A new path-following constraint based on elastic unloading angle for damage analysis of quasi-brittle materials

Ir. Amir Fayezioghani*, Dr. Ing. Bram Vandoren

Problem

 Numerical instability of load control and displacement control in quasi-static analysis of quasi-brittle materials

Literature

Control Constraint Type	Global		Local	
Area of Control	whole problem		some fixed/adaptive areas of problem	
Examples	 arc-length dissipated energy elastic unloading angle 		 crack mouth opening displacement (CMOD) elastic unloading angle 	
Pros & Cons	 based on simple principles often numerically robust insensitive to very local eve 	nts	 fixed areas cannot complete trace moving events adaptive areas need definiti of some criteria sensitive to desired local events 	ly on

The Idea

 Angle of elastic unloading to the origin in an analysis

 Involving only the dofs having equivalent external nodal forces

Formulation

 $r(a, \lambda) = 0$: equation of unbalanced force $g(a, \lambda, \eta) = 0$: path-following constraint equation

where, $g = \theta_0 - \theta - \eta$ in which

- η : the constraint increment
- θ_0 : virgin augmented elastic angle
- θ : augmented elastic unloading angle

$$\theta = \arctan \sqrt{\frac{1}{m} \sum_{j=1}^{m} \left(\frac{\bar{\lambda}}{\bar{a}_j}\right)^2}$$

where, $\bar{a}_j = a_j/a_{max}$ and $\bar{\lambda} = \lambda/\lambda_{max}$

- Perforated beam
 - mode-I fracture
 - continuum elastic triangular elements
 - predefined plane of cohesive zone in the middle by interface elements

KNOWLEDGE IN ACTION

- Shear wall
 - two-step loading: confining compression followed by a horizontal force
 - continuum elastic elements for bricks
 - predefined planes of crack propagation inside of mortar by interface elements

KNOWLEDGE IN ACTION

Summary and Concluding Remarks

- Being easy to understand and use, it is almost as robust as dissipated energy control in tracing snap-backs and snapthroughs.
- It enjoys the possibility to be global (using all of the dofs) or local (choosing some dofs and including them in the formulation).
- Although we have proposed a specific augmented angle, the constraint has flexibility for mentioned angles to be combined in any way a designer desires according to his/her problem.
- When solving problems associated with quasi-brittle materials, it finds smoother curves close to turning points.

Ir. Amir Fayezioghani PhD Construction Engineering Group University of Hasselt

amir.fayezioghani@uhasselt.be +32 488 19 39 32

