
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Data partitioning for single-round multi-join evaluation in massively

parallel systems

Peer-reviewed author version

AMELOOT, Tom; GECK, Gaetano; KETSMAN, Bas; NEVEN, Frank & Schwentick,

Thomas (2016) Data partitioning for single-round multi-join evaluation in massively

parallel systems. In: SIGMOD RECORD, 45 (1), p. 33-40.

DOI: 10.1145/2949741.2949750

Handle: http://hdl.handle.net/1942/21801

Data partitioning for single-round multi-join evaluation in

massively parallel systems∗

Tom J. Ameloot Gaetano Geck Bas Ketsman Frank Neven
Thomas Schwentick

February 13, 2017

Abstract

A dominant cost for query evaluation in mod-
ern massively distributed systems is the number
of communication rounds. For this reason, there
is a growing interest in single-round multiway
join algorithms where data is first reshuffled over
many servers and then evaluated in a parallel but
communication-free way. The reshuffling itself is
specified as a distribution policy. We introduce
a correctness condition, called parallel-correctness,
for the evaluation of queries w.r.t. a distribu-
tion policy. We provide a semantical character-
ization for when conjunctive queries (and exten-
sions thereof) are parallel-correct and give match-
ing complexity bounds for the associated decision
problem.

Motivated by scenarios for workload optimiza-
tion, we further consider the problem of parallel-
correctness transfer from a query Q to a query Q′,
that is, whether Q′ is parallel-correct for all distri-
bution policies for which Q is parallel-correct. In
this case, Q′ can always be evaluated after Q with-
out repartitioning the data. We provide a semanti-
cal characterization for parallel-correctness transfer
and provide matching complexity bounds for the
associated decision problem for conjunctive queries
(and extensions). Finally, we investigate restric-
tions of queries and families of distribution policies
with better complexities, including, for instance,
the Hypercube distributions.

∗The original version of this article was published in
PODS 2015 as [2].

1 Introduction

The background scenario for our work is that of
large-scale data analytics where massive parallelism
is utilized to answer complex join queries. As, for
instance, described by Chu et al. [6], data analytics
engines face new kinds of workloads, where mul-
tiple large tables are joined, or where the query
graph has cycles. Furthermore, recent in-memory
systems (like, e.g., [9, 10, 16, 19]) can fit data in
main memory by utilizing multitudes of servers.
For such systems, performance is no longer dom-
inated by the number of I/O requests to external
memory as in traditional systems but by the com-
munication cost for reshuffling data during query
execution. When queries need to be evaluated in
several rounds, such reshuffling can repartition the
whole database and can thus be very expensive. For
this reason, it is paramount to reduce the number
of evaluation rounds.

While in traditional distributed query evalua-
tion, multi-join queries are computed in several
stages over a join tree possibly transferring data
over the network at each step, we focus in this pa-
per on query evaluation algorithms that only re-
quire one round of communication.1 Such algo-
rithms consist of two phases: a distribution phase
(where data is repartitioned or reshuffled over the
servers) followed by a naive evaluation phase where
each server contributes to the query answer in iso-
lation by evaluating the query at hand over the
local data without any further communication. We
refer to such algorithms as one-round algorithms.
Afrati and Ullman [1] describe an algorithm that

1The novel algorithms, introduced, for instance, in [13]
or [18] do process multiple joins at once but are targeted
towards a sequential setting.

1

computes a multi-join query in a single communi-
cation round. The algorithm uses a technique that
can be traced back to Ganguli, Silberschatz, and
Tsur [7] and received quite some attention in the
literature. For instance, Beame et al. [4, 5] refined
the algorithm, named it Hypercube, and showed
that it is a communication-optimal algorithm for
distributed evaluation, while in a subsequent study,
Chu et al. performed an empirical evaluation of Hy-
percube [6].

Specifically, for a given conjunctive query Q, Hy-
percube defines a reshuffling of the data over the
available servers: the algorithm organizes all the
servers in a hypercube and assigns each fact to a
subset of points within this cube. The Hypercube
reshuffling is thus defined on the granularity of facts
and assigns each fact in isolation (that is, indepen-
dent of the presence or absence of any other facts)
to a subset of the servers. This means that the
Hypercube reshuffling is independent of the cur-
rent distribution of the data and can therefore be
applied locally at every server. Furthermore, once
the data is repartitioned, the target query Q can
be naively evaluated independently on all servers.
Hence, Hypercube is a one-round algorithm. We
note that the common term Hypercube (algorithm)
refers to the described combination of Hypercube
distribution/reshuffling followed by naive evalua-
tion of the query at each server. For this reason,
the “hypercube” aspect relates exclusively to the
way the data is initially reshuffled. Beame et al.
[5] obtained that choosing the optimal shape of the
hypercube is related to the fractional edge packing
of the query graph.

We present a framework for reasoning about the
correctness of one-round algorithms for the evalua-
tion of queries under arbitrary distribution policies.
To target the widest possible range of repartition-
ing strategies, the initial distribution phase is mod-
eled by a distribution policy that can be any map-
ping from facts to subsets of servers. In particular,
this includes any primary horizontal fragmentation
of the database as for instance hash partitioning or
range partitioning [14].

In this setting, we study two fundamental prob-
lems:

Parallel-Correctness: Given a distribution pol-
icy and a query, can we be sure that the cor-
responding one-round algorithm will always

compute the query result correctly — no mat-
ter the actual data?

Parallel-Correctness Transfer: Given two
queries Q and Q′, can we infer from the
fact that Q is computed correctly under
the current distribution policy, that Q′ is
computed correctly as well?

