
A computational tool for simulation and

learning of Fuzzy Cognitive Maps

Gonzalo Nápoles, Isel Grau, Rafael Bello

Department of Computer Sciences

Central University of Las Villas

 Santa Clara, Cuba

Maikel León, Koen Vahoof

Department of Business Informatics

Hasselt University

Diepenbeek, Belgium

Elpiniki Papageorgiou

Department of Computer Engineering

Technological Education Institute of Central Greece

Lamia, Greece

 Abstract—During the last decade Fuzzy Cognitive Maps (FCM)

have become a useful tool for solving unstructured problems. In a

few words they could be defined as Recurrent Neural Networks

for simulating complex systems, where neurons denote concepts,

objects or entities of the investigated system. Normally FCM are

entirely designed using the best knowledge of a group of experts in

a given domain, so frequently learning algorithms for tuning the

model parameters are required. Despite the theoretical advances

in such fields, the lack of a suitable computational framework for

handling FCM-based systems is still an open problem. This paper

introduces a novel tool for designing and simulating FCM which

gathers several learning algorithms for adjusting the introduced

parameters. More specifically, the framework includes supervised

and unsupervised learning algorithms for computing the causal

weights, algorithms for optimizing the network topology in large

FCM (without losing significant information) and also methods for

improving the global convergence on continuous FCM. It should

be stated that these algorithms are oriented to prediction tasks, but

they could be easily extended to other fields.

Index Terms — FCM, prediction problems, modeling, learning

algorithms, computational framework.

I. INTRODUCTION

Fuzzy Cognitive Maps (FCM) were introduced by B. Kosko
as a knowledge-based methodology for modeling and simulating
dynamic systems [1]. They are in fact recurrent neural networks
that incorporate elements of fuzzy logic, which are considered
during the knowledge-engineering phase [2]. However, there are
some differences regarding neural networks (e.g. usually hidden
neurons are not allowed). Using this methodology, a system can
be modeled in terms of concepts (e.g. variables, objects or states
which are mapped as neurons in connectionist approaches) and
causal relations among such entities.

From the structural point of view, a FCM may be represented
by directed graphs allowing feedback, consisting on neurons and
signed weighted arcs [3]. The sign associated to each connection
involves a relevant meaning for the system. For example, if the
sign is positive, then an increase or decrease on the first concept
causes the effect neuron to change in the same direction, whereas
in the case of negative causal relations, the change on the effect
variable will be in the opposite direction.

Recently the FCM theory has gained a lot of attention among
researchers. For instance, León and collaborators [4] proposed a
FCM for studying travel behavior in modern societies allowing
policy-makers a better understanding about such difficult issues.
Similarly, Nápoles et al. [5] introduced a FCM-based model for
analyzing the resistance mechanism of HIV proteins. This model
comprises relevant biological knowledge that could be used by
drug-designers when designing new therapies. As well, the FCM
theory has been widely used in other fields including: decision
making, risk analysis, engineering, system control, game theory,
management, telecommunications, medicine, business requests,
among other domains. For further information the reader could
consult the survey published by Papageorgiou and Salmerón [6]
about relevant applications of this methodology.

On the other hand, the pioneer research work of Papakostas
at al. [7] opened a new research direction: the solution of pattern
classification problems. Despite these notable advances, the lack
of a suitable computational framework for handling FCM-based
systems is still an open problem. The scientific literature shows
some software products developed with the intention of drawing
FCM by users with no expertise in mathematics or computer
science, as the FCM Modeler [8] and the FCM Designer [9]. The
first one is a simple development to support group decision
making on a qualitative static model, while the second one is a
better implementation, but still hard to interact with and it does
not have experimental facilities. More recently, León et al. [10]
proposed the FCM TOOL. It has a nice Graphical User Interface
and also includes a learning algorithm for estimating the causal
weights. However, this software was conceived for facing the
public transportation problem mentioned before.

In this paper we propose a novel computational framework,
for designing and learning and simulating FCM-based systems.
This software is an extension of the FCM TOOL in the sense
that we preserved the main options for designing new systems,
however, simulation options and learning methods were entirely
modified. Actually, we implemented an internal design oriented
to pattern classification problems where the 80% of the source
was modified. In next sections we describe the software options
and the mathematical formulation of learning algorithms, which
will be evaluated using a real case study.

