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A Granular Intrusion Detection System
Using Rough Cognitive Networks

Gonzalo Nápoles, Isel Grau, Rafael Falcon, Rafael Bello
and Koen Vanhoof

Abstract Security in computer networks is an active research field since traditional1

approaches (e.g., access control, encryption, firewalls, etc.) are unable to completely2

protect networks from attacks and malwares. That is why Intrusion Detection Sys-3

tems (IDS) have become an essential component of security infrastructure to detect4

these threats before they inflict widespread damage. Concisely, network intrusion5

detection is essentially a pattern recognition problem in which network traffic pat-6

terns are classified as either normal or abnormal. Several Computational Intelligence7

(CI) methods have been proposed to solve this challenging problem, including fuzzy8

sets, swarm intelligence, artificial neural networks and evolutionary computation.9

Despite the relative success of such methods, the complexity of the classification10

task associated with intrusion detection demands more effective models. On the other11

hand, there are scenarios where identifying abnormal patterns could be a challenge12
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2 G. Nápoles et al.

as the collected data is still permeated with uncertainty. In this chapter, we tackle the13

network intrusion detection problem from a classification angle by using a recently14

proposed granular model named Rough Cognitive Networks (RCN). An RCN is a15

fuzzy cognitive map that leans upon rough set theory to define its topological con-16

structs. An optimization-based learning mechanism for RCNs is also introduced.17

The empirical evidence indicates that the RCN is a suitable approach for detecting18

abnormal traffic patterns in computer networks.19

Keywords Intrusion detection system ⋅ Computational intelligence ⋅ Granular20

computing ⋅ Rough set theory ⋅ Fuzzy cognitive maps ⋅ Rough cognitive networks ⋅21

Harmony search22

1 Introduction23

The 21st century has brought forth a digital age in which we are all immersed.24

Up-and-coming information communication and processing paradigms such as the25

Internet of Things (IoT) [4], Cloud Computing [47], Software-Defined Networks26

[32] and Wearable Computing [25] are increasingly gaining momentum and rapidly27

permeating every facet of mankind. These new architectural frameworks bring a28

unique set of challenges with them, among which cybersecurity is one of para-29

mount importance. The computer systems that constitute the backbone of critical30

infrastructure behind a plethora of industrial and societal processes often become31

prey to sophisticated malicious attacks that originate at any node in the entangled32

World Wide Web. As a result, governments and businesses are adapting their leg-33

islative bodies to account for the prevention, detection and mitigation of the risks34

and threats associated with these potentially devastating attacks [39].35

Intrusion Detection Systems (IDS) [43] have become an essential component of36

security infrastructure to detect these threats before they inflict widespread dam-37

age, since traditional approaches (e.g., access control, encryption, firewalls, etc.) are38

unable to completely protect networks from attacks and malwares. The purpose of an39

IDS is to analyze the network traffic, either the incoming one or existing logs of past40

traffic activities, and identify anomalous behaviours that could reasonably be taken41

as cues of the presence of an intruder in the system. Concisely described, network42

intrusion detection is essentially a pattern recognition problem in which network43

traffic patterns are classified as either normal or abnormal.44

Although traditional statistical techniques have enjoyed success in analyzing traf-45

fic flows as part of an IDS operation, the network security research community is46

increasingly leaning on Computational Intelligence (CI) solutions due to their ability47

to adapt to complex environments, handle noise and uncertainty and remain compu-48

tationally tractable and robust.49

More recently, the advent of Granular Computing (GrC) [6, 26, 52] as an innov-50

ative information representation and processing framework has largely influenced51

the way CI systems are being conceived nowadays. This is due to the fact that52
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A Granular Intrusion Detection System Using Rough Cognitive Networks 3

GrC provides reasoning constructs at higher levels of abstraction that better capture53

human understanding of the real world. From classification [55] to clustering [51],54

time-series prediction [72] and decision making [50], granular models are becom-55

ing prominent tools for the analysis of large volumes of data as they operate upon56

information granules (i.e., constructs of order higher than plain numeric or symbolic57

atoms) and can better represent and manifest the dynamics of human-centric world58

modeling.59

In this chapter, we tackle network intrusion detection via a GrC model and demon-60

strate its advantages over several traditional classification schemes. Our study makes61

the following contributions: (1) we model network intrusion detection as a classifi-62

cation problem and apply a recently introduced granular model, named “Rough Cog-63

nitive Network”(RCN), to the analysis of archived traffic data in computer networks64

for intrusion detection purposes; (2) we put forth a learning mechanism for RCNs65

that is based on self-adaptive Harmony Search [44]; (3) we empirically evaluate the66

RCN performance in conjunction with that of seven well-established classifiers in67

the literature. The experimental evidence confirms that RCNs are a plausible model68

to discriminate between normal and abnormal traffic patterns in network data as it69

attains high detection rates (i.e., successfully identified abnormalities) and low false70

negative rates (misidentified anomalies).71

The rest of this chapter is structured as follows. Section 2 briefly surveys relevant72

works in intrusion detection systems, with special emphasis on CI-based solutions.73

Section 3 elaborates on the two precursor formalisms leading up to RCNs: rough set74

theory (RST) and fuzzy cognitive maps (FCMs). Then, the RCN topology learning75

and classification inference process are dissected in Sect. 4 while Sect. 5 describes76

the proposed optimization-based RCN parameter learning method. The experimen-77

tal analysis is unveiled in Sect. 6 before conclusions and future work directions are78

outlined in Sect. 7.79

2 Related Work80

In this section, we briefly review several published works that are relevant to our81

study. They provide the necessary background to understand the contents of this82

chapter.83

2.1 Intrusion Detection Systems84

The literature in the IDS arena is quite vast. This field appears often interwoven85

with other similar terms such as “network anomaly detection” or “network intrusion86

detection” and the common underlying problem has been addressed through a myriad87

of techniques. In a recent and comprehensive survey [8] covering publications in88

this field from 2000 to 2012, 28 % of the papers surveyed approached IDS from89
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4 G. Nápoles et al.

