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Toward Specifying Human-Robot Collaboration with Composite Events*

Jan Van den Bergh1, Fredy Cuenca Lucero2, Kris Luyten1 and Karin Coninx1

Abstract— Human-Robot Collaboration is increasingly con-
sidered in manufacturing to better combine the strengths of
humans and robots. Establishing this human-robot collabora-
tion may require multi-modal interaction; input to and output
from the robot can both use multiple channels in sequence or in
parallel. Designing effective interaction requires the expertise
from different domains, possibly originating from people with
different backgrounds.

In our work we explore how composite events — hierarchical
composition of events — can be used in a way that eases the
communication within a multi-disciplinary team. In this paper,
we present how the concept of composite events can be used to
create different layers of abstraction that can be used to ease
prototyping and discussion of human-robot collaboration with
stakeholders through a supporting tool called Hasselt UIMS. At
the lower level(s) of abstraction, the composite events can be
mapped to the message-based communication as implemented
in the Robotic Operating System (ROS), which is used to
program collaborative robots, such as the Baxter robot from
Rethink Robotics.

I. INTRODUCTION

For the better part of the last few decades, robots were
successfully deployed to take over tasks from humans. This
success has largely been reached because these tasks require
skills at which robots excel, such as precise and frequent
repetition of tasks that are heavy or difficult to do by humans.
However, within the manufacturing industry fully automating
more tasks done by humans is no longer possible as “fully
automated machines don’t evolve on their own” [1]. This
increased the interest in human-robot collaboration from
within the manufacturing industry. Collaborative robots seem
better suited to perform these tasks.

Several research results indicate that people may accept
robots as a co-worker or even a coordinator of work [2].
Successful introduction into production facilities however
requires collaboration of all stakeholders. Limited involve-
ment of all these stakeholders may lead to frustration with
people actually collaborating with the robot [3]. Not all of
which may have the technical expertise to understand the
low-level information to realize the human-robot interaction
and collaboration. One additional level of complexity is
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that multimodal interaction may be preferred over operation
through direct manipulation and buttons [2], [4].

Multimodal interaction is defined by Oviatt [5] as the
combination of two or more input modalities (e.g. hand
gestures and speech) in a coordinated manner. Difficulties in
implementing such type of interaction have been addressed
in the human-computing interaction community for many
years, resulting in several proposals that use domain-specific
languages to describe executable interaction specifications.
One can use these languages to specify combinations of
events representing the coordinated user actions. These ac-
tions can be in sequence or in parallel through multiple
modalities. These approaches however have largely focused
on traditional human-computer interaction, not on human-
robot interaction.

In this paper, we discuss how one of these approaches,
Hasselt UIMS [6], may be used to define the interaction
at several layers of abstraction to ease involvement of the
various stakeholders in the discussion of executable inter-
action specifications. This involvement is facilitated through
the multiple levels of abstractions and the flexibility offered
by Hasselt UIMS:
• The multiple levels of abstraction allow a compact

overview of the overall interaction at the highest level.
More details on how this interaction is accomplished
are available at a lower level. At the lowest level
custom definition of events, including the associated
data, permit as detailed control as required.

• The flexibility of reusing groups of composite events
in Hasselt UIMS allows programmers to temporarily
replace certain input devices or algorithms or even the
actual robot, thus facilitating Wizard-of-Oz setups.

• At the lower levels of abstraction, a natural mapping
can be realized to the message-based programming
paradigm used by the Robot Operating System (ROS)
[7], while still keeping the core of Hasselt UIMS
independent of ROS.

To reach these goals, Hasselt UIMS was internally re-
designed to allow flexible handling of input modalities and
reuse of event definitions across projects. The domain-
specific language, Hasselt, was extended to allow the natural
mapping between the event-based paradigm used by Hasselt
and the message-based paradigm used by ROS.

II. RELATED WORK

For more than a decade, a series of languages has been
proposed with the intention of describing multimodal inter-
actions in a declarative fashion. Some of these languages



describe the data flow from the peripherals to the applica-
tion; others describe the relations between user events and
event handling functions. Both our proposed Hasselt and
the languages described below, fit in the latter group. For a
more complete sample of multimodal interaction description
languages, readers can refer to surveys [8], [9].