II. FUZZY COGNITIVE MAPS

Mathematically speaking, a FCM can be defined using a 4-
tuple (𝐶, 𝑊, 𝐴, 𝑓) where 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑀} is a set of 𝑀 graph
nodes, 𝑊: (𝐶𝑖 , 𝐶𝑗) → 𝑤𝑖𝑗 is a function which associates a causal

value 𝑤𝑖𝑗 ∈ [−1,1] to each pair of nodes (𝐶𝑖 , 𝐶𝑗). It denotes the

weight of the directed edge from 𝐶𝑖 to 𝐶𝑗. Notice that the matrix

𝑊𝑀×𝑀 gathers the system causality which could be estimated by
experts or automatically computed from historical data. Equally,
𝐴: (𝐶𝑖) → 𝐴𝑖 associates an activation value 𝐴𝑖 ∈ ℝ to each node
𝐶𝑖 at each time 𝑡 (𝑡 = 1,2, … , 𝑇). To conclude, a transformation
function 𝑓: ℝ → [0,1] or 𝑓: ℝ → [−1,1] is used to preserve the
activation value of neurons in the desired range.

Next equation formalizes the rule for updating the activation
vector (i.e. the activation value of neurons) using the state vector
𝐴0 as the initial configuration. In the same way to other recurrent
models (e.g. the well-known Hopfield network) this information
propagation rule is iteratively repeated until a hidden pattern is
observed (which is an ideal outcome), or a maximal number of
cycles 𝑇 is reached [11] which means that the map was unable
to converge towards a fixed-point attractor.

𝐴𝑖
𝑡+1 = 𝑓 (∑ 𝑤𝑗𝑖

𝑀

𝑗=1

𝐴𝑗
𝑡 + 𝑤𝑖𝑖𝐴𝑖

𝑡) , 𝑖 ≠ 𝑗 (1)

In this rule the most commonly used threshold functions are:
the bivalent function, the trivalent function, and also the sigmoid
variants [12]. The effect on selecting a function over the stability
and inference of FCM was explored by Tsadiras [13]. From this
work the following remarks are summarized:

 Discrete FCM never show chaotic behavior. It means
that always a fixed-point attractor or a limit cycle will
be observed. More explicitly:

o Fixed-point attractor: the system will produce the
same output after the time 𝑡𝑘.

o Limit cycle: the same output or state vector will be
regularly observed with period 𝑃.

 Continuous FCM may exhibit chaotic states, where the
model continues producing different state vectors for
successive iterations. In such situations the map cannot
stabilize, leading to confusing outcomes.

Usually, a FCM represents the knowledge extracted from an
expert in a given domain. However, it is possible to have better
consistency in the drawing of a FCM if more than one expert are
used in the system modeling [14]. The aggregation of multiple
experts into a single structure allows improving the reliability of
the final model by merging incomplete opinions from different
knowledge sources. This process makes the map less susceptible
to the effects of ignorance and erroneous beliefs, during the
knowledge representation and conceptualization.

The possibility of aggregating numerous FCM into a single
knowledge structure is an important advantage over other well-
known knowledge-based models such as Bayesian Networks or
Petri Nets. Being more explicit, it is well known that the drawing
process of Petri Nets is extremely hard by non-expert users since
it requires a mathematical background.

III. FEATURES OF THE PROPOSED FRAMEWORK

In this section we introduce a computational framework for
handling FCM-based systems. This software comprises 20.000
source code lines (completely written in Java language) which
are distributed in 115 source files. These archives are organized
in 4 global packages (map, algorithms, interface and resources)
and several sub-packages. Here the most relevant packages are
algorithms and interface: the first one contains several learning
methods for adjusting the map parameters, whereas the second
one includes the main graphical components.

Before providing a deeper description of the central options
and functionalities of the proposed framework, we must remark
that the software was designed for solving prediction tasks with
a single decision concept (i.e. a partition of the activation space
defines various decision classes). These scenarios are common
when addressing pattern classification problems. The reader can
find illustrative examples in the literature [15] [16] [17]. It does
not imply that the FCM TOOL cannot be used for facing other
scenarios (e.g. modeling problems where only a single example
is available and therefore supervised learning algorithms do not
fit very well). However, most options of the software will remain
inactive when solving such kinds of problems.

As a rough picture, our framework involves three groups of
functionalities that are distributed in 6 menus (File, Edit, Build,
Run, Reset and Help). The first group is oriented to the design of
new FCM-based systems, where an expert in a given domain
could completely design and simulate a system, without having
previous knowledge in mathematics or computer science; while
the second group involves learning algorithms for adjusting the
introduced parameters (e.g. the direction and intensity of causal
relations). To conclude, the third group includes procedures for
evaluating the system behavior (e.g. stability and convergence)
which generally requires more expertise.

