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Abstract We consider a reactive transport model in a fractured porous medium.
The particularity appears in the conditions imposed at the interface separating
the block and the fracture, which involves a nonlinear transmission condition.
Assuming that the fracture has thickness e, we analyze the resulting problem
and prove the convergence towards a reduced model in the limit € N\, 0. The
resulting is a model defined on an interface (the reduced fracture) and acting
as a boundary condition for the equations defined in the block. Using both
formal and rigorous arguments, we obtain the reduced models for different
flow regimes, expressed through a moderate, or a high Peclét number.

Keywords Fractured porous media - Upscaling - Reactive transport -
Nonlinear transmission conditions

1 Introduction

Fractures are ubiquitous in porous media and have strong influence on the flow
and transport. Several energy and environmental applications including carbon
sequestration, geothermal energy, hydraulic fracturing, petroleum extraction,
or ground water contamination, are involving flow and reactive transport in
fractured porous media. Typically, fractures are thin and long formations along
which medium properties like permeability, or porosity, are different from the
adjacent formations (the blocks). This leads to media with high contrasting
properties appearing in anisotropic regions, and involving jump-type discon-
tinuities across interfaces between the fracture and the block. This makes the
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numerical simulation of mathematical models in such domains a very chal-
lenging task. Discretization schemes resolving the full thin fracture regions
explicitly is prohibitively expensive. Moreover, often the main interest is in
the transport or flow along fractures and not in the transverse details. This
suggests considering the so called reduced models for the processes inside frac-
tures, which are transversally averaged along such formations, and reduce the
fracture itself to an interface separating two blocks. The resulting problem is
defined in a bulk domain (the union of the porous blocks), as well as on sur-
faces (the lower dimensional approximation of the fractures) embedded in the
bulk domain. Nevertheless, the surface should incorporate the averaged pro-
cesses in the fracture, including the coupling conditions between the fracture
and the adjacent blocks. This requires a consistent procedure for developing
such reduced models.

In this work, both formal and rigorous procedures are used for deriving
reduced models that describe reactive transport in fractured media. The flow
is assumed to be known in the thin fractures, and the transport is modelled by
a convection-diffusion equation. Inside blocks, which are typically less perme-
able than fractures, no flow is encountered, and species undergo only diffusive
transport. The particularity of the model lies in the conditions coupling the
models inside fractures and blocks at the common interface. Next to the nor-
mal flux continuity, a nonlinear transmission condition is imposed. For the
ease of presentation, we consider a simple geometry, where a large rectangu-
lar domain (the porous block) is coupled to a rectangular fracture with small
thickness e. After transversal averaging in the fracture and letting € go to zero,
the fracture model becomes a boundary condition for the partial differential
equation in the bulk domain. This procedure is carried out formally in two sit-
uations, when the flow and transport processes in the fracture are in balance
(moderate Peclét regime), and when flow is dominating (high Peclét regime).
Then, convergence is obtained rigorously for the moderate Peclét regime.

Reactive transport in heterogeneous media lead naturally to nonlinear
transmission conditions. Examples in this sense appear in bubble columns or
extraction processes involving multiphase systems. In ionic fluids, which are
strongly non-ideal, nonlinear reactions are encountered at interfaces separating
two domains [33]. Well-known examples in this sense are Langmuir, Freundlich
or Monod type reactions. Such models are also the outcome of the upscaling
procedure in [20,26,27,28,29]. Nonlinear transmission conditions also appear
in multiphase flow models in porous media [10], where e.g. pressure continuity
at interface separating a fine and a coarse porous block induces a nonlinear
relation between the oil saturations at the two sides of the interface.

Due to their high permeability in the fractures one encounters both con-
vection and diffusion processes. Related, at least two different time scales can
be identified: a convective time scale T, and a diffusive one Tp. Their ratio
defines the non-dimensional Peclét number, Pe = % The observed transport
behaviour depends strongly on this number, in particular, when the convec-

tion dominates (high Peclét), the net diffusion is enhanced by the convective
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strength itself exhibiting the well-known Taylor dispersion [34,19,25]. The up-
scaling procedure needs to take these complexities into account.

The results in this paper are the following. For a fixed e, the existence
of solutions for the system involving two parabolic models posed in adjacent
domains, and involving a nonlinear transmission conditions is proved. This is
obtained by Rothe’s method [16] and essentially uses the existence results for
elliptic problems obtained in [14]. We also mention that the full model (i.e.
when e > 0) considered here is similar to the one in [15]. Here the existence
results are obtained directly for the original unknowns, and without employing
a nonlinear transformation of these in order to obtain the continuity across
the interface. This is closer to the approaches in [6,7,23] and allows extending
the present results to the case of heterogeneous (e.g. spatially dependent)
transmission conditions. Next, we derive the reduced models by averaging in
the transversal direction of the fracture, and using formal asymptotic methods.
This is achieved for two regimes in the fracture, moderate Péclet, Pe = O(1),
and transport dominated regime Pe = O(e~!). Finally, for the case when
Pe = O(1), we rigorously prove convergence of the full model, including the
nonlinear transmission condition, to the simple, upscaled model obtained by
formal asymptotics.

The paper is structured as follows. In Section 2, we introduce the mathe-
matical model and in Section 3 we prove the existence of a solution for a fixed ¢
with the necessary a priori estimates derived in Section 3.4. Next, we perform
a formal upscaling for both moderate and high Peclét number in sections 4
and 4.2, respectively. Section 5 deals with rigorous derivation of the upscaled
equations obtained in Section 4. Full details can be found in [4], Chapters 4,
5 and 9. The paper concludes with discussions and outlook in Section 6.

