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Abstract We study the set of output stable configurations of chemical reaction
deciders (CRDs). It turns out that CRDs with only bimolecular reactions (which
are almost equivalent to population protocols) have a special structure that allows
for an algorithm to efficiently compute their finite set of minimal output unstable
configurations. As a consequence, a relatively large set of configurations may be
efficiently checked for output stability.

We also provide a number of observations regarding the semilinearity result of
Angluin et al. [Distrib. Comput., 2007] from the context of population protocols
(which is a central result for output stable CRDs). In particular, we observe that
the computation-friendly class of totally stable CRDs has equal expressive power
as the larger class of output stable CRDs.

Keywords Chemical Reaction Network · Population Protocol · Vector Addition
System · Output Stability · Chemical Reaction Decider

1 Introduction

In scenarios where the number of molecules in a chemical reaction network (CRN)
is small, traditional continuous models for CRNs based on mass action kinetics are
not suitable and one may need to consider discrete CRNs. In discrete CRNs, the
number of molecules of each species is represented by a nonnegative integer and
probabilities are assigned to each reaction. The computational power of discrete
CRNs has been formally studied in [17] (see also [8]), where it is shown that
Turing-universal computation is possible with arbitrary small (but nonzero) error
probability. The implementability of arbitrary CRNs has been studied using strand
displacement reactions as a primitive [18]. As observed in [17], discrete CRNs are
similar to population protocols [1,4] and results carry over from one domain to
the other. Recent work related to CRNs include the calculus of chemical systems
[16], the study of timing issues in CRNs [10], and the study of rate-independent
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continuous CRNs [7]. From now on we consider only discrete CRNs, and so we
omit the adjective “discrete”.

We continue in this paper the study of CRNs that has for each given input a
deterministic output [6]. Thus, we are concerned here with error-free computation
and so probabilities are irrelevant and only reachability is important. A given input
is accepted by such a “deterministic” CRN, or more precisely output stable chemical

reaction decider (CRD) [6], if at the end of the “useful” computation we obtain
an accept configuration c, which is a configuration where at least one yes voter is
present and none of the no voters (each species is marked by the CRD as either a
yes or a no voter). Otherwise, the input is rejected and c is a reject configuration,
which is a configuration where at least one no voter is present and none of the yes
voters. The configuration c may still change, but it stays an accept configuration
when c is an accept configuration (and similar for reject). In this case c is called
output stable.

In Section 3, we provide a number of observations regarding the semilinearity
result for population protocols of [1,2]. First we mention that this result has a
small gap in its proof which is easily fixable, except for the corner case where the
semilinear set contains the zero vector. Next, we define a stricter variant of the
notion of output stable, called totally stable. In contrast to output stable CRDs,
totally stable CRDs eventually (completely) halt for every input. For totally stable
CRDs it is computationally easy to determine when the computation has ended.
We mention that the semilinearity result of [1,2] works also for totally stable CRDs,
and consequently the class of totally stable CRDs has equal expressive power as
the larger class of output stable CRDs.

CRNs are similar to Petri nets [15] and vector addition systems (VASs) [12], see
[17]. However, Petri nets and VASs operate as “generators” where the computation
starts in the given fixed starting configuration (called the initial marking) and one
is (generally) interested in the reachable configurations. In contrast, a CRD is a
decider where one is (generally) interested in determining the set of inputs that is
accepted by the CRD. Despite these differences, various results concerning Petri
nets and VASs can be carried over to CRDs.

In Section 4, we take a closer look at the notion of output stable. First, using
some well-known results for VASs, we show that determining whether or not a
configuration is output stable for an output stable CRD is decidable. Next, we
turn to bimolecular CRNs, i.e., CRNs where each reaction has two reactants and
two products. It turns out that bimolecular CRDs provide a special structure on
the set of output stable configurations. More precisely, it turns out that the set
of minimal elements M of the upward-closed set of output-unstable configurations
may be efficiently determined for bimolecular CRDs, cf. Theorem 6 — this is the
main result of the paper. By efficiently determine we mean here that the fraction
of time complexity divided by size of the output is relatively small (note that the
size of the output is a naive lower bound on the time complexity). Given M , it is
then computationally easy to determine if a given configuration c is output stable.
Consequently, the algorithm to determine M provides an efficient method to test
a relatively large number of configurations for output stability (the preprocessing
cost to generate M becomes smaller, relatively, when testing more configurations
for output stability).

A preliminary conference version of this paper was presented at DNA 20 [5].
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2 Chemical Reaction Networks and Deciders and Population Protocols

2.1 Chemical Reaction Networks

The notation and terminology of this subsection and the next are similar as in
[11].

