,(0) = ~yn∆t,(0) + ∆tÃ~z∆t,(0) + ∆tα̃zn∆t,(0) (17)

0 = Ãg̃(~y∆t,(0), ~z∆t,(0)) + Âĝ(~y∆t,(0), ~z∆t,(0)) + α̃g̃(yn∆t,(0), z
n
∆t,(0)) + α̂ĝ(yn∆t,(0), z

n
∆t,(0)) (18)

yn+1
∆t,(0) = y∆t,s,(0), zn+1

∆t,(0) = z∆t,s,(0). (19)
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It is the goal of this section to prove that IMEX RK methods of type as described in La. 3 are AP. This is
a formal consistency analysis, showing that the limit scheme is consistent with the DAE (5). As is classical
in the theory of ODE integrators [23], one can set initial data to the exact solution of the ODE, and so one
directly obtains that

g̃(yn∆t,(0), z
n
∆t,(0)) = 0 and ĝ(yn∆t,(0), z

n
∆t,(0)) = 0. (20)

Furthermore, g was assumed to be smooth, and ∂2g(·) 6= 0, so

∂1g(w(0))

∂2g(w(0))
= O(1) (21)

holds for every reference solution w(0).

Definition 9 (Stage order). During the proof, we need the minimum stage order of both y and z, and so
we define m > 1 to be such that

∆~y∆t,(0) = O(∆tm) and ∆~z∆t,(0) = O(∆tm). (22)

Remark 11. Def. 9 seems like circular reasoning on first sight, because it is actually that we want to show
m > 1. However, the proceeding is as follows: As we are only using Runge-Kutta methods of diagonally-
implicit type, we can consider the stages subsequently, starting by stage two, showing that it is consistent of
order m, and then proceed to stage three and so on. This is similar to what has been seen in the example
section 5.1, and is a consequence of the fact that with Ã being lower triangular, and Â being even strictly
lower triangular, Ã−1 is also lower triangular, and Ã−1Â is even strictly lower triangular.

Corollary 3. Given that (22) holds, it is straightforward to show that

g(~y∆t,(0), ~z∆t,(0))−diag
(
∂1g(~y(0), ~z(0))

)
∆~y∆t,(0) − diag

(
∂2g(~y(0), ~z(0))

)
∆~z∆t,(0) = O(∆t2·m)

and

diag
(
∂1g(~y(0), ~z(0))

)
∆~y∆t,(0) + diag

(
∂2g(~y(0), ~z(0))

)
∆~z∆t,(0) = O(∆tm).

Theorem 2. Let c̃i = ĉi, and let the IMEX RK method (coupled to the RS-IMEX splitting) be of type CK,
globally stiffly accurate and of diagonally-implicit type. Then, the limit scheme of a type CK GSA method
is a consistent approximation of the DAE (5)

Corollary 4. With the conditions of Thm. 2, the CK Runge-Kutta scheme is asymptotic preserving (AP).

Proof. (Of Thm. 2) We start with the algebraic equation (18), simplify it with the help of Cor. 3 and eqs.
(20) and (8), and rearrange terms such that we get an expression for ∆~z∆t,(0). So

0 =Ã
{

diag
(
∂1g(~y(0), ~z(0))

)
∆~y∆t,(0) + diag

(
∂2g(~y(0), ~z(0))

)
∆~z∆t,(0)

}
+ Â

{
g(~y∆t,(0), ~z∆t,(0))− diag

(
∂1g(~y(0), ~z(0))

)
∆~y∆t,(0) − diag

(
∂2g(~y(0), ~z(0))

)
∆~z∆t,(0)

}
⇒ ∆~z∆t,(0) =O(1)∆~y∆t,(0) +O(∆tm). (23)

Please note that the error in a specific stage only relies on the error in previous stages, see also Rem. 11.
Continuing with the internal stages of ~y∆t,(0), we can use Cor. 3, the previous result and rearrange the

terms to obtain

~y∆t,(0) =~yn∆t,(0) + ∆tÃ
(
~z∆t,(0)

)
+ ∆tα̃

(
~zn(0)

)
=~yn∆t,(0) + ∆t

(
Ã~z(0) + α̃~zn(0)

)
+ ∆tÃ

(
~z∆t,(0) − ~z(0)

)
⇒ O(1)∆~y∆t,(0) =~yn∆t,(0) + ∆t

(
Ã~z(0) + α̃~zn(0)

)
− ~y(0) +O(∆tm+1)
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As in Sec. 5.1, one can observe that the first terms on the right hand side correspond to a discretization
error. More precisely, this is the discretization error of the implicit part of the Runge-Kutta method for
y′ = z(0). Therefore, and due to the definition of minimum stage order, see Def. 9, we observe that this term
is O(∆tm). This yields

∆~y∆t,(0) = O(∆tm).