2 Model and assumptions

The problem is stated in a dimensionless framework and we refer e.g. to [9,11,
19] for a non-dimensionalization step. Let T' > 0 be a maximal time and (2,
(the porous block) and 25 (the fracture) be two adjacent domains separated
by the interface I

2, ={(z,y) eR})0<z<1,-1<y<0},

25 ={(z,y) eR*0 <z <1,0<y <e},

I ={(z,y) eR?0 <z <1,y =0},

Iy = {(z,y) e R*z=0,0 <y < e},

I5s={(z,y) €eR*z=1,0<y < ¢}, (1)
Ipai={(z,y) eR¥z=0,-1<y <0},

Ipsi={(z,y) eR¥z=1,-1<y <0},

Dpo = {(z,y) eR}0 <z <1,y=—1},

Iy ={(z,y) eR*0 <z <1y=c¢}
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Fig. 1 Geometry depicting a fracture coupled to an adjacent porous medium. The fracture
is of thickness 2¢, and due to symmetry it is sufficient to consider only half of the fracture.
FJ‘? o is this line of symmetry.

The remaining boundaries of 2, and {2y are I, ,, respectively I'y, (1 =1,2,3),
see Figure 1. Here € > 0 is the half-fracture aperture (because of symmetry)
and is assumed small compared to the fracture length.

2.1 Notation

Before stating the model, we mention that standard notations from the func-
tional analysis are being used below. By (-,-) we mean L? inner product or
the duality pairing between W2 and its dual. By Tr(-) we denote the trace
operator. Further, with X being a Banach space, C(0,T; X) stands for the X-
valued functions that are continuous over [0,7], and LP(0,T; X) is the usual
Bochner space. Next, for the weak solutions we will use the spaces

V, = {ue W' Q2,)lu=0on I, UTl,3}, (2)

Vi={ue Wl’z(ﬂfc)\u =0on I';; UT}3}, (3)
with I}, 1,133, I'7; and I'f 5 defined in (1). Since V,, is a closed subspace of
the Hilbert space W12(£2,), it is again a Hilbert space, equipped with the
Wh2(£2,) norm and inner product. Similarly, V5 is a Hilbert space equipped
with the W'2(£27) norm and inner product. For u € L*(0,T;V,’) and v €
L%*(0,T;V,), we define

T
(u,v) or ::/ (u(t),v(t))o,dt, where (u(t),v(t))q, = (u(t),v(t))v; v,
0
The counterparts for the fracture domains are defined similarly. Finally, let
W, == {u € L*(0,T;V,)|0su € L*(0,T; V,")}, (4)
W5 = {u € L*(0,T; V{)|0u € L*(0,T; (VF)*)}. 5

)
We observe that, by Assumption A, below, if v € W2(£2), then r(u) €
W12(§2) as well, and hence Tr(r(u)) is well defined, belonging to L?(9£2).
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2.2 Mathematical model

The unknown quantities are the concentrations ug, u% of two chemical species
defined in {2, and (25, respectively. The transporting mechanisms are diffusion
in {2, and convection and diffusion in QJEC, respectively. The models in the two
domains are coupled at I" through two conditions: the continuity of the normal
fluxes, and the nonlinear reactions (the nonlinear transmission condition). We
assume symmetry along I';,. This is summarized in:

Oup, — Aug, = fp, in (0,T] x £2p,
oG +q° - Vuy — Auf = fy, in (0, 7] x £25, (6)
u§ =r(us), at (0,7] x I
auu; — auu‘;.’ at (07T} x I

Boundary and initial conditions are specified below. Here the diffusion coef-
ficients are taken exactly 1, but extending the presentation to more general
coefficients D, and Dy, or positive definite tensors, is immediate. In Section
4, where formal upscaling will be carried out, we consider an € order diffusion
in the fracture as well to include the convection dominated regime. f, and f7
are source terms, and q° is a given fluid velocity, all satisfying assumptions
mentioned below.

2.3 Assumptions

The particularity is in the nonlinear transmission conditions at I, involving
the function r. For this we assume

(A,) The function r € C*(R) satisfies r(0) = 0, and there exist m, M > 0 such
that for all u € R, 0 <m < r'(u) < M < 0.

The concentrations vanish on the vertical boundaries,
uy =0, onI'f;UTGs, and uy, =0, on I}, UTl}3. (7)

Remark 1 By Assumption A,, r has a C' inverse r—1 satisfying

1 1
0< T (r ) (u) < < oo, for all u € R.

This gives 0 < (r‘l)(u) < %u for all u > 0.

Below we will use the antiderivative of r, defined as
R:R—>R, R(u):= / r(v)dv. (8)
0

Using Assumption A, and the Mean Value Theorem, the following can be
proved straightforwardly
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Proposition 2 The function R has the following elementary properties:
(i) R(x) > 0, for all x € R.

(it) R(y) — R(zx) <r(y)(y — ), for all z,y € R.

(iii) R(z) > Za?, for all z € R.

Further, we assume

(Af) The functions f, € C(0,T; L*(£2,)) and fy € C(0,T; L*(£27)) are bounded
and positive: there exist My > 0 such that for all ¢ € [0,T],

0< fr(t,)) < Myae in 2, and 0<fy(t-) < My ae. in §2,.

(As) The initial conditions are positive and essentially bounded: there exist
M7 > 0 such that

0<wuy<Myrae. in ch, and 0 <wur, <My ae. in §2,.
(A4) The velocity field q° = (¢°',¢°?) € [Wh?(£25)]? isatisfies
V-q°=0in 2%, and q°=0onlI.

Further, ¢52 = 0 at I o (symmetry). Finally, g% is essentially bounded:
there exists My > 0 s.t. |[g°|| < M, a.e. in £25.

Concerning A, this holds true if e.g., q solves the Stokes model with ho-
mogeneous Dirichlet boundary conditions, see [17,21]. To simplify the calcu-
lations, the initial data are assumed e-independent, i.e. us (0,2, y) = us ,(z,y)
and u% (0,z,y) = ur, s(x). Similarly, the source terms are e-independent too.