Let N = {0, 1, . . .}. Let Λ be a finite set. The set of vectors over N indexed by Λ
(i.e., the set of functions ϕ : Λ→ N) is denoted by NΛ. For x ∈ NΛ, we define the
size of x, denoted by ‖x‖, as

∑
i∈Λ x(i). We denote the restriction of x to Σ ⊆ Λ

by x|Σ . For x, y ∈ NΛ we write x ≤ y if and only if x(i) ≤ y(i) for all i ∈ Λ. For
notational convenience we now also denote vectors in NΛ, which can be regarded
as multisets, by their string representations. Thus we denote c ∈ NΛ by the string

A
c(A1)
1 · · ·Ac(An)

n (or any permutation of these letters) where Λ = {A1, . . . , An}.
Let Λ be a finite set. A reaction α over Λ is a tuple (r, p) with r, p ∈ NΛ; r and

p are called the reactants and products of α, respectively. A reaction is commonly
written in an additive fashion, where for example A+2B → C denotes the reaction
(r, p) where AB2 and C are string representations for r and p, respectively. We say
that α is mute if r = p. We say that α is nonincreasing if ‖r‖ ≥ ‖p‖ and bimolecular

if ‖r‖ = ‖p‖ = 2. A chemical reaction network (CRN, for short) is a tuple R = (Λ,R)
with Λ a finite set and R a finite set of reactions over Λ. The elements of Λ are
called the species of R. The elements of NΛ are called the configurations of R. For
a configuration c, ‖c‖ is the number of molecules of c.

For a configuration c ∈ NΛ and a reaction α over Λ, we say that α = (r, p)
is applicable to c if r ≤ c. If α is applicable to c, then the result of applying α to
c, denoted by α(c), is c′ = c − r + p. Note that α(c) ∈ NΛ. In this case, we also
write c →α c′. Moreover, we write c →R c′ if c →α c′ for some reaction α of R.
The transitive and reflexive closure of →R is denoted by →∗R. We say that c′ is
reachable from c in R if c →∗R c′. If R is clear from the context, then we simply
write → and →∗ for →R and →∗R, respectively.

We remark that a CRN is similar to a Petri net N [15] without the initial
marking M : the set Λ corresponds to the set of places of N and the set of reactions
R corresponds to the set of transitions of N . While in a Petri net distinct transitions
in N may correspond to a single reaction in R (i.e., there may be “copies” of each
transition), this is irrelevant for our purposes.

A CRN is also similar to a vector addition system (VAS) [12]. A VAS V is a
tuple (Λ, S) with Λ a finite set and S a finite subset of ZΛ. Again, the elements
of NΛ are the configurations of V . One is interested in the binary relation → over
NΛ, where c → c′ if and only if c′ = c + x for some x ∈ S. Reachability problems
concerning CRNs can be straightforwardly translated to VASs (or Petri nets) and
vice versa, see [17, Appendix A.6].

2.2 Chemical Reaction Deciders

A (leaderless) chemical reaction decider (CRD, for short) is a tuple D = (Λ,R,Σ,
Υ ), where (Λ,R) is a CRN, Σ ⊆ Λ, Υ : Λ → {0, 1}. The elements of Σ, Υ−1(0),
and Υ−1(1) are called the input species, no voters, and yes voters of D, respectively.
Notation and terminology concerning CRNs carry over to CRDs. For example,
we may speak of a configuration of D. An initial configuration of D is a nonzero
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configuration c of D where c|Λ\Σ = 0 (by abuse of notation we denote the zero
vector over suitable alphabet by 0). A CRD is called nonincreasing (bimolecular,
resp.) if all reactions of R are nonincreasing (bimolecular, resp.).

We define the following function ΦD : NΛ → {0, 1,und}. For x ∈ NΛ, let Ix =
{S ∈ Λ | x(S) > 0}. Then, for i ∈ {0, 1}, we have ΦD(x) = i if and only if both
Ix ∩ Υ−1(i) 6= ∅ and Ix ∩ Υ−1(1 − i) = ∅ (as usual, Υ−1 denotes the preimage of
Υ ). If x is zero or Ix ∩ Υ−1(0) 6= ∅ 6= Ix ∩ Υ−1(1), then ΦD(x) = und. Here, the
value und is regarded as “undefined”.

A configuration c is called totally stable (t-stable for short) in D if both ΦD(c) ∈
{0, 1} and, for all c′ with c →∗ c′, we have c′ = c. Note that if c is t-stable in
D, then for all c′ with c → c′, we have c′ = c. A configuration c is called output

stable (o-stable for short) in D if both ΦD(c) ∈ {0, 1} and, for all c′ with c →∗ c′,
ΦD(c′) = ΦD(c). Note that every t-stable configuration is o-stable. A configuration
that is not o-stable (t-stable, resp.) and nonzero is called o-unstable (t-unstable,
resp.).

We say that D o-stably decides (t-stably decides, resp.) the function ϕ : NΣ\{0} →
{0, 1} if for each initial configuration c of D and each configuration c′ with c→∗ c′,
we have c′ →∗ c′′ where c′′ is o-stable (t-stable, resp.) in D and ϕ(c|Σ) = ΦD(c′′).
In this case, we also say that D o-stably decides (t-stably decides, resp.) the set
ϕ−1(1) and that D is o-stable (t-stable, resp.). Note that ϕ−1(1) along with the set
Σ, uniquely determine ϕ. In [1] (and [11]), only o-stable CRDs are considered, and
as a result the prefix output is omitted there.

Remark 1 We adopt here the definition of o-stably deciding a function/set from [2,
Section 2]. In the original definition of o-stably decides from [1], an initial configu-
ration may be the zero vector and the domain of ϕ contains the zero vector. Since
the zero vector corresponds to an input without any molecules and the number of
molecules in a bimolecular CRD stays fixed, no molecule can be introduced and, in
particular, none of the yes or no voters can be introduced. As a result, there exist
no o-stable bimolecular CRDs when (strictly) using the definition of [1]. Finally,
we remark that there are (leaderless) CRDs that are o-stable using the definition
of [1], since we may then have reactions (r, p) with r the zero vector. Since p may
then be produced at any point in time, an o-stable CRD o-stably decides either
NΣ (when p contains only yes voters) or the empty set (when p contains only no
voters). Note that the CRD cannot be o-stable when p contains both yes and no
voters. Thus this notion is also not interesting for the (larger) class of CRDs.