Using again eq. (23) we also get an error estimate for z,

∆~z∆t,(0) = O(∆tm)

Every internal step is at least as good as an Euler step, and therefore, the minimal stage order is m ≥ 2.
Thus, the error per stage is at least O(∆t2). Because the method is GSA, it follows that

∆wn+1
∆t,(0) = O(∆t2).

This concludes the proof.

There are a couple of remarks in order here:

Remark 12. 1. The proof is not quantitative in the sense that we only prove consistency. Order reduc-
tion as for example observed in [7] can - and in fact will - still appear.

2. The condition ĉi = c̃i is not crucial for the consistency analysis, it just heavily simplifies the proof. In
particular, for type A schemes, where ĉi 6= c̃i in general, Thm. 2 is still valid.

3. What is crucial, though, is the GSA condition, see also Def. 7. It is shown in the numerical results
section that methods violating this property can give rise to unstable schemes in the context of an
RS-IMEX splitting.

Remark 13. The proof shows that, at least in this context, it is important to use the correct reference
solution, i.e., the limit as ε → 0. The proof does not apply to situations where w(0) is substituted by any
other function.

In the sequel, we show numerical findings for a variety of Runge-Kutta methods.

5.3. Numerical results

In this section we show numerical results for van der Pol equation with different IMEX RK discretizations,
and presenting interesting findings. Again, in all the results, we compare standard splitting versus the new
RS-IMEX splitting versus a splitting that uses an approximate version of w(0) (RSApp, for short, see Rem. 15
below). We would like to point out already at this instant that there is hardly any difference between RS-
IMEX and RSApp, but sometimes there is a tremendous difference between the standard splitting and the
RS-IMEX.

Error has been computed as the two-norm of the difference to the solution at end time Tend = 0.5, i.e.,

e∆t := ‖w(Tend)− wN∆t‖2,

where N is such that N∆t = Tend. (This is the same error measure as in Sec. 4 for BDF methods.) We
usually consider various ε, ranging from ε = 10−1 to 10−7, to show that the algorithms perform well for
both relatively large and small values of ε.
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Figure 4: Convergence results for van der Pol equation for different values of ε, using the ARS-222 IMEX
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0)

(middle) and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we

choose e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.

Remark 14. Example tableaux used in the numerical results and an overview can be found in A. We only
use singly diagonally implicit schemes (SDIRK) or explicit singly diagonally implicit schemes (ESDIRK)
schemes for the implicit part. The first one means that Ãii = Ãjj, while the latter one basically means the

same, with the exception that the first stage is treated explicitly, i.e., Ã11 = 0. (See also Def. 6).

As already pointed out in the introduction, solving singularly perturbed equations can actually lead to the
phenomenon of order reduction. This means that for common schemes and ∆t� ε, the formal convergence
order is not achieved. In the numerical results section, we compare different IMEX RK schemes for standard
and RS-IMEX splitting. Again, we use van der Pol equation with both an ’exact’ reference solution w(0) and
an approximate reference solution wapp(0) . The computation of this approximation is explained in the sequel.

Remark 15 (Approximation of wapp(0) ). Using the IMEX scheme as in Def. 5 with the standard splitting

given in (6), allows to take the formal limit as ε → 0. This yields a Runge-Kutta discretization for the
differential-algebraic equation (5). In our numerical experiments, we compute the approximation wapp(0) using
the same Runge-Kutta integrator as in the example considered, with exactly the same time steps. The stages
of the computation of wapp(0) are saved and used in the computation of kj and lj needed in Def. 5. Note that

it does not make sense to use the RS-IMEX splitting for the integration of this DAE (5), because its use
necessitates the knowledge of w(0).

ARS-222 and ARS-443 with RS-IMEX: Work as expected Our point of departure are the ARS-222 and
ARS-443 schemes given in [3], see also the augmented Butcher tableaux in Tbls. 4 and 6. (443 refers to 4
stages implicit, 4 stages explicit, and third order convergence; similarly for 222.) These schemes are GSA in
the sense of Def. 7, and therefore, Thm. 2 applies and the schemes, with RS-IMEX (7) splitting, are AP. In
Figs. 4 and 5, we plot results for the standard splitting (6), the new RS-IMEX splitting and its approximate
version for various ε. It can be observed that the three plots do not show much difference, except that for
ARS-222, RS-IMEX seems to have a slightly lower error. In particular, the order reduction (the non-uniform
convergence as ε gets increasingly small) can be observed for ARS-443 for both the standard splitting and
the RS-IMEX splitting. So far, this is what one would actually expect from our experiences with the IMEX
BDF schemes, where the choice of splittings did hardly have an influence.