a supervised learning angle (i.e., classification), as we do in this chapter. However,90

unsupervised learning (via clustering) was the preferred choice of 21 % of the papers91

given that labeled data could be scarce and/or difficult to access in certain cases92

where privacy concerns impede the sharing of such information.93

The statistical methods and systems applied to intrusion detection [45, 61, 66,94

79] first construct a general statistic model of the observed traffic data, either via95

parametric techniques (which assume the knowledge of the type of probability96

distribution is available and then try to learn their parameters) or by means of non-97

parametric techniques, which do not lay any assumption on the type of the data98

distribution. Once this model has been fitted to the data, any point (traffic pat-99

tern) with low probability of having been generated by the underlying data model100

is labeled as an outlier and hence flagged as suspicious.101

The use of computational intelligence methods in the IDS realm has been well102

documented in the 2010 survey compiled by Wu and Banzhaf [73]. Artificial neural103

networks (ANNs) [11, 40, 67, 78, 81], fuzzy sets [16, 21, 29, 68], evolutionary com-104

putation [5, 18, 24, 31, 38, 57–59], artificial immune systems (AIS) [70, 75], fuzzy105

cognitive maps [62–64, 74, 83], rough sets [2, 13, 14] and swarm intelligence (SI)106

[19, 20, 29] techniques, all representative methods of the wider CI/Soft Computing107

(SC) family, and their hybrids [15, 22, 63, 64, 74] have all been wielded against108

complex network traffic datasets to identify attack vectors or suspicious activities109

either in a supervised or unsupervised fashion.110

2.2 Rough Set Theory in Network Security111

Rough sets and fuzzy cognitive maps have been independently applied to network112

intrusion detection [8, 73], although the number of reported works thus far is not sig-113

nificant compared to the volume of documented applications of other CI techniques.114

Chen et al. [13] employ rough set theory in the preprocessing stage of their pro-115

posed network intrusion detection scheme in order to remove irrelevant attributes116

prior to the operation of the Support Vector Machine (SVM)-based classifier. A117

similar use (attribute dimensionality reduction) is evoked by Li and Zhao with their118

Fuzzy SVM [41] and by Zhang et al. in the context of their Artificial Immune System119

(AIS)-based technique [82], where the number of attributes that describe an antibody120

is shortened using the lower and upper approximations of each rough concept. Shri-121

vastava and Jain [60] also boost the network traffic classification power of their SVM122

via rough-set-based feature selection by dropping 35 irrelevant attributes out of 41123

initially gathered to describe the traffic flows in their system. An analogous ratio-124

nale is pursued by Sivaranjanadevi et al. in their work [65] and by Poongothai and125

Duraiswamy in [53].126
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A Granular Intrusion Detection System Using Rough Cognitive Networks 5

Fuzzy and rough sets are integrated into a partitive clustering engine in [14] to127

address network intrusion detection from an unsupervised perspective; the proposed128

clustering method yielded superior results compared to other classical unsupervised129

techniques.130

Finally, rough sets are used in [2] to induce classification rules via the LEM2131

algorithm so as to create a potent classifier capable of detecting network intrusions132

with high detection rate and low false alarm rate. The classification results of LEM2133

are found to be more interpretable and can be obtained in a shorter time than those134

of the K-nearest neighbor classifier, which are more accurate yet more resource-135

demanding.136

2.3 Fuzzy Cognitive Maps in Network Security137

Xin et al. [74] derive fuzzy features from the network data and pass them on to a138

fuzzy cognitive map (FCM) in order to model more complex attack vectors.139

Siraj et al. [63] used FCM and fuzzy rule bases to model causal knowledge140

among different intrusion variables in an interpretable fashion. Suspicious events141

are mapped to nodes in FCM, which function as neurons that trigger alerts with dif-142

ferent weights depicting on the causal relations between them. So, an alert value for a143

particular machine or a user is calculated as a function of all the activated suspicious144

events at a given time. This value reflects the safety level of that machine or user at145

that time.146

Siraj et al. [64] chose FCMs and fuzzy rule bases as the vehicles for causal knowl-147

edge acquisition within the decision engine of an intelligent IDS deployed at the148

Mississipi State University. The system fuses information from a variety of intru-149

sion detection sensors. In particular, the FCMs are used at two levels: (i) to model150

individual suspicious events such as ‘high login failure’ or ‘SYN flood’ and (ii) to151

ascertain the overall impact of various suspicious events (input concepts) for each152

host computer and system user (output concepts).153

Afterwards, Siraj and Vaughn [62] also leaned upon FCMs to cluster network154

intrusion alerts based on discovered similarities among the raw features extracted155

from sensor data. The FCM is thus acting as a fusion machine where intrusion evi-156

dence for a particular network resource that originates at different clusters is amal-157

gamated.158

Zhong et al. [83] consider a distributed attack scenario and resort to an FCM to159

describe the entities that are part of it as well as their relationships.160

The study authored by Jazzar and Bin Jantan [27] focuses on IDS designed around161

the Self Organizing Map (SOM) neural network given its ability to process large vol-162

umes of data with low computational overhead. Having realized that these systems163

still exhibit a high false alarm rate, they coupled the SOM with an FCM in order164

to refine the clustering performed by the former approached. The FCM’s role is to165

calculate the relevance of odd concepts (neurons) to a network attack. By doing so,166
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6 G. Nápoles et al.