Next we describe basic commands that allow creating and
handling new components such as concepts and relations. They
belong to the first group of functionalities:

 New concept. It creates a concept with a fixed name that
can be renamed later (by clicking the right button over the
concept and next changing the field “name”).

 New relation. It creates a new causal relation with a fixed
value. This action is done by clicking the left button over
the first concept and next draw a straight line from the
cause neuron to the effect node. If there is a connection
between such nodes, the line will be changed by a curve.
The expert could also modify the initial causal value by
clicking the right button over the causal relation and next
changing the field “causal value”.

 Select component. It allows selecting (or moving) a map
component (e.g. this action is mandatory when changing
concepts’ properties such as the initial value).

 Delete component. This action deletes a component (i.e.
causal relations and concepts). If the selected component
is a concept, then the connected causal relations will be
automatically deleted as well. Besides, when removing
nodes be aware of deleting the decision concept! If this
happens, learning procedures cannot be used.

As mentioned before, the second group of options includes
learning algorithms for improving the initial modeling provided
by experts. They are oriented to three directions:

 Supervised and unsupervised methods for estimating the
causal weights. The unsupervised procedures are based
on the Hebbian rule, whereas the supervised algorithms
are focused on prediction problems.

 Learning procedures for optimizing the system topology
without losing significant information. They are entirely
focused on solving prediction problems.

 Learning algorithms for improving the convergence on
sigmoid FCM without affecting the prediction capability
of the original FCM-based system.

These procedures require a low user intervention, since they
involve a few parameters which were extensively studied in the
original papers. In the next section we review the mathematical
formulation behind such learning algorithms.

Finally, the third group of functionalities is oriented to the
system exploitation and interpretation. For example:

 Classify new patterns. This function allows classifying a
new instance or simply simulating a state vector. It could
be performed by directly modifying the activation initial
values of input neurons. Moreover, this option provides a
diagram with the activation values of map neurons during
each step of the inference process.

 Prediction report. This function is only available if the
map has a decision concept. It computes several statistics
(e.g. accuracy, sensitivity, F-measure). In order to trigger
this command the expert must specify the path of the base
with the input instances to be evaluated.

 Convergence plotter. This option provides an interface
with the activation values of the decision concept during
the execution method, for each input instance. In order to
trigger this command the user must specify the path of the
base with the input instances to be evaluated.

 Execution parameters. By using this function the expert
can manage the map parameters such as the activation (or
normalization) function, which is used to keep the values
of concepts in the desired range, or the maximal number
of iterations allowed during the inference.

Similarly, the FCM TOOL provides more functionalities that
could not be detailed in this paper. For example, the expert could
also modify further graphical aspects when designing a new map
such as the color of concepts or the position of labels. Even it is
possible to execute the inference step in a mode where the size
of each concept is proportional to its activation. Of course, undo
and redo buttons were also implemented.

The framework also incorporates methods for automatically
building large FCM-based systems, and a standard procedure for
combining multiple FCM into a single one. However, we believe
that further work in this direction is required since regularly the
prediction capability of the final system decreases regarding the
global performance of individual sub-systems.

IV. LEARNING ALGORITHMS

In this section we briefly summarize the mathematical basis
of the learning methods implemented in the proposed tool. Such
algorithms are essentially optimization procedures that could be
addressed using exact or heuristic approaches. We prefer to use
approximate methods since population-based metaheuristics are
able of finding near-optimal solutions in a reasonable execution
time, ignoring analytical properties of the target function (e.g.
continuity, differentiability, convexity or gradient information)
which are regularly unknown in advanced. Moreover, learning
methods are quite complex, so the time required for computing
a reasonable solution could be excessive, even for modern CPU.
However, exact algorithms such as mathematical programming
techniques could be adopted as well.

A. Estimating the causal weights

The first learning problem is maybe the most important since
it defines the system behavior. It consists on estimating a set of
weights minimizing the differences between the expected output
and the predicted outcome. From the optimization point of view
each dimension of the solution comprises a causal value, that is,
the value between two concepts. As a result, the total number of
dimensions will be in correspondence with the number of causal
connections. The next equation describes the objective function
codified into the FCM TOOL for facing this problem, which was
proposed by Nápoles et al. [5]. It should be stated that we assume
a FCM-based system with single decision concept.