3 Existence of a weak solution

We first prove the existence of a weak solution for the original model in (6),
with the initial and boundary conditions stated above. This is defined in

Definition 3 A pair (uy,u,) € L*(0,T; Vi) x L*(0,T;V,) is called a weak
solution of (6) if us =r(up) on I' (in the sense of traces) and
- (uf7 8t¢f)Q;T - (up, 5t¢p).(zg + (q . VUf, (rbf).(l;’T
+(Vuy, Voy) ger + (Vup, Vop)or 9)
= 0p)er + (o dp)ar + (ur s, ¢5(0) 23 + (urp, 6p(0) ey,
for all (¢, ¢p) € WH2(0,T; st) x Wh2(0,T;V,) such that ¢5 = ¢, on I' and
¢5(T) = ¢p(T) = 0.

The existence of a weak solution is obtained by the Rothe’s method [16]. In
doing so, the € dependence in the a-priori estimates is stated explicitly.
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3.1 Discretization in time

Letting At be a fixed time step, taking v? = uy,; (i € {f,p}), we construct
the Euler implicit approximations {uf}rey of u; at tx = kAt. This leads
to a sequence of elliptic problems involving again a nonlinear transmission
condition. We omit the strong form here and provide directly the definition of
a weak solution, which is stated in

Definition 4 Let k > 0 and let (u} k= 1,u§_1) € Vi xV, be given. A weak
solution to the time discrete problem at tr s a pair (u]]%, u’;) € VixV, satisfying

k

») on I' (in the sense of traces) and

u’; =r(u
uk: o uk—l Uk _ ukil
(thf7¢f)Q? + (%’d)p)ﬂp + (VU?,VQSJP)_Q; —|— (Vu];7v¢p)9p

+(a-Vuf,op)a: = (f1(tr) d5)as + (fr(tr), dp) e, (10)
for all (¢f,¢,) € Vi x V), such that ¢f =¢, on I'.

Such elliptic problems are studied in [14], where the existence and uniqueness
of a weak solution is proved.

3.2 A priori estimates

We start by observing that for any u € V,, since r € C' we have r(u) € V as
well. This will be used below to prove

Lemma 1 For the sequence of time discrete weak solutions in Definition 4, a
C >0 not depending on At exists s.t.

11
k-1 )

+zk:1Huf—uf +Atzk:1{HVufHQ;+||wzH;p}zc.

HQ;

Proof We test with ¢ := u’} and ¢, := r(u};) in (10) and denote the resulting
terms by Iy, Io, ..., I7. Clearly,

2
b

t = g I, + g 1 = ™|

To treat Is, we use Proposition 2 to obtain

122/ R(u’;)dx—/ R(u];_l)da:.
'Qp QP

Note that, since R is positive, [, R(uf)dz >0 for all k € {0,..., N}.
P
For I3, using the Poincaré inequality gives

3 IV

_OE 20 H“J‘HQE’
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for a Cy depending only on the geometry of 27. Actually, in view of the
boundary conditions on I, ; and I 3, the constant C'y is € independent.
For I, we proceed similarly, to obtain

2
1> m||Vuj| [, > 5 [|Vupl,, + Hu

plle,

where C), depends only on the geometry of (2,,.
The convection term I5 vanishes. Indeed,
1

5(01, (V“];”)Z)Q;

1 1
= 5((“7)2% v)oo: — 5((u’})2,v ~q): =0,

by the boundary conditions on 9425 and the properties of q
Using the Cauchy-Schwarz inequality and Young’s inequality gives for Ig
and I

ol < 115500

kooky kooky o _
(a-Vuj, up)o: = (q- Vug,uf)o: =

1 2 C
W1y < 557 bl +7f||ff<tk>|\?2;7 and
Cp
2| < M ISyl [Jup]] g, < M2 2 N5 E0G, + 57 Hu’“!lg

Using the estimates above into (10) and summing for k = 1, ...,j (where j < N
is arbitrary) gives

112
J

P ZH“f‘“f ‘

2 ‘ o - /gp Rlup)de

At 2 mAt
-2 S v+ TS

Zpr tk ||Q

In view of assumptions A; and Ay, the sums on the right are bounded uni-
formly in At and j. This proves the estimates.

1 C
<l + |, o dm+wznfftknm+m

In a similar fashion one obtains

Lemma 2 For the sequence of time discrete weak solutions in Definition 4, a
C > 0 not depending on At exists s.t.

HQ +Z |y — ™ 1”9 <C. (12)

Proof As before, ¢y =1~ (uf) € V§, and it can be used together with ¢, :=

uf as test functions in (10). The proof follows as above, but involves the

antiderivative R* of r~! for showing that the convection term vanishes:

(a- Ve () as = (a0 VR ().

and the rest follows as before.

]6{1
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3.3 Interpolation in time and convergence

Having obtained the a priori estimates, the time discrete pairs are used to
construct piecewise linear and piecewise constant interpolations in time. More
precisely, for almost every ¢ € (ti_1, tx], we define

Ugt(t) = Ulfc, ﬁgt(t) = u];c_l 4+ T(u? — u?_l), (13)
_ N _ t—tp_ _
UB(1) ==y, URy(t) =™+ — =y~ ™). (14)

Further, the piecewise constant interpolation of the source terms will be used

th(t) = filt).

For the ease of writing, we take ¢ € {p, f}, and omit the superscript e for
the quantities, domains, or spaces involving the fracture. Using the a priori
estimates in Lemmata 1 and 2, one gets for U},:

Lemma 3 {U4,}at>0 is bounded uniformly w.r.t At in L>(0,T;L*(£2;)) N
L*(0,T; Vi)

Due to the a priori bounds in Lemma 3, there exists a subsequence (along
At N, 0) of the time interpolations in (13)—(14) that converges weakly in
L*(0,T;Vy) x L*(0,T;V,). Here we show that the weak limit is a solution in
the sense of Definition 3. We start with a strong convergence result, which
is needed for the convergence on the boundary I'. In doing so, we use the
following result (Lemma 3.2 in [23]).

Lemma 4 Let X be a Hilbert space. The strong convergence

Ui, — Ui in L2(0,T; X),
implies the strong convergence

Uy, = U in L*(0,T; X). (15)
Based on this, we obtain the strong convergence in L2(0,T; L?(£2;)).