BHR-553 with RS-IMEX: Increased stability without update step The BHR-553 (5 stages, third order)
scheme has been explicitly designed in [7] to circumvent order reduction. See Tbl. 8 for the corresponding
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Figure 5: Convergence results for van der Pol equation for different values of ε, using the ARS-443 IMEX
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0)

(middle) and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we

choose e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.
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Figure 6: Convergence results for van der Pol equation for different values of ε, using the BHR-553 IMEX
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0)

(middle) and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we

choose e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.

Butcher tableau. Note however that the scheme is not GSA (see Def. 7) as can be seen from the explicit
tableau. Consequently, it is not covered by our AP analysis in Thm. 2.

In the numerical experiments, see Fig. 6, we can observe uniform third order convergence for both standard
and RS-IMEX splitting. However, it seems that for extremely small values of ε, and ’large’ values of ∆t, the
algorithm becomes unstable for the RS-IMEX, see Fig. 7. This might be due to either cancellation errors or
due to the fact that the scheme is possibly not AP. Curiously, this effect does not show up if one chooses
wn+1

∆t to be w∆t,5, i.e., instead of computing an update, the last stage of the Runge-Kutta method is taken
as new update, see Fig. 7. Additionally, third order is recovered, which is peculiar because the last stage
only has a formal consistency of two.

For schemes that are GSA, where indeed wn+1
∆t = w∆t,s, there can occur some differences due to numerical

roundoff errors. However, unlike in the case of BHR-553, they occur at small ∆t.

BPR-353 and DPA-242 with RS-IMEX: Improved convergence The last paragraph is devoted to BPR-
353 and DPA-242 schemes, presented in [8] and [17], respectively. Corresponding Butcher tableaux can be
found in Tbl. 7 and Tbl. 5. Note that both schemes are GSA in the sense of Def. 7, and therefore Thm.
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Figure 7: Convergence results for van der Pol equation for different values of ε, using the BHR-553 IMEX
RK scheme coupled with the RS-IMEX splitting. Left: Full BHR-553 scheme which obviously
exhibits instabilities (unplotted values are NaN). Right: Neglecting the update step, i.e., setting
wn+1

∆t = w∆t,s. w(0) has been computed analytically. As an error measure, we choose e∆t :=

‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.
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Figure 8: Convergence results for van der Pol equation for different values of ε, using the BPR-353 IMEX
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0)

(middle) and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we

choose e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.

2 applies and the schemes are AP if coupled to the RS-IMEX splitting. Coupled to the standard splitting
(6) on the other hand, it is well-known that these methods exhibit quite severe order loss as can be seen
in Figs. 8 and 9 on the left sides. In particular, for the DPA scheme, this order loss is quite significant.
Coupling both methods to the newly developed RS-IMEX splitting seems to yield uniform convergence in
ε, see Figs. 8 and 9.

Remark 16. We note that we did also test this on the Pareschi-Russo equation [40]

y′ = −z, z′ = y +
sin(y)− z

ε
(24)

showing that the observed phenomenon is not a feature of van der Pol equation.

Up to now, we do not have a solid explanation for this effect, but we conjecture that it is because of the
Taylor series approach employed in (7), that enforces the numerical solution to be close to w(0).
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Figure 9: Convergence results for van der Pol equation for different values of ε, using the DPA-242 IMEX
RK scheme coupled with the standard splitting (left), the RS-IMEX splitting with analytical w(0)

(middle) and the RS-IMEX splitting with approximate wapp(0) (right). As an error measure, we

choose e∆t := ‖w(Tend)− wN∆t‖2 for Tend = 0.5 and N such that Tend = N∆t.

6. Conclusion and outlook

In this publication, we have developed a new splitting based on the reference solution and shown numerical
comparison with the more established standard splitting. We have shown that for IMEX schemes of BDF
type, the influence of the splitting is marginal. In contrast, for IMEX schemes of Runge-Kutta type, the
splitting has indeed a broad influence. We have shown numerical results demonstrating that it is even
possible to obtain faster-converging schemes. For both IMEX BDF and IMEX RK, we showed, under
suitable conditions, that these schemes are AP.

Obviously, in this context, treating van der Pol equation is only an intermediate step. Our actual interest
is in high-order approximation of singularly perturbed conservation laws. The next key step is therefore to
apply the RS-IMEX splitting to the compressible Euler / Navier-Stokes equations. We anticipate that this
will impose more severe problems - although preliminary results [46] already show a satisfactory behavior -
as the discretization of the limit equation will most likely have a much higher influence on the quality and
stability of an overall algorithm. Currently, this is work in progress.
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A. Butcher tableaux

In our numerical results section, we employ the IMEX RK methods shown in Tbl. 3. Note that except BHR-
553, they are GSA (see Def. 7) and are therefore covered by Thm. 2. All schemes are of diagonally-implicit
type.

For the sake of completeness, we show the augmented Butcher tableaux of the employed IMEX RK
schemes. First tableau of each pair refers to the implicit part, i.e., to Ã.
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[14] M. Crouzeix. Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution
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