
Journal of Artificial Intelligence Research 56 (2016) 403–428 Submitted 11/15; published 07/16

On the Satisfiability Problem for SPARQL Patterns

Xiaowang Zhang xiaowangzhang@tju.edu.cn
School of Computer Science and Technology,
Tianjin University, China
Tianjin Key Laboratory of
Cognitive Computing and Application,
Tianjin, China

Jan Van den Bussche jan.vandenbussche@uhasselt.be
Hasselt University, Belgium

François Picalausa fpicalausa@gmail.com

Abstract

The satisfiability problem for SPARQL 1.0 patterns is undecidable in general, since the
relational algebra can be emulated using such patterns. The goal of this paper is to delineate
the boundary of decidability of satisfiability in terms of the constraints allowed in filter
conditions. The classes of constraints considered are bound-constraints, negated bound-
constraints, equalities, nonequalities, constant-equalities, and constant-nonequalities. The
main result of the paper can be summarized by saying that, as soon as inconsistent filter
conditions can be formed, satisfiability is undecidable. The key insight in each case is to find
a way to emulate the set difference operation. Undecidability can then be obtained from
a known undecidability result for the algebra of binary relations with union, composition,
and set difference. When no inconsistent filter conditions can be formed, satisfiability is
decidable by syntactic checks on bound variables and on the use of literals. Although the
problem is shown to be NP-complete, it is experimentally shown that the checks can be
implemented efficiently in practice. The paper also points out that satisfiability for the
so-called ‘well-designed’ patterns can be decided by a check on bound variables and a check
for inconsistent filter conditions.

1. Introduction

The Resource Description Framework is a popular data model for information on the Web.
RDF represents information in the form of directed, labeled graphs. The standard query
language for RDF data is SPARQL (Harris & Seaborne, 2013). The current version 1.1 of
SPARQL extends SPARQL 1.0 (Prud’hommeaux & Seaborne, 2008) with important fea-
tures such as aggregation and regular path expressions (Arenas, Conca, & Pérez, 2012).
Other features, such as negation and subqueries, have also been added, but mainly for effi-
ciency reasons, as they were already expressible, in a more involved manner, in version 1.0.
Hence, it is still relevant to study the fundamental properties of SPARQL 1.0. In this paper,
we follow the elegant formalization of SPARQL 1.0 by Arenas, Gutierrez, & Pérez (2009)
which is eminently suited for theoretical investigations.

The fundamental problem that we investigate is that of satisfiability of SPARQL pat-
terns. A pattern is called satisfiable if there exists an RDF graph under which the pattern
evaluates to a nonempty set of mappings. For any query language, satisfiability is clearly one

c©2016 AI Access Foundation. All rights reserved.

Zhang, Van den Bussche, & Picalausa

of the essential properties one needs to understand if one wants to do automated reasoning.
Since SPARQL patterns can emulate relational algebra expressions (Angles & Gutierrez,
2008; Polleres, 2007; Arenas & Pérez, 2011), and satisfiability for relational algebra is un-
decidable (Abiteboul, Hull, & Vianu, 1995), the general satisfiability problem for SPARQL
is undecidable as well.

Whether or not a pattern is satisfiable depends mainly on the filter operations appearing
in the pattern; without filter operations, a pattern is always satisfiable except for trivial cases
where a literal occurs in the wrong place. The goal of this paper is to precisely delineate
the decidability of SPARQL fragments that are defined in terms of the constraints that can
be used as filter conditions. The six basic classes of constraints we consider are bound-
constraints; equalities; constant-equalities; and their negations. In this way, fragments of
SPARQL can be constructed by specifying which kinds of constraints are allowed as filter
conditions. For example, in the fragment SPARQL(bound, 6=, 6=c), filter conditions can only
be bound constraints, nonequalities, and constant-nonequalities.

Our main result states that the only fragments for which satisfiability is decidable are
the two fragments SPARQL(bound,=, 6=c) and SPARQL(bound, 6=, 6=c) and their subfrag-
ments. Consequently, as soon as either negated bound-constraints, or constant-equalities, or
combinations of equalities and nonequalities are allowed, the satisfiability problem becomes
undecidable. Each undecidable case is established by showing how the set difference oper-
ation can be emulated. This was already known using negated bound-constraints (Angles
& Gutierrez, 2008; Arenas & Pérez, 2011); so we show it is also possible using constant-
equalities, and using combinations of equalities and nonequalities, but in no other way.
Undecidability can then be obtained from a known undecidability result for the algebra
of binary relations with union, composition, and set difference (Tan, Van den Bussche, &
Zhang, 2014).

In the decidable cases, satisfiability can be decided by syntactic checks on bound vari-
ables and the use of literals. Although the problem is shown to be NP-complete, it is
experimentally shown that the checks can be implemented efficiently in practice.

At the end of the paper we look at a well-behaved class of patterns known as the
‘well-designed’ patterns (Pérez et al., 2009). We observe that satisfiability of well-designed
patterns can be decided by combining the check on bound variables with a check for incon-
sistent filter conditions.

This paper is further organized as follows. In the next section, we introduce syntax
and semantics of SPARQL patterns and introduce the different fragments under considera-
tion. Section 3 introduces the satisfiability problem and shows satisfiability checking for the
fragments SPARQL(bound,=, 6=c) and SPARQL(bound, 6=, 6=c). Section 4 shows undecid-
ability for the fragments SPARQL(¬bound), SPARQL(=c), and SPARQL(=, 6=). Section 5
considers well-designed patterns.

Section 6 reports on experiments that test our decision methods in practice. In Section 7
we briefly discuss how our results extend to the new operators that have been added to
SPARQL 1.1. We conclude in Section 8.

404

Satisfiability Problem for SPARQL

2. SPARQL and Fragments

In this section we recall the syntax and semantics of SPARQL patterns, closely following the
core SPARQL formalization given by Arenas, Gutierrez, & Pérez (2009).1 The semantics
we use is set-based, whereas the semantics of real SPARQL is bag-based. However, for
satisfiability (the main topic of this paper), it makes no difference whether we use a set or
bag semantics (Schmidt, Meier, & Lausen, 2010, Lemma 1).

In this section we will also define the language fragments defined in terms of allowed
filter conditions, which will form the object of this paper.

2.1 RDF Graphs

Let I, B, and L be infinite sets of IRIs, blank nodes and literals, respectively. These three
sets are pairwise disjoint. We denote the union I ∪B ∪ L by U , and elements of I ∪ L will
be referred to as constants. Note that blank nodes are not constants.

A triple (s, p, o) ∈ (I ∪B)× I ×U is called an RDF triple. An RDF graph is a finite set
of RDF triples.

2.2 Syntax of SPARQL Patterns

Assume furthermore an infinite set V of variables, disjoint from U . The convention in
SPARQL is that variables are written beginning with a question mark, to distinguish them
from constants. We will follow this convention in this paper.

SPARQL patterns are inductively defined as follows.

• Any triple from (I∪L∪V)× (I∪V)× (I∪L∪V) is a pattern (called a triple pattern).

• If P1 and P2 are patterns, then so are the following:

– P1 UNION P2;

– P1 AND P2;

– P1 OPT P2.

• If P is a pattern and C is a constraint (defined next), then P FILTERC is a pattern;
we call C the filter condition.

Here, a constraint can have one of the six following forms:

1. bound-constraint: bound(?x)

2. negated bound-constraint: ¬bound(?x)

3. equality: ?x = ?y

4. nonequality: ?x 6= ?y with ?x and ?y distinct variables

5. constant-equality: ?x = c with c a constant

6. constant-nonequality: ?x 6= c

1. Arenas, Pérez, and Guttierez (2009) discuss minor deviations between the formalization and real
SPARQL, and why these differences are inessential for the purpose of formal investigation.

405

Zhang, Van den Bussche, & Picalausa

We do not need to consider conjunctions and disjunctions in filter conditions, since
conjunctions can be expressed by repeated application of filter, and disjunctions can be
expressed using UNION. Hence, by going to disjunctive normal form, any predicate built
using negation, conjunction, and disjunction is indirectly supported by our language.

Moreover, real SPARQL also allows blank nodes in triple patterns. This feature has been
omitted from the formalization because blank nodes in triple patterns can be equivalently
replaced by variables.

2.3 Semantics of SPARQL Patterns

The semantics of patterns is defined in terms of sets of so-called solution mappings, here-
inafter simply called mappings. A solution mapping is a total function µ : S → U on some
finite set S of variables. We denote the domain S of µ by dom(µ).

We make use of the following convention.

Convention. For any mapping µ and any constant c ∈ I ∪ L, we agree that µ(c) equals c
itself.

In other words, mappings are by default extended to constants according to the identity
mapping.

Now given a graph G and a pattern P , we define the semantics of P on G, denoted by
JP KG, as a set of mappings, in the following manner.

• If P is a triple pattern (u, v, w), then

JP KG := {µ : {u, v, w} ∩ V → U | (µ(u), µ(v), µ(w)) ∈ G}.