Apart from their fundamental nature, the just
mentioned problems have practical relevance in set-
tings where a workload of queries has to be evalu-
ated. Recall that the naive one-round Hypercube
algorithm requires a reshuffling of the base data
for every separate query, it therefore makes sense
to consider scenarios for which this reshuffling can
be avoided. It is in this context that we consider
the problem of parallel-correctness transfer. Specif-
ically, parallel-correctness allows to decide whether
a query can be evaluated on the current distri-
bution without reshuffling the data, that is, with
zero communication cost. Furthermore, we say that
parallel-correctness transfers fromQ toQ′, denoted

Q pc−→ Q′, when Q′ is parallel-correct under every
distribution policy for which Q is parallel-correct.
This implies that Q′ can always be evaluated af-
ter Q without redistributing the data. Therefore
parallel-correctness transfer is particularly relevant
in a setting of automatic data partitioning where an
optimizer tries to automatically partition the data
across multiple nodes to achieve overall optimal
performance for a specific workload of queries (see,
e.g., [12, 15]). Indeed, when parallel-correctness
transfers from a query Q to a set of queries S, then
any distribution policy under which Q is parallel-
correct can be picked to evaluate all queries in S
without reshuffling the data. Of course, parallel-
correctness transfer is a very strong notion. In
our view, parallel-correctness transfer relates to
optimization of data partitioning like query con-
tainment relates to traditional query optimization:
a relevant fundamental property but perhaps too
strong for immediate use.

We focus in this paper on conjunctive queries
(possibly extended with union, inequalities and
negation) and first consider the complexity of de-
ciding parallel-correctness. The latter problem is
equivalent to testing whether the distribution pol-
icy saturates the query, that is, whether for every
minimal valuation of the conjunctive query there is
a node in the network containing all facts required

2

by that valuation. For various representations of
distribution policies, testing parallel-correctness is
ΠP

2 -complete. These results continue to hold in the
presence of union and inequalities. When nega-
tion is added, deciding parallel-correctness can no
longer be reduced to testing properties of min-
imal valuations but might involve counterexam-
ple databases of exponential size. More specifi-
cally, in the presence of negation deciding parallel-
correctness is coNEXPTIME-complete. Interest-
ingly, the latter result is related to the new re-
sult that query containment for conjunctive queries
with negation is coNEXPTIME-complete, as well.

Parallel-correctness transfer can be semantically

characterized. In particular, Q pc−→ Q′ if and only if
Q covers Q′. The latter is a (value-based) contain-
ment condition for minimal valuations of Q′ and
Q. Deciding transferability of parallel-correctness
for conjunctive queries is ΠP

3 -complete, again even
in the presence of unions and inequalities. We
note that the implied exponential time algorithm
for parallel-correctness transfer does not rule out
practical applicability since the running time is ex-
ponential in the size of the queries not in the size
of a database. Still, it would be interesting to
lower the complexity. Therefore, we consider a fur-
ther condition that is merely necessary for parallel-
correctness transfer, but can be tested more eas-
ily, in NP. We refer to this condition as weak
parallel-correctness transfer and consider two set-
tings where this necessary condition is also suffi-
cient. The first setting applies when Q is strongly
minimal. The second setting considers particular
families of distribution policies which generalize the
Hypercube distribution families. In particular this
means that it is NP-complete to decide whether
a query Q′ is parallel-correct under all Hypercube
distributions for a query Q.

Outline. In Section 2, we introduce the nec-
essary preliminaries regarding databases, queries,
and distribution policies, including Hypercube dis-
tributions. In Section 3 and Section 4, we discuss
parallel-correctness and parallel-correctness trans-
fer. In Section 5, we consider the setting with
lower complexity. We present concluding remarks
together with direction for further research in Sec-
tion 6. Although most of the results hold in the
presence of union and inequality, the presentation
will focus on CQs most of the time.

2 Preliminaries

2.1 Databases and queries

Throughout the rest of the paper, we assume an
infinite domain dom and a database scheme con-
sisting of relation names with associated arities. A
(database) instance I is simply a finite set of facts.
A conjunctive query (CQ) Q is an expression of the
form

H(x)← R1(y1), . . . , Rm(ym)

where every Ri is a relation name and every yi

matches the arity of Ri. We require that ev-
ery variable in x occurs in some yi. We refer
to the head atom H(x) by headQ and to the set
{R1(y1), . . . , Rm(ym)} by bodyQ.

We denote by vars(Q) the set of all variables
occurring in Q. A valuation for a CQ Q is a to-
tal function V : vars(Q) → dom. We refer to
V (bodyQ) as the facts required by V . A valuation
V satisfies Q on instance I if all facts required by V
are in I. In that case, V derives the fact V (headQ).
The result of Q on instance I, denoted Q(I), is
defined as the set of facts that can be derived by
satisfying valuations for Q on I.

Example 2.1. Let Ie be the example database in-
stance{

R(a, b), R(b, a), R(b, c), S(a, a), S(c, a)
}
,

and Qe be the example CQ

H(x1, x3)← R(x1, x2), R(x2, x3), S(x3, x1).

Then V1 = {x1 7→ a, x2 7→ b, x3 7→ a} and
V2 = {x1 7→ a, x2 7→ b, x3 7→ c} are the only
satisfying valuations. Consequently, Qe(Ie) ={
H(a, a), H(a, c)

}
.

We denote the class of all CQs by CQ.