irrelevant concepts can be left out and other concepts may come to the forefront of167

the intrusion analysis.168

Krichene and Boudriga [37] devised a methodology to automatically determine169

responses to security incidents. The underlying formalism that allows attack identifi-170

cation, complexity reduction and response elicitation is termed an incident response171

probabilistic cognitive map. These maps differ from traditional FCMs in that they are172

capable of modeling different relationships between symptoms, actions and unautho-173

rized results as pertaining to a network attack. A function that enables the identifi-174

cation of those concepts that are tied to a set of events is also part of the proposed175

scheme. The authors illustrate their proposal on a real-world denial of service (DoS)176

attack against a web server.177

Zaghdoud and Al-Kahtani [80] bring forth a multi-layered architecture for intru-178

sion detection and response. They employ an FCM to gauge the impact of a con-179

firmed intrusion event belonging to a known class upon the compromised system.180

The FCM nodes represent components of the computer network system or security181

concepts whereas the edges symbolize the influence exercised by one component182

upon another; these influences must be carefully taken into consideration now that a183

network intrusion has been confirmed.184

2.4 Discussion185

Our proposed granular classifier, the Rough Cognitive Network, borrows from both186

aforementioned techniques: RST and FCM; however, their synergy is dictated by a187

topological arrangement of the FCM nodes into symbolic and higher-order informa-188

tion granules, the latter of which correspond to the three RST-based regions (posi-189

tive, boundary, negative) of the decision concepts (classes) induced by a similarity190

relationship over the set of input attributes in the data set under consideration. To the191

best of our knowledge, this hybridization scheme is completely different from previ-192

ous efforts to combine both methodologies, and so is certainly the RCN application193

to the IDS domain.194

3 The Forerunners of Rough Cognitive Networks195

As mentioned before, in this paper we design an IDS which uses an RCN for detecting196

potentially atypical (and likely dangerous) patterns. One could briefly define an RCN197

as a Sigmoid Fuzzy Cognitive Map where concepts represent granules of informa-198

tion. In this section, we summarize the mathematical underpinnings behind Rough199

Set Theory and Fuzzy Cognitive Maps, which are the two core building blocks of200

the granular model proposed in this chapter.201
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A Granular Intrusion Detection System Using Rough Cognitive Networks 7

3.1 Rough Set Theory202

Rough Set Theory (RST) is a robust and mature theory for handling uncertainty203

in the form of inconsistency in the data [1, 49]. The RST framework employs two204

exact set approximations to describe a generic or real-world concept. Let us assume205

a decision system S = (U,A ∪ d), where U is a non-empty finite set of objects called206

the universe, A is a non-empty finite set of attributes, while d ∉ A denotes the deci-207

sion attribute. Any subset X ⊆ U can be approximated by two crisp sets: the lower208

and upper approximations. These sets are defined as B∗X = x ∈ U ∶ [x]B ⊆ X and209

B∗X = x ∈ U ∶ [x]B ∩ X ≠ ∅ where the equivalence class [x]B comprises the set of210

inseparable objects associated to the target instance x that are described using B ⊆ A.211

Based on the lower and upper approximations, we can compute the positive,212

negative and boundary regions of any concept X. The positive region POS(X) =213

B∗X includes those objects that are certainly contained in X; the negative region214

NEG(X) = U − B∗X involves those objects that are certainly not contained in X,215

whereas the boundary region BND(X) = B∗X − B∗X represents the objects whose216

membership to the set X is uncertain, i.e., they might be members of X. These217

regions are in fact information granules and provide a valuable knowledge when218

facing decision-making or pattern classification problems.219

Based on the positive, negative and boundary regions, Yao [76] defined two types220

of rules: deterministic decision rules for the positive region and undeterministic deci-221

sion rules for the boundary region. More recently Yao [77] introduced the three-way222

decisions model. Rules constructed from the three regions are associated with dif-223

ferent actions [23]. A positive rule suggests a decision of acceptance, a negative rule224

makes a decision of rejection and a boundary rule implies a decision of abstaining.225

The three-way decisions play an important role in decision-making problems [42].226

In the classical RST formulation, the indiscernibility relation is defined as an227

equivalence relation; hence, two objects will be inseparable if they are identical with228

respect to a set of attributes B ⊆ A. The equivalence relation R induces a partition of229

the universe U on the basis of the attributes in B. However, this definition is extremely230

strict. For example, a decision system with millions of objects will be categorized231

as inconsistent if two objects are equivalent but they have different decision classes232

(i.e., two experts might have different perceptions about the same observation). But233

are two objects really significant in a universe comprised of millions of objects?234

To counter the above stringent definition, the equivalence requirement on R is235

relaxed. In fact, if we adopt a “weaker” inseparability relation then we could tackle236

problems having numerical (or mixed) attributes. Two inseparable objects, according237

to some similarity relationship R, will be tossed together in the same set of not identi-238

cal (but reasonably similar) instances. Equation 1 shows the indiscernibility relation239

adopted in this paper, where 0 ≤ 𝜑(x, y) ≤ 1 is a similarity function. This binary rela-240

tion determines whether two objects x and y are inseparable or not (i.e., as long as241

their similarity degree 𝜑(x, y) is greater than or equal to a user-specified threshold 𝜉).
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8 G. Nápoles et al.

