
A computational tool for simulation and           

learning of Fuzzy Cognitive Maps 

Gonzalo Nápoles, Isel Grau, Rafael Bello 

Department of Computer Sciences 

Central University of Las Villas 

 Santa Clara, Cuba 

Maikel León, Koen Vahoof 

Department of Business Informatics  

Hasselt University 

Diepenbeek, Belgium 

 

Elpiniki Papageorgiou 

Department of Computer Engineering  

Technological Education Institute of Central Greece  

Lamia, Greece

   Abstract—During the last decade Fuzzy Cognitive Maps (FCM) 

have become a useful tool for solving unstructured problems. In a 

few words they could be defined as Recurrent Neural Networks 

for simulating complex systems, where neurons denote concepts, 

objects or entities of the investigated system. Normally FCM are 

entirely designed using the best knowledge of a group of experts in 

a given domain, so frequently learning algorithms for tuning the 

model parameters are required. Despite the theoretical advances 

in such fields, the lack of a suitable computational framework for 

handling FCM-based systems is still an open problem. This paper 

introduces a novel tool for designing and simulating FCM which 

gathers several learning algorithms for adjusting the introduced 

parameters. More specifically, the framework includes supervised 

and unsupervised learning algorithms for computing the causal 

weights, algorithms for optimizing the network topology in large 

FCM (without losing significant information) and also methods for 

improving the global convergence on continuous FCM. It should 

be stated that these algorithms are oriented to prediction tasks, but 

they could be easily extended to other fields. 

Index Terms — FCM, prediction problems, modeling, learning 

algorithms, computational framework. 

I.  INTRODUCTION 

Fuzzy Cognitive Maps (FCM) were introduced by B. Kosko 
as a knowledge-based methodology for modeling and simulating 
dynamic systems [1]. They are in fact recurrent neural networks 
that incorporate elements of fuzzy logic, which are considered 
during the knowledge-engineering phase [2]. However, there are 
some differences regarding neural networks (e.g. usually hidden 
neurons are not allowed). Using this methodology, a system can 
be modeled in terms of concepts (e.g. variables, objects or states 
which are mapped as neurons in connectionist approaches) and 
causal relations among such entities. 

From the structural point of view, a FCM may be represented 
by directed graphs allowing feedback, consisting on neurons and 
signed weighted arcs [3]. The sign associated to each connection 
involves a relevant meaning for the system. For example, if the 
sign is positive, then an increase or decrease on the first concept 
causes the effect neuron to change in the same direction, whereas 
in the case of negative causal relations, the change on the effect 
variable will be in the opposite direction.  

Recently the FCM theory has gained a lot of attention among 
researchers. For instance, León and collaborators [4] proposed a 
FCM for studying travel behavior in modern societies allowing 
policy-makers a better understanding about such difficult issues. 
Similarly, Nápoles et al. [5] introduced a FCM-based model for 
analyzing the resistance mechanism of HIV proteins. This model 
comprises relevant biological knowledge that could be used by 
drug-designers when designing new therapies. As well, the FCM 
theory has been widely used in other fields including: decision 
making, risk analysis, engineering, system control, game theory, 
management, telecommunications, medicine, business requests, 
among other domains. For further information the reader could 
consult the survey published by Papageorgiou and Salmerón [6] 
about relevant applications of this methodology. 

On the other hand, the pioneer research work of Papakostas 
at al. [7] opened a new research direction: the solution of pattern 
classification problems. Despite these notable advances, the lack 
of a suitable computational framework for handling FCM-based 
systems is still an open problem. The scientific literature shows 
some software products developed with the intention of drawing 
FCM by users with no expertise in mathematics or computer 
science, as the FCM Modeler [8] and the FCM Designer [9]. The 
first one is a simple development to support group decision 
making on a qualitative static model, while the second one is a 
better implementation, but still hard to interact with and it does 
not have experimental facilities. More recently, León et al. [10] 
proposed the FCM TOOL. It has a nice Graphical User Interface 
and also includes a learning algorithm for estimating the causal 
weights. However, this software was conceived for facing the 
public transportation problem mentioned before. 