𝐹(𝑥, 𝜙) = ∑|𝐼(𝑥, 𝜙𝑖) − 𝑅(𝜙𝑖)|

|𝜙|

𝑖=1

 (2)

In this formulation 𝜙 represents the input set (training cases),
while 𝐼(.) is a binary function that calculates the map inference
for the 𝑖th instance, using the solution 𝑥 as causal weight matrix.
Besides, another binary function 𝑅(.) is used for computing the
map response for the current train-case 𝜙𝑖. Hence, the objective
function will achieve its optimal value when the FCM inference
process and historical data are identical.

For solving this continuous optimization task the framework
FCM TOOL uses 12 potent population-based optimizers, which
includes Particle Swarm Optimization [18], Real-Coded Genetic
Algorithms [19] and Differential Evolution [20]. Likewise, the
tool includes 4 Hebbian-type learning methods: Active Hebbian
Learning [21], Differential Hebbian Learning [22], Non-linear
Hebbian Learning [23] and the Balanced Differential Algorithm
proposed by Huerga [24]. We suggest using heuristic algorithms
when facing pattern classification problems, since in such cases
Hebbian-type methods report poor performance.

B. Optimizing the network topology

As mentioned, during the construction of a new FCM-based
system, experts determine map concepts and causal connections
among such entities. In this scenario is unlikely to find a “weak
concept”, that is to say, a graph node that can be surely removed
without affecting the system performance. However, sometimes
FCM-based systems are automatically computed from data and
therefore some attributes could be superfluous or contradictory,
negatively affecting the system performance.

Here the optimization problem consist on finding a minimal
subset of concepts (i.e. a minimal sub-system) having the same
performance regarding the original system, without affecting the
overall performance. Since we are mainly focused on maps with
prediction capabilities, the map performance could be measured
as the relative number of patterns recognized by the system (i.e.
the system accuracy). The following equation (3) formalizes the
objective function to be minimized during optimization phase,
where 𝜙 is the training set, 𝜓𝑌 is the number of non-relevant
concepts, regarding the total number of variables involved in the
modeling, whereas 0 < 𝜆 < 1 regulates the importance that the
expert confers to the number of non-relevant map concepts (i.e.
variables) with respect to the map quality.

𝐺(𝑦, 𝜙) = (1 − 𝜆) ∑|𝐼(𝑥, 𝜙𝑖) − 𝑅(𝜙𝑖)|

|𝜙|

𝑖=1

+ 𝜆|𝜓𝑌| (3)

The authors suggests that 𝜆 < 0.4 since the main idea of this
learning method is to estimate central concepts by reducing the
number of non-relevant nodes, but always preserving the ability
of predicting new patterns, and consequently the strength of the
original system [25]. Besides, if the induced classification error
is greater than a fixed threshold, then the objective function must
be penalized using a positive constant.

For solving this complex combinatorial task the framework
FCM TOOL uses 8 discrete methods, which includes a Binary-
Coded Genetic Algorithm [19], Ant Colony Optimizers [26] and
variants of Variable Mesh Optimization [27].

C. Improving the map convergence

Most learning methods for computing the causal weights do
not accurately consider stability issues when estimating the final
solution [3]. As a result, we obtain systems with high prediction
rate, but unable to converge to a fixed-point. On the other hand,
these methods assume that FCM are closed systems and they do
not consider external influences. As far as known, there exist no
learning algorithms for enhancing the system stability once the
causality is established. Based on these considerations, Nápoles
et al. [28] introduced a new learning algorithm which is oriented
to estimate the most adequate sigmoid function for each concept.
It simulates the outcome of an external stimulus over the neurons
with the hope of improving the convergence.

The following equation displays the objective function to be
minimized during the search progress. It attempts reducing the
system response variability, when activating the causal inference
rule. In the objective function, 𝐾 represents the available number
of training instances, 𝑀 denotes the number of neurons, and 𝑇 is
the maximal number of iterations. In this scheme a solution is
considered as no feasible if the accuracy is negatively affected,
which allows preserving the global accuracy.

𝐻(𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑀) = ∑ ∑ ∑ |𝐴𝑖(𝑘)
𝑡

− 𝐴𝑖(𝑘)
𝑡−1

|

𝑇

𝑡=2

𝑀

𝑖=1

𝐾

𝑘=1

 (4)

For solving this problem FCM TOOL uses 8 Particle Swarm
Optimizers which were conceived to deal with stagnation and
premature convergence states [29]. These metaheuristics allow
improving the search, hence computing more stable FCM-based
systems with high prediction capability.