Despite the clear advantages of using this approach to cope with problems having242

numerical features, selecting the correct value for the similarity threshold 𝜉 could be243

a challenge.244

R ∶ yRx ⇔ 𝜑(x, y) ≥ 𝜉. (1)245

If the threshold 𝜉 = 1 then the similarity relation R will be reflexive, transitive246

and symmetric, leading to Pawlak’s model for discrete (nominal) domains. If 𝜉 < 1247

then the similarity relation will be reflexive and symmetric but not transitive.248

Another aspect to be considered when designing a similarity relation is the ade-249

quate selection of the similarity function. Equation 2 shows a variant which combines250

both numerical and categorical attributes. It provides a more general formulation for251

addressing decision-making problems having different features.252

𝜑(x, y) = 1
|A|

|A|∑

i=1
𝜔i𝛿(x(i), y(i)). (2)253

In the above equation, A is the set of features describing the problem, 0 ≤ 𝜔i ≤ 1254

represents the relative importance of the ith attribute, x(i) and y(i) denote the val-255

ues of the ith attribute associated with the objects x and y respectively, and 𝛿 is the256

attribute-wise similarity function. The greater 0 ≤ 𝜑(x, y) ≤ 1, the more similar the257

objects x and y. Equations 3 and 4 display the attribute-wise similarity functions258

adopted in this research study. The function 𝛿1 is used when we want to compare259

two values of a discrete attribute, whereas 𝛿2 is used for comparing two values of a260

numerical attribute (Li and Hi denote the lowest and highest value of the ith attribute,261

respectively).262

𝛿1(x(i), y(i)) =
{

1, x(i) = y(i)
0, x(i) ≠ y(i) . (3)263

264

𝛿2(x(i), y(i)) = 1 −
|x(i) − y(i)|

Hi − Li
. (4)265

Equations 5 and 6 respectively formalize how to compute the lower and upper266

approximations of a concept X, where R(x) denotes the similarity class of the object267

x. These exact sets are the basis for granulating the available information about the268

concept using RST, and they become the core of Granular Fuzzy Cognitive Maps269

[48].270

B∗X = {x ∈ U ∶ R(x) ⊆ X}. (5)271

272

B∗X =
⋃

x∈X
R(x). (6)273

As a result, an object can simultaneously belong to multiple similarity classes,274

so the covering induced by the similarity relation R over the universe U is not nec-275

essarily a partition [7]. Therefore, similarity relations do not induce a partition of276
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A Granular Intrusion Detection System Using Rough Cognitive Networks 9

the universe, but rather generate similarity classes. It suggests that an object could277

simultaneously belong to different similarity classes, and consequently the instance278

x could activate several granular regions. In such cases, the decision-making stage279

becomes really difficult for the expert, since it has to consider non-trivial decision280

patterns.281

3.2 Fuzzy Cognitive Maps282

Fuzzy Cognitive Maps (FCM) are recurrent neural networks for modeling and simu-283

lation [34] consisting of concepts and their causal relations. Concepts are equivalent284

to neurons denoting objects, variables, or entities related to the system under inves-285

tigation whereas the weights associated with the connections among neurons denote286

the strength of the causality among such nodes. It should be highlighted that causal287

relations are quantified in the range [−1; 1]. This value is the result of the numerical288

evaluation of a fuzzy linguistic variable, which is usually assigned by experts during289

the modeling phase [36]. The activation value of the neurons is also fuzzy in nature290

and regularly takes values in the range [0; 1] although the interval [−1; 1] is used291

too. The magnitude of the activation is also meaningful for the model: the higher the292

activation value of a map concept, the stronger its influence over the system under293

consideration.294

Equation 7 mathematically formalizes the rule for updating the activation value of295

concepts in an FCM, assuming A0
is the initial configuration. This rule is iteratively296

repeated until a fixed point attractor or a maximum number of iterations T is reached.297

At each step t a new state vector is produced, and after a large enough number of298

iterations, the map will arrive at one of the following states: (i) fixed equilibrium299

point, (ii) limited cycle or (iii) chaotic behavior [35]. If the FCM reaches a fixed-300

point attractor, then we can conclude that the map has converged. In such cases,301

the final output corresponds to the desired state (i.e., the system response for the302

activation vector).303

At+1
i = f (

M∑

j=1
wjiAt

j + wiiAt
i), i ≠ j. (7)304

In the above equation f (.) represents a monotonically non-decreasing nonlinear305

function which is used for transforming the activation value of each concept (the306

weighted combination of the activation levels). The most used functions are: the307

bivalent function, the trivalent function, and sigmoid variants [10]. In this paper we308

will focus on sigmoid functions since it has been shown that they exhibit superior309

prediction capabilities [10].310
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10 G. Nápoles et al.

4 Rough Cognitive Networks311

Rough Cognitive Networks (RCNs) [48] are an extension of three-way decision rules312

introduced by Yao [76]. In a nutshell, we can define an RCN as a sigmoid FCM where313

concepts denote information granules, namely, the RST-derived positive, boundary314

and negative regions of the original problem as well as the set of decision classes in315

the problem at hand.316

The RCN methodology not just allows solving mixed-attribute problems, but also317

provides accurate inferences since it uses a recurrent inferential process to converge318

to a stable attractor, which comprises the most fitting decision class. It should be319

pointed out that the complexity of this model does not depend on the number of320

attributes in the decision system, but on the number of decision classes. In this321

section, we explain how to learn an RCN from data. Furthermore, we introduce a322

supervised learning algorithm for computing the required RCN parameters, which323

enhances the value of our proposal.324

4.1 Information Granulation and Network Design325

As mentioned before, a central aspect when designing an RCN is the process related326

to the construction of positive, negative and boundary regions. Let us assume a pat-327

tern classification problem and a partition X = X1,… ,Xk,… ,XN of the universe328