In this paper we propose a novel computational framework, 
for designing and learning and simulating FCM-based systems. 
This software is an extension of the FCM TOOL in the sense 
that we preserved the main options for designing new systems, 
however, simulation options and learning methods were entirely 
modified. Actually, we implemented an internal design oriented 
to pattern classification problems where the 80% of the source 
was modified. In next sections we describe the software options 
and the mathematical formulation of learning algorithms, which 
will be evaluated using a real case study.   



II. FUZZY COGNITIVE MAPS 

Mathematically speaking, a FCM can be defined using a 4-
tuple (𝐶, 𝑊, 𝐴, 𝑓) where 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑀} is a set of 𝑀 graph 
nodes, 𝑊: (𝐶𝑖 , 𝐶𝑗) → 𝑤𝑖𝑗  is a function which associates a causal 

value 𝑤𝑖𝑗 ∈ [−1,1] to each pair of nodes (𝐶𝑖 , 𝐶𝑗). It denotes the 

weight of the directed edge from 𝐶𝑖 to 𝐶𝑗. Notice that the matrix 

𝑊𝑀×𝑀 gathers the system causality which could be estimated by 
experts or automatically computed from historical data. Equally, 
𝐴: (𝐶𝑖) → 𝐴𝑖 associates an activation value 𝐴𝑖 ∈ ℝ to each node 
𝐶𝑖 at each time 𝑡 (𝑡 = 1,2, … , 𝑇). To conclude, a transformation 
function 𝑓: ℝ → [0,1] or 𝑓: ℝ → [−1,1] is used to preserve the 
activation value of neurons in the desired range. 

Next equation formalizes the rule for updating the activation 
vector (i.e. the activation value of neurons) using the state vector 
𝐴0 as the initial configuration. In the same way to other recurrent 
models (e.g. the well-known Hopfield network) this information 
propagation rule is iteratively repeated until a hidden pattern is 
observed (which is an ideal outcome), or a maximal number of 
cycles 𝑇 is reached [11] which means that the map was unable 
to converge towards a fixed-point attractor.  

𝐴𝑖
𝑡+1 =  𝑓 (∑ 𝑤𝑗𝑖

𝑀

𝑗=1

𝐴𝑗
𝑡 + 𝑤𝑖𝑖𝐴𝑖

𝑡) , 𝑖 ≠ 𝑗 (1) 

In this rule the most commonly used threshold functions are: 
the bivalent function, the trivalent function, and also the sigmoid 
variants [12]. The effect on selecting a function over the stability 
and inference of FCM was explored by Tsadiras [13]. From this 
work the following remarks are summarized: 

 Discrete FCM never show chaotic behavior. It means 
that always a fixed-point attractor or a limit cycle will 
be observed. More explicitly: 

o Fixed-point attractor: the system will produce the 
same output after the time 𝑡𝑘. 

o Limit cycle: the same output or state vector will be 
regularly observed with period 𝑃. 

 Continuous FCM may exhibit chaotic states, where the 
model continues producing different state vectors for 
successive iterations. In such situations the map cannot 
stabilize, leading to confusing outcomes. 

Usually, a FCM represents the knowledge extracted from an 
expert in a given domain. However, it is possible to have better 
consistency in the drawing of a FCM if more than one expert are 
used in the system modeling [14]. The aggregation of multiple 
experts into a single structure allows improving the reliability of 
the final model by merging incomplete opinions from different 
knowledge sources. This process makes the map less susceptible 
to the effects of ignorance and erroneous beliefs, during the 
knowledge representation and conceptualization.  

The possibility of aggregating numerous FCM into a single 
knowledge structure is an important advantage over other well-
known knowledge-based models such as Bayesian Networks or 
Petri Nets. Being more explicit, it is well known that the drawing 
process of Petri Nets is extremely hard by non-expert users since 
it requires a mathematical background. 

III. FEATURES OF THE PROPOSED FRAMEWORK 

In this section we introduce a computational framework for 
handling FCM-based systems. This software comprises 20.000 
source code lines (completely written in Java language) which 
are distributed in 115 source files. These archives are organized 
in 4 global packages (map, algorithms, interface and resources) 
and several sub-packages. Here the most relevant packages are 
algorithms and interface: the first one contains several learning 
methods for adjusting the map parameters, whereas the second 
one includes the main graphical components. 