2.2 Distribution policies

A network N is a nonempty finite set of node
names. A distribution policy P = (U, rfactsP) for a
networkN consists of a universe U and a total func-
tion rfactsP that maps each node of N to a set of
facts in facts

(
U
)
.2 Here, facts

(
U
)

denotes the set

2We mention that for Hypercube distributions, the view
is reversed: facts are assigned to nodes. However, both views
are essentially equivalent and we will freely adopt the view
that fits best for the purpose at hand.

3

of all possible facts over U . A node κ is responsible
for a fact f (under policy P) if f ∈ rfactsP (κ). For
a distribution policy P , an instance I over D and a
κ ∈ N , let loc-instP ,I(κ) denote I∩rfactsP (κ), that
is, the set of facts in I for which node κ is respon-
sible. We refer to a given instance I as the global
instance and to loc-instP ,I(κ) as the local instance
on node κ.

The result [Q,P](I) of the distributed evaluation
in one round of a query Q on an instance I under
a distribution policy P is defined as the union of
the results of Q evaluated over every local instance.
Formally,

[Q,P](I)
def
=
⋃
κ∈N
Q(loc-instP ,I(κ)).

Example 2.2. Continuing Example 2.1, consider
a network Ne consisting of two nodes {κ1, κ2}. Let
P 1 = ({a, b, c}, rfactsP }) be the distribution policy
that assigns all R-facts to both nodes κ1 and κ2,
and every fact S(d1, d2) to node κ1 when d1 = d2

and to node κ2 otherwise. Then,

loc-instP 1,Ie(κ1) =
{
R(a, b), R(b, a), R(b, c), S(a, a)

}
,

and

loc-instP 1,Ie(κ2) =
{
R(a, b), R(b, a), R(b, c), S(c, a)

}
.

Furthermore,

[Qe,P 1](Ie) = Qe
(
loc-instP 1,Ie(κ1)

)
∪Qe

(
loc-instP 1,Ie(κ2)

)
,

which is just {H(a, b)} ∪ {H(a, c)}.
Next, consider the alternative distribution policy

P 2 that assigns all R-facts to node κ1 and all S-
facts to node κ2, then [Qe,P 2](Ie) = ∅.

Obviously, every primary horizontal fragmenta-
tion (see, e.g., [14]) can be modeled as a distribu-
tion policy. Consider, for instance, a range parti-
tioning on a relation Customer that assigns tuples
to network nodes determined by a threshold on the
area code.

2.3 Hypercube distributions

A Hypercube distribution distributes the space of
all valuations of Q over the computing servers in
an instance independent way through hashing of

domain values. Let Q be a CQ of the following
form

H(x)← R1(y1), . . . , Rm(ym),

and let |N | = p. A Hypercube distribution is pa-
rameterized by numbers p1, . . . , pk for which p =
p1 × · · · × pk. Here, k is equal to the number
of distinct variables in Q, that is, |vars(Q)| = k.
For simplicity, assume vars(Q) = {x1, . . . , xk}.
Still, there can be variables in vars(Q) that do
not occur in the head H(x). The distribution
organizes the p servers in a hypercube of k di-
mensions where the size of the i-th dimension is
pi. So, every server corresponds to one point in
{1, . . . , p1} × · · · × {1, . . . , pk}. Furthermore, for
i ∈ {1, . . . , k}, let hi be a hash function mapping
each value in dom to {1, . . . , pi}.

Then the Hypercube distribution policy PH as-
signs each fact to a set of points in the hypercube
and is defined as follows: each fact Ri(a1, . . . , a`)
in the local instance that can be mapped to an
atom Ri(xi1 , . . . , xi`) in Q is sent to every coor-
dinate (α1, . . . , αk) for which αij = hij (aj) for all j
in {1, . . . , `}. In particular, this means that when
a variable xr occurs in Ri(xi1 , . . . , xi`) on position
j then the r-th dimension of the coordinate has to
be hr(aj); otherwise, it can be any value in the
codomain of hr.

Example 2.3. Consider query Qe

H(x1, x3)← R(x1, x2), R(x2, x3), S(x3, x1).

from Example 2.1, and a network N and numbers
p1, p2, p3 with |N | = p = p1 × p2 × p3. So, every
computing node is addressed by a triple (i1, i2, i3)
with ij ∈ {1, . . . , pj} for j ≤ 3. We abuse no-
tation and denote, for instance, by (i1, i2, ?) the
set of coordinates that match on (i1, i2), that is,
{(i1, i2, i3) | i3 ≤ p3}. Then, for any choice of hash
functions, PH assigns each

• R(d1, d2) to

–
(
h1(d1), h2(d2), ?

)
because of R(x1, x2);

and

–
(
?, h2(d1), h3(d2)

)
because of R(x2, x3);

• S(d1, d2) to
(
h1(d2), ?, h3(d1)

)
because of

S(x3, x1).

4

It is not hard to see that, for each instance I,

Qe(I) =
⋃
κ∈N
Qe
(
loc-instP ,I(κ)

)
= [Qe,PH](I),

and thus the one-round algorithm evaluates Qe cor-
rectly. We will refer to this property as parallel-
correctness in the next section.

3 Parallel-correctness

In this section, we introduce the notion of parallel-
correctness. Informally, it states for a query and a
distribution policy that the naive one-round evalu-
ation algorithm yields the correct result, for every
possible instance. Specifically, this algorithm first
distributes (reshuffles) the data over the comput-
ing nodes according to P and then evaluates Q in
a subsequent parallel step at every computing node.
Notice that, since P is defined on the granularity
of a fact, the reshuffling does not depend on the
current distribution of the data and can be done in
parallel as well.

First, we define parallel-correctness w.r.t. a given
instance:

Definition 3.1. A query Q is parallel-correct on
instance I under distribution policy P if Q(I) =
[Q,P](I).