2.3 Population Protocols

The notion of population protocol [1,4] is almost equivalent to the notion of bi-
molecular CRD. The only difference is that, in a population protocol, the set
of reactions R is replaced by a transition function δ : Λ2 → Λ2. In this setting,
δ(A,B) = (C,D) corresponds to the reaction (r, p) with r = AB and p = CD (re-
call that we may denote vectors by strings). Note that the tuples (A,B) and (C,D)
are ordered. Note also that, for given A,B ∈ Λ, there are at most two non-mute
reactions with A and B as reactants (since we have a transition for (A,B) and for
(B,A)), while for bimolecular CRDs there can be arbitrary many such reactions.

Reactions, molecules, and species are called transitions, agents, and states, re-
spectively, in the context of population protocols.
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An important property of bimolecular CRDs is that the number of molecules
stays fixed, i.e., if c→∗ c′, then ‖c‖ = ‖c′‖.

Remark 2 In [1], δ(A,B) = (C,D) is interpreted as follows: a molecule of type A is
transformed into a molecule of type C and simultaneously a molecule of type B is
transformed into a molecule of type D. As a consequence, applying the “reaction”
δ(A,B) = (B,A) would result in a different configuration. However, in [2] this
interpretation is abandoned and δ(A,B) = (B,A) is considered a mute reaction.
We adopt the convention of [2].

3 Semilinearity

In this section we state a number of modest, but useful, observations we made
when studying the proof of the semilinearity result of [1].

Let Λ be a finite set. A set S ⊆ NΛ is called linear (over Λ) if there are
v0, . . . , vn ∈ NΛ such that S = {v0 +

∑n
i=1 kivi | ki ∈ N, i ∈ {1, . . . , n}}. A set

S ⊆ NΛ is called semilinear (over Λ) if S is the union of a finite number of linear
sets over Λ.

It is stated in [1] that every semilinear set S is o-stably decidable by a pop-
ulation protocol (i.e., a bimolecular CRD). While this result is often cited in the
literature, it is straightforward to verify that the result fails if S contains the zero
vector. Indeed, by definition of semilinear sets may contain the zero vector, while
the domain of ϕ in the above definition of stably deciding a set is restricted to
nonzero vectors (recall from Remark 1 that we have to use the definition of [2]
instead of [1]). This small counterexample led us to revisit the proof of [1]. It
turns out that Lemma 5 of [1] implicitly assumes that there are at least 2 agents
(i.e., molecules), which translate into an initial configuration of size at least 2.
Fortunately, this proof can be straightforwardly modified to allow for initial con-
figurations of size 1, by letting, in [1, Lemma 5], I map σi to (1, b, ai) with b = 1 if
and only if ai < c for case 1, and with b = 1 if and only if ai = c mod m for case
2 (instead of to (1, 0, ai)) — note that these terms, such as I and σi, are taken
from [1, Lemma 5]. In [2] (see also [3]), it is shown that if S ⊆ NΛ is o-stably de-
cidable by a population protocol, then S is semilinear. Thus we have the following
(attributed, of course, to [1,2]).

Theorem 1 ([1,2]) For every S ⊆ NΣ , S is o-stably decidable by a population protocol

(i.e., a bimolecular CRD) if and only if S is both semilinear and does not contain the

zero vector.

As recalled in [6], the result from [2] that the sets o-stably decidable by popu-
lation protocols are semilinear holds not only for population protocols, but for any
reflexive and transitive relation →∗ that respects addition (i.e., for c, c′, x ∈ NΣ ,
c →∗ c′ implies c + x →∗ c′ + x). Hence, Theorem 1 holds also for the (broader)
family of all CRDs.

Another observation one can make when studying [1] is that the proof con-
cerning o-stable CRDs holds unchanged for the smaller class of t-stable CRDs. By
expressive power of a family F of CRDs we mean the family of sets decidable by
F . As the result follows from the proof of [1], we attribute it to [1].
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Theorem 2 ([1]) The family of t-stable bimolecular CRDs have equal expressive power

as the family of o-stable CRDs. Equivalently, the sets that are t-stably decidable by

bimolecular CRDs are precisely the semilinear sets without the zero vector.

Proof First recall, by the comment below Theorem 1, that the expressive powers of
the families of o-stable CRDs and o-stable bimolecular CRDs are equal. Now, the
family of t-stable bimolecular CRDs is a subset of the family of o-stable bimolecular
CRDs. Thus it suffices to show that the if-direction of Theorem 1 holds for t-stable
bimolecular CRDs.

The essential part of the if-direction of the proof of Theorem 1 above is Lemma
3 and Lemma 5 from [1]. In the proof of Lemma 5 in [1] a population protocol P is
described that eventually reaches a configuration c which is called “stable” in [1],
and which, in fact, is easily seen to be t-stable (by checking the three conditions of
“stable” in [1]). The proof of Lemma 3 in [1] trivially holds for t-stable bimolecular
CRDs. ut

Since the bimolecular CRDs form a subset of the CRDs, Theorem 2 holds also
when omitting the word “bimolecular”.