This definition relies on Convention 2.3 formulated above.

• If P is of the form P1 UNION P2, then

JP KG := JP1KG ∪ JP2KG.

• If P is of the form P1 AND P2, then

JP KG := JP1KG on JP2KG,

where, for any two sets of mappings Ω1 and Ω2, we define

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈ Ω2 and µ1 ∼ µ2}.

Here, two mappings µ1 and µ2 are called compatible, denoted by µ1 ∼ µ2, if they agree
on the intersection of their domains, i.e., if for every variable ?x ∈ dom(µ1)∩dom(µ2),
we have µ1(?x) = µ2(?x). Note that when µ1 and µ2 are compatible, their union µ1∪µ2

is a well-defined mapping; this property is used in the formal definition above.

• If P is of the form P1 OPT P2, then

JP KG := (JP1KG on JP2KG) ∪ (JP1KG r JP2KG),

where, for any two sets of mappings Ω1 and Ω2, we define

Ω1 r Ω2 = {µ1 ∈ Ω1 | ¬∃µ2 ∈ Ω2 : µ1 ∼ µ2}.

406

Satisfiability Problem for SPARQL

• Finally, if P is of the form P1 FILTER C, then

JP KG := {µ ∈ JP1KG | µ |= C}

where the satisfaction of a constraint C by a mapping µ, denoted by µ |= C, is defined
as follows:

1. µ |= bound(?x) if ?x ∈ dom(µ);

2. µ |= ¬bound(?x) if ?x /∈ dom(µ);

3. µ |= ?x = ?y if ?x, ?y ∈ dom(µ) and µ(?x) = µ(?y);

4. µ |= ?x 6= ?y if ?x, ?y ∈ dom(µ) and µ(?x) 6= µ(?y);

5. µ |= ?x = c if ?x ∈ dom(µ) and µ(?x) = c;

6. µ |= ?x 6= c if ?x ∈ dom(µ) and µ(?x) 6= c.

Note that µ |= ?x 6= ?y is not the same as µ 6|= ?x = ?y, and similarly for µ |= ?x 6= c.
This is in line with the three-valued logic semantics for filter conditions used in the official
semantics (Arenas et al., 2009). For example, if ?x /∈ dom(µ), then in three-valued logic
?x = c evaluates to error under µ; consequently, also ¬?x = c evaluates to error under µ.
Accordingly, in the semantics above, we have both µ 6|= ?x = c and µ 6|= ?x 6= c.

2.4 SPARQL Fragments

We can form fragments of SPARQL by specifying which of the six classes of constraints are
allowed as filter conditions. We denote the class of bound-constraints by ‘bound’, negated
bound-constraints by ‘¬bound’, equalities by ‘=’, nonequalities by ‘6=’, constant-equalities
by ‘=c’, and constant-nonequalities by ‘6=c’. Then for any subset F of {bound,¬bound,=
, 6=,=c, 6=c} we can form the fragment SPARQL(F). For example, in SPARQL(bound,=,
6=c), filter conditions can only be bound constraints, equalities, and constant-nonequalities.

3. Satisfiability: Decidable Fragments

A pattern P is called satisfiable if there exists a graph G such that JP KG is nonempty.
In general, checking satisfiability is a very complicated, indeed undecidable, problem. But
for the two fragments SPARQL(bound,=, 6=c) and SPARQL(bound, 6=, 6=c), it will turn out
that there are essentially only two possible reasons for unsatisfiability.

The first possible reason is that the pattern specifies a literal value in the first position
of some RDF triple, whereas RDF triples can only have literals in the third position. For
example, using the literal 42, the triple pattern (42, ?x, ?y) is unsatisfiable. Note that literals
in the middle position of a triple pattern are already disallowed by the definition of triple
pattern, so we only need to worry about the first position.

This discrepancy between triple patterns and RDF triples is easy to sidestep, however.
In the Appendix we show how, without loss of generality, we may assume from now on that
patterns do not contain any triple pattern (u, v, w) where u is a literal.

The second and main possible reason for unsatisfiability is that filter conditions require
variables to be bound together in a way that cannot be satisfied by the subpattern to which

407

Zhang, Van den Bussche, & Picalausa

the filter applies. For example, the pattern

((?x, a, ?y) UNION (?x, b, ?z)) FILTER (bound(?y) ∧ bound(?z))

is unsatisfiable. Note that bound constraints are not strictly necessary to illustrate this
phenomenon: if in the above example we replace the filter condition by ?y = ?z the resulting
pattern is still unsatisfiable.

We next prove formally that satisfiability for patterns in SPARQL(bound,=, 6=c) and
SPARQL(bound, 6=, 6=c) is effectively decidable, by catching the reason for unsatisfiability
described above. Note also that the two fragments can not be combined, since satisfiability
for SPARQL(=, 6=) is undecidable as we will see in the next Section.

3.1 Checking Bound Variables

To perform bound checks on variables, we associate to every pattern P a set Γ(P) of schemes,
where a scheme is simply a set of variables, in the following way.2

• If P is a triple pattern (u, v, w), then Γ(P) := {{u, v, w} ∩ V }.

• Γ(P1 UNION P2) := Γ(P1) ∪ Γ(P2).

• Γ(P1 AND P2) := {S1 ∪ S2 | S1 ∈ Γ(P1) and S2 ∈ Γ(P2)}.

• Γ(P1 OPT P2) := Γ(P1 AND P2) ∪ Γ(P1).

• Γ(P1 FILTER C) := {S ∈ Γ(P1) | S ` C}, where S ` C is defined as follows:

– If C is of the form bound(?x) or ?x = c or ?x 6= c, then S ` C if ?x ∈ S;

– If C is of the form ?x = ?y or ?x 6= ?y, then S ` C if ?x, ?y ∈ S;

– S ` ¬bound(?x) if ?x /∈ S.

Example 1. Consider the pattern

P = (?x, p, ?y) OPT ((?x, q, ?z) UNION (?x, r, ?u)).

For the subpattern P1 = (?x, q, ?z) UNION (?x, r, ?u) we have Γ(P1) = {{?x, ?z}, {?x, ?u}}.
Hence, Γ((?x, p, ?y) AND P1) = {{?x, ?y, ?z}, {?x, ?y, ?u}}. We conclude that Γ(P) =
{{?x, ?y}, {?x, ?y, ?z}, {?x, ?y, ?u}}.
Example 2. For another example, consider the pattern

P = ((?x, p, ?y) OPT ((?x, q, ?z) FILTER ?y = ?z)) FILTER ?x 6= c.

We have Γ(?x, q, ?z) = {{?x, ?z}}. Note that {?x, ?z} 6` ?y = ?z, because ?y /∈ {?x, ?z}.
Hence, for the subpattern P1 = (?x, q, ?z) FILTER ?y = ?z we have Γ(P1) = ∅. For the
subpattern P2 = (?x, p, ?y) OPT P1 we then have Γ(P2) = Γ(?x, p, ?y) = {{?x, ?y}}. Since
{?x, ?y} ` ?x 6= c, we conclude that Γ(p) = {{?x, ?y}}.

2. We define Γ(P) for general patterns, not only for those belonging to the fragments considered in this
Section, because we will make another use of Γ(P) in Section 5.

408

Satisfiability Problem for SPARQL

We now establish the main result of this Section.

Theorem 3. Let P be a SPARQL(bound,=, 6=c) or SPARQL(bound, 6=, 6=c) pattern. Then
P is satisfiable if and only if Γ(P) is nonempty.

The only-if direction of Theorem 3 is the easy direction and is given by the following
Lemma 4. Note that this lemma holds for general patterns; it can be straightforwardly
proven by induction on the structure of P .

Lemma 4. Let P be a pattern and G a graph. If µ ∈ JP KG then there exists S ∈ Γ(P) such
that dom(µ) = S.

The if direction of Theorem 3 for SPARQL(bound,=, 6=c) is given by the following
Lemma 5.

In the following we use var(P) to denote the set of all variables occurring in a pattern
P .3

Lemma 5. Let P be a pattern in SPARQL(bound,=, 6=c). Let c ∈ I be a constant that does
not appear in any constant-nonequality filter condition in P . With the constant mapping
µ : var(P)→ {c}, let G be the RDF graph consisting of all possible triples (µ(u), µ(v), µ(w))
where (u, v, w) is a triple pattern in P .

Then for every S ∈ Γ(P) there exists S′ ⊇ S such that µ|S′ belongs to JP KG.

Proof. By induction on the structure of P . If P is a triple pattern (u, v, w) then S =
{u, v, w} ∩ V . Since (µ|S(u), µ|S(v), µ|S(w)) = (µ(u), µ(v), µ(w)) ∈ G, we have µ|S ∈ JP KG
and we can take S′ = S.

If P is of the form P1 UNION P2, then the claim follows readily by induction.
If P is of the form P1 AND P2, then we have S = S1 ∪ S2 with Si ∈ Γ(Pi) for i = 1, 2.