With MEngine [10], the sequences of related user events
involved in multimodal interactions are depicted as finite
state machines (FSMs). Each link represents a user event; the
nodes can be labeled with handling functions that are to be
launched during the interaction. One issue of this approach is
that the FSMs have to be manually specified. Besides, these
FSMs are not hierarchical —this compels to describe the
human-machine interaction at a single level of abstraction,
which may be inappropriate for medium-large size systems.

NiMMiT [11] also allows FSM-based multimodal interac-
tion specifications. Unlike MEngine, each link can represent
not only one single user action but also the co-occurrence
of several actions. When running NiMMiT models, several
handling functions can be fired sequentially in response to a
system state transition.

The visual models of HephaisTK [12] have more expres-
siveness than NiMMiT models. Each link of these FSM-
based models can be annotated by a combination of events
(e.g. events can be singleton, complementary, redundant, or
equivalent). A handling function can be launched when this
combination of user events is (automatically) detected by the
HephaisTK’s framework.

When using ICO [13], multimodal interactions must be
described as Petri nets. The transitions of these Petri nets
represent user events whereas their places are temporary
sites through which the input data flows. The transitions can
be annotated to transform the input data and/or to launch
handling functions. The high learning curve required to use
ICO limits its economical applicability to the field of safety-
critical systems [13].

Instead of providing a visual language, Mudra [14] allows
textual CLIPS-based specifications. The event sequences that
must be handled by the intended multimodal system are
defined as a set of rules that the CLIPS engine constantly
checks. The satisfaction of a rule leads to the activation of
externally defined handling functions.

As with HephaisTK and Mudra, our language allows
binding user-defined combinations of events to handling
functions. Unlike HephaisTK, developers can edit textual
specifications for interactions, while graphical representa-
tions are generated that can facilitate discussions within a
multi-disciplinary team. Mudra, in contrast, uses rules on
a fact database to trigger handling functions. It does not
feature a visual notation that can ease communication with
non-programmers.

State machines have also been used within the robotics
domain [15], [16], [17]. ActionLib [18] is C+̂+ project on
top of ROS that uses state machines to ease development of
longer-lasting preemptable tasks. For simple common usage
a single class can be used that hides the state machine
logic. These approaches mostly address the development

complexity of such systems for programmers.

III. HASSELT AND HASSELT UIMS

Hasselt provides notations that enable programmers to
combine several user events into a single abstraction called
composite event. These user events may originate from
different modalities such as mouse, keys, touch screens,
speech or depth cameras. Each composite event can be
bound to one or more handling functions. At runtime, the
handling functions will be called at different moments of the
interaction, in response to the (partial) detection of composite
events.

Hasselt UIMS is the supporting tool of Hasselt. It includes
the editors, compilers, runtime environment, and debug-
ging tools with which one can describe, run, and trace
the execution of Hasselt specifications. Hasselt UIMS uses
projects to support configuration of the environment, such
as specification of the required external applications and
libraries. These projects can also be reused in other projects
enabling reuse of sets of composite events (and the related
libraries and applications).

A. Definition of a single multimodal command

We illustrate the definition of a multimodal command with
an example that stems from the original office and home
environment for which Hasselt UIMS was developed; a vari-
ation of the classical put-that-there example for multimodal
interaction by Bolt [19]. The user-defined speech-and-touch
event putThatThere (Equation 1) combines speech and touch
events to move an object by linking these events to the
methods HIGHLIGHTSELECTEDPHOTO( ) and MOVEHIGH-
LIGHTEDPHOTO( ) (Equation 2). Both the code for defining
composite events and the code for event binding are written
with Hasselt. The handling functions were written with C#,
a general-purpose language aimed at the .Net platform.

event tap〈x,y〉 = touch.down;
touch.up〈x,y〉

event putThatThere = speech.move;
speech.that + ce.tap〈x1,y1〉;
speech.there+ ce.tap〈x2,y2〉

(1)

Event names consist of two parts separated by a dot.
The first part indicates the modality (speech or touch in
Equation 1) or the fact that the event is a combination of
other events (ce). The second part the event. For the speech
modality, an abbreviated form was used for the recognition
of simple words; in this case the recognized words are
used as event names. For the touch modality, down and up
events are used. Events can (optionally) have different sets
of parameters, specified between chevrons.