The family of t-stable CRDs form an interesting subclass of CRDs. Indeed, it
is easy to verify, during a run of a t-stable CRD, whether or not a configuration
is t-stable: one simply needs to verify whether or not there is an applicable (non-
mute) reaction. In other words, it is easily verified whether or not the computation
has ended. In the larger class of o-stable CRDs, it is not clear whether or not it
is computationally easy to verify if a given configuration is o-stable or not. We
revisit this latter problem in Section 4.

The concept of CRDs with leaders was introduced in [6] (it is simply called a
CRD in [6]). The difference with (leaderless) CRDs is that for CRDs with leaders
an additional vector σ ∈ NΛ\Σ is given and that the initial configurations c have the
condition that c|Λ\Σ is equal to σ (instead of equal to 0). Moreover, in the definition

of o/t-stably deciding a function ϕ, the domain of ϕ is NΣ instead of NΣ\{0}. Using
Theorem 1, we now straightforwardly observe that CRDs with leaders decide all
semilinear sets. The difference between Theorem 1 and Theorem 3 is because the
zero vector for (leaderless) CRDs cannot be represented by an initial configuration
of positive size, while the zero vector for CRDs with leaders can be represented by
an initial configuration of positive size.

Theorem 3 ([6]) For every S ⊆ NΣ , S is o-stably decidable by a CRD with leaders

if and only if S is semilinear.

Proof Again, by [2], every set o-stably decidable by a CRD with leaders is semi-
linear.

Conversely, let S ⊆ NΣ be semilinear. Consider Σ′ = {t} ∪ Σ, where t is an

element outside Σ. Let S′ = {x ∈ NΣ
′
| x(t) = 1, x|Σ ∈ S}. It is easy to verify that

S′ is semilinear. Indeed, let v0, . . . , vn be the vectors (cf. the definition of linear
set) for one of the linear sets that together make up S. Then by adding an entry
for t with value 1 for v0 and value 0 for the other vectors, we see that the obtained
vectors define a corresponding linear set for S′. Consequently, S′ is semilinear.
Note that S′ does not contain the zero vector. By Theorem 1, there is a CRD D =
(Λ,R,Σ′, Υ ) that o-stably decides S′. Consider now the CRD D′ = (Λ,R,Σ, Υ, σ)
with leaders where σ ∈ NΛ\Σ is such that σ(t) = 1 and σ(i) = 0 if i ∈ Λ \ Σ′.
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Consequently, the difference between D and D′ is that index t is not part of the
input species. Hence, D′ o-stably decides S. ut

Of course, (the proof of) Theorem 3 also holds by replacing o-stable by t-stable
and/or replacing CRDs by bimolecular CRDs.

4 Determining the output stable configurations

In this section we consider the problem of determining whether or not the “use-
ful” computation of an o-stable CRD has ended. More precisely, we consider the
problem of determining whether or not a given configuration of a o-stable CRD
is output stable. Recall from the previous section that it is straightforward to
determine whether or not a given configuration c is t-stable: one simply needs
to check whether or not a non-mute reaction is applicable to c (and check that
ΦD(c) ∈ {0, 1}). In Subsection 4.1 we consider the o-stable CRDs D in general
and in Subsection 4.2 we consider the case where D is bimolecular as this subclass
turns out to enjoy special properties regarding this problem.

4.1 The general case

Similar as done in [17, Theorem 4.2], we formulate now [12, Corollary 4.1] (defined
in the context of VASs) in terms of CRNs.

Proposition 1 ([12]) For given CRN R and configurations x, y of R, it is decidable

whether or not x→∗ y′ for some configuration y′ ≥ y.

A much more involved result is known as the decidability of the reachability
problem for vector addition systems, shown in [14] (see [13] for a simplified proof).

Proposition 2 ([14]) For given CRN R and configurations x, y of R, it is decidable

whether or not x→∗ y.

The precise complexity of the reachability problem of Proposition 2 is famously
unknown (see, e.g., [13]).

By Propositions 1 and 2 we straightforwardly obtain the following result.

Theorem 4 For a given o-stable CRD D and configuration c of D, it is decidable

whether or not c is o-stable in D.

Proof Testing whether or not ΦD(c) ∈ {0, 1} is clearly decidable. Let ΦD(c) = j.
Let, for X ∈ Λ, yX be the configuration with ‖yX‖ = 1 and yX(X) = 1. By
Proposition 1 it is decidable, for each X ∈ Υ−1(1− j), whether or not there exists
a c′ such that c →∗ c′ and c′ ≥ yX , i.e., c′(X) > 0. Hence if c contains only yes
voters, then we can decide if there is a reachable configuration with no voters (and
analogously if c contains only no voters). The only case left to decide is whether
or not c →∗ 0 (again, 0 denotes the zero vector over Λ). By Proposition 2 it is
decidable if the zero vector is reachable. Consequently, it is decidable if c is o-stable
in D. ut
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We now look at properties of o-stable configurations.

Let D be an o-stable CRD. We now consider the set UD of all output unstable
configurations of D. If D is clear from the context, then we simply write U for UD.
We now recall a useful result from [2, Lemma 10]. For convenience, we also recall
its short proof.

Proposition 3 ([2]) Let D be an o-stable CRD. Then U is closed upward under ≤.