Lemma 5 Along a sequence At 0, the piecewise constant in time approxi-
mations (Uﬁt, UL,) converge strongly in L*(0,T; L*(£2y)) x L?(0,T; L?(£2,)).

Proof The proof is given for the fracture (i = f), the arguments for i = p
R k_, k-1
being exactly the same. For ¢ € (tx_1,tx] we regard O,Upa; = % as an

element in L2(0, T; W ~12(£2¢)), where W—12(£2;) is the dual of WOI’Q(Qf) (the
W12(02¢) functions having a vanishing trace over the entire 9£2¢) identified
by the duality pairing

R 1 _
UL, b w1200 w22 = 275 — U5 ér)e,
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for all ¢y € W&’Q(Qf). Testing in (10) with ¢, = 0 and an arbitrary ¢; €
Wy (925) gives
<6tU£t(t)7 ¢f>(wfla2(nf)),wgv2(nf) + (V“If“’ Voér)a;
+ (q . Vu’;% (bf)-(?f = (ff(tk)a ¢f)-Qf7

providing for ¢ € (tg_1, tx]

0050, g, < O M V0], + 5B,

Here M, is the bound on the velocity profile, as introduced in Assumption A,.
Using now the estimates in Lemma 1 an the assumptions of f; one gets that
8tU£t is bounded in L?(0,T; W~12(£2;)) uniformly w.r.t. At.

By [32], the above boundedness together with the uniform boundedness of

Uﬁt in L%(0,T; V) provide the existence of a limit Uy s.t. along a sequence
At N\ 0,

Uh, — Uy, strongly in L*(0,T; L*(£2f)).

Further, Lemma 4 gives the strong convergence for U gt to the same limit Uy,
and the proof is finished.

By Lemmata 3 and 5, a sequence At exists s.t.

Izgt — Uy, weakly in L?(0,T;Vy) and strongly in L*(0,7; L*(£2y)), (16)
UL, — Up, weakly in L?(0,T;V,) and strongly in L?(0,T’; L*(£2,)).
We show that the limit pair is a weak solution

Theorem 5 The pair (Uy,Up,) is a solution in the sense of Definition 3.

Proof We start by summing (10) from j = 1, ..., k. Recalling (13) and (14), for
any (o5, ¢p) € V§ x V, such that ¢y = ¢, on I" one gets for every ¢t € (tx_1,tx)

(T4, (0, b1), + (T% (1), 6)c, + / (VUL (1), Véy)a, dr
t

t
N / (V02 (), Voy)a, dr + / (a- VO (7). 65)a, dr
0 0

- / (F5(r), b5) a2y — / (Fp(7), bp),dr — (wr5,65) 0y — (rs dp),

tk tr B tr B
- / (7 (7)), dr + / (Fo(7)s dp) e, dr — / (VO (7), Vo) a, dr
t t t

i B 22 _
- / (VU (1), Véy)a,dr — / (- VO, (7). 67)a, dr.
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The terms on the right are accounting for the fact that, actually, the upper
limit in the time integrals on the left should be t. Next, take ¢; € L?(0,T;V;),
such that ¢y = ¢, on I', and integrate over [0, 7, to obtain

T

T _ _
/ (U4 (1), 65(8)) cy dt + / (O%(1), 6p()) 0,
T t N
/ / (VO (1), Vs (t)) g, drdt + / / (YO8, (7), V(1)) o, drdt

/ / VUAt ¢f _(gdedtf/ / ff (725}4 Qfd’rdt

/ / (o), (1))t — / (ur, g, 65(t)) 2yt — / (1, p(t)) 1

tk tr B tr tk _
/ / det —|— / / Q drdt
te—1 tr

- VO (1), Ve (1) oy drdt — LU (), V(1)) o, drdt
Z/W L) Vsl ;/m/t g o

/t /k(q-vUﬁt(T),@-(t))Qdedt. (17)
By (16), for At N\, 0 one has
T o T
/0 (T (6), 65(8)) .t — / (U (0), 64(t)) e, (18)
T t . T t
/ / (VT (7), Vi(t)) o drdt — / / (VU(7), Vo (£)) o, drdt, (19)

// VUL,(7), 6 (1) det%//qVUf L5 () 0, drdt.
(20)

Furthermore, since f; € C(0,T; L?(§2;)) we also have

// ), it Qd’rdt%//fl ,6i(1)) o, drdt. (21)

We denote the terms on the right hand side of (17) by T, ..., T5. Since f; €
C(0,T; L*(82y)), for Ty one has

N
At
T3] < (207 Y s, + - oslly, < CAL,
k=1

with C independent of At. Therefore T; is vanishing as At \, 0.



12 I.S. Pop, J. Bogers and K. Kumar

For T5 we use the priori estimate (12) to obtain

\Tf|<2/

te—1

t B

/ |(VU£t(T)7v¢f(t))Qf|det
t

SAtZ/ V4]l 1965(6)1, e

At
<At2 / (Db, dr+ A0S w01,

k=1

(A1) ZHV I, + / IVos (0I5, dt < CAL,

with C independent of At. This shows that T3 vanishes as well as At N\ 0.
The proofs for Ts, T, and Ty are similar and we omit them here. This shows
that for all (¢f, ¢,) € L2(0,T;Vy) x L*(0,T;V,) s.t. ¢ = ¢, on I', we have

/T< Us(t), 65(0)a dt+/T< Up(), 6 (0) gdt+/ / (VU (7). Vs (1) drdt

//VU ), Vb (t) erdt—l—// VU(7), 65 (t)) o, drat
- / / (f(7), 65(8)) 0y drdt + / / (fy(7), 6p(8)) o, drt (22)

+/0 (Ul,fa¢f(t))nfdt+/o (ur,p, Pp(t)) 2, dt.