V. EXPERIMENTS AND SIMULATIONS

In this section we illustrate some functionalities of the FCM
TOOL (mainly those related to learning algorithms) by using six
FCM taken from Nápoles et al. [30]. These systems describe the
resistance mechanism of the HIV-1 protease protein regarding
existing antiviral drugs. More precisely, the authors modeled the
protein as a FCM where each sequence position was taken as a
map neuron, whereas a decision concept for the resistance target
was also defined. The protease sequence is defined by 99 amino
acids, so it leads to a FCM with 99+1 concepts. But with the goal
of reducing the model complexity sequence sites associated with
drug resistance are only used [31]. In this topology neurons are
fully connected, where a causal relation between each sequence
position and the resistance neuron is established.

It is important to mention that each map denotes the protein
behavior for a specific drug: Indinavir (IDV), Lopinavir (LPV),
Nelfinavir (NFV), Ritonavir (RTV), Saquinavir (SQV) and also
Atazanavir (ATV). Moreover, each drug has associated a high-
quality filtered datasets consisting on reported mutations and
their resistance value [32]. The following figure displays the
configuration of the decision neuron (once the map design phase
is done) in the software where “0” represents susceptible classes,
whereas “1” denotes the resistant ones.

Fig. 7. Configuration of the decision space.

The following workflow shows the semantic of experiments
performed next. First, the maps are automatically created from
historical data, and afterward we use these data for computing
the causal weigh matrices. As a further learning phase, we adopt
a second learning method for optimizing the network topology,
and lastly the convergence is improved. Figures 9-11 summarize
the parameters used for each algorithm and how the FCM TOOL
should be configured at each case.

Fig. 8. Description of the methodology used during simulations.

Compute the
causal weights

Optimize the
topology

Improve the map
convergence

Step 1 Step 2 Step 3

Fig. 9a. Unsupervised learning algorithms based on the Hebb rule and

continuous optimizers for estimating the causal weight matrix.

Fig. 10a. Discrete optimizers used for finding the minimal subset of relevant

concepts that preserve the overall system modeling.

Fig. 11a. Particle Swarm optimizers for estimating the family of Sigmoid

functions that allow improving the map convergence.

Fig. 9b. Parameters configuration for the selected optimizer (Global-best

PSO) when computing the causal weight matrix.

Fig. 10b. Parameters configuration for the selected optimizer (Ant Colony

System) when optimizing the network topology.

Fig. 11b. Parameters configuration for the selected optimizer (Ant Colony

System) when improving the system convergence.

A. Results of the first learning algorithm

As mentioned, the estimation of a proper weight matrix for a
map implies to estimate at most 𝑛2 causal weights, being 𝑛 the
number of concepts involved in the modeling. In our study case
the maximal number of parameters to be estimated correspond
to ATV (i.e. 3481 causal values). The following figure portrays
the accuracy achieved for each map, once the learning process
is done. These values were averaged after 10 independent trials
since the learning algorithms implemented for tuning the causal
weights are stochastic process, so we could computed different
solutions in two independent executions.

Fig. 12. Accuracy achieved for each FCM once the weight adaptation stage is
completed, averaged after 10 independent trials.

It should be stated that the above accuracies are not a result
of this paper, however, assuredly they reflect the strength of the
implemented learning algorithm for tuning large FCM. Besides,
it becomes more relevant if we consider that the proposed tool
(which actually is the core of this paper) is completely focused
on pattern classification problems, were effectively recognizing
such patterns is a complex issue.

The following figure illustrates, as an example, the learning
progress for the inhibitor IDV where experts can inspect relevant
statistics (e.g. problem features, accuracy, stability status). They
are updated step-by-step, which allow visualizing the algorithm
progress in real-time. Moreover, we included a panel for plotting
the best evaluation computed at each step.

Fig. 13. Window summarizing relevant statistics related to the algorithm

progress, when computing the causal weight matrix.

B. Results of the second learning algorithm

As mentioned the protease protein is defined by 99 amino
acids, resulting in six FCM with at most 99+1 neurons. Although
the authors used attributes directly related with drug resistance,
some of these concepts could be non-relevant for the model and
could be removed in order to facilitate the knowledge discovery
process. Next figure shows, as an example, the progress of this
optimization procedure for the inhibitor IDV. This window also
includes numerous statistics such as the map norm (i.e. number
of neurons preserved by the method), the reduction ratio and the
ΔError (i.e. error induced when removing a subset of concepts,
in terms of accuracy). If this value is negative then the accuracy
can be improved, which means that removed nodes involve one
or multiple contradictory causal relations. More explicitly, in the
example 𝛥𝐸𝑟𝑟𝑜𝑟 = −0.02, when removing 7 specific nodes the
system is capable of recognizing more patterns (2% of the total
number of instances used for testing the model).