By induction, there exists S′i ⊇ Si such that µ|S′
i
∈ JPiKG. Clearly µ|S′

1
∼ µ|S′

2
since they

are restrictions of the same mapping. Hence µ|S′
1
∪ µ|S′

2
= µS′

1∪S′
2
∈ JP KG and we can take

S′ = S′1 ∪ S′2.
If P is of the form P1 OPT P2, then there are two possibilities.

• If S ∈ Γ(P1 AND P2) then we can reason as in the previous case.

• If S ∈ Γ(P1) then by induction there exists S′1 ⊇ S so that µ|S′
1
∈ JP1KG. Now there

are two further possibilities:

– If Γ(P2) is nonempty then by induction there exists some S′2 so that µ|S′
2
∈ JP2KG.

We can now reason again as in the case P1 AND P2.

– Otherwise, by Lemma 4 we know that JP2KG is empty. But then JP KG = JP1KG
and we can take S′ = S′1.

Finally, if P is of the form P1 FILTER C, then we know that S ∈ Γ(P1) and S ` C.
By induction, there exists S′ ⊇ S such that µ|S′ ∈ JP1KG. We show that µ|S′ ∈ JP KG by
showing that µ|S′ |= C. There are three possibilities for C.

3. We also use the following standard notion of restriction of a mapping. If f : X → Y is a total function
and Z ⊆ X, then the restriction f |Z of f to Z is the total function from Z to Y defined by f |Z(z) = f(z)
for every z ∈ Z. That is, f |Z is the same as f but is only defined on the subdomain Z.

409

Zhang, Van den Bussche, & Picalausa

• If C is of the form bound(?x), then we know by S ` C that ?x ∈ S′. Hence µ|S′ |= C.

• If C is of the form ?x = ?y, then we again know ?x, ?y ∈ S′, and certainly µ|S′ |= C
since µ maps everything to c.

• If C is of the form ?x 6= d, then we have d 6= c by the choice of c, so µ|S′ |= C since
µ(?x) = c.

Example 6. To illustrate the above Lemma, consider the pattern

P = ((?x, p, ?y) FILTER ?x 6= a) OPT ((?x, q, ?z) UNION (?x, r, ?u))

which is a variant of the pattern from Example 1. As in that example, we have Γ(P) =
{{?x, ?y}, {?x, ?y, ?z}, {?x, ?y, ?u}}. In this case, the mapping µ from the Lemma maps ?x,
?y, ?z and ?u to c. The graph G from the Lemma equals {(c, p, c), (c, q, c), (c, r, c)}, and
JP KG = {µ1, µ2} where µ1 = µ|{?x,?y,?z} and µ2 = µ|{?x,?y,?u}. Now consider S = {?x, ?y} ∈
Γ(P). Then for S′ = {?x, ?y, ?z} we indeed have S′ ⊇ S and µ|S′ = µ1 ∈ JP KG. Note that
in this example we could also have chosen {?x, ?y, ?u} for S′.

The counterpart to Lemma 5 for the fragment SPARQL(bound, 6=, 6=c) is given by the
following Lemma, thus settling Theorem 3 for that fragment.

Lemma 7. Let P be a pattern in SPARQL(bound, 6=, 6=c). Let W be the set of all constants
appearing in a constant-nonequality filter condition in P . Let Z ⊆ I be a finite set of
constants of the same cardinality as var(P), and disjoint from W . With µ : var(P) → Z
an arbitrary but fixed injective mapping, let G be the RDF graph consisting of all possible
triples (µ(u), µ(v), µ(w)) where (u, v, w) is a triple pattern in P .

Then for every S ∈ Γ(P) there exists S′ ⊇ S such that µ|S′ belongs to JP KG.

Proof. We prove for every subpattern Q of P that for every S ∈ Γ(Q) there exists S′ ⊇ S
such that µ|S′ ∈ JQKG. The proof is by induction on the height of Q. The reasoning is
largely the same as in the proof of Lemma 5. The only difference is in the case where Q is
of the form Q1 FILTER C. In showing that µS′ |= C, we now argue as follows for the last
two cases:

• If C is of the form ?x 6= ?y, then µ|S′ |= C since µ is injective.

• If C is of the form ?x 6= c, then µ|S′ |= C since Z and W are disjoint.

3.2 Computational Complexity

In this section we show that satisfiability for the decidable fragments is NP-complete. Note
that this does not immediately follow from the NP-completeness of SAT, since boolean
formulas are not part of the syntax of the decidable fragments.

Theorem 3 implies the following complexity upper bound:

Corollary 8. The satisfiability problem for SPARQL(bound,=, 6=c) patterns, as well as for
SPARQL(bound, 6=, 6=c) patterns, belongs to the complexity class NP.

410

Satisfiability Problem for SPARQL

Proof. By Theorem 3, a SPARQL(bound,=, 6=c) or SPARQL(bound, 6=, 6=c) pattern P is
satisfiable if and only if there exists a scheme in Γ(P). Following the definition of Γ(P),
it is clear that there is a polynomial-time nondeterministic algorithm such that, on input
P , each accepting possible run computes a scheme in Γ(P), and such that every scheme in
Γ(P) is computed by some accepting possible run.

Specifically, the algorithm works bottom-up on the syntax tree of P and computes a
scheme for every subpattern. At every leaf Q, corresponding to a triple pattern in P , we
compute the unique scheme in Γ(Q). At every UNION operator we nondeterministically
choose between continuing with the scheme from the left or from right child. At every
AND operator we continue with the union of the left and right child schemes. At every
OPT operator, we nondeterministically choose between treating it as an AND, or simply
continuing with the scheme from the left. At every FILTER operation with constraint C
we check for the child scheme S whether S ` C. If the check succeeds, we continue with
S; if the check fails, the run is rejected. When the computation has reached the root of
the syntax tree and we can compute a scheme for the root, the run is accepting and the
computed scheme is the output.

Remark 9. In our presentation of the syntax of SPARQL, we do not consider conjunction
and disjunction in filter conditions. Extending the syntax to allow this would not ruin the
NP upper bound. Allowing conjunctions and disjunctions, we would need to extend the
definition of Γ(P) in the obvious manner, defining S ` C1 ∨ C2 if S ` C1 or S ` C2, and
similarly for the definition of S ` C1 ∧ C2. The results would then carry through.

We next show that satisfiability is actually NP-hard, even for patterns not using any
OPT operators and using only bound constraints in filter conditions.

Proposition 10. The satisfiability problem for OPT-free patterns in SPARQL(bound) is
NP-hard.

Proof. We define the problem Nested Set Cover as follows:

Input: A finite set T and a finite set E of sets of subsets of T . (So, every element of E is
a set of subsets of T .)

Decide: Whether for each element e of E we can choose a subset Se in e, so that
⋃
e∈E Se =

T .

We will show later that the above problem is NP-hard; let us first describe how it can be
reduced in polynomial time to the satisfiability problem at hand. Consider an input (T,E)
for Nested Set Cover. Without loss of generality we may assume that T is a set of variables
{?x1, ?x2, . . . , ?xn}. Fix some constant c. For any subset S of T , we can make a pattern PS
by taking the AND of all (x, c, c) for x ∈ S. Now for a set e of subsets of T , we can form
the pattern Pe by taking the UNION of all PS for S ∈ e. Finally, we form the pattern PE
by taking the AND of all Pe for e ∈ E.

Now consider the following pattern which we denote by P(T,E):

PE FILTER bound(?x1) FILTER bound(?x2) . . . FILTER bound(?xn)

411

Zhang, Van den Bussche, & Picalausa

We claim that P(T,E) is satisfiable if and only if (T,E) is a yes-instance for Nested Set
Cover. To see the only-if direction, let G be a graph such that JP(T,E)KG is nonempty, i.e.,
has as an element some solution mapping µ. Then in particular µ ∈ JPEKG. Hence, for every
e ∈ E there exists µe ∈ JPeKG such that µ =

⋃
e∈E µe. Since Pe is the UNION of all PS for

S ∈ e, for each e ∈ E there exists Se ∈ e such that µe ∈ JPSeKG. Since PSe is the AND of all
(x, c, c) for x ∈ Se, it follows that dom(µe) = Se. Hence, since dom(µ) =

⋃
e∈E dom(µe), we

have dom(µ) =
⋃
e∈E Se. However, by the bound constraints in the filters applied in P(T,E),

we also have dom(µ) = {?x1, . . . , ?xn} = T . We conclude that T =
⋃
e∈E Se as desired.

For the if-direction, assume that for each e ∈ E there exists Se ∈ e such that T =⋃
e∈E Se. Consider the singleton graph G = {(c, c, c)}. For any subset S of T , let µS : S →
{c} be the constant solution mapping with domain S. Clearly, µS ∈ JPSKG, so µSe ∈ JPeKG
for every e ∈ E. All the µS map to the same constant, so they are all compatible. Hence,
for µ =

⋃
e∈E µSe , we have µ ∈ JPEKG. Since dom(µ) =

⋃
e∈E dom(µSe) =

⋃
e∈E Se = T =

{?x1, . . . , ?xn}, the mapping µ satisfies every constraint bound(?xi) for i = 1, . . . , n. We
conclude that µ ∈ JP(E,T)KG as desired.