Next, let ¢; € WH2(0, T3 V) (i = f,p) s.t. by = ¢pon I and ¢ (T) = ¢,(T) =
0. We observe that

T t
[ [ o005 0)a,dra
0o Jo
T t —r
— [ [ st [ [ [ i o)
0o Joy 2 Jo
T
= [ 0. 050
Analogously, one gets similar results for the integrals involving f,, as well as
T t T
[ [ v, vowioyadrat = [ (U0, ust)asde i = £.9)
o Jo 0
T ot T
| [ @ U0 drit = = [ (@000 0)a,a
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With ¢; := 0y1); as test functions in (22) gives

T

/(Uf(t)ﬂﬂ/ff(t))nde/ (Up(t)ﬁtwp(t))npd’f—/ (VU;(1), Vs (1)), dt
0 0 0

T T
- / (VU (1), V(1)) ot — / (a- VU(1), 5(t) o, dt
= [ Usris©adt— [ (1000,
0 0
— (ur,5,%5(0))2; — (u1,p,¥p(0)) 0,
Therefore, (9) holds true.

It only remains to show that Uy = r(Up,) on I'. In doing so, we estimate

07 = @I < ||Us — O,

+[r W) = 1O + [0 = @R - 23)

The third term on the right vanishes since, by definition, Uﬁt =r(U4,) on I
For the second term, by the trace inequality one has

T
W) = @) [ < 227 [0 — 05,0
< C||Up - UZtHQg (HVUP - VUZtHQZ; + HUP - UZtHQPT )7 (24)

with C only depending on the geometry of §2,. As At \, 0, | |Up - U4, | |QT —0
P

by the strong convergence in Lemma 5. The weak convergence (16) implies that
||VUp — VU4, | |QT is bounded uniformly, and by (24) the second term on the
P

right in (23) vanishes. A similar argument can be applied to the first term on

the right, showing that the traces of Uy and r(U,) are equal a.e. on I'. This
concludes the proof.

3.4 Positivity and L* bounds

As stated in Assumption Ay, the initial conditions are positive and essentially
bounded. Since the Dirichlet boundary conditions are homogeneous one ex-
pects that the solution is positive and essentially bounded as well. This is
proved below. We start with the proof for the time discrete concentrations ué%
and u’; , which immediately give similar results for uy and u,. The procedure
is quite standard and makes use of the nonpositive, respectively nonnegative
cuts, [-]+ and []_:

s = 0, ifu<0, ] = u, ifu <0, (25)
T W ifus0, YT Yo, dtwso.

We start with the lower bounds, which are proved in
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Lemma 6 For any k € {0,..., N}, ufc >0 and u’; > a.e..

Proof The proof is by mathematical induction. By Assumption A;, the state-
ment holds for k& = 0. Next, assumlng uk 1'> 0 and uk 1'> 0 a.e., the

same is obtained for uf and uf when tebtmg in (10) Wlth Pr = [uf]_ and
Op = [r(u’;)}_. We omit the detailed arguments here, as these are standard.

For the upper bounds, with M, My, M; introduced in the assumptions,
we let M, = max{MI,r(MI),Mf,MMf} and prove
Lemma 7 For allk € {0,...,N} one has
ul} < My (kAt+1)  and u’; <r Y (Mu(kAt +1)).

Proof Here we use again mathematical induction and follow ideas in [8]. The
statement holds trivially for k = 0. Next, assume u’} < M, ((k—1)At+1) and

uf < r_l(Mu((k— 1)At—|—1)). Since u’; =r(uf)on I, ¢5 := [uf uy — M, (kA +

D]+ and ¢y := [r(uk) — My (kAt + 1)]4 can be used as test functions in (10),
giving

(uf — Mu(kAt +1), [uf — My (kAL +1)] ) o,

+ (uf — (M (kAL + 1)), [r(uf) — M, (kA + D] )g,

+ AL(V(uf — Myk(At+ 1)),V [uf — M k(AL + 1)]+)Qf

+ At(V( ’;—M k(At + 1)), V[r(uk) —Muk(At+1)]+)Qp

+ At(q - V(uf — My (kAL + 1)), [uf — M, (kAL + 1)]+)Qf

= (! M-8+, [uf — M, (kAL +1)],)

+ (ubT =T (ML((k — 1) At + 1)), [ul — M, (KAt + D], ) g,

+ (Atf, = r 7N (M (KA + 1)) + 77 (M ((k = 1) At + 1)), [uy — My (kA +1)] ),
+A(fy = My, [uf — Mu(kAt+1)] ), (26)

p

The first three terms in (26) are positive, while for the fourth one uses the
properties of r to obtain

(V(u’;—Muk(At—H)),V[r(u’;)—Muk(At+1)]+)Qp > m||V]ug—Muk(At+1)]1)][3,

As in the proof of Lemma 1, the last term on the left vanishes.

Also, by the induction hypothesis, the first two terms on the right are
nonpositive , and the same holds for the third by Assumption Ay and since
M, > My. Finally, for a.e. x € £2, a & € (My((k — 1) At + 1), M, (kAt + 1))
exists s.t.

Atfy = (rmH(My (KAt + 1)) — 7 (M ((k — 1) At +1)))
=Atf, — (r~ 1) (&) M, At < AtMy, — %MuAt <0.
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Therefore the last term is nonpositive as well, showing that u’} < M, (kAt+1)
and uf <r='(M,(kAt+1)) ae..

Lemmata 6 and 7 provide similar bounds for the solution pair (uy, u,).

Lemma 8 The solution pair in Definition 3 is essentially bounded. For a.e.
t €10, T] one has

0 <uyp(t) < My(t+1) almost everywhere in (2f, (27)

0 <uy(t) < —(t+1) almost everywhere in (2,,. (28)
m

Proof The proof uses the convergence of the interpolations in (13) and (14). In
view of the results above, these are nonnegative a.e.. Further, the upper bounds
follow straightforwardly for the interpolations in the fracture subdomain, and
by using Remark 1 for the interpolation in the porous block.