Composite events, such as putThatThere, are formed by
specifying how events can be combined over time using four
symbols: The operator FOLLOWED BY (;) is used to con-
nect events that occur sequentially; AND(+) is intended to
connect events that co-occur in time; OR(|) must be used to
connect equivalent events; and the operator IT ERAT ION(∗)
serves to describe arbitrarily long sequences of events [6].



(a) Event tap (b) Event putThatThere

Fig. 1: Two FSMs are automatically generated from com-
posite events declared in Equation 1 to represent all relevant
interaction states. Different system responses (e.g. calling
handling functions, maintaining variables) can be conveyed
at each interaction state, as declared in Equation 2.

Usage of AND(+) in a composite event is translated in
recognition of the events in any order. For the putThatThere
event this means that both the sequence with first a tap
and than a speech-command (here or there), and the reverse
sequence are encoded in the FSM.

wrt ce.tap〈x,y〉
@link(1, touch.down) do

assign : t0 = Now.TotalMilliSeconds;
@link(2, touch.up〈x,y〉) do

assign : t1 = Now.TotalMilliSeconds;
triggers when t1− t0 <= 200

wrt ce.putThatThere
@node(5) do

call : HighlightSelectedPhoto(x1,y1);
@node(8) do

call : MoveHighlightedPhoto(x1,y1,x2,y2);

(2)

Each composite event is automatically converted into a finite
state machine (FSM). The FSMs generated from Equation 1
are shown in Fig. 1. The nodes of these FSMs represent
steps of the human-machine interaction. Hasselt users can
refer to these nodes in order to indicate the moments when
the handling functions are to be called. Hasselt also allows
specifying (temporal and/or spatial) constraints among the
elementary events comprising a composite event. E.g. Equa-
tion 2 specifies that to detect a tap, the time between touch
down and touch up should be at most 200 milliseconds.

The code also shows how to bind several handling func-
tions to a single composite event: HIGHLIGHTSELECTED-
PHOTO( ) and MOVEHIGHLIGHTEDPHOTO( ) will be called
right after object selection and when the event putThatThere
is fully detected, both of these moments are represented as

Fig. 2: Human-machine dialog using the composite events
declared in Equations 1, 2. The number of created objects
(N) puts additional constraints on which actions are possible
at a specific moment.

node(5) and node(8), respectively, in the FSMs shown in
Figure 1.

B. Definition of human-machine dialog

One can directly use finite state machines (FSMs) to de-
scribe human-machine dialogs (HMDs) using the composite
events discussed above. HMDs are useful to describe systems
whose responses vary depending on the current operation
mode, e.g. a touch on the arm robot may be an indication for
the robot to start working, but the same event may be ignored
once the robot is working. Hasselt dialog models show the
operation modes (e.g. idle/working) of the intended system
and all the interactions available in each operation mode.
FSMs are visual specifications that emphasize flow. Such
notations are useful to discuss processes in interdisciplinary
teams [20].

The HMDs elaborated with Hasselt look like Fig. 2. Each
node represents a different state. Transitions between nodes
can be triggered by composite events. These transitions
can also be subject to conditions that reflect the system
state (expressed between square brackets); in this case the
composite event putThatThere can only be executed once at
least three objects are created. After removal of all objects,
the system returns to its begin state.

To better understand Hasselt UIMS workflow, readers can
refer to a publicly available video1 that shows how to create
and run a prototype that involves composite events, a HMD
and an .Net application.

IV. SUPPORT ITERATIVE DEVELOPMENT OF
HUMAN-ROBOT COLLABORATION

The previous section discussed Hasselt and how to specify
composite events. These events can be reused in other com-
posite events as can be seen in Equation 1, where the event
putThatThere reuses the previously defined event tap<x,y>.
The event putThatThere is used to make a translation from
the problem domain, move this [object] here, to events in
the solution domain, taps. These taps are defined in terms of
events that are generated by an input recognizer, an event

1Hasselt UIMS workflow:
https://www.youtube.com/watch?v=jC5EuBYWWRc



Fig. 3: Hasselt supports events at different levels of abstrac-
tion. Events above the dashed line are defined in one or more
Hasselt projects, events and messages below it are defined
in external libraries by extending the classes in Fig. 6.