It remains to show that Nested Set Cover is NP-hard. Thereto we reduce the classical
CNF-SAT problem. Assume given a boolean formula φ in CNF, so φ is a conjunction of
clauses, where each clauses is a disjunction of literals (variables or negated variables). We
construct an input (T,E) for Nested Set Cover as follows. Denote the set of variables used
in φ by W .

For T we take the set of clauses of φ. For any variable x ∈ W , consider the set Posx
consisting of all clauses that contain a positive occurrence of x, and the set Negx consisting
of all clauses that contain a negative occurrence of x. Then we define ex as the pair
{Posx,Negx}.

Now E is defined as the set {ex | x ∈ W}. It is clear that φ is satisfiable if and only if
the constructed input is a yes-instance for Nested Set Cover. Indeed, truth assignments to
the variables correspond to selecting either Posx or Negx from ex for each x ∈W .

4. Undecidable Fragments

In this Section we show that the two decidable fragments SPARQL(bound,=, 6=c) and
SPARQL(bound, 6=, 6=c) are, in a sense, maximal. Specifically, the three minimal fragments
not subsumed by one of these two fragments are SPARQL(¬bound), SPARQL(=, 6=), and
SPARQL(=c). The main result of this Section is:

Theorem 11. Satisfiability is undecidable for SPARQL(¬bound) patterns, for SPARQL(=,
6=) patterns, and for SPARQL(=c) patterns.

We will prove this theorem by reducing from the satisfiability problem for the algebra
of finite binary relations with union, composition, and difference (Tan et al., 2014). This
algebra is also called the Downward Algebra and denoted by DA. The expressions of DA
are defined as follows. Let R be an arbitrary fixed binary relation symbol.

• The symbol R is a DA-expression.

• If e1 and e2 are DA-expressions, then so are e1 ∪ e2, e1 − e2, and e1 ◦ e2.

412

Satisfiability Problem for SPARQL

Semantically, DA-expressions represent binary queries on binary relations, i.e., mappings
from binary relations to binary relations. Let J be a binary relation. For DA-expression e,
we define the binary relation e(J) inductively as follows:

• R(J) = J ;

• (e1 ∪ e2)(J) = e1(J) ∪ e2(J);

• (e1 − e2)(J) = e1(J)− e2(J) (set difference);

• (e1 ◦ e2)(J) = {(x, z) | ∃y : (x, y) ∈ e1(J) and (y, z) ∈ e2(J)}.

A DA-expression is called satisfiable if there exists a finite binary relation J such that
e(J) is nonempty.

Example 12. An example of a DA-expression is e = (R ◦R)−R. If J is the binary relation
{(a, b), (b, c), (a, c), (c, d)} then e(J) = {(b, d), (a, d)}. An example of an unsatisfiable DA
expression is ((R ◦R−R) ◦R)− (R ◦R ◦R).

We recall the following result. It is actually well known (Andréka, Givant, & Németi,
1997) that relational composition together with union and complementation leads to an
undecidable algebra; the following result simplifies matters by showing that undecidability
already holds for expressions over a single relation symbol and using set difference instead of
complementation. The following result has been proven by reduction from the universality
problem for context-free grammars.

Theorem 13 (Tan et al., 2014). The satisfiability problem for DA-expressions is undecid-
able.

4.1 Expressing MINUS

The main problem we face in reducing from DA to the SPARQL fragments stated in Theo-
rem 11, is to emulate the difference operator. We review here more generally how to emulate
the MINUS operator, which is the most meaningful counterpart of the relational difference
operator in the SPARQL context.

The MINUS operator is defined as follows. For two patterns P1 and P2 and a graph G,
we define

JP1 MINUS P2KG = JP1KG r JP2KG,

where we reuse the r operation on sets of mappings, already seen in the definition of OPT
in Section 2.3.

For the fragment SPARQL(¬bound), expressibility of MINUS is already known:

Lemma 14 (Arenas & Pérez, 2011). MINUS is expressible in SPARQL(¬bound). More
precisely, for any two patterns P1 and P2 and any graph G, we have JP1MINUSP2KG = JP KG
where P is the pattern(

P1 OPT (P2 AND (?u, ?v, ?w))
)

FILTER ¬bound(?u).

Here, ?u, ?v and ?w are fresh variables not used in P1 or P2.

413

Zhang, Van den Bussche, & Picalausa

Our task is to find similar expressions in the two other fragments SPARQL(=, 6=) and
SPARQL(=c). We will actually only be able to express MINUS up to projection, and under
some mild assumptions on the graph G.

As for projection, its counterpart in SPARQL is the operation SELECT, defined as
follows. Let P be a pattern and let S be a finite set of variables. Then SELECTSP
restricts the solution mappings coming from P to the variables listed in S. Formally, for
any graph G, we define

JSELECTSP KG = {µ|S∩dom(µ) | µ ∈ JP KG}.

The assumptions on the graph G we need to make have to do with its active domain.
Intuitively, the active domain of a graph is the set of all entries of triples in the graph.
Formally, we define

adom(G) = {s | ∃p, o : (s, p, o) ∈ G} ∪ {p | ∃s, o : (s, p, o) ∈ G} ∪ {o | ∃s, p : (s, p, o) ∈ G}.

We can easily express the active domain in SPARQL, in the following sense. Using three
variables ?u, ?v, ?w, consider the pattern

adom = (?u, ?v, ?w) UNION (?w, ?u, ?v) UNION (?v, ?w, ?u).

Then for any graph, we have

adom(G) = {µ(?u) | µ ∈ JadomKG}
= {µ(?v) | µ ∈ JadomKG}
= {µ(?w) | µ ∈ JadomKG}.

We are now ready to state the counterpart of Lemma 14 for SPARQL(=, 6=).

Lemma 15. MINUS is expressible in SPARQL(=, 6=), up to projection and on graphs
with at least two distinct elements. More precisely, for any two patterns P1 and P2 and
any graph G such that adom(G) has at least two distinct elements, we have the equality
JP1 MINUS P2KG = JSELECTvar(P1)P KG, where P is the pattern((

P1 OPT ((P2 AND adom AND adom ′) FILTER ?u 6= ?u′)
)

AND adom AND adom ′
)

FILTER ?u = ?u′.

Here, adom ′ is a copy of the adom pattern with different variables ?u′, ?v′ and ?w′. These
variables, and the variables ?u, ?v and ?w used in adom, are fresh variables not used in P1

or P2.

Proof. To prove the equality stated in the Theorem we are going to consider both inclusions.
For easy reference we name some subpatterns of P as follows.

• P ′2 denotes (P2 AND adom AND adom ′) FILTER ?u 6= ?u′;

• P3 denotes P1 OPT P ′2.

414

Satisfiability Problem for SPARQL

• Thus, P is (P3 AND adom AND adom ′) FILTER ?u = ?u′.

To prove the inclusion from right to left, let µ ∈ JP KG. Then µ = µ3 ∪ ε, where
µ3 ∈ JP3KG and ε is a mapping defined on {?u, ?v, ?w, ?u′, ?v′, ?w′} such that ε(?u) = ε(?u′).
In particular, µ3 ∼ ε. Since P3 = P1 OPT P ′2, there are two possibilities for µ3:

• µ3 ∈ JP1KG and there is no µ′2 ∈ JP ′2KG such that µ3 ∼ µ′2. Then µ3 = µ|var(P1), so it
remains to show that there does not exist µ2 ∈ JP2KG such that µ3 ∼ µ2. Assume the
contrary. Since adom(G) has at least two distinct elements, µ2 can be extended to a
mapping µ′2 ∈ JP ′2KG. Then µ2 ∼ µ′2 ∼ µ3, which is a contradiction.

• µ3 = µ1 ∪ µ′2 with µ1 ∈ JP1KG and µ′2 ∈ JP ′2KG. In particular, µ3 is defined on ?u
and ?u′ and µ3(?u) 6= µ3(?u′). On the other hand, since µ3 ∼ ε, and ε(?u) = ε(?u′),
also µ3(?u) = µ3(?u′). This is a contradiction, so the possibility under consideration
cannot happen.

To prove the inclusion from left to right, let µ1 ∈ JP1 MINUSP2KG. Assume, for the sake
of argument, that there would exist µ′2 ∈ JP ′2KG such that µ1 ∼ µ′2. Mapping µ′2 contains a
mapping µ2 ∈ JP2KG, by definition of P ′2. Since µ1 ∼ µ′2, also µ1 ∼ µ2 which is not possible.

So, we now know that there does not exist µ′2 ∈ JP ′2KG such that µ1 ∼ µ′2. Hence,
µ1 ∈ JP3KG. Note that the six variables ?u, ?u′, ?v, ?v′, ?w, and ?w′ do not belong to
var(P1). Since G is nonempty, µ1 can thus be extended to a mapping µ ∈ JP KG. We
conclude µ1 ∈ JSELECTvar(P1)P KG as desired.