4 Formal upscaling

We use the formal asymptotic expansions for the variables and use the trans-
verse averaging to obtain the upscaled equations. Specifically, we let the frac-
ture thickness € go to zero and reduce the fracture model to a boundary
condition. We refer to [9,25] for a general procedure applied to convection
dominated regimes, and to [19,30,31] for more specific applications related to
precipitation-dissolution models, or to biofilm growth in porous media. How-
ever, these papers refer strictly to the fracture region and do not consider the
coupling with a porous block. For simplicity, a Poiseuille flow is considered,
but the procedure can be applied to more general situations straightforwardly:

: 3,y Y

a=(¢w).0),  withg(y) = 5Q%(2-2). (29)
Here @ is the average of the fluid velocity in the longitudinal direction, @ =
2% fo% qff(y)dy7 with @ > 0. By this choice, the given velocity field satisfied

the Stokes equation, and its transversal average does not vanish as € \ 0.
For the upscaling we use the transformation z := y/e to rescale the frac-
ture domain to £2y = (0,1) x (0,1). However, the porous block {2, remains
unchanged. For consistency, we change the name of the transversal variable y
into z there as well. In this context, the upper part of the boundary becomes

I'f =(0,1) x {1}, and (6) transforms into

atu

€ [ 1
— Aug = fp, in

(07T] D>
Oyus + ¢°0puG — (Dpptif + i uf) = fro o in(0,T] x (2,
u? = T(’LLZ), at (OvT] x I, (30)
0.us = 20,u%, at (0,T] x I
2¥Up T e UET ’ )
d.u§ =0, at (0,7T] x I'}.
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Observe that the partial derivatives z- become now %E’ and that ¢¢ =
¢°(2) = 5Q2(2 - 2).

In the fracture domain we redefine u% in terms of the new variable z,
U%(t,z,z) = uj(t,z,e2). By an abuse of notation allowing to avoid an excess
of symbols, we give up the . Further, we assume the following asymptotic
expansions for the pair (u3,ug):

U?(t7 x,z) = g( ,2) +euy (t z,2) + O(e?), (31)
ug(t,x,2) = ub(t,z, z) +eul (t,z,y) + 0O(£?). (32)

Substituting the expansions (31) and (32) in (30) gives
Or(uf +eul) — A(ub +euf) = f, + O(?),  in (0,T] x £2p, (33)

3
8tu£ + sz(Q — z)@xug — 8mu{;
1

_52 O..(ul +eul +ul) = fr +O(), in (0,T] x 2, (34)
“0 +eul = r(uh) +er’ (uh)uf + O(e?), at (0,T] x I, (35)
0. (ufy + eul) = 78 (uf +eud +e2ul)+0(), at (0,7) x I, (36)
a (uf +euf +*uf) = O(®), at (0,T)x I?.  (37)
The 72 term in (34), and the lowes order terms in (36) and (37) imply
ﬁzzu{; =0, in {2, and azu{; =0, at F]% ur.
This gives
ug(x, z,t) = ug(x,t).
In a similar fashion one gets
uf (z,2,t) = ud (,1).
Hence, from equation (36), we obtain
d,ub =0, at (0,7] x I (38)
The €° term of (35) gives
ul = r(ud), at (0,7] x T (39)
Furthermore, the €° term of (33) implies
Oul — Aufy = fp, in (0,7] x §2,. (40)
From the above, one obtains the effective model
Oufy — Aufy = fp, in (0,T] x £2,,
(Pup,) zuf = 0, at (0,7] x I, (41)
ug =r(ub), at (0,7]xI.
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The model above is completed by the initial conditions and the (homogeneous)
Dirichlet boundary conditions as stated in Section 2. Note that u}, can be solved
independently of ug . The last boundary condition in 41 provides the effective

concentration in the fracture, ug.

4.1 Higher order approximation

The procedure above can be continued to find effective equations having better
approximation properties than (41). To this end, we consider the £ term of
equation (34),

Dyl Q%Z(z — 2)0pu — Opatil) — zuf = fy in Qp. (42

Integrating (42) from z = 0 to z = 1, since Uo does not depend on z and using
(37) one gets
dud + Qyul — Dppid) — fr = 0.ud |72,

for (t,z) € (0,7]x(0,1), where f := f_l frdz. By (36) and (37), this becomes

—(‘3zu’f’Z:0 = &gug + Q@wug Muo fr (43)
The €' term of (35) gives
ul = (uB)u?, at (0,7] x T, (44)
and the ! term of (33) implies
Ol — Aul =0, in (0,77 x £2,,. (45)
Defining the effective quantities
u? = ub +euf,  and  uf = ul +eud, (46)
adding (38) to (43), (39) to (44), and (40) to (45) gives
Ol — Aub = fp, in (0,7] x $2,,  (47)
uf = r(ub) +er’ (uh)u?, at (0,T] x I,  (48)
— 9P = E((“)tuo + QOyul — Bpuun — ff), at (0,T] x I (49)
Up to &2 terms, (47)-(49) becomes
Ouf = Aug + f, in (0,77 x £2,,
(Pup, ) § —0:-uP = e(dul + Qopul — Oppul — f5), at (0,T) x I,  (50)
ul = r(uP), at (0,7] x I.

As before, initial and boundary conditions complete the model. Furthermore,
substituting the third equation in the second one leads to a (nonlinear) model
only in terms of u2, and again can be solved independently. Then u/ can be
determined from the third equation.
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4.2 Formal upscaling of drift dominated model

As for the original model, we now determine upscaled (effective) equations for
the model with dominating drift, where Pe = O(s~1). Our approach is inspired
from similar exercises carried out for precipitation-dissolution type models in
[19,25], but uses the drift model discussed e.g. in [1,2,3], and assumes that the
velocity is now very high, i.e. of order e~!. The system of equations is given
by

Opuy, — Aug, = fr, in (0,77 x §2,,

1
3tu‘}+gq5.Vu§—Au§c:f}%, in (0, 7] x £25,
up =r(uy), at (0,7 x I,
duy, = Oyuy,  at (0,7] x I

(51)

We proceed agian by rescaling the fractured domain. Using the asymptotic
expansions (31) - (32), (51) becomes

Op(uf) +eul) — A(ufy +eul) = fp + O(?), in (0,T] x 2, (52)