We note that parallel-correctness is the combina-
tion of

• parallel-soundness: [Q,P](I) ⊆ Q(I), and

• parallel-completeness: Q(I) ⊆ [Q,P](I).

For monotone queries, like conjunctive queries,
parallel-soundness is granted, and therefore
parallel-correctness and parallel-soundness co-
incide. Next, we lift parallel-correctness to all
instances:

Definition 3.2. A query Q is parallel-correct un-
der distribution policy P = (U, rfactsP), if Q is
parallel-correct on all instances I ⊆ facts

(
U
)
.

While Definitions 3.1 and 3.2 are in terms of gen-
eral queries, in the rest of this section, we only con-
sider (extensions of) conjunctive queries.

3.1 Conjunctive queries

We first focus on a characterization of parallel-
correctness. It is easy to see that a CQQ is parallel-
correct under distribution policy P = (U, rfactsP)
if, for each valuation for Q, the required facts meet
at some node. That is, if the following condition
holds:

For every valuation V for Q over U ,
there is a node κ ∈ N such that
V (bodyQ) ⊆ rfactsP (κ).

(PC0)

Even though Condition (PC0) is sufficient for
parallel-correctness, it is not necessary as the fol-
lowing example shows.

Example 3.3. We consider the CQ Q,

H(x, z)← R(x, y), R(y, z), R(x, x),

and the valuation V = {x 7→ a, y 7→ b, z 7→ a}. Let
further N = {κ1, κ2} and let P distribute every
fact except R(a, b) onto node κ1 and every fact ex-
cept R(b, a) onto node κ2. Since R(a, b) and R(b, a)
do not meet under P , valuation V witnesses the
failure of Condition (PC0) for P and Q.

However, Q is parallel-correct under P . Indeed,
every valuation that derives a fact f with the help
of the facts R(a, b) and R(b, a), also requires the
fact R(a, a) (or R(b, b)). But then, R(a, a) (or
R(b, b)) alone is sufficient to derive f by mapping
all variables to a (or b). Therefore, if f ∈ Q(I), for
some instance I, then f ∈ [Q,P](I) and thus Q is
parallel-correct under P .

It turns out that for a semantical characteriza-
tion only such valuations have to be considered that
are minimal in the following sense:

Definition 3.4. Let Q be a CQ. A valuation
V for Q is minimal for Q if there does not exist
a valuation V ′ for Q that derives the same head
fact with a strict subset of body facts, that is,
such that V (bodyQ) (V ′(bodyQ) and V (headQ) =
V ′(headQ).

Example 3.5. For a simple example of a mini-
mal valuation and a non-minimal valuation, con-
sider the CQ Q,

H(x, z)← R(x, y), R(y, z), R(x, x).

5

Both V1 = {x 7→ a, y 7→ b, z 7→ a} and V2 = {x 7→
a, y 7→ a, z 7→ a} are valuations for Q. Notice that
both valuations agree on the head variables of Q,
but they require different sets of facts. In partic-
ular, for V1 to be satisfying on I, instance I must
contain the facts R(a, b), R(b, a), and R(a, a), while
V2 only requires I to contain R(a, a). This observa-
tion implies that V1 is not minimal for Q. Further,
since V2 requires only one fact for Q, valuation V2

is minimal for Q.

It turns out that it suffices to restrict valuations
to minimal valuations in Condition (PC0) to get
a sufficient and necessary condition for parallel-
correctness.

Proposition 3.6. Let Q be a CQ. Then Q is
parallel-correct under distribution policy P if and
only if the following holds:

For every minimal valuation V for Q
over U , there is a node κ ∈ N such
that

V (bodyQ) ⊆ rfactsP (κ).

(PC1)

We emphasize that the word minimal is the only
difference between Conditions (PC0) and (PC1).3

The latter conditions are so fundamental when rea-
soning over parallel-correctness that they deserve
their own terminology:

Definition 3.7. For a CQ Q and a distribution
policy P :

• P saturates Q if they fulfill Condition (PC1);
and,

• P strongly saturates Q if they fulfill Condi-
tion (PC0).

Every Hypercube distribution PH for a conjunc-
tive queryQ strongly saturatesQ. Indeed, consider
Example 2.3. Then, for every valuation V , all facts

R
(
V (x1), V (x2)

)
, R
(
V (x2), V (x3)

)
, S
(
V (x3), V (x1)

)
meet at node

(
h1(V (x1)), h2(V (x2)), h3(V (x3))

)
.

Therefore, Q is parallel-correct under PH .
The quantifier structure in Condition (PC1)

hints at a Πp
2 upper bound for the complexity of

3We mention that Conditions (PC0) were named (C0)
and (C1), respectively, in [2].

testing parallel-correctness.4 Of course, the ex-
act complexity can not be judged without having
a bound on the number of nodes κ and the com-
plexity of the test V (bodyQ) ⊆ rfactsP (κ). The
largest classes of distribution policies for which we
established the Πp

2 upper bound, are gathered in
the set Pnpoly that contains classes P of distribu-
tion policies, for which each policy comes with an
algorithm A and a bound n on the representation
size of nodes in the network, respectively, such that
whether a node κ is responsible for a fact f is de-
cided by A non-deterministically in time O(nk), for
some k that depends only on P.

It turns out that the problem of testing parallel-
correctness is also Πp

2-hard, even for the simple
class Pfin of distribution policies, for which all pairs
(κ,f) of a node and a fact are explicitly enumer-
ated. Thus, in a sense, Condition (PC1) can essen-
tially not be simplified.

To state the results more formally, we define the
following two algorithmic problems.