In other words, for all c, c′ ∈ NΛ with c ≤ c′, if c ∈ U , then c′ ∈ U .

Proof Let c ∈ U and c ≤ c′. If ΦD(c) = und, then c contains both yes and no voters
(since c ∈ U , c is nonzero). Thus c′ also contains both yes and no voters and we
have c′ ∈ U . Assume that ΦD(c) ∈ {0, 1}. If ΦD(c′) = und, then there is nothing to
prove. Thus assume that ΦD(c) = ΦD(c′). Since c ∈ U , there is a c′′ with c →∗ c′′
with ΦD(c′′) 6= ΦD(c). Let x := c′ − c ∈ NΛ. Then c′ = c + x →∗ c′′ + x with
ΦD(c′′ + x) 6= ΦD(c) = ΦD(c′) and c′ ∈ U . ut

Remark 3 In some papers, such as [6], not all species in CRDs need to be voters.
In other words, in the definition of CRD we have Υ : E → {0, 1} for some E ⊆ Λ

(instead of E = Λ). We remark that Proposition 3 fails in this more general setting.
Indeed, if nonzero c contains no voters, then c ∈ U , but by extending c with, say,
a yes voter may result in an output stable configuration.

By Proposition 3, the set U is characterized by the set min(U) of minimal
elements of U under ≤. By Dickson’s lemma, recalled below, min(U) is a finite set.

Proposition 4 (Dickson’s lemma [9]) Let Λ be a finite set. Then for every S ⊆ NΛ,

min(S) is finite.

Given an o-stable CRD D and the set min(U), it is straightforward to verify
if a given configuration c is o-stable in D. Indeed, c is o-stable in D if and only
if u 6≤ c for all u ∈ min(U). Thus, to check whether or not c is o-stable in D
takes O(|min(U)|) configuration comparisons, i.e., O(|min(U)| · |Λ|) comparisons
of molecule counts. Note that this complexity bound depends only on D, i.e., it is
independent of c.

This complexity bound can be improved if the vectors of min(U) are stored
in the k-fold tree Tb(k) described in [20]. In general, given a set S of n vectors
of dimension k and vectors a and b of dimension k, the topic of orthogonal range
querying is concerned with determining the set X = {x ∈ S | a ≤ x ≤ b}. A related
question is to determine only |X|. Using the data structure called k-fold trees
one can efficiently determine X or |X|. In particular, using the k-fold tree Tb(k)

described in [20] it takes O(logk−
1
2 (n)) vector comparisons to determine whether

or not X = ∅. Now, assume min(U) is stored in Tb(k). Then a given vector c
is o-stable in D if and only if X = {u ∈ min(U) | u ≤ c} is equal to the empty
set. Consequently, taking a equal to the zero vector and b equal to c, we have the
following.

Lemma 1 Given an o-stable CRD D and assume that the set min(U) is stored in a

k-fold tree Tb(k) with k = |Λ|. Checking whether or not a configuration c is o-stable in

D takes O(logk−
1
2 (n)) configuration comparisons, with n = |min(U)|.
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Notice the improvement in complexity of Lemma 1 compared to the straight-
forward O(n) method mentioned above. Of course, there is a penalty associated
with storing min(U) in a k-fold tree: inserting a vector in a k-fold tree takes

O(logk−
1
2 (n)) vector comparisons and thus it takes O(n logk−

1
2 (n)) vector com-

parisons to set up this data structure. Consequently, the k-fold tree method is to
be used for testing a (relatively large) set of configurations for output stability
(instead of just a single configuration c).

4.2 The bimolecular case

We now show that min(U) can be efficiently determined when D is bimolecular.
By efficiently determine we mean here that the fraction of time complexity divided
by size |min(U)| of the output is relatively small — note that |min(U)| is a naive
lower bound on the time complexity. This is particularly useful when one wants
to test for o-stability for some large (finite) set of configurations (instead of just a
single configuration).

Let, for k ≥ 0, C≤k (C=k, resp.) be the set of configurations c ∈ NΛ with ‖c‖ ≤ k
(‖c‖ = k, resp.).

We remark that the naive approach to determine whether or not a particular
configuration c is o-stable in a o-stable bimolecular CRD D, would compute the set
Rc of all configurations reachable from c and then verify that ΦD(c′) = ΦD(c) for all
c′ ∈ Rc. Note that Rc ⊆ C=k with k = ‖c‖ since D is bimolecular. Thus, in the worst
case, one needs to compute in the order of |C=k| configurations. The value of |C=k|
is equal to the number of multisets of cardinality k over Λ. This number (called
figurate number, simplex number, or multiset coefficient), sometimes denoted by((
|Λ|
k

))
, is equal to the binomial coefficient (|Λ|+k−1

k ), see, e.g., [19, Section 1.2].

We start with introducing a new binary relation ↪→. For c, c′ ∈ min(U), denote
c ↪→α c

′ if c→α c
′+b where α = (r, p) is a reaction and b is some configuration with

b ≤ p and b 6= p. We write c ↪→ c′ if c ↪→α c
′ for some reaction α. It is important to

realize that ↪→ is a binary relation on min(U). Again, the transitive and reflexive
closure of ↪→ is denoted by ↪→∗.