U according to the decision attribute, where each subset Xk denotes a decision329

class and comprises all instances labeled as dk. These information granules will be330

expressed as map concepts. More precisely, input concepts denote positive, negative331

and boundary regions associated with each subset Xk; they are subsequently used for332

activating the network.333

In the RCN model, the output neurons do not influence other neurons since they334

are target concepts. Once the FCM inference process is done (this point will be335

clarified next), the activation degree of each output concept (decision class) will be336

gauged. After the map concepts are defined, we establish causal connections among337

such neurons, where the direction and intensity of the causal weights are computed338

according to the set of rules below:339

∙ R1 ∶ IF Ci is Pk AND Cj is dk THEN wij = 1.0.340

341

∙ R2 ∶ IF Ci is Pk AND Cj is d(v≠k) THEN wij = −1.0.342

343

∙ R3 ∶ IF Ci is Pk AND Cj is P(v≠k) THEN wij = −1.0.344

345

∙ R4 ∶ IF Ci is Nk AND Cj is dk THEN wij = −1.0.346

In the above rules, Ci and Cj denote two map concepts, Pk and Nk are the positive347

and negative region for the kth decision respectively, whereas −1 ≤ wij ≤ 1 is the348
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A Granular Intrusion Detection System Using Rough Cognitive Networks 11

causal weight between the cause Ci and the effect Cj. More precisely, rules R1 and349

R2 define the relation between positive regions and decision neurons. If the positive350

region Pk is activated (rule 1), then the decision dk must be stimulated as well, since351

we confidently know that objects belonging to the positive region Pk will be cate-352

gorically members of the concept Xk. Accordingly, decisions d(v≠k) must be inhibited353

(rule 2) because an object cannot simultaneously belong to different positive regions.354

The third rule follows an analogous reasoning: if a positive region Pk is activated355

then positive regions unrelated to the decision dk (i.e., P(v≠ k)) will be inhibited. If the356

negative region Nk is activated (rule 4), then the map will inhibit the decision, but357

we cannot conclude anything about other decisions. Moreover, we incorporated an358

additional rule for handling the intrinsic knowledge concerning the RST boundary359

regions:360

∙ R5 ∶ IF Ci is Bk AND Cj is dv AND (BND(Xk) ∩ BND(Xv) ≠ ∅) THEN wij = 0.5.361

Observe that not all boundary regions are included in the RCN’s topology. This362

is dictated by the learning procedure on the training data: if a boundary region is363

empty (BND(Xk) = ∅) then the neuron Bk will be removed from the modeling in364

order to simplify the network topology. On the other hand, we need to establish causal365

links between each boundary neuron and decision classes involving some degree of366

uncertainty; otherwise the causal connection will be removed from the map as well.367

The above topology construction scheme implies that an RCN for a problem with368

|D| decision classes will have at most 3|D| input neurons (assuming all boundary369

regions are in), |D| decision (output) neurons and 3|D|(1 + |D|) causal relations.370

Additionally, for each neuron we add a self-reinforcement connection with causality371

wii = 1 which partially preserves the initial excitation.372

4.2 Inference Using Rough Cognitive Networks373

The final phase concerns the network exploitation, where the activation value of374

input and decision concepts play a pivotal role. In this scheme, to classify a test375

instance Oi, first the excitation vector Ai will be calculated using the similarity class376

R(Oi) and its relation to each RST-based region. For instance, let us assume that377

|POS(X1)| = 20, |R(Oi)| = 10, whereas the number of objects that belong to the pos-378

itive region is given by the expression: |R(Oi) ∩ POS(Xk)| = 7. This implies that the379

activation degree of the neuron P1 is 7∕20 = 0.35. It denotes the conditional prob-380

ability of accepting d1 given the similarity class R(Oi), that is Pr(dk|R(Oi)). Analo-381

gously, we can compute the activation degree of other input concepts related to each382

decision class. Rules R6 − R8 formalize this procedure as follows:383

∙ R6 ∶ IF Ci is Pk THEN A0
i = |R(Oi)∩POS(Xk)|

|POS(Xk)|
.384

∙ R7 ∶ IF Ci is Nk THEN A0
i = |R(Oi)∩NEG(Xk)|

|NEG(Xk)|
.385

∙ R8 ∶ IF Ci is Bk THEN A0
i = |R(Oi)∩BND(Xk)|

|BND(Xk)|
.386
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12 G. Nápoles et al.

Once the activation vector A0
has been computed, we trigger the FCM inference387

rule until a fixed point attractor, or a maximal number of iterations T is reached. This388

process will stress a pattern using the similarity class of the instance Oi to do that,389

which is desirable in problems with insufficient positive evidence where selecting390

the proper class could be difficult. Afterward one can use the output vector for mak-391

ing a decision (e.g., we can sort the alternatives according to the preference degrees392

calculated by the map inference process). When dealing with pattern classification393

problems, the final output will be the concept having the highest activation, or alter-394

natively it could be a random class if the input similarity class only activates negative395

and/or boundary regions.396

5 Learning Methodology for Rough Cognitive Networks397

As mentioned before, the basis for computing the set of positive, negative and bound-398

ary regions is the proper estimation of the similarity threshold 𝜉 in Eq. 1. If this value399

is too small then positive regions will be small as well, leading to poor excitation of400

neurons. This step is quite important when selecting the most adequate decision: the401

higher the activation of the positive region, the more desirable the decision (although402

the model will compute the final decision taking into account all the evidence). If this403

threshold 𝜉 is excessively large then boundary regions will be large, thus increasing404

the uncertainty.405

In this section, we present a learning algorithm for tuning the model parameters,406

which is based on the Harmony Search (HS) metaheuristic [44]. The method needs407