Before providing a deeper description of the central options 
and functionalities of the proposed framework, we must remark 
that the software was designed for solving prediction tasks with 
a single decision concept (i.e. a partition of the activation space 
defines various decision classes). These scenarios are common 
when addressing pattern classification problems. The reader can 
find illustrative examples in the literature [15] [16] [17]. It does 
not imply that the FCM TOOL cannot be used for facing other 
scenarios (e.g. modeling problems where only a single example 
is available and therefore supervised learning algorithms do not 
fit very well). However, most options of the software will remain 
inactive when solving such kinds of problems. 

As a rough picture, our framework involves three groups of 
functionalities that are distributed in 6 menus (File, Edit, Build, 
Run, Reset and Help). The first group is oriented to the design of 
new FCM-based systems, where an expert in a given domain 
could completely design and simulate a system, without having 
previous knowledge in mathematics or computer science; while 
the second group involves learning algorithms for adjusting the 
introduced parameters (e.g. the direction and intensity of causal 
relations). To conclude, the third group includes procedures for 
evaluating the system behavior (e.g. stability and convergence) 
which generally requires more expertise. 

Next we describe basic commands that allow creating and 
handling new components such as concepts and relations. They 
belong to the first group of functionalities: 

 New concept. It creates a concept with a fixed name that 
can be renamed later (by clicking the right button over the 
concept and next changing the field “name”). 

 New relation. It creates a new causal relation with a fixed 
value. This action is done by clicking the left button over 
the first concept and next draw a straight line from the 
cause neuron to the effect node. If there is a connection 
between such nodes, the line will be changed by a curve. 
The expert could also modify the initial causal value by 
clicking the right button over the causal relation and next 
changing the field “causal value”. 

 Select component. It allows selecting (or moving) a map 
component (e.g. this action is mandatory when changing 
concepts’ properties such as the initial value). 

 Delete component. This action deletes a component (i.e. 
causal relations and concepts). If the selected component 
is a concept, then the connected causal relations will be 
automatically deleted as well. Besides, when removing 
nodes be aware of deleting the decision concept! If this 
happens, learning procedures cannot be used. 



As mentioned before, the second group of options includes 
learning algorithms for improving the initial modeling provided 
by experts. They are oriented to three directions: 

 Supervised and unsupervised methods for estimating the 
causal weights. The unsupervised procedures are based 
on the Hebbian rule, whereas the supervised algorithms 
are focused on prediction problems. 

 Learning procedures for optimizing the system topology 
without losing significant information. They are entirely 
focused on solving prediction problems. 

 Learning algorithms for improving the convergence on 
sigmoid FCM without affecting the prediction capability 
of the original FCM-based system. 

These procedures require a low user intervention, since they 
involve a few parameters which were extensively studied in the 
original papers. In the next section we review the mathematical 
formulation behind such learning algorithms. 

Finally, the third group of functionalities is oriented to the 
system exploitation and interpretation. For example: 

 Classify new patterns. This function allows classifying a 
new instance or simply simulating a state vector. It could 
be performed by directly modifying the activation initial 
values of input neurons. Moreover, this option provides a 
diagram with the activation values of map neurons during 
each step of the inference process. 

 Prediction report. This function is only available if the 
map has a decision concept. It computes several statistics 
(e.g. accuracy, sensitivity, F-measure). In order to trigger 
this command the expert must specify the path of the base 
with the input instances to be evaluated.  

 Convergence plotter. This option provides an interface 
with the activation values of the decision concept during 
the execution method, for each input instance. In order to 
trigger this command the user must specify the path of the 
base with the input instances to be evaluated. 

 Execution parameters. By using this function the expert 
can manage the map parameters such as the activation (or 
normalization) function, which is used to keep the values 
of concepts in the desired range, or the maximal number 
of iterations allowed during the inference.  

Similarly, the FCM TOOL provides more functionalities that 
could not be detailed in this paper. For example, the expert could 
also modify further graphical aspects when designing a new map 
such as the color of concepts or the position of labels. Even it is 
possible to execute the inference step in a mode where the size 
of each concept is proportional to its activation. Of course, undo 
and redo buttons were also implemented. 