Fig. 4: Hasselt notation for a simple human-robot collabora-
tion scenario in which a robot can give components to the
worker on request.

source such as a touch controller, that generates atomic
events.

A. Hasselt UIMS for prototyping HRC

This ability to hierarchically compose events can be used
to one’s advantage during the development of human-robot
collaboration (and other applications); once a proposal for a
scenario is created, composite events can have names in the
problem domain.

The composite events showArrival, getComponent, open-
Gripper, and timeOut were defined for a simple scenario
in which specific workers can ask the Baxter collaborative
robot to give a component to them and to release it once they
are ready to take the component. Fig. 4 shows an HMD that
gives an graphical overview of which actions will be taken to
complete the scenario using these events. This visualization
was effectively understood during discussions in our multi-
disciplinary team and provided a direct starting point for
discussion of the specific interactions in the scenario.

When one defines this scenario in a separate project from
the event definitions, varying the projects that are included in
the HMD’s project allows experimentation with how these
actions can be realized. One of these projects can contain
composite events that map the composite events to mouse
and keyboard (or touch) actions to explore variations of the
HMD without dependencies on any specific soft- or hardware
that may be necessary to realize the final scenario. One can
also make partial links to the collaborative robot to facilitate

TABLE I: Mapping between concepts in ROS and in Hasselt

Message-based (ROS) Event-based (Hasselt)

topic input recognizer
message type event name
fields parameters

Wizard-of-Oz testing [21], in which certain human input is
recognized by a human instead of e.g. an artificial intel-
ligence component to gather requirements of how humans
would give certain input without being constrained to what
is technically possible at that moment in time in that specific
project.

B. Technical updates to Hasselt UIMS

To realize this, we updated Hasselt UIMS [6] so that
it no longer requires all input recognizers to be built-in.
Instead these input recognizers can now be loaded from
libraries. Together with the fact that one could already call
functions from external libraries this makes it possible to
get input from and generate actions to be performed by
collaborative robot when desired. When no robot is available
nor software to communicate with itanother project that does
not depend on the robot software can be used. This approach
is illustrated in Fig. 3; one project is used to define human-
robot collaboration (the overall HMD), different projects can
be used to define how each interaction, defined using one or
more composite events, which ultimately use atomic events
defined in separate libraries.

In a situation where the collaborative robot can be pro-
grammed using the Robot Operating System [7] (ROS)
another approach to do communication with other software
components seems appropriate. ROS uses a message-based
programming model in which (small) programs (nodes)
communicate by sending messages to topics and receiving
messages from topics to which they are subscribed. We can
thus exploit the similarity between event-based and message-
based programming to create a mapping as can be seen in
Table I.

This mapping allows hiding some boilerplate code from
the user of Hasselt UIMS; handling subscriptions is done in
the library and ROS messages can be handled in the same
way as events from any other input recognizer. The call
functionality, as used in Equation 2 to trigger functionality
defined in external libraries, however does not fit well in this
mapping.

In order to make the mapping complete, we introduced
the possibility to raise events. These can be hasselt events,
which are only used within Hasselt UIMS, as well as external
events for which an external library defines what happens.
The syntax to raise events combines the syntax for calling
a function and that of catching an atomic event: raise:
“eventGenerator”.“eventName”<“event parameters”>;.

Equation 3, Equation 4 and Fig. 5 illustrate the use of
this syntax using a example where the openGripper event
is triggered when a thumbUp gesture for at least half a
second. The worker collaborating with the robot can make



Fig. 5: Finite state machine generated from composite event
openGripper in Equation 3, and annotated by Equation 4

this gesture with the non-dominant hand, while the dominant
hand is ready to take a component from the gripper.

event wait = delay−1000;

event openGripper = skHands.thumbU p < N > ∗;ce.wait
(3)

wrt ce.openGripper
@node(0) do

assign : thumbCounted = 0;
@link(1,skHands.thumbU p〈N〉) do

assign : thumbCounted = thumbCounted +1;
@node(2) do

assign : thumbCounted = 0;
@link(1,ce.wait) do

raise : inputAction.string <′ openGripper′ >;
speak :′ OK′;

when thumbCounted > 5;