to adjust two kinds of parameters: the weight 𝜔i of each attribute and the similarity408

threshold 𝜉. This approach leads to a numerical optimization problem with |A| + 1409

variables and will be solved using an adaptive variant of the HS procedure.410

The HS metaheuristic is a simple-trajectory search method, which only evaluates411

one potential solution at a time, instead of evaluating a set of potential solutions (as412

it occurs with population-based metaheuristics). This HS design choice is relevant413

for our learning methodology since evaluating a solution means computing the set414

of lower and upper approximations, which could be computationally expensive as415

the number of objects in the training data set increase.416

During the optimization phase, the algorithm randomly creates a harmony mem-417

ory with size HMS and iteratively improves a new harmony from the HM. If the418

improved harmony is better than the worst harmony in the HM, then the new solu-419

tion replaces the worst harmony. Despite its algorithmic simplicity, HS suffers from420

a serious problem common to other metaheuristics: its search capabilities are quite421

sensitive to the specified parameter vector.422

For this reason in this paper we adopt an improved variant, called Self-adaptive423

Harmony Search (SHS), which is capable of adjusting its own parameters [71].424

The SHS method not only alleviates the parametric sensitivity issue, but also sig-425

nificantly enhances the accuracy of the solutions. Algorithm 1 shows the pseudo-426

code of this metaheuristic, where N is the maximal number of iterations, HMCR427
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A Granular Intrusion Detection System Using Rough Cognitive Networks 13

(Harmony Memory Consideration Rate) is a parameter that controls the balance428

between exploitations and exploration, while R1 = U − x and R2 = x − L, assuming429

that L and U respectively denote the lowest and the highest values for each problem430

variable in the harmony memory.431

On the other hand, PAR is the pitch adjustment rate and determines whether fur-432

ther adjustment is required to a harmony drawn from the harmony memory. In this433

variant, the PAR factor is linearly decreased over time. Experiments reported by the434

authors [71] suggested that moderate size of the harmony memory (e.g., 50) and435

large values of HMCR (e.g., 0.9) are adequate choices for these parameters. Based436

on these considerations, we used these values during the experiments and simula-437

tions performed in the next section. The rand() function draws a random number438

uniformly distributed in the unit interval.439

440

Algorithm 1. Self-adaptive Harmony Search441

Initialize the memory442

FOR i = 1 TO N DO443

IF rand() < HMCR THEN444

Select a random pitch x from the memory445

IF rand() < PAR THEN446

x = x + rand(R1,R2)447

END448

ELSE449

x = x + rand(a, b)450

END451

Select the worst harmony y from the memory452

IF (y is worse than x) THEN453

Replace the worst harmony y with the new pitch x454

END455

END456

Select the best solution S from the memory457

RETURN S458

459

The other component of the optimization problem to be specified is the objective460

function. Equation 8 shows the function G(.) used in this study, where the parameters461

denote the set of weights W, the similarity threshold 𝜉 and the set of instances 𝜙 to462

be used for training the model, respectively. On the other hand, ℵR(W,𝜉)(x) is the463

output vector computed by the RCN which is obtained from the similarity threshold464

defined by the function R(W, 𝜉), whereas the function Y(x) is the known class vector465

associated with the instance x and D is the set of decision classes in the problem. It466

should be also mentioned that ‖.‖L refers to a norm (e.g., the L1-norm, L2-norm or467

L∞-norm) that is used to calculate the error.468

minimize G(W, 𝜉, 𝜙) =
∑

x∈𝜙

‖ℵR(W,𝜉)(x) − Y(x)‖L

|𝜙||D|
. (8)469
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14 G. Nápoles et al.

If G(W, 𝜉, 𝜙) = 0 then the RCN, using the similarity relation R, is capable of470

recognizing all patterns stored in the training set; otherwise the value 1 − G(W, 𝜉, 𝜙)471

stands for the model accuracy. The proposed parameter tuning method not only esti-472

mates the introduced parameters, but also allows determining the relevance of each473

attribute, which contributes to elicit further knowledge about the problem.474

6 Detecting Intrusion in Computer Networks475

In this section we study the performance of the proposed granular cognitive network476

for detecting abnormal traffic behavior in computer networks. As mentioned before,477

this problem can be envisioned as a challenging pattern classification task having two478

decision classes: either ‘normal’ or ‘abnormal’. In order to perform our simulations,479

we used an improved variant of the NSL-KDD dataset [17] which is a widely used480

benchmark when testing IDS [19, 22, 23]. In the following section, we summarize481

the most important features of both training and testing NSL-KDD datasets.482

6.1 Description of the NSL-KDD Dataset483

Perhaps the most popular dataset for evaluating the performance of anomaly detec-484

tion models is KDD’99 [30]. The KDD training dataset consists of 4,900,000 net-485

work connection vectors, each of which contains 41 features. Such features could486

be gathered in three groups: (i) basic features, (ii) traffic features and (iii) content487

features.488

The first group comprises attributes extracted from a TCP/IP connection, whereas489

the second one includes time-based features computed in a window interval (e.g.,490

connections in the past 2 s having the same destination host or the same service491

as the current connection). It should be stated that there are several slow-probing492

attacks that scan the ports using a much larger time interval than 2 s and accordingly493

these attacks will not produce any intrusion patterns. Finally, the third group contains494

features related to attacks having a single connection, which do not have intrusion495

frequent sequential patterns. In such cases, attacks are embedded in the data por-496

tions of packets, hence forcing the Intrusion Detection System to catch suspicious497

behavior in the data portion (e.g., number of failed login attempts) instead of in the498

connections.499

On the other hand, in the training set each record is labeled as either “normal”500

or “abnormal” with exactly one specific attack type (i.e., Probing Attack, Denial of501