The framework also incorporates methods for automatically 
building large FCM-based systems, and a standard procedure for 
combining multiple FCM into a single one. However, we believe 
that further work in this direction is required since regularly the 
prediction capability of the final system decreases regarding the 
global performance of individual sub-systems.  

IV. LEARNING ALGORITHMS 

In this section we briefly summarize the mathematical basis 
of the learning methods implemented in the proposed tool. Such 
algorithms are essentially optimization procedures that could be 
addressed using exact or heuristic approaches. We prefer to use 
approximate methods since population-based metaheuristics are 
able of finding near-optimal solutions in a reasonable execution 
time, ignoring analytical properties of the target function (e.g. 
continuity, differentiability, convexity or gradient information) 
which are regularly unknown in advanced. Moreover, learning 
methods are quite complex, so the time required for computing 
a reasonable solution could be excessive, even for modern CPU. 
However, exact algorithms such as mathematical programming 
techniques could be adopted as well.  

A. Estimating the causal weights 

The first learning problem is maybe the most important since 
it defines the system behavior. It consists on estimating a set of 
weights minimizing the differences between the expected output 
and the predicted outcome. From the optimization point of view 
each dimension of the solution comprises a causal value, that is, 
the value between two concepts. As a result, the total number of 
dimensions will be in correspondence with the number of causal 
connections. The next equation describes the objective function 
codified into the FCM TOOL for facing this problem, which was 
proposed by Nápoles et al. [5]. It should be stated that we assume 
a FCM-based system with single decision concept. 

𝐹(𝑥, 𝜙 ) = ∑|𝐼(𝑥, 𝜙𝑖) − 𝑅(𝜙𝑖)|

|𝜙|

𝑖=1

 (2) 

In this formulation 𝜙 represents the input set (training cases), 
while 𝐼(. ) is a binary function that calculates the map inference 
for the 𝑖th instance, using the solution 𝑥 as causal weight matrix. 
Besides, another binary function 𝑅(.) is used for computing the 
map response for the current train-case 𝜙𝑖. Hence, the objective 
function will achieve its optimal value when the FCM inference 
process and historical data are identical. 

For solving this continuous optimization task the framework 
FCM TOOL uses 12 potent population-based optimizers, which 
includes Particle Swarm Optimization [18], Real-Coded Genetic 
Algorithms [19] and Differential Evolution [20]. Likewise, the 
tool includes 4 Hebbian-type learning methods: Active Hebbian 
Learning [21], Differential Hebbian Learning [22], Non-linear 
Hebbian Learning [23] and the Balanced Differential Algorithm 
proposed by Huerga [24]. We suggest using heuristic algorithms 
when facing pattern classification problems, since in such cases 
Hebbian-type methods report poor performance. 

B. Optimizing the network topology 

As mentioned, during the construction of a new FCM-based 
system, experts determine map concepts and causal connections 
among such entities. In this scenario is unlikely to find a “weak 
concept”, that is to say, a graph node that can be surely removed 
without affecting the system performance. However, sometimes 
FCM-based systems are automatically computed from data and 
therefore some attributes could be superfluous or contradictory, 
negatively affecting the system performance.   



Here the optimization problem consist on finding a minimal 
subset of concepts (i.e. a minimal sub-system) having the same 
performance regarding the original system, without affecting the 
overall performance. Since we are mainly focused on maps with 
prediction capabilities, the map performance could be measured 
as the relative number of patterns recognized by the system (i.e. 
the system accuracy). The following equation (3) formalizes the 
objective function to be minimized during optimization phase, 
where 𝜙 is the training set, 𝜓𝑌 is the number of non-relevant 
concepts, regarding the total number of variables involved in the 
modeling, whereas 0 < 𝜆 < 1 regulates the importance that the 
expert confers to the number of non-relevant map concepts (i.e. 
variables) with respect to the map quality. 