The analogous result for the fragment SPARQL(=c) is as follows. Fix two distinct
constants a and b arbitrarily.

Lemma 16. MINUS is expressible in SPARQL(=c), up to projection and on graphs in which
a and b appear. More precisely, for any two patterns P1 and P2 and any graph G such that
a and b belong to adom(G), we have the equality JP1 MINUS P2KG = JSELECTvar(P1)P KG,
where P is the pattern((

Pe1 OPT ((Pe2 AND adom?u) FILTER ?u = a)
)

AND adom?u

)
FILTER ?u = b.

As always, in the above expression, the variables ?u, ?v and ?w used in adom are taken
to be fresh variables not used in P1 or P2.

The correctness proof of the above Lemma is analogous to the proof given for Lemma 15;
instead of exploiting the inconsistency between ?u 6= ?u′ and ?u = ?u′ as done in that proof,
we now exploit the inconsistency between ?u = a and ?u = b.

4.2 Reduction from the Downward Algebra

We are now ready to formulate the reduction from the satisfiability problem for DA to
the satisfiability problem for the three fragments mentioned in Theorem 11. We precisely
formulate the reduction and prove the Theorem for the fragment SPARQL(¬bound) first.
After that we will discuss how the reduction must be adapted for the other two fragments.

We say that an RDF graph G represents a binary relation J if J = {(s, o) | ∃p : (s, p, o) ∈
G}. Intuitively, we view an RDF graph as a binary relation by ignoring the middle column.

415

Zhang, Van den Bussche, & Picalausa

Lemma 17. For every DA-expression e there exists a SPARQL(¬bound) pattern Pe with
the following properties:

1. there exist two distinct fixed variables ?x and ?y such that for every RDF graph G
and every µ ∈ JPeKG, ?x and ?y belong to dom(µ);

2. for every binary relation J and RDF graph G that represents J , we have

e(J) = {(µ(?x), µ(?y)) | µ ∈ JPeKG};

Proof. By induction on the structure of e. If e is R then Pe is the triple pattern (?x, ?z, ?y).
If e is of the form e1 ∪ e2, then Pe is Pe1 UNION Pe2 .
If e is of the form e1 ◦ e2, then Pe is P ′e1 AND P ′e2 , where P ′e1 and P ′e2 are obtained as

follows. First, by renaming variables, we may assume without loss of generality that Pe1
and Pe2 have no variables in common other than ?x and ?y. Let ?z be a fresh variable.
Now in Pe1 , rename ?y to ?z, yielding P ′e1 , and in Pe2 , rename ?x to ?z, yielding P ′e2 .

Finally, if e is of the form e1 − e2, we use the expression P from Lemma 14 applied to
Pe1 and Pe2 . As before we may assume without loss of generality that Pe1 and Pe2 have no
variables in common other than ?x and ?y.

From the above lemma we clearly have that e is satisfiable if and only if Pe is satisfiable.
We thus have a reduction from satisfiability for DA to satisfiability for SPARQL(¬bound),
showing undecidability of the latter problem.

We now discuss the two remaining fragments.

4.3 SPARQL(=, 6=)

For this fragment we consider a minor variant of satisfiability for DA-expressions where we
restrict attention to binary relations over at least two elements. Formally, the active domain
of a binary relation J is the set of all entries in pairs belonging to J , so adom(J) := {x |
∃y : (x, y) ∈ J or (y, x) ∈ J}. Then a DA-expression e is called two-satisfiable if e(J) is
nonempty for some J such that adom(J) has at least two distinct elements.

Clearly, two-satisfiability is undecidable as well, for if it were decidable, then satisfiability
would be decidable too. Indeed, e is satisfiable if and only if it is two-satisfiable, or satisfiable
by a binary relation J over a single element. Up to isomorphism there is only one such J
(the singleton {(x, x)}), so that case could be checked separately.

Lemma 17 can now be adapted by claiming the second property only for binary relations
J over at least two distinct elements. In the proof for the case where e is e1 − e2, we can
then use Lemma 15.

Using the adapted lemma, we can now reduce two-satisfiability for DA to satisfiability
for SPARQL(=, 6=). All we need extra is a test whether the graph represents a binary
relation over at least two distinct elements. We can use the following pattern test (using
fresh variables ?u, . . . , ?w′ as usual):

(((?u, ?v, ?w) AND (?u′, ?v′, ?w′)) FILTER ?u 6= ?u′)

UNION (((?u, ?v, ?w) AND (?u′, ?v′, ?w′)) FILTER ?w 6= ?w′)

UNION (((?u, ?v, ?w) AND (?u′, ?v′, ?w′)) FILTER ?u 6= ?w′)

Then, e is two-satisfiable if and only if Pe AND test is satisfiable.

416

Satisfiability Problem for SPARQL

4.4 SPARQL(=c)

For this fragment we consider a further variant of two-satisfiability, called ab-satisfiability,
for two arbitrary fixed constants a, b ∈ I. A DA-expression is called ab-satisfiable if e(J) is
nonempty for some binary relation J where a, b ∈ adom(J).

DA-expressions do not distinguish between isomorphic binary relations. Hence, ab-
satisfiability is equivalent to two-satisfiability, and thus still undecidable.

We now again adapt Lemma 17, as follows. The second property is now claimed only
for binary relations J where a, b ∈ adom(J). In the proof for the case e = e1 − e2, we now
use Lemma 16.

We then obtain that e is ab-satisfiable if and only if Pe AND testab is satisfiable, where
testab is the following pattern which tests whether the graph represents a binary relation
with a and b in its active domain:

(((?u, ?v, ?w) UNION (?w, ?v, ?u)) AND ((?u′, ?v′, ?w′) UNION (?w′, ?v′, ?u′)))

FILTER ?u = a FILTER ?u′ = b

Remark 18. Recall that literals cannot appear in first or second position in an RDF triple.
Patterns using constant-equality predicates can be unsatisfiable because of that reason. For
example, using the literal 42, the pattern (?x, ?y, ?z)FILTER?y = 42 is unsatisfiable. How-
ever, we have seen here that the use of constant-equality predicates leads to undecidability
of satisfiability for a much more fundamental reason, that has nothing to do with literals,
namely, the ability to emulate set difference.

5. Satisfiability of Well-Designed Patterns

The well-designed patterns (Pérez et al., 2009) have been identified as a well-behaved class of
SPARQL patterns, with properties similar to the conjunctive queries for relational databases
(Abiteboul et al., 1995). Standard conjunctive queries are always satisfiable, and conjunctive
queries extended with equality and nonequality constraints, possibly involving constants,
can only be unsatisfiable if the constraints are inconsistent. An analogous behavior is present
in what we call AF-patterns: patterns that only use the AND and FILTER operators. We
will formalize this in Proposition 19. We will then show in Theorem 21 that a well-designed
pattern is satisfiable if and only if its reduction to an AF-pattern is satisfiable. In other
words, as far as satisfiability is concerned, well-designed patterns can be treated like AF-
patterns.

5.1 Satisfiability of AF-Patterns

In Section 3.1 we have associated a set of schemes Γ(P) to every pattern P . When Γ(P) is
empty, P is unsatisfiable (Lemma 4).

Now when P is an AF-pattern and Γ(P) is nonempty, the satisfiability of P will turn
out to depend solely on the equalities, nonequalities, constant-equalities, and constant-
nonequalities occurring as filter conditions in P . We will denote the set of these constraints
by C(P).

Any set Σ of constraints is called consistent if there exists a mapping that satisfies every
constraint in Σ.

417

Zhang, Van den Bussche, & Picalausa

We establish:

Proposition 19. An AF-pattern P is satisfiable if and only if Γ(P) is non-empty and
C(P) is consistent.

Proof. The only-if direction of this proposition is given by Lemma 4 together with the
observation that if µ ∈ JP KG, then µ satisfies every constraint in C(P). Since P is satisfiable,
such G and µ exist, so C(P) is consistent.

For the if direction, since P does not have the UNION and OPT operators, Γ(P) is a
singleton {S}. Since C(P) is consistent, there exists a mapping µ : S → U satisfying every
constraint in C(P). Let G be the graph consisting of all triples (µ(u), µ(v), µ(w)) where
(u, v, w) is a triple pattern in P . It is straightforward to show by induction on the height
of Q that for every subpattern Q of P , we have µ|S′ ∈ JQKG, where Γ(Q) = {S′}. Hence
µ ∈ JP KG and P is satisfiable.

Note that Γ(P) can “blow up” only because of possible UNION and OPT operators,
which are missing in an AF-pattern. Hence, for an AF-pattern P , we can efficiently compute
Γ(P) by a single bottom-up pass over P . Morever, C(P) is a conjunction of possibly negated
equalities and constant equalities. It is well known that consistency of such conjunctions
can be decided in polynomial time (Kroening & Strichman, 2008). Hence, we conclude:

Corollary 20. Satisfiability for AF-patterns can be checked in polynomial time.