Service Attack, User to Root Attack and Remote to Local Attack).502

It is essential to mention that the KDD’99 dataset was built based on the data503

captured in DARPA’98 which has been criticized by McHugh [46]. It suggests that504

some of the existing problems in the dataset DARPA’98 remain in KDD’99. More505

recently, Tavallaee and collaborators [69] conducted a statistical analysis where two506
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A Granular Intrusion Detection System Using Rough Cognitive Networks 15

important issues were detected. The first important deficiency in the KDD’99 dataset507

is the huge number of redundant records (78 and 75 % of records are duplicated in508

the train and test set, respectively). Consequently, this will cause learning algorithms509

to be biased towards the more frequent records. As a second issue they noticed that510

this dataset has poor difficulty level: about 98 % of the records in the train set and511

86 % of the records in the test set were correctly classified with 21 learned machines512

(7 learners, each trained 3 times with different training sets).513

To solve the aforementioned issues, Tavallaee et al. [69] removed all the redun-514

dant records in both train and test sets. Moreover, they randomly sampled correctly515

classified records in such a way that the number of selected instances from each516

difficulty level group is inversely proportional to the percentage of records in the517

original dataset. This refinement process gave rise to two improved datasets called518

KDDTrain+ and KDDTest+ which include 125,973 and 22,544 records, respec-519

tively. As well, they created another test set called KDDTest-21 by removing the520

records that were correctly classified by all 21 learners. This dataset contains 11,850521

records, which are more difficult to classify. Because of its increasing popularity and522

sound verification procedure, we adopted Tavallaee et al’s data sets for our experi-523

mentation.524

6.2 Numerical Simulations525

Next we study the behavior of RCN across the selected dataset. Figure 1 displays526

the network topology that allows solving the prediction problem (i.e., where each527

Fig. 1 The proposed Rough Cognitive Network for intrusion detection. The d1 concept corre-

sponds to the normal traffic class and the d2 concept represents the abnormal traffic class. The Pi,

Bi and Ni nodes denote the positive, boundary and negative regions for these two classes, i ∈ {1, 2}
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16 G. Nápoles et al.

instance is classified as either “normal” or “abnormal”). More exactly, d1 = “nor-528

mal”, d2 = “abnormal”, Pi denotes the positive region associated to the ith class, Ni529

is the negative region related to the ith class while Bi is the ith boundary region. Note530

that boundary concepts are allowed regardless of the inconsistency of the features in531

the target problem because only two decision classes are possible. More explicitly,532

if the problem has inconsistent instances, then both classes will be equally affected;533

otherwise, the activation value of the (empty) boundary regions will remain inactive534

during the inference process.535

6.2.1 Comparison with Traditional Classifiers Over KDDTest+536

The first experiment consists of studying the prediction ability of our model regard-537

ing the following set of traditional classifiers: J48 decision tree [54], NBTree [33],538

Random Forest [9], Random Tree [3], Multilayer Perceptron [56], Naive Bayes [28],539

and Support Vector Machine [12]. For experimental purposes, we adopted the first540

20 % of the records in KDDTrain+ for training all models. Figure 2a summarizes541

the accuracy achieved for each learner, whereas Fig. 2b displays some representative542

samples of the solution space associated with the similarity threshold to be explored543

by the learning algorithm. In other words, Fig. 2b illustrates the performance of our544

granular network for different similarity thresholds.545

From the above experiment we can conclude that RCN results are competitive546

regarding J48 decision tree, Random Forest (RF), NBTree (NBT) and Random Tree547

(RT). However, our model outperforms other approaches such as Multilayer Percep-548

tron (MLP), Naive Bayes (NB) and Support Vector Machine (SVM).549

Next we study other statistics such as those extracted from the confusion matri-550

ces. True Negatives (TN) as well as True Positives (TP) correspond to correctly551

classified instances, that is, events that are rightly labeled as normal and attacks,552

respectively. Alternatively, False Positives (FP) refer to normal events being labeled553

as attacks while False Negatives (FN) are attack events incorrectly predicted as nor-554

mal events. Table 1 shows such statistics for all classifiers used for comparison across555

the selected KDDTest+ dataset.556

Fig. 2 Experiments using datasets KDDTrain+ and KDDTest+. a Accuracy of selected classifiers

and b RCN accuracy as a function of the threshold values in Eq. (1)
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A Granular Intrusion Detection System Using Rough Cognitive Networks 17

Table 1 Confusion matrix associated with each classifier for the KDDTest+ dataset

TN FP FN TP Detection rate False alarm

rate

J48 9436 275 3996 8837 0.68 0.02

NB 9010 701 4582 8251 0.64 0.07

NBT 8869 842 3257 9576 0.74 0.08

RF 9452 259 4523 8310 0.64 0.02

RT 8898 813 3011 9822 0.76 0.08

MLP 8971 740 4796 8037 0.62 0.07

SVM 8984 727 4893 7940 0.61 0.07

RCN 8891 820 3150 9683 0.75 0.08

The reader may notice that RCN ranks as the second-best algorithm regarding557

the number of FN patterns. In our study we are especially interested in this value558

since it denotes the number of abnormal patterns that the IDS was unable to detect,559

although most authors prefer systems with high detection rate (i.e., TP∕(TP + FN))560

and low false alarm rate which is defined as FP∕(TN + FP). Nevertheless, in com-561

puter networks where high security is required, reducing the false negative rate is562

indispensable since only those patterns having normal features will be confidently563

allowed.564

6.2.2 Comparison with Traditional Classifiers Over KDDTest-21565

The second experiment is concerned with investigating the performance of our566

RCN model with respect to traditional classifiers, but now using the test set called567

KDDTest-21. Figure 3a portrays the classification accuracy achieved for each model568

while Fig. 3b displays the performance of the proposed granular network for different569

similarity thresholds.570

Fig. 3 Experiments using datasets KDDTrain+ and KDDTest-21. a Accuracy of selected classi-

fiers and b RCN accuracy as a function of the threshold values in Eq. (1)
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18 G. Nápoles et al.