𝐺(𝑦, 𝜙) = (1 − 𝜆) ∑|𝐼(𝑥, 𝜙𝑖) − 𝑅(𝜙𝑖)|

|𝜙|

𝑖=1

+ 𝜆|𝜓𝑌| (3) 

The authors suggests that 𝜆 < 0.4 since the main idea of this 
learning method is to estimate central concepts by reducing the 
number of non-relevant nodes, but always preserving the ability 
of predicting new patterns, and consequently the strength of the 
original system [25]. Besides, if the induced classification error 
is greater than a fixed threshold, then the objective function must 
be penalized using a positive constant. 

For solving this complex combinatorial task the framework 
FCM TOOL uses 8 discrete methods, which includes a Binary-
Coded Genetic Algorithm [19], Ant Colony Optimizers [26] and 
variants of Variable Mesh Optimization [27]. 

C. Improving the map convergence 

Most learning methods for computing the causal weights do 
not accurately consider stability issues when estimating the final 
solution [3]. As a result, we obtain systems with high prediction 
rate, but unable to converge to a fixed-point. On the other hand, 
these methods assume that FCM are closed systems and they do 
not consider external influences. As far as known, there exist no 
learning algorithms for enhancing the system stability once the 
causality is established. Based on these considerations, Nápoles 
et al. [28] introduced a new learning algorithm which is oriented 
to estimate the most adequate sigmoid function for each concept. 
It simulates the outcome of an external stimulus over the neurons 
with the hope of improving the convergence. 

The following equation displays the objective function to be 
minimized during the search progress. It attempts reducing the 
system response variability, when activating the causal inference 
rule. In the objective function, 𝐾 represents the available number 
of training instances, 𝑀 denotes the number of neurons, and 𝑇 is 
the maximal number of iterations. In this scheme a solution is 
considered as no feasible if the accuracy is negatively affected, 
which allows preserving the global accuracy.  

𝐻(𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑀) = ∑ ∑ ∑ |𝐴𝑖(𝑘)
𝑡

− 𝐴𝑖(𝑘)
𝑡−1

|

𝑇

𝑡=2

𝑀

𝑖=1

𝐾

𝑘=1

 (4) 

For solving this problem FCM TOOL uses 8 Particle Swarm 
Optimizers which were conceived to deal with stagnation and 
premature convergence states [29]. These metaheuristics allow 
improving the search, hence computing more stable FCM-based 
systems with high prediction capability. 

V. EXPERIMENTS AND SIMULATIONS 

In this section we illustrate some functionalities of the FCM 
TOOL (mainly those related to learning algorithms) by using six 
FCM taken from Nápoles et al. [30]. These systems describe the 
resistance mechanism of the HIV-1 protease protein regarding 
existing antiviral drugs. More precisely, the authors modeled the 
protein as a FCM where each sequence position was taken as a 
map neuron, whereas a decision concept for the resistance target 
was also defined. The protease sequence is defined by 99 amino 
acids, so it leads to a FCM with 99+1 concepts. But with the goal 
of reducing the model complexity sequence sites associated with 
drug resistance are only used [31]. In this topology neurons are 
fully connected, where a causal relation between each sequence 
position and the resistance neuron is established. 

It is important to mention that each map denotes the protein 
behavior for a specific drug: Indinavir (IDV), Lopinavir (LPV), 
Nelfinavir (NFV), Ritonavir (RTV), Saquinavir (SQV) and also 
Atazanavir (ATV). Moreover, each drug has associated a high-
quality filtered datasets consisting on reported mutations and 
their resistance value [32]. The following figure displays the 
configuration of the decision neuron (once the map design phase 
is done) in the software where “0” represents susceptible classes, 
whereas “1” denotes the resistant ones. 

 

Fig. 7. Configuration of the decision space. 

The following workflow shows the semantic of experiments 
performed next. First, the maps are automatically created from 
historical data, and afterward we use these data for computing 
the causal weigh matrices. As a further learning phase, we adopt 
a second learning method for optimizing the network topology, 
and lastly the convergence is improved. Figures 9-11 summarize 
the parameters used for each algorithm and how the FCM TOOL 
should be configured at each case. 

 

Fig. 8. Description of the methodology used during simulations. 