3
Btug + 2—€Qz(2 — z)azug — 8mu£
1

3 O..(uf +eul +2ul) = f+0(e), i (0,T)x 2,  (53)

f + su{ =r(ub) +er' (uh)uf +O(?), at (0,T] x T, (54)

02 (uf + euf) = 78 (uf +eud +2ul) +O(e), at (0,T] x I, (55)
a (uf +euf +*uf) = O(®), at (0,T) x I (56)

As before, we obtain u] (x, z,t) = uf (x,t). Further, the e~! terms in (53) give
3
—§Qz(z — 2)896%c — 6zzu{ =0, in (2. (57)

Integrating (57) from z = 0 to z = 1, using that ug is independent of z and
the boundary condition (56) yields

—Q0yul = 0.uf|_,
Using the €Y terms in (55), this gives
—0.ub = Qd,ul, at (0,7] x I. (58)
Furthermore, the € term from (54) implies
g = r(uf), on I
and the ¥ term of (52) gives

p P _ :
Opug — Aug = fp, in £2,.
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Summarizing, the leading order terms solve the model

Opul) — Auf) = fp, in (0,77 x £2,,
(Ppry) —0ub = Qo, uo, at (0,7] x I, (59)
ul =r(u), at (0,T] x I

Boundary and initial conditions are needed to complete the model, which, as
before can be reduced to the a (nonlinear) model in uf.

Further, a more accurate model, is obtained when including higher order
terms. The € term in (53) is

3
g + Q2 = 2)0puf — Opguf — Oz = f. (60)
Integrating (60) from z = 0 to z = 1 gives for (¢,2) € (0,7] x (0,1)
'3
8tug —/ in(z 2)0, u{dz — Gmuo ff = -0, “2’2 o
0
3 1
where fy = [ frdz. Hence, by (55) and (56), we have
uf|_, - / 2Qz(z — 2)0yul dz — Dyl — f. (61)
With the effective quantities
1
uP = ub + eul and uf = ug + sﬂ{, where ﬂ{ = / u{dz,
0
adding (58) and (61) gives
'3
—0ub = Q@Iug + s(&tug —/0 in(z — 2)8zu{dz Muo ff> (62)
By (57), in (0,T] x 24 one has

c )+ ci(z,t).

3 22 —

Since O,u; = 0 at FJ%, we get ¢1(x,t) = —Q@wug. This gives

,Q( z3)a ul — Qz,ul + ca(x,t).

Integrating the above from z =0 to z = 1, and after some elementary calcu-
lations, one has cy(z,t) = @] + + 2Q0, ul, hence

f 3o(Zt gt foyaf g 2 f
ui (z, 2,t) = _§Q(E - E)&Duo — Qz0u) +ui + 5@893%. (63)
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This can be used to compute

/ -Qz(z —2)0, u{dz = —5Q26mug — Q@Ia{.
Inserting this in (62) gives for (¢,z) € (0,7] x (0,1)
—0ul = Q0, uO + 6(6tu0 - %Qzﬁmu{; + Q@,ﬂ{ — JMLuO ff)

= Q@xug + 6(8,%5 - (1 + %Q2)6mug muo ff)
Up to an O(g?) error, this rewrites

—9.uP = QOyul + 6(8tu (143 Q 2) Dygt] ff)
Similarly, the nonlinear transmission condition becomes

r(upl=0) = r(uk].—0) + O(e?).

Furthermore, using the expression for uf obtained in (63), we have

uflamo = uf +e(uflam0 — af) + O(?)

=u£+a?&vu£+0(a)_u +5—Qau I+ 0().

Adding the €% and ' terms of (52), gives
Opul — Aub = f,, in £2,.

Summarizing, we have the following set of effective equations

dul = AuP + f,, in (0,77 x §2,,
—0.uP = QO,u!
3
(Ppry) +e(Of - (1+ % Jooul = 7). at (0,T]x I 9
2 .
r(u?) = ul + ?Qalug, at (0,7] x I.
In this particular situation, the third equation gives
5 5 5

ul = e [ heditru)as (65)

allowing again to decouple the problem for u?.



Reactive transport in fractured media 21

5 Rigorous upscaling for moderate Peclét (Pe = O(1))

In this Section we give a rigorous convergence proof for the upscaled model
obtained in Section 4, when diffusion and transport are in balance. We follow
ideas from [11], pp.200-208 (a detailed presentation can be found in [4], Chap-
ters 4 and 9; see also [18] for an extension of the results to periodic media,
and [12] for a similar dimensionality reduction approach). As in the formal
upscaling, to simplify the exposition we assume the parabolic velocity profile
in (29). For the proofs we derive e-independent a priori estimates, and use
compactness arguments to pass to the limit. Note that most of these a priori
estimates immediately follow from the ones already obtained when proving
existence.

5.1 Weak formulation

As in Section 4, the fractured part is rescaled verticallly by z = y/e. Then
0 <z <1 and the domain 25 transforms to {25 = (0,1) x (0,1). Furthermore,

¢ () = q(z) := —2Qz(z — 2). We define,
a%(t, @, 2) = uj(t,z, ze), Frt,x,2) i= fr(t,x, 2¢), ar gz, 2) = ug f(, 2¢).
We have u5 € L%(0,T; Vy), u% =r(up) on I' and (3) becomes

— (U, Oep) r — €(UF, 0r¢f) o1 + Dp(Vy, V) or + €Dy (02uF, Ouy) o
D ~& ~E
+ 1 (0:5.0:07) o7 + (0027, 6) o
=(fp,bp)or + E(f,?ﬁf)nfr + (ur,p, 9p(0) 2, +e(tr s, 67(0)) o, (66)

for all (¢, ¢p) € WH2(0,T,Vy) x WH2(0,T,V,) such that ¢, = ¢ on I, and
¢f(T) = ¢p(T) = 0.