PCI(CQ,P)

Input: Q ∈ CQ, P ∈ P, instance I
Question: Is Q parallel-correct on I under

P ?

PC(CQ,P)

Input: Q ∈ CQ, P ∈ P
Question: Is Q parallel-correct under P ?

Theorem 3.8. Problems PC(CQ,P) and
PCI(CQ,P) are Πp

2-complete, for every policy
class P ∈ {Pfin} ∪Pnpoly.

The upper bounds follow from the characteriza-
tion in Proposition 3.6 and the fact that pairs (κ,f)
can be tested in NP.

We note that Proposition 3.6 continues to hold
true in the presence of union and inequalities (un-
der a suitable definition of minimal valuation for
unions of CQs) leading to the same complexity
bounds as stated in Theorem 3.8 [8].

4This holds, even if one takes into account that testing
minimality of V requires an additional existential quantifi-
cation of a valuation V ′ that might serve as a witness, in
case V is not minimal.

6

3.2 Conjunctive queries with nega-
tion

In this section, we consider conjunctive queries with
negation. Specifically, queries can be of the form

H(x)← R1(y1), . . . , Rm(ym),¬S1(z1), . . . ,¬Sn(zn).

To ensure safety, we require that every variable in
x occurs in some yi or zj , and that every vari-
able occurring in a negated atom has to occur in a
positive atom as well. A valuation V now derives
a fact H

(
V (x)

)
on an instance I if every positive

atom Ri
(
V (yi)

)
occurs in I while none of the neg-

ative atoms Sj
(
V (zj)

)
do. We refer to the class of

conjunctive queries with negation as CQ¬.
We note that, as queries in CQ¬ are no longer

monotone, parallel-soundness is no longer guaran-
teed and thus parallel-correctness need not coincide
with parallel-soundness.

We illustrate through an example that in the case
of conjunctive queries with negation, the parallel-
correctness problem becomes much more involved,
since it might involve counterexample databases of
exponential size. We emphasize that this exponen-
tial explosion can only occur if, as in our frame-
work, the arity of the relations in the database
schema are not a-priori bounded by some constant.

Example 3.9. Let Q be the following conjunctive
query with negation:

H() ← Val(w0, w0), Val(w1, w1),¬Val(w0, w1),
Val(x1, x1), . . . , Val(xn, xn),¬Rel(x1, . . . , xn).

Let P be the policy defined over universe U =
{0, 1} and two-node network {κ1, κ2}, which dis-
tributes all facts except Rel(0, . . . , 0) to node κ1

and only fact Rel(0, . . . , 0) to node κ2.
Query Q is not parallel-sound under pol-

icy P , as witnessed by the counter-example
I

def
= {Val(0, 0), Val(1, 1)} ∪ {Rel(a1, . . . , an) |

(a1, . . . , an) ∈ {0, 1}n}. Indeed, Q(I) = ∅ but
Q(loc-instP ,I(κ1)) 6= ∅, as witnessed by the valu-
ation that maps all variables to 0.

However, I has 2n + 2 facts and is a counter-
example of minimal size as can easily be shown
as follows. First, it is impossible that Q(I∗) 6= ∅
and Q(loc-instP ,I∗(κ1)) = ∅, for any I∗, since
Rel(0, . . . , 0) is the only fact that can be missing
at node κ1, and Q is antimonotonic with respect to

Rel. On the other hand, if Q(loc-instP ,I∗(κ1)) 6=
∅, then the literals Val(w0, w0), Val(w1, w1), and
¬Val(w0, w1) ensure that there are at least two dif-
ferent data values (and thus 0 and 1) in I∗. But
then Q(I∗) = ∅ can only hold if all 2n n-tuples over
{0, 1} are in I∗. �

Although this example requires an exponential
size counter-example, in this particular case, the
existence of the counter-example is easy to con-
clude. However, the following result shows that,
in general, there is essentially no better algorithm
than guessing an exponential size counter-example.

Theorem 3.10. [8] For every class P ∈ Pnpoly

of distribution policies, the following problems are
coNEXPTIME-complete.

• Parallel-Sound(UCQ¬,P)

• Parallel-Complete(UCQ¬,P)

• Parallel-Correct(UCQ¬,P)

The result and, in particular, the lower bound
even holds if Pnpoly is replaced by the correspond-
ing Ppoly, where the decision algorithm for pairs
(κ,f) is deterministic and in polynomial time.

The proof of the lower bounds comes along an
unexpected route and exhibits a reduction from
query containment for CQ¬ to parallel-correctness
for CQ¬. Specifically, query containment asks
the question whether, given two queries Q and
Q′, it holds that Q(I) ⊆ Q′(I) for all instances
I. The latter is denoted by Q ⊆ Q′. It is
shown in [8] that query containment for CQ¬ is
coNEXPTIME-complete, implying coNEXPTIME-
hardness for parallel-correctness as well. The result
regarding containment of CQ¬ answers the obser-
vation in [11] that the Πp

2-completeness result for
query containment for CQ¬ mentioned in [17] only
holds for fixed database schemas (or a fixed arity
bound, for that matter).

4 Parallel-Correctness Trans-
fer

As mentioned in the introduction, the one-round
Hypercube algorithm requires a reshuffling of the
data before the evaluation of a new query. In the

7

context of multiple query evaluation, where an op-
timizer tries to automatically partition the base
data across multiple nodes to achieve overall opti-
mal performance for a specific workload (see, e.g.,
[12, 15]), it makes sense to consider scenarios in
which such reshuffling can be avoided. To this end,
parallel-correctness transfer was introduced in [2]
which states that a subsequent query Q′ can al-
ways be evaluated over a distribution for which a
query Q is parallel-correct.