5.2 AF-Reduction of Well-Designed Patterns

A well-designed pattern is defined as a union of union-free well-designed patterns. Since a
union is satisfiable if and only if one of its terms is, we will focus on union-free patterns in
what follows. Formally, a union-free pattern P is called well-designed (Pérez et al., 2009) if

1. for every subpattern of P of the form Q FILTER C, all variables mentioned in C also
occur in Q; and

2. for every subpattern Q of P of the form Q1 OPT Q2, and every ?x ∈ var(Q2), if ?x
also occurs in P outside of Q, then ?x ∈ var(Q1).

We associate to every union-free pattern P an AF-pattern ρ(P) obtained by removing all
applications of OPT and their right operands; the left operand remains in place. Formally,
we define the following:

• If P is a triple pattern, then ρ(P) equals P .

• If P is of the form P1 AND P2, then ρ(P) = ρ(P1) AND ρ(P2).

• If P is of the form P1 FILTER C, then ρ(P) = ρ(P1) FILTER C.

• If P is of the form P1 OPT P2, then ρ(P) = ρ(P1).

The announced result is now given by the following theorem, which is proved directly
from results by Pérez et al. (2009).4

4. We thank an anonymous referee for offering the given proof of the only-if direction.

418

Satisfiability Problem for SPARQL

Theorem 21. Let P be a union-free well-designed pattern. Then P is satisfiable if and
only if ρ(P) is.

Proof. We are going to refer to Lemma 4.3 and Proposition 4.5 by Perez et al. (2009).
Indeed, Lemma 4.3 gives us the if-direction of Theorem 21. The cited paper introduced the
notion of a reduction P ′ E P . Whenever P ′ E P , also ρ(P) E P ′ and ρ(P) = ρ(P ′).

Now for the only-if direction, assume P is satisfiable, so there exists G and µ so that
µ ∈ JP KG. Then there exists P ′ E P such that µ ∈ Jand(P ′)KG (Proposition 4.5). Here,
and(P ′) denotes the pattern obtained from P ′ by replacing every OPT by AND. By the
above we have ρ(P) = ρ(P ′).

Now the following claim is easy to verify for every union-free pattern P ′: If µ ∈
Jand(P ′)KG then µ|var(ρ(P ′)) ∈ Jρ(P ′)KG. By that claim, we obtain that Jρ(P ′)KG is nonempty
so ρ(P ′) = ρ(P) is satisfiable, as desired.

Since ρ(P) can be efficiently computed from P , the above Theorem and Corollary 20
imply:

Corollary 22. Satisfiability of union-free well-designed patterns can be tested in polynomial
time.

6. Experimental Evaluation

We want to evaluate experimentally the positive results presented so far:

1. Wrong literal reduction (Proposition 24);

2. Satisfiability checking for SPARQL(bound,=, 6=c) and SPARQL(bound, 6=, 6=c) by com-
puting Γ(P) (Theorem 3);

3. Satisifiability checking for well-designed patterns, by reduction to AF-patterns (Propo-
sition 19 and Theorem 21).

Our experiments follow up on those reported earlier by Picalausa and Vansummeren
(2011). As test datasets of real-life SPARQL queries, we use logs of the SPARQL endpoint
for DBpedia.5 This data source contains the “query dumps” from the year 2012, divided
into 14 logfiles. Out of these we chose the three logs 20120913, 20120929 and 20121031 to
obtain a span of roughly three months; we then took a sample of 100 000 queries from each
of them. A typical query in the log has size between 75 and 125 (size measured as number
of nodes in the syntax tree). About 10% of the queries in each log is not usable because
they have syntax errors or because they use features not covered by our analysis.

The implementation of the tests was done in Java 7 under Windows 7, on an Intel Core 2
Duo SU94000 processor (1.40GHz, 800MHz, 3MB) with 3GB of memory (SDRAM DDR3
at 1067MHz).

Our tests measure the time needed to perform the analyses of SPARQL queries presented
above. The timings are averaged over all queries in a log, and each experiment is repeated
five times to smooth out accidental quirks of the operating system. Although we give

5. ftp://download.openlinksw.com/support/dbpedia/

419

Zhang, Van den Bussche, & Picalausa

Table 1: Timings of experiments (averaged over five repeats). Times are in ms. Baseline
is time to read and parse 1000 000 queries; WL stands for baseline plus time for
wrong-literal reduction. Γ(P) stands for WL plus time for computing Γ(P). AF
stands for WL, plus testing well-designedness, plus doing AF-reduction and testing
satisfiability (Proposition 19). The percentages show the increases relative to the
baseline.

logfile baseline WL Γ(P) AF

20120913 39 422 41 254 5% 44 395 8% 48 329 10%
20120929 34 281 35 868 5% 38 102 7% 41 087 9%
20121031 32 286 33 186 3% 34 419 4% 36 993 8%

absolute timings, the main emphasis is on the percentage of the time needed to analyse
a query, with respect to the time needed simply to read and parse that query. If this
percentage is small this demonstrates efficient, linear time complexity in practice. It will
turn out that this is indeed achieved by our experiments, as shown in Table 1.

In the following subsections we discuss the results in more detail.

6.1 Wrong Literal Reduction

Testing for and removing triple patterns with wrong literals in a pattern P is performed by
the reduction λ(P) defined in the Appendix. From the definition of λ(P) it is clear that it
can be computed by a single bottom-up traversal of P and this is indeed borne out by our
experiments. Table 1 shows that on average, wrong-literal reduction takes between 3 and
5% of the time needed to read and parse the input.

Interestingly, some real-life queries with literals in the wrong position were indeed found;
one example is the following:

SELECT DISTINCT *

WHERE { 49 dbpedia-owl:wikiPageRedirects ?redirectLink .}

6.2 Computing Γ(P)

In Section 3 we have seen that satisfiability for the decidable fragments can be tested
by computing Γ(P), but that the problem is NP-complete. Intuitively, the problem is
intractable because Γ(P) may be of size exponential in the size of P . This actually occurs
in real life; a common SPARQL query pattern is to use many nested OPTIONAL operators
to gather additional information that is not strictly required by the query but may or may
not be present. We found in our experiments queries with up to 50 nested OPT operators,
which naively would lead to a Γ(P) of size 250. A shortened example of such a query is
shown in Figure 1.

In practice, however, the blowup of Γ(P) can be avoided as follows. Recall that Theo-
rem 3 states that P is satisfiable if and only if Γ(P) is nonempty. The elements of Γ(P) are
sets of variables. Looking at the definition of Γ(P), a set may be removed from Γ(P) only

420

Satisfiability Problem for SPARQL

SELECT DISTINCT *

WHERE {

?s a <http://dbpedia.org/ontology/EducationalInstitution>,

<http://dbpedia.org/ontology/University> .

?s <http://dbpedia.org/ontology/country> <http://dbpedia.org/resource/Brazil> .

OPTIONAL {?s <http://dbpedia.org/ontology/affiliation> ?ontology_affiliation .}

OPTIONAL {?s <http://dbpedia.org/ontology/abstract> ?ontology_abstract .}

OPTIONAL {?s <http://dbpedia.org/ontology/campus> ?ontology_campus .}

OPTIONAL {?s <http://dbpedia.org/ontology/chairman> ?ontology_chairman .}

OPTIONAL {?s <http://dbpedia.org/ontology/city> ?ontology_city .}

OPTIONAL {?s <http://dbpedia.org/ontology/country> ?ontology_country .}

OPTIONAL {?s <http://dbpedia.org/ontology/dean> ?ontology_dean .}

OPTIONAL {?s <http://dbpedia.org/ontology/endowment> ?ontology_endowment .}

OPTIONAL {?s <http://dbpedia.org/ontology/facultySize> ?ontology_facultySize .}

OPTIONAL {?s <http://dbpedia.org/ontology/formerName> ?ontology_formerName .}

OPTIONAL {?s <http://dbpedia.org/ontology/head> ?ontology_head .}

OPTIONAL {?s <http://dbpedia.org/ontology/mascot> ?ontology_mascot .}

OPTIONAL {?s <http://dbpedia.org/ontology/motto> ?ontology_motto .}

OPTIONAL {?s <http://dbpedia.org/ontology/president> ?ontology_president .}

OPTIONAL {?s <http://dbpedia.org/ontology/principal> ?ontology_principal .}

OPTIONAL {?s <http://dbpedia.org/ontology/province> ?ontology_province .}

OPTIONAL {?s <http://dbpedia.org/ontology/rector> ?ontology_rector .}

OPTIONAL {?s <http://dbpedia.org/ontology/sport> ?ontology_sport .}

OPTIONAL {?s <http://dbpedia.org/ontology/state> ?ontology_state .}

OPTIONAL {?s <http://dbpedia.org/property/acronym> ?property_acronym .}

OPTIONAL {?s <http://dbpedia.org/property/address> ?property_address .}

OPTIONAL {?s <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ?property_lat .}

OPTIONAL {?s <http://www.w3.org/2003/01/geo/wgs84_pos#long> ?property_long .}

OPTIONAL {?s <http://dbpedia.org/property/established> ?property_established .}

OPTIONAL {?s <http://dbpedia.org/ontology/logo> ?ontology_logo .}

OPTIONAL {?s <http://dbpedia.org/property/website> ?property_website .}

OPTIONAL {?s <http://dbpedia.org/property/location> ?property_location .}

FILTER (langMatches(lang(?ontology_abstract), "es") ||

langMatches(lang(?ontology_abstract), "en"))

FILTER (langMatches(lang(?ontology_motto), "es") ||

langMatches(lang(?ontology_motto), "en"))

}

Figure 1: A real-life query with many nested OPTIONAL operators, retrieving as much
information as possible about universities in Brazil.