We now provide some intuition regarding the notion of ↪→. Intuitively, one
may also view ↪→ as a graph G where min(U) is the set of vertices and c ↪→ c′

denotes an arrow from c to c′. Lemma 2 below proves a number of properties of
↪→. Although Lemma 2 does not require that the CRD D is bimolecular, assume
for didactical purposes that D is bimolecular. Now, Statement 5 of Lemma 2 says
that for every vertex of G there is a path in G to a vertex in M1 ∪ M2. The
vertices of M1 ∪ M2 = M1 ∪ T are all of size 2 and can be readily computed
by the first three statements of Lemma 2 (because M1 and T can be readily
computed). So, to compute all of min(U) we simply start from M1 ∪ T and obtain
all vertices by moving against the arrows. This is accomplished by Algorithm 1.
Of course, G is not part of the input and so the arrows of G have to be found
dynamically and the candidate vertices have to be checked for membership of
min(U). Statement 6 describes the possible differences in size of any two adjacent
vertices, which significantly restricts the search space for arrows.

For the next result, recall again that we may denote vectors by strings. Also,
note that we do not require in Lemma 2 that the CRD D is bimolecular.
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Lemma 2 Let D = (Λ,R,Σ, Υ ) be an o-stable CRD. Let M1 = {c ∈ min(U) | Φ(c) =
und}, M2 = {c ∈ min(U) | Φ(c) ∈ {0, 1}, c → c′ for some c′ with Φ(c′) 6= Φ(c)}, and

T = {r ∈ min(U) | (r, p) ∈ R, and either ‖p‖ = 0 or Υ (A) 6= Υ (B) for some A,B ∈
Λ with r(A) 6= 0 6= p(B)}. We have the following.

1. M1 = {AB | A,B ∈ Λ, Υ (A) 6= Υ (B)}.
2. M2 ⊆ T .

3. T ⊆M1 ∪M2.

4. If c →α c
′ for some α ∈ R, c ∈ min(U), and c′ ∈ U , then there is a c′′ ∈ min(U)

with c ↪→α c
′′.

5. If ‖r‖ ≥ ‖p‖ for all (r, p) ∈ R, then, for all c ∈ min(U), c ↪→∗ c′ for some

c′ ∈M1 ∪M2.

6. If c ↪→ c′ and 2 = ‖r‖ ≥ ‖p‖ for all (r, p) ∈ R, then ‖c′‖ = ‖c‖ or ‖c′‖ = ‖c‖ − 1.

Proof The nonzero configurations where Φ(c) = und are those where there are
A,B ∈ Λ such that both c(A) > 0 and c(B) > 0, and Υ (A) 6= Υ (B). The minimal
such configurations are such that c(A) = c(B) = 1 and c(X) = 0 for all other
species X, and so we obtain the first statement.

We now turn to the second statement. Let c ∈ M2. Thus c ∈ min(U) with
Φ(c) ∈ {0, 1} and c → c′ for some c′ with Φ(c′) 6= Φ(c). Without loss of generality,
assume that Φ(c) = 0, i.e., c contains only no voters. Let α = (r, p) be the reaction
of D such that c→α c

′. Since Φ(c′) 6= Φ(c), either ‖p‖ = 0 or a yes voter has been
introduced by α. As c ∈ min(U), we have c = r. Also, if a yes voter has been
introduced by α, then we have Υ (A) = 0 6= 1 = Υ (B) for some A,B ∈ Λ with
r(A) 6= 0 6= p(B).

We turn to the third statement. Let α = (r, p) be a reaction of D such that
r ∈ min(U) and either ‖p‖ = 0 or Υ (A) 6= Υ (B) for some A,B ∈ Λ with r(A) 6=
0 6= p(B). Assume r /∈ M1, i.e., Φ(r) ∈ {0, 1}. Then r →α p with Φ(p) 6= Φ(r)
since either ‖p‖ = 0 or Υ (A) 6= Υ (B) for some A,B ∈ Λ with r(A) 6= 0 6= p(B).
Consequently, r ∈M2.

We now turn to the fourth statement. Let α = (r, p). Since c ∈ min(U), we
have that c− r = c′ − p /∈ U . Since c′ ∈ U , we have c′′ = c′ − b ∈ min(U) for some
configuration b ≤ p and b 6= p. Therefore, c ↪→α c

′′.
We now turn to the fifth statement. If c ∈ M1, then we are done. For all

c ∈ min(U) \M1, c →∗ x → y for some configurations x and y with Φ(x) 6= Φ(y).
For all such c, we assign the value (k, l) where k = ‖c‖ and l is minimal such that
c →l x → y for some configurations x and y with Φ(x) 6= Φ(y) (by →l we mean
the l-th power of the relation →). We show the result by induction on (k, l). If
l = 0, then c ∈M2 and we are done. Assume l > 0. Then, by the fourth statement,
c ↪→ c′′ and c = c′′ + b + r − p. As ‖r‖ ≥ ‖p‖, we have ‖c′′‖ ≤ ‖c‖. If ‖c′′‖ < ‖c‖,
then, by the induction hypothesis, c′′ ↪→∗ c′ with c′ ∈ M1 ∪M2 and so c ↪→∗ c′. If
‖c′′‖ = ‖c‖, then c′′ →l−1 x → y. This also leads, by the induction hypothesis, to
c′′ ↪→∗ c′ with c′ ∈M1 ∪M2 and so c ↪→∗ c′.