Definition 4.1. For two queries Q and Q′ over
the same input schema, parallel-correctness trans-
fers from Q to Q′ if Q′ is parallel-correct under
every distribution policy for which Q is parallel-

correct. In this case, we write Q pc−→ Q′.

Example 4.2. We illustrate parallel-correctness
transfer with the help of the following example
queries:

Q1 : H()←S(x), R(x, x), T (x).

Q2 : H()←R(x, x), T (x).

Q3 : H()←S(x), R(x, y), T (y).

Q4 : H()←R(x, y), T (y).

Figure 1 (a) shows how these queries relate with re-
spect to parallel-correctness transfer. As an exam-

ple, Q3
pc−→ Q1. As Figure 1 (b) illustrates, this re-

lationships is entirely orthogonal to query contain-
ment. Indeed, there are examples where parallel-
correctness transfer and query containment coin-
cide (Q3 vs. Q4), where they hold in opposite direc-
tions (Q4 vs. Q2) and where one but not the other
holds (Q3 vs. Q2 and Q1 vs. Q4, respectively).

It turns out that, just like parallel-correctness,
parallel-correctness transfer can be characterized in
terms of minimal valuations. For this, we need the
following notion:

Definition 4.3. For two CQs Q and Q′, we say
that Q covers Q′ if the following holds:

for every minimal valuation V ′ forQ′,
there is a minimal valuation V for Q,
such that V ′(bodyQ′) ⊆ V (bodyQ).

Proposition 4.4. For two CQs Q and Q′, parallel-
correctness transfers from Q to Q′ if and only if Q
covers Q′.

Proposition 4.4, allows us to pinpoint the com-
plexity of parallel-correctness transferability. For a
formal statement we define the following algorith-
mic problem:

pc-trans (CQ)

Input: Queries Q and Q′ from CQ
Question: Does parallel-correctness trans-

fer from Q to Q′?

When the defining condition of “covers” is
spelled out by rewriting “minimal valuations” one
gets a characterization with a Π3-structure. Again,
it can be shown that this is essentially optimal.

Theorem 4.5. Problem pc-trans(CQ) is Πp
3-

complete.

The upper bounds follow directly from the char-
acterization in Proposition 4.4, implying that these
characterizations are essentially optimal. We note
that the same complexity bounds continue to hold
in the presence of inequalities and for unions of con-
junctive queries [3].

5 Lowering complexity

In static analysis of conjunctive queries, one is used
to face NP-complete algorithmic problems, most
prominently, containment testing. Since queries
are often small, especially compared with the data,
NP-algorithms might still be helpful in query opti-
mization. We saw in the previous two sections that
the complexity of parallel-correctness and parallel-
correctness transfer are higher than that, namely
Πp

2-complete and Πp
3-complete, respectively, even

without union, inequalities and negation.
In this section, we consider two settings, in

which, for both problems, the complexity drops to
the “usual” NP-complete level. In both cases, the
complexity reduction is based on a simpler condi-
tion for parallel-correctness transfer which can be
tested in NP. We state this condition next.

5.1 A necessary condition for pc-
transfer

We use the following two additional notions, the
first of which is the simpler condition for parallel-

8

R(x, y), T (y)

R(x, x), T (x) S(x), R(x, y), T (y)

S(x), R(x, x), T (x)

p
c

p
c

pc

p
c

p
c

R(x, y), T (y)

R(x, x), T (x) S(x), R(x, y), T (y)

S(x), R(x, x), T (x)

⊇ ⊆

⊆

⊆ ⊇

Figure 1: Relationship between the queries of Example 4.2 with respect to (a) parallel-correctness transfer
and (b) query containment.

correctness transfer (in restricted settings), and the
second characterizes the first, as we will see soon.

Definition 5.1. For CQs Q,Q′ and a distribution
policy P :

• parallel correctness weakly transfers from a CQ
Q to Q′, if Q′ is parallel-correct under every
policy P that strongly saturates Q;5 and

• Q weakly covers Q′, if there are mappings ρ
and θ such that

– ρ maps the variables of Q to some
variables

(ρ is a substitution),

– θ maps the variables of Q′ to variables
of Q′ such that headθ(Q′) = headQ′ and
bodyθ(Q′) ⊆ bodyQ′

(θ is a simplification),

– and bodyθ(Q′) ⊆ bodyρ(Q).

Example 5.2. We consider the queries Q

H(w)← R(u′, u), R(u, v), R(v, w), R(u,w)

and Q′

H ′(y)← R(x′, x), R(x, x), R(x, y), R(y, z).

Then Q weakly covers Q′. Indeed, the substi-
tution ρ can map u, u′ to x, v to y and w to
z, and θ can map x′ to x and leave the other
variables alone. Since headθ(Q′) = headQ′ , and
bodyθ(Q′) = {R(x, x), R(x, y), R(y, z)} ⊆ bodyQ′ , θ
is indeed a simplification and, furthermore,

5Recall that the notion of strong saturation is introduced
in Definition 3.7.

bodyθ(Q′) ⊆ {R(x, x), R(x, y), R(y, z), R(x, z)} =
bodyρ(Q).
However, we show that parallel-correctness does
not transfer from Q to Q′. Towards a contra-
diction, we assume that parallel-correctness does
transfer. We consider the valuation V ′ mapping
the variables x, x′, z to a and y to b for some a 6= b.
Then, V ′(bodyQ′) = {R(a, a), R(a, b), R(b, a)}, V ′
derives H ′(b), and V ′ is minimal. Thanks to Propo-
sition 4.4, there must be a minimal valuation V for
Q such that

{R(a, a), R(a, b), R(b, a)} ⊆ V (bodyQ) (†)

holds. We distinguish two cases.