421

Zhang, Van den Bussche, & Picalausa

by the application of a FILTER. Hence, only variables that are mentioned in FILTER con-
ditions can influence the emptiness of Γ(P); other variables can be ignored. For example,
in the query in Figure 1, only two variables appear in a filter, namely ?ontology abstract

and ?ontology motto, so that the maximal size of Γ(P) is reduced to 22.

In our experiments, it turns out that typically few variables are involved in filter condi-
tions. Hence, the above strategy works well in practice.

Another practical issue is that, in this paper, we have only considered filter condi-
tions that are bound checks, equalities, and constant-equalities, possibly negated. In prac-
tice, filter conditions typically apply built-in SPARQL predicates such as the predicate
langMatches in Figure 1. For the experimental purpose of testing the practicality of com-
puting Γ(P), however, such predicates can simply be treated as bound checks. In this way
we can apply our experiments to 70% of the queries in the testfiles.

With the above practical adaptations, our experiments show that computing Γ(P) is
efficient: Table 1 shows that it requires, on average, between 4 and 8% of the time needed
to read and parse the input, and these timings even include the wrong-literal reduction

All in all, our experiments encountered very few unsatisfiable queries. This observation
is corrobated by the findings of a recent new statistical analysis of practical SPARQL usage
(Han, Feng, Zhang, Wang, Rao, & Jiang, 2016). Of course, that users in practice do not
write unsatisfiable expressions is only good news. Satisfiability remains a basic problem
that we need to understand, because many other problems can be reduced to it.

6.3 Satisfiability Testing for Well-Designed Patterns

In Section 5 we have seen that testing satisfiability of a well-designed pattern can be done by
testing satisfiability of the AF-reduction (Theorem 21). The latter can be done by testing
nonemptiness of Γ(P) and testing consistency of the filter conditions (Proposition 19).

Computing the AF-reduction can be done by a simple bottom-up traversal of the pattern.
Moreover, for an AF-pattern P , computing Γ(P) poses no problems since it is either empty
or a singleton. As far as testing consistency of filter conditions is concerned, our experiments
yield a rather baffling observation: almost all well-designed patterns in the test sets have
no filters at all. We cannot explain this phenomenon, but it implies that we have not been
able to test the performance of the consistency checks on real-life SPARQL queries.

Anyhow, Table 1 shows that doing the entire analysis of wrong-literal reduction, testing
well-designedness, AF-reduction, computing Γ(P), and consistency checking (in the few
cases where the latter was necessary), incurs at most a 10% increase relative to reading and
parsing the input.

6.4 Scalability

The experiments described above were run on sets of 100 000 queries each. We also did a
modest scaling experiment where we varied the number of queries from 5 000 to 200 000.
Table 2 shows that the performance scales linearly.

422

Satisfiability Problem for SPARQL

Table 2: Scalability experiment (times in ms). Timings clearly scale linearly for increasing
input size.

input size 200 000 100 000 50 000 10 000 5 000 Pearson coeficient

baseline 74 168 39 422 21 315 3 596 1 851 0.999924005
WL 77 800 41 253 21 876 3 762 1 942 0.999989454

Γ(P) 81 730 44 395 23 552 4 016 2 036 0.999900948
AF 91 470 48 329 26 023 4 463 2 254 0.999044542

7. Extension to SPARQL 1.1

As already mentioned in the Introduction, SPARQL 1.0 has been extended to SPARQL 1.1
with a number of new operators for building patterns. The main new features are property
paths; grouping and aggregates; BIND; VALUES; MINUS; EXISTS and NOT EXISTS-
subqueries; and SELECT. A complete analysis of SPARQL 1.1 goes beyond the scope of
the present paper. Nevertheless, in this section, we briefly discuss how our results may be
extended to this new setting.

Property paths provide a form of regular path querying over graphs. This aspect of graph
querying has already been extensively investigated, including questions of satisfiability and
other kinds of static analysis such as query containment (Kostylev, Reutter, & Vrgoč, 2014;
Kostylev, Reutter, Romero, & Vrgoč, 2015). Therefore we do not discuss property paths
any further here.

The SPARQL 1.1 features that we discuss can be grouped in two categories: those that
cause undecidability, and those that are harmless as far as satisfiability is concerned. We
begin with the harmless category.

7.1 SELECT Operator and EXISTS-Subqueries

SPARQL 1.1 allows patterns of the form SELECTSP , where S is a finite set of variables and
P is a pattern. The novelty compared to 1.0 is that this can be applied to subexpressions.
The semantics is that of projection; we have already seen it in Section 4.1.

This feature in itself does not influence the satisfiability of patterns. Indeed, patterns
extended with SELECT operators can be reduced to patterns without said operators. The
reduction amounts simply to rename the variables that are projected out by fresh variables
that are not used anywhere else in the pattern; then the SELECT operators themselves
can be removed. The resulting, SELECT-free, pattern is equivalent to the original one if
we omit the fresly introduced variables from the solution mappings in the final result. In
particular, the two patterns are equisatisfiable.

Example 23. Rather than giving the formal definition of SELECT-reduction and formally
stating and proving the equivalence, we give an example. Consider the pattern P :

(c, p, ?x) OPT ((?x, p, ?y) AND SELECT?y(?y, q, ?z) AND SELECT?y(?y, r, ?z))

423

Zhang, Van den Bussche, & Picalausa

Renaming projected-out variables by fresh variables and omitting the SELECT operators
yields the following pattern P ′:

(c, p, ?x) OPT ((?x, p, ?y) AND (?y, q, ?z1) AND (?y, r, ?z2))

Pattern P ′ is equivalent to P in the sense that for any graph G, we have JP KG = {µ̂ | µ ∈
JP ′KG}, where µ̂ denotes the mapping obtained from µ by omitting the values for ?z1 and
?z2 (if at all present in dom(µ)).

Now that we know how to handle SELECT operators, we can also handle EXISTS-
subqueries. Indeed, a pattern P FILTER EXISTS(Q) (with the obvious SQL-like semantics)
is equivalent to SELECTvar(P)(P ANDQ).

7.2 Features Leading to Undecidability

In Section 4 we have seen that as soon as one can express the union, composition and
difference of binary relations, the satisfiability problem becomes undecidable. Since union
and composition are readily expressed in basic SPARQL (UNION and AND), the key lies
in the expressibility of the difference operator. In this subsection we will see that various
new features of SPARQL 1.1 indeed allow expressing difference.

7.2.1 MINUS Operator and NOT EXISTS Subqueries

Each of these two features can quite obviously be used to express difference, so we do not
dwell on them any further.

7.2.2 Grouping and Aggregates

A known trick for expressing difference using grouping and counting (Celko, 2005) can be
emulated in the extension of SPARQL 1.0 with grouping. We illustrate the technique with
an example.

Consider the query (?x, p, ?y) MINUS (?x, q, ?y) asking for all pairs (a, b) such that
(a, p, b) holds but (a, q, b) does not. We can express this query (with the obvious SQL-like
semantics) as follows:

SELECT?x,?y

(
(?x, p, ?y) OPT ((?x, q, ?y) AND (?xx, p, ?yy))

)
GROUP BY ?x, ?y
HAVING count(?xx) = 0

Note that this technique of looking for the (?x, ?y) groups with a zero count for ?xx is very
similar to the technique used to express difference using a negated bound constraint (seen
in the proof of Lemma 17).

7.2.3 BIND and VALUES

We have seen in Section 4.4 that allowing constant equalities in filter constraints allows us
to emulate the difference operator. Two mechanisms introduced in SPARQL 1.1, BIND and
VALUES, allow the introduction of constants in solution mappings. Together with equality
constraints this allows us to express constant equalities, and hence, difference.

424

Satisfiability Problem for SPARQL

Specifically, using VALUES, we can express P FILTER ?x = c as

SELECTvar(P)(P AND VALUES?x(c)).

Using BIND, it can be expressed as

SELECTvar(P)((P BIND?x′ (c)) FILTER ?x = ?x′)

where ?x′ is a fresh variable. Note the use of SELECT, which, however, does not influence
satisfiability as discussed above. We conclude that SPARQL(=) extended with BIND, or
SPARQL(=) extended with VALUES, have an undecidable satisfiability problem.