For the sixth statement, by the definition of the relation ↪→, we have c′ + b =
c − r + p, b ≤ p and b 6= p. Thus c′ = c − (r − p + b). If 2 = ‖r‖ ≥ ‖p‖, then
1 ≤ ‖p− b‖ ≤ ‖p‖ ≤ 2 and so 0 ≤ ‖r − p+ b‖ ≤ 1. ut

Lemma 2 above is key for Theorem 5 below. The strategy in the proof of
Theorem 5 is to discover all elements of min(U) ordered by size: first all elements
of min(U) of size k are computed, before any of the elements of min(U) of size
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k + 1 are computed. This ensures that the generated candidates c can be tested
for minimality in U , i.e., it can be tested whether or not c ∈ min(U). Otherwise,
the number of generated candidates could potentially grow unbounded.

Theorem 5 Let D = (Λ,R,Σ, Υ ) be an o-stable bimolecular CRD. Given D, Algo-

rithm 1 computes min(U).

Proof First, we initialize M := M1 ∪ M2 = M1 ∪ T with M1, M2, and T from
Lemma 2, see Lines 2-4. Note that the requirement r ∈ min(U) in the definition
of T is mute as D is bimolecular: r ∈ U always holds and since D is bimolecular,
for all c ∈ min(U) we have ‖c‖ ≥ 2 = ‖r‖, and thus r ∈ min(U). Also, since D is
bimolecular, the case ‖p‖ = 0 in the definition of T is mute. The second (and final)
phase is to iteratively augment M with the elements from min(U) \ (M1 ∪M2) as
prescribed by Statements 5 and 6 of Lemma 2.

We show by induction that at Line 15, we have Mit = min(U) ∩ C=k and
M = min(U) ∩ C≤k.

We first consider the basis case k = 2. Note that, by Lemma 2, min(U) ∩
C=2 = min(U) ∩ C≤2 is obtained from M1 ∪M2 by adding all c′ such that c′ →∗ c
and c ∈ M1 ∪M2. Note that each such c′ is minimal in U as ‖c′‖ = 2. This is
accomplished in Lines 6-14.

We now consider the induction step. Let k ≥ 2. Consider the set X = {c′ | c′ →α

c+B, for some α ∈ R, c ∈ min(U)∩C=k, B ∈ Λ, c′′ 6≤ c′ for all c′′ ∈ min(U)∩C≤k},
where we identify here B ∈ Λ by the configuration b with ‖b‖ = 1 and b(B) = 1.
Note that X ⊆ U . Since for all c′ ∈ X, ‖c′‖ = k + 1 and c′ ∈ U , we have that
c′′ 6≤ c′ for all c′′ ∈ min(U) ∩ C≤k if and only if c′′ 6≤ c′ for all c′′ ∈ min(U).
Hence X ⊆ min(U) ∩ C=k+1. The set X is computed in Lines 16-21. Now, by
Statements 5 and 6 of Lemma 2, min(U) ∩ C=k+1 is obtained from X by adding
the configurations c′ such that c′ →∗ c with c ∈ X and c′′ 6≤ c′ for all c′′ ∈ min(U).
Again, since ‖c′‖ = k + 1 and c′ ∈ U , we have that c′′ 6≤ c′ for all c′′ ∈ min(U) if
and only if c′′ 6≤ c′ for all c′′ ∈ min(U) ∩ C≤k. These additional configurations c′

are (again) computed in Lines 6-14.
The algorithm halts as by Dickson’s Lemma (Proposition 4), min(U) is finite.

ut

We now consider the time complexity of Algorithm 1.

Theorem 6 Algorithm 1 takes O(|R| · |Λ| · n log|Λ|−
1
2 (n)) configuration comparisons

to compute min(U), where n = |min(U)|.

Proof There are two inner loops. The first inner loop (at Lines 9-13) checks for
every c ∈ min(U) and α ∈ R, whether or not a c′ →α c exists, and if such a c′

exists, whether or not c′′ 6≤ c′ for all c′′ ∈ min(U) ∩ C≤‖c′‖−1. The second inner
loop (at Lines 17-21) checks for every c ∈ min(U), α ∈ R, and B ∈ Λ, whether
or not a c′ →α c + B exists, and if such a c′ exists, whether or not c′′ 6≤ c′ for
all c′′ ∈ min(U) ∩ C≤‖c′‖−1. Consequently, the second inner loop is dominant and
has at most n · |R| · |Λ| iterations. Just like as in Lemma 1 we use the k-fold tree
Tb(k) from [20] to store the vectors of M . Again, k = |Λ| is the dimension of the

vectors of M . Recall from Subsection 4.1 that it takes O(logk−
1
2 (N)) configuration

comparisons, where N = |M | is the number of elements in Tb(k), to determine
if a vector v is such that w 6≤ v for all vectors w in Tb(k). Thus, we require
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Algorithm 1 Generate the set M of minimal output unstable configurations of an
o-stable bimolecular CRD D = (Λ,R,Σ, Υ )

1: procedure GenMinUnstable(D)
2: T ← {r | (r, p) ∈ R, and either ‖p‖ = 0 or Υ (A) 6= Υ (B) for some A,B ∈ Λ with
r(A) 6= 0 6= p(B)}