Fig. 14. Windows summarizing relevant statistics related to the algorithm

progress, when optimizing the network topology.

Next figure summarizes the number of map concepts at the
beginning (as suggested the feature selection) and after applying
the learning algorithm. Since the MAX-MIN Ant System [33] is
a stochastic method, we averaged 10 independent trials in order
to obtain a more realistic value. In short, the reader can observe
that this learning algorithm is capable of optimizing the network
topology, without significantly affecting the prediction ability of
the system (i.e. 𝛥𝐸𝑟𝑟𝑜𝑟 ≤ 001 for all drugs).

Fig. 15. Number of concepts at the beginning and averaged number of
concepts after 10 independent trials.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

ATV IDV LPV NFV RTV SQV

51
48 48

40
44

59

23.8

17.2 17

11.8
14.2 15

0

10

20

30

40

50

60

70

APV IDV SQV NFV RTV ATV

C. Results of the third learning algorithm

As a first analysis, the stability of the decision neuron for a
randomly selected mutation is measured. Figure 16, 17 and 18
show the activation value of the resistance over the time for two
scenarios: the solid line represents the FCM response without
any modification, whereas the dashed line represents the system
response using the sigmoid functions estimated by the learning
method. From these simulations we can conclude that our model
induces better stability. In this case, only the resistance node was
monitored, since the decision concept allows predicting whether
a new mutation will be susceptible or not.

From these results four scenarios may be formalized: (i) the
convergence on stable systems was improved, (ii) cyclic patterns
were removed, (iii) the variability response on chaotic systems
was reduced, although the system remains chaotic, and (iv) the
chaotic behavior was corrected, leading to a perfectly stable map
which comprises the most desirable outcome.

Fig. 16. Activation value of the resistance neuron for a) drug IDV b) drug
RTV where the solid line is the map response using the same function for all

neurons, and the dashed line represents the map output using the family of

functions estimated by the algorithm.

Fig. 17. Activation value of the resistance neuron for a) drug ATV b) drug

APV where the solid line is the map response using the same function for all

neurons, and the dashed line is the map output using the family of functions
estimated by the algorithm.

Fig. 18. Activation value of the resistance concept for a) drug SQV b) drug
NFV where the solid line is the map response using the same function for all

neurons, and the dashed line represents the output using the family of

functions estimated by the algorithm.

The reader may observe that the system response changes for
next drugs: IDV, RTV and ATV. In such cases the classification
rate does not suffer any change since the resistance for a drug is
measured in a range instead of using a single value. This range
is computed by adopting a pre-defined biological cut-off which
allows classifying a mutation in susceptible (0) or resistant (1).
However, we noticed that some FCM achieved better accuracy,
which is an unexpected positive result. For instance, let us study
the behavior of the mutation “FKLDVFMIIVVSVTVNML” for
the map IDV. This sequence has high level of resistance for the
drug IDV, which means that the higher the activation value of
the resistance concept, the better the accuracy for this instance.
However, after applying the learning algorithm (see Figure 16a)
the FCM computed higher resistance value.

VI. FINAL REMARKS

In recent years the FCM-based analysis has become a fruitful
research field. During the design phase of these systems experts
determine graph concepts and causal relations (i.e. the direction
and intensity) among such entities. Despite the clear advantages
of this method as a way for representing the experts’ knowledge,
learning algorithms are frequently required. This fact comprises
a serious problem: codifying these learning methods frequently
requires basic knowledge in computer sciences or mathematics,
therefore reducing the applicability of FCM on solving real-life
problems. Additionally, existing computational frameworks are
mainly oriented to conceptualization problems.

This paper discussed some relevant features of FCM TOOL,
which is a computational framework for designing, learning and
simulating FCM-based systems. This experimentation tool has
several functionalities that allow to experts designing a system
by only using the Graphical User Interface. Moreover, the FCM
TOOL incorporates numerous learning algorithms which belong
to the novel trends in learning procedures for FCM (i.e. learning
methods for FCM-based prediction systems). These algorithms
include models for computing a causal weight matrix with high
prediction ability, models for optimizing the network topology
without affecting the system accuracy and models for improving
the global convergence on sigmoid FCM.