Table 2 Confusion matrix associated with each classifier for the KDDTest-21 dataset

TN FP FN TP Detection rate False alarm

rate

J48 1879 273 3996 5702 0.58 0.12

NB 1460 692 4549 5149 0.53 0.32

NBT 1354 798 3257 6441 0.66 0.37

RF 1895 257 4523 5175 0.53 0.11

RT 1388 764 3008 6690 0.68 0.35

MLP 1426 726 4796 4902 0.50 0.33

SVM 1440 712 4893 4805 0.49 0.33

RCN 1572 580 2824 6874 0.70 0.26

It should be specified that the KDDTest-21 dataset is more complex since it571

involves patterns that cannot be correctly classified by all learners. Despite this fact,572

our model was able to compute the best accuracy (71 %), notably outperforming the573

remaining approaches. However, in a previous experiment the model only achieved574

an accuracy of 66 % due to the uncertainty present in the features during the infer-575

ence stage (i.e., the overall evidence suggests accepting both decisions). To overcome576

this situation, we used the similarity classes pertaining to the K-nearest neighbors577

(K = 3) of the test instance Oi. In short, we adopted the similarity classes of its neigh-578

bors instead of only using the set R(Oi) related to the target pattern for activating each579

input neuron in the network.580

Table 2 shows the confusion matrix achieved by each classifier across the581

KDDTest-21 test set. In this case, our model computed the highest detection rate582

(TP∕(TP + FN) = 0.7) and lowest false negative rate (FN∕(TP + FN) = 0.29)which583

is the desired behavior. It means that the RCN will detect abnormal traffic with high584

accuracy, thus reducing the risk of classifying abnormal patterns as normal. In a nut-585

shell, such statistics confirm the reliability of our granular classifier (RCN) for intru-586

sion detection in complex computer networks. For instance, the reader may observe587

that if the false alarm rate is high, then the system will classify normal patterns as588

abnormal, but this behavior is preferable in order to avoid potential attacks.589

6.2.3 Discussion590

Although the above experiments show that RCNs are a suitable approach for address-591

ing intrusion detection problems, there are cases where the inference suggests accept-592

ing a wrong decision class. This behavior could be a direct result of the strategy593

adopted for activating the input concepts, so other ways for estimating the activation594

vector could be explored. For example, in Bayesian inference one usually translates595

Pr(C|[x]) into Pr(([x]C)Pr(C))∕Pr([x]) by the Bayes theorem, which allows a prac-596

tical estimation of initial conditions required to trigger the FCM inference process.597
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Another aspect to be considered is related to the network weights, since rules598

R1–R5 formalize the direction (negative or positive) of each causal connection rather599

than its intensity. This means that the granular neural network discussed in this600

chapter calculates the decision class based on the initial state A0
and the sign of601

causal relations, without exploiting the causal intensity. To achieve further perfor-602

mance gains, we are currently focused on computing this indicator via a supervised603

learning approach.604

7 Conclusions605

An important aspect in computer networks is how to detect intrusion since traditional606

approaches such as access control lists or firewalls are incapable of entirely protect-607

ing networks. In order to deal with such problem, several intrusion detection systems608

have been proposed; however, increasing the overall performance (e.g., the detec-609

tion accuracy) is still an open problem for researchers. More explicitly, an essential610

component of intrusion detection systems is the inference algorithm used to classify611

network traffic patterns as either normal or abnormal. This problem could be thought612

of as a challenging binary classification task since modern intrusion techniques are613

sophisticated, so it is difficult to design models being able to distinguish between614

normal and abnormal patterns. As an example, frequently hackers attempt simulat-615

ing trusted users in computer networks in order to gain access to remote resources.616

Such behavior will produce inconsistency in the collected traffic data; that is, objects617

that are very similar yet have been labeled as pertaining to different decision classes.618

In this chapter we introduced a novel IDS based on Rough Cognitive Networks,619

a recently proposed granular neural network for pattern classification. Without loss620

of generality, we can define RCN as a Sigmoid Fuzzy Cognitive Map where input621

neurons represent information granules whereas output concepts denote decision622

classes. It should be remarked that the granulation of information is achieved by623

using Rough Sets, since it allows handling uncertainty arising from inconsistency.624

Furthermore, with the goal of increasing the reliability of the RCN-based inference625

process, we discussed a supervised learning methodology for automatically comput-626

ing accurate similarity relations by estimating the proper parameter vector.627

In order to measure the performance of our model, we adopted an improved ver-628

sion of the NSL-KDD dataset. From numerical simulations it is possible to conclude629

that our granular neural network is a suitable approach for detecting abnormal traffic630

patterns in computer networks. More precisely, we observed that RCNs are com-631

petitive regarding traditional classifiers such as J48 decision tree and Random For-632

est, across the simpler dataset (KDDTrain+). However, for the dataset KDDTest-21633

the model significantly outperformed the other learners by computing the highest634

detection rate (DR = 0.7) and lowest false negative rate (FNR = 0.29). This con-635

firms the reliability of the learning methodology put forth in this chapter to boost636

the model’s performance. Future work along this front will concentrate on validat-637

ing our approach on real computer networks.638
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