Compute the 
causal weights

Optimize the 
topology

Improve the map 
convergence

Step 1 Step 2 Step 3 



 

Fig. 9a. Unsupervised learning algorithms based on the Hebb rule and 

continuous optimizers for estimating the causal weight matrix. 

 

Fig. 10a. Discrete optimizers used for finding the minimal subset of relevant 

concepts that preserve the overall system modeling. 

 

Fig. 11a. Particle Swarm optimizers for estimating the family of Sigmoid 

functions that allow improving the map convergence. 

 

 

Fig. 9b. Parameters configuration for the selected optimizer (Global-best 

PSO) when computing the causal weight matrix. 

 

Fig. 10b. Parameters configuration for the selected optimizer (Ant Colony 

System) when optimizing the network topology. 

 

Fig. 11b. Parameters configuration for the selected optimizer (Ant Colony 

System) when improving the system convergence. 



A. Results of the first learning algorithm 

As mentioned, the estimation of a proper weight matrix for a 
map implies to estimate at most 𝑛2 causal weights, being 𝑛 the 
number of concepts involved in the modeling. In our study case 
the maximal number of parameters to be estimated correspond 
to ATV (i.e. 3481 causal values). The following figure portrays 
the accuracy achieved for each map, once the learning process 
is done. These values were averaged after 10 independent trials 
since the learning algorithms implemented for tuning the causal 
weights are stochastic process, so we could computed different 
solutions in two independent executions.  

 

Fig. 12. Accuracy achieved for each FCM once the weight adaptation stage is 
completed, averaged after 10 independent trials. 

It should be stated that the above accuracies are not a result 
of this paper, however, assuredly they reflect the strength of the 
implemented learning algorithm for tuning large FCM. Besides, 
it becomes more relevant if we consider that the proposed tool 
(which actually is the core of this paper) is completely focused 
on pattern classification problems, were effectively recognizing 
such patterns is a complex issue. 

The following figure illustrates, as an example, the learning 
progress for the inhibitor IDV where experts can inspect relevant 
statistics (e.g. problem features, accuracy, stability status). They 
are updated step-by-step, which allow visualizing the algorithm 
progress in real-time. Moreover, we included a panel for plotting 
the best evaluation computed at each step. 

 

Fig. 13. Window summarizing relevant statistics related to the algorithm 

progress, when computing the causal weight matrix. 

B. Results of the second learning algorithm 

As mentioned the protease protein is defined by 99 amino 
acids, resulting in six FCM with at most 99+1 neurons. Although 
the authors used attributes directly related with drug resistance, 
some of these concepts could be non-relevant for the model and 
could be removed in order to facilitate the knowledge discovery 
process. Next figure shows, as an example, the progress of this 
optimization procedure for the inhibitor IDV. This window also 
includes numerous statistics such as the map norm (i.e. number 
of neurons preserved by the method), the reduction ratio and the 
ΔError (i.e. error induced when removing a subset of concepts, 
in terms of accuracy). If this value is negative then the accuracy 
can be improved, which means that removed nodes involve one 
or multiple contradictory causal relations. More explicitly, in the 
example 𝛥𝐸𝑟𝑟𝑜𝑟 = −0.02, when removing 7 specific nodes the 
system is capable of recognizing more patterns (2% of the total 
number of instances used for testing the model). 

 

Fig. 14. Windows summarizing relevant statistics related to the algorithm 

progress, when optimizing the network topology. 

Next figure summarizes the number of map concepts at the 
beginning (as suggested the feature selection) and after applying 
the learning algorithm. Since the MAX-MIN Ant System [33] is 
a stochastic method, we averaged 10 independent trials in order 
to obtain a more realistic value. In short, the reader can observe 
that this learning algorithm is capable of optimizing the network 
topology, without significantly affecting the prediction ability of 
the system (i.e. 𝛥𝐸𝑟𝑟𝑜𝑟 ≤ 001 for all drugs). 

 

Fig. 15. Number of concepts at the beginning and averaged number of 
concepts after 10 independent trials. 
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C. Results of the third learning algorithm 

As a first analysis, the stability of the decision neuron for a 
randomly selected mutation is measured. Figure 16, 17 and 18 
show the activation value of the resistance over the time for two 
scenarios: the solid line represents the FCM response without 
any modification, whereas the dashed line represents the system 
response using the sigmoid functions estimated by the learning 
method. From these simulations we can conclude that our model 
induces better stability. In this case, only the resistance node was 
monitored, since the decision concept allows predicting whether 
a new mutation will be susceptible or not. 