With the purpose of reducing the computational complexity
when solving an optimization problem (e.g. the minimal subset
of relevant concepts), we used population-based search methods
since they are able of estimating good solutions in a reasonable
execution time. However, we could adopt exact algorithms (e.g.
branch and bounds) as well. That is why we also included in this
paper the mathematical formulation of some learning procedures
implemented in the framework. As well, we illustrate how these
learning algorithms work, by using a complex classification task
concerning the HIV resistance to existing drugs.

From the software engineering perspective, the authors were
focused on designing an intuitive computational tool that could
be expanded to other applications domains. However, it should
be stated that most functionalities on the tool were developed for
models involving a single decision concept. Actually, the feature
work will focused on extending the tool functionalities to more
generic pattern classification problems. Since it is really easy to
include new methods and algorithms to the software, our final
goal is to freely distribute the source code of FCM TOOL among
researches of the FCM community.

0

0.2

0.4

0.6

0.8

1

1 8
15 22 29 36 43 50 57 64 71 78 85 92

0

0.2

0.4

0.6

0.8

1

1 8
15 22 29 36 43 50 57 64 71 78 85 92

0

0.2

0.4

0.6

0.8

1

1 8
15 22 29 36 43 50 57 64 71 78 85 92

0

0.2

0.4

0.6

0.8

1

1 8

15 22 29 36 43 50 57 64 71 78 85 92

0

0.2

0.4

0.6

0.8

1

1 8
15 22 29 36 43 50 57 64 71 78 85 92

0

0.2

0.4

0.6

0.8

1

1 9

17 25 33 41 49 57 65 73 81 89 97

REFERENCES

[1] B. Kosko, “Fuzzy Cognitive Maps,” Int. J. of Man-Machine Studies, vol.
24, pp. 65–75, 1986.

[2] B. Kosko, “Fuzzy Engineering,” Prentice-Hall, New York, 1997.

[3] G. Nápoles, R. Bello and K. Vanhoof, “Learning Stability Features on
Sigmoid Fuzzy Cognitive Maps through a Swarm Intelligence Approach,”
Lecture Notes in Computer Science, vol. 8258, pp. 65–75, 1986.

[4] M. León, G. Nápoles, L. Mkrtchyan , B. Depaire, K. Vanhoof, “Tackling
Travel Behaviour: An approach based on Fuzzy Cognitive Maps,” Int. J.
of Computational Intelligence Systems, vol. 6, 1012–1039, 2013.

[5] G. Nápoles, I. Grau, M. León and R. Grau, “Modelling, Aggregation and
Simulation of a Dynamic Biological System through Fuzzy Cognitive
Maps,” Lecture Notes in Computer Science, vol. 7630, pp. 188–199, 2013

[6] E.I. Papageorgiou and J.L. Salmeron, “A Review of Fuzzy Cognitive Map
research at the last decade,” IEEE Trans. on Fuzzy Systems, vol. 21, pp.
66–79, 2013.

[7] G.A. Papakostas, Y.S. Boutalis, D.E. Koulouriotis, B.G. Mertzios, “Fuzzy
cognitive maps for pattern recognition applications,” Int. J. of Pattern
Recognition and Artificial Intelligence, vol. 22, pp. 1461–1468, 2008.

[8] Mohr, S.: Software Design for a Fuzzy Cognitive Map Modeling Tool.
Tensselaer Polytechnic Institute, 1997.

[9] Contreras, J.: “Aplicación de Mapas Cognitivos Difusos Dinámicos a
tareas de supervisión y control,” Universidad de los Andes, 2005.

[10] M. León, G. Nápoles, C. Rodriguez, M.M. Garcia, R. Bello and K.
Vanhoof, “A Fuzzy Cognitive Maps Modeling, Learning and Simulation
Framework for Studying Complex System,” Lecture Notes in Computer
Science, vol. 6687, pp. 243–256, 2011.

[11] B. Kosko, “Hidden patterns in combined and adaptive knowledge
networks,” Int. J. of Approximate Reasoning, vol. 2, pp. 377–393, 1988.

[12] S. Bueno and J.L. Salmeron, “Benchmarking main activation functions in
Fuzzy cognitive maps,” Expert Systems with Applications, vol. 36, pp.
5221–5229, 2009.