In the fracture, we define the (vertical) average

1
Ui(t, z) ::/O u%(t, z, z)dz.

Furthermore, we let 24y := (0, 1). Since @5 € L2(0,T; V), U5 € L*(0,T; Wy'*(2av)).
For consistency of notation, we let Uy(t,z,2) = wup(t,z,2). We also define

Fr(t, @) = [ fr(t.a,2)dz and ap g (2) = [ ars(z, 2)dz.
Below we show that as € ™\, 0, the pair (U, U?) converges towards (Up, Uy),
the weak solution of the upscaled Problem Py, in (41). This is defined below

Definition 6 A pair (U, U,) € L*(0,T;L*(24y)) x L*(0,T;V,) is a weak
solution to Problem Py, if for the trace of U, on I' one has Uy = r(Up,), and

_(Upa 8t¢p)ﬂg + (VUP’ qup)ﬂg = (fpa ¢p)95 + (uI,pv ¢p(0))9pa

for all ¢, € WH2(0,T;V,) such that ¢,(T) = 0.
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In the convergence proof the transversal average of the fracture model will
be used. For estimating this we test in (66) with z-independent functions in
the fracture, that is, ¢¢(¢,x, z) = ¢¢(t,x). This gives

- 8(U]%’ 8t¢f)(-QAV)T - (U;’ 8t¢p)ﬂg" + (VU;, V(bp)()g"
+ 5(8wU;a 8w¢f)(zfv + 6@(335[];, ¢f)!2£v

1
— (1 dp)ar, + (o dp)ar +<( / Q- 0t é)pr. (67)
+ 5(ﬂ17f7 ¢f(0))-QAV + (ulypv ¢p(0))-QAV7

for all (¢f,¢,) € L2(0, T, Wy*(24v)) x L*(0,T,V,) such that ¢, = ¢5 on I,
and ¢5(T) = ¢,(T) = 0. We now pass to the limit ¢ \, 0 in (67). To do so, we
adapt the proofs in Section 3.2 to obtain the a priori estimates

Lemma 9 There exists C' > 0 independent of € such that

~ 1 -~
HUZHiQ(o,T;vp) te Hazuf}\;? +2 HazufH_zofT <C.

Similar estimates can be obtained for U7 and Uj:
Lemma 10 There exists a constant C' > 0 not depending on € such that
15

o + U I, +2lloaUl15, <.

Moreover, the essential bounds in Lemma 8 remain valid for U, and Us. For
all t € (0,71,

0 < Uj(t) < M, (t+1) almost everywhere in 24y, (68)
M,
0<Us(t) < Wu(t + 1) almost everywhere in (2,. (69)

This implies the weak convergence

U; = U,, weakly in L*(0,7;V,), (70)
U; — Uy, weakly in L*(0,T; L*(Q2av)). (71)

Next, as for Lemma 5 one obtains the strong convergence of U, to U, in
L?(0,T; L*(£2,)), providing the strong convergence for the traces on I.

Lemma 11 Along a sequence € \, 0, one has
U, = Up strongly in L?(0,T; L?(12,)).
Finally, combining Lemma 9 and Proposition 4.3 in [11] gives

Lemma 12 There exists a C > 0 not depending on € s.t. for any zy € [0,1]
one has

15 20) = Uf|[5p < <C.
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Using this, one can follow the steps in the proof of Lemma 4.5 in [11] to obtain

Lemma 13 A constant C > 0 not depending on € exists such that for all

¢5 € L*(0,T; Wy*(Qav))
/53C
S Q ﬂ \|ax¢f||L2(Q£V) .

We now have sufficient estimates to let ¢ N\, 0, and show that the limit-
ing pair (U, Uy) is a weak solution introduced in Definition 6. The result is
contained in the following theorem.

1

Theorem 7 The pair (U,,Uy) is a weak solution introduced in Definition 6.

Proof For arbitrary test functions, we denote the terms of (67) by Iy, ..., 1o
and analyze their limit as € \, 0. The weak convergence in (70) gives

I2 — _(Up7 8t¢p).(21?a
I3 — (VU;D»V(bp)Qg-

Further, by Lemma 10 one has

1] < el(UF, dip) g, | < [|Ufll gr N0dsllog, < Celldigsllor, — 0.

The argument can be repeated for Iy, I5, Is and Iy to conclude that all
have 0 limit as well. Moreover, by Lemma 13, the same holds for Ig.

The terms I7 and I19 do not change in the limit, since they do not depend
on . Hence, for all ¢, € WH2(0,T;V,) such that ¢,(T) = 0, U, satisfies

_(Upv at(bp)QPT + (VUpa V(bp)ﬂz = (fpa ¢p)(21’1; + (uI,pv ¢p(0))(2p~

It remains to show that 7(U,) = Uy on I'. To this end, for arbitrary
¢ € L*(0,T; L?(I")) we use the triangle inequality to estimate

((r(Up) = Uy, &) pr| < |(r(Uy) = 1(Up), @) rr| + [(Us = Uy, &) e
+ [(r(up) — af, @) pr| + (U — aF, ¢)prl.

We denote the terms on the right hand side by Iy, ..., I; and let e N\, 0. For
I we follow the steps concluding the proof of Theorem 5, namely use the
trace inequality, (70) and the strong convergence in Lemma 11 to conclude
that H’I‘(U;) - r(Up)| ‘FT vanishes, implying that I; — 0. Next, I5 goes to zero
by the weak convergence (71). I; =0 trivially, by the nonlinear transmission
condition, and I, goes to zero by Lemma 12. Finally, since ¢ € L2(0,T; L*(I"))
was chosen arbitrarily, we conclude that Uy = r(U),) on I, finishing the proof.
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6 Discussion and outlook

We have derived upscaled equations for a time dependent reactive transport
process in a fractured porous domain. The particularity lies in the nonlinear
transmission conditions at the fracture interfaces. Both formal and rigorous
upscaling procedures have been employed. The key role in this work is played
by the existence results obtained in [14] for similar kind of elliptic problems.
Related to this, efficient solution strategies for such kind of coupled problems
need to be developed, including domain decomposition approaches as discussed
in [5].
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