(4)

We now explain the code in Equation 4 into more detail:
the skHands input recognizer, can detect a thumbUp event
every 100 milliseconds. The finite state machine in Figure 5
generated from the openGripper event, to count the number
of thumbUp events during 1 second as defined in the wait
event. The frequency of updates is exploited in Equation 4 to
express the number of expected correctly detected thumbUp
events in this period. As the gesture recognition in not
perfect, the treshold of more than 5 thumbUp events should
be exceeded before a std msgs/String message is sent to
the topic /input/action. To support prototyping without the
actual robot present, a spoken message is given in addition
to sending the message.

As the example illustrates, we opted to not directly use the
topic names within Hasselt, but to transform it to the nam-
ing convention already in use for input recognizers within
Hasselt UIMS. Similarly, the name of the message type
is abbreviated. The way we realized the system, however,
means that these choices can be changed if circumstances
would dictate so. In a situation where all team members
involved in the definition of these composite events are
familiar with ROS, keeping the naming scheme closer to
the ROS naming scheme can be considered as the mapping
is realized by implementing an interface of Hasselt UIMS in
a separate library.

The interfaces / classes that should be implemented to
allow detection of atomic events or generation of events
/ publishing of ROS messages are shown in Fig. 6. A

Fig. 6: Interface and classes that should be implemented
by input recognizers (subscribed topics in ROS) or event
generators (topics to publish on in ROS) for Hasselt UIMS.

library should declare the events it can detect or generate,
including some information to support editing in Hasselt
UIMS. Properties in the event classes correspond to event
parameters or message fields.

Hasselt UIMS, together with the libraries it uses, can
be considered as a single node within ROS. Within Has-
selt UIMS the message-based communication can be pro-
grammed using (compositions of) events. Its user can define
when certain events (messages) should be detected and how
the “Hasselt UIMS node” should react to them, including
raising new events (messages).

V. DISCUSSION

This paper presented how multiple levels abstractions can
be used to create executable specifications of multimodal
human-robot collaboration. Finite state machines are used
to define the overall human-robot dialog. This dialog, ex-
pressed using finite state machines, can gradually and flexibly
be refined using composite events that are specified using
a combination of a textual domain-specific language and
automatically generated finite state machines that provide
a detailed graphical overview of each specific human-robot
interaction.

One of the strengths of this approach is that it allows to
create abstractions that divert from the technicalities of robot
programming so that the (high-level) code and diagrams
become more accessible to people less familiar with robotics
programming. This way we want to enable people that
have limited technical knowledge to make limited updates
to allow more flexibility in fine-tuning the interaction. We
however realize that the interaction specification can still
be made more accessible, especially for people with less
programming expertise. We are currently evaluating some
limited adaptations to these notations with people from



different disciplines active in the human-robot interaction
domain.

The focus of our contribution is thus different from
earlier approaches that aimed to facilitate iterative develop-
ment [22], [23], as these approaches focused solely on the
implementer of the robotic system, not on supporting the
overall team. Flexibility in the instantiation of interaction
modalities as offered by Hasselt UIMS can be important to
be able to prototype interaction in a flexible manner.

We are currently using Hasselt UIMS in the realization of
human-robot collaboration scenarios that are more complex
than the one discussed in section IV-A and Fig. 4. These
scenarios combine multiple input modalities and feedback
channels by the robot including screen and motion feedback,
with a multi-disciplinary team. We are using Hasselt to refine
the overall scenario and define and execute the human-robot
interactions with Baxter, a co-bot from Rethink Robotics. At
a later stage interactions with a more traditional robot will be
specified. Hasselt UIMS is and will be used in combination
with ROS to define the human-robot interaction.

The current implementation requires manual coding of the
libraries that interact with specific ROS topics. Which means
that additional coding is still required to add support for
additional messages and/or topics. This is an area that can
be addressed in future work.

We are evaluating Hasselt with representatives from
multiple-disciplines involved in research and practice of
human-robot interaction in a manufacturing setting. Another
area of future work is to investigate how the transition from
an approach that focuses on rapid prototyping to an approach
that can be sustainably deployed.
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