Case 1 V (w) = a. Thus V derives H(a). However,
the valuation that maps all variables to a
also derives H(a) and shows that V is not
minimal.

Case 2 V (w) = b. Thus V derives H(b). However,
the valuation that maps all other variables
to a also derives H(b) and only requires the
facts R(a, a) and R(a, b). Therefore, V is
not minimal.

Hence, no minimal valuation V for Q exists sat-
isfying (†), the desired contradiction. Therefore,

Q 6 pc−→ Q′.
On the other hand, it follows from Proposi-

tion 5.4 that parallel-correctness weakly transfers
from Q to Q′.

We note that, as the naming already suggests, if
parallel-correctness transfers from Q to Q′ it also
weakly transfers, and if Q covers Q′ it also weakly
covers it.

Although the definition of “weakly covers” seems
quite involved, it can be tested in NP.

9

Proposition 5.3. The decision problem, whether
a given CQ Q weakly covers a given CQ Q′ is NP-
complete.

It turns out that “weak cover” characterizes
“weak transfer” and thus the following counterpart
of Proposition 4.4 holds:

Proposition 5.4. For CQs Q and Q′, parallel cor-
rectness weakly transfers from Q to Q′ if and only
if Q weakly covers Q′.

Thus, if in some setting, weak transferability and
transferability coincide, Propositions 5.3 and 5.4
yield an NP upper bound for parallel-correctness
transfer. We present two such settings in the fol-
lowing two subsections.

5.2 Strongly minimal queries

Definition 5.5. A CQ query is strongly minimal
if all its valuations are minimal.

We write CQ[sm] for the class of strongly mini-
mal CQs.

Although strong minimality is a non-trivial no-
tion (with a coNP-complete decision problem),
there are some very common examples like full
queries (where all variables occur in the head)
and queries without self-joins (where every relation
name occurs at most once), and further kinds of
queries like

H(x1, x2)← R(x1, x3), R(x2, x3), S(x3, x2).

For strongly minimal conjunctive queries, trans-
fer and weak transfer coincide and therefore the
following holds.

Theorem 5.6. pc-trans(CQ[sm],CQ) is NP-
complete.

Also the complexity of parallel-correctness drops
for strongly minimal queries, if the representation
of the distribution policy allows to figure out in
polynomial time whether there is a node that is
responsible for a given set of facts. In particular,
the following holds:

Theorem 5.7. For policy class P ∈ Ppoly,
PCI(CQ[sm],P) and PC(CQ[sm],P) are in
coNP.

5.3 Feasible Families of Distribution
Policies

Parallel-correctness transfer can be seen as a gener-
alization of parallel-correctness. In both cases, the
goal is to decide whether a query can be correctly
evaluated by evaluating it locally at each node.
However, for parallel-correctness transfer, the ques-
tion whether Q′ is parallel-correct is not asked for a
particular distribution policy but for the family6 of
those distribution policies for which Q is parallel-
correct, which by Proposition 3.6 is just the family
of all distribution policies that saturate Q.

Definition 5.8. A query is parallel-correct for a
family F of distribution policies if it is parallel-
correct under every distribution policy from F .

We next define a criterion for families of dis-
tribution policies which guarantees that parallel-
correctness can be tested in NP.

For an instance I, a distribution policy P is
called (Q, I)-scattered if, for each node κ, there
is a valuation V for Q such that loc-instP ,I(κ) ⊆
V (bodyQ). Intuitively, a (Q, I)-scattered policy en-
sures that facts are sufficiently spread out such
that every network node only contains a subset of
the facts related to one valuation. We call a fam-
ily F of distribution policies Q-scattered if F con-
tains a (Q, I)-scattered policy, for every instance I.
A Q-scattered family of distribution policies that
strongly saturate Q is called a Q-family.

It turns out that parallel-correctness with respect
to Q-families can be characterized in terms of weak
coverability,

Proposition 5.9. Let Q be a CQ and let F be
a Q-family. Then, for every CQ Q′, query Q′ is
parallel correct for F if and only if Q weakly covers
Q′.

And thus, Proposition 5.3 yields another NP-
result. Indeed, the following can be shown:

Theorem 5.10. It is NP-complete to decide, for
given CQs Q and Q′, whether Q′ is parallel-correct
for Q-families of distribution policies.

For a CQ Q, let HQ denote the family

{PH | H is a hypercube for Q}
6A family of distribution policies is just a set of distribu-

tion policies.

10

of distribution policies. Then the next lemma spec-
ifies that Hypercube distributions for a CQ Q form
a Q-family.

Lemma 5.11. Let Q be a CQ. Then HQ is a Q-
family.

As a corollary, we now have:

Corollary 5.12. It is NP-complete to decide,
for given conjunctive queries Q,Q′, whether Q′ is
parallel-correct for HQ.

6 Discussion

Parallel-correctness serves as a framework for
studying correctness and implications of data par-
titioning in the context of one-round query evalu-
ation algorithms. A main insight of the work up
to now is that testing for parallel-correctness as
well as the related problem of parallel-correctness
transfer reduces to reasoning about minimal valu-
ations in the context of conjunctive queries (even
in the presence of union and inequalities) but be-
comes considerably more involved when negation is
allowed.

There are many questions left unexplored and we
therefore highlight possible directions for further
research.