[13] A.K. Tsadiras, “Comparing the inference capabilities of binary, trivalent
and sigmoid fuzzy cognitive maps,” Information Science, vol. 178, pp.
3880–3894, 2008.

[14] M. León, G. Nápoles, M.M. Garcia, R. Bello and K. Vanhoof, “Two Steps
Individuals Travel Behavior Modeling through Fuzzy Cognitive Maps
Pre-definition and Learning.,” Lecture Notes in Computer Science, vol.
7095, pp. 82–94, 2011.

[15] E.I. Papageorgiou and A. Kannappan, “Fuzzy cognitive map ensemble
learning paradigm to solve classification problems: Application to autism
identification,” Applied Soft Computing, vol. 12, pp. 3798–3809, 2012.

[16] I. Grau, G. Nápoles, M.M. Garcia, R. Bello, “Predicting HIV-1 Protease
and Reverse Transcriptase Drug Resistance using Fuzzy Cognitive Maps”
Lecture Notes in Computer Science, vol. 8259, pp. 190–197, 2013.

[17] E.I. Papageorgiou and W. Froelich, “Multi-step prediction of pulmonary
infection with the use of evolutionary fuzzy cognitive maps,”
Neurocomputing, vol. 92, pp. 28–35, 2012.

[18] R. Poli, J. Kennedy and T. Blackwell, “Particle Swarm Optimization – An
overview,” IEEE Trans. on Evol. Computation, vol. 1, pp. 37–57, 2007.

[19] Z. Michalewicz, “Genetic algorithms + data structures = evolution
programs”, Springer-Verlag, 1992.

[20] R. Storn and K. Price, "Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces," Journal of
Global Optimization, vol. 11, pp. 341-359, 1997

[21] E.I. Papageorgiou, C.D. Stylios, P.P. Groumpos, “Active hebbian learning
algorithm to train fuzzy cognitive maps,” Int. Journal of Approximate
Reasoning, vol. 37, pp. 219–249, 2004.

[22] J. A. Dickerson, B. Kosko, “Virtual worlds as fuzzy cognitive maps,”
Presence, vol. 3, pp. 173–189, 1994.

[23] E.I. Papageorgiou, C.D. Stylios, P.P. Groumpos, “Fuzzy cognitive map
learning based on nonlinear hebbian rule,” Australian Conference on
Artificial Intelligence, pp. 256–268, 2003.

[24] A. Huerga, “A balanced differential learning algorithm in fuzzy cognitive
maps,” International workshop on qualitative reasoning, 2002.

[25] G. Nápoles, I. Grau, R. Pérez-García, R. Bello, “Learning of Fuzzy
Cognitive Maps for simulation and knowledge discovery,” Studies on
Knowledge Discovery, Knowledge Management and Decision Making,
R. Bello, ed., Atlantis Press, Paris, pp. 27–36, 2013.

[26] M. Dorigo, E. Bonabeau, G. Theraulaz: “Ant algorithms and stigmergy.
Future Generation Computer Systems,” vol. 16, pp. 851–871, 2000.

[27] R. Bello, A. Puris, Y. Gomez, “Feature Selection through Dynamic Mesh
Optimization,” Lecture Notes in Computer Science, vol. 5197, pp. 348–
355, 2008.

[28] G. Nápoles, R. Bello and K. Vanhoof, “How to improve the convergence
on Sigmoid Fuzzy Cognitive Maps?” Intelligent Data Analysis, in press.

[29] G. Nápoles, I. Grau, M. Bello, R. Bello, “Towards swarm diversity:
Random Sampling in Variable Neighborhoods procedure using a Lévy
distribution,” Computación y Sistemas, vol. 18, pp. 79–95, 2014.

[30] G. Nápoles, I. Grau, R. Bello, R. Grau, “Two-steps learning of Fuzzy
Cognitive Maps for prediction and knowledge discovery on the HIV–1
drug resistance, Exp. Sys. with App.,” vol. 41, pp. 821–830, 2014.

[31] V.A. Johnson, V. Calvez, H. Günthard, “Update of the Drug Resistance
Mutations in HIV-1,” Topics in HIV Medicine, vol. 21, pp.6–14, 2013.

[32] S.Y. Rhee, et al. “Human immunodeciency virus reverse transcriptase and
protease sequence database,” Nucleic Acids Research, vol. 31, pp. 298–
303, 2003.

[33] T. Stützle, H. H. Hoos, “MAX–MIN ant system,” Future Generation
Computer System, vol. 16, pp. 889–914, 2000.