3: Mit ← {AB | A,B ∈ Λ, Υ (A) 6= Υ (B)} ∪ T
4: M ←Mit

5: while Mit 6= ∅ do
6: Mnew ←Mit

7: while Mnew 6= ∅ do
8: Mold,Mnew ←Mnew,∅
9: for all c ∈Mold, α ∈ R do

10: if ∃ c′ with c′ →α c and c′′ 6≤ c′ for all c′′ ∈M then
11: Mnew,Mit,M ←Mnew ∪ {c′},Mit ∪ {c′},M ∪ {c′}
12: end if
13: end for
14: end while
15: . At this point M = min(U) ∩ C≤k and Mit = min(U) ∩ C=k.
16: Mitold,Mit ←Mit,∅
17: for all c ∈Mitold, α ∈ R, B ∈ Λ do
18: if ∃ c′ with c′ →α c+B and c′′ 6≤ c′ for all c′′ ∈M then
19: Mit,M ←Mit ∪ {c′},M ∪ {c′}
20: end if
21: end for
22: end while
23: return M
24: end procedure

O(|R| · |Λ| · n log|Λ|−
1
2 (n)) configuration comparisons. Inserting a vector in Tb(k)

takes O(logk−
1
2 (N)) configuration comparisons and so this step does not dominate.

Consequently, we obtain the stated complexity. ut

Note that to obtain the time complexity of Algorithm 1 one multiplies the expres-
sion of Theorem 6 by the time complexity of comparing two vectors of dimension
|Λ|.

We now obtain the following corollary to Theorem 6 and Lemma 1.

Corollary 1 Given an o-stable bimolecular CRD D, checking o-stability for a set S of

configurations using Algorithm 1 takes O((|R| · |Λ| ·n+ |S|) log|Λ|−
1
2 (n)) configuration

comparisons, with n = |min(U)|.

In view of Theorem 6, it would be interesting to obtain an upper bound on
|min(U)|. In fact, it is perhaps reasonable to view |min(U)| as a measure for the
“complexity” of the underlying o-stable CRD D. The set min(U) is an antichain,
as any two elements of min(U) are incomparable (i.e., if x, y ∈ min(U) are distinct,
then x 6≤ y and y 6≤ x). In general, antichains can be arbitrary large for fixed

Λ: for example, for every k ∈ N, C=k is an antichain with |C=k| =
((
|Λ|
k

))
> k if

|Λ| ≥ 2. Note however that, by Lemma 2, if x ∈ min(U) with ‖x‖ = k, then for
every l ∈ {2, . . . , k − 1} there is a y ∈ min(U) with ‖y‖ = l. Thus, in particular,
min(U) (for some o-stable bimolecular CRD D) cannot be equal to C=k for any
k ≥ 3. We expect, but it would be interesting to confirm, that the existence of
these “small” configurations in min(U) significantly restricts the cardinality of the
antichain min(U).
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In view of Lemma 2, we notice that Algorithm 1 works unchanged for the
slightly larger class of nonincreasing o-stable CRDs D with ‖r‖ = 2 for all (r, p) ∈ R.
At a significant expense of computational efficiency, Algorithm 1 can even be
extended to allow for arbitrary nonincreasing o-stable CRDs D. The main issue in
extending Algorithm 1 to this larger class of CRDs is that Statement 6 of Lemma 2
is then violated: if c ↪→ c′, then ‖c′‖ can be more than one smaller than ‖c‖. Indeed,
we have c′ + b = c− r+ p, for some b ≤ p with b 6= p. Thus c′ = c− (r − p+ b) and
so in the worst case ‖c′‖ is equal to ‖c‖− (‖r‖− 1). As a result, the computational
complexity of the dominant second inner loop (at Lines 17-21) is significantly
increased. Another, smaller issue in extending Algorithm 1 is that the elements of
the set T may not all be of size 2. Therefore, the elements of T need to be added to
M at the right time (according to their sizes) within the outer while loop instead
of at the beginning of the algorithm.

We remark that there is no obvious way to extend Algorithm 1 for arbitrary
(i.e., also increasing) o-stable CRDs. In particular, it is not clear how to generate
the elements of min(U) in order of their size (as used in the proof of Theorem 5)
since increasing o-stable CRDs may generate large minimal configurations from
small minimal configurations. In fact, it is not even clear if it is decidable, given
an arbitrary o-stable CRD D and a finite set M of configurations, whether or not
M = min(U).

5 Discussion

Using the semilinearity proof of [1], we found that the class of t-stable CRDs have
equal expressive power as the larger class of o-stable CRDs. Also, we shown a subtle
difference in expressive power between CRDs and CRDs with leaders. Then, we
considered the problem of determining whether or not a given configuration c is
output stable. In particular, we have shown that the set min(U) of minimal output
unstable configurations may be efficiently computed provided that we restrict to
the class of o-stable bimolecular CRDs. Given min(U) it is straightforward to verify
whether or not a given configuration c is output stable.

Various questions regarding the computational complexity of CRDs are open.
For example, is it decidable whether or not a given CRD is o-stable, or whether
or not it is t-stable? Also, likely some “bridges” between the domains of CRDs
(functioning as acceptors/deciders) and Petri nets (functioning as generators) re-
main to be discovered. For example, the semilinear sets are precisely the sets of
reachable markings of weakly persistent Petri nets [21]. This suggests a possible
link between the notions of weak persistence (from the domain of Petri nets) and
stable deciders (from the domain of CRDs).
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