From a foundational perspective, it would be in-
teresting to explore the decidability boundary for
parallel-correctness and transfer when considering
more expressive query languages or even other data
models. Obviously, the problems become unde-
cidable when considering first-order logic, but one
could consider monotone languages or for instance
guarded fragment queries. At the same time, it
would be interesting to find settings that render
the problems tractable, for instance, by restricting
the class of queries or by limiting to certain classes
of distribution policies.

Parallel-correctness transfer is a rather strong
notion as it requires that a query Q′ is parallel-
correct for every distribution policy for which an-
other queryQ is parallel-correct. As a consequence,
query Q′ can always be executed after Q without
reshuffling of the data. From a practical perspec-
tive, however, it could be interesting to determine,
given Q and Q′, whether there is at least one dis-
tribution policy under which both queries are cor-
rect. Other questions concern the least costly way

to migrate from one distribution to another. As
an example, assume a distribution P on which Q
is parallel-correct but Q′ is not. Find a distribu-
tion P ′ under which Q′ is parallel-correct and that
minimizes the cost to migrate from P to P ′. Sim-
ilar questions can be considered for a workload of
queries.

Even though the naive one-round evaluation
model considered in this paper suffices for Hyper-
cube, it is rather restrictive. Other possibilities
are to consider more complex aggregator functions
than union and to allow for a different query than
the original one to be executed at computing nodes.
Furthermore, it could be interesting to generalize
the framework beyond one-round algorithms, that
is, towards evaluation algorithms that comprise of
several rounds.

Acknowledgments

We thank Serge Abiteboul, Luc Segoufin, Cristina
Sirangelo, Dan Suciu, and Thomas Zeume for help-
ful remarks and Jan-Eric Lenssen for careful proof
reading.

References

[1] F. N. Afrati and J. D. Ullman. Optimizing
joins in a map-reduce environment. In EDBT
2010, 13th International Conference on Ex-
tending Database Technology, pages 99–110,
2010.

[2] T. J. Ameloot, G. Geck, B. Ketsman,
F. Neven, and T. Schwentick. Parallel-
correctness and transferability for conjunctive
queries. In Proceedings of the 34th ACM Sym-
posium on Principles of Database Systems,
PODS 2015, pages 47–58, 2015.

[3] T. J. Ameloot, G. Geck, B. Ketsman,
F. Neven, and T. Schwentick. Parallel-
correctness and transferability for conjunctive
queries. Invited Journal Submission, 2015.

[4] P. Beame, P. Koutris, and D. Suciu. Commu-
nication steps for parallel query processing. In
Proceedings of the 32nd Symposium on Prin-
ciples of Database Systems, PODS ’13, pages
273–284, 2013.

11

[5] P. Beame, P. Koutris, and D. Suciu. Skew in
parallel query processing. In Proceedings of the
33rd ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems,
PODS ’14, pages 212–223, 2014.

[6] S. Chu, M. Balazinska, and D. Suciu. From
theory to practice: Efficient join query evalu-
ation in a parallel database system. In Pro-
ceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 63–78, 2015.

[7] S. Ganguly, A. Silberschatz, and S. Tsur. Par-
allel bottom-up processing of datalog queries.
J. Log. Program., 14(1&2):101–126, 1992.

[8] G. Geck, B. Ketsman, F. Neven, and
T. Schwentick. Parallel-correctness and con-
tainment for conjunctive queries with union
and negation. In International Conference on
Database Theory, pages 9:1–9:17, 2016.

[9] D. Halperin, V. Teixeira de Almeida, L. L.
Choo, S. Chu, P. Koutris, D. Moritz, J. Ortiz,
V. Ruamviboonsuk, J. Wang, A. Whitaker,
S. Xu, M. Balazinska, B. Howe, and D. Suciu.
Demonstration of the myria big data manage-
ment service. In Proceedings of the 2014 ACM
SIGMOD International Conference on Man-
agement of Data, SIGMOD ’14, pages 881–
884, 2014.

[10] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassi-
lakis. Dremel: Interactive analysis of web-scale
datasets. Proc. VLDB Endow., 3(1-2):330–
339, Sept. 2010.

[11] M. Mugnier, G. Simonet, and M. Thomazo.
On the complexity of entailment in existential
conjunctive first-order logic with atomic nega-
tion. Inf. Comput., 215:8–31, 2012.

[12] R. Nehme and N. Bruno. Automated parti-
tioning design in parallel database systems. In
Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data,
SIGMOD ’11, pages 1137–1148, 2011.

[13] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra.
Worst-case optimal join algorithms. In

Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, pages 37–
48, 2012.

[14] M. T. Özsu and P. Valduriez. Principles of
Distributed Database Systems, Third Edition.
Springer, 2011.

[15] J. Rao, C. Zhang, N. Megiddo, and
G. Lohman. Automating physical database de-
sign in a parallel database. In Proceedings of
the 2002 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD
’02, pages 558–569, 2002.

[16] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Little-
field, D. Menestrina, S. Ellner, J. Cieslewicz,
I. Rae, T. Stancescu, and H. Apte. F1: A dis-
tributed sql database that scales. Proc. VLDB
Endow., 6(11):1068–1079, Aug. 2013.

[17] J. D. Ullman. Information integration us-
ing logical views. Theor. Comput. Sci.,
239(2):189–210, 2000.

[18] T. L. Veldhuizen. Triejoin: A simple, worst-
case optimal join algorithm. In Proc. 17th
International Conference on Database Theory
(ICDT), pages 96–106, 2014.

[19] R. S. Xin, J. Rosen, M. Zaharia, M. J.
Franklin, S. Shenker, and I. Stoica. Shark: Sql
and rich analytics at scale. In Proceedings of
the 2013 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD
’13, pages 13–24, 2013.

12