8. Conclusion

The results of this paper may be summarized by saying that, as long as the kinds of
constraints allowed in filter conditions cannot be combined to yield inconsistent sets of
constraints, satisfiability for SPARQL patterns is decidable; otherwise, the problem is un-
decidable. Moreover, for well-designed patterns, satisfiability is decidable as well. All our
positive results yield straightforward bottom-up syntactic checks that can be implemented
in practice.

We thus have attempted to paint a rather complete picture of the satisfiability problem
for SPARQL 1.0. Of course, satisfiability is only the most basic automated reasoning
task. One may now move on to more complex tasks such as equivalence, implication,
containment, or query answering over ontologies. Indeed, investigations along this line for
limited fragments of SPARQL are already happening (Letelier, Pérez, Pichler, & Skritek,
2013; Wudage, Euzenat, Genevès, & Layäıda, 2012; Kollia & Glimm, 2013; Cuenca Grau,
Motik, Stoilos, & Horrocks, 2012) and we hope that our work may serve to provide some
additional grounding to these investigations.

We also note that in query optimization it is standard to check for satisfiability of
subexpressions, to avoid executing useless code. Some specific works on SPARQL query
optimization (Sequeda & Miranker, 2013; Groppe, Groppe, & Kolbaum, 2009) do mention
that inconsistent constraints can cause unsatisfiability, but they have not provided sound
and complete characterizations of satisfiability, like we have offered in this paper. Thus,
our results will be useful in this direction as well.

Acknowledgment

We thank the anonymous referees, both on the original submission and on the revised
submission, for their critical comments, which encouraged us to significantly improve the
paper. This work has been funded by grant G.0489.10 of the Research Foundation Flanders
(FWO).

Appendix A.

Literals in the wrong place in triple patterns are easily dealt with in the following manner.
We define the wrong-literal reduction of a pattern P , denoted by λ(P), as a set that is either
empty or is a singleton containing a single pattern P ′:

425

Zhang, Van den Bussche, & Picalausa

• If P is a triple pattern (u, v, w) and u is a literal, then λ(P) := ∅; else λ(P) := {P}.

• λ(P1 UNION P2) := λ(P1) ∪ λ(P2) if λ(P1) or λ(P2) is empty;

• λ(P1 UNION P2) := {P ′1 UNION P ′2 | P ′1 ∈ λ(P1) and P ′2 ∈ λ(P2)} otherwise.

• λ(P1 AND P2) := {P ′1 AND P ′2 | P ′1 ∈ λ(P1) and P ′2 ∈ λ(P2)}.

• λ(P1 OPT P2) := ∅ if λ(P1) is empty;

• λ(P1 OPT P2) := λ(P1) if λ(P2) is empty but λ(P1) is nonempty;

• λ(P1 OPT P2) := {P ′1 OPT P ′2 | P ′1 ∈ λ(P1) and P ′2 ∈ λ(P2)} otherwise.

• λ(P1 FILTER C) := {P ′1 FILTER C | P ′1 ∈ λ(P1)}.

Note that the wrong-literal reduction never has a literal in the subject position of a triple
pattern. The next proposition shows that, as far as satisfiability checking is concerned, we
may always perform the wrong-literal reduction.

Proposition 24. Let P be a pattern. If λ(P) is empty then P is unsatisfiable; if λ(P) =
{P ′} then P and P ′ are equivalent, i.e., JP KG = JP ′KG for every RDF graph G. Moreover,
if λ(P) = {P ′} then P ′ does not contain any triple pattern (u, v, w) where u is a literal.

Proof. Assume P is a triple pattern (u, v, w) and u is a literal, so that λ(P) = ∅. Since u
is a constant, µ(u) equals the literal u for every solution mapping µ. Since no triple in an
RDF graph can have a literal in its first position, JP KG is empty for every RDF graph G,
i.e., P is unsatisfiable. If u is not a literal, λ(P) = {P} and the claims of the Proposition
are trivial.

If P is of the form P1 UNION P2, or P1 AND P2, or P1 FILTER C, the claims of the
Proposition follow straightforwardly by induction.

If P is of the form P1 OPT P2, there are three cases to consider.

• If λ(P1) is empty then so is λ(P). In this case, by induction, P1 is unsatisfiable,
whence so is P .

• If λ(P1) = {P ′1} is nonempty but λ(P2) is empty, then λ(P) = {P ′1}. By induction,
P2 is unsatisfiable. Hence, P is equivalent to P1, which in turn is equivalent to P ′1 by
induction. That P ′1 does not contain any triple pattern with a literal in first position
again follows by induction.

• If λ(P1) = {P ′1} and λ(P2) = {P ′2} are both nonempty, then λ(P) = P ′1 OPT P ′2.
By induction, P1 is equivalent to P ′1 and so is P2 to P ′2. Hence, P is equivalent to
P ′1 OPTP ′2 as desired. By induction, neither P ′1 nor P ′2 contain any triple pattern with
a literal in first position, so neither does P ′1 OPT P ′2.

426

Satisfiability Problem for SPARQL

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Andréka, H., Givant, S., & Németi, I. (1997). Decision problems for equational theories of
relational algebras, Vol. 126 of Memoirs. AMS.

Angles, R., & Gutierrez, C. (2008). The expressive power of SPARQL. In Sheth, A., Staab,
S., et al. (Eds.), Proceedings 7th International Semantic Web Conference, Vol. 5318
of Lecture Notes in Computer Science, pp. 114–129. Springer.

Arenas, M., Conca, S., & Pérez, J. (2012). Counting beyond a Yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard. In Mille, A., et al. (Eds.),
Proceedings 21st World Wide Web Conference, pp. 629–638. ACM.

Arenas, M., & Pérez, J. (2011). Querying semantic web data with SPARQL. In Proceedings
30st ACM Symposium on Principles of Databases, pp. 305–316. ACM.

Arenas, M., Pérez, J., & Gutierrez, C. (2009). On the semantics of SPARQL. In De Virgilio,
R., Giunchiglia, F., & Tanca, L. (Eds.), Semantic Web Information Management—A
Model-Based Perspective, pp. 281–307. Springer.

Celko, J. (2005). SQL for Smarties: Advanced SQL Programming (Third edition). Elsevier.

Cuenca Grau, B., Motik, B., Stoilos, G., & Horrocks, I. (2012). Completeness guarantees for
incomplete ontology reasoners: Theory and practice. Journal of Artificial Intelligence
Research, 43, 419–476.

Groppe, J., Groppe, S., & Kolbaum, J. (2009). Optimization of SPARQL by using coreS-
PARQL. In Cordeiro, J., & Filipe, J. (Eds.), Proceedings 11th International Conference
on Enterprise Information Systems, pp. 107–112.

Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G., & Jiang, S. (2016). On the statistical
analysis of practical SPARQL patterns. In Proceedings 19th International Workshop
on the Web and Databases.

Harris, S., & Seaborne, A. (2013). SPARQL 1.1 query language. W3C Recommendation.

Kollia, I., & Glimm, B. (2013). Optimizing SPARQL query answering over OWL ontologies.
Journal of Artificial Intelligence Research, 48, 253–303.

Kostylev, E., Reutter, J., Romero, M., & Vrgoč, D. (2015). SPARQL with property paths.
In Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., et al. (Eds.), Proceedings
14th International Semantic Web Conference, Vol. 9366 of Lecture Notes in Computer
Science, pp. 3–18. Springer.

Kostylev, E., Reutter, J., & Vrgoč, D. (2014). Containment of data graph queries. In
Proceedings 17th International Conference on Database Theory. ACM.

Kroening, D., & Strichman, O. (2008). Decision Procedures. Springer.

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (2013). Static analysis and optimization of
semantic web queries. ACM Transactions on Database Systems, 38 (4), article 25.

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of SPARQL. ACM
Transactions on Database Systems, 34 (3), article 16.

427

Zhang, Van den Bussche, & Picalausa

Picalausa, F., & Vansummeren, S. (2011). What are real SPARQL queries like?. In De Vir-
gilio, R., Giunchiglia, F., & Tanca, L. (Eds.), Proceedings International Workshop on
Semantic Web Information Management, No. 7. ACM Press.

Polleres, A. (2007). From SPARQL to rules (and back). In Williamson, C., Zurko, M., et al.
(Eds.), Proceedings 16th World Wide Web Conference, pp. 787–796. ACM.

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. W3C
Recommendation.

Schmidt, M., Meier, M., & Lausen, G. (2010). Foundations of SPARQL query optimization.
In Proceedings 13th International Conference on Database Theory, pp. 4–33. ACM.

Sequeda, J., & Miranker, D. (2013). Ultrawrap: SPARQL execution on relational data. Web
Semantics, 22, 19–39.

Tan, T., Van den Bussche, J., & Zhang, X. (2014). Undecidability of satisfiability in the alge-
bra of finite binary relations with union, composition, and difference. arXiv:1406.0349.

Wudage, M., Euzenat, J., Genevès, P., & Layäıda, N. (2012). SPARQL query containment
under SHI axioms. In Proceedings 26th AAAI Conference on Artificial Intelligence,
pp. 10–16.

428