From these results four scenarios may be formalized: (i) the 
convergence on stable systems was improved, (ii) cyclic patterns 
were removed, (iii) the variability response on chaotic systems 
was reduced, although the system remains chaotic, and (iv) the 
chaotic behavior was corrected, leading to a perfectly stable map 
which comprises the most desirable outcome. 

 

 

Fig. 16. Activation value of the resistance neuron for a) drug IDV b) drug 
RTV where the solid line is the map response using the same function for all 

neurons, and the dashed line represents the map output using the family of 

functions estimated by the algorithm. 

 

Fig. 17. Activation value of the resistance neuron for a) drug ATV b) drug 

APV where the solid line is the map response using the same function for all 

neurons, and the dashed line is the map output using the family of functions 
estimated by the algorithm. 

 

Fig. 18. Activation value of the resistance concept for a) drug SQV b) drug 
NFV where the solid line is the map response using the same function for all 

neurons, and the dashed line represents the output using the family of 

functions estimated by the algorithm. 

The reader may observe that the system response changes for 
next drugs: IDV, RTV and ATV. In such cases the classification 
rate does not suffer any change since the resistance for a drug is 
measured in a range instead of using a single value. This range 
is computed by adopting a pre-defined biological cut-off which 
allows classifying a mutation in susceptible (0) or resistant (1). 
However, we noticed that some FCM achieved better accuracy, 
which is an unexpected positive result. For instance, let us study 
the behavior of the mutation “FKLDVFMIIVVSVTVNML” for 
the map IDV. This sequence has high level of resistance for the 
drug IDV, which means that the higher the activation value of 
the resistance concept, the better the accuracy for this instance. 
However, after applying the learning algorithm (see Figure 16a) 
the FCM computed higher resistance value. 

VI. FINAL REMARKS 

In recent years the FCM-based analysis has become a fruitful 
research field. During the design phase of these systems experts 
determine graph concepts and causal relations (i.e. the direction 
and intensity) among such entities. Despite the clear advantages 
of this method as a way for representing the experts’ knowledge, 
learning algorithms are frequently required. This fact comprises 
a serious problem: codifying these learning methods frequently 
requires basic knowledge in computer sciences or mathematics, 
therefore reducing the applicability of FCM on solving real-life 
problems. Additionally, existing computational frameworks are 
mainly oriented to conceptualization problems.  

This paper discussed some relevant features of FCM TOOL, 
which is a computational framework for designing, learning and 
simulating FCM-based systems. This experimentation tool has 
several functionalities that allow to experts designing a system 
by only using the Graphical User Interface. Moreover, the FCM 
TOOL incorporates numerous learning algorithms which belong 
to the novel trends in learning procedures for FCM (i.e. learning 
methods for FCM-based prediction systems). These algorithms 
include models for computing a causal weight matrix with high 
prediction ability, models for optimizing the network topology 
without affecting the system accuracy and models for improving 
the global convergence on sigmoid FCM. 

With the purpose of reducing the computational complexity 
when solving an optimization problem (e.g. the minimal subset 
of relevant concepts), we used population-based search methods 
since they are able of estimating good solutions in a reasonable 
execution time. However, we could adopt exact algorithms (e.g. 
branch and bounds) as well. That is why we also included in this 
paper the mathematical formulation of some learning procedures 
implemented in the framework. As well, we illustrate how these 
learning algorithms work, by using a complex classification task 
concerning the HIV resistance to existing drugs. 

From the software engineering perspective, the authors were 
focused on designing an intuitive computational tool that could 
be expanded to other applications domains. However, it should 
be stated that most functionalities on the tool were developed for 
models involving a single decision concept. Actually, the feature 
work will focused on extending the tool functionalities to more 
generic pattern classification problems. Since it is really easy to 
include new methods and algorithms to the software, our final 
goal is to freely distribute the source code of FCM TOOL among 
researches of the FCM community. 
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